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ABSTRACT 

A one-layer bulk boundary layer model is developed following earlier work by 

Randall and Moeng. The model predicts the mixed layer values of the potential 
temperature, mixing ratio, and u- and v-momentum. The model also predicts the depth of 

the boundary layer and the vertically integrated turbulence kinetic energy (TKE). The 

TKE is determined using a second-order closure that relates the rate of dissipation to the 

TKE. The fractional area covered by rising motion (o) and the entrainment rate (E) are 

diagnostically determined. 

The model is used to study the clear convective boundary layer (CBL) using data 

from the Wangara, Australia boundary layer experiment. The Wangara data is also used 

as an observation base to. validate model results. A further study is accomplished by 
simulating the planetary boundary layer (PBL) over an ocean surface. This study is 

.' 

designed to find the steady-state solutions of the prognostic variables. 

The model clearly illustrated the features found in a CBL. The diurnal trend of the 

PBL depth was accurately reproduced. This included rapid growth during mid-morning, 
quasi-steady-state conditions during the afternoon, and an evening transition. 

In the ocean study, the prognostic variables converged to their equilibrium values at 
about the same time. This is in contrast to an earlier study using similar conditions where 
the adjustment time for the PBL depth was considerably longer than for the other 
prognostic variables. This discrepancy was due to the different entrainment 

pararneterizations used in each study. In the ocean study, the entrainment rate became 

very large during the initial portion of the simulation, whereas in the earlier study the 

entrainment rate remained small and constant throughout. 

The TKE became very large during the mid-morning when rapid PBL growth was 
occurring. This large TKE indicated that the PBL was very turbulent due to the vigorous 
convection that was taking place. The fractional area covered by rising motion, o, 
reached its minimum at this time; a further indication of the intense convection. 





The gradients of the mean potential temperature and mean mixing ratio were 

determined. These gradients were large at the start of the simulation when the PBL was 
unmixed. The gradients decreased rapidly as turbulence mixed the PBL during mid- 
morning. The gradients were near zero in the afternoon indicating that the PBL was now 
well mixed. 

A two-layer model was developed to address the problem of large gradients obtained 

in the one-layer model. This model produced the same results for the prognostic 

variables as the one-layer model. The gradients determined by the model were near zero. 

The mean potential temperatures and mixing ratios at the two levels in the model were 
then initially perturbed to study the effects of varying the dissipation time scale. A 

certain range of values of the model parameter related to the dissipation time scale 

allowed the large induced gradients to approach zero in a reasonable time. ; 

The following items were presented for the first time in this thesis: 

(1) A positive entrainment rate parameterization which assumes a balance between 

buoyancy production and dissipation of turbulence kinetic energy. 

(2) A negative entrainment rate parameterization that allows the PBL depth to 
decrease late in the day when buoyancy production is no longer sufficient to maintain the 

turbulence. 

(3) A fully implicit finite difference equation for the TKE (when the entrainment rate 

is positive) solved as a cubic equation. The square of the solution that is always real is 

assigned to the TKE. 

(4) Results for both the Wangara and Ocean studies showing the fractional area 

covered by rising motion, convective mass flux, updraft and downdraft properties of 8 
and at the surface and PBL top, dissipation rates of 8 and q at the surface and PBL top, 

dissipation time scale, and gradients of and q'. 

(5) Results and comparison for the Wangara study of two surface bulk transfer 
coefficients, one dependent on the surface velocity and the other on the turbulence kinetic 

energy. 





(6) A two-layer model which predicts 8 and at two levels. 

(7) Equations that determine the upward turbulent fluxes of 8 and q in the interior of 
the PBL. These equations are used to obtain 8 and in the two-layer model. 
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1. Introduction 

1.a. Statement of Problem 

The planetary boundary layer (PBL) exerts a significant influence on the earth's 

weather and climate. The large-scale atmosphere feels the effects of the PBL during the 

development and growth of thunderstorms with relatively short time scales (= 1 hour), 

and over the entire time scale spectrum including long periods (10's - 100's of years) 

when global climatic change occurs. The predominant source of energy to drive the 

general circulation is the ocean. Surface fluxes of heat, moisture, and momentum over 

the oceans are transported to the free atmosphere through the PBL. These fluxes play a 

vital role in transforming the earth's climate over time. The turbulent eddies in the PBL 

are the means by which this energy is transmitted from the ocean to the free atmosphere 

where it interacts with the general circulation. Since the PBL is intimately tied to the 

evolution of the climate, an accurate representation of the PBL is required to correctly 

make predictions of the future climate using a general circulation model. The only way 

to accomplish this is to develop a model that predicts the state of the PBL using 

pararneterizations. 

The surface fluxes of heat, moisture, and momentum are not the only important 

parameters to consider. The fluxes of these quantities over the entire depth of the PBL 

should also be included because they affect the general circulation. The total water vapor 

in the PBL represents the latent heat available to drive the general circulation. Another 

parameter, the PBL depth, besides denoting the amount of mass contained within the 

PBL, gives insight into whether clouds are present. As the PBL depth increases, moisture 

can penetrate higher into the atmosphere, eventually reaching the lifting condensation 

level where clouds will form. Finally, one can obtain some information about the 

fractional cloud amount by predicting the fractional area in the PBL that rising motion 

covers. Clouds play a key role in the climate because they affect the radiation budget by 

reflecting solar radiation that the earth's surface would otherwise absorb, therefore, 

knowledge of the amount of cloud coverage is crucial to climate prediction. 



1.b. Definition of Second-Order Bulk Boundary Layer Model 

The bulk boundary layer model presented is further development of the work 

completed by Randall, Shao, and Moeng(1992). The model is 1-dimensional and 

employs a second-order turbulence closure, and a "bulk" approach to parametrically 

represent boundary-layer structure. Prediction equations are used to compute the 

boundary layer depth (Apm9 in terms of pressure), mixed layer values of u- and v- 

momentum (u, and v,), potential temperature (em), mixing ratio (q,), and turbulence 

kinetic energy (em). This model also diagnoses the entrainment rate (E) and fractional 

area covered by rising motion (o), which allows the determination of fractional cloud 

amounts. Figure 1.b. 1 depicts the domain of the model. Subscript S- denotes the earth's 

surface, S the top of the ventilation or surface layer, B the base of the entrainment layer 

or the top of the PBL, and B+ the top of the entrainment layer or the level just above the 

top of the PBL. Both the surface and entrainment layers are infinitesimally thick 

(indicated by the stippling in figure 1.b. 1). 

Entrainment I Layer 

Figure 1 .b. 1 : Domain of Bulk Boundary Layer Model. 



1 .c. Literature Review 

Deardorff (1974a) completed a three-dimensional numerical study of the heated PBL 
where he determined the mean structure and height of the PBL. His study utilized data 
from Day 33 of the Wangara Experiment: Boundary Layer Data (Clarke et al., 1971). 

His model included grid-volume averaged equations for the momentum, potential 

temperature, and mixing ratio. The potential temperature equation included a term for the 

temperature change due to the divergence of the long-wave radiative flux. Deardorff also 
d -  d- d- d-  d- d 7  

utilized subgrid transport equations (--ul!u~, -ul~8', -ul$'. -8". -0'q' , and-q ) 
dr dr dr dr dt dr 

for the subgrid Reynolds stresses. He assumed that the terrain was flat and the surface 

temperature and surface roughness were horizontally homogeneous. 

The surface momentum flux was prescribed using the surface-layer formulations of 

Businger et al. (1971) and the surface layer integrals of Paulson (1970). The surface heat 

and moisture fluxes were computed using the subgrid transport equations. The model 

was initialized using data beginning at 0900L on Day 33. 

Deardorff s model overestimated the calculated rate of growth of the mixed layer 

height between 1200-1500L. He attributed this overestimation to the lack of large-scale 
vertical motion in the model. Thus, the model mixed layer height was also overestimated 
during the afternoon. At 1200L the model predicted 1030 meters, while the actual height 

was 1010 meters. At 1500, the model height was 1400 meters and the actual height was 

only 1200 meters. The maximum model height was 1500 meters at 1800L and the 

maximum actual height was 1280 meters. 

Yamada and Mellor (1975) completed a simulation of the diurnally varying 

planetary boundary layer and compared it with Days 33-34 of the Wangara data. Their 
model differed from Deardorff s by using ensemble mean closure instead of subgrid-scale 
closure. They used their level 3 model which required the solution of only 2 out of 10 
differential equations for turbulence moments (turbulence kinetic energy and temperature 

variance). 

Yamada's model underestimated the height of the PBL by about 300 meters during 

the afternoon hours. This discrepancy was due to the uncertainty in the observed values 

of the mean vertical wind. They concluded that accurate data for the thermal wind and 



mean vertical wind are necessary to obtain realistic simulations for the mean winds and 

temperature. 

Suarez et al. (1983) developed a parameterization for the PBL to be used in the 
UCLA General Circulation Model. Their work provides some of the basis for this thesis. 

The parameterization used a mixed-layer approach where the discontinuities in 
temperature and moisture at the top of the PBL were modeled using jumps. They utilized 
a modified o-coordinate and bulk equations for the PBL. 

Based on the earlier work by Deardorff (1970, 1972, and 1974a,b), the PBL depth 

was determined using a prognostic equation. Deardorff showed that entrainment was 

vitally important in the determination of the PBL depth and that the PBL depth affected 

the bulk Richardson number, which in turn was related to the stability dependence of the 

surface transfer coefficients. 

The modified o-coordinate was used to allow the varying depth of the PBL to be 

included into the GCM. In the conventional o-coordinate system, surfaces follow the 
earth's topography. In the modified o-coordinate system, the earth's surface and the PBL 

top are both coordinate surfaces. This allowed the PBL to be more effectively coupled to 
the large-scale dynamics. Also, the detailed structure that occurs at the PBL top where 

the jumps are did not have to be resolved by the GCM grid since the structure was at the 
interface of the two lowest GCM layers in the modified o-coordinate system. 

The bulk equations at the PBL top related the flux of a quantity to the product of the 

entrainment rate and the change (jump) of the quantity across the top interface. Surface 
bulk formula were determined using similarity theory formulated by Businger et al. 
(1971), just as Deardorff used. Since the fluxes at the PBL top use the entrainment rate, 

it had to be parameterized in terms of the prognostic variables. This parameterization 

was based on separating the buoyancy and shear terms into positive and negative 
production. The entrainment rate was then given by positive production minus negative 
production minus dissipation. 

Randall et al. (1992) developed a second-order bulk boundary-layer model. This 

model matches the fluxes associated with the convective mass flux with the surface or 

ventilation mass flux and the entrainment mass flux. The model also provides the first 



physically based means to determine the fractional area covered by rising motion, o. 

Finally, the model allows the "well-mixed" assumption to be relaxed. 

This thesis is a continuation of the work done by Randall et al. (1992). A new 

entrainment parameterization is introduced based on the sums of the buoyancy and shear 

production terms. A surface transfer coefficient is calculated based on the predicted 

turbulence kinetic energy. Results are shown using the diagnostics developed in 

Randall's bulk model including the convective mass flux and the fractional area covered 

by rising motion. Finally, a two-layer model is developed and tested. 



2, Deyription of One-Layer Model 

I 
' t  . lY- , 5 

2.a. Equations 
I > 

This chapter provides detailed derivations of the prediction equations used by the 

model. Table 2.a. 1 provides a summary of the final equations used, the assumptions 

made in the derivations, and the boundary conditions applied to simplify and solve the 

prognostic equations. 

Tensor notation is used throughout the derivations with the subscript j refemng to 

one of the components of momentum or Cartesian coordinates (u=ul, v= u2, w=ug, x=xl, 

y=x2, z=x3, where subscripts i, j, or k are used with the values 1,2, or 3). 



Table' 2.a. 1 : Model Equation Summary. 

Viscous effects 

momentum flux 

values of v ,  p, 
and Az used -. , .  .- 

* \  

Horizontal 
homogeneity 

v-Momentum Same as u- Same as u- Same as u- 
(2.a.3) momentum momentum momentum 

equation equation equation 
'*". . 

hm E(v,+ - v m  ) 1 -= - 
dt Pmhm 

- 
* - 

pmfk 

f (urn - u,) 



Table 2.a.l: Model Equation Summary (continued). 

Surface B.C. 

Same as 
momentum 
equations 
except: 

Louis (1979) 
surface heat- 
moisture flux 
parameterization 

Same as 
potential 
temperature 

Top B.C. 

Turbulence 
vanishes 

Heat flux 
vanishes 

Heat flux at 
level B vanishes 
if E<O 

Turbulence 
vanishes 

Moisture flux 
vanishes 

Moisture flux 
at level B 
vanishes if E<O 

Equation 

Potential Temperature 
(2.a.4) 

39, E(%+-%)+ -= 
dr P m h m  

2 
pgCa lKtat-moist. 

0.74pmAzm (%- - Om) 

Moisture 
(2.a.5) 

a4 E ( G + - q . ) +  A= 
dr P m k m  

pgca21vm I L t - m o i s t .  

0.74pmAz, ("- - qm ' 

Assumptions 

Same as 
momentum 
equations 
except: 

Molecular 
conduction and 
radiation 
divergence 
ignored 

Mixed layer 
value of 8 also 
used 

No phase 
changes of water 

Same as 
momentum 
equations 
except: 

Source-sink 
term assumed to 
be a mean 
forcing and 
equal to zero 

Molecular 
diffusion 
ignored 

Mixed layer 
value of q also 
used 

No clouds 



Table 2.a. 1 : Model Equation Summary (continued). 

Equation 

(EN) 
(2.a.6) 

ae, g -= - (s+  B -  ~ e , -  
4, 
0) 

Assumptions 

Same as 
momentum 
equations 
except: 

Viscous 
dissipation term 
approximated 

Gravity waves 
neglected 

Mixed layer 
value of TKE 
also used 

(c),- constant 
in surface layer 
and is parallel to 
wind 

F, decreases 
linearly in 
entrainment 
layer and is 
parallel to wind 

- 
8, = 8, 

c P X "  Fsv z - 
em 

Ratio of Fsv 
and pressure 
approximately 
linear 

*,2 =e, 
a1 

(second order 
closure) 

Top B.C. 

TKE vanishes 

*Vertical . 

turbulent flux of 
TKE at top equal 
to value at 
surface 

Pressure 
correlation at top 
zero (due to 
neglect of 
gravity waves) 

Vector 
momentum, 
heat* and 
moisture fluxes 
vanish 

Surface B.C. 

No mass 
crosses earth's 
surface 

Vertical 
turbulent flux of 
TKE at surface 
equal to value at 
top 

Pressure 
correlation at 
surface zero 
(turbulence 
vanishes) 

Vector 
momentum flux 
constant in 
surface layer and 
is parallel to 
wind 

Momentum 
vanishes 

Horizontal 
homogeneity 

Louis (1979) 
surface heat- 
moisture flux 
parameterization 



Table 2.a.l: Model Equation Summary (continued). 

Equation Assumptions 

2.a.(l) Conservation of Mass 

Same as TKE 
(EM) except: 

The mass conservation equation is expressed by 

Top B.C. Surface B.C. 

Same as TKE 
(EM) except: 

Same as TKE 
(E>O) 



This equation is not used directly (the form of this equation listed in Table 2.a. 1 is used to 

predict the boundary layer depth), but is used to derive the other conservation equations. 

2.a.(2) Consex-vation of Momentum 

The Navier-Stokes equation is 

where f is the coriolis parameter (2Qsin$), E;;, is the alternating unit tensor where 

+I for i = I  and j = 2 

- I f o r i = 2 a n d j = l  

0 for i =  j, 

p, is the dynamic viscosity coefficient, p is the density, and h=-2~13. The incompressible 

form of (2.a.(2).1) is 

Equation (2.a.(2).2) is multiplied by the density (split into mean and perturbation parts 

when multiplied by g, constant otherwise: the Boussinesq approximation) to give 

:.. . !: ; f ~ ; t -  r ,  L I ' I , ~ .  

Next, (2.a.(2).3) is divided by the mean density to obtain 

where v I pip is the kinematic viscosity. For shallow convection d z -5 This 
j5 8' 

approximation is then applied to (2.a.(2).4) which yields 



7 1  

Now, equation (2.a.(2).5) is multiplied by and is added to ui multiplied by the 

continuity equation to get , ,  

Equation (2.a.(2).6) is then put into flux form, 

3 ,  3 '\I 
- -- 

L - I ' 

Only the horizontal momentum equations (i=l, 2) are considered, the geostrophic wind 

definition is used, and viscous effects are ignored. Then, (2.a.(2).7) becomes 

where the g subscript denotes a geostrophic wind component. The wind components are 

next split into mean and perturbation parts to give 

The split is not necessary for the geostrophic component since this component is a 
constant. Equation (2.a.(2).9) is then simplified using the method of Reynolds averaging. 

I .  
f 
_I 



Consider an instantaneous quantity, A, which is split into a mean and perturbation 

component (A  and A'). The mean component of A represents either the time, space, or 

ensemble average of A, and the perturbation component represents positive or negative 

deviations from this average. If A = A + A', then (x) = (X + A'), or = A + p. The 

last equality can only be true if = 0 This just states that the sum of positive deviations 

from the mean equals the absolute value of the sum of the negative deviations, thus the 

net sum of the deviations is zero. Reynolds averaging is accomplished by applying the 

above result to quantities split into mean and perturbation parts. Stull(1991) provides a 

detailed discussion of Reynolds averaging. Equation Q.a.(2).9) then becomes 

The u-component of @.a.(2).10) is ;. '.,. 

Horizontal derivatives of perturbation quantities are neglected because 

Ax = Ay >> Az, thus 
A(horizonta1 flux) << A(vertical flux) . Equation (2.a.(2). 1 I), 

AX, Ay i. Az - I 
without these terms, is next vertically integrated from the lower surface in the boundary 

layer, zs-, to just above the boundary layer top, ZB+ which yields 
5.. .(\ 1 

m .  - - 

Equation (2.a.(2).12) is then transformLd uing ~eibni;'; rule to gi;e 
, p : ,  L, , '3, \ J ..<. ' % 



where the mixed layer values (denoted by subscript m) of v (the v-component of the 

wind), the density, and the boundary 1ayer.depth have been used to simplify the - 
integration. Since turbulence vanishes above the boundary layer. p(t, zB+)u'w'(t. zB+) is 

zero. 

Next, the terms at height B+ and at height S- are combined to give 

where the function notation has been dropped. The terms inside the square brackets 

represent the entrainment mass flux, E, across the B+ and S- surfaces respectively. The 

S- surface is the earth's surface, where the entrainment mass flux is zero (the individual 

terms are not necessarily zero, but their sum must be zero since no mass can cross the 



earth's surface). Equation (2.a.(2). 14) then simplifies to 
",* ' V'lt 

d 
:= zs, 

- j P R d z =  E&+-V. ~ ~ P y d ~ + ( ~ ~ ) ~ ~ + ~ ~ f ( v , - v ~ ) A z , ,  (2.a.(2).15) 
dr z= ZS- z=: 

where the second term on the right hand side is a combination of the fourth and fifth 
terms in equation (2.a.(2). 14). Now, the first term and the divergence term are integrated 

The derivative in the second term on the right hand side of the lower equation of 

(2.a.(2).16) can be expressed in terms of the entrainment mass flux into the top of the 

boundary layer. This is shown by Figure 2.a.(2).1. 1' i?. ,fi 



(1) Entrainment brings mass 
into PBL top at local point 

(2) Mass flux 
at local point 

Area of Area of 
more mass less mass 

(3) Area containing more mass is 
advected into local point by the 
velocity 

Figure 2.a.(2).1: Processes Which Cause Local Change in Mass. 

The local mass flux ((p,Az,),,) changes due to: (I) the entrainment of mass into the 

PBL top (E), (2) horizontal convergence of mass flux (-p,Az,(v v , ) ,~~ , ) ,  and (3) 

horizontal advection of mass flux (-v, V(pmAzm),,). Therefore, 

d( pmkm = E - p,~z,(V v , ) , ~ ~ ,  - v, V(p, , ,~z, , , )~~~, .  Substituting this into the last 
dr 

equation of (2.a.(2). 16) gives. 

or using the vector identity u,V (pmvmAzm) = u,p,Az,(V v,) + u,v, V(pmAzm), 



and 

Horizontal homogeneity is assumed in the last equation of (2.a.(2). 17). This 

eliminates the second term on the right hand side. Then this equation is divided by the 

mixed layer density and boundary layer depth to give 

The local rate of change of the mixed layer u-momentum component is due to the 

entrainment flux of momentum through the boundary layer top, the surface flux of 

momentum, coriolis-pressure gradient effects, and momentum divergence. The v- 

component equation is derived in the same manner and is 

Chapter 3 provides details of the parameterization of the surface momentum fluxes. 

The equations with the included par'~$terization At!' 1 ' 
ii. 



where p,, is the surface air density, a' is a drag coefficient, F,,, is an empirical 

function which is dependent on a bulk Richardson number, and IV,, ,~ is the magnitude of 

the mixed layer horizontal velocity (Iv,,,~ = ( u i  + v;)lif). 

2.a.(3) Conservation of Potential Temperature 

1 (* I 

The conservation equation for moist static energy is i \\. 1- 

! : ! I  - 1 4 '  - 6  . 4 i ; ; ,  

where h = c,T + gz + L,q is moist static energy (L, is latent heat of vaporization of 

water and q is the water vapor mixing ratio), vh is the kinematic molecular diffusivity for 
' moist static energy, c, the specific heat for moist air at constant pressure, and Qj the 

component of net radiation in the jh direction. This equation is then multiplied by the 

mean density and is added to the product of h and the continuity equation which gives 
.., 

Now, equation (2.a.(3).2) is put into flux form, 

d ( ~ h )  d ( ~ u , h )  d'h 1 da, = -  +pv,----. 
, ... 
a .  * I  

dt &, d, ' I  I 

Next, equation (2.a.(3).3) is expanded into mean and perturbation parts to give 

After Reynolds averaging, equation (2.a.(3).4) becomes 
.i 



The horizontal derivatives of the perturbation quantities are neglected using the 

same scaling argument presented in section 2.a.(2), then equation Q.a.(3).5) is vertically 

integrated ignoring molecular conduction and radiation divergence which gives 

z=z/J* d(pZ) "'* d(pZ) "'- d(pE) =ZB+ ~(psj) 
J - - - d z  = - J 

dt -.s- dz- z=zs- 1 dr z=:s- 
dz- J dz 

.-. 
--as- 

2-7 

dz. 
:=Is- 

Leibniz's rule is then applied to (2.a.(3).6) to yield 

The second to last term in (2.a.(3).7) is zero because turbulence goes to zero above the 

boundary layer. The terms at the bottom and top of the boundary layer are then combined 
to give 



As described in the previous section, the terms in the brackets represent the 

entrainment mass flux across the PBL top and surface respectively (where the surface 

terms add to zero because no mass can cross the earth's surface). The horizontal 

derivative terms are combined as in the last section, and then equation (2.a.(3).8) reduces 

The integrals are then evaluated using mixed layer values. 

or employing the same vector identity and expression for the entrainment used to obtain 

equation (2.a.(2). 17), 

, f 1 . 1  ' 

Now, horizontal homogeneity is assumed in (2,a.(3).10) which eliminates the 
1 

third term on the right hand side. Then the entrainment terms are combined, and the 

equation is divided by the mixed layer density and boundary layer depth which gives 

.- i 

. . . . 

The equation for the mixed layer potential temperature (with no phase changes of 

water) is based on the above equation. It is obtained by replacing the moist static energy 

by the potential temperature and including the surface heat flux parameterization 

presented in Chapter 3 to give 



2.a.(4) Conservation of Moisture 

where a' is the same drag coefficient used in (2.a.(2).20), lvml is defined as in the 

The conservation of total water is given by 

previous section, and F,, ,-,,,, is a similar function to F,,, . ..ar, 4 .  1 .  7 .?!: 

, - , '  
' , . r, i d  \ . ' y  8 e ' y ; v ! q  

where vq, is the molecular diffusivity for water and Sqf is a net precipitation source-sink 

' 

9'*., L ' , 

term. This equation is then multiplied by the mean density and is added to the product of 
q, and the continuity equation to yield 

: '? * 

- .  - -*- 

k i  i 

Equation (2.a.(4).2) is next put into flux form, 

Equation (2.a.(4).3) after expanding into mean and perturbation quantities becomes 

where the source-sink term, S,, , is assumed to be a mean forcing. This equation is then 

Reynolds averaged to give 



Assuming S ,  = 0 (no precipitation leaving or falling into an air parcel). neglecting 

molecular diffusion, and neglecting horizontal derivatives of perturbation terns, 

Q.a.(4).5) becomes, after vertical integration, 

: = z & d ( p ~ q 1 )  :=Za.J(p*) 
I dz- I . dz. 

z=zs- -- 
A - ZS- 

This equation is analogous to (2.a.(3).6). Following the derivation from the previous 
section, (2.a.(4).6) simplifies to 

I . ,  7 I (  4 '  I ,??'  

In the absence of clouds, qt = q (water vapor mixing ratio). Then, equation (2.a.(4).7) is 

used with q and the same parameterization for the surface moisture flux as was used for 

the surface heat flux, to give 

2.a.(5) Turbulence Kinetic Energy (TKE) Equation 

Equation (2.a.(2).5) is expanded into mean and perturbation parts (except for the 

: [g - (t)g] term which has already been expanded when making the Boussineq 
I I - .  1 '  

", t i 

approximation) to give 



Equation (2.a.(5).1) is then algebraically expanded which yields 
i l  " 

This equation is then Reynolds averaged and simplifies to 

Next, the continuity equation for turbulent fluctuations is multiplied by u;' and Reynolds 

al' 
averaged which gives u , ! L  = 0. This tern is added to the last term on the left hand side 

hj 

of (2.a.(5).3). This sum is then put into flux form, 

Now, (2.a.(5).4) is subtracted from (2.a.(5).2) which leaves 

Equation (2.a.(5).5) is next multiplied by p2u; which gives 



The Reynolds averaged continuity equation, using qevqAfpsity, is tbcn ,msltiplied by 
(u,!)' and added to (2.a.(5).6) which results in 

Equation (2.a.(5).7) is then put into flux form, 

!- . '  
. . J(j7u;) , % . .  

The perturbation continuity equation (- = 0, derived by using mean density 
&i 

in the continuity equation, expanding this equation into mean and turbulent momentum 

parts, and subtracting the Reynolds averaged expanded equation from the expanded 
equation) is multiplied by (4' and added to (2.a.(5).8). The result is then put into flux 

form, 



. , , ,  

Equation (2.a.(5).9) is next Reynolds averaged to give 

Equation (2.a.(5). 10) is simplified in the following manner. First, the second to 

last term (pressure perturbation term) is rewritten as - + 2p=- 

the repeated indices are summed over which eliminates the coriolis term in (2.a.(5). 10) 

and the last term in the expression above (which converts the pressure term to divergence 

form). Since TKE is defined as i? = O J ( ~  + 7 + 7), it is appropriate to sum over the 

repeated indices here. Finally, the last term (viscous dissipation term) is rewritten as 

a2 (z) 
j3"-- - 2PV(:): . The first term in this expression is the molecular diffusion of 

&; 

velocity variance. This variance changes slowly with distance in the boundary layer with 

typical values for the first term on the order of 10-l1 kg m-I s - ~ .  Considering an eddy 0.1 

meters in diameter with a velocity that changes by 0.01 meters per second across the 

eddy, the instantaneous shear across this eddy is .1 s-1. The shear becomes larger for 
smaller eddies. Using this value, the second term is on the order of kg m-I s - ~ .  For 

smaller eddies this term would be larger. Thus, the first term in this expression is several 

orders of magnitude less than the second term and can be ignored. These results are then 
applied to (2.a.(5). 10) which, after dividing by 2, gives 



2 
a4,: where E = pv(F) . Equation (La.@). 1 I) is simplified by neglecting horizontal 

derivatives of perturbation terms. This gives 

Now, this equation is integrated from level S- to B+ (see. figure 1.b. 1) 

'id' - 
' Zf 21, 

f ' 1 1  / 
I I z='n* '"8. 

I p u g d r -  I dz d z -  j&dz .  
z=zs- 0" z=zs- 2=zs- 1 

(I 

' I 

Leibniz's rule is used to transform (2.a.(5).13) to 



- 
z = z k  ~ ( ~ x )  z = z k  w'p' z=z#+ - , l  "-, I 
I .<> dz- j d( ) d z -  J ~ d z .  

z=zs- . . 2'2s- dt 
z=zs- 

This equation is similar to (2.a.(2).14), where the bracketed portion of the first 
two terms on the right hand side is the entrainment mass flux across the B+ and S- 
surfaces. The first term is zero because the turbulence kinetic energy vanishes just above 
the PBL top, and the second term is zero because the entrainment mass flux across the 

r 

earth's surface is zero. The seventh term on the right hand side, which represents the flux 

divergence of TKE, is zero because the vertical turbulent flux of TKE is equal at the top 
< ? I  . 

and bottom of the PBL, hence the vertical integration of this quantity is zero. Finally, the 

second to last term on the right hand side (pressure correlation term) is zero since 
turbulence vanishes at the surface, and if gravity waves (that remove TKE from the top of 
the PBL) are neglected. Equation (2.a.(5). 14) is then rewritten, using the hydrostatic 

& relation (- = -pg ), 
& 

"2 8' ., , , , "' ?\  :;! . - 4 

- 
where F, = j7m, F, = j7m, and Fv = jjv'w' are each three components of the turbulent 

momentum flux (also known as the Reynolds stress). The subscript v (for vector) is used 

instead of w in the last equality because this quantity will be called the vector momentum 
flux. The first and second integrals are simplified by using the mixed layer values for the 

density, TKE, and momentum which gives 



z=z& 4 prnern Arm ) dii 
dr 

= - V ~ ( e r n p m v m ~ z m ) -  F, 0- dz- 
2-2s- 

& 

The shear term is then simplified by breaking the integration up into surface 

layer, mixed layer, and entrainment layer components. For the surface layer, the flux is 

constant and parallel to the wind (either both quantities are negative or positive, therefore, 

the product and integration of the product are positive). The wind increases from zero at 
S- to its mixed layer value at S. Therefore, 

The negative sign in the first equation of (2.a.(5).17) is needed because the limits of 

integration were reversed, but as was stated above, the result (second equation) is 

positive. For the mixed layer, the wind is equal to its mixed layer value, thus there is no 
shear here. In the entrainment layer, the flux is assumed.to decrease linearly from its 
value at B to zero at B+. The wind changes from its mixed layer value at B to another 
value at B+. Again, the wind and flux are assumed to be parallel. Then, 



. .. 
. 1.. 

, .  . 
where lAq = IJB+l - lJml and (c), = -4Aq.  The second equality in Q.a.(5).18) is valid 

because the flux of momentum into the top of the boundary layer is due to entrainment of 

air from the free atmosphere when there is wind shear through the entrainment layer. 

This flux is zero if the entrainment rate is less than zero or if there is no wind shear. The 

second equality is obtained in the following manner. Neglecting fluxes due to radiation 

and clouds, the rate at which mass is added to the PBL from the free atmosphere (FA) is 

given by gE. For any arbritary variable, A, the upward turbulent flux of A is denoted by 
FA. The continuity of the total flux at level B, assuming (F,),+ = 0, is 

-EA,+ = -EA, + (FA),. The flux added to the PBL from the free atmosphere must equal 

the total flux within the PBL which consists of the flux within the PBL due to mass 
entrainment and the flux within the PBL due to upward turbulence transport. The 
transition of A at the PBL'top is modeled as a jump given by AA = A,, - A,. Using this 
in the flux continuity equation gives (F,), = -EM. If A = v then the second equality is 

obtained. Next, horizontal homogeneity is assumed in equation (2.a.(5). 16), except for 

the second term which contains the mean divergence. This eliminates the third, fourth, 

and fifth terms in this equation. Then, (2.a.(5).17) and (2.a.(5). 18) are summed with the 

result substituted into (2.a.(5). 16) to give 

The buoyancy term can also be simplified by using an approximation for the flux 

of virtual dry static energy. The buoyancy term is written 



- 
or using F, = Pw'e,', 

- c TF 
where 8, n O,, or using Fw n and equation of state, 

e m  

x .  
3 J t 2 r 0 

. , 
8 . : ' A  " i 

I ( Since the pressure does not change that much in the PBL and the flux of virtual dry static 

,,d energy varies linearly, their ratio is nearly linear, and the last integral in @.a.(5).20) can 
be simplified to 

Now, the definition of the flux of virtual dry static energy from (2.a.(5).20) is used in 

(2.a.(5).21) to get 

or using Poisson's equation, 1 - , . ' 

, i  



1 - e  1-0.622 
or using F, = F, + (em)"SF,, where 6 = - = = 0.608, 

E 0.622 

where (F,),, (F,), = -Ed@, ( F , ) ~ ,  and (c), = - E 4  are the PBL surface and PBL top 

heat and moisture fluxes respectively. The PBL top fluxes of heat and moisture are 
I 

defined in the same manner as the mass flux into the PBL top. Chapter 3 contains the 

details of the surface heat and moisture flux parameterizations. 
,' \ , I -  ; I  

r i l l  8 ' + '  - i ;  r \ . . - t .  , . . I f  t ,' , 
The dissipatioi term is modeled by using a second-order closure assumption. 

u 

:=z,,* 

The vertically integrated dissipation rate is D = IE  dz = p m d ,  where a is the dissipation 
2-2s. 

velocity. Closure is obtained by assuming the square of o is proportional to the vertically 

averaged TKE, d = L, where a, = 0.163 based on Dgjirdorff's (1974) results. The 
a1 

vertically integrated dissipation rate is then related to the vertically averaged TKE by 
>7' ; ' 7 ) . *  ' 1 '  . .- ,,;' f t .  J - - , I  , , , * } f :  ' 

The TKE equation is finally written 



or using the hydrostatic relation and since the term inside the brackets is the entrainment, 

where S is given by (2.a.(5).17) and (2.a.(5).18), B by (2.a.(5).22), and D by @.a.(5).23). 
. r The entrainment rate is determined in the following section. 

2.a.(6) Entrainment Rate Equations 

Entrainment is the mechanism that brings unmixed free-atmosphere air into the 

top of the PBL. This air becomes mixed by the existing turbulence in the mixed layer 

causing the mixed layer to grow. The entrainment rate is positive if free-atmosphere air 
is being brought into the top of the mixed layer. It is zero if no air is transported across 
the PBL top. If air is being removed from the top of the mixed layer then the entrainment 
rate is negative and the mixed layer is decaying. Because the previously described 

prognostic equations require knowledge of E, it must be parameterized to solve these 
I equations. Since turbulence is required to mix newly entrained free-atmosphere air, E is 

considered proportional to the square root of the TKE. This is the basis for the 

parameterization described in section 2.a.(6)(a). This parameterization is used when the 
entrainment rate is determined to be positive. 

i '  I . -  
If there is no turbulence, then the TKE and E will equal zero. The existence of 

turbulence alone, however, does not guarentee that E will be positive. Table 2.a.(6). 1 

summarizes the conditions that determine the sign of E. 



q3 =,m .J ' 11 . 
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These conditions are checked during each time step of a model run. If E is determined to 

be less than zero during a given time step, then the negative parameterization described in 
section 2.a.(6)(b) is used to compute E. ! .TI' 1: 

During rapid growth, the TKE and E become large. Since the dissipation rate is 

proportional to the TKE, it also becomes large. It is possible for the sums of B+S and 

Sum of Buoyancy and Shear Computed with E=O 

. . , q . i i T  .!. lb3; . , J  ' ' 1 r .,I55 ,' : 1  ;'. 

"I:! ., '1. 
B+S<fraction*D (B < B, :. EB, < 0; since 

EB, = 0 if E SO, E must 

i ,  , , 4; , j : . . i " 0 4  ' . 
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Case 3 

E>O 
CP t i '  

(B > B, .: EB, > 0; since 

EB,=OifE5O.Emust 
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Bo+So to be less than D which would cause a large entrainment rate to suddenly become 
negative. There are two ways to prevent this from happening. One way is to set a 

threshold of E such that when E is currently greater than this threshold it is calculated 
using the positive parameterization regardless of the value of the sums. A better way is to 

check the sums against a fraction of the dissipation (as indicated in Table 2.a.(6). I), 
where this fraction is set as a tunable parameter. A proper selection of this parameter will 
prevent the sums from being less than the fraction of the dissipation during periods of 

rapid PBL growth. Table 2.a.(6).1 is discussed further in section 2.a.(6)(b). 

During the late afternoon, before sunset, the clear convective boundary layer over 
land has reached a quasi-steady-state. At this point the surface buoyancy flux rapidly 

approaches zero with the loss of daytime heating. Both the entrainment rate and TKE are 

small compared to their values in the mid-morning (during the rapid growth of the PBL). 

At this point, a balance has occurred in the TKE equation Since there are no processes to 
generate a significant amount of TKE at this time of day, the local rate of change of the 
TKE is small and can be neglected. The sign of the entrainment rate then depends on the 

sum of the buoyancy and shear terms. If this sum is small enough the entrainment rate 
will be negative. 

There are contributions to the buoyancy and shear production from the surface 

and PBL top. The contributions from the PBL top depend on the sign and magnitude of 

the entrainment rate. Since the entrainment rate determines how fast mass is brought into 

the top of the PBL, mass will cross the free-atmosphere PBL top interface only when the 
entrainment rate is positive. Thus, if the entrainment is zero or less then there will be no 

contribution to the buoyancy or shear production at the top of the PBL. With positive 
entrainment, buoyancy production at the top of the PBL can be positive or negative 
depending on the gradient of temperature and moisture here. The shear production at the 

PBL top is always non-negative. It is positive if the entrainment rate is positive and there 

is wind shear across the top of the PBL, and it is zero if either the wind shear is zero or 

the entrainment rate is zero or less. Therefore, the sum of the buoyancy and shear 

production (with surface and top contributions) along with the sum of the buoyancy and 

shear production at the top of the PBL must be considered to determine the sign of the 
entrainment rate. 



2.a.(6)(a) Positive Entrainment 

From Breidenthal and Baker (1985), the positive entrainment rate formula 
without clouds is . .' . I , I  : . : t l  71 j i ,*-< 

I , I  ,r t . .  a , j2 5 , $ 4  i I 

where Ri  = gABvdirn is the relevant Richardson number, and bl and bz are constants 
(ern ),ern 

I. determined as follows. For a strong inversion, b2Ri >> I, and (2.a.(6)(a). 1) reduces to 

. -. 
Now, substituting the expression for Ri into (2.a.(6)(a).2) gives .:, , 

.p $ . I  Li 

1 7' ' 

I .  * #  ' - .I 
Using the famous "0.2" formula, E A ~ ~  = O . ~ ( F ~ " ) ~  (see Randall, 1984). (2.aa(6)(a).3) 

becomes 

,,. I , . .  I I * r: . f  ; dTm lmc >:$.-I . j .  , A 2 2 ;  , , .  

Next, a balance is assumed between buoyant production and dissipation of TKE. The 

buoyancy term is written in a slightly different form from (2.a.(5).22), and the dissipation 
3x1- sf:! ;.I 

is given by (2.a.(5).23). This balance is then written 

Since p, = p, and .es, (2.aa(6)(a).5) can be substituted into (2.aS(6)(a).4) to 

obtain . ,  :. t 



1 I '  

Now, in the no inversion limit ( R i a ) ,  (2.a.(6)(a). 1) reduces to 

Deardorff (1974) found by large-eddy simulation that 

(2: a. (6) (a) -6) 

- 
-- - (2. a. (6) (a). 7) 

a .  
,<I I 

(2.a.(6)(a).5) and (2.a.(6)(a).8) (where p, = p, = pB), (2.a.(6)(a).7) becomes 
- I - -" - a .. - 

1 
/ 

Finally, from (2.a.(6)(a).6), one obtains b2 = 0.102. 

2.a.(6)(b) Negative Entrainment 

Assuming the entrainment rate and TKE are small compared to their values 
during rapid PBL growth, the local rate of change of TKE is small and can be neglected 
in the TKE equation to give 

The sign of the entrainment rate then depends on the sum of the buoyancy and shear 
terms. Solving for E in the above equation gives 

. ., 1 .. G.,, 
, I .  * 
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where E>O if (S+B)>D. There are four possible cases for determining the sign of E. The 

buoyancy and shear terms are first written 
I , I  , 4 

B =  Bo + EB, andS=So + ES,, (2. a. (6) (b).3) 

t ' 

where the zero subscript indicates the surface contribution to the buoyancy andshear (as 

if E were zero), and the one subscript is the contribution to the buoyancy and shear at the 
top of the PBL due to entrainment (as if the surface fluxes were zero). The buoyancy 

and shear terms (B and S) are then computed assuming EN.  Then, the surface 
contributions to the buoyancy and shear (Bo and So) are computed and summed. These 

sums are compared to amve at one of the four possible cases listed in Table 2.a.(6). 1. 
I 

I.- 4. - .... .-.-. .. -- I 
If Case 1 occurs then the entrainment rate is determined using the negative 

production formulation. This is accomplished by partitioning the TKE equation into a 

weighted contribution of the local rate of change of TKE and a weighted contribution of 
the production of TKE due to entrainment. Equation (2.a.(5).24) is split into two 

equations (where B=Bo and S=So since E<O), 
' I  I .I* i 

and (2. a. (6) (b) .4) 

where 0 S weight 51. If the weight is set to one then the sum of the above equations is 

just (2.a.(5).24). The TKE is first determined using the top equation in (2.a.(6)(b).4), and 

then the entrainment rate is determined using this new value of the TKE and the bottom 
7.2; . f7  JXihff i  J L n )  ' "  .!;$neio I. - (  t i  ' ' T G !  

equation in (2.a.(6)(b).4). 

2.b. Initialization 

The model requires that certain variables, including prognostic variables, be 

initialized before time-stepped predictions are made. Chapter 4 provides a brief 
description of the Wangara data set used to initialize the land simulations. For land, four 

data files used that include: three hourly sounding data which includes temperatures 



and mixing ratios at various pressure levels,-hourly sounding data which includes u and v 
wind components at various heights, hourly ground temperatures, and hourly u and v 

geostrophic wind components. Prognostic variables initialized over land are obtained by 

interpolating between two data periods based on the model start time (e.g., with a start of 
1030L, temperatures and mixing ratios would equal the sum of one-half of their values at 
the 0900L and 1200L sounding times), and by interpolating between data levels (heights 

or pressures) where appropriate. Table 2.b. 1 summarizes the prognostic variables that are 

initialized for simulations over land or water. 

Table 2.b. 1: Summary of Prognostic Variable Initializations. 

Table 2.b.2 contains the constants that must be set at the start of a simulation. 

Water Initialization 

Assigned an initial 

value 

Computed as one- 

half sum of surface 

wind and wind at 

top of PBL 

Assigned an initial 

value 

Prognostic Variable 

Mean pressure 
thickness 

Mean u and v wind 

components 

Mean potential 
temperature 

value value 

Land Initialization 

Initialized based on 

data and start time 

of model run 

Initialized from data 

Initialized from data 
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2.c. Top Boundary Conditions 
. . 

."I ' .  I . , 

As shown by figure 1.b. 1, the model domain is bounded at the top by the free 
atmosphere and at the bottom by the earth's surface. Top boundary conditions are applied 

Use 
, ' I '  

Compute prognostic 
equations 

Compute surface 
potential 

temperature, surface 

mixing ratio, and 

surface density 

Compute virtual 
potential 

temperature at top of 
PBL, buoyancy, and 
mean mixing ratio 

Compute potential 
temperature at top of 
PBL 

Compute u and v 

wind components at 

top of PBL 

Compute u and v 

wind components at 
top of PBL 

Compute mean u 
and v wind 

components 

Constant 

Time step (At) 

9.. 3.11 
Sea surface 

. L '  r 

temperature 
I .  

I 'Y. .  

, 8 i 

Mixing ratio at top 
( I+*( 

of PBL 
4 1  , t . ? f S ,  

> '1 1 1 '  

>, - 

Potential 

temperature lapse 
rate above the PBL 

Surface u and v 

wind components 

Wind lapse rate 
above the PBL 

Geostrophic u and v 
wind components 

I ,d 1 I 6 l  

at the PBL top-free atmosphere interface, and surface boundary conditions are applied at 

Land Value 
l i  

60 seconds 
* 

llm ! mug 
NIA 

52-2. .# I i k >-kt '  

.&. 21 ( I + -  
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I ., ' 

Not a constant: 
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.: C , '  ( /  C. ;J 

A, 

r t - .  - 1  f '3 

I .  , 1  

* 0,;i -' 

1 g/kg 
i l 

*I ' , !  

C! 1: >. ,' ' I\ 

t ,  5 fl. 

4"Wkm4 
2 'LCH"I1! 

! , ,r;ur . 
, i l $  a 

' O , . !  . 

2 d s  

! t 

5 rrs/s/km 

) , ' 1  ' 

ug=- 10 d s  

v,=O d s  

. .: 2 



the PBL bottom-earth surface interface. Lateral boundary conditions are not required 
with the assumption of horizontal homogeneity. 

-- -* 

I ,  

1 1 $5 ,. ,, ' .  - 
Turbulence in .the mixed layer results in uniform prognostic variables within the 

layer (i.e., 8 + Om, q + q,, e + em, u + u,, v + v, ). This turbulence also mixes free- 

atmosphere air that is entrained into the top of the PBL. The first and very important top 

boundary condition that the model requires is that the turbulence becomes zero at the 

interface between the PBL top and the free atmosphere. This boundary condition is used 
to simplify the prognostic equations. Zero flux at the interface is the boundary condition 
that leads to (F,), = -EM (described in section 2.a.(5)). The next boundary condition 

is applied to the flux of A at level B, not at the interface, when the entrainment rate is less 

than zero. This flux is zero when the entrainment rate is less than zero because no mass 
enters the PBL top when E<O. The model uses this boundary condition to set the fluxes 

of heat, moisture, and momentum across the PBL top to zero whenever the entrainment is 

less than zero. The remaining top boundary conditions are applied to the TKE equation. 

Since TKE is a measure of the turbulence, the TKE also vanishes at the interface. The 

next boundary condition applies to both the top and bottom. The vertical turbulent flux 

of TKE at the top is equal to its value at the surface. The final top boundary condition is 

that the pressure correlation term vanishes at the top of the PBL when gravity waves are 
3 .  . , I -- . .. - . "- ....?-,...- - .  " <. , -- neglected. 

7 I !  : , . t . b ,  I 
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2.d. Surface Boundary Conditions f 
l-..."l 1 .. ._.. _,. . .-. . -. 1 .- . , ....... . . .- - .. 

. $ .717 1 6 0 %  I ' l ' & t & l r  

The earth's surface acts as physical barrier at the bottom of the PBL. cdmilhations 

arise in applying surface boundary conditions when the surface is heterogeneous and 

varies orographically. The first surface boundary condition is horizontal homogeneity. 

The next boundary condition is that no mass can cross the earth's surface. These two 

boundary conditions are used with all the prognostic equations. The equality of the 
vertical turbulent flux of TKE at the top and bottom is the third surface boundary 

condition. The remaining boundary condition is the loss of turbulence at the earth's 

surface. This, along with the neglect of gravity waves mentioned above, eliminates the 
pressure correlation term in the TKE equation. Table 2.a. 1 lists the boundary conditions 
used with the prognostic equations. 
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3. One-Layer Model Time Schemes 
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3.a Surface Heat-Moisture and Momentum Flux Parameterizations ,, .t . .J 

The parameterization scheme developed by Louis (1979) is well suited to this model. 

The parameterization is complicated enough to accurately represent the effects of 

boundary layer fluxes over long periods, but not too complicated to preclude rapid 
computer solutions even with lengthy simulations. This is especially important in 
incorporating this model into a general circulation model where very long simulation 

periods are required. The parameterization also fits well with the boundary layer being 

represented by one or two levels, and the assumption that the fluxes vary linearly with 
height from the surface to the PBL top (the top may be constant, or in this case 

prognostically determined by the model). The description of the boundary layer by this 

model is sufficiently detailed to prevent incorrect feed-back from occurring. Accurate 

feed-back is necessary because this parameterization relates the magnitude of the fluxes 

to the prognostic variables. Finally, since the model depends on both buoyant and shear 

driven turbulence, the parameterization should simulate both of these processes. Louis' 
parameterization accomplishes this by requiring that the diffusion coefficients not only 

depend on the wind shear, but also the static stability of the atmosphere. , , , , 1 

The parameterization scheme is based on Monin-Obukhov similarity theory. The 

Monin-Obukhov scale height is given by 

where u. = ,/m is the scaling velocity, k the Von Karman constant, g the acceleration - 
of gravity, and 8. =.-w'e'lu, the scaling temperature. The integrated flux profile 

relationships give 



and 

where z is the surface height (set to 10 meters in the model), Q the roughness height, y 
are Businger's functions for momentum and heat-moisture, R is a constant equal to 0.74, 
and A8 = 8,- - 8, (the opposite of Louis' definition, hence the minus sign in (3.a.3)). 

Substitution of (3.a.2) and (3.a.3) into (3.a.l) results in -! . I .  

$ :,.,<. , , .  ,i 
Bu2 [ ~ n ( z l z o ) - ~ m m ( z l ~ ) + ~ k a t - m o k ; w ~ ( z o ~ ~ ) ]  

O f '  , 
L=-- . . 2 I .  . 

gAe [ ln (z lzo) -y , (z~~)+Y, (zo~~)y  

The momentum and heat flux formulations are then determined in the following 

manner. First, the square of the scaling velocity is solved for from (3.a. 1). This gives 

Next, (3.a.4) is substituting into (3.a.5) to get 
/ ' 8 ,  

Then, equation (3.a.3) is used to convert (3.a.6) to I 
'C! 

where a2 = k2 
is the drag coefficient, and F a function dependent on z, zo, and L. 

[ M z  1 2, )] 
The Monin-Obukhov scale height is related to the bulk Richardson number, 

Ri, = -@, which can be inferred from (3.a.4), therefore F is also dependent on z, a, 
eu2 

and Ri,. Thus, the surface momentum flux is 

p,-w'u' = -p,d = -ps-a2u2~mm(z l z,, Ri,). 

Similarly, the surface heat and moisture fluxes are 



and 

- 
The model uses ( d )  "-ma,, 2 ! - - lvmlum3 (u2)v-mmMm = Ivm Ivm and (u )hm,-miswe = Ivml in 

. r 
the above equations. 

7 ft 

Louis computed the momentum and heat-moisture functions numerically. 
Analytical formulae were then fit to the functions. The analytical formulae eliminate the 
need to perform an iterative calculation during each time step. For unstable conditions 
(when Ri, < 0) ' jrf: , ,:;,..A 

r? ., 2 ~,r  : ;! 

112 ' i 
'.I* 

where b=9.4, cMm = 7 .4a2b[ t )  . and ca , -_Lre  = 5.3a2b . The function for the 
- . '  

- - neutral and stable cases (RiB 2 0) is - eP , b L  I - .  - .  

' ' , where b' = 4.7. 

3.b. Conservation of Momentum 

The conservation of momentum equations (2.a.(2).20) and (2.a.(2).21) are 

approximated by a forward time scheme for the first, lolst, 201st, 301st, etc., time steps, 
and by a leap-frog time scheme for all other time steps. This is illustrated in figure 3.b. 1 

below. Periodically using a forward time step prevents any large divergence from 

building up in the solutions produced by the leap-frog time steps. 



F: Forward Time Step 
L: Leap-Frog Time Step 

F1 L2 L4 ... LlOO FlOl L102 ..L... 

I ,  ? ! ' I  , , '(j I 
Leap-Frog Scheme 
starts over here 

Figure 3.b. 1: Conservation of Momentum Time Scheme Flow Diagram 

The forward time difference schemes for (2.a.(2).20) and (2.a.(2).21) when E>O are 

AtEuB+ 
u:-' + drf(v:-' - v8 ) + 

u; = pmhm 
n-1 7 

I +  A ~ P ~ ~ ~ ~ ~ F ~ ~  lvm [ +- AtE 

and . $1 , E 'i : 

: i. - . . I ,  . >i " ) . . a '  -. 



For EIO, equations (3.b. 1) and (3.b.2) reduce to 4) .. :: , 

and 
v:-' - dtf(u:-' - u, ) 

":==. 
P m b m  

. : I  4 . f  ' 
1- -1 -1 L - . I L i  1. 

The pressure gradientlcoriolis terms are represented explicitly (n-1), while the divergence 

and flux terms are represented implicitly (n). Fully implicit representation would require 
solving two equations in two unknowns simultaneously. The partially implicit 

representation is used to simplify solving the equations and still maintain stability. Initial 

'.. condition data (see section 2.b.) is used for the values at n-1 for the first time step. The 
? ' *  values computed by the previous leap-frog time step are used as initial conditions (n- 1 

values) for the forward time step computations at time steps 101,201,301, etc. 
.$ : I  ,. 

The leap-frog time difference schemes for (2.a.(2).20) and (2.a.(2).21) when E>O are 

and 



,;r.\. " 
For ESO, Q.b.3) and (3.b.4) become 

u;-' + 2Alf(v; - v,) 
u;+' = 

2Arpdca2 Fmm lv:-'[ ' 
I + 

and 1 

Here again, the pressure gradient/coriolis terms are represented explicitly (n), and the 

divergence and flux terms are represented implicitly (n+l). After the values at n+l are 

computed during a leap-frog time step, the values at n-1 are updated to the values at n and 

the values at n are updated to the newly computed values at n+l, before the next leap-frog 
time step. {!{; 

'. , .  

3.c. Conservation of Potential Temperature , 

ae, ~ ( ~ B + - e ~ ) + P , ~ a ~ l v ~ l F , , - , , ~ ~  Equation (2.a.(3).12), - = 
dr 

(as- - em), is 
~ m h m  0.74pmhm 

rewritten as 



where V = pgCa2 lv, l&ea-mismre is the ventilation or surface layer mass flux. A backward 
0.74 

(implicit) time scheme is used to represent (3.c.l). This scheme is unconditionally stable 

and has first order accuracy. The finite difference form of (3.c. 1) when E>O is then 

I ,'..#. 

4 1 . .  71,:; 

When EIO Q.c.2) reduces to 'T'! 

Equations (3.c.2) and (3.c.2a) were used for the ocean simulations. 

A prescribed surface heat flux was used for the Wangara simulations. Following Andre 

et al. (1978), the surface heat flux is approximated from Day 33 of the Wangara data as a 

sine wave (Figure 3.c. 1) , , l \ *  
- 1- 

-. 4, - ,  ~ 
. ,. , . . 0 : .  : . , . ,?.' .>- !I . r r l  

, i, where Q is the kinematic heat flux in units of K m s-1, (a), the maximum value of the 
heat flux set to 0.18 K m s-1, and t,, is the current simulated model time in minutes. The 
surface heat flux is then obtained by multiplying Q by the surface air density to give 

units of K kg m-2 s-1. The maximum downward heat flux at night was set to 0.005 K m 
*. 

.L * I ! $  s1 (= 6 W ma). 
I 

- - .  I 



Wangara Day 33 Prescribed Heat Flux 
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~ i & e  3.c.l: Prescribed Wangara Day 33 Surface Heat Flux From An& et al. (1978) 

Using the prescribed heat flux for Wangara, equations (3.c.2) and (3.c.2a) become 

and 

3.d. Conservation of Mixing Ratio 

The time scheme equations for the mixing ratio are developed in the same manner as 
the equations for the potential temperature. A backward (implicit) scheme is also used to 

represent equation (2.a.(4).8) rewritten similar to (3.c. 1). Then, when E>O, the mixing 
ratio time difference equation is 

- d p m  d p m  



When EIO, Q.d. 1) becomes 
y; <+, 

Here, the Louis (1979) heat-moisture surface flux parameterization was used for both the . . ,:I# I , ra , ,m Z ' .  "- . c  l 
~, . 

''.' > I . ' -  - Wangara and ocean simulations. 

3.e. Turbulence Kinetic Energy I 

The time difference form of equation (2.a.(5).24) is written , A- 

, I  t 

or using D = 4e3 and E = PB@(l+:2Ri) ,  
(a, 17 

After rearrangement, (3.e.2) becomes 

bl 
pdF ( 1  + b2 Ri) 

e;+l - - P", E3. 
(a1 17 



This is a backward (implicit) finite difference equation just as was used for the potential 

temperature and mixing ratio equations, however, it is also a cubic equation whose three 

roots (one always real, other two complex conjugates or real) are equal to @. When 

E20 the model solves this cubic equation and the square of the solution that is always real 
is assigned to e;+'. 

When the entrainment rate is less than zero, the TKE at the next time step is 
determined by applying a backward (implicit) scheme to the top equation of 

(2.a. (6)(b).4), g-lApm &= = weight($ + So - D) , where D = 4 &e:+'. Here the 
dt *r i 

" (all? 

dissipation is written in partially implicit form so the finite difference scheme can be 

solved without using a cubic equation. As with the forward scheme used for the 

momentum equations, this partial implicit representation still provides a stable solution. 

Thus, the equation for the TKE with EcO is 

' + I  ' weight em -em = 
At g&m 

' -  
J 



A short description of the Wangara dataset is provided in the next section. The 
Wangara data is used to validate the model and study the clear convective boundary 
layer. The last section in this chapter briefly describes the ocean experiment. The ocean 

simulation is designed to study steady-state conditions in the PBL. ~ 

. ,  . L  8 . t  
8 .  
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4.a. Land Simulation 

: c  . l t ' . .  

( : .  , 

1. .. !, 

The Wangara dataset was compiled by Clarke et. al. (1971). It consists of 44 days of 
boundary layer data from 15 July to 27 August, 1967. The data was obtained from the 

area around Hay, Australia located at 34'301S, 144'56'W. The data collection project was 

given the name "Wangara", which means "west wind". Day 33 of the Wangara dataset 

was used for the land simulation. I 

t c  !*, 
'.I . '. ' . 8 

' I  . ,  ( 

I 
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u.,+. i ' , ,  , , I ; ,: .  *T$., d?i?iF; -!.$ , ? :  , : + j : L , / ~ ; .  ' , ! , )  4. Simulations 

Day 33 was characterized by clear skies, negligible advection of heat and moisture, 
and high pressure. The nearest front was over 1000 km away. These conditions proved 
perfect for study of the clear convective boundary layer. This particular day has been 

widely used in boundary layer studies because of these ideal conditions and the readily 
available data. 1 

The data includes temperature and mixing ratio soundings every three hours from 

the surface to 2000 meters. Soundings of the u and v components of the wind are 

provided every hour from the surface to 2000 meters. The resolution of this sounding 

data is every 50 meters from the surface to 1000 meters, and every 100 meters for the 
remainder. The ground temperature and the geostrophic wind are provided once an hour. 

Clarke provides additional data that is not used in this model. ~ 
4.b. Ocean Simulation 

The data required is minimal since steady-state solutions are sought for the ocean 

simulation. A constant sea surface temperature (SST) is specified. The surface mixing 

ratio is computed based on the SST. The mixing ratio at .the top of the PBL is fixed. The 



initial air temperature is specified to provide a positive surface heat flux at the start of the 

simulation. The surface winds and the geostrophic winds are set to constants. The 

potential temperature and winds at the top of the PBL are determined based on their 

surface values and constant lapse rates. Finally, a divergence is specified to balance the 

entrainment rate in the PBL depth prediction equation. 

' . > . .  , i  
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5. One-Layer Model Prognostic Results 

5.a. Wangara Experiments 

5.a.(l) Twenty-four Hour Simulation 

A 24-hour simulation using the Wangara Day 33 data was run to predict the 
diurnal variation of the prognostic variables. The dissipation fraction (see Table 
2.a.(6). 1) and the fraction of TKE production due to the local rate of change of TKE 

when the entrainment rate is less than zero (Section 2.a.(6)(b)) were set to 0.90. The 

simulation was started at 0900L with a time step of 60 seconds. A cooling rate of 2" 

day-1 was applied to the predicted mixed layer potential temperature. The initial PBL 

depth was set to 18 mb (=I20 meters). The initial TKE was set to 0.2 m2 s-4 The 

Coriolis parameter, f, is equal to -8.26 10-5 s-1 for Wangara. , , , C ,  

* A  ' ! , I  !4 i5' > * , d kit:: . I; & ., . " 

,:Y 

c i l w i ,  

3r;i t- Figure 5.a.(l).l shows the diurnal change of the PBL depth. The abscissa 
indicates the number of minutes into the simulation after the start time. : I L k  ,4, 

I 
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l i i c i  ' Figure 5.a.(l).l: Predicted Diurnal Az, for Wangara Day 33. 

This profile is typical of a clear convective boundary layer (CBL). At the start of the 

simulation during the early morning a strong inversion exists just above the surface. The 

boundary layer is shallow at this time (=lo0 meters). The strong inversion present during 

the early morning acts to suppress the buoyancy. Since buoyancy is the driving force in 
CBLs, the boundary layer grows slowly during this initial stage. 

As the surface heating increases, the lapse rate transitions from stable to unstable. 
The a& just above the surface warms enough to remove the existing low-level inversion. 
Figure 5.a.(1).2 shows 8, - 8,- and 8,+ - 8,. The fust difference is a measure of the 

strength of the surface inversion and the second difference the strength of the PBL top 

inversion. 
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Figure 5.a.(1).2: Diurnal 8, - 8,- and 8,+ - 8, for Wangara Day 33. 

The surface heating becomes strong enough to remove the surface inversion after about 

100 minutes. This marks the second stage when rapid boundary layer growth takes place. 
At this time strong heating at the surface creates buoyant thermals which rise. The near- 

surface lapse rate is now superadiabatic which results in an unstable boundary layer. This 
allows the thermals to continue to rise until they reach the inversion marking the present 
height of the PBL. The large amount of buoyancy at this time of day creates vigorous 
mixing, hence the name mixed layer. This causes the conservative variables to become 

nearly uniform with height in the mixed layer. The predicted diurnal variation of the 

mixed layer prognostic variables are shown in Figures S.a.(1).3-5.a.(1).6. 
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Figure 5.a.(1).3: Predicted Diurnal 8, for Wangara Day 33. 
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Figure 5.a.(1).4: Predicted Diurnal q, for Wangara Day 33. 
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Figure 5.a.(1).5: Predicted Diurnal IV,,,~ for Wangara Day 33 
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J A .I Figure 5,a.(1).6: Predicted Diurnal em for Wangara Day 33. 

a ,  As the morning progresses and the boundary layer becomes deeper, growth 
occurs not only due to buoyancy, but also because warm free-atmosphere air is entrained 

into the top of the PBL. This air is mixed by the turbulence within the PBL causing the 



PBL to grow. Entrainment arises because of penetrative convection. This is illustrated in 

Figure 5.a.(1).7. 

Overshoot / Free-A tmosphere 

Figure S.a.(1).7: Illustration of the Process of Penetrative Convection (Stull, 1991). 

- - - -  - PBL Top 

Mixed Layer 
'%., 

An air parcel in the mixed layer that is initially warmer than the mean potential 

temperature is positively buoyant, and thus rises through the layer. At this point the 
parcel does not require any forcing to rise. This is free-convection where the parcel gains 

momentum during its trip upward. When the parcel reaches the top of the PBL, it 
encounters warmer air due to the inversion that marks the transition from mixed layer to 

free-atmosphere. The parcel then becomes negatively buoyant, but continues to rise into 

free-atmosphere because of its momentum. This overshooting is called penetrative 
convection. 

0 

Once the air parcel has lost its momentum it sinks back into the mixed layer. The 
parcel carries along non-turbulent, warm, free-atmosphere air on the return trip. The 

positively buoyant free-atmosphere air becomes mixed by the turbulence in the mixed 

layer before it has a chance to escape. This capture and subsequent mixing of warm free- 

atmosphere air is the process of entrainment. Since less turbulent air is entrained into 
more turbulent air, entrainment only occurs in one direction -- down into the PBL. 

L o Path of 
Rising Air Parcel 

I j . : ( ,  ( I  ' v  t :  . 
.) 0 

.r; Mechanical mixing caused by wind shear at the surface and top of the PBL also 
t * 

1 
, causes PBL growth, but this process is less important in a clear CBL over land. This is 

shown by Figure 5.a.(1).8. . +  !:I . I :, I - .  I {  s d l ,  
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Figure 5.a.(1).8: Diurnal B and S Wangara Day 33. 

During the rapid PBL growth period, buoyancy production is an order of magnitude 

larger than shear production. Both buoyancy and shear production in this figure take into 

account the contribution due to entrainment when E>O. Shear production becomes 
# t  . important at night when buoyancy production is negative. Shear-generated turbulence 

, may cause the nocturnal boundary layer to grow. .. , 

If  ; 1 .  

The predicted diurnal change in the entrainment rate is shown in Figure 5.a.(1).9. 

By mid morning when the PBL has rapidly grown to about 1 km, the entrainment rate has 

increased dramatically. This gives an indication that entrainment is an important 

mechanism for boundary layer growth. n ,,. .- r.7 ;I , 
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Figure 5.a.(1).9: Predicted Diurnal E Wangara Day 33. 
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1 The rapid decrease in PBL growth marks the third stage of the diurnal transition 

.of the mixed layer. At this point rising thermals meet resistance upon reaching the base 

t v .  !.;of the inversion at the top of the PBL. The inversion has increased in strength as 
indicated in Figure 5.a.(1).2 which makes it more difficult for penetrative convection to 

occur. Buoyancy production is no longer as effective in a deep boundary layer as it was 

when the PBL was shallow. The boundary layer continues to grow, however growth is 

much slower. As Figure 5.a.(1).9 shows, the entrainment rate rapidly drops off by early 
: 1 afternoon which coincides with the much slower growth rate of the PBL during this 

. t 31. t period. . <  ,: I .. j j 3 ;  '1' I . I  I 

The final stage in the transition of the mixed layer occurs around sunset. With the 

loss of daytime heating, buoyancy production rapidly approaches zero. This marks the 

decay of turbulence in the mixed layer. The TKE is no longer maintained by buoyant 

production, and is rapidly dissipated. The mixed. layer then becomes decoupled from the 
surface. Since the sum of the buoyancy and shear is now less than the dissipation, the 
entrainment rate is allowed to become negative. This has the effect of "crashing" the 
mixed layer. 



The mixed layer depth decreases to its preset minimum of 10 meters shortly after 

sunset. The mixed layer potential temperature decreases continuously until sunrise due to 
the constant downward heat flux and a constant prescribed radiative cooling. The TKE 
decreases at sunset and remains at its prescribed minimum of 1 10-2 m2 s-2 during the 

night. I 
-, - 

I I 
With negative buoyancy production and insufficient shear production, the 

entrainment rate remains negative, but it approaches zero after sunrise when the 

buoyancy production becomes positive. The boundary layer is expected to grow at night 

due to shear generated turbulence and other factors. There appears to be a problem with 
the negative entrainment parameterization because it does not allow PBL growth during 

the night. .*.*, 

I >< . 
5.a.(2) Seventy-two Hour Simulation 

The model was then run for 72 hours to test the response to repeat use of the 

Wangara Day 33 data. It was expected that the prognostic variable profiles would look 
very similar from day-to-day. Slight variations were considered acceptable because the 

initial conditions at model start time, 0900L Day 1, would not be the same as the 

predicted conditions 24 hours later, 0900L Day 2. These predicted conditions could be 

considered the "new" initial conditions at the start of the second day. Figure 5.a.(2). 1 
C . ?  

I ' shows the mixed layer PBL depth as a representative profile. The profiIe is consistent 

from Day 1 through Day 3. Although not shown, the other prognostic variables were also 
,.. ,:?; , f 8  xl!,i ,!..): GJG : .  1 ~ - 4  C I  1 consistent throughout the simulation. 

, . , . 1; , ,;:; : , ,;;i .. * . I - ,  . i i  i A;]' 
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Figure 5.a.(2).1: Predicted 3 Day Az, Reusing Wangara Day 33 Data Each Day. 
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.5. b. Ocean ,Experiment 
I' "'17' 

s 1 . )  5 

The ocean experiment was designed to obtain steady-state solutions since no 

database was used for this simulation. The initialization of the prognostic variables is 

h f , e l  detailed in Table 2.b. 1. Constants required to initialize the prognostic variables are listed 

'I- 
in Table 2.b.2. A 100 hour simulation was run to allow the variables to reach 

equilibrium. The PBL depth prediction equation requires a non-zero divergence to 
balance a positive entrainment rate when equilibrium has been reached. The steady-state 

form of this equation is 

A divergence of 4 s-I was used for this experiment. 

Figure 5.b.l shows the convergence of the PBL depth completely to its steady-state 

value by 100 hours. At equilibrium, the local rate of change terms in the prediction 

equations are zero. As a check, the steady-state solution for one of the prognostic 

variables can be determined by setting the local term in the prediction equation to zero, 



thus obtaining an equation for the variable in terms of diagnostic variables. h e  solution 

to this equaeon should equal the value of the variable predicted by the model. 
"1 W'! :j 1. I 
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Figure 5.b. 1: Predicted Az, Over Ocean. 
; 9 t ,  

Figures 5.b.2-5.b.5 show the progression of the other prognostic variables to their 

equilibrium values. The steady-state equation for the potential temperature is 
11 

L 
P- 

i . ,  

If E2>V then the mixed layer potential temperature will reach the temperature at the PBL 

top in equilibrium. This shows that entrainment dominates. If E<<V then the mixed 

layer potential temperature will reach the temperature at the PBL surface in equilibrium. 
In this case, the surface heating dominates. I 

Using the values of the potential temperature at the top and surface of the PBL 
(8,+ = 291.93 K and 8,- = 288.79 K ) ,  and the values of E = 4.38 10-3 kg m-2 s-1 and V = 

2.36 10-2 kg m-2 s-1 at t=6000 minutes, equation (5.b.2) giveso,,, = 288.79 K. This 
compares almost exactly with 0, = 288.75 K at t=6000 minutes from Figure 5.b.2. 
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According to Figures 5.b.l-5.b.5, all the prognostic variables reach equilibrium 
about the same time. Schubert et al. (1979) developed a coupled, convective-radiative, 
boundary layer model and performed several ocean simulations where they varied the sea 



surface temperature (SST), the divergence, or both. In one experiment, the SST was 
increased instantaneously from 14'C to 16"C, and the divergence was held constant at 4 

s-l. They found the adjustment time for the PBL depth to reach steady-state was 
about 20 times as long as for the other prognostic variables. They concluded that the 
longer adjustment time was a general feature, at least under some typical eastern ocean 
situations. 

In Schubert's study an important dimensionless quahtity was introduced that 

measured the relative importance of surface transfer and mixing across cloud top. This 

quantity was adopted for the present study, except that the mixing was due to entrainment 

of free-atmosphere air only since no cloud effects were included. This quantity can be 
thought of as an adjustment ratio and has the form 

wheie' Cr is the surface transfer coefficient, V the surface wind speed, D the divergence, 

and ZB the height of the PBL in meters. If surface transfer dominates then the ratio is 

large (about 4 or 5). The surface forcings rapidly adjust the thermodynamic variables, 
while the slow mixing at the PBL top causes the PBL depth to adjust slowly. If the 

mixing at the PBL top dominates then the ratio is small (el). In this case, the PBL depth 
adjusts in about the same time as the thermodynamic variables. 

The value of A for the ocean experiment is shown in Figure 5.b.6. 
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Figure 5.b.6: A for Ocean Experiment. 

The ratio was never less than about 4.5 which would indicate that the PBL depth takes 

much longer to adjust than the other prognostic variables. 
r , l  0 ' . . 4 ;I: , ,,> - a  7 ' e .  5 1  , ,!;. 

This discrepancy is resolved by comparing the entrainment rate in the ocean 

experiment with the one used in the Schuben study. Figure 5.b.7 depicts E for the ocean 
experiment. 

I I t .  
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Figure 5.b.7: E for Ocean Experiment. 

, At equilibrium the entrainment rate was small, but for the initial portion of the simulation 

the entrainment rate became very large. However, in Schubert's study the entrainment 

rate remained at a constant small value for the entire simulation. The parameterization 

for E used in the present experiment caused E to become large enough so that the PBL 
depth adjusted rapidly. - f! . 0 1  

I 

If one assumes that the equilibrium value of E obtained in the ocean experiment was 
the value of E for the entire simulation, then the adjustment time for the PBL is obtained 

d d p m  by solving the differential equation for the PBL depth, - = Apm(V v,) + g E .  The 
dt 

solution to this equation with the divergence and E constant is 

where t,-g,d is the e-folding time (time for variable to decrease to l/e of its original 

value) and ( 4 ~ ~ ) ~  is the initial PBL depth. As te-fold + - the PBL depth reaches its 

equilibrium value of Ap, = - gE . Equation (5.b.4) can be manipulated to get a relation 
V.v, 



This relation is 

/n{(&, - +)J[(&- )o - &I} 
- "m 

fc- fold - -V V, 

The e-folding time obtained with E at its steady state value of 4.382529 10" kg m-2 s-l, a 

divergence of 4 s-1, an initial depth of 5817.8 Pa and a final depth of 10736.5 Pa was 
25.6 days. The adjustment time is approximately 3 times t,-/,, which is about 77 days. 

This is about 18 times as long as the PBL depth actually took to adjust in the ocean 
experiment which corresponds excellently with the Schubert study. This shows that the 
differences in E between the present study and Schubert's study are the key to the rapid 

adjustment of the PBL in the present study. 
I 



6. One-Layer Model Diagnostic Discussion 

This chapter provides a brief overview of diagnostic variables determined in the 
model following Randall et al. (1992). These variables include the fractional area 
covered by rising motion, o, the convective mass flux, M,, plume-scale variance 
transport, pw'y'y' (where y is an arbritary scalar such as the potential temperature or 

water vapor mixing ratio), value of y at levels S and B for upward and downward moving 

parcels, (y, ,, d)s ., B, dissipation time scale, z&, dissipation rate of yf at levels S and B, 
JF (y& or B, vertical gradient of%, -, surface transfer coefficients, C, and C,., 
dz 

Richardson number, and Richardson number limits. 

6.a. Convective Mass Flux Model 

The scalar, y satisfies the conservation equation 

where the local change and the del operator are defined on constant height surfaces, and 
S,,, is the source of y per unit mass per unit time. The area average of the scalar is given 

by 

and the upward turbulent flux of y is 

where the convective mass flux is defined as 



The convective mass flux can not be determined by the model using (6.a.4) because the 
vertical velocities of upward and downward moving parcels are not known nor predicted. 

The convective mass flux can also be written in terms of the fractional area covered by 

rising motion and the turbulence kinetic energy. The former is diagnostically determined 
I (see Section 6.c) using the entrainment rate and ventilation mass flux which are 

5 )  c ,  calculated by the model, and the latter is predicted by the model. The definition (6.a.4) is 
I useful, however, in developing an equation for the plume-scale variance. 

- , ; : ,  - t * , ? I  1, < 

The plume-scale variance transport is 

.'., ~ . > r . r , * . .  . 1 

or using (6.a.2) where w = ~ ,  

I 5 . , or using (6.a.3) and (6.a.4), 

Equations for yf, and are obtained by substituting (6.a.3) into (6.a.2) after 
." ' rearrangement which gives , :  - -Y- ,I, , 

and 



6.b. Matching Convective Mass Flux with Ventilation and Entrainment Mass Flux 
, . 1 .. . . , . , . *; 4 :.? .,. iU  ; , ' * -  :, 

For the ventilation layer, the bulk aerodynamic formula used by the model is 

' 8 , r'i 

, , The ventilation mass flux can be matched to the convective mass flux at the top of the 

ventilation layer (at level S) with the following assumptions: (1) The fluxes at the top of 

the ventilation layer are entirely due to convective circulations, and the small-eddy fluxes 

are negligible at S. This is a typical assumption in the boundary layer where the small - - 

UL 
eddies are important very near the surface (viscous dissipation, Re = - - - I, where U is 

v 
the horizontal velocity, L is the length scale of the eddy, and v is the viscosity), but in 

most of the surface layer the Reynolds number is large (since U and L are large and v is 
small compared to their values in the viscous sublayer) and viscous effects are no longer 

important. (2) The ventilation layer is thin (the model assumes the ventilation and 

entrainment layers are infinitesimal). The ventilation mass flux can then be matched to 
the convective mass flux at level S with these assumptions and equation (6.a.3). This 

!, ' I \  , *-. V a .  - , gives 

Since the small eddies are important near the surface, they will dilute air that rises 

from the surface and air that descends from the interior of the PBL. To account for this 

mixing, a mixing parameter, ~ v ,  is used so that 
I 

I 1 1  . a wherd 0 5 xV S I. When the mixing parameter equals 1, no mixing occurs by the small 
eddies and (K), = vS-. Mixing by the small eddies increases as the mixing parameter 

decreases from 1. Using (6.a.2), (6.b.2) and (6.b.3) results in 



A similar matching of the fluxes in the entrainment layer at level B leads to 
I 

Now, if M c  and o are assumed to be independent of height then (6.b.4) and (6.b.5) can be 

combined to give 
,.') . j . *,;>-- , 

An equation for Mc in terms of the entrainment rate, the ventilation mass flux, and the 

mixing parameters is obtained by inserting (6.b.6) into (6.b.4) or (6.b.5) which gives 
-'.h., . . 11I 'i . : I >  1: " 

The model does not determine o or Mc using equations (6.b.6) and (6.b.7) because it 
does not contain a parameterization for the mixing parameters. The next section presents 

an equation for Mc in terms of o and the TKE. This equation is equated with (6.b.7) to 

deduce a parameterization for the mixing parameters where they are equal to the same 

quantity. The parameterization is not applied directly by the model, but is used to 

simplify (6.b.6). c d  , 

I qq- 

6.c. Diagnostic Equations for Mc and o Using th,qiT&F1, .it. - , - 

v 

Assuming the density of air is approximately constant with height in the PBL (since 
the PBL depth is typically only 1-2 km), the vertically averaged TKE (em) is related to 
the variance of the vertical velocity by 



'mv' Kinetic Energy 7 
where a3=0.316. This equation is simply _ -- I 

area area 

Now, the variance of the vertical velocity is written 
7 ; ~  - 

or using (6.a.4), 

1 . . + "> I 

All the quantities on the right hand side of (6.c.2) are assumed to be independent of 

height. Then, substituting this equation into (6.c. 1) and integrating gives 

, *  
\ I l < i  1- 2 r l ,  1 I 

Once the final equation for o is determined then Mc can be calculated using (6.c.3). 

. , . . '  . ,  .-1 > '  
' J  

Setting equation (6.c.3) and (6.b.7) equal to each other results in , I 

Then substituting for o using (6.b.6) to obtain 

A plausible parameterization for the mixing parameters based on (6.c.5) is then 



Finally with this parameterization, (6.b.6) reduces to 

1 7 ,  '. , .  . . 

The model calculates the entrainment rate and the ventilation mass flux, and then (6.c.7) 

and (6.c.3) are used to determine o and Mc. -ds!; . ,~ri:;sib 13: : 6 1 1  
, '  ;, , :,uI, ha,,' ,:I I , , : : ,  ,:;)., i, I,:.!' : : , .e\,t , ; & 3 ? - ~ ' t j t : ~  : r f i i  . . i i  31 z? .  ,:,:J ( 1 t.! ! , 4 

6.d. PBL Interior Diagnostics .,3'<ib 

The balance for the variance of in the PBL interior is written ' 

1 i, ~ 

where the local change of the variance is due to production of variance, vertical transport 

of variance, and dissipation of variance (see (6.d.3)). Advection by the mean flow has 

been ignored and is assumed to be a conservative variable. The variance is given by 

The triple correlation portion of the triple correlation term is just the plume-scale variance 

transport (6.a.5). The dissipation rate used by the model is 
alk,yfi yfi q: j2 I 1 W  ' 1 ,>, , 3 .,. 



where' r, = 
L. 

I (1 - 2 0 ) ' .  

I -r > 
Equation (6.d.4) is used to calculate the dissipation time scale for y based on o and the 
parameter, 2, which is set during a model simulation. The model determines the 
dissipation rate of the variance of using the lower equation of (6.d.3). 

The last diagnostic to be determined in this section is the vertical gradient of y. 
Writing (6.d. 1) using (6.d.2), the plume-scale variance transport, and the top equation of 

, : - f ,:j:-l, J : t V  :b., , 
(6.d.3) gives 

An equilibrium solution to (6.d.5) can be found by setting the local time derivative to 

zero. The equation then contains a first order derivative in z which requires only a single 
boundary condition to solve. The boundary condition is applied at level S if 0<1/2 
(boundary layer driven by surface heating), and at level B if ~ 1 1 2  (boundary layer 
driven by entrainment). To satisfy both (6.b.l) (surface flux) and ( F ~ ) ~  = - E ( V ~ +  - W B )  

I .  dB an additional condition must be specified. Choosing - to be constant with height will 
& 

force the differential equation to be satisfied at both boundaries. 
, (xi * rho  - r 1 :$ 4 1  . 1, 8 .  

Using the hydrostatic equation and the conditions above, (6.d.5) becomes 



where &, = gMc< 
O(1- O)(l - 20) 

Then, using the surface and top fluxes as boundary conditions, the solution of (6.d.6) is 

av where - = 
' I  + 

, . 
t '. ? a ;- ,.I 

' i" .. ~ 
Equation (6.d.9) is used by the one-layer model to obtain the vertical gradient of y. 

Assuming o is close to 112 and using the binomial 

((6.d.9)) become I 

expansion, equations (6.d.8) and 

and 

Equation (6.d.10) is an approximation to (6.d.8) keeping first order terms. Equation 

((6.d.11) is an approximation to (6.d.9) keeping second order terms. Then, if 

I ( F , ) ~ I  >> I ( F , ) , ~ ,  which is typically true in a convective boundary layer, ((6.61 1) reduces 
.: . . I  r r . I , '  

to I' " 



The vertical gradient of e is also determined by (6.d. 12) in the one-layer model. 
9 , 1 ,  > 1 .A>, 1 t 

6.e. Surface Transfer Coefficient Using TKE 
a , * t  

9. 

'1 
' i h - 1  - & ! I  . r  

The buic a e r ~ d ~ n a m i c f o ~ u l a ,  (F,)~ = v(vS- - vs), can be written by specifying 
I ? 81 . . 

the ventilation mass flux (V) using the surface density, surface wind speed, and a surface 
transfer coefficient , ,.. ., 

Based on Randall and Shao (1990), the ventilation mass flux can be related to the TKE by 

In (6.e.2), the square root of the TKE is 'acting' as the velocity. Since turbulent flux 

requires TKE and V is a measure of this flux at the surface, it seems reasonable that V is 
proportional to 6. Another reason to favor (6.e.2) over (6.e. 1) is that turbulence can 

occur in the absence of a mean wind (i.e., when there is positive buoyancy production). 
As long as TKE exists, (6.e.2) will determine V regardless of the value of the mean wind. 
Both CT and CTv are determined by the model using (6.e. 1) and (6.e.2) respectively. 

6.f. Richardson Number and Limits 

The Richardson number is determined using the equation listed in Section 2.a.(6)(a). 
P T  , I  

This equation is % ! j 
- 1  

When the inversion is strong, Ri>>l then 



- ~c,("j - [ ( B + ) "  - (0," I"] 
lim = P o  = 0.2, 
Ri+- 

( ~ m  )s 

where cp is the specific heat of air at constant pressure. 
y . .  - <  

When there is no inversion, Ri=O (see equation (2.a.(6)(a).7)) then,,. : . , * i , i  , 

. fir I. fm 7:: c.' , 4 :$,Pi . { I  - : ,. 

The strong and no inversion limits are determined by the model using (6.f.2) and (6.f.3) 
respectively. . , ,, - 9  i-, -I , ,  . r3 :. 
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7. One-Layer Model Diagnostic Results 
.i; 7 ; :  , i . - ,  I 

Results are provided covering the convective growth period of the Wangara Day 33 
simulation. This period is roughly from 0900L to 1600L, and includes rapid growth of 
the PBL during the mid-morning and slower growth during the afternoon. The results 

, ,: point out the importance of buoyancy and entrainment in the growth of a clear convective 

PBL when the PBL top is below a weak or non-existent inversion. During the afternoon 

when the inversion is strong, surface heating is still significant which continues creating a 
large amount of buoyancy, but this buoyancy is largely ineffective in penetrating the 

inversion layer. The strong inversion layer also limits the entrainment rate. The small 
amount of entrainment present is largely balanced against subsidence, hence the PBL is 
quasi-steady-state during the afternoon. Results are also shown for the steady-state ocean 
experiment. 

7.a. Wangara Results for the Fractional Area Covered by Rising Motion 

Figure 7.a.l shows the fractional area covered by rising motion, a, as a function of 

time. 
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Figure 7.a. 1: cr for Wangara Day 33 0900-1600L. 

By mid-morning, o<<l which is when rapid PBL growth is occurring. After 1200L, o 
increases steadily as convective growth begins to diminish. The fractional area exceeds 

0.5 after 1520L. At this time convection is no longer significantly affecting the PBL 

depth. '; b I q! ,;, , ' ;I+. .: :. ;). ~t:fi.iq , y l ~ , : , ?  .. 3 3  y . t ,  , 5 eY. 

In Figure 7.a.2 the plume-scale variance transport of the potential temperature at 
I +' r 81~: [- .-JHqi 2,Yj [. c'i ~ V J  92?&ii7.k1 

levels S and B has been overlaid with 6. 
i . , t . ,& I!( !HY 
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Figure 7.a.2: (p~'9'8')~, (p~'8'8')~, and o for Wangara Day 33 0900-1600L. 

It is clear from the figure that the plume-scale variance transport of 8 at level S dominates 
during rapid convective growth when occl. While ocl/2, (pw'8'8') s > 0 which 

indicates the surface is transporting variance upwards. When o equals 112, both 
(pw'9'9') s and ( p w ' ~ 8 ' ) ~  are zero. Finally, when o exceeds 1/2, (pw'8'8') s 

a n d ( p w ' ~ 8 9 ~  are less than zero. At this point the entrainment layer is exporting 

variance downward into the PBL. This variance export balances subsidence keeping the 
PBL in a quasi-steady-state. 

The convective mass flux is shown in Figure 7.a3. The minimum occurs when 
o<<l, and the maximum occurs when 0=1/2 while the TKE is still large. Mc is small 
when the convection is intense because Mc = d m .  As o increases and the TKE 

decreases during the late afternoon, Mc decreases. 
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.I -,'y,t Figure 7.a.3: Mc for Wangara Day 33 0900- 1600L. 

The updraft (u) and downdraft (d) properties of 8 and q at level S are depicted in 
5r.b 1 ; E CJII -1 ~ ~ $ 1  J - ,  * J  FJZL l Q G ~  , . 
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Figure 7.a.4: (&), and (o,), for Wangara Day 33 0900- 1600L. 
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Figure 7.a.5: (qu)s and (q,), for Wangara Day 33 0900-1600L. 

~- . , 
- i 

These figures indicate that the updrafts are warmer and wetter than the downdrafts. The 

boundary layer is being heated from the surface, and the highest amount of moisture is 

near the surface. Hence, the updrafts which are coming from a region that is warm and 
moist, should be warm and wet compared to the downdrafts which come from a relatively 
dry and cool region. 

Initially the surface heating rate is greater than the surface heat transport. Thus, 
rising air near the surface heats rapidly before ascending. This causes the updraft 

potential temperature to increase rapidly. Eventually, the surface heat transport exceeds 

the surface heating. Also, the intense heating and convection have removed some low- 

level available moisture. The surface air then rises before it can be heated, and it rises in 

a region of less moisture. This causes the updraft potential temperature to decrease for a 

short period. Finally, when the convection becomes less intense, the heating rate again 

exceeds heat transport. The moisture loss also decreases. At this point the updraft 

potential temperawe begins-to increase, k t  not-as rapidly @cause of less intense surface 
heating. . . ! '..I .J <. tf:,; ;," ; ,.,, ., .: ., 1 i. , , 

' 'Sf , !3t!,,! 



The downdraft potential temperature increases rapidly in the morning when the 
heating is intense and the heat transport is rapid. Heat is brought quickly into the source 
region of the downdrafts. Initially, moisture is also brought into this source region. In 

the afternoon, as the surface heating decreases and moisture is carried away from the 

source region, the downdraft potential temperature increases much more slowly. 

I . -  
Figures 7.a.6 and 7.a.7 show the updraft and downdraft properties - at level B. 

Updraft and Downdraft Potential Temperatures at Level B 
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Figure 7.a.6: (e"), and (e,), for Wangara Day 33 0900-1600L. 
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Figure 7.a.7: (qU), and (q,,), for Wangara Day 33 0900-1600L. 
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These properties are largely controlled by the inversion at the top of the PBL. In the 
morning and afternoon when the inversion is strong, updraft air at B is cooler than 

downdraft air at B. During the convective period when there is no inversion, the air from 

below is rapidly heated. The updraft air at B then comes from a warmer source than the 

downdraft air at B. The updraft air at B is always wetter than the downdraft air. The 

updraft mixing ratio increases rapidly to a high value for a short time when the vertical 
moisture transport is large during convection. Mixing brings this large value back down. 

Both the updraft and downdraft mixing ratios decrease in the afternoon because the 

sources of moisture from above and below decrease due to heating and mixing. 

7.b. Wangara PBL Interior Results 

Interior results were obtained for the convective period of Wangara Day 33 using 

four different values of ? . Dissipation rates for 0 and q and the dissipation time scale 

were determined with ? set to 1 second. These diagnostics are just times their values 

at ? = 1 second for other settings of ?. Figure 7.b.1 shows the dissipation time scale. 
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Figure 7.b.l: z, for Wangara Day 33 0900-1600L. 

The minimum in z, occurs during the maximum convection around 1 lOOL when occl. 

This is when the surface heating is the most intense and when the smaller eddies would 
be the most effective. As a + 112 during the afternoon the PBL becomes more mixed. 
The variance transports decrease and the time scale for dissipation increases. When 
a=1/2 at 1520L z,, + -, hence the sharp peak in the figure. 

Figures7.b.2 and 7.b.3 contain E~ and E, at levels S and B. 
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Figure 7.b.2: (&@), and (E,), for Wangara Day 33 0900- 1600L. 
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Figure 7. b.3: ( c ~ ) ~  and ( c ~ ) ~  for Wangara Day 33 0900- 1600L. 
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The dissipation rates are highest when the fluxes are the largest during mid-morning rapid 

growth. For the potential temperature the surface flux dominates over the flux at B due to 



surface heating, thus the potential temperature dissipation rate at S is much greater than at 

B. For the mixing ratio the opposite is true. The large entrainment rate present when 

rapid growth is occurring causes the mixing ratio flux at B to be much greater than at S. 
All the dissipation rates approach zero as o + 1 / 2. , . . 1 

The next set of figures shows the gradients of 8 and with height using equal to 

10,100, and 1000 seconds. The gradients for ? = I second are not ...> included because they 
4% 

are too large. The gmhent profiles of are in Figure 7.b.4. - .,. , .- * 
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The gradient of with i = 10 seconds seems reasonable between 210 and 420 minutes 

based on the actual Wangara temperature profile. The other gradients look plausible 

during the entire period, but the gradient with = 1000 seconds is the most 

representative. This is particularly true during the convective growth period when this 

gradient indicates the potential temperature is increasing with height. Observations have 

verified that the upward heat flux is countergradient (Wyngaard and Brost 1984). Based 

on the Wangara data and the gradient profiles shown, ? should be between 100 and 1000 
seconds for typical convective boundary layers. 

Figure 7.b.5 gives a similar set of gradient profi1es.for the mixing ratio. 
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Here again, the 10 second profile is only reasonable during a portion of the period. The 
other profies produce good results all the time. It would seem that a ? between 100 and 
1000 seconds would work for q as well. The if gradient profiles are also consistent with 

observations showing the mixing ratio decreasing with height in a convective PBL. 

The gradient of was also determined using equation (6.d.12). The gradient using 

I 4 L(6.d. 12) is independent of ? because the ? in the numerator of (6.d. 12) cancels out with 
lthe ? in the denominator (part of the &. term). Figure x shows this gradient. 



Potential Temperature Gradient Using Equation (6.6 12) 
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Figure 7.b.6: - Using (6.d.12) for Wangara Day 33 0930-1600L. 
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I I This profile looks reasonable at all times and it shows the large gradient during the 

morning before the PBL has become mixed, rapid decrease in the gradient during the 

rnid-morning convective period, and the neq zeropadient in the afternoon after mixing 
has occurred. 

, ' , '  \ I  : , 1 .  , I  1 
7.c. Wangara Surface Transfer Coefficients ( I ! ,  I - D  

Figure 7c.l is a comparison of the surface transfer coefficient computkd by using 
the surface velocity with the coefficient calculatd using the square root of the TKE. 
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Figure 7.c. 1: C, and C,, for Wangara Day 33 0900- 1600L. 
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The transfer coefficient computed using is about an order of magnitude larger than 

-the coefficient computed using lvml since the square root of the TKE is about 1/10 of the 

I lsurface velocity. The minimum occurs in this coefficient when em is at its maximum 
I "value from mid-morning through early afternoon. ':I v J 4 ~ ,  

' $  & I ,  

' I  , ' 

Figure 7.c.2 shows a scatter plot of C,. versus the negative of a bulk Richardson 

number defined by J ,  ' ,  . .  " ' 't" q' 
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Figure 7.c.2: Scatter Plot of CT, Versus -aB* for Wangara Day 33 0900-1600L. 
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me're appears to be a relationship between CT, and the bulk Richardson number. The 

figure indicates that there are two families of curves which likely means that CTt also 

depends on another variable. 

7.d. Wangara Calculation of Richardson Number and Limits 

A plot of the Richardson number is shown in Figure 7.d.1. 



-1 

, ' '? ' d ' r 1 2 ~ ~ ~  
Richardson Number 

500 

0 
0 60 120 180 240 300 360 420 480 

. . 
. w' J , 1. m~' Time (minutes) 

Figure 7.d. 1: Ri for Wangara Day 33 0900-1600L. 

The Richardson number is zero during the unstable convective growth period when there 

is no inversion. At this time, the limit when R i a  should be 1. As the PBL becomes well 

mixed during the late afternoon the inversion strengthens. The Richardson number 
increases as a result. The limit for Ri>>l should approach 0.2 by late afternoon. Figures 

7.d.2 and 7.d.3 are plots of the limits. fi . ,. ,r " r a - 1 "  a f~u;~,, 'f >'i' !., ! ' - v L, ' 
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Figure 7.d.2: Ria Limit for Wangara Day 33 0900- 1600L. 
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Figure 7.d.3: Ri>>l Limit for Wangara Day 33 0900- 1600L. 

As indicated in the figure, the no inversion limit is almost exactly 1 during the rapid 

growth period. During the late afternoon, the Ri>>l limit does approach 0.2, but it is a 



little too small. This may mean that there is not an exact balance between buoyant 

production and dissipation of TKE as assumed in the entrainment closure. 

', , f  Lf * ; r ,  .T +:;r 

7.e. Ocean Experiment Fractional Area Covered by Rising Motion Results 

A 

Figure 7.e. 1 is a for the ocean experiment. The initial difference between the SST 
and air temperature creates an upward surface temperature flux. As a result, 0c1/2 for a 
short time. In equilibrium, a negative surface heat flux is required to balance a positive 
entrainment rate. Thus, in steady-state, entrainment dominates and -112. The boundary 

layer would be characterized by wide updrafts with zones of narrow downdrafts. 

"'- Ocean Experiment Fractional Area Covered by Rising Motion 
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Figure 7.e. 1: a for Ocean Experiment. 

The plume-scale variance transport of the potential temperature at levels S and B is - 
shown in figure 7.e.2. \ c * ,  I '  

, I ,  . 



Ocean Experiment Potential Temperature Variance Transports 
d- 0.002 
cn 

9, 0.0015 

f -0.002 
0 1000 2000 3000 4000 5000 6000 

T i e  (minutes) 

- - 
Figure 7.e.2: (p~'8'8')~ and (pw'0'8')~ for Ocean Experiment. 

- 
1 ' 1  When a<lR both (pw'8'8') and (pw 8 8 )B are greater than zero. They transition from 

S 

negative to positive and back to negative when o becomes less than 112 and then greater 
' ' 1  

than 1R. Unlike Wangara, (pw'0'8')~ never substantially dominates over (pw O 8 ) B .  

In steady-state. the magnitude of ( p w ' 8 ~ ) B  is greater than the magnitude of (p~'8'8')~. 

Since the transports are negative, the entrainment layer exports variance into the PBL 

which balances with the dissipation at the surface. 

Figure 7.e.3 shows the convective mass flux. 
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Figure 7.e.3: & for Ocean Experiment. .., .. w 'r . . ~  . - 

The convective mass flux peaks when o<1/2 and the TKE is large. This marks the short 
convective period when the PBL grows The minimum of Mc occurs when and the 

~ J W  i-TKE is at its lowest value. Here the surface heat flux is negative and the entrainment rate 
'1 - 

. ,, 1 4s at its minimum. For a brief period, the divergence is removing mass faster than it can 

i ' pbe replaced by entrainment. There is no convection with the negative heat flux to aid in 

PBL growth. As a result, the PBL depth levels off and then decreases until the 

entrainment rate increases sufficiently to balance the divergence At steady-state the TKE 
and & are about twice their minimum values. 

, , . ' !  ,, * , . < a r  ' ,, ' 0  tpl- 4 

For Wangara, Mc was at its minimum value during the most intense convection. 

The entrainment rate was about 20 times as large as the ventilation mass flux. When 
E>>V, equation 6.c.7 can be approximated by 

The ratio of V to E, and a become small when E>>V. This will cause Mc to be small 
even though vigorous convection is taking place and the PBL is growing rapidly. For the 

ocean experiment E was only about 1.2 times V during convection. The value of o was 





Ocean Experiment Up/Down Mixing Ratios at Level S 
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Figure 7.e.5: (q,), and (q,), for 0cean Experiment. 

The updrafts are initially w m e r  and wetter. The surface heat flux transports heat 
vertically which warms the downdrafts. Eventually, the downdrafts exceed the 
temperature of the updrafts. When the heat flux becomes negative, 8, begins to decrease. 

This causes the downdraft temperature to decrease despite the smaller positive 

contribution from the negative heat flux (see equation (6.d.9)). The updraft potential 

temperature also decreases, but a little more rapidly due to the combination of the 
negative heat flux and decreasing 8,. At equilibrium, gs, Mc, and (F,), are all 

unchanging, hence (ow), and (o,), are also unchanging. 

Unlike Wangara, the ocean supplies a constant source of moisture. This moisture is 

readily transported upward in the PBL when convection is strong. This causes the PBL 
to moisten with time (see Figure 5.b.6). This causes both (q,), and (qd )s  to increase. As 

o increases it begins to have an impact on (q,), which causes (q,), to increase more 

slowly until CT decreases again. Just as for the potential temperature, the variables that the 
updraft and downdraft mixing ratio depend on are unchanging at equilibrium, thus (q,,), 

and (q,), do not change either. 

The updraft and downdraft properties at level B are shown in Figures 7.e.6 and7.e.7. 
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Figure 7.e.7: (qu) ,  and (q,,)B for Ocean Experiment. 
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The potential temperature increases with height in the ocean experiment. The updraft and 
downdraft potential temperature at level B depend on changes in 8, assuming the flux 

contribution is small compared to these changes. The PBL depth increases rapidly during 



the early portion of the simulation. This causes relatively large changes in 8, compared 

to the flux contribution. Also, the flux contribution is small initially because it contains 

Mc in the denominator which is large for about the first 1000 minutes. Therefore, the 
properties are largely controlled by changes in the PBL depth. Both (O,), and (O,), 

increase when Ap,,, increases, and they decrease when 4, decreases. At equilibrium, 
Ap, is unchanging so (O,), and (O,), are unchanging as welll 

.!%, 

The mixing ratio decreases with height in the ocean experiment, but the ocean 
moistens the PBL through convection. The moistening dominates over drying that occurs 
due to ascent. Therefore, Z& increases which cause (q,), and (q,), to increase until the 

mixed layer mixing ratio reaches equilibrium. At this point qB no longer changes. 

7.f. Ocean Experiment PBL Interior Results - '! '9 ' 
I , T r  , n ;  

The ocean experiment interior results were done in the same manner as Wangara 

using a ? of 1 second. These results are also ? times their values at ? = 1 second for 

other settings of ? . The dissipation time scale is shown in Figure 7.f. 1. 
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Figure 7.f. 1 : z,, for Ocean Experiment. 



The two peaks correspond to 0=1/2 (7, -10). For Wangara the minimum in 7, 

occurred when o<<l. In this case the minimum occurs for o = 0.95. During the 
convective period z, is about 2 orders of magnitude longer (not considering the peaks) 

than for Wangara. This would indicate that dissipation was more effective for the 
Wangara simulation due to the intense convection. , $ I 

The next set of figures contain the dissipation rates f ~ r  0 and q at levels, S and B. 
7 
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Ocean Experiment Mixing Ratio Dissipation Rates 
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Figure 7.f.3: ( E ~ ) ~  and ( E ~ ) ~  for Ocean Experiment. 

The initial peaks in the potential temperature dissipation rates are predominantly due to 
the surface heat flux. The rates go to zero when o=lR. The second peak in (E,), is 

caused by a large negative surface heat flux and a minimum in the TKE. The minimum 
in (r,), that occurs at the same time is caused by a minimum in the entrainment rate. At 

equilibrium, dissipation is dominated by entrainment. The inversion maintains a 

temperature gradient at the top of the PBL which creates a downward flux. The small 
negative heat flux at the surface results in a smaller value of ( E * ) ~ .  

The large initial surface moisture flux creates the fmt peak in ( E ~ ) ~ .  The second 

peak is due to a minimum in the TKE and a relatively large surface flux. The minimum 

in (4, at the same time is caused by a minimum in E. In equilibrium, the dissipation 

rates are equal because the surface and PBL top moisture fluxes are equal. The moisture 
gradient at the PBL top is greater than at the surface, but V>E. 

The last diagnostics for the ocean experiment are the potential temperature and 
mixing ratio gradients. Figure 7.f.4 shows the potential gradients for ? equal to 10, 100, 

and 1000 seconds. Like Wangara, the 1 second gradients were too large and are not 



shown. The mixing ratio gradients for 100 and 1000 seconds are in Figure 7.f.5. The 10 
?:ns- n .., . T - ?  B ~ ; ~ f i - A  , % 

second gradient was also too large. I 
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do Figure 7.f.4: - with f = 10, 100, and 1000 Secondsfor Ocean Experiment. 
dz 
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Figure 7.f.5: -with 2 = 10, 100, and 1000 Seconds for Ocean Experiment. 
dz 



All the gradients show the potential temperature increasing with height and the mixing 
ratio decreasing with height, except at the very beginning of the simulation. The 10 
second gradients appear to be too large as was found for Wangara. A f between 100 and 
1000 seconds seems mast suitable - , far this type of siplation as well. 
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8. Description of Two-Layer Model 

The two-layer model uses the same set of equations and the same parameterizations as 
the one-layer model except for the mixed layer potential temperature and mixing ratio 
equations. Infinitesimal ventilation (surface) and entrainment layers are maintained with 

the top of the ventilation layer still at level S and the bottom of the entrainment layer still 
at level B. The mixed layer, however, is divided into 2 layers. Level 1 is within the top 
layer and level 2 is in the bottom layer. The layers are divided at level I (interior). Figure 

8.1 is a diagram of the two-layer model. , J ,  I I 

Entrainment Layer 

---- I- , , , , , , ,  
A R ~  

I ~ i x e h  Layer 

I -. : 1 ..*: I - 

surface Layer 

Figure 8.1: Illustration of ZLayer Model. 

b. 
Level 2 was set 114 of the way up in the mixed layer, level I in the center, and level 1 

314 of the way up. The levels are evenly spaced for mathematical ease. The equations 
used to predict the mean potential temperature and mixing ratio at levels 1 and 2 do not 
require the levels to be equally spaced. These equations are developed in the next 
section. Once the mean potential temperature andmixing ratio are initialized or predicted 
at levels 1 and 2, the mixed layer values are determined using .J 

' ' L ' J 1  



and 

8.a. Two-Layer R~tg@b4~T~mpexp~turgand M e g  Rattic Equations y 
r 3  

. t - - -  . 

From Randall (personal communication, 1993), the ... two-layer equations for the . , 11 - 
potential temperature and mixing ratio are 

at level 1 and 

at level 2, and 

at level 1 and 

. ., : I  -.' 1 .,,ri 8 . 8 .  L I '  ,. 2 .  

at level 2. 1n these equations, 5, is the vertical velocity at level as seen following the 5- 
- Ps - PI coordinate where 5, - 
4 



I 
1 

: 1 i)!, 1 { !,'i,;,~~; I r o  

The 5 coordinate is similar to the modified o-coordinate used by Suarez et al. 

(1983). The coordinate system is designed so that the earth's surface and PBL top are 
coordinate surfaces. At the earth's surface, 5 s 0 ,  and at the PBL top, 5 = 1. For 

ps s p s p,, 6 = n. The vertical velocity, e, measures how fast a 5 surface moves 
4 G 

* , I  , - 4 

( ~ ) $ : l ~ ; - , ~  - - (6 ) in i t ia lpmwe as the PBL depth changes, and can be given by - 
At 

At the earth's surface, 5 is always 0 no matter how much the PB.Ldepth changes, so $ is 
0 here. At the PBL top, 5 is always 1, and depends on how msch the PBL depth has 

changed. 
. f i i  2j- 

A more useful formula for f ,  is obtained by adding the mass conservation equations 
d 

for layers1and2 , - (p , -pB)=-~@[v l (p l -p~ ) ]+&m%+g~~d~ .  . r J  la , I * ,  , 

d . . , , 
- (ps - = -V [v* (p, - p, )] - 4 E  9 together to get 
dr 

- Ps - to obtain and then using the conservation of mass for layer 2, (8.a.5), and 5, - 
dp, 

51gE - n e  vertical velocity is simply $ = AV [(v, - v2)Apm] - - . 
4 ' m  

r. I 

4% 
- - i  I I  1 . "  , 

Equatiohs (8.a.l)-(8.a.4) can be written in advecti%$form by using the conservation 
of mass equations for the two layers. Then, assuming horizontal homogeneity, except for 
the mean divergence, gives 



(12 -gE51 and f,=-. 
' i '  4 

Equations (8.a.7)-(8.a.10) can be solved if the flux of the potential temperature and 

mixing ratio at level I are known. The equations for this flux are developed in the next 
section. The mean value of 8 and q at level I is just the mixed layer value of these 
variables (8, = 8,. q, = a). Equations (8.a.7)-@.a* 10) can then be rewritten in terms of 

g1 , ql , g2 , and q2 using (8.1). (8.2), and the interpolation relations for 8,,, and 

q~ami~' 

, '  The mean potential temperature increases linearly with height, and the mean mixing 

ratio decreases linearly with height. The mean value of these variables at any pressure is 

givenby ,,., 

- ' , , . F ' j  , i  . .,"" ,(I.-? , .:.- 7.. , ., , > I \ ?  {,? 
r. 

:; 1 , -  

'4 8 ' and 
q(p) = c + dp 

Equations @.a. 12) and (8.a. 13) are jus<eq6ations for lines where a and c are intercepts, 
and b and d are slopes of the lines. The slopes are given by the difference of the mean 
values at levels 1 and 2 divided by the difference in pressure between levels 1 and 2. The 
intercepts are then 



and 

Inserting (8.a. 14) into (8.a. 12) and (8.a. 15) into (8.a. 13) gives the mean quantities at any 
pressure, 

and I 
I .- I 

1 r  ( .t . , : I f  
P )  = q m  + ( P  - P I )  

2 - 1 -  : . ~-. ( - '  1 
,'I ' 

s (8.a 17) 
PI - Pz P 

I , '  

The interpolation relations for 8 and q at levels S and B are obtained by using p=ps and 

p = p ~  in (8.a.16) and (8.a.17). fc, :A I 
I 

Then, the finite difference forms of (8.a.7)-(8.a.10) for Wangara using a backward 
I 

(implicit) scheme are I 

, .. 



( P I  - PB ) 0 ( 1  - @At q+~ + 

d p m   PI - ~ 2 )  

@A g;+l + g;+l gEdi ( P I  - P B ) ~ ; + I  I 
( P I  - pa )  d p m  P I -P2  

( P I  - P B ) ~ ( '  - - gAt (F,), ; gEh gB+ - % - 
2qp1-  ~ 2 )  4 

g ~ ~ t  [ p S  - PI );+I +  BE^ [ p s  - PI );+I - 
41 dp, P I - P B  dp, PI -P2  

(8 .a.20) 
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q B +  + q;, 
(P,  - P B )  

I I - 1 '  , I  and 
( P I  - P B ) ~ I  - 0)A -,I + I I 

41 
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d p m  PI -P2 d p m  PI -p2 
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d p m  



The surface heat flux appears explicitly in (8.a.18) and (8.a.19) because it was prescribed 

for the Wangara simulations. For the ocean simulations (8.a.20) and (8.a.21) were used 
with in place of q,  instead of (8.a.18) and (8.a.19), for the potential temperatures at 

levels 1 and 2. 

Equations (8.a.18) and (8.a.19) are two equations in two unknowns, 6 and 8,. 
Equations (8.a.20) and (8.a.21) are also two equations in two unknowns, TI and q2. 

3: 
These sets of equations are solved simultaneously to obtain the mean values . Tk 
and 2. The mixed layer values are finally determined using (8.1) and (8.2). 

8.b. Two-Layer Model Diagnostics 

Since the two-layer model predicts the mean values of 0 and q at levels 1 and 2, the 

gradients of these variables were determined by using ~ 

and 

instead of equation (6.d.9). 

The final form for the flux is obtained by truncating ((6.d. 11) at first order in 
Ap,,, I&. and substituting this into (6.d. 10) at level I. This gives ~ 

The gradient in (8.b.3) is determined using (8. b. 1) or (8.b.2) and the hydrostatic relation. 



9. Two-Layer Model Results 
- a, 

Prognostic results for the two-layer model using the Wangara data are presented and 
compared with the prognostic results from the one-layer model. Diagnostic results for the 
gradients, and the mean values of 8 and q at levels S, 2, I, 1, and B are also shown. The 
diagnostic results were obtained using a f of 1,10,100, and 1000 seconds. 

9.a. Two-Layer Prognostic Results 

, " I  : ; l n ~  Figures 9.a. 1-9.a.S show the prognostic variables using the two-layer model. 
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Figure 9.a 1: Two-Layer Az,,,. ..- .-' - 
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Figure 9.a.5: Two-Layer em. 

This is no difference between these figures and the figures for the one-layer prognostic 
variables. This was expected for Az,, lvml, and em which are predicted the same way in 

each model. Identical values for 8, and qm indicate that the two-layer model is 



functioning properly. Prognostic variables for the two-layer ocean experimeht are not 

shown, but they were also the same as the one-layer ocean experiment variables. 

and 

9.b. Two-Layer Diagnostic Results ' 2.. - 
- 

i- 4 ~ j -  . 1 

To show the effects of varying i, the initial values of the meA 9 and q were set to 
8 

. ,  4 .. . 5. : ' . ' (  

..' (qiitid = (eJjw + 3 Kf -- i , 

C, 
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This gave a sounding where the potential temperature was initially increasing with height 
and the mixing ratio was initially decreasing with height. The gradients of and 4 were 

then determined with these initial conditions and are shown in Figures 9.b. 1 and 9.b.2. 
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Figure 9.b.l: - with ? = 1, 10, 100, and 1000 Seconds for Two-Layer Model. 
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The gradients for 2 of 1 and 10 seconds were very small all the time. The 1000 second 

gradients are the only ones that were not near zero within 60 minutes. The 100 second 

gradients started out steep, but did decrease to near zero by 60 minutes. These gradients 

were created by the artificial initial conditions in the mean values of 8 and q at levels 1 
and 2. The actual gradients for all 6 were near zero. This and the one-layer gradients do 
indicate, however, that a 9 not much larger than 100 seconds should be used. 

Figures 9.b.3-9.b.6 depict the mean potential temperature soundings using at 

levels S, 2, 1, and B, for the different values of 2 . 
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, Figure 9.b.3: Mean Potential Temperatures Using f = 1 Second. 
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4. Two-Layer Mean Potential Temperatures For 10 Seconds 1 
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Figure 9.b.4: Mean Potential Temperatures Using 3 = 10 Seconds. 
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11: Figure 9.b.5: Mean Potential Temperatures Using i = 100 Seconds. 

Two-Layer Mean Potential Temperatures For 1000 Seconds 
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Figure 9.b.6: Mean Potential Temperatures Using i = 1000 Seconds. 

These figures indicate how long it took for the mean potential temperatures to adjust to 
the mixed layer potential temperature. For ? = 1 second, it only took 3 minutes for 
adjustment. When was set to 10 seconds, the adjustment time increased to about 15 

I 



minutes. At a 2 of 100 seconds, the time to adjust had jumped to a little over an hour. 

Also, the temperatures diverged for short periods twice. Finally, when ? was set to 1000 

seconds, the temperatures did not adjust until t=700 minutes (12 hours). There was 

. considerable divergence in the temperatures initially, and a small amount of divergence 
.. . .-- . . 

from about t=240 to 300 minutes. - 1  
I 
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10. Summary and Conclusions 

A single-layer bulk boundary layer model was presented that predicts the mixed layer 

values of the potential temperature, mixing ratio, and u and v momentum The model also 
predicts the depth of the boundary layer in terms of pressure (Ap,) and the turbulence 
kinetic energy (TKE). The TKE prediction equation was formulated using a second-order 

closure that relates the dissipation velocity to the TKE. The model also diagnostically 
determines the fractional area covered by rising motion (0) and the entrainment rate (E). 

Positive and negative entrainment rate parameterizations were developed, and the one 

used for a particular time step was based on the sums of the buoyancy (B) and shear (S) 
production (with and without E included). A tunable parameter was used to speclfy a 

fraction of the sums to check. This was done to prevent a large positive E from suddenly 

becoming negative. A value of 0.9 for this parameter was found to produce good results. 

The positive entrainment rate was parameterized by assuming that E is proportional to 
the square root of the TKE. The constants in the parameterization were obtained by 
assuming a balance between buoyant production and dissipation, and using large-eddy 

simulation results from Deardorff (1974). This parameterization led to two Richardson 
number limits, Ri>>l (strong inversion) and R i d  (no inversion). 

The negative entrainment rate was parameterized by assuming that E and em are small 

compared to their values during rapid PBL growth. The local change term was then 
neglected in the em equation which led to a balance between the entrainment rate and 
B + S - D  . A tunable parameter was then introduced to partition this balance equation into 

e m  

a weighted contribution of the local change of e, and the production of e, due to E. A 
value of 0.9 was used for the simulations and produced the best results. 

Two simulations were run. The first simulation used the Wangara Day 33 PBL data. 

The surface heat flux was prescribed using a sine approximation. The ventilation (surface) 

mass flux was parameterized using the formulation from Louis (1!979) and was used for the 



surface momentum and moisture fluxes. The land simulation was initialized using the 
Wangara data. 1 I 

I " 

The diurnal trend of the mixed layer depth, except for night values, was accurately 

depicted by the model. The model captured the slow growth early in the morning when 

there was a strong inversion, rapid growth during mid-morning when the inversion broke, 

slow growth during the afternoon under a quasi steady-state PBL topped by an inversion, 

and rapid decay after loss of surface heating at sunset. The nocturnal PBL did not grow 
slowly as expected. There appears to be a problem with the negative entrainment 
parameterization at night. The shear production at night due to the nocturnal jet should be 

sufficient to allow the PBL to grow even with negative buoyancy production. 1 -11 

I I 
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Diagnostic variables to study the characteristics of a clear convective boundary layer 

(CBL) were developed using the concept of the convective mass flux model. Equations 

were presented for the plume-scale variance transport of a scalar, y ,  and updraft and 

downdraft properties of y. Then the convective mass flux was matched with the 

ventilation and entrainment layer fluxes. This was accomplished by assuming these layers 
were infinitesimal, and the small-eddy fluxes at levels S and B were negligible compared 
with the convective circulations. Use of the TKE then allowed the convective mass flux 

and the fractional area covered by rising motion to be determined using model variables. 

1 
.l.s!Ll, The features of the CBL were well illustrated by the model diagnostic results. The 

model showed the dominance of buoyancy production over shear production in a CBL. 
This was shown by a plot of the buoyancy production versus the shear production, and by 
a plot of the plume-scale variance transport of 8 at levels S and B. The entrainment rate 

was also shown to be an important mechanism, especially during rapid growth when E 

became large. The intense convection typical of a CBL was indicated by occl. The 

convective mass flux was a minimum at this time, contrary to what one would expect. 

However, during vigorous convection when E>>V, o<cl, and Mc is small because 
M, a &o. fl. ',-- .,a* T,, ' I  

The updraft and downdraft properties further highlighted the CBL characteristics.' The 
updrafts at level S were warmer and wetter than the downdrafts. Here, the convection was 
seen in terms of the surface heating rate and the surface heat and moisture transport rates. 

The dominance of one of these over the other was important in determining the behavior of 

the updraft and downdraft properties at the surface. 



The inversion at the top of the PBL was the controlling factor for the updraft and 

downdraft properties at level B. When there was an inversion, the updraft air was cooler 
and wetter than the downdraft air. When the inversion was absent, the updraft air was 
warmer and much wetter than the downdraft air. This was caused by the strong convection 

that rapidly transported heat and moisture upwards. 

Diagnostics for the PBL interior were developed to gain further insight into the CBL. 

A balance equation was presented for the variance of 'y. Each term in this equation was 

modeled to obtain equations for the variance and dissipation rate. A dissipation time scale 
in terms of the model parameter ? was introduced. The balance equation was then solved 
to get a relation for the gradient of v. 

The dissipation time scale was found to be the shortest during the period when the 

surface heating was the strongest, corresponding to the high efficiency of the small-eddies. 
As expected at this time, the dissipation rates, E, and E,, were at their largest values. The 

dissipation rate of 8 at the surface dominated over the dissipation rate at level B. Again, 

, '. this was due to the strong surface heating present. For q, the opposite was true. The large 

value of E caused the moisture flux at the PBL top to be much greater than at the surface, 
especially since mixing had reduced the surface to mixed layer moisture gradient. 

The gradients of 8 and were determined using a ? of 10, 100, and 1000 seconds. 

The merit results were matched to the Wangara data to determine the best value for ?. A 

value between 100 and 1000 seconds seemed most reasonable based on the data. The 1000 

second gradients showed the expected increase in potential temperature with height and 
decrease of moisture with height, typical of a convective boundary layer. 

A surface transfer coefficient was developed using the TKE, and was determined to be 

about an order of magnitude larger than the transfer coefficient normally found in the bulk 

aerodynamic formula for V. This was expected because the surface velocity was about 10 

times the square root of the TKE. Using this transfer coefficient over the conventional one 

has the advantage that V exists if there is turbulence, even if the surface wind is zero. This 

may occur in a heated boundary layer where turbulence is generated only by buoyancy 

when the surface wind is calm. 



The period when the inversion vanished was clearly indicated by the Richardson 

number. The limit for Ri=O was about 1 during this time as expected. When the inversion 

was strong in the afternoon, the limit for Ri>>l approached 0.2, but was too small. The 

assumption of the balance between buoyant production and dissipation that led to the 
' relation for the limit when Ri>>l may be slightly inaccurate. 

U'.u ' J 2.1 P ' ir .. 1) J> J . ' . C ' * .  {..a:4 , ,:., 1 - 2 . k . s  

A one-layer simulation using simple ocean data was then run to obtain steady-state 
" solutions. Fixed surface and top mixing ratios, sea surface temperature, surface winds, 
. I' - and geostrophic winds were used. The temperahue and winds at the top of the PBL were 

determined by constant lapse rates. The surface fluxes of heat, moisture, and momentum 

were determined using Louis (1979) ventilation mass flux formulation. A divergence of 4 

s-1 was used to balance E in the Apm prediction equation. . I#"(, .': 

, * 
A) " '.The prognostic variables converged to their equilibrium values by 100 hours. The 

?:.- steay-state form of the prognostic equation for 8 was derived. This equation was used to 

compare the value of 8 with the model predicted value. The value from the equation was 
: , i s  *.J l: 8 . 1 a only 0.04 K different from that predicted by the model. ; ' ,'" 

I * i r  f a -  -, i 8  x , . * ~ : ~ r ~  ., ;~i;a~:, T . ; ~  E9i h ,,- 4 I. , , f :l + <I, 1 i: 
, s & .  . I In a study done by Schubert et al. (1979), they found the adjustment time for the PBL 

depth was considerably longer than for the other prognostic variables when the ratio of 
CTV was about 4 or 5. This would indicate that surface transfer dominates over 

DzB +dzBldt -; --  . '3 . -7 : *;* .>v 7 &:Z>S. ri.4mt31i?i & q t  ~ ~ I # I > : ! T  I 

mixing at the PBL top. The value of the ratio obtained in the present ocean simulation was 

not constant, but was never less than 4.5. However, the adjustment time of the PBL depth 

was the same compared to the other prognostic variables. . , . . ~ ; m t  . . r ~ r i ~ o o i l  . 

This discrepancy can be explained by the different entrainment parameterization used in 
Schubert's study and the present model. In Schubert's study a constant small value of E 
was used, while in the present study E varied and became large during the early portion of 
the simulation. The large value of E allowed the PBL depth to adjust as fast as the other 

prognostic variables. This was shown by determining how long adjustment would have 

taken, had E been small and constant during the entire simulation. This adjustment time 

was about 77 days, which corresponds to an adjustment time for the PBL depth of about 

20 times as long as the adjustment for the other variables. This agrees with the results 

obtained in Schubert's study. 



A two-layer model that predicts the mean values of 8 and q at two levels in the PBL 
was then developed to address the problem of the large merits obtained by the one-layer 

model. The model was developed by equally spacing the levels for mathematical 

simplicity, even though the 2-level equations do not require these constraints. This model 
retains all the pararneterizations used in the one-layer model. The only differences are the 
determination of the mixed layer values of 8 and q, and the gradients of and 4.  

I I - - .  1 1  1 .  x , ,  a .t1:, *.? : L' ' -31) :.!t;c!t; i2bI.. f : , ~  .., ; J b  - 

I , The two-layer model produced the same results for the prognostic variables using the 

. I Wangara data as the one-layer model. This verified that the model worked correctly. The 
gmhents of and 4 were near zero for the entire simulation which differed considerably 

from the one-layer model gradients. Identical results were also obtained for the ocean 

experiment. . t  ? . C I ~  p , i L  . rn .I ; -; : , . . . - ? B H '  

The initial values of the mean values of 8 and q at levels 1 and 2 were perturbed to 

study the effects of changing a. The gradients were found to be larger at a given time step 

as was increased The gradients for all values of except 1000 seconds approached 

zero within 60 minutes. Also, the mean values of the potential temperatures at levels S, 2, 

1, and B converged to the mixed layer potential temperature within 60 minutes for all .: . 
r rill ,values of ? except 1000 seconds. This result, along with the gradients from the one-layer 

I, model, indicate that a f near 100 seconds is the best choice. - 

' * I 1  

Following is a summary of items that were presented for the first time in this thesis: 

,;. I ' ' (1) A positive entrainment rate parameterization that assumed a balance between 

buoyancy production and dissipation of turbulence kinetic energy. srh ' , . . , .  

(2) A negative entrainment rate p-eterization that allowed the PBL depth to decrease 

late in the day when buoyancy production was no longer sufficient to maintain the 
turbulence. 1' 2 * . (7 1 ~ r .  7 

, -4.  . 4  +, " I .I 

(3) A fully implicit finite difference equation for the TKE (when the entrainment rate is 
positive) solved as a cubic equation. The square of the solution that is always real was 

assigned to the TKE. 3.1 'I 

I .  4 1 ; <It 

(4) Results for both the Wangara and Ocean studies showing the hctional area 

covered by rising motion, convective mass flux, updraft and downdraft properties of 8 



and g at the surface and PBL top, dissipation rates of 8 and q at the surface and PBL top, 

dissipation time scale, and gradients of 8 and q. 

(5) Results and comparison for the Wangara study of two surface bulk transfer 
coefficients, one dependent on the surface velocity and the other on the turbulence kinetic 

energy. 

(6) A two-layer model which predicted $ and p at two levels. 

(7) Equations that determined the upward turbulent fluxes of 8 and q in the interior of 
the PBL. These equations were used to obtain 8 and in the two-layer model. 

The one and two-layer models presented provide an accurate representation of the clear 
CBL. The turbulence characteristics are depicted by the prognostic turbulence kinetic 
energy equation. However, the PBL typically contains clouds. Future work should 
include adding cloud effects to these models. This can be approached in two steps. First, 

a simplified dry cloud layer should be added which would have the effect of radiatively 

cooling the air above the cloud. This is a relatively simple step. Next, as a more complex 

procedure, moist processes should be included. Lilly (1968) provides a means for 

accomplishing these steps. 

Additional work should also be done to obtain a better representation for the nocturnal 
PBL. The positive and negative entrainment relations would have to be modified. The 
addition of more complicated radiative processes besides a simple radiative cooling term, 

and a parameterization that takes into account the nocturnal jet, may allow the PBL to grow 

at night. 

The convective mass flux and the fractional area covered by rising motion were 

assumed to be constant with height. However, large-eddy simulations indicate that these 

variables are not constant with height. Height dependent equations for these variables 
should be developed. Randall et. al. (1992) provides a possible approach to accomplish 
this. 

The two-layer model should also be further developed with the above suggestions. In 

addition, the momentum should be calculated at levels 1 and 2. Then all the prognostic 

variables would be determined at the same resolution. Next, cloud effects should be added 



, to allow the model to operate in a wide variety of meteorological conditions. The model 
I.( 

should then be modified to make predictions at multiple levels. Finally, the model should 
be incorporated into the CSU GCM. 
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