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ABSTRACT

FINITELY GENERATED MODULES OVER NOETHERIAN RINGS: INTERACTIONS

BETWEEN ALGEBRA, GEOMETRY, AND TOPOLOGY

In this dissertation, we aim to study finitely generated modules over several different Noethe-

rian rings and from varying perspectives. This work is divided into four main parts: The first part

is a study of algebraic K-theory for a certain class of local Noetherian rings; the second discusses

extending well-known results on Lefschetz properties for graded complete intersection algebras to

a class of graded finite length modules using geometric techniques; the third discusses the struc-

ture of various algebraic and geometric invariants attached to the finite length modules from the

previous section; and lastly, we discuss the structure of annihilating ideals of classes of hyperplane

arrangements in Pn.
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Chapter 1

Preface

This dissertation covers a wide range of topics in commutative algebra, and this preface aims

to give a brief introduction to the problems being discussed in each of the respective chapters.

In Chapter 2, we discuss the following problem:

Question 1.0.1. Given a local Cohen-Macaulay ring R, can we give explicit descriptions of the

G-groups of R?

The G-groups of R are denoted by Gi(R) := Ki(modR); where the right-hand side is the ith

Quillen K-group of the category of finitely generated R-modules. These groups were introduced

by Daniel Quillen in [57], and in general, are very difficult to compute.

Our aim in Chapter 2 is to build on the work of Navkal and Holm in [53] and [31], respectively.

Specifically, we extend their techniques to provide a structure theorem for the group G1(R) when

R has some additional structure. Moreover, in Chapter 2, we compute G1(R) explicitly for several

classes of hypersurface singularities, building greatly on the work in [53] and [31].

In Chapter 3, we change avenues slightly to study graded commutative algebra with stronger

connections to algebraic geometry. Namely, our interest lies in studying the Weak Lefschetz Prop-

erty for a class of finite length modules. Specifically, we ask the following:

Question 1.0.2. Given a vector bundle E of rank two on P2, does H1
∗ (P

2, E) have the Weak Lef-

schetz Property?

We answer Question 1.0.2 in the affirmative in Chapter 3, building on previous work in [34].

The main result of [34] is that codimension three complete intersections have the Weak Lefschetz

Property, and we were able to generalize this result to class of finite length modules in Chapter 3.

While our aim in Chapter 3 was to generalize the main result of [34], our techniques allow us

to encapsulate the proof of the main result into a single paper. In [34], the proof of the main result

relies on results from [68], and we can avoid utilizing these.
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The work in Chapter 3 grew out of the work in Chapter 4. In fact, our initial aim was to prove

the main result of Chapter 3 (see Theorem 3.3.7). However, in solely attempting to utilize the

techniques of [34], we were unable to do so. Nonetheless, we still found the techniques useful,

providing a more algebraic path to study Lefschetz properties for H1
∗ (P

2, E) than those in Chapter

3. Moreover, we also utilized interesting connections with Symmetrically Gorenstein modules

coming form [43].

While Question 1.0.2 was also studied in Chapter 4, the following question is also studied in

Chapter 4:

Question 1.0.3. What can we say about the non-Lefschetz locus of H1
∗ (P

2, E)?

The non-Lefschetz locus is a geometric object associated to the finite length module H1
∗ (P

2, E)

originally defined in [7]. Our focus in Chapter 4 was to bring results in [7] to the setting of finite

length modules. In this direction, we were successful, but had to incorporate some very different

techniques. Namely, we explore and utilize techniques on Artinian level modules, and again utilize

techniques from [43] on Symmetrically Gorenstein modules.

In Chapter 5, we are interested in the very easy to state question:

Question 1.0.4. What can we say about the structure of the annihilating ideal of (commuting)

differential operators of a homogeneous form?

Such annihilating ideals are called Macaulay duals or inverse systems, and they are always Ar-

tinian Gorenstein ideals. In particular, one question we can immediately ask when is the Macaulay

dual of a specific class of forms a complete intersection?

In Chapter 5, we ask this question for a class of forms called generic hyperplane arrangements.

While we answer this question negatively, we succeed in giving a lower bound for the minimal

degree of of the Macaulay dual of a generic hyperplane arrangement. Moreover, in the course of

this, we also find some interesting connections with star configurations in [25].

While these may seem like very disparate areas of commutative algebra, our collective focus is

to gain information from about a ring or a module via the study of a module action. For example,

2



an explicit structure theorem forG1(R) for certain local Cohen-Macaulay rings can help determine

when two such rings are not isomorphic; a finite length module with the Weak Lefschetz Property

will have a unimodal Hilbert function; and the lower bound for the minimal degree of the Macaulay

dual of a generic hyperplane arrangement we give shows that it cannot be a complete intersection

if there are too few hyperplanes in the arrangement.

All chapters in this text are independent from one another. However, Chapter 3 and Chapter 4

contain very similar results and could be read together.
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Chapter 2

Algebraic K-theory for Cohen-Macaulay Rings

2.1 Introduction

Throughout1 this section (R,m, k) will always denote a local Noetherian ring that is Cohen-

Macaulay. Since the introduction of higher algebraic K-theory by Quillen there has been a sig-

nificant effort to understand the structure of the K-groups Ki(A), for A an exact category. Our

particular interest is when A = modR, the category of finitely generated R-modules. The groups

Ki(modR) are denoted by Gi(R). They are, unsurprisingly, called the G-groups of R (they are

also called K ′-groups in the literature and may be denoted by K ′
i(R)). In Section 2.2, we will

discuss notation and various definitions of K-groups needed in the computation of G1(R).

Let projR be the subcategory of modR of finitely generated projective R-modules. Now the

inclusion projR →֒ modR induces a map of groups between Ki(R) := Ki(projR) and Gi(R). It

is of interest to understand the properties of this induced homomorphism. In particular, when is this

map an isomorphism? This is precisely the case when R is regular, following immediately from

Quillen’s Resolution Theorem ( [57], §Theorem 3). However, regular local rings are exceptionally

well-behaved, so one cannot expect this behavior in general. Suppose i = 0. It is well-known

K0(R) isomorphic to Z (see ( [58], Theorem 1.3.11)), but what of G0(R)? If R is regular, then

G0(R) = Z. However, if R is not regular, but also has finite Cohen-Macaulay type (that is, there

are, up to isomorphism, finitely many indecomposable maximal Cohen-MacaulayR-modules) then

the structure of G0(R) is elucidated in its entirety by the following.

Theorem 2.1.1. ( [69], Theorem 13.7)

Suppose there are t non-free indecomposable maximal Cohen-Macaulay R-modules and de-

note by G the free abelian group on the set of isomorphism classes of indecomposable maximal

Cohen-Macaulay R-modules. The map G −→ G0(R) given by X 7−→ [X] is surjective and its

1The main results in this chapter are taken from the paper [23].
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kernel is generated by

{X −X ′ −X ′′ | ∃ an Auslander-Reiten sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0}

And G0(R) ∼= coker(Υ), where Υ : Z⊕t −→ Z⊕(t+1) is the Auslander-Reiten homomorphism.

The immense usefulness of Theorem 2.1.1 lies in the fact that the computation of G0(R) has

been reduced to linear algebra, as the Auslander-Reiten homomorphism can be readily computed

from the Auslander-Reiten quiver. This quickly leads to the explicit computation of G0(R) for

all simple singularities of finite type (see [69], Proposition 13.10). One can quickly see that these

groups are often not Z.

Moving up one rung on theK-theory ladder, it is well-known thatK1(R) := K1(projR) ∼= R∗

(see ( [60], Example 1.6)). However, the structure of G1(R) was not known for some time until the

work of H. Holm in [31] and V. Navkal in [53]. In the former, computing G1(R) was carried out

over an R which has finite Cohen-Macaulay type and it was found that G1(R) could be computed

as an explicit quotient of AutR(M)ab, with M an additive generator for the category maximal

Cohen-Macaulay R-modules, mcmR (noting such an M exists if and only if R has finite Cohen-

Macaulay type). The latter produced the following.

Theorem 2.1.2. ( [53], Theorem 1.3)

Assume that R is Henselian and the category mcmR has an n-cluster tilting object L. Let I

be the set of isomorphism classes of indecomposable summands of L and set I0 = I\ {R}. Then

there is a long exact sequence

· · · −→
⊕

L′∈I0

Gi(κL′) −→ Gi(Λ) −→ Gi(R) −→
⊕

L′∈I0

Gi−1(κL′) −→ · · ·

Where

Λ = EndR(L)
op and κL′ = EndR(L

′)op/rad(EndR(L
′)op)

Moreover, κL′ is always a division ring, and when R/m = k is algebraically closed, κL′ = k.

5



The long exact sequence ends in presentation

⊕

L′∈I0

G0(κL′) −→ G0(Λ) −→ G0(R) −→ 0

of G0(R). Since G0(Λ) = ZI and
⊕

L′∈I0

G0(κL′) = ZI0 , the presentation of G0(R) given above

is precisely the one given in Theorem 2.1.1 when L is an additive generator of mcmR.

The definition of an n-cluster tilting object is technical and we refer the reader to Definition

2.2.14 and Section 2.4 for examples. We show in Section 2.3 that utilizing Theorem 2.1.2 and

techniques from [31], we can generalize and simplify the results [31] on the structure of G1(R).

Keeping notation as in Theorem 2.1.2), our contribution in this direction is the following.

Theorem 2.1.3. Let k be an algebraically closed field of characteristic not 2 and R a Henselian

k-algebra that admits a dualizing module and is also an isolated singularity. If mcmR admits an

n-cluster tilting object L such that EndR(L)
op has finite global dimension, then there is a subgroup

Ξ of AutR(L)ab, described explicitly in Definition 2.2.21, and a free abelian group H such that

G1(R) ∼= H⊕ AutR(L)ab/Ξ

The utility of Theorem 2.1.3 is that the computation of G1(R) for some hypersurface singulari-

ties becomes tractable, as well as removing the necessity of the injectivity of the Auslander-Reiten

homomorphism and the need for R to have finite Cohen-Macaulay type, as required in [31]. In

fact, with the long exact sequence of [53] and the machinery of [31], the proof is quite elemen-

tary. However, before proving Theorem 2.1.3 in Section 2.1.3, we collect the necessary details on

n-cluster tilting objects, noncommutative algebra and functor categories in Section 2.2.

Of course, in order to utilize Theorem 2.1.3, one might want to know when mcmR admits an

n-cluster tilting object. This is discussed in Section 2.4.
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The goal of explicitly computing G1(R) for specific R would not be possible if we could not

compute AutR(L)ab. We expend some energy in Section 2.5 calculating AutR(L)ab for several

concrete examples. This section and the next form the technical heart of our work.

Utilizing the results of Section 2.5, we are able to explicitly compute G1(R) for several hyper-

surface rings in Section 2.6. See Examples 2.6.1, 2.6.3, 2.6.4 and Proposition 2.6.6 for details.

In Section 2.7, we discuss the similarities our computations share and make a conjecture.

We now fix notation. We always use A to denote an associative ring with identity that is not

necessarily commutative; modA will be the category of finitely generated left A-modules; and

projA will be the category of finitely generated projective left A-modules.

We will use the following setup: (R,m, k) always denotes a commutative local Cohen-Macaulay

ring such that

(a) R is Henselian.

(b) R admits a dualizing module.

(c) mcmR admits an n-cluster tilting object.

(d) R is an isolated singularity.

The assumption of (a) give us that any maximal Cohen-Macaulay module can be written

uniquely as a direct sum of finitely many indecomposable maximal Cohen-Macaulay modules

(see ( [47], Theorem 1.8 and Exercise 1.19)). In fact, all of the rings for which we compute G1(R)

are complete, so they already satisfy (a) (see ( [47], Corollary 1.9)). The assumption of (b) is a

standard technical assumption in representation theory of Cohen-Macaulay rings. Currently, the

assumption (c) is very much a technical black box, but we will see it is indispensable; see Def-

inition 2.2.14. The assumption in (d) is necessary to make use of the theory of n-cluster tilting

objects. When necessary, we will assume that R is a k-algebra and char(k) 6= 2, but we do not use

this as a blanket assumption.
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2.2 Preliminaries

2.2.1 Some Definitions of K-groups

We begin first by discussing the classical definition lower K-groups.

Definition 2.2.1. The classicalK0-group ofA, denoted byKC
0 (A), is defined as the Grothendieck

group of the category projA. More explicitly, choose an isomorphism class for each P ∈ projA

and let X be the free abelian group on these isomorphism classes. Then KC
0 (A) is the quotient of

X by the subgroup ofX generated by {[P ]− [P ′]− [P ′′] : 0 −→ P ′ −→ P −→ P ′′ −→ 0 exact}.

The classicalK1-group ofA, denoted byKC
1 (A), is defined as the abelianization of the infinite

general linear group over A. That is, using the obvious embeddings GLn(A) →֒ GLn+1(A), we

can form the infinite general linear group GL(A) :=
⋃
n≥1GLn(A). Thus KC

1 (A) is GL(A)ab.

Of principal importance in defining K-groups for our purposes is the following notion.

Definition 2.2.2. An exact category Y is an additive category together with a distinguished class

of sequences Y ′
֌ Y ։ Y ′′ called coinflations with a fully faithful additive functor F from Y

into an abelian category X such that

(a) Y ′
֌ Y ։ Y ′′ is a conflation in Y if and only if 0 −→ F (Y ′) −→ F (Y ) −→ F (Y ′) −→ 0

is exact in X .

(b) If 0 −→ F (Y ′) −→ X −→ F (Y ′′) −→ 0 is exact in X , then X ∼= F (Y ) for some Y in Y .

That is, Y is closed under extensions in X .

We note any abelian category is an exact category. Moreover, projA is an exact category,

where the conflations are taken to be the sequences that are exact in modA. Note that projA is an

exact category which is not abelian.

We will need the following notions as they pertain to exact categories.

Definition 2.2.3. Y denotes an exact category.

(a) We will always work under the assumption that the objects of Y form a set. In this regard,

we say that Y is skeletally small.

8



(b) We say Y is a semisimple exact category if every conflation splits. The prototypical

example of a semisimple exact category is projA.

(c) We write Y0 to denote Y viewed as an exact category in which the coinflations Y ′
֌ Y ։

Y ′′ are such that the corresponding exact sequence in the abelian category X is split exact. We call

this the trivial exact structure for Y .

The definition of Bass’s K1 functor rests squarely upon the following notion.

Definition 2.2.4. Let Y be any category. Its loop category ΩY is the category whose objects are

pairs (Y, α), Y an object of Y and α ∈ AutY(Y ). A morphism in ΩY between two objects (Y, α)

and (Y ′, α′) is a commutative diagram in Y

Y
f
✲ Y ′

Y

α ∼=

❄

f
✲ Y ′

∼= α′

❄

Remark 2.2.5. Let Y be a skeletally small exact category. Its loop category ΩY is also skeletally

small and it is not hard to see that ΩY inherits an exact structure such that (Y ′, α′) ֌ (Y, α) ։

(Y ′′, α′′) is a coinflation in ΩY if and only if Y ′
֌ Y ։ Y ′′ is a coinflation in Y .

Definition 2.2.6. Let Y be a skeletally small exact category and ΩY be its loop category, so that

ΩY is also skeletally small and exact. We define Bass’s K1-group of Y , denoted by KB
1 (Y), to be

the Grothendieck group of ΩY modulo the subgroup generated by the following elements

(Y, α) + (Y, β)− (Y, αβ)

For (Y, α) in ΩY we denote its image in KB
1 (Y) as [Y, α].

9



Remark 2.2.7. (a) ( [31], 3.4) We note for Y ∈ Y , we have

[Y, 1Y ] + [Y, 1Y ] = [Y, 1Y 1Y ] = [Y, 1Y ]

Hence [Y, 1Y ] is the identity element of KB
1 (Y).

(b) Unexpectedly, KB
1 is a functor from the category of skeletally small exact categories to

abelian groups. Indeed, for a morphism F (which is necessarily an exact functor) between Y and

another skeletally small exact category, we have KB
1 (F )([Y, α]) = [F (Y ), F (α)].

Remark 2.2.8. ( [58], Theorem 3.1.7)

There is an isomorphism

ηA : KC
1 (A)

∼=
−→ KB

1 (projA)

The isomorphism ηA is such that ξ ∈ GLn(A) is mapped to the class [An, ξ] ∈ KB
1 (projA), where

elements of An are viewed as row vectors and ξ acts by multiplication on the right.

Definition 2.2.9. Let Y be a skeletally small exact category. The ith Quillen K-group of Y ,

denoted by KQ
i (Y), is defined to be the abelian group πi+1(BQY , 0), where QY is Quillen’s Q-

construction; BQY is the classifying space of QY; 0 is a fixed zero object; and πi+1 denotes the

taking of a homotopy group.

By ( [57],Section 2, Theorem 1) there is a natural isomorphism of between the Grothendieck

group functor and KQ
0 (as functors on the category of skeletally small exact categories). More-

over, KQ
1 (projA) is naturally isomorphic to KC

1 (A) (see ( [60], Corollary 2.6 and Theorem 5.1)).

Quillen’s definition of higher K-theory is stunningly elegant, but does not often lend itself to per-

forming computations with ease. The definition of Bass’s functor KB
1 will be more suited for our

computational needs and, we will want to exploit this in the sequel. As in ( [31], 3.6), we will

make strong use of the following theorem.

Theorem 2.2.10. There exists a natural transformation ζ : KB
1 −→ KQ

1 , which we call the

Gersten-Sherman transformation, of functors on the category of skeletally small exact categories

10



such that ζY : KB
1 (Y) −→ KQ

1 (Y) is an isomorphism for every semisimple exact category Y . In

particular, ζprojA : KB
1 (projA) −→ KQ

1 (projA) is an isomorphism for every ring A.

The name for ζ was introduced in [31] for the following: The existence of ζ was initially

sketched by Gersten in ( [27], sect. 5) and the details were later filled in by Sherman ( [59], sect.

4), whom also proved ζY is an isomorphism for every semisimple exact category.

2.2.2 n-Auslander-Reiten Theory

We want to discuss generalizations of Auslander-Reiten theory, following [39]. To do so, we

will require some precise categorical language. Here Y denotes any exact category.

Definition 2.2.11. Write ModY for the category of additive contravariant functors Y −→ Ab, with

Ab the category of abelian groups. The morphisms in ModY are natural transformations between

functors with kernels and cokernels computed pointwise. An easy check shows that ModY is

abelian. We write (•, Y ) to denote the additive contravariant functor HomY(•, Y ). We say F ∈

ModY is finitely presented if there is an exact sequence

(•, Y ) −→ (•, Y ′) −→ F −→ 0

in ModY . We write modY for the subcategory of finitely presented functors.

For a ring A, let ModA denote the category of all left A-modules and denote the subcategory

of finitely presented left A-modules by mod fpA. Fix a left A-module N and denote by E its

endomorphism ring EndA(N). Then N has a left E-module structure that is compatible with its

left A-module structure such that for e ∈ E and n ∈ N , e · n = e(n). Denote by addAN

the category of A-modules that consists of all direct summands of finite direct sums of N . For

F ∈ Mod (addAN), the aforementioned left E-module structure on N induces a left-Eop-module

structure on the abelian group FN such that e · z = (Fe)(z) for e ∈ Eop and z ∈ FN . We use

these facts for the following proposition, which will be essential in the proof of Theorem 2.1.3.
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Proposition 2.2.12. ( [31], Proposition 6.2)

There are quasi-inverse equivalences of abelian categories

Mod (addAN)
eN

✲

≃✛

fN

ModEop

Where the functors eN and fN are defined as follows: eN(F ) = FN (evaluation) and fN(Z) =

Z ⊗E HomA(•, N)|addAN (functorification). Also, these quasi-inverse equivalences restrict to

equivalences between categories of finitely presented objects

mod (addAN)
eN

✲

≃✛

fN

mod fpE
op

Definition 2.2.13. Let X be an additive category and C a subcategory of X . We call C contravari-

antly finite, if for any X ∈ X there is a morphism f : C −→ X with C ∈ C such that

(•, C)
•f
−→ (•, X) −→ 0

is exact (where •f is the map induced by f ). Such an f is called a right-C-approximation of X .

We dually define a covariantly finite subcategory and a left-C-approximation. A contravariantly

and covariantly finite subcategory is called functorially finite.

At long last, we are able to define an n-cluster tilting object.

Definition 2.2.14. Let Y be an exact category with enough projectives. For objects X, Y in Y we

write X ⊥n Y if ExtiY(X, Y ) = 0 for 0 < i ≤ n. For an exact subcategory C ⊂ Y , we put

C⊥n = {X ∈ Y : Y ⊥n X for all Y ∈ C}

⊥nC = {X ∈ Y : X ⊥n Y for all Y ∈ C}

We call C an n-cluster-tilting subcategory of Y if it is functorially finite and C = C⊥n−1 =⊥n−1 C.

An object L of Y is called n-cluster-tilting if addY(L) is an n-cluster tilting subcategory.

12



From the definition of n-cluster tilting, if mcmR admits an n-cluster tilting object L, then R is

necessarily a direct summand of L. While the definition of n-cluster tilting is quite a bit to digest

at once, there are concrete examples of n-cluster tilting objects over familiar rings and we refer the

reader to Section 2.4 for several examples.

When R has finite Cohen-Macaulay type, we have the classical notion of an Auslander-Reiten

sequence or almost-split sequence. When mcmR has an n-cluster tilting subcategory, we have the

following generalization.

Definition 2.2.15. If C ⊂ mcmR is an n-cluster tilting subcategory, given X ∈ mcmR not free

and indecomposable, an exact sequence

0 −→ Cn
fn
−→ · · ·

f1
−→ C0

f0
−→ X −→ 0

with C0, . . . , Cn ∈ C such that

0 −→ (•, Cn−1)
•fn
−→ · · ·

•f1
−→ (•, C0)

•f0
−→ (•, X) −→ 0

is a minimal projective resolution of (•, X)/radmcmR(•, X) in modC is called an n-Auslander-

Reiten sequence (or an n-almost-split sequence).

Here radmcmR(•, X) is such that

radmcmR(Y,X) = {f ∈ HomR(Y,X) : fg ∈ rad(EndR(Y )) for all g ∈ HomR(Y,X)}

If C ⊂ mcmR is an n-cluster tilting subcategory, then n-Auslander-Reiten sequences exist by

( [40], Theorem 3.31).

2.2.3 Endomorphism Rings and K-groups

By our blanket assumptions onR, there is a unique decomposition of the n-cluster tilting object

L = L⊕l0
0 ⊕· · ·⊕L⊕lt

t , such that Li ∈ mcmR is indecomposable and li > 0 and the Li are pairwise
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non-isomorphic. In this section, we will assume that li = 1. For if we write Lred = L0 ⊕ · · · ⊕ Lt,

then addRL = addRLred. Thus L is an n-cluster tilting object for mcmR if and only if Lred is.

Moreover, we will see in Section 2.3, that in the context of Theorem 2.1.3, the choice of Lred over

L is immaterial. Write C = addRL. The following construction is from ( [31], Construction 2.6).

If L′ ∈ C, we can write L′ = L⊕m0

0 ⊕· · ·⊕L⊕mt
t for uniquely determined m0, . . . ,mt ≥ 0. Set

q = q(L′) = max {m0, . . . ,mt} and vj = vj(L
′) = q −mj . Notice that q is the smallest integer

such that L′ is a direct summand of L⊕q. Now form the R-module L′′ = L⊕v0
0 ⊕ · · · ⊕L⊕vt

t and let

ψ : L′ ⊕ L′′ −→ L⊕q be the R-linear isomorphism that takes the element

((x0, . . . , xt), (y0, . . . , yt) ∈ L′ ⊕ L′′ = (L⊕m0

0 · · · ⊕ L⊕mt
t )⊕ (L⊕v0

0 ⊕ · · · ⊕ L⊕vt
t )

where xj ∈ L
⊕mj

j and y
j
∈ L

⊕vj
j , to the element

((z01, . . . , zt1), . . . , (z0q, . . . , ztq)) ∈ L⊕q = (L0 ⊕ · · · ⊕ Lt)
⊕q

with zj1, . . . , zjq ∈ Lj given by

(zj1, . . . , zjq) = (xj, yj) ∈ L⊕q
j = L

⊕(mj+vj)
j

Now for α ∈ AutR(L
′), we define α̃ to be the automorphism on L⊕q given by ψ(α⊕1L′′)ψ−1. Note

that α̃ = (α̃ij), with α̃ij uniquely determined endomorphisms of L. In particular, α̃ ∈ Mq(EndRL).

As in [31], we refer to this construction as the tilde construction.

Remark 2.2.16. We note a special case of the tilde construction. Keep notation as above. Suppose

α = a1L′ with a ∈ R∗. If L′ = L⊕q
i1

⊕ · · · ⊕ L⊕q
ih

with 0 ≤ i1 < i2 < · · · < ih ≤ t. Then

α̃ : L⊕q −→ L⊕q is the automorphism given by e1L⊕q with e ∈ AutR(L) given by

diag(1L0
, . . . , a1Li1

, . . . , a1Lih
, . . . , 1Lt)
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Hence, (ã1L′)−1 = ã−11L′ .

As we will often be working explicitly with highly noncommutative rings, we need to discuss

important ideas at the intersection of noncommutative algebra and K-theory. Let J(A) be the

Jacobson radical of the not necessarily commutative ring A. Recall that A is said to be semilocal

if A/J(A) is semisimple. That is, every left A/J(A)-module has the property that each of its

submodules is a direct summand of A/J(A). In the case that A is commutative, this is equivalent

to A having only finitely many maximal ideals ( [45], Proposition 20.2). Of great importance to

us is the following situation: If A is a commutative semilocal Noetherian ring and N is a nonzero

finitely generated A-module, then EndA(N) is semilocal in the preceding sense ( [31], Lemma

5.1). We will see how the following remark utilizes this small but essential fact in the proof of

Theorem 2.1.3.

Remark 2.2.17. ( [31], Paragraph 5.2)

For arbitrary A, denote the composition of the following group homomorphisms

A∗ = GL1(A) →֒ GL(A) ։ GL(A)ab = KC
1 (A)

by ϑA. Since KC
1 (A) is abelian, there is an induced map θA : A∗

ab −→ KC
1 (A). If A is semilocal,

then ( [3], V§9 Theorem 9.1) shows that ϑA is surjective, hence so is θA. When A contains a field

k with char(k) 6= 2, a result of Vaserstein ( [66], Theorem 2) shows that θA is an isomorphism.

In particular, if R is a k-algebra, char(k) 6= 2 and M is a finitely generated R-module with E =

EndR(M), then θE and θEop are isomorphisms.

Suppose now A is a commutative semilocal ring, so that the commutator subgroup [A∗, A∗], is

trivial, hence θA : A∗ −→ KC
1 (A) is surjective. In ( [31], Remark. 5.4), if θA is an isomorphism,

an explicit inverse to θA is constructed: The determinant homomorphisms detn : GLn(A) −→ A∗

induce a homomorphism detA : KC
1 (A) −→ A∗ (since each detn is trivial on commutators in

GL(A)) which satisfies detAθA = 1A∗ , so that θ−1
A = detA.

Using Remark 2.2.17 as motivation, the following definition is made in [31].
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Definition 2.2.18. Let A be a ring for which the map θA : A∗
ab −→ KC

1 (A) is an isomorphism.

The inverse θ−1
A is denoted by detA and is is called the generalized determinant.

The following proposition makes use of the tilde construction and will be useful in proving

Theorem 2.1.3. We note it is essentially proven in [31], where it is a synthesis of ( [31], Lemma 6.5)

and the proof of ( [31], Proposition 8.8). We also note that the assumptions in ( [31], Proposition

8.8) are that R has finite Cohen-Macaulay type. However, we note that under our assumptions, the

portion of the proof we are referencing ( [31], equation (8.8.1)) still holds.

Proposition 2.2.19. Keeping our general assumptions, suppose in addition that R is an algebra

over its residue field k and the characteristic of k is not two. Let L0, . . . , Lt ∈ mcmR and L

be their direct sum. Set Λ = EndR(L)
op. Let C0 = addR (L) be equipped with the trivial exact

structure. If Λ has finite global dimension, then there is an isomorphism of groups

τ : KB
1 (C0) −→ AutR(L)ab

such that for any L′ ∈ C0 and any α ∈ AutR(L
′), τ([L′, α]) = detΛop(α̃).

Remark 2.2.20. ( [31], Observation 8.9)

LetA be any commutative Noetherian local ring and ηA be the isomorphism from Remark 2.2.8

and θA : A∗ −→ KC
1 (A) be the induced map from Remark 2.2.17. Then θA is an isomorphism by

( [60], Example 1.6). Thus the composition ρA = ηAθA : A∗ −→ KB
1 (projA) is an isomorphism

such that a ∈ A∗ is mapped to [A, a1A].

We now combine the the above preliminaries with the tilde construction to define the subgroup

Ξ of AutR(L)ab in Theorem 2.1.3.
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Definition 2.2.21. Recall that we are assuming that mcmR has n-cluster-tilting object of the form

L = L0 ⊕ · · · ⊕ Lt. We assume that L0 = R and that for j > 0, the Lj are non-free pairwise non-

isomorphic and indecompsable objects in mcmR. Suppose also that R is a k-algebra, char(k) 6= 2

and k is algebraically closed. If mcmR has an n-cluster tilting object L such that Λ := EndR(L)
op

has finite global dimension, we define a subgroup Ξ of AutR(L)ab as follows: For j > 0, let

0 −→ Cj
n −→ · · · −→ Cj

0 −→ Lj −→ 0

be the n-Auslander-Reiten sequence ending in Lj (see Definition 2.2.15). By Remark 2.2.17,

θΛop : AutR(L)ab −→ KC
1 (Λ

op) is an isomorphism with inverse given by detΛop . Then Ξ is the

subgroup generated by the elements given by

ã1Lj

n+1∏

i=1

detΛop(ã1Cj
i−1

)(−1)i

where a runs over all elements of k∗ and j = 1, . . . , t.

2.3 The Structure of G1(R)

In this section, unadorned K-groups are the Quillen K-groups. Our goal of this section is to

prove Theorem 2.1.3. We always assume that mcmR has an n-cluster tilting object L = Ll00 ⊕

· · · ⊕ L⊕lt
t , with L0 = R, and L1, . . . , Lt non-free, non-isomorphic indecomposable maximal

Cohen-Macaulay R-modules such that Λ := EndR(L)
op has finite global dimension. In addition to

our blanket assumptions, we assume that k is algebraically closed of characteristic not two and R

is a k-algebra. We begin with an easy reduction.

Lemma 2.3.1. Set Lred = L0 ⊕ · · · ⊕ Lt. If Λred = EndR(Lred)
op, then Λ and Λred are Morita-

equivalent. In particular, Gi(Λ) ∼= Gi(Λred) for all i ≥ 0.

Proof. The desired Morita equivalence is from ( [17], Lemma 2.2). Thus the categories of left Λ

and Λred modules are equivalent, hence there is an equivalence of exact categories between modΛ
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and modΛred. It is well-known this yields an isomorphism in G-theory, hence Gi(Λ) ∼= Gi(Λred)

for all i ≥ 0.

It is easy to see addRL = addRLred. Moreover, since Λ has finite global dimension, the

Morita equivalence of Lemma 2.3.1 gives that Λred also has has finite global dimension. Since Λ

has finite global dimension and is a semilocal algebra over a field of characteristic not two, by

Quillen’s Resolution Theorem ( [57], §Theorem 3), ( [60], Corollary 2.6 and Theorem 5.1), and

( [66], Theorem 2) we have isomorphisms

G1(Λ) ∼= K1(Λ) ∼= KC
1 (Λ) = Λ∗

ab = AutR(L)ab

As noted above, Λred has finite global dimension, hence the same arguments apply, so that the

above remarks and Lemma 2.3.1 give

AutR(Lred)ab = (Λred)
∗
ab
∼= G1(Λred) ∼= G1(Λ) ∼= Λ∗

ab = AutR(L)ab

Thus may safely assume that the n-cluster tilting object L for mcmR has the form L0 ⊕ · · · ⊕ Lt,

where the Li are non-isomorphic indecomposable maximal Cohen-Macaulay. Henceforth, we

always use Λ to denote EndR(L)
op with L = L0 ⊕ · · · ⊕ Lt, L0 = R and for j > 0, the Lj are

non-free, non-isomorphic indecomposable objects in mcmR.

Since k is algebraically closed, κLj
= EndR(Lj)

op/rad(EndR(Lj)
op) = k for all j (this is

essentially Nakayamma’s lemma). By Theorem 2.1.2, there is an exact sequence of abelian groups

G1(k)
⊕t γ

−→ G1(Λ) −→ G1(R) −→ G0(k)
⊕t −→ G0(Λ) −→ G0(R) −→ 0

By Theorem 2.1.2, G0(Λ) = Z⊕(t+1). Moreover, is well-known that G0(k) = Z. In particular, the

above exact sequence becomes
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G1(k)
⊕t γ

−→ G1(Λ) −→ G1(R) −→ H −→ 0 (⋆)

where H is the kernel of a map Z⊕t −→ Z⊕(t+1). Now H is free, being the subgroup of a free

group, hence the exactness of (⋆) gives an isomorphism

G1(R) ∼= coker(γ)⊕H

Thus to prove Theorem 2.1.3, that is, in order to calculate Ξ, we need to explicitly describe the

map γ. In this direction, we first define C0 to be the category C := addRL = addR (L0, . . . , Lt)

equipped with trivial exact structure. As we are assuming Λ has finite global dimension, ( [31],

Lemma 6.5) gives an isomorphismK1(C0) ∼= K1(modC) that is induced by the exact Yoneda func-

tor yL : C0 −→ modC, where yL(X) = HomR(•, X)|C . Since Λ is left Noetherian, Proposition

2.2.12 gives that the evaluation functor eL : modC −→ modΛ is an equivalence, hence induces

an isomorphism K1(modC) ∼= K1(Λ). Moreover, Λ has finite global dimension, so that Quillen’s

Resolution Theorem ( [57], §Theorem 3) yields that the inclusion functor projΛ −→ modΛ in-

duces an isomorphism K1(Λ) ∼= G1(Λ). Hence there is a map α : G1(k)
⊕t −→ K1(C0) such that

the diagram

K1(C0)

G1(k)
⊕t

γ
✲

α

✲

G1(Λ)

∼=

❄

commutes. This gives coker(γ) ∼= coker(α). Thus to prove Theorem 2.1.3, it suffices to compute

coker(α). In fact, α is computed in the discussion of ( [53], Section 7.2). The details will be

useful and we recall them. Now L = L0 ⊕ · · · ⊕ Lt, with L0 = R and L1, . . . , Lt are the non-free

indecomposable and non-isomorphic summands of L. We set I = {L0, . . . , Lt} and I0 = I\ {R}.

For j > 0 let

0 −→ Cj
n −→ · · · −→ Cj

0 −→ Lj −→ 0
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be the n-Auslander-Reiten sequence ending in Lj (see Definition 2.2.15). Denote by kj the object

of ⊕I0modk which is k in the Lj-coordinate and 0 in the others. We remark that to define a k-

linear functor out of ⊕I0modk, one needs only to specify the image of each object kj . We define

k-linear functors

ai :
⊕

I0

modk −→ C0 (0 ≤ i ≤ n+ 1)

by 



ai(kj) = Cj
i−1 (1 ≤ i ≤ n+ 1)

a0(kj) = Lj

It is shown in ( [53], Section 7.2) that α =
∑n+1

i=0 (−1)iK1(ai). We have the following.

Proposition 2.3.2. If Ξ is the subgroup of Λ∗
ab from Definition 2.2.21, there is an isomorphism

coker(α) ∼= Λ∗
ab/Ξ.

Now Proposition 2.3.2 implies Theorem 2.1.3, so the proof of Proposition 2.3.2 will conclude

this section.

Proof. Since the morphisms ai :
⊕

I0
modk −→ C0 are functors on exact categories, they also

define maps KB
1 (ai) : KB

1 (
⊕

I0
modk) −→ KB

1 (C0) on the Bass K1-groups. Now |I0| = t, so

that KB
1 (
⊕

I0
modk) =

⊕
I0
KB

1 (modk) = KB
1 (modk)⊕t. Let β : KB

1 (modk)⊕t −→ KB
1 (C0)

be the map given by
∑n+1

i=0 (−1)iKB
1 (ai). Our first task is to show that coker(α) ∼= coker(β). The

Gersten-Sherman transformation (see Theorem 2.2.10) ζ : KB
1 −→ K1 provides the following

commutative diagram for i = 0, 1, . . . , n+ 1

K1(modk)⊕t
K1(ai)

✲ K1(C0)

KB
1 (modk)⊕t

ζ⊕t
mod k

∼=
❄

KB
1
(ai)
✲ KB

1 (C0)

∼= ζC0
❄

Where the vertical isomorphisms come courtesy of Theorem 2.2.10, as C0 and modk are semisim-

ple exact categories. Hence there is a commutative diagram
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K1(modk)⊕t
α

✲ K1(C0)

KB
1 (modk)⊕t

ζ⊕t
mod k

∼=
❄

β
✲ KB

1 (C0)

∼= ζC0
❄

This gives that coker(α) ∼= coker(β). To finish the proof, first note that Remark 2.2.20 furnishes

an isomorphism ρk : k∗ −→ KB
1 (modk) such that a 7→ [k, a1k], hence there is an isomorphism

ρ⊕tk : (k∗)⊕t −→ KB
1 (modk)⊕t. Now recall the isomorphism τ : KB

1 (C0) −→ Λ∗
ab (noting

Λ∗
ab = AutR(L)ab) of Proposition 2.2.19. The map τ is such that for L′ ∈ C0 and any f ∈

AutR(L
′), τ([L′, f ]) = detΛop(f̃), where detΛop is the generalized determinant of Definition 2.2.18

and f̃ ∈ AutR(L) is the map obtained from the tilde construction of Subsection 2.2.3. In particular,

coker(β) ∼= coker(τβρ⊕tk ), hence we calculate the latter. Restricting to the jth coordinate of (k∗)⊕t,

by slight abuse of notation, we have for a ∈ k∗

βρk(a) = β([k, a1k]) = [Lj, a1Lj
] +

n+1∑

i=1

(−1)i[Cj
i−1, a1Cj

i−1

]

By definition, detΛop(ã1Lj
) = ã1Lj

, so that

τβρk(a) = τ

(
[Lj, a1Lj

] +
n+1∑

i=1

(−1)i[Cj
i−1, a1Cj

i−1

]

)
= ã1Lj

n+1∏

i=1

detΛop(ã1Cj
i−1

)(−1)i

This is precisely the subgroup Ξ of Definition 2.2.21, whence the result.

2.4 Existence of n-Cluster Tilting Objects in mcmR

Naturally, the usefulness of Theorem 2.1.3 would be limited if the situations in which mcmR

contained an n-cluster tilting object were sparse. Fortunately for us, they are not. Moreover, if

mcmR admits an n-cluster tilting object L, we require that Λ := EndR(L)
op has finite global

dimension. At first glance, this condition might also seem limiting, but is in fact quite common, as

seen in the following theorem.
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Theorem 2.4.1. ( [39], Theorem 3.12(a))

Suppose dimR = d and that mcmR contains an n-cluster tilting object L with d ≤ n. Then Λ

has global dimension at most n+ 1.

The most well-studied situation in which mcmR admits an n-cluster tilting object is the fol-

lowing.

2.4.1 Finite Cohen-Macaulay Type

Recall that we say that R has finite Cohen-Macaulay type (or finite type for short) when R has

only finitely many indecomposable maximal Cohen-Macaulay modules. Now the only 1-cluster

tilting subcategory of mcmR is mcmR itself. Thus the existence of a 1-cluster tilting object for

mcmR is equivalent to R having finite type. In particular, when R has finite type, mcmR has

an additive generator M . For practical and computational purposes, when R has finite type, we

will often work with the R-module M = M0 ⊕M1 ⊕ · · · ⊕Mt, with M0 = R and M1, . . . ,Mt

the pairwise non-isomorphic and non-free indecomposable maximal Cohen-MacaulayR-modules.

Moreover, ( [46], Theorem 6) shows that EndR(M)op has finite global dimension, hence Theorem

2.1.3 is applicable in this situation. In fact, in this case, if the Auslander-Reiten homomorphism

Υ : Z⊕t −→ Z⊕(t+1) is injective, Theorem 2.1.3 is just ( [31], Theorem 2.12), the result which

inspired Theorem 2.1.3.

ADE Singularities

The most important examples of rings that have finite type are the simple surface singularities.

These are called the ADE singularities. Let S = k[[x, y, z2, z3, . . . , zd]] and assume k is alge-

braically closed with characteristic different from 2, 3 and 5. Set R = S/fS with f nonzero and

f /∈ (x, y, z2, . . . , zd)
2. The f for which R has finite type are exactly the following ( [47], Theorem

9.8)
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(An) x2 + yn+1 + z22 + z23 + · · ·+ z2d (n ≥ 1)

(Dn) x2y + yn−1 + z22 + z23 + · · ·+ z2d (n ≥ 4)

(E6) x3 + y4 + z22 + z23 + · · ·+ z2d

(E7) x3 + xy3 + z22 + z23 + · · ·+ z2d

(E8) x3 + y5 + z22 + z23 + · · ·+ z2d

2.4.2 Invariant Subrings

Let k be a field and S the ring k[[x1, . . . , xn]]. Suppose G is a finite subgroup of GLn(k)

that does not contain any nontrivial pseudo-reflections and with |G| invertible in k. Let R be the

invariant subring k[[x1, . . . , xn]]
G of S, where G acts by a linear change of variables on S. If R is

an isolated singularity, then the R-module S is an (n− 1)-cluster tilting object (see ( [40], 2.5)).

The skew group ring of S, denoted by S#G, is given by S#G =
⊕

σ∈G S · σ, with multipli-

cation defined by (s · σ)(t · τ) = sσ(t) · στ . In this situation, S#G has global dimension equal to

n ( [47], Corollary 5.8) and there is an isomorphism EndR(S) ∼= S#G ( [47], Theorem 5.15). In

particular, Theorem 2.1.3 is applicable in this situation.

2.4.3 Reduced Hypersurface Singularities

Dimension One

Let k be an algebraically closed field of characteristic not two and S = k[[x, y]]. For f ∈ (x, y),

let R = S/fS be a reduced hypersurface singularity. Suppose f has prime factorization and

f = f1 · · · fn, Si = S/(f1 · · · fi)S and L is the R-module S1 ⊕ · · · ⊕ Sn. If fi /∈ (x, y)2 for

all i, then [13] shows that L is a 2-cluster tilting object for mcmR. Moreover, Theorem 2.4.1

shows that EndR(L)
op has global dimension at most three. Hence we can apply Theorem 2.1.3 in

this situation. Note, in particular, if λ1, . . . , λn are distinct elements of k, then Theorem 2.1.3 is

applicable to the ring S/fS with f = (x− λ1y) · · · (x− λny).
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Dimension Three

Keep notation as above, but set S ′ = k[[x, y, u, v]] and R′ = S ′/(f + uv)S ′. Then mcmR′

has a 2-cluster tilting object if fi /∈ (x, y)2 for all i and it is given by L := U1 ⊕ · · · ⊕ Un

with Ui = (u, f1 · · · fi) ⊂ R′ ( [39], Theorem 4.17). Moreover, ( [39], Theorem 4.17) also says

EndR′(L)op has finite global dimension, so Theorem 2.1.3 is applicable in this situation.

2.5 Abelianization of Automorphism Groups

Of course, the usefulness of Theorem 2.1.3 would be limited if one were unable to compute

AutR(L)ab. We make several computations, though each computation is tailored specifically to

each ring and it seems difficult to find results that hold generally. Our computations rely signifi-

cantly upon the general framework laid out by [31] and this work serves strongly as inspiration for

our results. The purpose of this section is to prove the following.

Proposition 2.5.1. Let k be an algebraically closed field of characteristic not equal to two. Then

(a) if R = k[x]/xnk[x] and M = R⊕ xR⊕ · · · ⊕ xn−1R, then AutR(M)ab
∼= (k∗)⊕n.

(b) if k also has characteristic not equal to 3 or 5, R = k[[t2, t2n+1]], n ≥ 0 and M =

R⊕R1 ⊕ · · · ⊕Rn, with Ri = k[[t2, t2(n−i)+1], then AutR(M)ab
∼= (k∗)⊕n ⊕ k[[t]]∗.

(c) if R = k[[s2, st, t2]], then AutR(R⊕ (s2, st)R)ab
∼= k∗ ⊕R∗.

(d) if S = k[[x, y]], f1, . . . , fn ∈ (x, y) are irreducible such that

(i) f = f1 · · · fn, R := S/fS, is an isolated singularity (i.e. (fi) 6= (fj)),

(ii) fi /∈ (x, y)2 for all i,

(iii) (fi, fi+1) = (x, y),

Si = S/(f1 · · · fi)S, and L = S1 ⊕ · · · ⊕ Sn, then

AutR(L)ab
∼= (S/f1S)

∗ ⊕ · · · ⊕ (S/fnS)
∗ = R

∗

Where R = S/f1S ⊕ · · · ⊕ S/fnS is the integral closure of R in its total quotient ring.
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(e) if k has characteristic zero, S ′ = k[[x, y, u, v]], R′ = S ′/(f + uv)S ′, where f = f1 · · · fn

with fi ∈ k[[x, y]] satisfying the conditions in (d), Ui = (u, f1 · · · fi), and L = U1 ⊕ · · · ⊕Un, then

AutR′(L)ab
∼= R′∗ ⊕ k[[w, z]]∗⊕(n−1)

where w, z are variables over k.

Of course, the purpose of Proposition 2.5.1 is to combine it with Theorem 2.1.3 calculate

explicit examples of G1(R) for several hypersurface singularities. This will be done in Section

2.6.

We set up some useful notation. Let N1, . . . , Ns be A-modules and consider the A-module

N := N1 ⊕ · · · ⊕ Ns. We view the elements of N as column vectors and the endomorphism

ring of N has a matrix-like structure: For f ∈ EndA(N), we can write f = (fij) with fij ∈

HomA(Nj, Ni) and composition with another endomorphism g = (gij) can be accomplished in

the same manner one would multiply matrices with entries in A. We write a diag(α1, . . . , αs)

for the diagonal endomorphism of N with αi ∈ EndA(Ni). For α ∈ AutA(Nj), we denote by

dj(α) the automorphism of N given by diag(1N1
, . . . , 1Nj−1

, α, 1Nj+1
, . . . , 1Ns). For i 6= j and β ∈

HomA(Nj, Ni), we denote by eij(β) the automorphism of N with diagonal entries 1N1
, . . . , 1Ns

and (i, j)th entry given by β and zeros elsewhere. Before we begin, we discuss calculations that

will be used often in the sequel.

Lemma 2.5.2. ( [31], Lemma 9.2)

Let A be a ring in which 2 is invertible, N1, . . . , Ns be A-modules and N := N1 ⊕ · · · ⊕Ns. If

i 6= j and α ∈ HomA(Nj, Ni), then eij(α) is a commutator in AutA(N).

Proof. Given β, γ in AutA(N), the commutator of β and γ is [β, γ] = βγβ−1γ−1. It is not hard to

see that eij(α) = [eij(
α
2
), dj(−1Nj

)].
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Lemma 2.5.3. Let (A, n) be commutative and local such that 2 is invertible in A. Let N1, . . . , Ns

be A-modules and set N = N1 ⊕ · · · ⊕ Ns. Let a ∈ 1 + n, and consider the automorphism

di(a1Ni
)di+1(a

−11Ni+1
) of N . Suppose either

(a) Ni ⊇ Ni+1 and nNi ⊆ Ni+1 or

(b) Ni ⊆ Ni+1 and (1− a)Ni+1 ⊆ Ni

then di(a1Ni
)di+1(a

−11Ni+1
) is in the commutator subgroup of AutA(N).

Proof. In the case of (a), Let ιi : Ni+1 −→ Ni be inclusion. Now note that a−1 ∈ 1+ n, so that we

have the following decomposition of di(a1Ni
)di+1(a

−11Ni+1
):

ei+1,i((a
−1 − 1)1Ni

)ei,i+1(ιi)ei+1,i((a− 1)1Ni
)ei,i+1(−a

−1ιi)

We apply Lemma 2.5.2 to see that di(a1Ni
)di+1(a

−11Ni+1
) is in the commutator subgroup of

AutA(N).

In the case of (b), notice that our hypothesis implies (a−1−1)Ni+1 ⊆ Ni. Let ιi : Ni −→ Ni+1

be the inclusion map. We have the following decomposition of di(a1Ni
)di+1(a

−11Ni+1
):

ei,i+1((a
−1 − 1)1Ni+1

)ei+1,i(ιi)ei,i+1((a− 1)1Ni+1
)ei+1,i(−a

−1ιi)

and once again, we apply Lemma 2.5.2 to see that di(a1Ni
)di+1(a

−11Ni+1
) is in the commutator

subgroup of AutA(N).

2.5.1 Truncated Polynomial Rings in One Variable

Our aim here is to prove (a) of Proposition 2.5.1. That is k is algebraically closed and has

characteristic not two, R = k[x]/xnk[x], m is its maximal ideal xR, then with M = R⊕m⊕· · ·⊕

mn−1, we have AutR(M)ab
∼= (k∗)⊕n.
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Proof. Denote by Rj the ring k[x]/xjk[x] for 1 ≤ j ≤ n. Note that Rj−1 ⊂ Rj and R = Rn. Let

m denote the maximal ideal xR of R. Then EndR(m
i) is isomorphic to the local ring Rn−i. Let M

be the R-module R⊕m⊕ · · · ⊕mn−1. We set E = EndR(M) and seek to show E∗
ab
∼= (k∗)⊕n.

For n = 1, this is clear. For n = 2, we have EndR(m) = k, so that E∗
ab

∼= (k∗)⊕2 by ( [31],

Proposition 9.6).

Suppose now n ≥ 3. We first show that there is a surjection E∗
ab −→ (k∗)⊕n such that the

kernel consists of diagonal matrices α = (αii) with αii ∈ AutR(m
i−1) = R∗

n−i+1. By ( [31],

Proposition 9.4), (αij) ∈ E is invertible if and only if αii is invertible for all i. In particular, this

gives that every two-sided maximal ideal ofE is of the form ni := {(αij) : αii ∈ J(EndR(m
i−1))}.

Hence the Chinese Remainder Theorem gives E/J(E) ∼= E/n1 × · · · × E/nn = k × · · · × k.

In particular, there is an induced surjection ϕ : E∗
ab ։ (k∗)⊕n. We appeal to ( [31], Corollary

9.5) to see every element of E∗
ab can be represented by a diagonal automorphism. Moreover, it is

clear elements in the kernel ϕ are given by (αii) such that αii is multiplication by an element in

1 + J(EndR(m
i−1)) = 1 + xRn−i+1 for all i.

We now demonstrate the injectivity of ϕ. Let α ∈ E∗
ab such that ϕ(α) is trivial. By the above,

we can write α = (αii) such that αii is multiplication by an element of 1 + xR∗
n−i+1. Now

every endomorphism on mn−1 is given by an element of 1 + xR1 = {1}, so that we can write

α = d1(α11) · · · dn−1(αn−1,n−1). It suffices to show each di(αii) is in the commutator subgroup of

E∗. We do this below.

We show by decreasing induction on i that di(β) can be written as a product of commutators,

where β is given by multiplication by an element of 1+xRn−i+1. For i = n−1, write β = r1mn−2 ,

where r ∈ 1+xR2. Notice that r−1 ∈ 1+xR2 as well, hence multiplication by r−1 restricts to the

identity on mn−1. This gives

dn−1(β) = dn−1(r1mn−2) = dn−1(r1mn−2)dn(r
−11mn−1)

27



By Lemma 2.5.3, dn−1(r1mn−2)dn(r
−11mn−1) is in the commutator subgroup of E∗, hence so is

dn−1(β). Suppose now i < n − 1 and β ∈ AutR(m
i−1) is given by multiplication on mi−1 by an

element of 1 + xRn−i+1. We have

di(β) = di(β)di+1(β
−1|mi)di+1(β|mi)

By the induction hypothesis, di+1(β|mi) is in the commutator subgroup of E∗. By Lemma

2.5.3, di(β)di+1(β
−1|mi) is in the commutator subgroup of E∗, hence so is di(β). This completes

the induction step and gives that E∗
ab
∼= (k∗)⊕n.

2.5.2 Singularty of Type A2n in Dimension One

Our aim here is to prove (b) of Proposition 2.5.1. Thus, k is an algebraically closed field of

characteristic not equal to 2, 3 or 5 and R the ring k[[t2, t2n+1]]. Set R = R0 and let M be the

R-module R0 ⊕ R1 ⊕ · · · ⊕ Rn, where Ri = k[[t2, t2(n−i)+1]] for i = 0, . . . , n. Then we want to

show AutR(M)ab
∼= (k∗)⊕n ⊕ k[[t]]∗. Before we begin, we prove the following.

Lemma 2.5.4. Let 0 ≤ i, j ≤ n. If

(a) i ≤ j, then HomR(Ri, Rj) = Rj .

(b) i > j, then HomR(Ri, Rj) can be viewed as a subset of R. In particular, it is contained in

Rn = k[[t]].

As a consequence of the above, we can view E := EndR(M) as a subring of Mn+1(Rn) =

Mn+1(k[[t]]).

Proof. (a) We claim

HomR(Ri, Rj) = HomRi
(Ri, Rj)

Indeed, since R ⊆ Ri, there is a natural inclusion HomRi
(Ri, Rj) ⊆ HomR(Ri, Rj). We demon-

strate the reverse inclusion. Let s ∈ Ri, f ∈ Ri and ϕ ∈ HomR(Ri, Rj). It is not hard to see that

there is a nonzero r ∈ R such that rs ∈ R (for example, by noting that t2n+1 ∈ R, t2n+1k[[t]] ⊆ R,
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and Ri ⊆ k[[t]]). We have

rϕ(sf) = ϕ(rsf) = rsϕ(f)

and r is nonzero, so that ϕ(sf) = sϕ(f). This proves the claim. Thus, we have

HomR(Ri, Rj) = HomRi
(Ri, Rj)

and the latter is naturally isomorphic to Rj .

(b) By ( [63], Lemma 2.4.3), there is an isomorphism of R-modules:

HomR(Ri, Rj) ∼= (Rj :R Ri)

Where (Rj :R Ri) is the ideal of R consisting of f ∈ R such that fRi ⊆ Rj .

Utilizing (a) and (b), we see that E can be viewed as the subring of Mn+1(Rn) = Mn+1(k[[t]])

given by 


R0 R1 R2 R3 · · · Rn

(R1 :R R0) R1 R2 R3 · · · Rn

(R2 :R R0) (R2 :R R1) R2 R3 · · · Rn

...
...

...
...

...
...

(Rn :R R0) (Rn :R R1) (Rn :R R2) (Rn :R R3) · · · Rn




We now proceed with the proof of (b) of Proposition 2.5.1.

Proof. Note the Ri are finitely generated R-modules; each Ri is local with maximal ideal mi =

(t2, t2(n−i)+1)Ri; we have inclusions Ri ⊆ Ri+1 and mi ⊆ mi+1; and each Ri has k as a residue

field.

This is clear for n = 0. For n = 1, this is just ( [31], Proposition 9.6), since k[[t]] ∼=

(t2, t3)k[[t2, t3]] as k[[t2, t3]]-modules.
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Suppose now n ≥ 2. Our goal is to construct a map from E∗ to the abelian group (k∗)⊕n ⊕

k[[t]]∗, so that we obtain an induced map E∗
ab −→ (k∗)⊕n ⊕ k[[t]]∗ that we will later show is an

isomorphism.

First we construct a map fromE∗ to (k∗)⊕n. The proof that there is group homomorphism from

E∗ −→ (k∗)⊕n works in exactly the same manner as as it did in the proof of (a) of Proposition

2.5.1. Noting of course that with ni = {(αij) : αii ∈ J(EndR(Ri−1))}, (a) of Lemma 2.5.4 gives

that E/ni = EndR(Ri−1)/J(EndR(Ri−1)) = Ri−1/mi−1 = k. Thus we obtain an induced map

E∗
ab −→ (k∗)⊕n.

As Lemma 2.5.4 allows us to viewE as a subring of Mn+1(Rn) = Mn+1(k[[t]]),E
∗ is naturally

a subset of GLn+1(k[[t]]), the group of invertible (n+ 1)× (n+ 1) matrices over k[[t]]. By taking

the determinant, we obtain a map from E∗ −→ k[[t]]∗. Now k[[t]]∗ is abelian, hence this induces a

group homomorphism E∗
ab −→ k[[t]]∗.

Regarding E as a matrix subring of Mn+1(k[[t]]), we combine our preceding work to see there

is a group homomorphism Φ : E∗
ab −→ (k∗)⊕n⊕R∗

n such that the image of α = (αij) ∈ E∗
ab under

Φ is

(α11 +m0, . . . , αnn +mn−1, det(α))

We note Φ is surjective: For (a1, . . . an, f) ∈ (k∗)⊕n ⊕R∗
n, (a1, . . . an, f) is the image under Φ

of

diag(a1, a2, . . . , an, (a1a2 · · · an)
−1f)

To see that Φ is injective, let α ∈ E∗
ab such that Φ(α) is trivial. By ( [31], Corollary 9.5), we

may assume that α ∈ E∗
ab is diagonal. Write α = diag(f0, f1, . . . , fn−1, fn), with fi−1 ∈ (Ri−1)

∗

by Lemma 2.5.4. Since Φ(α) is trivial, fi−1 ∈ 1 + mi−1 for i = 1, . . . , n and f0f1 · · · fn =

1 in R∗
n = k[[t]]∗. Hence for i = 1, . . . , n, α is the product of the diagonal automorphisms

βi = di(fi−1)dn+1(f
−1
i−1). Consider the automorphisms γi = di(fi−1)di+1(f

−1
i−1) and note that

βi = γi · · · γn. To see that γi is in the commutator subgroup, note that f−1
i−1 is in 1 + mi−1, hence

multiplication by fi−1 − 1 maps Ri into Ri−1. Indeed, multiplication by mi−1 on mi takes mi into
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mi−1. Moreover, any unit in Ri is a power series with nonzero constant term, hence multiplication

on Ri by an element in mi−1 takes Ri into Ri−1. Thus the hypotheses of Lemma 2.5.3 are satisfied,

so that each γi is in the commutator subgroup of E∗, hence so is each βi, and ultimately so is α.

Thus Φ is injective, hence an isomorphism.

2.5.3 Generalities for Invariant Subrings

Let k be a field. Recall from Section 2.4 that S is the ring k[[x1, . . . , xn]], G is a finite subgroup

of GLn(k) that does not contain any nontrivial pseudo-reflections with |G| invertible in k and R is

the invariant subring SG of S (where G acts by a linear change of variables on S). Then if R is an

isolated singularity, the R-module S is an (n− 1)-cluster tilting object in mcmR.

We need the following lemmas for the proof of (c) of Proposition 2.5.1.

Lemma 2.5.5. Let A be a local Cohen-Macaulay integral domain of dimension d > 1 such that A

is an isolated singularity. Then A is normal and HomA(I, I) ∼= A for any ideal I of height one.

Proof. Clearly A satisfies Serre’s criterion for normality. For the second part, choose x ∈ I to

be nonzero. Then ( [63], Lemma 2.4.3) shows that HomA(I, I) can be identified with the A-

submodule 1
x
(xI :A I) of the quotient field of A. Now (Ix :A I) is nonzero and contained in I ,

so must have height one. If I is principal, it is clear that (xI :A I) = xA. However, as (xI :A I)

has height one and A is an isolated singularity, Ap is a discrete valuation ring for every associated

prime p of (xI :A I), hence (xIAp :Ap
IAp) = xAp. Thus (xI :A I) = xA and HomA(I, I) ∼= A.

Lemma 2.5.6. ( [14], Lemma 5.4)

Let A be a commutative Noetherian ring. Then for any ideal I and module M such that

grade(I,M) ≥ 2, we have HomA(I,M) ∼= HomA(A,M) ∼= M .
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2.5.4 Singularity of Type A1 in Dimension Two

Our aim here is to prove (c) of Proposition 2.5.1. Thus R is the A1 singularity k[[s2, st, t2]] in

dimension two with char(k) 6= 2. If I = (s2, st)R, then AutR(R⊕ I)ab
∼= k∗ ⊕R∗.

Proof. By ( [47], Example 5.25), the indecomposable maximal Cohen-Macaulay modules of M

are R and I . That is, R has finite type. Thus by ( [69], Theorem 4.22), R is an isolated singularity.

Moreover, sinceR is of finite type,R⊕I is an additive generator for mcmR, so that EndR(R⊕I)op

has finite global dimension by ( [46], Theorem 6). Now I has height one, so that HomR(I, I) ∼= R

by Lemma 2.5.5. Moreover, as I is maximal Cohen-Macaulay, we have HomR(I, R) ∼= R by

Lemma 2.5.6. Thus EndR(R⊕ I) is isomorphic to the subring of M2(R) given by




R R

I R




By ( [56], Corollary 2.8), there is an isomorphism

AutR(R⊕ I)ab
∼= KC

1 (R)⊕KC
1 (R/I) = R∗ ⊕ k[[t2]]∗

Thus if m denotes the maximal ideal of R, we have

R∗ ⊕ k[[t2]]∗ ∼= k∗ ⊕ 1 +m⊕ k[[t2]]∗

∼= k∗ ⊕ k[[t2]][[s2, st, t2]]∗

= k∗ ⊕R∗

2.5.5 Generalities for Reduced Hypersurface Singularities

Before we prove parts (d) and (e) of Proposition 2.5.1, we discuss another route for computing

the group AutR(L)ab that we plan to utilize for the proof. We begin with another aside on noncom-
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muatative algebra. A ring A with Jacobson radical J(A) is said to be semiperfect if A is semilocal

and idempotents of A/J(A) lift to idempotents of A. We assume that mcmR contains an n-cluster

tilting object L of the form L0⊕L1⊕· · ·⊕Lt and L0, L1, . . . , Lt are pairwise non-isomorphic and

indecomposable. As EndR(Li) is local for all i, it is the case that Λ = EndR(L)
op is semiperfect

by ( [45], Theorem 23.8) (noting that Λ is semiperfect if and only if Λop is semiperfect). In partic-

ular, if R is a k-algebra, the characteristic of k is not two, then by ( [66], Theorem 2), there is an

isomorphism

KC
1 (Λ)

∼= Λ∗
ab = AutR(L)ab

Since Λ is semiperfect, with the above isomorphism, we can utilize ( [56], Theorem 2.2) to obtain

an isomorphism

AutR(L)ab
∼= KC

1 (Λ)
∼=

(
t⊕

i=0

AutR(Li)

)/
HC

Where C is the subgroup of
⊕t

i=0 AutR(Li) generated by all elements of the form

(1 + αiβi)(1 + βiαi)
−1

with αi, βi ∈ EndR(Li−1) such that 1 + αiβi ∈ AutR(Li−1), and H is the subgroup generated by

all elements of the form

(1 + αijαji)(1 + αjiαij)
−1

with αij ∈ HomR(Li−1, Lj−1), i 6= j, and 1 + αijαji ∈ AutR(Li−1).

However each αijαji is never an automorphism when i 6= j, since otherwise Li−1 would be a

direct summand of Lj−1 (see ( [31], Lemma 9.3). Since each of the rings EndR(Li−1) are local,

this implies that 1 + αijαji ∈ AutR(Li−1) for all i 6= j.

We now continue with the proof of (d) of Proposition 2.5.1.
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2.5.6 Reduced Hypersurface Singularities in Dimension One

Our aim here is to prove (d) of Proposition 2.5.1. Here, k is an algebraically closed field of

characteristic not two and S = k[[x, y]], R is the ring S/fS with f ∈ (x, y) is such that in its prime

factorization, f = f1 · · · fn we have (fi) 6= (fj) for i 6= j, fi /∈ (x, y)2, (fi, fi+1) = (x, y). Then

if Si = S/(f1 · · · fi)S and L := S1 ⊕ · · · ⊕ Sn, we have AutR(L)ab
∼= R

∗
, where R is the integral

closure of R in its total quotient ring. We first prove a useful lemma.

Lemma 2.5.7. With notation as above, we have

HomR(Sj, Si) ∼=





(fj+1 · · · fi)/(f1 · · · fi) j < i

Si i ≤ j

Proof. The isomorphisms

HomR(Sj, Si) ∼= HomR(R/(f1 · · · fj), R/(f1 · · · fi)) ∼= (0 :R/(f1···fi) (f1 · · · fj))

make the statement clear.

We now proceed with the proof of (d) of Proposition 2.5.1.

Proof. Now by ( [13], 4.7), L is a 2-cluster-tilting object for mcmR. As Λ := EndR(L)
op has

finite global dimension by Theorem 2.4.1, the remarks of Subsection 2.5.5 give

AutR(L)ab
∼=

(
n⊕

i=1

AutR(Si)

)
/HC

Where C is the subgroup of
⊕n

i=1 AutR(Si) generated by all elements of the form (1 + αiβi)(1 +

βiαi)
−1 such that αi, βi ∈ EndR(Si) and 1 + αiβi ∈ AutR(Si). By Lemma 2.5.7, EndR(Si) = Si,

so thatC is trivial and AutR(L)ab
∼= (S∗

1 ⊕ · · · ⊕ S∗
n) /H . We now describe the subgroupH . Again

by the remarks in subsection 2.5.5, H is the subgroup generated by all elements of the form
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(1 + αijαji)(1 + αjiαij)
−1

where αij ∈ HomR(Sj, Si), αji ∈ HomR(Si, Sj)), and i 6= j. In fact, we can consider the

subgroup generated by such elements where i < j. We note αijαji ∈ EndR(Si) = Si and αjiαij ∈

EndR(Sj) = Sj . Utilizing Lemma 2.5.7, we can give a more concise description of H as follows

(note i < j). The subgroup H is generated by the elements hij(s), which we now describe:

(i) the ith entry of hij(s) is the image of an element s ∈ 1 + (fi+1 · · · fj) ⊂ S in the unit group

S∗
i ;

(ii) the jth entry of hij(s) is the image of s−1, with s from (i) in the unit group S∗
j ;

(iii) hij(s) is trivial elsewhere.

Let Hi,j be the subgroup of H generated by the hij(s), with s defined above. We have H =

⊕i<jHi,j . By projecting onto the jth coordinate, it is easy to see Hi,j is isomorphic to the subgroup

1 + (fi+1 · · · fj) of S∗
j . For 1 ≤ i < n, we call the subgroup Hi,i+1 ⊕ · · · ⊕Hi,n of H the ith layer

of H . It is easy to see that S∗
1 ⊕ · · · ⊕ S∗

n modulo the direct sum of the first m layers of H is

m+1⊕

u=1

(S/fuS)
∗ ⊕

n⊕

v=m+2

(S/(fm+1 · · · fv)S)
∗

As H is the direct sum of its n− 1 layers of H , we see that S∗
1 ⊕ · · · ⊕ S∗

n modulo H is just

(S/f1S)
∗ ⊕ · · · ⊕ (S/fnS)

∗

And this is just R
∗
.

2.5.7 Reduced Hypersurface Singularities in Dimension Three

Our aim here is to prove (e) of Proposition 2.5.1. Keep notation as in Subsection 2.5.6 with

the exception that we now require k be an algebraically closed field of characteristic zero. Set
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S ′ = k[[x, y, u, v]] and R′ = S ′/(f + uv)S ′. Then a 2-cluster tilting object for mcmR is given

by L := U1 ⊕ · · · ⊕ Un, with Ui = (u, f1 · · · fi) ⊂ R′ (see Section 2.4). Then we aim to show

AutR(L)ab
∼= R′∗ ⊕ k[[w, z]]∗⊕(n−1). In order to understand AutR(L)ab, we first need to understand

the structure of the modules HomR′(Ui, Uj), so that we are able to use the remarks of Subsection

2.5.5 to compute AutR(L)ab. This is the first step we make below.

Proposition 2.5.8. Let R′ and Ui be as above. Then

HomR′(Ui, Uj) ∼=





Uj j < i

R′ i ≤ j

Proof. Now R′ is Gorenstein of dimension three and an isolated singularity. Since Ui is an ideal

of R′ of height one, we may apply Lemma 2.5.5 to see that HomR′(Ui, Ui) ∼= R′ for all i. If

i 6= j, ( [63], Lemma 2.4.3) says we may identify HomR′(Ui, Uj) with the the R′-submodule

1
u
(uUj :R′ Ui) of the quotient field of R′. Now (uUj :R′ Ui) is nonzero and (uUj :R′ Ui) ⊂ Uj ,

hence (uUj :R′ Ui) has height one. Let p be a minimal prime of (uUi :R′ Uj). As R′ is an isolated

singularity, R′
p is a discrete valuation ring. Write R′

p = A and let µ be a generator for the maximal

ideal ofA. Suppose umaps to cµa, with a > 0 and c ∈ A∗. Write (Ui)p = µniA and (Uj)p = µnjA,

with nj, ni nonnegative integers. Then

(uUj :R′ Ui)p = (µa+nj :A µ
ni)

If i ≤ j, then Uj ⊆ Ui, hence nj ≥ ni. We have

(µa+nj :A µ
ni) = µa+nj−niA ⊂ µaA

Thus (uUj :R′ Ui)p = (uR′)p. In this case, (uUi :R′ Uj) = uR′, so that HomR′(Ui, Uj) ∼= R′.

Now if j < i, then Ui ⊂ Uj and ni ≥ nj . Notice u ∈ Ui, so that a ≥ ni. We have
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(µa+nj :A µ
ni) = µa+nj−ni = µa−ni(Uj)p

And µa−niA = (µa :A µ
ni) = (u :R′ Ui)p. We have (u :R′ Ui) = (u :R′ f1 · · · fi). Thus (uUj :R′

Ui) = (u :R′ f1 · · · fi)Uj . When i = n, (f1 · · · fn)R
′ = (uv)R′, hence (u :R′ f1 · · · fn) = R′. This

gives Uj = (uUj :R′ Un), hence there is an isomorphism of R′-modules HomR′(Un, Uj) ∼=
1
u
Uj ∼=

Uj .

To analyze the ideal (u :R′ f1 · · · fi) for i < n, note that fi+1 · · · fn ∈ (u :R′ f1 · · · fi) and that

the ideals (u, fi+1)R
′, . . . , (u, fn)R

′ are prime. In particular, the minimal primes of (u :R′ f1 · · · fi)

are (u, fi+1)R
′, . . . , (u, fn)R

′. Let q denote the prime ideal (u, fs)R
′, with i + 1 ≤ s ≤ n. Then

(f1 · · · fi)R
′
q = R′

q, as f1, . . . , fi /∈ q and hence (u :R′ f1 · · · fi)q = (uR′)q. Thus (u :R′ f1 · · · fi) =

uR′, so that (u :R′ f1 · · · fi)Uj = uUj , and hence HomR′(Ui, Uj) ∼= Uj . This gives the result.

We now proceed with the proof of (e) of Proposition 2.5.1.

Proof. By ( [39], Theorem 4.17), EndR′(L)op has finite global dimension, so the remarks of Sub-

section 2.5.5 are applicable. Thus there is an isomorphism:

AutR′(L)ab
∼=

(
n⊕

i=1

AutR′(Ui)

)
/HC

Where C is the subgroup of
⊕n

i=1 AutR′(Ui) generated by (1+αiβi)(1+βiαi)
−1 such that αi, βi ∈

EndR′(Ui) and 1 + αiβi ∈ AutR′(Ui). By Proposition 2.5.8, EndR′(Ui) = R′, so that C is trivial,

hence AutR′(L)ab
∼= (R′∗)⊕n/H . We now describe the subgroup H . Again by the remarks in

subsection 2.5.5, H is the subgroup generated by all elements of the form

(1 + αijαji)(1 + αjiαij)
−1

where αij ∈ HomR′(Uj, Ui), αji ∈ HomR′(Ui, Uj)), and i 6= j. In fact, we can consider the

subgroup generated by such elements where i < j. We now give a more concise description of H .
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Utilizing Proposition 2.5.8, H is the subgroup of (R′∗)⊕n generated by the elements hij(g) with

i < j and g ∈ Ui such that that:

(i) the ith entry of hij(g) is 1 + g;

(ii) the jth entry of hij(g) is (1 + g)−1;

(iii) hij(g) is trivial elsewhere.

For fixed i and j, letHi,j be the subgroup generated by the elements hij(g). ThusH = ⊕i<jHi,j

and Hi,j
∼= 1 + Ui ⊂ R′∗. For i < n, we call the subgroup Hi,i+1 ⊕ Hi,i+2 ⊕ · · · ⊕ Hi,n the ith

layer of H . As Un ⊂ Un ⊂ · · · ⊂ U1, it is easy to see that (R′∗)⊕n modulo the direct sum of layers

n− 1, n− 2, . . . , n− i is isomorphic to

(R′∗)⊕(n−i) ⊕ (R′/Un−i)
∗⊕i

Now the direct sum of layers n− 1, n− 2, . . . , 1 is just H , so that we see

AutR′(L)ab
∼= R′∗ ⊕ (R′/U1)

∗⊕(n−1)

Moreover, since U1 = (u, f1) and f1 ∈ (x, y)\(x, y)2 ⊆ k[[x, y]], we see R′/U1
∼= k[[w, z]], for

variables w, z over k. Thus

AutR′(L)ab
∼= R′∗ ⊕ k[[w, z]]∗⊕(n−1)

2.6 Computing G1(R)

The aim of this section is to utilize Theorem 2.1.3 to explicitly calculate G1(R) for several

hypersurface singularities. Our results are the following:
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Example 2.6.1. Let k be an algebraically closed field of characteristic not two. If n ≥ 1 and

R = k[x]/xnk[x], then G1(R) ∼= k∗.

Remark 2.6.2. We note that Example 2.6.1 follows immediately from Quillen’s Dévissage The-

orem ( [57], §5 Theorem 4), but we find the calculation illustrative of our methods as well as

allowing us to generalize ( [31], Example 10.2).

Example 2.6.3. Let k be an algebraically closed field of characteristic not two, three or five. If R

is the finite-type singularity k[[t2, t2n+1]] for n ≥ 0, then G1(R) ∼= R
∗
= k[[t]]∗;

Example 2.6.4. Let k be an algebraically closed field of characteristic not two. If S = k[[x, y]] let

f1, . . . , fn ∈ (x, y) be irreducible and f = f1 · · · fn be such that

(i) R := S/fS is an isolated singularity (ie. (fi) 6= (fj))

(ii) fi /∈ (x, y)2 for all i.

(iii) (fi, fi+1) = (x, y).

Then G1(R) ∼= Z⊕(n−1) ⊕R
∗

(where R is the integral closure of R);

Remark 2.6.5. We note here that Examples 2.6.3 and 2.6.4 follow from the use of more classical

technology. Let A ⊆ B be an inclusion of commutative Noetherian such that B is a module-

finite extension of A. Let I ⊆ A and J ⊆ B be ideals such that IB ⊆ J . Set X = Spec(A) \

Spec(A/I), Y = Spec(B) \ Spec(B/J), and suppose that the induced morphism of schemes

X −→ Y is an isomorphism. Then Quillen’s Localization Theorem ( [57], Theorem 5) yields long

exact sequences

Gi(A/I) −→ Gi(A) −→ Gi(X) −→ Gi−1(A/I) −→ · · ·

and

Gi(B/J) −→ Gi(B) −→ Gi(Y ) −→ Gi−1(B/J) −→ · · ·

Where we note that for a Noetherian scheme S , Gi(S) is the ith Quillen K-group of the category

of coherent OS-modules. Now restriction of scalars induces the following commutative diagram
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· · · ✲ Gi(B/J)
δB/J
✲ Gi(B)

δB
✲ Gi(Y )

δY
✲ Gi−1(B/J) ✲ · · ·

· · · ✲ Gi(A/I)

εB/J

❄

δA/I

✲ Gi(A)

εB
❄

δA

✲ Gi(X)

εY
❄

δX

✲ Gi−1(A/I)
❄

✲ · · ·

Where we note that εY is an isomorphism. Some rather involved but straightforward diagram

chasing gives a Mayer-Vietoris-like sequence of G-groups that we denote by (⋆):

· · · −→ Gi(B/J)
α

−→ Gi(A/I)⊕Gi(B)
β

−→ Gi(A)
γ

−→ Gi−1(B/J) −→ · · ·

Where α =



εB/J

δB/J


, β = (δA/I ,−εB), and γ = δY ε

−1
Y δA.

To see how we can recover the claims in Example 2.6.3 using (⋆), let I = (t2, t2n+1) ⊆

k[[t2, t2n+1]] = A and J = (t) ⊆ B = k[[t]]. We note that B is a module-finite extension of A and

Spec(A) \ Spec(A/I) = {(0)} ∼= Spec(B) \ Spec(B/J) = {(0)}, so the above requirements are

met. Using (⋆), we obtain a long exact sequence

Gi(k)
α

−→ Gi(k)⊕Gi(B)
β

−→ Gi(A)
γ

−→ Gi−1(k)
α′

−→ Gi−1(k)⊕Gi−1(B)

Where α′ =



ε′B/J

δ′B/J


. As I = J ∩ A, the induced map A/I −→ B/J is an isomorphism, so that

εB/J is an isomorphism. In particular, we obtain the exact sequence

0 −→ Gi(B)/im(δB/J) −→ Gi(A)
γ

−→ Gi−1(k)
α′

−→ Gi−1(k)⊕Gi−1(B)

Now δB/J = δ′B/J = 0, so that we easily obtain from the above exact sequence Gi(B) ∼= Gi(A).

In particular, G1(A) = G1(k[[t
2, t2n+1]] ∼= G1(B) = G1(k[[t]]) = k[[t]]∗. We note, unlike the

restriction on the characteristic we encounter using Theorem 2.1.3 below, this holds regardless of

the characteristic.
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To see how we can recover the claims in Example 2.6.4 using (⋆), we let A = S/(f1 · · · fn)

with I the maximal ideal of A and B = S/(f1)⊕ · · · ⊕S/(fn) with J = m1 ⊕ · · · ⊕mn, where mi

is the maximal ideal of the local ring S/(fi). It is easy to see that B is a module-finite extension of

A. Moreover, B is also the integral closure of A in its total quotient ring. We also have

X = Spec(A) \ Spec(A/I) = {(fi)/(f1 · · · fn) : 1 ≤ i ≤ n}

Y = Spec(B) \ Spec(B/J) =

{
S/(f1)⊕ · · · ⊕ 0︸︷︷︸

i

⊕ · · · ⊕ S/(fn) : 1 ≤ i ≤ n

}

From the above, it is clear the induced mapX −→ Y is given by (fi)/(f1 · · · fn) 7→ S/(f1)⊕· · ·⊕

0︸︷︷︸
i

⊕ · · · ⊕ S/(fn), hence is clearly an isomorphism. From (⋆), we obtain a long exact sequence

Gi(k)
⊕n α

−→ Gi(k)⊕Gi(B)
β

−→ Gi(A)
γ

−→ Gi−1(k)
⊕n α′

−→ Gi−1(k)⊕Gi−1(B)

Now the first component of α and α′ is the summing map. Moreover, δB/J = δ′B/J = 0 (where

δ′B/J is the second component of α′) so that we obtain an exact sequence

0 −→ Gi(B) −→ Gi(A) −→ Gi−1(k)
⊕(n−1) −→ 0

As fj /∈ (x, y)2, S/(fj) is regular, hence Gi(B) = Ki(B). Specializing to i = 1, we obtain the

exact sequence

0 −→ K1(B) −→ G1(A) −→ Z⊕(n−1) −→ 0

Since the above sequence splits, we obtain G1(A) ∼= K1(B)⊕Zn−1. As K1(S/(fj)) = (S/(fj))
∗,

it is easy to see that K1(B) = B∗. This gives Example 2.6.4. We note that (iii) in the hypothesis

of Example 2.6.4 is not needed, so this is more general.

While we can recover Examples 2.6.3 and 2.6.4 from these methods, we find that our work

expands on calculations given in ( [53], Section 7.3 and Proposition 7.26) and ( [31], Example

10.5).
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Lastly, our results that do not follow from our arguments in Remark 2.6.5 are the following:

Proposition 2.6.6. Let k be an algebraically closed field of characteristic not two.

(a) If R = k[[s2, st, t2]], then G1(R) ∼= R∗.

(b) Suppose k has characteristic zero, S = k[[x, y]], S ′ = k[[x, y, u, v]], and R′ = S ′/(f +

uv)S ′, where f = f1 · · · fn ∈ S = k[[x, y]] is such that

(i) S/fS is an isolated singularity (ie. (fi) 6= (fj))

(ii) fi /∈ (x, y)2 for all i.

(iii) (fi, fi+1) = (x, y).

ThenG1(R
′) ∼= Z⊕(n−1)⊕

(
R′∗ ⊕ k[[w, z]]∗⊕(n−1)

)
/Ξ, with Ξ the subgroup of Definition 2.2.21

and w, z variables over k.

2.6.1 The n-Auslander-Reiten Matrix

Before we can use Theorem 2.1.3 to perform the calculation of Examples 2.6.1, 2.6.3, 2.6.4,

and prove Proposition 2.6.6, we need to explicitly define the free group H occurring in the decom-

position of G1(R) in Theorem 2.1.3. Our assumptions are as usual and we also require that R is a

k-algebra and k is algebraically closed of characteristic not two. We use L = L0 ⊕ L1 ⊕ · · · ⊕ Lt

to denote an n-cluster tilting object of mcmR such that Λ = EndR(L)
op has finite global dimen-

sion. We assume that L0, L1, . . . , Lt are the pairwise non-isomorphic summands of L (each occurs

with multiplicity one in the decomposition of L) and that L0 = R. Let I = {L0, L1, . . . , Lt} and

I0 = I\ {L0}. We set C = addRL. Recall, for j > 0, there is an exact sequence, called the

n-Auslander-Reiten ending in Lj (see Definition 2.2.15):

0 −→ Cj
n −→ · · · −→ Cj

0 −→ Lj −→ 0

with Cj
0 , C

j
1 , . . . , C

j
n ∈ C. Given N ∈ C, let #(i, N) be the number of Li-summands (0 ≤ i ≤

t) appearing in a decomposition of N into the indecompsables R-modules L0, L1, . . . , Lt.
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Following [53], we define a (t + 1) × t integer matrix T whose ij-th entry is #(i, Lj) +
∑n

u=0(−1)u+1#(i, Cj
u) = δij +

∑n
u=0(−1)u+1#(i, Cj

u) (note that T has a 0th row but no 0th col-

umn). As G0(k) = Z and G0(Λ) = Z⊕t, Theorem 2.1.2 gives us a map Z⊕t −→ Z⊕(t+1). It is

shown in ( [53], Section 7.2) that T defines the map Z⊕t −→ Z⊕(t+1) afforded to us by Theorem

2.1.2. We call T the n-Auslander-Reiten matrix or the n-Auslander-Reiten homomorphism. More-

over, this is the same map given in Theorem 2.1.1 when mcmR has a 1-cluster tilting object. For

our needs, recall Theorem 2.1.3 says G1(R) = H⊕ AutR(L)ab/Ξ, so that now H = ker(T ).

We make a useful observation before our computations.

Lemma 2.6.7. Let 1 ≤ i1 < · · · < ih ≤ t and L′ = L⊕q
i1

⊕ · · · ⊕L⊕q
ih

with q > 0. Then for a ∈ R∗,

we have detΛop(ã1L′) = α, where α ∈ (Λop)∗ is given by diag(1L0
, . . . , aq1Li1

, . . . , aq1Lih
, . . . , 1Lt)

Proof. From Remark 2.2.16, we see that ã1L′ : L⊕q −→ L⊕q is the map e1L⊕q , where e ∈ (Λop)∗ is

given by diag(1L0
, . . . , a1Li1

, . . . , a1Lih
, . . . , 1Lt). Now recall the injectionGL1(Λ

op) = (Λop)∗ →֒

GLq(Λ
op) that takes γ ∈ (Λop)∗ to the automorphism d1(γ) = diag(γ, 1L, . . . , 1L) ∈ GLq(Λ

op).

Now

(e1L⊕q)−1 · d1(α) = e−11L⊕q · d1(α) = β1 · · · βq−1

where βu := d1(e)du+1(e
−1) ∈ GLq(Λ

op). Consider the element γu := diag(e, 1, . . . , 1) in

GLu(Λ
op). Then, by slight abuse of notation, the matrix δu := diag(γu, γ

−1
u ) in GL2u is in the

commutator subgroup of GL2u(Λ
op) by ( [58], Corollary 2.1.3). Thus by ( [58], Proposition

2.1.4), each δu is in the commutator subgroup of GL(Λop). In GL(Λ
op), either βu is the image

of δu under the injection GL2u(Λ
op) →֒ GLq(Λ

op), or δu is the image of βu under the injection

GLq(Λ
op) →֒ GL2u(Λ

op). In either case we see that βu is in the commutator subgroup of GL(Λop).

Hence e1L⊕q ≡ d1(α) in GL(Λop)ab.

Since detΛop : GL(Λop)ab −→ (Λop)∗ab is the inverse of the isomorphism induced by the map

(Λop)∗ = GL1(Λ
op) →֒ GL(Λop) ։ GL(Λop)ab
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We see that detΛop(e1L⊕q) = α.

We note R has finite type if and only if R has a 1-cluster tilting object M . In this case,

mcmR = addRM and M = M0 ⊕M1 ⊕ · · · ⊕Mt, with M0 = R and M1, . . . ,Mt the non-free

indecomposable maximal Cohen-MacaulayR-modules. For j > 0, we call the 1-Auslander-Reiten

sequence ending in Mj the Auslander-Reiten sequence ending in Mj and the 1-Auslander-Reiten

matrix is referred to as the Auslander-Reiten matrix. The Auslander-Reiten matrix is a classical

invariant and we denote it by Υ.

We now make use of Theorem 2.1.3 perform the calculations of Examples 2.6.1, 2.6.3, 2.6.4,

and prove Proposition 2.6.6. That is, in the context of Theorem 2.1.3, we must compute the kernel

of the n-Auslander-Reiten homomorphism and the subgroup Ξ of AutR(L)ab. In each computation,

it will also be clear that R is a k-algebra.

2.6.2 Truncated Polynomial Rings in One Variable

Our aim here is to utilize Theorem 2.1.3 to perform the calculation in Example 2.6.1. That is,

if R = k[x]/xnk[x], then G1(R) ∼= k∗.

Proof. For n = 1, R = k, so G1(R) = K1(R) ∼= k∗.

We now suppose n ≥ 2. Let m denote the maximal ideal xR. By the proof of ( [47], Theorem

3.3), R has finite type and the indecomposable R-modules are given by R,m, . . . ,mn−1. Let M be

the R-module given by R⊕m⊕· · ·⊕mn−1 and denote its endomorphism ring by E. Using ( [69],

Lemma 2.9 ) it is not hard to see the Auslander-Reiten sequences ending in mj are given by

0 −→ m
j −→ m

j−1 ⊕m
j+1 −→ m

j −→ 0 (1 ≤ j ≤ n− 1) (⋆)

Thus for 1 ≤ j ≤ n − 2, Υ has its jth column given by (0, . . . ,−1, 2,−1, . . . , 0)T , where −1, 2

and −1 occur in rows j − 1, j and j + 1, respectively. And the (n − 1)st column is given by

(0, . . . , 0,−1, 2)T . It is easy to see that Υ is injective.
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We compute the subgroup Ξ of E∗
ab from Definition 2.2.21. By (⋆) and Lemma 2.6.7, the

subgroup Ξ is generated by elements

ξa,j = (ã21mj) · ( ˜a−11mj−1 ⊕ a−11mj+1) (1 ≤ j ≤ n− 2)

ξa,n−1 = (ã21mn−1) · ( ˜a−11mn−2)

where a runs over k∗. Again by Lemma 2.6.7, we have

ξa,j = diag(1R, . . . , a
−11mj−1 , a21mj , a−11mj+1 , . . . , 1mn−1)

ξa,n−1 = diag(1R, . . . , . . . , a
−11mn−2 , a21mn−1)

By (a) of Proposition 2.5.1, there is an isomorphism E∗
ab
∼= (k∗)⊕n. We regard Ξ as a subgroup

of (k∗)⊕n and abuse notation to write

ξa,j = (1, . . . , a−1, a2, a−1, . . . 1)

ξa,n−1 = (1, . . . , a−1, a2)

Where a−1, a2 and a−1 occur in ξa,j at positions j, j+1 and j+2, respectively. Let Ψ : (k∗)⊕n −→

k∗ be the map such that Ψ(a1, . . . , an) = an1a
n−1
2 · · · an. Then Ψ is a surjective group homo-

morphism such that Ξ ⊆ ker(Ψ). Let (a1, . . . , an) ∈ ker(Ψ), so that an1a
n−1
2 · · · an = 1. Then

(a1, . . . , an) = ζ1 · · · ζn−1, where

ζj =
n−1∏

v=j

ξaj−v−1

j ,v

Thus Ψ induces an isomorphism Ψ : (k∗)⊕n/Ξ −→ k∗, hence G1(R) ∼= k∗ by Theorem 2.1.3.
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2.6.3 Singularity of Type A2n in Dimension One

The ADE singularity of type A2n is given by the ring R = k[[t2, t2n+1]]. Here we utilize

Theorem 2.1.3 to perform the calculation in Example 2.6.3. That is, if the characteristic of k is not

2, 3 or 5, then G1(R) ∼= R
∗
= k[[t]]∗.

Proof. For n = 0, R = k[[t]], a regular local ring, so that G1(R) ∼= K1(R) ∼= R∗ = k[[t]]∗ by

Quillen’s Resolution Theorem ( [57], §Theorem 3).

We now suppose n ≥ 1. Now R has finite type and the indecomposable maximal Cohen-

Macaulay R-modules are Rj = k[[t2, t2(n−j)+1]], with j = 0, . . . , n by ( [69], Proposition 5.11).

Thus M is the R-module R0 ⊕ R1 ⊕ · · · ⊕ Rn (R0 = R). Let E be the endomorphism ring of M .

By the proof of ( [69], Proposition 5.11), the Auslander-Reiten sequence ending in Rj is

0 −→ Rj −→ Rj−1 ⊕Rj+1 −→ Rj −→ 0 (1 ≤ j < n)

0 −→ Rn −→ Rn−1 ⊕Rn −→ Rn −→ 0

Thus the Auslander-Reiten matrix Υ, for 1 ≤ j ≤ n − 1, has jth column given by

(0, . . . ,−1, 2,−1, . . . , 0)T , with −1, 2 and −1 occur in rows j − 1, j and j + 1, respectively.

The nth column is given by (0, . . . , 0,−1, 1)T . Now Υ is clearly injective, hence G1(R) ∼= E∗
ab/Ξ

by Theorem 2.1.3. We calculate the subgroup Ξ occurring of Definition 2.2.21. By Lemma 2.6.7,

the subgroup Ξ is generated by the elements

ξa,j = ã21Rj
· ˜a−11Rj−1

⊕ a−11Rj+1
(1 ≤ j < n)

ξa,n = ã21Rn · ˜a−11Rn−1
⊕ a−11Rn

Where a runs over k∗. We abuse notation and regard Ξ as a subgroup of (k∗)⊕(n+1). We com-

pute compute (k∗)⊕(n+1)/Ξ, viewing the elements of Ξ as a row vectors in (k∗)⊕(n+1). Hence the

elements that generate Ξ are given by
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ξa,j = (1, . . . , a−1, a2, a−1, . . . , 1) (1 ≤ j < n)

ξa,n = (1, . . . , a−1, a)

Where a−1, a2 and a−1 occur in positions j, j+1 and j+2 for 1 ≤ j < n. Let χ : (k∗)⊕(n+1) −→ k∗

be given by χ(a1, . . . , an+1) = a1 · · · an+1. Then ker(χ) is generated by elements of the form

(a1, . . . , an+1) such that

(a1, . . . , an+1) = (a−1
2 , a2, 1, . . . , 1)(a

−1
3 , 1, a3, 1, . . . , 1) · · · (a

−1
n+1, 1, 1, . . . , an+1)

We show Ξ = ker(χ). Obviously, Ξ ⊆ ker(χ). For the converse, it suffices to show the elements

ζa,j = (a−1, 1 . . . , a, . . . , 1), where a is in the jth position and 2 ≤ j ≤ n+1, are in Ξ. Indeed, note

that ζ2,a = ξa,1ξa,2 · · · ξa,n and for j > 2, we have ζa,j = ζa,j−1ξa,j−1ξa,j · · · ξa,n. Thus ker(χ) = Ξ

as needed. Combining the above and using (b) of Proposition 2.5.1, we have

G1(R) ∼= (k∗)⊕(n+1)/Ξ⊕ (1 + tk[[t]]) ∼= k∗ ⊕ (1 + tk[[t]]) ∼= k[[t]]∗

2.6.4 Reduced Hypersurface Singularities in Dimension One

Our aim here is use Theorem 2.1.3 to perform the calculation in Example 2.6.4. We recall

Example 2.6.4. We let S = k[[x, y]], f1, . . . , fn ∈ (x, y)\(x, y)2, with fi irreducible, f = f1 · · · fn,

R = S/fS is an isolated singularity (i.e. fiS 6= fjS), and (fi, fi+1) = (x, y). Then G1(R) ∼=

Z⊕(n−1) ⊕R
∗
.

Proof. Now L = S1 ⊕ · · · ⊕ Sn, with Si = S/(f1 · · · fi), is a 2-cluster tilting object in mcmR. In

order to compute G1(R), we need to understand the structure of the 2-Auslander-Reiten sequences

in C = addRL. By ( [39], Proof of Theorem 4.11) the 2-Auslander-Reiten sequences ending in Sj

are

47



0 −→ Sj −→ Sj+1 ⊕ Sj−1 −→ Sj+1 ⊕ Sj−1 −→ Sj −→ 0 (1 ≤ j < n)

From this and Lemma 2.6.7 it is clear that the subgroup Ξ of AutR(L)ab is trivial. Moreover, from

this, it is easy to see that the 2-Auslander-Reiten matrix T : Z⊕(n−1) −→ Z⊕n is zero. Thus by

Theorem 2.1.3 and (d) of Proposition 2.5.1

G1(R) ∼= ker(T )⊕ AutR(L)ab
∼= Z⊕(n−1) ⊕R

∗

2.6.5 Singularity of Type A1 in Dimension Two

Our aim here is to prove (a) of Proposition 2.6.6. That is, if R is the ring k[[s2, st, t2]] then

G1(R) ∼= R∗.

Proof. By ( [47], Example 5.25 and 13.21) R has finite type and the indecomposable maximal

Cohen-Macaulay R-modules are R and I = (s2, st). Moreover, the Auslander-Reiten sequence

ending in I is given by

0 −→ I −→ R2 −→ I −→ 0

Set M = R⊕ I and let E be its endomorphism ring.

An easy calculation shows that the Auslander-Reiten homomorphism Υ : Z −→ Z⊕2 is injec-

tive. Now Ξ is the subgroup of E∗
ab generated by the elements

ã1I · detE(ã1R2)−1 · ã1I = ã21I · detE(ã1R2)−1 (a ∈ k∗)

The automorphism of M , ã21I , is given by diag(1R, a
21I). Using Lemma 2.6.7, detE(ã1R2) is the

image of the automorphism diag(a21R, 1I) in E∗
ab. Thus Ξ is the subgroup of E∗

ab generated by the

elements

diag(1R, a
21I) · diag(a−21R, 1I) = diag(a−21R, a

21I)
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As groups, Ξ ∼= k∗2 = {a2 : a ∈ k∗}. Since k is algebraically closed, k∗2 = k∗. Using (c) of

Proposition 2.5.1, we have E∗
ab

∼= k∗ ⊕ R∗, hence E∗
ab/Ξ

∼= R∗. Thus G1(R) ∼= R∗ by Theorem

2.1.3, since Υ is injective.

2.6.6 Reduced Hypersurface Singularities in Dimension Three

Our aim here is to prove (b) of Proposition 2.6.6. We recall (b). If S ′ = k[[x, y, u, v]], R′ =

S ′/(f + uv)S ′, where f = f1 · · · fn with fi ∈ (x, y)\(x, y)2 ⊆ S = k[[x, y]] are such that then

G1(R
′) ∼= Z⊕(n−1) ⊕

(
R′∗ ⊕ k[[w, z]]∗⊕(n−1)

)
/Ξ, with Ξ the subgroup from Theorem 2.1.3 and

w, z variables over k.

Proof. If Ui = (u, f1 · · · fi), then L = U1 ⊕ · · · ⊕ Un is a 2-cluster tilting object. Then by

( [53], Proposition 7.28), the 2-Auslander-Reiten matrix T is zero. By (e) of Proposition 2.5.1,

AutR′(L)ab
∼= R′∗ ⊕ (k[[w, z]])∗⊕(n−1) (w and z variables over k), thus Theorem 2.1.3 yields

G1(R
′) ∼= Z⊕(n−1) ⊕

(
R′∗ ⊕ k[[w, z]]∗⊕(n−1)

)
/Ξ

Where Ξ is the subgroup of R′∗ ⊕ k[[w, z]]∗⊕(n−1) of Definition 2.2.21.

2.7 Discussion

It is of interest to note that in the calculations of G1(R) for R of positive dimension, either

G1(R) ∼= R
∗

(R is the integral closure of R in its total quotient ring), or G1(R) contains R
∗

a

direct summand. Our methods were ad hoc and tailored specifically to each singularity via the

calculation of the group AutR(L)ab, so a deeper look into the relationship between Λ = EndR(L)
op

and R could shed some light on the structure of G1(R) for hypersurface singularities.

In fact, the key to the relationship seems to be understanding the relationship between the

derived categories of modEndR(L)
op and modR. Indeed, in [18], it is shown that if A and B

are Noetherian (not necessarily commutative) rings whose derived categories are equivalent as
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triangulated categories, then there is an isomorphism Gi(A) ∼= Gi(B) for i ≥ 0. Of course, one

should not expect an equivalence of the derived categories of modEndR(L)
op and modR since our

examples (see Proposition 2.5.1) indicate for positive-dimensional rings that G1(EndR(L)
op) ∼=

AutR(L)ab only contains R
∗

as a direct summand. Moreover, it may also be too much to ask that

G1(R) is a direct summand ofG1(EndR(L)
op), asG1(R) is not always isomorphic toR

∗
. However,

if R is a reduced one-dimensional local Noetherian ring, then R = R/p1 × · · · × R/ps, where the

pj are the minimal primes of R and each ring R/pj is a semilocal principal ideal domain. In this

situation

G1(R) ∼= G1(R/p1)× · · · ×G1(R/ps)

Now R/pj is semilocal and has finite global dimension, hence if R is an algebra over a field k with

char(k) 6= 2, then Quillen’s Resolution Theorem ( [57], §Theorem 3), ( [60], Corollary 2.6 and

Theorem 5.1), and ( [66], Theorem 2) show there are isomorphisms

G1(R/pj) ∼= K1(R/pj) ∼= KC
1 (R/pj) = (R/pj)

∗

Thus G1(R) ∼= R
∗

in this case. Nevertheless, we conjecture that if R satisfies the hypotheses of

Theorem 2.1.3 and has positive dimension, then AutR(L)ab/Ξ ∼= R
∗

and hence G1(R) is isomor-

phic to the direct sum of the kernel of the n-Auslander-Reiten homomorphism and R
∗
.
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Chapter 3

The Weak Lefschetz for a Class of Finite Length

Modules Over K[x, y, z]

3.1 Introduction

Let2 K be an algebraically closed field and S the polynomial ring K[x0, . . . , xr] with standard

grading and irrelevant maximal ideal m = (x0, . . . , xr). All S-modules considered are finitely

generated. In particular, all Artinian S-modules have finite length. Thus if N is a graded finite

length S-module, then N = ⊕j∈ZNj , where all but finitely many of the Nj are nonzero and

dimK(Nj) <∞. We begin with the following.

Definition 3.1.1. If N is a graded Artinian S-module, then we say that N has the Weak Lefschetz

Property if there is a general linear form ℓ ∈ S1 such that the K-linear map ×ℓ : Nj −→ Nj+1 has

maximal rank for all j.

Richard Stanley and others showed how the Weak Lefschetz Property, a property that is ge-

ometric and algebraic in nature, ties in with several interesting problems of a combinatorial na-

ture [12,48,61,62]. In particular, Stanley utilized the property to complete the proof of McMullen’s

conjecture on the characterization of f -vectors of simplicial polytopes. In honor of the influential

works of Stanley, the Weak Lefschetz Property is also referred to as the Weak Stanley Property in

the literature. There has been a rich body of research establishing the existence or non-existence

of the Weak Lefschetz Property for various types of Artinian algebras, in particular for Artinian

Gorenstein algebras [5,32,34,37,68] and other Artinian algebras with special structure [49,51,70].

Within this rapidly growing body of research involving the Weak Lefschetz Property, we found the

following survey type works to be very helpful [33, 50].

2The main results in this chapter can be found in the paper [21], which is joint with Gioia Failla and Chris Peterson.
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Throughout the remainder of this chapter, we focus on the case when r = 2, and write R =

K[x, y, z].

There were two papers that played a major role in inspiring us to utilize an approaching using

vector bundle techniques that ultimately led to a proof of our main result. The first was [34], which

made use of the Grauert-Mülich theorem to gain further insight into the Weak Lefschetz Property

of a height three complete intersection. The Grauert-Mülich theorem enabled them to pinpoint the

generic splitting type of a stable, normalized, rank two vector bundle on P2 which enabled precise

homological conclusions to be made. The second influential work for us was the paper by Brenner

and Kaid [8] which made further use of the Grauert-Mülich theorem for higher rank bundles on P2

and solidified the connection between the generic splitting type of a bundle and the Weak Lefschetz

Property.

It is very natural to study codimension three complete intersections via the Koszul complex.

First of all, the Koszul complex is exact for complete intersections. Second, by sheafifying the

Koszul complex, one can identify the first cohomology module of an associated rank two locally

free sheaf as the Artinian module R/(f1, f2, f3), where f1, f2, f3 is a regular sequence of homo-

geneous polynomials in R defining the complete intersection. A natural generalization can be

obtained via the Buchsbaum-Rim complex associated to a graded R-linear map ϕ : F → G where

F is a freeR-module of rank n+2 and G is a freeR-module of rank n. In particular, if the cokernel

of ϕ is of codimension three, which over R corresponds to the cokernel being a module of finite

length, then the Buchsbaum-Rim complex is exact. By sheafifying the Buchsbaum-Rim complex

we can again identify the first cohomology module of an associated rank two locally free sheaf,

E , as the cokernel of ϕ. As in the papers [8, 34], it is crucial to understand the generic splitting

type of E and its relationship to the multiplication between consecutive graded components of the

cokernel of ϕ induced by a general linear form.

This chapter is broken into four sections. In section two of this paper we provide background

meant to clarify the connection between the Buchsbaum-Rim complex for a certain class of finite

length R-modules and rank 2 vector bundles on P2. The third section contains the statement and
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proofs of the main results of the paper. In particular, we show that the first cohomology module of

any rank 2 vector bundle on P2 satisfies the Weak Lefschetz Property. The final section consists of

examples, some potential paths for future research, and concluding remarks.

3.2 The Buchsbaum-Rim complex

Let F = ⊕n+2
j=1R(−bj), let G = ⊕n

i=1R(−ai), let a = a1+ · · ·+ an, and let b = b1+ · · ·+ bn+2.

Given a graded map of degree zero ϕ : F → G we have a kernel E, cokernel M and an exact

sequence

0 → E → F → G →M → 0. (3.1)

In addition, we have a Buchsbaum-Rim complex associated to φ : F → G [9, 10]. If the

cokernel of φ has the “expected codimension”, which in this case corresponds to requiring that M

has finite length, then the Buchsbaum-Rim complex is exact and has the form (see Section 4.2.3

for details):

0 → G∨(a− b) → F∨(a− b) → F → G →M → 0 (3.2)

This complex is one of a much larger family of complexes associated to sufficiently general

maps between R-modules. These complexes are exact if a certain genericity condition is met and

they can be derived by considering “strands” of a particular Koszul complex (see ( [19], Appendix

A2.6) for details).

If we sheafify (3.2) then we get an exact sequence of locally free sheaves

0 → G∨(a− b) → F∨(a− b) → F → G → 0 (3.3)

which can be decomposed into the two short exact sequences

0 → G∨(b− a) → F∨(a− b) → E → 0 (3.4)
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0 → E → F → G → 0. (3.5)

Note that (3.5) is also the sheafification of (3.1). The locally free sheaf E has rank two and is

an example of a (first) Buchsbaum-Rim sheaf. The apparent symmetry of the Buchsbaum-Rim

complex is closely related to the fact that a rank 2 locally free sheaf is self-dual (up to a twist

by a line bundle). In general, the structure found in the Buchsbaum-Rim complex is reflected in

properties of E , in properties of its sections, and in properties of its cohomology modules [42, 52].

In particular, the rigidity of the Buchsbaum-Rim complex, when it is exact, suggests that properties

of the objects involved reduce to combinatorial considerations of the ai and bj involved in the

definitions of F and G. In the next section, we will see that this is indeed the case. Let H0
∗ (P

2, E)

denote the module ⊕i∈ZH
0(P2, E(i)). If we apply the global section functor to the short exact

sequence

0 → E → F → G → 0

we obtain the long exact sequence

0 → H0
∗ (P

2, E) → H0
∗ (P

2,F) → H0
∗ (P

2,G) → H1
∗ (P

2, E) → H1
∗ (P

2,F) → . . . . (3.6)

Note that H1
∗ (P

2,F) = 0 since F = ⊕n
i=1OP2(−ai) and that (3.6) is actually a recovery of (3.1).

In particular, we have

H1
∗ (P

2, E) =M.

In general, finite length R-modules that can be expressed as cokernels of maps of the form

ϕ : ⊕n+2
j=1R(−bj) → ⊕n

i=1R(−ai) correspond to finite length modules of the form H1
∗ (P

2, E),

where E is a rank 2 locally free sheaf on P2.

3.3 Main Results

In this section, we collect the key definitions and theorems that form the heart of the paper.

Many of the needed tools can be found in the books [36, 54].
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Definition 3.3.1. Let E be a torsion free sheaf on Pn. Let c1(E) denote the first Chern class of E

and let rank(E) denote its rank.

1) The slope of E is the rational number µ(E) = c1(E)/rank(E)

2) E is said to be stable if for any non-zero subsheaf F ⊂ E the slopes satisfy µ(F) < µ(E)

3) E is said to be semistable if for any non-zero subsheaf F ⊂ E the slopes satisfy µ(F) ≤ µ(E)

4) E is unstable if it is not semistable.

In various contexts, the definition of stability given above is sometimes referred to by other

names including slope stability, µ-stability, Mumford stability, or Mumford-Takemoto stability.

Let E be a vector bundle on Pn and let e denote the rank of E . We say that E is a normalized

bundle if c1(E) ∈ {−e + 1, . . . , 0}. In general, there exists a unique a ∈ Z such that E(a) is a

normalized bundle. In particular, if E is a normalized rank 2 vector bundle, then c1(E) ∈ {−1, 0}.

The following lemma is a quick application of the definition of stability (see Chapter II of [54]

for a more detailed discussion of stability and Lemma 1.2.5 on pg. 166-167 for the statement and

proof of the lemma).

Lemma 3.3.2. Let E be an normalized rank 2 vector bundle on Pn.

1) E is stable if and only if H0(Pn, E) = 0.

2) If c1(E) = −1 then E is semistable if and only if E is stable

3) If c1(E) = 0 then E is semistable if and only if H0(Pn, E(−1)) = 0.

The following is the Grauert-Mülich Theorem for rank 2 bundles on Pn. For a more detailed

discussion of the Grauert-Mülich theorem and its role in the classification of vector bundles, see

[29] for the original result or see ( [54], Ch. 2, Sec. 2) for a general discussion of the splitting

behavior of vector bundle and ( [54], Corollary 2, pg. 206) for the specifics of the Grauert-Mülich

theorem.
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Proposition 3.3.3. Let E be a semistable, normalized, rank 2 vector bundle on Pn. Let L be a

general line.

1) If c1(E) = 0 then the restriction to L splits as E|L ∼= OP1 ⊕OP1 .

2) If c1(E) = −1 then the restriction to L splits as E|L ∼= OP1(−1)⊕OP1 .

Definition 3.3.4. If E is an unstable, normalized, rank 2 vector bundle on Pn then the largest a

such that H0(Pn, E(−a)) 6= 0 is called the index of instability of E .

From the above lemma, if E is an unstable, normalized, rank 2 vector bundle on Pn and c1(E) =

0 then its index of instability is greater than zero. Similarly, if c1(E) = −1 then its index of

instability is at least zero. If E is a vector bundle on P2, we can make a stronger statement:

Proposition 3.3.5. Let E be an unstable, normalized, rank 2 vector bundle on P2. Let k be the

index of instability of E . Let L be a general line in P2. Then

1) Every nonzero section s ∈ H0(P2, E(−k)) is regular.

2) If c1(E) = 0 then k > 0 and E|L = OP1(−k)⊕OP1(k).

3) If c1(E) = −1 then k ≥ 0 and E|L = OP1(−k − 1)⊕OP1(k).

Proof. Let s be a nonzero section in H0(P2, E(−k)). Using s we can build a short exact sequence

of sheaves

0 → OP2 → E(−k) → Q(−k) → 0

which we can twist by OP2(k) to get the short exact sequence of sheaves

0 → OP2(k) → E → Q → 0
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If s is not regular (i.e. its vanishing locus is not of codimension 2 or greater), then the vanishing

locus of s contains a curve component. This curve is of codimension 1 in P2 thus can be identified

with a form F ∈ R. If we factor out F from s we obtain a nonzero section s′ ∈ H0(P2, E(−k−d))

where d is the degree of F (see [2], Lem. 2, pg. 128). Since k is the largest integer such that

H0(P2, E(−k)) 6= 0, we get a contradiction. Therefore s is regular.

Suppose first that c1(E) = 0. If L = P1 is a general line in P2 then L does not meet the zero

locus of s. As a consequence, the restriction of the short exact sequence to L is still a short exact

sequence and by Chern class considerations, the restriction of Q to L is OP1(−k). Thus, restricting

the exact sequence to L leads to

0 → OP1(k) → E|P1 → OP1(−k) → 0.

Since E has rank 2, is unstable, and has c1 = 0, we know that H0(P2, E(−1)) 6= 0 thus we can

conclude that k > 0. Using this fact, we can conclude that Ext1(OP1(−k),OP1(k)) = 0. As a

consequence, E|P1 = OP1(−k)⊕OP1(k).

Now suppose that c1(E) = −1. Like before, the restriction of the short exact sequence to L is

still a short exact sequence except now, by Chern class considerations, the restriction of Q to L is

OP1(−k − 1). Thus we get the short exact sequence

0 → OP1(k) → E|P1 → OP1(−k − 1) → 0.

Since E has rank 2, is unstable, and has c1 = −1, we know that H0(P2, E) 6= 0 thus we can

conclude that k ≥ 0. Using this fact, we can conclude that Ext1(OP1(−k − 1),OP1(k)) = 0. As a

consequence, E|P1 = OP1(−k − 1)⊕OP1(k).

Proposition 3.3.6. If E is an unstable, normalized, rank 2 vector bundle on P2 with index of

instability k then
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• If c1(E) = 0 then h0(P2, E(t)) =
(
k+t+2

2

)
for t < k.

• If c1(E) = −1 then h0(P2, E(t)) =
(
k+t+2

2

)
for t ≤ k.

Proof. Consider the exact sequence

0 → E(t− 1) → E(t) → E(t)|L → 0.

If we apply the global section functor we get the exact sequence

0 → H0(P2, E(t− 1)) → H0(P2, E(t)) → H0(P2, E(t)|L) → . . .

From this exact sequence, we have

h0(P2, E(t)) ≤ h0(P2, E(t− 1)) + h0(P2, E(t)|L).

If L is a general line then from Proposition 3.3.5 we have that

if c1(E) = 0 then h0(P2, E(t)|L) = h0(P1,OP1(−k + t)⊕OP1(k + t))

if c1(E) = −1 then h0(P2, E(t)|L) = h0(P1,OP1(−k − 1 + t)⊕OP1(k + t))

As a consequence

if c1(E) = 0 and if t < 2k then h0(P2, E(−k + t)|L) = max{0, t+ 1}

if c1(E) = −1 and if t ≤ 2k then h0(P2, E(−k + t)|L) = max{0, t+ 1}

Since there exists a nonzero section s ∈ H0(P2, E(−k)), we can tensor this section by forms

of degree t and produce sections in H0(P2, E(−k + t)). As a consequence, we have

h0(P2, E(t)) ≥

(
k + t+ 2

2

)
or equivalently h0(P2, E(−k + t)) ≥

(
t+ 2

2

)
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We can now establish the claim of the proposition by an inductive approach. In the interest of space,

we let h0(E) denote h0(P2, E). Recalling that h0(E(−k − 1)) = 0 and that h0(P2, E(−k + t)|L) =

t+ 1 (provided t is in the proper range) we have the following inequalities:

1 ≤ h0(E(−k + 0)) ≤ h0(E(−k − 1)) + h0(E(−k + 0)|L) = 0 + 1 = 1

3 ≤ h0(E(−k + 1)) ≤ h0(E(−k + 0)) + h0(E(−k + 1)|L) = 1 + 2 = 3

6 ≤ h0(E(−k + 2)) ≤ h0(E(−k + 1)) + h0(E(−k + 2)|L) = 3 + 3 = 6

. . .
(
t+2
2

)
≤ h0(E(−k + t)) ≤ h0(E(−k + t− 1)) + h0(E(−k + t)|L) =

(
t+1
2

)
+ t+ 1 =

(
t+2
2

)

. . .

For c1(E) = 0, following the inequalities through one at a time leads to the constraint

(
t+ 2

2

)
≤ h0(E(−k + t)) ≤

(
t+ 2

2

)
for t < 2k

or equivalently (
k + t+ 2

2

)
≤ h0(E(t)) ≤

(
k + t+ 2

2

)
for t < k.

Thus we conclude that

if c1(E) = 0 then h0(P2, E(t)) =

(
k + t+ 2

2

)
for t < k.

In a similar manner, we can also conclude that

if c1(E) = −1 then h0(P2, E(t)) =

(
k + t+ 2

2

)
for t ≤ k.
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Theorem 3.3.7. Let E be a normalized, rank 2, locally free sheaf on P2. Let ℓ ∈ R be a general

linear form. Let H1
∗ (P

2, E) = ⊕t∈ZH
1(P2, E(t)). Let ϕℓ(t) : H

1(P2, E(t− 1)) → H1(P2, E(t)) be

the linear map induced by ℓ.

1) H1
∗ (P

2, E) has the Weak Lefschetz Property

2) Let E be stable.

• If c1(E) = 0 then ϕℓ(t) is injective for t ≤ −1 and surjective for t ≥ −1

• If c1(E) = −1 then ϕℓ(t) is injective for t ≤ −1 and surjective for t ≥ 0.

3) Let E be unstable with index of instability k.

• If c1(E) = 0 then ϕℓ(t) is injective for t ≤ k − 1 and surjective for t ≥ −k − 1

• If c1(E) = −1 then ϕℓ(t) is injective for t ≤ k and surjective for t ≥ −k − 1

Proof. In order to prove the theorem, we will first prove 2) and 3) which immediately imply 1).

We denote by L the general plane defined by ℓ. Consider the short exact sequence of sheaves

0 → E(t− 1) → E(t) → E(t)|L → 0. (3.7)

If we apply the global section functor we get the long exact sequence

0 H0(P2, E(t− 1)) H0(P2, E(t)) H0(P2, E(t)|L)

H1(P2, E(t− 1)) H1(P2, E(t)) H1(P2, E(t)|L)

H2(P2, E(t− 1)) H2(P2, E(t)) H2(P2, E(t)|L) = 0
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To show that H1
∗ (P

2, E) has the Weak Lefschetz Property, we need to show that for each t ∈ Z,

the map H1(P2, E(t − 1)) → H1(P2, E(t)) is either injective or surjective. From the long exact

sequence above, we have the following observations:

• The map is injective if and only if h0(P2, E(t− 1))− h0(P2, E(t)) + h0(P2, E(t)|L) = 0.

• The map is injective if h0(P2, E(t)|L) = 0.

• The map is surjective if and only if h1(P2, E(t)|L)− h2(P2, E(t− 1)) + h2(P2, E(t)) = 0.

• The map is surjective if h1(P2, E(t)|L) = 0.

If the generic splitting type of E is OP1(a) ⊕ OP1(b) then, by Serre Duality, h1(P2, E|L) =

h0(P1,OP1(−a−2)⊕OP1(−b−2)) and h1(P2, E(t)|L) = h0(P1,OP1(−a−t−2)⊕OP1(−b−t−2)).

As a consequence, we can easily compute the value of h1(P2, E(t)|L). In particular, if −a−t−2 ≤

−1 and −b− t− 2 ≤ −1 then h1(P2, E(t)|L) = 0. We collect the following facts:

A) Since E is locally free on P2, by duality we have h2(P2, E(t)) = h0(P2, E∨(−t− 3)).

B) If we restrict E to a general line L we have h1(P2, E(t)|L) = h0(P2, E∨(−t− 2)|L).

C) Since E has rank two, if c1(E) = 0 then E∨ ∼= E and if c1(E) = −1 then E∨ ∼= E(1).

We now assume that E is stable and use the above considerations to establish a range of values

of t where the map, ϕℓ(t) : H
1(P2, E(t − 1)) → H1(P2, E(t)), is injective and a range of values

where the map is surjective. It is important to note that the following shows that for every value of

t, the map is either injective or surjective.

Suppose E is stable and that c1(E) = 0. By Proposition 3.3.3, E splits on L as OP1 ⊕ OP1 .

In this case, h0(P2, E(t)|L) = 0 for t ≤ −1 and h1(P2, E(t)|L) = 0 for t ≥ −1. Thus ϕℓ(t) is

injective for t ≤ −1 and surjective for t ≥ −1.
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Suppose E is stable and that c1(E) = −1. By Proposition 3.3.3, E splits on L as OP1(−1)⊕OP1 .

In this case, h0(P2, E(t)|L) = 0 for t ≤ −1 and h1(P2, E(t)|L) = 0 for t ≥ 0.

Suppose E is unstable and that c1(E) = 0. If the index of instability is k then by Proposi-

tion 3.3.5, k > 0 and E|L = OP1(−k) ⊕ OP1(k). In this case, Proposition 3.3.6 allows us to

conclude that

h0(P2, E(t− 1))− h0(P2, E(t)) + h0(P2, E(t)|L) = 0 for t ≤ k − 1.

This implies that ϕℓ(t) is injective for t ≤ k − 1. Using A) and B) above, we note that

h1(P2, E(t)|L)− h2(P2, E(t− 1)) + h2(P2, E(t))

can be expressed as

h0(P2, E∨(−t− 2)|L)− h0(P2, E∨(−t− 2)) + h0(P2, E∨(−t− 3)).

Using C) and rearranging, we can then express this as

h0(P2, E(−t− 3)− h0(P2, E(−t− 2)) + h0(P2, E(−t− 2)|L).

By Proposition 3.3.6 this quantity is equal to 0 for −t − 2 ≤ k − 1. In other words, ϕℓ(t) is

surjective for −k − 1 ≤ t.

Suppose E is unstable and that c1(E) = −1. If the index of instability is k then by Proposi-

tion 3.3.5, k ≥ 0 and E|L = OP1(−k − 1) ⊕ OP1(k). In this case, Proposition 3.3.6 allows us to

conclude that

h0(P2, E(t− 1))− h0(P2, E(t)) + h0(P2, E(t)|L) = 0 for t ≤ k.
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This implies that ϕℓ(t) is injective for t ≤ k. Using A) and B) above, we note that

h1(P2, E(t)|L)− h2(P2, E(t− 1)) + h2(P2, E(t))

can be expressed as

h0(P2, E∨(−t− 2)|L)− h0(P2, E∨(−t− 2)) + h0(P2, E∨(−t− 3)).

Using C) and rearranging, we can then express this as

h0(P2, E(−t− 2)− h0(P2, E(−t− 1)) + h0(P2, E(−t− 1)|L).

By Proposition 3.3.6 this quantity is equal to 0 for −t− 1 ≤ k. In other words, ϕℓ(t) is surjective

for −k − 1 ≤ t.

In each of these cases, we see that for each t ∈ Z, the map H1(P2, E(t − 1)) → H1(P2, E(t))

is either injective or surjective. Thus H1
∗ (P

2, E) has the Weak Lefschetz Property for any rank 2

vector bundle E on P2.

Corollary 3.3.8. If f1, f2, f3 is a regular sequence of homogeneous polynomials in R, then

R/(f1, f2, f3) has the Weak Lefschetz Property.

Corollary 3.3.9. If E is a rank 2 vector bundle on P2 then H1
∗ (P

2, E) is unimodal.

Proof. In the proof of Theorem 3.3.7, we saw that for any rank 2 vector bundle E on P2, there

exists an r such that for t < r the map ×ℓ : H1(P2, E(t − 1)) → H1(P2, E(t)) is injective and

for t ≥ r the map ×ℓ : H1(P2, E(t − 1)) → H1(P2, E(t)) was surjective. This fact establishes

unimodality.
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3.4 An Example and Further Remarks

In this section, we first give an example to illustrate the theorems of the paper and the structure

of the Buchsbaum-Rim complexes. In each of the following two examples, the associated locally

free sheaf is unstable. After giving the two examples, we conclude the paper with a few remarks

and considerations for possible further research.

Example 3.4.1. Consider a map ϕ : R(−7) ⊕ R(−2)3 → R(−1) ⊕ R whose cokernel is a finite

length moduleM . An elementary computation show thatM =M0⊕· · ·⊕M9 has Hilbert function

(1, 4, 6, 7, 7, 7, 7, 6, 4, 1). The Buchsbaum-Rim complex associated to ϕ is:

0 → R(−12)⊕R(−11) → R(−10)3 ⊕R(−5) → R(−7)⊕R(−2)3 → R(−1)⊕R →M → 0

(3.8)

If we sheafify (3.8) and tensor by OP2(6) we get the exact sequence

0 → OP2(−6)⊕OP2(−5) → OP2(−4)3⊕OP2(1) → OP2(−1)⊕OP2(4)3 → OP2(5)⊕OP2(6) → 0

(3.9)

We can break (3.9) into two short exact sequences

0 → OP2(−6)⊕OP2(−5) → OP2(−4)3 ⊕OP2(1) → E → 0 (3.10)

and

0 → E → OP2(−1)⊕OP2(4)3 → OP2(5)⊕OP2(6) → 0 (3.11)

where E is a normalized rank 2 locally free sheaf with c1(E) = 0. From the exact sequence (3.10),

we see that H0(P2, E(−1)) > 0 and H0(P2, E(−2)) = 0. Therefore E is unstable with index of

instability k = 1. By Theorem 3.3.7, ϕℓ(t) is injective for t ≤ 0 and surjective for t ≥ −2 This

corresponds to saying that the map ×ℓ : Md−1 → Md is injective for d ≤ 6 and surjective for
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d ≥ 4. Note that this implies bijectivity for 4 ≤ d ≤ 6 thus M3,M4,M5 and M6 all have the same

dimension. Further note that for every value of d, the map ×ℓ : Md−1 → Md is either injective or

surjective, thus M has the Weak Lefschetz Property.

Example 3.4.2. Consider a map ϕ : R(−8)⊕ R(−2)4 → R(−1)⊕ R2 whose cokernel is a finite

length moduleM . An elementary computation show thatM =M0⊕· · ·⊕M12 has Hilbert function

(2, 7, 11, 14, 16, 17, 17, 17, 16, 14, 11, 7, 2). The Buchsbaum-Rim complex associated to ϕ is:

0 → R(−15)2 ⊕R(−14) → R(−13)4 ⊕R(−7) → R(−8)⊕R(−2)4 → R(−1)⊕R2 →M → 0

(3.12)

If we sheafify (3.12) and tensor by OP2(7) we get the exact sequence

0 → OP2(−8)2⊕OP2(−7) → OP2(−6)4⊕OP2 → OP2(−1)⊕OP2(5)4 → OP2(6)⊕OP2(7)2 → 0

(3.13)

We can break (3.13) into two short exact sequences

0 → OP2(−8)2 ⊕OP2(−7) → OP2(−6)4 ⊕OP2 → E → 0 (3.14)

and

0 → E → OP2(−1)⊕OP2(5)4 → OP2(6)⊕OP2(7)2 → 0 (3.15)

where E is a normalized rank 2 locally free sheaf with c1(E) = −1. From exact sequence (3.14), we

see that H0(P2, E) > 0 and H0(P2, E(−1)) = 0. Therefore E is unstable with index of instability

k = 0. By Theorem 3.3.7, ϕℓ(t) is injective for t ≤ 0 and surjective for t ≥ −1 This corresponds

to saying that the map ×ℓ : Md−1 → Md is injective for d ≤ 7 and surjective for d ≥ 6. Note that

this implies bijectivity for 6 ≤ d ≤ 7 thus M5,M6,M7 all have the same dimension. Further note

that for every value of d, the map ×ℓ :Md−1 →Md is either injective or surjective thus M has the

Weak Lefschetz Property.
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In this paper, we have shown that the first cohomology module of a rank two locally free sheaf

on P2 must have the Weak Lefschetz Property. This is equivalent to showing that if M is a finite

length module arising as the cokernel of a map of the form ϕ : F → G with F = ⊕n+2
j=1R(−bj) and

G = ⊕n
i=1R(−ai), then M has the Weak Lefschetz Property. As a special case, every codimension

three complete intersection has the Weak Lefschetz Property (proved first in [34] and proved again

in [8]).

The key piece needed in the proofs of the main theorems is that E is a rank two locally free sheaf

on a surface. Many of the key conclusions ultimately follow from this fact. This suggests that there

may be generalizations of Theorem 3.3.7 to the case of rank two locally free sheaves on weighted

projective planes and on P1 × P1. We note the interesting paper by Harima and Watanabe where

they considered the strong Lefschetz property for Artinian algebras with non-standard grading [35].

It is hoped that additional progress may be made in the understanding of Lefschetz Properties by

considering the more general problem for modules over rings with a non-standard grading.
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Chapter 4

Algebraic and Geometric Properties Associated to

the Weak Lefschetz for Finite Length Modules

4.1 Introduction

Let3 K be an algebraically closed field and S the polynomial ring K[x0, . . . , xr] with standard

grading and irrelevant maximal ideal m = (x0, . . . , xr). All S-modules considered are finitely

generated. In particular, all Artinian S-modules have finite length.

We also set R = K[x, y, z] and let ϕ : F → G with F = ⊕n+2
j=1R(−bj) and G = ⊕n

i=1R(−ai)

be an R-linear map with Artinian cokernel M .

The original motivation for the work in this chapter grew out of wanting to generalize the main

result of [34] that complete intersections in R have the Weak Lefschetz Property, by showing that

M has the Weak Lefschetz Property. We were partially successful in this direction (see Theorem

4.4.3), as there were restrictions on the ai and bj; these restrictions were removed in [21] (see

Theoremch 3.3.7).

However, in attempting to prove Theorem 4.4.3, we spent a significant time discussing when

M has symmetric and unimodal Hilbert function. As is well-known, complete intersections are

Gorenstein, hence have symmetric Hilbert functions. There is not a widely-used analogue for the

Gorenstein condition for modules of finite length, however, there is a proposed analogue defined

in [43] (see Definition 4.3.4) that suits our needs perfectly. Using [43], we are able to determine

when M has symmetric Hilbert function (see Proposition 4.3.9). Moreover, using this, we are able

to determine when M has unimodal Hilbert function (see Proposition 4.5.3). While the use of such

results was to determine whenM has the Weak Lefschetz, we find they are of independent interest.

3The main results in this paper are taken from the paper [24].
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Inspired by [7], we define and discuss the non-Lefschetz locus for an Artinian graded S-module

N . To wit, given an Artinian S-module N =
⊕

j∈ZNj , the S-module structure of N is determined

by a sequence of K-linear maps φj : S1 −→ HomK(Nj, Nj+1). In particular, given a linear form

ℓ = t0x1 + · · · + trxr, φj(ℓ) is a matrix Xj of linear forms in t0, . . . , tr. Regarding t0, . . . , tr as

variables, we look at the scheme defined by the vanishing of the maximal minors of the matrix Xj ,

and this is our object of study. In particular, we discuss some issues that are raised when attempting

to generalize results of [7], but make use of some connections with results on Artin level modules

from [6], that we also find are of independent interest.

This chapter is organized as follows: In Section 4.2, we compute the minimal free resolution

of a M . This is essential for Section 4.3, where we discuss symmetry and unimodality properties

of M , most notably using an analogue of the Gorenstein condition for Artinian modules defined

in [43]. In Section 2.4, we discuss when the R-module M has the Weak Lefschetz, recover ( [34],

Theorem 2.3), and give an example a family of non-cyclicR-modules that have the Weak Lefschetz

Property. In Section 4.5, we discuss the non-Lefschetz locus for a graded S-module N and give

some generalizations from work in [7]. Most importantly, we discuss what conditions we can

place on N so that is the non-Lefschetz locus is given by at most two degrees, and, in some cases,

a single degree.

4.2 The Minimal Free Resolution of M

Our setup for this section is as follows: R is the polynomial ring K[x, y, z], where K is alge-

braically closed (we will restrict the characteristic when necessary); n > 0 is a positive integer; ϕ

is a degree zero graded homomorphism of free R-modules from
⊕n+2

j=1 R(−bj) to
⊕n

i=1R(−ai)

with finite length cokernel M such that b1 ≤ b2 ≤ · · · ≤ bn+2 and a1 ≤ a2 ≤ · · · ≤ an; the

map ϕ = (ϕij) is such that either ϕij = 0 or ϕij ∈ Reij with eij > 0; and if I denotes the ideal

generated by the n× n minors of ϕ, then I has codimension 3, as M has finite length .

Since I has codimension 3, by ( [19], Theorem A.210), the Buchsbaum-Rim complex provides

the minimal free resolution of M . That is, there is an exact sequence
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F• : 0 −→
n⊕

i=1

R(−di)
δ

−→
n+2⊕

j=1

R(−cj)
ε

−→
n+2⊕

j=1

R(−bj)
ϕ

−→
n⊕

i=1

R(−ai) −→M −→ 0

where the entries of all maps are in m. In this section, we determine the values of the cj and

di. To do so, we first need information about the maps ε and δ. Before we proceed, we note the

following lemma that will be used frequently in the sequel.

Lemma 4.2.1. If ϕ :
⊕n+2

j=1 R(−bj) −→
⊕n

i=1R(−ai) is as above, then bi > ai for i = 1, . . . , n.

Proof. Suppose not. Then there is an i such that bi ≤ ai. We recall that b1 ≤ · · · ≤ bn+2 and

a1 ≤ · · · ≤ an, hence this implies that if u ≤ i and v ≥ i, then bu ≤ av. In particular, ϕ contains a

zero submatrix of size (n − i + 1) × i. Let t(ϕ) denote the half-perimeter of this zero submatrix,

so that t(ϕ) = n + 1. Then ( [28], Théorème 1.6.2) says that the codimension of I is at most

n+ 3− t(ϕ). In particular, I has codimension at most 2, contrary to our assumption.

4.2.1 The map ε

For ease of notation, set F1 =
⊕n+2

j=1 R(−bj) and F2 =
⊕n+2

j=1 R(−cj). Let f11, . . . , f1,n+2 be

a basis for F1 and f21, . . . , f2,n+2 be a basis for F2. Then by ( [19], Section A2.6.1) ε is the map

such that

ε(f2j) =
∑

Kpj⊂Hj

sgn(Kpj ⊂ Hj) det(ϕKpj
)f1p

Where for j = 1, . . . , n+ 2, Hj := {1, . . . , n+ 2} \ {j}; for p ∈ Hj , Kpj = Hj\ {p}; ϕKpj
is

the the n × n submatrix of ϕ indexed by the elements of Kpj; and sgn(Kpj ⊂ Hj) is the sign of

the permutation of Hj that puts the elements of Kpj into the first n positions of Hj . Thus the jth

column of a matrix ε is given by
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


sgn(K1j ⊂ Hj) det(ϕK1j
)

...

sgn(Kj−1,j ⊂ Hj) det(ϕKj−1,j
)

0

sgn(Kj+1,j ⊂ Hj) det(ϕKj+1,j
)

...

sgn(Kn+2,j ⊂ Hj) det(ϕKn+2,j
)




Noting the 0 occurs in the jth row. When 1 ≤ p < j, it is not hard to see that sgn(Kpj ⊂

Hj) = (−1)n−p+1. Now for j < p ≤ n + 2, it is also easy to see we have sgn(Kpj ⊂ Ij) =

(−1)n−p+2 = (−1)n−p. If Φpj = det(ϕKpj
), then the jth column of the matrix of ε is given by




(−1)nΦ1j

...

(−1)n+2−jΦj−1,j

0

(−1)n+1−jΦj+1,j

...

Φn+2,j




4.2.2 The map δ

For ease of notation, set F3 =
⊕n

i=1R(−di) and let f31, . . . , f3n be a basis for F3. By ( [19],

Section A.2.6.1) the map δ : F3 −→ F2 is such that

f3i 7→
n+2∑

j=1

(−1)j+1ϕijf2j

In particular, the ith column of the matrix for δ is given by
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


ϕi1

−ϕi2
...

(−1)j+1ϕij
...

(−1)n+2ϕi,n+1

(−1)n+3ϕi,n+2




so a matrix for δ is given by




ϕ11 ϕ21 · · · ϕn1

−ϕ12 −ϕ22 · · · −ϕn2
...

... · · ·
...

(−1)n+2ϕ1,n+1 (−1)n+2ϕ2,n+1 · · · (−1)n+2ϕn,n+1

(−1)n+3ϕ1,n+2 (−1)n+3ϕ2,n+2 · · · (−1)n+3ϕn,n+2




4.2.3 Computing the cj and di

We first calculate the degrees of the Φpj . This follows from the following general lemma, which

is probably well-known, but we could not find an exact source.

Lemma 4.2.2. Let S = K[x0, . . . , xr] and α :
⊕t

i=1 S(−vi) −→
⊕t

i=1 S(−ui) be a homogeneous

S-linear map such that vi > ui for all i. If α = (αij), where either αij = 0 or αij ∈ Stij with

tij > 0, we denote the determinant of α by Φ and assume Φ is nonzero. Then Φ is homogeneous of

degree
∑t

i=1[vi − ui].

Proof. Before we begin, notice that if αij is nonzero, then deg(αij) = tij = vj − ui > 0.

We proceed by induction on t. For t = 1, this is just the statement that a graded map

S(−v1) −→ S(−u1) is given by multiplication of a homogeneous element of S of degree v1 − u1.

This is easy to see. Suppose that t > 1 and write
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Φ = α11Φ1 − α12Φ2 · · ·+ (−1)t+1α1tΦt

Where Φi is the determinant of the (t − 1) × (t − 1) submatrix of α obtained by deleting the

first row and the ith column. By hypothesis, Φ is nonzero, so that there is an h such that both α1h

and Φh are nonzero. In this case, note that Φh is the determinant of a homogeneous linear map

from
⊕

j 6=h S(−vj) to
⊕

i 6=1 S(−ui). The induction hypothesis gives that Φh is homogeneous of

degree
∑

j 6=h vj−
∑

i 6=1 ui, hence α1hΦh is homogeneous of degree
∑t

i=1[vi−ui], as needed. This

gives that Φ is homogeneous of the required degree.

Set d =
∑n+2

j=1 bj −
∑n

i=1 ai, so that we have the following:

Corollary 4.2.3. Let Φpj be the maximal minor of ϕ corresponding to the set Kpj = Hj\ {p} =

{1, . . . , n+ 2} \ {p, j} (so that Φpj is the minor of ϕ obtained by deleting columns p and j of ϕ).

If Φpj is nonzero, then the degree of Φpj is d− bp − bj .

Suppose for 1 ≤ j ≤ n + 2 that there is an p ∈ Hj such that Φpj 6= 0. Then we have

cj = bp + deg(Φpj) = d− bj . Thus we need to know if for all p, there is an p ∈ Hj such that Φpj

is nonzero. We do this below.

Lemma 4.2.4. Given 1 ≤ j ≤ n + 2 there is an p ∈ Hj such that Φpj is nonzero. In particular,

cj = d− bj .

Proof. The sequence F• is exact, so that if no Φpj is nonzero, then the jth column of ε is zero.

This implies that u = [0, . . . , 1, . . . , 0]T ∈ F2 is in ker(ε), where the lone 1 occurs in row j. By the

exactness of F•, we can write u = δ(β), where β = [β1, . . . , βn]
T ∈ F3. This gives the equation

n∑

i=1

ϕijβi = (−1)j+1

This gives a contradiction, as the sum on the left is either homogeneous of positive degree or

zero.

Corollary 4.2.5. di = d− ai
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Proof. Up to sign of entries, the ith column of the matrix for δ is the ith row of the matrix ϕ. In

particular, by Lemma 4.2.1, ϕii is nonzero, so that eii − di = −ci. By Lemma 4.2.4, ci = d − bi.

This gives di = eii + d− bi = d− ai.

4.3 The Unimodality and Symmetry of the Hilbert Function of

the R-module M

As previously mentioned, our motivation for wanting to study to the unimodality and symmetry

of the R-module M was to understand when M has the Weak Lefschetz Property. However, the

question of whether or not a graded Artinian module N over S = K[x0, . . . , xr] has the Weak

Lefschetz Property is more subtle if N is not generated in a single degree. For example, let N be

an Artinian S-module with Hilbert function hN such that Nj+1 contains a minimal generator of

N and hN(j) ≥ hN(j + 1). Then ×ℓ : Nj −→ Nj+1 cannot be surjective. Naturally, we would

like to avoid situations such as this and seek to understand when our specific R-module M has a

strictly unimodal Hilbert function over R (that is, where it is increasing or decreasing, it does so

strictly). In particular, we look for numerical conditions on the ai and bj that make it so that the

Hilbert function of M is strictly unimodal and symmetric.

The following lemma will be used frequently. Its proof is essentially that of ( [44], Lemma

1.3), but we provide details.

Lemma 4.3.1. Let S = K[x0, . . . , xr] and N be a graded Artinian S-module with minimal free

resolution G•. If Gr+1 =
⊕v

j=1 S(−uj) is the last module occurring in G•, then there is a graded

degree zero isomorphism

Soc(N) ∼=

v⊕

j=1

K(−(uj − r − 1))
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Proof. We have TorSr+1(N,K) = Hr+1(F• ⊗K) =
⊕v

j=1 K(−uj). If C• is the Koszul complex on

x0, . . . , xr, then we also have TorSr+1(N,K) = Hr+1(C• ⊗N) = Soc(N)(−r − 1).

With Corollary 4.2.5 in hand, the following is immediate from Lemma 4.3.1.

Corollary 4.3.2. M has maximal socle degree d− a1 − 3.

We turn our discussion to graded duals of Artinian modules over S = K[x0, . . . , xr].

Definition 4.3.3. LetN be a graded Artinian S-module. Denote byN∨ the S-module HomK(N,K).

Then N∨ is a graded S-module with N∨
j = HomK(N−j,K). The S-module action on N∨ is such

that for a ∈ Si and f ∈ N∨
j , then af ∈ N∨

i+j is the K-linear map from N−i−j −→ K with

(af)(λ) = f(aλ).

Following [43], we now define an analogue of the Gorenstein condition for Artinian S-modules.

Definition 4.3.4. A graded Artinian S-module N is Symmetrically Gorenstein if there is an iso-

morphism τ : N −→ HomK(N,K)(−s) such that τ = HomK(τ,K)(−s).

With the above definition in hand, consider the following.

Lemma 4.3.5. Let N be a non-negatively graded Artinian S-module, say N = N0 ⊕ · · · ⊕Nc. We

suppose that N0 and Nc are nonzero. Suppose there is a graded isomorphism τ : N
∼=

−→ N∨(−s)

for some s ∈ Z. That is, τ(Nj) ⊆ N∨(−s)j+d for some d ∈ Z. Then N has symmetric Hilbert

function.

Proof. We have τ(N0) ⊆ N∨
d−s, which gives −c ≤ d − s ≤ 0, as N∨ is concentrated in degrees

−c to 0. Also, τ(Nc) ⊆ N∨
c+d−s and τ(Nc) is nonzero, so we have −c ≤ c + d − s ≤ 0. Thus

s − c = d, which gives τ(Nj) ⊆ N∨(−s)j+s−c = N∨
j−c = HomK(K, Nc−j). Hence we obtain an

isomorphism of vector spaces over K:
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τ |Nj
: Nj −→ Homk(Nc−j,K)

Thus for j = 0, 1, . . . , ⌊ c
2
⌋, we obtain dimKNj = dimK HomK(Nc−j,K) = dimKNc−j . That

is, the Hilbert function of N is symmetric.

In particular, Lemma 4.3.5 gives that Hilbert function of a non-negatively graded Symmetri-

cally Gorenstein S-module in which the component in degree zero is nonzero is symmetric. As one

might guess, we want our module M over R to be Symmetrically Gorenstein. Since we have spent

a significant amount of time analyzing the minimal free resolution of M over R in the previous

section, one might hope there is a characterization of a Symmetrically Gorenstein module in terms

of its minimal free resolution. This is indeed the case.

Theorem 4.3.6. ( [43], Theorem 1.3)

Suppose K has characteristic not two. Let S = K[x0, . . . , xr] and N be a graded Artinian

S-module with maximal socle degree c. Set d = c+r+1 and (•)∨d = HomS(•, S(−d)). Let a ≥ 3

be an odd integer and b = a−1
2

. Then N is Symmetrically Gorenstein if and only if its minimal

graded free resolution has the following form

0 −→ (G0)
∨d ψ∨d

1−→ (G1)
∨d −→ · · · −→ (G)∨db

ψ∨d
b−→ Gb −→ · · · −→ G1

ψ1

−→ G0 −→ N −→ 0

To this end, we utilize Theorem 4.3.6 to show that under mild restrictions, M is a Symmetri-

cally Gorenstein R-module, hence by Lemma 4.3.5, M will have a symmetric Hilbert function.

Remark 4.3.7. Write ε = [Φ1, . . . ,Φn+2], with Φj the jth column of ε. Consider the matrix

ε′ :
⊕n+2

j=1 R(−cj) −→
⊕n+2

j=1 R(−bj) with ε′ = [−Φ1, . . . , (−1)jΦj, . . . , (−1)n+2Φn+2]. For

1 ≤ j < r, we have

ε′rj = (−1)n+2−r+jΦrj = (−1)n+2+r−jΦrj
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ε′jr = (−1)n+2−r+j−1Φjr = (−1)n+2+r−j−1Φrj

Thus ε′jr = −ε′rj , so ε′ is antisymmetric. We utilize ε′ for the following.

Lemma 4.3.8. The sequence

F′
• : 0 −→ F3

g′δ
−→ F2

ε′
−→ F1

ϕ
−→ F0 −→M −→ 0

is exact. Where g′ :
⊕n+2

j=1 R(−cj) −→
⊕n+2

j=1 R(−cj) is the map such that

g′




β1
...

βj
...

βm




=




−β1
...

(−1)jβj
...

(−1)mβm




In particular, there is an isomorphism of minimal free resolutions of M

F•
∼= F′

•

Proof. We know the sequence

F• : 0 −→
n⊕

i=1

R(−di)
δ

−→
n+2⊕

j=1

R(−cj)
ε

−→
n+2⊕

j=1

R(−bj)
ϕ

−→
n⊕

i=1

R(−ai) −→M −→ 0

is exact. Clearly g′δ is injective, since g′ is an isomorphism. Obviously, ε′g′ = ε. This gives

im(ε′) = im(ε) = ker(ϕ). We have

ε′g′δ = εδ = 0
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Hence im(g′δ) ⊆ ker(ε′). If ε′(α′) = 0, then α′ = g′(α), for some α necessarily in ker(ε) (as

g′ is its own inverse). Thus α = δ(β), for some β ∈
⊕n

i=1R(−di). That is, α′ = g′δ(β). Thus F′
•

is exact, which gives that F′
• is a graded minimal free resolution of M , whence the isomorphism of

complexes.

Proposition 4.3.9. The R-module M is Symmetrically Gorenstein and its Hilbert function of M is

symmetric if a1 = 0 and K has characteristic not two.

Proof. By Corollary 4.3.2, the maximal socle degree of M is d− 3, where d =
∑
bj −

∑
ai. As

in the statement of Theorem 4.3.6, we let (•)∨d be the functor HomR(•, R(−d)). By Lemma 4.3.8,

F′
• : 0 −→

n⊕

i=1

R(−di) −→
n+2⊕

j=1

R(−cj)
ε′

−→
n+2⊕

j=1

R(−bj) −→
n⊕

i=1

R(−ai) −→M −→ 0

is the graded minimal free resolution of M . By Corollary 4.2.3, cj = d − bj and by Corollary

4.2.5, di = d− ai. Hence

(
n+2⊕

j=1

R(−bj)

)∨d

=
n+2⊕

j=1

HomR(R(−bj), R(−d)) =
n+2⊕

j=1

R(bj − d) =
n+2⊕

j=1

R(−cj)

(
n⊕

i=1

R(−ai)

)∨d

=
n⊕

i=1

HomR(R(−ai), R(−d)) =
n⊕

i=1

R(ai − d) =
n⊕

i=1

R(−di)

Thus the minimal graded free resolution of M is given by

0 −→ F∨d
0 −→ F∨d

1
ε′

−→ F1 −→ F0 −→M
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The map ε′ is antisymmetric by Remark 4.3.7, hence by Theorem 4.3.6, M is Symmetrically

Gorenstein. By our assumption that a1 = 0, M is non-negatively graded and M0 6= 0. By Lemma

4.3.5, we obtain that the Hilbert function of M is symmetric.

Proposition 4.3.9 answers the question of when the Hilbert function is symmetric. This was

a subtle but crucial point in showing that complete intersections in R have the Weak Lefschetz

in [34]. However, as mentioned at the beginning of this section, a decreasing Hilbert function

and having generators in degree greater than zero may cause M to lack the Weak Lefschetz Prop-

erty. However, the following proposition shows that the Hilbert function of M is indeed strictly

unimodal.

Proposition 4.3.10. Suppose K has characteristic not two. The Hilbert function of M is strictly

unimodal if a1 = 0 and

(a) d is even and d′ + bn+1 + 2 > bn+2.

(b) d is odd and d′ + bn+1 + 1 > bn+2.

where d =
∑
bj −

∑
ai and d′ =

∑n
i=1(bi − ai).

Proof. By ( [20], Corollary 1.2), Lemma 4.2.4, and Corollary 4.2.5, the Hilbert function hM(t) of

M is given by

n∑

i=1

[(
t+ 2− ai

2

)
−

(
t+ 2 + ai − d

2

)]
+

n+2∑

j=1

[(
t+ 2 + bj − d

2

)
−

(
t+ 2− bj

2

)]
(⋆)

As a1 = 0, the maximal socle degree of M is c := d − 3 by Corollary 4.3.2. We first claim

that for t ≤ ⌊ c
2
⌋, we have

(
t+2+ai−d

2

)
= 0 for all i and

(
t+2+bj−d

2

)
= 0 for all j. It suffices to

show ⌊ c
2
⌋ + 2 + bn+2 − d ≤ 1, as ai < bn+2 by Lemma 4.2.1 and bj ≤ bn+2 by hypothesis. Note

this equivalent to showing that bn+2 ≤ ⌊d
2
⌋ + 1. Hence if d is even, this is equivalent to showing

2bn+2 ≤ d + 2, and if d is odd, this equivalent to showing 2bn+2 ≤ d + 1. These inequalities both

follow immediately from the assumptions in (a) and (b), respectively.
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Thus by (⋆) and the above remarks, for t ≤ ⌊ c
2
⌋, hM(t) is given by

n∑

i=1

(
t+ 2− ai

2

)
−

n+2∑

j=1

(
t+ 2− bj

2

)
(⋆⋆)

Recalling that by Lemma 4.2.1, ai ≤ an < bn, (⋆⋆) gives the following for t ≤ ⌊ c
2
⌋:

(1) if t ≥ bn+2, then hM(t) = −t2 + ct+ α for α ∈ Z.

(2) if t ∈ [bn+1, bn+2), then hM(t) = −1
2
t2 +

(
c+ 3−2bn+2

2

)
t+ β, where β ∈ Z.

(3) if t ∈ [bn, bn+1), then hM(t) = d′t+ γ, where d′ =
∑n

i=1(bi − ai) and γ ∈ Z.

(3) if t ∈ [an, bn) ∩ [bu, bu+1) for u < n or t ∈ [av, av+1) ∩ [bu, bu+1) for u, v < n, then we first

note by Lemma 4.2.1, we must have u ≤ v. Then either

(i) hM(t) = 1
2
(n − u)t2 + du,nt + δu,n, where du,n = 3

2
(n − u) +

(∑u
j=1 bj −

∑v
i=1 ai

)

and δu,n ∈ Z.

(ii) hM(t) = 1
2
(v − u)t2 + du,vt + δu,v, where du,v = 3

2
(v − u) +

(∑u
j=1 bj −

∑v
i=1 ai

)
,

δu,v ∈ Z, and u ≤ v < n.

(4) if t < b1 and t ∈ [av, av+1) for v < n, then hM(t) = 1
2
vt2 +

(
3
2
v −

∑v
i=1 ai

)
t + εv, with

εv ∈ Z.

Now we want to show in all of the intervals given above that hM(t) is increasing. In particular,

for bn+2 ≤ t < ⌊ c
2
⌋, we immediately obtain by differentiation:

(1′) hM(t) is strictly increasing if t ≥ bn+2.

Now for t ∈ [bn+1, bn+2), if d is even, then our assumption in (a) shows that 2bn+2 < d + 2,

hence 2bn+2 ≤ d + 1. As d is even, we have 2bn+2 ≤ d. If d is odd, then our assumption in

(b) gives 2bn+2 < d+ 1, hence 2bn+2 ≤ d. We have
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c+
3− 2bn+2

2
≥
d− 3

2
≥
⌊ c
2

⌋
≥ bn+2 > t

Thus differentiation of hM(t) on this interval yields:

(2′) hM(t) is strictly increasing for t ∈ [bn+1, bn+2).

Lemma 4.2.1 gives that d′ > 0, hence we obtain after differentiation of hM(t):

(3′) hM(t) is strictly increasing for t ∈ [bn, bn+1).

Now we want to show that hM(t) is strictly increasing on [an, bn) ∩ [bu, bu+1) for u < n

and on [av, av+1) ∩ [bu, bu+1) for v < n and u < n and v ≥ u. For the first, we must show

that for t ∈ [an, bn) ∩ [bu, bu+1) and u < n, that (n − u)t + du,n > 0. As t ≥ an, we have

(n− u)t+ du,n ≥ (n− u)an + du,n. By Lemma 4.2.1, we have

du,n =
3

2
(n− u) +

u∑

j=1

bj −
n∑

i=1

ai ≥ u−
n∑

i=u+1

ai ≥ u− (n− u)an

This gives

(n− u)t+ du,n ≥ (n− u)an +
3

2
(n− u) + u− (n− u)an =

3

2
(n− u) + u > 0

For the second statement, note that Lemma 4.2.1 implies hM(t) is increasing if v = u. For

u < v, we have we have (n− u)t+ du,n ≥ (n− u)av + du,v. By Lemma 4.2.1, we have

du,v =
3

2
(v − u) +

u∑

j=1

bj −
v∑

i=1

ai ≥ u−
v∑

i=u+1

ai ≥ u− (v − u)av

This gives

(v − u)t+ du,v ≥ (v − u)av +
3

2
(v − u) + u− (v − u)av =

3

2
(v − u) + u > 0
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Hence, differentiation yields:

(4′) (i) hM(t) is strictly increasing on [an, bn) ∩ [bu, bu+1) for u < n

(ii) hM(t) is increasing [av, av+1) ∩ [bu, bu+1) for v < n and u < n and v ≥ u.

(5′) To show that hM(t) is increasing for t < b1 and t ∈ [av, av+1] for v < n, we must show

tv + 3
2
v −

∑v
i=1 ai > 0. To wit, we have

tv +
3

2
v −

v∑

i=1

ai ≥ avv +
3

2
v −

v∑

i=1

ai ≥
3

2
v > 0

By Proposition 4.3.9, hM(t) is symmetric, hence (1′)-(5′) give that hM(t) is strictly unimodal

with maximum occurring at t = ⌊ c
2
⌋.

4.4 The Weak Lefschetz for M

We utilize the same setup in this section as in Section 4.2, except we suppose K has character-

istic zero. Set E = ker(ϕ) and let E be the sheafification of E, so that E is a vector bundle of rank

two on P2. In [34], whenM = R/I with I a complete intersection, conditions were sought to force

the semistability of the vector bundle E . In fact, if ℓ ∈ R is general linear form and R = R/ℓR, it

was shown, using a theorem of Grauert-Mülich ( [54], pg. 206) that the first syzygy of I was given

by R(e1) ⊕ R(e2) with |e1 − e2| = 0 or 1. This allowed for a nearly immediate conclusion that

R/I has the Weak Lefschetz. We show that the same tools that allowed this conclusion generalize

to our setting.

Recall the graded minimal free resolution F• of the graded R-module M has the form:

0 −→ F3 −→ F2 −→ F1
ϕ

−→ F0 −→M −→ 0

Set E = ker(ϕ), so that upon sheafification, we obtain an exact sequence of sheaves
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0 −→ F3 −→ F2 −→ E −→ 0 (*)

Here F2 =
⊕n+2

j=1 OP2(−cj) and F3 =
⊕n

i=1 OP2(−di). Now E is a vector bundle of rank two.

Moreover, the additivity of the first Chern class gives

c1(E) =
n∑

i=1

di −

n+2∑

j=1

cj

=
n∑

i=1

(d− ai)−
n+2∑

j=1

(d− bj)

= −d

We would like conditions that force the semistability of E . We first consider the case in which

d is even. Write d = 2e, so that c1(E) = −2e, so that the normalized bundle of Enorm is given by

E(e). Twist (*) by e− 1 to obtain

0 −→ F3(e− 1) −→ F2(e− 1) −→ Enorm(−1) −→ 0 (**)

Assume now that d is odd and choose e such that d = 2e + 1. Then in this case, Enorm = E(e)

as well. Then twist (*) by e to obtain

0 −→ F3(e− 1) −→ F2(e− 1) −→ Enorm −→ 0 (***)

We utilize the above exact sequences to give a proof of following lemma. We note Lemma

4.4.1 is a generalization of ( [34], Lemma 2.1). In fact, it is ( [34], Lemma 2.1) when n = 1 and

a1 = 0. The proof is similar to ( [34], Lemma 2.1), but we provide details. The aim of Lemma

4.4.1 to determine when E is semistable (see Definition 3.3.1).

Lemma 4.4.1. The rank two vector bundle E on P2 given above is semistable when

(a) d is even and d′ + bn+1 + 2 > bn+2.
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(b) d is odd and d′ + bn+1 + 1 > bn+2.

where d =
∑
bj −

∑
ai and d′ =

∑n
i=1(bi − ai)

Proof. Assume c1(E) is even. Now E has rank two, so that from ( [54], Lemma 1.2.5) we have

that E is semistable if and only if H0(P2, Enorm(−1)) = 0. When c1(E) is odd and E has rank

two, stability and semistability coincide by ( [54], pg. 166) and the condition for semistability is

H0(P2, Enorm) = 0. Now (**) is given explicitly by

0 −→

n⊕

i=1

OP2(−di + e− 1) −→
n+2⊕

j=1

OP2(−cj + e− 1) −→ Enorm(−1) −→ 0 (⋆⋆)

And (***) is given by

0 −→

n⊕

i=1

OP2(−di + e) −→
n+2⊕

j=1

OP2(−cj + e) −→ Enorm −→ 0 (⋆ ⋆ ⋆)

We first remark that 2an < d. Indeed, from Lemma 4.2.1, we have an < bn ≤ bn+1 ≤ bn+2, so

that

d = d′ + bn+1 + bn+2 > d′ + 2an > 2an

Where we note that d′ > 0 by Lemma 4.2.1.

Now (⋆⋆) is exact on global sections, so in order for semistability in (a) to hold, we need the

following inequalities to hold (noting e = d
2
):

(i) e < cn+2 + 1

(ii) e < dn + 1

We show (i) holds. Since cn+2 = d− bn+2, (i) is equivalent to showing 2bn+2 < d+2. We have

d+ 2− 2bn+2 = d′ + 2 + bn+1 − bn+2 > 0
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Where the inequality above holds by hypothesis. As dn = d− an, (ii) is equivalent to showing

2an < d+ 2, but we know this holds from the preceding remark.

For (b), as (⋆ ⋆ ⋆) is exact on global sections, for the semistability of E , we need the following

in inequalities to hold (noting e = d−1
2

):

(iii) e < cn+2

(iv) e < dn

We show (iii) holds. Since cn+2 = d− bn+2, (iii) is equivalent to showing 2bn+2 < d+1. Now

d+ 1− 2bn+2 = d′ + 1 + bn+1 − bn+2 > 0

Thus (iii) holds. Now (iv) is equivalent to showing 2an < d + 1, hence this follows from the

preceding remark.

Using Lemma 4.4.1, we can say the following about the splitting type of E .

Corollary 4.4.2. Let E be the rank two vector bundle obtained above and assume that any of the

conditions of Lemma 4.4.1 hold. Then the splitting type of E is

(λ1, λ2) =





(−e,−e) d = 2e

(−e,−e− 1) d = 2e+ 1

Proof. By Lemma 4.4.1, E is semistable. The theorem of Grauert and Mülich ( [54], pg. 206) says

that in characteristic zero the splitting type of the semistable normalized 2-bundle Enorm = E(e)

over P2 is

(λ1, λ2) =





(0, 0) if c1(E(e)) = 0

(0,−1) if c1(E(e)) = −1
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Recall c1(E) = −d. As E has rank two, the additivity of the first Chern class gives, c1(E(e)) =

c1(E) + 2e ∈ {−1, 0}, as needed.

Corollary 4.4.2 was crucial in [34] to showing that complete intersections have the Weak Lef-

schetz inR. In fact, our generalizations of the essential lemmas of [34] show that we can generalize

the main result of [34]. The proof of Theorem 4.4.3 works entirely in the same way as the proof

( [34], Theorem 2.3), changing only what is necessary, however, we find reviewing the details in

this chapter to be helpful.

First, we do note a couple points of caution. Firstly, we must understand the unimodality of the

Hilbert function of M before employing the mechanics of the proof of ( [34], Theorem 2.3). This

is precisely the purpose of Proposition 4.3.10 in this context. Moreover, it is well-known complete

intersections have symmetric Hilbert functions and this is a subtle detail in the proof of ( [34],

Theorem 2.3). However, Proposition 4.3.9 shows this the Hilbert function of M is also symmetric,

allowing the proof of ( [34], Theorem 2.3) to generalize to our setting.

Theorem 4.4.3. If a1 = 0 and

(a) d is even and d′ + 2 + bn+1 > bn+2.

(b) d is odd and d′ + 1 + bn+1 > bn+2.

where d =
∑
bj −

∑
ai and d′ =

∑n
i=1(bi − ai), then M has the Weak Lefschetz Property in

the sense of Definition 3.1.1.

Proof. Let ℓ be a general linear form and R = R/ℓR. We denote by f the image of f ∈ R in R;

by F1 the free R-module
⊕n+2

j=1 R(−bj); and and F0 for
⊕n

i=1R(−ai). From the exact sequence

0 −→ E −→ F1
ϕ

−→ F0 −→M −→ 0

we obtain a commutative diagram with exact rows
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0 0

0 ✲ E(−1) ✲ F1(−1)
❄

ϕ
✲ F0(−1)

❄

✲ M(−1) ✲ 0

0 ✲ E ✲ F1

L

❄
ϕ

✲ F0

L′

❄

✲ M

(×ℓ)

❄

✲ 0

F1

❄

ϕ
✲ F0

❄

0
❄

0
❄

Where L is the (n+ 2)× (n+ 2) matrix




ℓ 0 · · · 0

0 ℓ · · · 0

...
...

...

0 0 · · · ℓ




And L′ is the n× n matrix given by




ℓ 0 · · · 0

0 ℓ · · · 0

...
...

...

0 0 · · · ℓ




Note the first vertical exact sequence is a direct sum of n+ 2 copies of the exact sequence

0 −→ R(−1)
×ℓ
−→ R −→ R −→ 0
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twisted by −b1,−b2, . . . ,−bn+2, respectively. Notice the induced map on E(−1) −→ E is just

L. Let M ′ be the finite length cokernel of ϕ and E ′ the kernel of ϕ. Now using the two vertical

exact sequences, the Snake Lemma yields a commutative diagram

0 0 0

0 ✲ E(−1)
❄

✲ F1(−1)
❄

ϕ
✲ F0(−1)

❄

✲ M(−1) ✲ 0

0 ✲ E

L

❄

✲ F1

L

❄
ϕ

✲ F0

L′

❄

✲ M

(×ℓ)

❄

✲ 0

0 ✲ E ′
❄

✲ F1

❄

ϕ
✲ F0

❄

✲ M ′ ✲ 0

M(−1)
❄

0
❄

0
❄

Let λ be the line in P2 defined by ℓ and sheafify the above diagram. Noting that the sheafifica-

tions of the finite length modulesM(−1), M andM ′ are zero, we obtain the commutative diagram

with exact rows

0 0 0

0 ✲ E(−1)
❄

✲ F1(−1)
❄

ϕ
✲ F0(−1)

❄

✲ 0

0 ✲ E

L

❄

✲ F1

L

❄
ϕ

✲ F0

L′

❄

✲ 0

0 ✲ E|λ
❄

✲ F1|λ
❄

ϕ
✲ F0|λ

❄

✲ 0

0
❄

0
❄

0
❄
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Where F1 =
⊕n+2

j=1 OP2(−bj) so that F1|λ =
⊕n

j=1 Oλ(−bj). If either (a) or (b) are satisfied,

then E is semistable by Lemma 4.4.1, so that by Corollary 4.4.2, we have

E|λ =





Oλ(−e)
2 d = 2e

Oλ(−e)
⊕

Oλ(−e− 1) d = 2e+ 1

If N = im(ϕ) ⊆ F0, taking global sections in the last row of the above diagram yields the

exact sequence

0 −→

2⊕

u=1

R(−eu) −→ F1 −→ N −→ 0 (⋆)

where |e1 − e2| = 0 or 1, depending on the parity of d. We show that this implies the theorem.

There are two cases to consider: (i) d is even and (ii) d is odd. We prove this first for (i). In this

situation, (⋆) is given by

0 −→ R(−e)2 −→
n+2⊕

j=1

R(−bj)
ϕ

−→ N −→ 0

By Proposition 4.3.9 and Proposition 4.3.10, the Hilbert function is symmetric and strictly

unimodal, so it suffices to show that multiplication by ℓ is injective on the “first half” of M . That

is, for v ≤ ⌊d−3
2
⌋ = e− 2, we need to show that

Mv
×ℓ
−→Mv+1

is injective. Now M = F0/N , so that Mv = (F0)v/(F0)v ∩N . If the kernel of ×ℓ is nontrivial,

there is an F ∈ (F0)v\(F0)v ∩ N such that ℓF ∈ (F0)v+1 ∩ N . Recall that N = im(ϕ). Write

F as a column vector [F1, . . . , Fn]
T with Fi ∈ R(−ai)v. Then there are forms Aj such that

A = [A1, . . . , An+2]
T and

ℓF = ϕA
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This gives

ℓFi = ϕi1A1 + · · ·+ ϕi,n+2An+2

for i = 1, . . . , n. Since F is nonzero, there is at least one Fi that is nonzero. For such an i,

there is at least one j for which ϕijAj is nonzero. For such i and j, we have

v − ai + 1 = eij + deg(Aj)

Which gives deg(Aj) = v+1−ai−eij . Reducing the equation ℓF = ϕA modulo ℓ, we obtain

that ϕA = 0 in the exact sequence

0 −→ R(−e)2 −→
n+2⊕

j=1

R(−bj)
ϕ

−→ N −→ 0

Denote the map R(−e)2 −→
⊕n+2

j=1 R(−bj) by ψ, so that it is given by a matrix




ψ11 ψ12

...
...

ψn+2,1 ψn+2,2




Then for the ψjr which are nonzero, we have deg(ψjr) = e − bj . Since ϕA = 0 and A is

nonzero, there is a nonzero B = [B1, B2]
T ∈ R(−e)2 such that ψ(B) = A. Thus there is an r and

j such that ψjr and Br are nonzero, this gives

deg(ψjr) + deg(Br) = deg(Aj) = v + 1− ai − eij

Which tells us degBr = v + 1 − ai − eij + bj − e = v + 1 − e. Now degBr > 0, so that

v + 1 > e. However, our assumption was v + 1 ≤ e− 1 < e, a contradiction.

Now assume that d is odd and write d = 2e+ 1, so that (⋆) becomes
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0 −→ R(−e)⊕R(−e− 1) −→
n+2⊕

j=1

R(−bj)
ϕ

−→ N −→ 0

By Proposition 4.3.9 and Proposition 4.3.10, the Hilbert function ofM is symmetric and strictly

unimodal, so it suffices to show that multiplication by ℓ is injective on the “first half" of M . Since

d− 3 is even, we need to show that for v ≤ ⌊d−3
2
⌋ = e− 1

Mv
×ℓ
−→Mv+1

is injective. Write ψ, for the map R(−e)⊕R(−e− 1) −→
⊕n+2

j=1 R(−bj). We can write ψ as




ψ11 ψ12

...
...

ψn+2,1 ψn+2,2




Where, if ψj1 or ψj2 are nonzero, then deg(ψj1) = e − bj and deg(ψj2) = e + 1 − bj .

As in the case of d even, if Mv
×ℓ
−→ Mv+1 is not injective, we can assume that there is an

A = [A1, . . . , An+2]
T such that at least one of the Aj is nonzero with ℓF = ϕA, where F =

[F1, . . . , Fn]
T ∈ (F0)v\(F0)v ∩ N and deg(Fi) = v − ai if Fi is nonzero. As was the case for d

even, there are i and j such that Fi and Aj are nonzero, so that

v − ai + 1 = eij + deg(Aj)

Using the exact sequence

0 −→ R(−e)⊕R(−e− 1) −→
n+2⊕

j=1

R(−bj)
ϕ

−→ N −→ 0

and the fact that ϕA = 0, there is a nonzero B = [B1, B2]
T ∈ R(−e) ⊕ R(−e − 1) such that

ψ(B) = A. Moreover, since F is not in N , A is nonzero, so B is nonzero. Thus there is a j such

that
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deg(ψj1) + deg(B1) = deg(Aj) = v − ai + 1− eij

or

deg(ψj2) + deg(B2) = deg(Aj) = v − ai + 1− eij

The first equation gives

deg(B1) = v − ai + 1− eij − e+ bj = v + 1− e

Similarly, the second equation gives

deg(B2) = v − e

Recall that we have assumed that v ≤ e − 1, hence we obtain a contradiction in either case as

the degree of one of B1 or B2 is positive.

We we note we obtain ( [34], Theorem 2.3) as a corollary of Theorem 4.4.3.

Corollary 4.4.4. Complete intersections in R have the Weak Lefschetz Property.

Proof. Suppose f1, f2, f3 is a regular sequence with deg(fj) = dj and 2 ≤ d1 ≤ d2 ≤ d3 in R. Set

I = (f1, f2, f3). Then it is well-knownR/I has a unimodal symmetric Hilbert function. Moreover,

with notation as in Theorem 4.4.3, we have a1 = 0 and bj = dj . If d3 < d1+ d2+1, the associated

vector bundle E will be semistable by Lemma 4.4.1, so that we can apply Theorem 4.4.3. Now

( [68], Corollary 3) shows that d3 ≥ d1 + d2 − 3, then R/I has the Weak Lefschetz Property.

Example 4.4.5. Let f1, f2, f3 be a regular sequence of homogeneous elements inRwith deg fi = q

and q ≥ 3. For n > 1, define ϕ : R(−q)n+2 −→ Rn as follows: Let v be the row vector

[f1, f2, f3, 0] ∈ R(−q)n+2 with 0 the zero vector of length n− 1. Let σ ∈ Sn+2 be the permutation
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that acts on R(−q)n+2 (thought of as row vectors) as σ(r1, . . . , rn+2) = (rn+2, r1, . . . , rn+1). Then

we let ϕ be the linear map with matrix




v

σv

σ2v

...

σn−1v




=




f1 f2 f3 0 0 · · · 0 0

0 f1 f2 f3 0 · · · 0 0

0 0 f1 f2 f3 · · · 0 0

...
...

...
...

...
...

...
...

0 0 · · · · · · · · · f1 f2 f3




Let I denote the ideal of n × n minors of ϕ. Notice that the minor corresponding to deleting

the first two columns of ϕ is fn3 , the minor corresponding to deleting the last two columns of ϕ is

fn1 and the minor corresponding to deleting the first and the last column of ϕ has the form fn2 + f ,

with f ∈ f3R. Thus I has codimension 3, hence M = coker(ϕ) is a graded Artinian R-module.

Note d = (n + 2)q and the conditions of Lemma 4.4.1 are satisfied regardless of the parity of

d since q ≥ 3 and n > 1. Thus M has the Weak Lefschetz Property by Theorem 4.4.3. Since

im(ϕ) ⊆ m, the minimal number of generators of M as an R-module is n, hence M is not cyclic

as n > 1.

4.5 The non-Lefschetz Locus for Graded Modules

We now turn our attention to the more general setting of working over S = K[x0, . . . , xr],

with K an algebraically closed field of characteristic zero. All modules considered will be finitely

generated. Let N =
⊕

j∈ZNj be a graded Artinian module. In particular, N has finite length.

In [7], the authors defined what they called the non-Lefschetz locus for a cyclic S-module S/I .

We recall this notion and discussion for graded S-modules of finite length. The S-module structure

of N is determined by a sequence of K-linear maps

φj : S1 −→ HomK(Nj, Nj+1)
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where j ranges from the initial degree of N to the penultimate degree where N is not zero.

Since the K-dimension of Nj and Nj+1 is finite, we have that φj(xi) is a matrix of size

(dimKNj+1 × dimKNj). Say φj(xi) = Xi,j . In particular, given any linear form ℓ = t0x1 +

· · ·+ trxr, we have

φj(ℓ) = t0X0,j + · · ·+ trXr,j := Xj

If we regard t0, . . . , tr as the dual variables, thenXj is a matrix of size (dimKNj+1 × dimKNj)

in K[t0, . . . , tr] whose entries are linear forms in the dual variables. In particular, the scheme

defined by the vanishing of the maximal minors of the matrix Xj can viewed as lying in dual

projective space (Pr)∗. Denote this scheme by Yj .

When ℓ ∈ S1, we call ℓ a Lefschetz element of N if it satisfies Definition 3.1.1. We view the

collection of Lefschetz elements as a, possibly empty, subset of (Pr)∗. We want to know want to

know what the relationship between the scheme Yj and the failure of ℓ to be a Lefschetz element

for N is.

Remark 4.5.1. Recall that if A is an n×m matrix over an integral domain, then the rank of A is

the maximum t such that there is a non-vanishing t× t minor. With notation as above, it is easy to

see the following are equivalent:

(a) ℓ is not a Lefschetz element for N .

(b) There is a j such that Xj does not have maximal rank as a matrix over K[t0, . . . , ar].

(c) There is a j such that Yj = (Pr)∗.

In particular, we see that N has the Weak Lefschetz property in the sense of Definition 3.1.1 if

and only if there is an ℓ such that for all j, we have Yj 6= (Pr)∗. This brings us to the titular notion

of this section, where we follow [7].
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Definition 4.5.2. Given an Artinian graded S-module N , we define

LN := {[ℓ] ∈ P(S1)| ℓ is not a Lefschetz element of N} ⊂ (Pr)∗

and we call it the non-Lefschetz locus of N . For any integer j, we define

LN,j := {[ℓ] ∈ P(S1)| × ℓ : Nj −→ Nj+1 does not have maximal rank} ⊂ (Pr)∗

Of course, we would like to study LN,j not just as a collection, but as a scheme. Let A =

K[t0, . . . , tr] denote the coordinate ring of dual projective space (Pr)∗. We can view LN,j as the

scheme defined by the maximal minors of the matrix representing the map

×ℓ : A⊗K Nj −→ A⊗K Nj+1

of free A-modules. In fact, this the matrix representing this map is just Xj,ℓ. Denote the ideal

of maximal minors in A defining the scheme LN,j by I(LN,j). In this way, we have LN =
⋃
j LN,j

and LN is defined by the homogeneous ideal I(LN) =
⋂
j I(LN,j).

When studying Artinian Gorenstein algebras, it is well-known that an algebra fails to have

the Weak Lefschetz Property if injectivity fails in a single degree. In particular, as a set, the non-

Lefschetz locus is determined by a single degree (see [51], Proposition 2.1). Moreover, it is also

true that the non-Lefschetz locus is defined by a single degree scheme-theoretically, as is shown

in ( [7], Corollary 2.6). While having a suitable analogue of Gorenstein for Artinian modules,

(see Definition 4.3.4), we cannot guarantee that certain properties of Artinian algebras with the

Weak Lefschetz Property hold for all Artinian modules. For example, as seen in the previous

section, we have to be careful when discussing unimodality and symmetry of the Hilbert function

for Symmetrically Gorenstein modules.

We first begin by recovering a well-known result for Artinian algebras. The proof is roughly

the same as (Proposition 3.2, [33]), but we include the details for the reader’s convenience.
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Proposition 4.5.3. SupposeN = Sv/L, withL a homogeneous S-submodule of the free module Sv

generated by elements of positive degree (with respect to the standard grading on Sv). Then N is

a nonnegatively graded S-module that is generated as as S-module in degree zero. Furthermore,

suppose N is Artinian. If N has the Weak Lefschetz Property then the Hilbert function of N is

unimodal.

Proof. Let m be the irrelevant ideal of S and write N = N0 ⊕ · · · ⊕Nc, so that Nc is nonzero and

N is generated byN0. Then miN0 generatesNi as a vector space over K. Let j ≥ 0 be the smallest

integer such that dimKNj > dimKNj+1. Since N has the Weak Lefschetz Property, there is an

ℓ ∈ S1 such that ×ℓ : Nj −→ Nj+1 is surjective. Thus ℓNj = Nj+1. That is, mj+1N0 = ℓmjN0.

Hence for i ≥ j, we have ℓNi = Ni+1, so that ×ℓ : Ni −→ Ni+1 is surjective. This gives

v ≤ dimKN1 ≤ dimKN2 ≤ · · · ≤ dimKNj > dimKNj+1 ≥ · · · ≥ dimKNc

It is not hard to see that the Buchsbaum-Rim complex in more than three variables will, in

general, not provide a minimal free resolution of a cokernel that is Symmetrically Gorenstein.

However, under mild restrictions, they fit naturally into a certain class of Artinian modules. We

follow [6] in the next definition.

Definition 4.5.4. If Soc(N) = (0 :N m), we say that an Artinian S-module N is level if it is

generated by N0 as an S-module and Soc(N) = Nc for some c.

Recall from Definition 4.3.3 that if N is an S-module, the K-dual of N is the graded S-module

N∨ := HomK(N,K) with grading such that N∨
j = HomK(N−j,K). In particular, if N is non-

negatively graded Artinian S-module, say N = N0 ⊕ · · · ⊕ Nc with Nc nonzero, then N∨(−c) is

Artinian and nonnegatively graded with maximal socle degree c. Even more is true.
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Proposition 4.5.5. ( [6], Proposition 2.3)

Assume that N is a graded Artinian S-module that is level in the sense of Definition 4.5.4. If

Soc(N) = Nc, then N∨(−c) is an Artinian graded level S-module.

We utilize Proposition 4.5.5 to recover a well-known result for level algebras (see ( [51], Propo-

sition 2.1)).

Proposition 4.5.6. Suppose N = Sv/L with L a homogeneous S-submodule generated by ele-

ments of positive degree with respect to the standard grading on Sv. Suppose N is Artinian, say

N = N0 ⊕ · · · ⊕ Nc. Let ℓ be a linear form in S. Denote by Ψt : Nt −→ Nt+1 for t ≥ 0

multiplication by ℓ on Nt.

(a) If Ψt0 is surjective for some t0, then Ψt is surjective for all t ≥ t0.

(b) Suppose N is level in the sense of Definition 4.5.4. If Ψt0 is injective for some t0 ≥ 0 then

Ψt is injective for all t ≤ t0.

(c) In particular, if N is level and there is a t0 such that dimKNt0 = dimKNt0+1, then N has

the Weak Lefschetz Property if and only if Ψt0 is injective.

Proof. (a) This was shown in the proof of Proposition 4.5.3.

(b) Write N = N0⊕· · ·⊕Nc, so that by hypothesis, Soc(N) = (0 :N m) = Nc. Then N∨(−c)

is level by Proposition 4.5.5, so is generated in degree 0. Now we can consider multiplication

by ℓ on N∨(−c). Write t0 = c − s0, for some s0 between 0 and c. Then the injectivity of Ψt0

gives that ×ℓ : N∨(−c)s0−1 −→ N∨(−c)s0 is surjective. Thus, as in the argument for (a), we

obtain that ×ℓ : N∨(−c)s −→ N∨(−c)s+1 is surjective for s ≥ s0 − 1. Dualizing, we obtain

that ×ℓ : HomK(N
∨(−c)s+1,K) −→ HomK(N

∨(−c)s,K) is injective. Hence Ψc−s−1 is injective.

Since every t ≤ t0 has the form c− s− 1 for some s ≥ s0 − 1, we obtain the statement.

(c) This follows immediately from (a) and (b).
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Now the next proposition is crucial to our endeavors and it is an analogue of ( [7], Proposi-

tion 2.5). The proof of ( [7], Proposition 2.5) works by changing what is necessary, but we find

providing the details instructive and useful to the reader.

Proposition 4.5.7. Suppose that N is an Artinian nonnegatively graded S-module with Hilbert

function hN . If hN(i) ≤ hN(i+ 1) ≤ hN(i+ 2) and Soc(N)i = 0, then I(LN,i+1) ⊆ I(LN,i).

Proof. The ideal I(LN,i+1) is generated by the maximal minors of a matrix, say Ψ, for the map ×ℓ :

S⊗KNi+1 −→ S⊗KNi+2, where ℓ ∈ S1. In particular, Ψ has size hN(i+2)×hN(i+1). Suppose

hN(i + 1) = u and hN(i + 2) = v (so that u ≤ v), hence we may choose a K-basis n1, . . . , nv

for Ni+2. For a maximal minor of Ψ, say ψ, let ni1 , . . . , niv−u be basis elements of Ni+2 that

correspond to rows i1, . . . , iv−u of Ψ that were deleted to compute ψ. Let N ′ be the R-submodule

ofN generated by ni1 , . . . , niv−u and set L = N/N ′. AsN ′ is generated by homogeneous elements

of degree i + 2, Li = Ni, Li+1 = Ni+1, and clearly dimK Li+2 = dimKNi+1. Now ψ is the

determinant of a matrix for the map

×ℓ : S ⊗K Li+1 −→ S ⊗K Li+2

so that we can prove the inclusion I(LN,i+1) ⊆ I(LN,i) by proving the inclusion for all such

quotients L = N/N ′. Therefore, we assume that hN(i+ 1) = hN(i+ 2).

Suppose LN,i+1 = (Pr)∗. Then I(LN,i+1) = 0, so the inclusion of ideals is trivial. Suppose

that LN,i = (Pr)∗. This means that none of the linear forms x0, . . . , xr induce a map of maximal

rank from Ni −→ Ni+1. Suppose, in addition, that LN,i+1 6= (Pr)∗. As hN(i + 1) = hN(i + 2),

there is a linear form ℓ such that ×ℓ : Ni+1 −→ Ni+2 is injective. However, ×ℓ : Ni −→ Ni+1 is

not injective, so there is a a nonzero y ∈ Ni such that ℓy = 0. Since Soc(N)i = 0, there is a j such

that xjy is nonzero. We have

ℓ(xjy) = xj(ℓy) = 0
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However, ×ℓ : Ni+1 −→ Ni+2 is injective, so that we have xjy = 0, a contradiction. Thus

LN,i+1 = (Pr)∗, and the inclusion of ideals is again trivial.

Therefore, by our preceding work, we may assume that hN(i) ≤ hN(i + 1) = hN(i + 2) and

Li,N 6= (Pr)∗ and Li+1,N 6= (Pr)∗. Thus there is a linear form ℓ such that ×ℓ : Ni+1 −→ Ni+2

is injective. As the preceding argument shows, for such a linear form ℓ, it must be the case that

×ℓ : Ni −→ Ni+1 is injective. Now (Pr)∗ = D1 ∪ · · · ∪Dr, where

Dj = {[p0, . . . , pj, . . . , pr] ∈ (Pr)∗ : pj 6= 0}

Since Li+1,N 6= (Pr)∗, there is a j such that Dj is not contained in in LN,i+1. That is, there is

an ℓ = b0x0 + · · · + brxr with bj 6= 0 such that ×ℓ : Ni+1 −→ Ni+2. Moreover, we can assume

that bj = 1. Relabeling if necessary, we may assume that j = r. This gives ℓ = xr + ℓ′, where ℓ′

is a linear form in variables x0, . . . , xr−1. Hence we can perform a linear change of variables and

assume that ×xr : Ni+1 −→ Ni+2 is injective. Again, as Soc(N)i = 0, our preceding remark gives

×xr : Ni −→ Ni+1 is injective. Consider the commutative diagram

S ⊗K Ni
×ℓ

✲ S ⊗K Ni+1

S ⊗K Ni+1

×xr

❄

×ℓ
✲ S ⊗K Ni+2

×xr

❄

Note both vertical arrows are injective (as K is a field). We want to show that we can choose

bases forNi, Ni+1 andNi+2 in such a away that the matrix for the map ×ℓ : S⊗KNi −→ S⊗kNi+1

under these bases is a submatrix of the matrix for the map ×ℓ : S ⊗K Ni+1 −→ S ⊗K Ni+2.

To this end, let M denote the set of monomials in S and let Mi be the set of degree imonomials

in S. If we write N = Sn/H , for some graded S-submodule H of Sn and if e1, . . . , en is the

standard basis for Sn, we consider the set {mej : m ∈ Mi, 1 ≤ j ≤ n}. A K-basis Bi of Ni is

given by the elements in this set which are nonzero modulo H . Since multiplication by xr is

nonzero on Ni, the set xrBi can be extended to basis of Ni+1, say Bi+1. The injectivity of xr on
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Ni+1 gives that xrBi+1 is a basis for Bi+2, as dimKNi+1 = dimKNi+2 Write Bi+2 = xrBi+1. In

particular, S ⊗K Bi, S ⊗K Bi+1 and S ⊗K Bi+2 are bases for S ⊗K Ni, S ⊗K Ni+1 and S ⊗K Ni+2

over S, respectively. We note that under these bases, the v × v identity matrix represents the map

×xr : S ⊗K Ni+1 −→ S ⊗K Ni+2. If W,X and Y are the matrices for the other maps under these

bases, we have the commutative diagram

S ⊗K Ni
W

✲ S ⊗K Ni+1

S ⊗K Ni+1

X

❄

Y
✲ S ⊗K Ni+2

Iv

❄

Now the matrix X is given by



Iu

O




Where isO is a zero matrix of an appropriate size. In particular, we find thatW can be regarded

as submatrix of Y . Now the ideal I(LN,i+1) is principal and is generated by the determinant of the

matrix Y . Since Y and W have the same number of rows, the determinant of Y is contained in the

ideal generated by the maximal minors of W .

With Proposition 4.5.7 in hand, we have the following.

Corollary 4.5.8. Suppose N is a nonnegatively graded Artinian level S-module of maximal socle

degree c. There is a j such that

LN = Lj−1,N ∪ Lj,N
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Proof. Suppose N does not have the Weak Lefschetz Property. Let ℓ ∈ S1 be a linear form such

that there is a j so that ×ℓ : Nj −→ Nj+1 does not have maximal rank. In this situation, we have

LN = LN,j = (Pr)∗.

Suppose N has the Weak Lefschetz Property. Then its Hilbert function is unimodal by Propo-

sition 4.5.3, so that there is a j such that hN(i) ≤ hN(i + 1) for i < j and hN(i) ≥ hN(i + 1) for

j ≤ i. Now for i < j, we may apply Proposition 4.5.7 to see that

I(LN,j−1) ⊆ I(LN,j−2) ⊆ · · · ⊆ I(LN,1) ⊆ I(LN,0)

for i = 0, . . . , j − 1, hence we obtain

LN,i ⊆ LN,j−1

for i = 0, . . . , j − 1.

Now N∨(−c) is also an Artinian level module of maximal socle degree c by Proposition

4.5.5. Moreover, we have N∨(−c)i = HomK(Nc−i,K), so that hN∨(−c)(i) ≤ hN∨(−c)(i + 1)

for i = 0, . . . , c − j − 1. Now I(LN,i) is defined the vanishing of minors of a map φi : S1 −→

HomK(Ni, Ni+1). The corresponding maps for N∨(−c) are given by φTc−i−1, where T denotes the

transpose of a matrix, in particular, we have

I(LN∨(−c),i) = I(LN,c−i−1) (⋆)

Then for i = 0, . . . , c− j − 1, using Proposition 4.5.7, we obtain

I(LN∨(−c),c−j−1) ⊆ I(LN∨(−c),c−j−2,) ⊆ · · · ⊆ I(LN∨(−c),1) ⊆ I(LN∨(−c), 0)

so that

LN∨(−c),i ⊆ LN∨(−c),c−j−1
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That is, using (⋆), we have, for i = 0, . . . , c− j − 1,

Lc−i−1,N ⊆ Lj,N

This gives the statement when N has the Weak Lefschetz Property.

Now Corollary 4.5.8 provides us with a nice decomposition of LN in the case that N is Ar-

tinian and level, however, pinpointing the j for which this occurs can often be difficult in practice.

We have another Corollary of Proposition 4.5.7 that does this when N is Symmetrically Goren-

stein. It is well-known a Gorenstein algebra is always level. Naturally, we would like it so that

Symmetrically Gorenstein modules are level. We answer this in the affirmative below.

Lemma 4.5.9. Suppose N = Sv/L, where L is a homogeneous submodule of Sv generated by

elements of positive degree with respect to the standard grading on Sv. If N is Symmetrically

Gorenstein, then N is level.

Proof. If G• is the minimal free resolution of N , we have G0 = Sv. As N is Symmetrically

Gorenstein by Theorem 4.3.6, the last free module in G• is (G0)
∨d = S(−d)v, where d = c+r+1

and c is the maximal socle degree of N . By Lemma 4.3.1, N is level.

The next lemma is not difficult to prove, but it is quite useful.

Lemma 4.5.10. If the Hilbert function hN of the Artinian module N = N0⊕· · ·⊕Nc is symmetric

and unimodal, then it is not hard to see hN achieves its maximum value at ⌊ c
2
⌋. In particular, if

c is even, then hN takes on its maximum value at the middle term and if c is odd, hN takes on its

maximum value at the middle two terms.

Proof. That hN is symmetric means that for i = 0, 1, . . . , ⌊ c
2
⌋, one has dimKNi = dimKNc−i. If

the Hilbert function hN is unimodal, then there is a j such that hN(i) ≤ hN(i + 1) for i < j and

hN(i) ≥ hN(i+ 1) for i ≥ j. We aim to show hN(j) = hN(⌊
c
2
⌋). To wit, if j ≤ ⌊ c

2
⌋, then
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hN(j) = dimKNj = dimKNc−j = hN(c− j)

By hypothesis, hN(j) ≥ hN(⌊
c
2
⌋). Moreover, since c − j ≥ c − ⌊ c

2
⌋ ≥ ⌊ c

2
⌋ ≥ j, we have

hN(j) = hN(c− j) ≤ hN(c− ⌊ c
2
⌋) ≤ hN(⌊

c
2
⌋) Thus hN(j) = hN(⌊

c
2
⌋), as needed.

Suppose now j > ⌊ c
2
⌋. We have hN(j) ≥ hN(⌊

c
2
⌋). Moreover, c − j ≤ ⌊ c

2
⌋ ≤ j, so that

hN(j) = hN(c− j) ≤ hN(⌊
c
2
⌋). Thus we obtain hN(⌊

c
2
⌋) = hN(j), as needed.

We can now generalize ( [7], Corollary 2.7).

Proposition 4.5.11. Suppose N = N0 ⊕ · · · ⊕ Nc is Symmetrically Gorenstein S-module with

N0 6= 0 and Nc 6= 0. Then LN = LN,j , where j = ⌊ c−1
2
⌋.

Proof. The Hilbert function of N is symmetric by Lemma 4.3.5. Suppose N does not have the

Weak Lefschetz Property. Then the symmetry of the Hilbert function and Proposition 4.5.6 say that

×ℓ cannot induce a map of maximal rank from Nj −→ Nj+1. In this case, we have I(LN,j) = 0,

giving LN,j = LN = (Pr)∗.

Suppose N has the Weak Lefschetz Property. Then the Hilbert function of N is unimodal by

Proposition 4.5.3. As the Hilbert function ofN is symmetric, by Lemma 4.5.10 the Hilbert function

of N assumes its maximum value at ⌊ c
2
⌋. By Lemma 4.5.9, N is level, so that by Corollary 4.5.8,

we have

LN = L⌊ c
2
⌋−1,N ∪ L⌊ c

2
⌋,N

If c is odd, then write c = 2b + 1, so that j = ⌊ c
2
⌋ = b . Then the symmetry of the Hilbert

function gives hN(b + 1) = hN(c − ⌊ c
2
⌋) = hN(⌊

c
2
⌋) = hN(b). Thus by Proposition 4.5.7,

I(Lb,N) ⊆ I(Lb−1,N), hence LN = Lj,N .

If c is even, write c = 2b, so that j = ⌊ c
2
⌋−1 = b−1. Now the symmetry of the Hilbert function

gives that hN(b− 1) = hN(b+ 1), so that I(Lb−1,N) = I(Lb,N), which gives LN = LN,j .
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Corollary 4.5.12. Suppose R = K[x, y, z]. We let ϕ be a degree zero graded homomorphism from

⊕n+2
j=1 R(−bj) to Rn (n > 0), where ϕ = (ϕij) and ϕij is either zero or of positive degree and

b1 ≤ · · · ≤ bn+2. Suppose the ideal of maximal minors of ϕ has codimension three, so that the

cokernel of ϕ, denoted by M , is Artinian. Then LM = LM,⌊ d−4

2
⌋, where d =

∑
bj .

Proof. By Corollary 4.3.2, M has maximal socle degree d − 3. By Proposition 4.3.9, M is non-

negatively graded and Symmetrically Gorenstein, hence we may apply Proposition 4.5.11 to obtain

the result.

We remark that we do not necessarily need Proposition 4.5.11 for Corollary 4.5.12. Indeed, the

proof of Proposition 4.5.3 shows that hM achieves its maximum value at ⌊ c
2
⌋, hence we may apply

Lemma 4.5.9 and Lemma 4.5.8 to give Corollary 4.5.12.
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Chapter 5

Macaulay Duals of Hyperplane Arrangements

5.1 Introduction

Given4 a homogeneous polynomial f of degree d, the apolar algebra Rf (while this notation is

commonly used in localization, we will not be localizing in this chapter) is the ring of polynomial

differential operators modulo those which annihilate f . This algebra has been studied for a variety

of reasons; in particular the apolar algebra of a form of degree d is always an Artinian Gorenstein

algebra with socle degree d and every Artinian Gorenstein algebra with socle degree d can be

represented as the apolar algebra of a form of degree d. This explicit correspondence, via the

apolar algebra, between forms of degree d and Artinian Gorenstein algebras with socle degree d

is detailed in [38]. The apolar algebra of a homogeneous polynomial f of degree d is also key to

studying the Waring rank of f , which is the smallest integer r for which there exist linear forms

ℓ1, . . . , ℓr so that f = ℓd1 + · · · + ℓdk (we call such a representation a Waring decomposition). The

Waring rank often depends on the field chosen, and to avoid such complications, we will always

assume our ground field to be algebraically closed and have characteristic zero.

In this chapter we study the apolar algebra of a form f of degree d which can be written as

a product of d, not necessarily distinct, linear forms. Such forms correspond geometrically to

hyperplane arrangements (in the case of distinct linear forms) and hyperplane multi-arrangements

(in the case of non-distinct linear forms). To simplify exposition, we conflate a multi-arrangement

with its defining equation. For instance, if we refer to the Waring rank of a multi-arrangement, we

mean the Waring rank of its defining equation. Our inspiration for studying this problem stems

largely from [67], where several questions are posed about apolar algebras of multi-arrangements.

In particular, we study when the apolar algebra of a multi-arrangement is a complete intersection.

4The main results in this chapter are taken from the paper [16], which is joint with Michael DiPasquale and Chris

Peterson.
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If the apolar algebra of a form is a complete intersection, it is often easier to compute its Waring

rank. Two important classes of examples (all multi-arrangements) serve to illustrate this point.

The first is the case of a monomial, whose apolar algebra is generated by powers of variables. The

Waring rank of monomials over the field of complex numbers is completely determined in [11].

The second class is when f is the fundamental skew invariant of a complex reflection group W ,

which is the product of the linear forms defining the pseudo-reflections ofW . In this case the apolar

algebra Rf is isomorphic to the ring of covariants of W [41, Chapter 26], which is the quotient

of the polynomial ring by the ideal generated by invariants of W . This is a complete intersection

since the ring of invariants is itself a polynomial ring by the celebrated Chevalley-Shephard-Todd

theorem. In [65], Teitler and Woo determine the Waring rank of (and a Waring decomposition of)

the fundamental skew invariant of a complex reflection arrangement under some mild conditions.

Following a section providing preliminary background material, we briefly discuss reducible

arrangements, which are arrangements that can be written as a product of lower dimensional ar-

rangements. In Section 4 we make use of the defining equations of star configurations determined

by Geramita, Harbourne, and Migliore [25] to give a lower bound on the initial degree of the

apolar algebra of a generic arrangement (Proposition 5.4.10). We give two corollaries to Proposi-

tion 5.4.10 – the first is a lower bound on the size of a generic arrangement whose apolar ideal is

a complete intersection and the second is a lower bound on the Waring rank of a generic arrange-

ment. The final section of the paper provides closing comments and gives suggestions for further

research.

5.2 Preliminaries

Let K be an algebraically closed field of characteristic zero and put R = K[X0, . . . , Xr].

Let S = K[x0, . . . , xr] be the R-module defined by R acting on S via partial differentiation.

That is, if f ∈ S and ϕ ∈ R,

ϕ ◦ f = ϕ

(
∂

∂x0
, . . . ,

∂

∂xr

)
f.
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This is known as the apolar action of R on S. The expository article [26] is an excellent introduc-

tion to applications of apolarity, and the book [38] can be used to go into more detail.

Given a form f ∈ S, the apolar ideal of f is

AnnR(f) = {ϕ ∈ R : ϕ ◦ f = 0} .

We write Rf = R/AnnR(f); this is the apolar algebra of f . The apolar algebra Rf is a graded

Artinian Gorenstein algebra, and every graded Artinian Gorenstein algebra arises in this way [38,

Lemma 2.12].

Now suppose f ∈ Sd (where Sd denotes the degree d forms in S). A Waring decomposition of f

is a decomposition f = c1ℓ
d
1+ · · ·+ ckℓ

d
k, where ℓ1, . . . , ℓk are linear forms and c1, . . . , ck ∈ K (we

do not strictly need c1, . . . , ck since K is algebraically closed, but it will be useful for us to consider

them). The smallest number of linear forms needed in a Waring decomposition of f is the Waring

rank of f . The following lemma relates the apolarity action and Waring decompositions (see [38,

Lemma 1.15] for a proof). In what follows, we say a linear form ℓ =
∑n

i=0 aixi ∈ K[x0, . . . , xr]

is dual to the point P = [a0 : · · · : ar] ∈ PrK. Any non-zero constant multiple of ℓ is of course dual

to the same point P .

Lemma 5.2.1 (Apolarity Lemma). Let f ∈ S = K[x0, . . . , xr] be a form of degree d, X =

{P1, . . . , Pk} ⊂ PrK a set of points, and IX ⊂ R its corresponding ideal. Write ℓ1, . . . , ℓk for linear

forms in S dual to the points P1, . . . , Pk. Then f = c1ℓ
d
1 + . . .+ ckℓ

d
k for some constants c1, . . . , ck

if and only if IX ⊂ AnnR(f).

From the apolarity lemma we see that the Waring rank of a form is the same as the minimum

degree of a zero-dimensional radical ideal contained in its apolar ideal.

We will focus on forms f ∈ S = K[x0, . . . , xr] which decompose as a product of (not neces-

sarily distinct) linear forms as f = ℓm1

1 · · · ℓmk
k . If g ∈ S, write V (g) for the set of points in Kr+1

at which g vanishes. A natural geometric object to attach to the product f = ℓm1

1 · · · ℓmk
k is the

multi-arrangement (A,m) where A = ∪ki=1V (ℓi) is the union of the hyperplanes V (ℓi) ⊂ Kn+1
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and m is a function which assigns to each hyperplane H ∈ A the integer m(H), where m(H)

is the power to which the corresponding linear form appears in f . We put |m| =
∑

H m(H),

which is the degree of the polynomial f . If m(H) = 1 for all H ∈ A we will say (A,m) is a

simple arrangement and write A instead of (A,m). Given a multi-arrangement (A,m) we define

Q(A,m) :=
∏

H∈A α
m(H)
H , where αH is a choice of linear form vanishing on H . If A is simple

then we write Q(A) for the product
∏

H∈A αH . We call Q(A,m) and Q(A) the defining poly-

nomial of the multi-arrangement and arrangement, respectively. Moreover we write |A| for the

number of hyperplanes in A, so that if f = Q(A,m), then |A| is the number of distinct linear

factors of f . For simplicity, throughout this note we will conflate a multi-arrangement or arrange-

ment with its defining polynomial. For instance, by “the apolar algebra of an arrangement" we will

mean the apolar algebra of its defining equation.

If A1 = ∪pi=1Gi ⊂ V ∼= Ks and A2 = ∪qj=1Hj ⊂ W ∼= Kt are two simple arrangements, then

the product of A1 and A2 is defined by

A1 ×A2 = (∪si=1Gi ×W ) ∪
(
V × ∪tj=1Hj

)
⊂ V ×W

If (A1,m1) and (A2,m2) are multi-arrangements, the product multi-arrangement (A1 × A2,m)

satisfies m(H×W ) = m(H) if H ∈ A1, and m(V ×G) = m(G) if G ∈ A2. Following [55], we

will say that a simple arrangement A is reducible if, after a change of coordinates, A = A1 ×A2

for some simple arrangements A1 and A2. Otherwise we say that A is irreducible.

Suppose A ⊂ Kr+1 is a reducible arrangement and Q(A) is its defining polynomial. Then there

is a change of variables so that A = A1 × A2, where A1 ⊂ Ks and A2 ⊂ Kt for some positive

integers s, t satisfying s + t = r + 1. Put S1 = K[x1, . . . , xs] and S2 = K[y1, . . . , yt]. Then,

under this change of variables, Q(A) = Q(A1)Q(A2). Algebraically, the defining polynomials of

reducible arrangements are those which, after an appropriate change of variables, split as a product

of two defining polynomials in disjoint sets of variables.
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In this note we only consider hyperplane arrangements all of whose hyperplanes pass through

the origin (these are called central arrangements). Hence we will freely pass between a central

arrangement in Kr+1 and its natural quotient in Pr, which does not affect the algebra.

5.3 Products of one and two dimensional arrangements

In this section we observe that if (A,m) is reducible, so (A,m) = (A1,m1) × (A2,m2)

after a change of variables, then Rf
∼= Rf1 ⊗K Rf2 , where f = Q(A,m), f1 = Q(A1,m1),

and f2 = Q(A2,m2). Our observation hinges on the following proposition. We suspect this is

well-known but we include a proof since we were not able to find one in the literature.

Proposition 5.3.1. Suppose s and t are positive integers, f ∈ S1 = K[x1, . . . , xs] and g ∈ S2 =

K[y1, . . . , yt]. Put S = S1 ⊗K S2. Viewing S as the polynomial ring K[x1, . . . , xs, y1, . . . , yt], we

abuse notation by writing fg for the simple tensor f ⊗ g ∈ S. We write R1, R2, and R for the

polynomial rings dual to S1, S2, and S. Then

1. Rfg
∼= (R1)f ⊗K (R2)g and

2. AnnR(fg) = AnnR1
(f)R2 + AnnR2

(g)R1

Proof. Since AnnR1
(f)R2 +AnnR2

(g)R1 is the kernel of the natural map from R to Rf ⊗Rg, it is

clear that (1) and (2) are equivalent. We prove (2).

Suppose that ϕ =
∑

α,β cα,βX
αY β ∈ R, where α = (α1, · · · , αs) ∈ Zs≥0, β = (β1, . . . , βt) ∈

Zt≥0, X
α = Xα0

0 · · ·Xαs
s , Y β = Y β0

0 · · ·Y βt
t , and cα,β ∈ K. Then

ϕ ◦ (fg) =
∑

α,β

cα,β
∂f

∂xα
∂g

∂yβ
.

Similarly, if ϕ1 ∈ R1 and ϕ2 ∈ R2, then ϕ1ϕ2 ◦ fg = (ϕ1 ◦ f)(ϕ2 ◦ g). From this observation it is

clear that AnnR1
(f)R2 + AnnR2

(g)R1 ⊆ AnnR(fg).

We prove that AnnR(fg) ⊆ AnnR1
(f)R2 + AnnR2

(g)R1. For this we consider several maps:

αf : R1 → S1 given by ϕ → ϕ ◦ f , αg : R2 → S2 by ϕ → ϕ ◦ g, the tensor product maps

108



α′
f := αf ⊗K idR2

: R1 ⊗K R2 → S1 ⊗K R2 and α′
g := idS1

⊗K αg : S1 ⊗K R2 → S1 ⊗K S2. By

the above observations, AnnR(fg) = ker(α′
g ◦ α

′
f ).

Suppose ϕ =
∑

α,β cα,βX
αY β ∈ AnnR(fg). Then

ϕ ◦ fg =
∑

α,β

cα,β
∂f

∂xα
∂g

∂yβ
= 0. (5.1)

Suppose the monomial xγ appears in ∂f
∂xα

with coefficient dγ,α ∈ K. Equating coefficients of xγ in

Equation (5.1) yields

xγ
∑

α,β

dγ,αcα,β
∂g

∂yβ
= 0.

It follows that
∑

α,β dγ,αcα,βY
β ∈ ker(α′

g) = AnnR2
(g). Thus

α′
f (ϕ) =

∑

α,β

cα,β
∂f

∂xα
Y β ∈ AnnR2

(g)αf (R1).

Notice that

α′
f (AnnR1

(f)R2 + AnnR2
(g)R1) = AnnR2

(g)αf (R1).

Since α′
f (AnnR(fg)) ⊆ AnnR2

(g)αf (R1) and ker(α′
f ) = AnnR1

(f)R2, we have AnnR(fg) ⊆

AnnR1
(f)R2 + AnnR2

(g)R1, as desired.

Corollary 5.3.2. Suppose S ∼= S1 ⊗K · · · ⊗K Sk, where Si is a polynomial ring in one or two

variables for i = 1, . . . , k. If a form f ∈ S factors as f = f1 · · · fk where fi ∈ Si for i = 1, . . . , k,

then AnnR(f) is a complete intersection.

Proof. It is well known that the apolar algebra of a homogeneous polynomial in one or two vari-

ables is a complete intersection (since Gorenstein coincides with complete intersection in one and

two variables). The corollary follows directly from this fact and Proposition 5.3.1.

Remark 5.3.3. Over an algebraically closed field it is clear that the factors f1, . . . , fk in Corol-

lary 5.3.2 are in fact products of linear forms.
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Remark 5.3.4. Corollary 5.3.2 shows that the apolar algebra of a multi-arrangement which is a

product of one and two dimensional arrangements is a complete intersection. One may ask the

reverse question: if the apolar algebra of Q(A,m) is a complete intersection for every choice of

multiplicity m, is A necessarily a product of one and two dimensional arrangements? A similar

question has an affirmative answer: in [1] it is proved that if the module of multi-derivations

D(A,m) is free for every multiplicity m, then A is indeed a product of one and two dimensional

arrangements.

5.4 Generic arrangements

In this section we derive a lower bound on the initial degree of the apolar ideal of a generic

arrangement A ⊂ Pr with at least r+1 hyperplanes (Proposition 5.4.10). All arrangements in this

section are simple arrangements.

Definition 5.4.1. An arrangement in Pr is generic if the intersection of any k of its hyperplanes

has codimension min{k, r + 1}.

In preparation we give several lemmas and definitions. Given a form G ∈ R, the gradient of G

is the vector ∇G :=
(
∂G
∂X0

, . . . , ∂G
∂Xr

)
.

Lemma 5.4.2. Suppose g ∈ S is a homogeneous polynomial and write f = ℓg for some linear

form ℓ. Let F ∈ R be homogeneous of degree d ≥ 1. Then, if we abuse notation and write ℓ for

the corresponding linear form in R, we have

F ◦ f = (∇F · ∇ℓ) ◦ g + ℓ (F ◦ g) .

(Here ∇F ·∇ℓ denotes the dot product.) In particular, if f = ℓ1ℓ2 · · · ℓt is a product of t ≥ n linear

forms, n of which are linearly independent, then there is an ℓ ∈ {ℓ1, . . . , ℓt} such that ∇F · ∇ℓ is

nonzero.
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Proof. Write ℓ = a0x0 + · · ·+ arxr. First, let F be a monomial of degree d, say F = Xd1
i1
· · ·Xdt

it
,

where d1, . . . , dt are positive. Then it is easy to see that F ◦ f is given by

(
t∑

j=1

djajX
d1
i1
· · ·X

dj−1
ij

· · ·Xdt
it

)
◦ g + ℓ(F ◦ g) =

(∇F · ∇ℓ) ◦ g + ℓ(F ◦ g) (⋆)

By linearity of the gradient, (⋆) holds for arbitrary polynomials F . The rest is clear.

Definition 5.4.3. If f is a form, the kth order Jacobian of f is the ideal generated by all partials of

f of order k and is denoted by Jk(f).

Remark 5.4.4. The Jacobian of f is J1(f); geometrically, V (J1(f)) is the singular locus of f .

Analogously, V (Jk(f)) is the set of singular points with multiplicity at least k + 1.

Remark 5.4.5. Since we assume f is homogeneous, the Euler identity
∑
xi

dg
dxi

= deg(g)·g applied

repeatedly to f and its partials yields the containments (f) ⊂ J1(f) ⊂ J2(f) ⊂ · · · ⊂ Jk(f).

Geometrically, this yields a nested sequence of subvarieties of the hypersurface V (f) ordered

according to the severity of the singularities.

Remark 5.4.6. If f is a form of degree d, the degree k component of the apolar algebra (Rf )k, is

isomorphic (as a vector space over K) to Jd−k(f)k via apolarity. Hence AnnR(f)k = 0 if and only

if Jd−k(f) is the kth power of the maximal ideal.

According to Remark 5.4.4, if f is a product of linear forms, then V (Jk(f)) is exactly those

points which lie at the intersection of at least k + 1 of the hyperplanes defined by the linear forms

whose product is f . Now we arrive at the crucial point: if f = Q(A) for a generic arrangement,

V (Jk(f)) is precisely the union of all codimension k + 1 intersections of hyperplanes from A.

Thus V (Jk(f)) is a star configuration [25]; a star configuration is by definition the union of all

codimension c intersections of a generic arrangement (in [25, Definition 2.1] the property of meet-

ing properly is exactly what we mean by a generic arrangement). In [25] it is shown that the ideal
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of codimension c intersections of an arrangement of |A| hyperplanes is generated by all distinct

products of |A| − c+ 1 of the linear forms defining A.

Lemma 5.4.7. Suppose f decomposes non-trivially as a product f = gh; write I = AnnR(h) and

I ′ = AnnR(f) = AnnR(gh). If D ∈ I ′k \ Ik, then g ∈ Jk−1(h) : (D ◦ h).

Proof. Repeatedly using the product rule yields that D ◦ gh = g(D ◦ h) + T , where T ∈ Jk−1(h).

Since D ◦ gh = 0, this gives the result.

Corollary 5.4.8. Suppose f is a product of at least n + 2 distinct linear forms defining a generic

arrangement A in Pr. Factor f as a product f = gh so that deg(h) ≥ n+ 1. Write I = AnnR(h)

and I ′ = AnnR(f) = AnnR(gh). If Ik = 0 for any k ≤ n then I ′k = 0.

Proof. Suppose to the contrary that D ∈ I ′k and D 6= 0. By Lemma 5.4.7, g ∈ Jk−1(h) : (D ◦ h).

Write h = ℓ1ℓ2 · · · ℓt, where t ≥ n + 1; then V (Jk−1(h)) is the union of linear spaces which

are the intersections of at least k of the hyperplanes V (ℓ1), · · · , V (ℓt). This is nonempty since

k ≤ n < t. As A is a generic arrangement, none of the factors of g vanish along any component

of V (Jk−1(h)); in other words g is not in any prime ideal that comprises the intersection that is the

radical of Jk−1(h). This means that g ∈ Jk−1(h) : (D ◦ h) only if D ◦ h is in every minimal prime

of Jk−1(h). In other words, D◦h is in the radical of Jk−1(h). LetK =
√
Jk−1(h); this is the ideal

of the union of linear spaces which are the intersections of k of the hyperplanes V (ℓ1), · · · , V (ℓt).

As previously noted, this is a star configuration, and by [25, Proposition 2.9], K is generated by

all possible products of t− k+1 of the linear forms ℓ1, . . . , ℓt. On the other hand D ◦h has degree

t− k, so D ◦ h /∈ K. With this contradiction, we must have I ′k = 0.

Remark 5.4.9. Consider the A3 arrangement in P2, defined by f = xyz(x − y)(x − z)(y − z).

Write f = gh with g = y − z and h = xyz(x− y)(x− z). Set I ′ = AnnR(f) and I = AnnR(h).

Then I2 = 0 but I ′2 6= 0. Thus the hypothesis that A is generic in Corollary 5.4.8 is necessary.

Now we give the main result of this section, which is a a bound on the initial degree of the

apolar ideal of a generic arrangement. For an ideal I ⊂ R we will denote by α(I) its initial degree,

that is, the smallest degree d for which Id 6= 0.
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Proposition 5.4.10. Suppose A is a generic arrangement of at least r + 1 hyperplanes in Pr and

f = Q(A). Then α(AnnR(f)) ≥ min{|A| − r + 1, r + 1}.

Proof. We first prove by induction on |A| that if r+1 ≤ |A| ≤ 2r, then α(AnnR(f)) ≥ |A|−r+1.

If |A| = r + 1 then without loss of generality, f = x0x1 · · · xr and AnnR(f) = (x20, . . . , x
2
r), so

α(AnnR(f)) = 2 = |A| − r + 1.

Suppose now that n+ 1 < |A| ≤ 2r, and additionally suppose for a contradiction that there is

some D ∈ AnnR(f)|A|−r. Since A is defined by more than r linearly independent linear forms, by

Lemma 5.4.2 there is some ℓ ∈ A so that ∇ℓ · ∇D 6= 0. Writing f = gℓ, with deg(g) = r, and

using Lemma 5.4.2 again, we have

0 = D ◦ f = (∇ℓ · ∇D) ◦ g + ℓ(D ◦ g).

SupposeD◦g = 0, so that (∇ℓ ·∇D)◦g = 0. Now deg(∇ℓ ·∇D) = |A|−r−1, and by induction

α(AnnR(g)) ≥ |A| − 1− r + 1 = |A| − r. With this contradiction, D ◦ g 6= 0.

With the above, ℓ(D ◦ g)) = −(∇ℓ · ∇D) ◦ g, so ℓ(D ◦ g) ∈ J |A|−r−1(g). Write K =
√
J |A|−r−1(g), so that K is the ideal defining all possible intersections of |A|−r hyperplanes of g;

by [25], α(K) = (|A|−1)− (|A|−r)+1 = r. Since deg(D ◦g) = (|A|−1)− (|A|−r) = r−1,

D ◦ g /∈ K. Since K is radical, ℓ must be in at least one minimal prime of K. This would imply

that V (ℓ) passes through a codimension |A| − r intersection of A. As |A| ≤ 2r, K is not the

homogeneous maximal ideal, so that this contradicts that A is a generic arrangement. Hence no

such D can exist, and it follows that α(AnnR(f)) ≥ |A| − r + 1.

If |A| ≥ 2r we prove by induction on |A| that α(AnnR(f)) ≥ r + 1. The base case |A| = 2r

has already been shown. If |A| > 2r then the result follows from Corollary5.4.8.

Corollary 5.4.11. If A is a generic arrangement of at least r + 2 hyperplanes in Pr whose apolar

ideal is a complete intersection, then |A| ≥ r(r + 1).
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Proof. Put f = Q(A). If AnnR(f) is a complete intersection generated in degrees d0 ≤ . . . ≤ dr,

then (d0− 1)+ (d1− 1)+ · · ·+(dr− 1) = |A|, so d0+ · · ·+ dr = |A|+ r+1. With this notation,

α(AnnR(f)) = d0, and this gives d0 ≤ (|A|+ r + 1)/(r + 1).

It is straightforward to check that if r + 1 < |A| ≤ 2r then the lower bound for α(AnnR(f))

from Proposition 5.4.10 is strictly larger than (|A| + r + 1)/(r + 1), so AnnR(f) cannot be a

complete intersection.

If |A| > 2r then we obtain from Proposition 5.4.10 that r + 1 ≤ (|A| + r + 1)/(r + 1) or

equivalently r(r + 1) ≤ |A|, proving the corollary.

Recall that the Waring rank of a form f ∈ S is the smallest integer k for which there exist

linear forms ℓ1, . . . , ℓr so that f = ℓd1 + · · ·+ ℓdk.

Corollary 5.4.12. The Waring rank of a generic arrangement A ⊂ Pr with at least r + 1 hyper-

planes is at least min{
(
|A|
r

)
,
(
2r
r

)
}.

Proof. Put f = Q(A). By Proposition 5.4.10, α(AnnR(f)) ≥ min{|A| − r + 1, r + 1}. Suppose

f =
∑k

i=1 ℓ
|A|
i , and let X = {Pi}

k
i=1 be the dual points in Pr found by stripping off the coordinates

of the linear forms ℓi. By Lemma 5.2.1, IX ⊂ AnnR(f). For this to happen, X must impose

independent conditions on forms of degree d = α(AnnR(f))− 1. In other words, X must consist

of at least as many points as the dimension of the vector space Sd, where S = K[x0, . . . , xr]. Since

dimSd =
(
r+d
r

)
, this gives the result.

Remark 5.4.13. As Corollary 5.4.12 does not account for the degree of Q(A), we suspect that

Corollary 5.4.12 is not optimal.

5.5 Conclusions and Further Questions

There are two main results of this paper. The first is a bound on the initial degree of the

apolar ideal of a generic arrangement, attained using defining equations of star configurations

from [25]. From this we obtained a necessary condition on the size of a generic arrangement with

a complete intersection apolar algebra, as well as a lower bound on the Waring rank of a generic
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arrangement. A subsequent question raised by Wakefield [67] remains wide open: is the apolar

algebra of a generic arrangement ever a complete intersection? To this we add two additional

questions concerning the optimality of Proposition 5.4.10 and Corollary 5.4.12. First, are there

arbitrarily large generic arrangements in Pr whose apolar ideals have initial degree r+1? Second,

are there arbitrarily large generic arrangements in Pr whose Waring rank is
(
2r
r

)
?

The general problem of determining the degree d irreducible multi-arrangements in Pr that

have minimal Waring rank is currently out of reach but we leave it as a suggestion for a further

path of research. It is worth noting that each of the extremal examples we found has interesting

combinatorial properties. In particular, after a change of coordinates, one is the defining ideal of

the A3 braid arrangement. Another is half of the Hessian arrangement. Perhaps there is a clue in

the structure of these examples that can help one search for higher degree extremal examples. One

promising avenue is to look for extremal behavior among the simplicial line arrangements cata-

logued in [30]; such arrangements have recently led to interesting examples for the containment

problem between regular and symbolic powers [64]. For now, we leave this as an open problem

for the interested reader.
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