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ABSTRACT

USING MACHINE LEARNING TO IMPROVE VERTICAL PROFILES OF TEMPERATURE

AND MOISTURE FOR SEVERE WEATHER NOWCASTING

Vertical profiles of temperature and moisture as provided by radiosondes are of paramount

importance to forecasting convective activity, yet the National Weather Service radiosonde net-

work is spatially coarse and suffers from temporal paucity. Supplementary information generated

by numerical weather prediction (NWP) models is invaluable—analysis and forecast profiles are

available at a high sampling frequency and horizontal resolution. However, numerical models con-

tain inherent errors and inaccuracies, and many of these errors occur near the surface and influence

the short-term prediction of high impact events such as severe thunderstorms. For example, the

convective available potential energy and the convective inhibition are highly dependent on the

near-surface values of temperature and moisture. To address these errors and to create the most

useful vertical profiles of temperature and moisture for severe weather nowcasting, we explore

a machine learning approach to combine satellite and surface observations with an initial NWP

profile.

In particular, we explore deep learning to improve vertical profiles from an NWP model, which

is the first known work to do so. Using initial profile predictions from the Rapid Refresh (RAP)

model, corresponding surface products from the Real-Time Mesoscale Analysis (RTMA), and

satellite data from the Geostationary Operational Environmental Satellite (GOES)-16 Advanced

Baseline Imager, we train variations of fully-connected and convolutional neural networks with

custom knowledge guided loss functions to produce enhanced profiles. We evaluate the success

of our approach by comparing estimates with ground truth radiosonde observations (RAOB)s and

their derived indices for samples collected between January 1, 2017 and August 31, 2020. The pro-

posed Residual U-Net architecture shows a 26.15% reduction in error over the profiles relative to
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the RAP errors, with the greatest improvements in the mid- to upper-level moisture. Furthermore,

we detail the importance of the GOES-16 channels and assess our model under different meteoro-

logical conditions, finding: 1) no bias of seasonality; 2) training with additional samples, even in

cloudy conditions, to be beneficial; and 3) sounding locations with more samples and higher initial

errors to have greater improvement. As such, this work is targeted to aid forecasters concerned

with severe convection make more precise predictions, thereby enhancing the nation’s readiness,

responsiveness, and resilience to high-impact weather events.
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Chapter 1

Introduction

Environmental instability of the atmosphere of the Earth often leads to the initiation of thun-

derstorms, which are often the source of severe weather events around the world. The most severe

storms, such as those accompanied by tornadoes, downbursts, and extreme hail events, impose

threats to lives and property. For meteorologists to forecast these events and conduct accurate

near-term convective threat assessments, it is of paramount importance to have accurate boundary-

layer thermodynamic and kinematic profiles. Radiosondes are the traditional gold-standard for

accurate profiles, as they come from observational measurements from weather balloons as they

ascend in the atmosphere. However, the National Weather Service (NWS) radiosonde network is

spatially and temporally sparse with routine launches only twice a day, around 0000 and 1200 UTC

from 92 stations across the United States.

The spatiotemporal sparsity of radiosondes imposes a significant challenge to accurately depict

the change in environmental conditions over a select window in space and time. For example, a

study of severe thunderstorms between 1999 and 2009 across the northeastern United States con-

cludes that the temporal discrepancy and 250 km distance between sounding sites is a leading cause

for introducing errors in the representation of near-storm environments [1]. Another study from

the Severe Environmental Storms and Mesoscale Experiment indicates that radiosonde observa-

tions separated by 3 hours with distances of a few hundred kilometers would have been needed to

resolve the changes in temperature, moisture, and wind distributions that occurred prior to the Wi-

chita Falls tornadoes [2, 3]. Unfortunately, the manual labor and environmental impact associated

with radiosonde launches limit the ability to increase the number of launches.

As a result, it is common for forecasters to use thermodynamic profiles generated from Nu-

merical Weather Prediction (NWP) models as they are available at a high spatial and temporal

resolution. These models are borne from vast amounts of data, including radiosondes, with so-

phisticated physics and are often validated against real-world observations; however, they include
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errors resulting from uncertain initial conditions, necessary assumptions, and from the mathemat-

ics of prognosis. For operational meteorologists, it is critical to have accurate profiles especially

during lower-predictability, high-impact weather events, where variance in the simulated environ-

mental conditions can yield substantial differences among expected hazards. In particular, severe

weather regimes characterized by limited buoyancy and strong vertical wind shear have presented

great predictability challenges–owing to the highly sensitive nature of the vertical thermodynamic

structure in the boundary layer. The accuracy at the surface through the boundary-layer (which

influence vertical buoyancy distributions) is of particular interest with direct impact on a range of

applications, including: severe convection [4], fire weather [5], aviation [6], agriculture [7], wind

energy [8], and many more. A great deal of these minor sensitivities are within the scale of ex-

pected error, which highlights the critical importance of improving the thermodynamic boundary-

layer structure within NWP simulations.

To address the errors inherent to NWP simulations and to create more useful vertical profiles

of temperature and moisture, we explore various deep learning models to combine near-surface

observations and satellite retrievals to improve initial NWP profiles. Figure 1.1 illustrates a high

level overview of our approach with the flow of data and primary data sources. Using profile

output from the Rapid Refresh (RAP) NWP model with corresponding surface observations from

the Real-Time Mesoscale Analysis (RTMA) and satellite imagery from the Geostationary Opera-

tional Environmental Satellite (GOES)-16 Advanced Baseline Imager (ABI), we train variations

of fully-connected and convolutional neural network architectures. These networks learn to make

predictions on collocated data samples by minimizing the difference between the radiosonde obser-

vations (RAOB)s and profile estimates during training. At run time, a given sample from a location

within the regime can be applied to the network to produce improved estimates of temperature and

moisture. Our method is quantitatively evaluated under various meteorological conditions, and is

shown to generally improve the accuracy of vertical profiles.

The rest of this thesis is organized as follows. Chapter 2 provides background to NWP mod-

els, including their initialization and why they have inherent errors. Secondly, the background
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of artificial neural networks and their application in atmospheric science are discussed. Chap-

ter 3 describes the primary datasets and preprocessing techniques that we use. Chapter 4 lays

out the specifics of the various neural network architectures and how the data is used for train-

ing. Chapter 5 discusses the experimental procedure, network and training configurations, and

relevant metrics to evaluate the different network architectures. Chapter 6 outlines the results of

each architecture and details the best model setup with examples of profile estimates. In Chapter 7

we evaluate this model under different meteorological conditions and with different data features

to better understand the model’s estimates. Chapter 8 shows the results of deriving profile in-

dices from machine learning estimates and then assess the performance of directly estimating the

indices. Lastly, Chapter 9 summarizes the findings in this thesis, including the limitations and

technical challenges, and then suggests potential avenues of future research.

ML Algorithm

Observational Data

(b) Satellite Obs. (c) Surface Obs.

(a) Numerical Model

(e) Radiosonde

(d) Estimate

ABI

Figure 1.1: High level flow diagram and primary data sources for the proposed approach to improving

vertical profiles. Initial profiles of temperature and moisture from (a) numerical weather prediction model

along with collocated observations of (b) satellite imagery and (c) near-surface measurements are input to a

machine learning algorithm. The output from the algorithm is a (d) profile estimate that is more similar to

ground truth (e) radiosonde observations.
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Chapter 2

Background

2.1 Numerical Weather Prediction

Numerical Weather Prediction (NWP) is a method to forecast the weather and atmospheric

conditions using mathematical equations based on the laws of physics. These methods assimilate

initial observational and boundary conditions and use systems of governing equations detailing

fluid motion, thermodynamics, and radiative processes to predict the weather. There exist a number

of forecast models from the National Oceanic and Atmospheric Administration (NOAA), includ-

ing: the Global Forecast System (GFS), Weather Research and Forecasting (WRF) model, Rapid

Refresh (RAP), and many others. While many of these models are operationally sufficient, they

also have inherent sensitivities that influence their accuracy. The equations used to simulate the en-

vironments are not very precise as they can not be solved directly, and small errors propagate over

time due to the lack of precision for fractional numbers in computers. Additionally, the full extent

in the initial state is never entirely known since initial observations have marginal variability and

are never complete. As a result, forecasters will use ensembles of these NWP models to produce a

more reliable forecast; although, the accuracy of each model underpins the overall accuracy.

In this thesis, we seek to improve the profiles produced by an individual model, namely the

RAP, as to support the National Centers for Environmental Prediction and the National Weather

Service in their mission to provide accurate forecasts and watches for severe weather events over

the United States. A detailed description of this model and our use of the data is outlined in

Section 3.2. Improvements to NWP typically occurs in successive development of new models

and data assimilation techniques [9], resulting in a the large variety of models and versions. With

respect to vertical profiles specifically, there is limited research that explores improving the explicit

output of an NWP model, especially using machine learning techniques.
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The most relevant work for this thesis comes from Schmit et al. [10] and their validation of

the legacy atmospheric profile (LAP) algorithm using GOES-16. In that work, temperature and

dewpoint temperature profiles are derived from clear-sky radiances from GOES-16 ABI and initial

guess profiles from the GFS 6- to 12-hour forecasts. In the retrieval, temperature and dewpoint

are used in a linear regression model that is solved with general least squares, and the regressed

profiles are then used as an initial guess in a 1-dimensional variational physical retrieval. Valida-

tion of temperature and dewpoint profile errors are calculated by comparing the differences with

radiosonde observations (RAOB)s. Not only does this retrieval technique improve the first-guess

GFS profiles, especially the middle and upper troposphere moisture, but it replaces the derived

products generated using the sounder on the GOES series satellites operating before GOES-16.

We employ a similar approach to validate our algorithm using RAOBs as ground truth observa-

tions. In this work, however, we explore machine learning techniques, specifically artificial neural

networks, to improve retrievals of profiles from the RAP model.

2.2 Artificial Neural Networks

Artificial neural networks are a class of machine learning algorithms with a structure that is

loosely based on the understanding of the mammalian’s biological nervous system. Research sur-

rounding the artificial neural network has a long history. In 1943 the first computational model of a

neuron was proposed by McCulloch-Pitts [11], which paved the way for biological processes and

various feed-forward neural networks. Detailed mathematical models followed with works from

individuals such as Hebb [12] on theories of neuron excitements and the connections between

neurons as well as the first supervised learning strategy, Rosenblatt [13] with work outlining the

concept of the perceptron for supervised learning of binary classifiers, Rumelhard and Hinton [14]

who popularized the backpropagation algorithm for practical training of multi-layer networks, and

many others.

Through advancements in theory and computational hardware engineering, modern neural net-

works have become rapidly popular with applications in machine vision, medical applications, fi-
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nancial applications, agricultural applications, and more. In atmospheric science specifically, there

are pioneering works in using neural networks for retrieving vertical profiles of temperature and

moisture from radiometric measurements [15–17] and satellite observations [18, 19], estimating

atmospheric conditions from RAOBs [20–22] and numerical weather prediction models [23–26].

However, to the best of our knowledge this is the first work that uses ABI with neural networks

together with an NWP first guess fields to improve the representation of atmospheric humidity.

Therefore, we leverage the strengths apparent in the following approaches as means to experiment

and build upon.

Improvements to retrieval techniques used by ground-based radiometers are made using stan-

dard fully-connected neural networks. As with the present study, these works compare results with

RAOBs using error distributions and correlation analysis. Chakraborty et al. [15] uses radiometer

derived brightness temperatures at various frequencies and other surface meteorological sensors

to produce profiles of temperature and moisture at a number of vertical heights. Results show the

neural network to outperform radiometric quadratic regression and piece-wise linear regression.

Similarly, Yan et al. [16] demonstrate the effectiveness of radiometric atmospheric profiling with

various regularization techniques and Knupp et al. [17] specify the use of neural networks as the

standard approach on retrieving profiles from the ground-based microwave radiometer profiler for

operational activities.

The use of NWP output is employed with neural networks for various applications. Lima et

al. [23] train a fully-connected network using atmospheric variables from the WRF model with

observational ground data to forecast surface solar irradiance. Håkansson et al. [24] use pressure

and temperature variables at different vertical levels from the European Centre for Medium-Range

Weather Forecast’s 91-level short-range forecast along with other atmospheric variables to train

neural networks for cloud top height retrievals. Veillette et al. [25] explore convolutional neural

networks for creating synthetic radar precipitation mosaics by incorporating lightning information,

visible and infrared satellite imagery from GOES-13, and fields sampled from the RAP numerical

model as input to the model. Data from the RAP are also used by Lagerquist et al. [26], where
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1-dimensional profiles of atmospheric state variables and water species with other environmental

variables are input to a convolutional network to emulate and accelerate a shortwave radiative-

transfer model.

To capture spatial patterns for correction in the profiles, we also consider the use of convolu-

tional neural networks. These architectures are typically feed-forward networks with alternating

convolutional and subsampling layers; however, their implementation and objective usability dif-

fers from the standard fully-connected networks. 1-dimensional convolutions are often employed

for signal processing–a domain similar to that of modeling vertical profiles of temperature and

moisture. The first proposed application of which was on Electrocardiogram signals for classi-

fication [27], and their experimental results yield superior performance over other classification

methods. We focus on signal-to-signal regression as opposed to classification, but the usability of

convolutions remains consistent.

There are many varieties of convolutional networks, including the U-Net architecture [28] that

we adapt for vertical profiles. [26] provides a reference to this architecture using profiles from

the RAP as input. Another variant is the Residual U-Net that is used for audio super-resolution

of 1-dimensional signals. Kuleshov et al. [29] use a standard U-Net with an additional additive

connection of the input to increase the sampling rate of signals such as music or speech. Their

architecture predicts missing samples of linearly interpolated low-resolution signals to match those

at high quality. The authors find that the learning-based algorithm outperforms general purpose

interpolation schemes due to their ability to capture the domain specific appearance of natural

signals. With respect to thermodynamic profiles, the RAOBs are often of higher resolution than

estimates. As such, an improvement to a profile can be thought of as interpolating the missing

values in the simulated environment, and we consider a similar architecture.

For this thesis, we explore the class of networks used in the domain of signal processing in the

following categories: linear regression, fully-connected, and variations of convolutional networks.

The primary reasons for this is two-fold, that is (a) the 1-dimensional thermodynamic profiles rep-

resent signals measured by radiosondes or approximated by NWP models, and (b) neural networks
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for signal-to-signal processing are often designed analogously to the problem of mapping NWP

profiles to ground truth RAOBs. The aforementioned works motivate how some of the datasets

described in Chapter 3 are used with neural networks, and we build upon these techniques by

adapting their structures for our application (detail in Chapter 4).
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Chapter 3

Dataset Details

The data collected are between January 1, 2017 and August 31, 2020 over the Continental

United States (CONUS). These are consolidated to focus primarily on the central region spanning

between North Dakota and Texas, totaling 18 sounding locations. We focus on this region for two

primary reasons, namely (a) the region, known as tornado alley, attributes the largest number of

severe weather events in the United States; and (b) including additional locations, e.g. coastal or

mountainous areas, are not helpful given our total data size of 38, 373 samples as the thermody-

namics can be significantly different. Individual data samples are collocated using the supplemen-

tary launch details of the RAOBs. Specifically, information from each data source are extracted

following the observation nearest the release time and spatial region of a given radiosonde.

3.1 Radiosonde Observations

A radiosonde is a small telemetry instrument sent airborne under a weather balloon that is filled

with helium gas to collect data relating to different levels in the atmosphere. As the radiosonde

ascends it measures vertical distributions of pressure, temperature, and relative humidity, while

altitude and winds are derived from GPS location information. The radiosonde transmits record-

ings to a ground station via radio signals every second. The National Weather Service routinely

launches radiosondes twice-daily from a network of 92 stations across the United States, albeit

we only consider a subset of these locations surrounding the central states. These launches are

coordinated to simultaneously occur shortly before 0000 and 1200 UTC, and together provide a

general representation of the state of the atmosphere on that day.

A radiosonde observation (RAOB) when displayed on a Skew-T Log-P thermodynamic dia-

gram is often useful for meteorologists to make short-term predictions of the weather. Figure 3.1

is an example diagram with the temperature, T , and dewpoint, Td, profiles from April 2, 2017

23:03 UTC over Aberdeen, South Dakota (ABR). There are 5 fixed components that comprise
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the diagram, namely: temperature, pressure, dry adiabats, moist adiabats, and mixing ratio. The

temperature lines (gray, dashed) are drawn at a linear 45◦ angle with an increase in value from

the upper-left to lower-right. Horizontal pressure lines (gray, dashed) are drawn on a logarithm

scale to follow the decrease in atmospheric pressure with the increase in altitude. Dry adiabats,

drawn in orange, increase in value from lower-left to upper right and represent the rate at which an

unsaturated parcel of air cools as it rises in the atmosphere. The moist adiabats are drawn in blue

and follow the lapse rate at which a saturated parcel of air changes as it ascends vertically. Lastly,

the mixing ratio is shown in light green from 1000 to 600mb, and denotes the amount of water

vapor in the environment at the point where the dewpoint temperature intersects this line.
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Figure 3.1: A standard Skew-T Log-P diagram of temperature, T , and dewpoint temperature, Td, profiles

for a radiosonde observation over Aberdeen, South Dakota (ABR).

Meteorologists use the plotted RAOB to obtain a wealth of information concerning upper-air

conditions. The diagram can be used to assess the stability of the atmosphere, cap strength, con-
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vective temperatures, and much more. Additionally, various derived indices of atmospheric con-

ditions, such as Convective Inhibition (CIN), Convective Available Potential Energy (CAPE), or

Total Precipitable Water (TPW), can be computed by using the observed temperature and dewpoint

values. Therefore, the importance of accuracy in the profile is essential for accurate forecasts.

We gather data from the NOAA ESRL/GSD radiosonde archive for the 18 locations of interest,

yielding a total of 38, 373 samples. As observed in Figure 3.2, not every site shares an equal num-

ber of launches as additional observations are made when atmospheric conditions are of interest,

whereas other samples may have been missed or removed for miscellaneous reasons. Every ob-

servation within the database undergoes an extensive quality assurance analysis to check for and

correct various hydostatic consistencies prior to data acquisition [30]. This procedure is designed

to detect erroneous data and inconsistencies between observed values and reported heights. For

example, correcting heights and temperature for two consecutive large deltas, checking for supera-

diabatic lapse rates, and general sanity checks. Corrections are commonly made when enough data

is present; however, error checks that fail will either set measurements to missing or be removed

all together.

Figure 3.2: Map representing the 18 different locations within the Central United States and how the 38, 373
total samples are distributed. Not every location contains the same number of data samples.

The acquired data is minimally processed after quality assurance with conversions of vari-

ables, the removal of missing values, and formatting of data to follow a consistent vertical spacing.

Foremost, the moisture profile is converted from dewpoint depression to dewpoint temperature
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in degrees Celsius. The conversion is done to provide a more interpretable field that can later

be visualized on a Skew-T diagram or used to compute products from the profile (e.g., CIN or

CAPE). Thereafter, we discard samples with measurements that contain missing values, and lastly,

transform the data to linear intervals with respect to geopotential height. The primary reason for

transforming data is to obtain profiles of a fixed dimension that are used with a neural network. The

difference between profiles, be at separate locations or differing times, are influenced by diverse

landscapes, weather systems, and larger global patterns. However, the reported geopotential height

along the profile remains consistent at each location. We leverage this observation to interpolate

the mandatory and significant levels of each atmospheric variable for every profile.

To assess an appropriate top layer boundary we first find the daily composite mean of the

100mb surface for geopotential height from the National Centers for Environmental Prediction

(NCEP) Reanalysis1 using data for the month of July over the years between 2010 to 2019. A

pressure level of 100mb is chosen as it is the convention to display soundings up 100mb on

standard Skew-T diagrams. Furthermore, we use data from July as it is the month with the highest

100mb heights and provides a better upper level bound. Over the entire CONUS domain, the

100mb height is between 16–17 km with a variation of 240m, which is about 1.5% of the mean

height at the surface. This is expected, as the atmosphere acts as a low-pass filter for vertically

propagating waves. Therefore, we empirically determine to use equally spaced layers from the

surface to the top, which we define as 17 km above the surface. Each atmospheric variable is then

linearly interpolated to 256 levels with layers separated by 66.7m.

3.2 The Rapid Refresh

The Rapid Refresh (RAP) is an hourly-updated assimilation and modeling system with the

capability of providing NWP guidance out to 18 hours for short-term forecasts and situational-

awareness analyses over North America [31]. The RAP uses the community-driven Advanced

1The data are from the NCAR - reanalysis project. NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSL,

Boulder, Colorado, USA, from their web site at https://psl.noaa.gov/
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Research version of the WRF model [32] for numerical weather prediction, as well as the NOAA

Gridpoint Statistical Interpolation analysis system [33–35] for data assimilation and to initialize

the model. Additional components ranging from observational satellite radiances from GOES and

radar reflectivity assimilation via latent heating to meteorological aerodrome reports for cloud and

precipitation hydrometeor assimilation are included during initialization. The RAP uses a 13 km

horizontal grid spacing with a hybrid sigma vertical coordinate consisting of 51 levels on a Lambert

Conformal Conic map projection. The sigma coordinate defines levels by a ratio of pressure at a

given point in the atmosphere to the pressure of the surface directly below, thus simplifying the

lower boundary conditions by following the topographical variances of the Earth’s surface.

Using the release time and longitude/latitude of a given RAOB we locate the nearest RAP

file and extract total pressure, temperature, specific humidity, and geopotential height at every

level over the launch location. Moisture content is represented by specific humidity, but to better

compare the profiles with the RAOBs, we make the conversion to dewpoint temperature. The first

step is to convert the specific humidity, q, to vapor pressure, e:

e =
pq

ǫ+ (1− ǫ)q
, (3.1)

where ǫ = 0.622 is the ratio of gas constants for dry air and water vapor and p is the total pres-

sure (dry air plus water vapor). To calculate a given dewpoint temperature, td, in terms of vapor

pressure, an expression for the dependence on e and td is needed. An accurate and well recognized

empirical approximation relating the two is the Magnus formula represented in terms of saturation

vapor pressure, es, and temperature, t:

es = Cexp
( At

B + t

)

. (3.2)

A parcel of air becomes saturated at temperature td when an air parcel at temperature t and

pressure p is cooled isobarically. The relation to vapor pressure as expressed by e = es(td) is
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substituted into (3.2) to compute td. Now solving accordingly:

td =
B ln( e

C
)

A− ln( e
C
)
. (3.3)

Alduchov and Eskridge [36] recommend when working with the standard surface and upper-air

data to use an approximation with the following coefficients: A = 17.625, B = 243.04◦C, and

C = 610.94 Pa. Note that C has units of Pa and q, the specific humidity in e is unitless (kg/kg).

Therefore, we plug the RAP values into (3.1) to get the vapor pressure, which is also in Pa, then

use (3.3) to retrieve the dewpoint temperature in degrees Celsius.
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Figure 3.3: A standard Skew-T Log-P diagram of temperature, T , and dewpoint temperature, Td, profiles

for a radiosonde observation (RAOB) and collocated profiles from the Rapid Refresh (RAP) NWP model

over Aberdeen, South Dakota (ABR).

The four 1-dimensional profile components (total pressure, temperature, dewpoint temperature,

and geopotential height) are linearly interpolated, similar to the RAOBs, to contain 256 levels with
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a top boundary layer of 17 km above the surface. As a result, the RAP profiles align closely to the

RAOBs with corresponding measurements at every level. Figure 3.3 illustrates the RAP profiles

of T and Td overlaid on the RAOB shown in Figure 3.1. The difference is most significant in

dewpoint temperature as the RAP is a smooth approximation for the high variability of the profile.

Differences in the temperature profile are evident, yet less significant. However, the critical region

where errors exists are at the surface and capping inversion. An inversion implies that temperature

increases with an increase of altitude (contrary to the normal temperature decrease), and a capping

inversion is an inversion that caps a convective planetary boundary layer and limits the vertical

development of clouds. In the given example, we see the RAP misrepresents these fields with a

higher surface temperature and weak inversion around 700mb relative to the RAOB.

3.2.1 Profile Comparisons of the RAP and RAOB

An initial analysis shows a difference between the profiles exists with greater magnitudes in

error at the surface and in the mid- to upper-level moisture. Error is measured by calculating

the root-mean-squared error (RMSE) in two different ways. The first is over every vertical level

individually:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(tij − yij)2 | 1 ≤ j ≤ 256, (3.4)

where n is the total number samples, yij is the predicted value, and tij is the actual target value for

the ith sample at vertical level j. The second way is by taking the RMSE over all k vertical levels

at once:

RMSE =

√

√

√

√

1

n

1

k

n
∑

i=1

k
∑

j=1

(tij − yij)2. (3.5)

In the context of comparing the RAP and RAOB profiles to compute a baseline, we use yi and

ti, respectively. The baseline errors in the profiles over all samples in the dataset can be seen in

Figure 3.4. This provides a view of the overall error and locations in the vertical where the errors

are high/low. The solid lines represent the RMSE found using (3.4), whereas the dashed lines and

values in the legend are those found using (3.5).
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Figure 3.4: Root-Mean-Squared Error calculated for the temperature, T , and dewpoint temperature, Td,

profiles averaged over all vertical levels (dashed lines) and separately at each level for all samples in the

dataset (solid lines). Each sample is interpolated between the surface (sfc) and 17 km above the surface

(top).

Evidently, the error in the temperature profile is significantly lower than in the dewpoint profile

at every vertical level. The temperature profile has a small increase in error at the surface, then

decreases with altitude until about 8.5 km above the surface, where the error begins to increase

with height. Conversely, the dewpoint temperature profile errors increases with height from the

surface until the mid- and upper-level, where the errors remain constant or decrease with height.

However, the error in the baseline for dewpoint is nearly six times greater at every level besides

the surface and near-surface measurements.

3.3 The Real-Time Mesoscale Analysis

The Real-Time Mesoscale Analysis (RTMA) is a high-spatial and temporal analysis system

run hourly to produce analysis of near-surface weather conditions [37]. Its primary component

is the NCEP Gridpoint Statistical Interpolation (GSI) [38] package used in the incremental two-
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dimensional variational mode. The GSI equations are solved on a Lambert Conformal grid to as-

similate observational data. Hourly analyses are performed using measurements from near-surface

synoptic observations, aviation routine weather reports, the Mesoscale Network (Mesonet), ships,

buoys, and Coastal Marine Automated Network stations.

The system uses observations captured ±12 minutes centered around the analysis time to pro-

duce a CONUS grid output with a grid spacing of 2.5 km. As a result, analyses of 2m temperature,

2m specific humidity, 2m dewpoint temperature, 10m wind components, and surface pressure are

assembled with corresponding estimates of uncertainly for each variable. This study considers

temperature, dewpoint temperature, and surface pressure as variables of interest as it relates to

measurements captured by radiosondes. Several layers of quality control are preformed during

RTMA analysis to filter out erroneous data, including removing preflagged observations, verify-

ing threshold constrained error checks, removing static and dynamic blacklisted observations, and

using only trusted providers and stations. This control procedure reduces the need for further

preprocessing of the data.
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Figure 3.5: RTMA surface temperature over the CONUS domain.

Near-surface temperature, dewpoint temperature, and pressure from the RTMA are of particular

interest as they relate to the variables from the RAOBs. Figure 3.5 illustrates the temperature in

Kelvin over the entire CONUS grid. The majority of this grid is not used, and we consider only
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the RTMA at times and locations of individual radiosonde launches. Using the release time from

a given RAOB, we identify data files for the three variables with the closest analysis time. RTMA

samples from past or future observations are used in situations where radiosondes are launched

irregularly or beyond the top of the hour. Although rare, data samples that do not have an analysis

within an hour time frame are discarded. The temporally aligned samples are then cropped to

contain only the region surrounding the launch site. Specifically, we extract a 3 × 3 patch of

size 56.25 km2 from each of the RTMA variables with the center point closest to the latitude and

longitude of the RAOB. While this data is spatial by design, we collapse dimensionality and take

the mean of each variable separately, i.e. of the 3 × 3 array, as we are more concerned with the

vertical resolution. Furthermore, the horizontal area need not be large as the surface observations

are nearest to the radiosonde launch location.

3.3.1 Surface Comparisons of RTMA and Vertical Profiles

To understand how the RTMA values compare to the surface values from the RAOB and RAP

we contrast the distribution of the difference between samples. Using the center point from the

RTMA patches and surface values from each profile we compute the difference individually for all

samples with:

DRAOB = φRTMA − φRAOB (3.6)

DRAP = φRTMA − φRAP , (3.7)

where φ denotes the column vectors of meteorological variables (pressure, temperature, and dew-

point temperature), meaning the first element, D1, represents the difference at the surface for the

first collocated sample of RTMA, RAOB, and RAP, D2 represents the second sample, and so on

for n samples in the dataset.

Figure 3.6 shows the scatter plot of DRAP and DRAOB, where each point represents a given

sample for one of the three meteorological variables. Units along the axes are shared, native to the

variable of interest. The sample difference is plotted against each other such that when they are
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identical, values will follow a one-to-one line. Additionally, if there is little difference between the

surface observation of the vertical profiles and the RTMA, then the values will be plotted around

zero. The distributions of differences are drawn as separate density curves on the marginal axes.

We group outliers in three groups, where (a) pressure in RAOB and RAP < RTMA; (b) pressure

and dewpoint in RAOB < RTMA, RAP ≈ RTMA; (c) temperature and dewpoint temperature in

RAOB and RAP > RTMA. We keep these samples in our dataset as they reflect the true state of

observations. Additionally, since each dimension in D is approximately normal, summary statistics

for the mean, standard deviation and standard error are computed for each variable (Table 3.1).

According to the summary statistics and distribution, we conclude that 99% of the data fall within

±2 standard deviations of the mean, but the outliers (circled and labeled in Figure 3.6) share

insightful information to the variability and analysis error.

Figure 3.6: Observed differences, D, between RTMA and surface values of the RAP and RAOB for each

meteorological variable of interest. The straight line represents samples where the differences DRAP and

DRAOB are equivalent. RTMA and the surface values from the profiles agree when D = 0. (a) pressure in

RAOB and RAP < RTMA; (b) pressure and dewpoint in RAOB < RTMA, RAP ≈ RTMA; (c) temperature

and dewpoint temperature in RAOB and RAP > RTMA.
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Table 3.1: Summary statistics for the differences of each meteorological variable between the RTMA and

surface values for each variable in the RAP and RAOB profiles.

Mean SD SE

DRAOB

Pressure (mb) −0.107 2.677 0.014
Temperature (◦C) 0.068 1.216 0.006
Dewpoint (◦C) 0.096 1.370 0.007

DRAP

Pressure (mb) −0.939 2.314 0.012
Temperature (◦C) −0.054 1.145 0.006
Dewpoint (◦C) 0.068 1.182 0.006

Initial assumptions may lead one to believe that the RAOBs match the RTMA values more

closely than the RAP estimates. However, the RTMA contains an estimate of analysis uncertainty

for each meteorological variable, which reflects the background fields and spatial error correlations

for the observational data [37]. In quality assessment studies of RTMA, it has been shown that the

variability in the data is ±2◦C for temperature, 2–4% for relative humidity, and ±0.678mb for

surface pressure [39, 40]. In the results above, we observe a greater magnitude of difference in the

pressure measurements, which is likely a result of considering only a subset of the CONUS domain.

Another reason is the temporal differences that exist in collocated data samples. That is, the RAP

and RTMA data are collected hourly, and the time difference between observations may influence

the accuracy of measurements as it relates to a RAOB. The inclusion of uncertainty introduces a

layer of complexity when modeling the vertical profiles. In particular, a neural network will learn

to identify the relationships between variables and patterns that exist in the data; however, it may

overfit on what is perceived as noise during training.

3.4 Geostationary Operational Environmental Satellite

The Geostationary Operational Environmental Satellite (GOES)-R series contributes to an over

45-year history of continuous and high-resolution spatial coverage of observational imagery over
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North and South America. On November 19, 2016, NOAA launched GOES-16 into geostation-

ary orbit to replace its predecessor, GOES-13. The instruments on-board GOES-16 include an

improved multi-channel passive imaging radiometer named the Advanced Baseline Imager (ABI),

the Geostationary Lightning Mapper for measuring lightning activity, and a suite of other space

environment sensors. The ABI serves to capture imagery of Earth’s climate, weather, and environ-

mental conditions and is the primary instrument of interest for this study.

Table 3.2: The eight channels selected from the GOES-16 ABI to use in this study.

Band Number Central Wavelength (µm) Nickname Type

8 6.2 Upper-Level Tropospheric Water Vapor IR

9 6.9 Mid-Level Tropospheric Water Vapor IR

10 7.3 Lower-level Water Vapor IR

11 8.4 Cloud-Top Phase IR

13 10.3 “Clean” IR Longwave Window IR

14 11.2 IR Longwave Window IR

15 12.3 “Dirty” Longwave Window IR

16 13.3 “CO2” Longwave Infrared IR

GOES-16 produces enormous amounts of data with scans every five minutes CONUS wide

with a resolution of 0.5–2.0 km. The ABI uses 16 spectral bands between 0.47–13.30 µm com-

prising of two visible channels, four near-infrared channels, and ten infrared channels. Individual

channels are set to particular central wavelength to capture atmospheric phenomena and are used

in many baseline products, such as identification of jet streams, signatures of turbulence, cloud

formation and height, volcanic ash plume detection, and many others. While the ABI is not a

sounder (an instrument that measures temperature and moisture as a function of height), its win-

dow and water vapor bands have some sounding capabilities. Therefore, we select channels 08-11,

the water vapor bands, and 13-16 whose weighting functions primarily peak at or near the surface.

We justify the use of these channels by the success of work by Schmit et al. [10] and their use of

ABI in the legacy atmospheric profiles algorithm, as well as Hilburn [18], who demonstrates how
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a subset of these channels can be used to map to vertical levels of geopotential height, temperature,

and relative humidity in an NWP model. The central wavelength and descriptive meaning for each

channel are described in Table 3.2.

An example image of the channel 11 (8.4 µm) converted to brightness temperature over the

CONUS sector is shown in Figure 3.7. Although nicknamed the "Cloud-Top Phase" band, 8.4 µm

is in a window region so there is little absorption of energy. As such, the brightness temperatures

give a reasonable estimate to the surface skin temperatures, as well as the cloud-top temperatures

of thick clouds.
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Figure 3.7: GOES-16 ABI C11 (8.4 µm) brightness temperatures over the CONUS domain.

Information from the ABI are provided from the conversion of spectral radiance to brightness

temperature using the Planck function relationship and then cropped to a specific region of inter-

est. Brightness temperature directly relates to the intensity of radiation emitted by a blackbody at

a given wavelength as the temperature of that blackbody, and is the common unit of measurement

for products that aid forecasters in monitoring weather, oceanographic, and environmental phe-

nomena. We convert from radiance (mW/(m2 · sr−1 · cm−1)) to brightness temperature (K) for

each spectral band, b, with equations from the GOES-R ABI Algorithm Theoretical Basis Docu-

ment [41]:

Tb = fk2,b/ log((fk1,b/Lλ,b) + 1)− bc1,b)/bc2,b, (3.8)
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where fk2,b, fk1,b, bc1,b, and bc2,b are Planck coefficients based on the spectral response function

(SRF) of GOES-16 ABI. Calculations of fk2,b and fk1,b are made using Planck’s constant, Boltz-

mann’s constant, velocity of light, and the central wave number from the instrument. The band

correction coefficients bc1,b and bc2,b are based on the intercept and slope found by regressing lin-

ear models over equally spaced radiances between the integration over the instrument’s SRF and a

monochromatic Planck conversion. The coefficients have a reliance on instrument and sensitivity

of the sensor at different wavelengths, thus leading to unique values for each spectral band that can

change with time. However, these coefficients are reported as metadata in every ABI scan, and can

be directly used in (3.8).

While data volumes over the entire CONUS sector can be large, we extract a small 3×3 region

of interest, which is closest in time and space to the radiosonde release time and location, from

each channel. The nominal 36 km2 region provides an instantaneous snapshot of the environment

with at most 5 minutes of separation surrounding the time of the launched radiosonde. Note that

radiosondes can take up to 30 minutes to ascend, and with winds of 20m s−1, neither their exact

time nor location is fixed. Thereafter, we take the mean for each channel to get an average value

over the area.
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Chapter 4

Model Consideration

Supervised learning is the process of learning to model input-output relationships using labels

or measurements as the target transformations. There exists many supervised learning algorithms,

each with their own strengths and weaknesses. For this work, we leverage neural networks as

a method to learn a mapping between the initial guess RAP profiles and ground truth RAOBs,

due to their strengths of capturing non-linear and complex patterns in high dimensional data. To

supplement the simulated environment of the RAP, we experiment with the inclusion of observa-

tional data from GOES-16 ABI (denoted GOES from hereon for brevity) and the RTMA as input

to the network alongside the RAP. Specifically, we use the collocated temperature, dewpoint tem-

perature, pressure, and geopotential height from the RAP along with the mean of each selected

channel in GOES and RTMA to predict the temperature and dewpoint temperature of the RAOBs

(Figure 4.1). The network architectures discussed below include references to using both sets of

observation data (GOES and RTMA); however, as we discuss in Section 5.1, a sensitivity study is

done to evaluate how useful the included observations are.
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Figure 4.1: Input and output features used with the machine learning algorithm. GOES and RTMA data

have dimensionality reduced to the mean of each individual channel. The dashed line represents input

features that are optional.
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4.1 Linear Regression

Each of the explored network architectures builds upon linear regression, which attempts to

model the relationship between one or many independent and response variables by fitting a linear

equation to the observed data. Given n samples with d explanatory features, X ∈ R
n×d, and target

values with one output feature, T ∈ R
n, we find a regression line defined by an affine function

g(xi;w) = w0 +w1xi1 +w2xi2 + · · ·+wdxid, where w is a vector of weights with a bias inserted,

for i = 1, . . . , n. The model is linear in the parameters w and input xi, which makes the model

easy to solve and interpret, but greatly limits the complexity of functions the model can represent.

Extending to multiple outputs of size k, where T ∈ R
n×k, we randomly initialize the bias

inserted weights W ∈ R
k×d+1 and find wk that minimizes the error in the kth output, and use

it to make predictions. For our application, X represents the input features flattened into a 1-

dimensional vector for each observation. That is, the RAP’s four profile variables, GOES chan-

nels, and RTMA variables are vectorized and concatenated together, thereby treating all d features

independently. The target samples, T , contain the temperature and dewpoint temperature profiles

flattened and concatenated to k output features.

Weights in W could be solved analytically (although challenging and inefficient with high

dimensional data) to minimize the squared error between the prediction Y and target T , but to be

more comparable with neural networks, the weights are updated using gradient descent, which is

a method that was first proposed by Augustin Cauchy [42]. First, we calculate a prediction for

the ith sample using g(xi;wj) for j = 1, . . . , k to find yi, and use this to compare with the target

observation ti. Mathematically, we can efficiently compute Y using matrix multiplication. The

comparison between all samples in T and Y is preformed using a differentiable loss function L,

which is usually a function of the model’s input and target observations that describe the error in

the model. For example, using the mean-squared error (MSE) we compute the following:

LMSE =
1

n

1

k

n
∑

i=1

k
∑

j=1

(tij − yij)
2. (4.1)
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Thereafter, incremental updates are made to the weights with gradient descent in L by making

small changes, factored by a learning rate of size η, in the negative gradient direction:

wk ← wk − η
∂L

∂wk

. (4.2)

For each update step, the function is optimized to minimize the loss using gradient descent

or one of its variants, such as Stochastic Gradient Descent (SGD), Adaptive Moment Estimation

(Adam), or Adaptive Gradients (AdaGrad). These optimization algorithms are alternatives that

have shown to improve convergence and performance of training. Updates are typically batched

using equal partitions of samples from the training data to update the weights more frequently.

When updates are performed using all of the mini-batches, this constitutes a single epoch. Training

continues for a fixed number of epochs or until the weights sufficiently converge.

4.2 Fully-Connected Neural Networks

A fully-connected neural network consists of layers of artificial neurons, whereby all outputs in

one layer connect to every neuron in the subsequent layer. This class of neural networks contains no

cycles and does not have any spatial context, i.e. spatial relationships between inputs and neurons

are ignored. The depth of the network is determined by the number of hidden layers between the

input and output layers, where each layer is comprised of one or many artificial neurons or units. In

this thesis, we denote the number of units in each hidden layer by an array of values corresponding

to each layers, e.g. [5, 10] signifies two hidden layers with 5 units and 10 units, respectively. We

show an abstract representation of this network in Figure 4.2. The network represents the target

function f(X; Θ), where Θ = (W [0], . . . ,W [L−1], b[0], . . . , b[L−1]) is the complete set of parameters

with separate weights and biases for L layers (the sum of hidden layers and the output layer). These

weights are independent of one another for every unit, and if there exists a target function f with

the appropriate weights, we can satisfy yi = f(xi) for i = 1, . . . , n with a forward pass of the

26



s

Input Hidden Output

. 
 .

  
.

. 
 .

  
.

. 
. 

.

...

...

...

...

...

...

!! "!

ℎ"

. 
. 

.

Figure 4.2: Fully-connected network architecture showing the flow of each independent feature in Xn as

it propagates forward through one or many hidden layers. Each hidden layer has one or many units with

non-linear activation function. The unit in the output layer is linear.

network. That is, an input sample is applied to the first hidden layer, the signal propagates forward

through the remaining hidden layers, and an output is retrieved from the output layer.

Intermediate outputs from the lth layer have as many output variables as the number of units

in that layer. Each unit in the hidden layers performs a weighted sum of the input followed by a

non-linear activation function. This activation function, σ(·), is traditionally sigmoidal, such as

the logistic, σ(x) = 1/(1 + e−x), or hyperbolic tangent, σ(x) = tanh(x), functions, but can also

be piecewise linear with a rectified linear unit, σ(x) = ReLU(x) = max(0, x). Such activations in

the hidden layers allow the network to learn non-linearities that exist in the data. The final output

layer has a linear activation, σ[L](x) = g(x), as the values in T are unbounded. Together, with an

L-layer network, we can recursively define the forward pass of fΘ mathematically:

f
[0]
Θ (x) = x, (input layer)

f
[l]
Θ (x) = σ(W [l−1]f

[l−1]
Θ (x) + b[l−1]) : 1 ≤ l ≤ L− 1, (hidden layers)

fΘ(x) = f
[L]
Θ (x) = W [L−1]f

[L−1]
Θ (x) + b[L−1]. (output layer)

(4.3)

Weights are updated during training with gradient descent in a way similar to the linear model.

We build on equation (4.2) by minimizing a differential loss function L(fΘ(x), t) using SGD,

which approximates the loss over the entire training set by computing the loss over a mini-batch
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of B samples. The gradient of L with respect to Θ is backpropagated to incrementally update the

parameters, denoted as:

Θ← Θ− η∇ΘLB(f). (4.4)

Given a fully-connected network, as depicted by the flow diagram and architecture in Fig-

ure 4.2, we need only to specify the input and output dimensions, the number of hidden units, and

activation function to construct the network. Thereafter, we use an input sample and compute a

forward pass of the network, through the hidden layers, and get an estimate of vertical profiles at

the output. Then, we optimize a loss function to train the weights via backpropagation. After the

fact, we can use the trained model to produce new estimates of soundings for samples outside of

the training dataset.

4.3 Convolutional Neural Networks

With fully-connected networks, we emphasize the association that may exist among one feature

and any other features by treating variables independently. As such, the network uses a significant

number of parameters to learn their relation to the output, whereas Convolutional Neural Networks

(CNN)s consider a neighborhood of values where nearby associations may exist. Using a weight

sharing technique, CNNs are able to detect local patterns in sequence data and are spatially trans-

lation invariant. Therefore, specific patterns in a profile could be learned regardless of where it

exists in the profile. This idea is useful as, for example, temperature inversions do not always exist

at the same vertical level between samples or geographical locations.

A convolution is a mathematical operation that expresses the area of overlap between a spatially

reversed function g as it shifts over some other function f . Specifically, the convolution of f and

g is the integral over the product for two continuous functions, after one is reversed and shifted, to

produce a new function, f ∗ g, and is written as:

(f ∗ g)(t) =

∫

∞

−∞

f(τ)g(t− τ) dτ, (4.5)
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where t represents the magnitude of shift with functions indexed by τ . Additionally, we can dis-

cretize the convolution if f, g : Z→ R and t, τ ∈ Z by taking the sum of products for all indices:

(f ∗ g)(t) =
∞
∑

τ=−∞

f(τ)g(t− τ). (4.6)

The convolution operation can be adapted for use with finite sequences, which are often more

practical for neural networks. Such sequences can be regarded as if they are infinite with zeros

outside its finite range. Introducing zeros has no influence on the result of the convolution and

allow for the finite sequences to overlap; therefore, the summation in equation (4.6) takes values

of τ which are bounded by the extent of the kernel f , where a kernel represents a filter of trainable

weights learned with gradient decent to extract features and patterns that exist in the profile.

We specify g to be the input sequence and f is the kernel of the convolution. The input for the

first layer is the finite 1-dimensional profile containing each meteorological variable as a different

channel. By convolving f and g we produce a new tensor, or multi-dimensional array, where the

result for each index is simplified to the dot product of the kernel as it strides, or shifts a discrete

step size, relative to the input for each channel dimension in the tensor. Increasing the number of

kernels will effectively increase the number of output channels in the tensor. As with the fully-

connected layers, after each convolution, we introduce non-linearity by applying an activation

function to the output. Thus, for each layer we need to specify kernel size, stride size of the kernel,

the number of kernels to operate over each channel, and the activation function.

Following each convolutional layer is a pooling layer, which works to down-sample the input

by capturing the maximum or average value within a defined region. By using a stride of two we

reduce the size of the tensor in half. This layer has no weights to be learned, and it is an effective

method for emphasizing the most influential weights and reducing model complexity.

Figure 4.3 illustrates one of the many CNN architectures considered, which combines convo-

lutional, pooling, and fully-connected layers to produce an estimate of the profile. The RAP is the

only data used with the convolutional and pooling layers, and its output dimension depends on the

depth of repeated pooling layers and the number of convolutional kernels in the last operation. The
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Figure 4.3: Network architecture for the convolutional neural network. Only the RAP is used as input to

the convolutions and the GOES and RTMA are concatenated with the output of the last pooling layer. Zero

or more hidden layers (grayed out) connect the features to the linear output layer.

output tensor is then flattened to a vector to be used as input to the following layers. The GOES

and RTMA data are introduced as independent variables by concatenating a flattened vector of the

observations to the flattened output vector of the convolutions. As we will see later, we can control

which channels from GOES and RTMA to use or exclude as inputs to the networks. The joint

vector is then used as input to zero or more hidden layers with non-linear activations and then a

final linear output layer that matches the output size of the RAOB profiles.

4.4 Deep Residual U-Nets

U-Nets get their name from taking a structure similar to a convolutional autoencoder (an ar-

chitecture that encodes the input through downsampling layers, and decodes the compressed rep-

resentation of the input samples through a series of upsampling layers) with stacked connections

of consecutive layers that take the shape of a “U”. The network preserves all the advantages of

CNNs with improved performance of pixelwise predictions. Figure 4.4 outlines the structure of

this architecture, which includes downsampling blocks, a bottleneck layer, and upsampling blocks

with joint connections to the downsamplng layers. Building upon traditional U-Nets, we include

an additive connection of the input profile with the final output of the upsampling layer. Inspired
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by [29], this connection forces the network to learn only the residuals between the input and target

samples.
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Figure 4.4: Residual U-Net architecture inspired by [29] that uses the RAP profile as input and concate-

nates the GOES and RTMA data in the bottleneck of network. The dotted line represents stacked connec-

tions between downsampling and upsampling blocks, and the residual connection is represented by the “+”.

(Optionally) following the U-Net are zero or more hidden layers and a linear output layer.

The initial RAP profile, with channels representing each meteorological variable and vertical

level as individual pixels, is input to the first downsampling layer. This layer has two 1-dimensional

convolutional layers, each with its own activation function, followed by a max pooling layer to

reduce the size of the input in half. There are b downsampling layers before the bottleneck of the

network. If there are GOES and RTMA data to use as additional predictors, then the bottleneck

flattens the last downsampling layer’s output and concatenates the flattened observational input

features. Thereafter, the bottleneck passes the vector through a fully-connected layer and reshapes

its output to match the shape of the last downsampling layer. Following are b upsampling layers,

which convolve over the output from the bottleneck, upsample the output, stack the output of

the bth downsampling layer, and their output is used as input to another convolutional layer and

activation function. The final upsampling layer has a linear activation and then the original input

is added to the output of the network. This is the additive connection making it a residual network.

Since the U-Net is symmetric around the bottleneck with multiple convolutional layers in each

block, we simplify the notation of the network’s structure, i.e. number of blocks and filters, by
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specifying only the structure of the downsampling blocks. For example, [32, 64, 128] denote three

downsampling blocks and three upsampling blocks with 128 filters nearest the bottleneck.

In the downsampling layers, we learn the feature maps of the RAP profile, so why not reuse the

same feature maps in the decoder of the network to convert the input to the target RAOB profile.

This is one of the primary advantages of U-Nets over CNNs. As a result, we maintain the structural

integrity of the RAP profile, and reduce the distortion introduced by compressing the profile to the

bottleneck layer. In addition to the symmetric skip connections, the additive connection is shown

in the literature to have perceptible improvements. However, with the introduction of more layers,

we also have significantly more parameters, which can make it more challenging to optimize and

produces results that do not overfit on the training data.

We also experiment with the inclusion of fully-connected layers following the last layer of the

U-Net, although it is an optional configuration (not shown here). An illustration of this network

would look similar to that of combining Figure 4.4 with Figure 4.2 at the output. This scenario

flattens the output of the last layer from the U-Net and treats each variable independently as input

features to one more many hidden layers. Thereafter, a linear output layer produces the final output

of the network.

4.5 Reducing Overfitting

The concept of overfitting comes from a neural network that does not accurately reflect the

data from the problem domain by memorizing the training data and failing to generalize to new

samples. Specifically, when a network becomes too complex and overparameterized, it learns to

fit the detail and noise in the training data, which has a negative effect on the performance of the

model for unseen data. Furthermore, a network is more prone to overfit when a dataset is small

in the number of samples. Shallow learning techniques can be used to overcome the issue, but

also limit the complexity the target function can represent. As such, we would like to develop an

architecture that minimizes overfitting and generalizes well on unseen data. We use the following

techniques intermittently throughout the experiments when overfitting is observed:
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• dropout. Dropout follows hidden and dense layers with a probability, from a Bernoulli dis-

tribution, of randomly omitting units and their connections to the successive layer during

training. Since this method removes the output of units, it creates an exponential number

of simpler sub-networks which share parameters. Once trained, and during inference, a for-

ward pass through the entire network can efficiently approximate the combined predictions

of all the sub-networks, effectively creating an ensemble of models and using their average.

Srivastava et al. [43] show this technique to be effective in preventing the co-adaptation of

units and reducing overfitting.

• batch normalization. The distribution of inputs at each layer in a network inherently change

during training and can lead to instabilities and saturated non-linearity within a network. As

such, batch normalization is used between the output of a layer and the activation function

to normalize each scalar feature independently with zero mean and unit variance (similar to

how the input data are normalized before the first layer in a network). This is done to improve

gradient flow, regularization, and stabilization during training [44]. Given a mini-batch of

samples B of size m, we follow the batch normalization algorithm for a unit’s output xi as

follows:

µB ←
1

m

m
∑

i=1

xi (4.7)

σ2
B
←

1

m

m
∑

i=1

(xi − µB)
2 (4.8)

x̂i ←
xi − µB
√

σ2
B
+ ǫ

(4.9)

yi ← γx̂i + β, (4.10)

where x̂i is the normalized value calculated using the mean, µB, variance, σ2
B

, and constant

epsilon, ǫ, over all mini-batch samples, and yi is a linear transformation of x̂i using the

learned parameters γ and β. The purpose of scaling and shifting in (4.10) is to ensure

the transformation added to the network can represent the transformations of an activation
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function. These values are learned through backpropagation for all training steps. Therefore,

the use of batch normalization introduces a number of new parameters for each output unit

in a layer, namely the γ and β weights as well as the non-trainable moving mean, µB, and

moving variance, σ2
B

. Consequently, this technique is computationally expensive and adds

to the training time of the network.

• regularization. Regularization allows for penalties to be applied to a layer’s parameters

during optimization to constrain the complexity of the model. These penalties are added to

the loss function that the network optimizes during training. Two effective techniques are

known as L1- and L2-Regularization, which have shown to provide simpler neural network

solutions and reduce overfitting [45]. The L1 penalty, ||Θ||1, aims to push the parameters

toward zero by taking the sum of the absolute value of the parameters. This term is multiplied

by a hyperparameter factor of λ and added to the loss as L1 = LB(f) + λ||Θ||1. A higher

value of λ will bias the selection to models of lower complexity, though too large a value

may lead the model to underfit. By forcing parameters toward zero, we increase sparsity

and reduce variable importance selectively through training, which assists in the network

building a representation of important features. Alternatively, the L2 penalty, ||Θ||22, forces

weights to be small and non-zero values by minimizing the sum of the squared magnitude,

but is not as robust to outliers as square terms are emphasizes. Adding to the loss function,

we have L2 = LB(f) + λ||Θ||22. Similarly, we use λ to control how much regularization the

model should have.
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Chapter 5

Experimental Setup

This chapter begins by discussing the dataset partitions and particular data features that are used

during experimentation and evaluation. Thereafter, we describe the general overview for how we

setup the models and configure their hyperparameters. Lastly, we outline multiple loss functions,

and introduce a knowledge guided loss that incorporates derived indices from the profile.

5.1 Experimental Procedure

An elaborate architecture search, hyperparameter optimization, and data information analysis is

conducted and described in detail below. The motivation behind exploring different neural network

architectures is to understand the degree of complexity (in terms of the network’s connections,

individual operations, and number of parameters) that is needed to model the relationship between

the RAP and RAOBs. Starting with a linear model we get a sense of the baseline linear correlations

of predictor variables. Since the RAP profile is used as input, we expect that the output of the linear

model is no worse than the initial guess. By exploring the other models outlined in Chapter 4, we

can better understand the non-linear and spatial correlations of the predictors. However, the choice

of architecture and its hyperparameters are only a part of setting up the experiments. There also

exist a number of ways in which we utilize the data that can influence the outcome of our results.

5.1.1 Data Utilization

The preprocessed and collocated data are partitioned spatiotemporally and shuffled into a train-

ing (75%), validation (10%) and test (15%) sets. This is done to reduce bias in any one dataset by

equally distributing the sample launch locations and release times among the partitions. Moreover,

the soundings have low autocorrelation and are naturally separated due to the temporal and spatial

sparsity of samples, thus allowing data to be shuffled equally among partitions. Effectively, the

training data contains 28, 782 samples and is used only to train and update the parameters of the
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network. The validation data is a subset of the data held to give an unbiased estimate of error in

the model during training. After every epoch we compute statistical metrics over the training and

validation set and use this information to control training and quantify performance. The test set is

reserved for after training to evaluate and make fair comparisons of separate models.

For each network architecture we use as input the RAP with the RAOB data as the target output.

Additionally, we (optionally) introduce the RTMA and GOES data as input, either individually or

together. Doing so leaves four potential combinations to use as input: (a) RAP, (b) RAP+GOES,

(c) RAP+RTMA, and (d) RAP+GOES+RTMA. Performing a comparison of the different combi-

nations allows for the assessment over the observational data and their significance to improve pre-

dictions. The caveat to this analysis is that when more features are introduced to the network there

is an associated growth in the number of parameters. In some situations, for example, when using

the convolutional or U-Net architecture, the preserved spatial information is lost as fully-connected

layers are needed to concatenate the additional observational measurements. Thus, the choice of

architecture is restricted when using observation data and models that are fully-convolutional can

not be used as the observational features need to be joined independently.

In addition to partitioning the data and separating input variables for different studies, we also

label samples as either cloudy or clear-sky based on the observed conditions from the GOES-R

L2+ Clear Sky Mask [46]. The mask provides binary classification for each pixel using the GOES-

R ABI visible, near-infrared and infrared bands. As such, the mask has the same grid spacing and

resolution as the GOES-16 ABI data. We decide to identify a sample as cloudy if a 100 km2 region,

collocated over the radiosonde observation, has more than 85% of the pixels labeled as cloudy. We

use this slightly larger region, as compared to the GOES ABI data, to account for radiosonde drift

and elapsed time of the cloud movement. The primary reason to consider cloud coverage is two-

fold, that is (a) we can train separate models using all of the samples or only cloudy/clear-sky

samples and (b) we can evaluate a model trained using all data samples under either condition.

The general profile accuracy and architecture search considers both clear- and cloudy-conditions.

Separation of the data makes the most sense meteorologically when using satellite radiances as
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input. This is because clear-sky radiances are not obstructed or absorbed by any clouds, thereby

capturing a better representation of the atmosphere at different wavelengths. However, we reduce

our effective sample size at the expense of data separation, which is generally detrimental to neural

network performance. Additional details and results are outlined in Section 7.1.

Regardless of the data combination or features used, and before training our models, we stan-

dardize the input and target variables to have a mean of zero and unit variance (z-score normaliza-

tion). Every vertical level of the profile and each observational variable are standardized indepen-

dently by subtracting the mean and dividing by the standard deviation from the training data. To

convert predictions from a model back to their original units, we simply multiply by the standard

deviation and add the mean using the statistical values from the RAOB. While the networks have no

assumptions about the underlying distribution of the data, this is a crucial step before both training

and inference as to not saturate the hidden units and to maintain relative scaling of features.

5.1.2 Model Setup and Hyperparameters

As a way to assess the feasibility of neural networks in this work, we explore the search space of

different network architectures and hyperparameters. The hyperparameters are the non-trainable

parameters which describe the topology of a network (e.g., number of hidden layers and units)

and the parameters used to train the model (e.g., learning rate and activation functions). These

parameters are initialized prior to optimizing the model and do not change. Through experimenta-

tion we constrain the infinite combinations of hyperparameters to the parameters that demonstrate

the best performance with recurring patterns. For each model setup we train five separate models

with different initial weights to capture a comprehensive understanding of that particular model.

It is possible that a model with initial parameters furthest from the data mapping of the input and

output will fall into a local minimum and fail to converge to better optimized values. Conversely,

a model initialized with more appropriate weights may appear to perform better as the parameters

converge to values that yield a more optimal loss. Therefore, running multiple trials will increase
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confidence in the performance of a model when making comparisons to other model setups. When

investigating an individual model, we take the best of the trials and report the appropriate statistics.

All network variants consider shallow and deep structures with a narrow and wide number of

hidden units and filters in each layer. In the fully-connected networks we vary the number of lay-

ers between one and five, where each layer has between 22 through 210 units. The convolutional

networks have between three and six convolutional layers with the number of filters ranging from

24 and 29 following an exponential increase with depth. More specifically, as depth of the con-

volutions layers increases so does the number of filters. This technique is commonly employed

in convolutional networks in computer vision as early layers can identify higher level features in

the data, and the later layers can identify more fine grain details. Therefore, we need not have a

large number of filters in early layers, and we can add more to the subsequent layers to capture the

small changes. Following the convolutional layers, we stack fully-connected layers with zero to

two hidden layers of [256] and [512, 256] units. The observational data from RTMA and GOES are

concatenated prior to passing through these layers. We experiment with a range of 24 and 28 filters

with one through four downsampling and upsampling blocks. Similar to the convolutional net-

work, the U-Net increases in the number of filters nearest to the bottleneck layer and we stack zero

to two hidden layers after the last convolutional layer. Note, use of [0] with the U-Net represents

only the output from the U-Net.

Given a structure defining the topology of a network we then outline the parameters and op-

erations used for training. Following each hidden layer is a non-linear activation function. The

hyperbolic tangent and rectified linear unit (ReLU) are used in initial experiments, and since we

found negligible differences, we use ReLU in the remaining experiments. Similarly, with optimiza-

tion functions, we find adaptive moment estimation (Adam) to be sufficient in initial experiments.

We initialize Adam with a learning rate η and coefficients βn to tune how quickly and accurately

the models will learn. Various values of η between 1e−2 and 1e−4 are used to determine which

contribution of the gradient is most effective for the data being used. Additionally, we initialize
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each coefficient to its default values for computing running averages of the gradient and its square

with β1 = 0.9 and β2 = 0.999, respectively.

Individual models are developed using TensorFlow version 2.3.1 and trained on a single 24 GB

NVIDIA Quadro RTX 6000 GPU with two Intel Xeon Silver 4216 CPUs at 2.10 GHz and 256 GB

DDR4 memory. Having a large amount of memory on the system and GPU allow us to test great

breadth of models in timely manner. However, as with most research in machine learning, it is not

possible to explore the entire search space. On average we find the models to complete an epoch

in four seconds and train a model in the range of a few minutes.

5.2 Loss Functions

A natural characteristic of the RAP’s profiles is the increase in error at higher altitudes for

which both profiles on average have their highest errors at 17 km above the surface. Their average

minimum errors differ with the moisture profile having an error of 1.238◦C directly at the surface,

and the temperature profile with an average minimum error of 0.713◦C roughly 8 km above the

surface. The challenge with traditional loss functions, such as the mean-absolute error (MAE)

and MSE, is the emphasis on large deviations of outputs with no regard to spatial context. While

it is important to correct for these large errors, it is also critical to minimize the errors near the

surface. The loss function being optimized is a custom weighted mean-absolute error (WMAE),

which builds upon the MAE. The (MAE) shown in (5.1) computes the mean over the absolute

difference of the network’s output and target variables for a mini-batch of samples at every vertical

level, given by:

LMAE =
1

n

1

k

n
∑

i=1

k
∑

j=1

|tij − yij|. (5.1)

This function is minimized by the conditional median and is mathematically more resilient to

outliers when compared to MSE. Since the errors in the RAP profiles are most significant at higher

altitude the MSE will bias the network to correct for these values. However, we are more focused

on improving the region between the surface and 2.5 km above the surface. Therefore, we find

MAE to be a more suitable starting point to remove bias of high differences and we introduce a
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weighting factor to individual outputs based on their vertical level. Output features are consistent

with altitude, but not necessarily with atmospheric conditions including cloud height, temperature

inversions, convective condensation level, etc. Therefore, we assign output weights in WMAE as

a function of altitude where values near the surface have a greater magnitude of error. The WMAE

is mathematically represented as:

LWMAE =
1

n

1

k

n
∑

i=1

k
∑

j=1

(α exp(−λj) + β)|tij − yij|, (5.2)

where α is an initial value, λ is a decay constant, and β is an offset value for an exponential

decay function. The absolute difference of the profile is multiplied by this function such that the

difference decays with altitude. Through initial experiments of fully-connected and convolutional

networks, we find α = 3.75, λ = 0.01, and β = 0.25 to be appropriate values for the data.

The aforementioned loss functions are standard in the computer science literature with the ex-

ception of WMAE, which we adapt to emphasize features that are important meteorologically. We

extend on the idea of including domain knowledge in training by leveraging information derived

from the profiles into a loss function. From a given sounding, the total precipitable water (TPW)

can be calculated to describe the depth of water in a column of the atmosphere if all of the water

vapor were condensed. Forecasters use TPW to know how much moisture in the column could

potentially precipitate as rain or snow. As is, the accuracy of the derived product is essential to

accurately predict and track severe weather events. Using this knowledge, we include an addi-

tional term in the loss that not only minimizes the error for every vertical level (with MAE), but

also minimizes the error in TPW derived from the network estimate and the target RAOB profiles.

Mathematically, TPW is found by integrating the atmospheric column moisture with the equation

from [47]:

TPW =
1

ρwg

∫ ptop

psfc

r dp, (5.3)

where ρw is the water density, 999.975 kgm−3, g is the gravitational constant, 9.807m s−2, r is the

mixing ratio (dimensionless) of water vapor in mb at pressure level p, and psfc and ptop are the
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surface and upper-level air pressure in mb, respectively. To find r we first compute the saturation

vapor (partial) pressure using the following formula from [48]:

e = 6.112 exp

(

17.67 td
td + 243.5

)

, (5.4)

for the dewpoint temperature, td, in ◦C. Thereafter we find the mixing ratio, r, given its partial

pressure, e, and the total pressure, p, of the air using the equation from [49]:

r = ǫ
e

p− e
, (5.5)

where ǫ = mw/md is the ratio of the molecular weight of water vapor, mw = 18.015 gmol−1, to

dry air, md = 28.966 gmol−1. Plugging r into (5.3) gives a single quantity value, converted to

millimeters of TPW over the profile. Thus, after each training step, we minimize the MSE of the

derived TPW from the model estimates and target profiles in addition to the MAE of all output

features (from (5.1)):

LTPW =
1

n

n
∑

i=1

(TPWti − TPWyi)
2,

LTMAE = LMAE + αLTPW.

(5.6)

In our experiments, we found that the contribution of LTPW can be large relative to LMAE, and

using a weighting factor of α = 0.25 for LTPW stabilizes training and produces better results. The

computation of LTPW requires the dewpoint profile, which we get from the estimate and target

profiles, and the total pressure from the sounding. Thus, we use the target pressure measurements

from the ith RAOB to compute TPWti and TPWyi . Including this additional argument in a loss

function is particularly difficult under TensorFlow’s implementation. Ideally, we would like to

include a pointer to the vector of pressure values with an index to the respective sample so that we

can compute TPW for each sample during training, but this is not possible given the current version

of TensorFlow. To include the associated pressure in the loss, we include an additional input of

RAOB pressure to the network and concatenate that input to the output. Thereafter, we extract
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the pressure profiles from the network’s prediction, unstandardize the dewpoint profile using the

means and standard deviations of the RAOBs, and then compute TPW for the estimate and target

profiles. Note that the calculation of LMAE is on the standardized output data.

Learning curves provide an overview of how well the network learns and generalizes to unseen

data by evaluating the loss over the training and validation data during training. By observing

the two curves, certain properties such as the convergence in a minima of the loss (when training

plateaus) and overfitting in a model (when validation and training loss diverge) can be observed.

Overfitting is seen when the training loss continues to trend downward and the validation increases

or stays constant. As a way to stop a model from training unnecessarily long and to reduce over-

fitting, a concept known as early stopping is used. This monitoring function stops the network

from training at the point of smallest loss with respect to the validation data. The definition of

this particular moment is when the absolute change of the validation loss is less than 0.001 for

more than 10 epochs. All models employ early stopping to improve performance, which in turn,

causes models to train for a different number of epochs. To encourage the use of early stopping we

empirically set the number of total possible epochs to 200, which is not reached by any networks

during training.

5.3 Metrics

The primary way to evaluate network performance and profile accuracy is with the root-mean-

squared error (RMSE) between the estimates and target profiles. This performance metric is com-

mon in the literature when comparisons are made with RAOBs. In this work, we use the RMSE

in a number of different ways, which offers a high level to fine grain representation of accuracy.

Since the output of the network is two 1-dimensional profiles, we can compute the error over every

single output feature or for the two profiles independently. Quantifying the error over all outputs

renders a complete view for both profiles, but may include bias toward a given profile. For exam-

ple, the model may produce relatively low errors in the dewpoint profile and not the temperature

profile, which in turn will yield a low error but bias the dewpoint profile. Thus, we consider the
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error for the two profiles independently as separate metrics. Moreover, we extend our analysis over

each profile by computing the RMSE for every vertical level by mathematically taking the mean at

each level separately. Doing so provides more fine grain insight to how accurate each profile is and

where improvements are being made. Lastly, with concern of accuracy near the surface, defined

by the first 1.5–2.0 km, we additionally assess the error of the first 25 levels (1.66 km) for both

profiles and independently.

In addition to standard accuracy measures of profile measurements we also consider accuracy

of radiosonde specific products computed from estimates as compared to the products generated

from the RAOBs. In meteorology, a measure of convective available potential energy (CAPE)

and convective inhibition (CIN) are standard indicators of convective instability found from the

temperature and moisture profiles in a sounding. Additional details on these derived indices and

their calculations are discussed in Chapter 8; however, at a high level, if improvements are made to

the RAP profiles, then ideally, the values of derived products will be closer to those of the RAOBs

as well. Therefore, we include the coefficient of determination, denoted R2, and the RMSE of

CAPE and CIN values between the estimates and RAOBs as an additional metric. Generally, R2

represents the proportion of variance in a dependent variable that is explained by the independent

features. We formulate this coefficient using the fraction of sum of squares of residuals and the

total sum of squares, R2 = 1 −
∑n

i=1(ti − yi)
2/

∑n

i=1(ti − t̄), for i = 1, . . . , n samples where

t and y are the CAPE or CIN for the RAOB and RAP/ML estimate, respectively. A value of

zero represents a model that explains no variance, and conversely, a value of one would have all

the observed variation explained by the model’s input. Both of these metrics are relative to the

baseline metrics of CAPE and CIN values in the RAP and RAOB. Thus, an improvement to the

RAP’s derived indices is seen when the estimated metrics outperform the baseline metrics.
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Chapter 6

Choosing a Network Architecture

This chapter explores the efficacy of machine learning in improving vertical profiles. It first

looks at different neural network architectures and their general performance under different con-

figurations. Results for the general model performance use all available data (partitioned into

training, validation and test sets) to train a collection of different models. For consistency, the ini-

tial search does not include methods to reduce overfitting. Thereafter, models found to overfit are

retrained using a combination of different techniques discussed in Section 4.5 and the top perform-

ing models are reported. The following sections are broken up to provide individual comparisons

of each architecture. For brevity, the results of the linear model are included in Section 6.1 with

fully-connected structures. Lastly, within Section 6.5 we summarize the best model from each

architecture and determine the most ideal structure and specific model parameters.

6.1 Fully Connected Networks

The depth and width of the fully-connected networks have a significant impact on performance.

The depth is defined by the number of layers and the number of units in each layer constitutes the

width. Figure 6.1 illustrates the mean and standard error of the RMSE over all output features (the

vertical levels in the two profiles) for the test set with changes in the structure. Regardless of the

input variables, the total profile errors generally decrease as the width of the network increases.

An increase of depth in narrow networks (with a width of ≤ 64 units) is not particularly beneficial

in improving accuracy, in fact it makes the errors worse. However, networks containing more than

128 units are seen with better estimates when using two or three hidden layers compared to just

one, four, or five layers. Adding more than three layers in these wider networks is disadvantageous

as the network starts to overfit and learn spurious features and the noise in the training data. Thus,

in general, it is beneficial to balance the depth with fewer layers and increase the width of the

network for this application.
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Figure 6.1: Root-Mean-Squared Error is computed for each network architecture over all output features in

the test set. Network architecture is described by the x-axis (e.g., [0] is linear and [64]∗3 represents a network

with three hidden layers with 64 units each). Each network is trained five times and every point represents

the mean error and is shaded by the standard error (barely visible in this figure). The legend denotes the

results when using as input the RAP; RAP and GOES; RAP and RTMA; RAP, GOES, and RTMA.

Using different combinations of data as input reveals the GOES brightness temperatures add

helpful information for learning the profiles. Conversely, including the RTMA with the RAP as

input offers no additional information with fully-connected networks as mean RMSE falls within

the standard error of the models using the RAP alone. A similar behavior is seen when using the

RAP+GOES+RTMA as input. The mean output error of models including GOES and RTMA is

not significantly different to the models using GOES. A possible explanation as to why the RTMA

is not particularly useful is the inherent variability in the data, which we discuss in Section 3.3.1.

As a result, there are no consistent patterns for the network to learn and the additional features are

not particularly useful.

All of the models in the initial network search are trained without using any of the described

techniques to reduce overfitting. However, the learning curves of these standard networks begin to

diverge with an increase in magnitude following the depth of the network. Figure 6.2 outlines this

behavior in a series of plots, each with a different number of layers, and compares the standard

model to those trained to reduce overfitting. In particular, we retrain models using a combination

of dropout with a probability of 0.20, batch normalization with default parameters, and L2 kernel
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Figure 6.2: Five different network architectures of increasing depth from one to five layers with the WMAE

loss (y-axis) plotted during training epochs (x-axis). Each network uses a different technique to reduce

overfitting, and the standard model uses none of these techniques. Solid lines represent the loss on training

data and dashed lines are for the validation data.
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regularization having a regularization factor of 0.001. One immediate observation is that each

model is trained for a different number of epochs. This response is intentional to illustrate the

workings of early stopping; although, similar, if not more severe, results are seen even when early

stopping is not used (not shown here) – since the validation loss continues to diverge from training.

The validation loss in every combination falls below the training loss, which indicates that the

models are no longer overfitting, but they all have a greater loss than the standard model. Addi-

tionally, the metrics on the test set (not shown here) confirm that the use of overfitting techniques

do not improve performance with fully-connected networks. The most similar case to the stan-

dard model is using batch normalization, either by itself or together with dropout, which does not

experience overfitting, but still performs slightly worse. Moreover, the drawback of using batch

normalization, aside from performance, is the increase in training time as additional computations

are needed to transform variables and store running statistics.

Summary: The deeper networks lack generalization that traditional overfitting techniques can-

not combat. As a result, using a more shallow network with enough hidden units to capture patterns

and then training for fewer epochs with the RAP and GOES as input is the best solution for fully-

connected networks. However, when using a linear or fully-connected network, we observe the

output profiles to be jagged and contain noise between vertical levels.

6.2 Convolutional Networks

Convolutional neural networks are evaluated in a similar manner to fully-connected networks.

Using different combinations of input data we train a number of network architectures and measure

the test error over all output features and those near the surface. Figure 6.3 illustrates these metrics

by grouping the convolutional structure with three different fully-connected layers ([0], [256], and

[512, 256]) following the last convolutional layer. From this figure we see recurring patterns in the

errors of the networks and the use of fully-connected layers.

The results in Figure 6.3 show the model with the smallest error containing five convolutional

blocks of size [32, 64, 128, 256, 512] each using a filter size of 3 × 1 with a stride size of one,
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Figure 6.3: Root-Mean-Squared Error is computed for each network architecture over all output features

in the test set. Network architecture is described by the x-axis and associated legend. Background shading

groups the fully-connected structure that is used after the convolutions. Each network is trained five times

and every point represents the mean error and is shaded by the standard error.

followed by two fully-connected layers of size [512, 256], and a final output layer. In each of

the three groups of fully-connected layers, the same convolutional structure, referred hereon as

Fconv, has the lowest error. When compared to the three other five layer convolutional structures it

becomes clear that ascending the number of filters in the latter layers is beneficial. Traditionally,

CNNs with more filters allow the network to extract more abstractions from the data. In early

layers, the primitive regularities in the data can be identified with fewer filters, but as the patterns

get more complex in subsequent layers, having more filters can capture the larger combinations

of patterns. This behavior is well understood and implemented in most 1- and 2-dimensional

convolutional networks. As a result, we use this intuition to understand why Fconv outperforms the

other convolutional architectures.

The use of fully-connected layers after the convolutions is to capture non-linear relationships

between the abstractions found in the RAP and the observational data from GOES and RTMA.

Fully-connected layers in the case when only the RAP data is input to the network attempt to learn

any non-linear relationships between the individual abstractions. However, our results show no
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benefit of using these layers as there are no changes to the network’s overall error on average.

Similar to the fully-connected networks, when introducing the RTMA, the networks perform no

better than those trained with only the RAP and the mean errors typically fall in the range of stan-

dard error. Additionally, the change in error when using fully-connected layers with the RAP and

RTMA as input remain consistent with changes in the number of convolutional layers. Alterna-

tively, the inclusion of GOES show a more compelling result with lower profile errors. Not only

does this suggest a linear relationship between the RAP abstractions and GOES, which improves

performance, but adding non-linear units before the output improves overall accuracy even more.

This observation is seen in Figure 6.3 with the divergence of profile errors from the models using

only the RAP as input.

Errors near the surface (not shown here) contain patterns specific to the network structure, but

the variability of performance among the models is relatively small. For example, the simpler

three layer networks tend to have lower errors, and the difference with complex network structures

such as Fconv is within ±0.02◦C of its mean error. As such, we prioritize the overall error when

selecting the best convolutional network. Another relevant observation of near-surface errors show

negligible differences in the use of observational data. The standard error is greater over each trial

and there is overlap between the mean and standard errors of models using other combinations of

the input.

Summary: The best convolutional network structure is found having a large number of convo-

lutions layers, which have an increase of filters with depth, and then appending two non-linear

fully-connected layers after the convolutions. Results show the use of fully-connected layers to

generally improve performance when using the RAP and GOES as input, and there is no advantage

of using the RTMA data. Output profiles are relatively smooth, compared to the fully-connected

networks, and suggest that spatial information is better captured when convolving over the RAP

data.
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6.3 Residual U-Net

As an alternative to fully-connected and convolutional networks, the U-Net model can be con-

figured to be fully convolutional, i.e. not using any fully-connected layers, when using only the

RAP as input. Fully-connected layers are added only when concatenating observational data or

when appending additional layers at the end of the network. However, these additional layers

following the U-Net are found to be unnecessary, and the standard architecture with a bottleneck

layer sufficiently improves the accuracy of the model. A complete summary of these models as

displayed in Figure 6.4 validate this behavior.

Including RTMA as input changes the structure of the network by requiring an additional input

layer and concatenation with the encoded RAP data in the bottleneck. This architectural change

with the observational data shows an improvement to overall performance when compared to only

using the RAP as input (Figure 6.4a). Comparing networks that include RTMA with those includ-

ing GOES more effectively shows the benefit of satellite radiances, which is an observation seen

in earlier network considerations, and suggests that RTMA is not useful. Furthermore, includ-

ing both GOES and RTMA show no significant improvements over the models that include only

GOES with the RAP. In fact, some scenarios using only the RAP and GOES have lower RMSE

values over models using both GOES and RTMA with the RAP. This is likely as a result of the

high variability in the difference of RTMA and surface values of vertical profiles. However, it is

particularly challenging to fully understand why and how particular variables are used. Even by

observing the weights in the network, a complete picture as to why the network learns a specific

pattern or attributes importance to specific relationships is not explicit in this study. This challenge

is something we discuss in more detail later on.

Near the surface, the networks following the standard U-Net architecture (without subsequent

fully-connected layers, as denoted by [0]) are more stable and produce the lowest errors. As fully-

connected layers are added, the network produces higher mean errors with a greater standard error,

which indicate the sample of trials are widely spread around the true model error and the networks

are unstable when initialized with different random weights. Figure 6.4b illustrates the errors
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Figure 6.4: Root-Mean-Squared Error is computed over the test set for each network architecture over (a)

all output features and (b) only the near-surface (from the surface to 1667.5 km) output features. Network ar-

chitecture is described by the x-axis and associated legend. Background shading groups the fully-connected

structure that is used after the U-Net architecture. Each network is trained five times and every point repre-

sents the mean error and is shaded by the standard error.
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near the surface and the result of varying architectures. Here we see the network structure of size

[32, 64, 128, 256], with a mirrored design around the bottleneck and no additional layers after the

U-Net, using the RAP and RTMA as input resulting in the minimum observed mean near-surface

error. However, we find that the use of RTMA as input to this structure to have a wide spread

of errors and to have worse overall errors, thus we exclude the use of RTMA in the remaining

experiments unless otherwise noted. This particular network does not have the lowest error over

all output features, relative to some of the other U-Net architectures, but we find the stability of

near surface accuracy and general performance to be more sufficient.

Summary: The Residual U-Net architecture performs best when using more convolutional lay-

ers with stacked connections and no fully-connected layers after the output of the U-Net. Results

show the best model to use the RAP and GOES as input to the network with [32, 64, 128, 256]

convolutional layers mirrored around the bottleneck (where the GOES is added as input). We use

this network for the remainder of our experiments unless otherwise noted.

6.4 Contrasting Loss Functions

The loss function being optimized in neural networks are a critical formulation in the design

of accurate networks. Here we contrast the results of four different loss functions, namely: MSE,

MAE, WMAE, and TMAE. Both MSE and MAE are standard loss functions for regression prob-

lems in machine learning and both WMAE and TMAE were designed specifically for this problem.

Rather than computing general metrics over the entire profile, we compute the RMSE at every ver-

tical level for all samples in the test set for comparison. As such, we train four separate models for

the four different loss functions and display the results in Figure 6.5 with a comparison of the RAP

baseline error in each profile.

The loss that performs the worst is the TMAE, which includes a term to minimize the error in

TPW of the ML estimate. The resulting errors at every vertical level are significantly higher than

that of the three other loss functions, and the errors near the surface are worse than the baseline

RAP. In our experiments, the network trained with TMAE begins to overfit on the training data
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Figure 6.5: Networks trained with different loss function showing their errors in the test set at every vertical

level as compared to the baseline error between the RAP and RAOB. The vertical dashed lines and respective

numbers in the legend represent the RMSE over all vertical levels and samples. (a) Temperature profile

errors. (b) Dewpoint profile errors.

much earlier and more severely than the other methods. As previous discussed in Section 5.2,

we include a weighting factor to reduce the contribution of TPW errors, which helps to reduce

overfitting, but as expected, begins to approach the MAE. We believe there to be potential in using

a knowledge guided loss function for this application, but find TMAE to be inadequate in our

experiments. As possible future work, we outline a loss which incorporates additional information

about the surface, which could be helpful, in Section 9.4.

Differences between the other three models are small yet evident at specific altitudes. Models

trained with MSE have a tendency to correct for errors with high magnitude and have less emphasis

on outputs with low errors. In Figure 6.5a we see the MSE model does no better than the RAP

where the original error is lowest, whereas MAE and WMAE provide general improvements in this

region and yield lower overall errors. The values near the surface show where MAE and WMAE

are most different. That is, by adding more weight to the absolute difference near the surface
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we see a decrease of error. Thus, WMAE is used hereon for the remaining experiments unless

otherwise specified.

6.5 Summary of Profile Accuracy

Profile and near-surface errors are presented in Table 6.1 with changes to the input test data.

Here we show the best performing network from the five trials of the same architecture initial-

ized with different weights for the four different architectures. The change in results between

experiments have consistent yet marginal numerical differences, albeit small changes represent

considerable improvements when compared to the magnitude of error in the baseline. Note, the

baseline is the error that exists in the RAP relative to the RAOB. From the RAP and RAOB we

begin with a baseline RMSE of 4.432 for the entire profile and a near-surface error of 3.161 (last

row of Table 6.1). Thus, a 0.100 difference represents roughly a 3% decrease in error.

Linear and fully-connected models have larger errors compared to the convolutional-based net-

works. When inspecting the profile estimates from these two models we find the output profiles to

be jagged and noisy with measurable changes between every vertical level. This result is due to

the relationships of independent variables and the lack of spatial context. However, since spatial

relationships are a property of the data, the use of convolutional layers not only produce lower

errors but also have smoother profile estimates. The overall best architecture is the U-Net ar-

Table 6.1: Error summary for each network and input feature combination using the test dataset. E is the

Root-Mean-Squared Error over all output features, and Esfc is only the error of near-surface values. Each

grouped column represents the input features used during training and evaluation. The baseline represents

the errors between the initial RAP profiles and the RAOBs.

RAP RAP+GOES RAP+RTMA RAP+GOES+RTMA

E Esfc E Esfc E Esfc E Esfc

Linear 3.605 2.228 3.524 2.235 3.604 2.235 3.519 2.226

FC 3.428 2.194 3.313 2.190 3.428 2.171 3.287 2.173

Conv1D 3.406 2.180 3.291 2.141 3.399 2.151 3.291 2.149

U-Net 3.440 2.120 3.273 2.102 3.368 2.108 3.300 2.109

Baseline 4.432 3.161
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chitecture, which outperforms all other networks when using the RAP and GOES as input

data. For the remaining experiments we use this architecture unless otherwise noted.

Figure 6.6 shows the temperature and dewpoint temperature errors across all test samples for

each vertical level when varying the input data. The result is four separate models trained with

different data with each line revealing where in the profiles the improvements are being made.

When comparing to the baseline, the temperature profiles have a relatively steady decrease in error

at every vertical level except for near the surface and surrounding 6.5 km above the surface (Fig-

ure 6.6a). Errors directly at the surface have slight improvements followed by a greater decrease

until about 2.0 km above the surface. At about 6.5 km above the surface, where the RAP has the

smallest RMSE, we find the networks to have the least relative improvements. Additionally, across

the entire profile there are no significant changes seen when varying the input data. On the contrary,

when evaluating the dewpoint profile errors we find the greatest improvements at upper altitudes

and with change in the input data (Figure 6.6b). The addition of GOES data as input indicate the

greatest improvements between roughly 4–12 km, whereas the errors are consistent at every other

vertical level.

Computing the RMSE over thousands of samples in the test set provides a comprehensive view

of the performance of a network, but easily generalizes performance and makes it difficult to isolate

particular improvements and limitations. By looking at a specific example we can get another view

of the profile estimate characteristics. Figure 6.7 visualizes the Skew-T Log-P from Little Rock,

Arkansas (LZK) shortly before 00Z on June 24, 2017 with the RAOB, RAP, and machine learning

estimate overlaid. The dewpoint estimate has the most notable improvement, especially in the

upper-levels between 400–100mb, whereas minor sensitivities in the temperature profile are not

captured. In many scenarios the ML estimate is very similar to the initial RAP profile, and in this

example, both estimates fail to identify the temperature inversion at 700mb.
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Figure 6.6: Networks trained with different input features showing their errors at every vertical level as

compared to the baseline (error between the RAP and RAOB). The vertical dashed lines and respective

numbers in the legend represent the RMSE over all vertical levels and samples. (a) Temperature profile

errors. (b) Dewpoint profile errors.
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Figure 6.7: A standard Skew-T Log-P diagram of temperature, T , and dewpoint temperature, Td, profiles for

a radiosonde observation (RAOB), collocated profiles from the Rapid Refresh (RAP), and machine learning

(ML) estimates over Little Rock, Arkansas (LZK).

57



Chapter 7

Evaluating Meteorological Conditions

In Chapter 6, the top performing neural network was found to be the Residual U-Net, but we

only assessed the general profile accuracy. Here, we use this network architecture to better under-

stand the usage of GOES-16 ABI channels for neural networks, the impact that cloud coverage

has on producing accurate profiles, and how different seasons and geographical regions influence

performance.

7.1 Importance of GOES-16 ABI

Using the GOES ABI data improves the accuracy of the profile estimates, although it is not

initially clear what channels from GOES include the most information and how the network utilizes

this data. To provide insight to these challenges we perform an ablation study for different channels

in conjunction with closer inspection of the networks’ output to see how the networks improve.

Foremost, we separate the data by channels into three groups, with (a) all eight channels; (b) only

the water vapor bands (6.2, 6.9, and 7.3 µm) and near-surface longwave window channel (12.3 µm);

and (c) all channels except those in (b), namely 8.4, 10.3, 11.2, and 13.3 µm. Thereafter, for each

group we train a new network initialized with different random weights, all of which contain the

same architecture and hyperparameters, and then we evaluate the performance at all vertical levels

to contrast how the removal of features influence profile accuracy.

The choice of channels in groups (b) and (c) is selected to understand the relationship between

the weighting functions of GOES ABI and what the network learns. The water vapor bands do

not see the surface, but they capture information at mid-levels, so we expect the profile errors at

these levels to decrease when these channels are used. In Figure 7.1a, the corresponding vertical

weighting functions for the U.S. Standard Atmosphere with a satellite zenith angle of 40◦ is shown.

The functions are calculated using a simulated SRF of each wavelength, and they outline the sen-

sitivity of each band to different vertical levels in the atmosphere. For example, with the exclusion
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Figure 7.1: Networks trained with different channel combinations from GOES showing their errors at every

vertical level as compared to the baseline (error between the RAP and RAOB). The vertical dashed lines and

respective numbers in the legend represent the RMSE over all vertical levels and samples. (a) Vertical ABI

IR weighting functions for the U.S. Standard Atmosphere (figure from [50]) (b) Temperature profile errors.

(c) Dewpoint profile errors.

of channel 12 (9.6 µm), we can see channel 8 (6.2 µm) peaks the highest at roughly 350mb and

then falls off at 700mb. In reality, the weighting functions profile is variable, and may not be as

smooth and their peak levels differ slightly between locations or atmospheric conditions. The stan-

dard view serves as a reference to understand the typical characteristics of these bands and their

importance at different vertical levels.

Our experiments show profile errors that confirm the use of the water vapor bands to aid in

improving the mid-levels of the moisture profile. Figure 7.1c illustrates the profile errors at all

vertical levels for each network overlaid. Here we see that the network trained only with group

(c) performing the worst overall with noticeably higher errors between 4.25–12.75 km above the

surface. However, when the water vapor bands are added as input to the network (specified by

group (b)) there is a clear decrease in profile error at these levels. The region of lower error

corresponds to the weighting functions of the provided channels, indicating these channels contain

important information that is learned by the networks. Moreover, when using all channels as

input, the profiles show the lowest overall error. The same is not seen in the temperature profiles,

and adding/removing channels seems not to add noticeable information that make the profiles
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more accurate. Overall, including these channels not only demonstrates utility, but also provides

appropriate information at the expected levels in the vertical profiles.

7.2 Impact of Cloud Coverage

Samples are separated into clear and cloudy bins as determined by using collocated GOES-

R Clear Sky Mask [51]. Cloud masks that contain missing values are flagged and the associated

samples are discarded during our analysis. The valid samples are partitioned into respective groups,

such that the training set has 15, 159 clear-sky and 11, 654 cloudy-sky samples; validation has

2, 046 clear-sky and 1, 517 cloudy-sky samples; and test has 2, 997 clear-sky and 2, 344 cloudy-sky

samples. Effectively, the data has a slight bias toward clear-sky conditions with nearly 57% of the

samples constituting the training data. Foremost, we compute a baseline error for the temperature

and dewpoint profiles of the RAP under the two conditions. An improvement to the profiles will

show errors less than this baseline.

By first observing the baseline we find interesting characteristics regarding where the RAP

accuracy degrades. With respect to temperature, the errors directly at the surface are 9.09% lower in

cloudy-skies as compared to clear-skies. However, errors in clear-skies are lower at every vertical

level above the surface. This result is an artifact of the RAP and its ability to accurately depict the

temperature profile in cloudy conditions as initialization variables (e.g., satellite radiances, radar

reflectively, etc.) assimilated to the system also lack information in cloudy conditions. On the

contrary, dewpoint is more accurate to the RAOBs in cloudy conditions and has a noticeable trend

of decreased error between roughly 8–12 km.

Two models are compared to better understand how cloudy coverage influences profile accu-

racy and network performance. Both models have an identical U-Net architecture, but the data

used for training differs. The first model M1 takes as input only the RAP and GOES data from

clear-sky samples for training, whereas M2 is the same model from the architecture search that is

trained on all available data. Thereafter, we independently evaluate the networks on the test set of
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clear and cloudy conditions and report the total RMSE and vertical errors for both profiles. These

results are shown in Figure 7.2 with both models compared against the baseline conditions.

Based on the baseline errors in the RAP we can begin to identify potential biases in the dataset.

Errors directly at the surface are greater in clear-sky conditions for both profiles, although the

near-surface errors in the temperature profiles are greater in cloudy conditions. An initial hypoth-

esis leads us to believe that the disparity of errors in the baseline of the RAP could force M2 to

over(under) correct for surface values when cloudy(clear) conditions are present. However, in Fig-

ure 7.2a we find that even M1 struggles to improve upon M2 directly at the surface in clear-skies.

In the case where the baseline error is low at the surface in cloudy conditions, M2 only partially

outperforms M1 (Figure 7.2c).

As a general result we find the use of additional data to improve model accuracy and training

only on clear-sky samples to provide little to no benefits. Model M2 contains lower errors for each

scenario in our experiments with greater improvements to profiles in cloudy conditions. More

specifically, M1 performs similar to M2 when tested on clear-sky conditions, but when testing on

cloudy-conditions M1 does not generalize well. In cloudy-conditions, between 4.3–8.5 km above

the surface, the temperature profile estimates from M1 are no better than the RAP (Figure 7.2c).

Additionally, the dewpoint profile estimates 8.5 km above the surface have errors roughly 0.5 ◦C

higher than M2 (Figure 7.2d). Overall, using all the available data during training creates a model

that generalizes better to various atmospheric conditions and outperforms a model trained only on

clear-sky conditions.
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Figure 7.2: Networks trained and evaluated on different cloud conditions showing their errors at every

vertical level as compared to the baseline (denoted RAP, which is the error between the RAP and RAOB).

M1 takes as input only the RAP and GOES data from clear-sky samples for training, whereas M2 is trained

on all available data. The vertical dashed lines and respective numbers in the legend represent the RMSE

over all vertical levels and samples. (a) Clear temperature profile errors. (b) Clear dewpoint profile errors.

(c) Cloudy temperature profile errors. (d) Cloudy dewpoint profile errors.
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7.3 Seasonal Influence

As another way to evaluate the performance of our model, we look to see if the model biases

any particular season during training. The data are partitioned temporally such that no one dataset

contains a disproportionate number of observations for a given month, and only the test data are

considered for evaluation. There exists a natural bias in the number of observations for the months

of September through December as samples are not yet collected for the latter half of the year in

2020. However, there are more observations in North American spring and autumn months with

April and May having the highest counts. The increase of observations during these months are

due to the interest of peak severe weather seasons, which takes place in March, April, and May.
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Figure 7.3: Each sample represents the percent decrease in error from the ML estimate error relative to the

baseline error. A lower value shows a better improvement to the profiles. (a) Temperature profile errors. (b)

Dewpoint profile errors.

Initial baseline profile errors within the test set show the greatest errors in the RAP for the

temperature profiles in December through April and for the dewpoint profiles in the months of

April through September (not shown here). Figure 7.3 shows a boxplot for the percent change in

RMSE of the machine learning estimate with the RAOB relative to the baseline RMSE of every

sample. The median and spread of values are fairly consistent for every month, even though the
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RAP profiles have higher errors in certain months. As a result, the network is not learning to bias

a particular month or focus on learning particular patterns for only low- or high-severity weather

seasons.

For each boxplot, the whiskers mark the bounds for statistical outliers, and are found with a

standard distance of 1.5∗ (IQR) units below the first quartile, Q1, and above the third quartile, Q3.

Based on these quartiles we can see a general trend where 50% of the variability around the median

is less than zero, and nearly 25% of values (greater than Q3) have profile errors that are larger than

the baseline. Interestingly, the dewpoint profiles have a larger range over all of the months with

greater decreases/increases in error.
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Figure 7.4: An under performing example of an ML estimate for the temperature, T , and dewpoint temper-

ature, Td, profiles over Rapid City, South Dakota (UNR).

The most significant outlier seen in Figure 7.3b shows a particular profile with over 250%

higher error than the original RAP profile. This radiosonde was launched from Rapid City, South

Dakota (UNR) shortly before 12Z on October 3, 2017. Figure 7.4 is a Skew-T diagram with the
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overlaid RAOB, RAP, and machine learning estimate for the temperature and dewpoint profiles.

In this example, the RAP profile is an already semi-accurate initial guess for the vertical profile of

both variables. However, the network’s output significantly underestimates the upper-levels of the

dewpoint profile. This is likely due to the lack of generalizability of the network and the dataset

containing few samples where the upper-levels of the dewpoint profile in the RAP is actually

accurate with the RAOB to begin with.

7.4 Regional Performance

Of the 18 locations used in this study only Del Rio, Texas (DRT) has fewer than 2, 000 samples

(totalling 1, 421), and conversely, the greatest number of samples is from Little Rock, Arkansas

(LZK) totalling 2, 271 samples. All other locations are well balanced in the number of samples

around the mean of 2130.833. By inspecting the performance of the network at each individual

location in the test set we are looking to see if a particular location is biased during training. As

previously mentioned, and prior to training, the data are partitioned to account for the distribution

of samples at each location so we remove any prior sample imbalances. As such, each dataset par-

tition maintains a proportionate distribution of samples with DRT having the fewest observations

and LZK with the greatest.

From the RAP data we first compute the initial baseline RMSE with the RAOBs for every

location to understand where the greatest/lowest errors are. In the temperature profiles of the

RAP, the northwest region of observed locations has the lowest errors, whereas the western most

locations between South Dakota and Texas have the greatest errors. In particular, Rapid City,

South Dakota (UNR) and DRT have the largest RMSE of 1.234 and 1.195, respectively. For the

dewpoint profiles, there exists a regional pattern where errors increase in southern locations with

the northern region having the lowest errors (now shown here). To measure the improvements for

these locations we compute the percent decrease RMSE between the baseline and machine learning

estimate errors. If the network is biased toward any one location then the locations with the greatest

errors or largest number of samples will have the lowest errors and large percent change.
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Figure 7.5: Each location shows the percent decrease in error from the ML estimate error compared to the

baseline error. A lower value shows a better improvement to the profiles. (a) Temperature profile errors. (b)

Dewpoint profile errors.

Figure 7.5 illustrates the change in error for the temperature and dewpoint profiles individ-

ually across all locations. No visual patterns or regions are seen with a general bias of profile

improvements, albeit there are a few locations with significantly higher/lower change in errors. In

Figure 7.5a DRT has the lowest percent decrease in RMSE, but it was also the location with one

of the higher baseline errors and fewest number of samples in the dataset. LZK has the greatest

improvement to the temperature profile with moderate initial error and it is also the location with

the most data samples. As a result, we speculate that the network benefits more when a location has

a greater number of samples, whereas the locations with a higher initial error are not necessarily

prioritized. The same observation is not consistent with the dewpoint profiles. In fact, Amarillo,

Texas (AMA) has the largest initial error and the most pronounced improvements to the profiles,

but a near average number of samples. Furthermore, in Figure 7.5b, we see the locations with

the highest initial error for dewpoint (southwest region) to have the greatest improvements overall.

Lastly, the dewpoint profiles have a larger magnitude of change at every location as compared to

that temperature profile, which is an observation discussed previously. Overall, in some scenarios,

the network appears to favor the number of samples, whereas in other situations, the locations with

the highest baseline errors see the greatest improvements.
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Chapter 8

Modeling Sounding Products Directly

Meteorologists often use Skew-T diagrams to derive atmospheric indices, which prove to be

useful during inclement weather and severe weather situations. These indices change rapidly over

the course of a couple of hours due to the change of thermodynamics in the atmosphere. Therefore,

having an abundance of NWP profiles allows for more consistent interpretations over the twice-

daily radiosonde observations. However, as previously discussed, accuracy in the NWP profiles

are critical to generating accurate derived indices, but estimating more accurate indices directly

is also desirable to meteorologists. In this chapter we explore the use of neural networks to map

NWP profiles to ground truth indices of the RAOBs and skip the intermediate step of correcting

the entire profile.

8.1 Convective Products

Many products or indices can be derived from the Skew-T diagrams to guide meteorologists in

forecasting convective weather. In meteorology, the measures of convective available potential en-

ergy (CAPE) and convective inhibition (CIN) are standard indicators of the potential of convective

instability found from the temperature and moisture profiles. Large CAPE values indicate high

vertical velocities in the updraft region of a thunderstorm and reflect positive buoyancy. The value

increases with daytime heating, near-surface advection of warm air, cooling temperatures in the

mid-levels, and increased near-surface moisture. Large CIN values represent atmospheric stability

and are decreased (further from zero) with a large cap strength or a dry planetary boundary layer.

CAPE is computed as the area between the parcel temperature, Tparcel, and the cooler environ-

mental temperature, Tenv, bounded by the level of free convection (LFC) and the equilibrium level

(EL). Using a formula adopted from [49], we mathematically calculate this as:

CAPE = −Rd

∫ EL

LFC

(Tparcel − Tenv)dln(p), (8.1)
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where Rd = 287.058 J kg−1K−1 is the dry air gas constant and p is atmospheric pressure from the

sounding. Thus, prior calculations of the air parcel, LFC, and EL are required before computing

CAPE. The LFC is found with the first intersection for the path of an ideal air parcel and the

measured environmental temperature. If the LFC is found to be below the lifting condensation

level (LCL), then the parcel must first ascend dry adiabatically until saturation before rising further

to the LFC. The EL is the last intersection of the air parcel and the environmental temperature.

CIN measures the energy needed to lift a parcel of air from the surface to the LFC. Using

the LFC calculated prior, we find the area between the ideal temperature parcel and a warmer

environmental temperature by integrating between the surface and the LFC:

CIN = −Rd

∫ LFC

SFC

(Tparcel − Tenv)dln(p). (8.2)

Figure 8.1 illustrates a Skew-T Log P diagram for a RAOB from Rapid City, South Dakota

(UNR) shortly before 00Z on September 4, 2019 with CAPE and CIN values of 2149.867 and

−140.830 J kg−1, respectively. In this particular example, the environment around UNR has mod-

erate instability and large inhibition, according to thresholds from NOAA’s Storm Prediction Cen-

ter. In the RAP sounding the CAPE and CIN values are found to be 1942.105 and−50.001 J kg−1,

respectively. Both of these values are smaller than the ground truth RAOB. Thus, demonstrating

an example for how slight inaccuracies in the RAP can influence accuracy of derived indices.

We generate an auxiliary dataset comprising the CAPE and CIN values for every sounding in

the RAOB and RAP profiles. As an additional preprocessing step, the samples containing erro-

neous derived indices from the RAOB are removed, as defined by: CAPE > 7000 J kg−1, CAPE

< 0 J kg−1, and CIN > 1000 J kg−1. A total of 883 samples are removed from the dataset after

filtering. Interestingly, the distribution of CAPE and CIN values are non-normal and are strongly

skewed with the majority of values centered around zero. Note that CAPE is greater than zero and

is positively skewed, whereas CIN has a negative skew.

Summary statistics of values for CAPE and CIN of the RAOBs are reported in Table 8.1 to

emphasize the severity of zero value indices and statistical outliers. Here we see that the mean is
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Figure 8.1: A standard Skew-T Log-P diagram of temperature, T , and dewpoint temperature, Td, profiles

with shaded regions of CAPE = 2149.867 J kg−1 and CIN =−140.829 J kg−1 for a radiosonde observation

over Rapid City, South Dakota (UNR). Note, CIN is only the blue shaded area under the LFC, and the blue

shaded region above the EL is only an artifact of plotting.

significantly different than the median value (which is zero for both variables). Additionally, since

CIN is strictly negative, the first quartile represents only 25% of values less than −1.561 J kg−1.

Similarly, with values for CAPE only 25% of the data have values found to be greater than

117.115 J kg−1. The distribution of data proves to be a challenge for a neural network to

accurately model since the majority of high values of CAPE/CIN are statistical outliers.

Table 8.1: Summary statistics of CAPE and CIN values of the RAOBs. The derived indices are highly

skewed with mainly zero value indices.

Mean SD Min Q1 Median Q3 Max

CAPE 332.917 780.470 0 0 0 117.115 6940.407

CIN -47.432 130.384 -999.684 -1.561 0 0 0
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8.2 Model Setup and Data Usage

A convolutional neural network is trained using z-score normalized 1-dimensional profiles of

pressure, temperature, and dewpoint temperature of the RAP to estimate the CAPE and CIN values

associated with the collocated RAOB. This network structure has six 1-dimensional convolutional

layers of size [32, 32, 32, 64, 64, 64], each followed by a 1-dimensional max pooling layer to reduce

the profile size by two, and the output of the last layer is input to a fully-connected hidden layer

with size [128], followed by a linear output layer of two units. After every convolutional and fully-

connected layer is the ReLU activation function to introduce non-linearity. For 45 epochs, and

using a batch size of 64, the network optimizes the Huber loss defined piecewise by,

Lδ(a) =















1
2
(a)2 for |a| ≤ δ,

δ |a| − 1
2
δ2 otherwise.

LHuber =
1

n

1

k

n
∑

i=1

k
∑

j=1

Lδ(tij − yij),

(8.3)

where δ = 1.0, using the Adam optimizer and a learning rate of 0.0001. The Huber loss is quadratic

for |a| ≤ δ, which is equivalent to the MSE, linear for larger values of a, and has equal cases when

|a| = δ. This function is less sensitive to outliers in data than MSE since less weight is assigned

to large residuals. Through experimentation, the Huber loss outperforms networks trained using

MSE and MAE when estimating the sounding products directly.

8.3 Neural Network Performance

From the RAP derived indices we compute baseline metrics with the test data to better under-

stand the inaccuracies in the RAP profiles. The R2 and RMSE share a summary of how similar the

derived indices are with the RAOB, but they are not comprehensive enough in explaining what the

errors are. Therefore, we also visualize the target versus estimated values (from the neural network

and RAP) to show how similar the results are to the RAOB indices. Comparing to the target values

in of the RAOB, the RAP primarily overestimates CAPE and underestimates CIN. This observa-
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tion is seen in Figure 8.2, with the most severe cases found when CAPE and CIN both have a

value of 0 J kg−1. In these figures, a perfect model will show the estimates on the one-to-one line,

which directly corresponds to the target values of the RAOB. In Figure 8.2b the CIN values of the

RAP show the most extreme errors with values of nearly −950 J kg−1 when the RAOB shows no

CIN. Baseline errors in CAPE are evident as well, but seen on a larger scale. More specifically,

Figure 8.2a does not show the same large visual errors as with CIN, but with the larger range of

values in CAPE, errors as large as 4000 J kg−1 are seen in the RAP.
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Figure 8.2: Target RAOB indices versus estimated indices from the RAP and ML estimates. A one-to-one

line (in solid blue) represents when the estimated values are identical to the target indices. R2 and RMSE

metrics are reported for the ML estimates in the top right of each figure. (a) Estimated CAPE, (b) Estimated

CIN.

In general, the trained network corrects for these over- and under-estimations and demonstrates

improvement over the derived indices of the RAP. In Figure 8.2b, when the RAP estimates a CIN of

0 J kg−1, the network has an improvement toward the target values. However, the network is unable

to bring these values all the way to the observed values. In a few scenarios when significantly large

values are present, the network still under-estimates the target RAOB indices. With the estimated

values of CAPE, the ML estimates are closer to the one-to-one line when compared to the RAP,

but the outliers are not significantly different. In fact, with large CAPE values in the RAOB when

the RAP underestimates, the ML estimates are no different than the RAP. Furthermore, with large

71



CAPE values in both the RAP and RAOB, the ML estimates are lower than the RAP, bringing the

difference in values further from the ground truth. Lastly, in these figures we see the ground truth

values never have negative CAPE or positive CIN. However, in Figure 8.2a the ML estimates spill

into invalid values of CAPE (as seen in the lower left corner), and the same is true for the CIN being

greater than zero for some values (upper right corner). This is likely a result of the model slightly

overfitting on the training data and failing to accurately learn the constraints of valid indices, thus,

estimating values for the test data, which have never been seen before, that are outside the valid

range.

Overall performance metrics are shown in Table 8.2 for the baseline RAP indices, ML esti-

mates, and the derived indices from the estimated profiles. The machine learning profiles are those

produced in Chapter 5 using the best network architecture. We compute CAPE and CIN values

for the profiles and compare the values with both the baseline and ML estimates. In addition to

computing R2 and RMSE for all values in the test data, we also compute the same metrics for a

split of the test data where the derived indices in both the RAP and RAOB are strictly greater than

zero. The reason for assessing non-zero values is to get a picture of how “more important” data

samples are treated. Additionally, we want to ensure the network is not only learning the zeros in

the data, but is actually learning large CAPE and CIN values from the profiles.

The comparison of the baseline with the indices computed from the machine learning profiles

show similar R2 for CAPE with slightly lower RMSE, but metrics for CIN with worse measure-

ments for all test data and non-zero values. Thus, inaccuracies at or near the surface up through

the LFC are still evident. However, we see more promising results for CIN by directly estimat-

ing the derived indices. R2 and RMSE values are lower than the baseline RMSE for both output

variables, indicating the network explains slightly less variance than RAP but more than the ma-

chine learning profiles for CAPE. As is, the indices from ML profiles improve CAPE but not CIN;

however, by directly estimating these products we see improvements to both indices. Overall,

the machine learning based approaches demonstrate the ability to learn these parameters, and by

directly estimating them, we can improve upon CIN and get near the CAPE baseline.
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Table 8.2: Statistics for CAPE and CIN values of derived indices from machine learning estimates compared

to the values of RAOB indices over the test data. Indices of the baseline RAP profiles are found using the

original RAP data, ML profiles represent the indices from the corrected profile estimates, and the direct ML

estimates are found by directly estimating the indices. Column subscripts with a z denote statistics for the

test data where RAP and RAOB indices are greater than zero.

R2 RMSE R2
z RMSEz

CAPE

From Baseline RAP Profiles 0.876 282.068 0.834 437.772
From ML Profiles 0.874 265.297 0.835 411.316
Direct ML Estimates 0.874 274.511 0.826 422.073

CIN

From Baseline RAP Profiles 0.531 82.805 0.784 92.009
From ML Profiles 0.409 85.672 0.630 111.898
Direct ML Estimates 0.452 74.806 0.586 103.812
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Chapter 9

Conclusion

The work in this thesis is pertinent to the emerging research in machine learning for atmo-

spheric science and also meteorologists concerned with forecasting near-term convective threats.

As such, we discuss an overview of the results, some guidelines and limitations, and possibilities

for future work.

9.1 Discussion

The neural network architectures and evaluations presented in this work share several signif-

icant contributions as the first known work of using neural networks to directly improve verti-

cal profiles from an NWP model. By exploring various architectures; linear, fully-connected,

convolutional, and a Residual U-Net networks, we outline methods to incorporate signal-like 1-

dimensional profiles with 2-dimensional image data in a unified network for signal-to-signal pro-

cessing and profile enhancements. Through an extensive network search we demonstrate the use

of the U-Net to outperform other network architectures by incorporating observational data with

encoded profile features in the bottleneck of the network and using a residual connection with the

input and output layers. This solution to joining multiple datasets produces more stable training,

a model containing fewer parameters, and lower errors than the other multi-input architectures

discussed within.

A second contribution made in this work is detailing how domain knowledge can be incorpo-

rated into training neural networks. This is done by utilizing observational data features that are

important indicators of atmospheric conditions, designing a network structure that best suits these

features, and exploring loss functions that emphasize important characteristics of vertical profiles.

Results show the near-surface weighting loss to perform best, but we also outline how derived

indices, such as total precipitable water, can be included as an additional term in the loss function.

Additionally, we identify the important features in observational data from surface measurements
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and satellite data that can be learned by neural networks. While the usage of GOES-16 ABI is well

understood in atmospheric science, this work explicitly shows how machine learning leverages the

water vapor bands (6.2, 6.9, and 7.3 µm) to reduce profile errors and increase accuracy of the mois-

ture profiles at mid-level altitudes. Additionally, the experimental data shows the use of RTMA to

have little to no benefit when training a model. This result is also significant as the surface data

was found to contain high variability when compared to ground truth RAOBs, which effectively

offers no additional information when used as input with neural networks.

Using the proposed U-Net architecture, we assess the impact of cloud coverage, the effect of

seasonality of the data, and how geographical location may alter results. By evaluating multiple

models, we find that using both clear- and cloudy-sky samples during training improves model

performance under both conditions. Additionally, this model outperforms one trained only with

clear-sky samples, which shows the use of additional data to be helpful and the model trained on

clear-sky samples does not perform well if cloudy. By looking at errors during different months of

the year, the samples are treated equally with a similar decrease of error, irrespective of months that

contain samples with higher initial errors, indicating no bias of seasonality. Lastly, the experimen-

tal data verifies that locations that contain more samples show greater percentage improvements

with the temperature profiles and locations with higher baseline errors have the greatest percentage

improvements with the dewpoint profiles.

Overall, the use of neural networks for improving vertical profiles of the RAP successfully

produces profiles that are more similar to RAOBs with a consistent decrease of error in the tem-

perature profiles and more outstanding improvements in mid- to upper-level measurements of the

dewpoint temperature profiles. The associated derived indices result in more accurate CAPE val-

ues, but slightly worse CIN values, which indicates measurements at and near the surface have

room to be improved. Additionally, by directly estimating CAPE and CIN, we can improve upon

CIN over the ML profiles, but estimates of CAPE are not necessarily better. With stable improve-

ments among the profiles, especially in the moisture profile, we provide a step toward increasing

the reliability of accurate NWP profiles. Furthermore, the architecture and methods we present to
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improve profiles will potentially aid forecasters in conducting more accurate near-term convective

threat assessments.

9.2 Limitations

Generalizability is a significant limitation with training a performant neural network in this

work. In our experiments we find that simpler architectures, by means of fewer parameters and

lower computational complexity, are unable to capture the patterns in the vertical profiles and are

generally an inadequate choice. Conversely, models are more prone to overfit on the training data

as the complexity of the architecture increases. While there are methods to reduce overfitting, we

find there to be a middle ground where slightly reducing the complexity of the model outperforms

more complex networks trained to reduce overfitting. However, we are unable to correct for all the

errors in the RAP at different vertical levels and unseen data samples.

With the best performing U-Net architecture the RAP has a general improvement for both the

temperature and dewpoint profiles. However, this improvement is not uniformly seen across all

samples, and the network does a better job at correcting the larger errors in the dewpoint profile.

When observing the change of error in the profiles, as was done in Section 7.3, there exists nearly

25% of the data that has a decline in accuracy as compared to the accuracy of the baseline RAP

errors. This result is likely a mixture of the networks inability to generalize to all of the data and the

data containing a significant amount of noise and variability. Additionally, in some scenarios where

there exist fewer samples for a given radiosonde location there exists larger errors in the profiles.

We speculate that the use of more data will diminish sample imbalance, improve generalization,

and allow for more complex networks to achieve better results.

9.3 Technical Challenges

This thesis overcomes many technical challenges that are noteworthy to guide the continuation

of related research. A significant portion of this work alludes to the performance and practicability

of neural networks for our particular application. However, a great deal of time was devoted to or-
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ganization and usability of data throughout the process. The datasets comprise 9.79TB of GOES

ABI, 2.10TB for the RTMA, 734GB for the RAP, and 2.5GB for the RAOBs. Foremost, the

acquisition of the RAP data was particularly difficult. Raw model data are stored, without chrono-

logical ordering, on tape drives on NOAA’s High Performance Storage System (HPSS), which we

transferred to NOAA’s high performance computer, HERA. Files on HERA were uncompressed

and converted to a CONUS Lambert Conformal grid, and then transferred to the storage device

at the Cooperative Institute for Research in the Atmosphere (CIRA) for our use. Initial transfer

times to get data from HPSS to CIRA took 24 hours to extract 14 days of RAP data. We were able

to achieve a 2× speedup of end-to-end transfers by first locating all the tape locations on HPSS

for a given date range, and then extracting all the dates within the range on one tape drive at a

time. Nevertheless, this process of acquiring the RAP took nearly four months to transfer data for

2017-2020.

Furthermore, while disk input/output is traditionally the bottleneck in computing, we find the

computational overhead of extracting fields from the map projections to be the most expensive

component during data preprocessing. To improve preprocessing times, we employ caching and

concurrent processing practices to maximize the efficiency of gathering only relevant information.

Each RAOB need only to be read from disk once, but since multiple radiosondes are launched sur-

rounding a particular date and time for different locations, we can load the additional datasets to

memory more effectively so they too are read only once. The GOES, RTMA, and RAP datasets are

on a spatial grid and so they can be cached to memory while time sorted RAOBs are read sequen-

tially. Furthermore, since each sounding is temporally separable, we organize data concurrently on

separate threads over different months to further reduce computational time.

Lastly, within the aforementioned experiments, we describe a total of 1,320 trained neural net-

works from the linear to more complex convolutional architectures. Not mentioned are hundreds

of other models designed with different normalization techniques, hyperparameters, network ar-

chitectures, and model feature inputs. Within this work, only the top performing configurations

are reported, albeit other unexplored techniques may exist with superior results (e.g., generative
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adversarial networks, recurrent neural networks, etc), although we believe experimenting with

simpler network architectures and building upon them is critical to understand the limitations and

advantages of a given network. In general, the significance of deeply exploring the search space

is two-fold, that is (a) to provide a robust result of several weight initializations and (b) improve

confidence in a particular model design with justification on prior experimentation. However, such

exploration requires an abundance of computational resources and time for models to train.

9.4 Possible Future Work

As discussed in Chapter 8, there are additional properties and derived indices that can be com-

puted from the vertical profiles. These indices describe the conditions and measurements of the

environment and their accuracy directly corresponds to the accuracy of the profiles. With CAPE

and CIN, many levels in the profile directly contribute to its calculation (e.g., temperature and dew-

point surface values and the LCL/LFC/EL). This information which describes the profile could be

useful in incorporating the accuracy of the indices into the loss function for the neural network to

optimize, similar to how we compute TPW in the loss described in Section 5.2. Here, we will also

maintain errors over the profile with use of MSE or MAE as it accounts for the residuals of every

output feature, and then combine one of these losses with the minimization of derived indices such

as CAPE and CIN. We mathematically represent this function as:

LCAPE_CIN =
1

n

n
∑

i=1

(CAPEti − CAPEyi)
2 + (CINti − CINyi)

2,

LCMSE = LMSE + LCAPE_CIN,

(9.1)

where CAPE and CIN are computed for the target RAOB, ti, and estimate, yi for each sample i =

1, . . . , n. The disadvantage to this method is the calculation for CAPE and CIN is computationally

expensive with nearly 300ms of additional overhead per profile (from our experiments). In turn,

this would yield hours to track history of each epoch and potentially days to train the model.
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Alternatively, a derived product such as the K-index and Total Totals Index could substitute for

CAPE/CIN, but neither include surface information, and may not be as effective.

Recall that with certain profiles, the errors increased relative to the errors in the RAP. This

characteristic of model performance is of interest to understand. One possible method would be to

identify any reoccurring properties where errors are high in the baseline errors of the RAP. More so,

it would be beneficial to locate fine grain patterns where errors are high and atmospheric properties

are not captured. For example, the RAP does not accurately estimate the cap and temperature

inversions in the profiles, and it would be helpful to understand if the magnitude of these inversions

are accurately captured by the profile estimates.

Lastly, in many machine learning applications the idea of “transferring knowledge” via transfer

learning is employed to improve model performance. This approach has been shown to be effective

when the target training set has few samples or has high dimensionality. As such, in an effort to

improve vertical profiles, a preliminary model could be trained on augmented RAOB samples

from historical launches between the years of 1980 to 2017. The target observation should remain

unaltered, but input samples could be smoothed using linear interpolation and value shifts to be

more like NWP output. Thereafter, the last layer of the network is removed and replaced with

an output layer of randomly initialized weights. The model is then trained again using the NWP

model as input with data from the years of 2017 to 2020. Effectively, the pretrained network’s

parameters have a general idea of what the radiosonde profiles look like, and by fine tuning with

the NWP model, we can potentially increase generalizability and accuracy of the profiles.
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