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ABSTRACT 

Mean wind velocity and temperature profiles were measured 

in a wind-tunnel boundary layer made thermally stable or unstable 

(corresponding to inversion and lapse conditions) by flow over a hori­

zontal flat plate ( 29 m long and 2 m wide) which was either cooled or 

heated along the downstream 13 m. These profiles for heights from 

just above the viscous region up to half t he boundary-layer thickness 

(about 55 cm) were fitted to the log-plus-linear and log-plus -linear­

plus-square relationships. Field data consisting of mean temperature 

and wind speeds taken at heights from 0. 25 m up to 16 m were also 

plotted. Similar ity between the mean wind velocity and the mean 

temperature profiles for both laboratory and field data was found to 

exist. Retainment of the square term in the series approximation of 

the dimensionless wind shear for the case of (z/L) 2 < 1, where z is 

the height and L is the Monin-Obukhov length scale, did not substan­

tially reduce the data scatter . For thermally unstable flows, the 

dimensionless wind shear is expressed by the form (1+z / L)n with 

n = 3 / 2. 
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INTRODUCTION 

A log-plus -linear law has been used extensive l y in the study of 

atmospheric surface-layer flows. This law, based on the similarity 

1 
theory of Monin and Obukhov holds only in the region where the 

Monin-Obukhov l engt h scale L , the friction velocity u , and the 
~' 

fr iction temperature T,.~ , are essentially invariant with height and 

where the ratio of height under consideration to the length scale must 

b e much smaller than unity. These assumptions are not always 

completely met by the field data. In order to stress the range in which 

the law is valid, the dimensionless wind shear will be expanded in a 

Taylor's serie s. In addition, it will b e assumed to have a binomial 

form. (This assumption is based on the fact that in the neutral air flow 

the velocity profile is logarithmic in height while in the extremely 

unstable thermal flow it conforms to a power law.) 

A log-plus -linear-plus -square profile was investigated. This 

is d one under the assumption that when the he ight app roaches the order 

of magnitude of the length scale, it may improve the data fitting by 

retaining the square term in the approximat i on. Experimental data 

show that retainme nt of the square term in the series approximation 

does not necessarily reduce the data scatter. 
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In plotting the dimensionless wind shear versus Richardson 

number, the significant effects of thermal stratification on the mean 

wind velocity and the mean temperature profiles are revealed. More­

over, data comparisons show that laboratory data agree with the field 

data. Finally, the universal function for free convection is reviewed. 

The study of mean wind speed and mean temperature variation 

in the thermally stratified t urbulent boundary layer presented in this 

paper is part of a long-range effort by personnel of the Fluid Dynamics 

and Diffusion Laboratory to reach a better understanding of such shear 

flows. In this effort the primary interests are an investigation of the 

turbulence structure and the similarity between laboratory and 

atmospheric -surface-layer flow character istics . A knowledge of the 

mean flow behavior is essential to the effort and the companion effort 

to study turbulent diffusion in the atmospheric surface layer by 

laboratory simulation. 
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BA SIC EQUATIONS 

The principles of the similarity theory introduced by Manin and 

1 
Obukhov , require that the profiles of a mean wind velocity and a 

mean temperature, expressed in a dimensionless form, be universal 

functions of ~ = z /L , where z is the height of observation and L 

is the Monin-Obukhov length scale. Following the similarity theory, 

a dimensionless wind shear S was introduced by Lumley and Panofsky
2 

as 

s = kz oU = S( ~) , 
u~( oz ( 1a) 

where k is the von Karman constant, u,.~ is the friction velocity, and 

U is a mean wind velocity expressed as a function of height z . By 

analogy, a dimensionless lapse rate was defined in reference 2 as 

R = 
az 

T* 

oT 
= R( ~) , oz ( 1 b) 

where T* is the friction temperature, T is a mean wind temperature 

expressed as a function of height, and a is defined as the ratio of eddy 

conductivity Kh to eddy viscosity Km in the following form: 

Kh 
a = --K 

m 

kT,.~ 
= ou 

I 
oT 

oz oz 
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When the above equation for a is substituted into Eq. ( 1 b), the 

resulting equation will show that Eqs. (1a) and ( 1b) are indeed identical , 

in accord with the similarity sypothesis. 

Equation (1a) can be expanded in a Taylor's series 

S( ~) = S( ~ ) + f" ~~ Sp(~ ) , 
0 f=,_ p. 0 

where sP( ~) is the pth derivative of S with respect to ~ . Supposing 

n 
that S = (1+~) and n > 0 , where n is an integer, the above equation 

assumes the following form: 

S( ~) = 1 + f 
p=1 

n! 
(n-p) ! p! 

where ~2 < 1. Combining the above equation and Eq. ( 1 a) and 

integrating over z , yields 

and 

f ( ~) = .fn r + f-
1 ~o /=t 

n! 
p(n-p) ! p! 

~p + const. ( 2) 

Similarly, from Eq. ( 1 b) for R having the same binomial form as S , 

one obtains the result 

T(z) - T (z ) 
0 0 
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Therefore , f 
1 
( ~) is a universal function of ~ . When ~ 2 << 1, Eq. (2) 

is approximated by 

f 
1 

( ~) ~ ln f + n ~ + const. , 
0 

which is the familiar "log-plus-linear" relationship . 

If there is no limitation on ~ , namely ~ can be any value, 

n 
then the universal function has the following from when S = ( 1+~) : 

r ( ~) = in I 
2 ~ 

0 

+ f .!_ (1+ ~)p + const. 
p=l p 

( 3) 

Eq. (3) reduces to Eq. (2) for ~2 < 1 . When n < 0 and the dimension­

less wind shear is assumed to be S = ( 1-~)n, Eq. (3) should become 

! 1 
~ ( 1 - ~) 1 -p 

f (~) =.in- -1n-- + -(1-~) +const 
3 ~ (1-~) p . ' 

0 0 p 

where m = -n, or m > 0. A gain, for ~ 2 << 1 , the above equation 

approximates the log-plus-linear law. 
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EXPERIMENTAL RESULTS AND DISCUSSION 

3 
The meteorological wind tunnel was specifically designed and 

constructed in an effort to obtain flows simulating those in the atmos­

pheric surface layer. The tunnel as shown in Fig. 1 has a test sectio 

of approximately 29 m long with a cross-section of nearly 2 m by 2 m. 

The wind-tunnel boundary layer can be made thermally stable or 

unstable (corresponding to inversion and lapse conditions) by flow of 

heated or cooled air over a horizontal flat plate which was either 

cooled or heated along the downstream 13 m . A 11 measurements were 

made at the section approximately 26 m downstream from the test­

s ection entrance. The thermal and momentum boundary-layer thick­

ness were both approx imately equal to 70 cm at this section. A range 

of Ric hards on number from 0. 5 to - 0. 5 was achieved by cooling or 

heating the wind-tunnel floor and heating or cooling, respectively, 

the ambient air. 

Mean-velocity profiles were measured by means of a calibrated 

pitot-static probe having an outside diameter of about 3mm. The probe 

was used with a capacitance -type pressure transducer ( Trans-sonics 

type 12 0 Equibar Meter) and the dynamic pressure head was plotted 

automatically as a function of height z . Velocities were calculated 

with the air density corrected to the local temperature conditions. 
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Mean-temperature profiles were measured with a thermocouple 

mounted on an actuator . Data were taken point by point in the 

z-direction so that no time-lag effect of the thermocouple occurred in 

the measurements. 

Measured mean wind velocity and temperature at height z. in 
1 

the region where z. << tLI can in general be expressed by 
1 

U.(z.) 
1 1 

( 4a) 

and 

(4b) 

Constants in the above equations are define d as A = u., /k, A
2 

= T /a, · 1 • * , 

B
1

, C
1

, B
2

, and c
2 

are constants. In order to have a 

similar mean wind velocity and t e mperature profile, it is necessary 

to have 

{3'/L ' = 

where {3 ' is an arbitrary constant and L' is defined as 

T u~)aV / az) T A2 
m m 1 

L' = a-L = =--
g k(aT / az) g A2 
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Because B
1 

/A 
1 

is not always exactly equal to B
2 

/A 
2 

, it is, 

therefore, assumed that 

When the A's and B's are known, L' and /3' can be obtained from 

the above e quations, where T is the m ean temperature, in absolute 
m 

temperature scale, averaged over the profile and g is the gravitational 

acceleration. A digital computer (IBM 1620) was used to calculate all 

the results reported he re. 

There are two methods by which the A 's and B's can be 

determined statistically. The first method is as follows: If a 

reference point is taken at height z . (where z . << I LI ) and if the 
J J 

corresponding mean wind velocity and temperature are taken to be the 

reference velocity and temperature, respectively, then Eqs . ( 4a) and 

( 4b) can be rewritten as 

(U. - U.) /(z . - z .) = A
1

(1n z . /z.)/(z . - z .) + B
1 

, 
1 J 1 J lJ 1 J 

and 

(T . - T.) /( z. - z .) = A
2
(in z . /z.) /(z . - z .) + B

2 
. 

1 J 1 J lJ 1 J 

The second method utilizes the linear regression with reference to the 
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ensemble means. Equations ( 4a) and ( 4b) may be rewritten as 

and 

(T . - T ) /( z . - z ) 
1 m 1 m 

1 

N 
fn z .) /( z. - z ) + B

2 
, 

1 1 m 

where the subscript m refers to the population mean. The regression 

line determined b y the least square method w ill give the best fit of 

experimental data and correspondingly the best estimate of the A's 

and B's can be obtained. Consequently, L' /3' 
' J 

are calculable and some of them are tabulated in Table I. The dimen,-

sionless forms of the above equations are then given b y 

kL ' u. - U . }n z . /z . 
1 J - /3 I L' 1 J = 

u,.~ z . - z. z . - z . 
1 J 1 J 

( 5a) 

and 

aL' T. - T . in z. /z . 
1 J - /3 I L' 1 J = 

T,.~ z . - z. z. - z. 
1 J 1 J 

( 5b) 

or 

1 -

kL' U. - u _l_n zi - N ~ ,in zi 
1 m 

- /3 ' L' = 
u,.~ z . - z z. - z 

1 m 1 m 
(5c) 



1 0 

and 

T . - T 
1 m 

Z. - Z 
- /3 I 

1 m 

For convenience, the following abbreviations are made: 

and 

kL' U . - U . 
RU = -- 1 J - /3 I J 

u,.~ z i - z j 

L' T . - T . 
RT = _a __ 1 J - (3', 

T,!, z. - z . 
~ 1 J 

-1.nz./z. 
RZ = L' --

1
-"""J 

z . - z 
1 j 

( 5d) 

Figure 2 shows both the Project-Prairie-Grass 
4 

and the 

wind-tunnel data. The wind -tunnel data ta ke n at heights from 0. 2 to 

30 cm were obtained in the meteorological wind tunnel of the Fluid 

Dynamics and Diffusion Laboratory. 

Equations (5a) - (5d) can also be rewritten in another 

dimensionless form as follows: 

k(U. - U.)/u,! -{3'(z. - z .)/L' = fn z . /z. , 
1 J ~ 1 J lJ 

a(T. - T.)/ T,! - {3'(z. - z.)/L' = in z . /z . , 
1 J ~ 1 J lJ 



or 

1 1 

k(Ui - Un/ /u* - ~•(zi - zm)/L' aJn zi - ~ t J.n zi , 

a(T. - T )/T., - /3'(z. - z )/L' =ln z. - Ni t ~n z . . 
1 m -~ 1 m 1 1 

1= 

For a neutrally stratified flow, L' approaches infinity . Hence, the 

second term on the left-hand side of the above equations should be 

negligible in the near-neutral flows. For convenience, RUU rep re -

sents the terms on the left-hand side of the first or the third equa­

tion; RTT, the terms on the left-hand side of the second· or the fourth 

equation; and RZZ , the terms on the right-hand side of the last 

equation. Figure 3 shows the results of the : irst two equations while 

Fig. 4 gives the results of the last two equations. Data shown in these 

two figures are the same data as those presented in Fig. 2 with N = 6 

for the field data and N = 15 for the laboratory data . 

In the analysis of these data, it was found that the condition 

that ~ should be much less than unity in the range of heights considered, 

no longer held in some cases for both field and laboratory. It is con­

ceivable that L' might diminish as a flow approaches the extremely 

stable or unstable thermal stratification. It can, therefore, be con-

eluded that the log-plus-linear law should not be applied over the same 

height range for a diversity of thermal stab ilities. 
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If the second-order term of ~ is reta ined in the series 

expansion, the measured mean wind velocity and temperature at 

height z can be expressed by 

U - U = A in z + B z + C 
1 

z 2 + D 
1 

, 
o 1 1 

and 

where the A's , B's , and C's are defined as before and D's are 

arbitrary constants. The A's , B's , and C's can be determined by 

means of the least-square method. The following dimensionless 

parameters are defined as 

and 

where 

RUUD= k(U. - U.)/u -(3'(z . - z.)/ L ' -(3'(z~ - z~)/L 12
, 

1 J ~( 11 J 21 J 

RTTT = a (T . -T .)/Ti - (3
1
1 (z . - z .)/L ' -(3

2
1 (z~ - z~)/L' 2 

, 
1 J ~ 1 J 1 J 

(3 I = 
1 

L' 
2 



and 

{3 ' = 
2 

1 3 

Figure 5 shows the log-plus-linear-plus -square profile. Only the 

wind-tunnel data were used for this analysis. 

When the above equations are divided by (z . - z .) / L' , another 
1 J 

form of dimensionless para:neter can be obtained which will be defined 

as RUUUU for mean velocities and RTTTT for mean temperature. 

Figure 6 is a plot of these two parameters versus RZ which was 

defined before. Figures 2 to 6 show that little improve ment on the 

data scatter was achieved by including the square term in the approxi­

mation of a universal function. 

For a very unstable thermal stratification, the flow approaches 

a free convection and the universal function has the following form 
5 

f 
4 

( r) 
-1 / 3 

= er + const. 

where C is an arbitrary constant . The dimensionless wind shear is 

then given by 

s( r) - ; lrl -1 13 , 
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which can be rewritten in terms of the gradie nt Richardson number as 

where 

c3 / 4 
s = ---.,..-

( 27a / I 4 
\Ri l- 1 / 4 J 

Ri = [ (oT / oz) 
T (8U / oz) 2 

( 6) 

The dimensionless wind shear and Richardson number can be e stimated 

from the measured mean wind velocity and temperature profile s in 

conjunction with Eq. ( 1a) and the last equation. Figure 7 shows the 

laboratory data as well as the field data for thermally unstable flows. 

Equation (6) is also shown . According to Gurvich
5 

and Priestley
6 

the transition from the forced convection to the free convection should 

occur at any Richardson number in the range from -0. 03 to -0 . 05 and 

it should be a gradual rather than an abrupt transition . The present 

laboratory data agree very well with the field data. The deviation from 

Eq. (6 ) at the lower Richardson number or highly unstable region 

revealed in this figure is also present in the results of G urvich. 

Referring to the binomial form of the dimensionless wind shear 

presented in the last section, it may be assumed that n is a real 

number and ~2 > > 1 . Then f 
4

( ~) is only a solution with n = -1 / 3 

given by Gurvich
5 

For cases where ~ 2 approaches unity, it is 
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assumed that the d imensionless wind shear is given by 

S( ~) = ( 1 + ~) n , 

where ~ = z /L = a Ri S and n > 0. Therefo re, the above equation 

can be rewritten as 

Ri = 
aS 

( 7) 

Both the laboratory and the field data for thermally unstable flows 

conform to a line with n = 1. 5 , provided that a is considered to be 

unity. The above e quation fits the data better than E q . ( 6) . Conse­

quently, the universal function , for ~ < 0 and n not an integer, 

should assume the form 

1 ( 
( 1 + ~) 

1 
/ 
2 

- 1 ) 1 / 2 2 3 / 2 
f(~)= n 

112 
+2( 1+~) + 3 (1+~) +const . 

5 
( 1 + ~) +1 
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SUMMARY 

Measured mean wind velocity and temperature profiles in the 

thermally stratified flow of a wind tunnel near the wall can be expressed 

in a log-plus -linear law which is also representative of the field data . 

Although both laboratory and field data show some scatter around the 

theoretical line, a similarity between the mean wind velocity and 

temperature profiles does seem to exist. T he scatter can partially be 

attributed to the fact that in some cases the Monin-Obukhov length scale 

becomes comparable in magnitude to the height under conside ration . 

This in turn breaks down the assumption that was made in order to 

obtain the law. Subsequently, log-plus -linear-plus -square profiles 

were tried and the results showed little imporvement on the scatter. 

Free convection seems to prevail in some runs of both l abora ­

tory and field experiments. The transition from a forced convection to 

a free convection in the thermally stratified flow was shown to be 

gradual and occurred a t a Richardson numbe r in the same range as 

predicted . Both the laboratory and the field dat a for r < O were best 

represented by a universal function of the form f
5

( r) where n = 3/2 . 
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TABLE I . CHARACTERISTICS OF SOME WIND-TUNNEL AND PROJECT-PRAIRIE-GRASS DATA. 

u2 T2 T 2-T 1 z2-z1 L' u,:c /k T~~ /a 
Source cm /sec oc oc cm cm (3 ' cm /sec oc 

WT 116 51. 1 39.4 30.2 18.8 -0 . 015 23 . 6 9.42 
WT 175 53.3 37 . 2 30.2 36.0 0.586 28 . 1 7.00 
WT 284 59.5 35 . 6 30.2 54.9 2 . 60 32. 7 6. 35 
WT 150 2.89 -26 . 7 30. 3 -28 . 6 2.55 25 . 7 -6. 61 
WT 219 0 . 24 -25 . 7 30. 3 -44. 7 4 . 11 31. 3 -6 .23 
WT 300 -1 . 94 -33 . 2 30 . 3 -64. 0 4. 30 40 . 4 -7 .27 
PPG 304 20. 1 4.46 775 472 2 . 40 33 . 3 0.699 
PPG 560 28 . 7 -4 . 39 1575 -1690 1 . 6 6 88.5 -1. 43 -co 
PPG 445 21. 0 6 . 73 1575 902 5.36 44.5 0. 652 
PPG 378 24 . 6 -4. 03 1575 -579 0. 793 57 . 5 -1. 7 3 
PPG 555 27.9 0 . 83 1575 7620 10 . 6 61. 8 0. 153 
PPG 508 25 . 2 1 . 52 1575 2200 6. 15 37. 9 0. 198 
PPG 609 27.2 5.55 1575 1020 7 . 49 34 . 5 0. 357 
PPG 788 34. 6 -1 . 2 3 1575 -5860 - 3. 83 72. 5 -0.281 
PPG 362 28.6 -4 . 38 1575 - 399 0.549 46. 6 -1. 68 
PPG 295 28.9 -3 . 68 1575 -437 0.620 38. 0 -1 . 02 
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