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ABSTRACT

DYNAMICS OF LOW-DENSITY ULTRACOLD PLASMAS IN EXTERNALLY APPLIED

ELECTRIC AND MAGNETIC FIELDS

The experiments described in this thesis were focused on the influence of external electric

and magnetic fields and electron evaporation on the evolution of ultracold plasmas (UCPs). The

UCPs were created from the photoionization of 85Rb which was first captured in a magneto-optical

trap (MOT) and then magnetically trapped and transferred by a set of magnetic coils attached

to a motorized translation stage to a region of the vacuum chamber with a set of electrodes. The

first experiment studied the response of the UCP to sharp electric field pulses, which included

2 cycles of a sine wave pulse. These experiments showed a resonant response to the 2 cycles of

rf that was density dependent, but was not a collision based mechanism. Instead, the response

was caused by a rapid energy transfer to individual electrons through the collective motion of the

electron cloud in the UCP. This density-dependent response allowed us to develop a technique for

measuring the expansion rate of the UCPs in our system. It was also observed in second set of

experiments that electron evaporation from the UCP had a significant effect on the amount of

energy that was transferred to the ions to drive the UCP expansion. Model calculations show that

we should expect electron evaporation to have a more significant influence on the UCP expansion

rate at the relatively low densities of the UCPs that we create compared to other experiments. By

modeling electron evaporation during expansion, our data are consistent with evaporation reducing

the electron temperature significantly, which lowers the overall UCP expansion rate. In addition

to these studies, we also performed an experiment in which it was observed that in the presence of

a magnetic field there was a significant increase in the initial UCP expansion rate coupled with a

deceleration of the ion expansion at later times in the UCP evolution. Our observations to date are

consistent with the magnetic field influencing electron screening and UCP formation. By restricting

the electrons motion in the direction transverse to the magnetic field lines to circular orbits around

the magnetic field lines, the electrons cannot move appropriately to screen the internal radial

electric fields produced by the excess of ions. Studies of this effect are currently under way. Future
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studies include direct measurements of the electron temperature and collision rates between the

components of the UCP as we move towards trapping the UCP in a Penning trap.
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Chapter 1

Introduction to Ultracold Plasma Physics

Since the creation of ultracold plasma (UCP) systems [1] from the photoionization of ultracold

atoms, there has been a wide range of experiments that explore a rich assortment of plasma phe-

nomena in these systems. Ultracold plasmas occupy a unique position in plasma parameter space

(which is typically defined by plasma temperature and density) that makes it possible to study

“exotic” plasma systems (e.g. astrophysical plasmas) using a small-scale apparatus in a laboratory

environment. One of the most interesting features of UCP systems is that they are created with

both components (ion and electron) near the strong-coupling regime [2], where the Coulomb po-

tential energy of nearest-neighbor particles is on the order of the kinetic energy of the particles in

the system. In this regime, strong particle correlations can develop, which can lead to phase transi-

tions to liquid- and solid-like states in plasma systems [2–4]. Also, as plasma systems approach the

strong-coupling regime, many typical assumptions about the plasma behavior break down. This

leads to a deviation from predicted calculations of plasma properties such as the collision [5] and

recombination rates [6, 7].

Plasma systems exist over many orders of magnitude in both temperature and density as seen

in Figure 1.1 [8]. Plasmas are mainly defined by the collective behavior exhibited by a system of

charges, and therefore exist in many types of systems ranging from exotic astrophysical systems

such as the cores of Jupiter and the sun, to more common systems to the human experience such as

lightning and fire. Although these systems can all be defined as plasmas, their behavior can be very

different depending on where they lie on Figure 1.1. Of particular importance to ultracold plasma

systems is the change in behavior at the crossover to the strong-coupling regime, represented by

the Γ = 1 line in Figure 1.1. It is near this line in temperature and density space that particle

correlations begin to develop that can significantly alter how the plasma behaves. By studying

these changes in UCP systems, we can gain insight into the properties of other systems that exist

around the same value of the strong coupling parameter, Γ. It is important and convenient to

measure these properties in UCP systems, as the cores of Jupiter and the sun are technologically

inaccessible by direct probes. Also, other laboratory systems that can achieve such a degree of

1



Figure 1.1: A plot of where various plasma systems lie in density and (ion) temperature space in

relation to ultracold plasma systems. This source of this figure can be found in [8]. The diagonal

lines show constant values of the strong-coupling parameter, which is defined by Γ = e2/4πε0akBT ,

where e is elementary charge, ε0 is the permittivity of free space, kB is Boltzmann’s constant, T is

the temperature of the particles, and a is the Wigner-Seitz radius given by a = (3/4πn)1/3 (where

n is the density). The location of ultracold plasmas in this diagram shows the theoretical value

for the strong-coupling parameter that can be obtained based on the initial conditions. However,

various heating effects after the initial creation of the UCP limit the value of the strong-coupling

parameter that can be studied once the UCP formation process is complete. These heating effects

are discussed in the text.
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strong-coupling in both the electron and ion components tend to be much more complicated than

UCP systems.

Ultracold plasmas are highly reproducible, table-top systems that provide a convenient way to

study a wide range of plasma phenomena in a laboratory environment. The UCPs are produced

using well known techniques for the production of ultracold atoms [9] followed by either direct

photoionization [1] or by excitation to highly excited Rydberg states, which then spontaneously

evolve into a UCP [10]. The UCPs that are produced have a relatively small physical extent,

which ranges from a few hundred µm to greater than 1 mm. This allows for the construction

of small scale assemblies to produce the various electric and magnetic fields that can be used to

manipulate and probe the UCP. The low temperature of the UCPs also allows for the magnetization

of the constituent particles of the UCP at relatively low magnetic fields. UCPs also have a density

distribution which is not homogeneous, which alters the collective mode behavior [11] and the

response of the UCP to externally applied rf fields [12–15].

Aside from the interesting physics associated with many plasma systems that are near the

strong-coupling regime as stated above, UCPs have the potential to be used to model the physics

of globular star cluster formation [16]. Models of globular star cluster dynamics can be very

complicated, with assumptions that can be difficult to verify experimentally since the evolution of

actual star clusters happens on cosmic timescales. So, observations of star clusters only provide

a snapshot of the evolution and do not provide significant insight on dynamic processes. UCP

systems provide a small-scale system for experimentally testing some of the models of globular

cluster evolution. Since the Coulomb forces that govern the interaction between particles in a

plasma also vary as 1/r2 as does the force of gravity, a simple change in the gravitational constant

in the models for cluster dynamics can allow for a comparison of these models to UCP systems.

Many of the dynamic processes in UCP systems have analogous process in globular star clusters.

Of particular interest is the three-body recombination process, which for UCP systems produces

highly excited Rydberg atoms with a free electron that carries away the excess energy. In globular

star clusters, this process results in the formation of binary star systems with a third star carrying

away the excess energy. Also of interest is the evaporation of high kinetic energy stars out of the
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cluster. In UCP systems, electrons continually escape from the UCP through collisional processes

that allow them to overcome the Coulomb potential provided by the excess of ions in the UCP.

Ultracold plasma systems have the potential to give us insight into processes that are impor-

tant for experiments concerning the production of anti-hydrogen from recombination processes

involving confined anti-protons and positrons in the same region of space [17]. The production of

anti-hydrogen via this method relies on three-body recombination processes which can dominate

the dynamics of UCP systems in a certain parameter range [18, 19]. To trap the anti-protons and

positrons in the same region of space, a nested Penning trap configuration involving a set of elec-

trodes to confine the particles axially along with a strong axial magnetic field to confine the particles

radially is used [17]. This type of configuration has been used to trap UCPs in [20], but was found

to allow particles to escape along certain paths out of the trap (a solvable problem addressed in our

apparatus). By using these types of traps for UCP systems, we can test the physics of trap loading,

particle dynamics, and recombination physics that can be useful for anti-hydrogen experiments

without the need for expensive equipment to produce the constituent anti-matter particles.

Ultracold plasma experiments will also be used to test the results of theoretical predictions for

plasma dynamics that can be difficult to model. These difficulties in modeling plasma dynamics

arise from the many different timescales that need to be considered for the different processes that

take place in the UCP if the ion and electron trajectories are tracked classically. In particular,

the formation of bound-states through recombination processes produce problems in numerical

evaluation because the electron motion requires timesteps that are too small to be practical (fs

or less). These bound electrons are typically in highly-excited Rydberg states which still interact

in a non-negligible way with the other UCP particles. Solutions to this modeling problem involve

designating a spherical radius around each ion where electrons that penetrate this radius are treated

quantum-mechanically rather than classically [21]. At this point it is unknown how well this type of

modeling describes the collision dynamics and the establishment of thermal equilibrium in ultracold

plasma systems. We hope to be able to study these effects in our UCPs which will allow us to

better understand how to model UCP systems efficiently.

To perform the UCP experiments that are presented in this thesis, we constructed a novel

apparatus that separates the region in the vacuum system where the ultracold atoms are laser-

cooled and collected from the region where the UCP experiments are performed. We did this
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to allow for the independent optimization of each of the two regions. In the plasma region, we

constructed a set of cylindrically symmetric electrodes which can provide a potential that will allow

us to create the nested Penning trap configuration that will simultaneously trap electrons and ions

in the same region of space. This trap will allow us to explore long-timescale plasma processes

(such as electron-ion thermalization) that are longer than the natural lifetime of the UCPs that

are allowed to expand freely. However, trapped UCPs are not the focus of this thesis. Instead, we

found that our apparatus was also well-suited for studying UCP physics at lower densities than

were typical for other experiments.

The experiments performed for this thesis focus on UCP diagnostic techniques and evolution

dynamics in freely expanding, low-density UCPs that will be necessary to understand fundamental

UCP physics as well as dynamics of loading the Penning trap for future experiments. The first

experiment characterized a collisionless, resonant response of the UCPs created in our system to

short bursts of externally applied rf electric fields. This response allowed us to determine the peak

density of the UCP at a chosen time in the UCP evolution, further allowing us to measure the UCP

expansion rate. The second experiment focuses on the influence of electron evaporative cooling on

the expansion rate of the UCPs in our system, where a significant decrease in the UCP expansion

rate was observed compared to a full conversion of the initial ionization energy to expansion energy.

Finally, I will discuss the influence of a relatively weak, uniform magnetic field on the early time

expansion behavior in our UCPs, where an increase in the expansion rate was observed in the

presence of a magnetic field. These experiments will be outlined at the end of this chapter and be

discussed in detail in the later chapters of this thesis. To better understand the context of these

experiments, I will briefly outline the important aspects of UCP physics in this chapter and discuss

some of the previous experiments that have been performed that have increased our understanding

of UCP systems.

1.1 Ultracold Plasma Formation and Evolution

The formation of ultracold plasmas from photo-ionized ultracold atoms was first reported by Killian

et al. in 1999 [1], and has become a common method for producing two-component plasmas in a

state that is near the strongly coupled regime. These plasmas can also be produced by exciting

5



ultracold atoms or molecules to a highly excited Rydberg state, which then spontaneously evolve

into a plasma through collisional processes [22]. Ionization through Rydberg atoms can have its

advantages, as this formation process starting with correlated Rydberg atoms from a “Rydberg

blockade” forms more highly ordered initial plasma distributions [23]. However, for our experiments,

direct photo-ionization will provide greater control over the initial electron energy and will allow

for us to explore UCP phenomena over a wide range of initial ionization energies.

Ultracold plasma evolution can generally be split into two parts: formation and expansion.

An example electron signal as measured by the micro-channel plate detector (MCP, see Chapter

3) can be seen in Figure 1.2, where the two parts of the plasma evolution are highlighted. The

electron signal from our MCP is proportional to the rate of electron escape from the UCP. During

the formation stage (I), the ultracold atoms are photoionized by an intense laser pulse, freeing the

electrons. To conserve both energy and momentum during the process, the electrons will carry

away nearly all of the excess photon energy above the ionization threshold (see Chapter 3). The

ions will have a temperature that is close to that of the original ultracold atom distribution, which

is typically less than 1 mK. Since one electron is created for every ion, the UCP is initially neutral

throughout all space, which provides no means of confinement for the electrons in the UCP in the

absence of external electric and magnetic fields. So, electrons will begin to escape until there is

an imbalance of ions and electrons that creates a space charge that is large enough to confine the

remaining electrons. This initial escape is typically referred to as the “prompt peak”, and can be

seen in Figure 1.2.

In the work in [1], it was shown that for a given set of plasma parameters, a minimum number

of ions is needed in order to trap at least one electron with energy equal to the initial ionization

energy. This number is known as the threshold number and will be a useful concept for calibrating

our MCP signal and electric field environment as shown in Chapter 3. The threshold ion number

was shown in [1] to be an equivalent to the requirement that the one-dimensional rms size of the

plasma, σ, be greater than the Debye screening length, λD. The requirement that the scale size of

the plasma is greater than λD is also what usually distinguishes a plasma system from a system

being just a collection of charged particles.

As the UCP evolves (II), the potential well created by the excess of ions can become greater

than the initial ionization energy, which then requires electrons to have higher energy than their
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Figure 1.2: A diagram of the UCP formation process. The left graph shows a detector signal that

is proportional to the rate of electron escape from the UCP, which is split into two parts: the

UCP formation (I) and expansion (II). The right diagram shows the evolution of the potential well

during these two stages with the red circles representing electrons. During formation (I), the UCP

is initially neutral. The finite energy of the electrons will send some of the electrons out of the

UCP, resulting in the development of an excess of positive charge, creating a potential well. As the

UCP evolves (II), the electron thermalize [24] and the high energy electrons escape. This creates a

potential well that is greater than the average temperature of the electrons. As the UCP expands,

this potential well decreases along with the UCP electron temperature.
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initial formation energy in order to escape the UCP. The electrons begin to thermalize [24], which

creates an energy distribution where the highest energy electrons are able to escape the UCP. This

lowers the overall temperature of the electrons until potential well created by the ions can be many

times kBTe.

During the expansion stage, the electrons that are trapped by the excess of ions can be treated

as a confined gas that exerts a thermal pressure on the ions, driving them outward. A more

computationally useful understanding of the expansion is to note that the greater temperature of

the electrons compared to the ions will cause the electron density to decrease in space slightly

relative to the ions. This decrease in the electron density produces electric fields that confine the

electrons, but anti-confine the ions. So, these electric fields will drive the ion expansion, with higher

electron temperatures leading to faster expansion. As the UCP increases in size, the potential well

naturally becomes shallower, allowing more electrons to escape as seen in Figure 1.2. This expansion

into free space will cause the UCP to “fall apart”, which means that UCPs created outside of a trap

created by externally applied fields will have a finite lifetime. This lifetime ranges from ∼20-120

µs for the UCPs created in our system.

1.2 Strong Coupling in Plasmas

One of the most interesting features of UCP systems is the ability to create the UCP with both

components at energies and densities that would nominally make them very strongly-coupled. In

the next section, I will discuss the various heating effects which limit the amount of strong-coupling

that can take place in UCP systems upon formation. At this point, I will define strong-coupling

parameter, Γ, which is the ratio of the nearest-neighbor Coulomb potential energy to the average

kinetic energy of the particles in the plasma, as given by[2],

Γ =
e2

4πε0akBT
(1.1)

where e is elementary charge, ε0 is the permittivity of free space, kB is Boltzmann’s constant, T

is the temperature of the particles, and a is the Wigner-Seitz given by a = (3/4πn)1/3, where n is

the density. A plasma system is generally considered to be in the strong-coupling regime for Γ ≥ 1.

However, the influence of strong-coupling physics is still expected for Γ less than but near to 1.
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Strongly-coupled plasmas appear in a variety of astrophysical systems including the core of Jupiter

[25, 26], the core of the sun [27], the surface of white dwarf stars [28], and dusty (complex) plasmas

[29] as well as other laboratory systems [27, 30, 31]. Typical plasma systems have Γ � 1 owing

to either a low density (interstellar medium) or a high temperature (lightning, Tokamak fusion

plasmas). In ultracold plasma systems, precise control over the initial state of the system allows

for the creation of UCPs with low initial energy. This can produce values of the strong-coupling

parameter near 1 even for relatively low densities plasmas.

As the strong-coupling parameter increases, stronger particle correlations begin to develop.

These strong correlations can lead to phase transitions where the particles in the plasma exhibit

the behavior of liquids and solids [2]. If the strong-coupling parameter reaches high enough values,

the particles in the plasma can become highly ordered enough to form a lattice. This transition is

known as Wigner crystallization. For one-component plasmas (i.e. plasmas with just ions or just

electrons, but not both), Wigner-crystallization has been demonstrated by laser-cooling Beryllium

ions in a Penning trap [3]. For two-component plasmas, laser cooling is predicted to be capable

of producing strongly-coupled ions that will undergo Wigner-crystallization [4]. However, even in

this case the electron component is expected to remain weakly-coupled. Wigner-crystallization of

a two-component plasma has not been demonstrated experimentally.

As plasmas approach the strong-coupling regime, many theoretical descriptions of plasma be-

havior are expected to breakdown. This is particularly important in UCP systems when discussing

collision rates between particles and three-body recombination processes which are discussed fur-

ther in Chapter 2. For the calculations of the collision rates, the Coulomb logarithm ln(Λ) (where

Λ is the ratio of the distance of closest approach between colliding particles to the collision cut-

off distance, the Debye length) can actually become negative. A negative Coulomb logarithm is

nonsensical, and indicates a breakdown of the plasma theory. Also, a negative Coulomb logarithm

would suggest that there is less than one electron per Debye length cubed. This indicates that any

theoretical picture of screening has to break down as any scattering with less than one particle per

screening length is nonsensical. So, it will be necessary to re-evaluate some of the standard plasma

physics theory using more sophisticated models.

Although there are many heating mechanisms that limit the strong-coupling parameter that

will be discussed in the next section, there should still be effects from strong-coupling physics
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present even if Γ < 1. These effects would likely be present in the collision rates and three-body

recombination rates of the UCP system. These rates have not been measured explicitly in UCP

systems. Also, our recent measurements of the effects of electron evaporation on the UCP expansion

rate (see Chapter 5) indicate that it may be possible to achieve higher values of Γ than predicted

for other UCP conditions [19]. These measurements will lead to a new line of investigation where

we will study the effectiveness of forced evaporative cooling to achieve even higher values of the

electron strong-coupling parameter.

1.3 Limits to the Strong Coupling Parameter

While the ion component of the strong coupling parameter can evolve to have strong coupling pa-

rameters Γi > 1 [32], there still exist many heating effects which limit the amount of strong-coupling

that can be achieved when creating ultracold plasmas for both the ion and electron components.

While these heating effects may be mitigated by studying UCPs at low-density as we do for our

experiments, it is useful to review the limitations to strong-coupling in UCP systems so that we

may better understand how to overcome these difficulties. These heating effects include three-body

recombination [18, 19], disorder-induced heating [33], threshold lowering [34], and Debye screening

[35] (which doesn’t cause heating but does reduce the correlation energy of the ions). In fact,

experimental and theoretical studies of ultracold plasmas have shown that under typical conditions

in experiments elsewhere that the electron strong-coupling parameter will be limited to values of

Γe ∼ 0.2 [18, 19], which makes finding ways to circumvent these heating mechanisms very important

for pushing UCPs further into the strong-coupling regime. A summary of the effects discussed in

this section can be found in Table 1.1 at the end of this section.

It is important to note that disorder-induced heating and threshold lowering only contribute

heat to the UCP during formation. Also, for the low-density UCPs that we create using our system,

three-body recombination heating is significantly reduced compared to other UCP experiments.

Later in this thesis, I will show that evaporative cooling of the electron component will be enhanced

at lower UCP density (Chapter 5). Therefore, forced evaporative cooling schemes should be more

effective for the UCPs created in our system. Thus, there are reasons to be optimistic about

the possibility of producing UCPs with Γe closer to the strong coupling limit than in other UCP

experiments.
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1.3.1 Three-Body Recombination

One of primary heating mechanisms that limits the strong-coupling of the electrons in UCP systems

is three-body recombination [18, 19, 36]. In this process, a collision occurs between two electrons

and an ion that binds one of the electrons to the ion in a highly-excited Rydberg state. To conserve

energy and momentum, the other electron will carry away the excess binding energy from the

collision. This excess energy will eventually be thermalized via collisions among the electrons in

the UCP, which raises the temperature of the remaining electrons. In many experiments, the heating

from three-body recombination is detectable through an increase in the expansion rate of the UCPs

at low temperatures. The strong scaling in temperature of the recombination process limits the

strong coupling to Γe ∼ 0.2 for the experiments in [18], consistent with theoretical predictions [19].

The temperature scaling of the recombination process is predicted to go as T
−9/2

e , and can

be deduced from the following argument [37]. We will first consider an electron-ion pair, with a

“distance of closest approach” defined by b = e2/(4πε0kBTe), where Te is the temperature of the

electrons in the plasma. The collision frequency of such an electron-ion pair is given by nveb
2,

where n is the density of the ions and electrons and ve is the characteristic velocity of the electrons

which is proportional to
√

T . To determine the scaling of the three-body recombination rate, we

must multiply this collision frequency by probability that a second electron will be close enough to

participate in the collision and carry the excess binding energy away. This probability is given by

nb3, where in a weakly-coupled plasma (where this scaling is expected to be valid) nb3 � 1. This

gives a three-body recombination rate that is proportional to n2veb
5, and thus scales as n2T

−9/2

e .

The classical three-body recombination rate is given by [8],

Ktot
TBR ∼ 3.8 × 10−9 · T−9/2

e n2

e s−1 (1.2)

where ne is in units of /cm3 and Te is in units of K. A useful formulation of this rate is to take

the inverse value, which gives the three-body recombination time. The recombination time gives

an estimate of how long it takes for an ion to undergo a recombination event. By calculating this

time for our range of conditions, it will allow us to determine whether or not we expect three-body

recombination to add a significant amount of heat to the UCP. At electron temperatures greater

than 10 K for the UCPs in our system, the three-body recombination time can be longer than 150
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µs, which is longer than the UCP lifetime for all of our experimental conditions. However, because

of the strong temperature scaling, this heating from three-body recombination can cause an increase

in the UCP expansion rate at our lowest initial ionization energies as discussed in Chapter 4.

Since the T−9/2 scaling of the three-body recombination rate suggests a divergence at very low

temperatures, this scaling can not hold for temperatures that approach T = 0 K without producing

an infinite recombination rate. A simple thought experiment would say that since translational

motion of the particles ceases at T = 0, that collisional processes would not be able to take

place, thus the three-body recombination rate is expected to be reduced. For high-density, low-

temperature plasmas, the scaling rate of three-body recombination is predicted to be reduced to

T−1 [6]. However, in this treatment, the value of Λ in the Coulomb logarithm was assumed to

be much greater than 1, which is not always the case in ultracold plasma systems. Molecular

dynamics simulations of the effects of strong-coupling on the three-body recombination rate have

shown that the three-body recombination rate is expected to fall off exponentially in the strong

coupling parameter [7]. Instead of a T−9/2 scaling, the rate was found to scale as Γ
9/2

e exp(−λ0Γe),

where λ0 is a constant that was determined from the results of the simulation. At this point, the

limitation of the strong coupling parameter for electrons [18, 19] has not allowed for measurements

of the three-body recombination rate to be performed to test this scaling. Measurements performed

in [38] have attempted to confirm the T−9/2 scaling for plasmas with electrons below the strong-

coupling limit. However, a better characterization of the electron temperature will be necessary

to confirm this trend. A possible technique for characterizing the electron temperature at chosen

times in the UCP evolution will be discussed in Chapter 8.

The design of our experimental apparatus allows for the capability of applying strong magnetic

fields to the UCP as part of the Penning trap configuration. Therefore, it is useful to consider the

effects of strong magnetic fields on the three-body recombination rate. For a highly magnetized

plasma, the Larmor radius of the particles is much less than the classical distance of closest approach

between the particles. In this case, the plasma particles are strongly confined to motion along the

magnetic field lines, and perpendicular translation is severely restricted. The effect of this degree

of magnetization is to reduce the three-body recombination rate in the plasma by an order of

magnitude as compared to the unmagnetized case [37]. In this case, it was predicted that the

scaling of the three-body recombination rate with density and electron temperature was the same
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as in the unmagnetized case. However, these results have not been experimentally verified in UCP

systems.

1.3.2 Disorder-Induced Heating

One of the most significant processes that limits the strong-coupling of UCPs early in their lifetime

is what is known as disorder-induced heating [33]. This heating process occurs during the formation

of the UCP, and is far more important heating mechanism for the ions in the UCP. Even though

UCPs can be created with initial temperatures and densities that would correspond to high values

of the strong-coupling parameter for both the ions and electrons, the ultracold gas from which they

are ionized is spatially uncorrelated. So, even if the plasma particles were at zero temperature

initially (corresponding to infinite Γ), the Coulomb potential energy that results from the initial

disordered state will convert to kinetic energy as the plasma particles move away from each other

to lower the potential energy, resulting in finite temperatures. The density of the plasma then sets

a lower limit on the achievable temperature of kBT ∼ e2/4πε0a [39], where a = (3/4πn)1/3 is the

Wigner-Seitz radius. This means that the disorder-induced heating limit to the strong coupling

parameter is Γ ∼ 1 in the absence of other effects. For the electrons, both evaporative cooling

and cooling during expansion can reduce the effect of disorder-induced heating on the electron

component. The ions have limited ability to cool during the UCP evolution and are thus affected

more by this process.

Various methods have been proposed to mitigate the effects of disorder induced heating. As

discussed previously, using a dense gas of Rydberg atoms can result in a “Rydberg blockade”,

where strong Rydberg-Rydberg interactions prevent atoms that are near an excited Rydberg atom

to become excited, which allows for the development of spatial correlations [23]. The Rydberg

atoms will then spontaneously ionize, carrying over this correlation to the UCP. Another method

for producing highly correlated plasmas is to use a second stage ionization [40]. In this method, the

plasma is created as usual from a single ionization, after which the disorder-induced heating stage

takes place, leading to higher correlations but also higher temperatures. At this point, the plasma

ions are ionized a second time. Since the previous ionization stage resulted in higher correlation,

there is a much smaller effect owing to disorder-induced heating in the second stage ionization. Also,

since the charge is suddenly doubled, it quadruples the value of the strong-coupling parameter while
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introducing little heat. Other proposals suggest that the effect of disorder-induced heating could be

reversed into a cooling process with a properly prepared initial state of atoms in an optical lattice

[41]. However, this would be difficult in practice since even minor defects in the optical lattice

would produce a large amount of correlation heating.

For our system, we have initial peak UCP densities in a range ∼107-108 /cm3, which results

in correlation temperatures of < 1 K. For the electron component, this will be much less than the

initial ionization energy in most cases, which makes this effect negligible. For the ion component,

this will decrease the values of Γi from their initial values substantially. However, it is expected

that as the plasma evolves that Γi will increase, producing ions in the strong-coupling regime [32].

Our future experiments (Chapter 8) will focus mainly on the strong-coupling parameter of the

electrons, Γe.

1.3.3 Threshold Lowering

Another contributor to the heating of the electron component of the UCP at early times is the

threshold lowering effect [34]. This effect results from the interaction of nearest neighbor ions

on the ionization potential of unionized atoms. The potential from the neighboring particles can

be summed together on the line between them as U(r) ∝ −1/r − 1/(2a + r), where a is the

separation between the two particles (generally considered to be the Wigner-Seitz radius). The

calculations in [34] considered an initial distribution of atoms in a perfect lattice for the purposes

of this calculation. It was shown that the effect of threshold lowering can be significant for low

initial ionization energies, and will set a minimum achievable temperature for electron components

in UCPs that is dependent on the density as kBTe min = 7e2/4πε0a. For the plasma conditions

achievable in our system, this effect will be on the order of a few Kelvin for the electron component

of our UCPs.

The low-density UCPs produced by our system will have negligible effects from three-body

recombination under most conditions. This makes our system suitable for studying these effects so

that we can make comparisons to the theoretical predictions of the minimum achievable electron

temperatures under our UCP conditions. This type of measurement will require a way to measure

the electron temperature shortly after the UCP formation, which will be discussed in Chapter 8.
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1.3.4 Electron Shielding

Recent investigations of the effect of electron screening on the ion-ion potential energy have shown

that electron shielding can reduce the ion-ion interactions, lowering the amount of strong-coupling

for the ions [35]. The experiments and calculations from this work focus on times very early in the

formation of the UCP (< 1 µs). For very cold electrons, the Debye screening length can become

comparable to the inter-ion spacing in the plasma. Under these conditions, the interpretation of

the strong coupling parameter for the ions can become imprecise, as effects from the electron-ion

and electron-electron coupling can play a role on the ion-ion coupling. For these conditions, the

authors in [35] calculated the total electrostatic potential energy of the UCP to evaluate the strong-

coupling of the system. Although screening can reduce the amount of disorder-induced heating that

is observed in UCP systems (making Γ larger), the authors in [35] found that the effect of electron

screening was to reduce the total coupling of the system by the same amount so that Γ ∼ 1. In

the absence of external heating of the electrons or an initially ordered spatial distribution, this

screening will fundamentally limit the amount of coupling that can be achieved for the ions in

UCPs.

1.3.5 Electron Cooling through Evaporation

Each of the heating mechanisms discussed in this section except three-body recombination occur

during the formation process of the UCP and not during the subsequent UCP evolution. Although

these processes limit the lowest achievable initial temperatures, this energy can be removed from the

UCP post-formation through electron evaporation. Thus, electron evaporative cooling is a process

that increases the degree of electron strong-coupling in spite of these initial heating mechanisms.

At lower densities, the effect of electron evaporation is predicted to increase (Chapter 5) and the

effect of three-body recombination is predicted to decrease. Although the three-body recombination

process is continuous, as long as sufficient cooling can be obtained via electron evaporation, lower

temperatures and thus stronger electron coupling should be able to be obtained in our lower-density

systems.
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Table 1.1: A table summarizing the various mechanisms that can effect the ion and electron strong-
coupling parameters in UCP systems. This table includes which component of the UCP is affected
by each process, how each process scales with the UCP density and temperature, and when the
effect is most relevant during the UCP evolution.

Effect UCP Component Scaling Duration

Affected

Three-Body Electron Increased Heating Full Evolution
Recombination as n2/T

9/2

e

Disorder-Induced Ion and Electron Increased Heating UCP Formation
Heating as n1/3

Threshold Electron Increased Heating UCP Formation
Lowering as n1/3

Electron Ion Lower Ion Coupling Post Formation
Screening at Lower Te

Electron Electron Increased Cooling Post Formation
Evaporation at Lower Density

1.4 Thesis Summary

Before proceeding further into this thesis, I wish to provide a brief overview of the topics covered

in each chapter for convenience to the reader.

1.4.1 Chapter 2: Fundamental Plasma Physics Theory

Before discussing the specifics of the experiments that I perform for the work in this thesis, it is

useful to provide an overview of a background in the relevant fundamental plasma physics. This

overview will help put the experiments from this thesis into the proper context and helps to provide

estimates of the plasma properties that we wish to measure or have relevance for the assumptions of

how our UCPs behave. An important aspect of this fundamental theory review is to show that some

of the calculations from standard treatments of plasmas break down when the plasma approaches

the strongly-coupled regime. This is due in part to the fact that the Coulomb logarithm, ln(Λ),

can become negative in this regime. This translates directly to a non-physical picture for collisions

in plasmas. I will also discuss some of the models for dynamics in plasmas which allows for the

prediction of the expansion of UCPs in various regimes. All of the topics discussed in this chapter

will be referenced in the chapters that follow, and are important concepts for understanding the

physics of the experiments performed for this thesis.
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1.4.2 Chapter 3: Ultracold Plasma Apparatus

In this chapter, I will discuss a novel apparatus that was built to study UCP physics here at

Colorado State University. The main feature of this new apparatus is separation of the MOT

region, where we collect and cool ultracold atoms, from the plasma physics region, where we

photoionize these ultracold atoms. The design of this apparatus is based off of BEC apparatus

designs from experiments at JILA in Boulder, Colorado [42]. The purpose of the separation of

the two regions is to independently optimize the MOT loading and plasma regions of the vacuum

chamber. To transfer the atoms between regions, we can load the atoms from the MOT into a

magnetic quadrupole trap. This trap is created by the same coils that create the magnetic field

required for the MOT and are attached to a motorized translation stage.

In the plasma region, we have a set of seven cylindrically symmetric electrodes which were

designed to produce electric potentials in a Penning trap configuration to axially confine both

components of the plasma. These electrodes would block optical access to the MOT if they were

placed in the same region, which would disrupt the collection of ultracold atoms needed for the

experiments. Outside of the vacuum chamber, we were able to wrap various configurations of

magnetic coils which we use for our experiments. To characterize the UCP, we use an extracted

electron signal to detect the rate of electron escape on a micro-channel plate detector. This chapter

will detail all of the design considerations that went into the construction of this apparatus as well

as calculations and measurements that detail the system performance.

1.4.3 Chapter 4: UCP Response to Short Bursts of RF

As discussed in Chapter 2, a fundamental class of responses of UCPs to externally applied rf fields

is the plasma oscillation. Although these responses occur in a variety of ways, the key feature of

the plasma oscillation is that it typically depends on only the density of the constituent particles

of the plasma. These means that driving a plasma oscillation on resonance can be a useful tool for

determining the density of UCPs.

The technique developed to measure the density of the UCPs in our system uses two cycles of

rf to drive a plasma oscillation at a chosen point in the UCP evolution. Through the course of our

investigations, we were able to determine that the rf drove a collisionless oscillation of the UCP

electron cloud where the electron cloud moved collectively in response to the rf. By modeling this
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response for finite size, non-uniform density plasmas, we were able to determine the expected peak

density (and through this the rms size) of a UCP based on the measured resonant frequency and

the imbalance of electrons and ions in the UCP. This technique for measuring the density in our

UCPs was essential, as other methods that have been developed using continuous rf have limited

applicability for our system since the collisionless motion dominates the rf response signals [14, 18].

Also, measuring the density at specific points in the UCP evolution allows for us to measure the

expansion rate and to make expansion rate comparisons over a range of UCP conditions. This will

allow us to make comparisons to model calculations and serves as our main measurement technique

for all of the UCP experiments discussed in this thesis.

1.4.4 Chapter 5: Electron Evaporative Cooling in UCP Systems

One of the main goals of many UCP experiments is to achieve more strongly-coupled plasmas, with

many experiments focusing on the ion component of the UCP. Early experimental and theoretical

work has shown that electron component of the UCP is limited by three-body recombination

processes to Γe ∼ 0.2 [18, 19]. This limit to the strong-coupling parameter for the electrons occurs

even when the ions are able to evolve into the strongly-coupled regime [32]. However, the parameter

range under which these models were evaluated have negligible loss of energy from the UCP through

evaporative cooling.

In this chapter, I will discuss a model that we developed that shows that for our relatively low

density UCPs, that electron evaporative cooling should have a significant effect on the amount of

energy that is available to drive the UCP expansion compared with other experiments. Measure-

ments of the expansion of our UCPs showed that the expansion energy was indeed reduced by a

significant amount. By inputting our electron evaporation data into our evaporative cooling model,

we were able to predict the electron temperature evolution of the UCP. These calculations showed

that it may be possible for the electron strong-coupling parameter, Γe, to exceed the 0.2 theoretical

limit in [18, 19] before there is a significant three-body recombination rate to heat the electrons.

Subtle heating effects may still be present, and will require the development of a direct temper-

ature measurement technique in our systems. However, these measurements show that electron

evaporative cooling can be significant in our system, and should lead to future experiments where

we forcibly cool the electrons using evaporation.
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1.4.5 Chapter 6: Early Time UCP Expansion in a Uniform Magnetic Field

For many UCP experiments that we wish to perform, we will create the UCP in the presence of a

magnetic field that is axially symmetric to our electrodes assembly. The presence of the magnetic

field can help extract the electrons from the plasma region to our detector in some situations and

also will work to radially confine the electrons and ions in the Penning trap configuration. So,

determining the effects of the magnetic field on the formation and evolution of the UCP will be

important for separating the effects of the presence of a magnetic field from other effects that we

might wish to study.

Our measurements of the UCP expansion rate at early times show that in the presence of a

relatively weak magnetic field (∼10 G, much weaker than the ∼1000 G fields that will be used in

the Penning trap), that there is a dramatic increase in the UCP expansion rate compared to the

magnetic field free case. To gain an understanding of the underlying mechanism to this increased

expansion, we developed a model of UCP formation that determines the steady state distribution

of electrons after the UCP forms if the electrons’ motion is strictly confined to the magnetic field

lines. For these calculations, we found that the electrons would move to screen the electric field

in the axial direction, but would leave the radial field unscreened. This unscreened field would

increase the ion expansion in the radial direction. Investigations into this effect are still under way,

and the preliminary results of this line of investigation will be presented in this chapter.

1.4.6 Chapter 7: Two-Photon Light-Assisted Collisions in an 85Rb MOT

The experiments described in Chapter 7 detail measurements that were made before the construc-

tion of our UCP apparatus during my early tenure as a graduate student. In these measurements,

we applied additional light resonant on the 5P3/2 −5D5/2 transition to an 85Rb MOT. The original

goal of this work was to excite to auto-ionizing states of Rb through this excitation as a possi-

ble method for creating a UCP without the need for a dye-laser system to directly photo-ionize

the atoms. This type of auto-ionizing state had been observed in previous work using different

transitions in Rb. Instead, we observed a large loss rate consistent with two-body, light-assisted

collisions that did not have enough energy to produce Rb ions. The second excitation in the MOT

put long-range Rb molecules in a long-lived excited state that carried the molecule towards close

internuclear separation. The subsequent decay of the molecule to a lower excited state put the
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atom pair on a molecular curve that accelerated the atoms to speeds that ejected them from the

MOT. The loss mechanism will be important for any experiments that involve transitions to this

type of excited state.

1.4.7 Chapter 8: Future Work

The discussion in Chapter 8 will focus on the experiments that have been planned for the next few

years of work on this project. The first goal is to finish the investigation of the increased expansion

rate that is observed for UCPs formed in the presence of a magnetic field, discussed in Chapter 6.

After this, the next planned experiment focuses on the response of the electron cloud to two sharp

electric field pulses as discussed in Chapter 4. These measurements showed a damped, oscillating

response to the electric field impulses. The goal of this experiment is to characterize this damping

behavior, and to attempt to relate the damping time constant to electron-ion 90 degree deflection

times.

The next experiment will involve the development of a local temperature probe that can measure

the temperature of the electrons at a specified point in the UCP evolution. The goal is to have an

independent measure of the electron temperature that does not rely on the overall UCP expansion

rate. Preliminary techniques to measure the temperature using ramps between electric field levels

have been attempted, but require a better characterization of the electric field environment to

produce consistent results. The development of a temperature probe will allow us to compare

the results of this measurement to those of the temperature profile obtained from our expansion

measurements. We wish to confirm that the electron strong coupling parameter, Γe, does indeed

exceed the 0.2 limit [18, 19]. We also wish to test whether forced evaporative cooling on the

electrons can be effective in lowering the electron temperature.

After the development of these techniques for characterizing the UCP, we will begin experiments

trapping the UCP in a Penning trap. The goal of these experiments will be to measure long timescale

plasma processes such as the electron-ion thermalization rate and ion-ion collision rates, which are

very slow compared to the lifetime of the UCP outside of the trap. Also, we will be able to study

the physics associated with loading the Penning trap, and develop techniques to characterize and

optimize the loading of the Penning trap.

20



These are just examples of the proposed measurements for this system, and a detailed descrip-

tion of these, among other experiments, will be given in Chapter 8.

Conclusion

To summarize, ultracold plasma (UCP) systems can be used to study a wide range of plasma

phenomena near the strongly-coupled regime. These systems can be used to test plasma theoretical

model predictions. They can be used to find breakdowns in classical plasma physics theory as

assumptions used in those theoretical calculations are no longer valid at the very low electron

temperatures in UCP systems. UCPs systems can also be used to make experimental comparisons

to wide variety of more sophisticated plasma physics theories that take strong-coupling physics into

account. Also, these systems will provide a valuable tool that can be used to make comparisons to

analogous astrophysical systems. These systems help us understand not only certain astrophysical

plasmas such as the core of Jupiter and the core of the sun, but also can used to model the dynamics

of globular clusters. Also, the measurements made on recombination processes in UCP systems can

be useful for understanding the formation of anti-hydrogen in nested Penning traps.

The experiments in this thesis focus on techniques that allow us to characterize the state of the

UCP systems that we create. The first experiment that we performed involved the UCP response

to short bursts of externally applied rf fields which allowed us to determine the density of the UCP

as a function of time. From these expansion rates, we were able to make comparisons to theoretical

models of the UCP expansion to determine the effect of electron evaporative cooling and externally

applied magnetic fields to the UCP expansion. Understanding these mechanisms will allow us to

make future attempts at pushing the electron component of the UCP closer to the strong-coupling

limit. Also, future experiments will involve loading the UCP in a nested Penning trap configuration,

which will allow us to study relatively long timescale UCP processes.
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Chapter 2

Overview of Relevant Plasma Physics Theory

While plasma physics covers a broad range of phenomena for a wide variety of plasma systems, to

better understand ultracold plasma (UCP) systems, we can draw upon several concepts that are

discussed in many introductory plasma physics textbooks. Although the usual assumptions made

in formulating the most common ‘textbook’ treatments of the topics discussed in this chapter will

not be valid for certain parameter ranges in UCP systems, these concepts will allow us to discuss

our experiments in terms that are familiar to someone with knowledge of basic plasma systems. In

fact, this breakdown of the assumptions made for basic plasma systems is one of the reasons that

UCP systems are interesting to study.

In this chapter, I will discuss collective effects (such as Debye screening and plasma oscilla-

tions), collisional processes, and give a brief overview of some of the models of plasma dynamics

(which help us understand how to model the expansion of UCPs). In the later chapters discussing

our UCP experiments, I will refer back to concepts discussed in this chapter to in order to better

frame the discussion of our experiments. This chapter is intended only to be an overview, and when

appropriate, more sophisticated modeling and calculations that concern the specific experiments

discussed in this thesis will be discussed in the chapters corresponding to those experiments. Al-

though the concepts discussed here are not explicitly measured in the work presented in this thesis,

it will be necessary to understand these concepts in order to interpret the overall behavior of the

UCPs created in our system.

2.1 Debye Shielding

A fundamental property of plasmas is the ability of the constituent particles to move in order to

screen out electric fields inside the plasma. This screening occurs over a fundamental length scale

that is known commonly as the Debye screening length, λD, which is dependent, as most plasma

properties are, on the temperature and density of the particles in the plasma. For ultracold plasma

systems, the screening length sets the minimum size for forming a UCP [1], where the rms size of

the UCP must be greater than the Debye screening length upon formation.
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To determine the Debye screening length for a certain set of UCP conditions, we can consider

the standard textbook treatment of Debye screening, in which a test particle with positive charge

qT is placed slowly in a neutral, uniform distribution of ions and electrons in thermal equilibrium

[2, 3]. When the test particle is inserted into the plasma, charges of like sign will be repelled and

charges of opposite sign will be attracted. However, since the ions are much more massive than the

plasma electrons, we will consider the ions to be immobile for simplicity. Since we are considering a

slow perturbation upon insertion of the test particle, the density of the plasma particles in relation

to the test particle can be written from the Boltzmann relation as [3],

ne(r) = ne0 exp

(

eΦ(r)

kBTe

)

(2.1)

where e is elementary charge (positive), kB is Boltzmann’s constant, Φ is the potential, and the test

particle is considered to be centered on the origin. Before the test particle is inserted, Φ(r) = 0 and

the density is uniform over all space. So, using this relation, we can write down Poisson’s equation

with the test particle inserted as,

∇2Φ(r) = −ρ(r)

ε0

(2.2)

= − 1

ε0

(

qT δ(r) − ene0 exp

(

eΦ(r)

kBTe

)

+ eni0

)

If we consider the perturbation from the test particle to be small, then we can assume that eΦ �

kBT [2, 3]. So, we can expand the exponential term to be ∼ (1+eΦ/kBT ). Since the initial electron

and ion densities are equal, Equation 2.2 reduces to,

∇2Φ(r) = − 1

ε0

(

qT δ(r) − ne0e
2Φ(r)

kbTe

)

(2.3)

We can rearrange the terms to get,

∇2Φ(r) − ne0e
2

ε0kBTe
Φ(r) = −qT

ε0

δ(r) (2.4)

Here, we can define the Debye screening length to be,

λD =

√

ε0kBT

ne0e2
(2.5)
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so that,

∇2Φ(r) − 1

λ2

D

Φ(r) = −qT

ε0

δ(r) (2.6)

With the assumption that Φ(∞) = 0 and that the potential becomes the standard Coulomb po-

tential as r → 0, this differential equation can be solved to be,

Φ(r) =
qT

4πε0r
exp

(

− r

λD

)

(2.7)

So, we can see from Equation 2.7 that the normal Coulomb potential from the test charge is screened

out exponentially on a length scale determined by the Debye screening length. For an externally

applied electric field, the existence of a plasma mode accounts for the screening for applied electric

fields at frequencies that are much less than the plasma frequency (the plasma frequency is defined

in Section 2.2) [4].

While the Debye screening length provides a reference scale length for plasma systems, the

assumptions made in this derivation are not always valid for UCP systems. For instance, the as-

sumption of a Maxwell-Boltzmann distribution for the electrons will not be true of UCPs with

sufficiently high initial ionization energies. Also, for collisionless plasmas, a paradox arises. As

electrons accelerate towards a positive test charge, the density of the electrons should actually de-

crease in order to conserve particle flux [3]. This results in what is known as anti-shielding, where

the test charge actually has more positive charge from the plasma around it. However, more so-

phisticated modeling of dynamic screening, in which electrons can become trapped in adiabatically

produced potential wells around the test particle, produce shielding in collisionless plasmas where

anti-shielding was predicted from less sophisticated models [5, 6].

For the UCPs produced in our system, we have densities that range from ∼107-108 /cm3 and

initial ionization energies ranging from ∆E/kB = 10 − 400 K. If we take the temperature of the

UCP electrons to be 2∆E/3kB , then an estimate for the Debye screening length for our system

ranges from λ ∼ 20 − 350 µm. These lengths are all less than the ∼1 mm spatial extent of the

system, σ (where the density in spherical coordinates is given by n(r) = n0 exp(−r2/2σ2)). So, for

many of our UCP conditions, we expect any external electric fields to be well screened in the center

of the plasma as well as fields owing to variations in the ion and electron density far away from the

center of the plasma. Although UCPs do not have a uniform density distribution as assumed in
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this calculation, for very short screening lengths compared to the size of the UCP, this derivation

should be a reasonable approximation for the screening length around a point using the local value

of the UCP density.

2.2 Plasma Oscillations

One fundamental response to perturbations of the charge distributions in plasma systems is the

plasma oscillation. As charge is moved, either through forces from external electric fields or thermal

fluctuations, the unscreened charge creates an electric field and restoring force on the perturbed

charges to oppose the displacement. To understand the nature of this response to charge density

perturbations in a simple and computationally tractable system, we can examine restoring force

on an uniform density, infinite, two-component plasma where the charge densities for the positive

and negative charges are offset from each other by a distance, ∆x. This is a standard textbook

treatment of plasma oscillations [2, 3].

A diagram of the physical situation under consideration for this calculation can be seen in Figure

2.1. Here, we consider two infinite, uniform density charge distributions consisting of positively

charged ions and electrons with density distributions of ni/e = n0. Initially, the plasma is neutral

everywhere until a perturbation is introduced that offsets a slab of the electron distribution from

the ion distribution by a distance ∆x. When this offset occurs, two regions of space develop where

the charge distribution is no longer neutral, creating two infinite slabs of charge at ρ = ±en0

respectively. These two slabs will create an electric field that is non-zero between them with a field

outside that remains at zero (this is because for infinite slabs of charge, the field does not fall off

with distance and therefore the positive and negative slabs neutralize the field on the outside). To

calculate the field produced by the offset of the charge distributions, we can uses Gauss’ law with

the appropriate choice of a Gaussian surface. In this case, it is convenient to use a cylindrical pill

box, with end caps of surface area, A, as seen in Figure 2.1. Gauss’ law is given by,

∮

S

~E · ~dA =
Qenc

ε0

(2.8)

Here, the amount of charge enclosed in our Gaussian surface is given by Qenc = en0A∆x. Our

choice of Gaussian surface aligns the electric field perpendicular to the face of the end cap of our
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Figure 2.1: A standard textbook treatment of plasma oscillations using infinite slabs of positive and

negative charge [2, 3]. When the slabs are offset from each other by a distance ∆x, it creates region

in space where the charge is no longer neutralized, creating a non-zero electric field. To calculate

the electric field, we can use Gauss’ law with a cylindrical pill box with end caps of surface area,

A, used as the surface for the calculations. The electric field produces a restoring force on the slab

of charge that will create simple harmonic motion at the plasma frequency, fp.
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pill box, so,

∮

S

~E · ~dA = | ~E|A =
en0A∆x

ε0

(2.9)

So,

| ~E| =
en0∆x

ε0

(2.10)

Since the ions are much more massive than the electrons, we can consider them to be stationary

and calculate the restoring force on the electron component of the plasma. So, from Equation 2.10,

we can calculate the restoring force on the electrons to be

F = me
d2∆x

dt2
= −e2n0

ε0

∆x (2.11)

Putting this in a more familiar form, we obtain,

d2∆x

dt2
= − e2n0

meε0

∆x = −ω2

p∆x (2.12)

where ωp =
√

e2n0/meε0 is defined as the angular plasma frequency for the electrons (the plasma

frequency of oscillation is defined as 2πfp = ωp). It should be noted that this derivation for

the plasma frequency is for “cold” electrons, meaning that the thermal motion of the electrons is

ignored. This assumption is generally true for UCP systems. The plasma frequency for the ions

(or any other species of particles in the plasma) can be found by substituting the ion mass and

density into the formula for the plasma frequency. For two-component systems, the actual plasma

frequency is found by summing the frequency of the component species in quadrature. However,

since the ion mass is much greater than the electron mass, the plasma frequency is approximately

equal to the plasma frequency of the electrons alone.

We can note that the plasma frequency for the electrons depends only on one variable, the

electron density, n0. So, exploiting this relationship by driving the plasma with external AC

electric fields can be useful as a probe for determine the density of plasma systems as will be shown

in this thesis. Dependence on only the density allows us to determine a simple relationship for the

plasma frequency as a function of density given by [2],

fp =
ωp

2π
∼ 8980

√
n0 Hz (2.13)
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where n0 is in units of cm−3.

Since this plasma frequency was derived from a uniform, infinite plasma, this situation will not

apply directly to UCP systems. However, it will serve as a good reference for the models of the UCP

response to externally applied rf fields. Also, there are many other types of plasma resonances,

collective modes, and plasma waves that can be excited for UCP systems when subjected to external

fields [7–10]. These resonances provide great insight into the fundamentals of UCP physics [7, 8]

and can be used as probes to determine the UCP density [9, 10] with progress towards electron

temperature measurements [7]. Additional details on plasma oscillations in UCPs are given in

Chapter 4 of this thesis.

2.3 Coulomb Collisions

When studying relaxation to equilibrium in plasmas, the primary mechanism for establishing ther-

mal equilibrium is through coulomb collisions between the constituent particles of the plasma.

These collisions are of particular interest in ultracold plasma systems when considering tempera-

ture equilibration and its effects on modeling the plasma system. For UCP systems, the electrons

and ions are created out of thermal equilibrium with respect to each other and the electron-ion

equilibration process is much longer than the natural lifetime of the UCP as it expands and falls

apart. For the electrons themselves, these timescales can range from very short to very long in

comparison to the lifetime of the UCP depending on the initial ionization energy of the UCP owing

to the T 3/2 scaling of the of the equilibration timescale as will be shown in this section.

The most important aspect of Coulomb collisions as opposed to other types of binary collisions

is the long range nature of the Coulomb force. This means that collisions between particles that

are very far apart (which produce only small deflections in the particle trajectories) are the most

important contribution in the collision process. When calculating the total collision cross section

for charged particle collisions, there is a divergence at low collision angles (high impact parameter)

that complicates the calculations for these collision processes [2, 3, 11] because the geometric pair-

number increases more rapidly than the 1/r potential falls off. These low angle collisions at high

impact parameter can not be ignored, as it turns out that they are the much more likely to produce

large changes to the momentum of particles in a cumulative fashion than a single large collision.
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However for plasmas, Debye screening will work to eliminate fields that are outside of a Debye

length from the particles involved in the collision, which sets an upper limit to the possible impact

parameters (lower limit for the collision angle) for possible Coulomb collisions at a Debye length.

This will allow us to calculate the collision rates and equilibration timescales for the constituent

particles in a plasma.

2.3.1 Collision Timescales Between Plasma Particles

Collision processes in plasma systems play a very important role in non-equilibrium dynamics and

work to transfer energy and establish thermal equilibrium among the constituent particles of the

system. Upon formation of the UCP, the electrons and ions are not in thermal equilibrium with

each other and do not individually start out in a Maxwell-Boltzmann distributions. As the UCP

evolves, the particles in the UCP will work towards establishing a quasi-equilibrium. The electrons

being far more mobile particles in the system will be able to establish an equilibrium distribution

among themselves (although still not quite Maxwell-Boltzmann because of the finite potential well

depth provided by the ions) while transferring energy to the ions as the UCP expands.

When discussing collisions in our ultracold plasma systems, it is convenient to consider the

possible types of collisions between particles and their associated timescales. While these colli-

sion timescales are not directly measured for the UCPs in our system, they do serve as a means

of estimating whether or not the charge distributions can be treated as being in thermal equilib-

rium. The timescales most important for our system involve either electron-electron interactions

or electron-ion interactions. For electron-electron interactions, the first important timescale is a

determination of how long it takes for a particle with 3/2kBT of kinetic energy to undergo 3/2kBT

of energy changing collisions and is known as the electron self-equilibration time given by [11],

tse =
0.266 T

3/2

e

ne ln (Λ)
sec (2.14)

where ne is in units of cm−3 and Te is in units of K. The logarithmic term in the denominator is the

Coulomb logarithm and is defined as ln (Λ) = ln
(

12πneλ
3

D

)

where λD is the Debye screening length.

The temperature term, Te, represents the average kinetic energy associated with a distribution of

electrons that will thermalize to a temperature Te since the distribution of electrons is not initially

in thermal equilibrium by definition. The self equilibration timescale can be seen to scale as
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approximately T
3/2

e /ne, since the ln(Λ) is a slowly varying function of the density and temperature.

This means that higher energy, lower density electrons take a longer time to thermalize.

The second electron-electron interaction timescale of interest is the electron equipartition time,

which defines the cross-dimensional thermal relaxation time. This timescale is of particular impor-

tance when discussing the collisional redistribution of externally imparted energy from applied rf

in our UCP systems, which is discussed further in Chapter 4. The electron-electron equipartition

time is given by [11],

teq =
5.87 T

3/2

e√
229.5 ne ln (Λ)

sec (2.15)

where again ne is in units of cm−3. It can be seen here that teq and tse have the same scaling in

temperature and density, but differ in the value of their pre-factors. The ratio of the two times,

teq/tse is found to be ∼1.46.

For our UCP systems, these timescales can range from 10s of ns to 10s of µs when calculated

using the average density and estimated temperature, which will allow us to study the physics

of these ultracold plasmas in a regime where collisions are important and in a regime where we

can treat the UCP as a collisionless fluid. However, UCPs have a non-uniform density and start

with a uniform electron energy distribution. This complicates the exact meaning of these collision

timescales, and are used as only estimates until accurate measurements can be made to compare to

these calculations. More sophisticated modeling of collisions in UCP systems has shown that

reaching an energy distribution that is close to Maxwellian at the highest part of the energy

distribution can take several times longer than these calculated collision timescales [12]. Also,

since the collision timescales for the electrons are functions of the Coulomb logarithm, ln (Λ), these

theoretical predictions for the collision timescales are expected to break down when the electron

component of the UCP approaches the strong-coupling limit. This is because the value of ln (Λ) can

actually become negative in this regime, making the collision timescales determined from Equations

2.14 and 2.15 nonsensical.

While electron self-collisions can occur on a short timescale relative to the UCP natural lifetime

and work towards creating a thermal electron distribution upon ionization, the ions themselves

begin with a thermal distribution that is approximately equal to that of the original ultracold atom

distribution. However, the ions quickly heat to temperatures of ∼1 K owing to disorder-induced
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heating (see Chapter 1). Since the dominant ion motion is due to expansion, ion-ion collisions are

generally neglected in UCP systems. However, the ions do have collisional interactions with the

electrons that are most important for randomizing the electron motion. This can cause a damping

of the electron motion when driven by an external rf field as discussed in Chapter 4.

To determine the timescale of electron-ion collisions, we define the time we are interested in as

the amount of time it takes to have a net 90 degree deflection from an electron’s original trajectory

resulting from collisions [2, 11]. As discussed previously, small angle collisions play a dominant role

in collisional processes in plasmas, so from this assumption, the mean free path of an electron for a

net 90 degree change from its original trajectory owing to small angle collisions is given by [2, 11],

λm =
(12πε0kBTe)

2

8πnee4 ln (Λ)
(2.16)

We can divide λm by the mean thermal velocity of an electron given by vT =
√

3kBT/me to

determine the 90 degree collision time as given by [2, 11],

t90 =
2πε2

0

√
me (3kBT )3/2

106nee4 ln (Λ)
sec (2.17)

where ne is in units of cm−3. Again, it can be noted that t90 scales as T
3/2

e /ne with an additional,

slowly varying Coulomb logarithm term, ln (Λ). The electron-ion collision timescale is on the order

of the electron-electron collisional timescales and falls in between tse and teq. An example of the

collision timescales over a range of temperatures and densities relative to our UCP experiments can

be seen in Table 2.1.

Although these calculations can provide estimates of the collisional timescales in UCP systems,

the UCPs created in our system have a non-uniform density distribution which differs from the

standard “textbook” assumptions used when calculating the collision timescales. This could result

in significant modifications to the predicted collision rates. Also, when the UCP approaches the

strong coupling regime, these calculations are expected to break down as mentioned above. Aside

from the breakdown of the Coulomb logarithm term, the collision rate in a one-component plasma

has been shown to be enhanced by strong correlations [13]. This occurs because higher correlation

leads to better screening of the repulsive Coulomb potential between like charges, allowing collisions

to occur at closer range. This scaling can actually be quite strong, as the collision rate was observed

to scale exponentially with the strong coupling parameter for Γ > 1. For two component ultracold
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Table 2.1: A table of the electron self-equilibration time, tse, in units of µs over a range of tem-
perature and density conditions which are relevant to our UCP experiments. To find the electron
equipartition time, teq, and the 90 degree deflection time, t90, the values in this table can be divided
by 0.69 and 1.39 respectively.

ne(cm
−3) \ Te(K)

1 10 25 50 100 200

5×106 0.03 0.33 1.02 2.48 6.17 15.6

1×107 0.02 0.17 0.54 1.3 3.22 8.08

5×107 0.01 0.04 0.12 0.29 0.71 1.77

1×108 0.01 0.02 0.07 0.15 0.37 0.92

plasma systems, this process becomes more complicated, as the electron component of the UCP

screens out the potential from the ions, reducing their correlation energy [14]. Such a scaling of

the collision rates with the strong coupling parameter has not been calculated for UCP systems.

To start, the scaling of the collision rate for UCP outside the strongly-coupled regime has yet to be

measured, which will be necessary in order to observe any type of collisional enhancement owing

to strong coupling.

2.4 Models of Plasma Dynamics

Plasma dynamics can be modeled in many different ways, and as with any model, one needs to

consider the situation in order to determine what level of sophistication is needed to understand the

relevant physics of the system. In this section, I will outline several methods for modeling plasma

dynamics and discuss the applicability of each method. These methods include dynamic particle

simulations, models of the evolution of phase space distributions, and fluid models among others.

For UCP systems, each of these methods have been implemented in order to model the dynamics

of UCP systems under a variety of conditions.

The simplest model setup, yet potentially the most computationally intensive, is the dynamic

particle simulation [15]. In this method, individual particles can be tracked along with their inter-

actions with each other. Because of the 1/r2 dependence of the Coulomb force, this method can

be troublesome in a variety of different ways. First, the Coulomb force is long range, meaning that

interactions between many particle pairs must be taken into account when modeling the plasma

dynamics. Also, at short range, numerical instabilities can develop if particles approach too close
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to each other during any particular time step. Therefore, these types of simulations can require

very short time steps and also suffer greatly from N2 type computation times. To model long

timescale processes, these simulations can take many months to complete, and therefore are most

useful when studying short timescale processes. However, modifications have been made using

a mean field approximation to calculate the force on the electrons in a Monte Carlo simulation,

which allowed for a model of longer timescale expansion dynamics in [12]. In general, these types of

particle simulation methods are useful for modeling plasma dynamics that lead to electron escape.

Another method for modeling plasmas is by tracking the phase-space distributions of the ions

and electrons as they evolve in time. The evolution of the phase space distribution for a spherically-

symmetric plasma is governed by the Vlasov equation, which in three dimensions is given by [3],

∂f(~v,~r, t)

∂t
+ ~v · ∂f(~v,~r, t)

∂~r
+

∂

∂~v
· (~af) = 0 (2.18)

where f(~v,~r, t) is the phase space distribution of the ions or electrons in velocity and position space

as a function of time and ~a is the acceleration of the particles in the plasma as governed by the

Lorentz force. It should be noted that the Vlasov equation assumes a collisionless plasma which

is generally not valid for most ultracold plasma systems. However, collisions cannot produce a net

energy transfer in a spherically symmetric system because any transfer of energy owing to collisions

is balanced by transfer back in the opposite direction. This allows for these solutions to be used

to model the evolution of UCP systems. This method for modeling plasmas has been particularly

useful for UCP systems as an exact solution of the Vlasov equation has been found for spherically

symmetric, quasi-neutral, two-component plasmas in one [16] and three dimensions [17]. These

models show a self-similar expansion that is driven by the thermal pressure of the electrons. This

model is useful as it relates the expansion of the UCP to the initial electron temperature [18], which

predicts that the rms size of the UCP changes as,

σ(t) =

√

σ(0)2 +
kBTe

mi
t2 (2.19)

where σ is the rms size of the plasma across one spatial dimension, Te is the temperature of the

electrons, and mi is the mass of the ions. Expansion in ultracold plasmas has been shown to match

the predictions of the Vlasov model in [19, 20]. Comparisons of expansion to this model have

also allowed for the study of processes that alter the electron temperature at early times, such as
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three-body recombination [18] and evaporative cooling (Chapter 5). This modeling has been useful

for ultracold plasma physics because it produces results that can be directly compared to UCP

expansion data without the need to run computationally intensive simulations.

Another model of plasma expansion treats the two components of the plasma as interacting

fluids [12]. This model of the plasma expansion tracks the expansion of the ions as energy is

transferred from the electrons. More details of this model are presented in Chapter 5, as we make

modifications to this model to take into account the effect of electron evaporation on the electron

temperature and ion expansion energy. Modifications to this model have also been made to account

for the plasma expansion in two dimensions [21], which account for the expansion dynamics of

plasmas that are no longer spherically symmetric.

Conclusion

In this chapter, I have outlined several important fundamental concepts for plasma physics

experiments as they relate to ultracold plasma systems. While many of these textbook phenomena

are not directly applicable to UCP systems, they serve as a both a reference for understanding

fundamental concepts in these systems as well as a starting point for a more sophisticated modeling

approach. Many of these concepts will be discussed throughout this thesis in reference to our

experimental parameters. Additional details on more sophisticated models that relate directly to

UCP systems will be given in the relevant chapters concerning those topics.
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Chapter 3

Ultracold Plasma Apparatus

In the previous chapters, I discussed the formation of ultracold neutral plasmas (UCPs) from pho-

toionized ultracold atoms [1] as well as the details of some of the physics of strongly-coupled plasmas

[2]. I also presented some of the background details on the physics of plasmas that are confined

in a Penning trap configuration [3]. The Penning trap will allow for the study of long timescale

plasma processes relative to the natural lifetime of UCPs such as the electron-ion thermalization

rates and ion-ion collision rates [4]. I also presented much of the background physics that will be

needed to understand the experiments presented in this thesis [5, 6].

To design an apparatus to perform experiments using UCPs, one must consider each step of

the experiment separately and find the means to integrate each subsystem together. The main

consideration for this apparatus was the creation of a Penning trap for a two-component UCP,

which requires a particular configuration of electrodes and magnetic field environment in the UCP

formation region. This electrode configuration would limit the optical access needed to cool and

trap the ultracold atoms in the magneto-optical trap (MOT). Therefore it was necessary to separate

the MOT region from the UCP region and transfer the ultracold atoms between the two using a

magnetic quadrupole trap mounted to a motorized translation stage [7].

In this chapter, I will discuss each of the subsystems of this experimental setup and all of

their components in detail. I will discuss the design considerations and equipment needed for the

vacuum system, the lasers required for magneto-optical trapping and photoionization, the design of

the magnetic trap and electrode assembly, and the charge detection system. The equipment used

in this experiment is a combination of commercially available scientific equipment and equipment

that was designed and constructed here at Colorado State University. The in-house designs will be

detailed in this chapter as a reference for future users of this experimental apparatus.

3.1 Design of the Apparatus

The design of our ultracold plasma apparatus, seen in Figure 3.1, differed from those seen in

typical UCP experiments and required special considerations in order to accommodate the complex

electrical environment that was necessary for our planned experiments. The Penning trap electrode
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Figure 3.1: A diagram of the vacuum chamber used for the experiments described in this thesis.

The diagram is split into two sections for clarity. The top and bottom sections of the diagram are

connected at the arrows. MCP stands for micro-channel plate detector and is discussed in detail

in Section 3.6. The electrodes assembly is highlighted in blue and the grids assembly is highlighted

in red.
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configuration that is used in the experiments detailed in this thesis consists of seven cylindrical

copper electrodes which are described in detail in Section 3.4.1. This set of electrodes would

eliminate the optical access needed to produce a MOT if the ultracold atom production and UCP

creation took place in the same region of space as in other UCP experiments [1]. To eliminate this

problem, we separated the MOT region from the plasma region in space, and optimized each region

individually to produce the proper environment for both creating the MOT and for creating UCPs.

The MOT and UCP regions are separated by a distance of ∼73 cm. To transfer the ultracold atoms

produced by the MOT to the UCP region, we used a set of anti-Helmholtz coils attached to a linear

translation stage to magnetically trap the atoms from the MOT. These are the same magnetic

coils that are used to provide the anti-Helmholtz field for the MOT. The two regions are separated

further by a differential pumping aperture, with an ion-pump on each side of the aperture to pump

down each region of the vacuum chamber. The vacuum chamber has several additional areas in

the chamber with electrical feed-throughs that provide the voltages that are used on the electrode

and grid assemblies.

The optimal design of the vacuum chamber was to arrange most of the vacuum components

along a straight line so that we could transfer the atoms using a linear translation stage. The anti-

Helmholtz coils that provided the magnetic field to create the magnetic trap had to be mounted

with one of the coils above the chamber and the other coil below the chamber. This means that

there could not be any mount supporting the vacuum chamber that was directly below the chamber,

otherwise the path of the anti-Helmholtz coils would be obstructed. To prevent this problem, we

designed a set of mounts that can support the full weight of the vacuum chamber from the side by

using clamps that reached in between the anti-Helmholtz coils to hold the chamber. These mounts

also had the added feature of being able to finely adjust the height of the vacuum chamber on

both ends, which helped with the alignment of the atom transfer which will be discussed later. An

additional support mount was placed below the micro-channel plate detector which was outside the

range of the translation stage motion.

The anti-Helmholtz coil mounts also had a special design that was necessary for the production

of our MOT. As seen in Figure 3.1, the coil mount is in an “L” shape, keeping the mount far from

the center of the coils. We did this so that there would be room for the mirrors that were necessary

to input the MOT beams into the vacuum chamber. The coils themselves require a relatively large
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amount of current for magnetic trapping (120 A) and through repeated runs of the experiment, will

dissipate a large amount of energy through resistive heating. This heating could eventually lead to

a breakdown in performance, as the resistance of the coils will increase as they are heated. So, we

designed the anti-Helmholtz coils so that they could be water-cooled during the operation of the

experiment. The wire used for the coils was kapton-insulated, square copper tubing. The normal

application of this type of tubing is in refrigeration systems and works perfectly for our purposes.

The wire is hollow, which allows us to flow water through the center of the wire to keep it cool

during the operation of the experiment. Also, since the wire is square, it lays nicely inside of the

coil forms and stacks in successive layers as we wrapped the coils.

The rest of the apparatus will be explained in detail throughout the following sections of this

chapter. The details presented in this chapter are necessary for fully understanding the experiments

presented in Chapters 4 − 6.

3.2 Laser Cooling and Magneto-Optical Trapping

The development of laser cooling and trapping techniques has provided useful tools in a wide

variety of atomic physics experiments [8]. In the experiments discussed in this thesis, we use these

techniques in order to produce the ultracold atom source needed to create plasmas at very low

initial temperatures. The most used version of laser cooling, Doppler cooling, takes advantage

of the momentum transfer properties of atom-photon scattering and the Doppler shift. These

properties create a damping force on atoms in motion that slow atoms moving toward a laser

beam. With the addition of a magnetic field, this force can also be position dependent, creating

the conditions needed to cool and trap a sample of ultracold atoms.

For our experiments, we chose to use 85Rb because of the convenient laser transitions associated

with laser cooling. 85Rb has a transition from the 5S1/2 ground state to the 5P3/2 excited state

at 780 nm [9]. This wavelength can be produced by diode lasers that are used commercially for

many applications, so they are cheap and readily available. Also, 85Rb has a nearly closed cooling

transition that requires little repump light. In addition, our experiments require a two-photon

ionization of the Rb atoms in order to produce ultracold plasmas. This can be done with the

addition of light at 479 nm from a pulsed dye laser to ionize atoms by exciting electrons from the

5P3/2 state to the continuum [10].
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3.2.1 The Force Exerted on an Atom by Laser Light and Doppler Cooling

To understand how atoms can be cooled by laser light, we can study the interaction of an atom

with photons from a laser beam. For a two level atom with one optically active electron, the photon

scattering rate from a laser with intensity I is given by [8],

γp = 2πΓ
I/2Isat

(1 + I/Isat + (2∆/Γ)2)
(3.1)

where Γ is the natural linewidth of the transition in Hz (∼6 MHz for the cooling transition in Rb),

Isat is the saturation intensity (∼1.6 mW/cm2 for Rb for circularly polarized light and fully spin-

polarized atoms [9]), and ∆ is the laser frequency detuning from the natural transition. When the

atom absorbs a photon from the laser light, it will receive a momentum kick of h̄k in the direction

of laser propagation. When a photon is spontaneously emitted, it will leave in a random direction,

giving the atom a momentum kick in a random direction. The momentum kick from spontaneous

emission will average out to zero over many photon emissions, so the average force on an atom in

a laser light field is,

F = h̄kγp = 2πΓh̄k
I/2Isat

(1 + I/Isat + (2∆/Γ)2)
(3.2)

where k is the wave number of the photon from the laser light.

In principle, the laser light can both slow down and speed up an atom by scattering photons,

meaning that considerations need to be taken in order to ensure that the atom is cooled when

impinged upon by laser light. To do this, the Doppler effect is used with the fact that γp falls off

as the laser is detuned from resonance. Figure 3.2 shows the photon scattering rate as a function

of laser detuning for a two-level atom. If the laser is detuned to the red of resonance, then the

photon scattering rate is decreased from its peak. However, if the atom is moving opposite the

propagation direction of the laser beam, then the frequency of laser light in the reference frame of

the atom is blue-shifted, increasing the photon scattering rate. Moving in the same direction as

the laser propagation, the light is red-shifted, decreasing the photon scattering rate. If we counter

propagate two red-detuned lasers, then we ensure that the atom will scatter more photons from the

beam that it is moving towards, slowing the atom if it travels in either direction. This is known as

an optical molasses, and provides a velocity dependent damping force on atoms in the light field.

We can use Equation 3.2 to determine the net cooling force on an atom with velocity v in the
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Figure 3.2: A plot of the photon scattering rate, γp as a function of laser detuning. If the laser is

red-detuned, an atom at rest will have a photon scattering rate shown by the black line. If it is

moving opposite the propagation direction of the laser, the frequency will be blue-shifted, and the

atom will have a higher scattering rate represented by the blue line. If the atom is moving in the

same direction as the laser propagation, the frequency will be red-shifted, and the atom will have

a lower scattering rate represented by the red line. In this configuration, we set the laser detuning

so that the atom is more likely to scatter photons that slow it down.
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counter-propagating laser field as,

F =
h̄kγ

2







I/Isat

(1 + I/Isat + 4
(

δ−kv
γ

)2
− I/Isat

(1 + I/Isat + 4
(

δ+kv
γ

)2






(3.3)

where γ = 2πΓ and δ = 2π∆. This function has a peak in the absolute velocity, meaning that high

enough velocity atoms will feel little force. This sets a limit to the velocity of atoms that can be

effectively Doppler cooled.

3.2.2 Creating a Magneto-Optical Trap

To create an atom trap, an optical molasses is not sufficient. While the optical molasses provides

a damping force, it is not position dependent. So, even though atoms are slowed, they will even-

tually drift out of the cooling region. To create a position dependent force, we can add a linearly

varying magnetic field to the optical molasses, creating a magneto-optical trap [11]. The simplest

configuration to consider is the 1-D magneto-optical trap seen in Figure 3.3. Here, we consider

a two-level system in which the excited state magnetic sublevels at mJ = ±1, 0 can be separated

in energy owing to the Zeeman effect. The energy levels for the mJ = ±1 states will decrease in

energy on opposite sides of the trap. These energy levels correspond to transitions from either a

σ+ or σ− laser beam. In this configuration, we counter-propagate red-detuned σ+ and σ− beams

in the trapping region. We can choose the propagation direction of the σ± beams so that atoms

will preferentially scatter photons from the beam that will move it back towards the center of the

trap. This creates a force on the atoms that depends on position, which is necessary for creating a

trap at a particular location in space.

This concept can be extended to three dimensions, as seen in Figure 3.4. We use three orthog-

onal laser beams, which are retro-reflected back along their original path, creating a cooling force

which will oppose atomic motion in every direction. The beams pass through a λ/4 wave plate

before being retro-reflected, which reverses the handedness of the circularly polarized light. The

magnetic field is provided by a set of magnetic coils in an anti-Helmholtz configuration. For our

experiment, the 85Rb atoms are cooled using light at 780 nm to excite the 5S1/2 F = 3 to 5P3/2

F = 4 transition as seen in Figure 3.4. This transition is not completely closed, as off-resonant

transitions to the F = 3 excited state can decay to the optically “dark” F = 2 ground state. So, our
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Figure 3.3: The energy levels for a 1-D magneto-optical trap as a function of position. Here

we counter-propagate laser beams of opposite circular polarization that are red-detuned from the

mJ = 0 transition. As an atom travels away from the center of the trap, it gets closer to resonance

with the counter-propagating beam, pushing it back toward the center of the trap.
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Figure 3.4: A diagram of the magneto-optical trap setup for our system with the relevant energy

levels for 85Rb. The red line shows the main cooling transition between the F = 3 ground state

and the F = 4 excited state. The F = 3 and F = 4 levels of the excited state are separated in

frequency by ∼120 MHz, which leaves a non-vanishing probability for an off-resonant transition to

the F = 3 excited state. Transitions to this state can decay to the F = 2 ground state, which

requires a hyperfine repump, shown by the pink line, to get the atom back onto the main cooling

transition.
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system requires hyperfine repump light to get atoms back onto the cooling transition. The beams

used to create the MOT have a ∼3 cm diameter and single-beam peak intensities of 11 mW/cm3.

The hyperfine repump light has beam diameters of ∼2 cm and peak intensities of 3 mW/cm3

3.2.3 Diode Laser System

The lasers used for creating the MOT in our system are 780 nm, external cavity diode lasers

(ECDL). The diode lasers used in our system are ADL-78901TX lasers produced by Roithner

LaserTechnik. These lasers are inexpensive and readily available as they are mass produced for

many commercial applications. For use in scientific experiments, we build our own laser housing

system which provides a means for frequency control and temperature stabilization of the lasers.

These lasers provide > 70 mW of total power, and can be tuned over a 10 − 14 nm span of total

wavelength, centered around 785 nm.

The diode lasers are housed in a Thorlabs LT230P-B collimation tube which allows us to

minimize the output divergence of the beam. The beam is astigmatic, and can be corrected by

using a prism pair after the output of the laser housing. To control the frequency of the laser, we

use a Littrow configuration in which a diffraction grating after the output of the laser feeds back

the m = −1 order diffraction spot through the laser. This increases the net gain of the laser at the

wavelength associated with this diffraction. We can control the angle of the diffraction grating by

using a piezo-electric transducer (PZT) which is attached to mount of the diffraction grating.

To tune the laser to the desired frequency, we use Doppler-free saturated absorption spec-

troscopy [12], which allows us to calibrate the PZT voltage that sets the angle of the diffraction

grating to the transitions to the different hyperfine levels of the excited states as seen in Figure 3.5.

In this saturated absorption set-up, we send two low-intensity beams through a Rb vapor cell, after

which we measure the individual beam power on a pair of photo-diodes. When the beam is near

resonance, the vapor absorbs light from the beam which lowers the beam power that is measured

by the photo-diodes. A high-intensity beam is counter-propagated with one of the low-intensity

beams that will saturate the transitions between the hyperfine states, which reduces the decrease

in beam power on that low-intensity beam. The signal from the two photodiodes are subtracted,

which shows peaks associated with the transitions between the hyperfine states as seen in Figure

3.5.
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Figure 3.5: A diagram of the saturated absorption setup (left) for our system with the subtracted

signal for 85Rb 5S1/2 F = 3 to F = F ′ transition (right). The two larger peaks in the saturated

absorption signal correspond to the crossover peaks, where saturating beam and the probe beam are

resonant with two different hyperfine transitions because they are Doppler shifted into resonance

with different velocity classes of atoms for their respective hyperfine transition. This occurs halfway

between the relevant hyperfine transitions. The saturated absorption figure was taken from [13].
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To lock the laser to a particular frequency, we use a Dichroic-Atomic-Vapor Laser Lock (DAVLL)

system [14]. The DAVLL uses a Rb vapor cell in an approximately uniform magnetic field. The

magnetic field induces Zeeman shifts which separate the frequencies of transitions driven by σ+

and σ− light. The shifts produce Doppler absorption signals for σ+ and σ− that are separated

in frequency. We send a beam through the DAVLL cell that has both σ+ and σ− components.

After the cell, we can separate the two components of light using a λ/4 waveplate and a polarizing

beam-splitting cube. We can then subtract the Doppler absorption signals of the two components

from each other. This produces a signal that has a large linear slope which can be calibrated with

the saturated absorption setup, and locked using a side-lock servo circuit.

To produce a stable laser mode, there are several requirements. First, we require precision laser

current controllers. For this, we use ILX Lightwave model LDX-3525 precision current sources. This

current source has the ability to produce a stable output current for our diode lasers at the 0.1%

level. Also, we are able to further lock the laser current to the desired laser mode by modulating

the current through the front panel of the current controller using a servo circuit. The servo circuit

locks to our DAVLL signal, and sends a signal to the current controller to keep the laser mode

at the correct frequency. The second requirement for stable laser operation is laser temperature

stability on the 5 mK level. To maintain a consistent temperature, we require external control

in which a temperature sensitive resistor is place in thermal contact with the laser mount inside

the housing. This resistor provides the error signal in a temperature control servo circuit, which

controls the current through a thermo-electric cooler that regulates the temperature of the laser.

Stable laser operation also requires sufficient vibrational and electrical isolation. Mechanical and

electrical kicks to the laser can cause the laser to lose its frequency lock on a regular basis, making

experiments difficult to perform. Vibrational stability was obtained by placing thin sorbothane

pads between the laser housing and the optical table. Electrical isolation is a bit more difficult

as ground loops that may be introduced onto the electrical circuits controlling the laser can be

difficult to counteract. This is typically combated by using highly conductive grounding strap to

ensure that the lasers maintain a proper ground reference.

The laser housings that we use for our experiment are based on two different designs that both

have advantages and disadvantages that need to be considered when deciding which type of housing

to use. They are both based on the ECDL design described above, but one is designed in a compact
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fashion to minimize the table “footprint” of the laser and the other was a larger design for maximum

temperature stability. The smaller design does reduce the laser “footprint” by a factor of ∼2, but

has had considerable temperature stability issues in the past. This is mainly due to the laboratory

environment not maintaining a stable temperature throughout the course of the day, where we can

see temperature shifts on the order of 10 degrees Fahrenheit. The temperature servo circuits for the

laser are slow by design given the large thermal mass of the base of the lasers (generally a block of

aluminum). Although this is designed to try and help maintain laser temperature stability, the small

“footprint” design is sensitive to temperature swings in the laboratory, thus reducing the overall

laser mode stability. The larger design was more suited to the requirements of our experiment,

because we are not lacking in table space to the point where the smaller design becomes necessary.

However, at this point we have greatly improved the temperature stability of the lab through the

addition of a commercial air conditioning unit, making the replacement of the smaller laser design

unnecessary.

3.2.4 Absorption Imaging

To characterize the atoms in the MOT and in the photoionization region of the vacuum chamber,

we use absorption imaging which allows us to determine the MOT atom number, spatial extent,

and temperature [15]. These techniques are standard in many ultracold atom experiments, and are

only used in these experiments to initially characterize the MOT and magnetic trap loading, and

to help us locate the position of the magnetically trapped atoms on the plasma side of the vacuum

chamber. So, I will discuss these techniques only briefly here.

For a low-intensity (I << Isat), resonant laser beam traveling through a cloud of atoms, the

intensity of the laser beam as function of distance traveled through the cloud is governed by,

dI

dz
= −nσI (3.4)

where n is the density of atoms, σ0 is the absorption cross section (3λ2/2π for circularly polarized

light and fully spin-polarized atoms) and I is the intensity of the laser at a given position in the

atom cloud. We can integrate this equation over the direction of laser propagation to find the

optical depth of the atom cloud to be OD = ln(I/I0), which in turn is proportional to the number

of atoms in a given column of the atom cloud. Here I is the measured intensity of a resonant,
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low-intensity probe beam traveling through the cloud of atoms, and I0 is the intensity of the beam

without the atoms present. By measuring the optical depth spatial profile, we can determine the

rms size of the cloud and the total number of atoms trapped in our MOT given by,

N =
2πσxσy

σ0

ODpeak (3.5)

where σx and σy are the rms sizes for the 2 spatial dimensions, and ODpeak is the peak optical

depth. These parameters can be obtained from an absorption image to calculate the total number

of atoms in the MOT. For our system, we used linear polarization for our images. This has the

effect of reducing the overall absorption cross section σ0 by a factor of 2. These same techniques

can also be used to characterize the atoms in the magnetic trap, which is discussed in the next

section.

3.3 Magnetic Trapping and Transfer of the Ultracold Atoms

Since the UCP formation region and the MOT region are separated in space, we used a magnetic

quadrupole trap mounted to a motorized translation stage to transfer ultracold atoms from the

MOT region to the UCP formation region. This technique was first used in Bose-Einstein conden-

sate (BEC) experiments at JILA in Boulder, Co [7]. To create the magnetic trap, we used a pair

of multi-turn magnetic coils in an anti-Helmholtz (AH) configuration using hollow copper wire.

The copper wire was water cooled by flowing water through the wire cavity to prevent overheating

during the magnetic trapping

The trap itself is formed through the interaction of the magnetic field from the AH coil con-

figuration with the magnetic dipole moment, µ, of the valence electron in the 5S1/2 F = 2 ground

state of 85Rb. The interaction energy of the electrons magnetic dipole and the quadrupole field is

given by,

U = −~µ · ~B (3.6)

where B is the externally applied field from the magnetic trap. The magnetic dipoles from the

electrons will adiabatically follow the external magnetic field as long as the square of the larmor

precession frequency, ω2
L, is much greater than the time rate of change of the larmor frequency,
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dωL/dt as it travels through the magnetic field. This is easily satisfied for ultracold atoms except

at a very small region around the center of the trap where B = 0. As long as this approximation

holds true, then the interaction energy becomes [7],

U = −| ~µB | · | ~B|gF mF (3.7)

where gF = −1/3 is the g-factor for the F = 2 ground state in 85Rb and mF is the magnetic

sublevel. This provides an interaction energy that will allow the trapping of atoms in particular

magnetic states in the magnetic trap.

3.3.1 Calculating the Ideal Anti-Helmholtz Size and Spacing

To find the ideal magnetic field strength for creating a magnetic trap with an anti-Helmholtz

configuration, I can start by calculating the magnetic field for a single magnetic coil of N turns at

an arbitrary point in space by direct integration of the Biot-Savart equation:

~B =
µ0NI

4π

∫ ~dl × ~r

r3
(3.8)

Here µ0 is the permeability of free space, I is the current in the coil, and ~r is the position in space

relative to the current element that we are integrating. To find the ideal trapping conditions, it is

best to normalize the spatial coordinates with respect to the radius of the magnetic coil, b, to allow

easy calculations for a variety of coil configurations. I’ll define the following parameter,

B0 =
µ0NI

4πb
(3.9)

Since there is cylindrical symmetry, I can solve Equation 3.8 in component form for a single coil of

wire so that,

Bρ

B0

= (ζ − ζ0)

∫

2π

0

cos(φ)dφ

(η2 − 2ηcos(φ) + (ζ − ζ0)2 + 1)3/2
(3.10)

Bz

B0

=

∫

2π

0

(1 − ηcos(φ))dφ

(η2 − 2ηcos(φ) + (ζ − ζ0)2 + 1)3/2
(3.11)

where ζ = z/b, ζ0 is half of the normalized coil separation (in terms of the coil radius), and

η = ρ/b. Equations 3.8 and 3.9 can be calculated explicitly for a pair of coils located at ±ζ0 in the

configuration seen in Figure 3.4. The fields for the AH pair were then calculated numerically at

52



multiple positions in space and the magnitude of the field was fit to the approximate function:

B

B0

=
Ab

B0

√

η2 + 4ζ2 (3.12)

where A is the magnetic field gradient at the center of the trap in the radial direction. This shows

that the magnitude of the magnetic field increases as you leave the center of the coils, creating a

trap near the center of the coils as seen from Equation 3.7. The integration of Equations 3.10 and

3.11 allows us to calculate the field gradient, A, for an arbitrary coil size and spacing. Figure 3.6

shows the value of A for a range of AH-coil sizes and separations. The strength of the magnetic trap

is proportional to the value of the field gradient, and Figure 3.6 shows that in order to maximize

the field gradient for a fixed current, the coil separation should be minimized over the range of

experimentally accessible parameters.

The potential energy of an atom in the magnetic trap is given by,

U = µAgF mF

√

ρ2 + 4z2 + mgz (3.13)

The field gradient for trapping must be chosen so that the strength of the magnetic trap is enough

to overcome the gravitational force acting on the atom (Note: the coil geometry is such that the

direction of gravity is along the z-axis of the coils). To determine this, we can calculate the force

of gravity in units of the magnetic field gradient in the z-direction. We can set ρ = 0 so that,

U = 2µAgF mF |z| + mgz (3.14)

When z < 0, the forces from the magnetic trap and gravity oppose each other, giving a threshold

value for the field gradient for magnetic trapping as given by

Amin =
mg

2µgF mF
(3.15)

Since hyperfine state changing collisions limit the magnetic trap lifetime in the upper F = 3 ground

state in 85Rb, we choose the F = 2 ground state to trap the atoms. The mF = -1,-2 magnetic

sublevels are trappable since they create a minimum in the value of the magnetic field. Equation

3.15 gives a value for the minimum field gradient of 11 and 22 G/cm for the mF = −1,-2 states

respectively. For the coils to have clearance over the entire vacuum chamber, they need to be spaced

by at least 5 inches. From Fig 3.6, for a spacing of 5 inches, the maximum field gradient is for coils
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Figure 3.6: The magnetic field gradient as a function of the coil radius for various coil separations

for N = 30 turns and 120 amps. The peak in the field gradient allows for the determination of the

proper coil radius for a given separation. For our system, the separation needs to be 5 inches to

sufficiently clear the vacuum system. This shows that we needed to make the coils with a 2 inch

radius. The units for the coil separation and coil radius are in inches because the equipment in the

machine shop used to create the coils uses British imperial units.
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with a 2 inch radius. For N = 30 turns and a current of 120 Amps, this gives a field gradient of 33

G/cm, which is sufficient for trapping both mF = −1,-2 states in the F = 2 ground state of 85Rb.

3.3.2 Loading the Magnetic Trap

The magnetic trap is loaded from the MOT by increasing the current through the same AH-coils

that create the magnetic field for the MOT. The loading of the magnetic trap consisted of the

following steps. After the atoms are cooled into the MOT, we used a compression stage to increase

the density of the atoms in the MOT. To do this, the trapping laser is detuned from its original 10

MHz detuning used for loading the MOT to 45 MHz and the hyperfine repump laser is attenuated

by 30 dB to decrease the radiation pressure from photon rescattering, allowing the atom cloud

to compress. The compression stage lasts for 5 ms, after which the ultracold atoms are optically

pumped to F=2 ground state by turning off the hyperfine repump light for 2 ms before the main

trapping light is turned off (see Figure 3.4). Additional optical pumping into trappable mF states is

not required as ∼40% of the MOT atoms are already in trappable states. Optical pumping would

increase the number of atoms trapped but would require a significant amount of experimental

implementation for little gain. After the atoms are pumped into the F = 2 ground state, all of the

laser light is turned off and the atoms begin to fall under gravity. The AH-coils are then ramped up

to 120 A, “catching” the falling atoms in the magnetic trap. Control of the timing of this sequence

is important for optimizing the load into the magnetic trap. Ramping the current to 120 A too

slowly will cause the atoms to fall out of the trap before it can be formed. The rate at which

current can be provided to the coils will be limited by the coil inductance.

To control the current of the magnetic trap, I designed a circuit to regulate the voltage and cur-

rent settings of an Agilent 6682A power supply. In principle, voltage and current can be computer

controlled through GPIB, however the current and voltage can not be changed between levels in

less than 50 ms by this method. Also, the inductance of the AH coils will work to prevent changes

in the current, further slowing down the current ramp speed. For efficient magnetic trapping, the

ramp time will have to be much faster than this, on the order of a couple of ms.

To change the current level faster, I designed a servo circuit to regulate the current through

the AH-coils by controlling the gate voltage on a set of 12 field-effect transistors (FET) as seen in

Figure 3.7. The servo circuit allows us to keep the current setting on the Agilent power supply
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Figure 3.7: Current and voltage control circuit for the anti-Helmholtz coils
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at the maximum current to be used during the experimental sequence, to avoid problems with

the switching time. The inductance of the AH-coils was the main limiting factor to switching the

magnitude of the current on the ms timescale. The voltage across an inductor is proportional to

LdI/dt. To increase dI/dt, the servo circuit was designed to increase the voltage across the AH-

coils and the FETs to 10 V, which is higher than the 1.2 V (30 A) needed for the MOT and the 4.5

V (120 A) needed for magnetic trap. During this stage, the servo decreases the gate voltage across

the FETs to maintain the current needed for the MOT. To switch the current levels, the FET gate

voltage is increased to close the FETs completely. At this point, nearly all of the voltage is across

the coils, increasing dI/dt to achieve a switching time of ∼2 ms. This rate of switching is sufficient

for magnetic trapping, and is what we use for the work in this thesis.

One of the best ways to quickly determine the loading of the magnetic trap is to recapture

the trapped atoms in the MOT. We start by loading the magnetic trap from the MOT. When

the MOT laser light is turned off, any untrapped atoms will fall out of the MOT region under

the effect of gravity. In just 200 ms, the untrapped atoms can fall nearly 20 cm, which is much

greater than the spatial extent of the trap region. At this time the current through the AH-coils

can be ramped down to the original MOT level (30 A) and the MOT laser light can be turned

back on. The atoms that remain in the magnetic trap will be quickly recaptured by the MOT.

By measuring the fluorescence of the MOT on a photodiode before and after the recapture, the

fraction of the atoms trapped in the magnetic trap can be determined. If the mF levels for the

atoms are completely randomized upon turning on the magnetic trap, I expect to trap ∼40% of

the MOT atoms in the magnetic trap. However, the polarization of the MOT beams can provide

some optical pumping which can improve the loading into the magnetic trap above 40%. This has

limited effectiveness because the polarization of the MOT beams in the trapping region is not well

characterized. Optimizing the polarization of the beams in the MOT region is difficult because the

optical thickness of the MOT can affect the polarization of the retro-reflected beams.

Another property of the magnetic trap that we can determine by doing a recapture measurement

is the lifetime of the atoms in the magnetic trap. Owing to collisions with room-temperature atoms

in the background vapor, atoms will be lost from the trap. To measure the lifetime, we simply hold

the atoms in the magnetic trap for varying lengths of time before performing the MOT recapture.

The lifetime of the magnetic trap depends mostly on the quality of the vacuum and generally
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increases the longer the system has been run since the last vacuum chamber bake-out. The lifetime

will also depend on the vapor pressure of the background Rb that we get from running our Rb

getters. For our system, the lifetime of the magnetic trap is typically between 2− 4 s. The lifetime

of the magnetic trap is one of the limiting factors in the transfer efficiency of atoms to the plasma

region. Other limiting factors will be discussed in section 3.3.3.

Another way to measure the loading of atoms into the magnetic trap is by using absorption

imaging (Section 3.2.4). In this case, we find out not only how many atoms are loaded into the

magnetic trap, but also the quality of the loading into the trap, which is determined by the density

and temperature of the atoms in the trap. These two quantities will be related by the following

expression,

n(~r) = n0exp

(−U(~r)

kBT

)

(3.16)

where n0 is the peak density, U is the magnetic trap potential energy as given by Equation 3.13,

kB is Boltzmann’s constant and T is the temperature of the trapped atoms. Inefficient loading into

the magnetic trap can cause an increase in the temperature of the trapped atoms, which lowers the

overall density.

To measure the peak density, we measure the peak optical density using absorption imaging as

seen in Figure 3.8. To do this, we pass a resonant, low-intensity beam through the cloud of atoms

and image the beam on a CCD camera. The CCD camera we use for our absorption imaging is

a Flea 2 model FL2-20S4M-C from Point Grey Research. The Flea 2 camera has a 1624×1224

pixel array with a 4.4 µm pixel size. Peak OD measurements can yield values as large as -1, with

characteristic spatial extent of ∼ 0.8−1 mm (a rms width across one spatial direction). This results

in peak densities that can be as high as 1010 atoms/cm3 and as many as 2.5 × 107 total atoms in

the trap. One can note that magnetic trapping strength in the axial direction is twice as strong as

in the radial direction. Figure 3.8 shows that this results in an asymmetric atom distribution with

a ratio of ∼ 2/1 when imaged in the MOT side of the vacuum chamber.

The temperature of the atoms in the magnetic trap can be measured by releasing the atoms

from the trap and measuring the rate of expansion of the atom cloud using absorption imaging.

This is not a measurement that was performed very often since measurements of the peak OD

provided the information about the magnetic trap loading that we wish to know. However, the
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Figure 3.8: An absorption image of the magnetically trapped atoms in the MOT region of the

vacuum chamber. To produce the image, the atoms are trapped in the magnetic trap for ∼200 ms

to allow the untrapped atoms from the MOT to fall away. The atoms are then released from the

trap, repumped to the F = 3 ground state and imaged using an optical probe beam tuned to the

5S1/2 F = 3 to 5P3/2 F = 4 transition. The color coded scale on the side of the image shows the

optical depth (OD) image. There are ∼ 25 × 106 atoms in this image.
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temperature of the magnetic trap will allow us to calculate some useful quantities that we will need

in the discussion of the atom transfer in the next section.

The image of the atoms in the magnetic trap allows us to determine the rms size in each

dimension. Upon their release from the magnetic trap, the atoms will freely expand. By measuring

the rms size over multiple images over a range of times, we can find the temperature by fitting the

rms size as a function of time to the following form,

σ(t) =

√

σ(0)2 +
kBT

m
t2 (3.17)

For our system, the temperature of the atoms in the magnetic trap is typically ∼100 µK, which

shows that there is not substantial heating during the loading of the magnetic trap.

3.3.3 Computer Control of the Translation Stage

The movement of the translation stage to transfer the atoms from the MOT region of the vacuum

chamber to the plasma region requires precise control of the stage’s position, velocity, and accel-

eration. The translation stage apparatus was sold by InPosition Technologies. The stage itself is

attached to a large screw drive that moves the stage horizontally along the track when the screw is

turned. The screw drive is turned by an external high-torque, Gemini GV6K servo-controlled motor

which is capable positioning the translation stage with µm precision at speeds as high as 5 m/s. In

practice, we operate the translation stage at a peak speed of 0.76 m/s, with a peak acceleration of

1.27 m/s2 and peak deceleration of 0.63 m/s2. Of great importance is the servo-tuning parameters

of this motor, which take the weight load of the translation stage into account in order to properly

accelerate the stage with the correct amount of torque. Improperly setting the servo parameters

can cause servo oscillation and catastrophic damage to the system, so it is important that one sets

the servo to correct parameters for the load that is attached to it.

The translation stage motor settings are controlled by the Motion Planner program, which was

provided by manufacturer. This program provides the means to control the stage’s movements as

well as allowing the tuning of the servo parameters, which is necessary for proper control of the

stage. The servo has proportional, integral, and differential gain control of the motor, and these

gains serve as the tuning parameters for the translation stage and motor system. The servo tuner is

a sub program of Motion Planner that allows for the tracking of the motion profile (stage position
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vs. time) of small movements of the stage as a function of the servo tuning parameters. To set the

servo parameters, we try to match the desired motion profiles as well as possible while adjusting

the servo parameters. When the motion profiles are matched for small stage motions, we can begin

to increase the acceleration and velocity of the stage to the operating conditions of the experiment.

During the experiment, the stage is controlled by loading pre-programmed motions to the

motors on-board memory using Motion Planner. The stage movement is then controlled by TTL

logic pulses (see Section 3.7) that set the timing of when the motor is turned on/off as well as

sending commands to move the stage on its pre-programmed motions. It is important to keep the

motor turned off when not in use as it outputs electrical noise that can be picked up by other

experimental equipment in the laboratory. In the event of a power outage or system crash, the

programmed motions will be cleared and the servo tuning parameters will be reset. It is important

to set these parameters to the proper values before operating the stage. Please consult the Motion

Planner Crash Guide which is attached to the inside of the Plasma Experiment Lab Book #1.

3.3.4 Transferring Atoms to the Plasma Region

After loading the magnetic trap, the atoms are then transferred to the plasma region by translating

the AH-coils on a motorized linear translation stage. There are many factors that limit the transfer

efficiency such as the magnetic trap lifetime and atom clipping on the differential pumping aperture

(DPA) and electrode assembly. In this section, I will calculate the expected effect of the various

transfer limitations as well as present measurements of how the system actually worked.

The plasma and MOT sides of the vacuum chamber are separated in space by ∼73 cm. The

MOT side of the vacuum chamber requires a steady supply of background Rb vapor in order to

load the MOT. This background limits the magnetic trap lifetime. So, to minimize this effect

throughout the entire transfer of the atoms, we placed a 6 mm diameter aperture between the two

regions and differentially pumped with an ion pump on both sides of the aperture as seen in Figure

3.1. This differential pumping allows us to maintain a higher vacuum quality on the plasma side

of the vacuum chamber while maintaining a background of Rb vapor in the MOT side. One of

the drawbacks of the differential pumping aperture is that the magnetically trapped atoms have a

chance to be clipped at the aperture and lost during transfer. So, lining up the translation stage and
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vacuum chamber to have the magnetically trapped atoms pass through the center of the aperture

will be essential (and difficult).

We can estimate the amount of atoms that will pass through the aperture by integrating

Equation 3.16 over the size of the aperture for a 100 µK distribution. The atoms in the mF = −2

are more tightly confined than those in the mF = −1 owing to the higher magnetic moment. So, for

a 6 mm aperture, more than 95 % of the atoms in the mF = −2 should pass through the aperture

compared to ∼65 % for the mF = −1 state. Atoms in both states should be in the trap in roughly

equal amounts, so ∼80 % of the trapped atoms should pass through the aperture. Combined with

a ∼3s trap lifetime, a 2s travel time, and a 1s settling time, we should be able to transfer ∼30 %

of the trapped atoms to the plasma region of the vacuum chamber.

In practice, alignment of the magnetically trapped atoms with the aperture and the electrode

assembly is difficult. To maximize the transfer of atoms to the plasma region, we first must

successfully transfer atoms through the DPA. The best way to measure whether or not the atoms

make it through the DPA is by using the MOT recapture method discussed in the previous section.

Using this method, we transferred the magnetically trapped atoms to an arbitrary distance from

the location of the MOT using the translation stage and then back to the location of the MOT for

recapture. We compared the recapture fraction that we measure for this translation to that of no

translation for the same amount of time in the magnetic trap. If there is no obstruction in the path

of the atoms in the magnetic trap, then the measured recapture fraction should be the same in the

two situations. To start, we measured the recapture fraction as a function of the distance from the

initial MOT position until we found the drop in our recapture fraction at the DPA. The DPA is

fixed in its location inside the vacuum chamber. So, to improve the transfer efficiency through the

DPA, we must change the position of the center of the magnetic trap. To do this, we can change

the vertical and horizontal position of the AH coils by small increments until the recapture that

we measure when translating the atoms past the DPA is maximized.

Transfer through the DPA is not the only concern when getting atoms down to the plasma

region of the vacuum chamber. We also must align the translation of the atoms with the center

of the electrodes assembly. To check the transfer efficiency, the same recapture technique can be

used. Again, the alignment will not start out being perfect. When transferring atoms by 73 cm,

even a slight angular misalignment of the vacuum chamber with respect to the translation stage
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will cause transfer inefficiencies. Such was the case for our system. However, for alignment with

the electrodes, changing the location of the AH coils will prove difficult, as this may introduce new

problems with transferring through the DPA. To deal with this problem, we added a pair of shim

coils perpendicular to the motion of the track outside of the vacuum chamber near the electrodes

(the alignment of the shim coil axis was horizontal (Figure 3.9), not vertical as we have a different

way of adjusting that direction which will be discussed shortly). The effect of the shim coils is to

change the location of the center of the magnetic trap when it gets close to the electrodes region.

Changing the center of the trap will allow us to push the atoms closer to the center of the axis of

the electrodes which will allow us to increase our transfer efficiency from the horizontal alignment.

Once we are able to get some degree of atom transfer into the electrodes region, we can fine tune

the alignment by using absorption imaging. The first thing that we align is the vertical position

of the atoms with respect to the electrodes. We can use a probe beam for imaging that has a

size that is initially larger than the space provided by the center electrode (the beam comes in at

45 degrees with respect to this electrode, Figure 3.1). This will allow us to see an oval shaped

shadow of the electrodes in our images of the beam. If the probe beam is aligned horizontally

through the chamber, then the widest part of the beam that makes it through the chamber will be

center position in the vertical direction. To align the atoms, we must physically move the vacuum

chamber in the vertical direction using a special vacuum chamber mount. This mount is placed

near the electrodes and changes the position of the electrodes without having a significant effect

on the vertical position of the DPA.

Once the vertical alignment is optimized, the alignment of both horizontal directions needs to

be optimized. Parallel to the translation stage motion, the distance of the track motion into the

electrodes region can be easily changed. However, seeing an image of the atoms in the center of the

imaging beam does not necessarily mean that the atoms are located in the center of the electrode

assembly as seen in Figure 3.9. To check the alignment, we use absorption images of the atoms

through both ports on the plasma side of the vacuum chamber, providing images at right angles

with respect to each other. If the atoms are not visible in both images, then the alignment is not

correct. We can adjust the atoms horizontal position perpendicular to the translation stage motion

by using the transfer magnetic shim coils to move the center of the trap in the plasma region. We
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Figure 3.9: A diagram of our alignment technique to get the magnetically trapped atoms to the

center of the electrode region. The green circles show the possible locations of the atoms when they

can be seen in the center of the images from one of the probe beams. If the atoms are not visible

in the image from the other probe beam coming in at a right angle with respect to the other beam,

then the atoms are not aligned in the center of the electrodes region. To push the atoms to the

proper position on axis, we can apply a magnetic field from the transfer shim coils until the image

of the atoms is visible in the center of both beams.
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can do this in combination with the final position of the translation stage to move the atoms until

they are centered on both probe beam absorption images.

For our system, we transfer around 25% of the atoms to the plasma region. This is close to the

30% ideal transfer efficiency that was calculated based on our magnetic trap parameters. Perfect

alignment is very difficult, so taking a small loss of atoms from clipping is expected, and the steps

described in this section were used to minimize this loss of atoms.

3.4 Electric and Magnetic Field Environments

The main purpose behind the design of our ultracold plasma apparatus is to eventually trap both

components of the plasma in a Penning trap configuration [3]. This required a region separate from

the MOT where the ultracold atoms are cooled and trapped to produce the proper field environment.

The electric fields were produced by a set of cylindrically symmetric copper electrodes which were

placed inside the vacuum chamber mounted in a grounded aluminum housing as seen in Figure

3.10. The magnetic fields were produced by sets of wire coils which were wrapped to the outside of

the vacuum chamber. This configuration is used in our current setup for the experiments discussed

in this thesis.

3.4.1 Electrodes and Extraction Grids Assembly

The Penning trap configuration uses a combination of electric and magnetic fields in order to

produce a trapping geometry for charged particles with opposite signs in the same region of space

[3]. Charged particles cannot be trapped by electrostatic potentials alone. The potential from a

configuration of electrodes will satisfy Laplace’s equation in the absence of free charges, given by,

∇2Φ(~r) = 0 (3.18)

where Φ(~r) is the electrostatic potential. This relationship implies that there are no minimums or

maximums of the potential throughout space, only saddle points, which will only allow for points of

unstable equilibrium. If we consider a cylindrical geometry of electrodes, the addition of a strong,

uniform magnetic field in the axial direction can provide confinement for charged particles in the

radial direction by taking advantage of the Lorentz force on charged particles. The trajectory of any

charged particle traveling in the radial direction will confined to a circular orbit of radius mvr/eB.
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Figure 3.10: A diagram of a cross-section of the electrode assembly. The electrode assembly

consists of 7 cylindrically symmetric copper rings, with 3 aluminum mounts. The electrodes are

each individually wired to apply a separate potential on each ring if needed. The aluminum mounts

are grounded to the vacuum chamber. The electrodes are electrically isolated from each other and

the aluminum mounts by small strips of kapton. Outside of the electrode assembly is an aluminum

wire mesh grid which is set to high voltage to extract the electrons towards the detector.
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For Ti = 1 K, Te = 10 K, and B = 0.1 T, the Larmor radius for the ions and electron is 124 µm and

1 µm respectively. This is smaller than our ∼850 µm rms size for the UCP in the radial direction.

This leaves only the axial direction in need of electrostatic confinement.

The ideal electrostatic potential for our Penning trap configuration can be seen in Figure 3.11.

Here the ions and electrons of the UCP would be confined to the same region of space. The UCP

is created in a region with a flat central potential where the UCP ions and electrons will be most

of the time. On the edge of the trapping region, there are wall potentials for both the ions and

electrons separately to keep the particles from escaping the center region. Producing such an ideal

potential is difficult, but shows us the properties of an axial potential that are needed in order

to confine oppositely charged particles in the same region of space. This type of potential is also

required in experiments involving the production of anti-Hydrogen [16], where anti-protons and

positrons need to be trapped in the same region of space. However, our experiments will have the

advantage of being able to directly acquire the particles to be trapped in the trapping region.

To produce a potential with these qualities, I designed a system of 7 electrodes made from

copper rings seen in Figure 3.10. The electrodes have an outer diameter of 0.5 inches and an inner

diameter of 0.42 inches. The electrodes have an axial extent of 0.2 and 0.07 inches for the center

and outside electrodes respectively. The housings for each set of electrodes are spaced by 0.75

inches. The availability of this number of electrodes provides a way to manipulate the electric

field environment to a great degree. We can calculate the electric field and potentials owing to

this set of electrodes as well as charged particle trajectories in the system by using a commercial

program, SIMION. This program allows us to easily manipulate the applied voltages on each on

the electrodes to produce the desired on-axis potential. The potential produced by the SIMION

calculations is shown in Figure 3.11. In principle, tuning the electrodes carefully can produce

an even “flatter” electric field region than is shown in Figure 3.11. Based on our calculations and

experimental observations using this electrode design, we have produced a second generation design

of the electrodes assembly that should offer more control of the electric field environment in the

central region of the electrodes.

In addition to the ability to create a Penning trap, our electrodes and grids assembly also needs

to be able to extract the electrons out of the plasma region towards our micro-channel plate detector

(MCP) for detection of our UCP signals. Since we are unable to image the ions of the UCPs as in
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Figure 3.11: The on-axis potential of the Penning trap configuration from our electrodes (black line)

and the ideal case (blue line). The red, dashed line shows the extraction potential to pull electrons

toward the detector. The ion and electrons are confined to the center region of the potential in the

axial direction by this field. Electrons will not spend much time in the wells created by the ion

confining field as they accelerate quickly through this region. Any electrons that are thermalized

in this region can be reintroduced into the trapping environment with small tipping pulses at the

expense of heating. Radially, a strong magnetic field will cause any charged particles trying to

escape to be confined around the magnetic field lines.
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other experiments [17], it is essential that we achieve efficient collection of the electron signal. The

rate of electron escape as measured by our detector is the main signal in all of our experiments. To

achieve efficient collection of the electrons, several considerations need to be made. First, we need

to ensure that none of the electrons can escape to the grounded surfaces of the vacuum chamber

to be lost. To do this, we create the UCPs at a potential that is slightly above ground (0.35 V on

the center electrode in our current setup) so that the electrons see a large potential hill near any

grounded surfaces that they have insufficient energy to overcome. Second, we need to ensure that

any electrons that do escape the UCP are directed towards our detector. To do this, we can apply

a bias electric field which pulls the electrons toward the detector. This field is created by applying

voltages to the electrodes on either side of the center electrode. One consideration that we had

to make when choosing these electrode voltages was that higher positive potential will attract the

electrons. So, when creating an electric field that would pull the electrons toward the MCP, we

needed to ensure that the electrons would not be lost by their attraction to the electrodes that

created these fields. To maximize our extraction efficiency, we grounded the inner-most electrode

on the set of electrodes on the MCP side of the electrode assembly, meaning that no electron could

approach closely to the electrode itself. To get the electrons through to the detector, the outer two

electrodes were increased in voltage (4.7 V in our current setup) to create a strong electric field on

the axis of the electrodes.

The ideal electric field environment for the UCPs in our system will be one that has the

minimum electric field in the plasma region while maintaining efficient extraction of the electrons

from the UCP to the detector. The electric field is minimum when the UCP lifetime (the amount

of time it takes for the last electron to escape the UCP) is maximized. To minimize the field, we

can experimentally tune the voltages on each of the electrodes individually while maintaining peak

extraction efficiency until we maximize the UCP lifetime. For our experiments, we operate with

effective electric field values between 1-10 V/m. Our method for determining these electric field

values experimentally will be presented in Section 3.6.

Once the electrons are out of the plasma region and past the electrodes, we still need to get

the electrons all the way to the detector. To do this, we installed a system of extraction grids that

keeps the electrons moving toward the detectors as seen in Figure 3.1 and in Figure 3.12. The

grids assembly consists of 5, 1 inch diameter (0.1 inches thick), 0.2 inches wide stainless steel rings
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Figure 3.12: A picture of the electrodes and grids that are used in our system. The electrodes (top)

are diagrammed in Figure 3.9. The grid assembly consists of 5 wire mesh, stainless steel grids that

are spot welded stainless steel rings. They are mounted in a grounded, aluminum housing which is

isolated from the grids by kapton.
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with 99 % area free stainless steel wire mesh spot welded across the face of the rings. The 5 rings

were evenly spaced at 2.25 inches apart in a cylindrical aluminum housing that was broken into 4

sections so that we could place the grids. The grids were separated from the housing by thin rings

of kapton for electrical isolation. The rings were brought up to 120 V while the aluminum housing

was kept at ground. These grids guided the electrons that escaped the UCP toward the MCP for

our signal extraction. Simulations using SIMION have shown that the fast electron speed along the

axis of the grids assembly should keep the electrons from approaching the rings that are held at

120 V. The grounded aluminum housing keeps the electrons near the center of the grids assembly

as the electrons travel toward the detector.

The complex nature of our electric field environment required a complicated set of electrodes

and grids to meet all of the needs of our experiment. As such, this created a number of difficulties

in providing the proper voltages to all of the different electrodes and grids, which were individually

wired. One of the main problems was to provide all of the necessary wiring while maintaining a clean

vacuum system. Improper materials and connections made inside a vacuum system can produce

spots with a large out-gassing rate, which can reduce the lifetime of the atoms in the magnetic trap.

Because of this, we used specially made, vacuum compatible, kapton-coated copper wire. This wire

could be welded directly to each of the copper rings used for our electrodes, and then connected

to a set of vacuum compatible electrical feedthroughs to provide the proper voltages. To connect

wires to the grids, special techniques had to be implemented because the copper wire could not be

welded or soldered to the stainless steel rings (which were stainless steel so we could spot-weld the

grids to them). To connect these wires, we simply hammered the ends of the wire flat and wedged

them directly between the rings and the kapton insulation. The size of the rings were such that

the wire was friction locked tightly between the ring and the kapton insulation, providing a good

electrical connection.

Providing electrical connections to the separate grids and electrodes in the system was a chal-

lenge not only for the connections to the actual components, but also in getting the wires through

the chamber without having adverse effects on the system. On the MOT side of the chamber, it

is possible that wires that are not held to the bottom of the chamber will impede the transfer of

the atoms in the magnetic trap by physically blocking the path of the transfer (this was, in fact, a

problem that arose). To deal with this problem, we were able to hold the wires down to the bottom
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of the chamber with a thick ring of kapton, which was cut and placed in the chamber about 5 inches

away from the electrode assembly. On the other side of the electrodes assembly, the wires from

the electrodes and grids that are connected to electrical feedthroughs near the MCP need to kept

out of the region where the electrons travel toward the MCP. This is because wires in region can

create image charges on the grounded surface of the vacuum chamber that change the electric field

environment for the electrons. Also, the high voltage applied to the wires for the grids (120 V) will

be attractive to the electrons and may divert them from their path to the detector. To avert this

problem, these wires were directed through channels that were cut on the outside of the aluminum

housing that holds the grids so that the wires can be shielded from the region of electron travel.

To get the wires for the grids out of the region of electron travel, small holes were drilled through

the aluminum housing near the location of the grids. This allowed for the wires to exit the region

of electron travel and go into the channels cut on the outside of the aluminum housing.

When using vacuum compatible, kapton-coated wire, one must take care to keep the wires

away from any moderately hard or sharp surface in order to ensure that the kapton coating is not

removed during the installation of the electrodes and grids assembly. If the coating is removed, any

contact with any surface in the vacuum chamber will cause a short to ground of the electrode or

grid that the wire is connected to. Therefore, it is very important to make sure that the wires are

not put under any stress during installation. Also, since there are various bends that are required

through and around the channels in the grids housing, it is important to make sure that the corners

are properly rounded and that the wires are not in contact with these corners. Shorts that occur

in the vacuum system generally require the system to be reopened, which may require another

system bake-out. Baking out the vacuum system can require up to 3 weeks of down time before

the system is operational. If one chooses to forego a bake-out after opening the chamber, this can

result in a significant decrease in the lifetime of the magnetic trap as we have observed. However,

it is possible that a short can be fixed by applying a light impulse to the appropriate part of the

vacuum chamber in an effort to move the wire slightly from the location of electrical contact with

a grounded surface. This generally works best on a flange of the vacuum chamber, with the handle

of a screwdriver being the tool of choice.
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3.4.2 Magnetic Field Environment

The magnetic fields that are required for our experiments are much simpler than the electric fields

as the Penning trap configuration requires only a strong, uniform magnetic field in the region where

the UCP is created. So, besides the transfer shim magnetic coils that are placed near the plasma

region to help us align the atoms with the electrodes, an axial magnetic coil is wrapped directly to

the chamber as seen in Figure 3.1 and Figure 3.9. This magnetic coil is lined up with the center

electrode in the plasma region. It consists of 100 turn, 2.3 cm radius coil wrapped in a plastic coil

form which constrains its axial extent to 9 mm. This produces magnetic fields of 27 G/A at the

center of the coils. Also, the magnetic field strength changes by only ∼1% over 2 RMS radii (∼2

mm) from the center of the coil region. This gives us an approximate uniform magnetic field in the

plasma region.

The small non-uniformity to the magnetic field in the plasma region led to a question of whether

there would be a significant magnetic anti-mirror effect, which results from a change in magnetic

field strength as a particle travels through the field. As a particle travels from a region of higher

magnetic field to a region of lower magnetic field, the particle’s velocity parallel to the magnetic

field will change as,

v2
‖ = v2

0 − v2
⊥0

B(z)

B0

(3.19)

where v0 is the total velocity and is a constant, v‖ and v⊥ are the particle velocities parallel and

perpendicular to the magnetic field respectively (v2
‖ + v2

⊥ = v2
0), B0 is the magnetic field at the

location of the particle’s initial position, B(z) is the magnetic field as a function of the axial position,

and v⊥0 is the perpendicular component of the velocity at the point where B(z) = B0. Here, B(z)

varies as (R2 + z2)−3/2, where R is the radius of the magnetic coil (2.3 cm for our system). As

the particle moves through to a region of weaker magnetic field, the velocity perpendicular to the

field lines will transfer to axial (parallel) motion. So, Equation 3.19 tells us how much the velocity

parallel to the magnetic field lines will increase as the particle moves away from the center of the

UCP parallel to the magnetic field. As discussed before, the magnetic field strength only changes

by ∼1% over 2 RMS radii (along the axial direction) of the UCP. So, using this change in magnetic

field in combination with Equation 3.19, the parallel velocity at the edge of the UCP becomes

73



v‖ =
√

v2
0
− 0.99v2

⊥0
. One can already see here that the anti-mirror effect will only contribute a

very small component to the axial velocity of the electron. If we assume an electron with a total

velocity of v0 = 20, 000 m/s with v‖0 = v⊥0 ∼ 14, 140 m/s, moving to the edge of the UCP will

increase v‖ to ∼14,210 m/s. From this change in velocity, we can calculate the effective electric field

that would produce this amount of acceleration over the 2σ = 2 mm distance we are considering

to be E = me(v
2

‖ − v2

‖0)/(4σe) ∼ 3 mV/m. This effective electric field is much less than the few to

several V/m electric fields that are produced by the electrodes and can induced by thermal motion

inside the UCP. Thus, we can ignore the effect of the magnetic anti-mirror.

The Penning trap requires a large magnetic field which is on the order of 0.1 T, or 1000 G,

which requires around 37 A of current to be run through our axial magnetic field coil. Switching

on such a large amount of current in short amount of time is a difficult task using just commercial

power supplies as discussed previously. It can require a large amount of time (10s of ms) to switch

between current levels in this fashion, which is far too slow for the studying UCP physics on the

10s of µs timescale. Also, there is only ∼3 ms between the release of the atoms from the trap

to the point of photoionization which means that any switching of the magnetic field levels needs

to happen in this time. Switching too early will push the atoms in the trap out of the ionization

region before the atoms are released from the trap. Too late and any switching that occurs after

photoionization will heat the electrons owing to the large electric fields that can be induced by a

large dB/dt term.

To switch quickly to high magnetic field levels, we developed a system in which a large inductor

can be used force current through the axial coil in a short amount of time in conjunction with

field-effect transistor (FET) switches as seen in Figure 3.13. In this configuration, we can set two

paths for the current; one with through the axial magnetic coil (path 1) and one that serves as a

dump for the high current when it is not desired (path 2). The large inductor is placed before the

two paths are split. We place a FET in each path to serve as switches that regulate what path the

current travels down. We start in a configuration with all the current flowing through path 2 by

closing the FET switch in this path. In path 1, the FET switch is left open to prevent any current

flow. To turn the current on through the axial magnetic coils, the states of the two FET switches

are reversed. The large inductance of the inductor will produce large voltages that will tend to
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Figure 3.13: A diagram of the circuit we will use for switching to very high current levels on the

axial magnetic field coil. A 10 mH inductor is placed in series with two current paths. One current

path has the axial magnetic field coil and the other is a dump for the excess current when the

magnetic field is not in use. Each current path has a FET switch that regulates when the current

is going through each path. The current starts by going on the path without the axial magnetic

field coil. When the FETs are switched, the 10 mH inductor keeps the current level through the

circuit nearly constant, which forces a large amount of current through the axial magnetic field coil

in ∼10 µs.
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keep a constant current through the circuit, which forces a large amount of current through the

axial magnetic field coil in a short amount of time. This method as produced switching times as

fast as ∼10 µs, which greatly exceeds our requirements for this system.

The magnetic fields used for the work presented in this thesis only range between 0-14 G

(0.5 A through the axial magnetic field coil), as the focus of my experiments for this thesis are

on UCPs in weak magnetic fields (Chapter 6). Using higher magnetic fields in this experiment

produces a significant reduction in the total ionization number owing to the Zeeman broadening

of the 5S1/2 − 5P3/2 transition. When using a higher value of the magnetic field, additional lasers

will have to be added to the system in order to excite transitions between particular states that

have been shifted due to the Zeeman effect. The servo that controls the field levels for the current

configuration have slower switching times on the order of 1 ms, which is sufficient when going

between low current levels.

3.5 Dye Laser System

To produce the ultracold plasmas in our system, we photoionize the 85Rb atoms using a commercial

pulsed-dye laser system produced by Spectra Physics. The dye laser produces ∼10 ns pulses with

up to 10 mJ of energy. For our experiments, we operate the dye laser at wavelengths ranging from

471 nm to 480 nm. This represents a range of energy from just below the ionization threshold

for atoms in the 5P3/2 state to ∆E/kB ∼500 K above threshold. To optically pump the laser

dye used for photoionization, we use a Quanta Ray INDI-40-10 Nd:YAG laser. Although the laser

is commercially produced, it requires regular maintenance to keep our system running with the

desired experimental parameters. So, it is necessary to understand the individual components of

the system and their basic operation.

The Nd:YAG laser head consists of an optical cavity, Nd:YAG crystal in the shape of a cylindri-

cal rod, flash lamps, and a Pockels cell used for Q-switching (Section 3.5.1) as seen in Figure 3.14.

The flashlamps and laser rod are both enclosed in an elliptical gold reflector cavity (not the lasing

cavity) to create the population inversion required for lasing. The flashlamps are water-cooled

using a closed circulation system, where the cooling water flows through the reflector cavity. After

the output of the lasing cavity, the laser light goes through a pair of crystals to produce the 3rd
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Figure 3.14: A diagram of the INDI-40-10 Nd:YAG laser setup. The xenon flashlamps pump the

Nd:YAG laser rod which acts as the gain medium. The Pockels cell acts as the Q-switch which

allows the production of high intensity laser pulses. The harmonic generator has two stages, one

to produce second harmonic light at 532 nm and the other to mix the 532 nm light with the 1064

nm light to produce light at 355 nm. This light is separated by dichroic mirrors to output only the

355 nm light.
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harmonic light at 355 nm, which is used to pump the laser dye for our system. The angle of the

harmonic generating crystals can be adjusted to optimize the power output of the 3rd harmonic

light, and are the only simple adjustments that can be made to the laser without taking the cover

off of the laser head.

The dye laser system consists of a dye circulation system, dye cell, and resonator cavity in a

Littrow configuration (as with our diode lasers) for frequency control. The dye that is used for

our experiments is Coumarin-102, which produces light in the blue part of the visible spectrum.

The wavelength of the laser is frequency controlled by a diffraction grating on the output of the

resonator, which can be computer controlled to set the wavelength to within 0.005 nm.

The Nd:YAG laser operates in a 10 Hz pulsing configuration where the pulsing is produced

using a Pockels cell for Q-switching. The laser system was engineered for the heat load introduced

under this configuration, so the optimum power is achieved by running at 10 Hz. However, the

experiment itself works on a timescale where we only need one laser pulse every 30 s - 1 min. As the

355 nm light pumps the laser dye, it actually begins to break down the molecules of the dye, which

degrades the power slowly over time. So, to preserve the integrity of the dye in the system, we

placed a shutter in between the Nd:YAG pump laser output and the dye laser system so that we can

use dye laser pulses only when we need them while maintaining the optimum output of the pump

laser as seen in Figure 3.15. The shutter system consists of a FW103 High Speed Motorized Filter

Wheel controlled by an APT Precision Motion Controller, both of which are sold by ThorLabs.

The filter wheel has one slot with a mirror that directs the 355 nm output towards a beam dump

when the dye laser is on standby. When a pulse from the dye laser is desired, the filter wheel can

be rotated rapidly to an empty slot in the filter wheel, passing a single 355 nm pulse to the pulsed

dye amplifier before rotating back to the mirror. The output of the dye laser is sent to the plasma

side of the vacuum chamber to photoionize the 85Rb atoms in the system.

3.5.1 The Nd:YAG Laser

The Nd:YAG laser rod is produced by doping a Y3Al5O12 (Yttrium Aluminum Garnet) crystal

with the rare earth element neodymium [18]. The Nd takes the place of the Y in the YAG crystal

structure and acts as Nd3+, which is used as the lasing medium for the Nd:YAG laser. The laser

is pumped by Xenon flash lamps in the near infrared to a band of energy levels higher in energy
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Figure 3.15: A diagram of the wheel shutter assembly for the pulsed, dye-laser system which consists

of a FW103 High Speed Motorized Filter Wheel controlled by an APT Precision Motion Controller.

The Nd:YAG laser pulses at 10 Hz for optimum performance. The overall system operates at a

much lower repetition rate and doesn’t require pulses at 10 Hz. Continuous pumping of the laser

dye would degrade the output power of the system unnecessarily. When the laser pulses are not

needed, the 355 nm output of the Nd:YAG laser is directed by a mirror placed in the wheel shutter

towards a copper tube which serves as a beam dump. When the shutter is triggered, the wheel

rotates to let a single laser pulse from the Nd:YAG laser into the resonator of Sirah Dye laser.
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than the 4F3/2 state, the upper level of the lasing transition. The population of this state decays

quickly (τ <1 ns), populating the long lived (τ ∼ 230µs) 4F3/2 state [19]. The laser transition with

the highest gain is between the 4I11/2 and the 4F3/2 state at 1064 nm. The lower state of the lasing

transition also decays in less than 1 ns, making it possible to produce a relatively large population

inversion between the two states.

The production of the high intensity pulses needed to photoionize a large number of atoms

quickly requires our Nd:YAG laser to operate in a Q-switch configuration. The Q-switch acts as an

effective shutter, which keeps photons from feeding back into the cavity after they leave, preventing

any lasing from occurring. This greatly reduces the amount of stimulated emission that can take

place, as the number of photon passes through the gain medium is greatly reduced. So, population

will accumulate in the 4F3/2 state, and is only limited by the spontaneous emission lifetime (∼ 230

µs). This will build up a large amount of energy in the 4F3/2 state, which can be used in the laser

pulse when the Q-switch is flipped.

The Q-switch itself is produced by a Pockels cell, which is an electro-optical device that controls

the orientation of linearly polarized light that passes through it. By using the Pockels cell in

conjunction with the proper polarizing optics, one can change the polarization state of the light

to be blocked from feeding back through the cavity. When enough energy has been stored in the

population inversion in the Nd:YAG crystal for the desired laser pulse, the Pockels cell can be

switched to allow light to feedback through the cavity, depopulating the upper level of the lasing

transition, which produces a short, high-intensity laser pulse.

The light produced by the Nd:YAG laser in our system is at 1064 nm. To produce light at the

shorter wavelength required to pump the dye laser system, we rely on second harmonic and sum

frequency generation to produce light at 355 nm. Second harmonic generation is special case of

sum-frequency generation and occurs from the interaction of high-intensity light with a medium of

non-linear electric susceptibility. In this case, the polarization of the medium from the impending

light has a non-vanishing term that is proportional to the input electric field squared. This squared

electric field term produces frequency components of the electric field at the sum and difference

of the frequencies of the input light. In the case of second harmonic generation, there is only one

frequency present in the input light. So, the non-linear output consists of light with double the

frequency of the input light. To maximize the output of the higher harmonic components of the
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light, the components of the light need to be properly phase-matched along the proper axis of

the non-linear crystal. The harmonic generator for our Nd:YAG pump laser has external tuning

knobs on the second and third harmonic crystals which can be adjusted to maximize the output

of 355 nm light from the laser. These are the only external adjustments that can be made on this

commercial system. There are two circular holes that are cut into the cover of the laser than allow

for a 9/64 hex key to be inserted into the adjust these knobs. The 355 nm output will generally

stay near its peak output for long periods of time without adjustment. However, if an adjustment

is needed, then each of the harmonic knobs can adjusted in an alternating fashion to optimize the

355 nm output. If additional adjustment is needed, they laser cover can be removed and the input

waveplate for the harmonic generator can be adjusted along with these knobs.

A few other problems have been encountered during the course of our experiments that have

taken the laser power off of its optimum output. The flashlamps have an operational lifetime

of that exceeds 10 million discharges. Over time, the output power of the flashlamps degrades,

so they have to be replaced regularly. Another problem we encountered was with a breakdown

of the water pump for the internal cooling of the flashlamps in our system. This water pump

eventually required replacement. This breakdown of the water pump lead to insufficient cooling

of the flashlamps, degrading their performance and lifetime. Also, when the pump broke down,

it contaminated the cooling water, which coated the gold reflector cavity in a foreign substance.

To clean the gold reflector cavity, we used 5% concentrated table vinegar and scrubbed the gold

reflectors with Q-tips. The gold reflector cleaning was also combined with a flush of the system’s

cooling water. These situations need to be considered when doing maintenance on the Nd:YAG

laser. Fortunately, the actual lasing cavity has not needed to be adjusted at this point, and should

remain stable over a very long period of time.

For this system, we produce laser pulses with up to 100 mJ of energy at 355 nm with ∼10 ns

widths. This light is then fed into the dye laser system as the pump light so that we can produce

laser pulses that are near the ionization threshold for 85Rb.

3.5.2 Sirah Dye Laser System

The dye laser system used for our experiments is also commercially produced and distributed by

Spectra Physics, and requires very little maintenance to operate at optimal conditions. The system
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consists of a laser dye circulator and pump system, optical resonator, and a wavelength control

diffraction grating. The gain medium for the dye laser is Coumarin-102 dye using methanol as

a solvent. The dye is pumped into the dye cell, which is ∼2 cm in length, where it is optically

pumped using the 355 nm output of the Nd:YAG laser. The energy levels of a dye laser gain

medium are generally more complicated than those of other types of laser systems, as they tend

to involve excitation between energy levels that also have closely-spaced molecular vibrational and

rotational energy levels associated with them [20]. However, the principle of operation is that same

as that of the general four-level laser system, where the gain medium is optically pumped to a

rapidly decaying, highly excited state. This rapidly decaying excited state decays to a longer lived

excited state such that a population inversion is produced.

The wavelength of the output of the dye laser is controlled by diffraction grating feedback as

in the case of our diode laser systems. In this case, the angle of the diffraction grating is controlled

with a high-precision motor that is computer controlled and factory calibrated. The wavelength

can be controlled and reproduced to within 0.005 nm, which more than exceeds the needs for our

applications. To avoid problems from backlash when changing the grating angle, the grating is

turned all the way to the edge of its range before being tuned to the desired wavelength.

Using a dye as a laser medium has the advantage of having a tunable wavelength at high

power. However, using the dye repeatedly causes its quality to breakdown as pumping with a

high-powered laser can break the bonds in the dye molecules. The dye circulator system needs

to be flushed and the dye replaced at regular intervals in order to maintain a high enough pulse

power for our experiments. When replacing the dye, we see a rapid (but not detrimental) initial

degradation of pulse power from its peak levels followed by a long (many months) period of stable

output power from the dye laser. We attribute this long, stable period to our low duty cycle of

operation when performing our experiments. For this system, we can achieve pulse energies of up

to 10 mJ for 10 ns pulses.

3.5.3 Photoionization of Rubidium

The purpose of the Nd:YAG pump laser and dye laser in our system is for the photoionization of Rb

atoms from the 5P3/2 state. When the atoms are transferred to the plasma region of the vacuum

chamber, the atoms are released from the magnetic trap. After we release the atoms, we wait for
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2.2 ms to allow any electrical noise associated with the magnetic field shutoff and track motion to

dissipate. This time is also used to change the axial magnetic field to the desired levels for the

experiments. Eddy currents associated with the magnetic field shutoff decay quickly, on the order

of ∼100 µs. After this, we can pump the atoms out of the F = 2 ground state and into the 5P3/2

using pick-off beams from the cooling and repump diode lasers for 5 µs (we generally repump them

from the F = 2 ground state a few hundred µs earlier, but the extra light has little effect because

the atoms quickly become dark to the hyperfine repump light). The intensity of these pump beams

is ∼2 Isat, with beam diameters of ∼5 mm which pumps ∼ 33% of the atoms the excited state.

The pickoff from the trap laser beam is coupled into an optical fiber which allows us to align the

beam on the plasma side of the vacuum chamber (since little hyperfine repump light is needed, we

allow this beam to travel in free space across the optical table).

From here, the Rb atoms are ionized with the light from the dye laser near the ionization

threshold at ∼479 nm. The beam has waist sizes of w0z = 2 mm and w0x = 1.3 mm in the vertical

and horizontal directions respectively. The beam from our dye laser is far from a TEM0,0 mode,

and requires additional shaping of the laser which we do with cylindrical lenses. Even in this case

there is a large “halo” of light that surrounds the main beam which can be problematic when

trying to perform our experiments. If enough light reaches the chamber that impinges on any part

of the electrode assembly, a large background signal of electrons can be ejected from the electrode

assembly owing to multi-photon processes. Therefore, it is necessary to aperture the beam near the

vacuum chamber to ensure that all of the high intensity light passes through the vacuum chamber

unimpeded.

We can estimate the expected ionization fraction from our beam parameters combined with the

density distribution of the atoms in the plasma region. The expected ionization fraction at a given

point in the atomic distribution can be found by solving rate equations for photoionization from

the 5P3/2 state given by,

dN(t)

dt
= −RN(t) (3.20)

where N is the number of atoms and R is the rate of ionization given by [10],

R =
Iσλ

hc
(3.21)
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where σ is the photoionization cross section which is 1.88 × 10−17 cm2 for the 5P3/2 state in Rb

[10], λ is the wavelength of the ionization transition (479 nm), h is Planck’s constant, and c is the

speed of light. We can solve for the number of ions produced to be,

Nion = N0(1 − exp(−R∆t)) (3.22)

where N0 is the original number of atoms, and ∆t is the length of the ionization pulse. We can

perform this calculation at each position in space, taking into account the number of atoms and

their spatial profile in ionization region using absorption imaging and the profile of the ionization

laser beam. This calculation shows that we should expect an ionization fraction of ∼21% of the

total number of atoms that are transferred to the plasma region. By comparing over 20 images

of the atoms to our measured number of ions and electrons in the plasma (using the number

calibration technique discussed in the next section), we find that we ionize ∼19% of the atoms in

the plasma region. This gives us as many as 1.4×106 ions and electrons for our UCPs. Typically

we use ∼ 5 × 105 ions for our experiments.

Upon ionization, most of the photon energy above the ionization threshold will be transferred

to the electrons. If we consider the Rb atom and incoming photon system in the center of mass

frame, the excess energy above the ionization threshold will have to be carried away by the Rb+

ion and electron with equal and opposite momentum. So we have,

mionvion = meve (3.23)

where mion and vion are the mass and velocity of Rb+ and me and ve are the mass and velocity of

the electron. If we consider all of the energy going to kinetic energy of the two particles, we have,

∆E = Eion + Ee =
1

2
mionv2

ion +
1

2
mev

2
e (3.24)

where ∆E is the photon energy above the ionization threshold. Substituting v2
ion = m2

ev
2
e/m

2
ion

from Equation 3.23 into Equation 3.24 yields,

∆E =
1

2

m2
ev

2
e

mion
+

1

2
mev

2
e =

1

2
mev

2
e

(

1 +
me

mion

)

(3.25)
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So,

Ee =
∆E

1 + me

mion

(3.26)

The mass ratio of an electron to Rb+ is 6.4×10−6, which means that the electron receives 99.9994%

of the photon energy above the ionization threshold.

3.6 Micro-channel Plate Detector

As the electrons are extracted from the plasma region by an electric field provided by our electrodes,

they are directed toward a BOS-40 model micro-channel plate detector (MCP) [21] from Beam

Imaging Solutions, which provides the signal that is used in all of our experiments. The setup of

the MCP and the detection electronics can be seen in Figure 3.16. The current from the MCP

flows into a high voltage capacitor, where the equalizing charge on the opposite side of the capacitor

produces a current over a load resistance which provides the voltage that is read on an oscilloscope.

The signal voltage is proportional to the number of electrons escaping the plasma region in any

given time, and the constant of proportionality is dependent on the voltage between the plates of

the MCP.

The MCP works to amplify the electron signal from the UCP through secondary electron

emission from electronic impacts on the surface of the channels of the MCP [21]. The long, narrow

channels of the MCP act as continuous dynode structures which allow for many impacts of both

the primary electrons and secondary electrons as they travel down the channel. The electrons from

the channel surface are replenished by an external power supply. The channels from the two micro-

channel plates in our system are oriented in a matched chevron configuration as seen in Figure

3.16, with the channels cut at an 8 degree bias. The two plates are resistance matched as seen in

Figure 3.16, which means that the resistance across each individual plate is the same. This allows

us to control only the outside voltage on each plate, with the voltage between the two plates being

halfway in between the voltages applied on the outside of the plates.

The MCP can amplify the electron signal by as much as a factor of 107. In practice, we use

a gain of ∼ 3 × 104 with an additional gain of a factor of 20 using electronics after the MCP. In

addition to the high signal gain, the MCP also has sub-ns time resolution. Also, since the channels
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Figure 3.16: A diagram of the setup for our signal detection electronics. The MCP is a BOS-40

system purchased from Beam Imaging Solutions. The micro-channel plates are held at voltage by

Stanford PS-325 power supplies. The internal resistance of the MCP ties the two plates together

with a voltage divider, making the total gain of the system dependent only on the voltage difference

between the two plates. The signal is read out at the phosphorous screen, where the current flows

to the 0.5 µF capacitor, then to external amplifiers which separate the oscilloscope from the high

voltage at the MCP. The 1 MΩ resistors limit the current from the high voltage power supplies to

the micro-channel plates. The lower left-hand corner shows the orientation of the channels in each

of the micro-channel plates in the chevron configuration.
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are arranged in a two-dimensional array (4 cm diameter), it can be run in a high voltage mode that

will allow for the imaging of the spatial distribution on a phosphorous screen. The spatial resolution

is given by the center-to-center channel spacing, which is 12 µm. However, the time-resolved and

spatially-resolved configurations cannot be run at the same time. In our experiments, we typically

run in the time-resolved signal configuration and use the spatially-resolved signal infrequently. An

example of an experimental signal obtained from our MCP is seen in Figure 3.17.

3.6.1 MCP Signal Calibration

The calibration of the MCP signal is critically important for providing an accurate measure of the

number of ions in the system. This, combined with measurements of the peak density, allow us to

determine the characteristic size of the UCP at any given point in the evolution using the technique

described in Chapter 4. It also allows for the determination of the effective electric field strength in

the region given a set of electrode conditions used for the calibration measurement. This calibration

is crucial for making comparisons of our data to calculations of expected UCP evolution based on

our initial conditions.

To calibrate the MCP signal, we can take advantage of the self-trapping nature of UCP systems.

This self-trapping requires a minimum number of ions for a particular UCP distribution in order to

provide a potential well barrier high enough to trap at least one electron with finite kinetic energy.

In the presence of an externally applied extraction electric field (as in our system), this number

increases in order to overcome the external field. By measuring the threshold ion number over a

range of UCP conditions, we can compare these measurements to calculated values of the potential

well depth in order to determine both the MCP signal calibration and the value of the external

electric field as will be described below.

The threshold number of ions required to trap electrons in a UCP is defined as the number

of ions sufficient to create a potential well with depth, D, that is as deep as the initial ionization

energy [1]. This can be calculated from a spherically-symmetric Gaussian distribution of ions with

a characteristic size, σ, in a constant external electric field, F0. To simplify this calculation, I will

consider the potential on-axis when calculating the depth.
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Figure 3.17: An example signal obtain from the MCP for our experimental data. In the first few

µs, a large amount of electrons escape to create the confining potential. As the UCP expands, more

electrons are able to escape the UCP and are extracted using an electric field towards our detector.

This data shows evaporation from a UCP created at an initial ionization energy of ∆E/kB = 50

K, 2.5 × 105 total ions and a characteristic spatial extent σ = 800 µm.
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I can start by considering spherically-symmetric Gaussian charge distribution given by,

n(r) =
Ntote

(2π)3/2σ3
exp

(−r2

2σ2

)

(3.27)

where e is elementary charge, Ntot is the total number of ions, and σ is the characteristic size scale

of the UCP. We can use Gauss’ law to integrate this distribution in order to find the electric field

owing to this charge distribution with an external field F0 as a function of radial position on axis

as,

E(r) =
1

4πε0r2

∫ r

0

n(r′)d3r′ (3.28)

=
Ntote

4πε0r2

√
2

2σ

(

2 exp

(−r2

2σ2

)

−
√

2πσ · erf
(√

2r

2σ

))

− F0 (3.29)

I can find the potential energy for an electron as a function radial position by integrating this field

starting from the center of the charge distribution (setting the potential at the center to be 0) to

be,

U(r) = e

∫ r

0

E(r′)dr (3.30)

=
e

4π5/2ε0kBσr

(

√
2πNtoter − π3/2Ntoteσ · erf

(√
2r

2σ

)

− 4π5/2ε0σF0r
2

)

(3.31)

where the potential here is scaled by kB to be in temperature-equivalent units. An example of the

on-axis potential from this calculation can be seen in Figure 3.18. The desired quantity from this

calculation is the total potential depth, D, seen by an electron on axis as it tries to escape from

the UCP.

To perform the MCP signal calibration, we measure the threshold number of ions required to

trap a single electron over a range of initial ionization energies, ∆E/kB , for a particular config-

uration of the electric field. To determine the threshold ion number, we measure the number of

electrons that are trapped as a function of the total number of ions in units of the MCP signal

as seen in Figure 3.19. We start by forming the UCP under a chosen electric field configuration

denoted by F0. The space charge that develops from the initial escaping electrons forms a potential

well trapping any remaining electrons. After ∼3 µs, we apply an electric field pulse to extract any

electrons trapped in the UCP. We can alter the power of the 5S1/2−5P3/2 pump laser to control the
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Figure 3.18: An example of the on-axis potential of an ion distribution in a uniform external electric

field. The green curve shows the potential from the ion distribution alone. The red curve shows

the addition of a uniform external electric field, F0. The dashed, black line shows the slope of

the potential owing to the external field. We define the potential well depth, D, as the difference

between the minimum and maximum potential in the direction of extraction.
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Figure 3.19: Example data for how the threshold ion number is determined. In (a), the MCP

signal shows the rate of electron escape from the UCP in uncalibrated units. The UCP is formed

in the presence of a chosen field of strength F0. After formation (at ∼3 µs), the electric field level

is ramped to a higher level in order to extract all the electrons that are trapped by the UCP ions.

In (b), the integrated MCP signal allows us to determine the total number of electrons trapped

and the total number of ions and electrons that were created during photoionization in units of the

MCP signal. We can alter the total number of ions by changing the power of the 5S − 5P pump

laser power as described in the text. In (c), we plot the number of trapped electrons as a function

of the number of total ions and electrons in the system. We can use a linear fit in order to extract

the threshold ion number (where Ntrapped goes to 0) in units of the MCP signal for a given set of

UCP conditions.
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number of total ions in our UCPs. As the total number of ions decreases, the number of trapped

electrons approaches zero. We can extrapolate our data to zero trapped electrons for a particular

initial ionization energy and electric field (F0) in order to find the threshold number of ions in units

of the MCP signal. An example of our MCP calibration data for two different values of the electric

field is shown in Figure 3.20.

To calibrate the MCP signal, we must compare our measurements of the threshold ion number

over a range of initial ionization energies with calculations of the potential well depth taken from

Equation 3.31. We can multiply the threshold ion number in units of the MCP signal by a number

calibration factor, α, to convert to the actual number of ions in the MCP, Nion. By varying α

and F0, we can calculate the number of ions required to produce a potential well depth, D, that is

equal to the initial ionization energy, ∆E/kB , for each of the data points in Figure 3.20 for a given

value of σ. Note that the density in these measurements is extremely low because of the minimal

photoionization. So, thermalizing collisions and three-body recombination heating should have no

appreciable effect on the electron energy distribution. At this point, we perform a least squares fit

to data to determine a best fit for the values of α and F0. However, for any chosen value of the UCP

size, σ, a different set of values for α and F0 can be obtained. So, to constrain value of the number

calibration parameter, α, we measured the initial peak density of the UCP using the 2-cycle rf

sweep technique described in Chapter 4 in order to link the value of the initial characteristic size of

the ion distribution, σ, to the value of α (σ = [Nion/(2π)3/2npeak]
1/3, and Nion is equal to α times

the integrated MCP signal). This way the values of α and F0 had to be consistent with both the

measured threshold ion number data and with our measurements of the peak density, making the

best fit a unique pair of values for α and F0. We performed this calibration technique for several

electric field configuration in order to determine the electric field as a function of the electrode

voltage, and to check the reproducibility of the number calibration. We were able to determine the

value of α with a statistical uncertainty of less than 5%. Systematic uncertainties associated with

measurements of the characteristic size, σ, and MCP threshold signal are on the few percent level.
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Figure 3.20: The MCP signal calibration measurement uses the MCP threshold signal over range

of initial ionization energies for a particular electric field configuration. The red triangles show the

threshold MCP signal for an electric field of 4 V/m, which was found using our calibration. The

black circles show the threshold MCP signal for an electric field of 9 V/m. The lines through the

data represent a best fit curve using the values obtained from our least squares fit of our parameters,

α and F0.
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3.7 Computer Control of the Experiment

To get the experimental equipment synced to the proper timing sequence required to perform

our experiments, we use a National Instruments Digital I/O control board to send the proper

TTL signals to the equipment. The control board is produced by Viewpoint USA and consists of

64 individually controlled TTL terminals. The control board can be programmed to output an

arbitrary sequence of TTL pulses by using LabView. These TTL pulses control nearly all of the

aspects of the experiments including the translation stage motion, laser set points, optical switches,

shutters and attenuators. To sync with the dye laser, the control sequence is triggered by the Q-

switch of the Nd:YAG laser, ensuring that the timing of the experiment corresponds the 10 Hz

output of the dye laser system.

The DIO board has an on-board 40 MHz clock that keeps the relative timing of the TTL pulses

accurate to within 25 ns. Most of the experimental sequence used to produce UCPs only requires

timing accuracy on the 10s of µs level or greater, so the 40 MHz clock is more than sufficient

for these applications. However, during the UCP evolution, we require timing accuracy of < 1

ns for the electric field pulses that we apply (using Agilent 33250A function arbitrary waveform

generators) for some portions of the experiment. Therefore, the DIO board is not sufficient for

triggering devices that require this amount of precision in the timing of the trigger. So, to trigger

devices with precise timing, we use a combination of the DIO board and the Q-switch sync to

produce precise triggers. The Q-switch sync will output a TTL pulse at 10 Hz every time the

Q-switch is engaged, which will occur far more often than when we need the trigger. So, to produce

only one TTL signal that is precisely timed with the Q-switch sync, we can input the Q-switch sync

and a TTL pulse from the DIO board into an AND gate. The TTL from the DIO board will switch

to the high level first and serve to allow only the desired pulse from the Q-switch sync through

to trigger the arbitrary waveform generators. The Q-switch sync occurs ∼180 µs before the laser

pulse is fired. So, we require a delay between when the arbitrary waveform generator is triggered

and when the waveform is sent to the electrodes. Even with this ∼180 µs delay, the timing of the

electric field pulses will be preserved to < 1 ns.

The data that is produced from our experiments is seen in Figure 3.17, which is an MCP signal

that is collected by a LeCroy WaveSurfer 104MXs-A, 1 GHz Digital Storage Oscilloscope. This
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oscilloscope provides the ability to store each data trace and perform mathematical operations on

the data (such as the integration of the signal to find the total electron number) in real time. The

stored data can then be averaged together in order to reduce the statistical variation in the data.

The data can also be smoothed using a box smoothing algorithm to further reduce the background

noise in the data.

The ability to monitor the electron number for each data trace in real time provides us with a

means to selectively store data that are nominally under the same initial conditions. At times, the

total number of ions and electrons produced in the UCP can fluctuate dramatically (by as much as

a factor of 2 under particularly bad operating conditions). So, to collect data under approximately

the same initial conditions, we only save data that is within ±10% of our desired total ion and

electron number. While this allows for us to produce a consistent data set from conditions that

can vary by a large amount, at times it can force us to reject a large amount of the data that is

produced. In the future, we will implement alternative data collection schemes that bin the data

in certain number ranges. This will allow us to make use of previously rejected data to obtain

measurements under a variety of total ion and electron number conditions.

Conclusion

The experimental equipment described in this chapter was either bought commercially or built

in-house starting in the spring of 2010. Before this time, only an empty optical table sat on

that side of the lab. Some of the in-house produced equipment was modeled after designs used

in the laser cooling and trapping experiment on the other side of the lab. These include the

diode laser housings, frequency control, and temperature control. Other equipment was modeled

after experimental equipment used at JILA in Boulder, Colorado, such as the magnetic trap and

translation stage system. And others were new designs introduced solely for this experiment, such

as the electrode assembly, the magnetic trap servo, and the designs for the vacuum chamber and

mounts. The combination of all of these ideas is what brought us this new system for exploring

the physics of ultracold plasmas

As a consequence of magnetically trapping and transferring the atoms to a separate region for

plasma studies, the densities of the plasmas we produce are 1-2 orders of magnitude lower than

those of other UCP experiments. This put us into a density regime where new physical phenomena
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became important, and were therefore unobserved in previous experiments. Also, the low density

allowed us to avoid problems with three-body recombination and disorder induced heating and

put us into a regime where electron evaporative cooling became significant. This density therefore

shows promise for achieving UCPs with high electron Γ which may be limited in other experiments

[22]. This also lead to the need to develop new techniques to characterize these low-density UCPs.

These studies are the subject of the next three chapters of this thesis.
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Chapter 4

Density-Dependent Response of an Ultracold Plasma to

Few-Cycle RF Pulses

Collective oscillations are a fundamental feature in ultracold plasma systems (UCPs) and have been

an invaluable tool for characterizing the density of UCPs as they freely expand. They were among

the first reported experimental measurements in UCP systems [1], where the oscillations were

excited by external rf electric fields in order to measure the expansion rate of the UCPs. Knowing

the expansion rate allows one to infer the early time electron temperature and its subsequent

evolution (discussed in Chapter 5) [2], which is important for studying energy transport in UCP

systems.

The UCP expansion rate can be measured by exciting collective oscillations using externally

applied rf fields because these oscillations are density dependent. The plasma frequency, ωp, is

defined as the resonant frequency of oscillation in an infinite, uniform density plasma system. For

cold electrons, the plasma frequency is ωp =
√

e2ne/meε0 [3], where e is elementary charge, ne is

the electron density, me is the mass of the electron, and ε0 is the permittivity of free space. From

this relationship, we can see that ωp is proportional to one parameter that is not a fundamental

constant, the density. Since UCPs are not infinite, uniform density plasmas, this relationship

cannot be applied directly to our measurements. However, this relationship does indicate the

resonant frequency is expected to scale with density, increasing with increasing density. So, it will

serve as a reference for the calculations that are made which allow us to determine the densities of

the UCPs in our system. Also, using this reference will come in handy when comparing the results

of our calculations to studies of the resonant response of non-uniform UCPs from other theoretical

studies [4, 5] and experiments [6].

The experiments and measurements in this chapter describe the response of the UCPs in our

system to externally applied rf fields. In particular, I will focus on short pulses of rf, with as few

as two cycles of a sine wave pulse. Continuous application of rf, which has been used to excite

collective oscillations in other UCP systems [1, 6], causes significant heating of our UCPs, making an

accurate determination of the UCP density by this method difficult. Despite using only two-cycles
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of rf to excite plasma oscillations in our system, this method still produces a resonant response

that is density-dependent. This will allow us to make accurate determinations of the UCP density.

In this chapter, I will discuss the results of previous measurements of plasma oscillations in

other UCP systems to give a basis for comparisons to our results. I will then discuss the results

of our measurements of the UCP response to a delayed application of rf and to short bursts of rf.

I will show that the UCPs in our system have a resonant response to short bursts of rf. These

results lead us to develop a model of the UCP response where the collective oscillations that are

driven by our rf fields involve the motion of the entire electron cloud. This model allows us to

relate the measured resonant frequencies from short bursts of rf to the peak density of the UCPs.

I will then discuss the nature of the motion of the electron cloud. In this discussion, I will present

measurements of the UCP response to sharp pairs of electric field pulses that shows that the motion

of the electron cloud behaves as a damped oscillator. I will then show that the UCP expansion rate

can be measured using this technique, and go on to discuss the value of this technique for future

work.

4.1 Experimental Background

The creation of ultracold plasmas [7] has opened an avenue into studying a wide range of plasma

phenomena at ultracold temperatures. After the initial report of the creation of these UCPs [7], the

first measurement that was performed was the response to a continuously applied, external rf field

[1]. In these measurements, it was first observed that the UCP has a density-dependent, resonant

response to the externally applied rf which provided the first steps toward mapping the evolution

of the UCP density as a function of time. It was recognized that knowing the density evolution of

the UCP was important for studying the most interesting plasma phenomena at low temperatures,

such as three-body recombination [2, 8–10] and the effects of strong-coupling physics [11].

The measurements presented in [1] showed a resonant response owing to the application of

externally applied rf fields that was inferred from a large increase in the electron escape rate at

the time of the resonance. In that work it was assumed that the applied rf was resonant only with

regions of the plasma with densities that satisfy the resonance condition, fapp = (1/2π)
√

e2ne/meε0,

where fapp is the frequency of the applied rf. The peak in the electron escape rate was associated
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with the most probable density in the plasma (having the most electrons in that density range)

satisfying the resonance condition. It was further assumed that the energy imparted to the UCP

from the rf was completely redistributed throughout the entire UCP through collisions on the order

of the electron self equilibration timescale, which could be as short as 10s of ns. By applying

different frequencies of rf, it was observed that the resonant response time scaled with applied

frequency, which showed for the first time that these plasmas expand freely after formation. The

effects of three-body recombination were also observed in this work for the first time at low initial

ionization energies, where the expansion rate of the plasma no longer decreased with decreasing

initial ionization energy which was later theoretically predicted in [9].

The response of the UCP to externally applied rf was further explored theoretically in [4].

In this work, the authors used cold plasma theory to show that although there are no normal

modes associated with the response of a neutral UCP to applied rf, there is a damped quasi-mode

that dominates the continuous spectrum of the free response of the UCP. In the case of a driven

response, the UCP absorbs the most power from the applied rf through this damped, quasi-mode

when frequency of the driving field, ωapp = 2πfapp, is ∼0.2 times the frequency associated with the

peak density of the UCP given by ωpeak =
√

e2npeak/meε0 for Gaussian density distributions. This

means that the estimates for the density of the UCPs in [1] were not correct, and from [4] were

found to be off by a factor of ∼3.

The theoretical work from [4] only considered UCPs that were completely neutral. For ex-

perimentally created UCPs, electrons escape the plasma both during formation and during the

subsequent expansion creating an imbalance of electrons and ions. The charge imbalance creates a

potential well that traps any remaining electrons in the UCP. For low temperature electrons, the

charge density of the UCP is nearly neutral. So, the charge density distribution can be approxi-

mated as a T = 0 distribution, in which the electron and ion densities match from the center of

the UCP out to a cutoff radius. This cutoff radius is found theoretically by integrating the elec-

tron distribution to find the proper number of electrons remaining in the UCP. When this charge

imbalance is taken into account, it was found in [5] that the sharp cutoff in the electron density

distribution produced an eigenmode that could be excited in the presence of externally applied

rf. This theoretical description of the plasma response showed that most of the energy absorp-

tion in the UCP occurred at the edge of the electron distribution, and is known commonly as the
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“edge-mode”. The “edge-mode” theory showed sharp features in the energy absorption spectrum

at a particular resonant frequency that depends on the plasma conditions. Most importantly, this

theory showed that resonant frequency has a significant dependence on the charge imbalance of the

UCP, which complicates the results of the previous experiments [1].

The “edge-mode” was explored experimentally in the work in [6]. In this work, the resonant

frequency as a function of the charge imbalance was measured over the evolution of the plasma and

by deliberately altering the charge imbalance by applying electric field pulses. In both cases, the

evolution of the plasma could be independently verified by extracting the ions and imaging the ion

distribution on a phosphorous screen. In both cases, the results of the experiments were consistent

with the presence of an “edge-mode” when an external rf field is applied.

In each of the experiments and theoretical models described above, the assumed mechanism

for energy absorption and the subsequent electron escape is electron-electron collisions. At the

densities in these experiments and considered in the models (∼1010 cm−3), the electron collision

timescales could be as short as 10s of ns, which would produce a very fast response to the rf

when the resonance condition is met. For the lower density UCPs in our system ∼108 cm−3, these

timescales can become a significant fraction of the plasma lifetime (10s of µs), indicating that the

response we should expect to observe will be very different. This is indeed the case for the UCP

response to externally applied rf in our system. This led to the discovery of a new type of response

in our UCPs, in which a collisionless mechanism is responsible for the increased electron escape

signal that we observe. The results of our experiments and our theoretical interpretation of our

observations are presented in the following sections of this chapter.

4.2 Continuous and Delayed Application of RF

The measured signal from the UCPs in our system comes from electron extraction from the UCP

toward a microchannel plate detector (MCP) as described in Chapter 3. These were the first signals

produced by our system, and by themselves do not characterize the most important properties of

the UCPs that we have created. The most useful property of the UCP to have a measure of is the

density, which will lend itself to revealing many other properties of the UCP system. When we

first formed the UCPs in our system, we first followed the method which has been used in other
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experiments to measure the UCP density, in which a continuous rf electric field is applied to excite

plasma oscillations in the system. The rf in our system is applied by using the nearest MOT side

electrode which is described in Chapter 3.

When applying continuous rf electric fields to the UCP, the resonant response is inferred from

a dramatic increase in the electron escape signal as seen in Figure 4.1. As the UCP expands,

the density decreases, which will put some part of the UCP density distribution at the resonance

condition with the applied rf (if properly chosen). In previous work in other UCP systems [1, 6], it

is implied that the increase in the electron escape signal comes from the collisional redistribution

of energy gained during the application of the rf, which takes electrons from the lower part of the

UCP energy and promotes them through collisions to energies that can escape the potential well

of the UCP.

The collisional redistribution of energy will not happen instantaneously, but rather on timescales

associated with the electron self-equilibration time [12] as discussed in Chapter 1. The electron self-

equilibration time is approximately proportional to T
3/2
e /ne (the Coulomb logarithm varies slowly

with both density and temperature). Since the densities of UCPs in our system can be 1−2 orders

of magnitude lower than those in other systems, our collision timescales can be relatively long

compared to those other systems and can be as long as 10s of µs for our most extreme conditions.

Our original plan was to use these long timescales as a way to study the collisional redistribution of

energy. By delaying the application of rf to the UCP until after the initial formation, we could apply

the rf near resonance at a particular time and measure the time delay associated with collisions in

the electron component of the UCP. However, when the rf is applied, we observe a rapid response

in the electron signal as seen in Figure 4.1. The delay between the application of the pulse and

the observed electron signal is typically ∼175 ns, and has no dependence on the UCP density

or temperature. This is far shorter than the collisional timescales associated with many of our

conditions, which implies that there is a different mechanism associated with this rapid response

to the applied rf. Also, Figure 4.1 shows that the delay of the application of the rf can shift the

resonant response to later in time, complicating the use of continuous rf to determine the density of

the UCP. This indicates that the continuous rf can cause significant heating to the UCP electrons,

which in turn will cause the UCP to expand faster, so it comes into resonance at an earlier time in
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Figure 4.1: An example of our UCP’s response to continuous rf throughout the UCP evolution and

to a delayed turn-on of the rf for ∆E/kB = 100 K. The black curve shows the UCP response to

continuously applied rf at 20 MHz (6 V/m p-p), with the resonant response of the UCP seen as an

increase in the electron evaporation signal at ∼6 µs. The red curve shows the delayed application

of rf at the same frequency and amplitude with the rf applied beginning at 4 µs and continuous

thereafter. In this case, we see a sharp response to the initial application of the rf. Also, resonant

response is moved to later in time, implying that heating occurs when rf is applied continuously.

This is also inferred from the increased electron evaporation rate that is observed when the rf is

applied away from resonance.
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the evolution. Additional measurements of the UCP response to a delayed application of rf can be

found at the end of this chapter in Section 4.5.

The initial peak changes in height as a function of frequency, with a maximum at a particular

frequency. The rapid initial response implies that it can be excited using only a few cycles of the rf,

with two cycles of rf used for most of the measurements discussed in these experiments. The UCP

response to two cycles of rf can be seen in Figure 4.2. We can compare the signal of the two-cycle

rf response to the MCP signal with no rf applied to see the effect on the UCP. The difference signal

(seen in the inset of Figure 4.2) will allow us to determine precisely when the signal response occurs

relative to the initial onset of the rf pulse. Also, integrating this difference signal gives us the total

number of escaped electrons, which allows us to determine the magnitude of the response.

The response of the UCP to two cycles of applied rf also shows a peak in response as the

frequency is changed through successive measurements at a particular time in the UCP evolution

for the same experimental conditions as seen in Figure 4.3. The presence of this peak implies

that there is a resonant response to the rf in the electron component of the UCP. The resonant

frequency is found by fitting a Gaussian curve to the measured response seen in Figure 4.3. The

frequency response is broad as would be expected based on the Fourier components present in just

two cycles of an rf pulse. Although increasing the number of cycles can narrow this response to

some degree, it does not narrow as much as would be expected based on the Fourier transform of

the pulse alone. This lack of narrowing may be attributed to the fluid nature of the electron cloud

and is discussed further in Section 4.4. In any case, the resonant frequency can be found reliably

using the two-cycle rf method, and will be the experimental method used to measure the resonant

frequency throughout the experiments described in this thesis.

The resonant frequency that we observe from applying two cycles of rf also shows a scaling with

density as the UCP expands. Figure 4.3 shows a measurement of the resonant frequency at two

different times during the UCP evolution for ∆E/kB = 10 K. For the earlier measurement (t =

39µs), the measured resonant frequency is higher than that of the later measurement (t = 79µs).

This is a general trend that holds throughout the evolution of all the UCPs in our system. One

can recall that ωp ∝ √
ne. Since the scaling of our measured resonant frequency with density has

the appropriate sign, this leads us to attempt to find a method that will allow us to measure the
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Figure 4.2: An example of the 2-cycle rf signal compared to a UCP electron escape signal without

applied rf. The figure is scaled to better see the electron escape signal after the prompt peak. The

inset figure shows the difference between the two signals, which we integrate in order to determine

the response of the UCP to the rf pulse. The bottom axis is difference between the two signals from

10 to 12.5 µs, which is where there is a significant difference in the electron escape signal. The left

axis is in units of the MCP signal, which are arbitrary for this figure.
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Figure 4.3: The integrated two-cycle response as a function of applied rf frequency for two different

times in the plasma evolution (∆E/kB = 10 K, 4.4 × 105 total ions, 5 V/m peak-to-peak applied

rf field). The blue squares are at 39 µs in the UCP evolution and the red triangles are at 79 µs.

These data are consistent with the proper scaling of frequency with the UCP density as the UCP

expands. The data are shown with Gaussian fits curves, which are used to determine the peak rf

response frequency.
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density at a specific point in the UCP evolution as will be shown in the following sections. This

technique is particularly useful for our experiments involving UCPs at low-densities compared to

other UCP experiments as discussed in Section 4.4. Further, this technique will allow us to measure

the UCP expansion and evolution as discussed in Section 4.7 and Chapter 5.

The measured timescale of the response of the UCP to the externally applied rf combined with

estimates of the electron collisional timescales lead to a conclusion that the additional electron

escape that is observed is not owing to a collisional redistribution of energy. To further characterize

the response of the UCP to short bursts of rf, we also measured the change in the UCP response

to the sign (0 or 180 degree phase) of our input 2-cycle burst. We saw a change in both the initial

response time (for some conditions) and the peak time in the data as seen in Figure 4.4(a). For

this particular measurement, there is a ∼50 ns shift in the peak response time owing to the initial

direction of the rf pulse. The peak response when the phase was reversed was not always relatively

later and seemed to change depending on the frequency of the applied rf. At lower frequencies,

the time of the peak response was relatively close in the two cases. As the frequency was swept

closer to resonance, the two responses began to deviate. One can notice in Figure 4.4(a) that the

black curve has a small response at the same time as the opposite phase before the peak response

that comes later. This type of response indicates that electron escape is directional, and that when

the electrons gain enough energy to escape the UCP they must be traveling toward the MCP to

escape at the earliest possible time. If the direction of oscillation is reversed, most of the escaping

electrons will be traveling the wrong direction initially and will have to reverse direction in order

to escape the UCP, hence the later peak response time. This later response time indicates that

collisions from the low energy electrons that promote electrons above the escape energy required to

leave the UCP is not the mechanism for this response, as binary collisions between electrons would

randomize the direction of escaping electrons.

We also compared the response between 2- and many-cycle rf pulses. In Figure 4.4(b), a

comparison of the response between 2- and 4-cycles is shown. In the 4-cycle data, we observed 2

additional peaks of electron escape when the frequency of the applied rf is near resonance. The

frequency of the appearance of these peaks is at the frequency of the driving rf. As more cycles

are applied to the UCP we see additional peaks that decay the longer the rf is applied. These data

are further evidence that the local response does not fit well with our observations as collisionally
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Figure 4.4: RF response under various conditions at ∆E/kB = 10 K. (a) shows the difference in the

2-cycle RF response with the initial phase (red/solid is 0 degrees, black/dashed is 180 degrees). (b)

shows the difference between a 2- (red, solid) and 4-cycle (black, dashed) RF pulse. An increased

electron escape signal resulting from the collisional redistribution of heat does not agree with the

observations taken from this data.
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based responses to the rf should be insensitive to the phase of the driving pulse and should have

timescales longer than the features observed in the 4-cycle data.

While the response to a reversal of the rf phase and to additional cycles of the rf confirms the

hypothesis that collisional heating is not the mechanism responsible for our UCP response, the

nature of these responses does lead to a question of whether the additional electron escape that is

observed is owing to an effective lowering of the confining potential barrier imposed on the electrons

in the UCP. This question can be answered with a simple test of the electron response time relative

to the driving rf. The electron signal as received by the MCP has a characteristic time-of-flight

delay associated with the distance between the UCP region and the MCP. To measure this delay,

we apply a sharp electric field ramp to quickly pull electrons out of the MCP toward the detector.

This ramp will provide a sharp-edged electron signal at our detector that we can compare to the

timing of the ramp to determine the time-of-flight, which for our system is 375 ns. We can then

take this delay into account when comparing the timing of the electron signals with respect to our

applied rf. The time delay between the initial application of the rf pulse and the initial response

is ∼175 ns and does not have much variation under different UCP conditions. This delay would

indicate that the peak response is after the end of the rf pulse near resonance when the frequency of

the applied rf is ∼15 MHz, which is typical for our UCP conditions. This shows that the response

that we observe is not from the lowering of the potential barrier for the electrons owing to the

presence of the rf electric field, otherwise the peak electron response would occur when the applied

electric field is at a maximum.

4.3 Model of the Electron Response to an Externally Applied RF

Field

Since the frequency of the applied rf is on the order of ωp, the electron cloud will not have time

to adjust itself to screen out the externally applied rf field [3]. So, the electrons in the UCP will

feel a force in response to this external field. To model this response, we assume that the electron

component of the UCP moves as a whole when subjected to an external rf pulse. When the electron

component is offset from the ions, the excess space charge that is left behind will provide a linear

restoring force (for small displacements of the electrons relative to the UCP size) that pulls the
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electrons back toward the positive ions. The linear restoring force will allow us to treat the electron

component of the UCP as being driven like a simple harmonic oscillator (SHO). The resonant

frequency of oscillation is provided by this restoring force and is dependent on the density and the

charge imbalance, δ (the number of electrons that have escaped in the UCP divided by the total

number of ions created, ∆Ne/Nion), as will be shown. We will treat this problem in two different

ways and compare the results of these calculations. First, we will calculate the resonant frequency of

oscillation by assuming an infinitesimal displacement to the electron density distribution. Second,

we will numerically calculate the restoring force by treating the electron cloud as a solid object,

which is offset from the ion distribution. We relate these calculations to the measurements of the

frequency in our experiment by assuming that the peak electron response will occur when the UCP

electrons are driven by the external rf field at the resonant frequency.

The first calculation of the resonant frequency of the UCP starts by assuming spherically

symmetric ion and electron density distributions, nion(~r) and ne(~r). For cold ions and electrons,

these density distributions should be approximately equal to a density distribution that I’ll call

n(~r). The electrostatic potential can be calculated to be

Φ(~r) =
e

4πε0

∫

(nion(~r′) − ne(~r′))

|~r − ~r′|
d3r′ (4.1)

where e is elementary charge and ε0 is the permittivity of free space. If the electron distribution

is displaced from the ion distribution by an infinitesimal amount δz, then the electron distribution

can be written in spherical coordinates to be ne(r, θ, φ) = n(r) + dn(r)
dr cos(θ)δz. The electrostatic

energy becomes

Φ(~r) = − e

4πε0

∫

dn(r′)

dr′
cos(θ′)δz

|~r − ~r′|
d3r′ (4.2)

From this, we can calculate the total electrostatic energy to be

W =
e

2

∫

(nion(~r) − ne(~r))Φ(~r)d3r (4.3)

=
e2

8πε0

∫ ∫

dn(r)

dr
cos(θ)δz

dn(r′)

dr′
cos(θ′)δz

|~r − ~r′|
r′2dr′dΩ′r2drdΩ

=
e2δz2

6ε0

∫ ∫

dn(r)

dr

dn(r′)

dr′
Y 0

1 (θ, φ)Y 0
1 (θ′, φ′)

|~r − ~r′|
r′2dr′dΩ′r2drdΩ
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where Y m
L (θ, φ) are spherical harmonics. Next, the 1/|~r − ~r′| term can be expanded into spherical

harmonics as

1

|~r − ~r′|
=

∞
∑

L=0

L
∑

m=−L

4π

2L + 1
Y m

L (θ, φ)Y m∗

L (θ′, φ′)
rL
<

rL+1
>

(4.4)

where r< and r> represent the smaller or larger of r and r′ respectively. This will allow me to take

advantage of the orthogonality relationships among spherical harmonics and integrate this over dΩ

and dΩ′, yielding

W =
2πe2δz2

9ε0

∫

∞

0
r2dr

dn(r)

dr

(

∫ r

0

dn(r′)

dr′
r′3

r2
dr′ +

∫

∞

r

dn(r′)

dr′
rdr′

)

(4.5)

The term in the parentheses can be integrated by parts where we assume that the density at r = ∞

goes to zero. This yields

W =
2πe2δz2

9ε0

∫

∞

0
r2dr

dn(r)

dr

(

rn(r) −
∫ r

0
n(r′)

3r′2

r2
dr′ − rn(r)

)

(4.6)

= −2πe2δz2

3ε0

∫

∞

0
r2dr

dn(r)

dr

(

∫ r

0
n(r′)

r′2

r2
dr′
)

Reverse the order of integration to get

W = −2πe2δz2

3ε0

∫

∞

0
n(r′)r′2dr′

∫

∞

r′

dn(r)

dr
dr (4.7)

=
2πe2δz2

3ε0

∫

∞

0
n(r′)2r′2dr′

=
e2δz2

6ε0

∫

∞

0
n(r′)24πr′2dr′

=
e2δz2

2ε0

1

3
〈n〉N

where 〈n〉 is the average density of the UCP electron distribution and N is the number of electrons.

This electrostatic energy can be compared to that of a simple harmonic oscillator, which will allow

us to determine the resonant frequency. We set the mass of the oscillator to that of the total

number of electrons, N , times the mass of an electron me. Again, we assume that the electron

distribution moves as a fixed distribution in response to the external rf field and that the ions are

heavy enough to be considered fixed at the origin. So,

W =
1

2
Mω2δz2 =

e2δz2

2ε0

1

3
〈n〉N (4.8)
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which yields

ω2 =
e2

meε0

〈n〉
3

(4.9)

This relationship shows that the resonant frequency is again dependent on the density of the plasma

much like the case of the plasma frequency. It is useful to compare the results from this calculation

to that of the frequency associated with the peak density, npeak, given by ωpeak =
√

e2npeak/meε0,

because the peak density will be a much more useful characterization of the UCP than the average

density. Since the resonant frequency depends on the average density of electrons in the UCP,

the imbalance of electron and ion number results in the need for a correction to be applied to

the resonant frequency measurements in order to accurately determine the peak density. This

correction factor can be determined as a function of the charge imbalance of the UCP by integrating

the electron distribution out from the center to a radius that produces the desired charge imbalance

to find the average density. This method is valid because the outer ions will exert no force on the

inner electrons owing to Gauss’ law for spherically symmetric distributions. The results of these

calculations for a spherical, Gaussian UCP are shown in Figure 4.5, where the ratio of the resonant

frequency ω to the peak frequency ωpeak is given as a function of the charge imbalance of the UCP,

δ. For a neutral UCP, the average density is given by 〈n〉 =
√

2npeak/4 which can be substituted

in the Equation 4.9 to show that ω/ωpeak(0) = 0.343. As the charge imbalance, δ, increases, this

ratio also increases. When δ ∼ 1, then 〈n〉 ∼ npeak which gives ω/ωpeak(1) = 1/
√

3.

The same restoring force and resonant frequency was calculated in a second and complimentary

way by numerically calculating the restoring force on the electron component of the UCP from the

ions when the electron cloud is offset in space from the ion distribution. This calculation will be

useful as it will allow us to more easily determine various effects of the collective oscillation such

as the effect of a non-spherical UCP charge distribution and the calculation of the internal fields

produced by inducing such an oscillation. Also, this calculation will determine the displacement

of the electron cloud where the application of the rf field is non-perturbative, as the electrons are

predicted to be displaced by as much as ∼200 µm at the field strengths that we drive the collective

oscillation. The electron cloud for this calculation is approximated as a rigid object. Although this

would be poor model under many cycles of rf owing to the fluid nature of the UCP electrons, for

only 2-cycles it is more applicable.
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Figure 4.5: A plot of the ratio of the predicted resonant frequency to the plasma frequency associ-

ated with the peak density in the UCP as given by ωpeak =
√

e2npeak/meε0. The black line shows

the result of the average density calculation where a dipole perturbation is applied to the electron

density distribution. The red triangles show the results from a numerical simulation in which the

electron and ion distributions are offset from each other, and a restoring force is calculated.
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The setup for this calculation is simple. Here we take our spherically symmetric electron and

ion distributions and offset the centers of the distributions by a chosen amount, δz. We can then

numerically calculate the force per electron resulting from this distribution. The restoring force

from these calculations varies linearly as a function of δz over the range of offsets we chose, allowing

us to calculate the resonant frequency using a simple harmonic oscillator model, where

ω =

√

|F |
N2m2

eδz
. (4.10)

Here |F | and δz are related by a constant owing to the linearity of the restoring force. To account

for the charge imbalance, we can use a T = 0 electron distribution where the electron density

matches the ion density. By integrating the electron density distribution in spherical coordinates

from the center of the UCP, the number of electrons inside a radius rδ from the center of the UCP

can be calculated. To set the charge imbalance for this calculation, we set the electron density

distribution equal to zero for r > rδ for a properly chosen value of rδ. When we calculate the

resonant frequency as it relates to the peak frequency, ωpeak, over a range of charge imbalances,

we find that there is good agreement (to within 2%) between this simple calculation and that of

the perturbative calculation discussed above as seen in Figure 4.5. Corrections to ω/ωpeak from a

non-spherical aspect ratio from this calculation are less than 10%, even for extreme aspect ratios

well beyond the 1:1.6:1.6 of UCPs in our system. This means that resonant frequency will depend

mainly on the peak density of the ions in our system.

The ratio of the resonant frequency to the peak frequency, ω/ωpeak, as a function of the charge

imbalance, δ, implies that as the charge imbalance is increased for the same peak density, the

resonant frequency will also increase. We measured this increase for the UCPs in our system over

range of initial ionization energies and charge imbalances by applying electric field pulses (1.5 µs

wide, up to 3 V/m amplitude) to the UCP to deliberately alter the charge imbalance at chosen

points in the evolution of the UCP. For initial ionization energies from ∆E/kB = 10 − 400 K and

initial δ = 0.15 − 0.65, we measured the resonant frequency of the UCP at the same point in the

evolution for the cases without and with and electric field pulse, 1 µs after the back edge of the

pulse. The effect of the pulses was to increase the amount of charge imbalance by as much as

∆δ = 0.2. Since the time between the pulse and the measurement of the resonant frequency is
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short, we can assume that the electric field pulse does not significantly alter the density. So, the

peak frequency (density) should be the same between the cases with and without the pulse.

When we apply the electric field pulse, the frequency shifts in the direction (higher frequency)

that is predicted by our model in all cases. The amount of shift in the frequency shows good

matching between what we observe and the predictions in our model. However, there is an ∼ 2%

over-shift in the frequency over our range of typical conditions. This is mainly due to an over-shift in

frequency at the earliest times in the UCP evolution for the lowest initial ionization energies (∼ 10

K). This could be due to the over-damped nature of the plasma oscillations that are induced by

the external rf, which will be discussed further in Section 4.4. However, the over-shift in frequency

is still relatively small, on the order ∼ 5% for these conditions.

From this model, we were able to calculate the resonant frequency of a cloud of electrons

displaced from the ion component in a UCP. However, we still need to evaluate whether this

collective motion is a reasonable explanation for the observed electron signal in our measurements.

To do this, we numerically evaluated whether the internal electric fields produced by the motion of

the electrons could lead to additional electron escape. Since a full scale particle simulation of the

response the external fields is computationally intensive (our talks with theorists had timescales

of months on these types of simulations), we decided to sample individual electrons’ motions as

they were influenced by the externally applied rf fields and the overall motion of the UCP electron

cloud. The goal of this calculation was to show that electrons could gain enough energy to escape

the UCP without the need for binary collisions.

To setup this calculation, we started with a T = 0 electron and ion distribution with 5×105 ions,

spatial extent σ = 1 mm, and charge imbalances in the range δ = 0.2−0.35. The electron cloud will

oscillate with an initial amplitude of ∼100 µm, which is based on typical predicted displacements

based on our externally applied rf field. The oscillation is set to decay with exponential time

constants that range from τ = 50 − 200 ns (this is based on our observations from Section 4.4).

The sample electron that we follow is placed in this distribution at a chosen position, trajectory,

and kinetic energy. We vary these initial conditions to determine how likely it is for electrons to

escape the UCP.

For these calculations, we sampled electrons with kinetic energies that ranged from 100 − 350

KkB . We also assumed potential depths of 400 − 750 KkB of energy for our range of charge
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distributions. The internal fields associated with the electron cloud motion could be as high as 10

V/m, which provided “kicks” to the electrons that gave them enough kinetic energy to escape the

UCP under the proper conditions. This increase in energy occurs in just a few hundred nanoseconds

without any collision processes.

Not all of the electrons that are subject to the internal fields associated with the collective

electron motion escape the UCP. If the field is opposite the electrons motion, the particle may

be slowed, which prevents it from being able to escape. The probability of an electron escape

event is correlated mostly with the phase of the electrons motion relative to the internal field and

also depends on the initial kinetic energy of the particle and the damping time of the collective

oscillation. As the damping time is decreased from 200 to 50 ns, the electron can require up

to six times the driving amplitude before escape is possible again. The damping time could be

associated with both the density and the electron temperature which is discussed in the following

section. While net 90 degree binary collisions (both electron-electron and electron-ion) will limit

the transfer of energy for lower energy electrons, these collision timescales can be up to 10 times

greater that the electron transit time across the UCP for higher-energy electrons [12], which makes

this calculation reliable for higher-energy electrons.

4.3.1 Determining the UCP Size from Resonant Frequency Measurements

The calculations performed in the previous section allow us to determine the peak density of the

UCPs created in our system from a measurement of the resonant frequency using the two-cycle rf

sweep technique. While knowing the peak density can be useful, to compare our measurements

to models of the UCP expansion, it is more convenient to determine the characteristic size of the

UCP, σ. Therefore, it is important to describe how the value of σ is determined in detail so that

the reader can have a better understanding of the experiments presented in this thesis.

We start by measuring the resonant frequency of the UCP at a particular point in the UCP

evolution using our two-cycle rf sweep technique described in Section 4.2 and seen in Figures 4.2

and 4.3. To determine the peak density, we need to determine the charge imbalance fraction, δ, so

that we can apply our model correction, ω/ωpeak, to our measured resonant frequency. Since the

MCP signal (Figure 4.2) is proportional to the electron escape rate from the UCP, we can integrate

the MCP signal in order to find the total number of electrons that escape the UCP as a function of
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time (in conjunction with our MCP calibration factor, see Chapter 3). The integrated signal allows

us to determine the charge imbalance fraction, δ, at any point in the UCP evolution. In principle,

the presence of three-body recombination can affect our determination of the charge imbalance as

electrons recombine with the ions throughout the UCP evolution. However, for most of our UCP

conditions, this effect is negligible. At our lowest initial ionization energies and highest densities,

more care needs to be taken in order to accurately determine the value of the charge imbalance, δ.

With the value of δ at the time of the resonant frequency measurement, we can find the plasma

frequency associated with the peak density of the UCP, fpeak, by multiplying the measured resonant

frequency by the value of ω/ωpeak taken from Figure 4.5. The peak density, npeak, can be found by

solving Equation 2.13 to be npeak = (fpeak/8980)
2 in units of /cm3.

To find σ, we use the fact that for a Gaussian ion distribution, σ = [Nion/(2π)3/2npeak]
1/3, where

Nion is the total number of ions in the UCP (this can be found from the integrated MCP signal

by using the number calibration factor). There is one subtlety that needs to be considered when

making this conversion. Although the electron distribution is not entirely Gaussian as electrons

escape (the electrons closely match the ion density in the center, but there is a sharp cutoff in the

outer part of the distribution), there is an underlying Gaussian shape to the ion distribution that

we can characterize by the parameter σ. It is this value of σ that we can compare to models of

plasma expansion as will be discussed in Chapter 5.

4.4 UCP Response to Pairs of Sharp Electric Field Pulses

The model of the UCP response where the electrons act as a rigid object leads to a prediction that

a collective oscillation can be excited by a sharp electric field pulse comparable to an impulse given

to a simple harmonic oscillator system. To test this hypothesis, we applied a pair of sharp electric

field pulses to the UCP and measured the response through the electron escape signal. The pulses

we applied have a full-width half-max temporal profile of 12.5 ns. The first pulse served to excite

the collective motion of the electrons in the axial direction. The second pulse was applied after a

chosen time delay, and the resulting electron escape owing to the presence of the second pulse was

measured as a function of this time delay. The result of this measurement was a clear oscillating

behavior in electron escape signal as seen in Figure 4.6. The damped oscillation that was observed
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Figure 4.6: An example of the UCP response to two sharp electric field pulses. The left axis shows

the additional electron escape owing to the presence of the second electric field pulse. The bottom

axis is the pulse separation in ns. The two sets of data here show the response at ∆E/kB = 10 K

for 55 (a) and 80 (b) µs after the initial UCP formation. We fit the response curves to decaying

oscillating functions of the form A cos(2πft) exp(−t/τ) + y0 where f is the frequency of oscillation

in Hz and τ is the decay time constant. In (a), the fits yielded a frequency of 13.61 ± 0.23 MHz

(13.31 ± 0.12 MHz from two-cycle rf). The time constant of decay was found to be τ = 103 ± 14

ns. In (b), the fit frequency was 8.33 ± 0.14 MHz (8.05 ± 0.1 MHz from two-cycle rf). The time

constant of decay was found to be 148 ± 26 ns
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can be understood as a damped, harmonic oscillator system. The first pulse starts the motion, and

the second pulse will either enhance or decrease the response based on the direction of the collective

motion during the second pulse.

Figure 4.6 shows the results of this measurement for two different times in the UCP evolution

(55 and 80 µs respectively) at ∆E/kB = 10 K. The frequency of oscillation decreases later in the

UCP evolution, as would be expected from the density dependence of the resonant frequency as

the UCP expands. The frequency of this response was compared to that of the peak response to a

two-cycle rf sweep at the same time. To do this, it is easiest to compare the response of a two-cycle

rf sweep to that of the fast-Fourier transform (FFT) from the oscillating signal to get the resonant

frequency. The results of the FFT can be seen in Figure 4.7. Plotted with this is a scaled response

curve from a two-cycle rf sweep at the time of the two-pulse measurement. From this, we can

see a clear peak in the FFT signal in both cases at the same frequency of that from the sweep

measurement. The response in both cases is relatively broad as would be expected since pulses of

rf contain a range of frequencies around the principle frequency. This measurement shows that the

nature of the response is the same in both cases, and further confirms that a collective motion of

electrons is responsible for the response that is observed in our system.

The source of the decay of the oscillating signal from the two-pulse measurements could be due

to dephasing of the motion of the electron component owing to its fluid nature or to electron-ion

collisions which can also dephase the motion of electrons. The exact source of this decay is unknown

at this time but is likely a combination of the two effects. Although this will be the subject of the

thesis work for future students of this project, there are still some observations that can be made

about the properties of this decay. The oscillating, decaying response was fit to a function of the

form A cos(2πft) exp(−t/τ) + y0, where A is the amplitude of oscillation, f is the frequency, τ is

the time constant of the decay, and y0 is the offset of the electron response. When the response

curve from Figure 4.6 (a) was fit to this function, it yielded a decay constant of τ = 103 ± 14 ns.

Later in time, in Figure 4.6 (b) the decay time increased to τ = 148 ± 26 ns. The error in the

fit of the decay time was relatively large but shows the right trends for the expected collisional

timescales associated with an expanding UCP. The electron-ion 90 degree deflection times for this

data can range from 10s of ns up to several hundred ns depending on the temperature of the

electrons in the UCP [12]. These types of measurements may lend themselves to estimating the
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Figure 4.7: The Fast Fourier Transform of the two-pulse response data from Figure 4.6 (black).

The red data that is superimposed on these plots is a scaled version of the two-cycle rf sweep data

used to find the resonant frequency. Here we can see that the frequency response of the two cases

is nearly the same, indicating that the response mechanism in both cases is the same.

121



electron temperature based on this decay time if the dephasing of the electron component of the

UCP can be taken into account.

If we perform this measurement at very early times for ∆E/kB = 10 K, the response of the

UCP can be very different. Here, we have observed over-damped behavior in which no oscillations

in the electron component are present. The enhanced signal from these pulses decays in less than

40 ns, after which a relatively flat response is observed. At this point in the UCP evolution, the

election-ion collision rate is significantly higher than at other points in the UCP evolution and

a much higher damping rate owing to binary collisions is expected to occur. This could be the

reason that the charge imbalance correction measured at this time in the UCP evolution is slightly

different than what is predicted as discussed previously.

4.5 Scaling of the Two-Cycle Response with Density and Mag-

netic Field

The calculations from our model of the electron motion indicate that the magnitude of the restoring

force on the electron cloud increases with increasing UCP density. This means that the amplitude of

the oscillation of the electron cloud will decrease with increasing density when under the influence

of the externally applied rf field, decreasing the overall response. This decrease in the response

as a function of UCP density means that the energy transfer mechanism which is described by

our model will not be as prevalent in other UCP experiments where the density is 1 − 2 orders of

magnitude higher [1, 6]. For our system, we were able to measure this response as a function of

UCP density as seen in Figure 4.8. For these measurements, we measured the resonant frequency

at a particular position in the UCP evolution using the two-cycle rf method. With the frequency,

number of total ions, N , and the charge imbalance, δ, we can find the peak density of the UCP at

this time as described earlier. To determine the effective response size, we take the peak response

size from the sweep measurements, and scale it by the number of electrons remaining in the UCP

(we do this because near the end of the UCP lifetime where the density is lowest, there are not

many electrons available to escape) to determine an effective response size.

These measurements show that as the density increases that the effective response size decreases.

The data in Figure 4.8 was taken over a range of initial ionization energies (∆E/kB = 1− 400 K).
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Figure 4.8: An example of the effective response size from a two-cycle rf measurement as a function

of density. Each data point here represents the peak electron signal observed in a two-cycle rf

sweep measurement, scaled by the number of electrons remaining in the UCP at the time of the

rf application. The data here is a compilation of data sets over a wide range of temperatures

(∆E/kB = 1 − 400 K). This effect is attributed to the increase in the restoring force on the

electrons from the ions as the density increases. Inset is the effective response size as a function of

magnetic field for ∆E/kB = 10 K. The increase in the response size with magnetic field here is likely

owing to better coupling between the driving rf and the dipole response mode of the oscillating

electrons.
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The effective response size shows no additional scaling as a function of the initial energy of the

UCP.

We are also able to measure the effective response size as a function of the magnetic field

between 0 − 14 G. The results of these measurements show that there is a general increase in

the effective response size as the magnetic field increases. This is likely due to the fact that the

magnetic field is able to restrict the electron motion that is not along the axis of the driving force,

which allows for better coupling to the dipole oscillation mode.

4.6 Additional Measurements of the Delayed RF Response

The application of delayed rf to our UCPs is what led us to the studies of the effects of short rf

pulses in our system. The original motivation for the delayed rf measurements was to measure the

collisional timescales that led to electron evaporation in UCPs by trying to heat the electrons at

the lowest energies of the electron distribution. These electrons would occupy small radius orbits

near the center of the UCP distribution. Our initial estimates of the density (which were ultimately

consistent with our observations) of the UCP allowed us to estimate the electron-electron collision

timescales early in the UCP evolution. Over our range of initial conditions, we expected collision

timescales for the electrons that could be as long as many µs. Therefore, if energy is given to the

electrons in the lower portion of the energy distribution, we should be able to measure how long

it takes for energy to be redistributed to the top of the energy distribution where electrons can

escape the UCP. Although we could not guarantee that the energy that we deposited into the UCP

through the rf would be absorbed mainly in the lower part of the energy distribution, most of the

electrons in the UCP exist at energies well below the potential well barrier. So, it was presumed

that we would still see an effect owing to the heating of these lower energy electrons.

What we observed was quite different from our expectations given the results of other UCP

experiments [1, 6]. As discussed earlier, there is a rapid response to the rf that has no dependence

on the UCP temperature and therefore no dependence on electron-electron collision timescales.

Also, the delayed application of rf also shifted the time of the observed resonant response to later

in the UCP evolution. The discussion earlier in this chapter focused on the rapid response of the

UCP to the applied rf. Here I will discuss the results of further measurements of the shift in the
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resonant response. To see how much the application of the continuous rf affected the UCP evolution,

we applied the delayed rf at many times throughout the UCP evolution for the same applied rf

frequency. We performed this measurement at initial ionization energies of ∆E/kB = 10, 100, and

400 K. The results of these measurements can be seen in Figure 4.9. In these measurements, we

continue to shift the time of the rf application until only the initial response to the applied rf is

observed.

In Figure 4.9, we observe that as the rf is applied later in the UCP evolution, that the time

of the resonant response that we observe can shift out to much later in the UCP evolution. This

is particularly true at ∆E/kB = 10 K, where we can apply the rf as much as ∼20 µs later and

still see a resonant response. As ∆E/kB increases, the amount of time that the resonance shifts

decreases. At ∆E/kB = 400 K, the resonant response does not shift significantly as the time of

application of the rf is changed. Also, at the time of the observed resonance, the initial response

here is at its greatest. These observations suggest that the application of the rf causes a significant

amount of heating that can greatly alter the expansion rate of the UCP when the rf is applied.

At ∆E/kB = 400 K, the expansion rate is fast enough compared to the additional energy received

from the applied rf that there is no significant shift in the resonant response.

4.7 Comparison of the Two-Cycle and Continuous RF Response

Although the response of the UCP to continuous rf depends strongly on many UCP parameters

besides density, the nature of this response can be compared to that of our two-cycle rf pulses under

certain experimental conditions. To do this, we take advantage of the fact that the time of the

UCP resonance with the continuously applied rf changes with the applied rf amplitude. The effect

of the continuous rf on the time of the observed resonance was first noticed in the data in Figure

4.1, where a delay in the rf application shifted the resonance to later time. It was also noticed that

as the rf amplitude was increased, the resonance shifted to earlier times in the UCP evolution as

seen in Figure 4.10. This result lead us to the conclusion that the application of the continuous rf

caused a significant amount of heating in the UCP which can drive a faster expansion in the ion

component (this point will be discussed further in the following section). The faster expansion will

cause the density to reach the resonance condition at an earlier point in the UCP evolution, which
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Figure 4.9: Further demonstration of the delayed application of the rf and the induced shift in the

resonant frequency time for ∆E/kB = 10, 100 and 400 K (applied frequencies of 20, 20 and 25

MHz respectively). We observed here that there is an initial ionization energy dependence on the

magnitude of the shift in the resonant response as the rf is delayed. At ∆E/kB = 10 K, the shift is

< 20 µs. At ∆E/kB = 400 K, there is no detectable shift in the time of the resonance. Our data

suggests that the expansion rate of the UCP is altered by the application of the rf.
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explains the shift in time that we observe. This effect is greater at lower initial ionization energies,

∆E/kB , as seen in Figure 4.10 (a). Here, at ∆E/kB = 10 K, the time of the observed resonance

peak can be shifted by as much as 15 µs, which is a substantial fraction of the ∼ 110 µs lifetime of

the UCP (The lifetime of the UCP is defined by the time at which the last electron escapes from

the UCP). At ∆E/kB = 400 K, the resonance time changes by less than 1 µs for a UCP lifetime

of ∼25 µs. This relatively mild influence at higher initial ionization energies can be understood

when considering that “natural” expansion rate of the higher initial energy UCP is higher than for

lower energies. So, if a similar amount of energy is imparted to the UCP from the continuous rf,

the relative effect will be greater for the lower energy UCP.

As a consequence of the more rapid expansion, the lifetime of the UCP can be greatly reduced,

particularly for the lower initial energy case. For the ∆E/kB = 10 K data in Figure 4.10 (a), the

life time was reduced to ∼ 20% of the “natural” lifetime at the highest amplitude of the applied

rf. At ∆E/kB = 400 K, this reduction is to only ∼ 90% of the “natural” lifetime, which would be

expected from the arguments made above.

To compare the response to the continuous rf to the two-cycle rf method, it is necessary to

find a way to account for the shift in the resonance time owing to the heating of the UCP from

the applied rf. To do this, we measure the observed time of the resonance as a function of the

amplitude of the applied rf. If the resonance time can be extrapolated to zero applied rf power, we

can take the extrapolated time to be where the resonance would occur in the absence of any heating

effects. An example of this type of measurement can be seen in Figure 4.10(a) for ∆E/kB = 10

and 400 K. For the ∆E/kB = 10 K data, the peak time as a function of power is not linear, which

makes the determination of the zero-power peak time difficult. In this case, the effect of the rf

seems to saturate at higher power. At higher initial ionization energies, the extrapolation back to

zero applied rf power is linear, which will allow us to make comparisons to the two-cycle rf method

under these conditions.

We can use this method for finding the resonance time using continuous rf for multiple fre-

quencies of the applied rf. By accounting for the charge imbalance, δ, at the extrapolated time of

the resonance, we can use our model to determine the value of ωpeak, which can be converted to a

measure of the peak density, npeak. From the value of the peak density, and the total number of

ions and electrons produced for our UCP, Nion, we can calculate the rms size, σ of a spherically
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Figure 4.10: (a) An example of the shift in the resonance peak time as a function of the continuous

rf amplitude. At ∆E/kB = 10 K (red triangles), one can see that the extrapolation is not linear,

and the zero-power peak time can not be determined by a linear fit (12 MHz applied rf field). At

higher initial ionization energies (shown here at ∆E/kB = 400 K as black circles) the extrapolation

is linear, allowing the determination of the zero-power peak time (16 MHz applied rf field). In

(b), we compare this extrapolation for a few different frequencies of continuous rf (triangles) with

the measured frequencies at specific times with two two-cycle rf method (circles). These data, for

∆E/kB = 100 K (red) and 400 K (black) show a consistent trend in time.
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symmetric Gaussian distribution as given by σ = [Nion/(2π)3/2npeak]
1/3. The rms size can be used

to measure the expansion of the UCP, which will be discussed in more detail in Section 4.8. We

can measure the rms size, σ, using our two-cycle rf method and compare to the values that were

measured using the extrapolation technique for continuous rf by plotting the values from both tech-

niques together as seen in Figure 4.10(b). Here we have this comparison for ∆E/kB = 100 and 400

K, where we observe no significant (i.e. greater than 3%) difference between the two techniques.

This degree of agreement implies that the mechanism for the resonant response is likely the same

when using either technique. This further illustrates that our experimental parameters put us in a

range where the theory from [5] does not apply because the charge imbalance correction from this

model would produce corrections to the density that would be inconsistent with our data.

4.8 Using Two-Cycles of RF to Measure the UCP Expansion Rate

One of the most useful applications of the two-cycle rf sweep method is the ability to measure

the expansion rate of the UCP. This was done in part as discussed in Section 4.7 to compare the

response of the two-cycle rf sweeps to the continuous rf response. Mapping the full expansion and

evolution of the UCP will be used to study the effects of evaporative cooling (Chapter 5) and

influence of magnetic fields on the UCP formation (Chapter 6). To begin our studies of the UCP

expansion for our system, we mapped out the expansion for UCPs ranging in initial ionization

energy from ∆E/kB = 1 − 400 K as seen in Figure 4.11. Here, we can see that the expansion

of the UCP increases with initial ionization energy. From the expansion curves, we can find the

asymptotic expansion velocity as a function of initial ionization energy which is seen in Figure 4.11.

There are a few things to notice from the asymptotic expansion velocity. The red line in the figure

represents the expansion velocity of the UCP that would be expected if all of the energy of UCP

is transferred to the ion expansion energy. For initial ionization energies below ∆E/kB = 10K,

we observed an asymptotic expansion velocity that no longer decreased as the initial energy was

lowered. This has been observed in other UCP experiments [1], and is attributed to three-body

recombination heating effects on the UCP. Because of our lower densities, this effect occurs at

lower initial energies for the UCPs in our system. For higher energies, the asymptotic expansion

velocity falls below the expected full energy expansion velocity (red line). This lowering of the
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Figure 4.11: Using the two-cycle rf method for determining the density (and from that the rms size

σ) of the UCP, we were able to measure the expansion of the UCP over an initial ionization energy

range from ∆E/kB = 1− 400 K. From these curves, we were able to find the asymptotic expansion

velocity as a function of the initial ionization energy which is seen in the lower figure. The red line

in this figure represents a full conversion of the initial energy to expansion energy. At low ∆E/kB ,

the expansion energy is above this line, which is attributable to three-body recombination heating

which increases the expansion energy of the UCP [1, 9]. At higher ∆E/kB , it falls consistently

below this line, which implies that there are effects from evaporative cooling on the expansion of

the UCP.
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expansion energy is what led us to our studies of the effects of electron evaporative cooling on the

UCP expansion velocity that will be discussed in Chapter 5.

The expansion curves that were measured in Figure 4.11 were taken with a 7 G magnetic field,

which at the time that this data was taken helped us to extract all of the electrons from the UCP

(see Chapter 3). As a consequence of using a magnetic field during the UCP expansion, we observed

unexpected expansion behavior that caused the expansion to deviate from the expected form of a

self-similar expansion, where the rms size of the plasma scales in time as σ(t) =
√

σ2
0 + v2t2, and v is

the asymptotic expansion velocity. The initial expansion of the UCP is more rapid than is expected.

Also, there appears to be a period of deceleration in the UCP expansion that was not expected and

is also not observed under magnetic field free conditions of the UCP. These observations led to the

studies of the effects of a magnetic field on the UCP formation and expansion that are discussed

in detail in Chapter 6. At later times in the UCP evolution in some cases, a rapid acceleration of

the ions can be observed. This occurs when there are typically less than 10% of the total number

of electrons remaining in the UCP. At this point a breakdown the UCP screening can occur, which

can cause a “coulomb explosion” of the ions [13].

4.9 Ultracold Plasma Heating from Short Bursts of RF

Although using the two-cycle rf technique for measuring the density of the UCP is ideal for our

system because it does not add heat to the UCP before the application of the rf, short bursts of rf

can be used to add heat that measurably alters the evolution of the UCP after the rf is applied.

This was first observed in the form of subtle changes to the lifetime of the UCP when the rf was

applied early the UCP evolution. This type of effect might be useful when trying to characterize

electron-ion collisions which will be the subject of future work for this project. Also, it may prove

useful to have a method for deliberately altering the electron temperature that does not involve

changing the initial ionization energy. At this time, only preliminary measurements were made

where it concerned the effects of short bursts of rf on the UCP. A summary of those results will be

presented here.

For this measurement, we applied four cycles of rf near resonance early in the UCP evolution,

and looked for changes in the subsequent evolution of the UCP compared to the case without the
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applied rf. As seen in the measurements presented in this chapter, the application of a short burst

of rf can cause a large increase in the amount of electron escape at the time of application. The

electrons that escape carry away energy from the UCP, and if there is heating from the rf, some of

the heat can be removed by the escaping electrons. To study the effects of heating from the rf, it

will be necessary to prevent electrons from being able to carry this heat away. To do this, we can

shut-off the electron escape entirely for a short period of time. By creating the UCP in a relatively

large DC electric field, we can allow the UCP to form and apply a sharp electric field ramp to a

lower electric field to increase the confinement of the electrons in the UCP. Figure 4.12(a) shows

the total charge imbalance (fraction of electrons that have escaped) of the UCP as a function of

time for ∆E/kB = 100 K (2.5 × 105 ions), with and without a heating pulse. The UCP is formed

in a relatively high DC electric field (∼20 V/m), which extracts a large number of electrons in

the “prompt” peak. After 2 µs the electric field is ramped quickly down to a lower DC field (∼1

V/m). When the DC field is lowered, the excess of ions compared to the electrons and the lower

DC field combine to create a potential well with a very high barrier relative to the temperature

of the electrons. This prevents any electron escape from taking place for ∼8 µs, until the UCP

expands enough to lower the potential barrier to a level where electron escape can resume. This

provides a window in time where we can apply the four cycles of rf while minimizing the chance for

electron escape. The rf that is applied is at 25 MHz, 5 V/m peak-to-peak, and at 3 µs (1 µs after

the electric field ramp) after the formation of the UCP. To study the effects of the rf heating on

the UCP, we can make comparisons of the UCP size using the two-cycle rf sweep method described

in this chapter between the cases with and without the heating pulses.

The results of these measurements can be seen in Figure 4.12(b). Here, we measure the size of

the UCP at four points in the UCP evolution between 14 − 29 µs after the formation of the UCP.

The figure shows that when the heating pulse is applied, the rms size, σ, of the UCP is larger at

each time when compared to the case without the heating pulse. The difference is small, but we

can take the ratio of the size increase at each point and perform a weighted average to find the

size with the heating pulse is on average 3.5± 0.7% larger than the case without the heating pulse

present. The fit lines in Figure 4.12(b) are shown extrapolated so that the small difference in slopes

between the two sets of data can be seen, which is ∼ 7% increase for the data with the heating

132



Figure 4.12: (a) The red and black curves show the electron escape fraction as a function of time

without and with a four-cycle heating pulse respectively. The blue curve shows the electric field

level in time. We ramp the field down at 2 µs to shut off the electron evaporation, 1 µs after which

we apply a heating pulse to the UCP. (b) shows the results of the UCP size measurements and

their comparisons with and without the heating pulses. We can see here that when the heating

pulse is applied, the UCP is larger at the time of each size measurement.
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pulse. However, for this data, the error in the ratios for the slopes is ∼ 5% which would imply that

there is not a statistically significant difference between the two cases.

Another indication that heating has taken place when the four-cycle rf pulse is applied is the

increase in the electron evaporation rate seen in Figure 4.12(a). Here it can be seen that as the

electrons begin to escape again after the application of the DC electric field ramp, that the slope

in the electron escape fraction is greater when the heating pulse has been applied. At the point

of the highest electron evaporation rate, the data with the heating pulse has a 9.1 ± 0.1% higher

electron evaporation rate. While an increase in electron temperature generally lowers the electron-

electron collision rate, the rate of electron evaporation is will be strongly influenced by the potential

well depth created by the excess of ions to electron temperature ratio. So, an increase in electron

temperature can produce an increase in the electron evaporation rate from the UCP. Also, increases

in the UCP size can lower the potential barrier caused by the excess of ions, which will increase

the rate of electron escape from the UCP. The influence of electron evaporation on the evolution

of UCPs is the subject of the next chapter, and will be discussed in great detail.

Conclusion

The nature of the response of the UCP to short bursts of rf in our system showed us that

there is a collisionless energy transfer mechanism that is present for low-density UCPs within the

range of our experimental conditions. The applied rf was shown to excite a collective motion of

the electron component of the UCP with a resonant frequency. Modeling of a collective electron

response to external fields showed that this frequency was determined by the peak ion density and

the charge imbalance through the average electron density. The collective motion of the electrons

was further confirmed by applying two sharp electric field pulses to the UCP separated in time.

The pulses were able to excite motion that resembled a damped, driven harmonic oscillator system,

whose frequency is the same as the resonant frequency from the two-cycle rf data.

The development of the two-cycle rf method for measuring the density of the UCP as a function

of time will allow us to characterize many different properties of the UCP. It is the most important

tool that we have developed for our system and it will serve as a the main measurement technique

for the rest of the UCP experiments described in this thesis and for many future experiments

beyond those discussed here. The main advantage of our technique is the ability to measure the
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expansion rate of the UCP without the heating effects that are present in the continuous rf case.

These expansion rate measurements will allow us to make comparisons to models of the effects of

electron evaporative cooling on the ultimate UCP expansion as discussed in the next chapter.
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Chapter 5

Electron Evaporative Cooling in Expanding Ultracold

Plasmas

With the development of techniques that can be used to measure the ultracold plasma (UCP)

density at a chosen point in the UCP evolution as discussed in Chapter 4, we can now use measure-

ments of the UCP expansion to characterize the electron temperature profile of the UCPs created

in our system (see Equation 2.19). In particular, we want to study the effects of electron evap-

orative cooling on evolution of the UCP expansion and electron temperature for our UCPs. By

demonstrating the importance of evaporative cooling for the UCPs created in our system, we can

then begin to explore ideas such as forced evaporative cooling in attempts to push the electron

component of our UCPs further towards the strong-coupling regime [1].

Measurements of the UCP expansion can be used to determine early-time properties of the

plasma such as the electron temperature [2]. These measurements have been used to study the

various heating effects that can occur during the UCP formation. These heating effects include

three-body recombination [2, 3], disorder induced heating [4], threshold lowering [5], and Debye

screening [6]. All of these effects lead to lower strong coupling than what can be theoretically

achieved based solely on the initial ionization energy of the ionizing laser and the thermal tem-

perature of the ultracold atoms used to create the UCP. This is particularly true for the electron

component of the UCP, where three-body recombination has placed a theoretical limit on the

amount of strong coupling that can be achieved of Γ ∼ 0.2 [7], at least for some ranges of UCP

parameters.

In this chapter, I will discuss predictions derived from a simple model of UCP evolution with the

effects of electron evaporation taken into account that shows electron evaporation plays a significant

role in the evolution of UCPs at lower densities. This result is counter-intuitive given the results

of evaporative cooling experiments involving ultracold atoms, where higher densities drive higher

evaporation rates from a sample of ultracold atoms [8]. Thus, in general effective evaporative cooling

is associated with higher densities in ultracold atom systems. The counter-intuitive behavior in

ultracold plasmas is due to the fact that the ultracold plasma systems are self-confining because of

the space charge imbalance that develops as electrons leave the system. The excess positive charge
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that is left behind will serve to help confine the electrons remaining in the UCP. As more electrons

escape, this confining potential becomes stronger. At high densities, a little fractional electron loss

increases the confinement enough to rapidly prevent a significant fraction of electrons from being

lost, truncating evaporation. Therefore, it is expected that evaporation will have a more significant

effect on the UCP evolution at low densities.

In addition to presenting the simple model predictions discussed in the previous paragraph, I

will also discuss measurements of the expansion of the UCPs in our system that show an expansion

rate that is less than what would be expected in the absence of evaporative cooling effects. From

this data, we can use models that we developed that take the electron evaporation rate into account

to show that evaporative cooling is a reasonable explanation for our observations. By using these

models, it is possible to extract the electron temperature evolution in our UCPs in the absence

of any heating effects. The temperature evolution of our UCPs shows that it may be possible

to achieve strong-coupling parameters for the electron component that exceed the theoretically

predicted value of Γe ∼ 0.2 in the absence of strong three-body recombination effects. However,

while our results are suggestive of a value of Γe > 0.2, measurements of the expansion rate of the

UCP are insufficient to determine accurate values of Γe. Therefore, it will still be necessary to

develop a local temperature probe that can measure the electron temperature at a specific time in

the evolution of the UCP to get an accurate measure of the electron strong-coupling parameter,

Γe. One such possible measurement of the electron temperature will be discussed in Chapter 8 of

this thesis.

5.1 Experimental Background

Since the creation of ultracold plasmas [9], there has been a continual push towards creating

UCPs with higher strong coupling parameters in both the ion and electron components. Although

disorder-induced heating can initially reduce the amount of strong coupling in the ion component,

the strong coupling parameter for the ion component, Γi, can be greater than 1 as the UCP evolves

[10]. For one-component ion plasmas, laser cooling of the ions in a Penning trap configuration has

produced very high values of the strong coupling parameter, to the point of producing ion crystals

[1]. The addition of the electron component to the plasma complicates the physics of the system
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through the addition of various heating [2, 3, 5] and screening [6] processes. The most impor-

tant problem with regard to creating high Γe UCPs is three-body recombination, which limits the

achievable strong coupling for the electron component in UCP systems [7].

Although three-body recombination heating has been observed to have a significant effect on

the electron temperature in other UCP systems [2, 3], it is expected to have a negligible effect on

the electron temperature for the UCPs created in our system over a wide range of UCP density

and temperature conditions. The classical three-body recombination rate per ion is given by [12]

Ktot
TBR ∼ 3.8 × 10−9 · T−9/2

e n2

e s−1 (5.1)

where Te is the electron temperature in units of K and ne is the electron density in units of

cm−3. One can note here that the three-body recombination rate has a very strong scaling with

temperature as T−9/2

e . For the range of conditions accessible by our system, we can have initial

electron temperatures ranging from Te ∼ 1 − 400 K at densities from ne ∼ 107 − 108 /cm3. At the

lowest initial electron temperatures (Te ∼ 1 K), the three-body recombination rate can be as high

as 2.3×108 s−1, which would give recombination times as short as 25 ns. However, with an increase

in the electron temperature to just ∼7 K (∆E/kB ∼ 10 K), the recombination time increases to

greater than 150 µs, which is longer than the lifetime of the UCPs created by our system under

all conditions. At higher initial ionization energies, this recombination time increases even further,

meaning that we expect negligible contributions from three-body recombination at initial ionization

energies above ∆E/kB = 10 K.

The very fast three-body recombination rate that is calculated for low temperatures would imply

that the UCP ions would recombine almost completely into a Rydberg gas on the order of ∼1 µs.

However, this is not what is observed in [3] or in our work at low electron temperatures. This can

be understood from the T−9/2

e scaling of the three-body recombination rate. As the recombination

event occurs, the extra electron will carry away the energy that comes from the binding of the other

electron into a Rydberg state with the ion. This will heat the electron component of the UCP,

which will increase the temperature. This in turn quickly decreases the three-body recombination

rate. This was studied in molecular dynamic simulations in [7] which had good agreement with

the results from [3], where the heating from three-body recombination keeps the value of Γe ∼ 0.2.
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So, even though the classical recombination theory is expected to break down for Γe ∼ 1 [13], Γe is

predicted to be limited to below this value in some UCP systems.

The lack of three-body recombination will be very important when studying the effects of

electron evaporation in our system. The model that we develop allows us to infer the electron

temperature evolution as the UCP expands, which will allow us to calculate both the electron

strong coupling parameter, Γe, and the three-body recombination rate as a function of time. Our

model shows that electron evaporation may lead to values of Γe that are greater than the 0.2 limit

observed in [3, 7] before the three-body recombination rate become significant. This means that

electron evaporative cooling is an excellent candidate for pushing the value of Γe closer to the strong

coupling regime.

Evaporative cooling has been studied extensively in ultracold atom systems [8], as it was the

primary means of creating atom clouds with temperatures low enough to form Bose-Einstein con-

densates when they were first experimentally realized. To increase the influence of evaporation in

ultracold atom experiments, it is desirable to have very high densities in the system to increase the

collision rates in the ultracold gas. Through the increase in collisions, energy can be transferred

to the high energy atoms that can allow them to escape the trap and carry away energy from the

system, lowering the temperature of the sample.

While the collision rate of charged particles also increases with the density, it is actually not

desirable to have large density plasmas to increase the influence of evaporation in the UCP systems.

This is not only owing to the increased effect of three-body recombination in these systems, but also

because the self-confining nature of UCP systems limits the amount of evaporation that can take

place. As electrons escape the UCP through evaporation, the excess positive charge in the UCP

creates a stronger confining potential for the electrons that remain. For higher density UCPs, a

smaller fractional amount of charge is required to escape to create the same confining potential for

the remaining electrons (i.e. 10 times the density requires 0.1 times the relative charge imbalance

to create the same confining potential). This means that the larger fractional electron escape from

a lower density UCP will lower the average thermal energy of the remaining electrons more than

the higher density case. This implies that it is desirable to work at lower densities in the UCP case

which is counter to what is expected from ultracold atom experiments. This increased influence of

electron evaporation at lower densities will be shown in detail in this chapter.
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The typical models for UCP expansion [2, 7, 14] do not take into account the loss of elec-

trons from the UCP through evaporation and conserve the total energy of the UCP from formation

throughout the expansion. They also assume that the electrons are in thermal equilibrium through-

out the UCP expansion. The ions are treated as a T = 0 fluid, since they have a low thermal energy

in comparison to the electrons, with a Gaussian density distribution given by

n(r) =
Ntotβ

3/2

π3/2
exp

(

−βr2
)

(5.2)

where Ntot is the total number of ions in the UCP and β = 1/(2σ2), which is defined this way for

convenience. The electron distribution is determined self-consistently from a thermal distribution

and has a density ne ∝ exp(−U/kBT ). Since the electrons have a much higher thermal temperature

than the ions, the electron distribution will be slightly less dense than the ion distribution. However,

the electron distribution will still follow the ion distribution closely, otherwise large electric fields

will develop that are inconsistent with the electric field screening present in the UCP. This slight

imbalance will create an excess of positive charge throughout space, which gives rise to a radial

electric field which will drive the expansion of the ion component of the UCP. This leads to a system

of equations that models the transfer of energy from the electron component of the UCP to the ion

component as follows

3

2
NkB

dTe

dt
= −

3

4
Nmion

d

dt

(

γ2

β

)

(5.3)

dβ

dt
= −2βγ (5.4)

dγ

dt
= −γ2 +

2βkBT

mion
(5.5)

Here γ is defined by ~v = γ~r which relates the ion velocity to position for a self-similar expansion.

Equation 5.3 takes into account conservation of energy as the electrons cool during expansion

and transfer all of their thermal energy to ion expansion energy (in the absence of evaporation).

Equations 5.4 and 5.5 relate to the ion expansion itself, which will allow us to calculate the expected

size of the UCP, σ, as a function of time for comparisons to our measurements. These equations

are only approximate, but do an adequate job of modeling the UCP expansion for the parameters

evaluated in [7]. To account for electron evaporation, these equations will need to be modified.

This will be discussed in detail in the following section.
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5.2 Determining the Influence of Electron Evaporation

To determine the effects of evaporative cooling of the electrons on UCP systems, we have to adapt

the cold fluid ion models [2, 7, 14] discussed previously to take the evaporation into account. This

will mainly affect the energy conservation term given by Equation 5.3, where the escaping electrons

carry away energy that will no longer be conserved by the system. The first calculation that we will

want to make determines under what conditions (specifically the density) the electron evaporation

significantly reduces the amount of expansion energy that can be transferred to the ions.

To start, we need to model the rate of electron evaporation from the UCP for a given set

of conditions, which we model after calculations related to the evaporation of antiprotons from a

Penning trap configuration [15]. For charged particles in a trap with potential depth, D (in units

of temperature), the rate of evaporation is dependent on the number of particles in the trap, N ,

the Spitzer collision timescales, τ [16], and the ratio of the depth to the thermal temperature of

the particles in the trap, η = D/T . For one dimensional evaporation, the rate of electron escape

is proportional to
exp(−D/T )

(D/T )
. For evaporation in more than one dimension, the power of D/T

in the denominator can be changed by 1/2 per dimension (i.e. in the case of three dimensional

evaporation the rate is proportional to exp(−D/T )). For the antiprotons in a Penning trap, the

magnetic field is strong enough to confine the motion of the protons in one dimension. For UCPs

with electrons extracted toward an MCP, the geometry is a bit more complicated. Although the

electric field tends to extract electrons in a particular direction from the UCP, the electron escape

is not truly one dimensional or three dimensional. So we chose to model the evaporation as being

somewhere in between one and three dimensional to have an evaporation rate from the UCP given

by

dN

dt
= −

N

τ

exp(−D/T )
√

D/T
(5.6)

Although precise modeling evaporation rate for our geometry is difficult, we can use our data to

confirm that this form for the evaporation rate is reasonable in order to perform calculations under

various UCP conditions. We compared the calculated evaporation rate to our evaporation data

and observed agreement between our data and the evaporation rate on the 50% level. Using the

one dimensional form for the evaporation rate produces worse agreement (factor of 3) between this
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calculation and the data. In either case, the exponential term dominates the evaporation rate, which

means that the depth will only have to change slightly to correct for differences in the pre-factors of

Equation 5.6. This was confirmed by making changes to these pre-factors and observing that these

changes produced little change in the results of our calculations of the influence of evaporation on the

available expansion energy in the UCP. While Equation 5.6 is useful for making semi-quantitative

model predictions on the relative influence of evaporation, when making comparisons to our data

in the following sections we use our measured evaporation rate as detected by our MCP. This will

help us to increase the accuracy of the model when making comparisons to our data.

The second part of our modifications to the expansion model determines how changes in the

UCP electron number affect the potential well depth, D, of the UCP. To do this, we can calculate

the how much D changes per electron removed by using a T = 0 distribution in an external electric

field. In a T = 0 distribution, the electron and ion densities match exactly in the central region of

the UCP. For finite (but low) temperature electrons, there is a slight offset in the electron and ion

densities that can be ignored for the purposes of this calculation. The electrons that leave the UCP

are generally considered to escape from the outer part the electron distribution, with the remaining

electrons being concentrated in the center of the ion distribution. This separates the UCP into two

parts: the first part being ions and electrons in the inner part of the charge distribution and the

second part being the unscreened ions in the outer part of the charge distribution. The inner part

of the distribution is considered to be well screened from external fields and expands in a way that

is governed by the equations that we developed for this model. The evolution of the outer part

of the ion distribution is governed by the Coulomb force. The Coulomb force can produce large

electric fields that can cause a rapid, outward expansion of the outer ions. This is known as the

“Coulomb explosion” and has been observed in UCP systems in [17]. Owing to a combination of

spherical symmetry and Debye screening, the “Coulomb explosion” of the outer ions should not

have an effect on the inner part of the UCP.

As electrons escape the UCP, the inner part of the UCP distribution becomes smaller relative

to the UCP as a whole. In general, this changes how one might characterize the size of the UCP.

However, as discussed in Chapter 4, our measurements are of the peak density of the UCP. This

peak density measurement can then be translated into a spatial extent of a Gaussian distribution

through the relation σ = [Nion/(2π)3/2npeak]
1/3.
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For the conditions under which we used the model, we can approximate the change in D per

electron removed as a constant, α, which allows us to write the following equation which relates

the change in depth to the rate of evaporation as

dD

dt
= −α

dN

dt
(5.7)

For our model conditions, the size of the UCP changes by less than 10% during the time that energy

loss from evaporation is still significant, which makes the approximation of constant α reasonable.

To calculate α, we start with a T = 0 UCP distribution in an external electric field with a charge

imbalance that creates a potential well depth, D, that is just deep enough to trap electrons with a

kinetic energy that is equal to the initial ionization energy, ∆E. From this initial distribution, we

can calculate the change in depth after removing a single electron from the UCP to find α. The

value of α will depend on the UCP spatial extent, σ, and the strength of the external electric field.

The value of α was computed for each condition for which we calculated the effect of evaporation.

The last modification to the expansion model that we make concerns the conservation of energy

equation given by Equation 5.3. As electrons leave the UCP, they will carry away energy that can

no longer be used to drive the expansion of the ions. The electrons that leave must carry away

an energy that is at least as great as the potential well depth, D, that prevents other electrons

from escaping. If the electrons leave with higher than the average thermal energy of the electrons

remaining in the UCP, then the temperature of the electrons will decrease as the electrons escape.

We can change Equation 5.3 as follows

3

2
NkB

dTe

dt
=

(

kBD −
3

2
kBTe

)

dN

dt
−

3

4
Nmion

d

dt

(

γ2

β

)

(5.8)

Here, the evaporation term, kBD− 3kBTe/2, takes into account the relative energy of the escaping

electron as compared to the thermal average energy of the electron cloud. Since all of the escaping

electrons come from the top of the electron energy distribution in order to have enough energy to

escape from the confining potential, escaping electrons will always lower the average energy of the

electron cloud for any reasonable value of D.

To evaluate the effect of evaporation on expansion, we can integrate our new system of equations

given by Equations 5.4 − 5.8 to calculate the energy loss as given by
dN

dt

(

D −
3

2
Te

)

/N . This

calculation will allow us to evaluate the fraction of energy that is lost that can no longer be
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transferred to ion expansion. The 3/2Te factor in the energy loss equation is necessary in order to

properly account for the fact that we are considering the expansion of the UCP in the presence of

the loss of electrons. If the electrons escaped at a depth, D, equivalent to 3/2Te, then evaporative

cooling would have no effect because the average energy of the UCP electrons are never affected by

the evaporation. We integrate our system of equations in time until the loss owing to evaporation

becomes small (less than 5%) as the integration time window is increased significantly. During this

time, the UCP expands by less than 10%.

By integrating Equations 5.4− 5.8, we are able to determine under what UCP size and density

conditions evaporation will have a significant effect on the expansion energy of the UCP. The

results of these calculations under two different UCP size conditions for a range of densities can

be seen in Figure 5.1. Here, we can see that our model has confirmed our general prediction that

evaporation will have a more significant effect on the loss of available expansion energy at lower

densities. However, we can note that the loss owing to evaporation is not strictly a function of the

UCP density, as a change in the spatial extent, σ, from 0.8 to 0.3 mm shifts the curve to higher

densities on the graph. The trend in density does hold qualitatively though, in that decreases in

the UCP size at constant ion/electron number and increases in the ion/electron number at constant

size decrease in the influence of evaporation on the UCP expansion energy.

From this model, we also confirmed that the amount of energy that leaves the UCP through

evaporation is a slowly varying function of the density as can be noted by the logarithmic scaling of

the density on the horizontal axis in Figure 5.1. We attribute this slow variation in the energy lost

as a function of density to the exponential term in Equation 5.6. Although small changes in the

density (e.g. factor of 2) will initially have a large effect on the evaporation rate of the UCP given

by Equation 5.6, where the number, N , and Spitzer time, τ , will work to increase the evaporation

rate, the depth, D, will also increase faster which will work very quickly to lower the evaporation

rate. This will, in effect, work to decrease the fractional energy loss as the UCP evolves, which

lowers the effect of evaporation on the UCP expansion as the density increases.

In addition to comparing trends for different UCP sizes, we also were able to compare the

calculated decrease in UCP expansion energy from our model to the UCP size and density condi-

tions from other experiments [2, 18]. We performed these calculations to show that we expected

evaporation to be more important for our conditions at low density and that it could be ignored for
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Figure 5.1: Calculations from our simple model that show the fractional amount of expansion

energy that is lost owing to evaporation. The black squares show the density scaling at σ = 0.8

mm for the UCP. The red circles show the density scaling for 0.3 mm. The horizontal lines on

each of the data points show the range of energy lost for the same initial density conditions for

∆E/kB = 25− 75 K. The scaling of the energy lost as a function of density varies slowly, as can be

seen from the log scale on the bottom axis of this graph. One can see however that the energy lost

is not strictly a function of the density, as changes in the value of σ at the same density can affect

the influence of evaporation. However, it still shows the same decreasing trend in the influence of

evaporation on the UCP as the density is increased at that size.
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the analysis of the UCP expansion in their systems. This was indeed the case, where the expected

decrease in expansion energy for our experimental conditions was twice that of [18] and nearly

twenty times that of [2]. These model calculations strongly suggest that modeling our expansion

with evaporation will be essential for properly accounting for the energy transfer to the ions to

match our observed expansion data, as will be shown throughout this chapter.

5.3 Measuring the UCP Expansion Rate

To measure the effect of electron evaporation on the UCP, we used our UCP density determination

technique discussed in Chapter 4 to measure the expansion rates of the UCPs in our system. Using

this technique, we can measure the peak density over a range of chosen times in the UCP evolution.

From the peak density, npeak, and the total ion number, Ntot, we can determine the time variation

of characteristic spatial extent of the UCP from σ = (Ntot/(2π)3/2npeak)
1/3. This will allow us to

make comparisons of our observed UCP expansion rate to what would be predicted without any

effects from electron evaporative cooling.

If there was no significant effect on the electron temperature owing to electron evaporative

cooling, then we would expect that nearly all of the electron thermal energy would be converted

to ion expansion energy as the UCP evolves. In the absence of three-body recombination, the

expected expansion rate of the UCP can be calculated easily by assuming a self-similar expansion

of a spherical, Gaussian UCP with a density distribution given by

n(r, t) =
Ntot

(2π)3/2σ(t)3
exp

(

−
r2

2σ(t)2

)

(5.9)

Here, σ(t) is given by σ(t) =
√

σ2

0
+ v2t2, where σ0 is the initial size of the UCP and v is the

asymptotic expansion velocity. If all of the electron thermal energy is converted into ion expansion

energy, the asymptotic expansion velocity can be found from the initial ionization energy as v =
√

2∆E/3mi, where mi is the mass of an 85Rb ion.

To compare the predicted evaporation-free expansion to our observed UCP expansion, we mea-

sured the UCP expansion for ∆E/kB = 25 − 75 K as seen in Figure 5.2. Unfortunately, for the

range of conditions accessible by our system, there was only a small range of initial ionization

energies that could be explored while maintaining the validity of our models. For initial ionization
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Figure 5.2: An example of the UCP expansion for ∆E/kB = 25, 50, and 75 K for (a), (b), and (c)

respectively (2.5×105 total ions). The black dots show the measured data, where the size of the

data points has been increased for clarity. If error bars cannot be seen, then the error is on the

order of or less than the symbol size. The blue, dotted lines show the predicted expansion for a full

conversion of the initial ionization energy to UCP expansion energy. The red, dashed lines show

this same prediction with 20% of the initial energy removed by evaporation during the formation

of the UCP. The green, solid line shows a fit to our data using the model of UCP expansion

with evaporation after expansion taken into account. We can see from these data that the actual

expansion curves fit better when we model the expansion with evaporation both during and after

formation.
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energies higher than these values, the assumption of thermal equilibrium for the electrons in the

UCP is questionable since the predicted electron self-equilibration times can be on the order of the

UCP lifetime [16]. For lower initial ionization energies, the effects of three-body recombination can

become significant, which would counteract the effects of evaporation that we are trying to study

and add significant complications to the analysis of the data.

The results of our measurements of the expansion can be seen in Figure 5.2 for ∆E/kB = 25,

50, and 75 K. In each case, the measured expansion rate falls well below what is expected if all

of the initial ionization energy is converted to ion expansion energy. This implies that electron

evaporation does play a significant role in the UCP expansion and evolution. This leads to a

question of whether most of the effect of evaporation occurs during the formation of the UCP,

when a substantial fraction of the electrons can escape quickly, or if there is a larger influence

from evaporation after the formation when the electrons escape during the later part of the UCP

expansion. To explore this question, we developed a set of model calculations that can use our

electron escape data from our MCP signal to calculate the amount of energy that leaves the UCP

during formation and during the subsequent expansion. The results of this analysis are discussed

in the following section.

5.4 Calculating the Effects of Electron Evaporation on the UCP

Expansion

The measurements of the UCP expansion in the previous section show that expansion energy of the

UCPs created in our system are less than what would be expected for the given photoionization

energy. While this shows qualitatively that expansion energy is lost from the system, we performed

further analysis on this expansion data using our simple model to show that electron evaporative

cooling is a reasonable explanation for the observed expansion behavior. To do this, we can break

up the model into two parts. The first part of the model examines the effects of evaporation during

the formation of the UCP and the second part of the model examines the effects of evaporation

during the expansion of the UCP. It is convenient to separate the model in this way because the

UCP conditions during the formation stage are more straightforward to calculate, as there is not

enough time for significant changes in the ion distribution to take place. This allows us to calculate
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the depth of the potential well that is formed from the excess of ions that results from electrons

escaping from the initial ion distribution in an external electric field as will be discussed shortly.

As the UCP begins to evolve, space charge effects such as the “Coulomb explosion” can affect the

potential depth in such a way that makes it difficult to calculate precisely. At this time in the

UCP evolution, using an average potential well depth to temperature ratio allows us to extract the

general behavior of the effects of evaporation on UCP expansion sufficiently. In both calculations,

we use our actual UCP evaporation data seen in Figure 5.3 in the place of Equation 5.6 to more

accurately model the UCP evolution.

5.4.1 Electron Evaporation During UCP Formation

The first part of our calculations examine the amount of energy that is removed from the electron

component of the UCP owing to evaporation during the UCP formation. For the purposes of this

calculation, we define the formation stage of the UCP as the first 2 µs after the initial ionization.

During this time period, there is a large amount of electron escape during the prompt peak and

subsequent evaporation as the UCP electrons thermalize. At the end of formation period, the

electron evaporation rate is reduced to near the evaporation levels of the subsequent expansion.

Upon formation, the UCP electrons will have an energy that is approximately equal to the

initial ionization energy, ∆E (see Chapter 3). In the presence of an extraction electric field, a

minimum number of electrons are required to escape the UCP until there is a sufficient charge

imbalance to create potential well that is able to confine the remaining electrons in the UCP. As

this potential well is created, the electrons that escape the UCP must have an energy that is at

least as high as the potential well barrier or else they will be confined inside the UCP. The potential

well depth can become several times the initial ionization energy, meaning that as the electrons

thermalize, they can reduce the average energy per electron remaining in the UCP, lowering the

effective electron temperature.

The formation stage is unique in that there is not a significant amount of time for any ion dynam-

ics to occur that may arise later in the UCP evolution. Therefore, we can approximate the potential

well depths by directly integrating the electric fields that result from the initial ion distribution,

which we approximate as a spherical Gaussian distribution given by n(r) = n0 exp(−r2/2σ2). For

this calculation, we have to take a different approach than what was used to calculate the number
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Figure 5.3: Example electron evaporation traces as detected at our MCP for ∆E/kB = 25 (black),

50 (red), and 75 (blue) K. One can see that as the initial ionization energy increases that the initial

evaporation rate increases, reducing the overall lifetime of the UCP.
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and electric field calibrations from Chapter 3. Here, we have to consider a UCP with a substantial

fraction of the electron component remaining, which means that the effects of electron screening

need to be taken into account. To do this, we use a T = 0 approximation where the electron and

ion densities are equal from the center of the charge density distribution up to a cutoff radius that

sets the charge imbalance. So, to find the cutoff radius, we can integrate the density distribution

as follows

δ = 1 −
∫ rc

0

4πr2

(2π)3/2σ3
exp

(

−
r2

2σ2

)

dr (5.10)

where δ is the charge imbalance, defined as the fraction of electrons that have escaped the UCP, and

rc is the corresponding cutoff radius of the charge distribution. The cutoff radius, rc, can be solved

for numerically for a given value of the charge imbalance, δ, and for a known size of the UCP, σ. To

find the electric field resulting from this charge distribution, we can simply use Gauss’ law, where

only the unmasked ion charge contributes to the electric field from the UCP charge distribution.

So, we can find an express for the total charge inside a radius r for our charge distribution as

Qenc(r) =
4πNtote

(2π)3/2σ3











0 r ≤ rc
∫ r

rc

r2 exp

(

−
r2

2σ2

)

r > rc

(5.11)

where e is elementary charge, and Ntot is the total number of ions in the UCP. This contribution

to the field is from the unmasked ions alone. So, we need to take into account the effects of the

external field on the UCP. Not only does this field contribute to the DC field outside the UCP, but it

also alters the charge distribution of the electrons slightly as they move to screen this external field.

Since the main effect of the external electric field is an offset of the electron and ion distributions,

we can add a correction term to the net outside electric field in the form of an electric dipole to a

lowest order approximation. To perform this approximation, we can consider a conducting sphere

in an external electric field. This approximation of a conducting sphere stems from a T = 0 UCP,

in which the external fields are perfectly screened inside the cutoff radius, rc. This consideration

produces a dipole electric field given by [19]

Edip =
2Eextr

3
c

r3
(5.12)
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for the electric field on the axis of the dipole. This produces a total electric field that is given by

Etot(r) =











0 r ≤ rc

Qenc

4πε0r2
− Eext

(

1 +
2r3

c

r3

)

r > rc

(5.13)

To find the potential well depth in temperature-equivalent units we can integrate the electric field

from the center of the UCP to get

U(r) =
e

kB

∫ r

0

E(r)dr (5.14)

By finding the maximum potential we can calculate the total depth as a function of charge imbal-

ance, δ, for a set of UCP conditions. This will allow us to calculate how much energy is removed

during the UCP formation stage.

To make the calculations for this model, we used our actual UCP electron escape signals,

examples of which are seen in Figure 5.3. To calculate the energy removed from the UCP, we

divided the calculation into discrete time steps of 400 ps, which was set by the sampling rate of

our oscilloscope. During each time step, a certain number of electrons leave the UCP at a given

potential well depth, D. As the electrons leave the UCP, they change the value of D, which is

then recalculated for each time step with a new value of δ as seen in Figure 5.4. If D < 0, then no

potential well is formed because there is not enough of a charge imbalance to overcome the external

electric field. This part of the formation process typically lasts less than 100 ns, which is less than

the electron-electron thermalization times for all of the UCP conditions that will be discussed in

this chapter [16]. For this part of the formation process, we assume that the electrons escape the

UCP with energy equal to ∆E/kB . For D > 0, the electrons must have an energy that is greater

than kBD to escape the UCP. For this part of the formation process, we assume that the electrons

escape the UCP with energies ranging between kBD and kBD+∆E, which represents a reasonable

range of likely electron escape energies.

To calculate the effective electron temperature after formation, we calculated the total amount

of electron energy remaining in the UCP after formation and divided it by the number of electrons

remaining in the UCP. We performed these calculations using data from UCPs with initial ionization

energies ranging between ∆E/kB = 25− 400 K and (2.5− 5)× 105 total ions. The results of these

calculations showed that for the lower end of our total ion number (∼2.5×105 ions), electron
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Figure 5.4: The evolution of the UCP potential depth during the UCP formation (t ≤ 2 µs) on

axis, parallel to the applied electric field (2 V/m) in units of temperature as calculated from a T=0

model of the electron and ion distributions. As electrons escape during the formation of the UCP,

the increasing charge imbalance creates potential well depths that increase. The electrons that

escape later must have a greater energy than the initial escaping electrons in order to overcome

this potential well barrier. This process decreases the amount of energy that remains in the UCP

that is available for expansion. The flat region at small distances from the center of the UCP is

the region where the external field is assumed to be screened. These calculations included a dipole

electric field term resulting from the offset of the electron cloud from the ions to screen the external

field. These calculations were taken from data with ∆E/kB = 50 K, 2×105 total ions, and σ = 850

µm.

154



evaporation during UCP formation removed 13− 25% of the energy available for expansion as seen

in Figure 5.5 (a). The vertical lines in Figure 5.5 show the range of fractional energy reduction

over different data sets with electrons escape energies ranging from kBD to kBD+∆E as discussed

above. At higher total ion number (∼5×105 ions), a smaller fraction of electrons leave the UCP

during formation. This also corresponded to a lower fractional energy loss from the UCP, in a

range of 8 − 12% as seen in Figure 5.5 (b).

To better understand the energy loss during formation, we can also use these calculations to

determine the depth to temperature ratio, D/T , after the formation of the UCP as seen in Figure

5.6. These calculations show that as the initial ionization energy increases, D/T decreases in value

both for 2.5×105 and 5×105 ions. This means that energy removed per electron is fractionally

higher for the low initial ionization energy case. We can also see that as the initial ionization

energy increases, that the value of D/T can become very low (less than 2). This trend is consistent

with the expected increase in the thermalization times for the electrons in our UCPs as the initial

ionization energy increases. These thermalization times can become on the order of the lifetime of

the UCP, meaning that a true thermal equilibrium cannot be reached. This means that the UCP

will not have a sufficient collision rate that can sustain electron evaporation to create large values

of D/T in these conditions.

5.4.2 Electron Evaporation After the UCP Formation

When comparing our measured expansion rate to the predicted expansion with a full conversion of

the initial ionization energy to ion expansion energy, we observed significantly less expansion for

our data as seen in Figure 5.2. This observation led to the development of a model for determining

the energy reduction that takes place owing to evaporation during the UCP formation. This energy

reduction was calculated to be between 13 − 25% for a total ion number of ∼2.5×105 ions. When

taking this loss of energy into account, the measured expansion rate was still lower than what was

predicted by this calculation for each initial ionization energy that we were comparing between

∆E/kB = 25 − 75 K. This comparison implied that there was still more expansion energy that

was lost owing to evaporation after the initial formation of the UCP. Since the dynamics of the

outer ions are complicated after the formation of the UCP, we cannot easily calculate the amount

of energy that leaves the UCP through evaporation explicitly even at the level of approximation
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Figure 5.5: Fractional energy removed during UCP formation over a range of initial ionization

energies (∆E) for (a) 2.5×105 ions and (b) 5×105 ions. The vertical lines represent the range of

energy removed for electron escape energies from kBD to kBD + ∆E as discussed in the text. At

low initial ionization energies, there is a slight increase in the fractional energy removed, which

is due to an increase in the depth to temperature ratio during formation at low initial ionization

energy as seen in Figure 5.6.
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Figure 5.6: A plot of the calculated depth to temperature ratio, D/T , over a range of initial

ionization energies for experimental data at (a) 2.5×105 ions and (b) 5×105 ions. The vertical

lines represent the range of energy removed for electron escape energies from kBD to kBD +

∆E as discussed in the text. These calculations show that the depth sharply decreases with

increasing ionization energy at low initial ionization energy and then levels off at higher energies.

The fractional energy removed during formation for these data is seen in Figure 5.5.
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used in the previous section. The “Coulomb explosion” of the outer ions can alter the depth in

ways that require much more sophisticated modeling. To model the evaporation after the formation

stage, we can modify the model discussed in Section 5.2 to not only use our measured evaporation

rate (Figure 5.3) in the place of Equation 5.6, but also an average depth to temperature ratio after

formation in the place of the explicit depth calculation. By doing this, we can fit our data to

this model by varying the value of this average depth to temperature ratio, which will allow us to

understand the general behavior of evaporative cooling in our system.

The measured evaporation rate, dN(t)/dt, is fit to a polynomial for t > 2 µs before being

input into the model equations. For the data shown in Figure 5.2 (2.5×105 ions), we reduce the

initial energy of the UCP by 20% to reflect the amount of energy that is lost through the UCP

formation process. At this point we can begin to integrate Equations 5.4−5.8 to produce a predicted

expansion curve for the UCP with the assumption of an average depth to temperature ratio which

can be compared to our data. We can then compute the error of our fit to the data by using a χ2

fitting technique which takes into account the weighted error of each of the individual data points

in Figure 5.2. To find the best fit to our data, we alter the initial size, σ(0), and the average depth

to temperature ratio, Davg/T , until we minimize the value of χ2. The error in the fits can then be

determined by calculating how changes in the UCP parameters change the value of χ2, where the

error bar is typically set in this type of fitting by increasing the value χ2 by 1.

The results of these calculations found average potential well depth to temperature ratios of

5.4±0.4, 4.7±0.5, and 2.1±0.2 for ∆E/kB = 25, 50 and 75 K for the data seen in Figure 5.2. In

Figure 5.2, these fits are represented by the green curves, which shows good agreement between

our model and the data for reasonable values of Davg/T . The values found for Davg/T over this

range of ∆E/kB also show a consistent trend when compared to the values of D/T found from

the UCP formation calculation, in that D/T decreases with increasing ∆E/kB . Also, as noted

earlier in this chapter, these values of Davg/T produce evaporation rates that are consistent with

our measured evaporation on the 50% level. The exponential dependence of the evaporation rate

on the value of Davg/T makes it difficult to match our observations to these calculated rates with

more precision, but this degree of agreement does indicate that electron evaporative cooling is a

reasonable explanation for our observed decrease in the UCP expansion rate.
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For higher densities in our system (∼5×105 ions, σ ∼ 750µm), we do not observe a significant

difference in the overall expansion rate of the UCP as seen in Figure 5.7. Our model calculations

from Section 5.2 indicate that a factor of 2 change in the density would only change the fraction of

energy removed through evaporation for our conditions by a few percent (see Figure 5.1). These

observations indicate that larger changes in the UCP density are necessary to alter the effect of

evaporation in our system, which requires significant changes to our experimental apparatus. Such

studies were beyond the scope of this work.

5.5 Temperature Evolution of Expanding Ultracold Plasmas

When using our models to track the energy loss of the UCP through electron evaporation, we

are able to track the electron temperature evolution as the UCP expands, under the assumption

that the UCP maintains thermal equilibrium. For the lower initial ionization energy conditions

that we measured, the Spitzer self-equilibration timescales for the electrons are on the order of 1

µs or less [16], which means that the UCP will come into thermal equilibrium early in the UCP

evolution. So, by using our measurements of the UCP expansion under these conditions, we can

calculate the evolution of the electron temperature for our UCPs. These calculations will allow us

to determine other useful parameters of the UCP such as the strong-coupling parameter [1], and

the predicted three-body recombination rate [12]. Since we use an average depth to temperature

ratio when modeling our UCP expansion, these calculations will only produce estimates of the

electron temperature evolution and therefore estimates of the other parameters of interest. To

get an accurate measure of the electron temperature, we will still need to develop a measurement

technique for the temperature of the UCP at a specific point in the evolution as in [20]. However,

as our estimates will show, there is potential for producing UCPs with electron strong-coupling

parameters that exceed the 0.2 theoretical limit shown in [7] before the three body recombination

rate becomes significant for our UCP conditions.

The temperature evolution for the expansion data from Figure 5.2 at ∆E/kB = 50 K can be

seen in Figure 5.8. Here the solid, red curve is the temperature evolution taken from our model

where the dotted, black curve is the temperature evolution that would be expected without the

effects of evaporation (adiabatic expansion only). It can be seen here that with evaporation included
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Figure 5.7: A comparison of the UCP expansion for Ntot = 2.5×105 (black circles) and Ntot = 5×105

(red squares) for (a) ∆E/kB = 25 K and (b) ∆E/kB = 75 K. One can see that the expansion curves

do not differ significantly for the majority of the data. At late times, there is a slight deviation

that is at this time unaccounted for in (b) but we observe good matching between the expansion

curves at early times when the effect of evaporative cooling is still important. This implies that a

larger change in the density is required to observe a significant change in the expansion behavior

as predicted by the general trends of our simple model.
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Figure 5.8: An example of the electron temperature evolution as the UCP expands for ∆E/kB = 50

K as seen in Figure 5.2 (b). The black, dotted curve shows the evolution of the electron temper-

ature when only taking into account the reduction in temperature owing to adiabatic expansion.

The solid, red line shows the temperature evolution when electron evaporative cooling is taken

into account. It can be seen here that when electron evaporation is taken into account, that the

temperature of the electrons in the UCP falls much more rapidly, and approaches zero near the

end of the UCP evolution.
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in the model for the expansion, that the temperature decreases much more rapidly than the case

without evaporation. At late times in the evolution, the temperature of the electron in the UCP

can approach very low values (close to 0 K), which is promising from the perspective of creating

strongly coupled electrons. However, it should be noted that any small heating effects that would

keep the electron temperature from falling too low would be difficult to observe in our expansion

data. The expansion energy of the UCP at this point would be much higher than the small amount

of energy that would be added from three-body recombination heating.

Although small heating rates would be difficult to measure by using the model that we de-

veloped, we can use the electron temperature evolution combined with our measurements of the

UCP density to calculate the three-body recombination rate (Equation 5.1) and the electron strong

coupling parameter as a function of time as seen in Figure 5.9. In this figure, we plot the inverse

of the three-body recombination rate (recombination time) which shows how much time we expect

to elapse for a recombination event to take place for a particular ion at the given density and

temperature conditions. This plot shows that the electron strong coupling parameter can be as

high as Γe ∼ 0.5 before the three-body recombination time is on the order of ∼1µs, where heating

from three-body recombination is expected to be significant.

This potential increase in Γe over the 0.2 limit discussed in [7] gives us exciting prospects for

exploring ultracold plasma physics with Γe near the strong-coupling regime. As Γe approaches

1, many theoretical descriptions of processes in UCPs are expected to break down. For example,

the three-body recombination rate scaling of T−9/2 cannot hold for all temperatures down to zero

temperature. As the temperature goes to zero, the motion of electrons decreases to the point of

making recombination events unlikely.

Conclusion

In this chapter, I discussed the importance of electron evaporative cooling when modeling

the UCP expansion for our UCP size and density conditions. We developed a model of electron

evaporation that tracked the energy loss of the UCP owing to electrons escaping with finite energy

from a potential well caused by the excess of ions in the UCP. From this model, we were able to

determine the UCP conditions under which we should expect a significant influence from electron

evaporation on the UCP evolution. In each case, we determined that the effect of evaporation

162



Figure 5.9: A plot of the three-body recombination time ((Ktot
TBR)−1, red, left axis) and the electron

strong coupling parameter (Γe, blue, right axis) as a function of time. The data here uses the

temperature evolution with evaporation from Figure 5.8. The range of values shown by the solid

color for each calculation shows the possible range of these calculated parameters when using either

the peak electron density (npeak) or the average ion density (npeak/
√

8) in these calculations. It can

be seen here that when Γe approaches the 0.2 limit [7], the three-body recombination time is still

very long (∼100µs), which means that heating from three-body recombination should be negligible.
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should increase as the UCP density decreases, and should be significant for our UCP conditions.

Our observations of the UCP expansion showed such a decrease in the UCP expansion energy. We

were able to adapt our simple model to show that electron evaporation is a reasonable explanation

for our observed behavior.

From our models, we were also able to extract the electron temperature evolution of the UCP

as it expands. These calculations showed that it may be possible to increase the strong-coupling

parameter, Γe, for the electrons beyond what has been observed in other UCP systems. By using

electron evaporation, it may be possible to use forced evaporative cooling to lower the electron

temperature before three-body recombination heating can take place. By increasing the value of

Γe, we should be able to explore interesting physics in a region where classical plasma theory is

expected to break down.
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Chapter 6

Increased Ultracold Plasma Expansion Rate in a Weak

Magnetic Field

The experiments presented in this chapter detail our observations of a dramatic increase in the

ultracold plasma (UCP) expansion rate at early times in the UCP evolution in the presence of

a relatively weak magnetic field, where the Larmor radius of the electrons in the UCP is greater

than the Debye screening length. These experiments represent ongoing measurements which are in

progress at the time of the writing of this thesis. The goal of this chapter will be to overview the

status of our current understanding of our observations including the experimental results that we

have obtained up to this point. Also, I will present some preliminary models and calculations that

should help us to understand the nature of our UCP system when subjected to these external mag-

netic fields. I will then discuss additional modeling that may allow us to further our understanding

of this phenomenon. Finally, I will briefly discuss future measurements that we will make in this

line of investigation.

6.1 Experimental Background

The majority of plasma systems are subject to internal and external magnetic fields which can

alter their behavior in interesting ways. These systems exhibit a wide range of phenomena that

are discussed extensively in introductory textbooks [1, 2], such as Alfvén waves, Z-pinching, and

various plasma instabilities among others. For ultracold plasma systems, the addition of an external

magnetic field is interesting for several reasons. First, there is a predicted change in particle collision

rate [3] as well as the three-body recombination rate [4] when magnetic fields are introduced to the

UCP. Also, a variety of collective modes [5] and plasma instabilities [6] can be introduced. For our

system, we are most interested the behavior of UCPs when confined in a Penning trap configuration

[7], which requires a strong, uniform magnetic field in the trapping region. Understanding the

behavior of our UCP system in the presence of a magnetic field will be essential for optimizing the

loading of the Penning trap. Also, many of our future experiments, such as the two-pulse excitation

of the UCP, electron temperature measurements, and electron evaporation measurements will be
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conducted in a weak magnetic field. So, characterizing the expansion of the UCP in a magnetic

field will be necessary in order to interpret these measurements.

The UCP expansion rate in a uniform magnetic field has been studied before in [8]. However,

there are some key differences in the scope of the study in [8] compared to our experiments. First,

the density of the UCPs in [8] are ∼2 orders of magnitude higher than those produced in our

system. This difference in density could lead to a difference in observed behavior because many

plasma parameters (collision rates, screening length, etc.) are very different for our UCPs. Second,

our measurements focus on the early time expansion behavior whereas the work in [8] focuses on

the asymptotic expansion of the UCPs. In [8], the early time expansion properties (< 25 µs) could

not be measured because they used an ion extraction technique in order to determine the UCP

size. This technique uses strong electric fields in order to extract all of the ions to a phosphorous

screen to be imaged. These electric fields remove all of the electrons from the UCP which creates

space-charge effects owing to the ion-ion interactions in the UCP, distorting the measurement of

the initial expansion rate. Finally, our technique for measuring the density determines the peak

density of the UCP and not just the two-dimensional spatial profile transverse to the magnetic

field. This means that the UCP expansion parallel to the magnetic field should have some effect

on our measured expansion rate.

The experiments in [8] showed an expansion rate transverse to the magnetic field lines that

decreased as a function of the applied magnetic field. This effect was understood from a decrease

in the ambipolar diffusion rate [2], where electrons and ions diffuse across the magnetic field lines

at the same rate. This effect may be present in our later time data, as we observe a decrease in the

expansion rate at late times as will be shown in the following section, but these measurements were

only preliminary. The measurements that we have made at the time of writing this thesis show an

increased expansion rate at early times in the UCP evolution that has not been reported in other

UCP systems. While we have consistently observed an increase in the UCP expansion rate owing

to the presence of an externally applied magnetic field, we have not yet obtained enough data to

characterize the expansion’s dependence on the strength of the magnetic field, initial ionization

energy, density, and charge imbalance. Such measurements will be necessary in order to determine

if our current explanation of the source of the increased expansion rate is correct.
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6.2 UCP Expansion Measurements in a Weak Magnetic Field

One of our first observations of an effect of an externally applied magnetic field on the UCP was

through measurements of the expansion rate. The expansion rate was measured using the same

technique that was described in detail in Chapter 4. In our system, we were able to apply axially

symmetric (with respect to the electrode assembly) magnetic fields using a 100-turn magnetic

coil wrapped to the outside of the vacuum chamber (see Chapter 3). Using this coil, we can apply

magnetic fields up to 14 G without adding additional lasers for optical pumping. At higher magnetic

fields, the ionization fraction drops as Zeeman shifts detune the 5S − 5P resonances.

The simplest way to observe the effect of the magnetic field on the UCP expansion is through

a direct comparison of the size of the UCP at chosen points early in the UCP evolution with and

without the magnetic field present. We did this for ∆E/kB = 50 K and ∼2.5×105 total ions as

seen in Figure 6.1(a). For this data, we measured the size of the UCP at 3 and 10 µs after the

formation of the UCP with and without the presence of a 7 G magnetic field. In this data, it can

be seen that in the presence of the magnetic field, the UCP expands more rapidly. At 3 µs, the

size of the UCP, σ, is ∼3% larger with the magnetic field present. At 10 µs, this increases further

to ∼15%. This continual increase in size of the UCP implies a different effective temperature for

the UCP between the two cases with and without the magnetic field. To determine a reasonable

effective temperature, we can fit the data points in Figure 6.1(a) to a self similar expansion of

the form σ(t) =
√

σ(0)2 + kBTefft2/mi, where Teff is the effective electron temperature. Since the

initial conditions are the same in both case, we constrain σ(0) in our fits to be the same in both

cases. For the data in Figure 6.1(a), the effective temperature, Teff was found to be 14 ± 2 and

39 ± 4 K for the case without and with the 7 G magnetic field respectively.

This data shows that the increase in the expansion rate with the magnetic field present is

quite dramatic. This implies that the internal electric fields that drive the expansion are much

higher than the thermal fields that would nominally be present (a calculation of these additional

internal fields is presented in the following section). In fact, a conversion of the initial energy

to the expected initial ionization energy from this case (multiply Teff by 3/2) is higher than the

actual initial ionization energy of ∆E/kB = 50 K. However, this increased expansion rate does not

continue throughout the full evolution of the UCP as seen in Figure 6.1(b). With the magnetic
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Figure 6.1: Comparisons of the measured UCP expansion rate at ∆E/kB = 50 K for an applied

axial magnetic field of 0 G (red) and 7 G (black). In (a), we compare the initial expansion rate

under the same initial conditions with ∼2.5×105 total ions and electrons. With the B-field present,

the initial UCP expansion is much more rapid. The measured expansion rate from these two

points fit to a self-similar expansion of the form σ(t) =
√

σ(0)2 + v2t2 would imply an effective

temperature that is ∼3 times greater with the magnetic field as compared to without the field. In

(b), we compare the full expansion curves which shows odd behavior for the with B field case at

late times. At late times, there appears to be a deceleration of ion expansion that occurs after the

rapid initial expansion.
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field present, this data shows that although there is a rapid initial expansion as there is in Figure

6.1(a), there is deceleration of the ion expansion rate later in the UCP evolution that brings the

two expansion curves closer together.

At the time of writing this thesis, the cause of this deceleration is unknown but there are

several possibilities. In the following section, I discuss a model of UCP formation that shows that

the additional acceleration at the beginning of the UCP evolution can come from confining the

motion of the electrons in the UCP around the magnetic field lines. This confinement produces a

higher ion density in the center of the UCP after formation that increases the internal electric fields

that drive the additional expansion. It is possible that the deceleration results from a reversal of

this effect as the UCP ions expand. If the electrons remain confined to the magnetic field lines as

the ions expand, then the electron density would become higher in the center of the UCP than the

ion density. Another possibility is that the initial increased expansion excites an ion acoustic wave

[9], with a frequency that is expected to be much lower than the electron plasma frequency. Finally,

it is possible that our measurements of the size of the UCP can break down at later times in the

UCP evolution when the expansion greatly differs in the axial and radial directions. However, our

calculations from Chapter 4 showed that even with a high aspect ratio UCP, the correction factor

for our peak density measurements using the 2-cycle rf sweep should be less than 10%.

After we observed the increase in expansion, we collected data in a second set of measurements

to determine how the expansion rate was influenced as a function of the magnetic field strength.

To do this in a simple way, we compared the measured size of the UCP, σ, at 10 µs over a range of

magnetic field strengths as seen in Figure 6.2. This figure shows that as the magnetic field increases

in strength, the fractional increase in the size of the UCP also increases until it levels off at higher

magnetic fields. Additional measurements of this effect at even higher magnetic fields have shown

that the size at this time may actually have a downward trend as the magnetic field increases.

However, these measurements are preliminary, and additional data is needed to confirm this trend.

The last measurement that was made prior to the writing of this thesis was a measurement of

the prompt peak fraction as a function of the magnetic field as seen in Figure 6.3. The prompt

peak fraction is defined as the fraction of electrons that escape the UCP during the UCP formation

stage. Figure 6.3 shows that as the magnetic field increases, the prompt peak fraction also increases

until it saturates at higher magnetic fields. The dramatic change in the prompt peak fraction also
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Figure 6.2: A plot of the relative size increase compared to without the magnetic field present at

t = 10 µs as function of the applied magnetic field for ∆E/kB = 50 K. From this data, we observe

an increase in the relative expansion rate as the magnetic field is increased up to ∼ 7 G, where the

increased expansion appears to saturate. Other data that we have obtained currently indicates a

decrease in the relative expansion rate as the magnetic field is increased further. However, at this

time, it is not known whether the effect of the magnetic field on the expansion rate is diminishing

or if the deceleration of the ion expansion observed in Figure 6.1(b) is occurring earlier in the UCP

evolution.
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Figure 6.3: A plot of the increase in the prompt peak fraction as a function of the applied magnetic

field for ∆E = 10 (black) and 100 (red) K. This data shows that as the magnetic field increases,

the number of electrons that escape during formation increases until it saturates. When fit to a

saturating exponential function, the difference in the saturation field levels between 10 K and 100 K

is a factor of ∼1.5, which is much less than the difference that would be expected if the saturation

level was purely dependent on the level of magnetization of the electrons in the UCP.
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calls for new models of UCP evaporation in the presence of a magnetic field. If we were to use

our T = 0 models discussed in Chapter 5 to determine the depth of the UCP during the formation

process, we would find that the depth is much greater that what we would expect given the rate of

electron evaporation from the UCP. This means that the standard T = 0 treatment is inadequate

for explaining the formation process of the UCP in the presence of a magnetic field.

One possible explanation for the increase in the prompt peak fraction in the presence of an

externally applied magnetic field is that the trajectory of escaping electrons can change the number

of electrons that can escape the UCP during formation. To evaluate this, I developed a simple

model that determined the fraction of electrons that would be trapped in the UCP after formation

as a function of the ion number. In the magnetic field free case, the electrons can escape the UCP

in any direction. The fraction of electrons trapped after formation was calculated as a function of

the ratio of the total number of ions to the threshold number of ions required to trapped the last

electron from escaping the UCP with kinetic energy, ∆E, as in [10]. This calculation can be easily

reproduced and is seen as the black curve in Figure 6.4.

To simulate electron escape in a uniform magnetic field, I divided the UCP electron distribution

(which was Gaussian) into a series of disks whose axes are concentric and considered to be aligned

with the magnetic field. The ion distribution remained static. These disks were given a chosen

kinetic energy and allowed escape only along the magnetic field lines (making this one-dimensional

escape) from the UCP until the excess of ions trapped the remaining disks. To prevent numerical

instabilities associated with disks approaching too close together after a given time step, the force

on each disk approached a constant value associated with an infinite disk as the disk separation

approached zero. We evaluated this over a range of total ion number in order to find the threshold

number of ions, N∗, as well as the fraction of electrons trapped as a function of the total number.

The results of this calculation can be seen as the red curve in Figure 6.4. When compared to the

results of the three-dimensional escape calculation, the one-dimensional escape traps more electrons

when the total ion number is just above threshold. However, for higher total ion number, the trend

reverses and the trapped fraction in the one-dimensional escape case becomes less than the three-

dimensional case. While these calculations are simplistic, they do reveal a possible mechanism for

the increase in the prompt peak fraction in the presence of a magnetic field.
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Figure 6.4: A plot comparing the fraction of trapped electrons for three-dimensional electron escape

(black) to one-dimensional electron escape (red) as a function of the ratio of the total number of

ions, N , to the threshold number of ions, N∗, as defined in the text. In this plot, we can see that

the fraction of electrons trapped increases more rapidly in the one-dimensional case for ion numbers

just above the threshold. As the ion number increases, the fraction trapped in the one-dimensional

case becomes less than the three-dimensional case, which may contribute to the higher prompt

peak fraction that is observed in the data in Figure 6.3.
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At this point, we have encountered various systematic problems which have slowed the data

collection rate for our system. The first problem was a slow breakdown of a commercial water-

pump system which was used to cool the flashlamps of the Nd:YAG laser. This produced large

fluctuations in the pump power for our dye laser system as well as a downward drift of the overall

power. This pump failure greatly increased the variability in the system which made collecting data

sets under a consistent set of conditions nearly impossible. After replacement of the water-pump,

the Nd:YAG laser power improved greatly. The variability of our system was still present however,

and was eventually traced to an electronics failure in an rf driver for an AOM that provided the

5S − 5P pump light in the plasma region of the vacuum chamber. Most recently, there has been

an unexplained, sharp resonance ∼13-14 MHz which appears in our two-cycle rf sweeps. This

resonance seems to depend of the position of the UCP relative to the electrodes. We attribute this

resonance to patch charge effects which can create relatively strong, local electric fields which alter

the behavior of the UCP. Over time, the strength of this resonance relative to the overall UCP

response to the rf has decreased, which would be expected if patch charge effects were present.

These issues have been addressed or are currently being addressed at the time of the writing this

thesis, so the data collection is expected to resume shortly.

6.3 Modeling the Electron Distribution

Our observations of the increased UCP expansion rate in the presence of a magnetic field imply

an increase in the internal electric fields that drive the UCP expansion. Therefore, it is necessary

to evaluate how the electron distribution after formation differs from the magnetic field-free case.

In the presence of a weak magnetic field, the Larmor radius for electrons in our UCPs is greater

than the Debye screening length but for our data is still much less than the size of the UCP, σ. So,

the motion of the electrons in the UCP transverse to the magnetic field will be restricted, which

will change the nature of the formation process as discussed above. However, the Larmor radius

of the ions is generally much larger than that of the electrons (and greater than the UCP extent)

owing to the large mass difference. Therefore, for modeling these distributions, we will consider

the electrons to be highly magnetized and the ions to be unmagnetized.
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To begin the discussion of this model and to help evaluate its likely applicability, it is useful

to review the properties of electron motion in a uniform magnetic field. The force on a charged

particles in a uniform magnetic field is proportional to |~v× ~B|, which means that motion parallel to

the magnetic field is unimpeded, whereas motion perpendicular to the field causes the particle to

curve around the magnetic field lines as seen in Figure 6.5. For electrons, the radius of curvature

around the field lines is given by re = mev⊥/|eB|, me is the electron mass, v⊥ is the electron

velocity perpendicular to the magnetic field, e is elementary charge and B is the magnitude of the

magnetic field.

In the presence of radial electric fields owing to a thermal distribution of electrons, the electron

motion transverse to the magnetic field lines is still restricted. We can compare the influence of

the magnetic field on the electron motion to that of the radial electric field as follows. For a 50

K electron in a 10 G magnetic field, the Larmor radius is ∼200 µm (σ ∼ 850 µm). The radial

electric fields can be estimated from E ∼ kBTe/σe which is ∼ 5 V/m [11]. The influence of the

magnetic field can be estimated from vB =
√

2kBTe/meB which is ∼ 40 V/m. So, the influence

of the magnetic field dominates, which will cause a ~E × ~B drift around the center of the plasma.

The range of radial motion in the UCP of the electron will be on the order of the electron Larmor

radius even with the radial electric field present.

To investigate the rapid increase in the UCP expansion rate in the presence of a weak magnetic

field, we developed a simple model that determines the UCP electron distribution after the UCP

formation if the electron motion is strictly confined to the magnetic field lines. In this model,

we allow the electrons to redistribute themselves in order to screen out the component of the

electric field along the magnetic field lines. Transverse to the field, the electrons are confined to

a fixed radial distance away from the center of the ion distribution (an infinite B approximation

for the electrons). We can then calculate the total electric field inside the UCP owing to this new

distribution of electrons. In this simulation, the ion dynamics are not modeled, and instead the

electric fields are calculated from a particular assumed ion distribution. This approximation is valid

early in the lifetime of the UCP as the ions do not have sufficient time to expand to alter their

distribution.

While single particle motion is confined to magnetic field lines, for many particle systems the

charged particles can undergo collisions which can change the trajectory of the particle motion.
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Figure 6.5: Diagrams of electron motion in a magnetic field. The top diagram shows the two types

of motion of a single electron around a magnetic field line. Parallel to the field, the electron is

free to move whereas the motion in the transverse direction curls the electron around the magnetic

field line (thus the combined motion of the electron forms a helix). The lower left diagram shows

the electron motion in a radial electric field (owing to the ion/electron charge imbalance caused

by the finite temperature of the electrons) that is perpendicular to the magnetic field. In this

case the ~E × ~B drift causes electron motion around the center of the plasma that maintains the

radial position of the electron. The lower right diagram shows the motion of the electrons in the

presence of an externally applied electric field parallel to the applied magnetic field. In this case,

the electrons cannot move radially and have escape paths that are parallel to the magnetic field

lines.
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These collisions can allow for particles to diffuse across magnetic field lines. Textbook calculations

for the diffusion rate of plasma particles across magnetic field lines only produce estimates that

can differ by more than an order of magnitude. If we can determine the diffusion rate from our

observations, it can help us identify the appropriate approximations to use when describing diffusion

in our system. So, while our model will overestimate the impact of the magnetic field on the electron

distribution, it will allow us to determine what type of effect we should expect to see if there are

any restrictions to the electron motion transverse to the magnetic field.

6.3.1 Calculating the Electric Field

For the numerical calculation that we use to determine the equilibrium distribution of the electrons

after the formation of the UCP, it is necessary to calculate the electric field at all points in space

owing to the charge distribution. For this calculation, we can exploit the cylindrical symmetry of

the situation. The most convenient way to calculate the electric fields from these distributions is

to break up the distribution into an array of concentric rings with center axes that lie along the

z-axis. Each ring’s position will be defined by a position along the z-axis and a radial extent. The

distribution can then be written by distributing the appropriate number of charges into these “ring

bins” to match our desired initial charge distribution.

To start, we need to calculate the electric field from a ring of charge in the z = 0 plane of

radius, R, at an arbitrary point in space defined by points in cylindrical coordinates (ρ,φ=0,z),

where φ = 0 for simplicity. A diagram of this can be seen in Figure 6.6. I will first calculate the

z-component of the field, which can be written as,

Ez =

∫

dq z

4πε0r3
(6.1)

where dq = λRdφ, λ is the linear charge density of the ring, ε0 is the permittivity of free space,

and r is the distance between the field point and the charge element on the ring, which is given by

r =
√

(R cos(φ) − ρ)2 + R2 sin2(φ) + z2. Writing this in a more convenient form, we have,

Ez =
Nez′

8π2ε0R2

∫

2π

0

dφ

(1 − 2ρ′ cos(φ) + ρ′ 2 + z′ 2)3/2
(6.2)

where we have defined ρ′ = ρ/R, z′ = z/R, and substituted λ = Ne/2πR, where N is the total

number of electrons in the “ring bin” and e is elementary charge. This integral can be solved to
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Figure 6.6: A diagram of the setup of the electric field calculation used in our model calculations.

This calculation finds the electric field from a ring of radius, R, and uniform charge density, λ, off

axis at an arbitrary point in space.
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yield,

Ez =
Nez′

2π2ε0R2
·
E

(

2
√

ρ′/η+

)

η−(η+)1/2
(6.3)

where η± = 1 ± 2ρ′ + ρ′ 2 + z′ 2 and E(k) is the elliptic integral of the second kind of argument k.

For the radial component of the electric field, we can replace the z term in the numerator of

Equation 6.1 with (ρ − R cos(φ)). Using the same notation, we obtain,

Eρ =
Ne

4π2ε0R2ρ′η−(η+)1/2

[

η−K
(

2
√

ρ′/η+

)

+ (ρ′ 2 − z′ 2 − 1)E
(

2
√

ρ′/η+

)]

(6.4)

where K(k) is the elliptic integral of the first kind of argument k. Using these forms of the electric

field, we can calculate the total electric field owing to the charges that are in each of the rings that I

define. The elliptic integral terms can be evaluated with high precision using the power series form

of the integrals. In order to increase the computation speed of these calculations, we can evaluate

each of the elliptic integrals only once, and store the values in a matrix associated with each of the

interactions between two of the rings.

6.3.2 Results of the Model Calculations

For the calculations in this model, I began with an initially neutral, Gaussian distribution of ions

and electrons which can be written in cylindrical coordinates as n(ρ, z) = n0 exp(−(ρ2 + z2)/2σ2),

where n0 is the peak density and σ characterizes the spatial extent of the UCP. To make comparisons

to our expansion data seen in Figure 6.1, the UCP consisted of 2.5×105 total ions and electrons and

a size of σ = 0.8 mm. I divided this charge distribution in the z-direction into chosen number of

equal-thickness segments over a total spatial range of 10σ. Each of these segments in the z-direction

are then further divided into equal thickness rings in the ρ-direction over a total spatial range of

5σ. By dividing the charge distribution in this way, we can use the results of the calculation in

the previous section to calculate the electric field over all space by simply taking into account the

number of charges in each bin. The position and size of each of the bins remains fixed throughout

the course of this calculation. Also, the total number of ions in each bin will also remain fixed as

we are only concerned with the formation process of the UCP before the ions have a chance to

move. Therefore, to perform this calculation, we only allow the electrons to transfer between bins.
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It is important to note that this calculation is not dynamic, in that the electrons are not given

a kinetic energy and allowed to travel throughout the UCP as governed by a set of equations of

motion. That type of calculation requires very small timesteps, as numerical inefficiencies can

present numerous problems, particularly the amount of computation time required to evaluate

the effects we wish to study. Instead, our concern for this calculation is the equilibrium electron

distribution after the formation of the UCP if the electrons are only allowed to move parallel to the

magnetic field lines. To simulate the charge imbalance created from the escape of non-zero kinetic

energy electrons, we added a uniform external electric field throughout all space. The electric field

will require electrons to escape to neutralize the field and will serve as a way to control the charge

imbalance to compare to our actual data.

To calculate the final electron distribution, I created a numerical routine that redistributes the

electrons in each of the bins until the electric field in the z-direction is minimized. Each step of the

calculation is simple. After calculating the electric field at the position of each bin, a fraction of the

electrons proportional to the strength of the electric field can be transferred between adjacent bins

in the z-direction to lower the absolute value of the electric field. After a sufficient number of steps,

the electron distribution will screen the z-component of the electric field, reaching an equilibrium

distribution.

The results of such a calculation can be seen in Figure 6.7, for both the axial (z) and radial

(ρ) components of the electric field. It can be seen that the axial component of the electric field is

completely screened as desired. For the radial component, the electric field is unscreened, producing

a nearly linearly increasing field away from the center of the UCP in the radial direction. This

unscreened field produces a radially outward force on the UCP ions, which will cause them to

expand more rapidly.

We can compare the results of these simple model calculations to the expansion data shown

in Figure 6.1. For the UCP conditions for this data, the calculations yielded an effective radial

electric field of ∼1.7 V/m per ion, which was found by taking a weighted average of the electric

field values over the UCP distribution. This electric field produces an additional acceleration that

is ∼2 m/s/µs. This additional acceleration is not enough to explain the increased expansion rate

that we observe in the UCP in the presence of the 7 G magnetic field that we applied. This means

that while our model can show that there is an effect on the radial electric fields when electrons
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Figure 6.7: A plot of the axial (left) and radial (right) electric fields as a function of position after

UCP formation as calculated from our model for 5×105 ions and a charge imbalance of δ = 0.14

(14% of the electrons have escaped the UCP). One can see that as the electrons move to screen out

the field in the axial direction, the radial electric fields are left unscreened. These unscreened fields

result in additional ion expansion that can be measured for the UCPs in our system in relatively

weak magnetic fields.
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are confined radially but allow to escape the UCP axially, that the model cannot produce accurate

quantitative predictions of the expansion rate of the UCP.

There are a few subtleties that will be quite difficult to model that I will discuss briefly here.

First, from the difference in the initial charge imbalance with and without the magnetic field

present, it is clear that we cannot treat evaporation in the same way between the two cases. This is

because the greater charge imbalance with the magnetic field presence would produce a much greater

potential will depth that would greatly decrease the evaporation rate. Therefore, accounting for

the energy lost during evaporation with the magnetic field present will require more sophisticated

modeling (beyond that which is discussed in Chapter 5).

6.3.3 Future Extensions to the Model

So, from these calculations, it is clear that either a more sophisticated approach is necessary to

accurately determine the effect of the magnetic field on the UCP expansion in our system or there

is a different mechanism that drives the increased expansion in the presence of a magnetic field.

However, some simple modifications might allow us to better understand the dynamic processes of

the UCP without using a full particle dynamics simulation. To start, we could model the electron

distribution as a thermal distribution which will allow us to determine the thermal electric fields

that contribute to driving the plasma expansion. In addition, we also want to formulate better

models of the initial radial electron distribution after the UCP formation. This radial electron

distribution plays a significant role in the UCP expansion behavior, and needs to be accurately

modeled in order to calculate the magnitude of the radial electric fields that can be produced.

By altering the ion distribution based on these internal electric fields, we can determine how the

electron distribution needs to change in order to match our observed expansion rate. As an added

feature of these calculations, we should be able to make estimates of the diffusion rate of the electron

across magnetic field lines which will help us to understand how the electrons move in the UCP in

the presence of a magnetic field.

Conclusion

The measurements and models presented in this chapter, while incomplete, show that even a

relatively weak magnetic field can have a significant influence on the expansion of our ultracold
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plasma systems. Our measurements indicate that the initial expansion rate of the UCP increases

with an increasing magnetic field up to ∼10 G, for our system. A simple model of the electron

distribution after the formation of the UCP shows that confining the electron motion to be parallel

to the magnetic field lines will create unscreened radial electric fields that drive additional ion

expansion. While the simple estimates from our model do not account for all of the additional

expansion energy, they do indicate that an effect should be present. These measurements and

calculations show the need for more sophisticated modeling of UCP dynamics in the presence

of a magnetic field, as concepts such as potential depth and electron evaporation become very

complicated when the UCP can no longer be treated by a T = 0 distribution.

This effect will be very important for our future measurements of the UCP. Trapping the UCP

in a nested Penning trap configuration requires a very high magnetic field, which should still have

this type of effect present. When studying the dynamics of loading a UCP into this Penning

trap, it will be important to understand these effects to optimize the loading configuration. Also,

any experiment performed in the presence of a magnetic field will need to account for the faster

expansion rate in order to properly model the UCP evolution.
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Chapter 7

Increased Light-Assisted Collisional Loss via Excitation

to the 5S − 5D Molecular Potential in an 85Rb Magneto-

Optical Trap

The experiment described in this chapter details the increased light-assisted collisional loss from an

85Rb magneto-optical trap (MOT) with the application of laser light resonant with the 5P3/2−5D5/2

transition at 776 nm. This was the first experiment that I took part in upon entering the lab and

was performed before the apparatus for ultracold plasma creation described in Chapter 3 was

constructed. Although this experiment is not related to ultracold plasmas, its roots were related to

creating an easy pathway to the production of Rb ions through auto-ionizing collisions, which has

been observed through excitation to the 4D5/2 state in Rb in [1]. What we found in practice was

a loss channel in Rb that did not have enough energy to produce Rb ions, so it would not prove

to be useful for the creation of ultracold plasmas. However, there was interesting fundamental

atomic physics present in this experiment. The characterization of the observed loss channel will

be presented in this chapter.

7.1 Experimental Background

Since early in the development of laser cooling and trapping [2], it has been observed that light has

a large influence on ultracold atomic collisions in magneto-optical traps (MOTs) [3]. Atom pairs

that are excited resonantly onto molecular potential curves can accelerate along those curves and

can spontaneously emit a red shifted photon (Figure 7.1) or approach to close internuclear distances

where state changes can occur. In both cases, excess energy is converted to kinetic energy of the

atom pair, and can lead to trap loss. These collisions have been extensively studied in one- and

two-color experiments where the applied laser light is nearly resonant between a single pair of

principal quantum states (e.g., the ground S state and the first excited P state in alkali metal

atoms) [4–11]. The molecular states that are involved in these collisions have both attractive and

repulsive potential curves associated with each pair of states [12]. Also, the addition of hyperfine

structure will create a large number of interactions between every possible pair of states, which can

produce more than 500 molecular curves for the interactions discussed in this chapter.
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Figure 7.1: A diagram of a light-assisted collision. When two ground state atoms approach each

other they can be excited up to an S+P molecular state. The potential energy of this state decreases

as the internuclear distance of the two atoms decreases. When the atom pair spontaneously emits

a photon, it will be red-detuned relative to the incoming photon. The excess of energy is given to

the atom pair as kinetic energy and can lead to a loss of atoms from the MOT. The repulsive curve

for the S + P state is not shown in this diagram.
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These light-assisted collisions are not limited to just a single pair of states however. Collision

channels involving more highly excited states are also associated with molecular potentials that

can lead to loss in a light-assisted collision. Owing to larger energy splittings and smaller matrix

elements, the molecular potential at long range for states combinations that do not couple by an

electric dipole tend to be “flat” (i.e., constant) as compared to states that do couple by an electric

dipole. The corresponding atom acceleration is then much smaller for these relatively “flat” states.

In this work, we study light-assisted collisions that involve an excitation to one such “flat” molecular

potential. This is done by applying 5S1/2 − 5P3/2 and 5P3/2 − 5D5/2 resonant light simultaneously

to atoms in an 85Rb MOT [13]. We find that the light-assisted collision loss rate is increased by

over an order of magnitude from the addition of the 5P3/2 − 5D5/2 resonant light, even though

the molecular potential is flat and the overall light intensity is only increased by a factor of 2. By

characterizing the behavior of these light-induced losses, we identify the likely loss mechanism as

owing to a combination of the long lifetime of the 5D5/2 and a radiative cascade decay through

steeper intermolecular potentials at closer internuclear separations.

Investigations of multi-excited-state photoassociative ionizing collisions (as opposed to light-

assisted trap loss collisions in this work) have been reported in Rb for both quasicontinuous wave

[1] and ultrashort pulsed configurations [14] when both 5S1/2 − 5P3/2 and 5P3/2 − 4D5/2 light was

present. We find that the collision channel producing our observed trap loss is different that the

collision channel responsible for ion production in Refs. [1, 14].

The ability to use multiple excited states in a light-assisted collision is potentially useful for

deliberate control of ultracold collisions [15] and ion formation during the ultracold collisions [1, 14],

as long-lived molecular excited states also allow for the transport of atom pairs to close internuclear

separations along an excited state. Conversely, light-assisted collisions are often problematic in

experiments where they are not the main focus of study. For instance, they limit the density

in MOTs and optical traps [8]. Light-assisted collisions involving multiple transitions to various

excited states could be a limitation in experiments with ultracold gases where excited-state atoms

and molecules are created, such as Rydberg atom formation [16–18]. It could also impose limitations

on extensions of laser cooling involving higher-energy excited states than the first excited state [19–

21], if the excitation pathway involves similar states. Currently, techniques involving cooling to

excited states beyond the first excited state to improve optical trap loading are being used in other
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experiments [22, 23]. In at least one case [23], trap losses on the order of 1010 cm−3 are observed,

which are on the same order as our observations. Given the convenience of obtaining diode lasers

resonant with the 5P3/2 − 5D5/2 transition in Rb at 776 nm, the 5D5/2 state would appear to be

an excellent candidate for beyond-first-excite-state laser cooling studies. However, the presence of

large light-assisted collision losses presents a potentially serious complication.

In this chapter, I will detail our measurements of the increased light-assisted collision losses in

an 85Rb MOT owing to the addition of light resonant with the 5P3/2 − 5D5/2 transition at 776

nm. To characterize the loss rate, we measured the loss coefficient in steady state. Under different

density and light intensity conditions we were able to determine that the loss was two body in

nature, and we determined the probable loss channel for the atoms in the MOT.

7.2 Experimental Setup

As noted above, the experiments described in this chapter were performed before the apparatus

used in the experiments for Chapters 4− 6 was constructed. Since this setup is different that what

was described in detail in Chapter 3, I will describe the apparatus that was used for the experiments

in this chapter here. This experiment involved the use of the same type of laser cooled atoms (85Rb)

as those described in Chapters 4 − 6. However, the setup for this experiment is simplified as the

creation of a magneto-optical trap (MOT) is the only requirement from this vacuum chamber setup.

For this experiment, I was able to use the vacuum chamber and experimental setup used for the

laser cooling experiments in the same laboratory [24] with a few modifications. These modifications

included adding a laser at 776 nm to the MOT beam path and the addition of a CCD camera and

imaging software to image the MOT atoms during the experiment. More details of the experimental

setup are described below.

7.2.1 Magneto-Optical Trapping and the Addition of 776 nm Light

The MOT was created using standard techniques [25]. It consisted of three orthogonal beams from

the primary trapping laser (which we will refer to as L1, at 780 nm) which were retroreflected to

create a six-beam configuration with a total intensity between 23 and 42.5 mW/cm2 for different

experimental conditions as seen in Figure 7.2. The MOT was loaded from a background vapor

of Rb, which was provided by a set of Rb getters in our vacuum chamber. The beams from L1
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Figure 7.2: A diagram of the experimental setup for the measurements discussed in this chapter.

Here, we have a standard magneto-optical trap (MOT) setup in a stainless steel vacuum chamber

with L1 (780 nm) serving as the main trapping laser for 85Rb. Here, L2 (776 nm) is aligned along

the same path as L1. (AOM: acousto-optic modulator; AH: anti-Helmholtz; PD: photodiode; BS:

beam splitting.
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were detuned between 6 and 18 MHz to the red of the 5S1/2 (F = 3) to 5P3/2 (F = 4) cycling

transition in 85Rb as desired. In addition to L1, we used light from a hyperfine repump laser (at

795 nm tuned to the F = 2 ground state to F = 3 excited state D1 transition). The number of

atoms trapped in the MOT was determined through a calibrated fluorescence measurement. The

fluorescence of the MOT was captured in a lens and focused down onto a large-area photodiode,

which provided the primary signal for these measurements. To calibrate the fluorescence signal,

a standard probe absorption measurement was made (Chapter 3). The optical depth of the atom

cloud was measured by a resonant laser probe image at a specific detuning for L1, and the atom

number extracted from this absorption measurement was related to the reading measured by the

photodiode (Chapter 3). We related the calibration measurement to other detunings of L1 that

we used by using the fact that the fraction of atoms in the MOT in the 5P3/2 excited state was

experimentally determined to be [26]

f =
I/2Isat

(1 + I/Isat + 4(δ/Γ)2)
(7.1)

where δ is the detuning of the laser and Γ is the natural line width of the transition (2π·6 MHz for

Rb) [27].

To this standard MOT configuration, we added additional light from a second laser (which we

will call L2, at 776 nm) to provide a second excitation up to the 5D5/2 level. Initially, we aligned

a single beam from L2 with the atoms in order to provide excitation. In this configuration, we

noticed that excitation from L2 resulted in a strong force on the MOT, which deformed the shape

of the MOT and pushed atoms out of the trap. In order to suppress these effects, we aligned L2

along the same three-beam path as L1 to create a balance of forces as seen in Figure 7.2. When

in this configuration, there was no noticeable net force on the MOT. Along this path, L2 was also

expanded to a diameter ∼1.5 cm, giving a total six-beam intensity of 25 mW/cm2 at the location

of the atoms. At this intensity, the loss due to direct photoionizing transitions (5D5/2 to the

continuum via either L1 or L2) was negligible in our subsequent measurements based on measured

ionization cross-sections found in [28].

The frequency of L2 was controlled by monitoring a fluorescence signal in a Rb vapor cell.

A pickoff beam from L2 was counterpropagated through a cell with a beam on resonance with

the 5S1/2-to-5P3/2 transition (called L1a) as seen in Figure 7.3. When L2 was resonant with the
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Figure 7.3: A diagram of the setup for tuning L2 to the resonant frequency. An additional laser

tuned to the 5S1/2 − 5P3/2 transition (L1a) is send through a Rb vapor cell. A pickoff from L2 is

counter-propagated through this cell and is put onto resonance by observing the 421-nm fluorescence

owing to a cascade decay through the 6P3/2 state. This is accompanied by a reduction in the 780

nm fluorescence which is detected by an FDS100 photodiode, which is more sensitive to infrared

light.
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5P3/2-to-5D5/2 transition, a fraction of the atoms decayed to the ground state through the 6P3/2

state, fluorescing at 421 nm as seen in Figure 7.4. This 421-nm fluorescence could be observed

by eye in the cell. This was accompanied by a slight but measurable reduction in the amount of

infrared fluorescence observed in the cell. The second excitation produces a reduction in infrared

fluorescence by preventing atoms from decaying back to the ground state from the 5P3/2 state at

780 nm, as the atoms can decay through different paths to the ground state as seen in Figure

7.4. By measuring the infrared fluorescence, we monitored the detuning of L2 with respect to

the 5P3/2-to-5D5/2 transition during the course of our measurements. The frequency of L2 was

calibrated by altering the frequency of L1a by a known amount and measuring the change in

piezoelectric transducer (PZT) voltage of L2 at the minimum of infrared fluorescence. For control

of the frequency of L2 during measurements, the PZT voltage was adjusted in order to achieve the

maximum loss (i.e., the minimum fluorescence) from the MOT.

The number of atoms in the MOT as a function of time is governed by the rate equation [10]

Ṅ = R −
N

τ
− βn̄N − kN (7.2)

where N is the number of atoms in the trap, R is the load rate, τ is the load lifetime, β is the

two-body loss coefficient, k is an additional one-body loss coefficient due to the presence of L2, and

n̄ is the average density. R and τ are found by loading from an empty trap without L2 light present,

so that β = k = 0. The load curve N(t) fits very well to an exponential curve, which implies a

negligible amount of background two-body losses in the absence of L2 for our conditions. When

the MOT filled completely, we determined R by solving the rate equation in steady state: R =

Nmax/τ . With L2 light present, a large reduction of the number of atoms in the MOT was observed

(approximately a factor of 5 reduction in the steady-state MOT number, seen in Figure 7.5). When

the light from L2 is applied, the equilibration time of the MOT is also shortened significantly. This

implies that the loss was not from a simple reduction in the load rate (R) into the MOT, and

suggests a need for additional loss terms (k,β) in the load rate equation. This conclusion was also

supported by a measurement of the initial slope of the fill from an empty MOT, where R dominates

the load process. The observed initial slope did not change with the addition of the 776-nm light

on the 10% level. This small (<10%) dependence, if any, is not unreasonable. In Ref. [13], only

a small effect was observed for 85Rb, albeit for very different conditions. For the majority of our
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Figure 7.4: A diagram of the low-lying energy levels in 85Rb. The hyperfine structure of these levels

is not shown. The relevant laser transitions are shown as solid, double-headed arrows between the

relevant states. Spontaneous emission is shown as dashed arrows pointing from the upper state

to the lower state. Only the relevant spontaneous emission decay channels are shown for clarity.

L1 drives transitions between the 5S1/2 and 5P3/2 state at 780 nm using the main MOT trapping

laser. A hyperfine repump laser at 795 nm is used to pump atoms out of the lower hyperfine state

and back onto the cycling transition. L2 drives transitions between the 5P3/2 to 5D5/2 state at 776

nm. From the 5D5/2 state, 26.5% of the atoms will decay to the 6P3/2 state. 23.6% of the atoms

in the 6P3/2 state will decay back to the ground state, fluorescing at 421 nm. We maximize this

421 nm fluorescence in the Rb vapor cell (Figure 7.3) to put L2 on transition.
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experimental conditions, the L1 and L2 light is resonant with only a very narrow velocity class of

atoms, resulting in a muted impact for the total Doppler cooling.

7.2.2 Measuring the Two-Body Loss Coefficient

One possible way to determine the value of the additional loss coefficients would be to fit Equation

7.2 to the type of data presented in Figure 7.5. However, we did not use this technique and decided

to measure the loss coefficient in steady state for the following reasons. When the 776-nm light

is applied (at t = 0 in Figure 7.5), the volume changes significantly. The time-dependent nature

of this would have significantly complicated both the data collection and analysis. With the L2

frequency characterization technique we used, drifts during data collection would have adversely

affected the data in a time-dependent measurement.

In order to solve for the two loss coefficients (k and β), we first determined whether a one- or

a two-body loss mechanism was dominant over the other. When loading the MOT, the number

and density of the atoms trapped drifts slowly over time and successive measurements because the

background Rb vapor is slowly pumped out of the system after getter flashes. For measurements

at both low and high density, we solved Eq. (2) for the loss coefficients individually, assuming that

the other coefficient is zero (Figure 7.6). This measurement showed that our observations were

more consistent with a dominant two-body loss process. Additional measurements presented later

in this chapter further and better confirmed the two-body nature of this loss.

We can solve for the two-body loss coefficient β in steady state as

β =
V

Nτ
(
Nmax

N
− kτ − 1) (7.3)

where V is the volume of the MOT, and Nmax is the full MOT number without L2 light. To

determine the volume, an image of the fluorescing MOT in steady state is recorded through an

optical access port as seen in Figure 7.7. The image is fit to a two-dimensional Gaussian distribution

in order to determine the rms widths of the MOT. In the image, the features of the vacuum chamber

of known dimensions are visible, allowing a calibration of the distance scale in the image. The

volume is extrapolated from this two-dimensional profile by observing that the third dimension, as

seen through a different view port, is approximately the size of the others.

195



Figure 7.5: This is a typical fluorescence signal from the MOT before and during the application

of the light from L2 at 776 nm. The MOT is filled to equilibrium without the L2 light present. At

t = 0, the light from L2 is applied, and the MOT fluorescence can be observed to decrease on a

time scale much faster than the ∼20 s MOT fill time, indicating the presence of additional losses.

196



Figure 7.6: Density dependence of the one- and two- body loss calculations. The one-body loss

calculation is represented by the red circles and the two-body loss calculation is represented by the

blue squares. The one-body loss calculations show a significant statistical difference at different

densities whereas the two-body loss calculations are consistent within statistical uncertainty. A

simultaneous one- and two-body calculation produced a value for the one-body loss coefficient

consistent with zero.
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Figure 7.7: (Top) An image taken from our CCD camera of the MOT through a view-port into the

vacuum chamber. The welds of the view-ports are highlighted by red circles. Their size and relative

distance are known from the design specifications of our vacuum chamber. (Bottom) A diagram of

our camera position. The port welds are a distance l = 10.4 cm apart and have diameter D = 1.9

cm. If we assume that the MOT atoms are halfway between the two ports then we can calculate

the 2-D size of the MOT based on the apparent size of the port welds on our camera.
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7.3 Identifying the Loss Mechanism

For our standard conditions (12 MHz detuned on L1 at 42.5 mW/cm2, L2 at 25.0 mW/cm2), we

observed a peak loss coefficient of β = (2.05 ± 0.06 (statistical) ± 1.0 (systematic))×10−10 cm3/s,

which is more than an order of magnitude larger than the two-body loss coefficient for L1 light

alone at the detunings used in our experiment (∼10−11 cm3/s for our intensities) [9]. This increase

occurs with less than a factor of 2 change in overall light intensity.

To identify the loss channel involved in this process, we investigated how changes in the intensity

of L1 and L2 changed the value of the loss coefficient β. From a maximum intensity of 42.5 mW/cm2

for L1 and 25.0 mW/cm2 for L2, we reduced the intensity of one of the lasers while keeping the

other laser intensity constant . The scaling of β with intensity indicates the number of photons

involved in the loss process, and thus gives insight into the collision channels to which the atom

pairs are excited. In the absence of saturation, the intensity scales directly with the number of

photons involved in the collision channel. Saturation can complicate the picture, and may lead to

a reduction in the intensity scaling.

To perform these intensity variation measurements, L1 was detuned to several chosen frequen-

cies between 6 and 18 MHz to the red of the 5S1/2 - 5P3/2 transition, and L2 was then set to the

frequency that produced the maximum reduction of the MOT number for a given frequency of L1.

For δ = -12 MHz for L1, this was 20 MHz to the blue of the 5P3/2 - 5D5/2 transition for L2. For

a -∆ change in detuning of L1, the frequency of maximum loss in L2 had a corresponding shift of

approximately ∆. There was no measurable change in the frequency of L2 at maximum loss for

different intensities of L2.

To measure the loss rate variation with L2, the intensity of L2 was varied with constant L1

intensity in a pulsed configuration in two ways. The pulse sequences were performed by using an

AOM for the L2 light. Both sequences had a 10-ms duty cycle. The first way kept the average

power of the laser constant, meaning that as the pulse length was shortened, the intensity of the

laser was increased to compensate. This was done with intensities at their full (25 mW/cm2),

half, quarter, and one-eighth levels. In this configuration, the overall loss rates under each of the

different conditions yielded values that were equal to within statistical uncertainty as seen in Figure
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7.8. This measurement implies a linear scaling of β with the intensity of L2, with no indication of

saturation. Additional measurements at even lower intensities of L2 gave no indication of saturation

of a multi-photon process due to L2. The second pulse configuration kept the intensity of the beam

constant (at 12 mW/cm2), while altering the length of the pulse. In this configuration, the scaling

of the loss rate was linear with pulse length as seen in Figure 7.9.

The data in Figures 7.8 and 7.9 strongly confirm the two-body nature of the loss because

the atom density varies substantially in this data when the intensity and detuning of L2 are held

constant. A one-body loss fits the data poorly. In addition, assuming that the number variation

is owing solely to a variation in the load rate, R, fits the data even more poorly. This is because

a change in R is effectively “zero-body” loss that implies a particular scaling of the steady-state

number with pulse length that is not the same as what we observed. Taking this further, data

such as that in Figures 7.8 and 7.9 can be used to constrain the range of possible variation of R by

allowing such a variation as a fit parameter in a addition to the two-body loss coefficient. In doing

so, we find that these data constrain R to vary by less than 10% given the statistical uncertainty

of the measurements. In this analysis we assumed that any change in R would be proportional to

the pulse length of the L2 light.

To find the dependence on the intensity of L1, we varied both L1 and L2 in a pulsed configuration

(2-ms pulse out of a 10-ms duty cycle), but with the pulses for the two lasers in phase and 180◦ out

of phase. L1 was pulsed for 2 ms at reduced intensity and was at full intensity for the rest of the

duty cycle, whereas L2 was on for 2 ms and off for the rest of the duty cycle. The experiment was

done in this configuration so as to not change the loading parameters for the MOT significantly

while varying the intensity of L1 as L2 was applied. For one such measurement, we measured the

loss rate with an L1 intensity of 30 and 22.5 mW/cm2, a ratio of 0.75. We calculated the ratio

of the loss coefficient β measured under the two different intensity conditions and found a ratio of

0.75 ± 0.01 for δ = - 12 MHz for L1. This measurement would suggest linear dependence of β on

L1. Additional measurements at larger detunings also showed linear behavior.
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Figure 7.8: A plot of the two-body loss rate under different pulse timing configurations with

constant average power. Here, the shorter pulses have higher intensities for L2 light. The black

circles show the loss rate from the pulsed data and the red squares show the inferred loss rate

where it is assumed that the pulse is on for the full duty cycle (10 ms) for the different intensities.

Inset is a diagram of the different pulse configurations over the 10 ms duty cycle of the pulse. The

integrated area of each pulse is equal in each of the different pulse configurations.
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Figure 7.9: A plot of the two-body loss rate as a function of the pulse length. Here the intensity of

each pulse is constant (12 mW/cm2). Inset shows a one-body fit to the data from the main figure.

The vertical axis is the one-body loss rate in units of s−1, and the horizontal axis is the pulse length

in ms. It can be seen here that two-body analysis fits much better to the observed data.
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7.4 Models of Atom Motion

Given the observed two-body nature of the loss rate, and the intensity dependences of L1 and L2

on the loss coefficient, we can attempt to identify the loss channel of the collision. The collision

dynamics will be determined by molecular potential curves formed by long range dipole-dipole

interactions between an atom pair. In order to get an insight into these dynamics, we used a

simplified model of the molecular potentials in which we modeled the atom motion classically along

the potential curves. For the range of internuclear separations relevant to this work, these molecular

potentials can be calculated with sufficient precision using perturbation theory [29]. We did not

take into account the hyperfine structure in this simple model. Interactions between atoms with

even total electron angular momentum (e.g. 5S − 5S, 5S − 5D) will have relatively flat potentials

at long range due to a lack of a resonant dipole-dipole interaction. When L1 is detuned to 12 MHz

to the red of the 5S1/2 - 5P3/2 cycling transition, the light drives transitions resonantly from the

ground state to the 5S1/2-5P3/2 molecular potential at ∼90 nm internuclear separation. We modeled

the 5S − 5P potential curve with a −C3/r
3 potential (C3 = 18.4, in atomic units) and the 5S-5D

potential with a - (C5/r
5 + C6/r

6) potential (C5 = 0.5079 and C6 = 11.32·104 , in atomic units)

[29] (Figure 7.10). The 5S − 5D potential is approximately flat for the internuclear separations of

interest for this discussion. The maximum loss in the MOT was seen when L2 was detuned by 20

MHz to the blue of the natural transition, which is 8 MHz blue detuned of a coherent transition

from the 5S to the 5D state. This implies that when an atom pair is excited up to the 5S − 5P

state, it accelerates along the potential curve for some amount of time before it is in resonance

with L2. When excited up to the 5S − 5D molecular potential, the relatively long lifetime of the

5D state (∼200 ns [30], compared to ∼26 ns for the 5S − 5P state) allows the atom pair to travel

along this curve to a much closer internuclear separation. If the atom pair decays back down to

the 5S − 5P molecular potential within ∼40 nm internuclear separation, the atoms will begin to

have a significant probability of accelerating along the curve to the escape velocity of the trap (∼10

m/s). This radiative escape probability increases sharply as the atoms approach to even closer

separations along the 5S − 5P potential. Also, state changing collisions can occur if the atom pair

reaches close internuclear separations. While the atom pair can reach the 5S − 5P potential at a

close separation through off resonant transitions from the ground state, the probability for this is
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very low, meaning decay from an upper state is the more likely mechanism. Our observations are

consistent with mechanism being responsible for the increased loss in the trap observed through

the application of L2 light.

In our initial examination of the possible collision channels, there appeared to be a puzzle. At

particular internuclear separations, both L1 and L2 are resonant with particular transitions. The

polarization averaged incoherent single-atom saturation intensities for the 5S1/2 − 5P3/2 transition

and the 5P3/2−5D5/2 are 4.97 and 14.7 mW/cm2, respectively. Despite the fact that the L1 and L2

intensities exceed these values, we observed no evidence of saturation in the loss rate coefficients on

either transition. Initial estimates using our simple model indicated that strong saturation should

be observed for our conditions, particularly for L1.

However, by incorporating additional effects in our model, the amount of expected saturation

is significantly decreased. One change was incorporating the fact that in general there are two

broad classes of 5S − 5P excited states, strongly radiating (with the pair of atoms in a symmetric

superposition of the ground and excited state [31]) and weakly radiating (the pair of atoms in

an antisymmetric superposition). The strongly radiating states (whose lifetime is ∼13 ns) require

excitation close to the 5P3/2 − 5D5/2 resonant internuclear separation or they will decay back to

the ground state. Because at this internuclear separation the 5S1/2 − 5P3/2 light is detuned by

approximately a natural linewidth for the conditions measured, the degree of saturation is reduced.

The weakly radiating states are by their nature only weakly coupled to the ground state as only

retardation effects make the excitation probability to these states nonzero.

To further evaluate the reduction in saturation for the weakly coupled states, we constructed a

model consisting of modified Landau-Zener avoided crossings [32, 33] at the internuclear separations

where L1 and L2 coupled different states to one another. The goal was to see how the fraction of

atoms delivered into a region of 40-50 nm internuclear separation depended on L1 and L2 intensity

for the parameters relevant to our measurements. Note that these weakly radiating states are only

weakly radiating on the 5S-5P to 5S-5S molecular transition and decay normally from the 5S-5D

state.

In these calculations, the atoms’ motion was modeled semi-classically along dressed state poten-

tial curves. The transformation of the potential curves into the dressed states can be seen in Figure

7.11. Here the potentials are constructed from the molecular potential curves taking into account
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Figure 7.10: A diagram of the loss channel that is identified in the main text of this chapter. Pairs

of atoms are excited to the 5S − 5P molecular potential by L1 (780 nm) and accelerate until they

are excited by L2 (776 nm) up to the 5S − 5D state. The long lifetime of the 5S − 5D state allows

the atom pair to travel into a region where they can be lost from the trap upon their decay to the

5S − 5P state, due to increased acceleration along the slope of the 5S − 5P molecular potential

curve.
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the photon energy from the lasers that excite the transitions between the states. For example, the

5S − 5S potential is a flat potential at zero energy. If we were to excite a 5S1/2 − 5P3/2 transition

on resonance, then at large internuclear separations (before there is any structure to the 5S − 5P

potential) the dressed state potentials would have the same energy. Since we use photons that are

12 MHz detuned to the red of resonance, the 5S − 5P potential is shifted up in energy by 12 MHz

as seen in Figure 7.11. The same is true for the 5S − 5D potential, where the excitation laser is

tuned 20 MHz to the blue of resonance.

To transform the molecular potentials into their respective dressed states, we can setup a

potential energy matrix of the following form

U =















U5S−5D h̄ΩP,D 0

h̄ΩP,D U5S−5P h̄ΩS,P

0 h̄ΩS,P 0















(7.4)

where U5S−5P and U5S−5D are the molecular potentials associated with the 5S1/2 − 5P3/2 and

5S1/2−5D5/2 states respectively with the 5S1/2−5S1/2 potential set to 0. The molecular potentials

for the excited states are described above. The off-diagonal terms h̄ΩS,P and h̄ΩP,D are the coupling

strengths between the different molecular energy levels, which are given by

Ω =

√

3Iλ3

4π2h̄τc
(7.5)

where I is the intensity of the laser on the respective transition at wavelength λ, τ is the lifetime

of the excited state, and c is the speed of light in a vacuum. To find the dressed state potential

curves, we take the eigenvalues of Equation 7.4. The dressed state potential curves can be seen

in Figure 7.11. Here, we can see the avoided crossings that result from transforming the potential

curves into the dressed state. We can now consider modeling the atomic motion along these dressed

state potential curves. If we choose the center curve (labeled in Figure 7.11 with a pair of atoms),

motion of the atoms along that curve represents likely transitions between the molecular states at

the avoided crossings. We can now construct a rate equation model to determine the probability

that an atom pair will make it to 40-50 nm internuclear separation in the 5S1/2 −5D5/2 state given

the parameters of our system.
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Figure 7.11: (a) Potential energy curves for the 5S1/2 − 5S1/2 (red), 5S1/2 − 5P3/2 (green), and

5S1/2 − 5D5/2 (gold) for L1 and L2 detunings of -12 MHz and 20 MHz respectively. (b) shows the

curves transformed to the dressed state potentials, showing the avoided crossings of the potential

energy curves. For our model, we model the acceleration of the atom pair along the green dressed

state potential curve, which will take into account the accelerations of the atoms pair toward each

other while undergoing transitions between the different molecular states owing to the presence of

L1 and L2.
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We can setup a system of differential equations that couple all of the relevant molecular states

together as

1

2π
ċ1(t) = ih̄ΩS,P · c2(t) (7.6)

1

2π
ċ2(t) = iU5S−5P (r(t)) · c2(t) + ih̄ΩS,P · c1(t) + ih̄ΩP,Dc3(t) (7.7)

1

2π
ċ3(t) = iU5S−5D(r(t)) · c3(t) + ih̄ΩP,D · c2(t) (7.8)

d

dt
r(t) = −

√

vi + 2
UD(ri) − UD(r(t))

µ
(7.9)

where |c1(t)|
2, |c2(t)|

2, and |c3(t)|
2 are the probabilities of the atom pair to be in the 5S − 5S,

5S − 5P , and 5S − 5D molecular states respectively, UD is the dressed state potential curve along

which we model the motion of the atom pairs, r(t) is the internuclear separation as a function of

time (ri is the initial position in which we begin our modeling), vi is the initial relative velocity

which that pair of atoms are moving with respect to each other (based on the thermal temperature

of the MOT), and µ is the reduced mass of the atom pair which in this case is 1/2 of the mass

of 85Rb. To model the dependence of the loss, we accelerate the atoms along the dressed state

potential curves and calculate the probability that an atom will be in the 5S − 5D state (|c3(t)|
2

at internuclear separations between 40-50 nm, indicating loss.

For typical collision velocities in our gas, we observed that a factor of 2 reduction in L1 intensity

reduced the net probability to be on the 5S − 5D asymptote at close internuclear separation to

∼60%-65% of its initial value. For L2, a factor of 2 reduction reduced the probability to ∼55% of

its initial value. Similar degrees of reduction were observed due to the off-resonant transitions of

the strongly-radiating states.

While this degree of saturation is large enough that had it been present we would have detected

it in our data, it is significantly less than what we naively expected. More quantitative calculations

are complicated by the fact that there are ∼500 long-range molecular states associated with different

combinations of spin and electronic states for the colliding pair. Also, many of these states have

a complicated (i.e., not solely attractive) structure [12] and the two-photon nature and variable

polarization of the light fields in space add more complications. We note that our data cannot

rule out combinations where saturation is balanced by other loss effects (e.g., intensity-dependent
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collisional flux enhancement [34], but such balancing would have to be just right to produce the

linear scaling that we observe.

As an additional characterization, we also measured the nature of the 421-nm fluorescence from

the MOT that is due to the 5D5/2 cascade decay to the ground state via the 6P3/2 state. This

was done to give us a better insight into the single-atom transitions taking place inside the MOT.

In this measurement, we ramped the frequency of L2 over the transition to the 5D5/2 state at

our maximum intensity (25 mW/cm2) and at half intensity and measured the fluorescence at 421

nm by using a filter to block out any infrared light. When the intensity of L2 was reduced by a

factor of 2, the peak fluorescence was only reduced by ∼25%, suggesting that this particular single-

atom transition is saturated. This observation is consistent with an optical Bloch equation model

of a four-level atom consisting of the 5S, 5P , 5D, and 6P states with averaged Clebsch-Gordan

coefficients and coherent driving fields for the transitions. The full width at half maximum of the

fluorescence peak was measured to be ∼3 MHz, which implies that the transition is coherent on

the time scale of several tens of nanoseconds even though the transition is driven from two sources,

L1 and L2. This width is much less than the width of the loss coefficient with detuning (see Fig.

7.12). It was also observed that the peak of the fluorescence was not at the same detuning for

L2 as the point where we observed the maximum loss from the MOT. The maximum loss is ∼10

MHz to the blue of the point of the maximum 421-nm fluorescence for δ = −12 MHz on L1. This

indicates that the point of maximum 421-nm fluorescence corresponded to a coherent two-photon

transition from the ground state to the 5D excited state, and the point of maximum loss in the

MOT corresponds to some acceleration along the 5S-5P molecular potential in order to carry atom

pairs into closer separation along the 5S − 5D potential.

The simplified models we have used do not take into account the hyperfine structure of the

various states, particularly the 5D5/2 state. The 5D5/2 state in 85Rb has an inverted hyperfine

structure, meaning that the highest angular momentum value of F lies at the lowest energy. When

observing the maximum fluorescence in the MOT, the most probable excitation from the 5P3/2

(F = 4) level is to the 5D5/2 (F = 5) level. From the 5D5/2 (F = 5) level, it is highly likely (more

than 80%) that the atom will experience a spontaneous decay route that ultimately results in the

atom returning to the 5S1/2 (F = 3) ground state. In contrast, when we observed the maximum loss

in the MOT, we were tuned nearly on resonance with the 5D5/2 (F = 4) state, whose spontaneous
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Figure 7.12: Two-body loss rate as a function of L2 detuning from the point of maximum loss.

(a) shows the loss rate with a 12-MHz red detuning for L1. (b) shows the loss rate for 18-MHz

detuning for L1. The widths of these curves is ∼ 15 − 20 MHz, which is much wider than that of

the 421-nm fluorescence, which is only ∼3 MHz.
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decay channels have reasonable probability to put atoms out of resonance with both L1 and L2,

leaving the atom in a “dark” state until repumped from the F = 2 ground state by the hyperfine

repump laser. In principle, this process could lead to losses from the trap owing to loss of cooling

efficiency, which would change the steady-state number in the MOT. We observe no such effect,

which in any case would be a one-body loss instead of a two-body loss. This can be explained by

the fact that we have a strong repump laser to pump atoms back to the F = 3 ground state from

the F = 2 ground state quickly. In addition, the Clebsch-Gordan coefficients for the 5P3/2 F = 4 to

the 5D5/2 F = 4 are 1/2 of those of the F = 5 transition, which would reduce the transition rates

by a factor of 4 (the Clebsch-Gordan coefficients for the transition to the 5D5/2 F = 3 state are

lower by a factor of 17). So the transition to the 5D5/2 F = 5 state will be the dominant transition.

Conclusion

In summary, we have investigated the increased two-body loss rate produced by the addition of

laser light that excites atoms in a MOT up to the 5S−5D molecular potential curve. We confirmed

that the dominant loss was two-body in nature. Our measurements showed that the two-body loss

rate was increased by over an order of magnitude with only a factor of 2 change in the overall

light intensity. Using intensity variation measurements, we have been able to conclude that the loss

channel likely involves a single photon transition from our main trapping laser and a single photon

transition from a second laser tuned to excite to the 5D5/2 level. Finally we measured the width

of the loss coefficient as a function of L2 frequency for two frequencies of L1. While this work was

performed with the excitation to a particular long-lived excited state, we expect that this class of

losses induced are not unique to the 85Rb 5S1/2 − 5D5/2 state and could possibly be observed in

other experiments involving excitations to similarly long-lived states.
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Chapter 8

Future Work

The work presented in the previous chapters of this thesis represent the first investigations in a long

line of planned experiments using our ultracold plasma apparatus here at Colorado State University.

While we are now able to characterize the UCPs created in our system through measurements of

the UCP size and expansion rate, there are still several diagnostic tools that would be very useful

to develop in order to be able to better characterize the UCP. Most importantly, it would be good

to develop methods for determining the UCP electron temperature that are independent of our

model calculations. This will help us to confirm our predictions that low-density UCPs should

allow us to achieve higher values of Γe than in previous experiments [1, 2]. The development of

these characterization tools will be necessary for performing experiments involving UCPs in the

Penning trap. Without being able to characterize properties such as the electron temperature and

ion/electron density, we will not be able to perform any measurements that will allow us to make

comparisons to the appropriate theoretical predictions.

Although there is a long list of planned measurements and many lines of investigation that

we could pursue, I will only briefly discuss three such planned experiments in this chapter. The

first planned measurement involves revisiting the excitation of the UCP with two, sharp electric

field pulses (Chapter 4). The decay time of the response to the excitation should be related at

least in part to the electron-ion 90-degree deflection time (see Chapter 2), and thus the electron

temperature. Another planned measurement is to develop a technique for measuring the electron

temperature at early times in the UCP evolution using electric field ramps. Similar techniques

have been developed in [3]. Using these measurement techniques, we should be able to compare the

measured temperature by using this method to the calculations of the energy removed by electron

evaporation during the UCP formation in Chapter 5. The last planned experiment that I will

discuss in this chapter will be concerned with trapping the UCP in the Penning trap. The first

measurements of the UCP in the Penning trap will be concerned with loading efficiency and loading

dynamics, so that we can optimize the number of ions and electrons, the UCP density, and the ion

and electron temperature in the initial trapped UCP.
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8.1 Two-Pulse Excitation Measurement

As discussed in Chapter 4, a collective oscillation of the electron cloud can be excited by applied

sharp electric field pulses using our electrode assembly. By applying two such pulses separated by

a chosen amount of time, the oscillatory nature of the electron cloud response can be inferred from

the additional electron escape signal as a function of the pulse separation. Examples of this data

are seen in Figure 4.6, and show a damped oscillation in the electron response. This oscillation

has a characteristic decay time on the order of a few hundred nanoseconds and could potentially

be useful in determining new properties of the UCP that have not been directly measured at this

time.

The source of the decay of the oscillation in Figure 4.6 will be one focus of our investigation

into this response. There are several possibilities that we need to consider. First, we must consider

the fluid nature of the electron cloud. For short electric field pulses, we have modeled the electron

cloud to respond to the external field as a rigid object for convenience. Over many oscillations,

this assumption will break down, because the anharmonicity in the potential from the offset of the

electron cloud will cause electrons to oscillate at slightly different frequencies. This dephasing of

the electron cloud will cause a decay in the response to the two-pulse excitation measurement as the

motion of more electrons goes out of phase with the driving pulse. To determine the characteristic

dephasing time of the electron cloud, there are a few different experiments that we can perform.

First, we will want to determine the dephasing time as a function of the initial ionization energy

of the UCP. At high initial ionization energies early in the UCP lifetime, the electrons should have

a relatively high temperature which lowers the electrons’ collision rate with the ions and other

electrons in the system. If we can eliminate collisions between particles from the dephasing process

then it should be possible to determine how much of the damping in the electron response is owing

to the fluid nature of the electron cloud.

If the dephasing of the electron cloud can be taken into account, then it should be possible to

relate the rest of the damping of the response to electron-ion 90-degree deflections (electron-electron

collisions should not affect the center of mass motion of the electron cloud). By doing so, it should

allow us to make better estimates of the electron temperature at late times in the UCP evolution

when the potential well depth owing to the excess of ions is no longer well defined. By using the
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two-pulse excitation data presented in Chapter 4, we can infer electron temperatures by using our

measurement of the peak density and substituting the damping time for the 90 degree deflection in

Equation 2.17. By naively using this formula, we obtain electron temperatures of ∼8 and 4 K for

the data in Figure 4.6 (a) and (b) respectively (∆E/kB = 10 K). This is at least on the order of

what we might expect for the electron temperature given the presence of three-body recombination

at this initial ionization energies. To better understand the relationship of the damping time to the

90-degree deflection time, we’ll want to compare the damping measurements to other independent

estimates of the electron temperature, such as those presented in Chapter 5 from the formation

of the UCP. A second method for estimating the electron temperature will be discussed in the

following section.

8.2 Electron Temperature Measurements

For our future experiments, it will be useful to develop many tools that allow us to independently

estimate the temperature of the electrons in our UCPs. These estimates will allow us to determine

what degree of strong-coupling we achieve in the electron component of the UCPs in our system

which is essential for comparison to the relevant theories on how strong-coupling alters the behavior

of UCP processes. So far, we have developed methods to estimate the temperature using models

that take into account the energy lost owing to electrons evaporating from our UCP. To confirm

these models, we can make an additional measurement of the number of electrons that escape the

UCP when the external electric field is ramped up to a higher level. Similar measurements have

been made in [3], but can be simplified and improved if the potential well depth can be estimated.

Therefore, the measurement that we intend to make will be most useful at early times, before the

ions outside of the electron distribution have a chance to expand under the influence of the Coulomb

force.

To make these measurements, we form the UCP in a chosen external electric field strength.

After formation, we ramp the external electric field to a higher value of the electric field, lowering

the overall depth of the UCP. At this time, many electrons will escape in order to raise the value of

the depth to increase the confinement of the electrons in the UCP. The electrons that escape during

this time are from the high end of the energy distribution, which will lower the overall temperature
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of the UCP electrons that remain. If we assume that the new depth to temperature ratio that is

established after the escape of the electrons is equal to the value before the electric field ramp, a

new electron temperature can be inferred from the number of electrons that escape the UCP during

the electric field ramp. Our model of UCP formation discussed in Chapter 5 will be used in order

to estimate the depth of the UCP.

In the past, we attempted this type of measurement with limited success. We have since

determined that our estimates of the electric fields in the UCP region were not accurate based

on calculations of the expected fields using estimates of the electrode spacings and their proper

voltages. Even small deviations in the spacing of the electrodes can cause large changes in the

expected electric field values. This deviation produced results that indicated electron temperatures

that were too high given our UCP expansion rates. However, we have now developed techniques to

accurately determine the effective electric field strength in the UCP region as discussed in Chapter

3. Also, we will have to take into account the effects of electron screening on the potential well

depth in the UCP as was discussed in Chapter 5. We plan to improve this calculation to produce

an even more accurate determination of the UCP depth. We will revisit these measurements using

our more accurate determinations of the electric field values, the effects of electron screening, and

our new estimates of the potential well depth to temperature ratio.

Although this measurement will be most accurate at early times in the UCP evolution, we hope

to be able to combine this measurement with measurements of the damping rate discussed in the

previous section to calibrate the damping rate as it relates to electron temperature. We hope that

this will allow us to make better estimates of the electron temperature at late times in the UCP

evolution.

8.3 Loading the UCP into a Penning Trap

Although we have discovered interesting new physics associated with the relatively low-density

UCPs that we create in our system, our experimental apparatus was designed to trap two-component

UCPs in a nested Penning trap configuration. This will extend the UCP lifetimes from the current

∼100 µs values to many hundreds of µs up to more than 1 ms so that it will be possible to study

long-timescale thermalization processes between the electrons and ions and to better explore the

217



possibilities of forced evaporative cooling of the electrons. Also, there have been no studies up to

this point of UCPs at the 0.1 T magnetic fields that we plan on employing in our Penning trap.

However, it will first be necessary to optimize the loading of the Penning trap, and to explore any

new physics associated with trapping our UCPs.

To trap the UCPs, there are several system upgrades that we need to implement. First, we will

need to integrate the fast current switch for the axial magnetic field into the system as discussed in

Chapter 3. This fast current switching will occur in between the time of the magnetic trap shutoff

and photoionization. If we tried to switch the magnetic field after photoionization occurred, then

there would be large induced electric fields from the changing magnetic field that could heat the

UCP. Since this magnetic field will be on during the photoionization process, we require additional

lasers to optically pump the atoms up to the 5P3/2 state because the Zeeman shift can alter the

energy levels of the atoms significantly at high magnetic field levels. Also, we will need to add the

proper function generators to the electrodes assembly to produce the proper electric fields that we

need not only to confine the UCP, but also to extract electrons to the MCP at the proper time.

Finally, we will need to better calibrate the electric fields in the UCP region. Currently, there is

ongoing work to provide both calculational and experiment improvements to this calibration.

Conclusion

The experiments that were briefly discussed in this chapter represent just a small fraction of the

number of planned measurements that will be performed using our ultracold plasma apparatus

here at Colorado State University. Each of the future measurements that will be performed will

require the knowledge of UCP physics that has been acquired from the experiments performed

in this thesis. In addition to the new physics that was discovered, essential diagnostic tools were

developed that help us characterize the key properties of the UCPs created in our system. We hope

that the experiments presented in this thesis and all of our future experiments help to further our

knowledge of fundamental plasma physics and the effects of strong-coupling on a variety plasma

dynamical processes.
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