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ABSTRACT 
 
 
 

GENETIC AND METABOLOMIC ANALYSES OF BARLEY AND COWPEA: 

IMPLICATIONS ON QUALITY AND NUTRITION OF FINISHED FOODS 

 
The finished foods of a cereal (barley) and a legume (cowpea) were subjects of this thesis 

and analyzed in two separate studies. High quality barley that meets malting standards, is 

economically worth billions each year to the malting and brewing industry. The prevalence of 

craft brewing has been on the rise and with that, an increased interest in understanding the basis 

of beer flavor. Malt has been the subject of most research on beer flavor, and currently there is a 

lack of understanding on the contributions that the barley variety has to product flavor. The 

second crop that was subject of this thesis is cowpea. Cowpea is a nutritious food, that grows 

well in sub-Saharan Africa, where malnutrition is prevalent. It is well adapted to the resource-

poor farming practices common in these regions, and highly valued as a food security crop. 

Despite the known health benefits, potential to alleviate malnutrition, and use in nutritional 

studies, there are no biomarkers identified for cowpea and its metabolic profile is currently not 

well characterized. The research goals of this thesis are broken down by crop. Regarding barley, 

the goals were to 1) test the hypothesis that barley genotype contributes to beer flavor, 2) to 

identify regions of the genome that control traits associated with flavor, and 3) identify candidate 

genes that control traits associated with flavor. Regarding cowpea, the goals were to 1) 

characterize the metabolic profile of three cowpea flours from varieties commonly consumed in 

sub-Saharan Africa (Ghana, specifically), and 2) test the hypothesis that there are metabolites 

unique to cowpea (and cowpea varieties). Metabolomic approaches were applied to both crops as 
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finished foods, with additional genetic analysis of barley. We concluded that barley genotype 

does contribute to beer flavor, and that cowpea has distinct and characterizable metabolomic 

differences from other legumes. In barley, QTLs (quantitative trait loci) for malt quality, beer 

sensory, and metabolite traits were mapped, and candidate genes identified. The results of this 

study set a foundation for future genetic and breeding efforts surrounding barley and beer flavor, 

allowing for integration of various quality attributes. In cowpea, comparisons were made 

between cowpea, pigeon pea (another legume common to sub-Saharan Africa), and common 

bean on two non-targeted mass spectrometry platforms. Comparisons between the legumes 

illuminated metabolites that were either common to, or unique to each legume type or variety. 

The annotated metabolites from both analyses were from a diverse set of classifications and 

metabolic pathways, many with numerous known nutritional benefits. The metabolomic profiling 

of cowpea (and cowpea varieties) will allow for easier identification of nutritional biomarkers in 

future feeding studies. 
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CHAPTER 1: INTRODUCTION 

Finished foods from a cereal (barley) and a legume (cowpea) are subjects of this thesis. 

Barley, one of the most important temperate-climate cereals, is the most used grain in the 

malting and brewing industry, which contributed $116 billion to the U.S. economy in 2019 

(Brewers Association). Cowpea, a warm-season legume, is a major food security crop that 

provides food, nutrition, and a livelihood to millions in sub-Saharan Africa (Gómez, 2004). 

Genetic and metabolomic analyses were performed on finished beers to get a better 

understanding of the impact of the barley genotype on beer flavor. Metabolic profiles from flours 

of cowpea varieties commonly consumed in Ghana were also generated and analyzed to identify 

potential biomarkers for nutritional studies. 

 

Barley 

Barley (Hordeum vulgare L.) is a cereal grain, belonging to the Poaceae family and 

Triticeae tribe, first domesticated in the Fertile Crescent over 10,000 years ago (Badr et al., 2000; 

von Bothmer et al., 2003). Barley is highly adaptable to a wide range of climates and soil 

conditions, more so than other cereals, making it the fourth most important cereal in the world in 

terms of production and cultivated area (Shewry and Ullrich, 2014; Tricase et al., 2018). Other 

major crops belonging to the Triticeae tribe include wheat (Triticum aestivum L.) and rye (Secale 

cereale L.) (von Bothmer et al., 2003). Barley is a monocot, diploid (2n = 14), self-pollinating 

species with a genome size of about 5.1 Gb (Kumlehn and Stein, 2014; Sato, 2020). Ample 

genetic and genomic resources exist for barley, including a reference genome sequence (Mascher 

et al., 2017), making it ideal for genetic studies (Colmsee et al., 2015; Sato, 2020). 
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A diversity of barley varieties exists, which can be classified as winter, spring or 

facultative types, and two-row or six-row barleys. Winter barley requires vernalization 

(prolonged exposure to cold temperatures) to flower, and it is sown in the fall, while spring 

barley does not require vernalization and can be sown in spring. Facultative varieties do not 

require vernalization, but they are tolerant of cold temperatures, so they can be planted in the fall 

or in the spring (Kolar et al., 1991). These can exist as either six or two-rowed varieties based on 

their spike morphology. Barley heads have spikelets in alternating sets of three (triplets) but in 

two-rowed barley the side florets are sterile and do not develop a seed (Kumlehn and Stein, 

2014; von Bothmer et al., 2003). The difference in number of kernels developed impacts the 

grain size, as well as protein and starch contents (Magliano et al., 2014). Most breeding efforts to 

date have been focused on agronomic traits such as lodging and grain yield, disease resistance 

traits, and biotic and abiotic stress tolerance (Briggs, 1998; Friedt et al., 2011; von Bothmer et 

al., 2003). Efforts have also been made to breed for barley with increased malt quality, via lower 

protein content, higher malt extract, and plumper kernels (Anderson and Reinsbergs, 1985). 

Importance of barley to the malting and brewing industry 

Although some of the main uses of barley include animal feeding and human 

consumption, the greatest economic impact of barley is associated with the malting and brewing 

industries. To be accepted for malt production, barley grain must meet strict quality standards 

(Ash and Hoffman, 1990; Shewry and Ullrich, 2014). Many organizations exist around the world 

that set standards and approve new malting varieties [American Malting Barley Association 

(AMBA), the Brewing and Malting Barley Research Institute (BMBRI), Barley Australia, the 

Canadian Malting Barley Technical Centre (CMBTC), and the European Brewery Convention 

(EBC) to name a few]. Strict guidelines and lengthy testing requirements are in place to test new 
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varieties, and the genetics of these malting quality traits have been largely explored (Fang et al., 

2019; Han et al., 1997; Igartua et al., 2000; Mather et al., 1997; Mohammadi et al., 2015; 

Muñoz-Amatriaín et al., 2010; Potokina et al., 2004; Szűcs et al., 2009). Typically, malting 

barley will be lower in protein and higher in starch content than feed barley (Paynter, 2015; 

Shewry and Ullrich, 2014). Two-rowed barley tends to be preferred by the brewing industry 

because of its greater extract value and lower protein content compared to six-rowed barley. This 

is because two-row kernels tend to be larger, and large seeds are associated with lower protein 

content (Magliano et al., 2014). Some of the recommended guidelines put forth by AMBA for 

quality two-row barley include: >98% germinative energy, >90% kernels retained on a 6/64” 

sieve, and <12-13% protein content (American Malting Barley Association, 2019). Individual 

components of malting quality include kernel plumpness, kernel weight, barley color, barley 

protein, malt extract, wort color, wort protein, soluble/total protein (S/T), diastatic power (DP), 𝛽-glucan (BG), 𝛼-amylase (AA), and free amino nitrogen (FAN). These are further explained in 

the section below. Targets for these traits vary depending on the intended use of the malt (all-

malt brewing, adjunct brewing, or distilling). 

The first evidence of brewing and beer consumption predates the invention of bread 

(Tremblay and Tremblay, 2005). For as long as grains have been cultivated, they have been 

stored in some way. Natural fermentation can occur during storage under the right conditions, 

which is what most likely initiated the first discovery of “beer” making (Kumlehn and Stein, 

2014). Since becoming an important part of many cultures, the brewing industry has become 

more formal and economically impactful on a global scale. In the U.S. alone, Americans drank 

$101.5 billion worth of beer in 2014 (Reid and Gatrell, 2015). As the industry grew, so did the 

demand for a diversity of styles and flavors (Withers, 2017). This led to the rise of craft brewing. 
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In 1981 there were only five established craft breweries in the U. S., but by 2014, there were 

over 3,400. This correlated to $19.6 billion worth of beer bought from designated craft breweries 

in the U.S. that year (Reid and Gatrell, 2015). Since then, the industry has only grown. Craft 

brewing is smaller scale in production than commercial brewing and tends to be limited to local 

markets. There is also more of an emphasis on distinct flavors, although it is acknowledged that 

there is a knowledge gap in the understanding the basis of these flavors (Brewers Association, 

2015). 

Malting and brewing 

Malt is a product of the controlled germination of a cereal grain. The process of malting 

involves three steps: steeping, germination, and kilning. Briefly, steeping initiates germination of 

the grain by alternations of wet and dry cycles, germination involves chemical changes to the 

grain, and kilning halts germination through drying of the grain (Mallet, 2014; Paynter, 2015; 

Paynter and Young, 1996). Heavily relied upon in the brewing and distilling industries, malt is a 

one of the four main ingredients in beer (along with water, yeast, and hops) that provides critical 

starches and enzymes needed for fermentation (Briggs, 1998; Paynter and Young, 1996). The 

malting process breaks down the internal cell walls of the grain, stimulates the production of 

diastatic enzymes (which convert starch to malt extract), and contributes to color and flavor of 

the malt (Paynter and Young, 1996). Kilning also contributes heavily to the flavor and color of 

the malt through alterations in temperature and time (Mallet, 2014; Paynter, 2015; Paynter and 

Young, 1996). Many malting methods exist, contributing to the wide range of beer styles made 

from various base and specialty malts. 

Brewing is the process of converting a starchy grain into an alcoholic beverage by 

fermentation. It involves mashing, lautering, boiling, cooling, fermentation, and maturing/aging 
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steps. Overall, the process breaks down starches provided by the malted barley grain, to create a 

sugary solution called wort, where yeast consumes the sugars and releases ethanol along with 

other metabolic byproducts during fermentation (Willaert, 2007). The barley grains provides 

important enzymes that catalyze major biological changes during the brewing process, a few of 

these enzymes include 𝛼-amylases, 𝛽-amylases, 𝛽-glucanases, 𝛽-glucosidases, and limit 

dextrinases (Briggs, 1998; Evans et al., 2010). To describe the brewing process briefly, mashing 

starts the process by mixing the malted grain with water and heating to create wort and start 

degradation of the cell wall, starches, and proteins; lautering filters the insoluble material out 

from the wort; boiling initiates a variety of complex physical and chemical reactions (including 

enzyme inactivation and fixation of carbohydrate composition) that prepare the wort for 

fermentation; cooling removes excess protein and clarifies the beer, fermentation allows yeast to 

consume available sugars in exchange for ethanol and carbon dioxide production; and maturing 

prepares beer for packaging by reduction of off-flavors and removal of yeast (Lipnizki, 2015a, 

2015b; Masschelein, 1986; Willaert, 2007). 

Defining malt quality traits 

 Some of the most important malt quality traits include: 1) kernel plumpness, 2) kernel 

weight, 3) barley color, 4) barley protein, 5) malt extract, 6) wort color, 7) wort protein, 8) 

soluble/total protein (S/T), 9) diastatic power (DP), 10) 𝛽-glucan (BG), 11) 𝛼-amylase (AA), and 

12) free amino nitrogen (FAN). These are described below. 

1. Kernel plumpness 

Kernel plumpness, sometimes referred to as percent on 6/64”, is a measurement of 

seed size. Kernels that are retained on a 6/64” sieve when sifted are counted in the 
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percentage. AMBA recommends >90% retention of kernels on a 6/64” sieve (American 

Malting Barley Association, 2019). Plump kernels are preferred because they tend to 

contain more starch, which correlates to more beer per weight from the malt. Two-rowed 

varieties tend to be plumper and more utilized in the malting and brewing industry than 

six-rowed ones (Magliano et al., 2014; Wrigley et al., 2016). 

2. Kernel weight 

Kernel weight is a factor correlated to kernel plumpness and itis another way to 

measure potential quality. Typically, higher kernel weights mean more malt extract and 

higher quality malt (Mather et al., 1997). Kernel weight is measured as a thousand seed 

weight, reported in grams and representative of the dry weight. 

3. Barley color 

Dark or stained barley can indicate the presence of unwanted bacteria or incomplete 

germination due to wet weather at harvest. This typically leads to undesirable flavors, so 

bright, light yellow barley is desired. Barley color also varies based on the growing 

environment. Wet climates tend to have duller, darker colored grains than dry climates 

(Skarsaune et al., 1971). Barley color is measured spectrophotometrically (American 

Society of Brewing Chemists, 1992). 

4. Barley protein 

The amount of protein in the barley grain directly affects the enzyme composition and 

chemical makeup of the malt. Too much protein limits malt extract and makes malt 

modification difficult, but too little protein leaves insufficient enzyme levels for brewing. 

With high protein levels, steeping takes longer and germination can be erratic, which can 
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lead to significant malt losses. High protein levels also contribute to darker wort and beer 

colors, as well as hazier beers (Burger and LaBerge, 1985). Environment can have an 

impact on protein levels; hot and dry environment result in higher grain protein content 

than cool and wet environments (Wrigley et al., 2016). Barley protein is measured by 

either the Kjeldahl method or NIR (near-infrared) spectrometry (American Society of 

Brewing Chemists, 1992; Burger and LaBerge, 1985). It is typically reported as a 

percentage. There are varying recommendations for protein content but they are generally 

between 9% and 12% (American Malting Barley Association, 2019; Fang et al., 2019; 

Mather et al., 1997). 

5. Malt extract 

Many consider malt extract to be the most important malt quality parameter. Malt 

extract is a quantitative measurement of sugar extracted from the grain (Fang et al., 

2019). Malt extract determines the amount of alcohol that can be made from the grain 

based on the amount of fermentable sugar available (Paynter and Young, 1996). Higher 

levels (>80% DBFG) of malt extract are preferred. Malt extract is typically reported as a 

percentage (American Society of Brewing Chemists, 1992). The percentage units are 

either in % DBFG or % DBCG, which stands for dry basis, and either fine or course 

grind. 

6. Wort color 

Wort is an intermediate product of beer created during the mashing process (Willaert, 

2007). Wort color increases during the boiling process as an effect of the Maillard 

reactions. The Maillard reaction, a non-enzymatic browning reaction, occurs between 
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amino acids and sugars and gives rise to “toasted” flavors (Ellis, 1959; Tamanna and 

Mahmood, 2015). The longer wort boils, the darker the color, and the more toasted the 

taste. Wort color is measured spectrophotometrically (American Society of Brewing 

Chemists, 1992). 

7. Wort protein 

Like barley protein, wort protein requires a fine balance. Too much protein in the 

wort will result in opaque and viscous beer, while too little protein will result in a thin 

beer with little body. These proteins also effect the amount of foam, which is another trait 

valued by most brewers. Wort protein can also be measured by either the Kjeldahl 

method or by spectrophotometry (American Society of Brewing Chemists, 1992; Burger 

and LaBerge, 1985). It is typically reported as a percentage, and AMBA recommends 

4.8-5.6% wort protein (American Malting Barley Association, 2019). 

8. Soluble/Total protein (S/T) 

The ratio of soluble to total protein, which can also be referred to as the kolbach 

index, gives insight into the amount of protein degradation that took place during 

germination. Protein degradation effects yeast growth, and low ratios of protein 

degradation correlate to lower enzymatic activity, lower malt extract, and more difficult 

filtration. Yeast also ages too quickly with a low S/T, leading to a thin tasting beer. This 

parameter is the best indicator of how long germination was allowed to proceed (degree 

of malt modification). More soluble proteins mean a higher S/T (Fang et al., 2019). The 

Kjeldahl method is used to measure the amount of each protein and then it is presented as 

a percentage of the soluble / total protein content (Burger and LaBerge, 1985). Consensus 
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target ranges from 35-48% according to Brewers Association and Fang et al. (Brewers 

Association, 2015; Fang et al., 2019). 

9. Diastatic power (DP) 

Diastatic power is a measurement of the total activity of malt enzymes (𝛼-amylase, 𝛽-

amylase, limit dextrinase, and 𝛼-glucosidase) (Fang et al., 2019). Diastatic enzymes 

convert starch into soluble sugars (malt extract). High diastatic power means a higher 

potential for more malt extract (Paynter and Young, 1996). Although, higher diastatic 

power can be problematic for batch consistency, specifically during the mash phase if not 

controlled carefully (Brewers Association, 2015). Diastatic power can be calculated by 

either Fehlings or Ferricyanide titration methods (American Society of Brewing 

Chemists, 1992). Consensus target for diastatic power is <150 Lintner according to 

Brewers Association (Brewers Association, 2015). 

10. Alpha-amylase (AA) 

𝛼-amylase is arguably the most important enzyme in the brewing process. It converts 

starch (a large, insoluble molecule) into soluble sugars that are utilized by yeast in 

fermentation. If there is an inadequate amount of starch converted, yeast will not be able 

to properly ferment. 𝛼-amylase is measured as a unit of dextrinization time, or the time it 

takes to breakdown the sugars (The Institute of Brewing, 1969). AMBA recommends 

>50 DU (dextrinizing units) (American Malting Barley Association, 2019). 

11. Beta-glucan (BG) 

𝛽-glucan is a polysaccharide. It accounts for 75% of the endosperm cell wall in 

barley. During the malting process, the barley cell wall gets broken down, releasing 𝛽-
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glucan. Incomplete breakdown of the cell wall during malting, leads to an excess of 𝛽-

glucan. This decreases the amount of malt extract and lowers the quality of the beer. 

Excess 𝛽-glucan can also increase the viscosity of wort and beer, which makes filtration 

more difficult (Fang et al., 2019). 𝛽-glucan can be measured fluorometrically with dyes 

such as Calcofluor, or by NIR (near-infrared) spectrometry (American Society of 

Brewing Chemists, 1992). Consensus target is <140 ppm according to the Brewers 

Association (Brewers Association, 2015). 

12. Free amino nitrogen (FAN) 

Free amino nitrogen is the exclusive nitrogen source for yeast, making it crucial to 

ensure desired yeast growth, synthesis, and metabolic changes. It also contributes directly 

to beer flavor, or off-flavors. Too much or too little FAN can be a problem so the aim is 

generally 180-220 mg/L (Fang et al., 2019). FAN can be measured with colorimetry and 

the ninhydrin method (American Society of Brewing Chemists, 1992). 

Flavor as an attribute of interest 

 Off-flavors of malt and beer have been well studied and chemically annotated, but 

desired flavors are mostly understood at the anecdotal level, since malt is approved and chosen 

based on the lack of off-flavors, as opposed to the presence of desired flavors. Over 1,000 flavor 

compounds of malt and beer have been chemically identified by mass spectrometry and, 

although many of these compounds may be under our taste detection threshold, they still 

contribute to the overall flavor profile (Kamimura and Kaneda, 1992). Whether desired or 

undesired, these small compounds (also referred to as metabolites), are the basis of beer flavor 

and are a significant factor in determining overall product quality. 
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Recently, some genetic work has been done on the contributions of barley genotype on 

beer flavor. Using a small sample set, Herb et al. (2017a and 2017b) showed that barley 

genotype impacts beer flavor, regardless of degree of malt modification or barley growing 

environment (Herb et al., 2017a; Herb et al., 2017). Bettenhausen et al. (2020) expanded on the 

flavor assessment with metabolomics data to define the chemical basis for differences in beer 

flavor from genetically distinct malt sources (Bettenhausen et al., 2020). Sensory assessments of 

hot steep (malt sensory evaluation) and beer on a limited number of barley varieties have also 

been performed and showed that the genotype leads to differences in flavor profiles (Windes et 

al., 2020). Flavor is one of the most important attributes when it comes to consumer preference 

of beer, and with the rise in popularity of craft brewing, the interest in understanding flavor is 

becoming increasingly important. 

 

Cowpea 

Cowpea (Vigna unguiculata L. Walp) is a warm-season legume native to Africa that is 

well adapted to sandy soils and low input farming practices which are common throughout sub-

Saharan Africa (Faris, 1965; Ji et al., 2019; Rawal, 1975; Vaillancourt and Weeden, 1992). 

Cowpea is a major food security crop for a large part of the world (da Silvia et al., 2018). 

Approximately 5.8 million tons (dry weight) are produced each year, mostly in Africa (da Silvia 

et al., 2018; Dugje et al., 2009). Smallholder farmers are responsible for the majority (around 

95%) of cowpea production in rural parts of the continent (Baoua et al., 2021). 
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Cowpea for food security and health in Africa 

Malnutrition, or an imbalance of various nutrients consumed, continues to be a serious 

problem in many low-income countries. Globally, one in three children under the age of five is 

malnourished and 340 million children under the age of five suffer from micronutrient 

deficiencies (UNICEF, 2019). All forms of malnutrition are linked to an increased risk of illness 

and death (UNICEF, 2019). Africa (broken down into West and Central, Eastern and Southern) 

accounts for the some of the highest percentages (39.4% and 42.1%, respectively) of children 

suffering from various forms of malnutrition, such as stunting (low height for age) and wasting 

(low weight for height) (UNICEF, 2019; USAID, 2018). Food insecurity, combined with early 

motherhood makes it especially hard to break the cycle of malnutrition (Fink et al., 2014; 

USAID, 2018). In Ghana specifically, two in three children (age six months - two years) are not 

fed the foods they need for healthy development (USAID, 2018). Although nutritious food, 

including legumes such as cowpea, are grown throughout Africa, they only make up a minor 

portion of a child’s diet because the crop is also used for animal feed or sold for income (Dugje 

et al., 2009; Gómez, 2004; UNICEF, 2019). The majority of diets in rural Africa consist mostly 

of starches from cassava, yam, plantain, millet, sorghum, and maize but the addition of even 

small amounts of cowpea could have tremendous impacts in balancing and enhancing nutrition 

in these areas (Singh et al., 2002). 

Cowpea can help alleviate malnutrition when consumed, due to its abundance of proteins, 

vitamins, trace minerals, antioxidants, amino acids, fibers, lipids, and phytochemicals which also 

contribute to an assortment of health benefits. Consuming cowpea also provides preventative 

health benefits. It can lower cholesterol and blood pressure, reduce inflammation, and even help 

prevent diseases such as diabetes and cancer (Abizari et al., 2013; Awika and Duodu, 2017; 
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Ayogu et al., 2016; da Silvia et al., 2018; Dakora and Belane, 2019; Jayathilake et al., 2018). 

Despite established benefits of consuming cowpea, the crop is often sold or used as animal feed 

instead. Livestock production makes up a large part of farmers income in sub-Saharan Africa and 

in some areas, premiums are given for certain cowpea varieties so there is a strong incentive to 

sell instead of consume them (Dugje et al., 2009; Langyintuo et al., 2003). 

Importance of biomarkers to nutritional studies 

Nutritional studies involving other legumes exist, but because cowpeas are so prevalent 

and well-adapted to areas where malnutrition is also prevalent, more detailed characterization of 

their metabolic profile and candidate nutritional biomarkers are needed. Though there are efforts 

to promote legume and cowpea consumption, there is no reliable way to measure compliance in 

cowpea feeding studies yet. Nutritional biomarkers are useful for indication and validation of 

consumption, as well as quantitatively measuring consumption (Potischman and Freudenheim, 

2003). Nutritional biomarkers have been identified for many other legume species such as 

soybeans, green peas, chickpeas, lentils, pinto beans, navy beans, kidney beans, lima beans, and 

black beans (Borresen et al., 2017; Hofinger et al., 1975; Lu et al., 2010; Madrid-Gambin et al., 

2017; Perera et al., 2015; Sri Harsha et al., 2018; Tsopmo and Muir, 2010; Zarei et al., 2021).  

 

Methodology 

The studies involving barley and cowpea had different aims, and therefore different 

approaches and methodology were used. Below, the concepts of QTL mapping (used for 

studying the genetics of barley contribution to beer flavor) and mass spectrometry (used both to 

investigate the metabolic profiling of cowpea flours and barley beers) are described. 
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QTL mapping 

 A quantitative trait locus (QTL) is a region of the genome that is responsible for the 

variation of a particular trait. Development of mapping populations is needed to genetically map 

QTLs, and bi-parental populations are among the most common types. Bi-parental populations 

are generally derived from parents that are highly homozygous and that differ in the phenotypes 

of the particular trait(s) of interest (Collard et al., 2005). Commonly used bi-parental populations 

include recombinant-inbred lines (RILs), and doubled haploids (DHs). A doubled haploid (DH) 

is a plant derived from a haploid cell (e.g. immature pollen grain) that underwent chromosomal 

doubling. Chromosomal doubling can either happen spontaneously or be induced with treatments 

such as colchicine (Ohnoutkova et al., 2019). By developing DHs from the F1 plants of a cross, a 

population of completely homozygous lines can be developed in just one generation instead of 

the 6-8 generations of self-pollination needed to develop RIL populations. The use of DH 

populations has become fundamental for genetic analyses such as linkage mapping and 

quantitative trait loci (QTL) mapping in many crops (Cistué et al., 2003). Two main protocols 

exist in barley for creating doubled haploids; anther culture, and hybridization with Hordeum 

bulbosum (Cistué et al., 2003; Maluszynski et al., 2003). 

 Once a relatively large bi-parental population is generated, the lines and parents are 

usually genotyped to identify single nucleotide polymorphisms (SNPs), the most common type 

of genetic marker. SNPs are base pair substitutions that are frequent in a population. Because of 

their high frequency and wide distribution in the genome, SNPs help locate the QTL region or 

gene(s) that encode traits of interest (Collard et al., 2005). SNPs can be identified through DNA 

sequencing of a set of individuals and used to develop high-density SNP arrays (Bayer et al., 

2017). Several SNP chips exists for barley (Close et al., 2009; Comadran et al., 2012; Szűcs et 
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al., 2009), including the barley 50k Illumina Infinium iSelect array that makes high-throughput 

genotyping more cost effective than before (Bayer et al., 2017). Due to the availability of a 

reference genome sequence for barley, the physical positions for most of those SNPs are known, 

and a direct link with barley genes can be established (Mascher et al., 2017). 

 Prior to QTL mapping, a genetic map of the bi-parental population is generated, which 

positions those SNPs in linkage groups based on recombination frequencies (Collard et al., 

2005). Recombination frequencies allow for inference of genetic distances between the markers, 

although they are not equal to the physical positions. The recombination frequencies are 

converted to centiMorgans (cM), and supplementation with physical positions allows for 

chromosome assignment and orientation of the linkage groups (Collard et al., 2005). Linkage 

groups tend to correlate to chromosomes but sometimes more than one linkage group will belong 

to the same chromosome if marker density is insufficient (Y. Wu et al., 2008). 

 The linkage map and SNP information of the DHs is used in QTL analysis to identify the 

genomic regions associated with the measured phenotypes (Collard et al., 2005). QTL analysis 

works by detecting differences in means of the phenotype(s) of interest and correlating them to 

specific marker loci (Collard et al., 2005; Hackett, 2002). Since barley has a high-quality 

reference genome with SNP and gene annotations, specific genes within marker regions can be 

identified as candidates that control or contribute to the phenotype (Hackett, 2002; Monat et al., 

2019). QTL mapping is a widely used method that has helped improve our understanding of the 

genetic control of important agronomic, disease resistance, and quality traits (Fang et al., 2019; 

Pauli et al., 2014; Singh et al., 2019). 
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Mass spectrometry 

 Mass spectrometry is arguably one of the most versatile analytical techniques that 

provides precise chemical information on a sample. It has broad uses in many fields including 

physics, chemistry, medicine, pharmacology, geology, nuclear science, forensic science, and 

many more (Dass, 2007). Small compounds (<1,500 Da) called metabolites are detected based 

on their molecular mass and charge (calculated as an m/z ratio) after ionization (Gross, 2006). 

Mass spectrometry also provides incredibly detailed quantitative and structural information on 

the metabolites in each sample (Dass, 2007). Mass spectrometry is one of the most common 

platforms used in metabolomics, and many types exist based on the analysis method and sample 

type (volatile or non-volatile; polar or non-polar; as well as solid, liquid, or gas) (Dass, 2007; 

Putri et al., 2013). Mass spectrometers have three main components, this includes an ionizer 

which applies a charge (positive or negative) to the system, a mass analyzer which reports a 

detected mass, and a mass detector which calculates the quantity of each metabolite (Gross, 

2006). The mass spectrometer reports data as a mass spectrum. This is a two-dimensional 

representation of mass-to-charge ratio (m/z) versus peak intensity, which reflects relative 

abundance (Gross, 2006). 

 The general metabolomics workflow involves extraction of the metabolites, separation, 

detection, annotation, and quantitation. Extraction is typically done by liquid solvent such as 

methanol, acetonitrile, ethanol, chloroform, or perchloric acid (H. Wu et al., 2008). Although, 

some samples such as beverages or biofluids do not require an extraction solvent. Metabolite 

separation occurs by chromatography, which yields a chromatogram (retention time versus 

metabolite quantity) (Lu et al., 2017). The two most common forms of chromatography include 

gas chromatography (GC), which separates molecules based on volatility, and liquid 
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chromatography (LC), which separates molecules based on polarity (Lu et al., 2017). Metabolite 

detection occurs by mass spectrometry (MS), as described above (Dass, 2007; Gross, 2006). 

Various systems exist for mass spectrometry. The two main ones are quadrupole (Q) and time of 

flight (TOF) mass spectrometry. These can also be coupled together in tandem mass 

spectrometry. Quadrupole systems measure mass from resonance through a magnetic field, and 

time of flight systems measure mass by time it takes molecules to travel between two places 

(Dass, 2007). Metabolites are annotated by reference to a database using computer software 

based on metabolite retention time and mass spectra. Without the inclusion of internal standards, 

annotation confidence will vary based on the information gathered from mass spectra and 

chromatogram. Internal standards also allow for absolute quantitation, whereas with no internal 

standards, data can be reported in relative quantitation after data normalization occurs (Lu et al., 

2017). The use of internal standards is definitive of a targeted metabolomics approach. Non-

targeted metabolomics is a more global approach where there is no a priori knowledge of what 

metabolites are of interest in the sample (Zhang et al., 2016). Metabolomics and the use of mass 

spectrometry have become indispensable tools in many fields of science for a variety of 

applications. 

 

Research goals and hypotheses 

Two crop systems were used in this work. The overall goals and hypotheses of this thesis 

are broken down by crop and described below. 

 

 



 

18 
 

Barley 

Flavor is an attribute of increasing interest in the malting and brewing industry. Chapter 2 

of this thesis, titled Genetic Basis of Barley Contributions to Beer Flavor, aims to 1) test the 

hypothesis that barley genotype contributes to beer flavor, 2) identify regions of the genome that 

control traits associated with flavor, and 3) identify candidate genes that control traits associated 

with flavor. 

Cowpea 

Cowpea is a highly valued food for its nutritional content and contribution to food 

security in many developing parts of the world. The need of biomarkers for nutritional studies is 

undisputed, but currently there is a lack of work done specific to cowpea. Chapter 3 of this 

thesis, titled Non-targeted Metabolomics of Cooked Cowpeas (Vigna unguiculata) and Pigeon 

Pea (Cajanus cajan) from Ghana, aims to 1) characterize the metabolic profiles of three cowpea 

flours, and 2) test the hypothesis that there are metabolites unique to cowpea (and cowpea 

variety) that can be potential biomarkers for nutritional studies. 
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CHAPTER 2 – GENETIC BASIS OF BARLEY CONTRIBUTIONS TO BEER FLAVOR1 
 
 
 
 
Overview 

Barley malt is critical for the malting, brewing, and distilling industries, as it is one of the 

main ingredients of beer and some types of spirits. There is growing evidence that barley 

genotype - via malt - can impact the flavors of beers and spirits. However, information on the 

barley genes involved in these flavors is lacking. Therefore, we used quantitative trait locus 

(QTL) mapping of malt quality traits, beer sensory descriptors and metabolic compounds on a 

biparental population of doubled haploids derived from the cross of the cultivars Golden Promise 

and Full Pint. Candidate genes for QTLs were identified by alignment with the reference barley 

genome sequence. There were thirty-seven QTLs across all chromosomes except 4H, with three 

QTL clusters located on 3H (1 cluster) and 5H (2 clusters: mid-5H and end-5H). Those 

“hotspots” contained QTLs for multiple phenotypes. Several candidate genes that regulate plant 

metabolism were identified within the QTLs and included HvAlaAT, HvDep1, HvMKK3, 

HvGA20ox1 and HvGA20ox2. These genes are involved in seed dormancy and plant height. 

Alleles at these loci, and perhaps at physically linked loci, can have key downstream effects on 

malting quality, beer flavor, and abundance of volatile metabolites. 
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Introduction 

Barley (Hordeum vulgare L.) is the main cereal grain used in the malting and brewing 

industries, as well as in distilling. Barley malt provides critical starches and enzymes to the 

brewing process, which in turn provides the necessary sugar and nutrients to yeast for 

fermentation in order create the end-products, which are typically beer (Paynter and Young, 

1996) and/or spirits. Modifications to any step of the malting process can alter the overall malt 

flavor, with the largest driver being kilning, resulting in the wide range of base and specialty 

malts used to make different styles of beer. A growing body of evidence – based on base malts 

and pale lager/ale style malt-forward beers brewed from them – indicates that barley genotype 

can make significant contributions to beer flavor (Bettenhausen et al., 2020, 2018; Craine et al., 

2021; Herb et al., 2017a, 2017a; Kyraleou et al., 2021; Morrissy et al., 2021; Windes et al., 

2020). The environment can modulate the effects of these genes – a source of barley variety 

“terroir”. Kyraleou et al., (2021) for example, reported differences in flavor of spirits attributed 

to where the barley was grown. 

The assessment of contributions of genotype and environment to flavor is an area of 

recent research; historically, the suitability of barley varieties for brewing has been based on a 

suite of malt quality parameters. Organizations around the world set the acceptable standards and 

approve new malting varieties. Notable examples include the American Malting Barley 

Association (AMBA), the Brewing and Malting Barley Research Institute (BMBRI), Barley 

Australia, the Canadian Malting Barley Technical Centre (CMBTC), and the European Brewery 

Convention (EBC). These organizations have strict guidelines and lengthy testing requirements 

for barley varieties to be approved and recommended for malting and brewing. AMBA, for 

example, uses pilot malting evaluations followed by plant (commercial) scale malting and 
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brewing trials. A barley variety is recommended only if ratings are satisfactory at all stages. 

However, a barley may have satisfactory malt specifications but fail at later stage, commercial 

scale brewing trials due to negative flavors. Therefore, to date, selection for barley flavor has 

been a defect elimination process, rather than a process designed to identify and promote positive 

flavors. Negative attributes may be due to flavor components of barley grain, flavors developed 

during malting that are not associated with current malting quality attributes, and/or flavors 

developed in brewing as a result of interactions with hops, yeast and other beer ingredients. The 

defect elimination strategy does provide evidence for flavor contributions from the barley 

genotype and/or the production environment. If these factors can contribute negative flavor 

attributes, could they potentially contribute positive flavor attributes? Ultimately, all causes of 

differences in beer flavor - be they positive or negative - between barley genotypes, and 

production environments, will have a genetic basis. Identifying these genes will require 

systematic assessment of all possible phenotypes that could contribute to beer flavor. A starting 

point, for barley, is the suite of malting quality parameters, such as kernel weight and plumpness, 

malt extract, wort color and protein, barley protein, and various enzyme parameters. 

Barley malting quality traits, as well as their regulatory genetics, have been the subjects 

of intense study (Fang et al., 2019; Han et al., 1997; Igartua et al., 2000; Mather et al., 1997; 

Mohammadi et al., 2015; Muñoz-Amatriaín et al., 2010; Potokina et al., 2004; Szűcs et al., 

2009). Malt quality per se is a complex meta-phenotype, and target values for critical component 

attributes will vary depending on the intended use of the malt – all-malt brewing, adjunct 

brewing, or distilling. In general, well-modified malts with high levels of malt extract are 

desirable for all end uses. Modification is a term widely used in malting and brewing to describe 

a malt with the optimum balance of starch and protein-related factors for the intended end-
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product. Enzyme-related parameters – such as 𝛼-amylase activity and diastatic power - and free 

amino nitrogen (FAN) will vary between end uses. Lower enzyme levels are desired for all-malt 

brewing; higher enzyme levels are required for adjunct brewing; and even higher levels are 

targeted for grain distillers’ malts. Genes encoding key enzymes have been cloned and the bases 

of allelic variation described (reviewed in Shewry and Darlington, 2002). These include loci 

encoding 𝛼-amylases, 𝛽-amylases, 𝛽-glucanases, 𝛽-glucosidases, and limit dextrinases 

(Bamforth, 2009; Evans and Eglinton, 2009; Knox et al., 1987; Muthukrishnan et al., 1984; 

Erkkila et al., 1998; Clark et al., 2003; Kreis et al., 2009; Han et al., 1995; Litts et al., 1990; 

Tibbot et al., 1996; Burton et al., 1999). These enzymes are important in the breakdown of 

starches which are utilized during fermentation and brewing. However, known-function and 

candidate genes are lacking for many other important malting quality traits – and these are 

typically only reported as quantitative trait loci (Mohammadi et al., 2015). 

The degree of modification, and resulting malting quality profile, is driven by the grain’s 

ability to germinate, and to germinate uniformly. Germination characteristics - which can be 

further broken down as germinative energy, capacity, and water sensitivity - are key gateway 

characteristics that are assessed on a sample of prospective malting barley prior to malting 

(Briggs, 1978). Seed dormancy lies at one extreme of the germination continuum. Pre-harvest 

sprouting (PHS) susceptibility lies at the other end of this continuum. Between these extremes lie 

the degrees of dormancy, which may be key drivers of traits affecting malting. The hormones 

abscisic acid, gibberellin, ethylene, and auxin play key roles in seed dormancy (Corbineau et al., 

2014; Ishibashi et al., 2017; Li et al., 2004; Liu et al., 2013). Briefly, abscisic acid induces and 

maintains dormancy (Corbineau et al., 2014; Ishibashi et al., 2017); gibberellins coordinate the 

release from dormancy so the seed can germinate (Corbineau et al., 2014; Ishibashi et al., 2017; 
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Li et al., 2004); ethylene inhibits abscisic acid while also stimulating the biosynthesis of 

gibberellin (Corbineau et al., 2014); and auxin plays a role in seed dormancy by stimulating 

abscisic acid action, therefore promoting dormancy (Liu et al., 2013). 

Dormancy, and the degree dormancy, have been areas of intensive and extensive research 

in barley, leading the identification of qualitative and quantitative genetic determinants (Edney 

and Mather, 2004; Hori et al., 2007; Li et al., 2004; Nakamura et al., 2017, 2016; Prada et al., 

2004). Two of the most important QTLs are SD1 and SD2, located, respectively, in the 

centromeric region (mid) and long arm (end) of chromosome 5H (Nakamura et al., 2017). 

Alanine aminotransferase (AlaAT) has been identified as the causal gene for SD1 (Sato et al., 

2016). Mitogen Activated Protein Kinase Kinase 3 (MKK3) was the first gene reported to be 

responsible for SD2 (Nakamura et al., 2016), and this gene has been validated in subsequent 

reports (Mao et al., 2019; Shorinola et al., 2017; Vetch et al., 2020, 2019). Nagel et al. (2019) 

reported that a gibberellin oxidase gene involved in dormancy alleviation (HvGA20ox1) maps to 

the SD2 region as well. MKK3 and HvGA20ox1 are located ~1,600 kb apart based on the 

reference genome Morex V2 (Monat et al., 2019). The distal end of the long arm of chromosome 

5H is one of the key “hotspots” for barley malting quality QTLs (Fang et al., 2019; Igartua et al., 

2000; Mather et al., 1997; Mohammadi et al., 2015). Therefore, it is tempting to speculate that 

the candidate gene(s) for SD2 are involved in dormancy, degree of dormancy, and PHS. 

Whereas tremendous progress has been made in elucidating the genetic basis of both 

agronomic and malting quality traits, information on the genes determining the contributions of 

barley to beer flavor is lacking. There are strong anecdotal opinions in the malting and brewing 

community – both for and against the contributions of barley to beer flavor: a key piece of 

evidence in flavor is the persistence of older varieties in the market due to their perceived unique 
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contributions to beer flavor. These varieties range from heirlooms, such as Chevalier and Bere to 

more recent varieties that do not have competitive agronomic and malting quality profiles, such 

as Golden Promise, Maris Otter, and Klages (Mallett, 2014). Genetic analysis requires harder 

evidence than opinions and sales figures. Recent experimental work has established the 

necessary foundation. Herb et al. (2017b) provided the first clear evidence that there is a genetic 

basis for the barley contribution to beer flavor. Sensory descriptors were notably different 

between parental varieties (Golden Promise and Full Pint) and variation for sensory attributes 

was observed in a sample of 34 doubled haploids derived from the cross (referred to as the 

Oregon Promise population). The conclusion that there is a genetic basis to flavor was based on 

estimates of heritability and preliminary estimates of marker:trait relationships. The malts upon 

which this research was based were generally under-modified – an unavoidable confounding 

factor when experimental genotypes and varieties of historical interest are micro-malted in 

batches using protocols designed for assessing contemporary and future malting varieties. 

Therefore, Herb et al. (2017a) specifically addressed the impact of degree of modification on 

barley genotype contributions to beer flavor and concluded that even with intentional under-

modification and over-modification, there is a genetic contribution of the barley to beer sensory 

attributes. Bettenhausen et al. (2020) extended this flavor assessment to larger-scale malting and 

brewing on a subset of three Oregon Promise doubled haploids, confirmed differences in flavor, 

and identified the top-rated doubled haploid for release as the variety “Oregon Promise” in 2020. 

The Bettenhausen et al. (2020) work also included metabolomics, a powerful tool that is 

used to better understand the chemical composition of a sample. Since the focus is on the sensory 

attributes of the beer, in this case volatile metabolites are of the most interest. Volatiles are the 

aromatic compounds contributing to flavor perception. Bettenhausen et al. (2018) first applied 
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metabolomics to answer questions about the effect of malt source on beer flavor and flavor 

stability. They demonstrated that malt sources (location grown, maltster) did have an impact on 

beer flavor/flavor stability and metabolite variation that could account for flavor differences 

among beers. Subsequently, metabolomics has been applied to the assessment of beers made 

from Oregon Promise selections (Bettenhausen et al., 2020) as well as beers and hot steeps made 

from currently available winter malting varieties and experimental spring varieties (Windes et 

al., 2020). Morrissy et al. (2021) extended the analysis pipeline of pilot malting, brewing, 

sensory, and metabolomics of hot steeps and beer to assess contributions to beer flavor in 

doubled haploids derived from crosses of Maris Otter with contemporary varieties. 

There is evidence, therefore, that (i) barley genotypes can differ in their contributions to 

beer flavor, (ii) there is a genetic basis to these contributions, and (iii) differences in sensory 

attributes and metabolite profiles are not simply due to the degree of modification of malt and/or 

differences in beer analytics. In this report, we build on these findings by providing an integrated 

and comprehensive analysis of the genetic basis of malting quality, beer sensory traits, and beer 

metabolites. Specifically, we expand the scope of inference on the Oregon Promise population 

(Herb et al., 2017b) via genetically characterizing 236 doubled haploids from the Oregon 

Promise population, using a high-density genotyping array (Barley 50k iSelect SNP array; Bayer 

et al., 2017) and integrating - via biparental QTL mapping - the genotype data with phenotype 

data on malting quality, beer sensory, and beer metabolomics. This integration of new findings 

with a review of the literature on the topic provides a platform for identifying next steps in this 

exciting area of research. 
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Materials and Methods 

Plant material and micro-malting 

The development of the Oregon Promise population was described in detail by Herb et al. 

(2017b). Briefly, the entire population consists of 236 doubled haploids (DHs), developed using 

the anther culture protocol of Cistué et al. (2003). The full mapping population was grown at 

Corvallis, Oregon USA in 2013 and 2014. Grain samples from the 2013 crop were malted at the 

USDA Cereal Crops Research Unit (CCRU), Madison Wisconsin, USA, following the 

procedures described by Mahalingam et al. (2017). Analysis methods are per American Society 

of Brewing Chemists Methods, except for quality score and overall rank. Quality score is a 

weighted measure of all quality parameters (C. Martens, personal communication). The higher 

the value, the more suitable the malt for adjunct brewing. The overall rank is the inverse of 

quality score, where the top ranked sample (1) has the highest quality score. The malting quality 

data used for quantitative trait locus (QTL) mapping in this report trace to these samples. 

Sufficient malt from these samples was not available for nano-brewing (see Materials and 

Methods). Therefore, grain from the 2014 crop was malted at the CCRU but no malt analyses 

were conducted in order to have sufficient grain for nano-brewing. One hundred and sixty-two 

DH lines from the 2014 crop had sufficient grain for malting and subsequent brewing. Samples 

from the 2014 crop were submitted for malting in August 2015 – approximately one year post-

harvest. For the parents, there was not sufficient residual grain from the Corvallis 2013 or 2014 

crops for micro-malting and subsequent nano-brewing. Therefore, residual malt from a 2016 

experiment grown at Lebanon, Oregon USA (described by Herb et al., 2017b) was used for 

nano-brewing of Golden Promise and Full Pint. 
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Nano-brewing 

Nano-brewing was performed at Rahr Malting Co. (Shakopee, MN, USA) using a beer 

recipe developed by Rahr Malting Co. for the purpose of this project. The method was developed 

to accommodate the large number of samples and limited amount of malted barley available per 

sample. Each sample of micro-malt was milled according to the ASBC Coarse Grind Extract 

method (ASBC Extract Method, Malt-4) on Bühler Universal Laboratory Disk Mill DLFU 

(Bühler AG, Uzwil, Switzerland). 150 g of milled micro-malt of each sample were divided 

equally into each of two mash cans, which were prepared to yield 0.47 L of beer per sample. The 

strike water was prepared with gypsum and CaCl using reverse osmosis (RO) water. 0.45 L of 

strike water, heated to 65°C, were added to each mash can with malt. A single infusion mash was 

employed; the mash cans were maintained at 65°C for 60 min and stirred using magnetic stir-

bars. At the end of the 60-min mash, the mash cans were removed from the bath and weighed. 

Reverse osmosis water was added to each mash can to standardize the volume of all mashes to 

0.45 L before filtering. The contents of each of the two mash cans per sample were poured over 

Goldtone Reusable Basket Coffee Filters (GoldTone, Pompano Beach, FL, USA) into a single 

beaker, to separate the wort from grist. Sparge water was prepared by heating two beakers of RO 

water at 82°C. The sparge water was then cooled to 77°C before 0.2 l was added to the grist. 

Approximately 1 L of wort was collected from each beaker, covered with parchment paper, and 

heated to 204°C. Once boiling, the parchment paper was removed and 0.9 g of Fuggle hops, with 

4.9% α-acid, were added to each beaker. The aim was ~20 IBUs in the wort post-boil, translating 

to 10-12 IBUs in the final beer. The beakers were boiled for approximately 60 min each. To 

clarify the beer, 0.1 g of Irish Moss were added during the final seven minutes of boiling. 

Beakers were then removed from the hot plate, covered with a sterile aluminum foil lid, and 
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transferred to an ice bath for 15-20 min. Samples were swirled periodically until the wort cooled 

to 18-20°C. Beakers were then sanitized and placed in a biohood for hot trub settling. After the 

hot trub settled, wort was poured into autoclaved 1000 mL VWR media bottles (Avantor, 

Radnor, PA, USA). Specific gravity was recorded and adjusted to 11°P using autoclaved reverse 

osmosis water. Yeast was pitched, using serological pipets, directly from White Labs Pure Pitch 

packets (White Labs, San Diego, CA, USA) with a goal of ~7-10 × 106 cells/mL. Pitched wort 

was mixed in the media bottle and incubated at 20°C for 6-7 days until fermentation was 

complete. The media bottles of beer were incubated at 1°C for 24 hours and then the beer was 

poured into 1 L SodaStream bottles (SodaStream, Kefar Sava, Israel) and carbonated. These 

beers were then ready for laboratory analyses. 11 DH nano-brews were brewed each day, along 

with a Golden Promise control. 

Laboratory analyses included specific gravity, pH, color, alcohol by volume (ABV), and 

international bitterness units (IBUs). Data were collected throughout the brewing process at 

mash (pH), pre-boil (specific gravity, pH, and color), post-boil (specific gravity, pH, and color), 

fermentation (specific gravity and pH), pre-bottle (specific gravity, pH, and color), and bottle 

(specific gravity, pH, color, ABV, GC-MS, and IBUs) steps. These data are available upon 

request. The GC-MS used was a Thermo Scientific GENESYS 10S UV-Vis spectrophotometer 

(Thermo Scientific, Waltham, MA, USA). All analyses, excluding sensory, were done following 

ASBC methods (American Society of Brewing Chemists, 1992). 

Sensory evaluation 

Sensory evaluations were conducted at Rahr Malting Co. using a trained sensory panel. 

Sensory panelist candidates were chosen based on robust brewing knowledge and previous 

sensory panel experience. These panelists were trained on 30 common beer flavors, including 
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off-flavors, by beers spiked with ~3x the average threshold concentration for each flavor 

compound. Panelists that were able to correctly identify all the compounds more than 70% of the 

time were selected for the final panel. In total there were 20 panelists that participated in the 

sensory data collection for this project. Due to the limited and varying amounts of micro-malt 

available, 162 DH beers were tasted between 6 and 13 times each. On average, each beer was 

tasted 12 times. 

Sensory assessment was based on the comparison to a reference method. Descriptors 

were provided for the research beers (beer color, sweet flavor, cereal flavor, malty flavor, honey 

flavor, caramel/toffee flavor, grassy flavor, fruity flavor, floral flavor, and toasted flavor). All 

research beers along with a randomly distributed Golden Promise (brewing control) and Miller 

High Life (Miller Brewing Company, Milwaukee, WI, USA) (sensory control) were presented to 

panelists with a unique 3-digit code so they would not know which samples they were receiving. 

Miller High Life was used as the reference/control beer because the trained panel had the 

consensus that it contains a relatively neutral flavor profile within the style and has consistent 

quality control. Panelists were aware of the controls but not their identities. All beers brewed at 

Rahr were carbonated to similar levels using a SodaStream (SodaStream, Kefar Sava, Israel) and 

stored at 4 °C in a capped 5 oz cup prior to distribution to the sensory panel. The DH population 

research beers and the Golden Promise research beers were all tasted the same day they 

completed brewing. A maximum of 13 samples were tasted each day (11 DHs, 1 Golden 

Promise, and 1 Miller High Life). 

Sensory descriptors were scored on a scale of +4 to -4, where positive numbers indicate 

more intensity than the sensory reference (Miller High Life) and negative numbers indicate less 

intensity than the reference, and 0 being the same as the reference. We also transformed the 
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sensory data to a simplified +1/0/-1 scale (more than/similar to/less than the reference) to check 

if additional QTLs could be detected. Using that scale, we were able to identify significant QTLs 

for malty, honey, and grassy flavors. The original +4 to -4 scale was used for QTL mapping of 

beer color, cereal flavor, and toasted flavor. 

Metabolomics analysis and data processing 

After sensory was completed, the remaining beers were shipped frozen in 50 mL Falcon 

Tubes from Rahr Malting Company (Shakopee, MN) to the Analytical Resource Core – 

Bioanalysis and Omics laboratory at Colorado State University (ARC-BIO, Fort Collins, CO). 

Of the 162 original beers, 155 had enough sample to conduct further testing, including the 

Golden Promise and Full Pint controls. 

The contents were then pipetted to 20mL vials. Headspace Solid Phase Microextraction 

gas chromatography mass spectrometry (HS/SPME-GC-MS) was used to detect volatile 

compounds such as ketones, aldehydes, and esters using methods previously described 

(Bettenhausen et al., 2018, 2020). For instrumental analysis, the samples were first incubated at 

65°C for 5 min, and then the headspace volatiles were extracted at the same temperature by a 

SPME fiber (DVB/PDMS/CAR 50/30 µm, Stableflex, Sigma-Aldrich) for 20 min, and injected 

into a DBWAXUI column (30 m x 0.25 mm x 0.25 µm, Agilent) in a Trace1310 GC (Thermo) 

coupled to an ISQLT MS (Thermo). The SPME fiber was desorbed at injection port (250°C) for 

3 min, and then at fiber conditioning port (270°C) for 5 min. The GC inlet was operated under 

splitless mode during fiber desorption. The oven program started at 40°C for 4 min, ramped to 

240°C at a rate of 5°C/min, and a final hold at 240°C for 0.5 min. Data were acquired under 

electron impact mode, with full scan of 40-500 amu at a rate of 5 scans/second. Transfer line and 

source temperatures were held at 250°C. Samples were not provided in replicates. Pooled QC 
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samples were run every six samples. Data were processed as described by Bettenhausen et al., 

(2018). Briefly, each sample resulted in a matrix of molecular features generated using XCMS 

software in R. Samples were normalized, relative abundances were calculated, mass spectra was 

deconvoluted using RamClust (Broeckling et al., 2014), and then metabolites were annotated by 

searching clustered features against in house and external libraries (NIST [http://www.nist.gov], 

Metlin [Tautenhahn et al., 2012; Zhu et al., 2013], the Human Metabolome Database [Wishart et 

al., 2013], and the Golm Metabolome Database [Hummel et al., 2013]). 

SNP Genotyping and linkage map construction 

The entire population of 236 DH lines and the two parents were genotyped with the 

Barley 50k iSelect SNP array (Bayer et al., 2017). Genotyping was performed by the Neogen 

GeneSeek laboratory (Scotland, UK: https://www.neogen.com/). SNPs were called using the 

GenomeStudio 2.0 software (Illumina Inc, San Diego, CA, USA). SNPs with >20% missing 

and/or heterozygous calls were removed, together with monomorphic SNPs. We did not identify 

highly distorted SNPs in the dataset. Data for each DH line were inspected; seven duplicated 

individuals were identified and eliminated from the population as well as one line having a high 

percentage of missing and/or heterozygous calls (22.5%). 

The resulting 228 DH lines and 12,458 SNPs were used for linkage mapping. MSTmap 

(Wu et al., 2008); http://www.mstmap.org/mstmap_online.html) was used, with the following 

parameters: grouping LOD criteria = 10; population type = DH; no mapping size threshold = 2; 

no mapping distance threshold: 15 cM; try to detect genotyping errors = no; and genetic mapping 

function = kosambi. Physical coordinates of iSelect SNPs on the barley reference genome 

(Morex v2; Monat et al., 2019) were retrieved from BARLEX (Colmsee et al., 2005; 

http://apex.ipk-gatersleben.de/) and used to name and orient linkage groups. 
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QTL analysis and candidate gene identification 

QTL mapping of the malting quality, beer sensory, and metabolomics traits was 

conducted using the mixed model method of Xu (2013) that was implemented in R by Lo et al. 

(2018). −log10 (p-values) were generated for each SNP. A genome-wide significance cutoff value 

was calculated based on false discovery rate (FDR) correction (Benjamini and Hochberg, 1995) 

at α = 0.05 and used to identify significant QTLs. The percentage of phenotypic variation 

attributed to each QTL was calculated as described in Lo et al. (2018). 

QTLs were displayed on linkage groups using MapChart version 2.32 software. QTL 

naming was based on the format described in Szűcs et al. (2009). Briefly, QTL names start with 

a “Q”, followed by abbreviations for the trait and the population, as well as the chromosome 

number. Multiple QTLs on the same chromosome are indicated by a period and then the QTL 

number. Metabolite QTLs have the metabolite abbreviations following the “Q”, and then follow 

the same format for population abbreviation and chromosome numbering. 

The physical region of each QTL was determined based on the barley reference genome 

(Morex V2 [Monat et al., 2019]) and used to identify genes underlying the QTL intervals. 

Physical positions in Morex V1 (Mascher et al., 2017) were also retrieved. 

 

Results 

Phenotypic variation for malting quality, sensory descriptors, and metabolites 

All phenotypic data generated in the DH population and the parents are provided in 

Supplementary Table 2.1, and a summary of phenotypes can be seen in Table 2.1. The malting 
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quality traits barley color, wort 𝛽-glucan (BG) and overall rank - together with the sensory traits 

cereal flavor, malty flavor, and grassy flavor and the metabolites linalool, ethyl hexonate-like, 

and oxalic acid dibutyl ester - all had higher values in Golden Promise than in Full Pint. 

Conversely, Full Pint had higher values for the remaining malting quality traits (kernel weight, 

kernel plumpness, malt extract, wort color, barley protein, wort protein, the ratio of soluble to 

total protein (S/T), diastatic power (DP), 𝛼-amylase (AA), free amino acid (FAN) and quality 

score), the sensory traits beer color, honey flavor, and toasted flavor, and the metabolites 2-

methoxy-4-vinylphenol, and acetic acid, 2-phenylethyl ester. Transgressive segregation was 

observed for all traits except kernel plumpness. 

Overall, the malts are under-modified, as evidenced by the low malt extract and S/T 

values and the high 𝛽-glucan values. There was limited variation for beer sensory descriptors, for 

which significant QTLs were detected, compared to the sensory reference (Miller High Life). 

Overall, Golden Promise was rated higher for cereal, malty, and grassy flavors. Full Pint was 

rated higher for beer color, and honey and toasted flavors. 

A total of 543 volatile compounds were detected in the beer samples, 144 of which could 

be annotated as metabolites. The description of the beer flavor metabolome generated in this 

study is reported in Supplementary Table 2.1. Metabolite variation among the beers was detected 

and is visualized in Supplementary Figure 2.1. Of the 144, only 5 metabolites could be 

associated to a QTL (p < 0.05, Table 2.1). Those metabolites are: 2-methoxy-4-vinylphenol 

(MVP), acetic acid, 2-phenylethyl ester (PEA), linalool (LOO), a compound with similar, but 

slightly modified structure as ethyl hexonate (ethyl hexonate-like, EHEXL), and oxalic acid 

dibutyl ester (DBOA). 
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All possible pairwise correlations (n = 325) among malt quality, sensory and metabolic 

traits as well as their respective p-values are shown in Supplementary Table 2.2. Correlations 

(positive and negative) between traits ranged from 0 to 0.9; of these, 119 were significant (p < 

0.05). Most of the significant correlations were between malting quality traits. The highest 

positive correlation was found between FAN and wort protein (0.92; p = 0.000), while the 

highest negative correlation was between overall rank and quality score (-0.98; p = 0.000). 

Focusing on correlations >0.5 or <-0.5, there were expected patterns of trait relationships 

for most malting quality traits. For example, barley protein was positively correlated with 

diastatic power and negatively correlated with malt extract; wort 𝛽-glucan was negatively 

correlated with wort protein and S/T; FAN, wort color, wort protein, S/T, AA, and quality score 

were all positively correlated with each other; malt exact, S/T, AA, and quality score were also 

all positively correlated with each other. Quality score was positively correlated with many of 

the traits listed above (malt extract, wort color, wort protein, S/T, AA, and FAN) and negatively 

correlated with overall rank. Conversely, overall rank was negatively correlated with the same 

traits listed for quality score. Of the sensory traits, there were no correlations >0.5 or <-0.5 

between sensory traits. Of the five flavor metabolites, the content of DBOA was positively 

correlated with LOO content. 

No correlations were found which included traits from each of the three categories, but 

beer color was positively correlated with wort protein, S/T, AA, FAN, quality score; and 

negatively correlated with overall rank. Also, PEA content was negatively correlated with BG 

(Supplementary Table 2.2). 

 



 

42 
 

Development of the Golden Promise genetic map 

A total of 12,458 polymorphic SNPs and 228 DHs were used to generate a genetic map 

of the Oregon Promise population. MSTmap (Wu et al., 2008) was the software of choice for 

genetic map construction, which mapped 12,453 SNPs into 1,073 bins across the seven linkage 

groups representing each of the seven barley chromosomes (Table 2.2; Supplementary Table 

2.3). The genetic map spanned 1,221.76 cM and had an average density of 1 bin per 0.88 cM. 

There were two large gaps of 31.1 and 30.5 cM on chromosomes 1H and 6H, respectively 

(Supplementary Table 2.3). Linkage groups ranged in size from 134.77 cM for chromosome 4H 

to 193.94 cM for chromosome 3H. The genetic map of the Oregon Promise population together 

with the SNP information used for its construction is available in Supplementary Table 2.3. 

Identification of QTLs and candidate genes 

QTLs were identified for malt quality, sensory, and metabolite traits using the mixed 

model for QTL mapping of Xu et al. (2013) implemented in R (Lo et al., 2018). These QTLs 

were distributed across all chromosomes except 4H and include: 21 QTLs for 14 malting quality 

traits, eight QTLs for six sensory descriptors, and eight QTLs for five metabolic compounds 

(Figure 2.1; Table 2.3; Supplementary Table 2.4). The percentage of phenotypic variation 

accounted for by individual QTLs ranged from low (6.25%) for one of the DP QTLs 

(QDp.GpFp-1H) to substantial (48.3%) for overall rank (QOr.GpFp-5H) (Table 2.3). QTL 

clustering for traits belonging to different categories were identified on chromosomes 3H and 5H 

(mid-5H and end-5H), the end of 5H being the largest QTL hotspot (Figure 2.1). Annotated 

barley genes that fell within each QTL region were identified for all QTLs and are provided in 

Supplementary Table 2.5. Details of QTLs and candidate genes within each phenotypic category 

are provided below. 
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Malt quality 

Twenty-one QTLs for 14 malt quality traits were identified on chromosomes 1H, 2H, 3H, 

5H, and 7H (Table 2.3; Figure 2.1) and their −log10 (p-values) ranged from 3.40 for one of the 

kernel plumpness QTLs (QKp.GpFp-3H) to 16.00 for wort protein, S/T, quality score, and 

overall rank (Table 2.3). The percentage of phenotypic variation accounted for by each QTL 

ranged from 6.25% for a DP QTL (QDp.GpFp-1H) to 48.27 % for overall rank (QOr.GpFp-5H). 

There were overlapping QTLs for kernel plumpness and barley protein on 3H, which were in 

close proximity to the kernel weight QTL (Figure 2.1). Kernel plumpness, barley color, and 

barley protein QTLs overlapped at the mid-5H hotspot, while malt extract, wort color, wort 

protein, S/T, AA, BG, FAN, quality score, and overall rank QTLs clustered at the end-5H 

hotspot (Table 2.3; Figure 2.1). It is expected that the quality score and overall rank would 

coincide, and that they would coincide with the QTLs for the traits used to calculate the score. 

QTLs contained between 24 and 3,903 annotated genes for QKp.GpFp-3H and 

QBc.GpFp-5H, respectively, with an average of 540 genes (Supplementary Table 2.5). Barley 

genes HORVU.MOREX.r2.5HG0398940 and HORVU.MOREX.r2.5HG0397930, which 

correspond to Alanine aminotransferase (HvAlaAT; Sato et al., 2016) and Dense and erect 

panicle 1 (HvDep1; Wendt et al., 2016), respectively, were identified within the kernel 

plumpness (HvAlaAT and HvDep1) and barley color (HvDep1) QTLs at the 5H-mid QTL cluster. 

HvAlaAT has been shown to control the length of dormancy, while HvDep1 is involved in culm 

elongation and grain size in barley. Gene models HORVU.MOREX.r2.5HG0447180 and 

HORVU.MOREX.r2.5HG0446540, corresponding to Mitogen-Activated Kinase Kinase 3 

(HvMKK3; Nakamura et al., 2016) and Gibberellin 20-oxidase 1 (HvGA20ox1; Nagel et al., 

2019), respectively, were contained within the overlapping region of all QTLs except BG at the 
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5H-end hotspot. Both HvMKK3 and HvGA20ox1 are reported to be involved in the regulation of 

seed dormancy in barley. The relationships of these genes with QTLs for malting quality, and the 

other two categories of data (sensory and metabolite), are explored in the Discussion. The 

Sdw1/Denso locus, where the determinant gene is HvGA20ox2 (Xu et al., 2017; Jia et al., 2009), 

is on chromosome 3H and coincides with the barley grain protein QTL. Two amino acid 

permease genes (HORVU.MOREX.r2.3HG0256690 and HORVU.MOREX.r2.3HG0256700), 

with roles in nitrogen remobilization (Kohl et al., 2012), were also identified among the 

annotated genes in the kernel plumpness and barley protein QTLs (Supplementary Table 2.5). 

Candidate genes for the singleton malt quality QTLs (Figure 2.1; Table 2.3) were not explored in 

detail. 

Sensory 

A total of eight QTLs for six sensory traits were identified on chromosomes 2H, 3H, 5H, 

and 7H (Table 2.3; Figure 2.1), with −log10 (p-values) ranging from 3.52 for cereal flavor to 

14.00 for beer color (Table 2.3). The percentage of phenotypic variation accounted for by each 

QTL ranged from 6.88 % for cereal flavor (QCe.GpFp-7H) to 21.36 % for beer color 

(QCo.GpFp-5H). Overlapping QTLs for this category were located on chromosome 3H (malty 

flavor [QMa.GpFp-3H] and toasted flavor [QTo.GpFp-3H]), which also overlapped with the 

malt quality QTL for kernel weight (QKw.GpFp-3H), and chromosome 5H (beer color 

[QCo.GpFp-5H] and toasted flavor [QTo.GpFp-5H]), which were located on the 5H-end hotspot 

for malt quality and metabolic traits (Figure 2.1). The QTL for honey flavor on 5H (QHo.GpFp-

5H), which does not overlap with any other sensory QTL, is coincident with the malt quality 

QTLs for kernel plumpness, barley color, and barley protein at the mid-5H cluster (Figure 2.1). 
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Sensory QTLs contained between 1 (QCe.GpFp-7H) and 5,467 (QHo.GpFp-5H) genes, 

with an average of 792 genes (Supplementary Table 2.5). Candidate genes for the 5H QTLs 

included those mentioned above for malting quality: HvAlaAT (Sato et al., 2016) and HvDep1 

(Wendt et al., 2016) for the honey flavor QTL on the mid-5H cluster, and HvMKK3 (Nakamura 

et al., 2016) and HvGA20ox1 (Nagel et al., 2019) for the beer color QTL located on the 5H-end 

hotspot (Figure 2.1). Among the genes located within the 3H hotspot we can highlight 

HORVU.MOREX.r2.3HG0259410, which encodes an ethylene-responsive transcription factor 

(ERF). ERFs play crucial roles in plant developmental processes and have been associated with 

kernel size (Zhang et al., 2020). This region is ~5,000 kb from HvGA20ox2 (Xu et al., 2017). 

Candidate genes for the remaining singleton sensory QTLs were not explored in detail. 

Flavor metabolites 

Eight QTLs for the accumulation of five flavor metabolites were identified on 

chromosomes 2H, 3H, 5H, 6H, and 7H (Table 2.3; Figure 2.1). −log10(p-values) ranged from 

3.32 for one of the oxalic acid dibutyl ester QTLs (QDBOA.GpFp-3H.2) to 7.87 for a 2-

methoxy-4-vinylphenol QTL (QMVP.GpFp-5H; Table 2.3). The percentage of phenotypic 

variation accounted for ranged from 6.71 % for QDBOA.GpFp-3H.2 to 17.50 % for 

QMVP.GpFp-5H. 

The metabolite QTLs for 2-methoxy-4-vinylphenol (MVP) and oxalic acid dibutyl ester 

(DBOA) located on 3H overlapped, but with no other QTL for any category of data (Figure 2.1). 

QTLs for MVP (QMVP.GpFp-5H) and acetic acid, 2-phenylethyl ester (PEA) (QPEA.GpFp-5H) 

overlapped on the 5H-end hotspot, where many malt quality and sensory QTLs also colocalized 

(Figure 2.1). 
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QTLs contained between 1 (QDBOA.GpFp-3H.1) and 4,429 (QPEA.GpFp-7H) genes, 

with an average of 781 genes. HvMKK3 (Nakamura et al., 2016) and HvGA20ox1 (Nagel et al., 

2019) are candidate genes for the 5H-end hotspot. It should be noted that in the 3H QTL for 

MVP (QMVP.GpFp-3H) there is also a gene (HORVU.MOREX.r2.3HG0247750) encoding a 

cytochrome P450 family cinnamate 4-hydroxylase, which is involved in the synthesis of 

precursors (cinnamic acids) to 2-methoxy-4-vinylphenol (Harakava et al., 2005; Gómez-López et 

al., 2019). Candidate genes for singleton metabolite QTLs were not explored further. 

 

Discussion 

This research generated multiple data sets on a large biparental mapping population, 

which allows for the first comprehensive look at the genetic basis of barley contributions to beer 

flavor, together with metabolomic compounds in beer. The sensory and metabolite data sets are 

anchored in the malting quality data set: malt precedes beer. Un-malted barleys do not display 

notable flavor or aroma differences: it is the malting process that leads to these differences. 

Therefore, an analysis of the contributions of barley genotype to beer flavor is inextricably 

confounded by the style of malt, and how each genotype responds to the malting protocol that 

was used to make the malt. This focus on malt, of course, does not account for the significant 

flavor contributions of hops and yeast to the finished beer. In short, the analysis of the 

contributions to beer flavor made by barley genotypes (via their malt) is a challenging prospect. 

In the case of this research, it is important to bear in mind that the malting quality data, while 

based on the same barley germplasm (the Oregon Promise population) grown at the same 

location (Corvallis, Oregon and malted at the same facility (the USDA-ARS Cereal Crops 

Research Unit) using the same methods, traces to samples from a different crop year (2013) than 
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the samples that were malted and used for nano-brewing (2014). Furthermore, the samples of the 

parents (Golden Promise and Full Pint) trace to a different location (Lebanon, Oregon). This 

“imbalance” was an inevitable consequence of the timing and scale of the experiment. Given this 

caveat these datasets are novel in both nature and scope, as this is a first for nano-brewing of a 

mapping population, which in turn allows for an unprecedented scale of sensory and beer 

metabolomics. 

Malt modification and beer flavor 

Due to the large number of grain samples, under-modification of malts used in QTL 

studies is an inevitable consequence of the need to use automated, high throughput malting 

systems. It is impossible and unrealistic to optimize malting regimes for each individual grain 

sample. It is particularly difficult in a case such as the current research, where neither parent is 

amenable to current malting protocols, which are traditionally designed for contemporary 

varieties. Golden Promise is an heirloom variety that continues to persist in the market due to 

perceived contributions to flavor; Full Pint is a specialty variety that also has perceived 

contributions to flavor (Mallet, 2014). This leads to the question – are differences in 

contributions to beer flavor of barley genotypes artifacts of poor modification? Herb et al. 

(2017a) presented evidence to the contrary. Even when adjusting for modification differences, 

flavor differences were still present in the subset of the Oregon Promise population they used. 

Bettenhausen et al. (2020) and Windes et al. (2020) also found differences in flavor in a small 

sample of contemporary varieties, when dealing with similar degrees of modification which were 

achieved by tailoring malting to the needs of each variety. Likewise, Craine et al. (2021) used 

bespoke malting protocols to achieve similar levels of modification in a small set of barley 

varieties/selections of potential interest to the craft industry. Cumulatively, these results point to 
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subtle, but definitive contributions of barley genotypes to beers made from pale malts, despite 

the degree of modification. A key follow-up question for future research remains: what are the 

contributions of barley genotypes to beer flavor when higher color malts are made from these 

varieties? 

Trained panel sensory analysis of nano beers identifies differences in flavor 

The nano-beers prepared at Rahr Malting for this research were produced using a 

different protocol than that used by Herb et al. (2017b). Furthermore, not all the same sensory 

descriptors were used in this study as in prior research. In the current study, Golden Promise was 

rated higher for cereal, malty, and grassy. Full Pint was rated higher for beer color, honey and 

toasted. In Herb et al. (2017b), Golden Promise was described as significantly higher for floral 

and fruit, whereas Full Pint was significantly higher for malt, sweet, toasted, and toffee. These 

commonalities (e.g. toasted) and differences (e.g. malt) between slightly different beer styles 

brewed from the same two varieties of barley using a different protocol, underscores the 

challenges of sensory analysis and the importance of beer style and descriptor lexicon in 

assessing varietal and environmental contributions to beer flavor. In both Herb et al. (2017b) and 

in the current study, beers brewed from the progeny showed much more variation than those 

brewed from the parents (Table 2.1). As with malting quality, the positive and negative 

transgressive segregants for flavor descriptors in the progeny suggests that the parents have 

different alleles at multiple loci determining these attributes. 

Metabolite abundance: barley variety signatures in beer flavor? 

The relative abundances of the five metabolites that are the focus of this research varied 

between Full Pint and Golden Promise. 2-methoxy-4-vinylphenol (a phenol) and phenylethyl 
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acetate (a benzenoid compound) were more abundant in Full Pint. In Golden Promise, ethyl 

hexanoate (a lipid ester), linalool (a terpene) and dibutyl oxalate (a carboxylic acid) were more 

abundant. Bettenhausen et al. (2018) and Windes et al. (2020) also reported that Full Pint beers 

had higher abundances of benzenoid compounds, phenolics, and lipids and a lower abundance of 

ethyl hexanoate and many terpenes. Therefore, these relative abundances of metabolic 

compounds may be useful chemical signatures for specific varieties. Connecting metabolic 

signatures with sensory attributes, however, can be more challenging. For example, benzenoid 

compounds, phenolics, and lipids can lead to a fruity/floral/spicy profile and yet Golden Promise 

beer, rather than Full Pint beer, was described as being higher for fruity and floral attributes by 

Carpena et al., (2021). Since the fruity and floral descriptors were not significant in the current 

research, it is not possible to associate them with metabolite abundance. Furthermore, the 

abundance of certain metabolites, and corresponding flavors, may be due to the interactions of 

the malt with other components of the finished beer. The higher abundance of 2-methoxy-4-

vinylphenol in Full Pint beer could be due to the by enzymatic decarboxylation of the compound 

ferulic acid by certain strains of S. cerevisiae (Coghe et al., 2004). As with malting quality and 

sensory attributes, the positive and negative transgressive segregants for metabolite abundance in 

the progeny suggests that the parents have different alleles at multiple loci determining these 

attributes. 

Phenotypic correlations set the stage for QTL analysis 

Many of the correlations between malting quality traits conform to expectations based on 

prior literature: for example, barley grain protein was positively correlated with enzymatic traits 

and negatively correlated with malt extract (Xue et al., 2008). The phenotypic correlations 

between malting quality traits and sensory traits and between malting quality traits and metabolic 
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compounds need to be considered in view of the malting quality data tracing to malts different 

than those used for brewing. Nonetheless, the negative correlation between wort 𝛽-glucan and 

PEA (-0.55, p = 0.00) could merit further investigation. A genetic basis for this correlation is 

provided by coincident QTLs for these traits at the QTL hotspot located on the 5H-telomeric 

region, as described below. The positive correlation between malty and toasted (0.46, p = 0.00) is 

also supported by the overlapping QTLs on 3H. The positive correlation of dibutyl oxalate with 

linalool (0.50, p = 0.00) merits further exploration, given the compound is found in both barley 

and hops. It has a high affinity for calcium and in the context of beer, precipitated oxalate in the 

beer leads to particulate and haze formation, gushing, and “beer stone,” which is particularly a 

problem in brewing equipment, the latter being responsible for the blocking of beer piping 

(Oliver, 2012). 

Candidate genes for QTL clusters include genes associated with dwarf growth habit and 

degree of dormancy 

Of particular interest, in terms of QTLs and candidate genes, are the clusters (hot spots) 

of coincident QTLs for multiple traits on chromosomes 3H and 5H. There are intuitively 

appealing candidate genes for each of these clusters, based on prior literature, and it is also 

possible that there are multiple physically linked genes that have roles in determining these 

QTLs. 

The 3H QTL cluster is the most diffuse of the three clusters, and further research would 

be necessary to assign candidate genes to the various malting quality, beer sensory, and beer 

metabolite QTLs. A candidate on this chromosome is the Sdw1/Denso locus, where the 

determinant gene is HvGA20ox2 (Xu et al., 2017; Jia et al., 2009) and Full Pint has the recessive 

(dwarfing allele). The Denso locus is within the barley protein QTL, where the higher value 
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allele was contributed by Golden Promise. The wild type allele, in this case, was associated with 

higher grain protein, a trait in malting barley that has an upper limit, depending on beer style. For 

adjunct malts, 12% is the maximum; lower levels are required for all malt brewing. In addition to 

pleiotropic effects on grain protein, Denso alleles are known to affect a range of other agronomic 

traits (reviewed by Kuczynska et al., 2013). Additional research is required to determine if, in the 

Oregon Promise population, Denso is also the determinant of the QTLs for kernel plumpness, 

kernel weight, and malty flavor, and toasted flavor. If it is, it would be a positive pleiotropic 

effect of the wild type allele, as Golden Promise has higher value alleles at these QTLs. Golden 

Promise also contributes the higher value alleles for malty, honey and toasted flavors, as well as 

for two volatile metabolites (MVP and DBOA) at QTLs distal to HvGA20ox2. In addition to 

HvGA20ox2, there are other genes in this 3H QTL region that could have impacts on malting and 

flavor traits. These include HORVU.MOREX.r2.3HG0259410, which encode ethylene-

responsive transcription factors, and HORVU.MOREX.r2.3HG0256690 and 

HORVU.MOREX.r2.3HG0256700, encoding two amino acid permeases. Ethylene is a plant 

hormone that stimulates the biosynthesis of gibberellin, a hormone that releases seeds from 

dormancy (Corbineau et al., 2014). ERFs have also been found to impact kernel size, which 

would logically also have an impact on kernel weight as well as the protein content of the 

kernels, as larger kernels tend to have lower protein content (Magliano et al., 2014). Amino acid 

permeases are involved in nitrogen remobilization (Kohl et al., 2012); nitrogen availability and 

supply impacts grain protein content, which may affect many malt quality traits (Guo et al., 

2019). Assuming that higher levels of all the 3H QTL phenotypes (except perhaps grain protein) 

are positives, from a breeding standpoint it would seem desirable to maintain the positive 

relationships by selecting for a large block of this chromosome region with Golden Promise 
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alleles. Interestingly, the variety “Oregon Promise”, which was top rated for flavor by a 

consumer panel (Bettenhausen et al., 2020) has a 100% Full Pint haplotype at all alleles for the 

chromosome 3H QTLs (Supplementary Table 2.3). Assuming linkage, rather than pleiotropy, 

additional research will be required to determine if the agronomic advantages of the Denso allele 

from Full Pint can be combined, via recombination, with the potentially favorable alleles for 

other traits from Golden Promise. 

Candidate genes for the mid-5H QTL cluster are HvDep1 and HvAlaAT1. The former is a 

dwarfing gene – the Ari-e locus. Golden Promise has the loss of function dwarfing allele (ari-

e.GP). Full Pint has the wild type (functional) allele. The Golden Promise allele, the result of an 

induced mutation, was a breakthrough in reducing plant height and lodging. HvAlaAT1 is the 

determinant of SD1, a major dormancy gene (Sato et al., 2016). Allele resequencing shows that 

Full Pint and Golden Promise are identical at the causal SNP in HvAlaAT1 (Sweeney et al., 

submitted). While it is possible that regulation of the structural gene could account for 

differences in dormancy, with pleiotropic effects on malting and sensory traits, this leaves 

HvDep1 as the most obvious candidate. The ari-e.GP allele has negative pleiotropic effects on 

thousand grain weight and grain length (Wendt et al., 2016). This supports our detection of a 

QTL for kernel plumpness, with Full Pint contributing the positive (favorable) allele, and barley 

protein, with Golden Promise contributing the higher value (generally unfavorable) allele. In this 

same QTL cluster, Full Pint has the higher value and positive allele for grain color; brighter grain 

has a higher Agtron score. There are no reports of pleiotropic effects of ari-e.GP on grain color. 

Further research is warranted, perhaps following the lead in rice, protein and seed color are 

positively correlated (Tan et al., 2001). Golden Promise contributes the positive allele for honey 

flavor. Further research is necessary to determine the basis of this QTL, which may relate to 



 

53 
 

grain protein level and sensory panel perceptions. Storage proteins are important in all cereals for 

the embryo once germination occurs, and these proteins typically have high amounts of the 

amino acid, proline (Fox, 2010). Although not directly associated with honey flavor, proline has 

a sweet flavor (Sorensen and Sammis, 2004), which may be chemically altered during the 

malting process to be similar enough (along with other metabolic factors) to be perceived as a 

honey flavor by a sensory panel, but further exploration is needed. From a breeding standpoint, 

moderate grain protein and plump kernels are desirable. Therefore, in this population, the denso 

dwarfing allele on 3H (tracing to Full Pint) would be more favorable than the arie-dwarfing 

allele on 5H. However, selection for the wild type allele at 5H would compromise selection for 

the coincident honey flavor QTL, where Golden Promise contributes the favorable allele. 

Interestingly, the Oregon Promise variety has Full Pint alleles at all markers in this this QTL 

region (Supplementary Table 2.3). Perhaps, if honey flavor is desirable in beers, the 3H QTL 

allele (tracing to Golden Promise) is sufficient. 

The most obvious candidate gene for the end-5H region QTLs is HvMKK3, the most 

cited determinant gene for SD2 (Nakamura et al., 2016). Full Pint has the most non-dormant 

HvMKK3 allele (MKK3_N*) (Sweeney et al., submitted). However, HvGA20ox1 may also have 

role in these QTL, as proposed by Nagel et al. (2019). Full Pint and Golden Promise have 

contrasting alleles at both HvMKK3 and HvGA20ox1, but according to Sweeney et al., 

(submitted) HvGA20ox is not a determinant of dormancy and malting quality in North American 

spring barley germplasm. Precedent for malting quality QTL coincident with the SD2 locus are 

provided by Castro et al. (2010), who used a biparental population with Full Pint as a parent and 

reported that the most QTL, and QTL with the largest effects, were found on the long of 

chromosome 5H at a location coincident with as SD2. In terms of validation, Oregon Promise 
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has Full Pint alleles at all markers in end-5H QTL region (Supplementary Table 2.3). Castro et 

al. (2010) also reported QTLs for dormancy and water sensitivity in the SD2 region – with Full 

Pint contributing the non-dormant and non-water sensitive alleles. In the current research, 

absolute dormancy was not encountered, because grain was malted one year after harvest. 

Furthermore, pre-harvest sprouting and water sensitivity were not observed. As argued by Vetch 

et al. (2019) and Sweeney et al. (submitted), the effects of SD2 on malting quality traits can be in 

terms of degree of dormancy. If a lower degree of dormancy is equated with higher germination 

rate and metabolic activity, then we would expect Full Pint to achieve a greater degree of 

modification. Indeed, Full Pint has higher value alleles for malt extract, wort protein, S/T, AA, 

FAN, quality score, and the lower value allele for BG. 

 

Conclusions 

This work represents an important first step towards integrating malting quality, beer 

sensory, and metabolomics via an understanding of the determinant genes. The data presented 

herein support that morphological traits (e.g. semidwarf growth habit) and seed physiology traits 

(e.g. dormancy) may have profound downstream effect of malting quality, beer flavor, and 

metabolite abundance. QTL data indicate potential causal relationships between beer flavor 

outcomes and the genes determining malting quality and volatile metabolites. Our results lay the 

groundwork for future genetics and breeding research, including (i) editing of candidate genes to 

determine flavor outcomes and (ii) marker assisted selection for key QTL haplotypes in other 

genetic backgrounds. Further research is also warranted in malting and brewing sciences 

involving the same genotypes, or subsets thereof. These could include (i) different malt styles (ii) 

different beer styles, and/or different growing environments. 
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TABLES AND FIGURES 

Table 2.1 Parental and DH population mean, standard error, range, and skewness values. Malt quality abbreviations: S/T = 
soluble/total protein, DP = diastatic power, AA = 𝛼-amylase, BG = 𝛽-glucan, FAN = free amino nitrogen. Unit abbreviations: mg = 
milligrams, % = percent, DU = dextrinizing units, ppm = parts per million, a.u. = arbitrary units. 

 

*Data from samples grown in Lebanon, OR, USA (2016). 

Mean SE Range Skewness

Kernel weight (mg) 44.00 49.70 42.58 0.33 32.75 – 52.47 0.12

Kernel plumpness (%) 41.00 100.00 91.77 0.62 67 –  100 -1.16

Barley color (Agtron) 96.00 43.00 46.53 0.56 31 – 65 0.00

Malt extract (%) 77.80 78.10 77.51 0.13 73.67 – 80.88 -0.03

Wort color 2.00 2.60 2.13 0.03 1.48 – 4 1.03

Barley protein (%) 11.90 13.90 12.78 0.09 10.58 – 15.98 0.38

Wort protein (%) 3.64 5.07 4.51 0.06 3.29 – 6.29 0.42

S/T (%) 32.20 36.40 36.78 0.45 26.29 – 49.64 0.33

DP (°ASBC) 98.00 204.00 137.02 2.08 87.70 – 221 0.68

AA (20°DU) 52.10 122.40 77.09 1.77 43.23 – 126.53 0.32

BG (ppm) 677.00 421.00 361.25 13.15 48.13 – 743.72 0.36

FAN (ppm) 172.00 245.00 179.29 3.58 109.97 – 284.84 0.37

Quality score 29.00 42.00 38.84 0.94 13 – 67 0.39

Overall rank 199.00 53.00 75.95 3.70 1 – 156 0.03

Beer color (-4 – +4 scale) -1.13* -0.50* -0.59 0.06 -2.36 – 1.08 -0.11

Cereal flavor (-4 – +4  scale) 0.88* 0.75* 0.49 0.03 -0.4 – 1.25 0.00

Malty flavor (-4 – +4  scale) 0.38* -0.13* 0.21 0.02 -0.45 – 1 0.09

Honey flavor (-4 – +4  scale) 0.38* 0.57* 0.41 0.02 -0.38 – 1.13 0.13

Grassy flavor (-4 – +4 scale) 0.75* 0.25* 0.80 0.03 0 – 1.69 0.27

Toasted flavor (-4 – +4  scale) -0.25* 0.00* -0.04 0.02 -0.71 – 0.80 0.48

2-methoxy-4-vinylphenol (a.u.) 3,745,686.15* 4,826,833.96* 3,513,127.46      62,018.71           1,917,265 –  6,797,483 0.51

Acetic acid, 2-phenylethyl ester (a.u.) 279,516,231.50* 643,562,567.60* 790,741,728.85  19,694,988.91    151,122,999 – 1,425,190,984 -0.06

Linalool (a.u.) 6,103,479.69* 5,183,004.04* 4,152,971.83      94,007.80           1,919,898 – 7,788,532 0.60

Ethyl hexonate-like (a.u.) 76,978.45* 21,639.55* 35,891.96            2,214.40              0.005 – 104,310 0.34

Oxalic acid dibutyl ester (a.u.) 23,780,778.51* 21,752,774.06* 23,260,970.58    448,241.33         11,862,902 – 39,044,261 0.54

Sensory

DH population

Malt quality

Metabolites

TraitCategory Golden Promise Full Pint
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Table 2.2 Distribution of SNPs in the Oregon Promise genetic map 

 

 

Chr 1H 2H 3H 4H 5H 6H 7H Total

Markers 1,512 2,284 1,487 1,310 2,145 1,492 2,223 12,453

Bins 143 174 151 128 194 102 181 1,073

cM 170.63 190.12 193.94 134.77 212.60 135.92 183.79 1,221.76
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Table 2.3 QTLs identified for sensory, malt quality, and metabolite traits 

Category Trait QTL Peak SNP Chr Position (kb)* -Log10(P ) QTL region (cM) QTL region (kb)*
% Phenotypic 

variation
Effect Known gene(s) in QTL region

Kernel weight QKw.GpFp-3H JHI-Hv50k-2016-207525 3H 582,098             4.51 132.30 - 154.37 577,460 - 594,378 9.91 1.28

Kernel plumpness QKp.GpFp-3H JHI-Hv50k-2016-205406 3H 572,529             3.40 126.15 - 127.03 572,529 - 573,139 6.64 0.11

QKp.GpFp-5H JHI-Hv50k-2016-307371 5H 435,709             4.48 46.61 - 53.63 374,134 - 446,936 11.06 -2.77 HvAlaAT1, HvDep1

Barley color QBc.GpFp-2H JHI-Hv50k-2016-98501 2H 492,803             3.77 66.52 - 67.40 489,367 - 520,441 13.71 2.92

QBc.GpFp-5H JHI-Hv50k-2016-301330 5H 349,008             6.95 43.98 - 49.68 35,704 - 437,198 25.61 -3.82 HvDep1

Malt extract QMe.GpFp-2H JHI-Hv50k-2016-103558 2H 563,603             3.52 76.69 563,603 - 565,975 10.46 0.59

QMe.GpFp-5H JHI-Hv50k-2016-365534 5H 594,137             12.82 200.76 - 212.60 588,682 - 598,994 28.92 -0.86 HvMKK3, HvGAox1

Wort color QWc.GpFp-5H JHI-Hv50k-2016-362729 5H 590,865             16.00 195.05 - 212.60 586,795 - 598,994 32.73 -0.25 HvMKK3, HvGAox1

Barley protein QBp.GpFp-3H SCRI_RS_103215 3H 572,324             5.16 125.27 - 127.91 571,521 - 573,139 10.01 0.36 HvGA20ox2

QBp.GpFp-5H JHI-Hv50k-2016-301330 5H 349,008             4.09 46.17 - 48.36 349,008 - 431,457 15.00 0.51

Wort protein QWp.GpFp-5H JHI-Hv50k-2016-362943 5H 591,069             16.00 196.81 - 212.60 587,561 - 598,994 37.19 -0.42 HvMKK3, HvGAox1

S/T QSt.GpFp-5H JHI-Hv50k-2016-363828 5H 592,162             16.00 199.44 - 212.60 588,466 - 598,994 46.00 -3.57 HvMKK3, HvGAox1

DP QDp.GpFp-1H JHI-Hv50k-2016-4906 1H 4,865                  3.60 5.97 - 8.60 4,798 - 5,592 6.25 6.65

QDp.GpFp-7H SCRI_RS_161101 7H 1,401                  3.92 0 - 1.32 227 - 2,619 7.43 -7.42

AA QAa.GpFp-5H JHI-Hv50k-2016-363791 5H 592,087             15.00 201.66 - 212.60 590,717 - 598,994 42.14 -12.92 HvMKK3, HvGAox1

BG QBg.GpFp-2H BOPA1_3608-2133 2H 648,278             5.01 151.81 - 162.78 644,545 - 655,253 9.56 -52.41

QBg.GpFp-5H JHI-Hv50k-2016-360298 5H 586,834             3.39 195.49 - 202.51 586,834 - 590,865 7.16 45.03

QBg.GpFp-7H JHI-Hv50k-2016-438742 7H 3,362                  3.83 4.83 - 11.41 3,362 - 7,668 7.66 45.63

FAN QFa.GpFp-5H JHI-Hv50k-2016-362943 5H 591,069             10.00 200.76 - 212.60 589,596 - 598,994 42.69 -28.00 HvMKK3, HvGAox1

Quality score QQs.GpFp-5H JHI-Hv50k-2016-363828 5H 592,162             16.00 198.12 - 212.60 587,972 - 598,994 36.87 -6.78 HvMKK3, HvGAox1

Overall rank QOr.GpFp-5H JHI-Hv50k-2016-364126 5H 592,490             16.00 200.76 - 212.60 588,682 - 598,994 48.27 31.21 HvMKK3, HvGAox1

Beer color QCo.GpFp-5H JHI-Hv50k-2016-361935 5H 588,466             14.00 195.05 - 212.16 586,795 - 598,994 21.36 -0.332 HvMKK3, HvGAox1

Cereal flavor QCe.GpFp-7H JHI-Hv50k-2016-511500 7H 619,240             3.52 157.32 619,240 6.88 0.089

Malty flavor QMa.GpFp-3H JHI-Hv50k-2016-207283 3H 581,633             3.71 138.02 - 138.90 581,663 - 582,615 7.04 0.038

Honey flavor QHo.GpFp-3H JHI-Hv50k-2016-225245 3H 625,551             3.85 192.19 - 193.94 623,023 - 625,680 7.11 0.035

QHo.GpFp-5H JHI-Hv50k-2016-284934 5H 19,967                5.20 32.57 - 73.05 10,652 - 491,116 7.73 0.037 HvAlaAT1, HvDep1

Grassy flavor QGr.GpFp-2H BOPA1_816-265 2H 34,276                3.82 47.05 34,276 - 34,355 7.81 0.05

Toasted flavor QTo.GpFp-3H JHI-Hv50k-2016-207283 3H 581,633             4.96 132.30 - 138.90 577,460 - 582,615 10.35 0.09

QTo.GpFp-5H BOPA1_6873-531 5H 592,173             3.65 202.07 - 205.14 590,798 - 592,247 7.35 -0.08

2-methoxy-4-vinylphenol QMVP.GpFp-3H SCRI_RS_146347 3H 528,679             5.54 86.54 - 99.28 526,926 - 548,613 11.68 270460.71

QMVP.GpFp-5H JHI-Hv50k-2016-367564 5H 597,237             7.87 204.70 - 212.60 592,087 - 598,994 17.50 -334270.87 HvMKK3, HvGAox1

Acetic acid, 2-phenylethyl ester QPEA.GpFp-5H JHI-Hv50k-2016-367061 5H 596,380             7.08 199.44 - 212.60 588,466 - 598,994 14.04 -94588275.18 HvMKK3, HvGAox1

QPEA.GpFp-7H JHI-Hv50k-2016-470701 7H 82,589                6.00 87.87 - 97.52 66,454 - 503,740 10.70 -84295784.80

Linalool QLOO.GpFp-2H JHI-Hv50k-2016-113871 2H 611,171             7.12 106.13 - 119.29 606,789 - 624,863 10.95 -395681.89

Ethyl hexonate-like QEHEXL.GpFp-6H JHI-Hv50k-2016-380526 6H 27,476                3.89 44.89 - 47.97 25,117 - 28,720 7.09 7591.54

Oxalic acid dibutyl ester QDBOA.GpFp-3H.1 JHI-Hv50k-2016-195050 3H 527,696             3.38 87.42 527,696 7.37 1600930.34

QDBOA.GpFp-3H.2 JHI-Hv50k-2016-215710 3H 602,711             3.32 168.87 - 169.31 602,711 - 603,732 6.71 1523937.55

Malt quality

Metabolites

Sensory
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Figure 2.1 QTL regions shown by chromosome. cM positions are on the left, with only one 
every tenth position being shown. Malt quality QTLs are represented in green, sensory QTLs are 
represented in brown, and metabolite QTLs are shown in pink. 
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CHAPTER 3 – NON-TARGETED METABOLOMICS OF COOKED COWPEAS (VIGNA 

UNGUICULATA) AND PIGEON PEA (CAJANUS CAJAN) FROM GHANA2 

 

 

 

Overview 

Legumes, a global staple food with human health properties, merit detailed composition 

analysis in cooked forms. This study analyzed cowpea [Vigna unguiculata] (three varieties: 

Dagbantuya, Sangyi, and Tukara), pigeon pea [Cajanus cajan], and common bean [Phaseolus 

vulgaris] using two distinct ultra-performance liquid chromatography mass spectrometry 

(UPLC-MS) workflows. Comparisons between cowpea and pigeon pea locally consumed in 

Ghana, and common bean, revealed 75 metabolites that differentiated cowpeas from the other 

legumes. Cowpea and pigeon pea metabolite fold-change comparisons revealed 142 metabolites 

with significantly higher abundance in cowpea than pigeon pea, and 154 with significantly 

higher abundance in pigeon pea than cowpea. There were 479 metabolites that remained similar 

between legume varieties. Legume-type specific markers were identified by cowpea variety, 

namely tonkinelin (Dagbantuya), pheophytin A (Sangyi), and linoleoyl ethanolamide (Tukara). 

Identification of novel exposure biomarkers for cowpea varieties that are distinct from other 

legumes merit attention for evaluation following consumption in people. 

 

 

______________________________________________________________________________ 

2 This chapter is a modified form of a manuscript submitted to Food Chemistry: Molecular Sciences: 

Brooke Sayre-Chavez, Bridget Baxter, Corey D. Broeckling, María Muñoz-Amatriaín, Mark Manary, and Elizabeth 
P. Ryan  
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Introduction 

Cowpea (Vigna unguiculata), native to Africa, is a warm-season and nitrogen-fixing 

legume well adapted to the sandy soils and low-input farming practices of sub-Saharan Africa (Ji 

et al., 2019; Rawal, 1975; Vaillancourt and Weeden, 1992). Cowpea is a nutritious food due to 

its high protein content, along with its abundance of other various vitamins, trace minerals, 

antioxidants, amino acids, fibers, lipids, and phytochemicals which contribute to an assortment 

of health benefits (Abizari, Pilime, Armar-Klemesu, and Brouwer, 2013; Awika and Duodu, 

2017; da Silvia et al., 2018; Jayathilake et al., 2018). In addition to containing many nutrients 

that can combat malnutrition, cowpeas are also known to lower cholesterol and blood pressure, 

reduce inflammation, and even help prevent diseases such as diabetes and cancer (Awika and 

Duodu, 2017; da Silvia et al., 2018; Jayathilake et al., 2018). Cowpea is also highly valued as a 

cash crop and used for animal feed, since livestock production makes up a large part of farmers 

income (Gómez, 2004). In Ghana, consumers pay a premium for certain cowpea varieties so 

despite the many known benefits of consuming cowpea, the incentive to sell the crop often 

outweighs the incentive to consume it (Langyintuo et al., 2003).  

Pigeon pea (Cajanus cajan) is another important nitrogen-fixing, warm season legume 

grown in sub-Saharan Africa (Adjei-Nsiah, 2012). Like cowpea, it is drought tolerant and well 

adapted to low-input farming practices (Saxena, 2008). Pigeon pea is often used as a border crop 

or grown in an intercropping system to help improve soil fertility, which is a major factor 

impacting food security or lack thereof (Abunyewa and Karbo, 2005). Pigeon pea is also valued 

for human and animal consumption due to its high protein content (Abunyewa and Karbo, 2005; 

Adjei-Nsiah, 2012; Nwokolo, 1987; Pal, Mishra, Sachan, and Ghosh, 2011; Saxena, 2008). 

Although less researched than cowpea, pigeon pea is a nutritious food to help alleviate 
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malnutrition (Nwokolo, 1987; Pal et al., 2011). Based on anecdotal evidence of a local focus 

group in Ghana (described in Materials and Methods), pigeon peas are also part of their diet.  

Dietary biomarkers exist for soybeans, green peas, chickpeas, lentils, and various dry beans 

(Borresen et al., 2017; Lu et al., 2010; Madrid-Gambin et al., 2017; Perera et al., 2015; Sri 

Harsha et al., 2018; Tsopmo and Muir, 2010; Zarei et al., 2021). For example, pipecolic acid and 

s-methylcysteine have been proposed as biomarkers for dry bean consumption including pinto, 

navy, kidney, lima, and black beans (Perera et al., 2015). There is a need for a more detailed look 

into the metabolomes of cowpea and pigeon pea to be better equipped for future nutritional 

studies in undernourished populations including those in Ghana. An understanding of the 

metabolomic profiles may also be useful in breeding for improved nutritional quality. 

In this study, we analyzed the metabolite profiles of three different cowpea varieties 

commonly consumed in Ghana. We also included a pigeon pea that was also identified as 

consumed in combination with cowpeas in Ghana. A common bean of the Navy market class 

was used as control legume that has been characterized (Perera et al., 2015; Zarei et al., 2021). 

The main objective was to examine and compare the metabolomes of cowpeas and pigeon pea 

types consumed in Ghana using a non-targeted metabolomics approach. 

 

Materials and Methods 

Legume flours 

Four varieties of local “cowpea” flours (Dagbantuya, Sangyi, Tukara, and Adua) were 

collected from a local market in Tamale (northern Ghana). These varieties were identified by a 

local community focus group in the region. All samples were made into pre-cooked flours for 
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metabolite analysis. Notably, seed morphology together with metabolomics data (see Results) 

revealed that one of the varieties (Adua) was a pigeon pea. The common bean flour (Navy 

market class) was collected purchased from ADM Edible Bean Specialties, Inc. (Archer Daniels 

Midland Company, Decatur, Illinois).  

All legume flours used were cooked prior to extraction for metabolite profiling analysis. 

Flours were prepared by boiling the legumes for 45 min., draining them, and then drying them on 

a flat sheet in an oven at 40°C. The dried, cooked legumes were then ground to a fine powder 

with a mortar and pestle. Flours were stored in sealed conical tubes until the time of analyses. 

Metabolomics Platform 1: CSU Analytical Resources Core – Bioanalysis and Omics 

laboratory (ARC-BIO) (Fort Collins, CO). 

Sample preparation 

For each legume sample, 50 (+/-1) mg of each cooked legume flour was weighed into a 

2.0 mL eppendorf tube with 1.5 mL of absolute methanol. Three process blanks were prepared 

alongside the legume samples, where solvent was used to extract from empty tubes. Samples 

were vortex mixed and extracted with shaking for one hour at 4ºC. After centrifugation at 4ºC, 

13,000 xg,1.0 mL of supernatant was collected and transferred to an autosampler vial. 100 uL of 

supernatant was collected from each sample to generate a pooled QC. Sample processing order 

was randomized. 

Ultra performance liquid chromatography-time of flight mass spectroscopy (UPLC-

TOF-MS) 

Three microliters of legume flour sample extract were injected onto a Waters Acquity 

UPLC system in randomized order with a pooled quality control (QC) injection after every 5 
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samples. Separation was achieved using a Waters Acquity UPLC CSH Phenyl Hexyl column 

(1.7 μM, 1.0 x 100 mm), using a gradient from solvent A (Water, 2mM ammonium formate) to 

solvent B (Acetonitrile, 0.1% formic acid). Injections were made in 99% A, held at 99% A for 1 

min, ramped to 98% B over 12 minutes, held at 98% B for 3 minutes, and then returned to 

starting conditions over 0.05 minutes and allowed to re-equilibrate for 3.95 minutes, with a 200 

μL/min constant flow rate. The column and samples were held at 65 °C and 6 °C, respectively. 

The column eluent was infused into a Waters Xevo G2-XS Q-TOF-MS with an electrospray 

source in positive mode, scanning 50-1200 m/z at 0.1 seconds per scan, alternating between MS 

(6 V collision energy) and MSE mode (15-30 V ramp). Calibration was performed using sodium 

formate with 1 ppm mass accuracy. The capillary voltage was held at 700 V, source temperature 

at 140 °C, and nitrogen desolvation temperature at 600°C with a desolvation gas flow rate of 

1000 L/hr. 

Data normalization, filtration, and grouping 

RAMClustR version 1.1.0 in R version 3.6.2 (2019-12-12)) was used to normalize, filter, 

and group features into spectra from XCMS output data (Smith, Want, O’maille, Abagyan, and 

Siuzdak, 2006; Tautenhahn, Bottcher, and Neumann, 2008). Features which failed to 

demonstrate signal intensity of at least 3-fold greater in QC samples than in blanks were 

removed from the feature dataset. 18561 of 52141 features were removed. Features with missing 

values were replaced with small values to simulate noise and then the minimum detected or 

simulated value was multiplied by 0.1. The filled value was the absolute value of this value. 

Features were normalized by linearly regressing run order versus qc feature intensities to account 

for instrument signal intensity drift. Only features with a regression p-value less than 0.05 and an 

r-squared greater than 0.1 were corrected. Features were filtered based on their qc sample CV 
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values. Only features with CV values less than or equal to 0.3 in MS or MSMSdata sets were 

retained. 22091 of 33580 features were removed. Features were additionally normalized to total 

extracted ion signal to account for differences in total solute concentration. Features were 

clustered using the ramclustR algorithm. Parameter settings were as follows: st = 2.22, sr = 0.7, 

maxt = 222, deepSplit = FALSE, hmax = 0.3, minModuleSize = 2, and cor.method = pearson. 

Charge state detection was performed using the assign.z function using parameters: chargestate = 

3, mzError = 0.005, nEvents = 2, minPercentSignal = 10, and assume1 = TRUE. Molecular 

weight was inferred from in-source spectra (Broeckling et al., 2016) using the do.findmain 

function, which calls the interpretMSSpectrum package (Jaeger, Hoffman, Schmitt, and Lisec, 

2016). Parameters for do.findmain were set to: mode = positive, mzabs.error = 0.002, ppm.error 

= 10, ads = default, scoring = auto, and use.z = TRUE. 

MSFinder (Tsugawa et al., 2016) was used for spectral matching, formula inference, and 

tentative structure assignment, and results were imported into the RAMClustR object. 

Annotations were assigned using the RAMClustR annotate function. Annotation priority was 

assigned from highest priority to lowest: MSFinder structure, MSFinder formula, 

interpretMSSpectrum M. Database priority was set to HMDB, PubChem, UNPD,ChEBI, 

PlantCyc, KNApSAcK, FooDB, DrugBank, LipidMAPS, and Urine. Compounds were assigned 

to chemical ontogenies using the ClassyFire API (Djoumbou, 2016). 

MetaboAnalyst and Statistical Analyses 

The normalized spectral abundance data was grouped by legume type and comparison 

grouping prior to input into MetaboAnalyst Version 5.0 (https://www.metaboanalyst.ca/), where 

the following statistical functions were performed; one-way ANOVA, dendrogram, heatmap, and 

fold-change analysis. Data was not additionally filtered, normalized, or transformed. Relative 

https://www.metaboanalyst.ca/
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abundance data was auto-scaled for visualization using the formula: x̄ij = (xij – x̄ij)/Si. ANOVA p-

value cutoff was set to 0.05 and Fisher’s LSD post-hoc analysis was used. Dendrograms used 

Euclidean distances and Ward clustering. Correlation heatmaps mapped the features with 

Pearson r distances. Fold change threshold was set to 2. 

Metabolomics Platform 2: Metabolon Inc. (Durham, NC) 

The samples of cowpea and pigeon pea flours were also sent to Metabolon, Inc. (Durham, 

NC, USA) for a more comprehensive varietal analysis of the cowpea flours. 

Sample preparation 

Samples were inventoried and accessioned into the Metabolon LIMS system where they 

were assigned a unique identifier and then stored at -80°C until processed. Samples were 

prepared using the automated MicroLab STAR® system from Hamilton Company. Several 

recovery standards were added prior to the first step in the extraction process for QC purposes. 

To remove protein, dissociate small molecules bound to protein or trapped in the precipitated 

protein matrix, and to recover chemically diverse metabolites, proteins were precipitated with 

methanol under vigorous shaking for 2 min (Glen Mills GenoGrinder 2000) followed by 

centrifugation. The resulting extract was divided into four fractions: two for analysis by two 

separate reverse phase (RP)/UPLC-MS/MS methods with positive ion mode electrospray 

ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion mode ESI, one for 

analysis by HILIC/UPLC-MS/MS with negative ion mode ESI. Samples were placed briefly on a 

TurboVap® (Zymark) to remove the organic solvent. The sample extracts were stored overnight 

under nitrogen before preparation for analysis. 
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Ultrahigh performance liquid chromatography-tandem mass spectroscopy (UPLC-

MS/MS) 

All methods utilized a Waters ACQUITY ultra-performance liquid chromatography 

(UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer 

interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer 

operated at 35,000 mass resolution. The sample extract was dried then reconstituted in solvents 

compatible to each of the four methods. Each reconstitution solvent contained a series of 

standards at fixed concentrations to ensure injection and chromatographic consistency. One 

aliquot was analyzed using acidic positive ion conditions, chromatographically optimized for 

more hydrophilic compounds. In this method, the extract was gradient eluted from a C18 column 

(Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) using water and methanol, containing 0.05% 

perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Another aliquot was also analyzed 

using acidic positive ion conditions, chromatographically optimized for more hydrophobic 

compounds. In this method, the extract was gradient eluted from the same afore mentioned C18 

column using methanol, acetonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an 

overall higher organic content. Another aliquot was analyzed using basic negative ion optimized 

conditions using a separate dedicated C18 column. The basic extracts were gradient eluted from 

the column using methanol and water, however with 6.5mM Ammonium Bicarbonate at pH 8. 

The fourth aliquot was analyzed via negative ionization following elution from a HILIC column 

(Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a gradient consisting of water and 

acetonitrile with 10mM Ammonium Formate, pH 10.8. The MS analysis alternated between MS 

and data-dependent MSn scans using dynamic exclusion. The scan range varied slighted between 

methods but covered 70-1000 m/z. 
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Data extraction and compound identification 

Raw data was extracted, peak-identified and QC processed using Metabolon’s hardware 

and software.  These systems are built on a web-service platform utilizing Microsoft’s .NET 

technologies, which run on high-performance application servers and fiber-channel storage 

arrays in clusters to provide active failover and load-balancing. Compounds were identified by 

comparison to library entries of purified standards or recurrent unknown entities. Metabolon 

maintains a library based on authenticated standards that contains the retention time/index (RI), 

mass to charge ratio (m/z), and chromatographic data (including MS/MS spectral data) on all 

molecules present in the library, which include more than 3300 commercially available purified 

standards. Furthermore, biochemical identifications are based on three criteria: retention index 

within a narrow RI window of the proposed identification, accurate mass match to the library +/- 

10 ppm, and the MS/MS forward and reverse scores between the experimental data and authentic 

standards. Standard statistical analyses are performed in ArrayStudio on log transformed data. 

 

Results 

Non-targeted metabolomics of legume flours 

The CSU ARC-BIO metabolomics (Platform 1) yielded 775 metabolites across diverse 

classes. By superclass, there were 410 lipids and lipid-like molecules, 260 unclassified 

metabolites, 26 organic acids and derivatives, 18 organoheterocyclic compounds, 17 

phenylpropanoids and polyketides, 14 organic oxygen compounds, 8 benzenoids, 8 

hydrocarbons, 8 organic nitrogen compounds, 2 alkaloids and derivatives, 2 

lignans/neolignans/related compounds, 1 nucleoside/nucleotide/analogue, and 1 organosulfur 
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compound in the data (data available at: www.ebi.ac.uk/metabolights/MTBLS3619) (Haug et al., 

2020). 

The Metabolon analysis (Platform 2) yielded 441 metabolites in the cowpea and pigeon 

pea. There were 400 metabolites with known identifications categorized by super pathways. This 

included 134 lipids, 130 amino acids, 43 carbohydrates, 40 nucleotides, 24 cofactors/prosthetic 

groups/electron carriers, 21 secondary metabolites, 5 peptides, 2 xenobiotics, and 1 hormone 

(Supplementary Table 3.1). 

Metabolite profile comparison across legume types 

Clear differences were observed between the legumes. Figure 3.1 shows all legumes 

clustered by type. Principal component (PC) 1 explained 52.7% of the variation and mainly 

differentiated the pigeon pea (i.e., Adua) samples from cowpea and common bean, while PC2 

explained 22.3% of the variation that separated the common bean samples. A dendrogram 

constructed with metabolite abundance profiles showed similar relationships between the three 

legumes (Figure 3.1). One-way ANOVA was applied to reveal 551 metabolites with significant 

differences in relative abundances between legume types. The most significant metabolites were 

TG(48:7), PG(44:2), UNPD93557, C11H23N2O24PS10, and pipecolic acid, which all have 

higher abundance in common bean compared to cowpea and pigeon pea (Supplementary Table 

3.2). There were 75 metabolites that differentiated cowpea, 121 that differentiated pigeon pea, 

and 185 that differentiated common bean after post-hoc analysis (Figure 3.1). 

The 75 metabolites that differentiated cowpeas from the other legumes include 45 lipids 

and lipid-like molecules, 22 unclassified metabolites, 3 organoheterocyclic compounds, 2 

organic oxygen compounds, 2 phenylpropanoids and polyketides, and 1 organic acid or 

http://www.ebi.ac.uk/metabolights/MTBLS3619
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derivative (Table 3.1, Supplementary Table 3.2). Most of the metabolites that differentiated 

cowpeas from the other legumes, were significantly higher in cowpeas than the other two 

legumes. Some of the most significant ones include TG(50:3), C41H102N10O3S2, TG(52:3), 1-

[(9Z)-octadecenyl]-3-[(9Z)-octadecenoyl]-sn-glycerol, and TG(56:5). Apart from 

C41H102N10O3S2, the listed metabolites belong to the glycerolipid class. Based on 

comparisons of the metabolites that differentiate cowpea in the legume analysis and the cowpea 

varietal analysis (described in Results), 3-(all-trans-nonaprenyl)benzene-1,2-diol, N-

tetracosanoylphytosphingosine, and sitoindoside II warrant further investigation as metabolites 

indicative of cowpea consumption. These metabolites were all higher in cowpea than the other 

two legumes. 

There were 121 metabolites that differentiated pigeon pea from the other legumes. This 

list included 63 lipid and lipid-like molecules, 46 unclassified metabolites, 6 phenylpropanoids 

and polyketides, 2 hydrocarbons, 1 benzenoid, 1 organic acid or derivative, 1 organic oxygen 

compound, and 1 organoheterocyclic compound (Table 3.1, Supplementary Table 3.2). Most of 

the differentiating metabolites were significantly higher in pigeon pea than the other legumes and 

some of the most significant ones include proline betaine, PE(38:6), C14H9NS12, 22:0-Glc-

Sitosterol, and DG(36:5). These are from the carboxylic acid, glycerophospholipid, unclassified, 

steroid, and fatty acyl classes, respectively. 

Fold change comparisons between legume types 

Fold change analysis of the metabolites identified on Platform 1 revealed notable 

differences between cowpea and common bean. 173 metabolites were significantly higher in 

abundance for cowpea than in common bean, 183 were significantly higher in common bean 

than in cowpea, and 419 did not show a significant log2(fold change) (Figure 3.2). The most 
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extreme log2(fold change) values observed in either direction were -17.235 and 16.594 for 

pipecolic acid and C33H79N13S, respectively (Supplementary Table 3.3). Pipecolic acid was 

one of the most significant metabolites found by ANOVA analysis (see Results). Post-hoc and 

fold change analyses both confirm that it is higher in abundance in common bean than the other 

two legumes. 

Comparing pigeon pea and common bean metabolite abundance by fold changes on 

Platform 1, revealed 233 significantly higher metabolites in pigeon pea than in common bean, 

216 were significantly higher in common bean than in pigeon pea, and 326 did not show a 

significant fold change (Figure 3.2). The most extreme log2(fold change) values observed in 

either direction were -20.07 and 15.416 for soyasaponin V and piptamine, respectively 

(Supplementary Table 3.3). Soyasaponin V was significantly higher in common bean and did not 

have a significant difference in means between cowpea and pigeon pea. Piptamine was 

significantly higher in pigeon pea than both cowpea and common bean and may warrant further 

investigation as a metabolite unique to pigeon pea. 

Cowpea and pigeon pea fold change comparisons from Platform 1 revealed that 142 

metabolites were significantly higher in cowpea than in pigeon pea, 154 were significantly 

higher in pigeon pea than in cowpea, and 479 did not show a significant fold change (Figure 3.2). 

The most extreme log2(fold change) values observed were -12.909 and 16.783 for pipecolic acid 

and TG(59:6) [iso6], respectively (Supplementary Table 3.3). Pipecolic acid was one of the most 

significant metabolites found by ANOVA analysis (see Results), being higher in common bean 

than the other two legumes. Post-hoc and fold change analysis also establish a difference 

between cowpea and pigeon pea. 
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Comparison of three cowpea varieties from Ghana 

In comparing the metabolic profiles of three cowpea varieties (Dagbantuya, Sangyi, and 

Tukara), we observed noticeable differences according to principal component analysis and the 

metabolite-based dendrogram showing similar results (Figure 3.3). Both plots also indicate that 

Dagbantuya and Sangyi are more similar to each other than they are to Tukara. 

The one-way ANOVA testing supported 320 metabolites with significant differences in 

means, out of the 775 detected from Platform 1. Of those, 101 metabolites differentiated 

Dagbantuya, 27 differentiated Sangyi, and 82 metabolites differentiated Tukara after post-hoc 

analysis (Figure 3.3). Cowpea varietal comparisons bring an intentional highlight on the 

following compounds C18H34N6O6S16, C45H106N12O3S2, C14H47N4O32PS12, 1,2-Di-

(9Z,12Z,15Z-octadecatrienoyl)-3-(Galactosyl-alpha-1-6-Galactosyl-beta-1)-glycerol, and 

uvarigrin;(+)-uvarigrin based on ANOVA p-values. Apart from 1,2-Di-(9Z,12Z,15Z-

octadecatrienoyl)-3-(Galactosyl-alpha-1-6-Galactosyl-beta-1)-glycerol, these were all higher in 

Dagbantuya than the other varieties (Supplementary Table 3.2). 

The 101 metabolites that differentiated Dagbantuya from the other cowpeas on Platform 

1 include 56 lipids and lipid-like molecules, 40 unclassified metabolites, 3 organic oxygen 

compounds, 1 organic acid or derivative, and 1 phenylpropanoid and polyketide (Table 3.2). 

Most of the metabolites that differentiated Dagbantuya from the other varieties were higher in 

abundance in Dagbantuya than the other varieties. The 27 metabolites that differentiated Sangyi 

from the other cowpeas on Platform 1 include 18 lipids and lipid-like molecules, 4 unclassified 

metabolites, 2 benzenoids, 1 nucleoside/nucleotide/analogue, 1 organic acid or derivative, and 1 

phenylpropanoid and polyketide (Table 3.2). Most of the metabolites differentiating Sangyi from 

the other varieties were lower in abundance in Sangyi than the other varieties. The 82 
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metabolites that differentiated Tukara from the other cowpeas on Platform 1 include 48 lipids 

and lipid-like molecules, 25 unclassified metabolites, 4 organic oxygen compounds, 3 organic 

acids and derivatives, and 2 organoheterocyclic compounds (Table 3.2). Most of the metabolites 

differentiating Tukara from the other varieties were higher in abundance in Tukara than the other 

varieties. Details can be found in Supplementary Table 3.2. 

Cowpea and pigeon pea metabolites 

We found notable differences in the types of compounds detected and identified from 

Platform 1 and 2. The results from Platform 2 are shown as a supplement to the metabolite lists 

that differentiate cowpea varieties from pigeon pea. There were 49 metabolites common to all 

cowpea varieties, and 337 common to both cowpea and pigeon pea on Platform 2. By cowpea 

variety, Platform 2 did not detect metabolites unique to Dagbantuya or Tukara, but Pheophytin A 

was uniquely detected for Sangyi. There were eight metabolites detected uniquely to pigeon pea 

(Adua), although none of these were detected on Platform 1. 

Both Platform 1 and 2 were used to create a list of potentially unique metabolites. Both 

platforms have a unique set of benefits and complement each other’s data sets, since no one 

platform can detect every metabolite present. Although the number of detected metabolites and 

annotations differ, we took into account that the platforms are different so the sensitivity and 

annotation software will differ as well. 

Platform 1 consistently detected pipecolic acid (p-value = 1.22E-16) as differentiating 

between legume types, whether by ANOVA or fold change analysis. Although it has a higher 

abundance in common bean, pipecolic acid may still be a common metabolite for all legume 

types analyzed in this study. Relative abundance is visualized in Figure 3.4. 
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Since Platform 1 compared cowpea to both pigeon pea and common bean, the focus was 

on metabolites from this data. Based on comparisons of the metabolites that differentiated 

cowpea from the other two legumes in the legume analysis (described in Results), along with the 

commonality in the cowpea varietal analysis (described in Results), 3-(all-trans-

nonaprenyl)benzene-1,2-diol (p-value = 0.0057), N-tetracosanoylphytosphingosine (p-value = 

0.0002), and sitoindoside II (p-value = 0.0039) may be identifiers of cowpea consumption. These 

metabolites were all higher in cowpea than the other two legumes (Figure 3.4). 

Platform 2 did not detect any metabolites unique to Dagbantuya so the focus was turned 

to Platform 1. Based on the ANOVA significance, post-hoc differentiation, and presence in the 

literature, tonkinelin (p-value = 3.25E-05) is proposed as a metabolite that may be unique to the 

cowpea variety Dagbantuya. 

Platform 2 reported one metabolite unique to the cowpea variety Sangyi, named 

pheophytin A. Due to its detection in one variety only and because Platform 2 has a higher level 

of annotation confidence, pheophytin A warrants further investigation as a metabolite identifying 

of the cowpea variety Sangyi. 

Both Platform 1 and 2 detected the compound linoleoyl ethanolamide. Platform 1 showed 

that linoleoyl ethanolamide had an abundance significantly lower in Tukara than in Dagbantuya 

and Sangyi (p-value = 0.0045), and Platform 2 only detected it in Dagbantuya and Sangyi. 

Because important metabolites can also be low in abundance, or absent, linoleoyl ethanolamide 

warrants further investigation as a metabolite indicative of consumption for Tukara. 

Platform 1 detected piptamine (p-value = 0.0031) as significant and differentiating in 

pigeon pea (Figure 3.4). Although Platform 2 detected eight compounds unique to pigeon pea, 
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based on the ANOVA significance, post-hoc differentiation, and fold change of piptamine on 

Platform 1, this warrants further investigation as a metabolite that may be indicative of pigeon 

pea consumption. 

 

Discussion 

Legumes contain a diverse and beneficial range of chemical compounds with many 

established health and nutritional benefits. A non-targeted approach was utilized for investigating 

the metabolic profiles of different legume types in cooked forms consumed by people, and we 

applied an intentional focus to compare local cowpea varieties commonly consumed by 

households in Ghana. Two separate metabolite detection and analysis platform workflows were 

applied that provided novel compound lists for cooked cowpea and pigeon pea. This analysis 

deciphered metabolite relationships between legumes and between cowpea varieties to support 

that the cowpea metabolite profile is more similar to that of common bean than to the pigeon pea. 

Notably, these findings mirror the phylogenetic relationships (Ji et al., 2019). Our results support 

that cowpea Dagbantuya and Sangyi metabolite profiles are more similar to each other than to 

Tukara. 

Metabolomics is an incredibly informative tool for food composition profiling and aids 

plant breeding as well as nutrition. The identification of food biomarkers may allow for exposure 

assessments from consumption but can also be used to assess compliance in feeding intervention 

studies without the bias of self-reported data (Hedrick et al., 2012). Knowing which metabolites 

are present in staple foods such as legumes and what benefits or absorption patterns that unique 

food metabolites may have, can also guide crop breeding efforts aimed at either increasing, 
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maintaining, or reducing the amounts of certain metabolites. Metabolomics-assisted breeding 

would also allow for screening to select desired phenotypes early in the breeding process (Fernie 

and Schauer, 2009). As presented in the results, cowpeas and pigeon pea contain metabolites 

with many established health benefits that could be targeted in breeding programs within West 

Africa and across geographically distinct regions. 

Pipecolic acid was identified as a common metabolite for all legumes in general despite 

differences to the relative abundances. This compound has been previously postulated as a 

biomarker for dry bean (including pinto, navy, kidney, lima, and black beans) consumption 

(Perera et al., 2015). Pipecolic acid is a conjugate acid of pipecolate, and may also be a candidate 

dietary biomarker of navy bean (Zarei et al., 2021). Pipecolic acid helps regulate immunity in 

both plants and humans and is an important precursor to secondary metabolites with antitumor, 

antibiotic, anthelmintic, and anti-inflammatory properties (Natarajan, Muthukrishnan, 

Khalimonchuk, Mott, and Becker, 2017; Wang et al., 2018). Although pipecolic acid had a 

higher abundance in common bean than cowpea and pigeon pea, additional attention is needed to 

establish differences in bioavailability from feeding studies. 

Currently, food metabolite profile analysis of cowpea varieties is limited even though 

there is promising agronomic traits, nutritional value, and preferential consumption by local 

communities (Abizari et al., 2013; Gómez, 2004; Jayathilake et al., 2018). We highlighted three 

cowpea metabolites; 3-(all-trans-nonaprenyl)benzene-1,2-diol, N-tetracosanoylphytosphingosine, 

and sitoindoside II that are novel to this study, and for which information of health benefits 

exists (Bentinger, Tekle, and Dallner, 2010; Dahlén and Pascher, 1972; Poon et al., 1999; 

Satmbekova et al., 2018). The 3-(all-trans-nonaprenyl)benzene-1,2-diol is a prenol lipid that 

plays a role in E. coli for Coenzyme Q biosynthesis (Poon et al., 1999). Coenzyme Q has well 
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established anti-inflammatory properties (Bentinger et al., 2010). N-

tetracosanoylphytosphingosine is a sphingolipid, which exhibits immunological activity (Dahlén 

and Pascher, 1972). Sitoindoside II is a steroid/steroid derivative that is found in the plant 

Cichorium intybus L., often used in traditional medicine for its diuretic, anti-inflammatory, 

cardiotonic, liver tonic, and digestive benefits (Satmbekova et al., 2018). 

Other cowpea metabolites of varietal distinction include tonkinelin, pheophytin A, and 

linoleoyl ethanolamide, for Dagbantuya, Sangyi, and Tukara, respectively. These components 

have not been previously reported from cowpea, but information is known from other systems. 

Tonkinelin is a fatty acyl that has been identified in Uvaria tonkinensis and has established 

acetogenic effects (Chen and Yu, 1996). Pheophytin A is involved in chlorophyll metabolism 

and contributes to dark pigment colors (Yilmaz and Gökmen, 2015). Sangyi has the darkest 

pigmentation of the cowpea varieties analyzed. Linoleoyl ethanolamide is a carboximidic 

acid/derivative that has anti-inflammatory effects (Ishida et al., 2013). 

For pigeon pea, the benezenoid metabolite piptamine was found, and this is a known 

antibiotic, first isolated from Piptoporus betulinus (Schlegel, Luhmann, Hartl, and Grafe, 2000). 

The impacts for this compound from food remains unclear and merits follow up attention for 

impact by post-harvest and processing conditions. 

Legumes and particularly cowpeas can help alleviate malnutrition and support healthy 

growth of children in low-income countries where cowpeas are prevalent and well adapted for 

local climates. Future analysis of studies completed with these cooked legume flours in children 

and pregnant women with increasing doses over a period of 20-day period will guide more 

specific candidate dietary marker identifications and assessments in blood and urine. 
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Study limitations for this non-targeted metabolic profiling is that metabolite identification 

and annotation can vary slightly across platforms due to differences in instrument sensitivity and 

software. The majority of metabolites identified using both platforms, were annotated and 

classified though RAMClustR, MSFinder and in-house libraries, supporting the premise that 

computational annotation tools can provide valuable insight in the absence of spectral libraries. 

Further, quantifying metabolite levels using internal standards would give useful information on 

the absolute quantities available during consumption. Comparing data sets from this study with 

additional cowpea varieties is warranted alongside the blood and urine from individuals 

following consumption for an integrated identification of nutritional biomarkers. 

 

Conclusions 

This study analyzed the metabolic profiles of the cooked flours of three different cowpea 

varieties commonly consumed in Ghana, along with a pigeon pea, and a control legume 

(common bean) on two distinct metabolite profiling platforms. Relationships between cowpea, 

pigeon pea, and common bean, based on metabolic profiles helped to establish differences 

between the legumes that mirrored genetic relationships. Metabolic profiles of the cowpea 

varieties also presented differences between them, with Dagbantuya and Sangyi being more 

similar to each other than Tukara. This study supports identification of novel metabolites 

associated with each legume species and variety, including Dagbantuya (tonkinelin), Sangyi 

(pheophytin A), Tukara (linoleoyl ethanolamide), and pigeon pea (piptamine). Future work to 

quantify and validate the metabolites that differentiated the respective legumes is needed 

alongside an integrated biomarker analysis from feeding studies and also in breeding strategies 

geared towards improving nutrition and food function from cowpea and pigeon pea intake. 
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TABLES AND FIGURES 

 

Table 3.1 Classification of metabolites that differentiate between legume types 

Superclass Class 

Number of differentiating metabolites 

Cowpea 
Pigeon 

Pea 
Common 

Bean 

Benzenoids Benzene and substituted 
derivatives 0 1 2 

Hydrocarbons Unsaturated hydrocarbons 0 2 0 

Lipids and lipid-like 
molecules 

Fatty Acyls 2 7 14 

Glycerolipids 12 19 15 

Glycerophospholipids 24 29 36 

Prenol lipids 2 2 15 

Saccharolipids 0 0 2 

Sphingolipids 1 3 2 

Steroids and steroid derivatives 4 3 12 

Organic acids and 
derivatives 

Carboximidic acids and 
derivatives 0 0 7 

Carboxylic acids and derivatives 0 1 0 

Organic phosphoric acids and 
derivatives 0 0 1 

Peptidomimetics 1 0 0 

Organic nitrogen 
compounds Organonitrogen compounds 0 0 3 

Organic oxygen 
compounds Organooxygen compounds 2 1 4 

Organoheterocyclic 
compounds 

Azoles 0 0 1 

Benzopyrans 1 0 0 

Indolizidines 1 0 1 

Lactones 0 0 1 

Pyrrolidines 0 1 0 

Quinolizines 0 0 1 

Tetrapyrroles and derivatives 1 0 0 

Phenylpropanoids and 
polyketides 

Cinnamic acids and derivatives 1 5 0 

Linear 1,3-diarylpropanoids 1 0 0 

Macrolactams 0 0 1 

Macrolides and analogues 0 0 1 

Tannins 0 1 0 

NA NA 22 46 66 

Total 75 121 185 
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Table 3.2 Classification of metabolites that differentiate between cowpea varieties 

Superclass Class 

Number of differentiating metabolites 

Dagbantuya Sangyi Tukara 

Benzenoids Benzene and substituted 
derivatives 0 2 0 

Lipids and lipid-like 
molecules 

Fatty Acyls 11 3 6 

Glycerolipids 13 6 13 

Glycerophospholipids 16 5 23 

Prenol lipids 4 1 3 

Sphingolipids 2 0 1 

Steroids and steroid derivatives 10 3 2 

Nucleosides, nucleotides, 
and analogues Purine nucleosides 0 1 0 

Organic acids and 
derivatives 

Carboximidic acids and 
derivatives 0 0 1 

Carboxylic acids and derivatives 1 1 1 

Organic phosphoric acids and 
derivatives 0 0 1 

Organic oxygen 
compounds Organooxygen compounds 3 0 4 

Organoheterocyclic 
compounds 

Quinolines and derivatives 0 0 1 

Tetrapyrroles and derivatives 0 0 1 

Phenylpropanoids and 
polyketides 

Cinnamic acids and derivatives 1 0 0 

Linear 1,3-diarylpropanoids 0 1 0 

NA NA 40 4 25 

Total 101 27 82 
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Figure 3.1 (A) Hierarchal cluster dendrogram of legume sample data based on Euclidean 
distance and Ward clustering. (B) PCA scores plot of legume sample data. (C) one-way ANOVA 
plotting −log10 (p-values) of all detected metabolites. Metabolites with significant differences in 
means across legume type are plotted in red (n=551), metabolites with no significant difference 
in mean across legume types are plotted in green (n=224). (D) Venn diagram indicating the 
number of metabolites that differentiate legume type or types based on Fisher’s LSD post-hoc 
analysis. 
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Figure 3.2 Volcano plots illustrating compound differences between two legume types. (A) 
cowpea versus common bean fold change volcano plot. (B) pigeon pea versus common bean fold 
change volcano plot. (C) cowpea versus pigeon pea fold change volcano plot. First legume listed 
indicates right side of the plot, second legume listed indicates left side of the plot. 



 

88 
 

 

Figure 3.3 (A) Hierarchal cluster dendrogram of cowpea variety data based on Euclidean 

distance and Ward clustering. (B) PCA scores plot of cowpea variety data. (C) one-way ANOVA 

plotting −log10 (p-values) of all detected metabolites. Metabolites with significant differences in 

means across cowpea variety are plotted in pink (n=320), metabolites with no significant 

difference in mean across cowpea variety are plotted in grey (n=455). (D) Venn diagram 

indicating the number of metabolites that differentiate cowpea variety or varieties based on 

Fisher’s LSD post-hoc analysis. 
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Figure 3.4 Median scaled relative abundance for metabolites distinguishing cowpeas, common 

bean and pigeon pea using Platform 1. Metabolites for (A) all legume types, (B-D) cowpea, (E) 

pigeon pea. 
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CHAPTER 4 – CONCLUSIONS AND FUTURE DIRECTIONS 
 
 
 

Chapters 2 and 3 of this thesis explored quality and nutrition aspects of barley and 

cowpea as finished foods using genomic and metabolomic approaches. We found that barley 

genotype does contribute to beer flavor and that cowpea metabolite profiles have distinct and 

characterizable differences from pigeon pea and common bean. The results of these projects set a 

foundation for future genetic and breeding, as well as metabolomic work involving both foods, 

explored in more detail below. 

 

Barley genotype contributes to beer flavor 

Chapter 2, Genetic Basis of Barley Contributions to Beer Flavor, aimed to 1) test the 

hypothesis that barley genotype contributes to beer flavor, 2) identify regions of the genome that 

control traits associated with flavor, and 3) identify candidate genes that control traits associated 

with flavor. The work integrated malt quality, beer sensory, and metabolomics data to map QTLs 

and gain a deeper understanding of the genetic control of barley beer flavor. QTLs were 

identified for many traits and overlapping QTLs (hotspots) were found that included traits from 

all categories (malt quality, beer sensory, and metabolomics). Candidate genes we identified in 

those regions included genes related to seed dormancy and plant height, which seem to have 

downstream effects on malt quality, beer flavor, and metabolite content. 

The results of this study lay the groundwork for future genetics and breeding research on 

the connection between barley genotype and beer flavor. Gene-editing technologies could be 

used to validate candidate genes, marker-assisted breeding could help select desired haplotypes 
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in different genetic backgrounds, and the effects of genotype by environment (GxE) interaction 

could be explored in depth on a subset of this population. 

The malt quality, beer sensory, and metabolite datasets we collected can stand 

independently, but are more complete when integrated, as malt is an intermediate between barley 

and beer, and the chemistry of malting and brewing impacts metabolic changes of the barley 

grain and resulting metabolites. Craft brewing especially, finds that flavor is an attribute 

consumer are most interested in, so the economic impact of high-quality barleys with improved 

flavor profiles could be significant. 

 

Cowpea metabolite profiles are distinctly different from pigeon pea and common bean 

Chapter 3, Non-targeted Metabolomics of Cooked Cowpeas (Vigna unguiculata) and 

Pigeon Pea (Cajanus cajan) From Ghana, aimed to 1) characterize the metabolic profiles of three 

cowpea flours, and 2) test the hypothesis that there are metabolites unique to cowpea (and 

cowpea variety) that can be potential biomarkers for nutritional studies. Two non-targeted 

UPLC-MS approaches were used to compare cowpea to pigeon pea and common bean. 

Metabolite profiles of the legumes analyzed established differences between them, and 

metabolites that are unique to each species were identified. Metabolites common to all cowpea 

varieties were identified, as well as those unique to each cowpea type. Metabolomic profiles of 

cowpea were largely composed of lipid and lipid-like molecules, along with other compounds 

with established health benefits. 

The results of this study will be integrated with an analysis of blood and urine from 

women and children who consumed those same cowpeas at increasing concentrations over a set 
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period of time. Validation of the metabolites as nutritional biomarkers will allow for 

measurement of consumption and compliance in feeding studies involving cowpea. In addition to 

having an impact in nutritional studies, this work could be used in future breeding efforts aiming 

to increase nutrient content. Metabolomics-assisted breeding would allow for early selection of 

desired phenotypes, and multi-trait genomic selection could further current breeding efforts for 

traits related to agronomic performance or quality with nutritional components as well. The 

scope of this study could also be expanded to other cowpea varieties, as the three we studied are 

not the only ones consumed in undernourished parts of the world. 

Malnutrition is prevalent in many developing parts of the world, and cowpea is an 

important crop in many of those areas. As a food security crop with well-known health benefits, 

detailed cowpea metabolite profiles are necessary to determine biomarkers of this important 

legume. Biomarkers can take nutritional studies to the next level, removing the requirement of 

participant self-reported data. With the current lack of metabolite profiling in cowpea, this work 

brings us one step closer to validating biomarkers for cowpea, which will make nutritional 

studies of this important crop more effective.  


