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ABSTRACT 

 

 

IMPACTS OF CLIMATE CHANGE TO BREEDING AND MIGRATING WATERBIRDS IN THE PRAIRIE POTHOLE  

REGION 

 

 

The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains 

millions of small prairie wetlands that provide critical habitat to many migrating and breeding 

waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are 

considered at high risk for negative climate change effects as temperatures increase. Using a bioclimatic 

species distribution modeling (SDM) approach, I explored the potential effects of climate change on 31 

breeding waterbird species. The approach involved using a random forest modeling algorithm and 

downscaled climate data from outputs of two future General Circulation Models (GCMsͿ. BǇ the ϮϬϰϬ͛s, 

species were projected, on average, to lose 46% of their current habitat in the U.S. portion of the PPR. 

“peĐies speĐifiĐ pƌojeĐted iŵpaĐts ƌaŶged ǁidelǇ, ǁith thƌee speĐies ;WilsoŶ͛s “Ŷipe, “oƌa, aŶd FƌaŶkliŶ͛s 

Gull) projected to lose close to 100% of their U.S. Prairie Pothole habitats and two species (Killdeer and 

Upland Sandpiper) projected to gain habitat. Bioclimatic SDM approaches, however, have been shown 

to produce varying projections of species climate change impacts depending on methodological 

decisions including: choice of GCM, choice of climate covariates, level of collinearity among climate 

variables, and thresholding procedure used to convert probability values to binary occurrence values. I 

explored these and found that median projected range loss, across species, was 35%. However, 

projections for individual species varied widely, typically spanning from 100% range loss to range 

increases. The largest source of uncertainty was choice of GCM, followed by choice of climate covariate, 

then thresholding procedure. Level of collinearity contributed relatively little uncertainty. To understand 

potential impacts of climate change to migrating shorebirds, I explored climate change sensitivity using 
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historic records from a dry year and a wet year. Using historic data to explore climate sensitivity of 

migrating shorebirds in the PPR avoids many of the uncertainties of the bioclimatic SDM approach, and 

can yield insights helpful to guide adaptation planning for climate change. Using binomial generalized 

linear models, I found shorebirds shifted at the regional scale and selected landscapes with different 

characteristics in a dry year versus a wet year. This result indicates shorebirds are able to find habitat in 

the PPR under varying climate conditions, and supports a model of resilience for migrating shorebirds 

under climate change if wetlands in these varying landscapes are protected from drainage.  
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CHAPTER 1:  VULNERABILITY OF BREEDING WATERBIRDS TO CLIMATE CHANGE IN THE PRAIRIE POTHOLE 

REGION, U.S.A. 

INTRODUCTION 

The Prairie Pothole Region of north-central North America (central Iowa, U.S.A. to central 

Alberta, Canada; 900,000 km²) contains one of the largest wetland areas (40,000 km²) in the world 

(Keddy 2000). Historically, most conservation activities have focused on sustaining extensive, high 

quality duck habitat because of the associated recreational value of duck-hunting across the U.S. 

(Gleason et al. 2011). Increasingly, emphasis is being placed on the diversity of ecosystem services 

offered by prairie pothole wetlands, including carbon sequestration, flood control, groundwater 

recharge, water quality improvement, and biodiversity (Gleason et al. 2011). This includes increasing 

attention to all 115 species of breeding or migrating waterbirds that depend on the region 

(Beyersbergen et al. 2004).  

Successful management of species requires knowledge of habitat preferences. Strategic 

management of species also requires identifying those species most vulnerable to future threats. Land 

conversion continues to be a direct threat to waterbird habitat, but climate change will likely exacerbate 

loss and interact with changes in land cover. Climate models for the Prairie Pothole Region project 

increasing temperatures and slight or no increases in precipitation, indicating drier conditions affecting 

hydroperiods, and the extent and quality of wetland habitat (Solomon et al. 2007, Johnson et al. 2010). 

Prairie pothole wetlands are susceptible to climatic variation through impacts on wetland 

hydroperiod, vegetative condition, and water depth in combination with static factors such as basin size 

(Johnson et al. 2010). Well-documented causal relations between past variability in wetland condition 

and extent and waterbird numbers provide insights to future change in waterbird populations under 

climate change. In dry years, with fewer wet basins, breeding populations of waterbirds are significantly 

reduced (Johnson and Grier 1988, Niemuth and Solberg 2003). Building on these causal relations, 
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Sorenson et al. (1998) projected population changes for waterfowl under future warming scenarios. 

Their projections indicated that by 2060 duck populations would be half of their current level. Johnson 

et al. (2010) used mechanistic models relating climate to marsh vegetation dynamics, and projected that 

the Prairie Potholes in North and South Dakota will be too dry to produce suitable wetland vegetative 

conditions for breeding ducks in the future.  

To address how climate change may impact waterbirds in the Prairie Pothole Region, we created 

empirically-based species distribution models for a focal group of breeding wetland-associated birds. 

We related bird occurrence (presence/absence) to climate and land cover predictors. As a species' 

occurrence varies from year to year in response to dynamic wetland conditions, we used multiple years 

of bird survey data across 41 years, a period that included years of drought and years of heavy 

precipitation.  Although we did not explicitly model wetland condition, we used Random Forests, an 

ensemble decision tree approach which can capture the interactions between climate variability and the 

state of wetland basins that drive wetland condition (Breiman 2001). We projected future waterbird 

occurrence using species distribution models and future climate projections. To assess how climate 

change may reduce or expand current suitable habitat, for each species we compared the projections of 

future distribution to their predicted current distribution, and produced a quantitative estimate of how 

much habitat would be lost or gained under various climate change scenarios. Additionally, we 

compared our future projections of waterbird species response to a historic dry period.  

METHODS 

Study Area 

The study area (320,000 km²) was the 45% of the Prairie Pothole Region within four U.S. states 

(North Dakota, South Dakota, Minnesota, and Iowa; Figure 1.1).  The study was restricted to the four 

states because of available and consistent land cover and downscaled climate data. We excluded Iowa 
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from training the model because too few wetlands remain there to usefully inform the species 

distribution model, although we did include it in model predictions.  

Water-filled glacial depressions termed potholes are characteristic of this region and can reach 

densities greater than 40 per km² (Kantrud et al. 1989).  Since European settlement, these wetlands 

have been extensively converted to cropland, with wetland losses greatest in the eastern portion of the 

Prairie Pothole Region: Minnesota (85%), Iowa (95%) and North (49%) and South Dakota (35%) (Dahl 

1990, Johnson et al. 2008).  Losses of surrounding upland prairie habitats follow a similar geographic 

gradient (greatest in the eastern portion of the Prairie Pothole Region) but have been even more severe 

than wetland losses (Beyersbergen et al. 2004).  

Species Occurrence 

We obtained species occurrence (presence/absence) data from the North American Breeding 

Bird Survey (BBS; Sauer 2007) for waterbirds species with a prevalence of ≥ 0.05. The BBS consists of 

>3000 routes on secondary roads throughout the continental U.S. and southern Canada. Routes are 

surveyed once annually during June between 04.45 AM and 10.00 AM. Route locations generally remain 

the same year after year, although not all routes are surveyed each year and there is variation in the 

year when a route is initiated. BBS routes are 39.4-km long with 50 stops spaced 0.8 km apart. Three-

minute point-count surveys are conducted at each stop. BBS survey data are available for each species 

and summarized at route totals or 10-stop route segments (https://www.pwrc.usgs.gov/bbs/). 

In our study area, BBS surveys took place from late May to early July. This interval extensively 

overlapped the breeding season (nest-building through brood rearing) for the majority of wetland-

dependent species we evaluated. Ten species usually nest during this period and three species occupy 

brood-rearing habitats. The remainder of the species are engaged in behaviors ranging from incubation 

to brood-rearing. In addition, seven waterfowl species may be molting body or primary feathers near 

the end of the survey period.  

https://www.pwrc.usgs.gov/bbs/
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Even though the breeding cycles of wetland-dependent birds in the Prairie Potholes are not 

completely synchronous, we believe the BBS survey methods accurately document the presence of all 

regularly occurring species. Our confidence is based on the overlap between the geographic extent of 

our survey data, the distribution of our focal species during the breeding season, and the timing of the 

surveys.  The result, we believe, is that the likelihood of correctly documenting the presence of a species 

was comparable across species, routes, and survey years.   

We used data (1971-2011) from high-ƋualitǇ suƌǀeǇs ;ƌepoƌted ďǇ the BB“ as ͞ƌuŶ tǇpe ϭ͟Ϳ foƌ 

77 routes: these were conducted within the correct survey window and not during poor weather. Due to 

the potential for extensive variation along a route in habitat types, we chose one 10-stop section to 

model habitat associations rather than use data from the entire route. To accommodate different timing 

of peak detectability by species, we chose either the first or third section for a species depending which 

section had higher detections for that species. Routes were consistently surveyed from stop one, 

starting around 04.45 AM, to stop 50, ending around 09.00 AM. For all but two species, the first or third 

section had their highest or second highest Ŷuŵďeƌ of deteĐtioŶs. ͚PƌeseŶĐe͛ ǁas defiŶed as ≥ϭ 

detection at a minimum of one stop along the route segment. We identified focal species based on their 

prevalence (section-level occurrence rate) with species detected at fewer than 5% of route sections not 

included. 

Land Cover Data 

We extracted land cover variables (Table 1.1) for North and South Dakota from a GIS raster layer 

created by the U.S. Fish and Wildlife Service (USFWS; USFWS, Region 6 Habitat and Population 

Evaluation Team, unpublished data); for Minnesota and Iowa from a GIS raster layer created by the 

USFWS (USFWS, Region 3 Habitat and Population Evaluation Team, unpublished data); and for uplands 

in the southern portion of the Iowa Prairie Pothole Region from the 1992 National Land Cover Dataset  
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(NLCD). The USFWS data layers were based on Landsat Thematic Mapper Satellite imagery of scenes 

from 2000-2003, and the NLCD on scenes from the early to mid-1990s. All raster layers were at a 30-m 

resolution.  

Wetland basins in the land cover layers were areas of contiguous wetland extent. The basins 

were derived from a GIS wetland polygons layer (USFWS National Wetlands Inventory, NWI) where 

multiple contiguous polygons of differing wetland regimes were dissolved to a single polygon. The 

USFWS Habitat and Population Evaluation Team followed the procedures of Cowardin et al. (Cowardin 

et al. 1995) and Johnson and Higgins (1997) to describe each wetland basin by its most permanent water 

regime:  temporary, seasonal, semipermanent, lake, and river. Generally, temporary wetlands are 

flooded in spring for a few weeks after snow-melt, seasonal wetlands hold water until summer, and 

semipermanent wetlands hold water through the growing season; lake and rivers are permanently 

flooded wetlands (Stewart and Kantrud 1971a). NWI data are based on aerial photographs taken in the 

late ϭϵϳϬ͛s aŶd eaƌlǇ ϭϵϴϬ͛s. Wheƌe ǁateƌ piǆels eǆteŶded ďeǇoŶd NWI polǇgoŶs, theǇ ǁeƌe laďeled as 

water (wetland regimes, see Cowardin et al. (1979)). We characterized wetlands into nine classes: 

temporary, seasonal, semipermanent, lake, river, forested, shrub, total, and total palustrine (Table 1.1). 

Total wetland was the combined composition of temporary, seasonal, semipermanent, lake, river, 

forested, and shrub; total palustrine wetland was temporary, seasonal, and semipermanent. 

We described upland habitat using four land cover classes: cropland, grassland, tree, and 

developed (Table 1.1). Cropland included areas planted with crops or fallowed. Grassland included 

native prairie, planted grasses (i.e. previously cropped but now planted with grasses and forbs such as 

Conservation Reserve Program land), and hayland. Developed land cover included primarily residential 

areas. Tree habitat included small sections or rows of trees and occasionally areas of forest.  Accuracy of 

the upland land cover data for North and South Dakota, assessed in 2007, was > 90% (M. Estey, personal 

communication). 
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To describe habitat associations for our focal waterbird species, we explored composition-based 

single scale models. In both single-scale and multi-scale models, composition-based predictors, 

expressed as the amount of a land cover type within a given area, perform better than their distance-

based counterparts, expressed as the distance from a sampling location to a land cover type (Martin and 

Fahrig 2012). We used ArcMap 10.0 to calculate land cover composition for the four upland and nine 

wetland classes at six spatial scales for the BBS route segments. The scales ranged from 335 ha to 32,200 

ha and were based on buffering the segments with radii: 0.2-km, 0.4-km, 1-km, 2-km, 4-km, and 8-km.  

BBS surveyors record all birds detected within 0.4-km of the survey point. Thus, assuming no decline in 

detection probability with increasing distance and no landscape effect, we expected 0.4-km to be the 

appropriate scale to relate land cover to bird occurrence. However, some waterbird species may decline 

quickly in detection probability with increasing distance from the survey point—therefore, we also 

explored a 0.2-km scale. Because other species may respond to land cover heterogeneity at broader 

extents, we also explored a range (1-km to 8-km) of landscape scales. Land cover data were assumed 

static across current and future years. 

Climate Covariates 

We used PRISM (PRISM, Parameter-elevation Regressions on Independent Slopes Model) data 

for historical climate records. These data are available at a 4-km grid scale as monthly temperature and 

precipitation and were rescaled to an 8-km grid to match the scale of the projected climate data 

(Coulson and Joyce 2010).  

Using monthly values of precipitation and temperature, we derived 18 climate variables (Table 

1.1). We calculated mean temperatures for grid points by averaging the minimum and maximum 

monthly temperatures over different time periods. We delineated seasons as summer (June-August), fall 

(September-November), winter (December-February), and spring (March-May). We defined year as 

ending in May to correspond to the June bird surveys. We included seasonal and annual variables 
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because both seasonal and annual climate explain annual variation in the number of prairie pothole 

wetlands holding water (Larson 1995). For semipermanent wetlands and (especially) lakes, wet wetland 

count is related to long-term climate (at least 3 years) (Winter and Rosenberry 1998). We included 5-

year and 10-year precipitation and mean temperature variables as proxies for long-term climate effects. 

We also included the variances in 5-year and 10-year precipitation and temperature data, because large 

values of these variables may indicate that wetlands are cycling through wet and dry phases, driving 

dynamic vegetative conditions (Johnson et al. 2010). Climate data from 1971-2011 were used to 

construct the baseline species distribution models. The species distribution models predicted to climate 

data from 1981-2000 and 2040-2049 to create current and future projections, respectively, of species 

occurrence. 

Future Climate Data 

We used statistically downscaled and high resolution climate projections. Statistically 

downscaled data refine projections from global circulation models (GCMs) using an empirical 

relationship to local physiography (e.g. topography and water bodies). These projections assume 

relations will hold into the future and are less computationally intensive than high resolution models. 

High resolution models nest a dynamical Regional Climate Model within the GCM, re-running the GCM 

based on mesoscale (a few to a few hundred kilometers) physical relationships  with topographical 

features and surface characteristics (Giorgi and Mearns 1991). The high resolution projections 

ĐiƌĐuŵǀeŶt the pƌoďleŵ assoĐiated ǁith laĐk of ͞statioŶaƌitǇ͟ ǁheŶ the ƌelatioŶships ďetǁeeŶ GCM 

output and the fine-scale climate change over time. 

The statistically downscaled projections were based on data obtained from output of GCM 

CGCM3.1MR (Canadian Centre for Climate Modeling and Analysis Third Generation Coupled Global 

Climate Model Version 3.1, Medium Resolution) (Coulson et al. 2009) and downscaled to an 8-km grid. 

The high resolution models used the Community Climate System Model (CCSM) to set the boundary 



8 

condition and a mesoscale model, Weather Research and Forecasting model (WRF) to refine the data to 

a 36-km regional scale (J. Stamm, personal communication) (Skamarock et al. 2008). Given that we 

expected high spatial correlation for monthly temperature and precipitation, we interpolated the 36-km 

data to the 8-km grid (National Center Atmospheric Research Staff 2014). Both climate models were run 

with a mid-high IPCC emissions scenario, A2 (Nakicenovic and Intergovernmental Panel on Climate 

Change. Working Group III. 2000). The high resolution projections were available for 2000-2049, and the 

statistically downscaled projections were available for 2000-2100. We term the statistically downscaled 

data ͞CGCM͟ afteƌ the GCM these data aƌe ďased oŶ, aŶd ǁe teƌŵ the dǇŶaŵiĐallǇ doǁŶsĐaled data 

͞W‘FĐ͟ afteƌ the ŵesosĐale ŵodel these data aƌe ďased oŶ.  

Species Distribution Models 

We estimated a species distribution model (SDM) for each waterbird species, relating BBS 

occurrence records (1971-2011) to climate, and wetland and upland land cover (hereafter grouped as 

͞laŶd Đoǀeƌ͟Ϳ pƌediĐtoƌ ǀaƌiaďles. We used Đliŵate foƌ the saŵe Ǉeaƌ as the oĐĐuƌƌeŶĐe ƌeĐoƌd fƌoŵ the 

climate grid point nearest the BBS route segment and land cover surrounding the route segment. We 

defined occurrence as one or more detection per 10-stop segment by year. The spatial scale used in the 

final models for land cover calculations was chosen separately for each species based on model 

performance.  We ran six models for each species based on the six different spatial scales of land cover 

and chose the model with the highest classification accuracy. We used a non-parametric machine 

learning approach, Random Forests, to create the SDMs (Breiman 2001). We chose Random Forests 

because of  its high predictive power, ability to model unspecified variable interactions and correlated 

variables, its ranking of variable importance, and its demonstrated use for bioclimatic species 

distribution models (Lawler et al. 2006, Prasad et al. 2006). Random Forests uses an ensemble of 

classification (categorical response variable) or regression (continuous response variable) trees, each 

built with a subset of the data, to model the pattern between predictor variables and the response 
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variable. We used permutation procedures to assess variable importance, a method based on reduction 

in predictive accuracy to internally withheld data when values of a given predictor variable are randomly 

shuffled. We report the top ten variables for each model. Although the choice of the number of 

variables to report is arbitrary, we expect the top ten will provide an adequate basis for comparing 

models.  

We used the RandomForests package in R to create our models (R Development Core Team 

2012). We specified 3000 trees which is a sufficiently large number of trees to capture any patterns in 

the data. Each tree was constructed with a bootstrapped subsample with replacement of the data 

records (BBS routes). Because the ratio of presence to absence was often skewed, particularly for either 

very abundant or rare species, we balanced the data by setting Random Forests to randomly use, for 

each tree, 25 records where the species was present and another 25 where the species was absent 

(Chen et al. 2004). A subsample of five predictor variables was evaluated at each binary split in the tree 

algorithm. 

We partitioned the BBS data in a number of ways to strengthen model evaluation and inference. 

First, we only excluded consecutive years of surveys to reduce the influence of temporal autocorrelation 

aŶd ŵaǆiŵize iŶfoƌŵatioŶ ĐoŶteŶt:  the ͞ŵaiŶ tƌaiŶiŶg set͟. The eǆĐluded data ǁeƌe used to ǀalidate 

the ŵodels Đƌeated ǁith these data:  the ͞ŵaiŶ test set͟. “eĐoŶd, we separated out six years of data 

covering a drought period from 1987 through 1992 (Winter and Rosenberry 1998). We created species 

distribution models with the drought data to look at variable importance in dry years compared to 

variable importance for the whole study period (main training set). To assess model transferability, we 

predicted to the drought data subset using species distribution models created with the remaining 

wetter years (Schröder and Richter 2000, Guisan and Thuiller 2005). 
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Model Evaluation 

To eǀaluate eaĐh ŵodel͛s aďilitǇ to foƌeĐast to the saŵe ƌaŶge of pƌediĐtoƌ ǀaƌiaďles, ǁe 

pƌediĐted to the ŵaiŶ test set. To eǀaluate eaĐh ŵodel͛s tƌaŶsfeƌaďilitǇ – that is, to project to a new 

location or time period where predictor variables may be outside the range of the variables used to 

build the model – we projected to the drought period with models trained with data from the wet years. 

The transferability assessment should more realistically  evaluate how the models extrapolate to a dry 

future (Schröder and Richter 2000). 

To assess a model's performance, we report patterns of correct classification in a confusion 

matrix and the area under the receiver operating characteristic curve (AUC) (Hastie et al. 2009). From 

the confusion matrix, we report the counts of true positives, false positives, true negatives, false 

negatives and overall classification accuracy based on a 0.5 probability of occurrence threshold for 

concluding presence. Because we set sample sizes of presence and absence points to be equally 

subsampled in the Random Forests model, we selected a threshold of 0.5 (see Liu et al. 2005). Overall 

classification accuracy was calculated by dividing the number of correctly predicted presences and 

absences by total predictions. AUC is a threshold free assessment of model performance. AUC values 

range from zero to one and give the probability that a known presence observation has a higher 

predicted value of presence than an absence observation for a randomly selected pair of presence-

absence observations (Hastie et al. 2009). Models with AUC values of at least 0.7 are considered 

acceptable, between 0.8 and 0.9 good, and greater than 0.9 outstanding (Hosmer and Lemeshow 2000). 
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Projected Distributional Changes 

We created current predictions and future projections of probability of occurrence to each grid 

cell, for each focal species, by applying the SDMs to the baseline land cover and climate data (the 20-

year period for baseline climate data being 1981-2000) and to baseline land cover and future climate 

data (the 10-year period 2040-2049). Ten to twenty-year time periods were chosen to mitigate the 

influence of short-term variations in climate. 

We created current and future predictive distribution maps for each species in ArcMap 10 based 

on an assignment of grid point locations as suitable or unsuitable. A grid point was determined suitable 

if the estimated probability of occurrence (over the time period for the baseline or future data) was 

greater than 0.5. Three breakpoints within suitable (0.625, 0.75, 0.875) and unsuitable (0.125, 0.25, 

0.375) locations showed the degree to which a location was predicted suitable or unsuitable. 

We indexed changes between predicted baselines and projected future distributions using 

change in a species' spatial distribution. To assess change in distribution, we calculated the percent loss 

(or gain) in the number of grid cells classified as suitable. 

RESULTS 

Baseline mean temperature (years 1981-2000) was 5.9°C and mean yearly precipitation was 548 

mm.  By 2040-2049, CGCM projected a 2.9°C increase in mean temperature and a 22 mm (3.9%) 

increase in annual precipitation while WRFc projected a 3.8°C temperature increase and a 17 mm (3.1%) 

increase in annual precipitation. Projections of future precipitation fall within the range of historic levels 

of precipitation, whereas future temperatures projected by both climate models exceed historic 

temperatures (Figure 1.2). The climate models differed slightly in the spatial distribution of the 

precipitation increases, with CGCM projecting greater increase in Iowa and WRFc projecting greater 

increase in North Dakota than other areas (Figure 1.3). 
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The number of data occurrence records in the main training set was 975. The number of years of 

survey data included in the main training set, for a given route, ranged from one to 21, with a mean of 

13. The number of survey routes included for a given year ranged from 15 to 35. Thirty-one waterbird 

species had prevalence ≥ 0.05 and were included in the focal group (Table 1.2). The number of records 

in the main test set was 817.The number of data records in the dry years set was 139. We adjusted the 

prevalence cutoff to 0.07 (≥ 10 detections), at which 22 species qualified. 

Model Evaluation 

Most models based on known distributional patterns were acceptable to excellent, indicated by 

AUC values (Table 1.2).  Exceptions were SDMs for the Great Blue Heron and Killdeer. When predicting 

to dry years only, AUC values indicated the following additional models predicted poorly:  Canada 

Goose, American Wigeon, Mallard, and Green-winged Teal. Overall accuracy of dry year predictions 

suggested that projected distributional changes for some species should be interpreted with caution, 

including Blue-winged Teal, Sora, and Common Yellowthroat.  For the main datasets, model 

peƌfoƌŵaŶĐe ǁas Ŷot ƌelated to a speĐies' pƌeǀaleŶĐe aĐĐoƌdiŶg to “peaƌŵaŶ͛s ƌaŶk ĐoƌƌelatioŶ ;-0.09, 

p-value 0.62).  

Vulnerability  

Average projected decline in occurrence rate (spatial distribution) across 31 species under two 

future climate scenarios was 45%. WRFc models projected slightly more severe distributional changes (-

48%) than CGCM (-43%; Table 1.3). Species expected to experience small to no declines in distribution 

included Blue-winged Teal, Killdeer, and Upland Sandpiper. Species projected to experience severe 

deĐliŶes ǁeƌe FƌaŶkliŶ͛s Gull, “oƌa, aŶd WilsoŶ͛s “Ŷipe ;Taďle 1.3). In general, species maps depicted 

declines within the baseline range, rather than distributional shifts to new areas (Supplementary figures 

S1.2-S1.12). 
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For most species, future projections of change were consistent with responses of species to 

historic dry periods (Figure 1.4). Consistent projections were those that exhibited little to no change 

between the historic dry period and the future, or those that declined more in the future than in the 

histoƌiĐ dƌǇ peƌiod. If a speĐies͛ haďitat ǁas Ŷot iŵpaĐted ďǇ dƌǇ ĐoŶditioŶs, the speĐies ǁould ďe 

expected to experience little to no impact under future dry conditions. Other species may be impacted 

by drying conditions, thus responding during the historic dry period, and even more if additional drying 

occurs in the future. However, inconsistent with expectations, models projected reduced distribution of 

Blue-winged Teal, Northern Pintail, and Pied-billed Grebe in the dry period relative to future projections. 

Additionally, several species that remained relatively stable in the historic dry period were projected to 

decrease in distribution under future scenarios, including Canada Goose, Sedge Wren, Marsh Wren, 

Common Yellowthroat, and Song Sparrow. 

Variable Importance 

In general, species distributions were strongly influenced by the distribution of wetland basins 

and land cover classes and moderately influenced by climate, as evidenced by their influence in the 

SDMs. Land cover variables , wetland and upland,  collectively occurred as 67% of the top ten variables 

in the SDMs but comprised only 42% of the available predictor variables (Table 1.4); wetland and upland 

variables were 1.5 and 1.8 times more likely to appear in lists of top ten predictors than in the list of 

available predictors, respectively. Species associations with all wetland types, except rivers, were 

generally positive. All associations with cropland were negative except for the Song Sparrow, whereas 

associations with grassland were primarily positive except for Wood Duck (Table 1.4). Climate predictor 

variables were generally underrepresented in the variables of top importance. Collectively, temperature 

and precipitation comprised 32% of the top ten variables across the 31 species, although they were 58% 

of the available predictor variables. Temperature and precipitation variables were similarly influential 

and were 0.5 and 0.6 times more likely to appear in lists of top ten predictors than in the list of available 
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predictors, respectively. In general, probability of species occurrence was negatively associated with 

temperature; relationships with temperature variability were often positive (Table 1.4). Associations 

with precipitation were often negative, except for Great Blue Heron, Sedge Wren, Song Sparrow, and 

Wood DuĐk. VaƌiaďilitǇ iŶ pƌeĐipitatioŶ oĐĐuƌƌed iŶ the top teŶ ǀaƌiaďles foƌ oŶlǇ oŶe speĐies͛ ŵodel 

(Sedge Wren) and was negatively correlated with probability of occurrence. 

Land cover variables were highly influential in observed patterns of species distribution. The 

importance of these variables is visually apparent when spatial distribution of grasslands and wetlands 

(Supplementary figure S1.1) and observed climate gradients (Figure 1.3) were compared to baseline 

distributions (Supplementary figures S1.2-S1.12). Many breeding waterbirds have a high probability of 

occurrence in the western portion of the study area where grasslands and wetlands co-occur.  

Temperature and precipitation predictor variables were more often in the top ten variables for 

the species with the greatest expected declines (Figure 1.5). Conversely, wetland and upland land cover 

variables were more often in the top ten variables for the species with smallest expected declines. 

Variable Importance:  main models versus dry-years models 

For dry-years models, climate predictor variables represented 45% of the top ten variables 

across the 22 species versus 31% for the same 22 species in the main models (Tables 1.4 and 1.5). Of 

land cover predictors, 65% included wetland variables in the top ten variables in the dry years and a 

similar 67% in the main models. However, representation of different wetland types varied with more 

seasonal wetlands (positive relationships only) appearing in the non-drought years (30% versus 17%) 

and more lakes included in the dry years (32% versus 20%).  

DISCUSSION 

Our projections of large range reductions for waterbirds breeding in the Prairie Pothole Region 

are not surprising. Globally, freshwater habitats are expected to be particularly vulnerable to climate 

change (Kundzewicz et al. 2007). If, as the future climate projections we used indicate, temperatures 
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rise by ~3.0°C and precipitation rises only by 3% by mid-century in the Prairie Pothole Region, many 

fewer pothole wetlands will exist on the landscape due to an increased deficit in precipitation relative to 

evapotranspiration. Similarly, other studies of the Prairie Pothole Region have projected a drier future 

and concomitant reductions in waterbird habitat (Poiani and Johnson 1991, Sorenson et al. 1998, 

Johnson et al. 2010).  

Past studies in the Prairie Pothole Region that extrapolated from relations between climatic 

factors and wetlands inferred generalized habitat losses for waterfowl (Sorenson et al. 1998, Johnson et 

al. 2010). Our species-specific approach indicated large variability in the vulnerabilities of waterbird 

species to climate change. This is expected as patterns of waterbird habitat selection vary among 

species for wetland attributes such as size, permanence, and vegetative cover (Weller and Spatcher 

1965, Kantrud et al. 1989). Hydrological studies indicate that temperature and precipitation regimes 

affect not only the number of wetlands and wetland size, but marsh vegetation dynamics and the 

vegetative coverage patterns at the landscape scale (Johnson et al. 2010). While reducing the overall 

number of wetlands, a drier climate will likely lead to more extensive coverage of wetlands by dense 

vegetation rather than wetland conditions characterized by a mixture of open water and vegetation 

(Johnson et al. 2010).  Species are expected to respond differentially to these changes in wetland 

characteristics. Furthermore, iŶdiǀidualistiĐ speĐies͛ ƌespoŶses appeaƌ the Ŷoƌŵ (Peterson 2003, 

Matthews et al. 2011, Tingley et al. 2012). 

Our projections of future change were not always consistent with documented waterbird 

responses to a historic dry period which represented one possible expression of a drier climate. The dry 

historic period, a consequence of reduced precipitation, is not a direct analog of future drying which is 

expected to be driven by increases in evapotranspiration (Figure 1.2) (Cook et al. 2014). Thus, it is 

unclear to what extent the historic pattern of drought can be used as a benchmark for future climate 

change. Therefore, the inconsistencies between the dry historic waterbird response relative to projected 
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future responses may indicate our models are under- or over- estimating waterbird response to climate 

change for some species. It is also possible that changes in temperature versus precipitation may result 

in divergent, and unprecedented, future wetland habitat conditions. In that case, divergent waterbird 

responses, relative to the past responses, would not be surprising.  

The historic range of temperature variability did not overlap future projections and so, our SDMs 

were projecting beyond known climatic boundary conditions. Model extrapolation to novel conditions is 

common when projecting species response to future climate (Elith and Leathwick 2009). Our single 

values for yearly averages (Figure 1.2), indicated almost no overlap in temperature range between 

historic and projected time intervals. However, because of spatial variation in temperature regimes (i.e., 

warmer in the south, as shown in Figure 1.3), there were likely many individual grid cells in which future 

temperatures overlapped the historic range even if the study area yearly means do not. SDMs based on 

the Random Forest algorithm are constrained when extrapolating beyond the observed values of the 

predictor variables. For example, when projected temperatures are outside of the range of the training 

set the algorithm holds the prediction constant at the last known value of temperature (Elith and 

Graham 2009). Therefore, if future wetland habitat conditions selected by the species become less 

common with increased temperatures, our estimates of habitat losses for many species may be 

underestimates. 

Ranking predictor variables by their importance provides additional insights into how the 31 

waterbird species may respond to changing environmental factors. We included predictors related to 

suitable waterbird habitat quality, including the amount and type of wetland basins, and temporally 

scaled temperature and precipitation covariates. Species projected to be most sensitive to anticipated 

climate change (changes in temperature and precipitation,Table 1.4) consistently reflected the ecology 

of the species. For example, the two diving ducks, Ruddy Duck and Redhead, primarily selected large 

wetlands, such as semipermanent basins, and were less susceptible to total drying (Kantrud and Stewart 
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1977, Johnson et al. 2010). As a consequence of their habitat associations, no climate covariates ranked 

in the top ten for these two waterbird species. In contrast, waterbirds that rely on shallow water 

habitat, such as Sora or Sedge Wren, or dynamic habitat such as Black Tern or Mallard, showed a much 

greater projected change in distribution to future climatic conditions (Weller and Spatcher 1965, 

Johnson et al. 2010). 

The variable importance ranks also suggested that waterbirds may shift their habitat 

preferences with increased drying. More climate covariates and more permanent wetland regimes 

appeared in the top variables for dry years. In the Prairie Pothole Region, wetland function can rapidly 

change with significant changes in the climate. In dry years, for example, semipermanent wetlands may 

function more like seasonal wetlands, and seasonal wetlands more like temporary wetlands. This 

differential sensitivity to climate change explains why seasonal wetlands were less important and lakes 

more important in dry years. 

Because bioclimatic SDMs are generally exploratory with many collinear climate predictors, 

there is concern that these models over-fit the data and thus misrepresent species distributions 

(Beaumont et al. 2005). However, the inclusion of many collinear climate predictors is often warranted 

when causal liŶks ďetǁeeŶ speĐifiĐ Đliŵate pƌediĐtoƌs aŶd speĐies͛ distƌiďutioŶs aƌe Ŷot estaďlished, 

leading to better model fit and projections (Braunisch et al. 2013). We found that when we reduced our 

18 climate and 13 land cover variables to 14 uncorrelated climate and 10 uncorrelated land cover 

variables model projections were similar:  45% average range reduction for the full model and 48% for 

the reduced model (results not shown). 

CONCLUSIONS 

Our results indicated, on average, large decreases in suitable habitat by the 2040s for 31 

waterbird species breeding in the Prairie Pothole Region of the U.S.A. Importantly, our results were 

consistent between two contrasting future climate scenarios. However, there was substantial variability 
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in species specific responses to projected climate change. Therefore, strategic efforts to mitigate climate 

change effects should preferentially direct management actions to those species expected to be most 

vulnerable. In continuing research, we are exploring in greater detail various sources of uncertainty in 

our projections including additional model algorithms, alternative covariates, and other sources of 

species distribution data (Beale and Lennon 2012). 
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Figure 1.1. Bird occurrence data were obtained from 77 Breeding Bird Survey (BBS) routes throughout 

the Prairie Pothole Region (PPR) of North Dakota, South Dakota, and Minnesota. Climate-based 

projections were also made to the PPR of Iowa. 
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Figure 1.Ϯ. Total pƌeĐipitatioŶ ǀeƌsus aǀeƌage teŵpeƌatuƌe ďǇ ͞ďiƌd Ǉeaƌ͟ ;JuŶe of Ǉear x-1 to May of 

year x) for the study area (see Figure 1) for the time periods used to train species distribution models 

and project future distributions. Historic points showed the years and locations from 1971-2011 used to 

train the species distribution models with six years withheld. The six years were a dry period from 1987-

ϭϵϵϮ shoǁŶ as ͚histoƌiĐ-dƌǇ͛. CGCM aŶd W‘FĐ shoǁ tǁo sets of Đliŵate pƌojeĐtioŶs foƌ the teŶ Ǉeaƌ 

period 2040-49.  

  



21 

 

Figure 1.3. Temperature and precipitation for baseline and two future climate projections for the prairie 

potholes of North Dakota, South Dakota, Minnesota, and Iowa. 
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Figure 1.4. Mean rates of predicted species occurrence at 4,957 8-km grid points. Baseline rate was 

based on 1981-2000 climate records. Dry years showed predicted occurrence rates for the drought 

period, 1987-1992. Future rates were based on the average projections of two future climate datasets 

(CGCM-A2 and WRFc) for 2040-2049.  
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Figure 1.5. The frequency (y-axis) of variable type (x-axis) in top ten variables for waterbird species 

distribution models, grouped by species sensitivity to climate change. The most sensitive species were 

projected to lose ≥66% of their current habitat; moderately sensitive species 33-65%; and least sensitive 

<33%. 

  



24 

Table 1.1 Thirty-one climate and land cover variables used in species distribution models. Temperature 

calculations were based on averages, while precipitation calculations were based on totals. Land cover 

variables were based on composition (proportion of total) of that cover type in the landscape. Wetland 

land cover was apportioned by wetland regime. Total palustrine wetland summed temporary, seasonal, 

and semipermanent wetlands. Total wetland summed all wetland regimes. Cropland described land 

planted with crops or fallowed. Grassland included native prairie, conservation reserve program (CRP) 

land, and hayland. 

Climate Land Cover 

Temperature Precipitation Wetland Upland 

Spring (spr) Spring  Temporary (temp) Cropland (crop) 

Winter (wint) Winter Seasonal (seas) Grassland (grass) 

Fall Fall Semipermanent (semi) Developed (devel) 

Summer (sum) Summer Lake Tree 

Yearly (1yr) Yearly River   

5-year  (5yr) 5-year Shrub    

10-year (10yr) 10-year Forested (forest)   

5-year std. dev. (5yr_sd) 5-year std. dev.  Total palustrine (pal)   

10-year std. dev. (10yr_sd) 10-year std. dev.  Total   
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Table 1.2. Model evaluation showing species prevalence (proportion of data points with species present) for each dataset, and predictive 

accuracy using the classification matrix and area under the curve (AUC) values. The positive and negative rates show the models ability to 

correctly predict presence and absence data points in the withheld data based on a 0.5 threshold for classification. Overall accuracy was the 

proportion of true positive and true negative predictions. AUC critical value = 0.70. Dry year predictions were based on models trained without 

the dry years.  

  
Prevalence To withheld data To withheld dry 

years 

Common Name Scientific Name Training 

data 

(n=974) 

Withheld 

data 

(n=817) 

Dry 

years 

data 

(n=139) 

True 

positive 

(n) 

False 

positive 

(n) 

True 

negative 

(n) 

False 

negative 

(n) 

Overall 

accuracy 

(%) 

AUC Overall 

accuracy 

(%) 

AUC 

Canada Goose Branta canadensis  0.18 0.18 0.09 92 211 457 60 67 0.71 76 0.61 

Wood Duck Aix sponsa 0.06 0.07 0.04 24 187 576 30 73 0.70 84 0.81 

Gadwall Anas strepera  0.11 0.12 0.00 82 183 534 18 75 0.89 74 0.87 

American Wigeon Anas americana  0.05 0.07 0.04 36 129 632 20 82 0.84 71 0.66 

Mallard Anas platyrhynchos 0.60 0.59 0.55 343 101 231 142 70 0.77 57 0.65 
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Blue-winged Teal Anas discors 0.36 0.38 0.24 259 139 368 51 77 0.86 63 0.74 

Northern Shoveler Anas clypeata 0.17 0.18 0.09 117 189 481 30 73 0.84 68 0.81 

Northern Pintail Anas acuta 0.21 0.24 0.10 153 161 463 40 75 0.85 69 0.85 

Green-winged Teal Anas crecca 0.05 0.05 0.03 29 180 592 19 77 0.85 72 0.58 

Redhead Aythya americana 0.15 0.12 0.03 87 126 593 11 83 0.91 81 0.95 

Ruddy Duck Oxyura jamaicensis 0.13 0.11 0.06 83 115 612 7 85 0.94 83 0.92 

Pied-billed Grebe Podilymbus podiceps 0.22 0.24 0.11 166 150 474 27 78 0.90 73 0.81 

Double-crest. Cormorant Phalacrocorax auritus 0.09 0.09 0.05 64 201 542 10 74 0.84 68 0.75 

American Bittern Botaurus lentiginosus 0.24 0.27 0.17 190 173 421 33 75 0.84 64 0.76 

Great Blue Heron Ardea herodias 0.07 0.06 0.04 29 180 592 19 76 0.69 88 0.67 

Sora Porzana carolina 0.28 0.27 0.16 178 154 443 42 76 0.86 63 0.71 

American Coot Fulica americana 0.28 0.29 0.15 201 117 467 32 82 0.90 72 0.86 

Killdeer Charadrius vociferus 0.88 0.92 0.86 507 27 41 242 67 0.69 69 0.59 

Upland Sandpiper Bartramia longicauda 0.49 0.48 0.53 308 128 300 81 74 0.82 81 0.84 

Willet Tringa semipalmata 0.16 0.15 0.13 111 163 532 11 79 0.91 70 0.90 
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Marbled Godwit Limosa fedoa 0.19 0.18 0.24 121 166 505 28 76 0.88 75 0.90 

WilsoŶ͛s Snipe Gallinago delicata 0.19 0.20 0.14 140 163 494 23 77 0.90 72 0.80 

WilsoŶ͛s Phalaƌope Phalaropus tricolor 0.10 0.12 0.04 79 165 550 23 77 0.86 66 0.84 

FƌaŶkliŶ͛s Gull Leucophaeus pipixcan 0.10 0.11 0.09 64 189 538 26 74 0.81 73 0.86 

Ring-billed Gull Larus delawarensis 0.12 0.16 0.12 103 179 510 25 75 0.84 66 0.78 

Black Tern Chlidonias niger 0.17 0.17 0.07 112 172 505 28 76 0.85 72 0.89 

Sedge Wren Cistothorus platensis 0.27 0.26 0.17 142 168 434 73 71 0.76 81 0.71 

Marsh Wren Cistothorus palustris 0.23 0.24 0.17 166 130 493 28 81 0.89 73 0.78 

Common Yellowthroat Geothlypis trichas  0.83 0.84 0.81 444 41 91 241 65 0.74 60 0.76 

Song Sparrow Melospiza melodia 0.66 0.66 0.57 425 105 172 115 73 0.78 74 0.85 

Yellow-headed Blackbird Xanthocephalus 

xanthocephalus 

0.54 0.56 0.56 348 86 321 62 82 0.88 64 0.76 
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Table 1.ϯ. Values ƌepoƌt pƌojeĐted ĐhaŶges iŶ oĐĐuƌƌeŶĐe iŶ the ϮϬϰϬ͛s, ƌelatiǀe to ϭϵϴϭ-2000 (baseline). 

Species distribution models projected species occurrence to 4,957 8-km grid points using climate data 

for the baseline period and two climate projections (CGCM and WRFc). Negative values indicated the 

proportion of occupied grid cells for each species, projected to be unoccupied in the future. Positive 

values indicated the proportion by which occupied cells were projected to increase. 

Species Change in occurrence (%) 

  CGCM WRFc Average 

Canada Goose -76 -66 -71 

Wood Duck -70 -37 -54 

Gadwall 49 -87 -19 

American Wigeon -58 -71 -65 

Mallard -30 -23 -27 

Blue-winged Teal -9 -4 -7 

Northern Shoveler -51 -62 -57 

Northern Pintail -45 -37 -41 

Green-winged Teal -46 -18 -32 

Redhead -42 -35 -39 

Ruddy Duck -30 -31 -31 

Pied-billed Grebe -40 -18 -29 

Double-crested Cormorant -11 -20 -16 

American Bittern -42 -42 -42 

Great-blue Heron -72 -82 -77 

Sora -94 -98 -96 
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American Coot -38 -38 -38 

Killdeer 5 0 3 

Upland Sandpiper 8 7 8 

Willet -43 -58 -51 

Marbled Godwit -53 -61 -57 

WilsoŶ͛s “Ŷipe -99 -100 -100 

WilsoŶ͛s Phalaƌope -42 -60 -51 

FƌaŶkliŶ͛s Gull -93 -98 -96 

Ring-billed Gull -39 -83 -61 

Black Tern -67 -64 -66 

Sedge Wren -71 -60 -66 

Marsh Wren -40 -42 -41 

Common Yellowthroat -26 -35 -31 

Song Sparrow -38 -41 -40 

Yellow-headed Blackbird -24 -25 -25 
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Table 1.4. Variable importance for Random Forest species distribution models. Top ten variables are shown in descending order of rank. Variable 

categories were denoted by W (wetland), U (upland), P (precipitation), and T (temperature).  Signs indicated the relationship between the 

predictor and the species response: + (positive), - (negative), m (unimodel), and ~ (equivocal). 

Rank Canada 

Goose 

Wood Duck Gadwall American 

Wigeon 

Mallard Blue-winged 

Teal 

Northern 

Shoveler 

Northern 

Pintail 

Green-

winged Teal 

1 W-lake(+) W-temp(-) T-5yr_sd(-) W-lake(+) W-pal(+) W-total(+) W-pal(+) U-tree(-) U-tree(-) 

2 P-wint(+) P-wint(+) P-10yr_sd(-) U-tree(-) W-semi(+) W-pal(+) W-total(+) W-pal(+) P-wint(+) 

3 W-river(-) U-grass(-) U-tree(-) W-semi(+) W-river(-) W-seas(+) W-semi(+) P-10yr(-) W-lake(+) 

4 T-sum(-) U-crop(-) T-spr(-) W-temp(-) W-total(+) W-semi(+) W-temp(+) W-seas(+) W-seas(+) 

5 T-spr(-) U-tree(+) U-grass(+) P-5yr(-) T-10yr_sd(+) U-grass(+) W-seas(+) W-semi(+) U-crop(-) 

6 T-10yr_sd(+) U-devel(-) P-10yr(m) P-spr(-) W-temp(+) W-temp(+) U-tree(-) P-5yr(-) P-fall(~) 

7 T-10yr(m) W-semi(+) U-crop(-) W-pal(+) U-tree(-) U-tree(-) U-crop(-) U-grass(+) W-shrub(-) 

8 T-5yr(m) T-10yr_sd(+) T-10yr_sd(+) W-total(+) T-spr(-) W-river(-) U-grass(+) W-river(-) W-temp(+) 

9 T-1yr(-) T-sum(~) W-total(+) P-10yr(-) U-grass(+) U-crop(-) T-spr(-) T-spr(-) P-5yr(-) 

10 W-total(+) W-total(+) W-river(-) P-1yr(-) T-5yr_sd(+) P-10yr(-) P-10yr(-) W-total(+) T-5yr(-) 
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Rank Redhead Ruddy Duck Pied-billed 

Grebe 

Double-

crested 

Cormorant 

American 

Bittern 

Great-blue 

Heron 

Sora American  

Coot 

Killdeer 

1 W-semi(+) W-semi(+) W-semi(+) W-semi(+) U-crop(-) T-spring(-) P-10yr(-) W-semi(+) W-semi(+) 

2 W-total(+) W-total(+) W-total(+) U-tree(~) W-total(+) P-10yr(+) T-sum(-) W-total(+) W-pal(+) 

3 W-lake(+) W-lake(+) W-pal(+) W-temp(-) U-grass(+) U-tree(+) T-5yr(-) W-pal(+) W-river(-) 

4 U-tree(-) W-pal(+) W-seas(+) T-10yr_sd(+) W-semi(+) P-5yr(+) W-seas(+) W-seas(+) U-tree(-) 

5 W-temp(-) U-tree(-) U-crop(-) W-lake(+) W-pal(+) P-spr(+) T-1yr(-) W-river(-) W-total(+) 

6 W-pal(+) W-seas(+) W-lake(+) T-5yr(~) W-seas(+) P-1yr(+) W-river(-) P-10yr(-) W-seas(+) 

7 W-river(-) W-river(-) T-10yr_sd(+) P-5yr(+) P-10yr(-) T-10yr(-) W-total(+) W-lake(+) U-devel(-) 

8 W-seas(+) W-temp(-) U-grass(+) P-spr(-) T-5yr(-) W-shrub(+) W-pal(+) U-crop(-) P-wint(~) 

9 U-crop(-) U-crop(-) T-sum(-) P-fall(~) T-sum(-) P-sum(+) P-5yr(-) U-grass(+) W-temp(+) 

10 U-grass(+) U-grass(+) U-tree(-) T-5yr_sd(-) T-1yr(-) T-1yr(-) U-grass(+) T-5yr(-) U-grass(+) 
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Rank Upland 

Sandpiper 

Willet  Marbled 

Godwit 

WilsoŶ͛s 

Snipe 

WilsoŶ͛s 

Phalarope 

FƌaŶkliŶ͛s 

Gull 

Ring-billed 

Gull 

Black  Tern Sedge Wren 

1 W-seas(+) U-tree(-) U-tree(-) T-5yr(-) U-tree(-) U-tree(+) W-semi(+) W-seas(+) P-10yr_sd(-)  

2 U-grass(+) P-10yr(-) U-crop(-) T-10yr(-) U-grass(+) W-pal(+) W-lake(+) W-pal(+) U-tree(+) 

3 U-tree(-) P-5yr(-) W-lake(+) W-total(+) U-crop(-) T-10yr(-) W-pal(+) W-total(+) U-crop(-) 

4 P-10yr(-) U-grass(+) W-total(+) U-crop(-) P-10yr(-) W-total(+) W-total(+) W-semi(+) P-10yr(+) 

5 W-pal(+) W-pal(+) P-10yr(-) W-pal(+) P-5yr(-) W-seas(m) U-tree(-) W-temp(+) T-sum(-) 

6 U-devel(-) W-semi(+) U-grass(+) W-lake(+) W-lake(m) U-grass(~) U-grass(+) U-crop(-) P-5yr(+) 

7 W-river(-) W-total(+) T-10yr(-) T-sum(-) W-semi(+) W-temp(+) P-5yr(-) P-10yr(-) T-10yr_sd(+) 

8 U-crop(-) U-crop(-) P-5yr(-) U-tree(~) W-seas(+) W-lake(+) W-seas(+) T-5yr(-) W-pal(+) 

9 W-semi(+) T-10yr(-) W-semi(+) W-river(-) P-spr(~) U-crop(-) W-river(-) P-wint(+) U-grass(+) 

10 P-5yr(-) W-river(-) W-river(-) W-seas(~) W-total(+) P-sum(~) T-5yr(-) P-5yr(m) P-1yr(+) 
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Rank Marsh Wren Common 

Yellow-

throat 

Song 

Sparrow 

Yellow-

headed 

Blackbird 

     

1 W-semi(+) W-total(+) U-grass(-) W-semi(+)      

2 W-total(+) W-temp(+) U-crop(+) W-pal(+)      

3 W-pal(+) W-seas(+) U-tree(+) W-total(+)      

4 U-crop(-) W-pal(+) P-10yr(+) W-seas(+)      

5 W-seas(+) U-tree(+) W-semi(-) U-grass(+)      

6 U-grass(+) W-semi(+) P-sum(+) P-10yr(-)      

7 W-lake(+) U-devel(-) T-10yr_sd(+) U-crop(-)      

8 T-sum(-) W-lake(+) T-sum(-) T-sum(-)      

9 W-river(-) T-5yr(-) T-10yr(-) U-tree(-)      

10 T-10yr(-) P-5yr_sd(-) P-5yr(+) P-5yr(-)      
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Table 1.5. Variable importance from 22 Random Forest species distribution models for the particularly dry period, 1987-1992. Top ten variables 

shown in descending order of rank. Variable categories were denoted by W (wetland), U (upland), P (precipitation), and T (temperature). Signs 

indicated the relationship between the predictor and the species response: + (positive), - (negative), m (unimodel), and ~ (equivocal).  

 Rank Canada 

Goose 

Mallard Blue-winged 

Teal 

Northern 

Shoveler 

Northern 

Pintail 

Pied-billed 

Grebe 

American 

Bittern 

Sora American 

Coot 

1 P-5yr_sd(+) W-semi(+) W-total(+) W-semi(+) U-tree(-) W-lake(+) U-grass(+) T-10yr_sd(+) W-semi(+) 

2 T-sum(+) W-total(+) W-semi(+) T-1yr(m) W-semi(+) U-crop(-) W-semi(+) T-sum(-) W-lake(+) 

3 T-spr(-) W-pal(+) U-crop(-) T-wint(m) T-spr(-) U-grass(+) W-total(+) W-river(-) W-total(+) 

4 T-10yr(-) W-river(-) W-lake(+) W-total(+) P-10yr(-) W-semi(+) U-crop(-) W-total(+) W-pal(+) 

5 P-10yr_sd(-) U-crop(-) P-fall(+) W-lake(+) T-1yr(-) W-seas(m) W-lake(+) P-5yr_sd(-) U-crop(-) 

6 T-1yr(-) P-10yr(-) W-pal(+) P-10yr_sd(-) P-fall(+) W-total(+) W-pal(+) W-pal(+) T-5yr_sd(+) 

7 T-wint(-) W-temp(+) U-grass(+) T-5yr(-) W-total(+) T-wint(+) T-sum(-) W-seas(+) T-10yr_sd(+) 

8 T-5yr(-) T-wint(+) T-wint(+) U-crop(-) T-5yr(-) P-5yr_sd(-) U-devel(-) U-tree(-) P-spr(-) 

9 W-seas(-) T-spr(~) P-sum(+) T-10yr(-) T-wint(-) W-pal(+) P-fall(+) W-temp(+) W-temp(+) 

10 P-10yr(-) W-shrub(-) T-sum(-) W-seas(-) W-pal(+) U-devel(-) W-seas(+) W-lake(+) W-seas(m) 
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Rank Killdeer Upland 

Sandpiper 

Willet  Marbled 

Godwit 

WilsoŶ͛s 

Snipe 

FƌaŶkliŶ͛s 

Gull 

Ring-billed 

Gull 

Black Tern Sedge Wren 

1 P-10yr_sd(-) U-grass(+) P-10yr(-) W-lake(+) W-lake(+) W-total(+) W-lake(+) U-crop(-) T-sum(-) 

2 T-5yr_sd(-) U-tree(-) P-5yr(-) U-tree(-) W-total(+) W-lake(+) U-crop(-) W-pal(+) W-total(+) 

3 U-grass(+) W-seas(+) W-total(+) W-total(+) T-10yr(-) T-10yr(-) P-fall(+) W-lake(-) T-1yr(-) 

4 U-devel(+) U-crop(-) U-tree(-) P-10yr(-) T-5yr(-) P-fall(~) P-10yr(-) W-temp(+) T-10yr_sd(-) 

5 T-fall(-) P-10yr(-) W-semi(+) U-crop(-) P-5yr_sd(-) P-5yr_sd(+) P-spr(-) W-semi(+) W-lake(+) 

6 W-semi(+) W-total(+) W-pal(+) W-river(-) W-temp(+) T-10yr_sd(-) U-grass(+) T-5yr_sd(+) T-10yr(-) 

7 T-sum(+) W-pal(+) W-seas(+) T-10yr(-) T-1yr(-) T-spr(-) P-5yr(-) W-total(+) U-crop(-) 

8 U-tree(-) W-semi(+) P-10yr_sd(-) P-5yr(-) U-tree(-) T-5yr(-) T-fall(-) T-spr(-) P-10yr(+) 

9 T-5yr(-) W-temp(+) T-sum(m) T-5yr(-) W-seas(-) T-1yr(-) P-10yr(-) T-fall(m) P-5yr(+) 

10 P-1yr(-) T-wint(+) U-crop(-) W-pal(+) T-spr(-) U-devel(-) P-10yr_sd(-) T-5yr(-) W-forest(+) 
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Rank Marsh 

Wren 

Common 

Yellow-

throat 

Song 

Sparrow 

Yellow-

headed 

Blackbird 

     

1 W-semi(+) W-semi(+) U-grass(-) W-semi(+)      

2 W-total(+) U-crop(-) U-tree(+) P-10yr(-)      

3 W-lake(+) W-temp(+) W-semi(-) W-pal(+)      

4 U-grass(+) W-pal(+) U-crop(+) W-total(+)      

5 W-pal(+) W-total(+) P-sum(+) P-5yr(-)      

6 U-crop(-) U-tree(+) P-10yr(+) W-seas(+)      

7 T-10yr(+) P-5yr_sd(-) P-1yr(+) U-crop(-)      

8 T-fall(+) W-lake(+) U-devel(+) U-grass(+)      

9 T-5yr(+) T-5yr(-) T-10yr(-) P-10yr_sd(-)      

10 W-seas(-) W-seas(+) T-5yr(-) U-tree(-)      
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CHAPTER 2:  PROJECTING AVIAN VULNERABILITY TO CLIMATE CHANGE: EXPLORING UNCERTAINTY 

FROM MODELING DECISIONS 

 

INTRODUCTION 

Bioclimatic species distribution models (SDMs) are useful tools for assessing the potential 

impacts of future climate change on biological diversity (Thuiller et al. 2005, Barbet-Massin et al. 2009, 

Lawler et al. 2009). These models relate species location data to climate covariates to derive 

probabilities of occurrence over a range of climatic conditions. When applied to future climate data, 

projected species distributions may shift spatially, and ranges may contract or expand. Recognizing the 

limitation of SDMs because of failure to adequately address interspecific interactions, phenotypic 

plasticity, or evolutionary change is important (Pearson and Dawson 2003). However, unavoidable 

decisions made during model development including the choice of model algorithm and covariates 

produce substantial uncertainty and may even exceed the uncertainty in future climate change itself 

(Thuiller 2004, Buisson et al. 2010, Synes and Osborne 2011, Garcia et al. 2012). These choices, integral 

to conventional climate change impacts assessments, are a key area for improvement in projecting 

future distributions of species.   

One source of model variability that has been underexplored is that associated with selection of 

climate covariates (Gaston 2003, Synes and Osborne 2011, Pliscoff et al. 2014). Although guidelines 

exist, in practice, data and knowledge limitations may overshadow the selection process (Gaston 2003, 

Austin 2007, Dormann 2007).  To structure our thinking and study, we define three types of climate 

covariates:  temporal, bioclimatic, and hydrological. These can also be considered working hypotheses of 

how climate explains organismal distribution. Temporal covariates represent monthly, seasonal, and 

annual variation in temperature and precipitation such as spring average temperature or yearly total 

precipitation and may be thought of as a general hypothesis that climate drives organismal distribution 
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via multiple temporal scales and the variability therein. Bioclimatic covariates represent extremes and 

variability in temperature and precipitation and may include, for example, precipitation of the driest 

quarter or the range in annual temperature. These covariates were originally developed to describe 

process-based climatic relationships with plant growth (Booth et al. 2014), but have since been widely 

applied to model the distribution of animal species as well (e.g. Lawler et al. 2006, Green et al. 2008, 

Gregory et al. 2009, Elith et al. 2010, Jimenez-Valverde et al. 2011). Hydrological covariates describe 

water availability, integrating the effects of precipitation and temperature. Because precipitation is not a 

reliable representation of water availability and many ecological processes are water limited, 

hydrological variables may more directly relate to ecological response (McEvoy et al. 2016). Drought or 

moisture indices, for example, have been explored by some researchers (Austin 2007, Schlaepfer et al. 

2012, Konar et al. 2013). 

The potential for the covariance relationships among climate covariates to change further 

complicates the selection of which climate covariates to include in SDMs. A common practice in 

predictive species distribution modeling is to first filter candidate covariates to minimize collinearity to 

mitigate against overfitting (Beaumont et al. 2005) and thus potentially improve projections to future 

times or novel locations (Beaumont et al. 2005, Heikkinen et al. 2012, Dormann et al. 2013). However, 

because statistically high performing variables may belie true causal relationships between climate and 

distribution, statistical criteria will not reliably lead to selecting the better covariate (Austin 2002, 

Heikkinen et al. 2006a). Because climate variables may not change in a parallel fashion, the current 

covariance structure among climate covariates may not be representative of the future structure making 

collinearity a potential asset for mitigating error in climate change projections, in contrast to 

conventional wisdom (Braunisch et al. 2013).  
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An additional source of methodological uncertainty - threshold choice - is invoked when creating 

maps of species distributions. To estimate range change, extinction risk, or assess areas of high 

conservation value, continuous probability values traditionally are thresholded to create binary 

predictions of presence and absence. However, the choice of thresholding procedure can also produce 

substantial uncertainty in projections of climate change impacts (Nenzen and Araujo 2011). While 

guidance exists for thresholding predictions under a static climate (Fielding and Bell 1997, Liu et al. 

2005, Jimenez-Valverde and Lobo 2007, Freeman and Moisen 2008), we are not aware of any such 

assessment for a changing climate. 

Future climate change uncertainty is inherent uncertainty in climate change impacts research. 

GCM projections provide a range of plausible futures with variability in GCM projections having two 

underlying sources beyond natural interannual variability: the level of greenhouse gas emissions and the 

GCMs themselves. The Intergovernmental Panel on Climate Change (IPCC) produces several scenarios 

describing different emissions pathways and does not take a position on which one is the most likely 

(Solomon et al. 2007). GCM uncertainty results from different GCMs representing physical processes 

differently. The state of the science of climate modeling is such that this range of uncertainty is unlikely 

to narrow significantly in the near future (Hawkins and Sutton 2009, Trenberth 2010, Knutti and 

Sedlacek 2013) with natural variability and GCM uncertainty dominating scenario uncertainty until 

around mid-21st century (Hawkins and Sutton 2009).  Thus, currently it is recommended that ecologists 

address plausible future climatic outcomes by selecting a range of GCMs and for projections extending 

beyond mid-century include different emissions scenarios as well (Knutti et al. 2010).  

An additional challenge for species distribution modeling is selecting models that can be 

generalized across space and time. Because the future is unknowable, most studies assess model 

peƌfoƌŵaŶĐe ďǇ paƌtitioŶiŶg oŶe dataset iŶto tƌaiŶiŶg aŶd testiŶg data to ͞Đƌoss-ǀalidate͟. Cƌoss-

validation is not as rigorous as validation based on truly independent data, thus, the ability of SDMs to 
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reliably extrapolate outside the spatial extent or temporal time frame of the training data is only weakly 

evaluated (Elith and Leathwick 2009). Furthermore, high model performance in cross-validation tests 

may result from a model that closely fits noise in the data (Heikkinen et al. 2012). Importantly, some 

recent studies tested  

the generalizability of differing model algorithms using spatially or temporally independent test datasets 

(Araujo et al. 2005a, Heikkinen et al. 2012, Rapacciuolo et al. 2012, Smith et al. 2013). However, the 

generalizability of other methodological decisions remains underexplored. 

To evaluate the uncertainty in projections of climate-driven distributional changes, we 

developed SDMs for wetland-dependent birds breeding in a climatically variable landscape - the Prairie 

Potholes of the northern Great Plains of North America. Prairie Pothole habitats are highly dynamic, 

reflecting recent climatic conditions by varying in number, size, and vegetative cover on an annual basis 

(Larson 1995, Johnson et al. 2010, Niemuth et al. 2010) with distribution of migratory birds reflective of 

ĐuƌƌeŶt Ǉeaƌ͛s ǁetlaŶd ĐoŶditioŶs (Smith 1970, Johnson and Grier 1988, Niemuth and Solberg 2003, 

Fletcher and Koford 2004). Our bird occurrence dataset represents a long times series and includes 

extensive climatic variation from flood to drought conditions. This allowed us to predict to pronounced 

drought periods in the historic dataset based on models trained to more normal climatic conditions—

that is, to evaluate model performance when projecting to a climatically non-stationary period.  

In our research, we address the following questions: 

(1) What is the amount of uncertainty in projections of range change attributable to a) climate 

covariate hypothesis; b) degree of collinearity; c) threshold; and d) GCM? 

(2) How is the amount of projected range change effected by choices of a) climate covariate 

hypothesis; b) degree of collinearity; c) threshold; and d) GCM? 

(3) Which choices provide the best ability to extrapolate to a drought period? Are the same choices 

recommended based on cross-validation? 
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METHODS 

Study system 

The Prairie Pothole Region (PPR), located in the northern Great Plains of the U.S. and Canada, is 

a mosaic of grassland, cropland, and pothole wetlands. Prairie potholes are glacial depressions that hold 

water on a permanent, semi-permanent, or seasonal basis and, in some areas, reach densities greater 

than 40 km-² (Kantrud et al. 1989). Most pothole wetlands are small and shallow, however, they range 

widely in size (Zhang et al. 2009).  Because the underlying glacial till is typically of low permeability and 

surface connectivity is limited, the principal source of water for wetlands is precipitation (Shjeflo 1968, 

Winter and Rosenberry 1998).  

In a typical year, the PPR receives snowfall during winter months and increasing amounts of 

precipitation in spring and summer followed by drier fall conditions (Woodhouse and Overpeck 1998). 

Total annual precipitation does not always exceed evaporative loss, and the resulting water balance 

produces a dynamic wetland landscape where shallow wetlands usually dry up during summer months. 

In addition, the region is characterized by high climatic variability across years, and periods of drought or 

excessive precipitation may extend over multi-year periods. Historic multi-year droughts include the 10-

Ǉeaƌ ͞dust ďoǁl͟ dƌought iŶ the ϭϵϯϬs aŶd a ϱ-year drought from 1988-1992. During these pronounced 

drought periods, even many of the larger wetlands became dry (Shjeflo 1968, Winter and Rosenberry 

1998, Johnson et al. 2004). Multi-year wet periods, or deluges, also occur and produce contrasting 

conditions with most landscape depressions holding surface water (Beeri and Phillips 2007, Niemuth et 

al. 2010).  The juxtaposition of wet and dry periods promote dramatic annual changes in marsh 

vegetative cover and high productivity (Euliss et al. 1999, van der Valk 2005, Johnson et al. 2010). Under  

sustained wet or dry conditions, marshes with high water levels have little emergent vegetation and 

those with low water levels support dense vegetative cover (van der Valk and Davis 1978, Johnson et al. 

2004).  
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The spatially extensive and highly productive wetlands of the PPR provide core breeding habitat 

to 46 migratory waterbird species (Steen et al. 2016). Annual waterbird counts are strongly positively 

Đoƌƌelated ǁith that Ǉeaƌ͛s ǁetlaŶd ĐouŶts, deŵoŶstƌatiŶg aŶ iŵŵediate ƌespoŶse to ƌeĐeŶt ĐliŵatiĐ 

conditions (Stewart and Kantrud 1973, Niemuth and Solberg 2003). The amount and type of vegetative 

cover and wetland size are additional climate-mediated conditions that influence the distribution of 

waterbird species in the PPR (Weller and Spatcher 1965, Kantrud and Stewart 1984, Linz et al. 1996, 

Murkin et al. 1997, Johnson et al. 2010, Steen and Powell 2012). 

Our study area within the PPR was approximately 290,000 km² in size and included portions of 

three U.S. states:  North Dakota, South Dakota, and Minnesota (Supplementary figure S2.1). During our 

study period, mean annual temperature ranged from 3°C to 9°C from north to south and mean annual 

precipitation ranged from 300mm to 800mm west to east (Millett et al. 2009). Since European 

settlement, wetlands in the PPR have been extensively converted to cropland with wetland losses 

greatest in the eastern portion of our study area (Dahl 1990, Johnson et al. 2008).  Losses of surrounding 

grassland habitats have a similar geographic pattern (greatest in the eastern portion of the PPR) but 

have been even more extensive than wetland losses (Beyersbergen et al. 2004).  

Bird data 

We obtained species occurrence (presence/absence) data from the North American Breeding 

Bird Survey (BBS; Sauer et al. 2011) for our focal species. BBS routes are located on secondary roads 

throughout the U.S. and southern Canada. Surveys are conducted once annually during June between 

the hours of 0445 and 1000. Route locations generally remain the same from year to year, although 

routes vary in year of initiation and not all routes are surveyed each year. BBS routes consist of 50 

survey stops spaced 0.8 km apart for a total length of 39.4 km. At each survey, stop observers record all 

birds seen or heard within 400 m for three minutes. BBS survey data are available for each species and 

summarized as route totals or 10-stop totals (1/5 section of a route; https://www.pwrc.usgs.gov/bbs/). 
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We used results from high-ƋualitǇ suƌǀeǇs ;ƌepoƌted ďǇ the BB“ as ͞ƌuŶ tǇpe ϭ͟Ϳ foƌ the Ǉeaƌs 

1971-2010 derived from 72 routes within our study area. Hydrological data were not comprehensive for 

2000-2010 in Minnesota, thus 19 (of 24) Minnesota routes included surveys only through 1999. Due to 

variation in land cover along the 39.4-km BBS routes in our study area, we used avian count data from a 

single section (set of 10 consecutive point-count surveys) from each BBS route in each year. Because 

each BBS route was consistently surveyed in one direction, from the first stop, starting around 0445, to 

stop 50, ending around 0900, we assumed that bird activity level and thus, detection probability, would 

be higher for the first ten-stop section. From previous work, we used consistently either the first or third 

section for a species depending on which section had higher detections for that species across all 

surveys (Steen et al. 2014).  We identified our set of focal species based on their prevalence (section-

level occurrence rate)—that is, species detected at fewer than 5% of route sections were not included in 

our subsequent analyses.  

Land Cover Data 

We extracted land cover variables to associate with BBS routes from GIS raster layers created by 

the U.S. Fish and Wildlife Service (USFWS; USFWS Regions 6 and 3 Habitat and Population Evaluation 

Teams, unpublished data). The USFWS data layers were at a 30-m resolution and a combined product 

based on classified Landsat Thematic Mapper Satellite imagery from 2000-2003 and USFWS National 

WetlaŶds IŶǀeŶtoƌǇ ;NWIͿ ǁetlaŶd polǇgoŶs ďased oŶ aeƌial iŵageƌǇ fƌoŵ the late ϭϵϳϬ͛s aŶd eaƌlǇ 

ϭϵϴϬ͛s. Classification accuracy of the upland land cover data for North and South Dakota, assessed in 

2007, was > 90% (M. Estey, personal communication). We characterized wetlands into six classes: 

temporary, seasonal, semi-permanent, lake, river, and water. Temporary, seasonal, and semi-

permanent wetlands are palustrine wetland classes describing the typical period they hold water, e.g. 

from a few weeks for a temporary wetland to multiple years for a semi-permanent wetland. Water is a 

label applied to locations where water pixels in the newer imagery extended beyond NWI wetlands. We 
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described upland habitat using four land cover classes: cropland, grassland, tree, and developed. 

Cropland included areas planted with crops or fallowed. Grassland included native prairie, planted 

grasslands, and hayland. Developed land cover included towns and residential areas. Tree habitat 

included small sections or rows of trees and, occasionally, areas of forest. 

To describe habitat associations for the focal waterbird species, we estimated the proportion of 

the land cover types in the surrounding landscape within a 0.4-km buffer centered on each BBS route 

segment. We used ArcMap 10.0 to calculate land cover composition for the six wetland types and four 

upland land cover classes. We chose a buffer of 0.4-km because it matched the maximum bird survey 

distance from the BBS survey route and because land cover covariates based on different buffer sizes 

were highly correlated. Land cover was assumed static across the survey interval (1971-2010) and for 

future projections. 

Observed and projected climate data 

Both siŵulated past Đliŵate ;͞hiŶdĐast͟Ϳ aŶd pƌojeĐtioŶs of futuƌe Đliŵate ;teŵpeƌatuƌe, 

precipitation) were obtained from the "Downscaled CMIP3 and CMIP5 Climate and Hydrology 

Projections" archive (Brekke et al. 2013). This dataset provides Coupled Model Intercomparison Project 

Phase 5 (CMIP5) General Circulation Model (GCMs) data downscaled to 1/8° spatial resolution using the 

BCSD (Bias-Corrected Spatially Disaggregated) approach (Wood et al. 2004, Maurer et al. 2007). In our 

study area, 1/8° represents an east to west spacing of approximately 10 km and north to south spacing 

of approximately 14 km. This downscaled temperature and precipitation data also had been processed 

through the Variable Infiltration Capacity (VIC) macroscale hydrologic model (version 4.1.2h, Liang 

1994), to obtain projections of hydrological variables. 

We used the output from 10 randomly selected CMIP5 GCMs (represented as circled numbers in 

Supplementary figure S2.2). These GCMs well-represent the range of plausible futures in the GCMs, 

from less warming (+~ 1.5 °C) to greater warming (over +4 °C) and from a decrease of ~7% in annual 
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precipitation to an increase of ~20%. Whereas only one GCM projected a notable decrease in 

precipitation, the risk of less precipitation coupled with the higher temperature increase in that GCM (+ 

~4 °C; #27) is an important risk to consider for the Prairie Pothole Region and an important risk to 

include in the analysis. We chose only GCMs run with the RCP 8.5 greenhouse gas emissions pathway for 

our mid-century projections (Snover et al. 2013). 

Climate variable sets 

We developed candidate covariate sets for each of the three climate hypotheses based on 

previous bird and Prairie Pothole studies (Table 2.2). The candidate covariates in our temporal 

hypothesis included seasonal, yearly, and multi-year summaries as well as temporal variation (standard 

deviation) because research in the prairie potholes has shown the influence of shorter and longer term 

climate as well as the variability in driving wetland habitats (Larson 1995, Johnson et al. 2010). For the 

bioclimatic hypothesis, we defined candidate bioclimatic covariates compiled from Synes and Osborne 

(2011) ǁhiĐh used a ͞geŶeƌiĐ seleĐtioŶ ďased oŶ pƌeǀious ďiƌd studies͟ aŶd fƌoŵ JiŵeŶez-Valverde et al. 

(2011) that describe potential distributional constraints experienced by North American birds. The 

candidate covariates in our hydrological hypothesis included those that predict yearly density of 

wetlands holding water in the PPR (Sofaer et al. 2016) as well as additional hydrological covariates 

representing seasonal wetness patterns expected to change in the future (Ballard et al. 2014) and late 

spring and early summer wetness patterns that may affect settling patterns of migratory birds 

(Heikkinen et al. 2006b).  The hydrological hypothesis included covariates from the VIC hydrological 

model and derivations of temperature and precipitation. 

Candidate covariates for each of the three hypotheses were reduced in number based on their 

degree of collinearity as assessed by variance inflation factors (VIFs).  The first cutoff VIF was set at the 

commonly recommended value of 10 and the second was set at two, using a more stringent 

recommendation for ecological studies (Kutner et al. 2004, Zuur et al. 2010).  Starting with 16 candidate 
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covariates for the temporal hypothesis, covariates were reduced to 14 and finally 11 (Table 2.2). For the 

bioclimatic hypothesis, reductions were from 12 to 9 to 6 and for the hydrological hypothesis, 15 to 13 

to 10. 

Species distribution models 

Foƌ eaĐh speĐies͛ “DM, ǁe used the speĐies͛ ǇeaƌlǇ oĐĐuƌƌeŶĐe – defiŶed as ≥ ϭ deteĐtioŶ peƌ ϭϬ-

stop segment – as the response variable and climate and land cover covariates as predictor variables. To 

exclude the effects of temporal autocorrelation in occurrence patterns, we excluded consecutive years 

of survey data. Climate covariates assigned to a given BBS route were based on the nearest gridded 

climate data point and were temporally matched to the year of the BBS survey. Temporal climate 

matching is appropriate in our dynamic study system and may be appropriate for vagile species such as 

birds in general, although is not commonplace (Reside et al. 2010). Wetland and upland land cover 

;heƌeafteƌ gƌouped as ͞laŶd Đoǀeƌ͟Ϳ Đoǀaƌiates ĐhaƌaĐteƌized the Đoŵposition of the landscape 

surrounding each route (see land cover data).  Focal species were removed when no model algorithm 

achieved a minimum AUC <0.65 for that species. 

We fit our occurrence data using the ensemble modeling platform BIOMOD implemented in the 

R package Biomod2 (Version 3.3-7; Thuiller et al. 2009). In this package, we employed seven modeling 

algorithms to fit covariates to species occurrence data. These included generalized linear models (GLM) 

with polynomial terms and without model selection, generalized boosted models (GBM), random forests 

(RF; with 2500 trees), multivariate adaptive regression splines (MARS), artificial neural networks (ANN), 

classification tree analysis (CTA), and flexible discriminant analysis (FDA). For additional information on 

settings of models, see the default settings for Biomod2. Because consensus probabilities are generally 

expected to perform better than probabilities based on a single modeling technique, we used the 

consensus of the probability of occurrence as our prediction (Araujo et al. 2005b, Marmion et al. 2009, 

Garcia et al. 2012). Consensus was estimated from the weighted mean probability of occurrence across 
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those ŵodeliŶg algoƌithŵs that aĐhieǀed a pƌediĐtiǀe peƌfoƌŵaŶĐe of AUC ≥ Ϭ.ϲϱ. The ǁeights ǁeƌe 

based on the AUC values for each model. Twenty-nine waterbird species, including nine waterfowl, five 

songbird, five shorebird, three gull and tern, two rail, two heron, two grebe, and one cormorant species 

met the criteria for inclusion (Table 2.1).  

Threshold 

We evaluated 12 of 14 probability of occurrence thresholds (Table 2.3) assessed by Nenzen and 

Araujo (2011). We did not include precision-recall minimized (PRmin) and maximize sum of sensitivity 

and specificity (SeSpmax) because we found they were highly similar to predicted prevalence equals 

observed prevalence (PredPrev=ObsPrev) and the true skill statistic (TSS), respectively.  

Calculating projected climate change impacts for each species 

To assess species-specific climate change impacts, we calculated the range change index (RCI; 

Thuiller et al. 2005, Buisson et al. 2010, Synes and Osborne 2011, Fordham et al. 2013).  Based on 

specified suitable/unsuitable threshold and predicted probability of occurrence maps for current and 

future distributions, RCI is the number of pixels gained minus the number of pixels lost divided by the 

number of pixels currently occupied. It compares the size of the projected and current distributions for 

species with unlimited dispersal capabilities as expected for vagile bird species, although does not assess 

spatial shifts. Models for predicting RCI were trained with the full training dataset (Table 2.1). Biomod 

was executed over three repetitions with an 82:18 random data split to match the data split created in 

the wet/normal versus dry dataset division.  

Attributing uncertainty in range change projections 

Using a factorial design to evaluate key sources of uncertainty in SDM development, we 

evaluated all possible combinations of uncertainty including: 10 GCMs, three covariate hypotheses, 

three cut-offs for collinearity, and 12 threshold criteria (Figure 2.1).  The result was 1,080 sets of range 

change projections per species. To summarize the variation in projections attributable to each source, 
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we applied a GLM with normal error distribution to log-transformed RCI output for each species to 

evaluate the relative contribution to estimated range change arising from GCM selection, covariate 

hypothesis, degree of collinearity, and threshold criteria.  We alternately withheld each source to assess 

the proportional reduction in model deviance attributable to inclusion of that factor as a model 

covariate (Buisson et al. 2010). For example, the proportion of deviance explained by GCM, for a given 

species, was calculated as the difference between the deviance remaining in the model without GCM 

and the deviance remaining in the model with all factors. This difference was then divided by the null 

(intercept only) model deviance. We then summarized the distribution of deviance reduction values 

across species for each uncertainty source.  

Effects of modeling decisions on amount of projected range change  

We assessed the effects of decisions regarding the covariate hypotheses tested, degree of 

covariate collinearity, and thresholding procedures on estimates of range change using generalized 

linear mixed models (GLMMs; Figure 2.1).  In these models, we treated species as a random effect and 

assumed RCI to be a log normally distributed response variable. GLMMs were created using the R 

package lme4 (R Development Core Team 2012, Bates et al. 2015). We set reference levels to those that 

predicted the smallest RCI. To qualify the degree of change to RCI estimates produced by the alternate 

decisions compared to choosing the reference level, we desĐƌiďe ͞ŶoŶe͟, ͞loǁ͟, ͞ŵodeƌate͟, ͞high͟, oƌ 

͞ǀeƌǇ high͟ ƌefleĐtiŶg ĐoeffiĐieŶt estiŵates of Ϭ, <Ϭ to -0.2, <-0.2 to -0.4, <-0.4 to -0.6, and <-0.6 to -0.8, 

respectively. 

Effects of modeling decisions on model performance when extrapolating 

To create independent test data, we partitioned drought years from the years representing wet 

and normal conditions.  We defined seven drought years:  1988-1992 and 2004-2005. The years 1988-

1992 cover a drought considered second in severity only to the dust-bowl drought of the ϭϵϯϬ͛s aŶd 

resulted in a greatly reduced number of wetlands including the loss of some lakes (Winter and 
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Rosenberry 1998, Niemuth et al. 2010). During the 2004-2005 drought years, lakes remained largely 

unaffected but the number of temporary and seasonal wetlands were reduced to below half their 

maximum number, and sizes of semipermanent wetlands were reduced by ~50% (Niemuth et al. 2010). 

Extrapolation model performance was assessed using models trained with data from the 82% of the 

data that represented wet/normal years and projected to the 18% of the data that represented drought 

years. Cross-validation model performance was assessed using 10 randomized splits of the wet/normal 

Ǉeaƌs͛ data usiŶg the saŵe pƌopoƌtioŶs as foƌ eǆtƌapolatioŶ ;ϴϮ:ϭϴͿ.  

We assessed ŵodel peƌfoƌŵaŶĐe usiŶg fouƌ ŵetƌiĐs: ϭͿ CoheŶ͛s kappa statistiĐ ;kappaͿ is ǁidelǇ 

used and corrects overall prediction success by expected correct predictions occurring by chance (Manel 

et al. 2001); 2) True Skill Statistics (TSS), proposed as aŶ alteƌŶatiǀe to CoheŶ͛s kappa, ŵaǆiŵizes the 

sum of sensitivity and specificity and is unaffected by prevalence (Allouche et al. 2006); 3) Area under 

the receiver operating characteristic curve (AUC) is based on a plot of sensitivity versus 1-specificity 

across  

all thresholds (Fielding and Bell 1997); and 4) prevalence match, defined as 1 minus the difference 

between predicted and actual prevalence. For modeling purposes, all metrics were logit transformed, 

and a normal error distribution was assumed (Warton and Hui 2011).  

We modelled the effects of climate covariate hypothesis, degree of collinearity, and 

thresholding procedure on model performance for each performance metric. We used GLMMs with 

species as a random effect (using lme4). For climate covariate hypothesis and thresholding procedure 

we selected reference levels for the GLMMs based on those that were intermediate in effect, thus 

allowing other levels to have a positive or negative effect on model performance relative to the 

intermediate effect of the reference. Using model coefficients, we qualified the relative impact to model  
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performance in extrapolation owing to alternate decisions relative to choosing the reference level. We 

desĐƌiďe ͞positiǀe͟, ͞iŶteƌŵediate͟, oƌ ͞Ŷegatiǀe͟ peƌfoƌŵaŶĐe iŵpacts corresponding to coefficient 

estimates that are positive, zero, or negative, respectively.  

To evaluate the ability of choices based on higher performance in cross-validation tests to 

improve performance for extrapolation as well, we assessed the correlation between cross-validation 

and extrapolation results for each performance metric. For each of the four performance metrics, we 

used GLMMs to predict the extrapolation performance value using a fixed effect of cross-validation 

performance value and a random effect of species. We then assessed the correlation between the 

pƌediĐtioŶ aŶd the aĐtual eǆtƌapolatioŶ peƌfoƌŵaŶĐe ǀalue usiŶg “peaƌŵaŶ͛s ƌaŶk-based correlation (ρ).  

We assessed influential species as diagnosed by the relative variance change measure in the R 

package HLMdiag by alternately removing each species and observing whether interpretation of model 

results changed (Dillane 2006). Influential species in one or more GLMM included Great-blue Heron 

(Ardea herodias), Green-winged Teal (Anas crecca), American Wigeon (Anas americanaͿ, FƌaŶkliŶ͛s Gull 

(Leucophaeus pipixcan), Sedge Wren (Cistothorus platensis), Common Yellowthroat (Geothlypis trichas), 

Killdeer (Charadrius vociferus), Eared Grebe (Podiceps nigricollis), and Yellow-headed Blackbird 

(Xanthocephalus xanthocephalus). However, because their removal did not impact the interpretation of 

the results, we retained them. 

RESULTS 

Attributing uncertainty in range change projections 

Range change estimates were highly variable.  Although median projected range change was 

negative for all but one species, the majority of range change projections varied widely and included 

both negative and positive projections—that is, inferences to the direction and amount of range change 

depended critically on model-building decisions (Figure 2.2). GCM selection contributed the most 
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uncertainty followed by the covariate hypothesis evaluated and thresholding technique (Figure 2.3). 

Degree of collinearity retained in the covariate set was a minor source of uncertainty.  

Effects of modeling decisions on amount of projected range change  

According to the GLMMs of RCI, the GCM that predicted the least range change (median RCI = -

0.16) also projected the least warming and the greatest increase in precipitation (# 34 Supplemental 

figure S2.2 and Supplemental figure S2.5). The GCM that projected the greatest range change (median 

RCI = -0.55) had near-zero change in precipitation accompanied by the largest increase in temperature 

(# 1). Using bioclimatic and temporal climate covariates resulted in moderately more projected range 

loss compared to hydrological covariates (Table 2.4). Bioclimatic covariates projected an average of 94% 

more median range loss than hydrological covariates and temporal covariates projected 98% more 

range loss (Supplemental. figure S2.6). The difference in range loss projected by bioclimatic and 

temporal covariates was not statistically significant (Supplemental figure S2.3). The impact of varying 

collinearity was low with the highest degree of collinearity projecting 9% more median range loss 

relative to the lowest (Table 2.4 and Supplemental figure S2.7). The impact of using the fixed (0.5) 

threshold was very high compared to those that produced the least change (observed prevalence and 

averaged predicted probability) and resulted in projections of 94% more median range loss (Table 2.4 

and Supplemental figure S2.8). Numerous other thresholds resulted in moderate or low impacts to the 

amount of projected range loss (Table 2.4). 

Effects of modeling decisions on model performance when extrapolating 

The ŵodel͛s aďilitǇ to eǆtƌapolate to dƌought ĐoŶditioŶs ǁas ǀaƌiouslǇ iŵpƌoǀed oƌ diŵiŶished 

by different modeling decisions (Table 2.4). The temporal covariate hypothesis generally had a positive 

impact on extrapolation ability, while the bioclimatic hypothesis generally had a negative impact 

compared to the hydrological hypothesis which was intermediate. Higher collinearity benefited  
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extrapolations. For locational accuracy and prevalence accuracy, five thresholding procedures improved 

and three diminished projections compared to the reference levels of Fmeasure and SeSpeql, 

respectively.  

All correlation coefficients assessing correlation between predictions of extrapolation 

performance based on cross-validation performance and actual extrapolation performance were 

positive indicating cross-validation performance measures provide value for making modeling decisions 

for extrapolating under climate change. Although all positive, they varied in strength, with ρ = 0.93 for 

AUC, ρ = 0.91 for TSS, ρ = 0.86 for kappa, and ρ = 0.72 for prevalence match. The climate covariate 

hypothesis used to define the covariate set and the level of collinearity led to varying performance, with 

some differences between cross-validation and extrapolation (Supplemental figure S2.4). Impact of 

thresholding decision was the same when evaluated by TSS in cross-validation and extrapolation, 

whereas with prevalence match the optimal threshold was not consistently the same in cross-validation 

and for extrapolation  

(Supplemental figure S2.4).  When evaluated by kappa, threshold decisions were not impactful for 

extrapolation (except the fixed threshold which resulted in reduced performance, Supplemental figure 

S2.4).  

DISCUSSION 

Attributing uncertainty in range change projections 

Whereas most other studies found various methodological uncertainties to be larger than the 

uncertainty in climate change itself, our study lends evidence that the plausible range of future climate 

itself is the largest unknown (but see also Wenger et al. 2013, Stralberg et al. 2015). We chose a random 

10 GCMs for our study area that encompassed a range of expected climate system response to rising 

greenhouse gas emissions by mid-century and found this uncertainty source in projections of range 

change for 29 bird species exceeded that of climate covariate hypothesis, degree of collinearity, or 
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thresholding procedure. Whereas some studies have suggested that a subset of GCMs can be selected 

that represent an area or physical pƌoĐess, theƌe is little agƌeeŵeŶt oŶ ŵetƌiĐs to sepaƌate ͞good͟ oƌ 

͞ďad͟ ŵodels (Knutti et al. 2010), thus a better approach is to represent the range of variation in GCMs 

(e.g., Leppi et al. 2014, Fisichelli et al. 2016, Sofaer et al. 2016). Studies interested in late century 

conditions should also consider multiple emissions scenarios which underlie much of the variation 

among outcomes (Snover et al. 2013), whereas for mid-century projections such as ours, most of the 

variation can be represented by GCM variation. 

We also observed substantial variation in projected future distributions depending on which 

covariate hypothesis was being tested. The underlying climate data were the same for all climate 

datasets, eliminating this factor as a source of variation among projections and pointing towards the 

importance of how the relationship between climate and species distribution is hypothesized and the 

resulting derivations of climate and climatic variation that are represented. Other studies corroborate 

this finding for spatial projections and extinction risk estimates for plants in western South America 

(Pliscoff et al. 2014) and for spatial projections and range change estimates for the great bustard (Otis 

tarda) in Europe (Synes and Osborne 2011) indicating this issue applies broadly.  

We filtered our covariate sets using three different degrees of collinearity based on variance 

inflation factor thresholds and found relatively little variation in range change projections. While posited 

as a serious concern with conflicting recommendations for best practices when projecting species 

distributions (Beaumont et al. 2005, Braunisch et al. 2013, Dormann et al. 2013), we found the impact of 

this decision to be relatively small. This may, in part, reflect our approach ǁhiĐh staƌted ǁith a ƌelatiǀelǇ 

laƌge Ŷuŵďeƌ of Đoǀaƌiates ;ǆ ̅= ϭϰͿ aŶd eŶded iŶ a ŵodeƌate Ŷuŵďeƌ ;ǆ ̅= ϵͿ, thus poteŶtiallǇ 

maintaining a lot of redundancy in covariate information. Beaumont et al. (2005) also cited the 

redundancy of covariates as an explanation for their similar finding of little difference in relative 

distributional change.  
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We found that thresholding probabilities of occurrence into presence-absence – an important 

step foƌ ƋuaŶtifǇiŶg speĐies͛ ƌaŶge loss oƌ gaiŶ - can generate almost as much uncertainty, on average, 

as hypothesizing a relationship with climate. Serious concerns about threshold choice have been raised 

for predictions to current conditions (Liu et al. 2005, Jimenez-Valverde and Lobo 2007, Freeman and 

Moisen 2008), so it is not surprising that threshold choice contributes substantial uncertainty for future 

projections as Nenzen and Araujo (2011) also found. 

Effects of modeling decisions on amount of projected range change  

Our work highlights the need to account for uncertainty in future climate as our inclusion of a 

reasonable range of GCMs from those that predicted wetter futures to drier futures appeared to explain 

the high uncertainty in species range change attributable to future climate. As expected, while  

increasing precipitation coupled with modest temperature increases in our wetland-based study system 

resulted in little projected range loss for wetland-dependent birds, large increases in only temperature 

produced high projected range loss.   

Because the temporal and bioclimatic hypotheses were likely more similar based on how they 

were computed – based on simple summaries and derivations, versus an additional hydrological model – 

perhaps it is not surprising that they produced similar levels of range change. Why they predicted, on 

average, twice the range loss of the hydrological covariates is less clear. One possibility is that increases 

in temperature are tempered when precipitation also increases – which it typically did in our study – in 

the water balance formulas of the hydrological model. This possibility should be explored in future 

research, given the evidence we found for large differences in projected climate change impacts when 

using hydrological covariates.  

While including more covariates generally produces more restricted predictions of ranges, the 

impacts of collinearity in projections of range change – where the measure is a difference in proportions 

of future and current ranges – has rarely been addressed. In our analysis, higher collinearity led to 
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increases in projected range loss as may be consistent with the expectation that higher collinearity leads 

to overfit models that are not generalizable to new times or places. This is consistent with Thorne et al. 

(2013) who found much more optimistic estimates of climate change impacts going from a 13 covariate 

set to a model with one covariate. However, Beaumont et al. (2005) did not find a tendency for more 

severe range losses with increasing covariates. 

The fixed threshold of 0.5 produced the most alarming projections of range loss and nearly 

twice that of the thresholds that produced the most moderate projections of range loss, namely, 

observed prevalence and average predicted probability. While the fixed 0.5 threshold is known to 

overestimate occurrences of common species and underestimate occurrences of rare species, we did 

not examine the relationship between species prevalence and projected range loss under this threshold 

to assess how this bias might influence our climate change projections (Jimenez-Valverde and Lobo 

2007, Freeman and Moisen 2008). In differentiating among thresholds, previous studies compared 

threshold predictive performance for static conditions, however for climate change impacts assessments 

comparing the magnitudes of projected range change under different thresholding schemes is also 

critical and should be examined further (but see also Nenzen and Araujo 2011). 

Effects of modeling decisions on model performance when extrapolating 

Bioclimatic covariates have a stronger theoretical link to niche modelling, are widely used for 

modelling climate change impacts, and are assumed to have numerous advantages; however, they 

produced diminished model performance in extrapolation relative to temporal covariates. The simpler 

summaries of temporal variation in temperature and precipitation could, in some situations, have the 

advantage of representing more variability in climate if more months are represented in the ultimate 

set. This apparent advantage of the temporal covariate set, could then come down to which bioclimatic 

variables versus which temporal variables defined each set. In our case, the bioclimatic set had fewer 

covariates, and this may have ultimately produced our result. However, Peterson and Nakazawa (2008) 
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also found that bioclimatic variable sets underperformed relative to other climatic variable sets. They 

suggested that the indirect methods used to estimate the bioclimatic covariates relative to more direct 

use of means and summaries of other climate covariates may put bioclimatic variables at a 

disadvantage.  Of additional concern is that some bioclimatic covariates that represent extreme 

ĐoŶditioŶs suĐh as, foƌ eǆaŵple, ͞ǁettest Ƌuaƌteƌ͟ ŵaǇ pƌojeĐt iŶ ŵisƌepƌeseŶtatiǀe ǁaǇs if the 

seasonality of future climate changes. Different timing of the covariate in the future would change the 

relevance of the covariate for many migratory species that cannot readily adjust to shifting phenology.  

Hydrological variables have the advantage of representing the interaction of temperature and 

precipitation, including the balance between precipitation inputs and temperature driven evaporative 

water loss. However, their extrapolative performance – although better than bioclimatic covariates – 

underperformed relative to temporal covariates. The noise introduced by the additional model required 

to derive these covariates could conceivably diminish the theorized benefit to these covariates and this 

tradeoff should be explored further. 

Our results for extrapolation generally corroborated previous work assessing performance of 

thresholds under a static climate. For locational accuracy, like Liu et al. (2005) we found that sensitivity-

specificity based approaches (ROC, SeSpeql, TSS) as well as average probability and observed prevalence 

offered improved performance while the fixed threshold produced the poorest performance. The very 

poor performance of the fixed threshold, is likely due to the bias in probability estimates when 

prevalence data deviate from 0.5, as ours do (Cramer 1999, Jimenez-Valverde and Lobo 2007, Kuhn and 

Johnson 2013). For prevalence accuracy, like Freeman and Moisen (2008), we found kappa and 

predicted prevalence equals observed prevalence improved this metric, although our results additionally 

recommend Fmeasure, mid-point probability, and overall prediction success. Because recommended 

thresholding procedures varied depending on whether locational accuracy or prevalence accuracy was 
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desired, we recommend basing threshold choice on whether study objectives align more with projecting 

specific locations accurately or projecting prevalence accurately. 

Positive correlation values between model performance in cross-validation and extrapolation for 

all performance metrics (AUC, kappa, prevalence match, and TSS) indicates that cross-validation 

performance can be used to select best choices for bioclimatic species distribution modeling.  However, 

the smaller value for prevalence match indicates lower reliability of this metric, or, alternatively, the 

challenge of extrapolating prevalence. Conversely, the relatively high correlation values for AUC and TSS 

indicate these metrics may be among the better for making modeling decisions. 
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Figure 2.1. Schematic representation of workflow starting with creating nine species distribution models 

(SDMs) by training with each of nine covariate sets using the Biomod ensemble and following two 

objectives:  (1) the range change analysis involved projections of each SDM to 10 GCMs to obtain future 

probabilities of occurrence, then thresholding each projection 12 different ways to obtain occurrence 

(0/1) values, then calculating range change (range change index; RCI) based on the difference between 

future versus hindcast occurrence (not shown); (2) the model performance analysis involved predictions 

of each SDM to subsets of historical climate data based on (a) cross-validation data splits or (b) 

extrapolation data split to obtain historic probabilities of occurrence, then thresholding each prediction 

12 different ways to obtain occurrence values, and then assessing model performance based on 

predicted versus actual occurrence. Inference was based on four summary analyses. For objective (1), 

with 1,080 (9 x 10 x 12) projections per species we (1a) modeled deviance in RCI explained by each 

uncertainty source, and, (1b) modeled the factor level contributions to RCI for the 31 (9+10+12) factors. 

For the 108 (9 x 12) historical predictions per species we modeled the factor level relationship across the 

21 (9+12) factors with model performance in cross-validation (2a) and extrapolation (2b).  



70 

 

Figure 2.2. Variation in projected range change (range change index; RCI) to mid-century for 29 species 

based on 1,080 individual projections. Boxplots show the median, and first and third quartiles, with 

whiskers showing the 1.5 inter-quartile range. The overall median RCI value was -0.35, with average 

distance between the 25% and 75% quartiles of 0.41, and average distance of 1.14 describing 95% of 

distributions. Variation stems from multiple sources of uncertainty: climate covariate hypothesis, degree 

of collinearity, thresholding procedure, and GCM. See Table 2.1 for species abbreviations.  
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Figure 2.3. Proportion of deviance in range change index (RCI) explained by uncertainty sources:  GCM, 

covariate hypothesis, threshold, and collinearity. Boxplots show the median, and first and third 

quartiles, with whiskers showing the 1.5 inter-quartile range. 
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Table 2.1. Species, species alpha code, and prevalence (proportion of data points with species present) 

for each dataset. 

  
 Prevalence 

Common Name Scientific Name Alpha 

Code 

Training  

(all years; 

n=854) 

Wet & 

Normal years 

(n=702) 

Dry years 

(n=152) 

Gadwall Anas strepera  GADW 0.28 0.28 0.26 

American Wigeon Anas americana  AMWI 0.06 0.06 0.04 

Mallard Anas platyrhynchos MALL 0.6 0.6 0.58 

Blue-winged Teal Anas discors BWTE 0.39 0.42 0.3 

Northern Shoveler Anas clypeata NSHO 0.18 0.19 0.14 

Northern Pintail Anas acuta NOPI 0.24 0.26 0.16 

Green-winged Teal Anas crecca GWTE 0.06 0.06 0.05 

Redhead Aythya americana REDH 0.13 0.14 0.11 

Ruddy Duck Oxyura jamaicensis RUDU 0.13 0.14 0.11 

Eared Grebe Podiceps nigricollis EAGR 0.04 0.04 0.05 

Pied-billed Grebe Podilymbus podiceps PBGR 0.23 0.26 0.11 

Double-crested 

Cormorant 

Phalacrocorax 

auritus 

DCCO 0.10 0.09 0.11 

American Bittern Botaurus lentiginosus AMBI 0.23 0.25 0.15 

Great Blue Heron Ardea herodias GBHE 0.06 0.06 0.05 

Sora Porzana carolina SORA 0.27 0.30 0.15 

American Coot Fulica americana AMCO 0.29 0.32 0.12 
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Killdeer Charadrius vociferus KILL 0.83 0.84 0.78 

Willet Tringa semipalmata WILL 0.17 0.17 0.16 

Marbled Godwit Limosa fedoa MAGO 0.20 0.20 0.23 

WilsoŶ͛s “Ŷipe Gallinago delicata WISN 0.19 0.19 0.16 

WilsoŶ͛s Phalaƌope Phalaropus tricolor WIPH 0.11 0.12 0.11 

FƌaŶkliŶ͛s Gull Leucophaeus 

pipixcan 

FRGU 0.12 0.12 0.08 

Ring-billed Gull Larus delawarensis RBGU 0.14 0.14 0.14 

Black Tern Chlidonias niger BLTE 0.19 0.21 0.12 

Sedge Wren Cistothorus platensis SEWR 0.24 0.25 0.22 

Marsh Wren Cistothorus palustris MAWR 0.23 0.24 0.23 

Common 

Yellowthroat 

Geothlypis trichas  COYE 0.83 0.83 0.81 

Song Sparrow Melospiza melodia SOSP 0.66 0.66 0.63 

Yellow-headed 

Blackbird 

Xanthocephalus 

xanthocephalus 

YHBL 0.56 0.56 0.55 
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Table 2.2. Nine sets of climate covariates were used in species distribution models. Sets varied by three 

hypotheses (temporal, bioclimatic, and hydrological) and each hypothesis originally included all 

candidate covariates prior to variable reduction to reduce collinearity.  Variables were eliminated based 

on their variance inflation factor (VIF) values relative to two thresholds:  10 and 2. Rows in the table are 

ordered according to type of variable (precipitation, mixed precip./temp., and temperature) and within 

these types are ordered from finest temporal scale to broadest (e.g. from month to 10-yr). Year was a 

biological year defined to match the annual cycle of migratory birds—that is, the 12 month period 

leading up to and including May - the typical month of breeding initiation for our group of species.  

Covariate  Temporal Bioclimatic Hydrological 

 All VIF=10 VIF=2 All VIF=10 VIF=2 All VIF=10 VIF=2 

Precip., driest month    X X X    

Precip., wettest month    X X X    

Precip., spring  X X X       

Precip., winter  X X X       

Precip., fall  X X X       

Precip., summer X X X       

Precip., summer + September    X X X    

Precip., current year    X      

Precip., 5 year  (inc. current 

yr) 

X         

Precip., 10 year (inc. current 

yr) 

X X        

Precip. std. dev., 5 year  X X X       
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Precip., std. dev., 10 year X X X       

Soil moisture content, May       X   

Soil moisture content, 

October 

      X X X 

Runoff, April       X X X 

Runoff, May       X X X 

Soil moisture content, May - 

June 

      X X X 

Precip. – PET, spring       X X  

Precip. – PET, winter       X X X 

Precip. – PET, fall       X X X 

Precip.- PET, summer       X X X 

Precip.- PET, annual        X   

PET, annual       X X  

Moisture Index    X X     

Precip.- PET, 5-yr with 1-yr 

lag  

      X X  

Growing degree days    X X X    

Temp. range, first month 

with mean above freezing 

      X X X 

Temp., max of max summer 

monthlies 

      X X X 

Temp., coldest month    X X X    



76 

Temp., warmest month    X X X    

Temp., mean of max spring 

monthlies 

      X X X 

Temp., mean, coldest quarter    X X     

Temp., mean, warmest 

quarter 

   X X     

Temp., spring X X X       

Temp., winter X X        

Temp., fall X X X       

Temp., summer X X X       

Temp., annual    X      

Temp., 5 year X         

Temp., 10 year X X        

Temp., std. dev., 5 year X X X       

Temp., std. dev., 10 year X X X       
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Table 2.3. Description of thresholding techniques (these taken from Nenzen and Araujo 2011). 

Technique Description 

AveProb Mean of probabilities for just the presence data points 

Fixed (0.5) Traditional method of using 0.5 probability across models 

Fmeasure Maximize F=2*true positives/(presences + true positive + false positive) 

Kappa Maǆiŵize CoheŶ͛s kappa statistiĐ 

MidptProb Median of probabilities between presences and absences in the dataset 

ObsPrev Observed prevalence (proportion of presences) 

OPS Overall prediction success; sum of true positives and true negatives divided by 

the number of observations 

PredPrevObs Predicted prevalence matches observed prevalence 

PRplotbased Precision-recall plot; minimize distance to upper left corner of precision-recall 

plot 

ROC Minimize distance to the upper left corner of the receiver operator curve 

SeSpeql Minimize difference between sensitivity and specificity 

TSS (True Skill Statistic) Maximize sensitivity + specificity -1  
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Table 2.4. Effects on projections of range loss (using Range Change Index, RCI) and model performance 

in extrapolation tests. Interpretations presented in this table are based on model coefficients and 

confidence intervals (Supplementary figures. S2.3 and S2.4). For the RCI model, reference levels always 

predicted the least loss, and we compared how much more loss was predicted by the alternative 

deĐisioŶs. We laďel additioŶal loss as: ͞ŶoŶe͟, ͞loǁ͟, ͞ŵodeƌate͟, ͞high͟, aŶd ͞ǀeƌǇ high͟ ǁhiĐh 

correspond to coefficient estimates of 0, <0 to -0.2, <-0.2 to -0.4, <-0.4 to -0.6, and <-0.6 to -0.8, 

respectively.  For the model performance results, reference levels were those intermediate in 

peƌfoƌŵaŶĐe. ͞Positiǀe͟, ͞iŶteƌŵediate͟, aŶd ͞Ŷegatiǀe͟ ĐoƌƌespoŶd to ĐoeffiĐieŶt estiŵates that aƌe 

positiǀe, zeƌo ;ĐoŶfideŶĐe iŶteƌǀals oǀeƌlapped zeƌoͿ, oƌ Ŷegatiǀe, ƌespeĐtiǀelǇ. ͞TeŶdeŶĐǇ͟ ŵeaŶs that 

most, but not all, performance metrics indicate this result. For thresholding decisions, model 

performance is divided into locational accuracy and prevalence accuracy because results generally 

differed by these two sets of metrics. Locational accuracy is represented only by TSS because kappa 

generally did not differentiate among thresholding procedures in extrapolation and AUC is not based on 

unique thresholds. Prevalence accuracy is represented by the prevalence match metric. 

Decision Group/level Effects on increased 

range loss  

Effects on model performance in 

extrapolation 

Climate 

covariate 

hypothesis 

Temporal Moderate Positive (tendency) 

Bioclimatic Moderate Negative (tendency) 

Hydrological None (reference) Intermediate (tendency; reference) 

Collinearity NA Low impact of increasing 

collinearity 

Benefit to moderate (ten VIF) or 

higher collinearity (tendency) 

Threshold 

procedure 

  Locational 

accuracy 

Prevalence 

accuracy 
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 AvgProb None Positive Negative 

 Fixed (0.5) Very High Negative Intermediate 

 Fmeasure Moderate Intermediate 

(reference) 

Positive 

 Kappa Moderate Intermediate Positive 

 MidptProb Moderate Negative Positive 

 ObsPrev None (reference) Positive Negative 

 OPS Moderate Intermediate Positive 

 PredPrevObs Moderate Negative Positive 

 PRplotbased Low Intermediate Intermediate 

 ROC Low Positive Intermediate 

 SeSpeql Low Positive Intermediate 

(reference) 

 TSS  Low Positive Negative 
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CHAPTER 3:  PREPARING FOR AN UNCERTAIN FUTURE:  ASSESSING RESPONSES OF MIGRATING 

SHOREBIRDS TO HISTORIC CLIMATIC FLUCTUATIONS IN THE PRAIRIE POTHOLE REGION 

 

INTRODUCTION 

The ŵigƌatoƌǇ peƌiod of a ŵigƌatoƌǇ ďiƌd͛s life-cycle may be the most critical to its survival 

(Faaborg et al. 2010, Marra et al. 2015). In contrast to relatively predictable conditions on breeding and 

wintering ground habitats, stopover habitats may expose birds to unknown or unavoidable threats such 

as predation or starvation (Newton 2006, Faaborg et al. 2010). Furthermore, energetic requirements are 

high during migration and hampered resource availability at stopover sites has been linked to reduced 

reproduction, migration speeds, body condition, and, in some cases, to population declines (Newton 

2006). Climate change is advancing phenology, impacting the hydrological cycle, and potentially 

increasing the strength of tropical storms, thus posing novel challenges during migration (Parmesan and 

Yohe 2003, Webster et al. 2005, Held and Soden 2006). Although the importance and challenges of 

migration are well documented, climate change vulnerability assessments, key for directing resources 

for climate change adaptation, do not adequately address the migration period for most migratory 

species (Small-Lorenz et al. 2013). 

Shorebirds that breed at high latitudes may be especially impacted by climate change because 

they require disparate wintering, migratory, and breeding habitats (Brown et al. 2001, Sutherland et al. 

2012). Long-distance migrants, including many high-latitude breeding shorebirds species, may have a 

hard time adjusting to advancing phenology on their migratory stopover habitats and breeding grounds 

because signals to depart their wintering grounds are largely under endogenous control (Hagan et al. 

1991, Both and Visser 2001, Lehikoinen et al. 2004). They may undertake long flights, across hazards 

such as oceans where they can become exposed to severe storms. As many shorebird species rely on 

narrow coastal areas for at least part of their life-cycle, sea-level rise will impact and reduce these areas 
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(Norris et al. 2004). Additionally, algal blooms are promoted by warming, can impact oceanic and 

freshwater wetlands habitats throughout the world, and produce toxins which can poison shorebirds 

(Landsberg 2002).  

Many shorebirds species that utilize seasonal freshwater wetlands in the semi-arid Great Plains 

landscape of interior North America for migratory stopover habitat are in decline (Morrison et al. 2006, 

Thomas et al. 2006). Anthropogenic disturbance including conversion of native habitats to cropland and 

concurrent wetland drainage have already reduced the availability of shorebird habitat (Johnson et al. 

2008). Changes in seasonal precipitation patterns and earlier spring warm-up from climate change will 

impose additional challenges by altering the distribution and availability of wetland habitats. Of 

particular importance to shorebirds is the Prairie Pothole Region (PPR) of the northern Great Plains in 

the U.S. and Canada. This region of North America has high densities of wetlands and hosts millions of 

migratory shorebirds thus making this area of critical importance for shorebird conservation (Skagen et 

al. 2008).  

The PP‘ is at the ĐeŶteƌ of thƌee aiƌ ŵasses, thus ĐƌeatiŶg ͞oŶe of the ŵost eǆtƌeŵe aŶd 

dǇŶaŵiĐ Đliŵates oŶ Eaƌth͟ ǁith high temporal and spatial variability in temperature and precipitation 

(Millett et al. 2009). The small and shallow wetlands that typify the region respond rapidly to annual 

variation in weather, and many are dry or reduced in dry years and overflowing in wet years. Breeding 

wetland dependent birds respond in kind with densities and distribution tightly correlated from year to 

year with wetland availability and condition (Smith 1970, Stewart and Kantrud 1973, Niemuth and 

Solberg 2003).  This unique system offers a real time window into the sensitivity of species to climate 

change and their adaptive capacity. 

Similar to most regions across the world, the range of variability in climate change projections 

for the PPR is large (Hawkins and Sutton 2011). Projections range from forecasts of moderate increases 

in temperature accompanied by large increases in precipitation to large increases in temperature with 
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no increases in precipitation (Sofaer et al. 2016). As a result, projections range from anticipated 

increases to decreases in wetland availability (Sofaer et al. 2016). This uncertainty challenges mitigation 

and conservation planning efforts. Species distribution models (SDMs), parameterized by bioclimatic 

covariates are commonly used to assess future impacts of climate change (Pearson and Dawson 2003). 

However, these vulnerability assessments may be highly uncertain due to both uncertainties about 

future climate conditions as well as inherent methodological uncertainties associated with the SDMs 

themselves (Thuiller 2004, Heikkinen et al. 2006). Fortunately, where historic records of climate 

variability exist, such as in the PPR, investigating past species responses to climate variability can provide 

iŶsights iŶto speĐies͛ seŶsitiǀities aŶd adaptiǀe ĐapaĐities as a first step towards planning for an 

uncertain future. 

To explore shorebird sensitivity and adaptive capacity to climate change, we combined historic 

distribution data with multi-scale habitat selection models and compared shorebird wetland selection 

between a histoƌiĐ dƌǇ aŶd ǁet Ǉeaƌ. We defiŶe a speĐies͛ seŶsitiǀitǇ to Đliŵate ĐhaŶge as shifts iŶ 

habitat selection behavior at the wetland scale in response to changes in the availability of different 

wetland types and environmental cues that stimulate selection. We define adaptive capacity as a 

speĐies͛ aďilitǇ to eǆpƌess ĐhaŶges iŶ its haďitat seleĐtioŶ ďehaǀioƌs at laŶdsĐape aŶd ƌegioŶal sĐales. Foƌ 

example, species with the ability and proclivity to extend their migration movements, may respond to 

broad-scale climate change by large geographic shifts as well as selecting different wetland types. 

Adaptive capacity and sensitivity are components of species climate change vulnerability (Glick et al. 

2011). Our use of sensitivity and adaptive capacity concepts are consistent with Foden et al. (2013) who 

defiŶed seŶsitiǀitǇ as the ͞laĐk of poteŶtial foƌ a speĐies to peƌsist iŶ situ͟ aŶd adaptiǀe ĐapaĐitǇ as ͞a 

speĐies͛ aďilitǇ to aǀoid the Ŷegatiǀe iŵpaĐts of Đliŵate ĐhaŶge thƌough dispeƌsal aŶd/oƌ ŵiĐƌo- 
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evolutionaƌǇ ĐhaŶge͟. Thus, seŶsitiǀitǇ ƌefeƌs to the poteŶtial foƌ shoƌeďiƌds to fiŶd suitaďle stopoǀeƌ 

wetlands consistently in the same location and adaptive capacity as their ability to disperse and find 

suitable wetlands elsewhere. 

METHODS 

Study Area 

Our study area was the PPR in Minnesota, North Dakota, and South Dakota, an area of 302,250 

km2 (Figure 3.1). This area covers a strong east-west gradient in average annual precipitation ranging 

between 400 mm to 800 mm and a difference of 7 degrees Celsius in mean annual temperature from 

north to south (Steen et al. 2014). The pace and extent of land cover conversion to cropland follows a 

spatial gradient from east to west with loss of virtually all prairie and wetlands in Minnesota to retention 

of extensive prairie and wetland habitats in the western borders of the PPR in North and South Dakota. 

The PPR has ecophysiographic subregions that vary in key land features from flat topography, high 

cropland coverage and few remaining wetlands (glacial Lake Agassiz Plain), to low rolling topography 

with more temporary and seasonal wetlands varying to high cropland coverage (Drift Prairie), to higher 

elevation, hilly topography, more semipermanent and seasonal wetlands and lower cropland coverage 

(Prairie and Missouri Coteaus; Kantrud 1989; Figure 3.1). 

Bird and habitat surveys 

In 2002 and 2011, we conducted surveys at wetlands within randomly chosen townships in the 

PPR (Figure 3.1). Townships are 36 square mile land units devised by the U.S. Public Land Survey System. 

We selected 96 townships using a stratified random sample based on median proportions of wetland (> 

ϴ% = ͞high͟; < ϴ% = ͞loǁ͟Ϳ aŶd ĐƌoplaŶd ;> ϲϬ% = ͞high͟; < ϲϬ% = ͞loǁ͟Ϳ laŶd Đoǀeƌ Đlasses ǁithiŶ the 

study area. This resulted in four strata: 1) high wetland, high cropland; 2) high wetland, low cropland; 3) 

low wetland, high cropland; and 4) low wetland, low cropland.  Surveyors drove multiple roads within 

townships, stopping at and surveying wetlands within the randomly selected townships. To mitigate 
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against distance-based declines in detection, only wetlands or portions of wetlands within 200 meters of 

the road were surveyed and wetlands that extended beyond 200 meters were not surveyed beyond that 

distance. We scanned all potential shorebird habitat (shallow water, mudflats, and shoreline areas) with 

a spotting scope, or if the habitat was close, with binoculars. We visually estimated the number of each 

species of shorebird at each survey wetland. We recorded the percentage of the wetland within 200 

meters in 2011. In 2002, this percentage was estimated via GIS digitized land cover (see next section). 

We also recorded the percent of the wetland that was visible to the surveyor and not obstructed by 

trees or land form. In 2002 surveyors drove an average of 10.6 roads per township and in 2011 drove an 

average of 8.9. The 2002 dataset included 1,230 wetland surveys across 79 townships and the 2011 

dataset included 4,522 wetland surveys across 96 townships. 

To characterize local habitat conditions at wetland sites, we estimated current wet surface area 

of each wetland using either an ocular estimate of wetland acres or by describing the percentage of the 

wetland holding water. Our estimates were compared to a National Wetlands Inventory (NWI) map of 

the wetland before deriving the final value along with the NWI wetland area information (see GIS 

Landcover below). In addition, we recorded: 1) the surrounding landscape cover type based on assessing 

the primary cover type in a 500-m radius of the wetland: tilled cropland, pasture, grassland, other 

cropland, hayland, trees/forest, and farm (barns, outbuildings, etc.); and 2) the primary cover class 

surrounding the periphery of the wetland out to 30 m according to the same classes (from a GIS 

landcover layer in 2002 and from ocular estimates in 2011). Wetlands with a linear form such as a ditch, 

river, or creek were not included in our analysis due to the low proportion of these wetlands in the 

dataset and low shorebird use of these wetlands.  

Study years and climatic conditions 

Based on the Palmer Drought Severity Index (PDSI) for May, 2011 was a very wet year in the PPR 

(Figure 3.2). In contrast, 2002 was a moderately dry year and surveys of wetland basins indicate less 
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than 20% of temporary wetlands and less than 40% of seasonal wetlands contained water (Niemuth et 

al. 2010). 

GIS Landcover 

To describe features of surveyed wetlands and surrounding landscape, we extracted data from 

spatial layers in ArcMap 10.2 (ESRI, Redlands, California). We used the NWI layer to extract the 

periphery length of the mapped wetland. We calculated the periphery of each wetland within the survey 

distance (200 m) of roads by buffering the road and clipping to create a new wetland layer within that 

distance. We used the NWI layer to extract information on wetland regime: temporary, seasonal, 

semipermanent, or lake. Temporary, seasonal, and semipermanent relate to the typical duration the 

wetlands hold water with temporary wetlands holding water for 1-2 months following spring thaw, 

seasonal wetlands for 2-3 months, and semipermanent wetlands only drying out during prolonged dry 

periods (Stewart and Kantrud 1971).  

To estimate upland land-cover and wetland basin coverage at the landscape scale, we used 

raster data created by U.S. Fish and Wildlife Service (USFWS) Habitat and Population Evaluation Teams. 

The USFWS used 30-m resolution Landsat Thematic Mapper Satellite imagery of scenes from 2000-2003. 

For Minnesota and North and South Dakota, they classified uplands into: cropland, grassland, planted 

grass, hayland, developed, and tree. Accuracy of the upland land cover data for North and South Dakota, 

assessed in 2007, was > 90% (M. Estey, personal communication). Grassland, planted grass, and hayland 

are often considered functionally similar classes for wildlife in the region because they represent non-

tilled vegetative land-cover and are negatively correlated with cropland at the landscape scale. 

Developed and tree land cover classes are rare in the PPR landscape. Therefore, we described upland 

habitats by the proportion of cropland in the landscape; because of the negative correlation between 

cropland and grassland, landscapes with high cropland have low grassland, and vice versa The USFWS 

wetland basin coverage represented wetlands classified from contiguous NWI wetlands based on the 
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most permanent wetland regime of the constituent wetlands following procedures outlined in previous 

papers (Cowardin et al. 1995, Johnson and Higgins 1997). Wetland basins were classified as: temporary, 

seasonal, semipermanent, lake, river, and forested wetland. We described wetland landscape coverage 

according to the proportion of temporary, seasonal, and semipermanent wetlands. Rivers and lakes 

were relatively uncommon. Forested wetlands, which are seldom used by our focal species, were 

uncommon and occurred only in Minnesota. Thus, we did not include river, lake, or forested wetland 

coverage in our analysis. 

Covariates 

We selected our covariates a priori based on previous work in the Great Plains which found:  

migratory shorebirds selected landscapes with temporary and/or semipermanent wetlands (Albanese 

2013, Niemuth 2006), cropped landscapes regardless of dry or wet conditions (Skagen et al. 2005), and 

shallower wetlands or wetlands with shallow water areas (Davis and Smith 1998, Webb et al. 2010). To 

describe wetland-scale selection we included wetland depth and surrounding upland covariates. 

Wetland depth was devised as a continuous numerical value reflecting the permanency of that class 

(temporary = 1, seasonal = 2, semipermanent = 3, and lake = 4), because wetland type is correlated with 

water depth. We also included the quadratic form of this covariate to reflect selection for intermediate 

depths. We included a factor indicating whether the periphery of the wetland was primarily cropland 

and a factor indicating whether this was the case in the surrounding (500-m) landscape. To describe 

landscape-scale selection, we included the proportion of a township composed of temporary wetlands, 

seasonal wetlands, semipermanent wetlands, and cropland. To describe selection at the regional scale  

we used geographic covariates:  degrees latitude and longitude in linear and quadratic forms. Because 

migratory shorebird occurrence is highly temporally dynamic we included date-of-survey covariates in 

linear and quadratic forms. 
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Models 

Our data were geographically and statistically structured—wetlands nested within townships.  

Wetlands within the same township were expected to experience more similar environmental 

conditions than wetlands from different townships. Therefore, we used hierarchial regression models 

(Gelman and Hill 2007) which allowed us to explore both township and wetland specific covariates and 

to model variation among townships. We refer to wetlands as a local scale of measurement and 

townships as a landscape scale. 

To describe multi-scale habitat selection, we assessed occurrence (presence/absence) of 

shorebirds at wetland sites using hierarchical binomial random effects models as implemented in the R 

package lme4 (Bates et al. 2015). We selected from en route only shorebird migrants four focal species 

or species groups based on their being relatively common on surveys: Yellowlegs (Lesser Yellowlegs and 

Gƌeat YelloǁlegsͿ, Least “aŶdpipeƌ, Baiƌd͛s/White-rumped Sandpiper (Baiƌd͛s “aŶdpipeƌ iŶ ϮϬϭϭ aŶd 

White-ƌuŵped “aŶdpipeƌ iŶ ϮϬϬϮͿ, aŶd PeĐtoƌal “aŶdpipeƌ. We gƌouped Baiƌd͛s aŶd White-rumped 

Sandpipers because they are similar species based on body size, habitat use, and foraging water depths, 

aŶd ďeĐause Baiƌd͛s ǁas ĐoŵŵoŶ only in 2011 and White-rumped was common only in 2002 (Skagen et 

al. 1999). For each species, we described a null model that included, along with the intercept, an offset 

(covariate with coefficient fixed at 1) of the length of shoreline (periphery) that was surveyed, the Julian 

date of the survey and its quadratic form, and a random intercept effect of the survey township. 

Candidate covariates included the multi-scaled covariates (described in the section above):  wetland 

depth (local), wetland in cropland (local), proportion cropland (landscape), proportion temporary 

wetland (landscape), proportion seasonal wetland (landscape), proportion semipermanent wetland 

(landscape), latitude (regional), and longitude (regional).  For each species and year, we first considered 

alternative models based on all additive combinations of candidate covariates and the null model set. 

Covariates contained in the most parsimonious model (based on minimum AICc) for each year were 
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used to ďuild a ͞Ǉeaƌs-ĐoŵďiŶed͟ ŵodel foƌ eaĐh species. AICc calculation for all model subsets was 

performed using the R package MuMin ;Baƌtoń ϮϬϭϯͿ. The ͞Ǉeaƌs-ĐoŵďiŶed͟ ŵodel ǁas estiŵated fƌom 

data collected in both years. This ŵodel iŶĐluded ĐaŶdidate Đoǀaƌiates that ǁeƌe iŶ ≥ ϭ of the iŶdiǀidual 

year models and year interaction terms for each candidate covariate. We report the most parsimonious 

͞years-combined͟ ŵodel foƌ eaĐh speĐies. We also eǀaluated the ŵost paƌsiŵoŶious ͞Ǉeaƌs-ĐoŵďiŶed͟ 

models using a measure of pseudo R-squared. This measure was calculated as the difference between 

variance of the residuals of the null model (no predictors and random intercepts) and the most 

parsimonious model divided by the variance of the residuals of the null model. To assess the relative 

values of the variances among townships and within townships we report the intraclass correlation 

coefficient. This correlation was calculated as the variance among the random intercepts for township 

(among township variance), divided by the sum of the among township variance and within township 

variance. 

To model predicted shorebird distributions, we considered the geographic and landscape 

candidate covariates only in models by year for each species. Using calculations of AICc based model 

weights for each model subset, we derive a final probability of occurrence value summing over the 

weighted prediction for each model. All statistical analyses were performed in R 3.2.4 (R Development 

Core Team 2012). 

RESULTS 

In 2002, Yellowlegs were detected on 107 surveys (84% were Lesser Yellowlegs and 16% were 

Greater Yellowlegs), Least Sandpiper on 51, White-rumped Sandpiper on 44, and Pectoral Sandpiper on 

38. In 2011, Yellowlegs were detected on 78 surveys (97% were Lesser Yellowlegs and 3% were Greater 

YelloǁlegsͿ, Least “aŶdpipeƌ oŶ Ϯϵ, Baiƌd͛s “aŶdpipeƌ oŶ Ϯϯ, aŶd PeĐtoƌal “aŶdpipeƌ oŶ ϭϲ.   

Spatial Components of Variance in Occurrence Patterns 
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Intraclass correlation coefficients for three species in 2002 were higher than in 2011 (Table 3.1). 

Thus, relatively greater variance was explained by township than covariates in the models in 2002 versus 

2011.  

Hierarchical Models Including Covariates 

For all species, the most parsimonious models explaining species occurrence patterns included 

geographic location and covariates from both landscape and wetland scales (Figure 3.3). Pseudo r-

squared for the Yellowlegs model was 0.248, Ϭ.Ϯϴϱ foƌ the Least “aŶdpipeƌ, Ϭ.ϯϯϬ foƌ the Baiƌd͛s/White-

rumped Sandpiper, and 0.282 for the Pectoral Sandpiper. Thus, for these species > 65% of the variation 

in spatial occurrence patterns remained unexplained by the included covariates. 

In general, decisions made at the local scale were consistent between years whereas landscape-

scale and regional decisions showed differences between years. Most species were distributed more 

southerly in the wet year (2011), and more westerly in both years. In the dry year, Least and Pectoral 

Sandpipers selected townships with more semipermanent wetlands but avoided them in the wet years. 

Baiƌd͛s/White-rumped Sandpipers selected townships with more seasonal wetlands in the dry year but 

avoided them in the wet year. Yellowlegs avoided townships with more temporary wetlands in the dry 

Ǉeaƌ ďut seleĐted theŵ iŶ the ǁet Ǉeaƌ. PeĐtoƌal “aŶdpipeƌs aŶd Baiƌd͛s/White-rumped Sandpipers 

selected townships with more cropland in both years. The extent of cropland cover at 500-m was not 

included in any final models, but the condition of a wetland being adjacent to cropland was important 

with all species showing some preference for wetlands in croplands in both years. However, in 2011, this 

preference was stronger. This pattern was most pronounced in 2011 when temporary wetlands were 

more available. Most species selected for shallower wetlands in both years. However, because in 2002 

most temporary wetlands were dry, use of seasonal wetlands greatly increased, whereas in 2011 use of 

temporary wetlands increased (Supplementary. figure 3.1). 
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The predicted probability of occurrence maps (Figure 3.4) illustrate the dynamic shifts in spatial 

distribution across wet and dry years. In general, both our survey data and predicted occurrences show 

more southerly distributions in a wet year (2011) and more central and northerly distributions in a dry 

Ǉeaƌ ;ϮϬϬϮͿ. IŶ additioŶ, speĐies͛ distƌiďutioŶs aƌe ŵoƌe ĐoŶĐeŶtƌated iŶ ǁet ǀeƌsus dƌǇ Ǉeaƌs.  

DISCUSSION 

Shorebird migration patterns through the climatically dynamic Great Plains are known to be 

highly variable with opportunistic use of different wetlands from year-to-year (Skagen and Knopf 1993, 

1994, Skagen et al. 2005, Albanese et al. 2012). However, to the best of our knowledge, our multi-scaled 

assessment of changes in habitat use patterns and spatial distribution is the first empirical 

documentation of these dynamic patterns across a large region. The degree of spatial variation in 

distribution during migration has implications for the ability of migrating shorebirds to respond 

adaptively to climate change and mitigate climate change impacts, while the degree of variation in 

selection of wetland characteristics has implications for the sensitivity of shorebirds to climate change 

impacts to wetlands. We contrasted shorebird distributions and habitat selection in a dry and wet year 

and found significant spatial shifts within the region and differential selection for landscape composition 

indicating high adaptive capacity. However, at the scale of individual wetlands, we found selection to be 

consistent across years indicating high sensitivity to wetland characteristics.  

That covariates in three models explained relatively less variation compared to the random 

effect of township itself in 2002 versus 2011 indicates that, generally, migrating shorebirds found more 

widely available habitat regardless of township in 2011, the wet year. In 2002, because some townships, 

especially those with low densities of more permanent wetland types (seasonal and semipermanent 

wetlands) had low wetland abundance, landscape-scale variation in wetland abundance was a stronger 

driving factor of shorebird occurrence. 
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At the regional scale, we found that shorebirds in a wet year had a more southerly distribution 

than in a dry year, presumably in response to more widespread availability of wetland habitats. We 

hypothesize that in a system with dispersed and unpredictable suitable stopover habitat, migrating birds 

will stop at first available suitable habitat, triggered by energetic requirements, and overfly 

subsequently encountered suitable habitat (Gudmundsson et al. 1991, Iverson et al. 1996, Buler et al. 

2007). Although the birds in our study would have flown over states further south by the time they 

reached the PPR, the PPR may be more critical because of the relatively higher densities of wetlands 

than those areas. 

All of our focal species (or species groups) showed differing selection patterns for landscape 

cover type between years and these selection patterns varied among species. However, species 

consistently selected for landscapes with an abundance of wetlands as expressed by the significant 

interaction between climatic conditions and wetland type in a given year. For example, Yellowlegs 

selected for landscapes with high amounts of temporary wetlands in the wet year but avoided these 

same areas in the dry year when temporary wetlands held little water. In dry years few temporary 

wetlands hold water but in wet years these same wetlands are a source of shallow water suitable for 

foraging. In addition, the abundance and spatial extent of these and associated flooded shallow water 

areas can form an important landscape level cue to habitat availability. Least and Pectoral Sandpipers 

selected landscapes with higher numbers of semipermanent wetlands only in the dry year. 

Semipermanent wetlands hold water through short-term droughts and may represent an important 

landscape-level selection cue when surrounding landscapes are dry. “iŵilaƌlǇ, Baiƌd͛s/White-rumped 

Sandpipers selected for landscapes with high amounts of seasonal wetlands only in the dry year. This 

suggests that along with landscapes with high proportions of semipermanent wetlands, landscapes with 

high proportions of seasonal wetlands may be important in dry years for certain shorebird species.   
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Selected landscapes and associated landscape-scale covariates varied between dry and wet 

years, but at the wetland scale habitat selection between years was relatively invariant. Buler et al. 

(2007) suggested that migrants may use landscape variability as a cue to underlying habitat quality. In 

the dynamic wetland landscape of the PPR, wetland abundance at the landscape scale may serve as a 

cue to suitable wetlands. In both years, our top models for Yellowlegs, Least Sandpiper, and Pectoral 

Sandpiper indicated selection for shallower wetlands (i.e., temporary wetlands in 2011 and seasonal 

wetlands in 2002; Supplementary figure 3.1). In both years, all species showed at least moderate 

selection for wetlands surrounded by cropland. That this selection pattern was stronger in the wet year 

could be a result of the relatively higher proportion of cropland in landscapes selected in the wetter 

year. In the PPR, landscapes with a high proportion of temporary wetlands typically have more cropland, 

and those with a high proportion of semipermanent wetland typically have more grassland. Selection for 

agricultural wetlands by migrating and wintering shorebirds is widely observed in spite of lower food 

availability than wetlands in grassland because these wetlands may provide more open habitats that are 

attractive to shorebirds (Elphick and Oring 1998, Euliss et al. 1999, Skagen et al. 2005, Stutzman 2012). 

Of major conservation concern is the fact that shorebirds in the PPR use unprotected, widely 

dispersed, and threatened wetlands that occur primarily on private agricultural lands (Skagen et al. 

2008). Furthermore, land-use planning to allow for an adaptive response by migratory shorebirds 

requires planning in the context of a highly uncertain future and over broad spatial extents. Seasonal 

evaluations based on the average climate projection across 37 climate models suggest conditions in the 

PPR in spring will be wetter while summer and fall will be dryer. Given these projections, shorebird 

habitat will be available in landscapes with more temporary wetlands during spring migration and in 

landscapes with more seasonal and semipermanent wetlands during fall migration (Ballard et al. 2014). 

However, GCM projections vary in their forecasts with some models projecting wetter conditions and 

some projecting drier conditions (Sofaer et al. 2016). Although shorebirds demonstrated high sensitivity 
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to climate change because of their consistent requirements for shallow water wetlands, often found 

adjacent to agricultural areas, their high adaptive capacity demonstrated by their ability to find these 

wetlands in different landscapes and in different parts of the region suggests migrating shorebirds may 

have resilience to some degree of climate change. Thus, resilience planning (Lawler et al. 2004) as a 

strategy to mitigate climate change in this system suggest preserving agricultural wetlands widely 

distributed across the PPR region and diverse and high density wetland landscapes. 
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Figure 3.1. The Prairie Pothole Region (PPR) study area includes the PPR in Minnesota, North Dakota, 

and South Dakota. (A) The 96 selected townships within which a subset of wetlands were surveyed in 

2002 (79 townships) and 2011 (96 townships). Subregions are delineated on the basis of cropland and 

amount of different wetland types. (B) The percentage of landscape that is cropland showing a majority 

of the landscape in cropland in the eastern portion of the study area and the decline in croplands and an 

increase in grassland moving west. (C) The percentage of landscape in temporary wetland is highest in 

the drift prairie as well as northern Minnesota. However, in northern Minnesota temporary wetland is 

represented by, typically, saturated wetland. (D) Seasonal wetlands are most common in the Missouri 

Coteau and northern Drift Prairie and central-west Minnesota. (E) Semipermanent wetlands are most 

common in both the Prairie and Missouri Coteau.   
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Figure 3.2. Palmer drought severity index (PDSI) showing data for May of both study years from the 

National Climate Data Center. Values between 2 and -2 are considered mid-range. Values between -2 

and -3 indicate moderate drought and values exceeding +4 are considered extremely moist.  
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Figure 3.3. Multi-scale habitat selection model results for four shorebird species (or species pair for 

Baiƌd͛s aŶd White-rumped Sandpipers, and Greater Yellowlegs and Lesser Yellowlegs) based on binomial 

models of occurrence in 2002 and 2011. Regional-scale selection is represented by latitude and 

longitude. Landscape-scale selection is represented by cropland, temporary, seasonal, and 

semipermanent proportional cover values in the township. Local-scale selection is represented by water 

depth of the wetland and whether the wetland is in cropland. Coefficient means and 95% confidence 

intervals for covariates included in the most parsimonious models (lowest AICc) are shown.   
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Figure 3.4. Predictive model maps showing relative probability of shorebird occurrence in 2002 and 

2011. Predictive models are based on regional and landscape-scale land-cover covariates. Probabilities 

are based on sums across AICc weighted model predictions.   
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Table 3.1. Intraclass correlation coefficients based on most parsimonious models for each year and 

species. Values near 0 indicate little variance among townships and near 1 indicate little variance within 

townships.  

 2002 (dry) 2011 (wet) 

Yellowlegs 0.123 0.098 

Least Sandpiper 0.167 0.000 

Pectoral Sandpiper 0.443 0.000 

White-rumped Sandpiper 

;ϮϬϬϮͿ; Baiƌd͛s “aŶdpipeƌ ;ϮϬϭϭͿ 

0.181 0.391 
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APPENDIX

 

Supplementary figure S1.1. Distribution of grassland and palustrine wetlands on the U.S. Prairie Pothole Region landscape. Darker shades 

represent greater coverage of grassland (versus cropland) and greater areal coverage of wetlands (log transformed). 
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Supplementary figures S1.2-S1.12. Maps of species distributions for baseline and two future climate projections. Brown indicates areas where 

the species is predicted to occur and green represents areas where the species is not predicted to occur. 
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Supplemental Figures: 

 

Supplementary figure S2.1: Study area in the U.S. Prairie Pothole Region with 72 Breeding Bird Survey 

routes for bird occurrence data. 
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Supplementary figure S2.2: Change in temperature and precipitation projected by 2041-2070 relative to 

1971-2000 for bias-corrected GCMs under RCP 4.5 and RCP 8.5 in the U.S. Prairie Potholes in North 

Dakota, South Dakota, and Minnesota. The ten GCMs used in this study are circled. Each GCM is 

identified by a number: 1 = ACCESS2.3-0; 2 = ACCESS2.3-3; 3 = BCC-CSM1-1-M; 4 = BCC-CSM1-1, 5 = 

CanESM2, 6 = CCSM4, 7 = CESM1-BGC, 8 = CESM1-CAM5, 9 = CMCC-CM, 10 = CNRM-CM5, 11 = CSIRO-

Mk3-6-0, 12 = EC-EARTH, 13 = FGOALS-g2, 14 = FGOALS-S2.4, 15 = FIO-ESM, 16 = GFDL-CM3, 17 = GFDL-

ESM2G, 18 = GFDL-ESM2M, 19 = GISS-E2-H-CC, 20 = GISS-E2-R, 21 = GISS-E2-R-CC, 22 = HadGEM2-AO, 

23 = HadGEM2-CC, 24 = HadGEM2-ES, 25 = INMCM4, 26 = IPSL-CM5A-LR, 27 = IPSL-CM5A-MR, 28 = IPSL-

CM5B-LR, 29 = MIROC-ESM, 30 = MIROC-ESM-CHEM, 31 = MIROC5, 32 = MPI-ESM-LR, 33 = MPI-ESM-

MR, 34 = MRI-CGCM3, 35 = NorESM1-M, 36 = NorESM1-ME. Data provided by M. Talbert. 
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Supplementary figure S2.3. Estimates of relationships between factor levels and range change index 

(RCI). Reference levels (thus, not shown in the plot) were chosen for each factor based on the level with 

the smallest negative relationship with RCI: ObsPrev (threshold), hydrological (hypothesis), and mri 

;GCMͿ. The ͞Q͟ aŶd ͞L͟ suffiǆes oŶ ĐolliŶeaƌitǇ deŶote ƋuadƌatiĐ aŶd liŶeaƌ effeĐts of higheƌ ĐolliŶeaƌitǇ. 

Thick portions of bars represent 90% confidence intervals with thin portions extending to 95% 

confidence intervals. 

 



132 

 

Supplementary figure S2.4. Estimates of relationships between factor levels and model performance for 

four model performance metrics:  AUC, True Skill Statistic (TSS), kappa, and prevalence match. Cross 

Validation results reflect predictions to randomly subsetted data. Extrapolation results reflect 

predictions from models trained with normal and wet years data and evaluated on drought years. Not 

shown because they were used as reference levels in the model are:  hydrological, Fmeasure (kappa and 

T““ ŵodelsͿ aŶd “e“peƋl ;pƌeǀaleŶĐe ŵatĐh ŵodelͿ. The ͞Q͟ aŶd ͞L͟ suffiǆes oŶ ĐolliŶeaƌitǇ deŶote 

quadratic and linear effects of higher collinearity. Thick portions of bars represent 90% confidence 

intervals with thin portions extending to 95% confidence intervals. 
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Supplementary figure S2.5. Variation in Range Change Index (RCI) by GCM. Boxplots show the median, 

and first and third quartiles, with whiskers showing the 1.5 inter-quartile range. 
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Supplementary figure S2.6. Variation in RCI by covariate hypothesis. Boxplots show the median, and first 

and third quartiles, with whiskers showing the 1.5 inter-quartile range. 
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Supplementary figure S2.7. Variation in Range Change Index (RCI) by degree of covariate collinearity:  all 

covariates, covariate sets reduced to a moderate variance inflation factor (VIF) of ten, and covariate sets 

reduced to a more stringent VIF of two. Boxplots show the median, and first and third quartiles, with 

whiskers showing the 1.5 inter-quartile range. 
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Supplementary figure S2.8. Variation in Range Change Index (RCI) by thresholding procedure. Boxplots 

show the median, and first and third quartiles, with whiskers showing the 1.5 inter-quartile range. 
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Supplementary figure S3.1. Graphs show, by year, local-scale selection and use of wetlands by type 

(temporary, seasonal, semipermanent and lake). Selection shows use of that wetland type given its 

availability. Use shows the proportional use of each wetland type relative to other wetland types.  


