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ABSTRACT 
 
 
 
THE MICROBIOME SURROUNDING DEATH AND DECAY: MICROBIAL ECOLOGY OF FOOD 

PROCESSING, MEAT SPOILAGE, AND HUMAN DECOMPOSITION ENVIRONMENTS 

 
 
 

The primary processes associated with spoilage and decomposition are driven by microorganisms 

present on and near the decomposing tissues. Therefore, to better understand the decomposition 

processes, it is critical that we evaluate the microbial ecology of these systems. In this dissertation, I apply 

questions related to the vertebrate decomposition environment to several systems: the built environment, 

meat spoilage, and human decomposition for forensic sciences. The overarching goal of this dissertation 

is to demonstrate the patterns with which microbial communities assemble and progress in these specific 

environments, and to show the applications of this knowledge to the larger industry and research fields. 

Given the diversity of these environments and systems, I begin this dissertation with a review of 

literature for each of the areas in the first chapter. This chapter summarizes the current knowledge of built 

environments with a specific focus on the sources of microorganisms in these environments, how the 

microbial communities assemble, and the ecology of the communities in food processing facilities 

specifically. Then, I describe the current knowledge related to meat spoilage-associated microorganisms, 

with specific focus on their role in poultry processing and spoilage. Finally, I introduce terrestrial, outdoor 

vertebrate decomposition environments. I specifically describe how vertebrate decomposition research 

can be applied to forensic science, as the patterns of microbial succession in these environments can be 

used to predict the postmortem interval (PMI). 

The second chapter, titled “The microbiome of a newly constructed meat processing facility 

establishes over time by room function and microbial source”, describes a research project investigating 

the microbiome of the built environment of a meat processing facility. We conducted this study to 

investigate knowledge gaps surrounding how microbial communities initially form in a food processing 
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environment. Specifically, we investigated three major research questions: (1) Is a stable microbiome 

established in a meat processing facility? (2) What factors are associated with the facility microbial 

composition? (3) What are the major sources of microbes present in the facility microbiome? To address 

these questions, we collected samples of the microbial communities from drains and door handles in the 

newly constructed meat processing facility at Colorado State University approximately monthly spanning 

the first 18 months of operation. We used 16S rRNA gene sequencing following Earth Microbiome 

Project protocols to elucidate the content of the microbial communities, and further investigated the 

patterns using QIIME2 and R. Results indicated that stable microbial communities begin to form 

throughout the processing facility within the first eight to nine months of consistent production. However, 

these communities appeared subject to perturbation when major conditions in the facility change, such as 

a large shift in production volume. Additionally, different communities form within spaces, likely 

selected for by microbial source, room temperature, general use, and nutrient availability. Interestingly, it 

also appeared that physical barriers within the facility prevented specific organisms from being 

transmitted between spaces. Overall, this study demonstrates the importance of deliberate facility design 

and regular cleaning and sanitation practices to control the microbial communities in the food processing 

space. 

Chapter 3, “Air versus water chilling of chicken: a pilot study of quality, shelf-life, microbial 

ecology, and economics”, describes an experiement evaluating the microbial communities associated with 

chicken breasts that were chilled using two different methods and how the communities from these two 

treatments lead to different patterns in spoilage over time. In this study, we assessed the meat quality, 

shelf-life, microbial ecology, and techno-economic impacts of chilling methods on chicken broilers in a 

university meat laboratory setting. We discovered that air-chilling methods resulted in superior chicken 

odor and shelf-life, especially prior to 14 days of dark storage. Moreover, we demonstrated that air 

chilling resulted in a more diverse microbiome that we hypothesize may delay the dominance of the 

spoilage organism Pseudomonas. Finally, a techno-economic analysis highlighted potential economic 

advantages to air chilling when compared to water-chilling in facility locations where water costs are a 
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more significant factor than energy costs. Overall, we demonstrated that the method used during chilling 

(air vs water chilling) influences the final product microbial community, quality, and physiochemistry. 

Notably, the use of air chilling appeared to delay the bloom of Pseudomonas spp that are the primary 

spoilers in packaged meat products. By using air chilling to reduce carcass temperatures instead of water 

chilling producers may extend the time until spoilage of the products and, depending on costs of water in 

the area, may have economic and sustainability advantages. 

The fourth and fifth chapters describe studies in which we used patterns in microbial succession 

in decomposition environments to investigate how decomposition changes the microbial ecology and 

methods by which these patterns can be used to predict PMI. In chapter four, “Microbiome data 

accurately predict the postrmortem interval using random forest regression models”, we explored how to 

build the most robust Random Forest regression models for prediction of PMI by testing models built on 

different sample types (gravesoil, skin of the torso, skin of the head), gene markers (16s rRNA, 18s 

rRNA, ITS), and taxonomic levels (Sequence Variants, Species, Genus). We also tested whether 

particular suites of indicator microbes were informative across different datasets. Generally, results 

indicate that the most accurate models for predicting PMI were built using gravesoil and skin data using 

the 16s rRNA genetic marker at the taxonomic level of phyla. Additionally, several phyla consistently 

contributed highly to model accuracy and may be candidate indicators of PMI. 

In chapter five, “Patterns of microbial succession in skin and decomposition-associated soils are 

predictive of the postmortem interval of human remains”, we sought to improve the understanding of 

microbial communities in postmortem human environments by evaluating the patterns of microbial 

succession associated with human remains at three geographically distinct locations. The primary 

objectives were to (1) identify patterns in microbial diversity and taxonomy during human decomposition 

in skin and decomposition-associated soils across distinct environments and (2) determine the utility of 

amplicon sequencing-derived microbiome data in predicting the postmortem interval within the first 21 

days of decomposition. To achieve these, we decomposed a total of 36 donated human remains across 

three anthropological research facilities (three per season per facility for four seasons) in distinct climactic 
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regions of the United States. We collected microbial samples from the skin of the face, skin of the hip, 

soil near the face, and soil near the hip daily for the first 21 days of decomposition. These were then 

sequenced for the 16S and 18S rRNA genes to evaluate the microbial community composition, and 

generated models to estimate PMI using the Random Forest algorithm with nested cross-validation. We 

showed that the microbial diversity of decomposition soils decreased over time, likely due to 

environmental selection for specific organisms such as Clostridiales, Pseudomonodales, and 

Xanthamonadales. The environmental conditions of the anthropological research facilities used in this 

study led to distinct differences in microbial communities by location, but patterns of succession were 

still present. Models constructed to predict PMI from the microbial community were accurate within 49 to 

92.33 ADD, which is equivalent to 3 to 5.82 days. Models were more accurate when greater taxonomic 

resolution was used in training. Overall, these results demonstrate that the patterns of microbial 

succession are predictive of PMI, even across different environments. 

In summary, in this dissertation I present the results of a series of studies, all of which describe 

the microbial community development and succession in distinct environments. All of these environments 

have the potential to influence the decomposition patterns of vertebrate remains. In food processing and 

meat environments, the microbes present in the community are connected to meat spoilage, which can 

shorten the product shelf life and contribute to the global food waste problem. In human decomposition, 

these patterns can be used by forensic investigators to estimate PMI and gain crucial evidence about the 

death event. In this dissertation, I demonstrate real-world applications of microbial ecology that can 

protect human health and well-being, and potentially solve crimes. 
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REVIEW OF LITERATURE 

 
 
 
Microbial Communities of the Built Environment 

Microbial Movement in Built Environments 

In enclosed spaces with human occupants, the microbial communities that form in the 

environment are closely related to their use and occupancy. These spaces, which are designed, 

constructed, and managed by humans, are generally referred to as the built environment. Humans are 

generally the primary organism occupying these spaces, but they can also house animals (pets), plants, 

rodents, insects, and more, depending on the specific environment [1]. All of these occupants interface 

with the space, and can interact with microorganisms in the space itself, both by introducing new 

organisms from outside the space and by taking up or moving organisms present in the built space. Both 

of these instances can have impacts on the humans, especially from a health perspective. Many 

pathogenic organisms can persist in these spaces, for instance Legionella pneumophila can reside in water 

systems [2], opportunistic non-tuberculous mycobacteria can reside in shower head biofilms [3], and 

methicillin-resistant Staphylococcus aureus can reside on environmental surfaces [4]. Conversely, the 

hygiene hypothesis proposes that the reduction of the non-pathogenic microorganisms in environments 

may be responsible for an increase in allergies and asthma in children due to a lack of exposure in early 

life [5]. For these reasons, the microbiome of built environments is a critical area of research; in fact, in 

2017 the National Academies of Science published a research agenda and identified a series of knowledge 

gaps in this area [1]. 

The majority of research in the built environment microbiome field focus on home and house 

microbial communities, as these are the spaces with which humans most frequently interact. In 2015, Lax 

et al conducted the Home Microbiome Project, in which they evaluated the microbial interactions 

between humans and their homes over a period of six weeks [6]. During this time, they obtained samples 

from the occupants and environment from seven families living in ten houses, as three of the families 

moved to a new home during the experimental period. They reported several interesting observations 
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regarding the movement of microbes between the occupants and the space. It appeared that the microbial 

signature of the built environment was influenced by the humans, as the microbiome of the new homes 

quickly began to resemble that of the human occupants, rather than the environment influencing the 

humans. The floor samples in particular resembled the microbial communities of the occupants, perhaps 

due to less frequent cleaning than surfaces and because the foot samples were more differentiated across 

households than hand samples. Overall, they concluded that homes contain distinct microbial 

communities that are influenced by their occupants, and the differences between households was stronger 

than differences from different samples within a household [6]. Similarly, Dunn et al., in a study of forty 

households in North Carolina, demonstrated that human-associated sources (skin, mouth, feces) were 

important contributors to the microbial communities of most household surfaces, especially the toilet seat, 

pillowcase, television screen, door handle, and interior door trim [7]. They also reported that the alpha 

diversity of the surface communities was higher in locations where aerosols are more likely to collect, 

such as the television screen and interior door trim, which suggests that aerosols may be a route by which 

the human microbiota colonize the built environment. This study also evaluated external home surfaces, 

which were less similar to the human occupant microbiome, further demonstrating how the occupancy of 

a space is what allows humans to influence the formation of microbial communities in built environments 

[7]. 

Similar patterns have been observed in other sites of occupation. One area of interest for 

understanding habitat microbial communities is in the implications for long-term space travel and 

occupancy. Malli et al. conducted a study of surfaces in the NASA submerged habitat and determined 

that, during occupancy, microbial cells could be isolated from all surfaces, many of which have also been 

isolated from the international space station [8]. The major finding of this study was that the surface 

material was an important driver of microbial community formation, which has major implications for the 

ability of surface design to prevent colonization [8]. Singh et al. also demonstrated that international 

space station surfaces could harbor microbial communities, though they also demonstrated that pathogens 

and antibiotic resistance genes were present in them [9]. They also linked these communities to the 
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astronaut occupants and described their similarity to earth communities, which shows that the general 

trends in built environment microbiome assembly are not limited to earth-based environments [9]. The 

overall trends are also not limited to human-occupied spaces, as demonstrated by Hyde et al in a study of 

Komodo dragon zoo habitats [10]. The microbiome of the dragon enclosures was strongly influenced by 

the dragon saliva, skin, and fecal organisms. Interestingly, the sources of these communities differed 

based on specific source; the dragon saliva was the main source of microbes on soil, rock, and glass 

surfaces while skin was the main source for metal microbial communities [10]. Overall, it is clear that the 

occupant of a built environment is the primary driver for microbial community assembly, at least in the 

case of homes and habitats. 

Humans also consistently interact with built environments outside their home habitats, and the 

microbial communities of these spaces have also been widely studied. For example, students may spend 

similar amounts of time at school campuses as they do at the home, so the microbial community patterns 

seen with human occupation should extend to these spaces. Indeed, a study of dust microbiomes in 

kindergarten classrooms demonstrated that a quarter of the bacterial relative abundance in the samples 

were human associated [11]. The experiment began before the opening of the Kindergarten and continued 

through the first year of occupation, which allowed researchers to show where the initial microbial 

communities arose from. This provided some interesting observations. The early timepoints, when the 

spaces were primarily occupied by adults preparing the space, saw communities with a high abundance of 

Propionibacterium, an adult-associated organism, which decreased in relative abundance over time. They 

also reported a seasonal effect, where the abundance of human-associated organisms increased in the 

winter when the children spend more time indoors [11]. A study of a college campus door handle 

microbiomes drew similar conclusions [12]. They found that handle microbiomes were associated with 

human skin, though these were outdoors and therefore also affected by soil, plants, and food sources. The 

found that stable communities actually formed on the door handles, which was unexpected, and 

hypothesized that this was due to dead skin, oils, soil, and other organic matter providing enough 

moisture to maintain a microbial environment [12]. Office buildings, too, are spaces where humans spend 
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long periods of time and therefore influence the microbial communities. Chase et al. showed that human 

skin microbes contribute to the communities of all surfaces in an office environment [13]. They also 

showed that communities assembled differently based on room, but not by surface type, which directly 

contradicts other studies of built environments. Additionally, the microbiome of hospital rooms has been 

shown to be strongly influenced by their occupants [14]. In fact, Lax et al showed that while initially, on 

the first day of occupancy, the patient community may be influenced by room-associated taxa, after one 

night the patient microbiome began to alter the microbial communities in the room. Even though a 

hospital is a highly sanitized space, this study shows that environmental communities still form and are 

influenced by the occupants, similar to a home microbiome [14]. Clearly, in spaces occupied primarily by 

humans, the microbiome of these occupants is the primary driver of built environment community 

formation, even within a short occupancy or interaction period. 

Another important built space is athletic facilities, where humans may spend less time but interact 

strongly with the environment. These spaces are interesting, because the occupants are not consistent as 

they are in a home, school, or office. Wood et al showed that athletic equipment surfaces frequently in 

contact with human skin housed highly dynamic microbial communities, likely because organisms from 

new sources were being deposited so frequently [15]. Furthermore, a study of climbing wall microbiomes 

showed that the most important source of organisms was soil, though human skin was also important 

[16]. This study also suggested that the microbial communities deposited by humans may be of fecal 

origin, so perhaps the individual human contributions of organisms were overshadowed by the source 

type [16]. These study types suggest that perhaps built environments without consistent occupants do not 

form a stable microbial community. 

 

Microbes in Food Processing Environments 

The built environments associated with food and beverage production are also critical, yet 

understudied, spaces that may influence human health. The microbial communities of these spaces can 

harbor pathogens of human concern including Escherichia coli, Salmonella spp., and, notably, Listeria 
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monocytogenes. Though food processing facilities have testing and sanitation protocols, a greater 

understanding of how the microbial communities assemble in these spaces could have major food safety 

implications. Moreover, a greater proportion of the microbes found in these environments, such as 

Pseudomonas, Moraxellaceae, and Lactic Acid Bacteria, are not pathogenic, but if transferred to the 

product are responsible for spoilage and a shortened shelf-life. These environments are understudied in 

comparison to human-oriented spaces, but recent research has begun to elucidate the value of research on 

this community. 

Meat processing facilities present a unique challenge in regard to managing the environmental 

microbial communities due to the constant introduction of organisms from live animals, and as such 

should be closely monitored. Regulations require monitoring and control plans for several important 

pathogens or their indicators, but little is actually known about the other organisms in the microbial 

communities [17]. Hultman et al. published one of the only studies to profile the microbial community of 

a meat processing facility [18]. They evaluated the communities of product-contact surfaces and found 

that the microbial communities of the spaces did not cluster with the final sausages but were similar to 

raw materials. The organism most prevalent in the final sausage product, Leuconostoc, was found in low 

abundance on processing surfaces, which indicates it could be a source. The study did not, however, 

speculate on the original sources of the facility communities [18]. More recently, Zwirzitz et al evaluated 

the transmission routes of microbes through a pork processing facility [19]. They were able to follow 

specific organisms through the facility to determine where they originated and whether they impacted the 

final product. They were able to identify the contamination routes of several organisms, for example 

Moraxella spp. likely moved from polishing tunnels, gloves, and railing to carcasses, and the splitting saw 

may transfer Lactococcus. Additionally, they reported distinct shifts in the facility communities, which 

occurred after singeing, when a flame is used to removed hairs from the skin, and at the truck, or 

transportation, step. This suggests that decontamination procedures reduce the bacterial load and 

diversity, which alters the basic microbiome. Overall, the major origins of microbes were the animals 

themselves, with organisms such as Enterobacteriaceae originating from feces and others arising from 
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skin and gut sites. This is likely a common theme in food processing, as the major ingredients and raw 

materials are likely the best vectors for carrying organisms into the facility. 

Within meat processing facilities, biofilms are one of the major structures that maintain a resident 

microbial community. These biofilms are especially notable for allowing Listeria spp. to persist in these 

environments. Hassan et al. showed that Pseudomonas putida biofilms can harbor Listeria on stainless 

steel surfaces, and in these environments, Listeria could grow even under starvation conditions [20]. 

Also, in these conditions, they showed that these cells could detach from the surface and potentially 

contaminate food products. Within biofilms, Listeria can actually interact with other resident organisms 

in the facilities, and if the community contains Kocuria varians, Staphylococcus capitis, 

Stenotrophomonas melophilia, or Comamonas testosterone it could actually increase Listeria growth [21]. 

However, Listeria in these biofilms could also potentially be controlled by other organisms. Zhao et al 

demonstrated that competitive bacteria could remove Listeria monocytogenes from biofilms in a poultry 

plant, so perhaps the built environment communities could also be harnessed to prevent negative food 

safety outcomes [22]. 

The microbial communities of other food processing environments have been more fully 

described. Tan et al evaluated the microbial communities of three different fruit tree processing facilities 

[23]. These communities consisted of Flavobacteriaceae, Moraxellaceae, Weeksellaceae, 

Xanthomonadaceae, and Burkholderiaceae, though in different abundances at each facility. The three 

locations displayed different levels of visual cleanliness, and this was associated with the composition of 

the community. The facility noted to be dirtiest also had the highest occurrence of Listeria, which was 

found in 100% of the samples taken, and a predominance of Pseudomonadaceae and Dipodascaceae. 

Additionally, the communities differentiated based on the place in the process clustered separately, with 

the areas associated with fruit waxing had a higher abundance of Mycobacteria. These results 

demonstrate how the microbial community can harbor pathogens that can be transferred to products, and 

how cleanliness impacts the communities [23]. In a cheesemaking plant, Bokulich and Mills also 

demonstrated the assembly of a community in the facility that could be introduced to the product, though 
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in these facilities that community may actually improve the product quality due to the importance of 

microbes in the cheese fermentation process [24]. In a brewery environment the communities assembled 

differently based on the function of the space [25]. Primarily, this meant clustering based on the substrate 

type in the space; the fermenter samples were associated with Bacillaceae, the cellar production areas 

associated with Micrococcaceae, the wort, malt, and hotside areas associated with Enterobacteriaceae 

and Leuconostocaceae, barrel-room samples with Lactobacillaceae and Enterobacteriaceae, and coolship 

and barrel rooms with Cryptococcus and Cladosporium. These clustering patterns show that the microbial 

communities of this facility were driven not by the human occupants, but by the ingredients and products 

in the spaces [25]. It appears to be a common trend in food processing facilities for the microbial 

communities to assemble based on the raw ingredients or products and the cleanliness, as opposed to the 

humans present in the space. 

 

Impact of Cleaning and Sanitation 

It is well established that microbial communities can be altered by cleaning and sanitation. In 

built environments, this is the primary option for controlling microorganisms. In general, cleaning and 

sanitation reduces the human fingerprint in the built environment microbiome, even in homes [26]. The 

increase of cleaning and sanitation in home environments may be, in fact, tied to changes in urbanization 

[27]. McCall et al found that the number of distinct chemicals used in the environments increased with 

urbanization, lipid and lipid-like compounds that may be associated with cleaning products were more 

dominant in cities [27]. The greater use of these sanitizing products was associated with a lower 

abundance of yeasts and higher abundance of skin-associate bacteria than rural areas. Thus, the sanitation 

was associated with a shift in the microbiome, from more environmental organisms to human-associated. 

This follows trends previously reported, and it follows that the readily introduced human-associated 

microbes would thrive in an environment in which other organisms have been removed. In food 

processing facilities, sanitation has been shown to reduce the presence of pathogens, especially Listeria. 

A study by Stessl et al, multiple sanitizers were tested against strains of Listeria that had previously 
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caused contamination in the facility as well as several test strains [28]. A hypochlorite solution impacted 

all strains present in the facility, a chelating alkylamine disinfectant test substance was effective against 

all Listeria strains in the experiment, and a sanitizer based on nitric and phosphoric acid was most 

effective against one of the test strains. This study outlined the importance of using effective sanitizers in 

an environment, as they are not all equally effective [28]. In a similar study, Martín et al actually 

recovered some strains after cleaning and sanitation, which were then traced to meat products [29]. 

Clearly, the importance of sanitation protocols on the built environment cannot be overstated. 

 

Conclusions 

The built environment microbiome is a critical area of research. These communities persist in 

locations with which humans interact every day, and as such can have lasting impacts on human health. 

Even food processing environments, with which very few individuals interact, have the potential to 

impact everyone. The research conducted in this area has provided important insights that could lead to 

advances in microbial control. This includes more knowledge of the origins of microbes in these 

communities, how they interact with the human occupants, and how cleaning and sanitation can alter 

them. 

 

The Chicken Processing and Spoilage Microbiome 

The Poultry Processing Industry 

The United States is the largest producer of poultry meat worldwide, processing approximately 9 

billion chickens a year in a 495.1-billion-dollar industry [30]. Over the last 50 years, the industry has 

concentrated to approximately 27,000 production facilities in just 15 states, while the size of an individual 

operation has increased to 600,000 birds [31]. Along with an increase in size and concentration of 

facilities, the processing procedures have become more industrialized and automated. The basic procedure 

for poultry harvest and processing begins with electrical stunning prior to exsanguination. After the birds 
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are dead, they are placed in scalding tanks to soften the cartilage around the feathers, enabling their 

removal by feather-picking machines. Then, the head, legs, oil gland, and viscera are removed, at which 

point the bird becomes a carcass [32]. After evisceration, the carcasses must be cooled to below 4°C 

within two hours of harvest per USDA regulation, as a microbiological safety intervention [33]. Finally, 

the chilled carcasses are fabricated, or cut, into parts based on various specifications and packaged [32]. 

Though individual facilities vary in how these steps are conducted, the US poultry industry is fairly 

homogenous, and these basic processing steps describe the majority of chicken production in the US. 

There are several points in the poultry processing that alter the microbiological makeup of the 

product, either intentionally as a food safety measure or unintentionally as a consequence of carcass 

conditions. Before harvest, muscle tissue should be considered sterile; any interaction with this tissue that 

could deliver microbes to these surfaces serves to create the initial product microbiome [34]. Sticking, or 

using a knife to begin exsanguination, is the first point in which microbes can be introduced to the 

carcass. If the knife is not properly sanitized microbes can be introduced to the bloodstream and 

circulated through the body before exsanguination is complete, and even if it is this step could introduce 

microbes on the exterior of the chicken into the interior [35]. Scalding and defeathering have been noted 

as important steps for carcass contamination in several studies, as the scalding water can transfer 

microbes from the feathers to the carcass [36–39]. After these preliminary steps, when the exterior 

sources of contamination such as feathers are removed, the ingestia becomes the primary source of 

microbes. During evisceration, gut microbes can be transferred to product surfaces and the processing 

environment, where it can continuously re-contaminate other carcasses. Finally, the chilling step has been 

implicated as a source of cross-contamination between carcasses, where microbes on one carcass can 

spread to all the others in the batch. 

Carcasses must be rapidly chilled after harvest to prevent the growth of pathogens; there are 

several methods by which this can be achieved, with most common being air chilling, water immersion 

chilling, and evaporative air chilling. In the United States, water immersion chilling is the most 

commonly used method. In this procedure, carcasses are moved through a tank, or series of tanks, 
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containing cold water, usually kept near 1-2 °C [40]. This method is very effective in rapidly cooling the 

carcasses with relatively low energy input, but has several drawbacks including high water use, the 

potential for carcasses to gain weight during the process, and the potential for cross-contamination 

between carcasses, a phenomenon which has been previously documented in literature [40–44]. 

Processing facilities will often include antimicrobial compounds in the chiller water in order to prevent 

this contamination. Air chilling methods are more common in other countries, especially in the European 

Union. In this method, cooled air is blown over the carcasses, usually in a single room or tunnel [40]. 

Carcasses may be hung on rails as the air passes over, or they may be placed on conveyors and moved 

through the room as they chill [40]. Using this method, chilling times may be longer than in water 

immersion chilling, chilling requires more space in the facility, and carcasses may lose some weight due 

to evaporation, but it is less likely to be a source of microbial contamination as the carcasses do not share 

contact spaces during the process. Finally, some facilities employ a method called spray or evaporative 

chilling. This method, essentially a combination of the first two, involves spraying the carcasses with cold 

water as they undergo air chilling [40]. This decreases the chilling time and potential water loss from 

carcasses without the cross-contamination risks of water immersion chilling. This has also been shown to 

be the most efficient method for chilling, with heat loss at 1.8 kcal/kg greater than in air chilling [45]. 

However, this method is at an energy and resource use disadvantage, as it requires large amounts of 

energy and water both. In the United States, regulations do not specify which method should be used by a 

facility as long as it effectively reduces temperatures, and therefore the decision for which method to use 

depends on the resources available and priorities of an individual processor or company. 

 

Impacts of Processing Parameters on Aerobic Chicken Product Quality and Microbiota 

A wide variety of methods have been utilized throughout scientific study to evaluate the quality 

and microbial composition of chicken products. However, while techniques used to evaluate quality are 

well-established and applied relatively consistently throughout the literature, the field of microbial 

ecology has changed rapidly over the past decades, and as a result has led to dramatic differences in how 
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the microbial composition has been quantified. To evaluate quality, researchers have generally looked at 

the physiochemistry and sensory aspects of a product. The physiochemical attributes can be quantified 

through a suite of biochemical tests such as pH, moisture content, chromatography, and mass 

spectrometry. The sensory attributes include color, texture, flavor, tenderness, and odor, and can be 

measured through objective instruments such as a portable spectrophotometer to analyze color, mass 

spectrometry to evaluate odor compounds, and shear force to analyze tenderness. Additionally, these 

measurements can be collected through human panelists, either trained or untrained, who capture 

perceptions of these attributes using a given scale, perhaps with references. While not all studies employ 

all of these methods, in general the proper technique to capture each aspect of product quality is well-

established. In investigating microbial composition, though, the methods are less consistent. Many 

researchers use culture-based methods to enumerate organisms on the product, and if these methods are 

selective, they can be used to identify specific organisms. The presence of specific microorganisms has 

also been demonstrated through quantitative PCR tests and immunoassays. However, while these can be 

applied to specific research questions, the evaluation of single organisms or groups of organisms does not 

describe the full microbiota of the product. More recently, Next Generation Sequencing technologies have 

been used to more fully elucidate the product microbiome, though this is still a recent area of research and 

not yet consistently applied in meat science literature. Sequencing analyses provide a fuller picture of the 

microbial composition, but do not generally provide an enumeration of microbial numbers, so the use of 

multiple microbial methods is highly valuable. Currently, however, the high variation in methodologies 

makes it difficult to compare results across literature in this field. Therefore, in describing the literature it 

is important to consider the methods used and their limitations. 

There are clear choices made by processors in the facility design and product treatments that 

impact the ultimate product quality and microbiology. The chilling method has been shown to directly 

impact the product quality, but perhaps has a lesser impact on the microbiological composition of 

products. Sanchez et al. compared the microbial composition of carcasses chilled at two separate 

facilities, one that used air and one that used water immersion chilling methods [46]. Unfortunately, the 
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use of an entirely separate facility for each chilling method slightly confounds the results, but there were 

still a few conclusions to be drawn about the impacts of the processing parameters. Water immersion 

chilling resulted in a microbiological profile with more psychrotrophs, which is important as these 

organisms are often associated with product spoilage and may cause a shorter shelf-life, or the time until 

the product is rendered inedible. Additionally, Salmonella spp. and Campylobacter spp. were isolated less 

frequently from the air chilled carcasses, indicating that this method may result in better food safety 

outcomes, though this could also be a result of facility sanitation protocols. Within these populations, the 

authors reported high incidence of antimicrobial resistance, which was also higher in the water immersion 

chilled carcasses [46]. The addition of antimicrobial compounds to the chilling water may play a role in 

this outcome, though it is also possible it is driven by other features of this facility that were not measured 

by the researchers. Indeed, Berrang et al. found conflicting results in a more controlled study [47]. In this 

study, researchers obtained carcasses and cut them in half along the dorsal line, then subjected one half to 

air chilling and one half to water immersion chilling before conducting microbiological analyses. The 

difference in microbial colony counts due to chilling method was only approximately 0.5 log CFU/mL, 

which is not enough to be biologically important. However, in this study the Campylobacter counts were 

higher in the air chilled carcass halves, in contradiction to the Sanchez et al. results [46,47]. Moreover, 

Berrang et al concluded that there was no evidence of selection for antibiotic resistance in either chilling 

method [47]. A study by Zhang et al. agreed with these results and also determined there was little 

microbiological difference between chilling methods; they reported no difference in the incidence rates 

for Salmonella spp. or Campylobacter on carcasses between air and water immersion chilling methods 

[48]. The only difference reported in this study was that air chilling may actually be less effective in 

reducing Campylobacter counts on carcasses than water immersion chilling, as the process of water 

chilling may physically remove the bacterial cells from carcasses [48]. Tuncer and Sireli also reported 

few differences in microbiological counts between air and water immersion chilling methods [49]. They 

obtained carcasses after air or water chilling in a commercial processing facility, then placed them under 

storage in one of several packaging methods at either 0, 4, or 7 °C. Though there were significant changes 
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in microbiological counts over time for all treatments, there were not differences in counts between 

chilling methods. At the end of the experiment on day 10, air chilling and water immersion chilling 

resulted in final microbial counts of 7.64 and 7.51 log CFU/mL, respectively [49]. In general, it appears 

that the chilling method may not have a substantial impact on the microbiological profile of chicken 

products, or at least on the presence and number of potential pathogens on the products. Given contrasting 

results in the studies, though, it is difficult to draw strong conclusions as to the microbiological 

advantages of one chilling method over another. 

Other studies that focus on the quality and sensory aspects of the product rather than the 

microbiological safety, did find distinct differences between air and water chilled products. In an early 

comparison study, Mielnik et al. chilled 100 carcasses using either air chilling or evaporative air chilling, 

then stored the product at either 4 or -1 °C for either 15 or 19 days [45]. At the end of the storage period, 

they evaluated a plethora of quality and microbiological techniques to evaluate the impacts of these 

methods. The greatest impact of chilling method was in the final product color; the air chilled breasts had 

a darker and more yellow color than those subjected to evaporative chilling. However, between these two 

similar methods there was no difference in moisture content, pH, or cook loss. Moreover, the microbial 

composition was similar between the two methods, with Pseudomonas dominating the flora from all 

samples, along with Brochothrix thermosphacta at 100-fold lower levels [45]. Zhuang et al. chilled 

carcasses using either air or water immersion methods, then fabricated them into breast fillets and tenders 

at 4 hours postmortem [50]. Both chilling methods impacted carcass weight, but in different directions; 

air chilling reduced weight by 2.4% while water immersion chilling increased weight by 4.6%. Air 

chilling reduced the tenderness as measured by Warner-Bratzler shear force when compared to hot-boned 

products but was not significantly different from the water immersion chilled products. Chilling method 

also did not impact water holding capacity or drip loss, which indicate that the chilling method will not 

impact marinade pickup in these products [50]. In order to investigate the impact of these methods on 

further processed chicken, Carroll and Alvarado evaluated the impacts air and water immersion chilling 

had on marinated products [51]. They evaluated the color and pH of breast filets that had been either air 
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or water immersion chilled, then marinated the products before applying a marinade using a tumbler. 

After marination they conducted a microbiological analysis of the raw product, then cooked the filets 

before a sensory analysis with shear force and consumer panels. Researchers found that air chilled filets 

were darker, had a lower pH, and were more tender than the water chilled products. Additionally, the air 

chilled products had an increased marinade pickup and retention, suggesting that this method may be 

superior for facilities that intend to further process the products. Finally, researchers predicted that the air 

chilled products would have a longer shelf-life, as they yielded lower aerobic plate counts and coliform 

counts, though the actual shelf life was not measured in this study [51]. Jeong et al. found similar result in 

a study in which they processed carcasses using either air chilling, water immersion chilling, or 

evaporative air chilling [52]. Water immersion chilling resulted in the highest pH and numerically the 

highest shear force values. They also found the air chilled products to have the darkest color and water 

immersion chilled the lightest. Overall, the objective measurements indicated that air chilling resulted in 

the highest quality products, though the chilling method did not impact the perceived sensory outcomes 

by consumers. Water immersion chilling was the most efficient of the tested methods, though, with a 

chilling time of 57 minutes compared to 125 and 93 minutes for air chilling and evaporative air chilling, 

respectively [52]. In another report by the same authors, water immersion chilling resulted in the highest 

yield after chilling, but the lowest moisture retention after fabrication and storage, indicating that these 

products release more absorbed water during the cutting and storage processes [53]. Water immersion 

chilling also resulted in the lightest color, likely due to the aforementioned water absorption causing more 

light scattering. Air chilling was the yellowest, less white than water immersion chilling, had the highest 

scores for dark spots and white spots, and had the highest dryness score, all likely due to surface 

desiccation during chilling that would resolve during storage time [53]. Based on these studies, it appears 

that, though water immersion chilling may have some efficiency advantages, air chilling provides a 

product quality and shelf-life advantage over the other methods. 

Another processing parameter that directly impacts the product quality and microbiological 

composition is the time and temperature for storage and display. As time increases, the microbiota shifts, 
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generally to the advantage of spoilage organisms. An increased storage time means the product is closer 

to the end of the shelf life, though alterations in other aspects of product handling can change how long 

this period is. Gill and Newton published a review in 1977 that described the early conceptual framework 

for this [54]. They described a system in which bacterial numbers increased over time, and when these 

counts exceeded 108 CFU/gram ammonia production began and researchers observed decreases in 

carbohydrates, free amino acids, and nucleotides. This may be due to an increase in Pseudomonas growth 

over time, as in aerobically stored products the growth rate of these organisms increases with decreased 

storage temperature [54]. Arnaut-Rollier et al. confirmed that the main shift in microbial community 

during an increased storage period is an increased abundance of Pseudomonas [55]. They reported that 

Pseudomonas made up only 20% of the microbes on fresh carcasses, but this increased to 44.2% by day 3 

and 90% by day 8 of aerobic product storage. This rapid change demonstrates the short shelf life of 

chicken products when it is aerobically stored and implies that interventions to slow the spoilage rate 

should be made prior to the third day of storage. The rate at which these microbes grow can be slowed by 

maintaining low temperatures in the storage environment. In a 2012 review, Doulgeraki et al. described 

conditions of temperature abuse in meat product, showing that Enterobacteriaceae, Pseudomonas, and 

Acinetobacter were dominant [56]. Pseudomonas are psychrotrophic, so do not grow as effectively at 

warmer temperatures, which may be what allowed other groups of organisms to persist on the product. 

Handley et al. also evaluated the impact of temperature abuse on poultry carcasses, specifically of 

carcasses stored in large combo bins kept at ambient temperature after chilling [57]. Researchers did not 

see an increase in aerobic bacterial counts, E. coli counts, or total coliform counts until after the first 26 

hours of temperature abuse, likely due to a long recovery period from the lag phase after antimicrobial 

treatments. However, in the second 26-hour period each of these microbial groups increased significantly 

to a final mean count of 7.19, 4.45, and 4.81 log CFU/mL, respectively. The Enterobacteriaceae counts 

increased consistently throughout the experimental period, from 0.66 to 7.19 log CFU/mL. Within 

approximately two days of temperature abuse conditions (elevated storage temperatures) the 

microbiological counts were at spoilage-associated levels, demonstrating how quickly these organisms 
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can grow at elevated levels [57]. In another experiment testing storage conditions, Katiyo et al. collected 

and packaged raw chicken legs (thighs), then placed them in cold storage under aerobic packaging for 1, 

3, 7, 10, or 14 days before microbiological sampling and taking sensory measurements [58]. Under these 

cold storage conditions, it was Pseudomonas that became the dominant organism on the legs. 

Enterobacteriaceae and Lactic Acid Bacteria (LAB) were present throughout storage, but at much lower 

levels and without much change in population over time. The Enterobacteriaceae population did not 

change after 10 days, and the LAB population did not change after three days. Interestingly, this study 

also took into account quality and consumer acceptability changes over this time as well, showing that 

detectable slime on the product appeared after 10 and 14 days of storage, when the total viable microbial 

counts had reached 8.66 and 9.13 log CFU/g, respectively. They also showed that the color became less 

pink, more faded, and more undesirable after 10 days of storage [58]. Overall, it is clear that advanced 

storage times decreases the physical and microbiological quality of chicken products as it moves closer to 

a spoilage state. This process can be slowed by using lower storage temperatures but continues over time 

regardless of other treatments. 

There are other factors that impact the product quality; as the product moves through the 

processing facility the microbial composition is altered by the treatments, and the final product might be 

impacted by intentional changes to the pH. Handley et al. conducted a study in 2018 to establish the 

microbiome of commercially processed broilers and to evaluate the reduction in microorganisms during 

processing by collecting chicken rinseates from carcasses at commercial plants after distinct stages in 

processing [59]. In this study, each stage in processing (rehang after exsanguination, pre-chill, and post-

chill) showed significantly reduced microbial populations coupled with reductions to the microbial 

diversity [59]. It is likely that the processing steps are mechanically removing bacterial cells from the 

carcasses, but perhaps selecting for certain organisms such as Pseudomonas and Enterobacteriaceae. In a 

similar study, Chen et al. reported slightly diverging results [39]. In this study, researchers collected 

carcass rinseates from a processor in Australia at distinct processing timepoints but included more than 

were used in Handley et al.: before scalding, after scalding, before immersion chilling, after immersion 



 17 

chilling, and after air chilling. In contrast to Handley, they reported an increase in bacterial richness, or 

the number of microbial species, after each intervention, most notably a shift from 51.7 to 100.1 in before 

and after scalding steps [39,59]. With this, they saw no difference in evenness or Shannon’s diversity 

calculations between any processing timepoint groups. They did, however, show a change in beta 

diversity, with shifts in the microbial community composition after scalding and water chilling, possibly 

due to physical wash-off of bacterial cells. The final measured step in the process, air chilling, also 

resulted in a large increase in microbial diversity, which may indicate this step as a potential site of cross-

contamination for carcasses and the processing chain. Despite these increases in microbial diversity, the 

researchers reported a decrease in microbial cell counts, especially during the two chilling steps. In other 

words, the number of bacterial ASVs was increasing as the total number of bacterial cells decreased; 

perhaps the reduction in competition allowed more individual organisms to prosper in this system [39]. 

Rothrock et al. also considered the impacts of processor steps on the chicken microbiota, though they 

focused primarily on the changes in the waters of the scalder and chiller tanks throughout the day [60]. 

Water was collected from the tanks prior to entry of the first bird, after 9 hours of processing, and after 

the end of the processing day but before cleaning. They found microbial diversity to remain relatively 

consistent in the tanks throughout the day. However, other chemical attributes that indicate dirtiness did 

increase; the chemical oxygen demand, biological oxygen demand, oil and grease, and total solids all 

increased significantly in the chiller tanks after starting production, with highest values occurring at the 

midpoint sampling time. During this time, the relative abundances of the major bacterial phyla 

(Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes) returned to their starting levels by the end of 

the processing day, most likely due to the effectiveness of the chlorination of the waters. Only a few 

organisms increased in relative abundance throughout the processing day; Anoxybacillus and 

Erysipelotrichaceae showed the greatest increase and Pseudomonas increased over time but recovered to 

starting levels by the final sampling timepoint. It is clear that processing stages have an impact on the 

final product microbiome, but without more study it is unclear exactly how this change manifests. 
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Any processing step that otherwise alters the physiochemistry of the chicken product will have an 

impact on the final product quality. In a review article, Gram et al. again confirmed that Pseudomonas 

and similar organisms will dominate proteinaceous foods, especially when stored aerobically at low 

temperatures, but noted that Shewanella putrefaciens-like organisms will also grow quickly in products 

with a higher pH [61]. For this reason, the acidity of a product is altered during production, to reduce the 

growth of these bacteria and increase shelf-life. Gram et al. also describe the impacts of using salt to 

decrease the water activity, which can actually shift the microbiome to an anaerobic condition, with LAB, 

Enterobacteriaceae, and Brochothrix dominating the community [61].  

 

Chicken Product Spoilage 

After death, the muscles of a carcass begin to break down through autolysis reactions and the 

influence of external microbes. When this process occurs in meat products, it is referred to as spoilage, 

and the time until the product is rendered inedible by the spoilage process is the shelf-life and is generally 

defined as when the microbial load on the product reaches 7 log CFU/mL [58,62]. In aerobically stored 

meat products, the outcome of spoilage is generally the formation of a slime on the product surface, off-

odors (pungent, fishy, rotten-egg, ammonia), and a distinct microbial profile generally dominated by 

Pseudomonas [58,61]. The rate of spoilage can be slowed by the application of specific conditions, as 

described in the previous section, but is an inevitable process. The spoilage rate of fresh meats is rapid 

compared to other food products, and the volume of product that spoils before being purchased or 

consumed is a major contributor to food waste in the United States [63]. Therefore, it is critical to 

understand this phenomenon. 

The main driver of spoilage is the presence of microorganisms on the surface of the product. The 

main bacteria involved in chicken spoilage are well-documented: Enterobacteriaceae including 

Acinetobacter, Enterobacter, Hafnia, Proteus, Serratia, Aeromonas, Alcaligenes, and Providencia. 

Pseudomonadaceae organisms, especially P. lundensis, P. fragi, and P fluorescens, and Firmicutes 

including Brochothrix, Carnobacterium, Enterococcus, Leuconostoc, Weissella, Lactobacillus, and 
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Lactococcus, and Shewanellaceae species S. putrefaciens [34,45,54,56,58,59,61,64–67]. These organisms 

are important for spoilage because they thrive in the conditions in which products are stored; namely, 

these are psychrotrophic organisms that are capable of growing under refrigerated conditions (4 °C). 

There are several mechanisms through which these organisms drive spoilage. Simply a large amount of 

bacterial growth can begin to cause sensory defects such as sliming, but the products of microbial 

metabolism cause the majority of chemical changes in the product as it spoils, with the major compounds 

being alcohols, aldehydes, ketones, esters, and sulfur compounds [34]. Casaburi et al provided a review of 

research describing the volatile compounds produced by microorganisms during spoilage [65]. Initially, 

the microbes will use glucose as a substrate, which can lead to production of acetate, acetoin, diacetyl, 

acetic acid, iso-butyric acid, iso-valeric acid, and ethanol. After consumption of glucose, proteins will be 

broken down into amines, sulphides, and esters and fatty acids into aldehydes, all of which have negative 

sensory impacts on the product. These products have been directly linked to specific microorganisms, as 

reported in this review. Pseudomonas and Carnobacterium appear to be most involved in the production 

of the alcohols, while these organisms plus Enterobacteriaceae aldehydes. Pseudomonas fragi 

specifically has also been associated with the production of esters; in one case of 45 esters detected in a 

spoiled product at least 27 were produced by P. fragi. Finally, Brochothrix thermosphacta and 

Carnobacterium spp. were the major producers of volatile fatty acids. Overall, this paper describes 

specific changes in volatiles present in meat products that authors propose could be potentially used to 

describe or predict degrees of spoilage [65]. In a similar review, Gram et al. evaluate the microbes 

involved in spoilage by specifically analyzing their interactions and communication [61]. These authors 

also provide connections between organisms and spoilage products that agrees with the Casaburi et al. 

review; they show that Pseudomonas, Aeromonas, and many Enterobacteriaceae are likely to produce 

ammonia and biogenic amines from the breakdown of proteins and amino acids, Pseudomonas and 

Shewanella putrefaciens can break down cysteine to hydrogen sulphides, Pseudomonas, 

Enterobacteriaceae, and LAB can break methionine down into sulfhydryl, and B. thermosphacta, 

Enterobacteriaceae, and homofermentative LAB can metabolize glucose into acetoin, diacetyl, and 3-
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methylbutanoyl. However, they also go beyond simply summarizing these compounds and also explain 

how combinations of these organisms in a community may change the dynamics. In a community, 

Pseudomonas is likely to act competitively with other organisms by producing a range of antibacterial 

and antifungal compounds including antibiotics and cyanide. Plus, they efficiently chelate iron, giving 

them an advantage when competing for substrates. This explains why Pseudomonas often comes to 

dominate spoilage communities, and why the diversity of these communities may be reduced. Other 

organisms perform more efficiently in collaboration; when ornithine-decarboxylase-positive 

Enterobacteriaceae were cultured with arginine-deaminase-positive LAB the production of putrescine 

was 10 – 15 times higher than when these organisms were cultured individually. If Clostridium 

botulinum, and important pathogen especially in anaerobically stored products, interacts with some 

aerobic bacteria it can enhance the toxin production, as these aerobic organisms remove oxygen from the 

environment more quickly and create better conditions for C. botulinum. Finally, the authors describe the 

production of quorum sensing molecules as likely to be very important in understanding these 

interactions, but there is not currently enough literature to fully support this [61]. This focus on interaction 

makes it very clear that, while only a few organisms may actively contribute to the spoilage outcomes, the 

entire community is important to fully understanding microbial food spoilage. 

In addition to general reviews, several studies focus on specific aspects of the microbial 

communities and their metabolic activities. Lee et al. characterized the putrefactive bacteria that were 

isolated from chicken meat during cold storage [66]. They compared the taxonomic results from culture 

dependent and Next Generation Sequencing methods and found similar results from both. Culture-

dependent methods revealed 118 strains of psychrotrophic bacteria, which were primarily associated with 

three major organisms: Pseudomonas (58.48%), Serratia (10.17%), and Organella (6.78%). The 

sequencing method showed similar taxonomies, but more microbial diversity. They did not fully describe 

the spoilage mechanisms of these organisms but did note that two-thirds of the Pseudomonas isolates 

showed some proteolytic activity, which is expected compared to the other literature [66].  Morales et al. 

specifically focused on the products of Pseudomonas metabolism, evaluating both the phenotypic and 
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genotypic diversity of Pseudomonas strains in marinated poultry products [67]. Researchers identified 42 

Pseudomonas isolates in these products that associated with three previously described species: P. fragi 

(57% of isolates), P. fluorescens (33%), P. lundensis (7%), and one isolate did not associate with a tested 

species. Within these isolates they described three basic metabolic profiles related to spoilage activity that 

were detected through biochemical testing. Most isolates had proteolytic metabolisms without lecithinase 

production ability (14/24 isolates tested), some were non-proteolytic and had not lecithinase production 

ability (7/24) and some had proteolytic and lecithinase positive ability (2/24). No tested isolates had 

biosurfactant or lipolytic capabilities, which does suggest that there is a metabolic niche for non-

Pseudomonas organisms in the microbial community [67]. In another study profiling the spoilage 

compounds in meat, Argyri et al. correlated the volatile compounds of minced beef with microbiological 

and sensory data under different storage temperatures and packaging conditions [64]. Though this study 

focused on beef, not chicken, the results are still comparable to the chicken spoilage results. The initial 

microbiota of these minced beef products consisted of LAB, Pseudomonas, B. thermosphacta, 

Enterobacteriaceae, and yeasts and molds. Under aerobic storage conditions the fast-growing 

Pseudomonas dominated the community and accelerated spoilage at all storage temperatures, though the 

growth of B. thermosphacta was also favored at low temperatures. After analyzing the microbiota, the 

researchers compared these to the volatile compounds detected by mass spectroscopy and determined that 

the alcohols derived from proteolytic activity in the breakdown of amino acids which may be due to 

Pseudomonas activity, though LAB and B. thermosphacta could also be involved. Pseudomonas is also 

involved in aldehyde and ketone production. Interestingly, the predominant spoilage products shift as the 

spoilage time increases. Alcohols increased early in the spoilage period until the midpoint, then decreased 

in abundance toward the end. Most ketones increased over time, though 2-butanone decreased over time. 

Esters increased as well, except in storage at 0 and 5 °C at which propanoate, butanoate, and lactate 

decreased over time. Though the dominance of B. thermosphacta is less reported in chicken literature, the 

general patterns reported here seem to carry through to chicken products as well [64]. All of the spoilage 
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organisms and metabolites reported in the literature cause the degradation of product quality to the point 

of inedibility. 

The off-odor is the primary indicators of spoilage in meat products as consumers make 

purchasing and cooking decisions [68]. Numerous off-odors have been described in the literature, which 

include putrid, rancid, cabbage-like, floral/citrus, and sulfur [34,69]. In their study the spoilage 

volatilome, Casaburi et al. connected the products of microbial metabolism to specific odor outcomes 

[65]. Glucose is used first by psychrotrophic bacteria and is the precursor to many volatile compounds 

that cause strong negative odors, including acetate, acetoin, diacetyl, acetic acid, iso-butyric acid, iso-

valeric acid, 2-methylbutryic acid, 3-methylbutanol, 2-methylpropanol, ethanol. After the depletion of 

glucose, proteins are broken down and the products of amino acid metabolism are malodorous sulfides, 

esters, and amines. The acetic acid and ethyl acetate can cause sharp, acrid odors, while the sulfides cause 

the sulfurous and putrid odors. The more complex alcohols cause distinct odors as well: 2-ethyl-1-hexanol 

can cause resin, flower and green odors, 1-heptanol leads to fragrant, woody, oily, green, fatty, winey, sap 

and herb odors, 1-octen-3-ol is associated with mushroom odors, 1-hexanol with chemical wine, fatty, 

fruity and weak metallic, 3 methyl-1-butanol can be associated with a whiskey-like odor [65]. In a similar 

study, Argyri et al. identified compounds that were prevalent both in non-spoiled and spoiled products, 

though they were not tied to specific odors from sensory study [64]. They found compounds associated 

with acceptable products to be 2-butanone, 2,3-pentanedione, 2,5-octanedione, pentanal, hexanal, trans-2-

heptanal, and trans-2-octanal and products associated with spoilage to be 2-pentanone, 2-nonanone, 2-

methyl-1-butanol, 3-methyl-butanol, ethyl hexanoate, ethyl propanoate, ethyl lactate, ethyl acetate, 

ethanol, 2-heptanone, 3-octanone, diacetyl, and acetoin. Several of these compounds align with those 

identified by Casaburi et al. and others were distinct but similar volatiles, adding to the list of potential 

odor-causing compounds that are produced by microbes during product spoilage [64,65]. Other 

compounds have previously been associated with spoilage odors, including biogenic amines cadaverine 

and putrescine, which are produced through the decarboxylation of amino acids, but these occur more 

frequently in anaerobic packaging [34]. To summarize, microbial metabolism results in numerous volatile 
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products, especially alcohols and amines; when microbial populations grow large enough these products 

are sufficient to contribute off-odors associated with product spoilage and inedibility by consumers. 

Discoloration of meat and other foods is another major indicator of product spoilage that occurs 

through both chemical and microbiological pathways. These color changes have been characterized in 

poultry products. Katiyo et al. measured these color changes over storage period using both instrument 

and panel scoring [58]. In this study, as storage time increased the product became less pink and less 

intense by instrumental measurements, with days 10 and 14 having significantly lower values than 

previous study days. Interestingly, the human panel was more informative than the instrument measures, 

detecting color changes earlier in the storage period [58]. These changes may be induced by 

physiochemical changes in the product, including surface desiccation reducing product chroma. 

Additionally, the storage conditions may alter the state of the myoglobin compound in the muscle tissue. 

Extended oxygen exposure can cause the molecule to oxidize to metmyoglobin, which produces a brown 

color [34]. Smolander et al, in a study describing freshness indicators in poultry, also demonstrated how 

hydrogen sulfide compounds produced by microbes can bind with myoglobin to produce a greening [70]. 

Due to a lower myoglobin concentration in chicken compared to other meats, though, these chemical 

discolorations may be less obvious, which is perhaps why odor is a stronger indicator of spoilage. Off-

colors in chicken may also be due to pigments produced by microbes, specifically Pseudomonas that 

grow abundantly in spoiled products. P. fluorescens produces of blue, green, and yellow pigments, with 

the yellow being a siderophore that is a product of iron metabolism [34]. Andreani et al. found two copies 

of genes involved in tryptophan biosynthesis, and up-regulation of genes involved in iron uptake, and 

down-regulation of genes involved in primary metabolism in pigmenting P. fluorescens strains as 

opposed to the non-pigmenting strains, which may show why these strains thrive in food products [71]. 

These pigments were not specifically associated with spoilage observations in consumer studies, but may 

still be important in overall product impressions, and likely is related to quality degradation. 
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Conclusions 

The spoilage, through physiochemical and microbiological means, of chicken products is 

complex. There are numerous microorganisms that take advantage of a matrix of high-quality nutrients, 

though Pseudomonas tend to dominate the microbial ecosystem. The metabolisms of these microbes 

produce alcohols, aldehydes, amines, esters, ketones, and sulfides, which contribute to negative odors, 

discoloration, and off-flavors in the products that render them non-consumable. This has a massive impact 

on the amount of food waste produced globally when these products spoil before being sold or consumed, 

and that also contributes to major economic consequences for food production companies. Therefore, 

researchers have sought to reduce the incidence of spoilage through modification of product conditions. 

These include decreased storage temperatures, changing harvesting, chilling, and other processing 

parameters, and modifying packaging, though this review focused on aerobic conditions. Despite this 

increased body of knowledge, further research is still necessary to determine the exact relationship 

between the microbial community and spoilage outcomes in order to increase the shelf life and further 

reduce food loss due to inedibility. 

 

Microbial Contributions to Vertebrate Decomposition 

Vertebrate Decomposition 

The process of decomposition is crucial for nutrient cycling in the environment, and therefore has 

undergone extensive study. While a large portion of the literature on the subject investigates the impact of 

the decay of leaf litter and other plant materials, the decomposition islands generated by vertebrate 

decomposition have been shown to have major impacts on the biogeochemical cycling [72–74]. The 

process of vertebrate decomposition is well-described. It proceeds in distinct stages, which are defined by 

the physical description of the remains; however, several different classifications of these stages have 

been proposed. One of the highly recognized early systems, proposed by Payne, divides decomposition 

into six stages: fresh, bloat, active decay, advanced decay, dry, and remains [75]. Subsequent descriptions 

use similar categories but may merge several together. For example, Megyesi et al. consider four stages: 
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fresh, early decomposition, advanced decomposition, and skeletonization [76], and other have combined 

dry and remains to one stage instead of separating them [77]. Regardless of the terminology, the 

descriptions of the stages are similar. Fresh is associated with the initial death event, the depletion of 

internal oxygen, and autolysis of cells in the body. Bloat, or early decomposition, is associated with 

anaerobic metabolism and the production of gasses by internal microbes and the start of purging into the 

soil. Active decay is the period of high mass loss from the remains, maggot activity, and the transfer of 

fluids from the remains to the soil or surrounding environment. Advanced decay is determined by the 

migration of fly larvae and comprises a slower rate of mass and fluid deposition. Finally, the dry remains 

stage is associated with growth of plants and fungi on or near the remains and full exposure of bones [78]. 

 

Microbiology of Decomposition Environments 

The microorganisms that become active during the decomposition period are essential to the 

nutrient breakdown during decay. Though cell autolysis is an important part of the early decomposition 

process, the larger portion of physical remains breakdown is regulated by the activity of scavengers and 

insects, which serves to deposit the associated material into the soil and release the nutrients [78]. After 

the remains are reduced, the microorganisms actively cycle the materials, especially the carbon and 

nitrogen compounds. Given the importance of microbes to this system, there are several studies 

investigating the organisms that drive the breakdown of decomposition products in the soil and on and 

within the remains themselves. 

The microbial composition of soil is significantly altered by the sudden release of high-quality 

nutrients that occurs during decomposition. Indeed, it has been demonstrated that the soil community is 

the primary source of the decomposer microbes [79]. During the initial stages of decomposition (fresh, 

bloat), the microbial communities are generally comprised of typical soil organisms, including 

Proteobacteria, Acidobacteria, and Bacteroidetes, with a lower abundance of Actinobacteria, 

Planctomycetes, Chloroflexi, Gemmatimonadetes, Crenarchaeota, and Nitrospirae [80]. Interestingly, 

different studies reported opposite trends in the abundance of Verrucomicrobia, with one study showing it 
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in high abundance in all soils and another describing a low abundance during this early stage [80,81]. The 

former, conducted by Carter et al, used swine as a host species, was evaluating the microbial composition 

across seasons, and was conducted in a tallgrass prairie [81], while the latter, conducted by Adserias-

Garriga et al. was conducted using human remains in a subtropical forested area [80]. Any of these 

factors could have influenced the distinct result. The Adserias-Garriga paper continued to observe the 

changes in these organisms over time, showing a sudden increase in Firmicutes and a decrease in 

Proteobacteria after days 6 to 7, likely associated with the onset of active decay, and then associated a 

high abundance of Clostridiales with advanced decay and dry remains [80]. Other organisms reported to 

increase in abundance during this period are Sphingobacteriaceae, Brucellaceae, Phyllobacteriaceae, 

Hyphomicrobiaceae, and Alcaligenaceae. Weiss et al. [82] and Metcalf et al. [83] demonstrated a 

decrease in relative abundance of Acidobacteria, which is inversely related to soil pH, and several 

microbial eukaryotes across the decomposition period. 

The microbial community associated with the host remains themselves is influenced not only by 

the availability of nutrients and oxygen, but also by the breakdown of tissues, allowing generally internal 

microbes to influence the external spaces. Metcalf et al showed that organisms associated with the gut 

microbiome increase in relative abundance within the abdominal cavity during the early stages of 

decomposition, through bloat [83]. After rupture, the relative abundance of these organisms decrease due 

to the shift in oxic conditions as the body cavity is exposed to air. This shift allows other organisms to 

dominate the community, including several families of Alphaproteobacteria, Serratia, Escherichia, 

Klebsiella, and Proteus [83]. Other studies further investigated the changes in gut microbiota during 

decomposition. Debruyn and Hauther sampled the gut microbiome daily through an incision sealed with 

tape to preserve the anoxic conditions [84]. They demonstrated that communities in early decomposition 

contained a high abundance of Bacteroides, Parabateroides, Faecalibacterium, Phascolarectobacterium, 

Blautia, and Lachnospiraceae, while late decomposition communities had a higher abundance of 

Clostridium, Peptosterptococcus, Anaerosphaera, and Gammaproteobacteria coupled with a decrease in 

Bacteroidetes. Interestingly, they identified distinctions between individuals in the early timepoints, but 
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all individual remains followed a similar trajectory towards a decrease in community richness and 

dominance by just a few genera [84]. Hauther et al. saw a similar pattern in the human cecum, reporting a 

decrease in the abundance of Bacteroides and Lactobacillus over the first 20 days of decomposition [85]. 

Additional body sites tested in the literature include the mouth, ear, eye, nose, umbilicus, and rectum. The 

mouth, or buccal cavity, of rats was investigated by Guo et al, who found that Moraxellaceae increased in 

abundance over the first day of decomposition, but then decreased as Xanthamonadaceae and 

Enterobacteriaceae increased in abundance [86]. Additionally, from day 4 onwards the abundance of 

Strepotcocaceae and Pasteurellaceae decreased, and Pseudomonadaceae increased rapidly on the sixth 

day postmortem [86]. Pechal et al investigated all of these sites on a large scale [87]. They found that all 

the sampling sites had distinct microbial communities, and this remained discrete throughout the 

decomposition period. The mouth samples demonstrated the most variability over decomposition period, 

compared with the rectum that harbored a consistent community. In remains discovered in the first 48 

hours, the authors detected a higher functional redundancy coupled with a higher taxonomic diversity 

compared to later decomposition periods, showing that during the fresh stage of decomposition there are 

similar functions being conducted by a variety of organisms [87]. Overall, while there are taxa that create 

distinct microbiomes at different sample sites, the changes in the abundance of specific microbe groups 

over times demonstrates clear microbial succession in both the gravesoils and host tissues during 

decomposition. 

 

Nutrient Cycling in Decomposition Soils 

The deposition of a high-quality nutritional resource to an environment can trigger a dramatic 

change in the nutrient cycle of a soil environment. The remains of vertebrates provide an excellent 

example of this phenomenon, as the decomposition of some large vertebrates may be contributing more 

than 1% of the organic matter in some ecosystems [78]. These remains are excellent sources of carbon 

and nitrogen, which, when released to the soil, are recycled by the microorganisms described above. 

Other compounds shown to increase in concentration in decomposition-associated soils include 
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ammonium, phosphorus, calcium, potassium, sulphate, magnesium, chloride, sodium, and base cations 

[78].  

Keenan et al investigated the specific contributions of vertebrate decomposition to nitrogen 

cycling using beavers as a model organism [74]. They concluded that there were three primary 

biogeochemical phases during decomposition. From placement through early decay, the soil conditions 

remained aerobic and the equilibrium between nitrogen and carbon cycling continued. Then, during active 

and advanced decay soil oxygen is depleted; the environment becomes anaerobic due to the deposition of 

decomposition fluids and remaining oxygen is consumed by the aerobic organisms. The depletion of 

oxygen was coupled with an increase in cellular respiration, which provided evidence that the oxygen was 

being utilized by microorganisms. This process led to an overall increase in total nitrogen and carbon in 

the soil. Moreover, during active decay there was an increase in phosphodiesterase, an enzyme for protein 

degradation, which could be associated with the breakdown of the phospholipids and nucleic acids from 

the remains. The third biogeochemical phase, during skeletonization, was indicated by a return to 

oxygenated condition due to consumption of the fluids, a decrease in microbial respiration rates, and 

enhanced nitrification and denitrification processes due to the decrease in concentration of free ammonia. 

From this, researchers hypothesized that the anaerobic conditions during active decay may be inhibiting 

nitrification. Interestingly, throughout decomposition there was no increase in soil protein, which suggests 

that these compounds are rapidly broken down, likely by maggots and microbial activity. All of these 

processes increased the soil pH, which remained elevated until four months after active decay, which was 

also observed in other similar studies [74,88]. Similarly, Cobaugh et al report that the respiration rates 

and biomass production increased during bloat and were the highest during active decay, showing the 

high amount of microbial activity in the soils [89]. They also report an overall increase in organic carbon, 

ammonia, and phosphate as a result of this activity. Conversely, Benninger et al. demonstrated no overall 

change in soil carbon over 100 days of swine decomposition [88]. However, they did report an increase in 

total nitrogen, especially during the first 14 days of decomposition, and an increase in in soil-extractable 

phosphorus over the entire 100-day period [88]. 
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Fatty acids are also deposited from the remains to the soil. One study showed a variety of both 

saturated and unsaturated fatty acids in soil samples collected directly below swine carcasses, which 

included myristic, palmitic, palmitoleic, stearic, and oleic acids [90]. Benninger et al also described an 

increase in the amount of lipid-associated phosphorus in the soils, especially during early decomposition 

when the body tissues were being deposited into the soil [88]. The presence of these compounds in the 

soil may not greatly impact larger trends of biogeochemical cycling, but clearly influence the microbial 

activity in the soil. In fact, it has been demonstrated that an adipocere, a lipid bulk in the soils surrounding 

remains, forms due to a lack of microbial degradation [91]. It has been demonstrated that soils with 

adipocere formation contain higher levels of dissolved carbon and phosphorus, which indicates a change 

in microbial production, which demonstrates the importance of fatty acids to nutrient cycling in the 

decomposition environment [92]. 

 

Estimating the Postmortem Interval 

The patterns in human decomposition can be noted to generate an estimate of the postmortem 

interval (PMI), or the time since death. This is a crucial piece of information, both in forensic 

investigation and to the relations of the decedent. In forensic science, an accurate PMI can allow 

investigators to validate alibies and to identify witnesses and suspects. Furthermore, it is one of the most 

frequently requested pieces of information from the relations of the decedent and could be important in 

distributing contents of wills. Therefore, it is critical to find methods that can accurately estimate PMI, 

even in cases of late discovery. During the first 48 to 72 hours, several tools are available for this, 

including body rigor mortis (stiffness), liver mortis (blood pooling), and algor mortis (temperature) 

[93,94]. However, these become less available as decomposition progresses, so forensic scientists have 

developed alternative methods in late-term PMI. 

There are several methods that have been proposed and studied to estimate PMI in cases of late 

discovery. The most notable and widely used is forensic entomology, the practice of using the presence 

and life stages of insects on and around the remains. Investigators collect any insects present on the 
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remains and soil within two meters of the remains, then collect information including the age, size, and 

species of insects. Data formulas have been developed to convert this information to a PMI estimation 

[95]. This is an excellent tool for forensic investigations, but there are several aspects that can limit the 

accuracy of estimation made with entomology. The knowledge and training of investigators is critical to 

success as it requires precise identification of the insects, environmental conditions such as temperature, 

humidity, and indoor vs outdoor spaces impact colonization and growth, and there is always uncertainty 

regarding the time from death to colonization [95–99]. 

Other methods have been proposed as an alternative to entomology. For instance, Sabucedo and 

Furton demonstrated a pseudo-linear relationship between degradation of the cardiac protein Troponin I 

and PMI, suggesting that the degradation band pattern could be used to determine PMI especially during 

the first five days postmortem [100]. Additionally, Hunter et al evaluated the accuracy of using the 

expression of upregulated genes [101]. They trained a model to predict PMI using linear regression 

analysis, then compared the predictions with the actual intervals to determine accuracy. They reported an 

R2 of 1 when using zebrafish genes and R2 of 0.98 and 0.95 for mouse liver and brain genes, respectively. 

However, this study only evaluated the first 48 or 96 hours postmortem, so this method may be less useful 

in longer decomposition periods [101]. One additional proposed method for PMI estimation has been very 

promising as a tool for forensic investigation: microbial succession in the postmortem microbiome. 

Microbial communities have been demonstrated to change in consistent patterns over time during 

decomposition on skin [79,83,102], in the gastrointestinal tract and abdominal cavity [79,83–85], mouth 

[102], and nose [103], and in associated soils [79,81–83,89]. This provides evidence that these patterns 

can be modeled and used to create estimators of PMI using statistical methods and machine learning. In 

fact, several studies have demonstrated the accuracy of this method. A study using mice predicted PMI 

within 3.30 +/- 2.52 days over the first 34 days of decomposition [83]. Another study that included 

samples from the skin, abdominal cavity, and associated soils of mice and human remains predicted PMI 

within 2 to 3 days over the first two weeks of decomposition [79]. Finally, as study of skin in nasal an ear 



 31 

cavity used the k-nearest neighbor algorithm to predict PMI within 55 accumulated degree days (ADD), 

which is equivalent to approximately 2 experimental days. 

To generate predictive models that are accurate under multiple conditions, researchers have 

sought to explore the variables that may alter the microbial succession patterns. Weiss et al. decomposed 

swine carcasses from three different weight groups to evaluate the impact of carcass mass on microbial 

community structure [82]. When comparing decomposition soils to control soils, they found that the 

presence of remains and PMI had an impact on the microbial communities, but the mass of the carcass did 

not significantly impact them, [82]. Additionally, Metcalf et al. studied mouse decomposition on soils 

from distinct environmental sources (desert, shortgrass, forest) and determined that the soil type was not a 

major driver of microbial community assembly during decomposition [79]. Together, these studies 

suggest that microbial succession will be similarly predictable regardless of remains mass or soil type, so 

these variables may not be necessary to include in an accurate predictive model of PMI. In another study, 

Carter et al. compared swine decomposition in the summer and winter to evaluate seasonal variation in 

decomposition soil microbial communities [81]. They found that, in the winter, the remains froze and had 

no insect activity, which slowed the decomposition process. Moreover, when comparing the 

decomposition soils to control soils within a season, they saw larger changes in microbial communities in 

summer than in winter [81]. Thus, it will be necessary to consider seasonal conditions when estimating 

PMI from microbial data. Finally, Pechal et al considered how antemortem conditions may impact the 

patterns in decomposition [87]. They concluded that manner of death, sex, death event location, ethnicity, 

season of death, and body weight were not important in evaluating the structure of the microbial 

communities. They did report a weak positive relationship between body mass index and the community 

diversity. However, it is more likely that the microbial communities collected from remains in the first 48 

hours can provide information about the antemortem health conditions than the inverse [87], therefore 

these conditions also may not need to be considered for accurate forensic tools. 
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Conclusions 

The complex process of mammalian decomposition is an important feature of nutrient cycling in 

soils. The remains deposit important nutrients into the soil during the decomposition process, especially 

during active and advanced decay, including carbon, nitrogen, phosphorus, and minerals. These nutrients 

are then utilized during microbial metabolism, which furthers their biogeochemical cycling. As conditions 

in the soil change, so do the microbial communities, in response to both the nutrient availability and the 

change in oxygen availability. These shifts occur consistently across environments, within certain 

conditions such as season, in a process termed microbial succession. After the predictability of these 

succession was described, it was discovered that these patterns can be harnessed to estimate the 

postmortem interval. Therefore, a critical and naturally occurring environmental process has the potential 

to shape both the fields of environmental microbial ecology and forensic science when these concepts are 

applied. 
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THE MICROBIOME OF A NEWLY CONSTRUCTED MEAT PROCESSING FACILITY 

ESTABLISHES OVER TIME BY ROOM FUNCTION AND MICROBIAL SOURCE 

 
 
 
Summary 

The microorganisms that reside in food processing facilities can have lasting negative 

consequences on food safety and quality. The microbiomes can harbor important pathogens such as 

Listeria monocytogenes that can transfer to the food products and lead to disease in consumers. They also 

contain major food spoilage organisms and can lead to poor product quality and shortened shelf lives 

when they contaminate the food products. Despite the significant consequences of these environments, 

there has been little study of how these microbial communities form within the processing spaces. The 

construction of a new meat processing facility provided an opportunity to address this knowledge gap. A 

study was designed to answer research questions including (1) Is a stable microbiome established in a 

meat processing facility? (2) What factors are associated with the facility microbial composition? (3) 

What are the major sources of microbes present in the facility microbiome? Samples of the microbial 

communities were collected from drains and door handles in the facility approximately monthly spanning 

the first 18 months of operation. The microbiomes were investigated using 16S rRNA gene sequencing 

following Earth Microbiome Project protocols. Data were analyzed using QIIME2 and visualizations 

were constructed in R.  

Results indicate that stable microbial communities begin to form throughout the processing 

facility within the first eight to nine months of consistent production. However, these communities appear 

subject to perturbation when major conditions in the facility change, such as a large shift in production 

volume. Additionally, different communities form within spaces, selected for by microbial source, room 

temperature, general use, and nutrient availability. Interestingly, it also appears that physical barriers 

within the facility prevent specific organisms from being transmitted between spaces. Overall, this study 

demonstrates the importance of deliberate facility design and regular cleaning and sanitation practices to 

control the microbial communities in the food processing space. 
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Introduction 

The growing field of built environment microbiome studies has allowed researchers to focus on 

the unique relationship between humans and the environments they occupy. Generally, the spaces 

investigated in these studies are facilities in which humans spend a majority of their time, and in which 

humans are the major occupant; for example, homes [1–4], school and university buildings [5–7], 

hospitals [8], and athletic facilities [9,10]. In nearly every case, the microbial composition of the built 

environment has been shown to reflect that of the primary occupants, even in cases with consistent 

cleaning and sanitation practices. Not only this, but the transition of the microbial community to reflect 

the occupants occurs very rapidly, often in under a day [4,8]. However, humans are not the primary 

occupant of many under-studied built environments, though they can be negatively impacted by the 

microbial communities found in them. Specifically, the microbial communities of food and beverage 

production facilities may have important implications on the safety and quality of the commercial food 

products. 

Microorganisms are generally considered the enemies of wholesome food production systems. 

Many microbes that enter a production facility, especially in products of animal origin, are pathogens that 

can cause illness in cases of human consumption. Notably, Listeria monocytogenes in facilities results in 

a massive food safety risk as it can transfer to products considered ready-to-eat, which will not be cooked 

prior to consumption, and can grow under refrigerated conditions. To try to reduce risk of contamination 

from these organisms, food processing facilities are required to have testing and control plans [11]. 

However, the majority of organisms present in the production environment are not likely to cause human 

illness, but instead impact the quality of the product by their involvement in spoilage, especially 

organisms such as Pseudomonas, Moraxellaceae, and Lactic Acid Bacteria. Moreover, there is evidence 

that these organisms can be transferred from the environment to the food products, demonstrating the 

critical importance of managing the built environment microbiome [12,13]. As a result, advances have 

been made by food production industries in an effort to reduce the presence of microbes in their facilities, 

such as the introduction of rigorous cleaning and sanitation regimes and the use of facility design to 
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prevent cross-contamination between processing steps. Even industries that rely on the presence of 

microbes to generate their product, such as brewing and cheesemaking, strive to reduce the presence of 

“wild microbes” [13,14]. Despite these efforts, resident microbial communities have been identified in 

brewing [13], cheesemaking [14], fruit processing [15], and meat processing [12,16,17] facilities. Though 

a general picture of these communities is forming through the published literature, there is still a major 

knowledge gap surrounding the origins of these microbes and how the communities assemble within the 

facility. 

A unique opportunity to address these knowledge gaps recently arose at Colorado State 

University when construction began on a new meat production facility housed in the Animal Sciences 

department. The convenient location and collaborations allowed access to the facility beginning prior to 

any animal products entering the facility, which presented the opportunity to investigate the composition 

of a meat processing facility microbial community before it is established in the environment. To 

capitalize on this opportunity, a research project was devised to address several guiding questions: (1) Is a 

stable microbiome established in a meat processing facility? (2) What factors are associated with the 

facility microbial composition? (3) What are the major sources of microbes present in the facility 

microbiome? 

 

Results and Discussion 

Sequencing results 

To investigate the changes in the microbial communities within a newly constructed meat 

processing facility, the Global Food Innovation Center (GFIC; Fort Collins, CO), microbiome samples 

were collected monthly from drains and door handles throughout the facility from January 2019 until 

August 2020. This timeframe spanned from post-construction cleaning (pre-opening) through 18 months 

of operation. The microbiome was evaluated using sequencing of the V4 region of the 16S rRNA gene 

following Earth Microbiome Project protocols. In total, 1,009 samples were sequenced for this study, 

including 39 negative and no-template controls and 4 mock communities. Sequencing resulted in a total 
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of 34,332,385 paired-end reads. After denoising, quality filtering, read joining, and chimera removal with 

the DADA2 plugin, the dataset contained 31,676 distinct amplicon sequence variants (ASVs) in a total 

frequency of 25,110,424 ASVs (range: 1 to 152,682 ASV/sample, mean: 24,886 ASV/sample). These 

samples were filtered to remove ASVs that assigned to chloroplasts and mitochondria after taxonomic 

analysis, resulting in 29,485 ASVs. 

Negative controls were evaluated based on number of reads present, and were all determined to 

be low abundance, indicating that data could be considered uncontaminated. Additionally, the rarefaction 

level used in diversity analysis for this study was well above the threshold of the highest negative control, 

giving us confidence in our biological samples. Thirteen mock communities were sequenced for inclusion 

as positive controls. The taxonomic profiles of these communities were compared with the expected 

composition based on manufacturer reports. The mock communities resulted in the expected community 

with no unexpected taxa, indicating expected sequencing quality and no major contamination. All 

negative and positive control samples were removed from the dataset before further analysis. 

 

Establishment of a Stable Microbial Community 

The microbial community that developed within facility drains appears to become consistent over 

time after the start of consistent production, while communities associated with door handles are highly 

variable. The microbial diversity within facility drains stabilizes rapidly after the start of production in the 

facility (Figure 2.1A). The mean microbial diversity within drains was unexpectedly high at the first 

sampling timepoint immediately following the post-construction clean (richness = 286, Shannon’s = 5.42, 

Faith’s = 87.9), perhaps indicating the sanitation event was less effective than expected or that sampling 

selected for dirtier areas. However, the diversity did decrease after the start of production, measured in the 

second sampling timepoint (P < 0.05; richness = 95.3, Shannon’s = 2.99, Faith’s = 35.0). After this, there 

were no significant changes in microbial richness or Shannon’s diversity between subsequent timepoints 

(P > 0.05), though there was still numerical fluctuation. There was, however, a difference (P < 0.05) in 

Faith’s phylogenetic diversity between timepoints two and three and three and four, after which there was  
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Figure 2.1. The microbial communities associated with the meat processing facility. A) Alpha diversity 
changes over time by facility room function. B) The change in similarity between microbial communities 
sampled from the same facility drain over time. Each point represents the change in diversity between that 
timepoint and the previous timepoint. A downward slope represents a trend toward a stable community, 
while a distance of 0 would indicate no changes in a community between sample timepoints. C) Biplot of 
the beta diversity calculated by Robust Aitchison PCA. D) Taxonomy of samples collected from the 
facility, averaged by room function and sampling event. 

 

no further change. The early fluctuation followed by stabilization suggests a trend towards a stable 

microbial community within the facility drains. The observation of a consistent alpha diversity agrees 

with other longitudinal studies of the built environment, suggesting that the diversity of indoor microbial 

communities is stable once microorganisms have been introduced [7,8]. Conversely, microbial samples 

collected from door handles had a more variable alpha diversity that fluctuated across the entire 
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experimental period (Figure 2.1A). Door handles have more direct contact with personnel in the facility 

and may be cleaned less consistently than the floors, which may prevent a consistent community from 

establishing. This is similar to results reported by Ross and Neufeld in a study of the microbiomes of door 

handles on a college campus, where they demonstrated that individual door handles had distinct 

microbiomes, that door handle microbial profiles were temporary, and that the diversity directly 

correlated to debris present on the handle [6]. In the current study there was rarely visible debris on the 

door handles sampled, but that does not exclude the possibility of the presence of contaminants. 

Moreover, there was variation in the types of door handles throughout the facility, even within a single 

room function (i.e., push bars, levers, swinging doors), which may contribute to the variable diversity 

similar to the “microbial islands” observed by Ross and Neufeld [6]. 

The microbial community within a drain establishes itself over time with consistent facility use. 

The microbial diversity within each drain was compared longitudinally to identify whether the 

communities become more similar across timepoints (Figure 2.1B). This calculation was performed such 

that a decrease in the differences (a negative slope) between samples indicated a trend toward stability of 

a community. Interestingly, the communities approached stability at two timepoints: November to 

December of 2019 and September of 2020. The first stability timepoint occurred after approximately 

eight to nine months of production, at which point the routine within the facility was established and the 

facility was used consistently, though there was a low volume of product being produced. After these 

points the drain communities became more dissimilar over time. This is likely due to the occurrence of 

winter break at the university, when most facility employees took vacation and production decreased. 

Moreover, a major perturbation to the system occurred in spring of 2020, when the facility closed due to 

the COVID-19 pandemic and production ceased. In June of 2020, a commercial meat processing 

company began using the GFIC facility for their harvest and fabrication activities. This company 

represented a very high production volume with weekly use; this is the most consistent use within the 

GFIC facility. Almost immediately following the beginning of this new production schedule the microbial 

communities again approached stability. Notably, the two stable communities presented did not cluster 
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together in a principal coordinate analysis. This is similar to a study of the establishment of hospital 

microbiomes by Lax et al., in which microbial similarity between samples in a room increased over time 

with a single patient, but the change in occupant quickly altered the system [8]. Overall, it is likely that a 

microbial community established in drains during the first year of consistent production at a facility, but 

major perturbations to the system significantly altered this stable state. 

 

Microbial Communities are Shaped by Room Conditions 

The microbial communities within the food processing facility are similar within the function of 

the room they were collected from. The communities clearly cluster by function of the room in a principal 

components biplot analysis and have similar taxonomic profiles within a function group (Figures 2.1C, 

2.1D). The live animal holding spaces and harvest spaces contained very similar, highly diverse 

communities (Figure 2.1A, 2.1C) with a high relative abundance of Firmicutes, likely derived from soils 

and feces deposited by the animals present in the facility. The clustering of samples from these spaces 

was driven by Clostridia, Moraxellaceae, and Janthinobacterium (Figure 2.1C). Moraxellaceae 

specifically has been previously reported as highly abundant in fruit processing facilities, where there is 

repeated introduction of outside microbes on the products [15]. Fabrication and processing spaces were 

consistently dominated by Pseudomonas. Indeed, the clustering of these groups is driven by three 

sequences associated with Pseudomonas species. Finally, non-product spaces that are only occupied by 

humans (hallways, storage rooms) are associated with an abundance of Alphaproteobacteria. These 

organisms, specifically orders Rhizobiales, Rickettsiales, and Sphingomonadales, have been previously 

reported on surfaces in food processing environments [15,16].  

The environmental conditions, especially temperature, may be the driving factor for the 

differences in communities across room function. Rooms are kept at different temperatures based on their 

primary function, with the product holding spaces kept the coldest (below -18 °C or below 4 °C), the 

fabrication and processing spaces also kept cold (below 10 °C), and live animal, harvest, and non-product 

spaces not temperature controlled. These uncontrolled spaces are generally room temperature or slightly 
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colder due to cooler activity in adjacent rooms, but during activity may become quite warm due to body 

heat and hot water use. Microbial communities in built environments are strongly influenced by 

temperature, so this likely plays a role in the drain community assembly [1,2,8,18]. Specifically, the 

communities in cold areas (fabrication and processing, product holding) were dominated by 

Pseudomonas, a group of psychrotrophic organisms that could thrive and out-compete other organisms in 

these spaces. Similarly, the dominant organisms in the warm rooms tend to thrive at higher temperatures. 

In fact, some, such as Clostridia, would not even enter a vegetative state until the temperatures are 

sufficiently high. These associations make it highly likely that the temperature of the spaces, controlled 

due to the function of the space, influences the assembly of the community. 

The frequency of cleaning and sanitation within the facility also influences the ability of 

microorganisms to form resident communities, as it results in a low nutritional availability, disrupts the 

formation of biofilms, and may force the organisms to remain the lag growth phase, slowing overall 

growth of organisms. However, these conditions are impacted by the function of the space. The live 

animal and harvest rooms, though regularly cleaned and sanitized, are still subjected to the high-volume 

input of potential nutrients through dirty livestock being introduced such as fecal material, blood, and 

viscera. Conversely, the fabrication and processing spaces generally only contain already sanitized meat 

products and regularly cleaned equipment, so the introduction of nutrients is less frequent. This further 

elucidates the competitive advantage of organisms such as Pseudomonas in these spaces, as these 

organisms have a high tolerance for low nutrients and sanitizers [19]. 

It is well-established in the literature that the occupants of a space in the built environment have a 

strong influence on the microbial community [3,4,7,8,20]. However, in food processing environments the 

room occupants are not just the human residents, but also the ingredients and raw materials used in 

processing. Samples from the feces, hide, and carcasses of livestock, soil near the entrances, and human 

employees in the facility were collected to evaluate the impact of various sources on the facility 

microbiome. As expected, the livestock-associated samples clustered with samples collected from live 

animal and harvest spaces and human hand swabs associated with non-product spaces (Figure 2.2A).  
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Figure 2.2. An analysis of sources of microorganisms in the GFIC facility. A) Principal coordinates plot 
built with the generalized Unifrac metric at a weight of 50%. The processing room spaces are included as 
stars and the potential sources are in purple. B) Proportions of the room microbiome contributed by 
different sources of microorganisms. 
 

To confirm these observations, a source tracking analysis was conducted to identify the proportion of the 

drain microbiota that were contributed from each source (Figure 2.2B). This analysis suggests that the 

livestock and external facility soils are the primary source of the microorganisms that establish in the live 

animal and harvest, while human-associated microbiota are the primary source of microorganisms in 

fabrication and processing and product holding spaces. A taxonomic analysis was used to hypothesize 

which organisms were likely contributed from each source (Figure 2.2C). Actinobacteria, Bacteriodota, 

and Firmicutes that were enriched in live animal and harvest spaces were likely contributed by the 

livestock sources, and both the human and environmental communities could be the source of the 

Pseudomonadales that drove the separation of fabrication and processing spaces, though as the employees 



 54 

change shoes and wear protective clothing it is unlikely that outside soil was transferred in sufficient 

quantities to these spaces. Another study has also reported that the input materials were the primary 

source of microbes in a food processing facility [13]. The formation of distinct microbial communities 

within different functional spaces of the facility is clearly demonstrated by the results of these studies. 

However, the drivers of these associations are less obvious. It is likely that the initial microbial 

community is driven by the source, and then the environmental conditions, especially room temperature, 

selects for specific organisms. 

 
Spatial Movement of Microbes Through the Facility 

The physical layout of the GFIC facility impacts the distribution of microbes through the spaces. 

Guidelines for the construction of meat processing facilities recommend physical separation of product 

types to prevent cross-contamination. This is especially focused on separating cooked products (ready-to-

eat) from raw products, but the concept could extend to all spaces in the facility. In the GFIC, each 

functional space is physically separated by wall, even within a functional category. For example, the dirty 

(hide on) versus clean (hide off) harvest areas are partially separated, with an open area connecting them 

to allows carcass passage. This structure provides an opportunity to demonstrate how physical barriers 

can impact the movement of microbes thorough the facility. The relative abundance of microbes that are 

biologically important to the industry or statistically important after compositional analysis were spatially 

plotted to track their movement through the facility (Figure 2.3). Clostridiales, which differentiated 

samples collected from livestock holding and harvest areas in principal components analysis, appear in 

high relative abundance early in the livestock holding space, then could be transferred into the harvest 

spaces. After the June 2019 sampling timepoint these spaces were consistently colonized by Clostridiales. 

This order appears in low relative abundance in other spaces, notably in some product holding and human 

only spaces, where it might be physically tracked from the live animal and harvest spaces. But the 

segregation of these live animal and harvest spaces from other locations limits the spread of this organism 

within the facility. 
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Figure 2.3. The spatial movement of microorganisms through drains in the meat processing facility. 
Darker colors represent a higher relative abundance of the given organism in the drain associated with 
that position in the facility. 
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Pseudomonadales, the group of organisms associated with aerobic food spoilage, is found in high 

relative abundance in fabrication and processing spaces. These organisms are found in these spaces 

without first being documented in the previous rooms (i.e. harvest, carcass coolers), which suggests that 

they may be brought into this space through human contact rather than following the processing pipeline. 

Alternatively, fabrication and processing spaces may select for Pseudomonadales. Moreover, after these 

organisms establish in the space they remain in high relative abundance for the rest of the experimental 

period. These organisms are found beyond these spaces, likely due to the ability to outcompete other 

organisms in spaces kept at colder temperatures and in spaces where the microbial biomass is lower due 

to infrequent inoculation events. Bokulich et al. reported similar findings in a study of the brewery 

environment, where the dominant microorganisms were clustered near the sites of introduction and were 

not frequently found in other areas [13]. 

The Enterobacteriaceae family contains many organisms generally associated with the gut, 

including many of the important pathogens identified in raw meats. These organisms appear sporadically 

throughout the facility, but do not tend to remain in high abundance in any given sample site across 

consecutive sampling timepoints. The most frequent site of these organisms was the cooked meats room, 

where raw products are placed before entering the smokehouses. Perhaps the longer dwell time in a given 

space, as opposed to the pace at which products move through processing, allows more of these 

organisms to transfer to the space. This is also a very small space relative to most others evaluated in this 

study, which could cause these organisms to be concentrated in a single sampling site. Also, this room 

tends to maintain higher temperatures due to the proximity with the smokehouses. Still, the 

Enterobacteriaceae do not appear to be in high relative abundance in the stable microbial community in 

the facility. This contradicts previous reports that indicate Enterobacteriaceae as a highly abundant 

organism in food processing environments, however these generally focus on direct contact surfaces, 

where these organisms may be transferred more frequently than drains [19]. Enterobacteriaceae are also 

used as indicators of good manufacturing practices in the industry, so the low relative abundance of these 

organisms in most production spaces indicated effective cleaning and sanitation within the facility 
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[21,22]. Similarly, the Lactobacilliales do not appear confined to a single processing space. Previous 

studies have reported that these organisms were among the most widespread in meat processing facilities 

[23], though they suggest that these organisms were introduced from ingredients that may not be 

consistent with those used in the GFIC facility. Indeed, another study of cold-tolerant organisms in meat 

processing facilities reported that Lactobacilliales were found in low abundance more consistent with the 

findings presented here [24]. Here, these organisms are likely introduced in the harvest spaces and may 

move from these into the carcass coolers. But they are not found in abundance consistently, which 

suggests that the physical separation in the facility is sufficient to prevent these organisms from becoming 

detectable? in processing and packaging spaces. This is beneficial, as these organisms are the primary 

spoiler of vacuum-packaged meats, so preventing cross-contamination into the final products can improve 

overall product quality. Overall, the microbes that make up the meat processing communities may be 

variable over time but tend to be restricted from moving into other spaces by physical and environmental 

barriers within the facility. 

 

Conclusions 

The objectives of this study were to identify, if present, the stable microbiome that persists in 

meat processing environments and to elucidate the factors that shape the formation of this microbial 

community. To address this, the microbial communities of drains and door handles in a meat processing 

facility were monitored for the first approximately 18 months of operation. From these observations it 

became clear that consistent microbial communities do form within approximately nine months of 

consistent facility use, but these communities can be disrupted with perturbations to the system. 

Moreover, the microbial communities assemble differentially based on the function of the room, a 

variable which serves as a proxy for room temperature, nutrient introduction, and potential sources of the 

microbes. The microbes are not likely to be found in environments other than those in which they are 

introduced, likely due to physical and environmental barriers in the spaces. This has major implications 
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for the meat processing industry, as it demonstrates the importance of rigorous sanitation and monitoring 

protocols and deliberate facility design. 

 

Materials and Methods 

The Global Food Innovation Center 

The Global Food Innovation Center (GFIC) is a state-of-the-art-food processing and research 

center associated with the Department of Animal Sciences at Colorado State University (Fort Collins, 

Colorado). The facility is 36,000 square feet, with 20,000 square feet allocated directly to meat laboratory 

spaces. Spaces include live animal handling and overnighting holding facilities, harvest spaces, 

fabrication (the breakdown of carcasses to primals and cuts), processing rooms, smokehouses, ready-to-

eat spaces separated from previous rooms by the pass-through smokehouses, and several carcass coolers 

and product holding rooms (see facility map in Figure 2.4). During normal production, live animals are 

introduced in the livestock holding space. Then, animals are harvested and converted to carcasses in the 

clean and dirty harvest rooms. The carcass chill cooler is used to rapidly reduce temperatures immediately 

after harvest, then the carcass holding cooler is used to store carcasses until fabrication. The carcasses are 

converted to saleable products in the fabrication and processing spaces. If a product is to be sold fresh, it 

is moved to the product cooler or freezer immediately after fabrication. If it is further processed, it is 

cooked in the smokehouses between cooked meats and the in-process cooler, then finished in the cooked 

meats packaging room before being stored in the product cooler or freezer. 
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Figure 2.4. The GFIC facility layout and experimental design. Rooms within the facility are categorized 
by the general function. The sampling sites are identified by their location within the facility by either 
circles (drains) or triangles (door handles). The general flow through the facility is indicated by arrows 
and icons representing the product held in the spaces. 
 

Room temperatures are carefully managed to maintain the cold chain during production. Carcass 

and product coolers (carcass chill cooler, carcass holding, product cooler, in-process cooler) are kept 

below 4 °C, the product freezer is kept below -18 °C, and processing rooms (fabrication, processing, 

cooked meats packaging) are kept below 10 °C. Temperatures of other spaces are not precisely controlled 

as they do not contain products susceptible to spoilage or contamination. Construction of the facility 

began in December of 2017 and was completed in January of 2019. Production began in the facility on 

January 12, 2019. Production was paused from February to May 2020 as a consequence of covid-19 

restrictions. Additionally, beginning in June of 2020 a commercial meat processing company began to 

operate in the GFIC facility due to loss of the company facilities, which increased and altered the 

production rates and personnel present in the facility during this period. 

 

Experimental Design and Sample Collection 

A nested longitudinal study design was used to capture the origins and changes in microbial 

communities in a newly constructed meat processing facility. Samples were collected from drains and 

door handles from production, storage, and human-only spaces in the GFIC facility approximately 
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monthly. The first sampling event occurred immediately after the post-construction clean but before 

production began within the facility. This point was staggered as construction completed at different 

times for different spaces (January – April 2019). Following the final initial sampling event, samples 

throughout the facility were collected approximately monthly until August 2020, with a short cessation 

from February 2020 to May 2020 when the facility was closed due to COVID-19 regulations, as 

described above. The personnel performing the sample collection wore recommended personal protective 

equipment (disposable coats, disposable boot covers, hair nets, hard hats, gloves) and moved from “clean” 

(ready-to-eat, fabrication) to “dirty” (harvest, livestock holding) spaces in order to reduce the amount of 

contamination transferred through the facility and to follow facility regulations. 

Sample were collected from drains and door handles throughout the GFIC facility (Figure 4). At 

each sampling point a sterile double headed SWUBE swab (BD; Franklin Lakes, NJ) was used to collect a 

sample for microbiome analysis. Drain samples were collected by swabbing both the top and bottom of 

the drain cover and the opening to the drainpipe. The facility contains several types of door handles that 

had to be swabbed differently; but, in general, the samples were collected by swabbing the part of the 

handle with human hand contact and the surface an employee would push to open the door. If a sampling 

point had two doors, the right-side door handle was chosen to be swabbed. The smokehouse doors had 

two handles, one to open the door and one to open a viewing window, and at the site, both of these 

handles were swabbed as one sample. After collection, swabs were immediately placed on ice, then 

frozen at -4 °C after completion of a sampling event to be stored until sequencing. 

To identify potential sources of microbes found within the facility, samples were taken from 

employee skin, animals being introduced to the facility, and surrounding environment using a double 

headed SWUBE swab (BD, Franklin Lakes, NJ). Human skin samples were taken by providing the 

employee with a swab and instructing them to vigorously swab their dominant hand. Animal samples 

were collected at the time of harvest using the sterile SWUBE swabs. Skin or hide swabs were collected 

from the left shoulder of the animal immediately after sticking, fecal samples were collected from the 

rectum before bunging, a pre-wash carcass sample was collected from the left shoulder after evisceration 
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but before final trim, and the post-chill carcass sample was collected from the left shoulder after the 

carcass had undergone 24 hours of chilling. Environmental samples were collected from roads and 

sidewalks leading into the main facility doors. 

 

DNA Extraction and Sequencing 

Microbial communities were characterized using paired-end 16S rRNA gene sequencing. DNA 

was extracted from the sampling swabs using the Qiagen PowerSoil Kit (Qiagen; Hilden, Germany) 

following the manufacturer recommendations. In order to collect adequate DNA for sequencing from the 

door handle samples, DNA was extracted from both heads of the swab, while only one head was used for 

the drain samples. Extraction was conducted using 96-well plates, with 7 negative controls and one mock 

community positive control (Zymo; Irving, CA) per plate. 

After extraction, DNA was amplified and sequenced following the Earth Microbiome Project 

Protocols using the 515f/806r primers (EMP; www.earthmicrobiome.org) [25]. PCR primers included 

error correcting Golay barcodes to allow for multiplexing. PCR products were quantified using the 

Picogreen Quant-iT (Invitrogen, Life Technologies; Grand Island, NY) and then pooled at equimolar 

concentrations for sequencing. Pools were sequenced using a 500-cycle kit on the Illumina miSeq 

sequencing platform (Illumina; San Diego, CA). Due to the high number of samples and the long time 

period across which samples were collected, samples were sequenced across four sequencing lanes, with 

samples randomized across plates so no one run contained samples from all sampling events, room, or 

sample type to prevent confounding by technical artifacts. 

 

Microbial Community Analysis 

After sequencing, data were demultiplexed and denoised with DADA2 using QIIME2 version 

2020.8 software [26,27]. Taxonomy was classified using the SILVA 138 99% database with the QIIME2 

feature-classifier plugin, which classifies the reads using a pre-trained machine learning classifier [28,29]. 
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The taxonomy was used to filter out reads that were classified as chloroplast and mitochondria as these 

sequences were not considered part of the true microbiome. Additional filtering steps were used to 

remove sequences that appeared in less than 10% of samples.  

To conduct phylogenetic diversity analyses, a phylogenetic insertion tree was constructed using 

the SEPP program with the SILVA 128 tree as a backbone [30]. Then, data were rarefied to 9,204 and a 

phylogenetic diversity analysis was conducted using the core metrics pipeline in QIIME2 [26]. Alpha 

diversity statistical comparisons were made using a Kruskal-Wallis test with a Benjamini-Hockberg 

multiple testing correction [31]. Beta diversity was analyzed using a generalized Unifrac test with a 

weight of 50% and statistical comparisons were made using a PERMANOVA test with multiple testing 

correction [32]. Additionally, community differences were visualized using the DEICODE pipeline to 

generate a Robust Aitchison Principal Components Analysis [33]. Changes in community diversity over 

time were analyzed using the QIIME2 longitudinal plugin [34]. The first distances method with the 

generalized Unifrac metric was used to calculate the differences in beta diversity between each sampling 

event to demonstrate the movement of a microbial community within a single drain towards a stable 

community over time. This calculation was visualized using a volatility plot with changes summarized 

across room function and evaluated statistically using a linear mixed effects model, with the first distance 

as the dependent variable, room function and time as fixed effects, and drain id as a random effect. A 

negative slope was used to indicate a trend towards stability in the community. 

Taxonomy changes across time and space in the facility were also evaluated. Organisms that 

changed significantly within a room function group over time were identified using an Analysis of 

Composition of Microbiomes analysis [35]. Organisms with a large, statistically significant change from 

this analysis and biological significance based on prior knowledge of food processing microbiota were 

further investigated using a spatial relative abundance map generated with the SitePainter tool [36]. 

Microbial sources were analyzed using SourceTracker2 software (github.com/biota/sourcetracker2). The 

analysis was conducted using the developer version of the software and following developer instructions. 

Samples taken from facility drains were used as the sinks and samples collected from livestock feces and 
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hides, employee hands, and soils outside the facility were used as sources. Throughout the study, all 

statistical analysis was conducted with an alpha of 0.05. 
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AIR VERSUS WATER CHILLING OF CHICKEN: A PILOT STUDY OF QUALITY, SHELF-

LIFE, MICROBIAL ECOLOGY, AND ECONOMICS1 
 
 
 
Summary 

The United States’ large-scale poultry meat industry is energy and water intensive, and 

opportunities may exist to improve sustainability during the broiler chilling process. By USDA 

regulation, after harvest the internal temperature of the chicken must be reduced to 40 °F or less within 16 

hours to inhibit bacterial growth that would otherwise compromise the safety of the product. This step is 

accomplished most commonly by water immersion chilling in the United States, while air chilling 

methods dominate other global markets. A comprehensive understanding of the differences between these 

chilling methods is lacking. Therefore, we assessed the meat quality, shelf-life, microbial ecology, and 

techno-economic impacts of chilling methods on chicken broilers in a university meat laboratory setting. 

We discovered that air-chilling methods resulted in superior chicken odor and shelf-life, especially prior 

to 14 days of dark storage. Moreover, we demonstrated that air chilling resulted in a more diverse 

microbiome that we hypothesize may delay the dominance of the spoilage organism Pseudomonas. 

Finally, a techno-economic analysis highlighted potential economic advantages to air chilling when 

compared to water-chilling in facility locations where water costs are a more significant factor than 

energy costs. 

As the poultry industry works to become more sustainable and to reduce the volume of food 

waste it is critical to consider points in the processing system that can be altered to make the process more 

efficient. In this study, we demonstrate that the method used during chilling (air vs water chilling) 

influences the final product microbial community, quality, and physiochemistry. Notably, the use of air 

chilling appears to delay the bloom of Pseudomonas spp that are the primary spoilers in packaged meat 

products. By using air chilling to reduce carcass temperatures instead of water chilling producers may 

 
1 This work has been previously published: Belk AD, Duarte T, Quinn C, Coil DA, Belk KE, Eisen JA, Quinn JC, 

Martin JN, Yang X, Metcalf JL. 2021. Air versus water chilling of chicken: a pilot study of quality, shelf-life, 

microbial ecology, and economics. mSystems 6:e00912-20. https://doi.org/10.1128/mSystems.00912-20. 
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extend the time until spoilage of the products and, depending on costs of water in the area, may have 

economic and sustainability advantages. As a next step, a similar experiment should be done in an 

industrial setting to confirm these results generated in a small-scale university lab facility. 

 

Introduction 

Currently, the United States is the largest producer and second-largest exporter of poultry meat 

worldwide [1]. The poultry industry in the United States has seen a five-fold production increase in the 

last 40 years and currently produces more than 50 million pounds of live birds annually [2]. As a result of 

increased production, the poultry industry has also seen a tremendous rise in energy expenditures and 

water depletion [1]. As demands for poultry meat continue to rise [3], novel approaches for reducing the 

environmental impact of poultry production, while not sacrificing poultry quality, need to be considered. 

Temperature control during production and processing is a critical point in ensuring the safety 

and quality of poultry products. Thus, it is common for broiler production systems to reduce the internal 

temperature of chicken meat from 40 °C to 4 °C within one to two hours following harvest. This step, 

though critical to maintaining the safety of the product, is time-consuming and requires significant 

investments in energy and water, depending on the chilling method utilized [4]. Water immersion chilling 

(WC) and air chilling (AC) are the two most common chilling methods globally. Water immersion 

chilling is the most widely used chilling method in the United States, while AC is predominant in Europe, 

Brazil and Canada [5,6]. During WC, eviscerated chicken carcasses are submerged in cold water that is 

often supplemented with antimicrobials intended to inhibit microbial growth. The application of these 

antimicrobials, combined with a continuous clean water system, results in notable reductions to the total 

bacterial population. However, cross-contamination, retained water on the carcass, consumer perception, 

water consumption, and wastewater management issues are a few challenges associated with WC [7–9]. 

As mentioned, AC is widely utilized across Europe, Brazil, and Canada involves the chilling of poultry 

carcasses by forced air in a cold room. Some studies have shown enhanced microbial quality and less 

exudative packaging in AC broilers when compared to WC systems [7,10]. However, these microbial 
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investigations were limited to culture-dependent techniques that focused on just a few microbes and 

investigations with more robust sampling methods are warranted. 

The rapid reduction in carcass temperature during poultry processing provides a unique 

thermodynamic challenge that requires significant energy inputs. Although AC results in a carcass with a 

slightly reduced yield (due to evaporative water loss), it has been estimated to require almost 50 times less 

gross energy than water chilling systems, when entire energy expenditures are considered [11,12]. In that 

regard, although WC methods are the most commonly utilized in the U.S., the opportunity for 

significantly reducing water use and energy expenditures by converting to AC systems exists. However, 

before this transition can be made, it is imperative to assess how the conversion will affect the quality of 

the final product in addition to the economic viability of the production processing line. 

To address meat quality, shelf-life, microbial, and techno-economic impacts of chilling methods, 

we conducted an experiment at the University of California, Davis (UC Davis) Meat Science Laboratory, 

in which chickens were either chilled via AC or WC. Novel to this experiment was the assessment of the 

impacts each chilling system had on the microbiome of poultry products, and how that may relate to the 

quality of products from each system. This experiment yielded results that enhance the current knowledge 

regarding not only the quality of broiler meat produced using either chilling method, but also the 

important techno-economics, which may guide industry investment or utilization in either system.  

 

Results  

Experimental Results 

In this experiment, 256 chicken carcasses were subjected to either air chilling (AC) or water 

chilling (WC), then fabricated into either bone-in or boneless breasts before being placed under dark 

storage for either 7 or 14 days. At each step in the process, 10 carcasses or breasts per treatment were 

removed to collect physicochemical, microbial count, and microbiome data. These data were then further 

analyzed to determine the impact that the distinct processing methods had on the quality, shelf-life, and 

microbial ecology of chicken products. 
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The chilling method significantly impacted the carcass weight changes during the chilling 

process. On average, carcasses chilled using the WC system gained 5% of the pre-chilled weight, whereas 

carcasses chilled using the AC system lost 1.6% of the pre-chilled weight (P < 0.05; Table S1). This 

difference in weight change is similar to what has been reported in other studies [12]. There was no 

difference in pH between AC and WC chicken breasts (P > 0.05; data not presented).  

 

Quality and shelf-life implications of chilling strategy 

The shelf-life, or period until spoilage, was identified using the aerobic bacterial populations. 

Microbes were removed from the product surface using a rinseate, which was then serially diluted and 

plated on Petrifilm aerobic count plates (3M Microbiology, St. Paul, MN). Petrifilms were then incubated 

at 7°C and 35°C to obtain counts of psychrotrophic and mesophilic aerobic organisms, respectively. The 

WC chicken had fewer (P < 0.05) psychrotrophic bacteria, organisms capable of growing at low 

temperatures, (1.05 log Colony Forming Units/g; CFU/g) prior to fabrication than the AC chicken (2.12 

log CFU/g). However, no difference in mesophilic bacteria, organisms that grow best at moderate 

temperatures, was observed between the two treatments for pre-fabrication samples (Table S3.2). On day 

7, an approximately 1-log difference in psychrotrophic bacteria was observed between AC (5.56 log 

CFU/g) and WC (6.59 log CFU/g) breasts, regardless of fabrication type (Table 3.1). WC and AC 

boneless breasts had lower total microbial counts throughout storage and display than the bone-in 

samples. Regardless, by day 14 of storage, chicken breasts from both chilling methods (WC and AC) and 

fabrication types (bone-in and boneless) had mesophilic aerobic bacteria populations greater than 7 log 

CFU/g, a threshold commonly associated with the end of shelf-life [13]. 

Instrument assessments of color were taken using a portable spectrophotometer (MiniScan EZ; 

Hunter Association Laboratory Inc., Reston, VA). These results demonstrated that the International 

Commission on Illumination (CIE) a* (redness) and b* (yellowness) values were greater (P < 0.05) for 

AC breast than WC breasts throughout the display period, indicative of more desirable red and yellow 

tones within the muscle of AC breasts (Figure 3.1A). Similarly, panelist evaluations indicated the 



 74 

boneless chicken breasts were more desirable than bone-in breasts during the 3-day display period 

following 7 days dark storage. Although there were notable differences in instrument color between 

chilling method, the difference was not observed in consumer preference. During the 3-day display 

following 14 days dark storage, panelists considered the color and odor of all samples unacceptable 

regardless of the chilling method or fabrication type (Figure 3.1B). Chilling method and fabrication type 

did not have an impact on texture selection (P > 0.05). Additionally, trained sensory panelists detected no 

differences in flavor or texture attributes between chilling methods (P > 0.05) (Table S3.3). 

 

Table 3.1. Psychrotrophic bacterial counts for bone-in and boneless chicken breast cooled by 

either air chilling or water chilling at different time points 

 
 

As expected, lipid oxidation increased as the time after chilling progressed (Figure 3.1C). Lipid 

oxidation levels, as indicated by measurement of thiobarbituric acid reactive substances, were similar 

across chilling method and fabrication type on the initial day of processing, 7d of dark storage, 14 days of 

dark storage, and 7 days of dark storage with 3 days of retail display (P > 0.05), though there were 

differences when comparing sampling groups across these days. The greatest differences between 

treatments were seen on the samples collected after 14 days of dark storage with a 3-day retail display. 

Among samples from this time point, the boneless WC breasts had a higher degree of lipid oxidation 

when compared with the boneless AC breasts (P < 0.05).  
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Figure 3.1. Changes in chicken quality over time. A) Least square means of a* values for bone-in and 
boneless chicken breast chilled by either AC or WC following 7 days dark storage, during 3d retail 
display. CIE a* represents the favorable redness of breasts. Chilling methods are represented by AC; air 
chilling and WC; water-chilling. Fabrication methods are denoted as BI; bone-in and BL; boneless. B) 
Least square means of consumer odor and purchase decision selection after dark storage and 3-day retail 
display. Breasts were placed in dark storage for either 7 or 14 days, then immediately placed in retail 
display. After 7 days dark storage an interactive effect was observed for both odor selection (P = 0.0132) 
and purchase decision (P = 0.0017). After 14 days only the main effect of chilling methods was detected 
(P < 0.001). A hedonic 3-point scale was used for the consumer odor selection (1 = Desirable, 2 = 
Acceptable, 3 = Unacceptable) and purchase decision (7 = will buy, 8 = will buy with discount, 9 = will 
not buy). Bars in the same box with the same letter were not significantly different (P > 0.05). C) The 
average lipid oxidation levels within a treatment group as measured by thiobarbituric acid reactive 
substances (TBARS) assay. Bars along the x-axis refer to the chilling method and different colors 
represent the fabrication methods. As only chicken breasts were placed under dark storage, there were 
only carcass samples on the initial day of sample collection (not stored). Bars with the same letter were 
not statistically different (P > 0.05) 
 

Nutritional content was very similar between chicken breasts regardless of chilling method 

(Table S3.4). Dry matter measurements ranged from 26.7% to 28.3%, with an overall mean of 26.13%. 

Within this narrow range, the only difference between treatment groups was between bone-in and 
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boneless breasts collected on the initial day of experimentation. Chilling method, dark storage, and retail 

display did not impact dry matter content of the chicken breasts (P > 0.05). The same pattern was 

detected in moisture, as moisture and dry matter are inversely related. Measurements of ash and crude 

protein revealed a few differences between treatment groups, but these did not reveal significant patterns 

(Table S3.4). Crude fat values were, overall, low for all chicken products, ranging from 0.35% to 1.43% 

with a mean of 0.86%. Differences in these values were detected between fabrication types within a 

chilling method and sampling day (P < 0.05); carcass samples and bone-in breasts had higher crude fat 

content within almost all chilling methods and sampling days (P < 0.05; Table S3.4). However, no 

differences were observed between WC and AC (P > 0.05). Following this trend, the relative abundance 

of fatty acids was not grossly different between chilling methods on any sampling day. However, among 

fatty acids with less than 10% relative abundance, linoleate methyl ester (C18 and C18:9c12c) were more 

abundant in WC than AC breasts after 7 days dark storage with 3 days retail display (Figure S3.1). 

 

Microbial ecology of chilled, fabricated, and packaged chicken 

The microbial ecology of the chicken products was investigated using 16S rRNA gene 

sequencing. Microbes were removed from the surface of the products using a sterile rinseate, from which 

DNA was extracted and sequenced following the Earth Microbiome Project protocols 

(www.earthmicrobiome.org/protocols-and-standards/16s/). Sequencing a total of 286 samples and 

controls resulted in a total of 3,837,564 demultiplexed reads. After denoising, quality filtering, read 

joining, and chimera removal via the DADA2 pipeline, 3,262,269 sequence reads (ranging from 1-54,662 

sequences per sample with a mean of 13,418 sequences) were assigned to 774 amplicon sequence variants 

(ASVs). Subsequently, we filtered out ASVs that were taxonomically identified as representing 

mitochondria and chloroplasts, resulting in 3,261,944 sequence reads and 752 ASVs. The commercial 

positive control sample (Zymo; Irvine, CA) resulted in the expected community of five microbes with no 

unexpected taxa, indicating no major contamination (Figure S3.2). There were 24 negative/mock DNA 

extraction controls included in this sequencing run, which resulted in an average of 113 reads per negative 
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control (range 1 - 1,086) compared to 15,195 sequences per sample for DNA recovered from chicken 

rinsate (range 3 - 51,660). This was considered an acceptable level for quality control. Additionally, 

samples were rarefied at 6,152 sequences for diversity analysis, which was well above the highest 

negative control level. After rarefaction, all samples below this threshold were excluded from the 

diversity analysis, retaining 202 out of 259 rinsate samples. Before further analysis, negative and positive 

control samples were excluded from the experimental dataset. 

The alpha (within sample) bacterial diversity of chicken products was reduced during chilling and 

processing (Figure 3.2A). The hot carcass microbiome contained the highest mean alpha diversity 

(Shannon’s = 2.29, Faith’s = 9.96, observed ASVs = 50.6). During the chilling process, the mean 

Shannon’s diversity and observed ASVs were reduced, significantly (P < 0.05) in AC. After fabrication, 

or the cutting of the chicken carcasses into breasts, the alpha diversity increased, though not to the 

original levels. The high microbial diversity on chicken carcasses before product storage was associated 

with microbial communities dominated by organisms in the family Enterobacteriaceae. These 

communities also included bacteria at lower relative abundance from families Clostridiaceae, 

Bacillaceae, and Pseudomonadaceae (Figure 3.2B). There were no significant differences in diversity 

between pre-storage products (samples collected on the day of harvest that did not undergo a dark storage 

period) based on the chilling or fabrication methods. 
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Figure 3.2. A) Shannon’s diversity of the bacterial microbiome of chicken product samples, arranged by 
sampling day (7 and 14 days of storage plus 3 days retail display) and chilling method (Hot carcass, AC, 
WC) and colored by fabrication method (carcass, bone-in, boneless). The WC-boneless samples were too 
low biomass, resulting in few DNA sequences, and therefore the samples were excluded after rarefying. 
B) Taxonomy of the bacterial microbiome of chicken products based on analysis with the SILVA 
database, segmented by sampling day and chilling method. Within a facet, samples are organized as 
carcass, bone-in and boneless. C) A biplot constructed using Robust Aitchison PCA that demonstrates 
separation in beta diversity between samples. Points are colored by the day samples were collected, 
including samples collected before dark storage (not stored), after 7 and 14 days of dark storage, and after 
3 additional d of retail display (10 day and 17 day). The shape represents the chilling method, including 
hot carcass (pre-chill), air chilled, and water chilled. The lines show ASVs that are important to the 
direction of the biplot and are colored by the taxon associated with the specific ASV. 

 
 
During storage and display, the alpha diversity of samples remained similar between treatment 

groups while the beta diversity showed clusters separated by chilling method. The greatest difference was 

seen between AC and WC samples collected after removal from dark storage on day 7. At this time point, 

the diversity of the WC samples was lower (P < 0.05) than the diversity of AC bone-in samples and AC 

boneless samples. After the 7-day time point, mean diversities were similar (Shannon’s = 1.06 - 1.87, 

Faith’s = 1.58 - 3.02, observed ASVs = 10.00 - 19.30). During these post-storage and post-display 

sampling points, Pseudomonas bacteria became the dominant group. For the chicken that was stored for 7 

days, followed by 3 days of retail display, communities from WC chicken became dominated by 

Pseudomonas before AC chicken. When the beta diversity was calculated and visualized using Robust 

Aitchison Principal Components Analysis, samples separate initially by sampling day - all products that 

were stored, regardless of storage or display time, separated from samples that were not stored (Figure 

3.2C). Then, within the stored product, the samples clustered by chilling method. When the ASV vectors 

that explain these separations are overlayed and evaluated, it is clear that the main ASVs that separate the 

stored microbiome are Pseudomonas-associated (Figure 3.2C). Moreover, the separation between the 

chilling methods was primarily associated with distinct Pseudomonas ASVs. The patterns of changes in 

the microbial communities were predictive of spoilage and quality outcomes (Figure S3.3). Using a 

Random Forest Classifier, the microbiome could predict microbial spoilage, as defined by a 

psychrotrophic bacteria count of greater than 7 log CFU/mL, with an overall accuracy of 75%. 

 



 79 

Phylogeny, diversity, and spoilage potential of Pseudomonas 

Pseudomonas ASVs (n = 33) come to dominate the microbial community during storage and 

display (Figure 3.3), and due to the importance of these ASVs we examined them in more detail. When 

placed into a phylogenetic tree containing 16S rRNA gene sequences from all Pseudomonas type strains, 

we reveal significant variation of branches associated with sequences from this genus. These ASVs are 

distributed throughout the phylogenetic tree and most likely represent multiple Pseudomonas species 

(Figure S3.4). We also calculated the average percentage of reads in each sample that belonged to a 

Pseudomonas ASV (Table S3.5). 

In order to focus on particular ASVs, we performed an analysis of the composition of 

microbiomes (ANCOM) analysis at each sampling point (Days 0, 7, 14, 17) comparing the two chilling 

methods (pooling fabrication method). Prior to storage, none of the ASVs that were differentially 

abundant were ASVs assigned to Pseudomonas. At day 7, there was one Pseudomonas ASV which 

differed (ASV7: WC=.21%, AC=14.6%), At day 10 (7 days with 3-day retail display) there also one 

(ASV10: WC=16.45%, AC=1.8%), at Day 14 there were three (ASV7, ASV10, ASV20), and at day 17 

(14 days with 3-day retail display) there were two (ASV7, ASV20). 

 

 
Figure 3.3. A portion of the detailed phylogenetic tree constructed from ASVs that assigned to 
Pseudomonas. The larger tree is included in the supplementary materials as Figure S2. 
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Chilling system techno-economic analysis 

Economic viability is a critical aspect of technology adoption. The levelized chilling cost 

($/tonne) for the baseline AC and WC models are shown in Figure 3.4 with the total cost subdivided by 

capital cost, operational cost, and income tax. The costs for AC and WC are relatively similar, $15.45 per 

tonne and $14.15 per tonne, respectively. The operational costs dominate the total chilling cost for both 

the AC and WC systems. While the AC system has a higher capital cost than the WC system, the AC 

operational costs are less than the WC system. The primary difference between the two systems are the 

costs associated with electricity and water. The WC systems can use up to 10x more water than the AC 

system, but the electrical costs of the AC system are only 2x that of the WC system. Sensitivity analyses 

(Figure S5) show there are scenarios where AC has the potential to be superior economically than WC, in 

particular for regions that might have lower electricity rates and high-water purchase and treatment costs.  

 

 
Figure 3.4. The levelized chilling cost ($/tonne) for the baseline AC and WC models is shown in the left 
panel. The contributions of the capital costs, operational costs, and income tax to the total levelized 
chilling cost are displayed and demonstrate how the operational costs dominate the total chilling cost in 
both systems. The operational costs include the labor, electrical, water, maintenance, and insurance costs 
and are shown in the right panel for both the AC and WC systems.  
 

Discussion 

This study demonstrates that the method of chilling poultry carcasses not only influences the 

shelf-life and quality of chicken breasts, but also has important implications for energy and water usage. 

Overall, in this study, chicken breasts from carcasses chilled using air-chilling (AC) methods had superior 
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odor and shelf-life (as assessed by psychrotrophic bacterial counts, consumer color and odor panels, and 

lipid oxidation patterns). Moreover, the microbial communities associated with AC products maintained 

diversity post-chilling, and therefore may be more favorable by slowing the growth of spoilage organisms 

such as Pseudomonas. Finally, our techno-economic analysis highlighted potential economic advantages 

to AC when compared to water-chilling (WC) with advantages in areas of limited water and low-cost 

electricity.  

Throughout dark storage and retail display, quality and shelf-life attributes were impacted by the 

chilling method. While all product was spoiled after 14 days of dark storage, notable quality and physical 

differences were observed among chicken treated with different chilling methods after 7 days of dark 

storage and 3 days of retail display. In this time period (7 days of dark storage to retail display), chicken 

chilled using AC demonstrated more desirable quality attributes, including more yellow tones based and a 

lower abundance of spoilage-associated fatty acids including linoleate methyl esters. These fatty acids 

have been associated with odor, color, and shelf-life challenges in previous studies [14–16]. Differences 

in color and consumer appeal were similar to those reported in Jeong et al [17], who demonstrated that, 

while WC may reduce temperature more quickly, the use of AC resulted in superior color and juiciness. 

The color difference could be due to evaporative moisture loss drying the surface of the chicken, allowing 

for the breast muscle under the skin to become more visible [9]. However, they differ from other studies 

that showed no difference in color between AC and WC breasts [18,19]. The spoilage patterns observed 

over time were similar to those previously reported by Katiyo et al [20]. Taken together, the color and 

fatty acid differences suggest that WC breasts may reach a spoilage state more rapidly than AC breasts. 

We did not detect a significant impact on texture, flavor attributes or nutritive composition by chicken 

chilling method. Previous studies have shown mixed impacts of chilling method on flavor and sensory 

attributes. For example, Hale et al [21] suggested a flavor advantage in AC chicken compared to WC 

chicken, although their products were fried. Conversely, Ristic [22] suggested that WC can lead to flavor 

and texture advantages. The lack of consistent impacts on sensory and nutritive variables, combined with 
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the similarities observed in our study suggest that consumer eating satisfaction and nutrient composition 

would not be influenced by chilling method selection. 

Our results suggest that the physical properties of water versus air may result in distinct initial 

chicken carcass microbial ecologies. Immediately after chilling we found lower psychrotrophic plate 

counts in WC than AC carcasses, which suggests that WC is physically washing more cells from the 

carcass than AC. Previously, Chen et al. demonstrated that water chilling alone reduced total viable 

counts while air chilling did not, which further supports this hypothesis [23]. The difference in bacterial 

counts did not correspond to a difference in microbial diversity at this time point, similar to findings that 

demonstrated no difference in the presence of specific microorganisms between chilling methods [6,24]. 

These initial post-chilling microbial communities were dominated by the families Enterobacteriaceae, 

Clostridiaceae, and Bacillaceae, in agreement with findings by Handley et al [25]. There were more 

obvious differences in the microbial assemblage patterns following 7 days of dark storage. At this point, 

there was no difference in psychrotrophic counts between AC and WC, but AC had a lower mesophilic 

count. These results are similar to those reported by Tuncer and Sireli [26], who concluded that the AC 

was superior to WC in terms of pathogen growth, though they did not specifically investigate the spoilage 

bacteria described in the current study. Additionally, after the 7-day dark storage period the AC microbial 

community was much more diverse than the WC community, which was dominated by 

Pseudomonadaceae. We hypothesize that by removing more bacterial cells during chilling, there is less 

microbial competition, which in turn allowed Pseudomonadaceae to grow more quickly in WC products. 

Competitive advantages associated with Pseudomonas were also found in Katiyo et al [20]. Furthermore, 

we observed more inter-sample diversity in the AC group than the WC. It is likely that, due to the nature 

of water chilling, there is more opportunity for the microbiomes to become homogeneous, while in air 

chilling the carcasses were kept separate and therefore microbes were not shared between carcasses. It has 

been well-documented that water chilling can provide an opportunity for cross-contamination of 

pathogens, and these results suggest that this trend holds for all bacteria [27–30]. However, there is 

evidence that this effect can be reduced or eliminated with the addition of antimicrobial compounds to the 
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chill water, which was not done in this experiment [8]. We hypothesize that the microbial ecology 

associated with AC delays the Pseudomonas bloom associated with spoilage and may extend the shelf 

life. 

The difference in microbial diversity of chicken breasts under different chilling methods was 

primarily due to different ASVs that assigned to Pseudomonas, further demonstrating that the population 

of Pseudomonas is likely a major driver of the microbial community structure and spoilage outcomes. 

Our phylogeny of Pseudomonas ASVs strongly suggests that the high number of Pseudomonas ASVs 

represents real biological variation. While Pseudomonas species, in general, are thought to cause food 

spoilage [31], they are not often identified to the species level. 16S rRNA sequencing was used in this 

study to estimate the microbes present in the products, which cannot always define microbial taxonomy at 

a species level. However, predictions of the Pseudomonas species present in chicken products were made 

by aligning ASV sequences to sequences extracted from the Ribosomal Database Project and maximum 

likelihood backbones generated using RAxML. These analyses suggest a variety of distinct Pseudomonas 

sequences are present in the chicken carcass microbiome. P. lundensis and P. fragi are known to cause 

food spoilage in both dairy and meat [32–34] and were found in a clade with two of our ASVs (ASV24, 

ASV27), but these ASV were seen at similar abundance in both WC and AC samples (data not shown). 

Two other species of Pseudomonas known to be involved in spoilage, P. fluorescens and P. putida 

[32,34], were not found in clades with any of the ASVs in this study. Furthermore, ASV7 (higher 

abundance in AC at d 7, 14, and 17), ASV21 (no difference), and ASV29 (no difference) were found in a 

clade with P. argentinensis, P. straminea, and P. punonensis which to our knowledge have not been 

previously shown to be involved in food spoilage. ASV10 (higher abundance in WC at d 10 and 14), 

ASV1 (no difference), and ASV11 (no difference) were found in a clade containing P. lurida, P. poae, P. 

trivialis, P. palleronia, P. tolaasii, P. costantinii, P. extremorientalis, and P. simiae. ASV20 (higher 

abundance in WC at d 14 and 17) and ASV14 (no difference) were found in a clade with P. veronii. 

While none of these latter Pseudomonas species has been directly shown to be involved in food spoilage, 

we hypothesize based on these data that at least some of them likely play a role in chicken spoilage. 
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Although our research suggests that AC may have shelf-life and quality advantages over WC, 

techno-economics are more nuanced. The WC systems can use up to 10 times more water than the AC 

system, but the electrical costs of the AC system are two times that of the WC system. Our baseline 

models do not support the claims by two other studies that AC systems require almost 50 times less gross 

energy than WC systems, when entire energy expenditures are considered [11,12]. Rather, our results 

agree with the conclusions of Northcutt et al., specifically, that WC and AC systems have similar total 

chilling costs [35]. However, Northcutt et al. also claimed that the large water requirements, which have 

been steadily increasing in the United States as a result of USDA regulations, can start to tip the balance 

for AC over WC systems especially if one considers the potential for changes in water purchase and 

treatment costs. Therefore, AC may have an economic advantage over WC depending on the local price 

and availability of water resources. 

This experiment was designed to be a laboratory-based, pilot-sized representation of the larger 

process of chicken chilling, fabrication, storage, and retail display. We made efforts to represent industry 

conditions as accurately as possible in a small laboratory setting, however there were a few conditions we 

were unable to replicate. We were unable to reproduce an antimicrobial application, either in the WC chill 

water or sprayed on the AC carcasses, which could modify some of the microbiological results. 

Therefore, our experiment represents a worse-case scenario. Moreover, all chicken carcasses used in this 

experiment were obtained from the same production lot in order to start all chilling processes at the same 

time. This may have led to a more homogenous outcome than a more randomized selection. Future 

experiments should confirm the current findings using real industry conditions. 

 

Conclusion 

The overarching goal of this study was to combine multi-disciplinary approaches to determine the 

impact of chilling method on the overall system efficiency and sustainability of chicken production. We 

were able to conclude that AC methods had an advantage in quality, spoilage, and consumer appeal prior 

to 14 days of dark storage, that AC appeared to result in a more favorable, diverse microbial community, 
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and that AC requires less gross energy and, depending on the local price of water, may be the more 

economically favorable system.  

 

Materials and Methods 

Experimental design 

The experiment was conducted using a 2 x 2 x 2 factorial design to evaluate three factors: chilling 

method (air chilling; AC vs. water immersion chilling; WC), fabrication method (bone-in vs boneless) 

and dark storage period (7 days vs. 14 days). Eviscerated, hot chicken carcasses (n = 256) were obtained 

from a commercial processing facility in California and transported to the USDA-inspected Meat Science 

Laboratory at the University of California, Davis (UCD; Davis, CA) within two hours of harvest. 

Carcasses were transported in sterile 150-quart coolers (MaxCold Cooler; Igloo Products Corp., Katy, 

Texas) at a mean temperature of 30.25 °C. Upon arrival at UCD, carcasses were divided into sampling 

groups following the scheme in Figure 1. Sixteen carcasses were identified for a taste panel and placed 

four each in the treatment groups that were placed under 7-day dark storage (AC-bone-in, AC-boneless, 

WC-bone-in, WC-boneless). Of the other carcasses, 20 were sampled immediately for hot carcass 

samples and the remainder were randomly and evenly assigned into either AC or WC (n = 110 

birds/chilling method). Following chilling (described below), 10 carcasses from each AC and WC 

treatment group were sampled, and the remaining were evenly assigned to fabrication pathways (n = 50 

birds/fabrication) yielding either bone-in or boneless chicken breasts (n = 20 breasts/fabrication pathway). 

Immediately following fabrication, 10 chicken breasts from each group were sampled, and the remaining 

breasts were placed on expanded polystyrene trays and overwrapped with polyvinyl chloride film (40-

gauge, Berry AEP1504310). Overwrapped trays were placed in rigid cardboard boxes (n = 8 trays/box) 

and stored at 4 °C (3-6°C) for either 7 or 14 days, a timeframe which reflects industry standards. At each 

storage interval (7 or 14 days), individual packages of chicken breasts (bone-in and boneless) were 

removed from dark storage. Ten breasts from each group were sampled immediately after removal from 
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storage, and the remaining packaged breasts were placed in a retail display case (Barker, Keosauqua, IA, 

average light intensity 1061 LUX) maintained at 4°C (3-6°C) for 3 days. 

 

 
Figure 5. Representation of the experimental design. A) The processing scheme with time points for 
sampling during the experiment. B) The sampling process after the chicken product had been collected. 
The product was either sampled immediately or used for sensory panels. Microbial samples were taken 
via rinsate, which was then used for microbiological and microbiome analysis. The product was then 
flash-frozen in liquid nitrogen and powdered, then used for physicochemical analyses including pH, 
thiobarbituric acid assay (TBARs), proximate analysis, and fatty acid profiling. C) Representation of the 
two rooms used for carcass chilling. 
 

Chicken processing 

Procurement of Chicken Carcasses. A commercial chicken processing facility in California was 

utilized to procure hot chicken carcasses for this research. Live birds were subjected to standard poultry 

harvest protocols as implemented by the commercial processing facility. Carcasses used for this 

experiment were obtained following defeathering, evisceration, and application of an initial post-harvest 

antimicrobial carcass spray. Prior to chilling, the carcasses (n = 256) were removed from the processing 

line, placed in sterile plastic bags (n = 30-32 carcasses/bag), and bags placed in sealed sterile coolers for 

transportation to the Meat Science Laboratory at UC-Davis (Davis, CA). Additionally, temperature 
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recorders (LogTag Tred30-16r; LogTag, Auckland, NZ) were placed in the coolers to monitor 

temperature during transportation. 

Processing and Chilling of Chicken Carcasses. It should be noted that this process, while 

designed to mimic industrial systems, was performed on a much smaller scale. Upon arrival at the UC 

Davis Meat Science Laboratory, 20 chicken carcasses were randomly selected for initial evaluations 

(described below), while the remaining carcasses were randomly and evenly assigned to one of two 

chilling methods (AC or WC; Fig. 5A l). Weights (g) of individual carcasses were obtained prior to 

chilling for comparison with weights obtained following chilling (described below). Sixteen carcasses 

were reserved for taste evaluation (described below) after seven days of storage and three days of retail 

display. This subset of carcasses was subjected to both chilling methods and fabrication methods 

(described below), leaving 240 carcasses for laboratory analyses. Carcasses designated for WC were 

submerged in one of two simulated water chill tanks (Fig. 5C). Simulated water chill tanks were 

constructed from commercial water tanks (Structural Form Stock Tanks, 150 gal, Rubbermaid), and a 

slurry of water and ice was formulated using potable water and commercial ice. Water temperature was 

monitored throughout chilling and birds were agitated while submerged using a paddle. Carcass 

temperature was monitored regularly using a thermometer (Multitrip Data Logger, Temprecord, New 

Zealand) probe inserted into the thickest portion of the chicken breast. When the average internal carcass 

temperature reached 4 °C, the chicken carcasses were removed from the water chilling system and placed 

on sterile wire racks for 10 minutes. Post-chilling weight and temperature were obtained after the 10-

minute holding period. Additionally, five carcasses were randomly selected for analyses (described 

below). 

To simulate air chilling, an isolated cold room in the UC-Davis Meat Science Laboratory was 

outfitted with a high-velocity fan (Model # BF60BDORGPRO, Maxx Air; 60’ fan with 19000 CFM, 

providing an airflow of 1.23 m/s.) as shown in Figure 3.5C. Chicken carcasses were placed on sterile 

wire racks located approximately six m from the commercial fan. The wire racks were rotated throughout 

the chilling process to assure equitable exposure to the chilling conditions. Carcass temperature was 
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monitored throughout by inserting a thermometer probe into the thickest portion of the breast, and once 

the average internal temperature reached 4 °C, the carcasses were removed from the AC room. A post-

chilling weight and internal temperature were obtained from individual carcasses. Additionally, 10 

carcasses from each method were randomly selected for analyses (described below). 

Fabrication of Chicken Carcasses, Packaging of Chicken Breasts, and Dark Storage. 

Immediately following chilling, carcasses within each chilling method (AC and WC) were randomly and 

evenly assigned to one of two fabrication methods (n = 50/ fabrication method) for the generation of 

bone-in and boneless chicken breasts. Carcasses were fabricated, meaning cut from carcasses into 

individual parts, by trained personnel in the UC Davis Meat Science Laboratory using sterile instruments 

and WC and AC carcasses were fabricated separately. Bone-in chicken breasts contained the ribs and part 

of the spine, while boneless breasts had these bones further removed. Immediately following fabrication, 

10 chicken breasts from each group were sampled, and the remaining breasts were placed on expanded 

polystyrene trays and overwrapped with polyvinyl chloride film (40-gauge, Berry AEP1504310). 

Overwrapped trays were placed in rigid cardboard boxes (n = 4 trays/box) and stored at 4 °C (3-6 °C) for 

either 7 or 14 days. 

Retail display. At each storage interval (7 or 14 days), individual packages of chicken breasts 

(bone-in and boneless) were removed from dark storage. Ten breasts from each group were sampled 

immediately after removal from storage, and the remaining packaged breasts were placed in a retail 

display case (Barker, Keosauqua, IA, average light intensity 1061 LUX) maintained at 4 °C (3 °C - 6 °C). 

Packages remained in the retail display case for three days. Instrumental meat color, measured via 

evaluating the lean color of the boneless samples and skin color of the bone-in samples, was taken using a 

portable spectrophotometer (MiniScan EZ; Hunter Association Laboratory Inc., Reston, VA) that was 

standardized before each use. A total of three readings of the International Commission on Illumination 

(CIE) L* (lightness), a* (redness) and b* (yellowness) values were taken using an illuminant A/10° 

observer for each breast. Measurements were taken through the packaging material at three separate 
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locations on the chicken breast and were averaged prior to analyses. Packages were rotated in the display 

case every 12 h to assure equitable temperature and light exposure.  

 

Microbial sample collection/processing 

At each sampling point, the microbial communities of the chicken products were collected using 

a rinsate method. At pre-fabrication timepoints, the entire chicken carcass was placed in a sterile 

collection bag (Whirl-Pak; Nasco, Fort Atkinson, WI) with 200 ml of phosphate-buffered saline (PBS; 

National Diagnostics, Atlanta, GA) and agitated for 60 seconds to dislodge surface bacteria. After this, 

the carcass was removed from the rinsate and saved for physicochemical analysis. At the post-fabrication 

timepoints, each chicken breast was divided in half. One half was placed in a sterile collection bag 

(Whirl-Pak; Nasco, Fort Atkinson, WI) with 50 mL of PBS and agitated for 60 seconds. The second half 

was reserved for physicochemical analysis. At all timepoints, the rinsate was collected from the sampling 

bag into 50 mL falcon tubes (Corning Science, Mexico) for analysis. A 10 mL aliquot of each sample was 

separated to be used for aerobic bacteria population analysis and the remainder was frozen to -80 °C and 

transported to Colorado State University (Fort Collins, CO) PI Metcalf Laboratory for microbial ecology 

analysis. 

The rinsate sample collected for microbiome analysis was further divided into 30 mL aliquot 

before DNA extraction. Cells within the rinsate were concentrated into a pellet by centrifugation at 4,600 

g for 15 minutes in a swing bucket rotor (Sorvall Legend X1R; Thermo Scientific, Waltham, MA)). The 

supernatant was poured off and a portion of the pellet equivalent to approximately 600 uL was used for 

analysis. DNA was extracted from the pellet following standard protocols utilizing the Qiagen PowerSoil 

DNA 96 well extraction kit (Qiagen, Hilden, Germany) following manufacturers protocol for low 

biomass samples, which included the additional step of allowing the EB solution to be heated to 65°C 

before adding to the DNA plate wells for five minutes before eluting. DNA was eluted in two steps. 

Initially, 60 µL was eluted and considered our more concentrated DNA extraction. Next, an additional 80 

µL of DNA was eluted. Each 96-well plate included 8 mock extractions (no sample added) and 1 positive 
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control (ZymoBIOMICS D6300). The 16S rRNA gene (V4 region) was amplified using primers 515F and 

806R universal primers with the forward primer barcoded to allow for multiplexing during sequencing, 

following the Earth Microbiome Project protocols (www.earthmicrobiome.org/protocols-and-

standards/16s/). The forward primer 515F included the unique sample barcode following Parada et al. 

[36], and both primers included degeneracies as described in Parada et al. and Apprill et al. [36,37]. Two 

PCR reactions using Invitrogen Platinum Hot Start PCR 2x Mastermix (Invitrogen, Carlsbad, CA) with 1 

µL of DNA and a final concentration of 0.2 μM primer were run for each sample and combined to a total 

of 75µL. The PCR product was quantified using a Pico Assay read by a Fluorskan plate reader 

(ThermoFisher Scientific, Waltham MA) and then pooled into a single pool in equimolar concentrations 

with the exception of samples that did not meet a minimum concentration, in which case 25 µL were 

added (this allowed the inclusion of mock extraction controls in the sequencing run). The resulting pool 

was cleaned using a Minelute PCR purification kit (Qiagen) and sequenced with a Miseq reagent v2 500 

cycle kit at the CSU Next Generation Sequencing Core on the Illumina Miseq platform. 

After sequencing, microbiome data were analyzed using QIIME2 [38] and R software version 3.5.1. 

Sequences were demultiplexed and quality-filtered in QIIME2 using error-correcting Golay barcodes that 

prevent misassignment. Reads were trimmed to 250 bp, then amplicon sequence variants (ASVs) were 

inferred using DADA2 [39]. Taxonomy was then assigned using the QIIME2 feature-classifier plugin 

[40] against the SILVA-132 99% database [41]. Non-microbial sequences that assigned to mitochondria 

and chloroplasts were filtered from the dataset. Samples were rarefied to 6,152 sequences, retaining 

38.10% of features in 71.63% of samples, and diversity metrics were calculated using the QIIME2 core 

metrics pipeline. Statistical comparisons for alpha diversity were made using the Kruskal-Wallis test with 

an alpha of 0.05 and statistical comparisons for beta diversity were made using PERMANOVA with 

multiple testing correction and an alpha level of 0.05. The composition of the microbiomes was compared 

by testing the differential abundance of taxa using the ANCOM plugin in QIIME2 [42]. The ability of 

microbial communities to predict quality and spoilage outcomes was assessed using the QIIME2 sample-

classifier classify-samples plugin [43,44]. Models were trained and tested using k-fold cross-validation 
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and the Random Forest classifier with hyperparameter tuning. Visualizations were generated using 

QIIME2 and R software with ggplot2 [38,44]. 16S rRNA gene sequencing data is available in the EBI-

ENA database, accession number PRJEB41700, and in QIITA, study 12193. Analysis details can be 

accessed at https://github.com/Metcalf-Lab/Air-versus-water-chilling-of-chicken. 

 

Phylogenetic trees 

All Pseudomonas ASV sequences were extracted from the feature table by filtering based on 

assigned taxonomy. An alignment of all type strain 16S rRNA gene sequences for this genus was 

downloaded from the Ribosomal Database Project [45], along with an appropriate outgroup. A maximum 

likelihood backbone tree was generated using RAxML 8.2.12 [46] using the GTRGAMMA substitution 

matrix and 100 rapid bootstraps on the RDP alignment. An information file was then generated to be used 

in SATé-Enabled Phylogenetic Placement (SEPP) which was modified to fit the parsing parameters from 

pplacer v1.1.alpha13-0-g1ec7786 (removed 1 line according to documentation on the SEPP website 

https://github.com/smirarab/sepp/issues/40) [47]. SEPP 4.3.10 was then run with the following 

parameters (-P=33 -A 10) to optimize the alignment breakdown using the ASVs file, the RAxML tree, the 

RAxML info file and the reference alignment as input. 

 

Quality measurements 

Aerobic Bacteria Populations. Aerobic bacterial populations are strong indicators of the end of 

shelf-life. Thus, quantifying the aerobic populations present--in addition to the characterization of the 

microbiome--will provide insight into the shelf-life impacts of the microbial population. At each sampling 

interval, the carcass of one sample from each chicken was rinsed using 200 ml PBS for the carcass and 50 

ml for the breast. One milliliter of the rinsate was serially diluted in 0.1% buffered peptone water (BPW; 

Becton, Dickinson and Company, Sparks, MD) and plated in duplicate onto Petrifilm aerobic count plates 

(3M Microbiology, St. Paul, MN). Plates were then incubated at 7 °C for 10 days and 35 °C for 48 hours. 
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Physicochemical Analysis. Numerous biochemical and physicochemical changes that affect shelf-

life occur in post-harvest meat products [48]. Thus, an assessment of these changes during processing was 

conducted to obtain information regarding product quality. At each sampling point, after the rinsate was 

collected, the sample was fabricated to a boneless breast if it was not already, though the skin was left on 

for carcass and bone-in samples. Then, the breast was flash-frozen in liquid nitrogen and homogenized 

using a blender (Magic Bullet; Capital Brands, Los Angeles, CA). To evaluate the carcass samples and 

bone-in breasts, the breast meat was removed from the bone at the time of sampling. The frozen 

homogenate was then transported to the Colorado State University Center for Meat Safety and Quality 

(Fort Collins, CO) for physicochemical and compositional analyses. 

Fatty Acid Composition. Fatty acid composition was obtained using gas chromatography 

following methods described by Engle et al. and Kang and Wang [49,50]. First, fat was extracted using 

the Folch method [51]. One gram of the frozen homogenate was combined with 20 mL of 2:1 

chloroform:methanol mixture and homogenized, then filtered using Whatman No. 1 filter paper (Fisher 

Scientific; Waltham, MA). Then, 4 mL of 0.9% NaCl solution was added per 20 mL chloroform:methanol 

and the solution was incubated at 4 °C overnight. During this time the solvent separated into two phases; 

the lower phase contained the lipid extract, which was separated and dried in a dry matter oven at 100 °C 

for 16 h. After this extraction, the lipid extract was methylated by adding 1 mL of 0.5 N KOH in MeOH 

and heated in a water bath. Samples were then prepared for gas chromatography by mixing with 2 mL 

HPLC-grade hexane and 2mL saturated NaCl, which was then back-extracted and reconstituted to 

concentrate the fatty acids. The reconstituted lipid was measured by gas chromatography (Agilent 6890 

plus; Agilent, Wilmington, DE) with standard fatty acid methyl ester mixtures and SUPELCO FAME 

standard (Millipore Sigma, Darmstadt, Germany) to calibrate. Fatty acids were identified by matching 

relative peak retention times to those of the standards, calculated as normalized area percentages of fatty 

acids. 

Lipid Oxidation. Lipid oxidation was measured using the thiobarbituric acid assay (TBARs), as 

described in Yin et al. [52]. Briefly, 5 g of the frozen homogenate was mixed with trichloroacetic acid, 
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homogenized using a standing homogenizer, and filtered using Whatman No.1 filter paper (Fisher 

Scientific; Waltham, MA). A 1mL aliquot of the filtrate was mixed with 1 mL of 10 mM thiobarbituric 

acid and incubated at 25 °C for 20 h, after which the absorbance at 532 nm was measured using a 

spectrophotometer (UV-2401, Shimadzu Inc., Columbia, MD). 

Proximate Analysis. Nutrient composition analysis (proximate analysis) was conducted to 

determine the dry matter, moisture, ash, crude fat, and crude protein composition within each sample. Dry 

matter and moisture were measured using the AOAC oven drying method, 950.46 and 934.01[53]. Two 

grams of frozen homogenate were weighed and placed in a standard laboratory convection oven for 24 h 

at 60 °C, then re-weighed. Percent moisture was calculated using the formula: % moisture content = 

[[(wet weight - dry weight) / wet weight] * 100]. Percent dry matter was calculated as 100 - moisture 

content. Ash content was determined using the ash oven method as described in the AOAC 923.03 and 

920.153 [54]. Approximately 1 g of the frozen homogenate was placed into a dry crucible, then inserted 

into a Thermolyne box furnace at 600 °C for 18 h. Percent ash was calculated using the formula: % ash = 

(ash weight / wet weight) * 100. Crude fat was measured using the Folch method, as described above. 

Finally, crude protein was measured following AOAC method 992.15 [55], which used a TrueSpec CN 

nitrogen determinator (LECO, St. Joseph, MI). Percent protein was calculated using the formula: % 

protein = total % N * 6.25. Results were represented on a dry matter basis. Statistical analyses on all 

physiochemical tests were conducted using ANOVA and the emmeans package [56] with a 2 x 2 x 2 

factorial design with an alpha level was 0.05. 

Sensory Analysis. Eight untrained participants were asked to evaluate the acceptability of three 

sensory attributes (color, odor, texture) during retail display using a three-point sensory scale described by 

Lytou et al. [57]. In addition, subjective color (desirable, acceptable, unacceptable) and willingness to 

purchase (would purchase, would not purchase, would purchase at a discounted price) was evaluated by 

these untrained panelists every 12 h during retail display. At the end of each three-day retail display 

period (10 day and 17 day) the same participants were then asked to evaluate subjective odor, texture and 

purchase selection using the same approach. Evaluation scores were analyzed as continuous data using 
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mixed procedures of SAS (version 9.4; SAS Inst. Inc., Cary, NC). Participants were treated as random 

variables and the alpha level was defined as 0.05. 

In addition to evaluation of chicken breast color, odor, and texture, trained taste panelists were 

asked to evaluate various palatability attributes (chicken flavor intensity, off-flavor intensity, springiness, 

cohesiveness of mass, and moistness) of bone-in and boneless chicken breasts representing both chilling 

methods following 7 days of dark storage. Panelists consisted of graduate students from the CSU Center 

for Meat Safety and Quality and were trained to recognize the aforementioned attributes using methods 

and references described by Solo [58]. Samples for evaluation were randomized and panels were 

conducted over two days to avoid sensory fatigue. Chicken breasts were cooked to an internal temperature 

of 76 °C and cut into 2.54 x 2.54-cm cubes before being served to panelists under red lights. Panelists 

then ranked each breast portion for each of the above attributes on a 100-point scale. Data were analyzed 

using an ANOVA and the emmeans package in R [56] with an alpha level of 0.05. 

 

Chilling system techno-economic analysis 

An economic evaluation of each chilling system, AC and WC, was also performed. The work 

included the development of baseline models of each system that allowed for a direct comparison on the 

metric of economics. The baseline models used the same system boundaries that limited this techno-

economic assessment to the chilling process and used harmonized model inputs when possible for 

consistency. Some facilities include maturation as an extension of the chilling process; however, these 

baseline models don’t include anything outside the chilling process. The models used standard nth plant 

economic assumptions from literature and assumed 10% internal rate of return (IRR), 20-year facility life, 

8% loan interest rate on a 10-year loan with 40% equity, and the 2019 U.S. corporate tax rate of 21% [59–

61]. The above economic assumptions were combined with capital costs, operational costs, linear 

depreciation, and poultry processing rate to perform a 20-year discounted cash flow rate of return 

(DCFROR) for each poultry chilling system. These models use the IRR as the discount rate to determine 

the minimum processing cost ($/metric ton) associated with poultry chilling while providing a net present 
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value (NPV) of zero. This minimum processing cost represents a levelized cost of chilling poultry 

carcasses that supports a 10% IRR over the 20-year life of the system. 

All baseline values were taken from literature or acquired through communication with poultry 

chilling equipment manufacturers and poultry processing facilities. In particular, the system layout and 

energy consumptions reported in the literature were found to be antiquated and thus most of these data 

were acquired through communications with industry. The mutual baseline inputs were plant operation 

(250 d per year, 16 h per day), poultry processing rate (16.5 tonne/hour), water treatment ($1.5/m3; 

[9,35,62,63]) and electricity ($0.10/kWh) prices, and fixed annual maintenance cost (5% of total capital 

cost). While AC and WC fixed and variable labor requirements might vary slightly, the labor 

requirements were assumed to be equivalent for the baseline cases for both systems. Based on input from 

chilling equipment suppliers, the AC and WC models reflect the major differences between the two 

systems (WC, AC); floor space requirements (100 m2, 500 m2), water use (3200 L/tonne; 300 L/tonne), 

and chilling energy costs (20.9 kWh/tonne, 31.4 kWh/tonne). Due to the complexity and high variability 

in WC and AC system designs and operational characteristics, sensitivity analyses were used to evaluate 

how system parameters can impact the levelized cost associated with chilling poultry carcasses. The 

sensitivity analysis varied the following model values by ±50%: capital cost ($/tonne), chilling floorspace 

(m2), processing rate (tonne/hour), chilling energy (kWh/tonne), worker capacity (tonne/hour), water use 

(L/tonne), water price plus water treatment cost ($/L), and electricity cost ($/kWh). The end result is a 

direct comparison of the two technologies in terms of costs with sensitivity used to highlight high impact 

variables. 
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MICROBIOME DATA ACCURATELY PREDICT THE POSTRMORTEM INTERVAL USING 

RANDOM FOREST REGRESSION MODELS1 
 
 
 
Summary 

Death investigations often include an effort to establish the postmortem interval (PMI) in cases in 

which the time of death is uncertain. PMI can lead to the identification of the deceased and the validation 

of witness statements and suspect alibis. Recent research has demonstrated that microbes provide an 

accurate clock that starts at death and relies on ecological change in the microbial communities that 

normally inhabit a body and its surrounding environment. Here, we explore how to build the most robust 

Random Forest regression models for prediction of PMI by testing models built on different sample types 

(gravesoil, skin of the torso, skin of the head), gene markers (16s rRNA, 18s rRNA, ITS), and taxonomic 

levels (Sequence Variants, Species, Genus). We also tested whether particular suites of indicator microbes 

were informative across different datasets. Generally, results indicate that the most accurate models for 

predicting PMI were built using gravesoil and skin data using the 16s rRNA genetic marker at the 

taxonomic level of phyla. Additionally, several phyla consistently contributed highly to model accuracy 

and may be candidate indicators of PMI. 

 

Introduction 

Unattended death scenes pose challenges for crime scene investigators because the time of death, 

also known as the postmortem interval (PMI), is often unknown. However, no death scene is really 

unattended - microorganisms are ubiquitous, and these tiny witnesses can provide clues about the events 

surrounding death. For example, communities of microorganisms often have predictable ecologies, which 

can be leveraged for temporal [1,2] and geographic information [3]. Due to the rapidly decreasing costs of 

next-generation sequencing, it is feasible and cost-effective to track microbial community change during 

 
1 This work has been previously published: Belk A, Xu ZZ, Carter DO, Lynne A, Bucheli S, Knight R, Metcalf JL. 

Microbiome Data Accurately Predicts the Postmortem Interval Using Random Forest Regression Models. Genes. 

2018 Feb 16;9(2):104. 10.3390/genes9020104. 
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decomposition via standard microbiome sequencing protocols [4]. Three taxonomically informative 

genomic markers - 16S rRNA (archaea and bacteria), 18S rRNA (microbial eukaryotes), and internal 

transcribed spacer regions (ITS; fungi specifically) - have been widely utilized to characterize microbial 

community composition and diversity [5–7]. Using these markers, recent research has revealed that 

tracking microbial community succession associated with mammalian cadaver decomposition can be a 

useful tool for estimating PMI [8]. This idea is very similar to tools developed in the field of forensic 

entomology, in which the succession of insects can be informative about the time frame and season of 

death [9]. Several studies have demonstrated consistent changes in microbial community composition 

during mammalian decomposition associated with skin [10–12], gastrointestinal/rectal locations 

[10,11,13,14], oral sites [12], nasal and ear cavities [15], and cadaver-associated soils [10,11,16–18]. 

These studies have used a variety of model-based statistical approaches for estimating PMI. For example, 

Pechal et al. [12] utilized an indicator species analysis at the bacterial family taxonomic level over 5 days 

of decomposition. Furthermore, Hauther et al. [13] utilized an exponential decay model based on declines 

in relative abundance of particular bacteria such as Bacteroides, Lactobacillus, and Bifidobacterium. 

However, the most accurate estimates of PMI have employed machine learning approaches [10,11,15], 

which are ideal for constructing models that utilize changes in relative abundance of all microorganisms 

in the entire community, as opposed to focusing on a subset of taxa that may not be the most temporally 

informative. 

The reproducibility of microbial community succession during mammalian decomposition 

indicates that it can be used to predict the PMI. However, there is no single microbial species informative 

enough for accurate prediction. Machine learning is a powerful tool to discover the patterns in complex 

data and thus can be applied in this case to predict PMI utilizing a diverse microbial community [19]. 

Using the quantification of each microbial taxa by a marker gene (16S rRNA, 18S rRNA, or ITS) as a 

predictive feature, supervised regression models can be trained to learn the implicit relationship between 

microbiome composition and decomposition time point. The Random Forest regression model is widely 

used because of its robustness to overfitting, excellent performance, and easy parallelization of computing 
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[20]. Random Forest is an ensemble machine learning method that fits a set of decision trees on 

subsamples of the data set, and then combines the results to improve regression accuracy. Like all tree-

based regression methods, Random Forest tends to overestimate the PMI of samples at the low end of 

PMI and underestimate at the high end of PMI. However, this systematic bias in Random Forest model is 

well known and can be calibrated with additional data sets [21]. In previous reports, Random Forest 

regression has been shown to achieve accurate PMI prediction in multiple skin and cadaver-associated 

soil gene marker data sets across decomposition of different host species [10,11]. 

We identified several knowledge gaps for developing robust machine learning Random Forest 

regression models for estimating PMI and addressed them using a meta-analysis of four previously 

published mammalian decomposition time-series data sets [10,11]. We aim to address which sample 

type(s), gene marker(s), and taxonomic level(s) provide the most accurate microbial model for estimating 

PMI. Additionally, we investigated whether particular microbes are informative across different sample 

types and data sets, which provides insights into whether suites of microbes or microbial groups can be 

used as indicators, or whether the full community provides the most accurate information. We chose four 

data sets that represented a range of environments and were generated using a standardized set of 

microbiome protocols (earthmicrobiome.org/protocols), which makes them directly comparable [22]. We 

focus our investigations on swabs of skin and gravesoils because these sampling locations would 

minimally impact the cadaver compared to other, more invasive, locations such as the GI tract. Thus, skin 

and soils are realistic sample types for development into a viable forensic tool. Each data set included 16S 

rRNA and 18S rRNA data, and three of the data sets also included ITS data. We looked for consistent 

trends across the datasets to help point researchers in the most fruitful future directions. 

 

Results 

Cross-validation error rates: comparison of sample types 

The datasets used for this study contained a variety of sampling sites, so those used most 

consistently were selected for this study to determine the best sampling location for microbiome 
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prediction. Sample types investigated included cadaver-associated gravesoil, skin of the torso, and skin of 

the head. Results are summarized in Table 4.1. Both mouse model laboratory studies resulted in lower 

within study errors than the human studies. This is likely because these mouse studies were conducted 

under controlled laboratory conditions, as opposed to the human studies, which were conducted in the 

field with no control over environmental factors such as rainfall, temperature, and insect colonization. 

Overall, there is not a clear trend across the studies or gene markers of which sample type performed best. 

The lowest mean absolute error was from 16S data in gravesoil samples in a mouse decomposition study 

(mdc2), in which mice used were of the same breed, age, and were co-housed before being sacrificed for 

the study [11]. Within the two human studies, skin locations provided the lowest error for 16S rRNA 

marker, while soils provided the lowest errors for both microbial eukaryotic markers. 

 

Cross-validation error rates: comparisons of genetic markers across taxonomic levels 

Three taxonomically informative microbial gene markers (16S rRNA, 18S rRNA, and ITS) were 

compared at different sequence variant and taxonomic levels across sample types for each experiment 

(Figure 4.1, Table 4.1). Overall, the lowest within-study MAE for each experiment was generated using 

the bacterial and archaeal data (16S rRNA marker). However, all markers performed reasonably well with 

ITS producing the highest errors, which were as low as +/- 2.6 days over 25 days for mouse 

decomposition experiment 2 (mdc2). Within experiment, MAEs for each marker type were fairly similar. 

Furthermore, models consistently performed best at the class and phylum taxonomic levels for 16S rRNA 

and 18S rRNA, and at the class level for ITS. The sequence variant level (highest resolution possible) had 

the highest MAEs compared to sequences summarized into lower levels of taxonomy. 

 

 

 

 



 108 

Table 4.1. A comparison of Mean Absolute Error (MAE) of models built using data from each gene 
marker (16S, 18S, ITS) for each sample type (soil, skin_torso, skin_head). Data were collected from four 
studies (mouse decomposition 1 (mdc1), mouse decomposition 2 (mdc2), SHSU human April 
(shsu_spring), SHSU human February (shsu_winter)). The ITS marker was not sequenced for mdc1. 
Models were generated based on data from the first 25 days of decomposition and the model with the best 
MAE after parameter tuning was selected. The lowest error within each marker for each experiment is 
highlighted in bold, black text. 

 
 

 

Genomic 

Marker 

Study Name Sample 

Type 

Sequence 

Variants 

Species 

Level 

Genus 

Level 

Family 

Level 

Order 

Level 

Class 

Level 

Phylum 

Level 

16S mdc1 soil 5.068 4.528 4.439 4.574 4.596 4.308 4.565 

  skin_torso 4.602 3.744 3.577 3.353 3.889 4.377 4.070 

  skin_head 4.272 3.816 3.816 3.747 3.442 3.315 4.672 

 mdc2 soil 2.571 1.943 1.955 1.911 2.062 1.971 1.737 

  skin_torso 3.357 2.926 2.898 2.783 2.826 2.942 2.856 

  skin_head 3.001 2.383 2.379 2.340 2.467 2.369 2.405 

 shsu spring soil 5.225 3.594 3x.632 3.660 3.966 3.868 3.877 

  skin_torso 4.303 3.830 3.807 4.106 4.343 4.311 4.022 

  skin_head 3.890 3.506 3.385 3.577 3.342 2.940 3.006 

 shsu winter soil 4.985 3.922 3.980 3.947 3.848 4.026 3.783 

  skin_torso 5.237 4.543 4.483 4.385 3.970 3.704 3.265 

18S mdc1 soil 4.370 3.125 3.072 3.135 2.813 2.942 2.733 

  skin_torso 4.333 3.821 3.447 3.030 3.549 2.702 4.521 

  skin_head 4.744 4.583 4.138 4.616 4.251 3.775 4.657 

 mdc2 soil 3.505 3.237 3.208 3.107 3.221 3.043 3.330 

  skin_torso 3.907 3.870 3.856 3.676 3.910 3.867 3.704 

  skin_head 3.772 3.761 3.575 3.725 3.665 3.819 3.912 

 shsu spring soil 5.486 4.654 4.459 4.283 3.837 3.400 3.264 

  skin_torso 5.457 4.654 5.196 5.404 5.264 5.754 5.974 

  skin_head 4.645 4.571 4.370 5.148 5.028 4.763 5.218 

 shsu winter soil 5.239 4.429 4.442 4.239 4.042 3.449 3.504 

  skin_torso 5.141 4.880 4.721 4.962 5.028 4.660 4.604 

ITS mdc2 soil 3.497 3.169 3.157 2.957 2.941 2.820 2.797 

  skin_torso 3.505 3.237 3.211 3.083 3.023 2.597 3.036 

  skin_head 3.648 3.561 3.523 3.483 3.509 3.413 3.305 

 shsu spring soil 5.586 4.735 4.836 4.629 4.980 4.461 4.713 

  skin_torso 4.837 4.671 4.563 4.688 4.786 4.860 5.500 

  skin_head 6.080 5.996 6.083 5.803 6.090 5.965 5.416 

 shsu winter soil 4.675 4.114 3.965 3.954 3.933 3.671 4.077 
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Figure 4.1. The Mean Absolute Error (MAE) rates for Random Forest models trained to predict the 
postmortem interval. For each marker type (16S bacterial and archaeal rRNA, 18S microbial eukaryote 
rRNA, ITS fungal gene marker), models were generated for three sample types (skin_head, skin_torso, 
soil) from four studies (mouse decomposition 1 (mdc1), mouse decomposition 2 (mdc2), SHSU human 
April (shsu_spring), SHSU human February (shsu_winter)). Skin_head samples were not collected for 
shsu_winter. Datasets were subset to include only the first 25 sampling days. Though all marker types 
performed well, the 16S rRNA marker generally resulted in the most accurate PMI prediction models. 
 

Cross-study error rates 

Cross-study error rates were generated between the two studies using human cadavers (shsu 

spring and shsu winter). Models were constructed for two sample types, cadaver-associated gravesoil and 

skin of the torso (skin), for each experiment, then tested on the same sample type for the other season. 

The skin of the head samples were excluded from this analysis as only one of the human datasets included 

this sample location. PMI was represented as 0 °C-base accumulated degree day (ADD) to account for the 

differences in temperature between the two seasons. Resulting cross study MAE are presented in Table 
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4.2, and plots of observed versus predicted PMI are presented in supplementary figures S4.4 – S4.10. 

For each marker type, the lowest error was generated using a gravesoil data set. The overall lowest cross-

experiment error was generated from the model trained on the spring soil data set using bacterial and 

archaeal data at the phylum level. 

 

Table 4.2. The mean absolute error (MAE) of models used in cross-experiment testing using accumulated 
degree days (ADD) with a minimum developmental threshold of 0°C. Models were built using 16S rRNA 
(green text), 18S rRNA (blue text), and ITS (orange text) markers from human cadaver decomposition 
data from two seasons: spring and winter. Models were built on sequence variant data and family-, genus- 
and species-level taxonomy. After model construction, the model was tested on the other dataset to 
evaluate the ability of the model to predict postmortem interval (PMI) beyond the original dataset. The 
lowest error for each marker within each cross-experiment test is in bold and black font. 

 
 
 

Similar to the within-study errors, lower-level taxonomies generally resulted in more accurate 

models compared to sequence variant-level resolution. In particular, phylum level taxonomy appeared to 

provide the most accurate models overall in cross-experiment model testing. MAE was lowest at the 

phylum level for all three markers - 48.686, 50.082, and 58.359 for 16S, 18S, and ITS, respectively, or 

approximately 5 - 6 chronological days. For models trained on the winter data set, the soil microbial 

eukaryotic 18S rRNA marker returned the lowest error. ITS data resulted in the highest error in spring-

trained data, while 16S data resulted in the highest error in winter-trained data. 

experiment test is in bold and black font

Genomic 
Marker

Training 
Dataset Sample Type

Sequence 
Variants MAE

Species Level 
MAE

Genus Level 
MAE

Family Level 
MAE

Order Level 
MAE

Class Level 
MAE

Phylum Level 
MAE

16S Spring soil 88.693 57.929 59.251 57.045 56.936 55.367 48.686

skin 92.598 90.197 90.584 104.770 109.412 117.672 135.749

Winter soil 109.482 91.406 91.295 91.857 91.025 88.849 83.312

skin 120.764 129.695 130.763 122.418 124.701 123.043 108.737

18S Spring soil 81.013 62.572 62.850 55.648 51.316 51.481 50.082

skin 88.155 93.173 85.754 89.676 91.793 72.846 67.242

Winter soil 96.145 82.780 75.628 72.228 67.725 71.757 63.465

skin 111.004 110.772 101.268 101.222 101.524 107.409 105.248

ITS Spring soil 111.806 94.797 94.742 93.504 85.282 80.856 58.359

skin 101.852 96.815 99.272 101.086 104.162 106.043 94.468

Winter soil 104.775 99.360 96.392 96.604 93.564 87.709 81.623

skin 114.027 110.865 107.026 113.294 117.302 115.937 87.274
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Overall, the models built on the spring data were more accurate in predicting the PMI of the 

winter data. This is likely because the spring data set spans a broader range of ADDs, which results in a 

more accurate model compared to the winter data set. Models trained on the winter skin samples resulted 

in the highest error when tested on the spring skin samples. 

 

Important feature taxa 

Not all taxa or taxa groups contribute temporal information equally. We assessed how 

informative each taxon was in the regression model by computing the average decrease of impurity 

during the tree splitting process in model training as one taxa or taxa group was removed iteratively for 

16S rRNA data [20]. We reported the feature importance of phyla for all three sample types (soil, skin of 

the torso, skin of the head) in the human decomposition data sets (Figure 4.2). The importance of each 

phylum is highly correlated between sample types within study for both the spring and winter season 

(Figure 4.2A, Fig S4.2-winter). The soil and skin of the head samples appear to share the most bacterial 

phyla compared to the skin of the torso, and are the most highly correlated, with a Spearman correlation 

coefficient of 0.90 within spring samples. Samples from the skin of the head were not taken during the 

winter months for comparison, but the correlation between the spring skin of the head and winter soil was 

lower (0.77), though it is not clear whether the lower correlation was due to the sample type or the 

difference in season. Furthermore, only a few phyla contribute substantially to the models (Figure 4.2A). 

The most informative phyla for the spring season include Fusobacteria, Actinobacteria, Firmicutes, 

Verrucomicrobia, Proteobacteria, Acidobacteria, and Planctomycetes (Figure 4.2B). Furthermore, phyla 

important in the model were highly correlated between the spring and winter seasons (Figure 4.2C) of 

human decomposition (p < 0.01). 
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Figure 4.2. The feature importance measures the contribution of each phylum to the PMI regression 
model (results from SHSU spring study) using the 16S rRNA genetic marker. (A) The feature importance 
is correlated across 3 sample types. Each scatter plot shows the correlation between feature importances 
of every pair of models built from each sample type. Each dot represents a phylum and its value on the x- 
or y-axis represents its feature importance in the 2 models of sample types. The Spearman correlation 
coefficients are 0.90 (head vs. torso), 0.84 (head vs. soil), and 0.93 (torso vs. soil), with p-values << 0.01. 
The diagonal histogram plots show that most of phyla do not contribute much to regression models of 
each sample type; (B) The top ten phyla that are most informative for PMI prediction within each sample 
type; (C) The importance of the phyla to the regression models are highly correlated across spring and 
winter seasons. Each dot represents the importance of a phylum in winter season (y-axis) and in spring (x-
axis). The correlation coefficients between winter and spring feature importances are 0.78 (soil) and 0.93 
(torso), with p-values < 0.01; (D) same plot as C, except axes are feature importance ranks instead of 
scores. 
 
 
Discussion 

Machine learning methods are powerful tools for utilizing high dimensional datasets for 

prediction. Machine learning is ideal for finding patterns in complex and diverse microbiome data sets 

and utilizing these patterns to predict outcomes [19], such as disease states [19,23]. Leveraging biological 
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information associated with crime scenes is another excellent opportunity for the development of machine 

learning tools that utilize microbiome datasets. With the goal of developing the most robust model, we 

assessed how several variables affect within-study and cross-experiment errors for estimating PMI. 

Results of this meta-analysis indicate that the most robust models predicting PMI utilized cadaver-

associated soil or skin data and the 16S rRNA gene marker summarized at class- or phylum-level 

taxonomies. 

In this study, models for estimating PMI were developed using data from the first 25 sample days 

of each study, as preliminary data indicated the earlier sampling days resulted in more accurate models. 

Early decomposition may be the most accurate time frame because microbial succession is rapid and 

diversity is high compared to later stages of decomposition [10,11,16]. However, in the studies 

incorporated into this analysis the sampling was more frequent during early decomposition, and more 

frequent sampling has been demonstrated previously to improve model accuracy [11]. Therefore, the 

lower errors are likely, at least to some extent, an artifact of the change in sampling rate. Further 

investigation into the accuracy of models across different timeframes is warranted. 

Cadaver-associated soils as well as cadaver skin sites both appear to be promising sampling 

locations for developing microbiome-based PMI estimation tools. A wide diversity of sample sites has 

been investigated for microbial succession during decomposition, though few employed machine learning 

to estimate PMI, possibly due to small sample sizes. Soils and skin are both attractive sampling locations 

because they are easy to access without disturbing the remains. The soil microbiome has been shown to 

change predictably during mammalian decomposition, a change which is little affected by body mass 

[16,18] and soil type [11]. The skin, at various sample sites, has been demonstrated to accurately predict 

PMI using machine learning techniques [12,15,16]. Johnson et al. [15] demonstrated low errors for skin 

samples collected from the inner ear of human cadavers. Therefore, a comparison of different skin 

locations within a study would be useful to help identify locations in which microbial succession is the 

most clock-like. In our meta-analysis, we discovered fairly similar prediction accuracies using soils and 

skin, which may be because the two sample types are not independent. For example, Cobaugh et al. [16] 
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demonstrated that the microbiomes associated with the skin of the body may transfer to the soil and 

persist in the soil microbiome. 

Most microbiome studies, including those investigating the PMI, utilized the 16S rRNA gene 

marker. We have investigated the use of two additional microbial markers: 18S rRNA which amplifies 

microbial eukaryotes, and ITS, which amplifies fungi specifically. Although 16S rRNA provided the most 

accurate within-study models, the 18S rRNA marker had similar accuracies, and was more accurate in 

several cases during the cross-experiment validation. However, larger sample sizes would make these 

analyses considerably more robust. 18S rRNA has been previously shown to be more stable across 

seasons than bacteria [17], which may explain why it is robust in our cross-experiment model testing in 

which models were tested across the winter and spring seasons. Furthermore, for each marker gene, we 

tested multiple taxa levels and discovered that in all cases lower levels of taxonomy, particularly class and 

phylum levels, produced more accurate models, which agrees with results reported by Johnson et al. [15] 

on an independent data set of human cadaver skin samples. Furthermore, these models generally improve 

on error rates published in the original papers. For example, the mdc2 study originally reported error rates 

for 16S rRNA of 2.5 days (at the OTU level), and here we report 1.7 days at the Phylum level. However, 

we note that results reported here are not directly comparable published results because we used a 

different processing method (e.g. deblur instead of 97% OUT clustering methods). Finally, we discovered 

that only a subset of phyla was highly informative to models and these important groups of microbes were 

similar across seasons, at least in one study. Those highly informative phyla are consistent with those 

reported in other studies [12,15]. This suggests that accurate models of the PMI may be constructed based 

on a subset of the microbial community, which may open the door for cheaper, targeted assays.  

In this study, we focused on utilizing a very powerful tool, Random Forests regressors. Every 

regression method has caveats. For example, Random Forest does not perform as well at the extreme ends 

of PMI. Another popular regressor, K-nearest neighbor (KNN e.g. Johnson et al. [15]), is a simple and 

intuitive model that works well on pattern recognition problems [24]. Linear regression (and its variants, 

lasso, ridge, elastic net) is also popular in regression analysis. It is interpretable how much every feature 
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contributes to the model; however, the strong assumption of linearity between outcome and features are 

often violated. Support Vector Machine (SVM) is also a proved accurate method in many scenarios and 

handles high dimensional data very well [24]. Although beyond the scope of this current manuscript, a 

systematic comparison of regression methods will be informative and is planned as part of future research 

on a forthcoming large data set. 

Determining timelines has been described as the Achilles heel of forensic pathology [25]. There 

are very few tools, and most are only applicable within the initial hours and days following death, and 

each method is vulnerable to biases [26]. Therefore, developing new tools that leverage independent 

information for estimating the time since death is critical. There is evidence that gene meter expression 

data may be used to predict PMI. In a proof of principle study authors demonstrated that gene transcripts 

could be used to produce linear models of PMI with correlation coefficients of 1 [27]. This method may 

be an interesting alternative to microbial and entomological prediction methods as analyses are expanded. 

However, this has yet to be applied to human decomposition for further viability testing, and machine 

learning techniques were not applied. 

 

Conclusions 

The results of the current meta-analysis provide directions for future research on developing 

microbial-based models for estimating PMI. Currently, the greatest barrier to creating generalizable 

microbial models for estimating PMI is a lack of human cadaver-associated data sets from different 

environments and seasons. However, coordinated research is underway to overcome this limitation and 

generate a comprehensive data set to train, test, and generate robust models with larger sample sizes. 

Once available, existing and new datasets can be combined to determine the best generalizable model for 

estimating PMI based on microbes. 
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Materials and Methods 

Amplicon sequencing data processing 

Previously published 16S rRNA, 18S rRNA, and ITS data were obtained from the open-source 

microbiome study management platform, QIITA (https://qiita.ucsd.edu/) under studies 714, 1889, 10141, 

10142, and 10143 [10,11]. Briefly, these studies included two laboratory decomposition experiments 

[10,11], in which mice were decomposed on soils with the exclusion of insects and destructively sampled 

in replicates of 5 for 8 time points over 2 to 3 months. We also included two experiments in which two 

human donors were allowed to decompose outdoors in the winter season and in the spring season (a total 

of four donors) at the Southeast Texas Applied Forensic Science (STAFS) laboratory [11]. For complete 

details on the data used for this study, see Table 4.3. Briefly, for each gene marker in these data sets, the 

Earth Microbiome Project primer pair and standard protocols were utilized [4]. Amplicons for each gene 

marker were then sequenced using the Illumina HiSeq 2000 platform (2x100 bp reads), and forward reads 

for each gene marker were used to create a feature table of sequences. Sequence data, metadata, and 

feature tables are available and curated on QIITA (qiita.ucsd.edu), where they are periodically re-

annotated to be consistent with current best practices utilizing the QIIME pipeline [28]. Therefore, we 

utilized data processed using the deblur method, which utilizes sequence error profiles to derive 

putatively true biological sequences, resulting in high quality sequence variant data as opposed to 

Operational Taxonomic Units (OTUs) in which sequence variation is lost because sequences are 

collapsed, usually at a sequence identity of 97% [29]. In the original publication of these datasets [10,11], 

a closed reference OTU-picking method was used to generate OTU tables, which likely resulted in the 

loss of potentially useful sequence data that did not match the greengenes database [30] within 97% 

similarity. Therefore, the current meta-analysis provides an opportunity to reanalyze these valuable 

datasets with more current methods. The 16S rRNA and 18S rRNA amplicon sequence files were 

trimmed for quality to 90bp reads. For ITS data, 100bp reads were utilized. For 16S, the resulting feature 

table was further processed by removing sequences that did not match a positive reference database with 

80% similarity (reference-hit.biom table downloaded). For 18S and ITS, a positive reference database was 
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not used (all.biom table downloaded). ITS data were only available for studies 10141, 10142, and 10143. 

For each data set, we retained common sample types, including those taken from gravesoil near the torso, 

and from the skin of the left hip, right hip, torso, and head. These were categorized into three sample 

groups for analysis: cadaver-associated gravesoil, skin of the torso, and skin of the head. 

 

Assigning taxonomy 

Each table was individually processed to assign taxonomy and filter out taxa that were not 

considered part of the microbiome. Taxa were assigned using classifiers specific to each marker: 

greengenes 13.8 for 16S rRNA [30], SILVA 128 for 18S rRNA [31], and UNITE 7 developer classifier 

for ITS [32], all at the 99% sequence identity threshold level. Sequences filtered out of the 16S rRNA 

data set included those assigned to chloroplasts and mitochondria. Sequences filtered out of the 18S 

rRNA data included those assigned to Archaeplastida, Arthropoda, Chordata, Mollusca, as well as 

sequences that were not assigned to Eukarya. For ITS, sequences that did not assign to Fungi were filtered 

out. Following this, filtered tables were combined into a single sequence variant table per marker type to 

be used in modeling. These tables were then used to generate additional tables summarized at different 

taxonomic levels, including species (16S rRNA L6; 18S rRNA L12; ITS L6), genus (16S rRNA L5; 18S 

rRNA L10; ITS L5), family (16S rRNA L4; 18S rRNA L8; ITS L4), order (16S rRNA L3; 18S rRNA L6; 

ITS L3), class (16S rRNA L3; 18S rRNA L4; ITS L3), and phylum (16S rRNA L2; 18S rRNA L3; ITS 

L2). We would note that the SILVA taxonomy levels were very uneven across different groups of 

eukaryotes (e.g. Amoebozoa, Opisthokonta, and Alveolata). Therefore, the levels chosen (L12, 10, 8, 6, 4, 

and 3) generally represent summaries at progressively higher levels of taxonomy, but are not strictly 

adhering to species, genus and family level across each major eukaryotic group. 
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Model testing  

PMI prediction models were generated using Random Forest regressors based on sequence 

variant and taxa abundance data. Data were divided into subsets by sample type and normalized using the 

Calour library [33]. Using the Calour library, we chose to utilize total-sum scaling normalization, as 

opposed to rarefaction, to avoid the loss of statistical power by discarding reads and/or samples. Random 

Forest is insensitive to the methods of normalization used. For human body decomposition, each subset 

was partitioned based on individual for cross validation so that the samples from the same individuals are 

either in the training set or testing set, but not both. Training refers to fitting or building the model while 

testing is equivalent to predicting. The accuracy of the models was measured using the Mean Absolute 

Error (MAE), calculated as the deviation of the predicted from observed values and representing the 

average prediction error in the same unit of the original data. Within each dataset of each study, the best 

Random Forest regression model after hyperparameter tuning through cross validation was selected to 

represent the final model. We also applied the model trained from one study to predict PMI of another 

study (i.e. cross-study prediction) to test the generalizability of the model. Each experiment was 

conducted over a different number of sampling days ranging from a total of 48 to 142 days (Table 4.3), 

so for consistency one model timeframe was selected for inclusion in the model. Preliminary model tests 

were conducted to determine the timeframe for use in this experiment, results of this analysis are 

presented in supplementary figure S4.1. Overall, the inclusion of all experimental sampling days 

resulted in the highest MAE, while using only the first 25 days resulted in invariably lower MAEs (Fig 

S4.2). Therefore, data subset to the first 25 days of decomposition were selected for the modeling in this 

study. The modeling was done with Python machine learning package scikit-learn v19.0 [34]. Data were 

analyzed and graphics were generated using R software, version 3.4.1, the ggplot2 package, and 

matplotlib 2.0.0 [35,36]. 
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Table 4.3. A summary of all studies included in the meta-analysis. Studies were obtained from the QIITA 
open-source study managements platform. All studies were downloaded as deblur processed tables, along 
with the corresponding metadata information. Different table types and trim lengths were selected based 
on the data availability and marker type. 

 
 

  

QIITA Study 
Number

QIITA Study Name Our Study Name Shorthand 
Name

Prep 
Number

Marker Trim Length OTU Table Type Number of 
Days Sampled

714 A microbial clock provides an accurate 
estimate of the postmortem interval in a 

mouse model system

Mouse
Decomposition 1

mdc1 769 16S 90bp reference-hit.biom 48

1889 A microbial clock provides an accurate 
estimate of the postmortem interval in a 

mouse model system - 18S

Mouse
Decomposition 1

mdc1 1204 18S 90bp all.biom 48

10141 Metcalf microbial community assembly and 
metabolic function during mammalian 

corpse decomposition

Mouse
Decomposition 2

mdc2 1265 16S 90bp reference-hit.biom 70

1038 18S 90bp all.biom 70

345 ITS 100bp all.biom 70

10142 Metcalf microbial community assembly and 
metabolic function during mammalian 

corpse decomposition SHSU winter

SHSU Winter shsu_winter 333 16S 90bp reference-hit.biom 132

1166 18S 90bp all.biom 132

335 ITS 100bp all.biom 132

10143 Metcalf microbial community assembly and 
metabolic function during mammalian 

corpse decomposition SHSU April 2012 

exp

SHSU Spring shsu_spring 1107 16S 90bp reference-hit.biom 82

1109 18S 90bp all.biom 82

1110 ITS 100bp all.biom 82



 120 

REFERENCES 

 
 
 
1.  McGeachie MJ, Sordillo JE, Gibson T, Weinstock GM, Liu Y-Y, Gold DR, Weiss ST, Litonjua A. 

Longitudinal prediction of the infant gut microbiome with dynamic Bayesian networks. Sci Rep. 

2016 Feb 8;6:20359.  

2.  Carter DO, Yellowlees D, Tibbett M. Cadaver decomposition in terrestrial ecosystems. 

Naturwissenschaften. 2007 Jan 1;94(1):12–24.  

3.  Noronha MF, Lacerda Júnior GV, Gilbert JA, de Oliveira VM. Taxonomic and functional patterns 

across soil microbial communities of global biomes. Sci Total Environ. 2017 Dec 31;609:1064–74.  

4.  Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, Prill RJ, Tripathi A, 

Gibbons SM, Ackermann G, Navas-Molina JA, Janssen S, Kopylova E, Vázquez-Baeza Y, 

González A, Morton JT, Mirarab S, Zech Xu Z, Jiang L, Haroon MF, Kanbar J, Zhu Q, Jin Song S, 

Kosciolek T, Bokulich NA, Lefler J, Brislawn CJ, Humphrey G, Owens SM, Hampton-Marcell J, 

Berg-Lyons D, McKenzie V, Fierer N, Fuhrman JA, Clauset A, Stevens RL, Shade A, Pollard KS, 

Goodwin KD, Jansson JK, Gilbert JA, Knight R, Earth Microbiome Project Consortium. A 

communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017 Nov 

23;551(7681):457–63.  

5.  Parfrey LW, Walters WA, Lauber CL, Clemente JC, Berg-Lyons D, Teiling C, Kodira C, 

Mohiuddin M, Brunelle J, Driscoll M, Fierer N, Gilbert JA, Knight R. Communities of microbial 

eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity. Front 

Microbiol. 2014;5:298.  

6.  Willger SD, Grim SL, Dolben EL, Shipunova A, Hampton TH, Morrison HG, Filkins LM, O‘Toole 

GA, Moulton LA, Ashare A, Sogin ML, Hogan DA. Characterization and quantification of the 



 121 

fungal microbiome in serial samples from individuals with cystic fibrosis. Microbiome. 2014 Nov 

3;2(1):40.  

7.  Ramirez KS, Leff JW, Barberán A, Bates ST, Betley J, Crowther TW, Kelly EF, Oldfield EE, Shaw 

EA, Steenbock C, Bradford MA, Wall DH, Fierer N. Biogeographic patterns in below-ground 

diversity in New York City’s Central Park are similar to those observed globally. Proc Biol Sci. 

2014 Nov 22;281(1795).  

8.  Metcalf JL, Xu ZZ, Bouslimani A, Dorrestein P, Carter DO, Knight R. Microbiome tools for 

forensic science. Trends Biotechnol. 2017 Sep 1;35(9):814–23.  

9.  Amendt J, Campobasso CP, Gaudry E, Reiter C, LeBlanc HN, Hall MJR, European Association for 

Forensic Entomology. Best practice in forensic entomology--standards and guidelines. Int J Legal 

Med. 2007 Mar;121(2):90–104.  

10.  Metcalf JL, Wegener Parfrey L, Gonzalez A, Lauber CL, Knights D, Ackermann G, Humphrey GC, 

Gebert MJ, Van Treuren W, Berg-Lyons D, Keepers K, Guo Y, Bullard J, Fierer N, Carter DO, 

Knight R. A microbial clock provides an accurate estimate of the postmortem interval in a mouse 

model system. Kolter R, editor. eLife. 2013 Oct 15;2:e01104.  

11.  Metcalf JL, Xu ZZ, Weiss S, Lax S, Treuren WV, Hyde ER, Song SJ, Amir A, Larsen P, Sangwan 

N, Haarmann D, Humphrey GC, Ackermann G, Thompson LR, Lauber C, Bibat A, Nicholas C, 

Gebert MJ, Petrosino JF, Reed SC, Gilbert JA, Lynne AM, Bucheli SR, Carter DO, Knight R. 

Microbial community assembly and metabolic function during mammalian corpse decomposition. 

Science. 2016 Jan 8;351(6269):158–62.  

12.  Pechal JL, Crippen TL, Tarone AM, Lewis AJ, Tomberlin JK, Benbow ME. Microbial community 

functional change during vertebrate carrion decomposition. PloS One. 2013;8(11):e79035.  

13.  Hauther KA, Cobaugh KL, Jantz LM, Sparer TE, DeBruyn JM. Estimating time since death from 

postmortem human gut microbial communities. J Forensic Sci. 2015 Sep;60(5):1234–40.  



 122 

14.  DeBruyn JM, Hauther KA. Postmortem succession of gut microbial communities in deceased 

human subjects. PeerJ. 2017 Jun 12;5:e3437.  

15.  Johnson HR, Trinidad DD, Guzman S, Khan Z, Parziale JV, DeBruyn JM, Lents NH. A machine 

learning approach for using the postmortem skin microbiome to estimate the postmortem interval. 

PLOS ONE. 2016 Dec 22;11(12):e0167370.  

16.  Cobaugh KL, Schaeffer SM, DeBruyn JM. Functional and structural succession of soil microbial 

communities below decomposing human cadavers. PLOS ONE. 2015 Jun 12;10(6):e0130201.  

17.  Carter DO, Metcalf JL, Bibat A, Knight R. Seasonal variation of postmortem microbial 

communities. Forensic Sci Med Pathol. 2015 Jun;11(2):202–7.  

18.  Weiss S, Carter DO, Metcalf JL, Knight R. Carcass mass has little influence on the structure of 

gravesoil microbial communities. Int J Legal Med. 2016 Jan 1;130(1):253–63.  

19.  Knights D, Costello EK, Knight R. Supervised classification of human microbiota. FEMS Microbiol 

Rev. 2011 Mar;35(2):343–59.  

20.  Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and Regression Trees. 1st ed. 

Chapman and Hall; 1984. 368 p.  

21.  Zhang G, Lu Y. Bias-corrected random forests in regression. J Appl Stat. 2012 Jan 1;39(1):151–60.  

22.  Gilbert JA, Jansson JK, Knight R. Earth Microbiome Project and global systems biology. 

mSystems. 2018 Jun 26;3(3).  

23.  Yazdani M, Taylor BC, Debelius JW, Li W, Knight R, Smarr L. Using machine learning to identify 

major shifts in human gut microbiome protein family abundance in disease. IEEE Int Conf Big 

Data. 2016 Dec 5;1272–80.  

24.  Kuhn M, Johnson K. Applied Predictive Modeling [Internet]. New York: Springer-Verlag; 2013 

[cited 2021 Jan 28]. Available from: https://www.springer.com/gp/book/9781461468486 



 123 

25.  Byard RW. Timing: the Achilles heel of forensic pathology. Forensic Sci Med Pathol. 2017 

Jun;13(2):113–4.  

26.  Madea B. Methods for determining time of death. Forensic Sci Med Pathol. 2016 Dec;12(4):451–

85.  

27.  Hunter MC, Pozhitkov AE, Noble PA. Accurate predictions of postmortem interval using linear 

regression analyses of gene meter expression data. Forensic Sci Int. 2017;275:90–101.  

28.  Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, 

Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, 

Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, 

Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, 

Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, 

Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, 

Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-

X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, 

Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, 

Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, 

Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson 

LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, 

Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber 

KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG. 

Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat 

Biotechnol. 2019 Aug;37(8):852–7.  

29.  Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, Kightley EP, 

Thompson LR, Hyde ER, Gonzalez A, Knight R. Deblur Rapidly Resolves Single-Nucleotide 

Community Sequence Patterns. mSystems. 2017 Mar 7;2(2).  



 124 

30.  McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight 

R, Hugenholtz P. An improved Greengenes taxonomy with explicit ranks for ecological and 

evolutionary analyses of bacteria and archaea. ISME J. 2012 Mar;6(3):610–8.  

31.  Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA 

ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic 

Acids Res. 2013 Jan;41(Database issue):D590–6.  

32.  Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, 

Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, 

Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, 

Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag 

L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, 

Larsson K-H. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 

2013 Nov;22(21):5271–7.  

33.  Xu ZZ, Amir A, Sanders J, Zhu Q, Morton JT, Bletz MC, Tripathi A, Huang S, McDonald D, Jiang 

L, Knight R. Calour: an interactive, microbe-centric analysis tool. mSystems. 2019 Feb 26;4(1).  

34.  Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, 

Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É. 

Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2011;12(85):2825–30.  

35.  Wickham H. ggplot2 - Elegant Graphics for Data Analysis [Internet]. 1st ed. Springer-Verlag New 

York; 2009. 213 p. (Use R). Available from: https://www.springer.com/gp/book/9780387981413 

36.  Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007 May;9(3):90–5.  

 



 125 

PATTERNS OF MICROBIAL SUCCESSION IN SKIN AND DECOMPOSITION-ASSOCIATED 

SOILS ARE PREDICTIVE OF THE POSTMORTEM INTERVAL OF HUMAN REMAINS 

 
 
 
Summary 

The human microbiome is highly diverse and serves numerous functional purposes during life. 

However, the loss of functional homeostasis after death leads to decomposition of the human remains, 

coupled with a shift in the microbial communities due to nutrient availability, temperature changes, and 

shifts in oxygen availability. As microbial groups take advantage of these changing environmental 

conditions, it leads to predictable patterns in how the communities assemble. This predictability of 

microbial taxonomic abundances then can be used to estimate the time since death, or postmortem 

interval (PMI). This study seeks to improve the understanding of this phenomenon by evaluating the 

patterns of microbial succession associated with human remains at three geographically distinct locations. 

The primary objectives were to (1) identify patterns in microbial diversity and taxonomy during human 

decomposition in skin and decomposition-associated soils across distinct environments and (2) determine 

the utility of amplicon sequencing-derived microbiome data in predicting the postmortem interval within 

the first 21 days of decomposition. To achieve these, a total of 36 donated human remains were 

decomposed across three anthropological research facilities (three per season per facility for four seasons) 

in distinct climactic regions of the United States. Microbial samples were collected from the skin of the 

face, skin of the hip, soil near the face, and soil near the hip daily for the first 21 days of decomposition. 

Samples were then sequenced for the 16S and 18S rRNA genes to evaluate the microbial community 

composition. Models to estimate PMI were generated using the Random Forest algorithm with nested 

cross-validation.  

Results showed that the microbial diversity of decomposition soils decreased over time, likely 

due to environmental selection for specific organisms such as Clostridiales, Pseudomonodales, and 

Xanthamonadales. The environmental conditions of the anthropological research facilities used in this 

study led to distinct differences in microbial communities by location, but patterns of succession were 
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still present. Models constructed to predict PMI from the microbial community were accurate within 49 to 

92.33 ADD, which is equivalent to 3 to 5.82 days. Models were more accurate when greater taxonomic 

resolution was used in training. Overall, these results demonstrate that the patterns of microbial 

succession are predictive of PMI, even across different environments. 

 

Introduction 

During life the vertebrate microbiome is highly diverse and works in symbiosis with the 

metabolic functions of the body to maintain a functional homeostasis. However, after death the loss of 

this homeostasis changes the environment; temperatures decrease and the loss of circulation changes 

oxygen and nutrient availability within and on the body. In outdoor terrestrial settings, the complex 

process of decomposition proceeds in relatively predictable patterns, as the remains move through stages 

generally described by their visual condition: early decomposition, active decay, and advanced decay [1]. 

Each of these stages is accompanied by distinct physiological changes; early decomposition is 

characterized by skin slippage, hair loss, and fluid purging, active by bloating and rupture, and advanced 

by tissue loss and partial skeletonization [2,3]. During these physiological changes of the remains, the 

microbial communities associated with both the remains and the decomposition-associated soils are also 

shifting as organisms take advantage to the sudden release of high-quality nutrients and changes in 

temperature and oxygen availability. The patterns in microbial succession observed during the 

decomposition process are likely highly conserved, as similar microbial functions have been required to 

breakdown vertebrate remains on evolutionary timescales. As a result, microbial ecology of decomposing 

vertebrates has been a subject of recent study demonstrating predictable patterns of microbial succession 

in mice, swine, and small-scale human experiments [4–7]. Recently, researchers have used machine 

learning algorithms to model these patterns, providing new information about the ecological trends and 

predicting the time since death of the remains [4,7–9,5]. In addition to increasing our knowledge of the 

decomposition environment, these advances have the potential to assist in forensic investigations. 
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In the field of forensic science, the time since death, or postmortem interval (PMI), is a critical 

metric as it can support the identification of victims or suspects, validate alibis, and aid in the distribution 

of death certificates. In the first 48 to 72 hours following death there are several tools available to death-

scene investigators such as observation of rigor mortis, algor mortis, and livor mortis [10]. After these 

conditions have lapsed, though, investigators must rely on less accurate estimators such as forensic 

entomology and visual appraisal. Forensic entomology is one of the most commonly used methods for 

late-term PMI estimation under current standards; it involves an analysis of the insects, most commonly 

blowflies, that have colonized the remains and their life stage at the time of discovery [11,12]. These 

estimates are impacted by the knowledge and ability of an investigator to identify the insects precisely, 

the impact of environmental conditions such as air temperature and humidity on fly development, and the 

uncertainty surrounding how quickly the remains are colonized, leading to highly variable PMI 

predictions [13,14]. Given these limitations, there is a need for more accurate, additional methods to use 

in conjunction with this commonly applied method. Therefore, we investigate the potential for utilizing 

microbiome changes over decomposition as a forensic tool. Our objectives included (1) identify patterns 

in microbial diversity and taxonomy during human decomposition in skin and decomposition soils across 

distinct environments and (2) determine the utility of amplicon sequencing-derived microbiome data in 

predicting the postmortem interval within the first 21 days of decomposition. 

 

Results and Discussion 

Sequencing results 

To evaluate the changes in the microbial community composition during decomposition, a total of 

36 donated human remains were placed outdoors to decompose at three anthropological research stations 

in diverse regions on the United States throughout a year. At each facility, three cadavers were placed to 

decompose each season (spring, summer, fall, winter) to represent the environmental conditions of an 

entire year. Remains included in the study were all in the fresh stage of decomposition, had been stored in 

cooler conditions from the time of death to the time of placement, and had not undergone autopsy. 
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Beginning on the day of placement, sterile swabs were used to collect microbial samples from the skin of 

the face, skin of the hip, soil near the face, and soil near the hip of each set of remains, as well as a control 

soil sample from a site at the facility with no remains. Samples were collected for the first 21 days of 

decomposition, beginning the day of placement. The microbiome was evaluated using amplicon 

sequencing of the 16S and 18S rRNA genes following the Earth Microbiome Project protocols on the 

miSeq and hiSeq platform, respectively. In total, 4,139 samples were sequenced, including 592 negative 

and no-template controls. Sequencing resulted in a total of 89,288,561 16S rRNA partial gene reads and 

1,543,472,127 18S rRNA partial gene reads. After denoising this resulted in 583,683 16S rRNA and 

509,301 18S rRNA amplicon sequence variants (ASVs). The 16S rRNA data were filtered to removed 

sequences that represented chloroplasts and mitochondria, resulting in 518,835 total ASVs. The 18S 

rRNA data were filtered to remove sequences that represented Bacteria, Archaeplastida, Arthropoda, 

Chordata, Mollusca, and those that were unassigned, resulting in 105,522 total ASVs. Negative and no-

template control samples were analyzed to determine contamination within the samples. Within the 16S 

rRNA dataset, the number of ASVs present in these samples ranged from 0 to 3,125, with an average of 

114.38 ASVs/sample. These values were low abundance and below the threshold used for rarefaction, so 

the samples were considered uncontaminated. Within the 18S rRNA dataset the number of ASVs ranged 

from 0 to 14,971 with an average of 1,085.59 ASVs/sample which were generally in low abundance. The 

few controls that were above the rarefaction threshold clustered separately from samples on PCoA and 

have low alpha diversities, and so were also considered acceptable. Negative controls were also removed 

from the dataset for further analysis. 

 

Patterns of microbial succession over time 

The microbial communities associated with skin change dramatically during the decomposition 

period, a pattern primarily associated with the changes in oxygen availability and decomposition state. 

Bacterial diversity decreased from early to active and advanced decay, while eukaryotic phylogenetic 

diversity increased from early to active and advanced decay. This is consistent with data previously 
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reported in other studies that evaluated the postmortem skin microbiome [4,9,15]. The decrease in 

bacterial diversity can be explained by resource limitation as decomposition progressed and by a shift to 

more anaerobic organisms. During early decomposition, the microorganisms present in the internal tissues 

of the remains produce gasses during metabolism that fill the abdomen This environment allows for rapid 

growth of the anaerobic organisms present. As the soft tissues decay, these organisms are released, at 

which point they could be detected by the methods used in this experiment. The increase in eukaryotic 

diversity is likely due to a very low presence of microbial eukaryotes on living human tissue, leaving an 

open niche for these organisms as they assembled from the gravesoil during decomposition. These trends 

were further elucidated by the changes in specific organisms observed over time. Within these skin 

samples, Bacteroidales (W = 216), several orders within Firmicutes (W = 216), and 

Gammaproteobacteria (W > 211) organisms increased in abundance over time, while Cardiobacteriales 

(W = 216) increased in relative abundance during active decay and then decreased during advanced, as 

demonstrated by an analysis of composition of microbiomes. The skin environment does not become 

anaerobic during active decay, so many of the anaerobes that grow in the soil are not abundant in the skin 

communities. However, the increase in other copiotrophic organisms is expected and follows the patterns 

relating to nutrient presence and are likely migrating from the soil rather than originating from the skin. 

Therefore, it can be hypothesized that the nutrients and enteric anaerobes contributed by the remains 

influence the native soil microbes to cause a dynamic community shift that can be indicative of the 

decomposition timepoint. 

The microbial diversity associated with gravesoils decreases over time, likely due to 

environmental selection for specific organisms. Microbial diversity data are presented in Figure 5.1 (A, 

B). Initially, the microbial diversity was high, as is expected from environmental soil samples. After 

placement of the remains and the beginning of decomposition, the bacterial phylogenetic diversity 

decreased significantly (P < 0.05) during each stage of decomposition. Microbial eukaryotes had a lower 

diversity in initial soil samples, which was maintained throughout early. Then, diversity increased 

significantly (P < 0.05) during active decay before decreasing close to initial levels during advanced 
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decay. These results agree with those described by Metcalf et al. in a similar experiment [4]. It is well-

established that soil harbors a diverse microbial community, but the input of concentrated nutrients can 

quickly alter the composition [16,17]. During vertebrate decomposition, nutrients, including amino acids, 

phospholipids, and sugars, are deposited into the soil and the release of fluids can create anaerobic micro-

environment, altering the microbial growth conditions [18]. This nutrient pulse is the likely driver of the 

observed shift in diversity as organisms with the ability to metabolize these compounds dominate the 

community. The increase in eukaryotic diversity may be in response to growth in bacterial populations, as 

the bacterial cells themselves may provide nutrients to these organisms. Interestingly, the microbial 

communities of soil samples become more similar over time (Fig. 5.1 C, D) even as diversity increased, 

which suggests that, regardless of the initial microbial community, the postmortem microbiome will move 

towards a more consistent and conserved state, perhaps due to the consistent appearance of particular 

decomposition-associated taxa. 

 
Figure 5.1. Microbial diversity patterns over time and environment. A) Phylogenetic alpha diversity 
changes in bacterial (16S) communities, in skin and soil, within three anthropological research facilities 
(Colorado Mesa University, CMU; Sam Houston State University, SHSU; University of Tennessee 
Knoxville, UTK). The horizontal axis uses accumulated degree day as proxy for days of decomposition, 
and graph is colored to represent distinct stages of decomposition. B) The phylogenetic alpha diversity 
changes in microbial eukaryotic (18S) communities in both skin and soil samples across research 
facilities. C) A principal coordinates analysis of bacterial community dissimilarity calculated using 
generalized Unifrac with a weight of 0.5 within skin (left) and soil (right) samples. Colors represent 
accumulated degree day and shapes represent the research facility. D) A principal coordinates analysis of 
microbial eukaryotic community dissimilarity within skin (left) and soil (right) samples. 
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Microbial community assembly patterns were further confirmed with an analysis of deterministic 

processes. Pairwise comparisons were made between samples within a facility and decomposition stage 

using the ß-nearest taxon distance metric to demonstrate phylogenetic contributions to the community. 

These values were compared to null models that represent a phylogenetic community that would form due 

to chance to calculate the ß-nearest taxon index (ßNTI). Absolute values greater than 2 indicate that the 

difference between the communities is governed by deterministic processes, and less 2 indicates that the 

differences are stochastic. In this dataset, changes between samples in early decomposition were generally 

governed by homogenizing dispersal, which suggests that the environmental conditions (i.e. nutrient 

availability) drove microbial communities to become more similar than by random chance (Fig. 5.2). The 

observation of these processes during early decomposition further demonstrates the shift to a consistent 

microbial decomposition community within a facility over time. By advanced decay, the differences 

between communities were more stochastic, which shows less environmental pressure governing 

community assembly. Communities within a facility at this point have become similar due to the selective 

pressure of the decomposition environment, so variation is no longer driven by external conditions. 
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Figure 5.2. ßNTI values representing comparison within facility and decomposition timepoints to 
demonstrate community selection patterns. Values greater than 2 (yellow) represent variable selection and 
values less than -2 (purple) represent homogenizing selection. Values between -2 and 2 (white) represent 
stochastic assembly. 
 

The shift in taxonomic composition of the microbial community further demonstrates a microbial 

response to the input of concentrated nutrients. Moreover, the taxa that changed in abundance over time in 

the soil samples were very similar to those in the skin samples, indicating a likely transfer of organisms 

between the two sample types. Beginning after placement, Clostridiales (W = 364), Pseudomonadales (W 

= 364), Xanthamonadales (W = 364), Bacteroidiales (W = 364), Enterobacteriales (W = 364), 

Lactobacillales (W = 364), Fusobacteriales (W = 364), Trichosporonales (W = 351), and Nematozoa (W = 

348) all increase in relative abundance through all stages, as demonstrated by the analysis of composition 

of microbiomes (Fig. 5.3). Clostridiales, Pseudomonadales, and Xanthamonadales are soil-associated 

organisms that are likely in lower relative abundance until nutrients are available; specifically, Clostridia 

are spore-forming organisms that can remain dormant until nutrients are sufficient to support growth, 

Pseudomonodales are important to the decarboxylation of amino acids leading to rapid growth during 

protein breakdown, and Xanthamonadales are slow-responding and will develop best in conditions of 

nutrient re-introduction [19,20]. Lactobacillales and Fusobacteriales are human-associated organisms 

that are likely introduced to the soil after gut rupture and thrive in the anaerobic micro-environment 

created by the decomposition fluids. Microbial eukaryotes, notably the Nematozoa, have previously been 

shown to alter microbial diversity by creating through predation of the bacteria [21]. The growth of these 

organisms, therefore, is both supported by and likely necessary for the assembly of the bacterial 

communities during decomposition. Another bacterial order, Micrococcales, decreased in abundance over 

time (W = 364). These oligotrophic organisms grow preferentially in low-nitrogen conditions, so it is 

likely the high-nitrogen environment created by decomposition of human remains inhibits growth of these 

organisms [22]. Finally, several microbial groups surged in relative abundance during the active decay 

stage, including Cardiobacteriales (W = 364), Rhodobacterales (W = 364), Saccharomycetales (W = 351), 

Chaetothyriales (W = 351), and Filobasidiales (W = 351). Cardiobacteriales have previously been 
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associated with high amounts of ammonia, which is likely accumulating in the soil following the 

metabolism of the organisms mentioned above [23]. These patterns in taxonomic shift agree with those 

previously reported in decomposition environments [4]. Overall, as microbial diversity decreases, the 

environment selects for the presence of specific taxa based on nutrient content and oxygen availability. 

These clear changes demonstrate succession patterns in the soil community composition. 
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Figure 5.3. Relative abundances of microbial orders within a sample type and facility (Colorado Mesa 
University, CMU; Sam Houston State University, SHSU, University of Tennessee Knoxville, UTK). Bars 
on the left represent the microbial phyla. Top: Bacterial orders obtained from 16S rRNA gene sequencing. 
Bottom: Microbial eukaryotic orders obtained from 18S rRNA gene sequencing. Relative abundances of 
taxa in individual samples were averaged within a group and decomposition stage 
 

Decomposition microbiomes are differentiated by environment 

The environmental conditions of the anthropological research facilities used in this study were 

associated with distinct difference in microbial communities by location. The Colorado Mesa University 

Forensic Investigation Research Station (CMU) is located in a high-altitude desert, where the soil is sandy 

and contains low nutrient quality and sparse plants and the environment is generally low temperature and 

arid. Conversely both the Sam Houston State University Southeast Applied Forensic Science Facility 

(SHSU) and the University of Tennessee Knoxville Forensic Anthropology Center (UTK) are located in 

sub-tropical climates with high temperatures, mild to high humidity, and high-nutrient soils with 

vegetation and tree cover. This difference in environmental conditions is associate with distinct microbial 

community compositions between the locations. The beta diversity was calculated using a generalized 

UniFrac metric with a weight of 50% and visualized using a PCoA analysis (Fig. 5.1B, 5.1C). The skin 

samples were relatively homogenous regardless of the facility. However, the soil samples clustered 

distinctly by facility, with the SHSU and UTK samples more similar to each other than to the CMU 

samples, especially in the 16S analysis. These clusters remain distinct over time, but soil microbiomes do 

appear to become more similar across facility as the decomposition period increased, which suggests that 

the differences across facility are likely driven by the initial microbial population, as opposed to distinct 

microbial succession patterns. 

The distinct microbial community found at the CMU facility is more likely driven by the 

presence of specific organisms rather than overall diversity. To elucidate the inherent differences between 

facility, an analysis of only soil samples collected on the day of placement of the remains was conducted. 

An evaluation of the bacterial alpha diversity of these samples revealed that CMU was similar to SHSU 

based on a phylogenetic metric (P > 0.05) but had a significantly lower richness (P < 0.05). An analysis 
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of composition reveals several taxa that are differentially abundant between these facilities. Soils at CMU 

had a higher abundance of Azospirillales, Deinococcales, Nostocales, Mitrotrichales, and 

Rhodobacterales, which are generally oligotrophic organisms that are likely selected for in the low-

nutrient soils. Soils at SHSU had a higher abundance of Micropepsales, which is associated with plant 

roots and may be selected for by the vegetation at the facility, Acidobacteria which may be associated 

with needles from the pine trees at the facility, and Acetobacterales. Both facilities exhibited lower (P < 

0.05) diversity soil samples than UTK. But the difference in initial soil samples between SHSU and UTK 

must be quickly overcome, as the communities quickly become similar during decomposition. The alpha 

diversity of microbial eukaryotes was significantly different between all facilities for both methods (P < 

0.05). The lowest diversity was at CMU and highest at UTK. The diversity of microbial eukaryotes has 

been shown to be less correlated to environmental conditions than prokaryotes but can still be influenced 

by soil pH and moisture, which may be driving this result [24]. It was also possible that the differences in 

initial soil microbiomes were driven by sampling bias at the facility; it was noted that there were different 

amounts of residual soil on swabs at different facilities, which could impact the diversity of organisms in 

the sample. To test whether this changed the outcomes, an analysis of bulk soil samples that were 

collected from control plots at the facilities during the experiment were sequenced following consistent 

methods across facility. In this analysis, the diversity of soil from CMU was still lower (P < 0.05) than 

the other facilities, but there was no difference between SHSU and UTK soil diversity (P > 0.05). So, 

while trends remain consistent, perhaps some differences between the two facilities were confounded by 

sampling bias. Overall, although there is still evidence of microbial succession during the decomposition 

period within each facility, the differences in microbial community composition driven by location and 

environment may impact the ability to predict decomposition time. 

 

Predictive models to estimate postmortem interval 

To determine the utility of an amplicon sequence model of microbial succession to predict PMI, 

machine learning models using the Random Forest algorithm were trained on both 16S and 18S data. 



 136 

These models were constructed using nested cross-validation to assess model accuracy and prevent 

overfitting. Models were trained for each sampling site (skin.face, skin.hip, soil.face, soil.hip) for each 

amplicon. Results showed that, overall, bacterial data were able to estimate PMI within 49.00 to 92.21 

ADD, which is equivalent to approximately 3 to 5.8 days, and microbial eukaryote data were able to 

estimate PMI within 62.02 to 92.33 ADD, which is equivalent to 3.91 to 5.82 days (Fig. 5.4). These 

results are similar to those obtained in previous studies using machine learning to estimate PMI [4,9]. The 

bacterial models were generally more accurate than the eukaryotic models, which agrees with previous 

studies that also reported highly accurate bacterial models and lower accuracy in eukaryotic and fungal 

models [4,8]. 

Both bacterial and microbial eukaryotic models accurately predicted PMI at high taxonomic 

resolution. Models were constructed using taxonomic data at each level (i.e., phylum, class, order, etc.) to 

determine whether higher resolution improved the model, or whether the patterns were conserved at 

higher taxonomic orders. The most accurate models to predict PMI using skin bacteria were trained on 

species-level taxonomy and resulted in errors of 49 and 51.69 ADD for face and skin sites, respectively. 

The most accurate models to predict PMI using soil bacteria were trained on genus level, with best errors 

of 57.84 and 60.43 ADD for face and hip sites, respectively. Within microbial eukaryote models, the 

lowest (most accurate) general errors for each sample site were trained at the species-level taxonomy; 

62.02, 67.43, 64.11, and 70.93 ADD for skin.face, skin.hip, soil.face, and soil.hip, respectively. Within all 

models the accuracy improved consistently with increased taxonomic resolution but remains very similar 

for genus- and species- level models. These results contradict those published in a recent meta-analysis, 

but could be explained by more homogenous samples (only human vs human and mice) and updated 

databases in the current study [8]. However, this pattern in accuracy has been previously reported, 

suggesting that the results seen here are reasonable [5]. These findings reflect that the accuracy of 

microbial succession models as a predictive tool is dependent on the quality of the databases. 
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Figure 5.4. Nested cross-validation errors associated with random forest regression machine learning 
models. Models were trained on microbial abundance data at each taxonomic level to estimate the 
postmortem interval (PMI). PMI is represented by accumulated degree day as a proxy for days of 
decomposition. 
 

Models generated from skin and soil samples resulted in similar accuracy, which suggests the 

patterns in microbial succession is similarly predictive regardless of sample site. The average of general 

errors for all bacterial models were 67.4 and 69.5 ADD and for all eukaryotic models were 73.4 and 72.4 

ADD for skin and soil, respectively. The similar errors reflect the patterns seen in diversity and 

taxonomy; namely, that different organisms drove the succession patterns, but predictable succession still 

occurred within each group. Additionally, this further supports the hypothesis that microbes are migrating 

between skin and soil during the decomposition period, thus creating similar patterns between the two 

groups. Similarly, the difference between model errors for samples from the face vs hip was negligible, 

indicating that the same patterns in succession occur regardless of what position on or near the remains is 
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sampled. Previous research has shown that, in living humans, the skin microbiome is distinct at different 

sampling sites; notable, navel samples clustering separately from forehead and hand samples [25]. If the 

living microbiome had a strong impact on the decomposition microbiome, therefore, it would be expected 

that the succession patterns would be different between the face and hip body sites in this experiment. 

That no major differences were observed suggests that the initial microbiome does not have a major 

impact on the decomposition environment, at least within a sample type (i.e. skin, soil). This also has 

implication for the use of these models to estimate PMI in forensic investigations. It will be simpler to 

instruct crime scene investigators in how to collect the appropriate samples for this analysis if precision is 

not necessary to achieve an accurate result. Moreover, this method could likely still be applied in 

situations where taking a sample from on specific point is not possible; for example, if there is no 

available skin at given location due to scavenger activity or the soil has been disturbed. 

 

Amplicon data compared to metagenomic data to represent microbial succession 

Models constructed using amplicon data can be a valuable tool to estimate PMI even when 

compared to shotgun metagenomics. It has been suggested that metagenomic data may be more useful in 

constructing accurate models as the data are less limited by the amplicon databases and information. 

However, metagenomic data are more expensive to produce due to greater sequencing requirements and 

are more complicated to process. In the same experimental samples used here but presented in a in prep 

study by Burcham et al, shallow shotgun sequencing was conducted on all of the skin.hip samples. This 

allowed for comparisons of diversity, taxonomy, and model accuracy with the 16S sequencing results to 

determine whether 16S rRNA gene sequencing accurately represents the microbial community. 

Correlation and Mantel testing was used to determine the similarities in diversity between the 16S and 

metagenomic data, and found that, overall, results of both methods were highly correlated, and the 

clustering patterns seen in the principal coordinates analysis were visually similar (Fig. 5.5). Moreover, 

both methods also identified similar microbial taxonomy, though the correlation was reduced as the 

resolution increased, which does demonstrate the limitations of amplicon sequencing methods. Models 
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trained using the metagenomic assignments resulted in an accuracy of 64.11, which can be compared to 

the soil.hip model from the amplicon data (MAE = 60.43). Therefore, despite less distinction in high-

resolution taxonomy assignments, amplicon sequencing is a highly accurate measure for PMI from 

bacterial data. 

 

 
Figure 5.5. Correlations between 16S rRNA gene sequencing and shallow shotgun metagenomic 
sequencing data. A) Phylogenetic alpha diversity comparison using the Faith’s diversity metric shows a 
correlation of 0.74. B) Beta diversity principal coordinates analysis measured by generalized Unifrac with 
a weight of 0.5 of 16S sequencing data (top) and metagenomic sequencing data (bottom) with the x-axis 
as accumulated degree day (ADD). Correlation between distance matrices was 0.84. C) Correlation in 
relative abundances of bacterial phyla between 16S data and metagenomic data. 
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Conclusions 

This study confirms the existence of a predictable pattern of microbial succession within human 

decomposition environments. This pattern appears to be driven primarily by the addition of nutrients into 

the soil, which is followed by a change in the microbial community from primarily oligotrophic 

organisms to dominated by copiotrophs able to utilize the new metabolites being contributed. In early to 

active decomposition, deterministic processes drive microbial communities to become more similar 

within a location, which further confirms the formation of a consistent, predictable decomposition 

microbiome. 

This conclusion is limited, however, by the use of amplicon sequencing data and should be 

confirmed by metagenomic and metabolomic study. The initial microbial community assembles based on 

location, with distinct environmental conditions altering the diversity and specific organisms present in a 

location. However, the process of microbial succession appears to occur regardless of initial microbiome. 

Models predicting PMI from these succession patterns were highly accurate but may not be easily 

extrapolated to environments beyond those included in this study. However, the addition of data from 

novel environments to the model will improve its utility as a forensic tool. Therefore, more study is 

necessary to establish amplicon sequencing as a universally applicable method for estimating PMI in 

forensic investigation. 

 

Materials and Methods 

Experimental Design and Sample Collection 

To assess the patterns in microbial succession during decomposition in different locations, 

donated human remains were placed at three anthropological research facilities in environmentally 

distinct regions of the Unites States. The Colorado Mesa University Forensic Investigation Research 

Station (Grand Junction, CO; CMU) is located in a high-altitude arid environment, the Sam Houston State 

University Applied Anatomical Research Center (Huntsville, TX; SHSU) is located in a piney woods 

ecoregion with a humid subtropical climate and sparse forest covering, and the University of Tennessee 
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Knoxville Forensic Anthropology Center (Knoxville, TN; UTK) is located in a temperate region naturally 

forested with oak, maple, and hickory trees. 

Twelve human remains were placed at each facility, four in each season to represent all climactic 

conditions within that location (n = 36). All remains were obtained through willed-body donation 

programs at the facilities, and inclusion criteria required that the remains were in the fresh stage of 

decomposition and were not be frozen or autopsied prior to placement at the facility. All remains were 

placed unclothed and prone in the outdoor facilities and allowed to decompose under natural conditions 

for 21 days, beginning on the day of placement. Samples were collected daily using sterile dual SWUBE 

swabs (BD; Franklin Lakes, NJ) taken from the skin of the face, skin of the hip, soil associated with the 

face, and soil associated with the hip, and soil from a control plot with no remains. Swabs were frozen 

immediately after sampling and were transported to the University of Colorado (Boulder, CO) at the 

conclusion of the sampling period for analysis. During the sampling period, additional metadata were 

measured and collected, including environmental data (temperature, humidity, soil temperature) and the 

condition of the remains (cause of death, initial body condition, Megyesi total body score, maggot 

presence, scavenging activity). In order to compare remains that were placed on different days and in 

different locations, accumulated degree day (ADD) was used as a proxy for day of decomposition to 

describe the postmortem interval (PMI). Accumulated degree day was calculated using a base of 0°C, 

where: Degree Day (DD) = (average temperature / 2) – base temperature and ADD = (DDx) + (DDx + 1), 

where x = 24h period. 

 

DNA Extraction and Sequencing 

To evaluate the microbial composition during the decomposition period, sampled were subjected 

to 16S and 18S rRNA gene sequencing, which provide information on bacteria and microbial eukaryote 

presence, respectively. DNA extraction and next generation sequencing library preparation were 

conducted at the University of Colorado (Boulder, CO) following Earth Microbiome Project protocols 

(EMP; www.earthmicrobiome.org/protocols-and-standards) [26]. DNA was extracted in 96-well plates 
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from one head of the two-headed swab taken at each sample site using the PowerSoil DNA Extraction Kit 

(Qiagen; Hilden, Germany) following manufacturer instructions. Each 96-well plate included eight 

negative control samples to evaluate the sequencing quality. 

Following extraction, DNA extracts were transported to the Knight Lab at University of 

California San Diego (La Jolla, CA) for library preparation and sequencing. The total genomic DNA was 

amplified to target informative amplicons using PCR. For bacterial and archaeal testing, the V4 variable 

region of 16S rRNA gene was targeted using the EMP bacterial primer set 515f/806r 

(www.earthmicrobiome.org/protocols-and-standards/16s/). Microbial eukaryote sequences were targeted 

using the 18S rRNA gene with EMP primers Euk1391f and EukBr with an additional mammal blocking 

primer (www.earthmicrobiome.org/protocols-and-standards/18s/). For both 16S and 18S sequences, PCR 

products were quantified using Picogreen Quant-iT (Invitrogen, Life Technologies, Grand Island, NY) 

and pooled at equimolar concentrations. No-template controls were also included in the pools for each 

amplicon type. Each amplicon pool was purified using the UltraClean PCR Clean-up Kit (Qiagen; Hilden, 

Germany). 16S rRNA pools were sequenced using a 300-cycle kit on the Illumina miSeq sequencing 

platform (Illumina, San Diego, CA) and 18S pools using a 300-cycle kit on the Illumina hiSeq 2500 

sequencing platform (Illumina, San Diego, CA). 

 

Data Analysis 

Microbial Ecology Analysis 

After data generation, sequence data were analyzed in the Metcalf lab at Colorado State 

University (Fort Collins, CO) using the QIIME2 analysis platform versions 2020.2 and 2020.8 [27]. 

Sequences were quality-filtered and demultiplexed using error-corrected Golay barcodes to prevent 

misassignment. Reads were 150bp in length. Sequences were then classified into amplicon sequence 

variants (ASV) within a sequencing run using the deblur denoising method [28]. Feature tables and 

representative sequences obtained from denoising each sequencing run were then merged to create 

complete data for each amplicon method. Taxonomic identifiers were assigned to the ASVs using the 
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QIIME feature-classifier classify-sklearn [29]. For the 16S rRNA data these assignments were made using 

the SILVA 132 99% classifier for the 515f/806r gene sequence. ASVs that assigned to chloroplast or 

mitochondria were filtered out of the dataset before continuing analysis. For 18S rRNA data the 

RESCRIPt plugin to extract the full 14-level taxonomy from sequences matching the primers used in 

sequencing from the SILVA 138 99% database, dereplicate the extracted sequences, and train a classifier 

to assign labels to ASVs in the feature table [30]. This taxonomy was used to filter out ASVs that 

assigned to Archaeplastida, Arthropoda, Chordata, Mollusca, Bacteria, or were unassigned.  

Microbial diversity metrics were generated for both amplicon types using the QIIME 

phylogenetic diversity plugin. The phylogenetic trees were constructed for each amplicon using the 

fragment-insertion sepp method [31] against the SILVA 128 99% reference tree. Alpha diversity metrics 

were calculated using the observed features and Faith’s phylogenetic diversity formulas and statistical 

comparisons were made using the Kruskal-Wallis pairwise test with a Benjamini-Hockberg multiple-

testing correction at an alpha of 0.05 [32]. To evaluate beta diversity, the generalized Unifrac method 

with a weight of 0.50 was used to calculate dissimilarity and statistical comparisons were made using 

PERMANOVA with multiple testing correction and an alpha level of 0.05 [33]. Taxonomy and alpha 

diversity visualizations were created using ggplot2 and the viridis package in R [34]. Beta diversity 

principal coordinate plots were constructed using the Emperor tool in QIIME2 [35]. Differential 

abundance testing was completed using the Analysis of Composition of Microbiomes function in QIIME2 

[36]. 

To compare the detection of microbial succession patterns between amplicon and metagenomic 

data, metagenomic sequencing was conducted on the samples taken from soil near the hip during the 

same experiment. Metagenomic data and analyses are part of Burcham et al. (in prep). Correlations for 

alpha diversity metrics and taxonomy relative abundance information with the 16S rRNA gene 

sequencing outcomes were constructed using the cor.test() function in R and visualized using ggplot2 

[34,37]. Correlations of dissimilarity matrices between shotgun sequencing data and 16S rRNA gene 

sequencing data were made using the Mantel test function in QIIME2 [38]. 
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To determine whether microbial community assembly was governed by stochastic or 

deterministic processes, a pipeline developed by Danczak et al., originally described in Stegen et al., was 

used [39,40]. First, the ß-mean-nearest taxon distance (ßMNTD) was calculated to quantify the 

phylogenetic distance between each ASV in the community and its closest relative in a second 

community. Then, a randomization method shuffled ASV sequence and abundance across the tips of a 

phylogenetic tree and the ßMNTD was recalculated to give a null distribution. The difference between the 

observed ßMNTD and the null, referred to as the ß-nearest taxon index (ßNTI) was measured in units of 

standard deviation. A ßNTI value of <-2 indicates homogenous selection is occurring and a ßNTI value of 

>2 indicates variable selection, both of which are forms of deterministic structuring. Other values indicate 

stochastic processes are occurring in the community assembly. 

 

Machine Learning Model Construction 

To determine whether the microbial community composition could predict PMI, informative 

models were constructed using the machine learning algorithm Random Forest Regression. In 

construction of these models, the microbial data in biom format was used as the predictor and ADD was 

used as the response variable. Data were rarefied and imported into python using the Calour library [41].  

Models were constructed with the Random Forest Regression algorithm with a nested k-fold 

cross-validation with hyperparameter tuning. Models were constructed with grouping so all data from 

each individual host (remains) was placed in a validation fold together. An outer validation with 36 folds 

was created using a leave-one-out method to estimate a general error. The inner validation was conducted 

by creating training and testing sets within the 35 remaining folds. The accuracy of these models was 

assessed during cross-validation and measured using the mean absolute error (MAE), calculated as the 

deviation of the predicted from observed values and represented in the same unit as the original data 

(ADD). The models with the lowest error after hyperparameter tuning were considered the most accurate. 

This method was applied to subsets of the data as was necessary to answer specific research questions. 
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Within the amplicon dataset, models were generated for each sampling site (skin.face, skin.hip, 

soil.face, soil.hip). These models were constructed using microbiome data at several levels of taxonomic 

resolution (ASV, species, genus, family, order, class, phylum) to determine which resolution resulted in 

the most accurate model. Facility was also included as a predictor feature in these models to adjust for 

distinct microbial signatures in different locations. Recursive feature elimination was used to determine 

which features contributed to the most accurate final model. All modeling was conducted using the 

python machine learning package scikit-learn v19.0 [42]. Results were visualized using ggplot2 in R [34].  
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CONCLUSIONS 

 
 
 

The studies in this dissertation range a wide variety of research fields and industries, from built 

environment design to forensic science. In this work, I first demonstrated how microbial communities 

assemble in food processing facilities, showing that the microbiome present within the facilities is closely 

linked to the site of introduction, the temperature and other environmental conditions in a space, and the 

physical barriers separating rooms of different functions. Then, I presented our research on the 

microbiome of chicken spoilage, and how it can be impacted by the chilling method. This research could 

lead to improvements in product shelf-life and reduction of food waste due to spoilage. Finally, I show 

two research projects that investigate the patterns of microbial succession in postmortem remains and 

associated soils. These studies present novel findings regarding the mechanisms by which microbial 

communities assemble in postmortem environments, the microbial role in nutrient cycling during 

vertebrate decomposition, and the potential relationships between specific organisms and their 

environments. These data also demonstrate the utility of microbial succession patterns as a forensic 

investigation tool to estimate the postmortem interval of human remains. 

Despite the diversity of these experiments, they all provide insight about how microbial 

communities assemble in different environments and how nutrient availability and environmental 

conditions impact microbial succession over time. In two of these studies, I demonstrate potential routes 

by which microbes are introduced to the environmental systems. In a meat processing facility, the animals 

and human employees of the space introduce organisms from feces and skin. In decomposition 

environments, evidence suggests that the microorganisms are already present in the environment. The 

microorganisms associated with the host are introduced into this environment, but the human signature is 

lost during the decomposition period. There are several differences between these environments that 

contribute to the differences in microbial origin and the persistence of the signature. Foremost is likely the 

cleanliness of the environment, as the meat processing facility is cleaned and sanitized daily, and the 

microbial diversity of the environment. But, taken together, these studies show that microbes present in an 
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environment are introduced by occupants of the environment, but the background communities can drive 

whether the newly introduced organisms remain part of the community. 

Patterns in microbial succession are also evident in all of the studies in this dissertation. Microbial 

communities in a given space change over time, but how they change is driven by the environment. 

Sudden shifts or pulses in nutrients cause different organisms to dominate. For example, during human 

decomposition the input of high-quality nutrients into the soil from the remains cause a bloom in 

copiotrophic organisms such as Clostridiales and Xanthamonadales. In the other environments presented 

here, nutrient availability is more consistent, leading to fewer changes in the community based on the 

organism metabolism. However, I also showed the impact of other environmental factors on community 

succession. Temperature is an important variable for community formation. In the meat processing 

environment, the microbial communities assembled differently based on the room function, with one of 

the major differences between these spaces being room temperature. In cold rooms, Pseudomonas and 

other thermophilic organisms dominated the community, while animal-associated organisms thrived in 

warm spaces. In chicken spoilage environments, both temperature and nutrients contribute to the 

community. The high-protein environment coupled with chilled produce in aerobic packaging also 

contributed to the dominance of Pseudomonas in the decomposition community. 

Interestingly, the microbiome of decay is similar, regardless of the decomposition environment. 

In both chicken product spoilage and human decomposition, the microbial community formation is driven 

by nutrients, oxygen availability, and temperature, as described above. Moreover, similar organisms are 

involved in decomposition, as similar metabolisms must be present in both situations. Namely, 

proteolysis must occur to fully breakdown the remains, which makes organisms like Pseudomonas spp 

very important to the microbial community. The human decomposition microbiome is more diverse, 

especially due to the contribution of soil microorganisms, which are intentionally excluded from chicken 

spoilage environments. The decreased diversity in chicken products contributed to Pseudomonas 

dominating the environment while the human decomposition environments maintain a broader 

community. 
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In this dissertation, I demonstrate that studies from multiple fields can be combined to answer 

important ecological research questions. Moreover, I present practical applications for our understanding 

of microbial ecology. Future research based on these studies could inform the future of food processing 

facility design, poultry processing systems, food waste reduction, and forensic investigations. I also 

further establish the value of microbiome analysis as a research tool to answer questions across 

disciplines. 
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APPENDIX A: CHAPTER 3 SUPPLEMENTARY MATERIALS 
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SI Figure 3.1. Relative abundances of fatty acids present in air (AC) and water chilled (WC) chicken 
meat. A) All fatty acids present in the samples. B) The ‘rare’ fatty acids present at <10% relative 
abundance. 
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SI Figure 3.2. A comparison of positive control samples (ZymoBIOMICS D6300) and the standard 
expected composition as described by the company. 
 
 

 
SI Figure 3.3. Model prediction errors using the microbiome data as a predictor and spoilage indicators 
as response variables. Model predicting whether the product has reached a spoilage state based on 
psychrotrophic bacterial counts. Model testing resulted in an accuracy score of 75%. 
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SI Figure 3.4. Phylogenetic tree showing the evolutionary relationship between ASVs found in this study 
that assigned to the Pseudomonas genus. 
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SI Figure 3.5. The sensitivity analyses varied the following model values by ±50%: capital cost 
($/tonne), chilling floorspace (m2), processing rate (tonne/hour), chilling energy (kWh/tonne), worker 
capacity (tonne/hour), water use (L/tonne), water price plus water treatment cost ($/L), and electricity cost 
($/kWh). The resulting levelized costs for AC (upper panel) and WC (lower panel) systems demonstrate 
which aspects of each system have the most influence over the total levelized cost of chilling. For AC 
systems capital costs and labor costs have the most impact on the total levelized chilling cost, while water 
and labor costs have the most impact on WC systems. 
 
 
 
SI table 3.1. Average weight loss of chicken carcasses prior to and following chilling by either air 
chilling (AC) or water chilling (WC). On average the WC carcasses gained 5% of their pre-chilling 
weight while AC carcasses lost 1.6% of their pre-chill weight. 
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SI Table 3.2. Least square means of Mesophilic bacterial counts (log cfu/g) for bone-in and boneless 
chicken breast cooled by either air chilling or water chilling pre- and post-fabrication, pre and post 
chilling, during storage, during and after display. 
a-e Least square within a column with different superscripts differ (P<0.05) 

 
 
 

SI Table 3.3. Trained panelists were asked to evaluate chicken breasts for texture and flavor attributes on 
a 100-point scale. Within a column, values with the same letter were not significantly different (P > 0.05). 
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SI Table 3.4.  Analysis of nutrient composition (proximate analysis) values. Data are organized first by 
chilling method, including hot carcass (HC), air chilled (AC) and water chilled (WC) samples. Within 
day, data are then organized by sampling day, which includes not stored (day 0), 7 or 14 days of dark 
storage, and 3 days of retail display after removal from dark storage (day 10 and day 17). Within day, data 
is organized by fabrication method, including unfabricated carcass, bone-in breasts, and boneless breasts. 
Values with the same letter within a column are not significantly different (P > 0.05). 
 

 
 
 
SI Table 3.5. The most abundant Pseudomonas-associated ASVs associated with each chilling and 
storage group. The relative abundance of each ASV was averaged across samples within the group. 
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Figure S4.1. Plots of the Mean Absolute Error (MAE) of each model generated. For each marker type, 
models were generated for 3 sample types (skin_head, skin_torso, and soil) from each of 4 studies (mouse 
decomposition 1 (mdc1), mouse decomposition 2 (mdc2), SHSU human April (shsu_spring), SHSU 
human February (shsu_winter)). Skin of the head samples were not collected for the SHSU human winter 
experiment. Models were built using multiple time frames, including all sample days (mdc1: 48d, mdc2: 
70d, shsu_spring: 132d, shsu_winter: 82d), only the first 50 days of decomposition, and only the first 25 
days of decomposition. Models were built using Random Forest regression, trained on a subset of 
individuals within each sample type and tested on another individual. The MAE represents the best model 
for each sample type. (a) within study MAE for models trained on 16S rRNA data; (b) within study MAE 
for models trained on 18S rRNA data; (c) within study MAE for models trained on ITS data. 
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Figure S4.2. Plots of the Mean Absolute Error (MAE) for models generated on subsets of the data containing only 

the first 25 sampling days or sampling days 26-50. For each marker type, models were generated for 3 sample types 

(skin_head, skin_torso, and soil) from each of 4 studies (mouse decomposition 1 (mdc1), mouse decomposition 2 

(mdc2), SHSU human April (shsu_spring), SHSU human February (shsu_winter)). Skin_head samples were not 

collected for shsu_winter. Models were built using random forest classifiers, trained on a subset of individuals 

within each sample type and tested on another. The MAE represents the best model for each sample type. (a) MAE 

for models trained on 16S rRNA data; (b) MAE for models trained on 18S rRNA data; (c) MAE for models trained 
on ITS data. 

 

A B 
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Figure S4.3. The feature importance of the phyla that measures the contribution of each phylum to the PMI 

regression model (results from SHSU winter study). (A) The feature importance is correlated across 3 sample types. 

Each scatter plot shows the correlation between feature importances of every pair of models built from each sample 

type. Each dot represents a phylum and its value on the x- or y-axis represents its feature importance in the 2 models 

of sample types. The Spearman correlation coefficients for torso vs. soil is 0.68, with a p-values << 0.01. The 

diagonal histogram plots show that most of phyla do not contribute much to regression models of each sample type. 

(B) The top 10 phyla that are most informative for PMI prediction within each sample type. 

 
 

 

 
Figure S4. Random Forest regression models built from 16S rRNA, 18S rRNA, and ITS phylum data from models 

build using the human decomposition studies. Models in column 1 were trained on Spring body skin samples and 

tested on Winter body skin samples. Models in column 2 were trained on Spring body soil samples and tested on 
Winter body soil samples. Models in column 3 were trained on Winter body skin samples and tested on Spring body 

skin samples. Models in column 4 were trained on Winter body soil samples and tested on Spring body soil samples.  
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Figure S4.5. Random Forest regression models built from 16S rRNA, 18S rRNA, and ITS class data 
from models build using the human decomposition studies. Models in column 1 were trained on Spring 
body skin samples and tested on Winter body skin samples. Models in column 2 were trained on Spring 
body soil samples and tested on Winter body soil samples. Models in column 3 were trained on Winter 
body skin samples and tested on Spring body skin samples. Models in column 4 were trained on Winter 
body soil samples and tested on Spring body soil samples.  
 

 

 

 
Figure S4.6. Random Forest regression models built from 16S rRNA, 18S rRNA, and ITS order data from models 

build using the human decomposition studies. Models in column 1 were trained on Spring body skin samples and 

tested on Winter body skin samples. Models in column 2 were trained on Spring body soil samples and tested on 

Winter body soil samples. Models in column 3 were trained on Winter body skin samples and tested on Spring body 

skin samples. Models in column 4 were trained on Winter body soil samples and tested on Spring body soil samples.  
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Figure S4.7. Random Forest regression models built from 16S rRNA, 18S rRNA, and ITS family data from models 

build using the human decomposition studies. Models in column 1 were trained on Spring body skin samples and 

tested on Winter body skin samples. Models in column 2 were trained on Spring body soil samples and tested on 

Winter body soil samples. Models in column 3 were trained on Winter body skin samples and tested on Spring body 

skin samples. Models in column 4 were trained on Winter body soil samples and tested on Spring body soil samples.  

 

 
 

 
Figure S4.8. Random Forest regression models built from 16S rRNA, 18S rRNA, and ITS genus data from models 

build using the human decomposition studies. Models in column 1 were trained on Spring body skin samples and 

tested on Winter body skin samples. Models in column 2 were trained on Spring body soil samples and tested on 
Winter body soil samples. Models in column 3 were trained on Winter body skin samples and tested on Spring body 

skin samples. Models in column 4 were trained on Winter body soil samples and tested on Spring body soil samples.  
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Figure S4.9. Random Forest regression models built from 16S rRNA, 18S rRNA, and ITS species data from models 

build using the human decomposition studies. Models in column 1 were trained on Spring body skin samples and 

tested on Winter body skin samples. Models in column 2 were trained on Spring body soil samples and tested on 

Winter body soil samples. Models in column 3 were trained on Winter body skin samples and tested on Spring body 

skin samples. Models in column 4 were trained on Winter body soil samples and tested on Spring body soil samples.  
 

 

 
Figure S4.10. Random Forest regression models built from 16S rRNA, 18S rRNA, and ITS sequence variant data 

from models build using the human decomposition studies. Models in column 1 were trained on Spring body skin 

samples and tested on Winter body skin samples. Models in column 2 were trained on Spring body soil samples and 

tested on Winter body soil samples. Models in column 3 were trained on Winter body skin samples and tested on 

Spring body skin samples. Models in column 4 were trained on Winter body soil samples and tested on Spring body 

soil samples.  
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