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ABSTRACT 
 
 
 

TOWARDS THE SYSTEMATIC IDENTIFICATION OF 

LOW-COST ECOSYSTEM-MEDIATED CARBON SEQUESTRATION OPPORTUNITIES  

IN BIOENERGY SUPPLY CHAINS 

 
 
 

Because the dedicated production of terrestrial biomass feedstocks involves the fixation 

of atmospheric carbon, carefully managed biofuel and bioenergy supply chains are increasingly 

recognized as an opportunity for carbon sequestration in soils or geological reservoirs in addition 

to their climate change mitigation value via the displacement of fossil fuel use.  Bioenergy 

involves the coupling of agricultural systems and industrial supply chains, and finding optimal 

system designs often requires navigating a fundamental tension between maximizing overall 

system productivity while simultaneously limiting the intensification of feedstock exploitation to 

sustainable levels.  Bioenergy sustainability analyses are further complicated by strong spatial 

heterogeneities in feedstock production performance, fundamentally different emission 

mechanisms across the agricultural and industrial phases of the biofuel lifecycle, and the 

tendency to perform environmental assessments and economic analyses in isolation.  Well-

designed integrated assessments are necessary to identify the total amounts and time dynamics of 

sequestration possible in such systems, to put those results in context relative to other supply 

chain impacts, and to understand tradeoffs between various environmental impact criteria and 

production costs.   

This dissertation starts with a thorough review of the bioenergy lifecycle assessment 

(LCA) literature to identify outstanding climate impact accounting challenges and inform the 
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integration of production cost estimates.  Two integrated assessment case studies are then 

undertaken to identify low-cost opportunities for improving carbon sequestration at different 

points in the bioenergy supply chain.  The first focuses on feedstock production, assessing the 

potential for increasing soil carbon sequestration in bioenergy landscapes based on the 

cultivation of perennial grasses.  A spatially-explicit landscape analysis system is created around 

a newly-parameterized version of the DayCent biogeochemistry model, and switchgrass 

productivity and soil greenhouse gas balance are assessed across gradients of land quality and 

cultivation intensity in a real-world bioenergy landscape in western Kansas.  Integrating these 

ecosystem simulation results with existing LCA, farm enterprise budget, and biomass transport 

models allows for the quantification of landscape level cost – mitigation tradeoffs under various 

system design strategies and policy constraints.  The second case study focuses downstream in 

the supply chain, considering the use of low-value conversion co-products as soil amendments to 

improve agroecosystem sustainability.  The biochar co-product from a hypothetical 

thermochemical conversion system in the Colorado Front Range is assessed using simplified 

models of biochar recalcitrance and agronomic benefits as a function of feedstock material and 

conversion method.  Together, these case study results are illustrative of the potential costs of 

improving ecosystem-mediated carbon sequestration in bioenergy systems, and the ongoing 

work required for full global supply chain optimization.   
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CHAPTER 1 
 

INTRODUCTION 
 
 
 

1.1.   Introduction to Ecosystem-Mediated Carbon Sequestration Assessment 

Bioenergy is unique among renewable energy technologies in that it relies on carbon 

derived from the fixation of ambient atmospheric CO2 as an energy carrier, and requires 

manipulation of the natural carbon cycle in the course of cultivating biomass feedstocks.  Careful 

management of bioenergy supply chains introduces the potential for enhancing carbon storage in 

the biosphere or diverting biomass-derived carbon into geological storage, thus leading a 

sequestration of atmospheric carbon over various timescales (e.g., Lehmann, 2007a), in addition 

to displaced fossil fuel use.  Such technologies have often been lumped under the geoengineering 

umbrella, termed Carbon Dioxide Removal in order to differentiate them from more aggressive 

geoengineering interventions meant to modify the radiative balance of the planet (so-called Solar 

Radiation Management, Shepherd, 2009).   

As concerns over total global anthropogenic greenhouse gas emissions exceeding the 

limits implied by internationally-agreed temperature targets (Allen et al., 2009) grow, so too 

does interest in carbon-sequestering bioenergy production pathways.  Today, a large fraction of 

the climate-stabilizing Representative Concentration Pathways developed by the 

Intergovernmental Panel on Climate Change assume significant deployment of carbon-

sequestering bioenergy technology in order to compensate for the anticipated overshooting of 

acceptable atmospheric CO2 concentrations (Fuss et al., 2014).  Such systems are often described 

as ‘carbon-negative’ to the extent that supply chain carbon sequestration outweighs other 

lifecycle GHG emissions, implying that increasing production rates contribute to decreasing net 
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atmospheric CO2 concentrations (Keith & Rhodes, 2002; Rhodes & Keith, 2008; Kraxner et al., 

2014). 

There are at least three mechanisms by which bioenergy supply chains could achieve 

significant levels of carbon sequestration.  BioEnergy with Carbon Capture and Storage 

(BECCS) involves capturing and liquefying bioenergy system CO2 emissions and then injecting 

them into suitable geological formations for permanent sequestration, a technology originally 

designed for coal and other stationary fossil energy sources (Creutzig et al., 2015).  BECCS 

could potentially be integrated to sequester emissions from the combustion of biomass at a 

stationary power plant, or waste CO2 from the production of biofuels through biochemical or 

thermochemical conversion pathways.  Several regional-scale analyses of the former scheme 

have been recently been conducted (Kraxner et al., 2014; Sanchez et al., 2015), and a 

demonstration of BECCS is currently underway at a corn ethanol facility in Illinois (Lusvardi, 

2015). 

A second mechanism for bioenergy supply chain carbon sequestration lies is improving 

the carbon storage of soils on which feedstock crops are cultivated.  The amount of carbon stored 

in soil organic matter globally is several times larger than the total carbon storage in live biomass 

or of CO2 in the atmosphere (Lal, 2004), and reflects a balance between site net primary 

productivity and the turnover rate of dead organic matter as determined by its original chemical 

composition, environmental controls on microbial activity and soil carbon stabilization potential, 

and disturbance due to management such as tillage.  The cultivation of bioenergy feedstocks can 

either enhance or degrade these carbon sinks depending on the crop, the environment and site 

where it is cultivated, and how it is managed (Davis et al., 2013).  The cultivation of dedicated 

perennial grass feedstocks on marginal or degraded lands in particular is thought to have great 
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potential for carbon sequestration through increasing soil organic matter, which would be a 

major contributor to the net GHG mitigation value of such a supply chain (Tilman et al., 2006a; 

Robertson et al., 2011; Wang et al., 2012). 

The third sequestration mechanism involves a hybrid of the first two, in which carbon-

rich bioenergy conversion co-products are applied to agricultural soils as amendments, a strategy 

with potential to valorize those material streams and improve overall system GHG performance 

and sustainability (Cayuela et al., 2010).  Thermochemical conversion systems produce a solid 

carbon-rich byproduct which, when used as a soil amendment, is referred to as biochar.  Biochar 

has received great attention in the last decade as strategy for improving fertility and reducing 

trace GHG emissions in agroecosystems while simultaneously directly sequestering additional 

carbon (Lehmann, 2007a, 2007b; Laird, 2008).  Direct analogs exist for biochemical conversion 

systems as well.  Biochemical conversion of lignocellulosic material to ethanol produces 

significant amounts of lignin by-product, a complex heterogeneous bio-polymer resistant to 

biological conversion (Tanger et al., 2013).  While it is typically assumed that this lignin by-

product would be burned on-site to provide process heat and electricity (e.g., Dutta et al., 2011), 

it has recently been suggested that, like biochar, this highly-recalcitrant fraction could persist for 

long timescales in soils and thus improve system GHG performance when applied as a soil 

amendment (Pourhashem et al., 2013).  Likewise, a similar sequestration may be possible with 

the anaerobic digester slurry co-product of biogas production (Smith et al., 2014).  In each case, 

the more volatile or labile fractions of the biomass are exploited for the production of high-value 

liquid or gaseous biofuels, while the more recalcitrant left over fraction is used to mitigate the 

effects of the original biomass removal and potentially improve soil health and productivity (Lal, 

2004).  Thus, this carbon sequestration strategy is potentially more robust and durable than 
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increasing ordinary soil organic matter levels, and represents a potential source of value in 

contrast to the additional costs required for CCS.  

The latter two sequestration mechanisms can be termed ecosystem-mediated, as the total 

amount and/or the stability of carbon storage is a function of ecosystem processes.  Such effects 

represent a challenge for lifecycle assessment, as they require a completely different set of 

analytical tools to evaluate than those used to tabulate supply chain inputs of material and 

energy.  Soil organic matter balance is a strong function of both environmental and management 

factors, and shows strong spatial variability even within the boundaries of a single bioenergy 

production system.  Sequestration based on co-product soil amendments is even more 

challenging, as the biogeochemical recalcitrance of such materials is often not well quantified 

and the mechanisms underlying their potential agronomic value are difficult to identify and 

model. 

In addition, while each of these mechanisms has potential to improve the net greenhouse 

gas performance of bioenergy systems, their implementation has strong implications for the 

economics of the systems in question.  Implementation of BECCS requires significant additional 

equipment and energy use at the conversion facility.  Maximizing soil carbon sequestration under 

biomass feedstock crops implies targeting particular types of land for cultivation and adjusting 

agronomic management, with associated implications for land costs and overall crop 

productivity.  Use of co-products as soil amendments introduces an opportunity cost of not using 

them as process fuel or for electricity production for internal use or export (Dutta et al., 2011).  

In both of the ecosystem-mediated mechanisms, increasing soil organic matter levels can 

introduce a feedback of improved agronomic performance and increased system productivity.  

As a result, lifecycle assessment performed in isolation has limited value, and integrated 
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assessments that simultaneously consider the greenhouse gas and the economic implications of a 

given biophysical scenario are necessary to estimate the practicality of implementation.  Such 

studies can be useful in identifying and quantifying the lowest-cost opportunities for reducing 

GHG emissions through various bioenergy supply chain modifications or substitutions, 

determining the so-called marginal carbon abatement costs of such systems.  

 

1.2.   Organization of Dissertation 

This dissertation is organized as six separate chapters, including this introductory chapter 

to introduce and highlight the linkages between the following chapters.  Chapter 2 is a detailed 

review of the bioenergy lifecycle assessment literature.  Chapter 3 and 4 describe a case study 

focusing on bioenergy feedstock landscape design for optimal soil carbon sequestration, with 

Chapter 3 presenting model parameterization and methods for landscape-scale assessment, and 

Chapter 4 devoted to interpreting ecosystem simulation results within an integrated assessment 

framework and developing optimal system performance tradeoff curves under various design 

strategies and policy constraints.  Chapter 5 introduces an additional case study around co-

product management, estimating the cost and system GHG performance implications of using 

biochar as a soil amendment rather than a process fuel.  All chapters 2-5 are written as stand-

alone journal articles, with separate introductions and discussion sections putting the individual 

results and insights into a broader context.  The dissertation is completed with a brief conclusion 

chapter recapitulating the results of the two case studies in the context of broader bioenergy 

assessment efforts.  
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Chapter 2 – Understanding GHG mitigation in bioenergy systems: A review of epistemic, 

methodological, and system design factors 

Lifecycle assessment techniques have been applied for quantitative sustainability analysis 

in bioenergy systems for more than three decades (Silva et al., 1978; Chambers et al., 1979), 

though broad new challenges to bioenergy system sustainability are still being raised with 

disconcerting frequency (Rosenthal, 2008; Searchinger et al., 2008; Liska et al., 2014; The 

Associated Press, 2014; Gillis, 2015).  Bioenergy lifecycle assessment is more complex than that 

for other energy technologies due to biogenic emissions from feedstock production that vary 

widely based on both environmental factors and agronomic management factors (Davis et al., 

2013), and evolve over timescales very different from that of fuel production (Schulze et al., 

2012).  In addition, large-scale feedstock cultivation potentially puts pressure on a limited global 

arable land base, likely introducing market-mediated leakage effects (Searchinger et al., 2008).  

These effects are central to the sustainability of the bioenergy concept, but are fundamentally 

different from emissions due to supply chain material inputs or energy use and thus are not easily 

represented in most standard lifecycle assessment models. 

This chapter presents a review and classification of the different types of emissions 

included in existing bioenergy lifecycle assessment studies.  A simple taxonomy is developed to 

classify emissions based whether they are industrial or biogenic in nature, whether they occur 

directly within or indirectly outside of the physical boundaries of the supply chain, whether their 

temporal nature is discreet or continuous, and whether they represent real observable emissions 

or avoidance of emissions relative to a non-observable counterfactual scenario.  These different 

classification criteria each have important accounting implications, questions around which are 

often not yet well resolved.  The review and synthesis ends with a discussion contrasting carbon-
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negative bioenergy supply chains versus those that do not sequester carbon but nonetheless have 

high fossil fuel displacement value.   

 

Chapter 3 – Analyzing variable feedstock productivity and soil GHG emissions balance 

across a cellulosic bioenergy landscape 

While it is recognized that large-scale production of dedicated biomass crops will likely 

be required to meet current bioenergy mandates, it is not clear where in existing agricultural 

landscapes such production would best be integrated, or how intensively such production should 

be managed.  These choices have huge implications for the overall environmental performance 

of a bioenergy supply chain, with potential to ‘swing’ the system from one that mitigates 

emissions to one that increases them relative to a fossil fuel baseline (Davis et al., 2013).  

Heterogeneity in land quality and land use history lead to large spatial variability at landscape 

scales, and correlations between the two complicate assessment efforts and make generalizations 

difficult.  

This chapter develops methods for using biogeochemistry process models for high-

resolution assessment of bioenergy landscape productivity and associated biogenic greenhouse 

gas emissions balance.  First, detailed parameterizations for both upland and lowland switchgrass 

are developed for the DayCent model using a large dataset of US field trials collected from the 

literature, with independent validation of model performance conducted where possible.  Next, 

an illustrative case study is conducted for the cultivation of switchgrass in the heterogeneous 

landscape around a new commercial-scale cellulosic biorefinery in southwestern Kansas.  

Existing spatial databases of required model data inputs are leveraged to characterize the case 
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study landscape and specify the tens of thousands of simulation runs necessary to compare 

switchgrass cultivation across a range of management intensities (nitrogen fertilizer application 

rates) to ‘business as usual’ land management at the full resolution possible with these inputs.  A 

set of tools is then developed in Python and using SQLite relational databases in order to 

automate the execution of multiple model runs in parallel and the processing and integration of 

simulation results in a consistent and transparent manner.  The case study results serve to 

illustrate the potential variability in switchgrass yield and biogenic emissions footprint as a 

function of which parts of the landscape are cultivated and how intensively they are managed.   

 

Chapter 4 – High resolution assessment identifies low-cost mitigation opportunities in 

bioenergy landscapes 

The choices around feedstock siting and cultivation intensity investigated from a 

biogeochemical perspective in the previous chapter have important implications for the overall 

costs and lifecycle emissions performance of a feedstock supply chain.  The level of nitrogen 

fertilizer represents an important input cost for farmers, and the resulting crop productivity 

determines whether the farming operation is profitable enough to cover input and operational 

costs.  These factors can be investigated in the context of a farm enterprise budget in order to 

determine the minimum farm-gate break-even price necessary to cover costs for any given set of 

input intensity and resulting crop yields (Jain et al., 2010).  Synthetic nitrogen fertilizer carries a 

high embodied emissions burden, and also results in significant emissions of the potent 

greenhouse gas nitrous oxide (N2O) due to soil microbial activity when applied to agricultural 

soils (Wang et al., 2011).  To the extent that costs and lifecycle feedstock production emissions 
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are each minimized at different levels of management intensity or at different positions on the 

landscape, a landscape performance tradeoff will exist and optimization can be performed.   

This chapter starts with a review of landscape design priorities from a logistics, farm 

enterprise budget, and a general biogeochemical perspective.  The biophysical simulation results 

developed in the previous chapter are then integrated with a crop production budget, a simple 

biomass transport model, and a lifecycle assessment framework in order to translate yields and 

biogenic emissions into production costs and supply chain lifecycle emissions, considering 

opportunity costs of feedstock production and baseline landscape emissions assessed spatially for 

business-as-usual land management.  The resulting multi-dimensional assessment considering 

both costs and emissions as a function of both spatial location of cultivation and intensity of 

agronomic management is then solved with a simple weighted solution approach based on 

applying a price for carbon and determining the minimum total social cost (minimum delivered 

biomass costs + valorized lifecycle greenhouse gas emissions) of meeting biorefinery feedstock 

demand.  Pareto tradeoff frontiers illustrating the range of cost-minimizing and carbon 

sequestration-minimizing landscape designs possible are then constructed for a variety of 

different system design strategies and policy constraint scenarios.   

 

Chapter 5 – Distributed biochar and bioenergy coproduction: a regionally-specific case 

study of environmental benefits and economic impacts 

The efficiency of biomass feedstock conversion to liquid transportation fuels based on 

alkanes, alkenes, aromatics, or alcohols is ultimately constrained by stoichiometry, as getting 

from lignocellulosic biomass with hydrogen-to-carbon ratios in the range of 1-2 to liquid fuels 
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with H:C of 2-4 requires either that surplus C is rejected or supplemental H is added (Tanger et 

al., 2013).  While many systems (fermentation, gasification) reject excess carbon in the form of 

CO2, more mild thermochemical conversion systems such as slow and fast pyrolysis reject some 

of their excess C in a charcoal-like form, heavily enriched in aromatically-bound C compared to 

the original feedstock material. Preliminary studies suggest that using this recalcitrant material as 

a soil amendment rather than combusting it for process heat may be attractive from an economic 

and GHG mitigation value perspective, depending on the properties and agronomic performance 

of the char and the source of process energy that would be displaced (Gaunt & Lehmann, 2008; 

Hammond, 2009; Roberts et al., 2010; Galinato et al., 2011; Shackley et al., 2011; Yoder et al., 

2011; Sohi, 2013). 

Existing studies are generally based on reported average values for biochar performance 

from sometimes contradictory meta-analyses (Jeffery et al., 2011; Biederman & Harpole, 2013; 

Crane-Droesch et al., 2013; Liu et al., 2013) and typically ignore the huge range of heterogeneity 

observed in biochar properties (McLaughlin et al., 2009; Spokas & Reicosky, 2009). To the 

extent that biochar yield, recalcitrance, and agronomic performance are all related to the 

temperature and duration of the thermochemical conversion step (Brewer et al., 2011; Rutherford 

et al., 2012; Schimmelpfennig & Glaser, 2012), these existing efforts potentially fail to address a 

fundamental tension between designing a conversion system for favorable energy yields versus 

designing a system for good biochar performance (Woolf et al., 2014).  However, assessment 

capabilities are limited by an incomplete understanding of the mechanisms behind biochar 

agronomic and biogeochemistry effects, which are not yet represented in process-based models 

like DayCent.   
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This chapter presents an additional case study investigating tradeoffs in system economic 

and greenhouse gas performance between using char as a soil amendment versus as a process 

fuel, as a function of the conditions under which the char was created.  The agronomic value of 

biochar is modeled conservatively as a simple liming effect based on its ash content, consistent 

with meta-analyses showing that positive yield effects are most often observed with biochar 

application to low-pH soils and in association with measured increases in soil pH (Jeffery et al., 

2011; Biederman & Harpole, 2013; Liu et al., 2013).  Similarly, biochar recalcitrance is 

simulated as a function of conversion temperature, with hotter conversion leading to lower yields 

of more aromatic and recalcitrant char.  The resulting model is applied to a case study of biochar 

production in the Colorado front range from locally-sourced brewery spent grains or beetle-kill 

pine wood, with the resulting char exported to a neighboring state for use as an agricultural soil 

liming agent.  While this case study is somewhat more exploratory than the first, it illustrates an 

important system performance tradeoff that is unlikely to emerge from existing meta-analysis 

efforts.   

 

Chapter 6 – Conclusion 

Finally, a brief concluding chapter summarizes the results of the two case studies in the 

context of other efforts estimating marginal carbon abatement costs in bioenergy supply chains.  

This chapter includes a discussion of how these case studies might be further refined in the 

future, and how they might be combined and linked with more detailed models of biomass 

conversion in order to generate ‘global’ optimizations for full bioenergy supply chains capable of  
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identifying additional emergent opportunities for low-cost GHG mitigation.  Ongoing work 

building off these preliminary results is also briefly introduced.   
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CHAPTER 2 
 

ASSESSMENT OF BIOENERGY SYSTEM CLIMATE IMPACTS: A REVIEW OF 

CONCEPTUAL, METHODOLOGICAL, AND SYSTEM DESIGN FACTORS 

 
 
 

2.1.   Summary 

A variety of renewable fuel and power standards at the local, state, and federal level 

encourage or mandate the widespread deployment of biofuel and bioenergy production, and 

many projected climate mitigation scenarios rely on such systems for their ability to sequester 

carbon.  Lifecycle assessment (LCA) techniques have been applied to quantify the climate 

impacts of bioenergy systems for decades, and great progress has been made in understanding 

material and energy consumption and associated greenhouse gas (GHG) emissions and other 

climate impacts across bioenergy supply chains.  However, the provisioning of biomass 

feedstocks ties these supply chains to agricultural and ecosystem processes that are central to 

overall bioenergy system sustainability yet not easily represented in standard LCA models.  Over 

the last several years critical challenges have been raised around bioenergy climate impacts with 

regard to the proper accounting of changes in ecosystem carbon storage and other biogenic GHG 

emissions during feedstock production, leakage effects associated with increasing productive 

pressure from a limited global arable land base, and the need to consider direct biophysical 

climate impacts such as changes in surface albedo or evapotranspiration.   

Here we review the bioenergy lifecycle assessment literature with a focus on climate 

impacts that are not well represented in many standard bioenergy assessment tools.  We 

introduce a simple climate impacts taxonomy that highlights assessment challenges and 

opportunities for system climate performance improvement.  For each type of climate impact we 
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explore the range of values reported in the literature (due to both real-world variability between 

systems, and uncertainty in assessment), the level at which system performance might be 

improved, and analogs in production cost analysis that should be treated consistently in the 

context of an integrated assessment.  A select set of first- and second-generation bioenergy LCA 

studies are then reviewed and evaluated against the taxonomy to highlight assessment gaps and 

inconsistencies.  We end with a discussion of trends in bioenergy LCA towards spatially-explicit 

biogeochemical feedstock cultivation modeling, integrated assessment and system optimization, 

and development of bioenergy system concepts with strong carbon sequestration potential.   

 

2.2.   Introduction 

Biomass in its various forms is encountered in great quantities in both natural ecosystems 

and agro-ecosystems in all countries of the world.  The burning of woody biomass is one of the 

earliest human exploitations of energy, and the combustion of biomass for cooking is still 

ubiquitous in many developing countries, accounting for approximately as much wood 

consumption as the global industrial lumber market (Chum et al., 2011).  In addition to the 

potential for improving biomass combustion for cooking (Smith, 2010), there is increasing 

interest in other advanced bioenergy applications in developing-country settings including small-

scale electricity production based on combustion or gasification (Junginger et al., 2001; Karve et 

al., 2011), alcohol production from the fermentation of sugary or starchy crops (maize, 

sugarcane, cassava) for use in liquid fuel cookstoves or engines (Pennise et al., 2009; Maroun & 

La Rovere, 2014), and the production of biodiesel from dedicated oil crops such as jatropha 

(Eckart & Henshaw, 2012; Muys et al., 2014).  Increased and improved bioenergy exploitation 

are viewed as important tools for sustainable development (Sagar & Kartha, 2007), and receive 
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support through the IPCC Clean Development Mechanism (Ravindranath et al., 2006) and other 

carbon financing programs (e.g., Simon et al., 2012).   

In developed countries, bioenergy is present in a range of forms and scales including 

home heating based on pellet stoves, coal supplementation with biomass in large power stations, 

and the production of first-generation liquid biofuels based on the fermentation of maize or the 

transesterification of various plant oils (Hill et al., 2006; Wang et al., 2011).  It is estimated that 

40% of the 2010 corn crop was consumed in domestic biorefineries, yielding 13.8 billion gallons 

of ethanol.  This is equivalent to >6% of the US gasoline motor fuel supply on an energy basis, 

and the associated 60 million tons of distillers grains and solids (DGS) co-produced contributed 

approximately 17% of total equivalent corn and soy feed consumption by domestic cattle, swine, 

and poultry that year (World Agricultral Outlook Board 2012; Renewable Fuels Association 

2012; US Energy Information Administration 2012; Hoffman and Baker 2011; Hoffman and 

Baker 2010).  The 2007 Energy Independence and Security Act (EISA) mandates that this first-

generation biofuel production be supplemented with 21 billion gallon a year of second-

generation biofuels derived from cellulosic feedstocks or other ‘advanced’ sources (110th 

Congress of the United States, 2007), spurring work on a wide variety of biochemical (Peplow, 

2014), thermochemical (Butler et al., 2011), and hybrid (Daniell et al., 2012) biomass 

conversion pathways.  This national policy is complemented by a variety of local and state 

incentive programs or mandates for the production of biomass-derived fuels, electricity, or heat 

(http://www.aeltracker.org/).  

In addition to incentivizing or mandating biofuel production, policies such as the US 

Renewable Fuel Standard (RFS) and the California Low Carbon Fuel Standard (LCFS) also 

require the quantification of associated climate impacts in order to ensure that environmental 
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performance goals are met (Liska & Perrin, 2009).  Lifecycle assessment (LCA) is the analytical 

process of tabulating the inputs and outputs of an industrial supply chain, tracing material and 

energy flows associated with production, use, and final disposal through to the margins of the 

physical economy and tabulating all exchanges with nature (‘elemental flows’) in order to 

determine total impacts associated with that production process.  Formal guidelines for 

conducting LCAs are provided in ISO standards 14040 and 14044 (International Organization 

for Standardization, 2006a, 2006b), which specify processes around problem definition, 

modeling of material flows within and upstream of a supply chain (lifecycle inventory), 

interpretation of total elemental flows (lifecycle impact assessment), and iterative review by 

technology stakeholders.  The impacts associated with elemental flows can be interpreted 

through a variety of lenses focusing on various aspects of non-renewable resource depletion, 

environmental damage, or impacts on human health or well-being (von Blottnitz & Curran, 

2007; Bai et al., 2010; Buratti & Fantozzi, 2010), with total lifecycle fossil energy use and 

greenhouse gas emissions balance being the most commonly-reported metrics in bioenergy LCA.   

LCA studies typically take one of two accounting stances.  Early LCA studies focused on 

determining the fraction of current overall industrial activity and associated energy use or GHG 

emissions that could be assigned to a given industry, a process known as attributional lifecycle 

assessment (ALCA).  ALCA is conservative in the sense that combining ALCAs for all products 

and services generated within an economy should yield an accurate estimate of the overall 

environmental impact of that economy (Brander et al., 2009), and is thus useful in regulatory 

settings.  In contrast, the consequential lifecycle assessment (CLCA) approach evolved later in 

order to address ‘what if’ questions around the potential impacts of a hypothetical future 

expansion of a given production pathway, focusing on marginal rather than average emissions 
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and including indirect and ripple effects, in order to inform policy decisions (Ekvall & Weidema, 

2004).  Consequential LCAs are non-conservative in that they include indirect effects that would 

be attributed to other production chains in an ALCA, but are casually linked to the expansion of 

the production chain in question and thus deserve consideration from policymakers (Brander et 

al., 2009).  CLCA is geared toward comparing the relative impacts of switching from one 

technology to another, an interference that is not possible from ALCA results (Plevin et al., 

2014).  In practice, few bioenergy LCA studies adhere strictly to either definition, and most fall 

somewhere in between the pure ALCA and CLCA categories.  

Efforts to understand the performance of bioethanol supply chains date back to the late 

1970’s (Silva et al., 1978; Chambers et al., 1979).  Early studies focused on supply chain energy 

consumption to determine whether biofuel production was thermodynamically favorable (Patzek, 

2004; Ponton, 2009) or contributed to domestic energy security by displacing petroleum (Farrell 

et al., 2006; Dale, 2007).  The recognition of biofuels as a renewable energy source capable of 

making a significant contribution to a national GHG emissions reduction strategy (Pacala & 

Socolow, 2004) has been associated with a refocusing of LCA efforts around climate metrics 

such as global warming impact (Adler et al., 2007; Wang et al., 2007a).  Despite some 

irregularities in system boundary definition in early studies (e.g., Pimentel, 1991), subsequent 

work indicated significant convergence in LCA results from different studies after normalization 

with common boundary conventions and/or emission factor datasets (Farrell et al., 2006; Plevin, 

2009; Whitaker et al., 2010).  More recent lifecycle assessment literature trends, as assessed 

through Web of Knowledge (http://apps.webofknowledge.com/) search results, are shown in 

Figure 2.1.  While the number of LCA studies on all topics in the literature has approximately 

quadrupled over the past decade and a half, the number of biofuel and bioenergy LCA studies in 
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particular has surged, especially since the 2007 EISA legislation mandated that biofuels meet 

lifecycle greenhouse gas reduction targets relative to conventional fuels to qualify towards the 

US Renewable Fuel Standard.  Such biofuel and bioenergy studies account for approximately 1/8 

of all new lifecycle assessment studies published since 2011.  In addition to these conventional 

bioenergy studies, LCA techniques have been applied to the production of bioplastics (Dornburg 

et al., 2003), soil amendments (Roberts et al., 2010; Woolf et al., 2010), and air pollutant 

emissions associated with wood-fueled cooking in developing countries (Johnson et al., 2009; 

Grieshop et al., 2011; Singh et al., 2014a). 

Broadly, any bioenergy system based on terrestrial feedstocks (either dedicated crops or 

residues from other cultivation processes; algae and other aquatic feedstocks excluded) features a 

production chain consisting of biomass cultivation or procurement, biomass collection and 

transport to a centralized biorefinery or energy conversion facility, conversion of the raw 

biomass to energy products and non-energy co-products, and finally the distribution of these 

products to the point of use (Figure 2.2).  Even as understanding of the material and energy 

inputs to this supply chain has improved, the production of biomass feedstocks links the supply 

chain to a range of difficult agricultural or ecological sustainability issues, giving rise to a variety 

of critical challenges to bioenergy sustainability over the past decade.  Cultivation of dedicated 

bioenergy feedstock crops or removal of residues in conventional agricultural systems has 

important implications for the biogeochemical cycling of carbon, nitrogen, and water in these 

systems, often resulting in significant fluxes of CO2 associated with changes in soil organic 

matter levels and nitrous oxide (N2O) emissions associated with nitrogen fertilizer additions 

(Robertson et al., 2011).  These GHG emissions are strongly controlled by agronomic 

management decisions such as the type of crop cultivated, the rate of nitrogen fertilizer 
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application, the intensity of tillage prior to replanting, and many others (Anderson-Teixeira et al., 

2012; Davis et al., 2013), which can interact strongly with local environmental factors such as 

climate, landscape position, and soil type (Kim & Dale, 2005; Zhang et al., 2010).  Carbon 

stocks can take decades to reach equilibrium after a change in land use or management, 

introducing assessment challenges around properly accounting for emission timing (O’Hare et 

al., 2009; Holtsmark, 2015).  In addition to these biogeochemical impacts, changes in land use 

and land management can have a variety of direct biophysical impacts on surface albedo and 

evapotranspiration, with additional significant climate implications in some situations (Caiazzo 

et al., 2014). 

In addition to these direct biogeochemical and biophysical impacts, to the extent that 

feedstock production adds pressure to limited global area of arable land it becomes important to 

explicitly consider the ‘business as usual’ (BAU) uses of that land in the absence of bioenergy 

feedstock production, and indirect effects associated with any disruptions to agricultural 

commodity markets.  The high GHG footprints associated with many types of conventional 

agriculture and land management imply that bioenergy system performance results can be very 

sensitive to assumptions around BAU scenarios (Davis et al., 2012; Duval et al., 2013; Field et 

al., 2013).  To the extent that any displaced commodity production affects prices in international 

commodity markets, this could contribute to deforestation and other land use change pressures 

domestically and in other countries, resulting in strong leakage effects (Fargione et al., 2008; 

Searchinger et al., 2008).  While the likely magnitude of this so-call ‘indirect land use change’ 

(iLUC) effect has been revised down sharply from initial estimates (Wang et al., 2011), there is 

still contentious debate around whether the effect is empirically observable or falsifiable 

(Babcock, 2009; Kim & Dale, 2011; O’Hare et al., 2011) and whether there is enough 
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assessment certainty for the effect to be considered in regulatory settings (Plevin et al., 2010; 

Zilberman et al., 2010; Warner et al., 2013).   

The various biogeochemical, biophysical, counterfactual, or leakage effects associated 

with feedstock production are not easily represented in standard supply chain LCA models such 

as the Greenhouse gases, Regulated Emissions and Energy in Transport (GREET) model (Wang, 

1999; Wang et al., 2011).  These climate impacts require a fundamentally different set of 

analytical tools to estimate, predicated on a different set of underlying assumptions and 

introducing a strong interdisciplinary aspect to bioenergy lifecycle assessment.  The 

consideration of biogeochemical and biophysical effects that evolve over different timeframes 

than biomass harvest and conversion even implies the need for a different approach to climate 

impact accounting metrics.  To the extent that likely land use change, landscape design, and crop 

management scenarios are not yet well-established for dedicated feedstock crops (Zhang et al., 

2010; Anderson-Teixeira et al., 2012; Wu et al., 2012; Roth et al., 2015), the integration of 

economic production cost estimation tools becomes important to estimate which system design 

scenarios are most likely.   

This manuscript reviews the range of climate impact factors included in existing 

bioenergy LCA studies, and classifies them in a simple taxonomy that highlights issues 

important for impacts assessment and accounting.  Associated discussion highlights the range of 

values associated with each climate impact reported in the literature due to system variability and 

assessment uncertainty.  Within each category we highlight opportunities for improving climate 

performance, and identify key assumptions that must be harmonized for consistency between an 

LCA and associated cost estimates within an integrated assessment framework.  Illustrative 

examples are provided with the tabulation of the climate impacts associated with nitrogen 



 21 

management in the cultivation of first- and second-generation bioenergy feedstocks in order to 

illustrate the relative contributions of different kinds of climate impacts to a given aspect of the 

biofuel lifecycle.  A variety of first- and second-generation bioenergy LCA studies are then 

reviewed against the previously-identified assessment and accounting issues identified in order 

to highlight gaps and inconsistencies across assessments in the literature.  We end with a 

discussion of carbon sequestration potential in bioenergy systems, discussing the relative merits 

of ‘carbon-negative’ systems where carbon sequestration outweighs other net lifecycle-attributed 

climate impacts. 

 

2.3.   Classification of Bioenergy Lifecycle Emissions 

Typically the climate impacts measured in bioenergy LCA are described and reported based 

their position in the supply chain, for example, during feedstock cultivation, harvest and 

transport, or conversion to energy products.  Here we instead categorize the different lifecycle 

climate impacts encountered in bioenergy LCA in an alternate classification scheme based on: 

• The nature of their origin (industrial versus biogenic) 

• Their location in relation to the system boundary (direct versus indirect) 

• The mechanism of climate impact (greenhouse gases versus biophysical effects) 

• Their physical nature and direction (real positive and negative emissions fluxes versus 

avoided emissions) 

• The temporal profile of their release (continuous versus time-dependent) 

These distinctions have important repercussions for climate impacts accounting with 

regard to the assessment methods used, the climate impact metrics applied, and the underlying 

explicit and implicit analytical assumptions made. These classification dichotomies are 
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independent, thus yielding a potential 32 combinations of attributes that might be encountered in 

bioenergy LCA practice.  Individual classification categories and the associated repercussions for 

lifecycle accounting are explored in detail below.  Table 2.1 shows how climate impact factors 

cited in the bioenergy lifecycle assessment literature fit in to the taxonomy. 

 

2.3.1. Classification by origin- industrial vs. natural 

Is this climate impact derived from an engineered process, or from an agricultural or 

biogeochemical process? 

Industrial Impacts 

Industrial impacts can be defined as those derived from engineered processes associated 

with the production and consumption of energy products (fuels and electricity) and manufactured 

materials (fertilizers, industrial enzymes, farm machinery, etc.) throughout the bioenergy supply 

chain.  Much of the climate footprint of these inputs can be traced back to fossil fuel use and thus 

tabulation is often done on an energy basis, hence the persistence of the widely-criticized (Farrell 

et al., 2006; Dale, 2007) net energy metric as a primary bioenergy LCA output (Pimentel, 2003; 

Patzek, 2004; Schmer et al., 2008).  While it is straightforward to convert fossil fuel use to CO2 

emissions based on fuel stoichiometry, the production of finished energy products such as 

refined liquid fuels involves inputs of primary energy in the extraction, refining, and distribution 

stages; thus there are upstream emissions associated with the production of the fuel beyond what 

is physically released at the point of use.  Estimates suggest that upstream energy consumption in 

the production gasoline and diesel fuel is responsible for CO2 emissions equal to ~16% those 

generated when those fuels are burned; the figure is 3% and 6% for the industrial fuels coal and 
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natural gas, respectively (West & Marland, 2002).   For electricity production, all direct GHG 

emissions occur upstream of the point-of-use, and low thermal conversion factors and high 

transmission losses for electricity generation imply that approximately 2.9 units of primary 

energy (much of it in the form of carbon-intensive coal) are consumed for every unit of electrical 

energy delivered (West & Marland, 2002).   

In addition to CO2 emissions, any real-world combustion-based energy conversion 

process also releases products of incomplete combustion and other air pollutants including N2O, 

CH4, non-methane hydrocarbons, and black carbon (soot), all of which have significant lifetime 

climate impacts relative to that of an equivalent mass of CO2 (Bhattacharya & Abdul Salam, 

2002; Grieshop et al., 2011).  The magnitude of such emissions depends on the fuel type, energy 

conversion technology, and pollutant mitigation technologies in place.  The GREET model 

estimates criteria air pollutant emissions, including CH4 and N2O, for all combustion-based 

energy conversion processes modeled (Shapouri et al., 2002; Wang et al., 2003), and finds that 

on-farm use of LPG for grain drying produces 65 g CO2eq of non-CO2 emissions in addition to 

the 2.58 kg CO2 released during the combustion of 1 kg of LPG, adding ~2% to the overall GHG 

emissions at the point of combustion.  This factor varies from as low as 0.4% in the case of 

diesel-fueled farm tractors, or as high as 14% for on-farm natural gas-fuelled stationary 

reciprocating engines. 

Accounting of industrial climate impacts is further complicated due to some supply chain 

material inputs having additional supply chain emissions not tied to combustion or energy use.  

Production of nitrate-based fertilizers from the oxidation of ammonia (NH3) is a notable 

example.  Synthesis of the ammonia feedstock uses methane as both a source of hydrogen 

reactant (with the associated carbon rejected in the form of CO2) and a process fuel to drive the 
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high temperatures and pressures required in the Haber-Bosch production process.  Even though 

the subsequent oxidation reaction of ammonia to nitrate is itself exothermic and requires no 

significant energy inputs, N2O can be emitted as a reaction byproduct in large enough quantities 

to dwarf the GHG footprint of the original ammonia synthesis (Wang et al., 2003; Wood & 

Cowie, 2004), with the magnitude of N2O emissions varying greatly between different fertilizer 

production facilities depending on the level of emissions control technology employed 

(Kongshaug, 1998).  

Since industrial climate impacts tend to derive from point source emissions of GHGs and 

other climate forcing agents resulting from highly-engineered and precisely-controlled 

production processes and combustion technologies, and their associated emissions factors are 

generally well-characterized and easily amenable to representation through databases of 

emissions factors.  This is the approach of the GREET model, which tracks industrial inputs on 

an energy basis and then applies fuel- and technology-specific emissions factors, corrected for 

incremental technological advances over time, to convert energy into GHG and other air 

pollutant emissions (Wang et al., 2007b).  Such a modeling exercise is in many ways similar to 

techno-economic assessment (TEA) in which industrial process models are integrated with 

enterprise budgeting tools to identify most cost-effective system designs (Gnansounou & 

Dauriat, 2010).   

Reducing the magnitude of these climate impacts requires improving the performance of 

the underlying production processes, either by increasing the amount of product yield per unit of 

process input, or by reducing products of incomplete combustion and other non-CO2 air 

pollutants associated with combustion-based process energy use (Wang et al., 2011).  LCA and 

TEA results are often aligned to the extent that process efficiency improvements improve 



 25 

performance on both metrics, though this relationship can break down in the case of fuel-

switching to cheap but carbon-intensive fuels (Hill et al., 2009; Wang et al., 2011). 

Natural impacts 

We define natural impacts as those resulting from perturbations of natural background 

biogeochemical cycles or ecosystem processes during feedstock production, impacts that occur 

as a direct result of human activities on the farm but outside of engineered processes (Kendall & 

Chang, 2009).  Natural climate impacts resulting from the cultivation of bioenergy feedstocks are 

dominated by biogenic emissions of GHGs from soils due to the metabolic activity of soil micro-

organisms (Johnson et al., 2007; Robertson et al., 2011) and thus are non-point-source 

emissions.  In addition to biogenic processes, the abiotic dissolution of agricultural lime 

(carbonate) to CO2 is an additional natural non-point emissions source significant in many 

agricultural systems (West & McBride, 2005) and often included in LCA exercises (Adler et al., 

2007; Landis et al., 2007). 

Agriculture is the primary anthropogenic source of the potent greenhouse gas nitrous 

oxide (N2O), an intermediate of microbial metabolic reactions involving either the oxidation of 

ammonia to nitrate (nitrification) or the anaerobic reduction of nitrate to N2 (denitrification) 

(Mosier, 1994; Pachauri & Reisinger with Core Writing Team, 2007; Davidson, 2009).  The 

rates of these microbial nutrient transformations in soil are increased above background levels as 

microbially-available N concentrations in soils increase with the application of synthetic or 

organic fertilizers or the cultivation of legumes, with N2O emissions increasing non-linearly as 

soil N levels exceed plant demands (Hoben et al., 2011; Shcherbak et al., 2014).  Direct N2O 

emissions resulting from nitrogen fertilizer application are typically one of the largest 

contributors to the GHG footprint of corn production (Adler et al., 2007), and thus are a 
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significant driver of the overall climate impacts of the corn ethanol supply chain (Wang et al., 

2011).   

Nitrous oxide emissions are anticipated to be significant in cellulosic ethanol systems 

based on fertilized crops as well (Bai et al., 2010), though fertilizer requirements of dedicated 

biomass crops are not always well undestood (Arundale et al., 2014a).  The amount of nitrogen 

fertilizer application associated with different feedstock crops can vary widely (Table 2.2), 

depending on how much nitrogen is removed when the crop is harvested (grain tends to have 

higher N concentration than green biomass, which in turn has more N than senesced biomass), 

how efficient the crop is at capturing mineral nitrogen from the soil (related to how extensive a 

root system it has), and whether the crop is associated with rhizosphere nitrogen-fixing bacteria.  

Site-level environmental factors such as soil texture and climate are important as well, as they 

determine how mobile mineral nitrogen is within the soil profile and its vulnerability to leaching, 

as well as the activity level of nitrogen-metabolizing soil microbes.   

Nitrous oxide emissions are often estimated based on a Tier 1 approach in which it is 

assumed that 1% (uncertainty range 0.3 – 3%) of any N applied to the system is directly emitted 

in the form of N2O independent of the crop or site (Eggleston et al., 2006).  A glance at the 

experimental literature suggests that this is a reasonable assumption for annual bioenergy 

feedstock crops, but that perennial crops are characterized by even lower emission factors (Table 

2.3).  This is not surprising, as perennials tend to have more extensive root networks that are 

better able to take up applied N before it can be metabolized by microbes.  For a given level of  

soil nitrogen and crop, N2O emissions rates are also strongly dependent on soil moisture level 

and texture, and thus characterized by wide spatial and temporal variability with soil pedology 
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and climate (Del Grosso et al., 2006).  Note that in addition to these direct N2O emissions, 

indirect N2O emissions associated with downstream nitrification/denitrification of N lost from 

the system due volatilization, leaching, etc. are discussed in a later section. 

Terrestrial ecosystems store large amounts of carbon in living and dead plant tissues, and 

fluxes of CO2 associated with changes in these carbon stocks due to human land management 

activities are significant in many agricultural systems.  While aboveground standing biomass is 

often very transient in agroecosystems of interest for bioenergy feedstock production, soil 

organic matter (SOM) is used as a more stable proxy for total ecosystem carbon storage.  

Composed of the partially-degraded remnants of dead plant material, SOM makes up only a 

small fraction (typically < 5%) of the mass of most soils, yet exerts a disproportional influence 

on multiple soil properties including bulk density, water holding capacity, aggregation, and 

nutrient storage capacity, hence SOM level often being used as a general proxy for soil health 

and fertility (Paustian et al., 2006).  Perspectives on SOM formation and stabilization have 

evolved over time, with the old view of stabilization of decaying plant material as humic 

compounds as a function primarily of its initial chemical composition giving way to a new more 

nuanced view including additional stabilization mechanisms through SOM association with silt 

and clay particles or physical isolation within microaggregate structures (Six et al., 2002; 

Schmidt et al., 2011).  Globally, soils contain several times more carbon as SOM than all living 

biomass or atmospheric CO2, and the historical depletion of soil carbon in intensively-cultivated 

agricultural systems has made a significant contribution to anthropogenic GHG emissions 

(Schlesinger, 1997; Paustian et al., 2000; Lal, 2004).  As such, land with depleted soil carbon 

stocks due to past land-use practices represents an opportunity for carbon sequestration with 

progressive bioenergy feedstock cultivation practices (Paustian et al., 1998). 
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The level of SOM in a soil represents a balance between inputs of organic matter and the 

decomposition of that matter to CO2 through microbial respiration, and in any human-managed 

system SOM levels can change significantly with changes to input rate (e.g. due to fertilizer 

application or the harvest of biomass for bioenergy production) or litter decomposition rate (e.g. 

the effects of tillage, fertilization, and irrigation on microbial activity) (Paul et al., 1997). While 

corn production using conventional tillage practices and/or high residue removal rates will often 

exacerbate soil carbon depletion (Anderson-Teixeira et al., 2009), transitioning to no-till corn or 

perennial cellulosic feedstocks has the potential to significantly increase soil carbon levels 

(through both increases in litter inputs and decreases in decomposition rates), improving the 

overall GHG balance of the bioenergy feedstock production process (Kim & Dale, 2005; Tilman 

et al., 2006a; Adler et al., 2007; Qin et al., 2015a).  Such systems are slow to come to 

equilibrium, and response to a discreet change in land use or management plays out over decadal 

time scales.  As with N2O emissions, the CO2 fluxes associated with changes in SOM levels are 

microbially-mediated and show a similar spatial variability with environmental factors such as 

climate and soil type (Hillier et al., 2009).  Bioenergy feedstock crops are associated with a 

range of SOM changes depending on the crop selected, the previous land use at the site of 

cultivation, and the agronomic management of the crop, with background environmental factors 

providing additional variability (Table 2.4).  Bioenergy feedstock crops are generally associated 

with soil carbon sequestration at initial rates of up to 0.74 t CO2 per ton of feedstock produced 

when grown on previously-cultivated land, though this flux attenuates as soil carbon comes to 

equilibrium.  In contrast, the conversion of grasslands to bioenergy crops is at best carbon-

neutral and at worst associated with carbon losses greater than 0.82 t CO2 / t feedstock in the 

case of annual feedstock crops. 



 29 

Natural climate impacts from distributed biogenic GHG emissions present a fundamental 

assessment challenge as they are highly dependent on both a suite of environmental factors and 

historical land use practices, and thus show a high degree of spatial variability at sub-farm scales 

(Hillier et al., 2009; Zhang et al., 2010).  Since soil carbon measurements and N2O monitoring 

are expensive and laborious processes, such emissions are typically estimated using spatially-

explicit biogeochemical process-based models capable of simulating plant growth, senescence 

and harvest, and litter decomposition for a specific local soil type, climate, and land use history, 

complemented with appropriate validation through field measurements (Parton et al., 1987; 

Paustian et al., 2009).  A variety of these models have been applied to site-specific bioenergy 

LCA studies including the CENTURY (Kim & Dale, 2005), DayCent (Adler et al., 2007), RothC 

(Hillier et al., 2009), and EPIC (Zhang et al., 2010) models.   

Because these natural climate impacts are so variable, they represent an excellent 

opportunity for mitigation through careful bioenergy supply chain design.  To the extent that 

biogenic GHG emissions are affected by climate, soil type, and landscape position, the careful 

siting of bioenergy conversion facilities and the selective contracting of feedstock production to 

farms with favorable locations can maximize the potential for carbon sequestration as SOM and 

avoid soil N2O hotspots.  At the level of individual farms, biogenic GHG emissions are a strong 

function of crop agronomic management intensity (Davis et al., 2013), though the priority of 

maximizing economic returns often implies that farmers will manage more intensively than is 

optimal from a pure GHG perspective (Roth et al., 2015).  At landscape scales, there is still 

debate around the relative merits of pursuing less intensive feedstock cultivation over a large 

land area (‘land sharing’) versus concentration production on a smaller area of land cultivated at 

maximum intensity (‘land sparing’) (Anderson-Teixeira et al., 2012).   
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2.3.2. Classification by location- direct vs. indirect climate impacts 

Can I differentiate whether a climate impact is caused by my bioenergy system, as opposed to the 

neighboring system? 

Direct impacts 

We define direct climate impacts as those industrial and natural impacts originating from 

within a well-defined physical system boundary or identifiable as derived from a specific system.  

For liquid transportation biofuels such a boundary typically encompasses the farm where 

feedstock is cultivated, the transport network connecting farm to biorefinery, and biorefinery 

where it is converted to liquid fuel, as well as all upstream production processes for fuel, 

electricity, equipment, and chemical inputs consumed within the system (Figure 2.2).  Such a 

scope is referred to as ‘well-to-pump’ (Wang et al., 2012).  When the scope is extended to 

include final use of the fuel in a vehicle it is termed either ‘well-to-wheels’ or ‘field-to-wheels’ 

(Laser et al., 2009; Wang et al., 2012).  Attributional lifecycle assessment focuses primarily on 

these impacts, typically employing regional or country-level average estimated values for 

agricultural and industrial GHG emissions factors.  However, the shift toward CLCA requires a 

refocusing on the marginal inputs that will be specifically affected by a particular bioenergy 

technology implemented at a particular site.  This change of perspective is not a trivial one, as 

marginal electricity production is typically met with natural gas and renewable sources that have 

much lower impacts than average grid baseline power (Finnveden et al., 2009), whereas 

marginal petroleum production involves a greater share of non-conventional sources including 

oil sands (Wang et al., 2011).   

While direct emissions (particularly direct industrial emissions) are often relatively well 

characterized, they are far from uniform across different bioenergy production systems.  As we 
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have previously observed, direct natural climate impacts associated with cultivating a particular 

crop at a particular geographic site can show large variance in response to climate, soil type, land 

use history, and management intensity.  Industrial impacts, particularly those related to energy 

use at the biorefinery, can also vary greatly depending on the configuration of individual 

systems.  It has been shown that the process fuel used at the biorefinery can have an large effect 

on the overall lifecycle GHG emissions: while many recent dry-mill ethanol production facilities 

are natural gas-fuelled, emissions are much greater when coal is used for heat production and 

much lower when biomass wastes are used instead (Wang et al., 2007a; Hill et al., 2009). 

Projected direct emissions for future cellulosic ethanol production facilities using 

switchgrass feedstock still show a great range of uncertainty, with net GHG performance 

estimates ranging from similar to corn grain ethanol (Hsu et al., 2010) to only a fraction thereof 

(Wang et al., 2011).   In addition, direct climate impacts are not static over time, but can be 

expected to evolve as technologies improve or changes in prices lead to substitution of different 

equivalent process inputs.  It is well-recognized that energy efficiency of the corn ethanol 

production chain has steadily increased over time due to advances in agronomy (higher-yielding 

varieties) and biorefinery technology (dry milling over wet milling), as well as the movement 

towards low-energy-intensity co-products (i.e. wet distillers grains and solubles) (Liska et al., 

2009; Wang et al., 2011). 

Indirect impacts 

The term ‘indirect’ is invoked very inconsistently across the lifecycle assessment 

literature.  Sometimes it is used in the context of upstream impacts associated with the 

production of energy products and materials consumed in the supply chain under study (e.g., Yu 

et al., 2014).  Other times it is used to describe what we have termed ‘natural impacts’ associated 
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with land management (as opposed to ‘industrial impacts’) in this review (Kilpeläinen et al., 

2012; Repo et al., 2012).  However, the term comes up most often in the context of indirect 

emissions of nitrous oxide (iN2O) that occur outside the system boundary as a result of the 

transport off-farm of nitrogenous compounds derived from agronomic N additions, and indirect 

land use changes (iLUC) that occur as a result of market responses to changes in commodity 

production from the system.  As such, for our purposes we define indirect climate effects as 

those occurring outside the physical boundaries of a bioenergy supply chain, causally related to 

bioenergy production activities yet not specifically differentiable between one individual 

bioenergy system or another.  

Indirect nitrous oxide (iN2O) emissions are the result of downstream 

nitrification/denitrification processes occurring on nitrogen that has crossed out of the system 

boundary, either in the form of volatilized ammonia, leached nitrate, or physically exported 

biomass used as an animal feed or soil amendment.  While in most cases such emissions cannot 

be definitely be attributed to the activities of a specific farm within a given watershed or airshed, 

there is still a direct causal link between the bioenergy supply chain and the N2O emission, and 

the only practical way to mitigate the emission is by changing the management of that farm.  

Estimating iN2O rates requires that generic emission factors be applied to all N lost from the 

system through volatilization and leaching (factors of 1% and 0.75%, respectively; Eggleston et 

al., 2006) as assessed using generic loss factors or based on more detailed agroecosystem process 

modeling (e.g., Del Grosso et al., 2008).  Because nitrogen can undergo a variety of 

biogeochemical transformations between the time it is first fixed from atmospheric N2 and the 

time it is denitrified back to N2 (Galloway et al., 2003), careful accounting is necessary to 

properly close the mass balance and account for all indirect N2O emissions.  Recent top-down 
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and bottom-up estimates converge around a combined direct and indirect global average N2O 

emission factor of 3-5% (Crutzen et al., 2008a; Del Grosso et al., 2008; Smith et al., 2012). 

The most contentious topic in current bioenergy LCA practice is indirect land use change 

(iLUC).  To the extent that diversion of part of the limited arable land base in the US to 

bioenergy feedstock production increases the price of agricultural commodities and reduces 

export levels, this is expected to drive up international commodity prices and thus incentivize the 

expansion of commodity agriculture in other countries, resulting in climate-intensive land use 

changes (Fargione et al., 2008; Searchinger et al., 2008; Liska & Perrin, 2009).  As iLUC is at its 

core an economic effect, assessment of associated climate impacts per unit of biofuel produced is 

based on land use pattern predictions from large economic simulations of global trade coupled 

with estimates of land use change emission factors from biogeochemical process models (Plevin 

et al., 2010).  Such assessments are inherently complex and uncertain, requiring predictions 

about the relative likelihood of agricultural extensification versus intensification and the location 

and types of land converted, and likely changing in magnitude over time with improvements in 

technology and changing land use policy around the world (Zilberman et al., 2010).  The concept 

is complementary to that of the food-versus-fuel dilemma; to the extent that displaced food 

commodity production is replaced elsewhere, then iLUC emissions are incurred, and to the 

extent it is not, food prices may increase (Wise et al., 2009; Zilberman et al., 2011).  First 

introduced in 2008, the concept of iLUC was rapidly codified into the quantitative LCA 

requirement of the US Renewable Fuel Standard (Liska & Perrin, 2009), despite early resistance 

among some in the assessment community and persistent reservations about the quality of the 

estimates and appropriateness of including consequential LCA effects in regulatory standards 

(Wang & Haq, 2008; Melillo et al., 2009; Kim & Dale, 2011; Zilberman et al., 2011).  Warner et 
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al. (2013) provide a comprehensive review of wide range of iLUC factor estimates in the 

literature, breaking them down by the bioenergy feedstock crop considered and the assessment 

method employed.   

There are other potential indirect ripple effects of bioenergy production beyond iLUC.  

Transportation fuel demand is partially elastic, and to the extent that biofuels begin to take a 

large share of fuel markets, their price relative to business-as-usual gasoline prices will 

determine whether overall fuel consumption increases (biofuels cheaper than fossil fuels) or 

decreases (biofuels more expensive than fossil fuels, but their use mandated), a ‘rebound’-type 

effect termed ‘indirect fuel use change’ (Rajagopal et al., 2011).  Similar ripple effects may 

already be happening to the extent that corn ethanol production co-products have already reached 

a scale large enough to distort animal feed markets (Liska & Perrin, 2009) and affect livestock 

production prices, an effect that was included in the co-product credit routine of earlier versions 

of the GREET model but was subsequently removed (Arora et al., 2008).  Co-product crediting 

by the displacement method and displacement of fossil fuel use in general are discussed in 

greater detail in section 3.4.2.  In all these cases of indirect and market-mediated climate effects, 

the common thread is the effect having no specific provenance that distinguishes the impacts of 

one specific bioenergy system from another; thus the effects can only be assessed indirectly 

through universal emissions factors applied to mass fluxes across the system boundary. 

Mitigation of bioenergy supply chain indirect effects can potentially occur at multiple 

levels.  Indirect land use change is related to the amount of BAU agricultural commodity 

production displaced by bioenergy feedstock production, and as such it can be mitigated by 

targeting production on areas with low agricultural productivity or that are not current producing.  

This type of landscape-level design would likely be controlled by individual biorefinery facilities 
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and their decisions around which local producers to contract with for feedstock provisioning.  

iLUC can potentially be mitigated more efficiently at the level of international policy by tying 

bioenergy mandates with land-use change and deforestation protections in the developing 

countries where iLUC emissions are feared to occur (Liska & Perrin, 2009; Zilberman et al., 

2010), for example through policies such as Reducing Emissions from Deforestation and Forest 

Degradation (REDD+; Fisher et al., 2011).  Likewise, indirect fuel use change effects could 

potentially be mitigated through the imposition of subsidies or taxes to blunt the difference in 

consumer price between fossil fuels and bioenergy alternatives (Rajagopal et al., 2011).  In 

contrast, iN2O is not a market-mediated effect, and can only be reduced through more careful 

management of nitrogen fertilizer use at the scale of individual farms. 

 

2.3.3. Mechanistic classification- GHGs vs. biophysical effects 

Is the climate impacts due to a well-mixed greenhouse gas, or some other more geographically-

specific radiative forcing effects? 

Greenhouse gas emissions 

Much of the climate impact of bioenergy supply chains is due to emissions of CO2 

associated with the combustion of fuel, and fluxes of CO2 and N2O associated with land 

management for feedstock production (see section 3.1.2).  Such species of greenhouse gas are 

said to be ‘well-mixed’ in that their atmospheric lifetime is sufficient for them to be transported 

across the atmosphere far from their point of origin and make approximately the same 

contribution to the global greenhouse effect as emissions from any other location (Forster et al., 

2007).  As such, accounting for climate impacts is relatively straightforward.  The relative global 
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warming impact of different species of GHG can be compared to one another using the metric of 

global warming potential (GWP), the calculation of which involves the integration of the 

radiative forcing potential of a pulse emission of the gas by its time-dependent concentration as it 

decays, normalized to that of a reference mass of CO2 (Forster et al., 2007).  Since an emission 

of CO2 to the atmosphere takes millennia to degrade fully, an arbitrary analytical timeframe 

across which to carry out the integration must be chosen.  It is typical to report the GWP100 of a 

greenhouse gas as evaluated over a 100-year timeframe as this is thought of as a reasonable time 

period of interest for anthropogenic climate change policy, though the use of different time 

frames (e.g. 20- or 500-year) is equally justifiable and will change the relative weighting 

between short- and long-lived GHGs.  The total GWP100 of a mixture of gases emitted together 

in a single pulse event can easily be computed by summing the individual GWP100 of each gas 

multiplied by the quantity released. 

Biophysical effects and other forcing agents 

Beyond the greenhouse effect, global climate is also sensitive to other factors that affect 

the radiative balance of the planet surface.  Changes in land cover can significantly affect the 

reflectivity of the surface to incoming shortwave radiation, known as albedo.  Albedo changes 

due to historic land use change have resulted in a small net negative contribution to global 

radiative forcing (Forster et al., 2007).  Bioenergy LCA studies are increasingly being expanded 

to consider albedo changes from land use change associated with feedstock production in 

addition to supply chain GHG emissions balance (Georgescu et al., 2011; Cherubini et al., 2012; 

Meyer et al., 2012; Caiazzo et al., 2014; Singh et al., 2014b).  Albedo effects can significantly 

reduce radiative forcings after biomass harvest in high-latitude systems where it encourages 

more consistent coverage of highly-reflective snow in winter months (Cherubini et al., 2012; 
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Singh et al., 2014b), with the magnitude of the effect similar to that of biogeochemical impacts 

of feedstock production.  Others have simulated warming effects from albedo changes under 

certain feedstock production scenarios (Caiazzo et al., 2014), particularly in bioenergy systems 

that co-produce biochar which then darkens the soil surface when used as an amendment (Meyer 

et al., 2012).  Albedo changes with feedstock cultivation also interact with other biophysical 

effects such as changing evapotranspiration rates, potentially magnifying climate impacts further 

(Georgescu et al., 2011).  Such effects are sensitive to latitude, climate, and baseline land cover, 

and thus must be assessed at similar levels of spatial resolution as are biogeochemical impacts 

(section 3.1.2)(Cherubini et al., 2012).   

There are additional air pollutants emitted during the bioenergy lifecycle beyond well-

mixed GHGs that still act as important climate-forcing agents.  Aerosol emissions such as SO4 

and carbonaceous particulate matter have important climate effects through directly absorbing or 

reflecting shortwave radiation, but are challenging to quantify because they tend to be extremely 

short-lived and have different impact depending on the latitude and geographic region in which 

they are emitted (Forster et al., 2007; Rypdal et al., 2009).  Particulate matter (PM) is usually a 

mixture of weakly negative-forcing organic (‘white’) carbon or the strongly-absorbing elemental 

(‘black’) carbon, the ratios and net climate forcing effect of which can vary greatly between 

different PM sources (Bond et al., 2004; Shen et al., 2010).  Emissions of oxides of nitrogen 

(NOx) are similarly problematic.  While NOx is not a climate-forcer itself, it interacts with other 

species to promote the formation of tropospheric ozone (O3, an extremely potent but short-lived 

GHG) and hydroxyl radical (OH-, which in turn promotes the destruction of the GHG CH4), thus 

exerting a difficult-to-quantify forcing (Shine et al., 2005; Forster et al., 2007; Delucchi, 2010).   
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Like land use change biophysical effects, these other climate forcing agents are 

increasingly considered in bioenergy LCA, such as in the most recent update of the GREET 

model (GREET 2014, https://greet.es.anl.gov/greet/versions.html), and in studies of systems that 

include high rates of black carbon emissions such as small-scale combustion systems in 

developing countries (Grieshop et al., 2011) or in systems based on waste biomass where the 

alternate management involves open-burning (Field et al., 2013).  Although these climate forcing 

agents were not included in the Kyoto protocol or associated emissions trading schemes, that 

may change in the future as recognition of their significance grows (Bond, 2007; Molina et al., 

2009; Shindell et al., 2012) and policymakers make efforts to expand emission control efforts to 

include non-Kyoto climate forcers (Bureau of Public Affairs, US Department Of State, 2012).  

Rather than trying to compute GWP-equivalent metrics for these non-GHG species, some 

advanced climate impact studies couple emissions models directly into atmospheric process 

models to determine net impacts on climate, skipping the intermediary accounting metrics 

altogether (Shindell et al., 2012). 

 

2.3.4. Physical classification- observable vs. inferred or avoided climate impacts 

Are the impacts based on tangible processes that can theoretically be observed, or are they 

based on an inference against a non-realized counterfactual scenario? 

Observable emissions fluxes 

All climate impacts discussed thus far have been observable in the sense that they are 

based on either releases of greenhouse gases to the atmosphere that could be physically measured 

through gas sampling of exhaust tailpipes or factory smokestacks or using a soil gas exchange 
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measurement apparatus (Christensen et al., 1996; Hansson et al., 1999), or biophysical changes 

that could be assessed through direct measurements of albedo, evapotranspiration rates, etc.  

Focusing on GHG fluxes specifically, while we often think of emissions of gases from industrial 

processes and soils in the bioenergy supply chain to the atmosphere, removal of gases from the 

atmosphere via various sinks, for example microbial oxidation of methane in soils or to carbon 

sequestration in terrestrial carbon stocks (Johnson et al., 2007), are also important in bioenergy 

assessment (Guinée et al., 2009).  Such negative emission fluxes are also observable in the sense 

that they can be experimental measured and quantified using gas chambers, soil carbon 

measurements, or other techniques.  Accounting of net GHG fluxes in bioenergy systems is 

typically as straightforward as subtracting the CO2-equivalent (via a GWP calculation, see 

section 3.3.2) total of all sinks from the total system CO2-equivalent emissions.   

However, bioenergy LCA studies have shown inconsistency over the treatment of 

‘biogenic’ carbon, i.e., carbon from atmospheric CO2 fixed into biomass during photosynthesis, 

and then is subsequently released back to the atmosphere in part when the biomass is fermented 

or thermochemically converted into a liquid fuel and the remainder when that fuel is combusted 

in an engine.  While some studies report these carbon fluxes explicitly (Sheehan et al., 2003; Hsu 

et al., 2010; Wang et al., 2011), others adopt the convention of netting out this carbon fixation 

and subsequent release (Patzek, 2004; Dias De Oliveira et al., 2005; Kim & Dale, 2005; Spatari 

et al., 2005; Hill et al., 2006; Hillier et al., 2009).  However, imbalances between carbon fixation 

and release can exist to the extent that standing biomass in the system changes over time, for 

example due to changes in soil organic matter levels.  Therefore, whichever reporting stance is 

adopted, LCA results are only accurate to the extent that net changes to terrestrial carbon stocks 

are included in the analysis where applicable, effects that are only considered quantitatively in a 
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subset of the above studies (Sheehan et al., 2003; Dias De Oliveira et al., 2005; Kim & Dale, 

2005; Hillier et al., 2009; Wang et al., 2011) and ignored or assumed negligible in the rest 

(Patzek, 2004; Spatari et al., 2005; Hill et al., 2006; Hsu et al., 2010).  The same issue is 

encountered in GHG regulatory frameworks, many of which lack provisions to attribute changes 

in terrestrial carbon stocks to bioenergy production and thus erroneously treat all biomass 

feedstock production processes as inherently carbon-neutral (Searchinger et al., 2009). 

Inferred or avoided impacts 

In contrast to observable emissions, inferred or avoided impacts are those that would 

occur in a hypothetical baseline or ‘business-as-usual’ counterfactual case but are avoided in the 

actual bioenergy production case; as such they are not based on actually-occurring GHG fluxes 

or biophysical effects that can be directly measured.  Like indirect emissions, avoided emissions 

are a consequential lifecycle assessment concept, with corresponding focus on the marginal 

commodity suppliers directly affected by the new bioenergy technology (Schmidt, 2010).  The 

trivial example of avoided emissions is emissions ‘credits’ for the displacement of fossil energy 

with bioenergy (e.g., Adler et al., 2007), or crediting for co-products from a multiple-output 

production process based on the system expansion approach, also known as the displacement 

method (Kim & Dale, 2002; Kendall & Chang, 2009).  In both cases, emissions savings are 

inferred relative to the burden from marginal additional production from other equivalent 

sources, assuming that the bioenergy production scheme didn’t exist and that commodity 

demand would be satisfied through other production means.  

More interesting examples of avoided emissions crediting occur when existing biomass 

resources are diverted from an alternate management scenario into the bioenergy production 

cycle.  The GREET model includes a credit for N2O that would otherwise be emitted after field 
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incorporation when corn stover is used instead for bioenergy production, as explored further in 

Section 4 below (Wu et al., 2006).  Even greater GHG avoidance is possible in systems where 

waste biomass would otherwise be burnt with high associated emissions of air pollutants (Field 

et al., 2013), or incorporated into anaerobic soils (Knoblauch et al., 2011) or disposed of in 

landfills (Spath & Mann, 2004), which are associated with high methane emissions.  The use of 

biochar as a soil amendment is a particularly interesting case, as it has been shown to 

dramatically affect nitrogen cycling, potentially increasing crop nitrogen use efficiency or 

suppressing soil emissions of N2O (Steiner et al., 2008; Singh et al., 2010; Van Zwieten et al., 

2010; Lehmann et al., 2011).  Lifecycle studies of bioelectricity and biochar co-production from 

agricultural residues have thus credited for avoided N2O and avoided fertilizer consumption on 

top of avoided alternate biomass management emissions and displaced fossil energy emissions 

(Gaunt & Lehmann, 2008; Woolf et al., 2010).  Similarly, when considering the diversion of 

feedstock away from some other productive use an into a bioenergy supply chain, some studies 

have credited any foregone GHG mitigation associated with the original use against the 

bioenergy supply chain (Mai Thao et al., 2011; Melamu & von Blottnitz, 2011), directly 

analogous to considering opportunity costs in economic analyses such as techno-economic 

assessments or crop production budgets.  

Establishment of a counterfactual baseline case against which to evaluate avoided 

emissions involves important explicit and implicit assumptions, economic as well as technical.  

Even in the simple case of crediting bioenergy production for an equal amount of fossil energy 

emissions on an energy basis, an implicit assumption is often made that consumer demand for 

fuel is constant, and that bioenergy will offset fossil fuel consumption.  Empirical evidence 

across a variety of systems suggests this is often an unrealistically optimistic assumption (Bailis 
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et al., 2009; York, 2012).  The same implicit assumption is built into any displacement-based co-

product crediting, as discussed earlier in section 3.2.2.  Definition of BAU land management in 

agricultural settings can also be challenging, as it requires predicting crop yields, agronomic 

efficiencies, and counterfactual SOM trends far into the future (Sheehan, 2009).  Such technical 

assumptions can have a large impact on overall footprint results; for example the attribution of 

future projected improvements in crop yields exclusively to bioenergy production can offset 

projected bioenergy LUC emissions (Searchinger, 2010), greatly improving system 

sustainability.  Choosing an appropriate counterfactual BAU scenario is analogous to 

establishing additionality as required in carbon offset trade (Lejano et al., 2010), as crediting a 

bioenergy production scheme for GHG mitigation that would have occurred anyway (e.g. soil 

carbon increases due to increased adoption of no-till agriculture) distorts outcomes (Searchinger 

et al., 2009; Searchinger, 2010). 

 

2.3.5. Temporal classification- continuous vs. time dependent emissions 

Do commitments to additional climate impacts stop accruing when the produce process ceases? 

Continuous emissions 

The GWP metric introduced previously is calculated based on estimates of atmospheric 

decay of a single temporally discreet ‘pulse’ of GHG emission.  The production of a unit of 

biofuel or bioenergy involves many such pulses during input manufacture, energy use on the 

farm and at the biorefinery, and elsewhere along the supply chain, most of which occur close 

enough together to be considered simultaneous relative to a 100-year analytic framework.  Thus, 

these emissions fulfill the requirements for a GWP calculation and are easily summed to estimate 
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the total CO2-equivalent emissions released per unit of energy produced (e.g., g CO2eq / MJ 

EtOH).  Continuous production of bioenergy yields a continuous stream of these emissions that 

cease completely when production stops, analogous to the concept of variable economic costs 

that occur continuously with production and scale with production output level. 

Time-dependent emissions 

Not all emissions associated with the bioenergy production cycle are continuous in 

nature, however.  Some processes involve large one-time emissions releases analogous to fixed 

or capital costs in economics, while others feature emissions profiles that evolve over decadal 

timescales.  Perhaps the most obvious example of the former are emissions associated with the 

manufacture of the capital equipment of the system, including farming equipment, the vehicles 

used to transport the feedstock, and the biorefinery facility itself.  These embodied emissions 

occur only a single time prior to the start of production, though once amortized across a lifetime 

of bioenergy production they tend to account for only a very small contribution to the total 

footprint of production (Marland & Turhollow, 1991; Hill et al., 2006).  Changes in terrestrial 

carbon stocks such as SOM are a significant example of the latter case.  As discussed previously, 

such changes reflect a changing dynamic equilibrium between litter inputs to and heterotrophic 

respiration rate within soils, and they develop slowly over yearly or decadal timescales as the 

system equilibrates to changes in management (Sheehan et al., 2003). 

Time-dependent emissions profiles raise temporal accounting issues related to proper 

integration of cumulative warming potential and the amortization of that potential across the fuel 

produced, with associated policy and regulatory challenges.  Many studies of bioenergy land use 

change quantify the large initial carbon debt incurred from land clearing and then linearly 

amortize those emissions against annual avoided emissions from fossil energy displacement to 



 44 

compute a carbon ‘payback period’ (Fargione et al., 2008; Searchinger et al., 2008; Bernier & 

Paré, 2013; Mello et al., 2014).  However, this simple metric fails to account for the warming 

accrued by the initial CO2 emissions across the years and decades before avoided emissions from 

fossil energy displacement catch up (O’Hare et al., 2009).  More recent studies develop dynamic 

GWP-type metrics appropriate for computing the cumulative radiative potential of time-

dependent carbon fluxes (O’Hare et al., 2009; Cherubini et al., 2011; Kilpeläinen et al., 2012; 

Repo et al., 2012; Holtsmark, 2015), allowing them to be combined with GWP figures from 

continuous emissions to determine system net climate impacts.  While many of these studies take 

a control volume approach tracking total ecosystem carbon storage level over time, others make 

an equivalent calculation by tracking the turnover times of various ecosystem components in a 

process more analogous to a control mass analysis (Repo et al., 2012).  Also, while much of the 

literature on this subject focuses on the payback of large upfront CO2 emissions, the cultivation 

of carbon-sequestering perennial feedstocks on SOM-depleted land introduces the opposite 

problem of allocating a large initial CO2 sequestration over future production.   

Proper assessment of time-dependent emissions is an active area of research, and 

consensus around best methods is still evolving.  When the EPA recently released their updated 

recommendations on biogenic CO2 accounting they included a discussion of these accounting 

issues, but stopped short of making a strong endorsement of best practices (United States 

Environmental Protection Agency, 2014).  While several studies have approached the problem 

by performing discreet or continuous integrative GWP-type calculations on evolving ecosystem 

CO2 fluxes over time (O’Hare et al., 2009; Cherubini et al., 2011; Pierobon et al., 2014), the 

GWP metric itself has been widely criticized (Shine, 2009), and a variety of alternatives 

suggested (Tol et al., 2012). 
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2.4.   Example: Climate Impacts of Nitrogen Fertilizers 

In this section we focus in on one particular aspect of the supply chain for first- and 

second-generation biofuels in order to present an illustrative example of many of the accounting 

issues discussed in the preceding section.  Specifically, the production and application of 

nitrogen-based fertilizers makes a significant contribution to the overall lifecycle environmental 

footprint of many bioenergy systems, covering a variety of the climate impact classifications 

discussed above.  Ubiquitous in modern agricultural production systems, nitrogen application is 

associated with a variety of environmental externalities including greenhouse gas emissions 

(nitrous oxide), air pollutants (ammonia and oxides of nitrogen), and water pollutants (nitrate).  

The nature and magnitude of lifecycle greenhouse gas emissions associated with nitrogen 

fertilizer use in first- and second-generation ethanol production systems are explored below as an 

illustrative example using the GREET 1.7 model (Wang et al., 2007b) and 2006 IPCC AFOLU 

guidelines (Eggleston et al., 2006).  Note that the climate impacts described are largely 

continuous rather than time-dependent in nature, and thus are easily converted to a GWI metric. 

 

2.4.1. Nitrogen-associated emissions in 1st generation ethanol 

The first case illustrates first-generation ethanol production from corn grain.  The 

GREET model is used for estimates of crop and fuel yields, fertilizer application rates (with 

ammonia, nitrates, and urea rates specified individually), and emissions from fertilizer 

production.  The industrial emissions associated with fertilizer synthesis are further 

disaggregated into emissions from combustion-based energy consumption versus process 

emissions from using methane as a hydrogen feedstock and stack emissions of N2O during nitric 

acid synthesis using data from an associated technical report (Wang et al., 2003).  Natural 
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climate impacts from soil N2O emissions are estimated based on IPCC emissions factors for 

direct emissions associated with fertilizer application and residue incorporation (0.01 g N2O-N/g 

N for each), as well as for indirect emissions associated with volatized and leached nitrogen 

(0.01 and 0.0075 g N2O-N/g N, respectively), and assuming 10% of the applied nitrogen in 

fertilizer is volatized, 20% exported with the corn grain, 27% re-incorporated back into soil 

through crop residues, and the balance leached from the system as nitrate (Eggleston et al., 

2006).  

Resulting GHG emissions are shown in Figure 2.3.  Industrial emissions are dominated 

by process-derived sources including the use of CH4 as a source of hydrogen for ammonia 

synthesis and the N2O byproduct from ammonia oxidation to nitric acid for synthesis of nitrate-

based fertilizer blends.  Climate impacts from direct and indirect emissions of N2O are 

approximately twice as high, for a combined climate impact of 20 g CO2eq / MJ ethanol.  Note 

that indirect emissions associated with the nitrogen in the corn grain that is harvested, retained in 

DGS through the ethanol fermentation process, and ultimately fed to livestock is not subjected to 

an iN2O calculation as it is assumed that these would be negated through system expansion for 

co-product crediting (i.e., there is no additionality, as any livestock-derived emissions would still 

occur in the absence of DGS production). 

 

2.4.2. Nitrogen-associated emissions in 2nd generation ethanol 

The second case models a second-generation biofuel production system in which ethanol 

is produced thermochemically from lignocellulosic corn stover residues remaining after corn 

grain harvest (Figure 2.4).  Since these residues are a byproduct of the production of corn for 
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food or feed, all upstream, direct, and indirect emissions associated with the baseline fertilizer 

application rate are attributed to corn grain production as per the system expansion approach, and 

thus not considered in this analysis.  However, GREET considers a ~10% increase in fertilizer 

application rate in order to offset nutrient exports in the stover and maintain soil fertility, and the 

associated marginal industrial and natural emissions increases are included here.  Since the 

counterfactual scenario is traditional corn grain production in which the stover is left to degrade 

in the field, the diversion of that stover for bioenergy production results in the avoidance of N2O 

emissions associated with the nitrification/denitrification of the nitrogen in the residue, credited 

as a negative avoided emission (it is assumed that all nitrogen in the biomass itself is converted 

to N2 through pyrodenitrification during the thermochemical conversion process, and thus 

industrial feedstock-derived N2O emissions at the biorefinery stage are negligible).    

Note that the overall direct industrial and natural emissions rates are much lower than the 

corn ethanol case due to the lower rates of fertilizer application (offset partially by the lower 

mass conversion efficiency of stover to ethanol relative to corn grain), and the natural direct and 

indirect emissions are effectively cancelled out by avoided litter N2O emissions of approximately 

equal magnitude.  The resulting net footprint for N use of 1.5 g CO2eq / MJ ethanol is more than 

an order of magnitude less than that of the 1st generation case. 

 

2.5.   Consistency in LCA Scope and Accounting Conventions 

In order to highlight consistency or lack thereof in approach to the previously-introduced 

accounting challenges, in this section we reviewed a selection of prominent bioenergy LCA 

papers from the literature (Hill et al., 2009; Cherubini & Jungmeier, 2010; Hsu et al., 2010; 
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Wang et al., 2012) in the context of the climate impacts taxonomy.  These particular studies were 

chosen to be representative of the evolution of assessment efforts for the existing corn ethanol 

industry, as well as the potential performance of cellulosic ethanol production schemes that are 

expected to proliferate in response to the RFS2 mandate in the United States.  Some of the 

studies describe new stand-alone assessments, while others are updates on longer-term projects 

in bioenergy LCA tool development.  All of the studies are less than 6 years old, and have been 

cited on average at least 15 times per year since they were published.   

Hill et al. (2009) study the climate and health impacts of corn and cellulosic ethanol from 

various feedstocks relative to gasoline.  Lifecycle criteria air pollutant emissions are assessed 

spatially so associate impacts on populations can be evaluated.  Monetizing both GHG and 

health impacts reduces the dimensionality of the assessment down to a single damage metric.  

The authors determine the combined climate and health impacts of corn ethanol are similar to or 

worse than gasoline, but cellulosic ethanol performance is substantially better.  Cherubini & 

Jungmeier (2010) use LCA techniques to estimate the GHG performance of a biorefinery 

producing multiple energy and chemical products from a switchgrass feedstock.  The analysis 

puts special emphasis on land use change and N2O associated with switchgrass feedstock 

production.  They determine that such a system would reduce GHG emissions in transport by 

79% relative to a gasoline baseline initially, but by only 55% in the long term after soil organic 

matter levels come to equilibrium and carbon sequestration ceases.  Additionally, they find the 

bioenergy system to out-perform the reference system on a variety of other environmental 

performance metrics except for eutrophication.  Hsu et al. (2010) conduct an attributional LCA 

study for the production of ethanol from corn and a variety of cellulosic feedstocks in the US 

using the SimaPro lifecycle assessment software.  They develop probability distribution 
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functions for important model parameters, and perform a detailed Monte Carlo-based uncertainty 

estimation.  Their results suggest broadly similar performance across both first- and second-

generation biofuel production pathways, achieving 40-50% reductions in GHG intensity relative 

to gasoline.  Finally, Wang et al. (2012) provides an update on the ethanol production pathways 

within the GREET model from a variety of first- and second-generation feedstocks.  This update 

and the one directly preceding it (Wang et al., 2011) emphasize the development of time series 

representing the increasing efficiency in both agricultural production (higher yields with lower 

fertilizer inputs) and biorefining (less process energy expenditure per unit of ethanol output) over 

time.  In addition, the authors include an indirect land use change estimate for corn based on a 

composite of recent results from three different equilibrium models.  They estimate that corn 

ethanol produced in the US does on average achieve lifecycle climate mitigation of greater than 

the 20% relative to a conventional gasoline baseline as required by the RFS, but this result is 

sensitive to the biorefinery process energy source.  Cellulosic ethanol systems have even better 

performance, sensitive to farm nitrogen management and biorefinery efficiency assumptions. 

The results of this review are shown in Table 2.5.  While there is broad consistency in the 

way that biorefinery co-products are treated and increasing emphasis on assessment sensitivity 

and uncertainty analysis, there are broad inconsistencies and deficiencies on the other assessment 

issues.  Only 3 of 4 studies account for changes in soil carbon associated with cellulosic 

feedstock crop production, but those that do find it to be an important contributor to overall 

system GHG balance.  Only a single study explicitly accounts for iLUC effects, even though all 

were published after the effect was first identified in 2008.  None of these studies address the 

accounting challenges around the time profile of biogenic GHG emissions or accounting for 

climate impacts of aerosol emissions or biophysical effects of land cover changes, though one of 
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the authors has published extensively on those topics subsequently (Cherubini et al., 2011, 

2012).  This simple review highlights the fact that bioenergy LCA techniques are evolving 

rapidly, and that well-cited studies published 5 years ago or more recently are lacking on 

methodological details that have since been identified as key determinants of system climate 

performance. 

 

2.6.   Discussion 

Bioenergy lifecycle assessment has evolved greatly over the past decade in response to 

improvements in scientific understanding as well as changing policy imperatives.  Specifically, 

bioenergy assessment practice among engineers, ecologists, and economists has moved towards 

emphasizing spatially-explicit biogeochemical modeling of feedstock cultivation, towards 

integrated assessment methods capable of predicting and optimizing both economic and 

environmental outcomes at landscape scales, and towards bioenergy system concepts with strong 

net carbon sequestration potential.  These changing approaches and associated expansion of 

assessment scope necessitate further development and consistent application of the climate 

impact accounting points reviewed earlier. 

 

2.6.1. Towards spatially-explicit biogeochemical modeling 

Arguably the biggest recent shift in bioenergy LCA practice has come with the increasing 

understanding of the importance of biogeochemical GHG fluxes during feedstock cultivation 

(Davis et al., 2009; Kendall & Chang, 2009; Gelfand et al., 2013) and appreciation of their 

associated spatial variability (Kim & Dale, 2005; Hillier et al., 2009; Zhang et al., 2010).  This 
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trend is consistent with the changing focus of many biofuel LCA efforts from large-scale 

attributional studies toward consequential assessments examining the marginal impact of future 

system intensification or expansion (Brander et al., 2009; Finnveden et al., 2009).  It has been 

hypothesized that the use of detailed biogeochemical assessment methods can facilitate the 

differentiation of low-impact feedstock producers (Kendall & Chang, 2009).  Tools are already 

being developed toward this end; for example, the GHG signature of corn cultivation in the 

Midwestern US has been shown to be highly spatially variable at sub-county scales with distinct 

“hot-spots” of favorable production characteristics, and spatial optimization techniques have 

been applied to determine cultivation sites that minimize environmental impacts (Zhang et al., 

2010).   

Though net GHG emissions remain the sole metric for many bioenergy LCA studies, 

there is increasing recognition that the process of bioenergy production also has significant 

repercussions for regional air and water quality (von Blottnitz & Curran, 2007; Kim & Dale, 

2008; Bai et al., 2010) and by extension for human and ecosystem health.  While GHG 

mitigation and air pollutant mitigation in the energy sector generally show correlation (Smith & 

Haigler, 2008; Haines et al., 2009), that relationship is far from exact, and a full accounting of 

the environmental footprint of agriculture requires consideration of nitrogen leakage in the form 

of gaseous NH3, and NOx and leached NO3
-, in addition to CO2 and N2O fluxes (Follett et al., 

2011).  Such pollutants can exhibit the same spatial variability observed from GHG emissions 

(Miller et al., 2006), and can be evaluated on a site-specific basis using the same biogeochemical 

process models employed to model SOM changes and N2O emissions (Kim & Dale, 2008; 

Egbendewe-Mondzozo et al., 2011; Wu et al., 2012). 
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2.6.2. Towards integrated assessment and landscape optimization 

While spatially-explicit LCA methods are a powerful tool for identifying sites with 

favorable production potentials, a more complete understanding of the likely environmental 

impact of bioenergy production requires an assessment of human economic behavior at similar 

spatial scales in order to determine a) which cellulosic feedstocks are likely to be cultivated, b) 

which specific lands might be diverted from their current use and be put under feedstock 

cultivation, and c) the optimal level of crop management intensity (Davis et al., 2013).  

Fortunately, economic assessments tools for cellulosic feedstock production have evolved in step 

with LCA efforts, and there are currently several methodologies available for the spatially-

explicit estimation of production potentials and costs (Khanna et al., 2008; Jain et al., 2010) that 

can be employed to constrain LCA studies to only consider economically-feasible scenarios.  

Indeed, the state-of-the-art in this area is moving towards fully-integrated economic and 

environmental assessments (Egbendewe-Mondzozo et al., 2011; Yu et al., 2014) in which 

ecosystem models are paired with detailed crop production budgets to determine the yield 

potential of individual parcels of land, the extent of land conversion and cultivation 

intensification in response to an increasing price for cellulosic feedstocks, and the associated 

environmental footprint of that production.  

A variety of biomass feedstock strategies have been suggested to maximize system 

performance while minimizing iLUC and food-vs.-fuel concerns (Robertson et al., 2008; Tilman 

et al., 2009).  Agricultural residues have been advocated as low-impact feedstock, though the 

size of this resource is limited by the requirement of leaving enough residue in place to preserve 

SOM and minimize erosion (Sheehan et al., 2003; Kim & Dale, 2004; Lal, 2005; Wilhelm et al., 

2007).  To the extent that dedicated energy crops are needed, limiting their cultivation to 



 53 

marginal or abandoned lands (Kort et al., 1998; Campbell et al., 2008; Gopalakrishnan et al., 

2009; Blanco-Canqui, 2010; Kumar et al., 2010; Spatari & MacLean, 2010; Cai et al., 2011) is a 

strategy that minimizes disruption of existing food production but also avoids incurring land-use 

change carbon debt (Fargione et al., 2008).  It has been observed that the development of a 

cellulosic ethanol industry based on perennial grasses would allow land currently used for corn 

ethanol feedstock production to be used more efficiently with greater output of both food and 

fuel with a reduced environmental footprint (Davis et al., 2012), though it is unclear if such a 

strategy is economically viable or compatible with existing RFS policy (110th Congress of the 

United States, 2007).  Others have advanced even more innovative proposals to co-produce food 

and fuel from the same land based on multiple rotations (Heggenstaller et al., 2008), or the 

extraction of valuable protein from cellulosic feedstocks prior to conversion (Dale et al., 2009). 

 

2.6.3. Towards carbon sequestration and carbon-negative system concepts 

Bioenergy is unique among renewable energy technologies in using contemporary carbon 

fixed from the atmosphere as an energy carrier, and the possibility of managing bioenergy supply 

chains for carbon sequestration makes them of great interest as a tool for the stabilization of 

atmospheric CO2 levels.  Carbon-sequestering bioenergy technologies feature prominently in a 

large fraction of the IPCC’s Representative Concentration Pathways that succeed in stabilizing 

climate change within internationally-agreed limits (Fuss et al., 2014).  Bioenergy systems can 

be managed for carbon sequestration through increasing soil organic matter storage during 

feedstock production (Tilman et al., 2006a; Adler et al., 2007), through using low-value carbon-

rich conversion co-products as soil amendments (Laird, 2008; Pourhashem et al., 2013; Smith et 

al., 2014), or through the geological sequestration of the CO2 by-products of biomass 



 54 

fermentation, thermochemical conversion, or combustion (Möllersten et al., 2003; Rhodes & 

Keith, 2003; Spath & Mann, 2004; Kraxner et al., 2014; Singh et al., 2014b; Sanchez et al., 

2015).  Pilot or greater scale experimental work is proceeding on all three options (Jirka & 

Tomlinson, 2014; Zimmermann et al., 2014; Lusvardi, 2015), in parallel with the commissioning 

of the first set of commercial-scale cellulosic biofuel facilities worldwide (Peplow, 2014).  

Systems in which carbon sequestration outweighs all other observable industrial lifecycle 

climate impacts are termed ‘carbon-negative’ (Tilman et al., 2006a; Lehmann, 2007a).  

However, this terminology is somewhat non-descript, referring only to subset of rich taxonomy 

of bioenergy climate impacts discussed here.  For example, it is perfectly conceivable that within 

a comparative LCA framework a non-carbon-sequestering bioenergy system generating large 

quantities of energy products that offset fossil fuel consumption could have greater climate 

mitigation value than a carbon-negative but low-energy generation scenario.  Indeed, it has been 

shown that bioelectricity production will likely result in greater near-term climate mitigation 

value than carbon-negative biochar production in areas with coal-based electricity production 

(Woolf et al., 2010).  It is likely that the optimal climate-mitigating configuration of bioenergy 

systems will evolve over time, with near-term designs focusing on maximizing output of energy 

products in order to displace the greatest amount of fossil fuel usage, but with carbon 

sequestration becoming a more important system objective over time as the economy becomes 

less carbon intensive but as atmospheric CO2 concentrations approach or exceed sustainable 

levels. 
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2.7.   Conclusions 

Bioenergy systems based on terrestrial feedstocks join agricultural processes associated 

with feedstock provisioning to industrial supply chains to process and convert that feedstock to 

fuels or other energy products.  While climate impact assessment techniques are increasingly 

well-developed for the industrial supply chain parts of the bioenergy lifecycle, the additional 

sustainability questions around agroecosystem management challenge existing assessment 

methods and tools.  This review presents a simple emissions taxonomy that highlights 

methodological challenges in lifecycle assessment of bioenergy system climate impacts, 

classifying impacts based on their nature of origin, location, mechanism, physical nature, and 

temporal profile.  Of the climate impact effects included in the current bioenergy LCA literature, 

very few fall into the simplest classification category (direct, continuous, observable, industrial 

GHG emissions), and most rely on supplemental assumptions or calculations that are not well-

integrated within existing supply chain LCA tools.  Furthermore, reviewing a select set of recent 

prominent biofuel LCA studies from the past five years, we find them to be limited in scope and 

highly inconsistent in the application of climate impact accounting best practices around 

biogenic emissions, indirect effects, and biophysical climate impacts.   

Bioenergy production is a complex systems problem in which there is inherent tension 

between the imperative of producing large quantities of energy to displace fossil fuel usage and 

the necessity of managing feedstock provisioning at sustainable levels of intensity.  Further 

refinement of lifecycle assessment methods and metrics is necessary for fully understanding 

overall system environmental performance, and navigating performance tradeoffs to achieve 

optimal system designs.  The potential for managing bioenergy systems for carbon sequestration 

will likely be a key driver for the future development of commercial-scale bioenergy facilities. 
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Table 2.1.  Climate impacts taxonomy applied to commonly reported impacts from the bioenergy lifecycle assessment literature 

Climate impact Origin Location Mechanism Physicality Temporality Examples 
Supply chain energy, 
material inputs Industrial Direct Either Observable 

(positive) Continuous Wang et al. (2011) 

Exhaust carbon capture 
& storage (BECCS) Industrial Direct GHG Observable 

(negative) Continuous Sanchez et al. (2015) 

Capital embodied 
impacts Industrial Direct Either Observable 

(positive) 
Time-

dependent 
Hill et al. (2006) 

Fossil fuel 
displacement Industrial Indirect Either Inferred Continuous Plevin et al. (2014) 

Co-product 
displacement Industrial Indirect Either Inferred Continuous Kim & Dale (2002); 

Farrell et al. (2006) 
GHG mitigation 
opportunity costs Industrial Direct Either Inferred Continuous Melamu & von Blottnitz 

(2011) 
Indirect fuel use change Industrial Indirect Either Either Continuous Rajagopal et al. (2011) 

Direct soil N2O 
emissions Biogenic Direct GHG Observable 

(positive) Continuous Nikièma et al. (2011) 

Changes in ecosystem 
carbon stocks Biogenic Direct GHG Observable Time-

dependent 
Hillier et al. (2009) 

Avoided N2O, CH4 
fluxes Biogenic Direct GHG Inferred Continuous Field et al. (2013) 

Indirect land use 
change Biogenic Indirect GHG Observable Time-

dependent 
Searchinger et al. (2008); 
Babcock (2009) 

Indirect soil N2O 
emissions Biogenic Indirect GHG Observable Continuous Del Grosso et al. (2008) 

Aerosol emissions 
 Industrial Direct Other 

forcing Either Continuous Grieshop et al. (2011) 

Changes in farm 
albedo, transpiration Biogenic Either Other 

forcing Either Time-
dependent 

Loarie et al. (2011) 
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Table 2.2.  Typical nitrogen fertilizer application ranges for different bioenergy crops. Mean 
values with 10th and 90th percentile values as compiled by Wang et al. (2012) 

Crop 
Typ. N application 

(kg N Mg-1 biomass) 
Corn 16 (12 – 19) 
Corn stover removal 8.5 (6.5 – 10.5) 
Sugarcane (Brazil) 0.8 (0.7 – 0.9) 
Switchgrass 7.7 (4.8 – 10.6) 
Miscanthus 3.9 (2.9 – 4.8) 
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Table 2.3.  Direct nitrous oxide emission factors, comparing general IPCC Tier 1 emissions 
factor range with measurements from annual and perennial bioenergy feedstock production 

Crop N2O-N (N applied)-1 Reference 
Tier 1 
   NA 1.0 % (0.3 – 3 %) Eggleston et al. (2006) 
Observed* 
   Corn 1.51 % Hoben et al. (2011) 
   Canola/hemp 0.86 % Kavdir et al. (2008) 
   Canola/rye 1.50 % Kavdir et al. (2008) 
   Switchgrass 0.22 % Hong et al. (2012) 
   Switchgrass 0.21 % Nikièma et al. (2011) 
   Switchgrass 0.19 % Schmer et al. (2012) 
   Miscanthus 0.47 % Roth et al. (2015) 
   Willow 0.17 % Kavdir et al. (2008) 
   Poplar 0.28 % Kavdir et al. (2008) 
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Table 2.4.  Typical soil organic matter changes (Δ SOM) under various land use changes to 
dedicated bioenergy feedstock crops, and associated direct land use change emissions factors 

(dLUC EF) per mass of feedstock cultivated.  All values are medians, with 1st and 3rd quartiles 
reported. 

Crop Typ. Yield1  
(t ha-1 y-1) 

Previous land 
use 

Typ. Δ SOM2 
(t C ha-1 y-1) 

Typ. dLUC 
EF 

(t CO2 t-1) 

Corn 
9.8  

(8.0 to 11.4) 

cropland 
1.2  

(0.0 to 1.4) 0.45 

grassland 
-2.2 

(-2.9 to -1.1) -0.82 

Switchgrass 
6.4 

(5.1 to 10.2) 

cropland 
1.3 

(0.5 to 2.9) 0.74 

grassland 
-1.0 

(-2.4 to 0.2) -0.57 

Miscanthus 
14.8  

(10.8 to 20.0) 

cropland 
1.1 

(0.5 to 1.7) 0.27 

grassland 
0.4 

(-0.3 to 0.6) 0.10 

Poplar 
6.8  

(5.2 to 9.8) 

cropland 
0.2 

(-0.6 to 0.8) 0.11 

grassland 
-0.6 

(-1.4 to -0.2) -0.32 

Willow 
 8.7  

(6.1 to 11.2) 

cropland 
1.0 

(-2.3 to 3.2) 0.42 

grassland 
0.0 

(-6.6 to 0.5) 0 
1Corn yield range from Lobell et al. (2014) for year 2011.  Yield ranges for all other crops 
calculated from supplemental information provided in Searle & Malins (2014) 
2From (Qin et al., 2015a), 0-100 cm soil depth 
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Table 2.5.  Survey of key assessment details across recent bioenergy LCA studies 
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Co-product crediting via displacement? Y6 Y5 Y3 Y 
Consider ecosystem C storage? Y Y N Y1 
Dynamic GWP accounting? N N N N 
iLUC included? N7 N4 N Y1 
Aerosol emissions included? N N N N2 
Biophysical land effects? N N N N 
Sensitivity or uncertainty analysis? N Y Y Y 

1Their methodology considers both changes in soil carbon during domestic production of 
feedstock biomass and market-mediated leakage effects due to crop displacement together as a 
single aggregate ‘land use change’ term 
2The latest GREET.net model includes national-scale estimates of soil carbon a GWP factor of 
600 for black carbon particulate matter emissions, and -69 for organic carbon PM 
3Coproduct crediting is based on displacement for some processes, energy content allocation for 
others 
4The assume that switchgrass feedstock production in limited to ‘set-aside’ land capable of 
sequestering carbon without displacing existing agriculture 
5The functional unit of analysis is the basket of all biorefinery outputs, compared against an 
equivalent set of conventional fossil fuel-based equivalent products 
6Using GREET model defaults 
7Assumed that feedstock cultivation takes place on converted Conservation Reserve Program 
lands only 
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Figure 2.1.  LCA literature trends based on Web of Knowledge search results.  Bioenergy LCA 
study count based on the search string “TS=((lifecycle assessment OR LCA) AND (biofuel OR 

bioenergy OR ethanol OR biodiesel))”; non-bioenergy LCA studies identified by replacing 
‘AND’ with ‘NOT’. 



 62 

 

Figure 2.2.  Schematic representation of the well-to-pump biofuel supply chain 
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Figure 2.3.  Greenhouse gas emissions associated with nitrogen fertilizer application in a first-
generation corn ethanol production system 
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Figure 2.4.  Greenhouse gas emissions directly associated with nitrogen fertilizer application in a 
second-generation corn stover cellulosic ethanol production system 
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CHAPTER 3 
 

ANALYZING VARIABLE FEEDSTOCK PRODUCTIVITY AND SOIL GHG 

EMISSIONS BALANCE ACROSS A CELLULOSIC BIOENERGY LANDSCAPE 

 
 
 

3.1.   Summary 

Renewable fuel standards in the US and elsewhere mandate the use of large quantities of 

cellulosic biofuels with low greenhouse gas (GHG) footprints, which will likely require 

extensive cultivation of dedicated bioenergy feedstock crops on marginal agricultural lands.  

Performance data for such production systems is sparse, and non-linear interactions between 

plant species, agronomic management intensity, and underlying soil and land characteristics 

complicate the development of sustainable landscape design and management strategies for low 

impact commercial-scale feedstock production.  Process-based ecosystem models are valuable 

for extrapolating field trial results and making predictions of productivity and associated 

environmental impacts that integrate the effects of spatially variable environmental factors across 

diverse production landscapes.  However, there are few existing examples of parameterizing 

such models against field trial results from both prime and marginal lands or conducting 

landscape-scale analyses at sufficient resolution to capture interactions between soil type, land 

use, and crop management intensity.  In this work we used a data-rich, multi-criteria approach to 

parameterize and validate the DayCent ecosystem biogeochemistry model for upland and 

lowland switchgrass using data on yields, soil carbon changes, and soil nitrous oxide emissions 

from US field trials spanning a range of climates, soil types, and management conditions. We 

then conducted a high-resolution analysis of a real-world cellulosic bioenergy landscape in 

Kansas in order to estimate feedstock production potential and associated direct biogenic GHG 
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emissions footprint.  Our case study results show that switchgrass yields and emissions balance 

can vary widely across a landscape large enough to supply a biorefinery, but that within a given 

land base both factors can be widely modulated by changing crop management intensity.  This 

suggests great potential for bioenergy landscape design and optimization. 

 

3.2.   Introduction 

The US renewable fuel standard has mandated quantitative environmental impact 

assessment for biofuel production since its expansion in the Energy Independence and Security 

Act of 2007, which requires the use of large quantities of ‘advanced’ and ‘cellulosic’ biofuels 

with lifecycle greenhouse gas (GHG) emissions reductions relative to a gasoline baseline of 50% 

and 60%, respectively (110th Congress of the United States, 2007).  This requirement implies 

that biomass feedstocks can be provisioned with low direct environmental impacts, and with 

minimal disruption to commodity markets that could lead to indirect leakage effects (Searchinger 

et al., 2008).  A variety of low-impact feedstock strategies have been envisioned, including the 

collection of agricultural residues, forestry residues, and municipal wastes, as well as the 

cultivation of dedicated woody and herbaceous crops on marginally-productive lands (Campbell 

et al., 2008; Robertson et al., 2008; Tilman et al., 2009).  In particular, perennial grasses such as 

switchgrass, Miscanthus, bioenergy-optimized sugarcane, and mixed prairie species have been 

identified as promising cellulosic feedstock crops due to their high yield potential, relatively low 

input requirements, high nitrogen use efficiency, and ability to sequester carbon in soils (Vogel 

et al., 2002; Tilman et al., 2006a; Heaton et al., 2008; Walter et al., 2014).  It has been estimated 

that biofuel supply chains based on these feedstocks will have highly favorable lifecycle GHG 

impacts as compared to first-generation biofuel technologies (Schmer et al., 2008; Davis et al., 
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2012; Wang et al., 2012).  A comprehensive review of US feedstock availability by the 

Department of Energy suggests that dedicated perennial grass feedstocks will likely play a 

significant role in meeting the national biofuel mandate (Perlack & Stokes, 2011). 

Despite their promise, agronomic experience with such perennial grass feedstock crops is 

still relatively limited, and optimal agronomic management strategies to balance the often-

competing goals of maintaining high yields while minimizing environmental impacts have not 

yet been resolved.  The debate between the relative merits of low-intensity cultivation over large 

areas (often referred to as ‘land-sharing’ or extensive production strategy) versus more intensive 

production on a more limited land base (‘land-sparing’ or intensification) is still being waged, 

largely at a theoretical level (e.g., Anderson-Teixeira et al., 2012).  Process-based ecosystem 

modeling can play an important role in extrapolating limited existing field trial results to make 

more general estimates of productivity, environmental impacts, and optimal management and 

landscape design strategies. 

 

3.2.1. Modeling cellulosic feedstock yields and environmental impacts  

The use of crop models in assessing management-environment interactions and 

predicting bioenergy feedstock crop productivity was thoroughly reviewed by Nair et al. (2012).  

Crop models such as APSIM, BioCro, and ALMANAC have been applied at regional or national 

scales to assess the productivity of first- and second-generation feedstock crops as affected by 

broad-scale climate-soil associations (Bryan et al., 2010; Miguez et al., 2012; Behrman et al., 

2014).  Bioenergy system design is not just a question of yield, however, and understanding 

changes in the biogeochemical cycling of carbon, nitrogen, and water is required to evaluate 
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system sustainability (Robertson et al., 2011).  Perennial grass feedstock crops are typically 

associated with high potential for soil carbon sequestration.  One recent meta-analysis suggests 

that switchgrass increases soil organic carbon (SOC) levels at a median rate of ~ 0.7 t C ha-1 

year-1 when cultivated on carbon-depleted agricultural soils, though performance is more neutral 

when pastureland or other non-cropped land is converted (Qin et al., 2015a).  Application of 

nitrogen fertilizers is typically required to replace losses during harvest and to maintain yield 

levels, but N additions promote nitrous oxide (N2O) emissions, which may increase non-linearly 

with N rate (Hoben et al., 2011; Shcherbak et al., 2014).  This has been hypothesized to threaten 

the overall lifecycle GHG footprint of any bioenergy system based on feedstocks with inefficient 

nitrogen cycling (Crutzen et al., 2008b).  Biogeochemical cycling of C, N, and H2O and 

associated fluxes of biogenic greenhouse gases are tightly linked in all agroecosystems by 

fundamental mechanisms including plant tissue stoichiometry, photosynthetic pathway, stomatal 

conductance, microbial mineralization/immobilization, and other factors that are affected by 

local climate, soil type, and land use history. 

Detailed reviews of process-based biogeochemical models capable of capturing these 

interactions in the context of bioenergy system sustainability assessment are provided by Thomas 

et al. (2013) and Robertson et al. (2015).  CENTURY and later the DayCent model were among 

the first to be applied to bioenergy sustainability assessment, and have been widely used to 

evaluate corn grain production, corn stover removal, and the dedicated cultivation of switchgrass 

and Miscanthus at scales ranging from individual sites to national scale (Sheehan et al., 2003; 

Kim & Dale, 2005; Chamberlain et al., 2011; Davis et al., 2012; Lee et al., 2012; Duval et al., 

2013).  The Environmental Policy Integrated Climate (EPIC) model has also been applied 

extensively to bioenergy feedstocks in the context of economic (Jain et al., 2010; Egbendewe-
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Mondzozo et al., 2011) and environmental (Gelfand et al., 2013) sustainability assessment at 

scales from regional (Zhang et al., 2010) to global (Kang et al., 2014).  Experience with 

biogeochemical models applied at finer spatial scales as driven by landscape factors such as soil 

types or topography is more limited.  Several studies have attempted to parameterize crop 

production models based on switchgrass field trials across multiple soils under the warm, wet 

climate of the southeastern US, with results suggesting no clear differentiation of multi-year 

average productivity by soil type (Persson et al., 2011), or higher productivity in silty and sandy 

soils relative to clays (Woli, 2012).  A group at Idaho National Laboratory has linked DayCent 

with models of soil erosion (WEPS, RUSLE2) at the extremely high spatial resolutions (10m x 

10m) associated with modern precision agriculture in order to determine the potential 

environmental benefits of replacing the low-yielding sections of individual corn fields with 

perennial grass for biomass (Abodeely et al., 2013). 

 

3.2.2. Modeling challenges 

While biogeochemical models are increasingly used to simulate conversion of marginal 

agricultural lands to bioenergy feedstock cultivation (Bandaru et al., 2013; Qin et al., 2015b), 

these scenarios are especially challenging from a modeling perspective.  The definition of 

‘marginal’ land itself is not straightforward. In some cases this designation has been based on 

unfavorable biophysical properties as judged using land suitability ratings (Gelfand et al., 2013) 

or remote sensing techniques (Cai et al., 2011).  Another basis for the designation considers past 

transitions in an out of agricultural production as inferred from land use datasets (Campbell et 

al., 2008), remote sensing (Wright & Wimberly, 2013), or sector-level economic modeling 

(Swinton et al., 2011).  Bioenergy feedstock crops are not immune to the factors that make such 
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lands marginal for conventional crops, and recent perennial grass field trials purposely conducted 

on marginal sites indicate reduced productivity relative to performance on the prime lands 

typically encountered at most agricultural field stations (Mooney et al., 2009; Shield et al., 2012; 

Boyer et al., 2013).  From an ecosystem modeling perspective, accurate assessment is only 

possible to the extent that biophysical limitations on productivity (e.g., unfavorable climates, soil 

texture extremes, shallow soils, low soil organic matter levels, site drainage problems, slope, 

vulnerability to erosion, etc.) are represented directly or indirectly in model data inputs and 

modeled processes.   

It is well understood that process-based ecosystem models require proper 

parameterization specific to the agroecosystems being simulated in order to achieve good 

performance, and that such models have limited predictive power when extrapolated far beyond 

their parameterization scope (Thomas et al., 2013).  However, given the limited amount of field 

trial data available and the challenges involved in specifying model runs for comparison with 

real-world data, many bioenergy assessment studies are based on models parameterized at only a 

very limited number of sites, parameterized under prime conditions and then extrapolated to 

highly marginal sites, or lacking an independent validation of performance (e.g., Gelfand et al., 

2013; Kang et al., 2014).  In the case of the DayCent model, parameterization typically involves 

adjusting site and crop parameters by hand in order to match observed real-world performance 

for a small number of field trial cases for which extensive data are available (Del Grosso et al., 

2011).  While this approach can often yield a high degree of fidelity across a range of 

performance criteria for the sites in question (Hudiburg et al., 2015), the very large number of 

empirically-determined crop and site parameters in the model makes the process vulnerable to 

over-parameterization.  In such cases, model fit to the training dataset is improved via 
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mechanisms that lack broader underlying ecological significance, reducing the generality of the 

resulting model for other geographic areas, environmental conditions, or management regimes 

(Necpálová et al., 2015).  It is also possible to introduce bias with the selection of the 

parameterization cases themselves, if the researcher gravitates to focus on studies that confirm a 

priori assumptions of how a system ‘should’ perform.   

There are additional challenges around the spatial resolution of landscape modeling and 

assumptions about crop agronomic management.  Management factors including tillage intensity 

(Adler et al., 2007), fertilizer application rate (Davis et al., 2013), and rotation length (Pyörälä et 

al., 2014) can potentially change the lifecycle GHG performance of a bioenergy system from 

positive to negative, an effect termed the ‘management swing potential’ (Davis et al., 2013).  

Management recommendations for bioenergy crops are not always well defined, and in the case 

of Miscanthus, nitrogen fertilizer requirements have been widely debated (Arundale et al., 

2014a), with important implications for the overall GHG footprint of production (Roth et al., 

2015).  To the extent that there are interactions between best management and site-level 

ecosystem properties (soil texture, land use history, etc.), assumptions about management should 

ideally by implemented at the level of management decision-making, i.e., the field-scale.  Some 

landscape modeling studies have started to endogenize management intensity questions by 

simulating productivity and environmental impacts at different rates of N application (Gelfand et 

al., 2013) or different levels of tillage (Zhang et al., 2010). 
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3.2.3. Study goals 

Our study used the DayCent biogeochemical model to assess perennial grass productivity 

and associated biogenic GHG emissions as a function of land quality and management intensity. 

Implications for bioenergy landscape design are illustrated through a case study of switchgrass 

production around a newly constructed commercial scale cellulosic biorefinery in an area with 

substantial heterogeneity in soils and land use. This investigation expands on previous work in 

two main ways:  

1. We conducted an extensive model parameterization and validation effort based on a data-

rich, multi-criteria approach, using a large, unbiased parameterization dataset collected from the 

literature, that spans wide gradients of climate, soil texture, and management intensity. 

2. We evaluated the impacts of management intensification at the full spatial resolution of 

the assessment, and optimal levels of nitrogen fertilizer application were computed for each 

simulation case in order to either maximize yield or minimize biogenic greenhouse gas 

emissions. 

Our objective was to develop a rigorous, well-validated spatially explicit biogeochemical 

modeling capability that can serve as the basis for future integrated assessment and landscape 

optimization efforts, integrating productivity and biogenic GHG emissions estimates into full 

biofuel supply chain lifecycle assessments and economic analyses under real-world land 

ownership and policy constraints. 
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3.3.   Methods 

3.3.1. Case study introduction 

We performed a landscape assessment case study simulating the cultivation of 

switchgrass (Panicum virgatum) to supply biomass to the Abengoa cellulosic biorefinery located 

outside the town of Hugoton in southwestern Kansas (Peplow, 2014), which began operations in 

fall 2014.  While the plant will initially produce its 25 million gallons of ethanol per year using 

corn stover as the primary lignocellulosic feedstock, switchgrass has been mentioned as an 

advanced cellulosic feedstock of interest, and Biomass Crop Assistance Program Project Area 7 

is sponsored by the company and targets the establishment of 20,000 acres of switchgrass 

production in the area (USDA Farm Service Agency, 2014).  The Hugoton area has long been at 

the center of agricultural sustainability and energy issues, having been deeply affected by the 

Dust Bowl in the 1930s (Kansas Historical Society, 2014) and being the site of the earliest 

hydraulic fracturing trials in the U.S. (Borowski, 2012).   

Today, the surrounding Stevens County is a highly diverse and productive agricultural 

area.  In 2012, 21.4% of the county was dedicated to highly-productive irrigated corn cultivation 

(average yield of 12.1 Mg/ha, or 192 bushels/acre) and 11% to dryland wheat (1.1 Mg/ha, or 18 

bu/acre), with smaller fractions devoted to other crops and pasture/rangeland, supporting an 

inventory of 45,500 head of cattle including calves (USDA NASS, 2014).  In this study we 

investigated the biogeochemical implications of converting any cropland or rangeland in Stevens 

County and its six neighboring counties in southwestern Kansas and the Oklahoma panhandle to 

switchgrass cultivation (see Figure 3.1), examining tradeoffs between productivity and 

associated biogenic GHG emissions as a function of underlying soil type and management 

intensity.  Issues of land ownership, conservation easement status, and policy limitations are 
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excluded here, but explored in a subsequent publication dedicated to bioenergy landscape 

optimization.   

 

3.3.2. DayCent model 

Productivity and net fluxes of biogenic CO2 and N2O from soils under switchgrass 

cultivation were modeled with the DayCent biogeochemistry model (Parton et al., 1987; Del 

Grosso et al., 2011).   DayCent is a semi-empirical process-based model that simulates cycling of 

C, N, and water in natural and agroecosystems based on site-specific biophysical factors, land 

use history, and management practices (e.g., tillage, fertilizer application, irrigation, etc.).  The 

spatial and temporal scope of the model lies in between that of dedicated crop growth models 

(Miguez et al., 2012) and generalized earth climate system models (Anderson et al., 2013; 

Hallgren et al., 2013).  DayCent has been used extensively to predict yields and environmental 

impacts of cultivating switchgrass (Adler et al., 2007; Chamberlain et al., 2011; Davis et al., 

2012; Lee et al., 2012) and is also used in the US agricultural soil GHG emissions (US EPA, 

2014a).   

DayCent computes soil temperature and moisture model using daily climate data inputs 

for different layers of the soil profile resolved separately based on soil texture, bulk density, and 

pH.  Crop growth (net primary productivity, or NPP) is simulated using species-specific 

empirically derived parameters describing photosynthetic efficiency, tissue C/N ratio limits, 

above- and below-ground C partitioning, and phenology.  Daily biomass growth potential 

(NPPpot) is derived from top-of-atmosphere radiation (srad) corrected for atmospheric 

transmission losses, multiplied by a series of 0-1 factors that represent deviations from ideal 
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temperature (ftemp) or soil moisture (fH2O) or limitations due to canopy immaturity or self-shading 

(fcanopy). This potential growth is then adjusted down if available soil mineral nitrogen supply is 

limiting, as determined based on a maximum incremental biomass C:N ratio adjusted for plant 

maturity: 

       

In addition to plant productivity DayCent also estimates soil carbon and nitrogen cycling 

including net changes in soil organic carbon (SOC) levels and nitrous oxide (N2O) emissions, the 

major constituents of the agricultural soil greenhouse gas balance.  Dynamics of soil organic 

matter (SOM) are simulated for soil surface pools and the top soil layer (here set to 0-20 cm), 

with organic matter represented by two litter pools (metabolic and structural) and three SOM 

pools (one pool, termed ‘Active’, representing microbial biomass and associated microbial 

products with a rapid turnover rates), with the other two representing chemically/physically 

stabilized carbon, with decadal- (‘Slow’ pool) and century-scale (‘Passive’ pool) turnover times.  

N mineralization/immobilization rates for each pool are controlled max and min C:N ratios for 

each pool, soil temperature, soil moisture and microbial efficiency as a function of soil texture 

(Parton et al., 1987).  The soil nitrogen balance considers synthetic N fertilizer addition, manure 

and other organic N amendments, atmospheric deposition, volatilization, leaching, plant uptake, 

and N mineralization and immobilization associated with soil organic matter transformations.  

The model simulates nitrification of ammonium (NH3
+) to nitrate (NO3

-), including NOX and 

N2O fluxes derived from nitrification, as well as denitrification reactions to gaseous products 

(N2O, NOX, N2).  Nitrification is simulated by multiplying available soil NH3
+ by a maximum 
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potential nitrification rate adjusted based on soil temperature, water-filled pore space (WFPS), 

and pH limitations (Del Grosso et al., 2000; Parton et al., 2001).  The overall rate of 

denitrification and the N2O/N2 ratio of its products are modeled based on the availability of 

nitrate and organic matter substrates as inferred from heterotrophic respiration rate, and local soil 

micropore redox state and gas diffusion rates as inferred from WFPS and heterotrophic 

respiration rate. 

 

3.3.3. Model parameterization and validation 

We undertook an extensive parameterization and validation of the DayCent switchgrass 

growth model to improve overall simulation accuracy and verify the capability to capture 

productivity variations across gradients of land quality and cultivation intensity.  A large dataset 

of switchgrass field trials for the continental United States was assembled from the peer-

reviewed literature.  Studies were included in the dataset provided they a) specified the 

underlying soil in sufficient detail that a corresponding SSURGO map unit could be identified in 

the general area of the field trial using the Web Soil Survey (USDA NRCS);  b) specified key 

management variables (switchgrass ecotype planted, N fertilizer application rate, harvest date) in 

sufficient detail to define DayCent management inputs;  and c) reported disaggregated annual 

yield and GHG results (studies reporting results averaged across multiple sites or N treatments or 

cuttings were excluded).  Parameterization and validation efforts were based on time-averaged 

yields across the multiple years of a given site and treatment, so studies that report either annual 

yield data or treatment-averaged data were included.  If multiple cultivars of the same ecotype 

were included in a study, associated yields were averaged into a single representative value for 

the upland or lowland ecotype.  Additional details are provided in Appendix A Section A.1.  
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A total of 25 appropriate studies were identified, covering 573 annual biomass yield 

points across 145 unique combinations of site (soil and/or climate) and management (N rate, 

harvest date, etc.), referred to as treatments.  Initial exploratory analysis confirmed the need to 

exclude the first two seasons of yield data, before switchgrass yields stabilize (Lesur et al., 2013; 

Arundale et al., 2014b), and to filter out treatments for ecotypes grown outside their typical 

latitude range (up to 54° N for lowland varieties and down to 34° N for upland, as per Casler, 

2012).  The remaining dataset was then randomly split at the level of individual studies 70:30 

into a parameterization dataset and an independent validation dataset (Table 3.1).   

In addition to annual yields several of these field trials included more detailed 

information on biomass partitioning or nitrogen content (Frank et al., 2004; Dohleman et al., 

2012; Anderson-Teixeira et al., 2013), long-term changes in soil organic carbon based on either 

repeat measurements or paired sites (Ma et al., 2001; Liebig et al., 2008; Follett et al., 2012; 

Anderson-Teixeira et al., 2013; Bonin & Lal, 2014), and/or time-resolved nitrous oxide 

emissions (Nikièma et al., 2011; Hong et al., 2012; Schmer et al., 2012; Smith et al., 2013).  

There was insufficient data available to perform an independent validation of these model 

performance criteria, so all of these studies were included in the parameterization dataset.  While 

the original SOC dataset was very noisy, eliminating individual data points that were not 

reported as statistically significant yielded a final reduced modeling dataset that behaved more 

predictably and was much more consistent with recent switchgrass SOC meta-analysis results 

(i.e., Qin et al., 2014).   

The combined parameterization and validation dataset covers a wide range of 

latitudes/longitudes (Figure 3.1) and temperature/precipitation regimes (Appendix A Fig. A.1) as 

well as a wide range of soil textures and Natural Resource Conservation Service land capability 
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class (LCC) ratings (Helms, 1992;  Appendix A Fig. A.2).  Note that LCC ratings are reflective 

of a variety of land use limitations, some of which are explicitly considered in the DayCent 

model (e.g. dry climates, extreme textures, shallow soils) and some of which are not (e.g. erosion 

susceptibility, drainage class).  Parameterization was further informed with data from 

switchgrass greenhouse or growth chamber experiments studying productivity across gradients 

of temperature (Balasko & Smith, 1971; Hsu et al., 1985; Reddy et al., 2008; Kandel et al., 

2013; Wagle & Kakani, 2014) or moisture (Xu et al., 2006).  

The parameterization process started with a default switchgrass crop parameter set based 

on previous work (Adler et al., 2007; Davis et al., 2012) and focused on refining parameters 

relating to productivity, temperature and moisture stress response, nitrogen management, shoot-

versus-root partitioning, and tissue death and turnover rates, with separate parameterizations for 

both upland and lowland ecotypes as appropriate.  Initial exploratory analysis suggested that 

differentiating the phenology of upland versus lowland switchgrass ecotypes was essential for 

accurate yield simulation, consistent with current understanding of maturation based on 

photoperiod as a strong determinant of yield differences between different cultivars grown at a 

given latitude (Casler et al., 2004).  We set green-up dates as function of latitude based on a 

variety of literature sources (Sanderson, 1992; Sanderson et al., 1997; Wang et al., 2013a) as 

illustrated in Appendix A Fig. A.5.  Peak biomass dates were predicted as a function of both 

latitude and ecotype as inferred from a variety of sources (Sanderson, 1992; Hopkins et al., 1995; 

Sanderson et al., 1997; Vogel et al., 2002; Frank et al., 2004; Berdahl et al., 2005; Casler et al., 

2007; Anderson-Teixeira et al., 2013; see Appendix A Fig. A.6-A.7).   

After crop phenology was set other parameter adjustments were implemented manually, 

but evaluation against the parameterization dataset was fully automated using the model 
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execution and results analysis tools described in the next section.  The parameterization process 

focused on maximizing measured-versus-modeled r-values for upland and lowland ecotype 

yields, changes in soil organic carbon, and growing season N2O emissions, but also took into 

account time-resolved shoot:root and C:N ratio data where available for a multi-criteria 

parameterization (e.g., Appendix A Fig. A.11).  Once the parameterization process was 

complete, independent validation of upland and lowland cultivar yield performance was 

conducted based on the data held in reserve (holdout validation method).   

 

3.3.4. Spatial data inputs, model initialization, and automation 

A variety of spatially-explicit data inputs are necessary to initialize and run the DayCent 

model for a large-scale parameterization or landscape analysis, including data on climate, soil 

type, and land use history.  Data sources used in this analysis are summarized in Table 2.  Soil 

input data was derived from the Natural Resource Conservation Service Soil Survey Geographic 

database (SSURGO, Ernstrom & Lytle, 1993).  Soil texture, rock fraction, and pH for different 

soil profile layers of the dominant soil component for each map unit were taken directly from the 

SSURGO database, and bulk density, field capacity, wilting point, and saturated hydraulic 

conductivity were computed using the Saxton equations (Saxton et al., 1986) and converted to 

DayCent input file format.  Climate data on a 32 km grid was derived from the North American 

Regional Reanalysis database (NARR, Mesinger et al., 2006).  

Land use history and current land management practices were compiled from a variety of 

sources.  Current land use was determined from the National Land Cover Database 2006 (NLCD, 

Wickham et al., 2013), re-sampled from the native 30 m resolution to 240 m for ease of use, and 



 80 

re-classified into the simplified categories of annual agricultural lands (‘cultivated crops’, 

‘pasture/hay’), rangeland (‘dwarf shrub’, ‘shrub/scrub’, ‘grassland/herbaceous’, 

‘sedge/herbaceous’), and excluded (all other categories including forested and developed lands).  

Irrigated areas were identified using the MIrAD-US database (Pervez & Brown, 2010), and 

federally-owned lands were identified using the USGS Federal Lands of the United States data 

layer (USGS, 2014) and excluded from further analysis (3.4% of the landscape, most part of 

Cimarron National Grassland).  These five GIS layers were then intersected and small slivers 

were eliminated by merging all polygons smaller than 1 ha into the neighbor with which they 

shared the longest border.  This yielded 39,320 polygons of a variety of sizes across the Hugoton 

case study area (Appendix A Fig. A.15), representing 3,779 DayCent ‘strata’, i.e. unique 

combinations of inputs requiring individual simulation.  

For each landscape strata, the DayCent model was pre-initialized using the same pre-

settlement and historical land use assumptions in the EPA Inventory of U.S. Greenhouse Gas 

Emissions and Sinks (US EPA, 2014b) and described in detail by Ogle et al. (2010).  Model 

initialization included an equilibration run of several thousand years duration reflecting the 

natural state of the land prior to conversion to agriculture in order for all soil C and N pools to 

achieve steady-state values.  Historical management between initial plow-out and the modern 

period was simulated with crop rotations and management practices compiled at regional scale 

from a variety of historical and modern sources (Ogle et al., 2010).  The forward switchgrass 

simulations were then executed across part of a 29-node, 288-processor cluster computing 

system at the CSU Natural Resources Ecology Laboratory.  Parallel execution was implemented 

in Python (https://www.python.org/) using forking operations to take advantage of multiple cores 

within each node.  
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3.3.5. Landscape analysis scenarios, results processing, and sensitivity analysis 

For the landscape analysis case study we simulated conversion of all non-irrigated, non-

federally owned polygons in the seven-county case study area to rain-fed lowland switchgrass 

cultivation.  We conducted 30-year forward simulations to assess long-term productivity and soil 

C and N cycling averaged over the full range of the NARR historic weather record.  In order to 

assess the response of crop productivity and GHG performance to management intensity, seven 

different rates of nitrogen fertilizer application were simulated for each strata (0-150 kgN/ha in 

25 kgN/ha increments).  We assumed replanting every 10 years with associated field preparation 

consisting of chisel plow and field cultivator operations.  As per extension recommendations the 

crop was neither fertilized nor harvested the year of establishment in order to limit competition 

from weeds and ensure robust crop establishment.  These assumptions are highly conservative, 

as switchgrass is often established in this region without tillage, the need for periodic replanting 

is widely debated, and first-year harvest can be possible if the crop achieves sufficient first year 

productivity.   

Switchgrass harvest yields, changes in SOC levels, and annual N2O emissions were then 

averaged over the 30-year simulation period for each strata.  Annual average N2O emission 

values were converted into CO2 equivalents using a 100-year global warming potential (GWP100) 

value of 298 (Forster et al., 2007), then added to the net CO2 flux values associated with SOC 

changes for an estimate of total direct biogenic emissions.  Yields and biogenic GHG intensity as 

a function of nitrogen fertilizer application rate were interpolated for each strata by applying a 

cubic regression to the 30-year averaged simulation results for the different N rates.  To 

determine the GHG intensity of production (Mg CO2eq/Mg biomass harvested), total emissions 

per hectare were divided by the associated simulated switchgrass yield.  The yield-maximizing 
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and GHG balance-minimizing N rates for each strata were then re-associated with the 

appropriate landscape polygons and multiplied by their area in order to develop curves 

illustrating total potential landscape productivity and biogenic GHG emissions balance when 

managed based on these different goals.  Sensitivity of these landscape results to key crop 

parameterization factors, landscape characterization, and switchgrass cultivation scenario 

assumptions was assessed as detailed in Table 4 in order to determine the overall robustness of 

our conclusions.   All results analysis routines were automated in Python through a combination 

of SQLite database operations (https://sqlite.org/) via the sqlite3 module 

(https://docs.python.org/2/library/sqlite3.html), data manipulation in the native Python list data 

type, and figure generation using the matplotlib.pyplot module 

(http://matplotlib.org/api/pyplot_api.html). 

 

3.4.   Results 

3.4.1. Parameterization and validation 

A total of 79 model parameter iterations were ultimately tested, and final upland and 

lowland ecotype parameter values that differ from the default DayCent switchgrass crop 

parameterization are detailed in Table 3.3.  The most significant changes were: 

• Increased plant potential NPP rate – The most recent version of DayCent explicitly 

models solar radiation atmospheric transmission losses, and the revised potential NPP parameter 

must be adjusted higher (relative to previously published DayCent applications to switchgrass) to 

reflect the new calculation on a canopy photosynthetically active radiation (PAR) level basis 

rather than a top-of-atmosphere PAR basis.  Further adjustments were made to optimize the 
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observed yield difference between the different ecotypes and to offset slightly increased 

belowground C partitioning.   

• Adjusted temperature and moisture stress response curves – Crop temperature (Appendix 

A Fig. A.8) and moisture stress (Appendix A Fig. A.9) response curves were set based on the 

greenhouse and growth chamber studies listed in Table 3.1.  In the case of temperature response, 

fine adjustments to the edges of the curve where direct empirical data were lacking were 

implemented based on changes in overall modeled-vs.-measured performance across the training 

dataset.  The same curves were used for both ecotypes.  Comparison of measured and modeled 

yield ranges binned by site average growing degree day accumulation (Appendix A Fig. A.10) or 

annual precipitation (Appendix A Fig. A.11) verifies that the model accurately captures 

increasing switchgrass productivity at warmer, wetter sites 

• Increased belowground partitioning and root cycling – The default parameterization 

slightly underestimated belowground biomass, significantly underestimated observed SOC 

increases, and over-predicted N2O emissions.  A small increase in belowground partitioning 

coupled with a large increase in root turnover rates resulted in more carbon being cycled into the 

soil, more mineral N being taken up by the plant, reduced soil mineral N concentrations and 

hence reduced N2O losses, thus, improving model performance on all three criteria. 

Model parameterization and validation results for yields and soil GHG fluxes are shown 

in Figure 3.2.  Sufficient data was available to perform holdout method independent validation of 

yield predictions for both the upland and lowland ecotypes (Fig. 3.2a).  The out-of-sample 

validation root mean square errors (RMSE) are 3.7 and 4.1 Mg/ha for the upland and lowland 

ecotypes, respectively.  For the combined dataset correlation coefficient r=0.66, suggesting that 

slightly less than half of observed yield variability across all sites is captured in our model.  
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When these data are binned by nitrogen fertilizer application rate (Fig. 3.2c) we see that the 

model is able to capture general trends in switchgrass productivity with increasing management 

intensity.  In contrast, yield response to land quality was more ambiguous.  Neither measured nor 

modeled yields exhibited a clear relationship with soil texture across the full parameterization 

and validation dataset (Fig. 3.2d), and the weak trend towards lower field trial yields at sites with 

higher NLCD land capability class rating was not replicated in our model (Appendix A Fig. 

A.12).   

Field trial data on greenhouse gas balance were sparser, and the results presented in Fig. 

3.2b reflect our parameterization dataset rather than an independent validation.  Observed 

changes in SOC under switchgrass were much larger than measured growing season nitrous 

oxide emissions when compared in CO2-equivalent terms.  The within-sample RMSE for each 

type of GHG and the combined dataset are all < 0.5 MgCO2eq ha-1 y-1, and the combined 

correlation coefficient r=0.79 suggests that the model is capturing > 60% of the variation in these 

19 GHG flux measurements covering a wide range of sites, climates, and nitrogen application 

rates (Figure 3.1).  To the extent that the model tends to err in the direction of overestimating 

N2O and underestimating SOC accumulation, resulting predictions of switchgrass GHG balance 

are somewhat conservative.  Additional detail on SOC and N2O performance is available in 

Appendix A Fig. A.14 and A.15. 

 

3.4.2. Landscape analysis case study 

Simulated lowland switchgrass yields as a function of nitrogen fertilizer application rate 

across the 3779 unique DayCent strata in the Hugoton case study area are shown in Fig. 3.3a 
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(cropland conversion) and 3.3b (rangeland conversion).  The maximum attainable yield under 

arbitrarily well-fertilized conditions shows significant variation with soil texture, ranging from 

>10 Mg/ha in certain clay and sandy soils down to ~6 Mg/ha in the more moderate texture silty 

soils.  In this semi-arid climate of intermittent precipitation events, soil moisture levels are often 

near wilting point, and simulated average yields reflect a tension between the greater total water 

holding capacity of finer-textured soils (an advantage during relatively wet years) versus more 

effective infiltration and less surface soil evaporation in coarser soils (the so-called ‘inverse 

texture effect’, beneficial during dry years; Noy-Meir, 1973; Epstein et al., 1997; Lane et al., 

1998).  At low fertilizer application rates, switchgrass yields are higher on converted rangeland 

than they are on converted cropland, presumably due to higher nitrogen mineralization 

associated with greater transient soil organic matter turnover following conversion.  Full yield 

potential is generally realized at N rates from 60-100 kgN/ha.   

When examining landscape assessment results under different levels of management 

intensity it is important to note a discrepancy between the metrics of total biogenic GHG balance 

(MgCO2eq per hectare per year) and the GHG intensity of biomass production (MgCO2eq per 

Mg biomass grown).  Biomass production GHG intensity results are shown as a function of 

nitrogen application rate across all simulation strata in Fig. 3.3c and 3.3d.  For most strata at 

most nitrogen fertilizer rates, 30 year-average soil carbon sequestration outweighs nitrous oxide 

emissions on a CO2-equivalent basis.  Biomass has the lowest (most negative) direct biogenic 

GHG footprint when cultivated with no nitrogen fertilizer on previously cropped fine-textured 

soils due to their high carbon accumulation potential.  This sequestration value is increasingly 

offset at higher N rates due to marginal soil N2O emissions outpacing yield and SOC gains.  In 

contrast, rangeland has higher initial SOC levels and thus less capacity for carbon sequestration 
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after conversion to bioenergy feedstock cropping, which results in an overall GHG balance much 

closer to zero.   

Total biogenic GHG balance is explored in relation to productivity in Figure 3.4.  Since 

the landscape can be managed either to optimize yields or to optimize soil GHG balance, we 

selected a random 10% of the landscape polygons (evenly distributed by latitude), determined 

the nitrogen application rate that maximizes yield and the rate that maximizes GHG 

sequestration for each polygon, and aggregate the results for these different management 

strategies across our landscape sub-sample. The difference between the two curves indicates the 

degree to which system productivity and GHG performance can be modulated by adjusting 

management on the same limited land base.  Converting 10% of the landscape to switchgrass 

managed under either strategy results in > 0.75 Mt biomass feedstock production annually, 

enough material to supply approximately two facilities of the same capacity as the Abengoa 

biorefinery, with the associated net GHG impact of sequestering > 0.06 Mt (60,000 Mg) of CO2.  

Fig. 3.5 illustrates that the switchgrass management intensity associated with highest GHG 

mitigation is related to the distribution of soil types and current land use across the case study 

area, parameters that are also correlated with one another.  

Our modeled landscape productivity and GHG balance are highly sensitive to certain key 

crop model parameters, particularly moisture sensitivity, optimal growth temperature, and 

potential NPP (Table 3.4), highlighting the importance of careful parameterization and 

validation.  Landscape characteristics are important as well, with GHG mitigation particularly 

sensitive to past land use history.  Interestingly, landscape simulation results were highly 

insensitive to crop agronomic management assumptions beyond the rate of N fertilizer applied, 

with changes to establishment tillage intensity and fertilizer timing impacting results < 1%. 
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3.5.   Discussion and Conclusions 

3.5.1. Challenges of data-intensive model parameterization 

This modeling study was grounded in an extensive switchgrass model development and 

validation effort based on a data-rich multi-criteria approach and partial automation of the 

parameterization process.  The diversity of studies included in our switchgrass field trial dataset 

was intended to provide a highly general test of model performance independent of a single 

study, environment, or management level, and the simultaneous consideration of different types 

of data (Table 3.1) was designed to ensure that accuracy of one model performance criteria was 

never improved at the expense of others.  This approach proved very useful for sorting out 

interrelated model responses.  For example, parameters relating the belowground partitioning 

and root turnover rate typically receive little attention during the model parameterization process, 

but have large effects on aboveground biomass yield, SOC changes, and N2O rates that must be 

balanced in a systematic manner.  Our resulting model explains approximately half of the 

observed variability in yields and GHG observations in our dataset, and accurately captures 

responses to climate and management intensity.  While soil type has been observed to have an 

effect on bioenergy grass productivity in semi-arid climates (Evers & Parsons, 2003; Di Virgilio 

et al., 2007; o Di Nasso et al., 2015; Roncucci et al., 2015), we did not observe a strong texture 

signal in our switchgrass productivity dataset, consistent with a similar previous large-scale 

model parameterization effort (Wullschleger et al., 2010).  Future modeling work on soil-climate 

interactions would greatly benefit from additional field trails like Wilson et al. (2014) that 

include paired trails across multiple soil types on a landscape. 

While we believe the approach presented here represents an improvement over more 

limited model parameterization efforts, it is still possible to over-parameterize a model to a 
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dataset of this size and achieve good fits via unrealistic mechanisms that do not translate well 

out-of-sample.  In our experience, reliable yield performance was only achieved once crop 

phenology was adequately captured.  This parameterization dependency is somewhat 

challenging, as there are a limited number of studies in the literature reporting detailed 

phenology in the form required for this type of generalized modeling effort (i.e., dates for green-

up and peak biomass as a function of crop cultivar and site latitude).  Additionally, since 

maturation dates can vary significantly even for cultivars within a single ecotype (Frank et al., 

2004), focusing on only two ecotype groupings introduces additional errors.  Accurate 

representation of phenology can be superseded to a certain extent by narrowing crop temperature 

response curves to truncate early and late-season productivity (e.g., Necpálová et al., 2015), but 

our initial parameterization efforts in this direction performed very poorly on validation. 

After several dozen parameter set iterations we were approaching the limit of what could 

be accomplished with manual changes, as model responses became more subtle and antagonistic 

across the different performance criteria.  This, coupled with the relatively large number of 

model parameters to be determined, suggests that the process could benefit greatly from 

systematic parameter optimization techniques such as inverse modeling and/or k-fold cross 

validation.  Such techniques provide a more systematic and transparent approach, facilitate 

maximum extraction of information from a field trial dataset, and help to identify and avoid 

over-parameterization issues.  While inverse modeling techniques have been demonstrated to 

improve model performance against small datasets (e.g., Necpálová et al., 2015), they have yet 

to be applied at the scale of the parameterization effort in this study.  
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3.5.2. Case study interpretation and climate accounting issues 

The Hugoton case study site was selected because it featured the most heterogeneity in 

soils and current land use among the first three commercial-scale cellulosic biorefinery sites in 

the US (the other two being located in prime agricultural areas in Iowa; Peplow, 2014).  

However, the dry climate at this site is challenging from a biogeochemical modeling perspective, 

with landscape simulation results showing high sensitivity to interactions between crop moisture 

stress parameterization and soil texture, and with N2O response to increasing N rate muted 

relative to what might be expected in a wetter climate.  Overall, our landscape simulation results 

are similar to others in the literature that find the greenhouse gas balance of perennial grasses 

dominated by soil carbon sequestration immediately post-establishment, with modest N2O 

emissions (e.g., Gelfand et al., 2013).  In field trials where baseline N2O emission rates are 

reported and an IPCC-style calculation is possible, observed N2O emissions rates are often near 

or below the 0.3% lower bound of the IPCC Tier 1 emissions factor range (Appendix A Fig. 

A.15).  This suggests that switchgrass is an efficient nitrogen cycler, and that the critique of 

biofuel GHG mitigation benefits being outweighed by direct and indirect N2O emissions 

(Crutzen et al., 2008b) is likely overstated for second-generation perennial grass feedstocks.  Our 

predicted SOC sequestration rates after cropland conversion are very similar to median meta-

analysis results, while the finding of a small net positive sequestration with the conversion of 

grassland is consistent with, but on the optimistic edge of, the observed range (Qin et al., 2015a). 

Full quantification of the confidence interval around this landscape assessment is highly 

challenging due to multiple levels of uncertainty in problem specification, landscape input data, 

model structure, and model parameterization (Walker et al., 2003).  While previous work has 

shown that uncertainty in DayCent-estimated changes in SOC is driven primarily by model 
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structural uncertainty (Ogle et al., 2010), extending this empirical uncertainty assessment 

approach to the problem of bioenergy landscape design is impractical as only one of the 145 

treatments in our parameterization and validation dataset includes data for all three of the factors 

that determine biomass GHG intensity (yield, SOC change, and N2O; Fig. 3.1).  Here we rely on 

sensitivity analysis to identify priorities for future model improvement efforts.  When discussing 

model sensitivity and uncertainty issues it is important to be cognizant of issues in the underlying 

field trial datasets.  Field measurements of N2O are very challenging due to emissions variability 

on extremely fine spatial (Li et al., 2013) and temporal (Jørgensen et al., 2012; van der Weerden 

et al., 2013) scales, and studies based on sampling at weekly or every-other-week frequency (as 

were all N2O studies in our dataset) are vulnerable to systematic biases of up to 20% and 60%, 

respectively (Parkin, 2008; Smemo et al., 2011).  Additionally, small-scale field trials do not 

necessarily reflect imperfections in agronomic management (e.g. uneven fertilizer application) 

and real-world harvest losses, possibly introducing a systematic over-estimation of switchgrass 

productivity (Searle & Malins, 2014). 

Finally, there are several issues around climate impact accounting relevant to this 

landscape study.  While soil carbon sequestration will eventually attenuate even though N2O 

emissions will persist for as long as N fertilizer is being applied (Sheehan et al., 2003; Adler et 

al., 2007), our assessment for this semi-arid system suggests it will take 60-80 years for annual 

sequestration and N2O rates to reach parity (SI Fig. 17).  A more dynamic climate impact 

accounting approach that takes transient forcing benefits into account (Holtsmark, 2015) would 

tend to further weight near-term benefits against future emissions, though significant questions 

about how best to implement such accounting remain (United States Environmental Protection 

Agency, 2014).  The current study is also somewhat limited in treating the climate impacts of 
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biomass feedstock production from a purely biogeochemical perspective, ignoring potential 

biophysical impacts such as changes in surface albedo or feedbacks from changes in landscape-

scale evapotranspiration and water dynamics that are likely significant in certain bioenergy 

production scenarios (Muñoz et al., 2010; Georgescu et al., 2011; Cherubini et al., 2012; 

Caiazzo et al., 2014).  Additionally, future changes to atmospheric CO2 concentrations and 

climate are not considered here, though they may have large repercussions for landscape design 

(Bryan et al., 2010).  The ability of current ecosystem models to accurately extrapolate to such 

future conditions is an active area of investigation (De Kauwe et al., 2013).  Additional 

sensitivity analysis on these points would improve our understanding of bioenergy landscape 

performance potential, and highlight priorities for future research efforts. 
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Table 3.1.  DayCent switchgrass crop parameterization and validation and data sources 

Parameter types Data sources # treatments 
Parameterization 
Aboveground biomass 
yield 

Ma et al., 2001; Fuentes & Taliaferro, 2002; 
Vogel et al., 2002; Pearson, 2004; Mulkey et al., 
2006; Schmer et al., 2008, 2012; Nikièma et al., 
2011; Dohleman et al., 2012; Follett et al., 2012; 
Hong et al., 2012; Kering et al., 2012; Anderson-
Teixeira et al., 2013; Boyer et al., 2013; Bonin & 
Lal, 2014; Pedroso et al., 2014 

98 (67 after 
filtering) 

Soil organic carbon (SOC) 
changes 

Ma et al., 2001; Liebig et al., 2008; Follett et al., 
2012; Anderson-Teixeira et al., 2013; Bonin & 
Lal, 2014 

18 (8 after 
filtering) 

Soil nitrous oxide (N2O) 
emissions 

Nikièma et al., 2011; Hong et al., 2012; Schmer 
et al., 2012; Smith et al., 2013 

9 

Seasonal aboveground & 
belowground biomass 
accumulation, and/or C/N 
ratio 

Frank et al., 2004; Dohleman et al., 2012; 
Anderson-Teixeira et al., 2013 

3 

Phenology Sanderson, 1992; Hopkins et al., 1995; 
Sanderson et al., 1997; Berdahl et al., 2005; 
Casler et al., 2007; Wang et al., 2013a 

NA 

Productivity response to 
temperature 

Balasko & Smith, 1971; Hsu et al., 1985; Reddy 
et al., 2008; Kandel et al., 2013; Wagle & 
Kakani, 2014 

NA 

Productivity response to 
soil moisture 

Xu et al., 2006 NA 

Independent validation 
Yield Staley et al., 1991; Muir et al., 2001; Cassida et 

al., 2005; Adler et al., 2006; Fike et al., 2006; 
Arundale et al., 2014b; Wilson et al., 2014 

49 (44 after 
filtering 
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Table 3.2.  Summary of spatial data inputs 

Spatial 
database Data type Year Native 

resolution URL 

SSURGO Soils 2012 1:12,000 to 
1:63,360 

http://www.websoilsurvey.nrcs.usda.gov 

NARR Daily 
weather 

1979-
2010 

32 km www.emc.ncep.noaa.gov/mmb/rreanl 

NLCD Land use 2006 30 m http://www.mrlc.gov/nlcd2006.php 
MIrAD-US Irrigation 

extent 
2007 250 m http://earlywarning.usgs.gov/USirrigation/ 

Federal 
Lands of the 
United States 

Federal 
land 
ownership 

2005 640 acres/ 
1 mi2/  
1:2,000,000 

http://nationalmap.gov/small_scale/mld/   
fedlanp.html 
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Table 3.3.  DayCent switchgrass crop parameter changes  

Type of parameter change Parameter name Original 
value 

Lowland 
value 

Upland 
value 

Productivity potential & 
temperature response:  Increase in 
productivity to reflect updated solar 
radiation model and compensate for 
increased belowground partitioning; 
differentiation in productivity and 
temperature response between upland 
and lowland ecotypes 

PRDX(1) 2.75 4* 3.5* 
PPDF(1) 30 30 
PPDF(2) 45 44 
PPDF(3) 1 0.75 
PPDF(4) 2.5 2 

Growth response to moisture stress:  
Reduced sensitivity to soil moisture 
stress.   

CWSCOEFF(1,1) 0.38 0.35 
CWSCOEFF(1,2) 9 14 

Belowground partitioning:  
Reduction in baseline BG partitioning 
rate. BG partitioning in response to 
moisture stress reduced, but response 
to nutrient stress increased.   

CFRTCN(1) 0.5 0.7 
CFRTCN(2) 0.3 0.25 
CFRTCW(1) 0.6 0.4 
CFRTCW(2) 0.3 0.25 

Tissue N & lignin content:  Root 
maximum allowable C:N ratio lowered 
slightly.  Root lignin content reduced.  
Small amount of N fixation added to 
make growth under no-fertilizer 
conditions more realistic. 

PRBMX(1,1) 55 50 
FLIGNI(1,2) 0.26 0.06 
FLIGNI(1,3) 0.26 0.13 
SNFXMX(1) 0 0.005 

Tissue death rates:  Death rate and 
fall rate for shoots increased. Root 
maturation rate increased, and turnover 
rate of both juvenile and mature roots 
increased.   

FSDETH(3) 0.05 0.075 
FALLRT 0.01 0.1 
CMXTURN 0.12 0.3 
RDRJ 0.4 0.72 
RDRM 0.2 0.54 

N conservation:  Increased 
translocation of nitrogen from shoots to 
roots during senescence.  

CRPRTF(1) 0.15 0.43 

*change in the PRDX(1) values also reflects a recent change in the DayCent model to simulate 
atmospheric transmission losses of photosynthetically active radiation 
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Table 3.4.  Sensitivity analysis  

Parameter or 
assumption Change 

Change in 
total 

landscape 
productivity 

Change in 
total landscape 

GHG 
mitigation 

Baseline average landscape performance 
    Yield = 6.90 Mg ha-1 year-1 
    GHG mitigation = 1.29 Mg CO2eq ha-1 year-1 

DayCent crop parameterization 
Moisture sensitivity Switch to the curve associated 

with the lowland ecotype  +59% +94% 

Optimal temperature Increase PPDF(1) by 3 degrees -20% -31% 
Productivity 
potential 

Decrease PRDX(1) value by 10% -9.4% -14% 

Root death rates Decrease RDRJ and RDRM by 
10% +0.0012% +0.14% 

Site characterization 
Land use history Assume a uniform cropped 

history rather than a mix of 
cropped & grazed (82) 

+0.060% +31% 

Climate Assume the NARR weather for 
Hugoton for the entire 7-county 
study area 

-9.0% 11% 

Agronomic management 
Fertilizer date 
 

Assume fertilizer application one 
month earlier -0.030% -0.70% 

Tillage intensity Switch to no-till crop 
establishment 

-0.032% -0.60% 
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Figure 3.1.  Map of all switchgrass field trial sites included in the full model parameterization 
and validation dataset prior to ecotype/latitude filtering.  Ring size indicates the number of 

experimental treatments (e.g., different ecotypes or nitrogen fertilizer application rates) 
conducted at that site, and color represents the types of data available.  The 7-county case study 

area is highlighted in pink, with a star designating the biorefinery location. 
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Figure 3.2.  Parameterization and validation results:  (a) modeled-versus-measured switchgrass 
biomass yield fits for lowland ecotype within-sample (‘Low-param’, r=0.10, root mean square 
error=6.2 Mg/ha) and out-of-sample (‘Low-valid’, r=0.66, RMSE=4.1) field trial results and 

upland ecotype within-sample (‘Up-param’, r=0.38, RMSE=4.0) and out-of-sample (‘Up-valid’, 
r=0.26, RMSE=3.7) results (combined r=0.46, RMSE=4.6);  (b) modeled-versus-measured 

annualized changes in soil organic carbon (r=0.08, RMSE=0.43 MgCO2eq ha-1 y-1) and growing 
season N2O emissions (r=0.54, RMSE=0.48) on a CO2-equivalent basis (combined r=0.79, 

RMSE=0.46); (c) measured and modeled switchgrass yield ranges for different levels of nitrogen 
application rates across all parameterization and validation data points; and (d) measured and 

modeled switchgrass yield ranges for different soil surface texture classes across all 
parameterization and validation data points. 
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Figure 3.3.  Simulated response to increasing nitrogen fertilizer rate of switchgrass yields with 
(a) crop land and (b) rangeland conversion as well as soil GHG flux intensity after crop land (c) 

and rangeland (d) conversion across the 3779 distinct DayCent strata in the case study landscape.  
Interpolated yield maxima and GHG intensity minima are marked with solid markers for 

cropland conversion and open markers for rangeland conversion.  The color of the lines and 
markers indicates the soil surface texture of the strata as per the texture triangle key. 

 



 99 

 

Figure 3.4.  Cumulative total soil GHG mitigation versus cumulative switchgrass biomass 
production for a random 10% of the case study landscape under different management goals:  
managing each land parcel to maximize switchgrass yields (dashed line, highest-productivity 
sites aggregated first), or managing each land parcel to maximize ecosystem GHG mitigation 

(solid line, strongest mitigation sites aggregated first). 
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Figure 3.5.  Map illustrating (a) soil texture distribution, (b) current land use, and (c) the 
switchgrass nitrogen fertilizer application rates associated with maximum soil GHG mitigation, 

for all non-federal non-irrigated cropland and rangeland across the Hugoton case study area.  
Aerial imagery is included as a background layer for scale, and the boundary of the 7-county 

case study area is shown in white with the biorefinery location marked with a yellow star. 
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CHAPTER 4 
 

HIGH-RESOLUTION ASSESSMENT IDENTIFIES LOW COST MITIGATION 

OPPORTUNITIES IN BIOENERGY LANDSCAPES 

 
 
 

4.1.   Summary 

Meeting current biofuel mandates or creating future carbon-negative biopower systems 

(Fuss et al., 2014; Sanchez et al., 2015) requires feedstocks be sourced in sufficient quantities at 

low cost and with minimal environmental impact.  Cultivating perennial grasses on low-quality 

lands is a promising feedstock supply strategy minimizing on-site impacts and leakage effects 

(Robertson et al., 2008; Tilman et al., 2009; Perlack & Stokes, 2011), though questions remain 

around the identification of most suitable lands, the productivity potential on marginal sites 

(Shield et al., 2012), and the cultivation intensity that best balances non-linear yield responses 

and soil greenhouse gas (GHG) footprints (Anderson-Teixeira et al., 2012; Davis et al., 2013).  

In this work, fine-scale biogeochemical modeling was integrated with crop production budgets, a 

biomass transport model, a lifecycle assessment framework, and a multi-dimensional 

optimization routine in order to explore tradeoffs between production costs and GHG mitigation 

for switchgrass cultivation across a heterogeneous real-world bioenergy landscape.  We find that 

biomass cost and GHG footprint are significantly affected by land use change and management 

intensity choices; that system design heuristics based on minimizing biomass collection radius 

have limited value; and that initial Biomass Crop Assistance Program-supported plantings in our 

case study area are likely located sub-optimally.  
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4.2.   Introduction 

4.2.1. Bioenergy landscape design considerations 

The Renewable Fuel Standard (RFS2) established by the Energy Independence and 

Security Act of 2007 (110th Congress of the United States, 2007) established a variety of design 

priorities and constraints for future cellulosic biofuel production systems in the US.  The high 

mandated blend levels imply that large amounts of biomass be sourced at low costs, for which 

the cultivation of dedicated bioenergy crops (DBC) will likely be required (Perlack et al., 2005; 

Perlack & Stokes, 2011).  The prohibition against feedstock production on previously 

uncultivated land removes agricultural extensification as a potential supply strategy, though still 

leaves the door open to production on otherwise marginal, degraded, or abandoned lands 

(Campbell et al., 2008).  Perhaps most novel, the imposition of lifecycle greenhouse gas 

emission reduction thresholds requires that supply chains be designed in such a way as to 

minimize emissions from supply chain energy use as well as biogenic emissions from feedstock 

cultivation. It is unclear where on existing agricultural landscapes DBC will best fit, or how 

intensively those crops might be managed (Davis et al., 2013).  While surveys can be useful in 

identifying the most promising candidate lands for conversion (Rizzo et al., 2014), a variety of 

logistic, economic, and lifecycle assessment modeling tools are necessary to investigate the 

practical viability of potential system designs and their RFS2 compliance.  These design tools 

highlight a variety of competing and contradictory system design priorities.   

Since biomass is a relatively low density material and is subject to degradation without 

careful handling or pretreatment, minimizing transport distances and storage times is a priority in 

any biomass supply chain design (Hess et al., 2009; Inman et al., 2010).  Intensive feedstock 

production on a limited land base in close proximity to the receiving biorefinery has the co-
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benefits of controlling per-unit-mass supply chain costs (Ebadian et al., 2014) and emissions, and 

minimizing potential indirect land use change effects (Sheehan, 2009).  Multiple studies in the 

literature attempt to identify biomass collection areas which balance the marginal costs of 

biomass transport against the economies of scale of conversion facilities, treating biomass 

productivity as uniform across the landscape, and resulting in the oft-cited system design 

heuristic of a 30-50 mile maximum biomass collection radius (Aden et al., 2002; Kumar & 

Sokhansanj, 2007; Searcy & Flynn, 2009). 

Crop production budgets must be developed for new DBC systems in order to understand 

associated biomass production costs.  Keeping production costs low requires high area yields 

such that the fixed costs of tillage, seeding, pesticide application, etc. are spread out over a large 

amount of product.  However, yields of even relatively hardy DBC such as switchgrass are 

sensitive to land quality (Mooney et al., 2009; Shield et al., 2012; Boyer et al., 2013), yet the 

most productive prime agricultural lands carry high rental rates or opportunity costs of 

conversion associated with their potential for high-value food crop production.  Thus, controlling 

biomass production costs requires identifying lands with limited value for conventional crops yet 

still capable of supporting reasonable DBC yields.  Identification of such areas is often estimated 

using spatially-explicit biophysical models of crop performance, often ecosystem process models 

(Jain et al., 2010, p. 201; Egbendewe-Mondzozo et al., 2011; Yi et al., 2011).   

The biogeochemistry of feedstock production introduces an additional set of landscape 

design considerations (Robertson et al., 2011).  DBC systems based on perennial grasses are 

expected to out-perform first generation feedstock crops such as maize due to their longer 

growing season, high belowground carbon partitioning and sequestration potential (Anderson-

Teixeira et al., 2013; Qin et al., 2015a), and efficient nitrogen cycling and low nitrous oxide 
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emissions (Smith et al., 2013).  However, biogenic GHG emissions are highly sensitive to 

landscape factors, particularly soil type.  While fine-textured soils have the greatest potential for 

carbon sequestration in soil organic matter (Six et al., 2002), such soils are more prone to 

significant N2O emissions, particularly via microbial-mediated denitrification in mesic and wet 

climates (Del Grosso et al., 2000). Thus, feedstock production from the standpoint of GHG 

performance may be maximized on medium-textured (loamy) soils.  Since productivity and 

ecosystem greenhouse gas balance vary strongly and non-linearly with ecosystem properties 

(climate, soil conditions, topography), ecosystem process models are typically used to 

extrapolate understanding of performance across the diversity of conditions encountered in a full 

commercial scale bioenergy system (Sheehan et al., 2003; Thomas et al., 2013; Robertson et al., 

2015). 

Further complicating bioenergy landscape design is the strong interaction between land 

use choices and associated crop agronomic management requirements, the implications of which 

are so important to the GHG balance of bioenergy systems as to give rise to the term 

‘management swing potential’ (Davis et al., 2013).  Nitrogen fertilizer application rate is an 

archetypical example.  Adequate fertilizer rates are required to replace nutrient losses and 

maintain high area yields, but increasing N application leads to non-linear increases in nitrous 

oxide (N2O) emissions through nitrification/denitrification processes (Hoben et al., 2011; 

Shcherbak et al., 2014) as well general air and water pollution through volatilization and 

leaching.  The most economically rational application is likely higher than that which minimizes 

GHG footprint (Roth et al., 2015), and both are highly sensitive to the underlying soil texture 

and climate. 
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4.2.2. Impact assessment for landscape optimization 

The various system design imperatives summarized above imply that strategies or 

heuristics developed from a single disciplinary perspective or focused on a single performance 

criteria may have limited applicability.  A more systematic approach to bioenergy landscape 

design requires integrated assessment studies in which various performance analysis tools are 

combined around a common set of biophysical assumptions or model results, and different 

system performance criteria balanced through a multi-objective optimization approach.  This 

often involves determining system performance tradeoff curves or Pareto optimality frontiers, 

defined as the set of ‘non-dominated’ system designs for which performance on any criteria can 

only be improved at the expense of another criteria (You et al., 2012; Herrmann et al., 2014; Yu 

et al., 2014).  The curvature of such a frontier dictates whether meeting competing system 

performance goals is an ‘either-or’ proposition (a concave tradeoff curve), a 1-to-1 (linear) 

tradeoff, or whether there are synergies in which compromise solutions can achieve much of the 

maximum potential performance on each criteria simultaneously (convex curve).    

There are several examples of such techniques being applied to balance productivity 

against various categories of environmental impacts in bioenergy landscape design.  Zhang et al. 

(2010) used the EPIC biogeochemistry model to simulate productivity of first- and second-

generation bioenergy feedstock crops in southwestern Michigan as well as associated biogenic 

GHG emissions and water quality impacts from nitrate leaching.  Using a genetic algorithm 

optimization approach, they found a strong tradeoff wherein doubling total feedstock production 

on the landscape could completely erode the baseline GHG mitigation value from soil carbon 

sequestration.  Similarly, Wu et al. (2012) used a combination of the SWAT hydrology and EPIC 

biogeochemistry models to assess productivity and water quality impacts of transitioning land in 
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a large river drainage in the northern Great Plains to switchgrass production, ranking the most 

appropriate land parcels for conversion based under different system performance priorities.  

They found a high degree of convexity in the resulting tradeoff curve, i.e., that carefully backing 

off to only ~3/4 of total potential landscape production could reduce water quality impacts to 

only ~1/4 of what they would be at maximum production.  Sims et al. (2014) take a similar 

analytic approach to a very different biomass system, using a mountain pine beetle dispersion 

model to estimate that proactively harvesting beetle-vulnerable pine stands could actually lead to 

a win-win outcome for northern Colorado in which both timber production and the number of 

surviving trees increase due to a reduced spread of beetle infestation.  

When applied to assessments with both cost and GHG mitigation components, such 

tradeoff analysis and optimization techniques can help to quantify the lowest-cost opportunities 

for reducing GHG emissions through various supply chain modifications or substitutions.  

Dwivedi et al. (2015) pair county-level yield estimates for first- and second-generation 

bioenergy feedstock crops with GREET estimates of supply chain emissions and DayCent 

modeling of biogenic emissions, determining that the price premium of biofuels over 

conventional gasoline leads to GHG mitigation at an overall abatement cost equivalent of 

$48/MgCO2eq.  Digging deeper into the design of individual biofuel supply chains, You et al. 

(2012) combined county-level feedstock yield estimates with detailed supply chain and 

conversion system models to determine the potential costs and GHG mitigation associated with 

cellulosic biofuel production in Illinois, using a mixed-integer linear programming approach to 

identify several areas for low-cost improvements in overall system GHG performance.  

Similarly, (Yu et al., 2014) studied the siting of switchgrass biofuel facilities in Tennessee using 

county-level estimates of land productivity, DayCent simulations of CO2 and N2O emissions 
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associated with different land use changes, and a detailed switchgrass harvest and transport 

logistics model.  Their mixed-integer optimization approach generates a highly convex tradeoff 

frontier indicating great potential for low-cost GHG performance improvement based on careful 

selection of the type of land being converted to switchgrass.  

In summary, a variety of studies have attempted to assess the potential environmental and 

economic tradeoffs encountered when large-scale DBC cultivation is integrated into existing 

agricultural landscapes, using combinations of different ecosystem, logistic, and economic 

models.  Most identify significant system design tradeoffs at various points in the supply chain.  

In order to adequately address the different system design priorities outlined above, a landscape 

design study should, ideally:  a) consider crop – land quality – management intensity interactions 

on yield and biogenic emissions at relevant spatial scales;  b) integrate such results with 

estimates of crop production costs, biomass harvest and transport logistics, and lifecycle 

assessment tools in order to fully represent and ecosystem – supply chain tradeoffs;  and c) 

include all relevant policy constraints. 

 

4.3.   Methods 

4.3.1. Scenarios and crop simulation 

We performed an integrated landscape assessment and optimization case study 

considering the establishment of switchgrass (Panicum virgatum) to supply feedstock for a 

newly-constructed 25 million gallon per year cellulosic ethanol biorefinery in southwestern 

Kansas (Peplow, 2014). The analysis area comprised 7 counties surrounding the facility, 

including Stanton, Grant, Haskell, Morton, Stevens, and Seward counties in southwestern Kansas 



 108 

and Texas County in the Oklahoma panhandle.  We used the DayCent ecosystem model (Parton 

et al., 2001; Del Grosso et al., 2011) to perform point simulations of biomass productivity and 

net soil CO2 and N2O fluxes.  The model was parameterized and validated against a large 

composite switchgrass field trial dataset as described in Chapter 3.  Spatial databases used to 

initialize and run DayCent include the Natural Resource Conservation Service’s Soil Survey 

Geographic database (Ernstrom & Lytle, 1993), the North American Regional Reanalysis 

climate database (Mesinger et al., 2006), the National Land Cover Database 2006 (Wickham et 

al., 2013), and the MIrAD-US irrigation database (Pervez & Brown, 2010), as well as 

proprietary coverages representing Conservation Reserve Program (CRP) and Biomass Crop 

Assistance Program (BCAP) enrollments.  The landscape analysis considered the conversion of 

non-irrigated cultivated land, CRP areas, and uncultivated rangelands (shrub and herbaceous 

cover) to switchgrass; federally-owned areas and irrigated cropland were excluded from the 

analysis.  The GIS intersection of these various input layers yielded 39,320 polygons of various 

sizes (Appendix B Fig. B.2) which encompass 3779 eligible unique DayCent simulation strata.  

DayCent was initialized and historical land use simulated with the same methods used in 

the EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks (US EPA, 2014b) as described 

in detail in Ogle et al., (2010).  We modeled all (non-irrigated) cultivated land with a winter 

wheat-fallow (WF) rotation and uncultivated areas as a 50:50 C3 & C4 temperate grass mix 

subject to continuous low-intensity livestock grazing.  We assumed that CRP lands transitioned 

from WF to un-grazed grass in 1990.  From 2015 we performed 30-year forward scenarios for 

each strata considering business-as-usual (BAU) land management versus conversion to 

switchgrass at seven different levels of nitrogen fertilizer rate (0-150 kgN/ha in the form of 

ammonium nitrate), re-using 30 years of NARR historic weather data and assuming tilled 
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establishment.  Simulations were executed in parallel across a 29-node, 288-processor cluster 

computing system at the CSU Natural Resources Ecology Laboratory, with model initiation and 

results processing automated in Python (https://www.python.org/).  Yields and soil GHG fluxes 

were averaged across the duration of the forward simulation.  Indirect nitrous oxide emissions 

(iN2O) were estimated based on modeled leaching, nitric oxide emissions, and volatilization rates 

as per IPCC recommendations (Eggleston et al., 2006).  Landscape modeling details are 

described in detail in the previous chapter. 

 

4.3.2. Farm production costs 

Minimum break-even switchgrass farm-gate prices were estimated in the manner of Jain 

et al. (2010) considering the productivity-adjusted opportunity cost of land conversion from 

BAU uses (Appendix B Fig. B.4).  For cropland, opportunity costs of land conversion were 

estimated as the net return calculated for WF using a local extension farm management guide 

(Dumler et al., 2010) and DayCent-estimated BAU grain yield for each simulation strata.  For 

rangeland, DayCent-estimated grazed biomass amounts were used to linearly adjust the average 

cash rental rate of pastureland in southwest Kansas (Dhuyvetter & Taylor, 2014) to generate a 

land conversion opportunity cost reflective of variations in land productivity.  We estimated the 

opportunity cost of CRP conversion as the average county rental payment rate across the seven 

study area counties ($98.41/ha, United States Department of Agriculture, 2013) applied 

uniformly to all CRP areas.  To estimate the enterprise costs of switchgrass production, the 

detailed switchgrass crop production budget from the USDA Future Agricultural Resources 

Model (Evans, 2012) was re-produced in Python.  For each switchgrass management intensity 

scenario, the nitrogen rate, switchgrass yield, and opportunity cost of land conversion 
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assumptions in FARM were updated, and farm-gate switchgrass break-even price estimated as 

the 30-year net present value of switchgrass production divided by the discounted switchgrass 

yields over the same period as per Jain et al. (2010), reflecting minimum supply cost to a 

biorefinery contracting with each individual supplier at a different price that reflects their unique 

production costs.  As in Jain et al. 2010, all commodity prices besides switchgrass were treated 

as exogenous and static in the face of cropping changes within the case study area.   

 

4.3.3. Transport distances and costs 

We intersected our 39,320 landscape polygons against a 4 km x 4 km square grid in order 

to reduce the number of biomass transport distance calculations required.  The geographic 

distance (as the crow flies) between the centroid of each grid cell and the case study conversion 

facility location was computed using the Haversine equation, from which the actual driving 

distance was estimated by multiplying by a constant tortuosity factor.  Actual driving distances 

are estimated by multiplying the geographic distance by an empirical correction factor (tortuosity 

factor) that accounts for the typical geometry and continuity of local road infrastructure.  To 

estimate an appropriate tortuosity factor, a set of ten latitude & longitude pairs were generated 

randomly across the case study area, and Google Maps (https://www.google.com/maps) was 

manually used to compute the shortest driving distance to the facility, with a factor of 1.45 found 

to be most representative of the road network in this area (Appendix B Fig. B.1).  Associated 

trucking costs were estimated using the Trucking Cost Model from the University of Tennessee, 

Knoxville Forest Product Center (Norris, 2009), a simple model that does not consider dispatch 

and routing of individual trucks.  We assumed default dry van settings with mileage adjusted to 

5.3 mi/gal and payload to 50,000 lbs for consistency with GREET, a loading and unloading times 
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of 45 minutes, a 30 min dwell time, and a driver labor rate of $15/hr.  Transport cost as a 

function of one-way transport distance was then mapped to an exponential function integrated 

within our Python code.  Associated GHG emissions were estimated by increasing the truck 

transport share distance in GREET as described in the following section.  

 

4.3.4. Lifecycle assessment 

The 2014 GREET.net model (https://greet.es.anl.gov/greet/index.htm) was used to make 

GHG performance estimates for the full biomass supply chain through the biorefinery gate under 

a consequential lifecycle assessment accounting approach (Brander et al., 2009).  The default 

GREET switchgrass production pathway was updated for consistency with the USDA FARM 

model as described in Appendix B.  GREET well-to-pump biomass lifecycle GHG footprint 

results were mapped into our Python code as a function of nitrogen fertilizer input rate and 

DayCent-simulated crop yield, soil CO2 and direct and indirect N2O flux as compared to the 

BAU scenario, and biomass transport distance.  The resulting GHG footprint estimates for each 

management intensity level in each DayCent strata reflect embodied emissions associated with 

all farm operations and inputs, ecosystem emissions associated with local management changes, 

and transport emissions.   

In addition to these effects, the indirect leakage effect associated with the displacement of 

crop and forage production is explored through a basic indirect land use change (iLUC) penalty 

calculation.  While the downscaling of iLUC estimates for use in regulatory settings is widely 

recognized as being problematic for both practical and theoretical reasons and highly sensitive to 

model assumptions (Babcock, 2009; Zilberman et al., 2010, 2011; Warner et al., 2013), a 
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conservative approach to consequential GHG impact accounting demand that some estimate be 

made (Fritsche et al., 2010).  Furthermore, the estimate should be based on the quantity of 

commodity displaced rather than the land area converted, reflecting that conversion of low-

productivity marginal lands is less disruptive to commodity markets (Dwivedi et al., 2015).  We 

took a conservative high estimate of the iLUC effect (34 gCO2eq/MJ ethanol) from Wang et al. 

(2011), and related this back to the amount of grain consumed to produce a megajoule of ethanol, 

for a penalty of 323 gCO2eq/kg corn consumed.  The corn-equivalents of all wheat and grass 

displaced relative to our BAU scenarios were then estimated by applying the appropriate cattle 

feed equivalence ratios (1.03 and 1.9, respectively; Gadberry & Beck; Lardy, 2002), as this is a 

primary market for all these commodities in this part of the country.  While a more 

comprehensive accounting would require shocking the specific commodities in question within a 

partial or general equilibrium global trade model, we believe that the simplified approach 

adopted here provides a conservative first-order accounting of the effect that can be readily 

operationalized.   

 

4.3.5. Results integration and optimization 

The resulting feedstock production cost and GHG mitigation estimates for each parcel at 

each level of management intensity were then integrated to generate Pareto frontiers representing 

the highest GHG mitigation at lowest costs that could be achieve while meeting the annual 

feedstock requirements of the biorefinery under a given set of system design or land conversion 

constraints.  The multi-criteria optimization problem was solved through a simple weighted 

solution approach in which GHG emissions or mitigation were valorized based on a particular 

carbon price, and the combination of biomass production financial costs and GHG mitigation 
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value (termed the ‘total social cost’ of production) minimized across the landscape.  The process 

is detailed schematically in Figure 4.1.  Prior to optimization, 30% of the parcels on the 

landscape were randomly selected as potentially eligible for conversion to switchgrass based on 

willingness-to-grow survey results for western Kansas (Fewell et al., 2011). 

 

4.4.   Results 

4.4.1. Landscape characterization 

The land in the case study area is currently devoted to a variety of uses as shown in 

Figure 4.2.  Approximately one third of the landscape is classifiable as non-irrigated cultivated 

land (cropland & hayland).  Additional analysis using the Cropland Data Layer (Boryan et al., 

2011) suggests that winter wheat - fallow (WF) is the dominant rotation in these areas, though 

with significant presence of more intensive rotations featuring one or more crops of grain 

sorghum (e.g., WSF or WSSF).  An additional 13% of the landscape is covered by Conservation 

Reserve Program easements, much of which is located in the corners around center-pivot 

irrigated fields.  Federally owned lands (3% of the landscape) and irrigated areas (21%) were 

excluded from the analysis as inaccessible and unlikely to be profitable for conversion, 

respectively.  The remainder of the landscape is classified as shrubland or herbaceous vegetation, 

and was modeled as lightly grazed rangeland in this assessment.   

As illustrated in Figure 4.3, the distribution of land use across the case study landscape 

mirrors patterns in the distribution of underlying soils.  The case study area features a wide 

diversity of soil textures ranging from silt loams to sands, with small pockets of fine-textured 

clays.  Figure 4.4 shows the area-weighted distribution of soil surface textures within the various 
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land use classifications.  Crop and hay production both predominantly take place on silty loams, 

whereas rangeland and CRP are much more evenly distributed across the full range of soil types 

encountered on this landscape.  Interestingly, BCAP enrollments are heavily skewed towards the 

coarsest soils on the landscape.  The distribution of Natural Resources Conservation Service 

Land Capability Class (LCC) ratings within the different land use classes is shown in Appendix 

B Fig. B.3. 

 

4.4.2. System performance tradeoffs under current policy 

Landscape optimization results are shown for a variety of system design and land use 

change scenarios in Figure 4.5.  Each point along a given Pareto frontier represents an optimal 

landscape design across three dimensions (two spatial dimensions and an additional management 

intensity dimension) balancing biomass production costs and GHG footprint based on a 

particular valuation of greenhouse gas emissions.  While estimates of the optimal valuation of 

GHG emissions relative to the marginal damages that they cause (the so-called ‘social cost of 

carbon’) vary widely (Newell et al., 2014), landscape solutions that correspond to the $12-

63/MgCO2eq range recommended by the US Interagency Workgroup on the Social Cost of 

Carbon (United States Government Interagency Workgroup on Social Cost of Carbon, 2010) are 

illustrated with a thick band.  Several individual solutions A-F are selected for more detailed 

description as included in Fig. 5 and Appendix B Fig. B.5.   

Solutions for the base case of RFS2-compliant land use conversion (i.e., conversion of 

previously-cultivated land only) are shown in blue.  A range of potential feedstock cost and 

mitigation outcomes are possible depending on how heavily GHG mitigation is valued.  When 
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only costs are considered, the optimal landscape design consists of cropland and CRP conversion 

to switchgrass managed at moderate fertilizer rates (30-60 kgN/ha, detail A).  This results in a 

biorefinery-gate switchgrass breakeven price of $78/Mg.  While cultivation of switchgrass under 

these conditions sequesters ~0.17 Mg CO2 as soil carbon for every metric ton of switchgrass 

produced, this sequestration is offset by the combination of upstream emissions from the 

production of fertilizer and other farm inputs, on-farm energy use, soil nitrous oxide emissions, 

and emissions associated with biomass transport to the biorefinery, for a net GHG emission of 

~0.05 MgCO2eq per metric ton of switchgrass produced. 

As GHG mitigation is valued more and more heavily (detail B and C), optimization 

results suggest that less intensive production across a larger area base of cropland results in best 

performance.  At the high end carbon valuation of $250/MgCO2, reduced N2O emissions (lower 

that the BAU case) and increased soil carbon sequestration are observed, resulting in a net GHG 

mitigation of ~0.12 MgCO2eq / Mg switchgrass, though at an increased biorefinery gate 

breakeven price of $86/Mg.  In all cases, the optimal switchgrass cultivation locations are widely 

distributed across the entire case study area, with productivity-weighted average collection 

distances in the range of 63-66 km (Appendix B Fig. B.5). 

 

4.4.3. System design considerations and strategies 

The range of potential landscape performance outcomes when crop management is fixed 

at 50 kgN/ha (Fig. 4.5, orange curve) is much narrower, and always results in a positive net 

feedstock lifecycle GHG footprint (emissions > sequestration).  This is consistent with the notion 

of the management swing potential of bioenergy feedstock crops (Davis et al., 2013) and a 
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strong location – management interaction.  In addition, the fact that this curve is ‘dominated by’ 

(i.e., lies to the lower left of) the base case curve suggests that these solutions are sub-optimal 

when costs and emissions are considered together, and that modulation of fertilizer rates is a tool 

that rational producers would likely use to maximize their profitability.   

While a 50 km maximum biomass collection radius is an oft-cited landscape design 

heuristic, our simulation results (red curve, detail D) suggest that this strategy results in 

landscape designs that are strongly dominated relative to the unrestricted base case.  The 

maximum collection radius limits the exploitation of favorable production sites along the edges 

of the case study area and forces more intensive switchgrass production on cropland and greater 

cultivation of CRP land in order to meet the biorefinery feedstock requirement.  This results in a 

production price premium of up to ~$5/Mg or a GHG footprint increase of ~0.1 MgCO2eq/Mg.  

The strong concentration of BCAP enrollments on sandy soils across the landscape (Fig. 

4.3) suggests that the pioneer switchgrass producers in this region are engaging in a strategy 

targeting conversion of lands with the least suitability for conventional crop production.  

However, these coarse soils accumulate organic matter much more slowly and require greater 

fertilizer inputs for a given level of production (grey curve, detail F).  Our simulations suggest 

this will likely result in a much higher net GHG footprint and higher overall production costs, 

despite the lower opportunity costs of land conversion due to the lower BAU wheat productivity 

in these areas. 
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4.4.4. Policy constraints 

In this particular landscape, the inclusion of an iLUC penalty term leads to only a small 

erosion of system GHG mitigation value (green curve) due to the relatively low output of the 

wheat – fallow crop production system being replaced by switchgrass cultivation.  While it is 

possible that a more detailed commodity-specific iLUC assessment (see Methods section above) 

or an expansion of the BAU scenario to include consideration of the higher-yielding WSF and 

WSSF rotations on the landscape in the BAU scenario might result in a greater estimated iLUC 

effect, at present the inclusion or exclusion of this effect exerts minimal influence on our case 

study landscape design and performance.   

The Renewable Fuel Standard excludes biofuels derived from feedstocks produced on 

previously uncultivated lands from counting towards the mandate in an attempt to limit pressure 

for agricultural extensification.  Our analysis suggests that this policy can impose an important 

and binding constraint in bioenergy landscape development.  The low opportunity costs 

associated with rangeland conversion coupled with reduced nitrogen fertilizer requirements due 

to higher background soil N mineralization levels suggests that these areas could be mobilized to 

produce switchgrass at up to $10/Mg more cheaply than on former croplands (purple curve, 

detail E).  However, these areas will not experience any significant net increase in soil organic 

matter, resulting in worse overall GHG performance.  Thus, the prohibition should tend to limit 

conversion that would be economically profitable but have reduced GHG benefits, and could be 

problematic from a biodiversity perspective (e.g., Evans et al., 2010). 
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4.5.   Discussion 

While feedstock productivity and associated biogenic emissions of cultivation are central 

to the sustainability of any bioenergy supply chain, strong interactions between crop type, 

climate, soils, land use history, agronomic management, and harvest and transport logistics 

preclude simple generalizations about the most cost effective and most environmentally-friendly 

feedstock cultivation strategies.  The methodology presented here attempts to untangle these 

effects via high-resolution process based modeling, simulating feedstock productivity, 

management options, and environmental outcomes while simultaneously considering practical 

implications for the feedstock producer.  To our knowledge this is the first analysis to examine 

carbon abatement costs associated with bioenergy landscape design that fully endogenizes crop 

management while synthesizing both ecosystem and supply chain emissions.  Our results suggest 

that simply minimizing biomass collection radius or targeting the most marginal land on the 

landscape for feedstock production are poor bioenergy system design heuristics that can lead to 

sub-optimal cost and GHG mitigation performance, insights that contradict conventional wisdom 

in this area.    

The conclusion that landscape performance can be widely tuned based on the 

performance criteria considered is consistent with what other emerging landscape optimization 

studies have found (Zhang et al., 2010; Wu et al., 2012; Yu et al., 2014).  While previous studies 

have focused on the implications of different land use change scenarios (Yu et al., 2014), our 

consideration of variable crop management intensity suggests that this is an equally important 

landscape design consideration, consistent with the management swing potential observation 

(Davis et al., 2013).  The richness of bioenergy landscape design tradeoffs identified in this case 

study is partly attributable to the underlying heterogeneity in the landscape around Hugoton 
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Kansas.  The commercial-scale cellulosic biofuel facility there is unique in this regard, as the 

other two commercial-scale biorefineries in the US are located in Iowa (Peplow, 2014), a region 

much more homogeneous in soils and land use.  It is left as future work to determine how the 

degree of underlying landscape heterogeneity affects the range of possible bioenergy system 

performance outcomes, as assessed across multiple case studies in different regions with 

different regionally-appropriate feedstock crops.   

This quantification of GHG mitigation opportunities and associated costs in the feedstock 

supply chain is complementary to other GHG assessment efforts focusing on different aspects of 

the full bioenergy supply chain, for example the fuel conversion process (Bernardi et al., 2012; 

Eason & Cremaschi, 2014) or the management of conversion co-products (Anex et al., 2007; 

Field et al., 2013; Pourhashem et al., 2013; Woolf et al., 2014).  The strong observed feedbacks 

between feedstock sourcing, conversion facility siting and capacity, and the potential use of low-

value conversion co-products as carbon-sequestering soil amendments suggest that a true 

‘global’ optimization of any given bioenergy system is only possible when the analysis scope is 

expanded to include all such effects in tandem.  Additionally, while we focus on costs and GHG 

mitigation in this study, this weighted solution method to the multi-criteria landscape 

optimization problem could easily be extended to water use or nitrate leaching for subsequent 

analyses (e.g., Wu et al., 2012).   

There are a number of analytical challenges associated with different aspects of this 

integrated assessment.  While the performance of our ecosystem model across a wide range of 

climates and nitrogen fertilizer rates is well validated, the secondary effects of climate-soil 

interactions on crop yield remain difficult to rigorously parameterize and validate (Chapter 3).  

While our efforts specifically targeted switchgrass field trials on marginal lands from the 
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literature, our final model parameterization and validation dataset still skewed heavily towards 

field trials on lands with LCC ratings of 2-3, i.e. areas with moderate to severe use limitations for 

cropping, whereas other perennial grass modeling studies have focused on LCC 5-7, i.e. non-

arable areas restricted to use as pasture or rangeland or left unexploited (Gelfand et al., 2013).  

While we simulated ecosystem productivity and emissions at a high level of detail using a 

process-based model, our assessment takes a relatively simplistic approach to switchgrass 

biomass logistics, coupling estimates of harvest, bailing, and stockpiling costs and emissions 

from the USDA FARM and GREET models, respectively, with a non-dispatch distance-based 

transport model.  Another recent switchgrass integrated assessment and optimization effort takes 

the opposite strategy, coupling a detailed custom model of switchgrass production logistics with 

a lower-resolution productivity estimates and ecosystem assessment (Wang et al., 2013b; Yu et 

al., 2014).  Their results suggest that existing simpler approaches may underestimate the true 

costs and emissions associated with switchgrass biomass logistics.  However, our conclusion that 

biomass collection radius is a relatively weak control on system cost and GHG performance is 

consistent with previous work suggesting that transport emissions are small in magnitude relative 

to biogenic emissions fluxes (Smith & Smith, 2000), and that total logistics costs and emissions 

are a weak function of system capacity for both conventional and depot-based feedstock supply 

chains (Argo et al., 2013). 

Our production cost estimates are highly detailed in considering land conversion 

opportunity costs as a function of simulated productivity at high spatial resolution.  However, we 

assume a static cost model in which all input and commodity prices are fixed exogenous factors.  

While this is a reasonable assumption when considering a single biorefinery facility in isolation, 

the emergence of a more extensive bioenergy or biomaterials sector in the future would require a 
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more dynamic economic assessment approach in order to estimate feedbacks on agricultural 

input and commodity prices as feedstock production extends to a greater share of the agricultural 

landscape.  Economic partial equilibrium models can be integrated with spatially explicit 

ecosystem modeling efforts in order to make estimates of such market feedbacks (e.g., Cohn et 

al., 2014), though this introduces a new range of challenges and uncertainties to the assessment 

effort (Warner et al., 2013).  

Finally, while the current analysis thoroughly investigated feedstock price - GHG 

mitigation tradeoffs, a next logical step would be to determine how much of the landscape could 

be devoted to bioenergy feedstock production before the impacts of increasingly intensive 

feedstock production offset the fossil fuel displacement value of the resulting biofuel.  In order to 

make a credible estimate of the maximum GHG mitigation potential of a bioenergy production 

landscape our analytic approach would likely have to be expanded to consider:  a) a more 

detailed biomass logistics model;  b) conversion facility economies of scale and associated 

effects on facility energy use;  c) a more dynamic economic model capability of assessing market 

price feedbacks;  d) an estimate of the displacement ratio of gasoline by the finished biofuel 

(rebound effect);  and e) tradeoffs on other system impact criteria such as biodiversity. 
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Table 4.1.  Sensitivity analysis for total landscape GHG mitigation associated with a 25 MGY 
facility at a carbon valuation of $39/MgCO2 

Parameter or 
assumption 

Change Mitigation 
response 

Delivered cost 
response 

Default values - 0.041 Mg CO2 /  
Mg biomass 

$79.29 / Mg 
biomass 

Ecosystem modeling 
Yield (switchgrass, 
wheat, grass) average 

Uniform 10% 
increase -7.3% -3.4% 

Soil GHG flux (CO2, 
N2O) average value 

Uniform 10% 
increase +120% +0.34% 

Crop production budget 
Farm input (chemicals, 
fuel, labor) prices 

Uniform 10% 
increase -4.9% +7.5% 

Wheat price 10% increase -29% +3.3% 
Transport model 
Tortuosity factor 10% increase -7.3% +0.4% 
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Figure 4.1.  Landscape optimization sequence. 
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Figure 4.2.  Current land use distribution across the 7 county case study area.  Land types shown 
with exploded view are the primary focus of the assessment due to their RFS2 compliance and/or 

likelihood of conversion. 
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Figure 4.3.  Case study area showing a) soil surface texture and b) current land use, with federal 
and irrigated land excluded.  Case study cellulosic biorefinery location is marked at center. 
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Figure 4.4.  Area-weighted soil surface texture distribution by land use class, including land 
enrolled in Conservation Reserve Program (CRP) easements or the Biomass Crop Assistance 

Program (BCAP). 
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Figure 4.5.  Optimal landscape performance under different design strategies and policy 
constraints.  I. Pareto frontiers showing maximum landscape GHG mitigation and minimum 

average delivered feedstock cost to supply a 25 MGY facility, with landscape design solutions 
A-F highlighted for additional detail;  II. Maps showing optimal cultivation locations and 

management intensities for landscape solutions A-E (solution F not shown, as BCAP locations 
are confidential);  and associated feedstock GHG footprint (III) and delivered cost (IV) 

breakdowns. 

I. 

II. 

III. 

IV. 
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CHAPTER 5 
 

DISTRIBUTED BIOCHAR AND BIOENERGY CO-PRODUCTION:                                     

A REGIONALLY-SPECIFIC CASE STUDY OF ENVIRONMENTAL BENEFITS AND 

ECONOMIC IMPACTS1 

 
 
 

5.1.   Summary 

Biochar has been advocated as a method of sequestering carbon while simultaneously 

improving crop yields and agro-ecosystem sustainability.  It can be produced from a wide variety 

of biomass feedstocks using different thermochemical conversion technologies with or without 

the recovery of energy co-products, resulting in chars of differing quality and a range of overall 

system greenhouse gas (GHG) mitigation outcomes.  This analysis expands on previous 

sustainability studies by proposing a mechanistic lifecycle GHG and economic operating cost 

assessment model for the co-production of biochar and bioenergy from biomass residue 

feedstocks, with a case study for north-central Colorado presented.  Production is modeled as a 

continuous function of temperature for slow pyrolysis, fast pyrolysis, and gasification systems.  

Biochar environmental benefits (C sequestration, N2O suppression, crop yield improvements) are 

predicted in terms of expected liming value and recalcitrance.  System-level net GHG mitigation 

is computed, and net returns are estimated that reflect the variable economic costs of production, 

the agronomic value of biochar based on agricultural limestone or fertilizer displacement, and the 

value of GHG mitigation, with results compared to the alternate use of char for energy 

                                                
1 Field JL, Keske CMH, Birch GL, DeFoort MW, Cotrufo MF (2013) Distributed biochar and 
bioenergy coproduction: a regionally specific case study of environmental benefits and economic 
impacts. GCB Bioenergy, 5, 177–191. 
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production.  Case study results indicate that slow pyrolysis systems can mitigate up to 1.4 Mg 

CO2eq/Mg feedstock consumed, provided a favorable feedstock is utilized, production air 

pollutant emissions are mitigated, and energy co-products are recovered.  The model suggests 

that while financial returns are generally greater when char is consumed for energy (biocoal) 

than when used as a soil amendment (biochar), chars produced through high-temperature 

conversion processes will have greater GHG mitigation value as biochar.  The biochar scenario 

reaches economic parity at carbon prices as low as $50/Mg CO2eq for optimal scenarios, despite 

conservative modeling assumptions.  This model is a step toward spatially-explicit assessment 

and optimization of biochar system design across different feedstocks, conversion technologies, 

and agricultural soils. 

 

5.2.   Introduction 

Biochar is the carbon-rich solid co-product of thermochemical biomass conversion 

technologies.  Its production and application to agricultural soils has been advocated as a 

greenhouse gas (GHG) mitigation strategy capable of rapid deployment, substantial total annual 

abatement potential, and significant co-benefits for agricultural system sustainability (Lehmann 

2007b; Molina et al. 2009; Woolf et al. 2010).  Biochar is characterized by stable aromatic C 

structures, low O and H to C ratios, low bulk density, moderate cation exchange capacity (CEC), 

and high ash content, pH, and surface area (Lehmann, 2007a).  Because the C in biochar is 

derived from atmospheric CO2 fixed in biomass via photosynthesis, the stable storage of biochar 

in soils represents a long-term removal of atmospheric C, i.e. terrestrial C sequestration.  

Additionally, when applied as a soil amendment in agricultural systems, biochar has been shown, 

in many cases, to suppress N2O emissions (a byproduct of the microbial metabolism of nitrogen 
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fertilizer that dominates the GHG balance of many modern agricultural systems) (Clough & 

Condron 2010; Singh et al. 2010; Zheng et al. 2012) and improve crop yields (Atkinson et al. 

2010; Jeffery et al. 2011).  Like any other organic matter addition to soil, biochar application 

affects a multitude of soil properties including bulk density, water-holding capacity, drainage, 

CEC, and pH, resulting in a substantial re-engineering of the soil environment (Atkinson et al. 

2010) with respect to basic physical (Busscher et al. 2010) and chemical properties (Gaskin et al. 

2010), water dynamics (Gaskin et al. 2007), and macro- and micro-fauna viability (Liesch et al. 

2010; Lehmann et al. 2011).   

Biochar can be made from a variety of feedstock materials via several different 

thermochemical conversion pathways (Goyal et al. 2008; Meyer et al. 2011), resulting in chars 

with different chemical properties (Brewer et al. 2009; Keiluweit et al. 2010) and associated 

differences in recalcitrance (Spokas, 2010), agronomic performance (Atkinson et al. 2010; Deal 

et al. 2012), and overall economic value (Lin & Hwang 2009; Yoder et al. 2011).  

Thermochemical conversion involves the heating of biomass feedstocks in oxygen-restricted 

environments, causing the biomass to undergo a series of de-polymerization, volatilization, and 

reorganization processes resulting in a mixture of low-molecular weight gases, high-molecular 

weight condensable liquid vapors, and solid char (Laird et al. 2009).  A range of thermochemical 

conversion technologies exist, with process conditions such as temperature, heating rate, and 

atmosphere optimized to favor either solid, liquid, or gas yields (Goyal et al. 2008; Laird et al. 

2009; Brown et al. 2011; Meyer et al. 2011).  Slow pyrolysis typically involves the low-

temperature (300-550 °C) conversion of biomass with long residence times (e.g. hours), favoring 

yields of char (Gaunt & Lehmann 2008; Laird et al. 2009; Brown et al. 2011).  Fast pyrolysis is 

characterized by much faster heating rates, shorter residence times (e.g. seconds) and potentially 
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higher temperatures (350-900 °C), and has been explored as a method of generating high yields 

of stable, energy-dense pyrolysis oils (Wright & Brown 2007; Coleman et al. 2010).  

Gasification implies the high temperature (600-1200°C) intermediate-duration (10s of seconds) 

auto-thermal conversion of biomass, at less than stoichiometric air-fuel ratios, into a primarily 

gaseous product rich in H2, CO, and CH4 that can be used for power generation (Alauddin et al. 

2010; Mai Thao et al. 2011; Dasappa et al. 2011).  While each of these thermochemical 

conversion technologies have been used in the past for the production of fuels or feedstock 

chemicals, only gasification is typically employed for energy production today, and only in 

certain niche markets.  However, pyrolysis technologies with the potential to co-produce fuels 

and biochar are currently the subject of intensive research efforts (Bridgwater et al. 2002; Ringer 

et al. 2006) and numerous commercial ventures (Butler et al. 2011; Kauffman et al. 2011; 

Solantausta et al. 2012; US Biochar Initiative 2012).   

Though all of these processes will produce a solid, liquid, and gaseous product fraction, 

the yields and chemical composition of each fraction will vary considerably.  As a result, the 

derived char can display a wide range in properties such as pH and CEC that will affect its 

function as a soil amendment (Spokas & Reicosky 2009), and likewise the liquid and gas 

fractions will exhibit a range of different heating values that will dictate their value as energy 

products (Tsai et al. 2007).  In real-world thermochemical bioenergy systems not all product 

fractions are necessarily recovered for productive use, particularly in distributed small-scale 

systems where potential revenues from the smaller fractions are insufficient to justify capital 

investments in the required separation, filtration and other cleanup equipment.  Many slow and 

fast pyrolysis systems may in practice lack the capacity for pyrolysis gas recovery (Brick & 

Lyutse 2010), while many gasification systems make no provision for generating energy from 
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the pyrolysis oils filtered from the gas stream.  Pyrolysis gas management is particularly 

important for system sustainability, as the CH4 it contains is a potent GHG.  While not typically 

included in quantitative sustainability assessment studies, improper management (e.g. venting or 

incomplete flaring) of these gases has been hypothesized as a potentially significant source of 

GHGs and other air pollutants (Laird et al. 2009; Brick & Lyutse 2010). 

Several aspects of biochar production system sustainability can be quantified 

scientifically.  Lifecycle assessment (LCA) is the systematic study of input and output flows of 

materials and energy across a given production chain in order to determine its full cradle-to-

grave impact on areas such as anthropogenic GHG emissions, environmental quality, or human 

health (Finnveden et al. 2009).  LCA techniques have been widely applied to biofuel and 

bioenergy systems (Farrell 2006; Bai et al. 2010; Wang et al. 2011).  Several recent LCA studies 

and less formalized GHG mitigation assessments have analyzed the co-production of biochar and 

bioenergy from slow pyrolysis of various biomass feedstocks, considering GHG emissions 

associated with feedstock sourcing, bioenergy co-production, and agronomic effects of biochar, 

in addition to the direct C sequestration effect (Gaunt & Lehmann 2008; Roberts et al. 2010; 

Woolf et al. 2010; Hammond et al. 2011).  These studies conclude that such systems will 

mitigate 0.7-1.4 Mg CO2eq per Mg of feedstock consumed.  It is also recognized that there exists 

an inherent tradeoff between bioenergy and biochar production (Fowles, 2007).  Char produced 

through the thermochemical conversion of biomass has significant heating value and can be used 

as a fuel, or alternately the conversion system can be configured for the complete combustion of 

the feedstock for maximum energy generation with no char production.  These biochar GHG 

mitigation studies generally conclude that biochar-producing systems can have greater GHG 

mitigation value than systems configured for maximum bioenergy production, though the 
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underlying analysis typically relies upon coarse estimates of crop yield increases and N2O 

suppression based on extrapolations of small numbers of greenhouse or field trials.   

Significant work has also been conducted in the area of economic assessment of biochar 

systems (Islam & Ani 2000; McCarl et al. 2009; Lin & Hwang 2009; Roberts et al. 2010; Pratt & 

Moran 2010; Yoder et al. 2011; Galinato et al. 2011; Shackley et al. 2011).  These studies 

typically find that the potential economic profitability of biochar production systems varies 

depending on the feedstock used (Lin & Hwang 2009; Roberts et al. 2010), the conversion 

technology employed (Pratt & Moran 2010; Brown et al. 2011), or the inclusion of carbon 

credits reflecting the social value of GHG mitigation (Roberts et al. 2010; Pratt & Moran 2010; 

Galinato et al. 2011; Shackley et al. 2011).  One study has explored the implications of different 

production techniques and resulting variations in biochar properties for overall system 

performance, modeling the tradeoff between product yield and product quality as conversion 

temperature increases (Yoder et al. 2011).  Taken together, most of the existing biochar 

sustainability literature tends to focus on a somewhat narrow and idealized case of dedicated 

biochar production in modern, efficient slow pyrolysis systems.  However, practically speaking, 

much of the biochar available today or expected to be available soon will be either a) produced 

in small-scale carbonization systems that lack the capacity for air pollutant mitigation and energy 

co-product recovery; or b) a by-product from fast pyrolysis or gasification systems optimized for 

energy production rather than biochar production (e.g. Brick & Lyutse 2010; Deal et al. 2012).   

The purpose of this study is to construct an integrated lifecycle GHG and economic 

operating cost assessment tool around a detailed thermochemical biomass conversion dataset 

coupled with a mechanistic model of agronomic responses in order to assess the GHG mitigation 

and variable costs of systems that co-produce bioenergy and biochar, and to apply that tool to a 
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biochar production case study.  Yields and product qualities are compiled for slow pyrolysis, fast 

pyrolysis, and gasification across a range of reaction temperatures, with the recovery of 

individual product fractions adjusted as appropriate for the type of system modeled.  Biochar 

recalcitrance is estimated as a function of production temperature, and agronomic response is 

modeled based on the biochar liming effect.  While biochar addition affects a variety of physical, 

chemical, and biological soil properties, this analysis focuses exclusively on the liming effect 

because a) pH increases have been observed across a wide variety of biochar trials (Blackwell  et 

al. 2009; Streubel et al. 2011); b) liming effects are relatively straightforward to simulate 

quantitatively (Galinato et al. 2011); and c) meta-analyses show agronomic reposes to be better 

correlated with pH changes than other biochar effects (Verheijen et al. 2009; Jeffery et al. 2011).  

Several aspects of the sustainability of biochar systems will vary regionally, including the 

availability of different feedstocks, the prices of system inputs and outputs, and the agronomic 

response to amendment of a specific soil type.  A regional case study is presented in order to 

ground the analysis for a specific production case with realistic feedstock materials, 

transportation distances, energy pricing, and agronomic conditions.  Following the presentation 

of the case study, the analysis is generalized to investigate sustainability in systems based on 

different conversion technologies and feedstocks, and with different transportation distances and 

native soil qualities, in order to enrich the analysis and bound the range of scenarios that are 

likely to achieve positive results.   

Overall this analysis expands on previous LCA and economic assessment methods in the 

literature to elucidate: a) how system configuration and production-phase air pollutant 

management affect net environmental benefits and economic returns; b) how the quality, 

agronomic performance, and associated value of biochar changes across a range of 
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thermochemical conversion conditions; and c) under what circumstances system optimization for 

environmental versus economic outcomes are in competition. 

 

5.3.   Methods 

An integrated lifecycle GHG and economic operating cost assessment tool is developed 

to examine the feasibility of establishing a biochar and bioenergy co-production facility in north-

central Colorado.  This tool considers a variety of feedstocks and thermochemical conversion 

technologies, and models biochar properties, recalcitrance, and agronomic responses in a 

continuous, mechanistic manner.  An LCA approach is employed, and the assessment is 

consequential in that it focus on marginal emissions associated with a specific case study, the 

principle of system expansion is used to value the GHG impact of energy co-products, and 

indirect effects are included where appropriate (specifically, indirect N2O) (Brander et al. 2008; 

Kauffman et al. 2011).  The functional unit considered is the management of 1 dry Mg of 

biomass residue.  The lifecycle inventory is constructed from a variety of sources, with many of 

the upstream embodied emissions and system expansion factors derived from the Argonne 

National Laboratory GREET model (Wang, 1999) version 1.8d.  The impact assessment 

considers climate change impact using the metric of global warming potential (GWP). 

The model follows the convention of treating CO2 emissions from harvested biomass as 

neutral (e.g. assuming rapid biomass regrowth), but includes emissions of non-CO2 GHGs such 

as CH4 from the uncontrolled open burning of those feedstocks or from pyrolysis in scenarios 

where pyrolysis gas emissions are not captured or flared.  Both CO2 and non-CO2 GHG 

emissions associated with lifecycle fossil energy use are included where necessary.  Capital 

embodied emissions are assumed to be similar across the different scenarios investigated and 
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small enough relative to other lifecycle emissions (Hill et al. 2006) that they could be considered 

negligible.  Likewise, the economic model specifically focuses on operating costs, otherwise 

known as variable costs, associated with the co-production of energy and biochar, and does not 

include capital costs.  Capital costs are not negligible for determining the overall feasibility of 

commercial systems; a recent economic analysis found that they contribute 27-31% to total 

biochar production costs from forestry residues, depending on system scale (Shackley et al. 

2011).  However, focusing exclusively on operating costs is a reasonable approach for the first-

order estimate of design tradeoffs investigated in this study, and a fully developed enterprise 

budget-based profitability assessment of biochar production systems is outside the scope of the 

current analysis.  An overview of the integrated analysis methods is presented below, while some 

of the more technical details are given in Appendix C. 

 

5.3.1. Case study scenarios 

A case study is conducted for locating a thermochemical biomass conversion facility in 

Larimer County, Colorado, operating on one of two different locally-available biomass residue 

feedstocks.  The case study lifecycle inventory includes: 1) operations associated with sourcing 

feedstock material; 2) feedstock transport to a centralized conversion facility; 3) processing and 

thermochemical conversion into biochar and energy co-products with associated air pollutant 

emissions; 4) transport of the resulting biochar to appropriate agricultural regions; and 5) biochar 

application to agricultural soils with associated direct sequestration of C, as well as displacement 

of agricultural inputs and suppression of N2O emissions due to the liming effect (Figure 5.1).  

Agronomic benefits are evaluated in the context of winter wheat production under two different 

sets of assumptions: a) an initially-limed system in which biochar application displaces an 
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equivalent amount of agricultural limestone (aglime) application (Galinato et al. 2011) while soil 

pH, nitrogen fertilizer inputs, and crop yield remain constant; and b) an initially non-limed 

system in which biochar application increases soil pH, reducing the amount of N fertilizer 

required to maintain a given crop yield and partially suppressing N2O emissions (Gaunt & 

Lehmann 2008; Roberts et al. 2010; Woolf et al. 2010).  

The case study evaluates the use of pine wood and slash sourced from Jackson County, 

Colorado (Figure 5.2), as a waste biomass feedstock material.  Forests in Jackson County have 

been devastated by an outbreak of the Mountain Pine Beetle (US Forest Service, 2012), and dead 

pine trees in proximity to roads, homes, and recreational area are being cleared to reduce the 

risks of wildfire and falling trees.  The material is typically piled and open-burned for disposal, 

with significant associated air pollutant emissions.  In this analysis the feedstock is transported 

via diesel truck to Larimer County, Colorado, where it is then ground prior to thermochemical 

conversion.  The second biomass residue feedstock is spent grains produced at one of the many 

breweries in Larimer County.  Similar to distillers grains and solids (DGS) derived from corn 

ethanol production, these spent grains have value as animal feed capable of offsetting corn and 

soy consumption (Arora et al. 2008).  In this case the spent grains are assumed to be dried in a 

natural gas-fired drier and consumed in a thermochemical conversion facility co-located with the 

brewery.  Forgone emissions-avoidance and revenues associated with alternate management of 

the biomass residue feedstocks are treated as opportunity costs or credits (Woolf et al. 2010). 

The analysis considers the conversion of these biomass feedstocks to char and energy co-

products through traditional charcoal production methods (carbonization), slow pyrolysis, fast 

pyrolysis, or gasification, as these are the most well-developed thermochemical conversion 

technologies (Meyer et al. 2011).  It is assumed that char is recovered for each technology and 
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consumed locally as a substitute for coal (biocoal) in industrial boilers or power plants, or 

transported to Hall County, Nebraska and used as a soil amendment in winter wheat farms, 

applied a single time in the course of normal tillage operations at a rate of 25 Mg biochar per 

hectare.  This particular site is selected since it is one of the closest areas with agriculture on 

native low-pH soils, specifically a Corzad loam of pH 5.6 and CEC of 15 cmole/kg (Soil Survey 

Staff, 2012). In the same manner, other recovered product fractions are assumed to be used for 

energy generation locally, displacing the use of fossil fuels. 

 

5.3.2. GHG accounting 

Standard UN Intergovernmental Panel on Climate Change values for the GWP of CH4 

and N2O on a 100-year analytical time horizon are used for this analysis (Solomon et al. 2007), 

and values for CO, non-methane hydrocarbons, and particulate matter emissions are taken from 

Grieshop et al. (2011) (Appendix C section C.1).  The direct C sequestration value of biochar is 

estimated as a carbon stability factor (Hammond et al. 2011) in CO2-equivalent terms according 

to the equation  

 

where 3.66 is the ratio of the molecular weight of CO2 to that of C, t1/2 the half-life of biochar in 

soil, and TH the analytical time horizon, in this case 100 years.  The sequestration value of the 

char varies from zero to -3.66 Mg CO2eq/Mg biochar-C as recalcitrance increases. 

 



 139 

5.3.3. Feedstock sourcing 

Harvest costs for beetle-kill pine are estimated from local US Forest Service studies 

(Lynch & Mackes 2003; Duda 2008), and associated GHG emissions are estimated by applying a 

general emissions intensity term for the US forestry sector (US Department of Commerce, 2010).  

The authors have made a conservative assumption of attributing these costs and emissions fully 

to the biochar lifecycle, even though large quantities of beetle-killed pine wood and slash will 

continue to be collected and piled for disposal via open burning in Jackson County regardless of 

the existence of a local biochar industry.  Since the alternate disposal method is uncontrolled 

open burning with high associated emissions of CH4, particulate matter, and other products of 

incomplete production, an emissions credit based on data from McMeeking et al. (2009) is 

applied to the biochar production scenario for the avoidance of those emissions.  It is assumed 

that the material will air dry to a moisture content of 10% after harvest but prior to transport, 

which is described in the next section.  Feedstock handling and grinding costs at the conversion 

facility are estimated from Hess et al. (2009), and associated GHG emissions are computed using 

the same emissions intensity factor for the US forestry sector employed previously.  Modeling of 

the spent grains feedstock sourcing is described in Appendix C Section C.2. 

 

5.3.4. Transport 

Diesel fuel consumption and associated emissions are modeled for the transport of pine 

feedstock 100 miles (160 km) from Jackson County to Larimer County, Colorado, and for the 

transport of biochar to Hall County, Nebraska (400 mi/645 km, Figure 2).  The analysis models 

transport in heavy trucks using default payload capacity and fuel economy values from a 

trucking cost model (Norris, 2009) and from the GREET model.  The full lifecycle emissions 
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associated with consuming a unit of diesel fuel is calculated by combining tailpipe CO2 

emissions along with an estimate of the embodied emissions associated with the upstream 

extraction, refining, and distribution of the fuel.  Both estimates are derived from the GREET 

model (detailed in Appendix C Section C.3). 

 

5.3.5. Thermochemical conversion 

Thermochemical conversion product yields and associated heating values, as well as char 

C content, are modeled continuously as a function of temperature based on bench-top scale 

analyses from the literature specific to pine wood and spent grains feedstocks.  A composite 

dataset simulating the slow pyrolysis of pine is assembled with data from Şensöz & Can (2002), 

Şensöz (2003), and DeSisto et al. (2010) for temperatures from 350-500 °C.  Likewise, fast 

pyrolysis of pine is modeled from 400-600 °C with data from DeSisto et al. (2010), and 

gasification from 650-775 °C with data from Herguido et al. (1992) and Brewer et al. (2009).  

Note that the slow pyrolysis and gasification datasets are composites assembled from across 

multiple studies (the assumptions underlying which are detailed in Appendix C Section C.4) and 

are thus somewhat more speculative than the fast pyrolysis dataset.  No scaling factors are 

applied to bench-top scale results, and there is uncertainty around achieving these exact product 

distributions in a large-scale system.  This is particularly true in the case of fast pyrolysis, where 

the ability to match bench-top scale heat transfer rates at commercial scale is the subject of 

considerable research (Ringer et al. 2006), and as a result this scenario should be viewed more as 

a bound than an expected value.  However, it is not uncommon for assessment studies to assume 

bench-top scale product distributions directly for large-scale systems (Bridgwater et al. 2002; 

Ringer et al. 2006).  In addition to these continuous process models, point estimates for other 
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technologies and feedstocks are included in the model for comparison.  The production of char 

from wood via carbonization in a more traditional batch charcoal kiln design is modeled with 

data from Pennise et al. (2001) in order to contrast traditional char production processes with 

modern ones.  While the authors are unable to identify continuous data or slow pyrolysis data for 

the spent grains feedstock in the literature, fast pyrolysis of spent grains at a single temperature 

(500 °C) is modeled for barley DGS as per Mullen et al. (2009).  Details of the studies 

underlying these datasets are given in Table 5.1.   

These product fractions are then corrected to reflect a) the consumption of energy co-

products on-site to drive the endothermic pyrolysis process; or b) those that are not typically 

recovered in a useable form.  It is assumed that the energy equivalent of 0.21 kg of pyrolysis gas 

is required to drive the pyrolysis (fast or slow) of 1 kg of dry biomass (Brown et al. 2011), and 

that the higher energy requirements of higher-temperature pyrolysis is compensated by the 

increased heating value of the gas produced under these conditions.  In production regimes 

where gas yields are insufficient to meet this requirement, a fraction of one of the other products 

(pyrolysis oil for slow pyrolysis and char for fast pyrolysis) is consumed to fulfill the 

requirement.  Gasification is auto-thermal and thus no products are consumed externally to drive 

the process, but it is assumed that the liquid fraction (tar) produced is not recovered for energy 

generation due to the relatively small yield and low quality.  In the traditional charcoal kiln 

scenario it is assumed that pyrolysis oil and gas are not recovered for energy production but 

rather are vented to the atmosphere or flared.   

Recovered pyrolysis oils are modeled as being consumed locally to displace heavy fuel 

oil use on an energy-equivalent basis.  Pyrolysis gases are modeled as being converted to 

electricity to offset grid electricity demand on-site.  For biocoal scenarios, the char is assumed to 
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displace local coal consumption on an energy-equivalent basis.  It is assumed that non-CO2 GHG 

emissions rates are similar between heavy fuel oil and bio-oil (Solantausta et al. 2012) and 

between coal and biocoal, so no additional GHG burden is calculated at this step.  The details of 

these calculations are described in Appendix C Section C.4.   

 

5.3.6. Biochar amendment to agricultural soils 

Biochar recalcitrance to biotic and abiotic mineralization after its application to soil is 

modeled as per Spokas (2010), which compiles data from a number of studies and maps biochar 

half-life estimates ranging over several orders of magnitude to char production temperature using 

char O:C ratio as proxy.  A conservative fit of half-life versus O:C is used here, as detailed in 

Appendix C Section C.5.  Biochar half-life estimates are then converted to CO2-equivalent 

sequestration terms using Equation 1.  The potential for a biochar ‘priming effect’ leading to 

changes in native soil organic matter dynamics is ignored in this analysis. While some previous 

LCA studies attempt to include such an effect (e.g. Woolf et al. 2010), recent studies suggest that 

the direction of the effect varies among soils and its magnitude is small (e.g. Stewart et al. 2012). 

Several sources in the literature report the liming value of various biochars in terms of 

calcium carbonate equivalence (CCE), along with their elemental makeup (Van Zwieten et al. 

2009; Van Zwieten, Kimber, Downie, et al. 2010; Van Zwieten, Kimber, Morris, et al. 2010).   

The authors compile a composite dataset from these sources and supplement the analysis with 

additional biochar samples (see Appendix C Table C.1 for additional details).  The measured 

CCE is regressed against biochar elemental composition including C, ash, and base element 

content using JMP Pro 9 (SAS Institute Inc.).  It is found that CCE is well-predicted based on the 

final base and ash content of the biochar (adjusted R2=0.78, p=0.0047) according to the 
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empirically-derived regression: 

           

where CCE is the acid-neutralizing capacity of material relative to that of pure CaCO3, B the 

percentage of base elements (Ca, Mg, K, and Na) in the biochar, and A the total ash content, all 

on a mass basis.  The base and total ash content of the pine feedstock are estimated from 

Bramryd & Fransman (1995), and those of spent grains using data on DGS from Spiehs et al. 

(2002).  These mineral fractions are not perfectly conserved during the thermochemical 

conversion (Gaskin et al. 2008; Novak et al. 2009) and a uniform recovery factor of 80% is 

assumed for both base and total ash content of the feedstocks across all scenarios.  

The liming effect is then evaluated in the context of a previously-limed scenario in which 

aglime consumption is displaced, and a previously-unlimed scenario in which fertilizer is 

displaced.  In the first case, biochar displaces an equivalent amount of aglime of 100% CCE 

value (pure calcitic limestone).  A fraction of the C in aglime is released as CO2 during the re-

acidification of the soil over time (West & McBride, 2005), and this avoided emission is credited 

to the biochar in addition to the embodied emissions from the manufacture and distribution of the 

displaced aglime as estimated in GREET.  Final soil pH and associated crop yields are assumed 

uniform in this scenario.  In the second case it is assumed that soil is not initially being limed, 

and any biochar additions will result in an increase in soil pH, computed based on the initial soil 

CEC (a proxy for soil buffering capacity) according to the Adams-Evans method (Evans & 

Adams, 1962) and comparable in duration to that encountered with an application of aglime as 

reported in Lukin & Epplin (2003).  In an acid soil this pH increase can result in an improvement 

in crop productivity and associated reduction in the amount of nitrogen fertilizer needed to 

maintain a given yield (assuming a baseline fertilizer rate below that of maximum yield 
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response), as well a reduction in N2O emissions based on the decreased fertilizer application rate 

combined with a pH-mediated reduction in the N-to-N2O emissions factor (Clough & Condron 

2010; Zheng et al. 2012).  The associated calculations are detailed in Appendix C Section C.5.   

 

5.3.7. Economic assessment 

An economic assessment of system operating costs is performed by applying prices to all 

lifecycle model inputs of material and labor, and all system outputs, as detailed in Appendix C 

Section C.6 and Table C.2.  In the case of the spent grains feedstock, DGS prices reflect the 

opportunity cost of using the material as a feedstock rather than as animal feed.  Prices for 

commodities subject to high price volatility (e.g. some fuels and energy-intensive products such 

as nitrogen fertilizer) are computed based on multi-year averages.  The value of biochar is 

inferred from the cost of aglime or nitrogen fertilizer displaced, depending on the scenario.  All 

prices are adjusted for inflation to 2012 US dollars.   

Complex non-market valuation models can be conducted for a variety of environmental 

externalities associated with the energy and agricultural sectors (e.g. air and water pollutant 

emissions) (Keske, 2011).  However, the non-market valuation in the current analysis is limited 

to the pricing of GHG emissions in order to quantify the social benefit of systems that mitigate 

GHGs relative to the fossil fuel status quo.  Marginal damage estimates are taken from the 

United States Government Interagency Workgroup on Social Cost of Carbon (2010), with a 

median estimate of the social cost of carbon (SCC) of $23.09/Mg CO2eq when adjusted for 

inflation.  Note that while most carbon emissions trading systems focus on a narrow set of GHGs 

(CO2, CH4, and N2O as per the Kyoto protocol) and approved mitigation technologies, CO2-

equivalent forcings from particulate matter emissions and direct sequestration of CO2 as biochar-
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C are monetized here as well in order to reflect the best estimate of total system climate impact.   

Conversely, the price of carbon necessary to achieve parity of returns between a low-financial 

return, high GHG-mitigation biochar scenario and a higher return but lower GHG-mitigation 

biocoal scenario can be calculated as follows: 

              

where R denotes financial returns ($/Mg feedstock) in the absence of non-market or social costs 

of carbon, GHG denotes the net greenhouse gas mitigation of the scenario (Mg CO2eq/Mg 

feedstock), and the subscripts coal and char correspond to the biocoal and biochar scenarios, 

respectively. 

 

5.4.   Results 

5.4.1. Slow pyrolysis: effects of technology configuration 

The analysis suggests substantial GHG mitigation but weak economic performance for 

the slow pyrolysis case study scenario assessed.  The net mitigation of 1.41 Mg CO2eq (100-y 

time horizon) and a net revenue of -$78 (i.e. unprofitable operation) are predicted for every 

metric ton of dry pine feedstock processed through this system (Figure 3), assuming slow 

pyrolysis at 500 °C with pyrolysis oil recovery, biochar application at a rate of 25 Mg/ha (~2% 

by mass at an incorporation depth of 10 cm), and biochar valuation based on fertilizer 

displacement (note the sign convention of showing GHG avoidance and revenues as positive, 

and GHG emissions and costs as negative).  The largest positive contributor to GHG mitigation 

is the direct sequestration of carbon in soil as biochar-C.  Under these conversion conditions the 

model predicts a char mass yield of 29% with a C concentration of 89% and an O:C ratio of 0.21, 
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corresponding to a conservative soil half-life estimate of 240 years and a resulting C 

sequestration value of 0.76 Mg CO2eq/Mg feedstock processed.  System economic returns are 

dominated by pyrolysis oil production at a 21% yield and a higher heating value of 34.1 MJ/kg.  

This results in a heavy fuel oil displacement rate of 0.8:1 that contributes 0.61 Mg CO2eq/Mg 

and $61/Mg to the system GHG mitigation and financial returns, respectively.  Significant costs 

are incurred to harvest the pine feedstock (-$109/Mg) and from lifecycle energy use associated 

with transport, handling, and grinding of the feedstock and transport and field incorporation of 

the derived char (-$63/Mg), though the GHG burden associated with these operations (-0.03 and 

-0.05 Mg CO2eq/Mg) is relatively small.  Smaller GHG benefits are accumulated from the 

avoidance of open burning of the pine residue material (0.10 Mg CO2eq/Mg) and the 

displacement of fertilizer and N2O emissions suppression (0.03 Mg CO2eq/Mg).  Finally, 

monetizing total system GHG mitigation at a SCC of $23/Mg CO2eq contributes a further 

$33/Mg of revenue.  When all of these terms are combined the system shows a strong GHG 

mitigation potential, though production costs are so high that it would operate at a net loss even 

before capital costs are considered. 

These GHG mitigation and economic return estimates are highly dependent on the 

configuration of the char production system (Figure 5.4).  For the same scenario relying on a 

traditional batch carbonization method with uncontrolled air pollutant emissions and no energy 

co-product recovery, net system GHG mitigation value drops to virtually zero; this is primarily 

the result of losing the mitigation value of pyrolysis oils displacing heavy fuel oil use and the 

accumulation of an additional GHG burden of -0.72 Mg CO2eq/Mg feedstock from the 

uncontrolled release of high-GWP pyrolysis gases.  Associated net economic returns drop to a 

deficit of -$171/Mg feedstock processed.  System GHG performance is improved somewhat with 
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the addition of pyrolysis gas flaring, though performance is better still for modern slow pyrolysis 

systems that completely combust excess pyrolysis gases in the course of electricity generation.  

Net economic returns are particularly poor across all system configurations that do not include 

recovery of the pyrolysis oil fraction.  For both traditional kilns and slow pyrolysis systems the 

char produced has relatively high heating value (~31 MJ/kg). As a result, the biocoal scenario 

leads to better GHG and economic results from the displacement of coal than the biochar 

scenario does through the direct sequestration of C and displacement of fertilizer and suppression 

of N2O in agricultural soils. GHG mitigation and economic returns are reasonably well-

correlated across all of the scenarios plotted in Figure 4 (Spearman ρ=0.70, p=0.05), suggesting 

that optimizing the system configuration to maximize profitability will also tend to maximize 

GHG performance even in the absence of carbon social cost valuation.   Monetizing system 

GHG mitigation increases net returns, but even the best-performing scenario still operates at loss. 

 

5.4.2. Fast pyrolysis: effects of feedstock choice 

The choice of feedstock can significantly affect system GHG balance and profitability.  

Pine and spent grains feedstocks are contrasted directly for a fast pyrolysis process at 500 °C in 

Figure 5, and spent grains system performance is characterized by lower net GHG mitigation 

value (0.97 versus 1.58 Mg CO2eq/Mg feedstock) but higher economic returns (-$8 versus -

$45/Mg feedstock, again both net losses) than pine.  The difference in GHG performance is 

driven primarily by the emissions associated with sourcing the feedstock itself.  While in the case 

of pine the avoidance of air pollution from open burning more than offsets emissions from 

feedstock harvest, the spent grain carries a large opportunity emissions burden (-0.44 Mg 

CO2eq/Mg) associated with diverting the feedstock away from use as an animal feed replacing 
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corn and soy consumption, as well as significant emissions associated with drying the material 

down to 10% moisture content (-0.19 Mg CO2eq/Mg).  The spent grain scenario is also 

characterized by lower biochar-C concentration (51%) and higher pyrolysis oil heating value 

(32.9 MJ/kg) as compared to the pine scenario (76% and 24.7 MJ/kg).  However, the resulting 

effects of less direct soil C sequestration and greater heavy fuel oil displacement roughly cancel 

each other out on a GHG basis.  While the spent grain feedstock carries a large opportunity cost 

(-$91/Mg), it is still somewhat lower than the harvest cost of pine (-$109/Mg).  This, in addition 

to larger revenues associated with the greater heavy fuel oil replacement rate, makes the spent 

grains scenario more profitable than the pine feedstock, though net returns are still negative. 

 

5.4.3. Biochar valuation 

This analysis includes the valuation of biochar by two different methods (aglime 

displacement and fertilizer displacement), the results of which are shown in Table 5.2 for the 

scenario of modern slow pyrolysis of pine at 500 °C described above.  When this biochar is used 

in place of aglime it results in the displacement of 61 kg lime per Mg char (based on the 

predicted CCE value), which is associated with the avoidance of 53 kg CO2eq/Mg biochar and a 

value of $0.53/Mg.  In the alternate scenario where the biochar is introduced into a non-limed 

system, it is predicted to increase soil pH by 0.13 units, improving fertility by approximately 2% 

and allowing a reduction in fertilizer application rate of 11 kg ammonia per hectare for the 

duration of the liming effect.  The combined effect of N2O reduction and nitrogen fertilizer 

embodied emissions avoidance in this case is 87 kg CO2eq/Mg biochar, and the fertilizer savings 

is valued at $1.48/Mg biochar.  For the remainder of the analysis the fertilizer displacement 

method is used for biochar valuation.   
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However, additional emissions and costs are incurred for the transport of biochar from 

the thermochemical conversion facility to the farm and for soil application, detracting from its 

overall value.  This effect can be bounded in terms of the maximum transport distance possible 

before transport and application emissions or costs outweigh agricultural GHG mitigation 

benefits (not including the direct C sequestration value of the biochar) or revenues with or 

without carbon social cost valuation, given a farm soil buffering capacity.  For scenarios where 

fertilizer displacement is considered, positive GHG mitigation is the least-binding criteria, and 

maximum transport distances of 1640 and 520 km can be tolerated for biochar that will be 

applied to soils with a CEC of 5 and 20 cmole/kg, respectively (assuming an initial pH of 5).  

Achieving positive revenues is more constraining, with maximum transport distances of 50 and 

125 km with and without carbon valuation, respectively, for low buffering-capacity soils (CEC 

of 5 cmole/kg).  When aglime displacement is considered, incorporation costs will always 

outweigh biochar revenues, even at transport distances of zero.  Note that the case study scenario 

includes a biochar transport distance of 645 km and application to a native soil of CEC of 15 

cmole/kg.  In this case, the costs associated with biochar transport and incorporation outweigh 

the agronomic value of the char, even when the non-market values of agronomic GHG 

mitigation are calculated.  The associated emissions value is negative when biochar is valuated 

as displacing aglime but positive when displacing fertilizer.   

 

5.4.4. Biochar versus biocoal across conversion technologies  

This analysis finds that financial returns from using char as biocoal are higher than that of 

using it as biochar across all of the production technologies, conversion temperatures, and 

agricultural soil properties explored.  However, the net GHG mitigation value of biochar does 
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exceed that of biocoal under certain conditions, as plotted for three different production 

technologies as a function of conversion temperature and soil CEC in Figure 5.6.  Regions 

shaded bright red and purple represent regimes for which biochar GHG mitigation outperforms 

that of biocoal by up to 0.11 Mg CO2eq/Mg feedstock consumed.  This occurs for fast pyrolysis 

scenarios at high conversion temperatures and low soil CEC values, and across all gasification 

scenarios investigated.  These conversion conditions are associated with relatively high char C-

concentration, recalcitrance, and liming values, and relatively low heating values.  Since biochar 

is shown to outperform biocoal on a GHG basis but underperform on a revenue basis, Equation 3 

can be applied to compute the price of carbon necessary to make up the revenue deficit (PC).  

These results are shown for gasification in Figure 5.7, indicating that biochar will be more 

valuable than biocoal at carbon prices as low as $49/Mg CO2eq when produced at high 

conversion temperatures and used in soils with low buffering capacity, to as high as $155/Mg 

CO2eq under the opposite conditions.   

 

5.4.5. Sensitivity analysis 

Sensitivity analysis is performed on the price of carbon for biochar-biocoal parity (PC), 

since this parameter encompasses both the GHG and revenue aspects of the assessment into a 

single metric.  Sensitivity of results is evaluated in response to a standardized perturbation to key 

input parameters, as is commonly done for speculative assessment scenarios where rigorous 

bounding of total uncertainties is problematic (e.g. Bridgwater et al. 2002; Bergqvist et al. 2008).  

The analysis of pine gasification at 700 °C and biochar application in soils of pH 5 and 10 

cmole/kg CEC (see Figure 5.7) is perturbed by increasing or decreasing the value of key model 

input parameters by 1%, and the resulting response in PC is plotted in Figure 5.8.  This analysis 
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shows that results are driven primarily by the physical properties of the char; a 1% reduction in 

biochar C-content increases PC by 9%, while a 1% increase in char heating value increases PC by 

8%.  Input parameters of intermediate influence (0.2-0.9% response to a 1% perturbation) 

include labor and energy prices and variables describing the duration of the char liming effect 

and the stability of biochar in soil, as well as the magnitude of the baseline farm soil N2O 

emission rate.  The char CCE regression coefficient and the price of fertilizer exert minimal 

influence on overall results (~0.1% response to a 1% perturbation).  The model is even less 

sensitive to changes in biochar incorporation costs. 

 

5.5.   Discussion 

The goal of this analysis is to develop an integrated lifecycle GHG and economic 

operating cost assessment tool applicable to biochar production in north-central Colorado.  The 

model captures some of the diversity in biochar production technologies encountered in the real 

world, models the C sequestration and agronomic value of biochar in a mechanistic manner, and 

estimates the value of biochar based on its displacement of other agricultural inputs.  Overall, the 

analysis suggests that:  a) slow pyrolysis biochar systems based around modern conversion 

technologies can mitigate up to 1.4 Mg CO2eq/Mg pine wood feedstock in Colorado, but this 

performance depends on air pollutant management and energy co-product recovery; b) the 

locally-available biomass residue feedstocks considered are generally too expensive for system 

profitability; c) the agronomic value of biochar makes only a very small contribution to total 

system GHG mitigation and profitability; and d) that using char as biochar only unambiguously 

outperforms using it as biocoal when it is produced via high-temperature fast pyrolysis or 

gasification and when GHG mitigation is valued above $50/Mg CO2eq.  
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The net GHG mitigation estimate for the biochar-producing slow pyrolysis system 

assessed in this case study is very comparable to that estimated by other assessment studies in the 

literature, which typically report mitigation values between 0.6 and 1.4 Mg CO2eq/Mg 

depending on the details of the scenario (Gaunt & Lehmann 2008; Roberts et al. 2010; Woolf et 

al. 2010; Hammond et al. 2011; Kauffman et al. 2011), as summarized in section S7 of the SI.  

The relatively low GHG footprint of sourcing the pine feedstock considered here contributes to 

the positive overall results.  Also, the assumption of pyrolysis oils being used to displace heavy 

fuel oil locally rather than being combusted directly for electricity generation further improves 

the GHG balance relative to other studies, since fuel oil always has a high GHG footprint 

whereas the footprint of electricity generation being displaced can vary regionally.  This analysis 

implicitly assumes that total regional biochar production is sufficiently low that local fuel oil 

demand will fully consume the associated pyrolysis oil co-product.   

The lack of profitability of the slow pyrolysis scenario modeled in this case study is 

somewhat unexpected, though not inconsistent with other economic assessment studies that 

report both positive and negative net returns depending on the feedstock used (Roberts et al. 

2010), conversion technology employed (Pratt & Moran, 2010), and price of carbon (Galinato et 

al. 2011).  This result is primarily driven by the cost of feedstock sourcing; spent grains have a 

significant opportunity cost stemming from their value as animal feed, and the harvest of beetle-

killed pine is very costly.  Studies suggest that large quantities of cellulosic biomass will be 

available at the national level for the future bioenergy industry at prices starting as low as $25-

60/Mg (Jain et al. 2010; U.S. Department of Energy 2011; Egbendewe-Mondzozo et al. 2011), a 

range low enough to move some of the scenarios analyzed here into profitability if located in 

appropriate regions.   
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The finding that biocoal will be more profitable across all scenarios analyzed and will 

mitigate more GHG emissions when char is produced by slow pyrolysis and under most fast 

pyrolysis conditions also runs counter to the conventional wisdom.  While previous studies 

typically make assumptions about crop yield response and N2O suppression that are largely 

independent of specific biochar physical and chemical properties, those authors find that biochar 

outperforms energy-maximizing scenarios on a GHG basis.  There is, however, wide 

disagreement as to whether that result is sensitive or insensitive to factors such as biochar 

recalcitrance in soil (Gaunt & Lehmann 2008; Hammond et al. 2011), displaced electricity GHG 

footprint (Woolf et al. 2010), or even system analytical boundaries (Roberts et al. 2010).  This 

study is similar in that it reports a nuanced result in which biochar will only outperform an 

energy-maximizing scenario within certain limits of production temperature and application rate, 

outside of which the recalcitrance level and liming effect are too low to produce GHG mitigation 

in excess of what would be achieved from displacing fossil coal emissions.  However, both the 

biochar and biocoal scenarios lead to significant GHG mitigation, and the difference between 

these two values is relatively small and thus highly sensitive to certain modeling assumptions, as 

illustrated in the sensitivity analysis.   

The approach of this study to estimate the GHG benefits and economic value of biochar 

based solely on its liming potential is very conservative, in that it neglects other potential 

benefits from biochar application in agricultural systems.  In addition to liming effects, evidence 

suggests that biochar can have agronomic value with respect to water dynamics, nutrient 

retention, and microbial activity.  In some cases the underlying drivers (CEC, surface area) of 

these effects will show the same positive relationship with production temperature (Lehmann, 

2007a) that liming capacity is predicted to have here.  It is effects such as these, rather than a 
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transient liming effect, that underlie the long-term improved fertility of the Terra Preta soils that 

inspired the biochar concept (Glaser et al. 2001; Laird et al. 2009).  However, such effects have 

been neglected here due an incomplete understanding of their mechanism that makes assessment 

extremely challenging.  While it is debatable whether or not the biochar market is sufficiently 

well-developed that current prices accurately reflect the underlying agronomic value of biochar, 

the fact that there are a diversity of niche markets willing to pay several orders of magnitude 

more for biochar (Keske & Lohman 2012) than the valuation estimated here strongly suggests 

that char has additional benefits beyond what can be explained through the liming effect alone.  

The analysis is also conservative to the extent that no attempt is made to correct for the 

decreasing value of the biocoal alternative as char ash concentration increases with production 

temperature, resulting in a fuel with greater propensity for slagging (Vamvuka et al. 2010).   

Finally, it is also likely that the true GHG-mitigation value of biochar is under-estimated 

with the carbon stability factor approach used here and in most other biochar LCA studies.  

While this analysis only considers the GHG-mitigation impact of the fraction of biochar-C 

remaining in the soil at the end of 100-year analytical time horizon, a more dynamic accounting 

approach would consider the CO2-equivalent value of the transient sequestration of the char 

volatile fraction.  Dynamic accounting of changes in carbon sinks is becoming more common in 

bioenergy LCA studies  (O’Hare et al. 2009; Cherubini et al. 2011), and it is conceivable that it 

might significantly raise the GHG mitigation value of biochars, particularly those with relatively 

low soil half-lives relative to the analytical time horizon.   

These limitations notwithstanding, the authors believe this study makes an important step 

in improving the methodology of sustainability assessment in biochar systems.  It expands the 

scope of analysis beyond slow pyrolysis systems to account for the diversity of thermochemical 
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technologies that are currently producing biochar around the world, and includes effects such as 

conversion air pollutant emissions that are neglected in other studies. The transition to 

continuous, mechanistic estimates of thermochemical conversion product yields and biochar 

recalcitrance and agronomic benefits has the potential to improve assessment accuracy and 

address the tradeoffs inherent in the design of such systems.  This is consistent with the 

increasingly-common use of biophysical models of feedstock production and soil management in 

bioenergy LCA (Zhang et al. 2010) and economic assessment studies (Jain et al. 2010), allowing 

for the regionally-specific assessment of system performance and sustainability that reflects 

variance in climate, soil type, and land use history.  Further development of such mechanistic 

assessment methods will enable spatially-explicit assessments of biochar systems in the context 

of feedstock availability, energy co-product demand, and agricultural needs, facilitating the 

design and siting of biochar production facilities to maximize both profitability and 

environmental benefits. 
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Table 5.1.  Thermochemical conversion studies used in model  

Conversion 
scenario 

Charcoal 
kiln (pine) 

Slow 
pyrolysis 

(pine) 

Fast 
pyrolysis 

(pine) 

Fast 
pyrolysis 

(spent grain) 

Gasification 
(pine) 

Primary data 
source(s) 

Pennise et 
al. 2001 

Şensöz & 
Can 2002, 
Şensöz 2003 

DeSisto et 
al. 2010 

Mullen et al. 
2009 

Herguido et al., 
1992, Brewer 

et al. 2009 
Temperature 
range1 (°C) - 350-500 400-600 500 650-775 

Feedstock Eucalyptus Pine, pine 
bark  Barley 

DDGS Pine chips 

Max particle 
size (mm) - 10, 0.60 0.4 2 10 

Atmosphere Air Pyrolysis gas N2 N2 
Steam/N2, 

Air/N2 

Reactor type 
Circular 
Brazilian 

kiln 
Fixed bed Fluidized 

bed Fluidized bed Fluidized bed 

 

1Temperature range used in this model; may be a subset of the full temperature range reported in 
the source study 
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Table 5.2.  Different biochar valuation results calculated over the lifetime of the liming effect  

 ΔpH Displacement 
rate  

(kg/Mg char) 

GHG mitigation  
(kg CO2eq/Mg char) 

Value  
($/Mg char)2 

Case 
1 

Aglime 
displacement 0 61 

Avoided emissions 
(embodied & field): 

53 
0.53 

Case 
2 

N fertilizer 
displacement 0.13 3.9 

Avoided emissions 
(embodied & field): 

28 1.48 Additional pH-mediated 
N2O suppression: 

58 
2Does not include valuation of GHG mitigation 
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Figure 5.1.  System schematic illustrating the different lifecycles phases and processes included 
in the assessment 
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Figure 5.2.  Map showing the locations of feedstock sourcing (Jackson County, Colorado for 
pine and Larimer County, Colorado for spent grains), thermochemical conversion (Larimer 

County, Colorado) and agricultural soil incorporation (Hall County, Nebraska), and the highway 
network (US-14, I-25, and I-90) connecting them, for the hypothetical case study assessed 



 160 

 

Figure 5.3.  Detail of the GHG balance and economic returns for the slow pyrolysis of pine 
feedstock at 500 °C, assuming biochar application at 25 Mg/ha to a Corzad loam soil of pH 5.6 
and CEC 15 cmole/kg.  Valuation of GHG mitigation is based on a $23/Mg CO2eq estimate of 

the social cost of carbon using a 100 year analytical time frame for the calculation of CO2 
equivalence. 
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Figure 5.4.  Net GHG mitigation and economic returns for different conversion technology 
configurations, with the resulting char used either as biochar or biocoal 
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Figure 5.5.  Simplified detail of the GHG balance and economic returns for the fast pyrolysis of 
pine and spent grains feedstocks at 500 °C 
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Figure 5.6.  The relative GHG mitigation advantage of biochar over that of biocoal, plotted for 
char produced from multiple conversion technologies as a function of production temperature 
and soil CEC.  Regions in which biochar outperforms biocoal are plotted in red and purple. 
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Figure 5.7.  The price of carbon valuation necessary for biochar revenue to equal biocoal revenue 
(PC), for char produced from the gasification of pine, as a function of production temperature and 

farm soil CEC 
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Figure 5.8.  Sensitivity analysis for the carbon price for biochar-biocoal parity (PC) for char 
produced from pine gasification at 700 °C and applied to soil of pH 5.0 and CEC of 10 cmole/kg 
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CHAPTER 6 
 

CONCLUSIONS AND ONGOING WORK 

 
 
 

Bioenergy is a widely-scalable renewable energy technology with significant climate 

mitigation potential through displacement of fossil energy use (Creutzig et al., 2015).  Bioenergy 

technologies are particularly attractive relative to other renewable energy sources for their 

potential to produce high-value liquid fuels that can integrate with present transport 

infrastructure, and potential for carbon sequestration in soils or geological reservoirs (Tilman et 

al., 2006b; Fuss et al., 2014).  While lifecycle assessment (LCA) techniques have been applied 

for the study of bioenergy system environmental performance for several decades, 

agroecosystem management for feedstock provisioning introduces a variety of highly 

challenging conceptual and methodological issues around bioenergy supply chain climate impact 

accounting (as explored in detail in Chapter 2), many of which are still being resolved.  Refining 

existing LCA tools and coupling them with economic analyses is critical for understanding the 

practical feasibility of bioenergy systems as a climate mitigation tool relative to other renewable 

energy technologies and land management interventions.  The resulting integrated assessments 

are useful for producing estimates of system carbon abatement cost (CAC), i.e., putting a price 

tag on GHG mitigation associated with specific bioenergy supply chain substitutions or 

modifications.  Table 6.1 shows the CAC estimates resulting from the two case studies of this 

dissertation in the context of several other bioenergy CAC estimates for various different 

bioenergy supply chains.  Several of these studies include consideration of enhanced carbon 

sequestration through the addition of Carbon Capture and Storage technology or through 

ecosystem-mediated carbon sequestration in agricultural soils.   
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The case study results suggest that a) any valuation of climate mitigation will 

significantly affect optimal bioenergy landscape design, with a majority of potential mitigation 

benefits achieved at valuations as low as $60/MgCO2eq (Chapter 4); and b) use of 

thermochemical conversion co-products as soil amendments rather than low-quality process fuels 

becomes attractive when climate mitigation is valued at $50/MgCO2eq or greater (Chapter 5).  

Both results are well within the range of CAC values reported in the literature for different 

supply chain interventions, estimates ranging from slightly negative CAC values for some fossil-

to-bioenergy transitions (i.e., bioenergy slightly cheaper than the fossil-fueled Business-As-

Usual case; Bo, 1998; Ravindranath et al., 2006), all the way up to $500/MgCO2eq or greater 

associated with some switches in conversion technology (Eason & Cremaschi, 2014) or land use 

change scenarios for perennial grass feedstock cultivation (Yu et al., 2014).  The latter study is 

similar in scope to the landscape design work presented here, but our much lower CAC estimate 

is likely the result of a more detailed biogeochemical assessment that considers correlation 

between land quality and land use history, and endogenizes crop management intensity.  One 

might hypothesize that optimization studies with higher assessment resolution or wider scope 

will tend to identify lower-cost mitigation options that more limited studies might miss, though 

the number of studies present in the literature to date is insufficient to offer much empirical 

support on that point.  The CAC value range predicted in the biochar case study is consistent 

with that from a previous biochar study in the literature (Clare et al., 2015), but both of those are 

much higher than a recent CAC estimate range for the analogous case of lignin management in a 

biochemical conversion system (Pourhashem et al., 2013).   However, all of these studies are 

very sensitive to the potential agronomic benefits of these soil amendments, benefits that are not 

yet well characterized.   
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Pairing estimates of the carbon abatement costs of various technologies with estimates of 

their maximum scale of deployment allows for the development sector-wide (MacLeod et al., 

2010) or economy-wide (Enkvist et al., 2007) carbon abatement curves.  While the two case 

studies presented here each advance the state-of-the-art in bioenergy supply chain integrated 

assessment, additional work is necessary to prior to scaling these results up and generating 

credible estimates of regional or national bioenergy carbon abatement potential.  This might 

include: 

1. Conducting additional landscape design case studies to determine how maximum ecosystem-

mediated carbon sequestration potential is controlled by climate and other environmental 

variables over greater spatial scales.  To the extent that such a study would require the 

consideration of different regionally-appropriate feedstock crops, it implies the need for 

additional model parameterization and validation work, likely benefitting from automated 

tools as discussed in Chapter 3.   

2. Introduction of more detailed spatial models of harvest logistics, biomass transport networks, 

and markets for finished biofuels.  This need is probably best met through collaborations 

with other groups already developing such tools; to that end, a collaboration has been 

initiated with researchers at the Department of Transportation to link the landscape 

biogeochemical assessment capabilities developed here with an existing national-scale 

transport logistics and fuel demand model.   

3. Enhancing the level of simulation detail around business-as-usual cropping systems, and 

considering their sustainable intensification as a strategy for increasing overall landscape 

productivity.  These ideas are developed further in a recent response submitted to a 
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Department of Energy Request For Proposals on the topic of sustainable bioenergy landscape 

design.   

4. Direct integration of non-conventional soil amendments such as biochar and pure by-product 

lignin into the DayCent biogeochemistry model, introducing environmental controls on 

amendment degradation dynamics and improving understanding around their agronomic 

effects, as discussed in Chapter 5.  Preliminary work in this area is planned through the 

Bioenergy Alliance Network of the Rockies.   

5. Development of more sophisticated biorefinery models and landscape optimization 

approaches beyond the weighted-solution approach presented in Chapter 4, in order to 

consider landscape cost-mitigation tradeoffs as a function of bioenergy system size.   

Such additional work will be essential for determining the maximum potential scale of bioenergy 

deployment before limits on agroecosystem sustainable production are reached, and the total 

regional or global potential for bioenergy system carbon sequestration and climate mitigation. 
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Table 6.1.  Recent estimates of carbon abatement costs associated with bioenergy supply chain 
modifications or substitutions.  All cost estimates adjusted to 2015 USD values.  

Study Scenario 
Considers 

carbon 
sequestration? 

Carbon abatement cost 
estimate  

($ / Mg CO2eq) 
Full supply chain 
Bo, (1998) Replacement of fossil fuels in 

Swedish district heating 
systems with woody biomass  

No1 $-16 to 52, depending on 
biomass source, fuel 

displaced 
Ravindranath 
et al. (2006) 

Replacement of coal 
consumption in Indian grid 
generation with various 
biopower technologies 

No 
$-27 to 51, depending on 
conversion technology 

Dwivedi et 
al. (2015) 

Replacement of gasoline with 
cellulosic ethanol from various 
feedstocks 

Yes  
(soil carbon) 

$52 to 405, depending on 
feedstock crop and land 

quality 
Feedstock production 
Yu et al. 
(2014) 

Optimized switchgrass land 
conversion for enhanced soil 
carbon sequestration 

Yes  
(soil carbon) 

Tradeoff frontier, half of 
mitigation achieved 

between $250 and 500 
Dissertation 
chapter 4 

Optimized switchgrass 
location and management for 
soil carbon sequestration 

Yes  
(soil carbon) 

Tradeoff frontier, half of 
mitigation potential 

achieved at ~$60  
Conversion to fuels 
Möllersten et 
al. (2003) 

BECCS addition to sugarcane 
biorefineries or pulp mills 

Yes  
(BECCS) 

$29 to 68, depending on 
the system type 

Eason & 
Cremaschi 
(2014) 

Changing from anaerobic 
digestion to gasification  

No ~$800 

Coproduct management 
Pourhashem 
et al. (2013) 

Use of biochemical conversion 
lignin byproduct as soil 
amendment 

Yes  
(soil carbon) 

$-110 to 41, depending on 
exact agronomic benefits 

of lignin application 
Clare et al. 
(2015) 

Pyrolysis of agricultural 
residues for biochar production  

Yes  
(soil carbon) 

$50 to 70, depending on 
biochar agricultural 

performance 
Dissertation 
chapter 5 

Management of biochar as a 
soil amendment rather than a 
process fuel 

Yes  
(soil carbon) 

$50 to 150, depending on 
biochar synthesis temp. 

and target soil type 
1Study considers sequestration in a separate reforestation scenario, but not within the bioenergy 

scenario 
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APPENDIX A 
 
 
 

A.1.  Switchgrass Parameterization and Validation Dataset Development 

In order to generate the largest parameterization and validation dataset possible, study 

requirements for inclusion were kept to a minimum level, with specifications required for each 

study focusing only on parameters to which the DayCent model is most sensitive: underlying soil 

type, total seasonal nitrogen application, supplemental irrigation, and ecotype being cultivated.  

Other parameters such as field preparation details, planting dates, nitrogen application dates, etc. 

still must be specified in order to complete a DayCent simulation, though they have much less 

effect on overall simulated yields, and average values were used as necessary to complete the 

simulations specification.  Model initialization procedures and soil and climate data inputs are as 

described in the main text.  It was assumed that all field trial sites had a generic non-irrigated 

cropped history, and that conversion to switchgrass required chisel tilling followed by a 

cultivator/planter. 

Figures A.1 and A.2 show additional metadata associated with the US switchgrass 

parameterization and validation dataset.  Note that there is little correlation between soil texture 

and land capability class rating, illustrating that high LCC ratings are driven by climate, 

topography, and soil profile depth in addition to extreme soil textures.   
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Figure A.1.  Climate range covered in the full switchgrass calibration & validation dataset as per 
the NARR database.  The blue point indicates the climate of Hugoton, KS. 

 

 

Figure A.2. Classification of calibration and validation dataset field trial sites by soil surface 
texture and NRCS land capability class (LCC) rating. 
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Scatter matrices for field trial site parameters (Fig. A.3) and soil parameters (Fig. A.4) are 

useful for understanding correlations in model inputs and looking for outliers indicative of 

dataset coding errors.   

 

Figure A.3. Scatter matrix of site location and climate parameters in the switchgrass 
parameterization & validation dataset. 
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Figure A.4. Scatter matrix of soil parameters in the switchgrass parameterization & validation 
dataset. 
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A.2.  Parameterization and Validation Detail 

For both the parameterization and landscape simulation model runs we use DayCent in the 

mode where phenological events are pre-scheduled for a specific day of the year, rather than 

determined annually based on accumulated growing degree day thresholds.  Green-up, heading, 

and peak biomass were estimated as a function of ecotype and/or site latitude as described in the 

main text, and illustrated in Fig. A.5 to A.7 below.  The patterns of later heading for lowland 

ecotypes within a given site and later heading for both ecotypes at higher latitudes were across 

all of the studies we reviewed.  Note that implementation often required minor adjustments to 

avoid conflicts with fertilizer application or harvest events. 

 

 

Figure A.5. Switchgrass green-up as a function of latitude only.  The regression fit corresponds 
to the scheduling of FRST events in DayCent that define the first day of the year the simulated 

plant can perform photosynthesis and accumulate biomass.    
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Figure A.6. Heading dates estimated as a function of ecotype and site latitude.   

 

 

Figure A.7. Peak biomass as estimated to occur three weeks after heading, as compared to 
observations for upland switchgrass at multiple sites.  These were used to set senescence SENM 

events in DayCent.  
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The same temperature and soil moisture response curves were used for both switchgrass 

ecotypes (Fig. A.8 to A.9).  Curves were set based on the sources cited, with fine-tuning as 

necessary to improve modeled-vs.-measured yield fits (Fig. 3.2a).  

 

 

Figure A.8. Temperature stress response curve based on experimental data from a variety of 
sources (Balasko & Smith, 1971; Hsu et al., 1985; Reddy et al., 2008; Kandel et al., 2013; 

Wagle & Kakani, 2014) 

 

 

Figure A.9. Moisture stress response curve compared to normalized experimental data from Xu 
et al., (2006) and model defaults. 

 



 207 

Temperature and moisture stress response can also be inferred from measured and model 

yield plotted across a gradient of average annual site growing degree day (GDD) accumulation 

and precipitation levels, respectively.   

 

Figure A.10. Modeled and measured yield ranges binned by site average annual growing degree 
day accumulation (calculated for the range 12-30 C). 
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Figure A.11. Modeled and measured yield ranges binned by site average annual precipitation. 

 

 

Figure A.12. Modeled and measured yield ranges binned by site NLCD land capability 
classification. 
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Likewise, the accuracy of our assumptions about crop phenology can be validated against 

field trials that report aboveground and belowground biomass accumulation over time, for 

example: 

 

Figure A.13. Example of an observed-modeled comparison for a study (Anderson-Teixeira et al., 
2013) where time-resolved data is available for more detailed comparison, in this case for total 

aboveground carbon and belowground live carbon.   
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More detailed views of model soil greenhouse gas flux validation results are shown below 

for change in soil organic carbon (Fig. A.14) and growing season cumulative nitrous oxide 

emissions (Fig. A.15) for individual studies.  

 

Figure A.14. Modeled-versus-measured changes in soil organic carbon by study for all studies in 
the parameterization & validation dataset that include usable SOC measurements. 
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Figure A.15. Modeled-versus-measured cumulative annual emissions of nitrous oxide by study 
for all studies in the parameterization & validation dataset that include usable N2O 

measurements.  For studies that include background N2O rates in unfertilized control treatments, 
a band of N2O emissions based on the default IPCC emission factor as per Hoben et al., 2011 
(i.e., background N2O rate plus 0.3-3% N2O-N per mass of fertilizer N applied) is included for 

reference.   
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A.3.  Landscape Analysis Detail 

Fig. A.16 below shows the relative distribution of areas for the different polygons 

resulting from the intersection of the different input spatial data layers described in the main text 

and summarized in Table 3.2, and merging any resulting slivers of <1 ha in area into their 

neighbors.   

 

Figure A.16. Histogram showing the area distribution of the polygons generated during the GIS 
intersect operation.   
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A.4.  Dynamics of SOC Changes and N2O Emissions 

While the average biogenic greenhouse gas footprint of switchgrass cultivation is a 

function of both soil carbon sequestration and nitrous oxide emissions, these two phenomena 

have different trends over time, as soil carbon storage potential is finite and sequestration rates 

will asymptotically return to zero over time, whereas N2O emissions will continue as long as the 

crop is being fertilized with nitrogen-containing fertilizers.  In this representative example from 

the Hugoton case study, soil carbon sequestration rates are very high for the first 15 years after 

establishment, but decline towards zero in the long-term.  N2O emissions also start high, 

presumably due to additional mineral nitrogen release associated with tillage and soil carbon 

pool turnover during establishment, but stabilize within ~10 years.  However, it takes 60-80 

years for carbon sequestration to fall to levels where annual sequestration is counterbalanced or 

exceeded by N2O emissions, and the time-averaged biogenic greenhouse gas footprint of 

cultivation is strictly negative (net sequestration) a century after establishment.  A more 

advanced approach to dynamics of GHG emissions accounting would tend to discount future 

emissions of N2O relative to near-term sequestrations of soil carbon, further reinforcing the 

positive performance observed here.   
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Figure A.17. Annual fluxes, assuming moderate tilling during field preparation for initial 
switchgrass crop establishment and every 8 years when the crop is replanted.   
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APPENDIX B 
 
 
 

B.1.  Cost Calculations 

Net present value is useful for judging the desirability of projects that require up-front 

costs to secure future revenues.  The NPV of a cash or material flow time series Xt over a time 

period T is given by: 

       

where d is the annual discount rate, which reflects the opportunity cost of committing resources 

to the project.  As per (Jain et al., 2010), the break-even farm gate cost of biomass production 

that involves inputs and outputs that change from year to year can be represented as the NPV of 

the net cost of biomass cultivation divided by the discounted amount of biomass produced: 

             

where Ctot,t is the total net cost of biomass cultivation each year t, and Yt are the associated 

annual biomass yields.  The farming costs considered in the USDA FARM switchgrass 

production budget include some (e.g., tillage, herbicide application) as a pure function of area (), 

and others as a function of biomass yield (e.g., P and K replacement, biomass baling).  The net 

cost of biomass cultivation is generally estimated based on the amount of agricultural inputs and 

the field operations required to cultivate the biomass crop, minus the opportunity cost of land 

conversion per hectare Copp:  
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B.2.  Farm Model Harmonization 

In the interest of a self-consistent assessment it is essential to harmonize assumptions 

around farm inputs and operations across the switchgrass production budget from the USDA 

FARM model, and the switchgrass production pathway in the GREET LCA model.  The GREET 

model lacks detail on switchgrass cultivation requirements, and uses conservative numbers taken 

from Miscanthus instead (Wang et al., 2013c).  For this analysis, we use the very detailed set of 

switchgrass inputs and non-harvest farm operations in the USDA FARM model, based on a 

composite review of multiple previous assessments in the literature.  In order to translate the 

farm operations into diesel fuel consumption rates in GREET we use operation fuel requirement 

estimates from the University of Iowa Extension (Hanna, 2005).  This results in a non-harvest 

diesel energy intensity of 28,961 BTU/ton at the standard GREET yield level of 15 Mg/ha (Dunn 

et al., 2011), compared to the default assumption of 50,000 BTU/ton.  Since all of these 

operations are defined on area terms, we correct for DayCent-estimated area yield for each 

polygon.  In contrast, the default GREET estimate of harvest energy use is much more detailed, 

and we lack a strong basis for translating the USDA FARM assumptions to diesel rates.  In this 

case, we assume the default GREET harvest energy use assumption of 127,700 BTU/ton, 

invariant with yield.  As our production is non-irrigated we delete the GREET default value for 

on-farm electricity consumption.  

Both the DayCent simulations and the crop production budget are adjusted to reflect a 10-

year replanting rate assumption, and NPV calculations are done on the same 30 year period as 

the bioenergy yield & biogenic GHG simulations.   
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B.3.  Transport Model 

 

Figure B.1.  Validation of the simplified transport distance estimate based on a calculation of 
geographic distance and application of a constant tortuosity factor representative of the area road 

network.    
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B.4.  Landscape Characterization and Optimization 

 

Figure B.2.  Distribution of landscape GIS intersect polygon sizes, detailed by land use 
classification.   
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Results are included here based on NRCS Land Capability Classification rating.  The 

DayCent model is able to represent this classification to the extent that the ratings are based on 

climate/texture combinations, or other factors such as topography that correlate strongly with 

texture in our case study landscape.   

 

Figure B.3.  Distribution of NRCS Land Capability Class ratings underlying the different land 
use classifications of the case study area.  An LCC rating of 1 indicates prime cropland with no 

limitations on agricultural use, whereas LCC=8 indicates extremely marginal land unsuitable for 
cultivation.   
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Figure B.4.  Estimates of the farm-gate break-even price of switchgrass production as a function 
of nitrogen application rate across the 3779 DayCent simulation strata.  Open markers represent 
price minima for rangeland conversion, closed markers for cropland conversion.  The color of 
the markers and traces represents soil surface texture, with yellow=sand, red=clay, green=silt, 

and brown=loam.   
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Figure B.5.  Landscape optimization detail scenarios, showing total areas of land converted and 
associated average management intensity and yield, broken down by land use and LCC rating.   
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APPENDIX C 
 
 
 

C.1.  GHG Accounting 

The calculation of global warming potentials (GWP) allows for the direct comparison of 

the long-term warming impact of different climate-forcing agents relative to a pulse emission of 

CO2 on a mass basis, accounting for both the forcing magnitude and atmospheric lifetime of a 

pulse emission (Solomon et al., 2007).  Since a fraction of the reference CO2 pulse will remain in 

the atmosphere for geological time periods, it is necessary to evaluate the relative impact of the 

other emission over a finite analytical time horizon, with 20-, 100-, and 500-year time horizons 

commonly used.  The choice of time horizon is arbitrary but representative of the time frame 

over which climate-change damages and policy responses are assessed; the choice of longer time 

horizons effectively de-weights the impact of short-lived forcing agents.  A 100-year analytical 

time frame was used throughout this analysis.  GWP-100 values for pulse emissions of CH4 and 

N2O are given by the IPCC as 25 and 298, respectively.  Carbon monoxide and non-methane 

hydrocarbons were assigned GWP values of 1.9 and 3.4 to reflect the relative rapid oxidation of 

their C to CO2 after release (Grieshop et al., 2011).  Aerosols such as particulate matter (PM) 

emissions have a strong climate forcing value and are emitted in considerable quantity in 

uncontrolled or poorly-controlled combustion processes (Molina et al., 2009).  Grieshop et al. 

2011 suggest that the 100-year equivalent GWP of particulate matter emissions from biomass 

combustion can be calculated as 

     

where BC is the fraction of the total PM emission that exists in the form of black (elemental) 

carbon, OC the fraction as organic carbon, and 455 and -35 are literature-averaged global mean 
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GWP estimates.  Calculation of the carbon stability factor of biochar is detailed in the main 

document, and Figure III.1 shows biochar carbon sequestration value plotted as a function of 

char soil half-life as evaluated over various common analytical timeframes.    

 

 

Figure C.1.  Carbon sequestration value of biochar as a function of its half-life in soil 
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C.2.  Feedstock Sourcing 

An overview of the calculations associated with the pine biomass feedstock is given in 

the main article.  An emissions intensity term of 0.26 mmton CO2eq/$billion for the US forestry 

sector (US Department of Commerce, 2010) was used in the analysis to estimate the GHG 

footprint of pine feedstock sourcing operations for which price estimates are readily available in 

the literature but energy and emissions data are not.  Estimates of emission factors for CO, CH4, 

NMHC, N2O, and PM (both EC and OC) from the open burning of lodgepole pine were taken 

from McMeeking et al. (2009), and a mixture GWP of 103 g CO2eq/kg dry pine waste burned 

was computed.   

In the spent grain feedstock scenario the thermochemical conversion facility was 

assumed to be co-located at the brewery where the spent grain is produced at a moisture content 

of 40%.  Since the alternate use of spent grain is as animal feed which substitutes for corn and 

soybean products, an estimate of the forgone mitigation of corn and soy cultivation emissions 

that would have been avoided had the material not been used as a feedstock must be included.  It 

was assumed that the spent grain is functionally equivalent to distillers grains and solubles 

(DGS) and a co-product emissions penalty of 0.44 kg CO2eq/kg dry DGS was derived from the 

Argonne National Laboratory GREET 1.8d model (Wang, 1999; Arora et al., 2008), based on the 

displacement method (Kendall and Chang, 2009).  The spent grain was assumed to be dried 

down to 10% moisture content with associated consumption of energy in the form of natural gas 

as per Wright et al. (2010).  On-site receiving and handling costs ($2.10/dry ton) were taken 

from Hess et al. (2009) and used to estimate GHG emissions using the forestry sector emissions 

intensity factor.  



 225 

C.3.  Transport 

The analysis modeled transport of pine feedstock and biochar in heavy trucks with 50,000 

lb. (22 Mg) capacity and fuel efficiency of 5.5 and 6.5 mpg (2.3 and 2.8 km/L) loaded and 

unloaded, respectively, based on default values from a trucking cost model (Norris, 2009).  It 

was assumed that the bulk density of all material being transported is high enough such that full 

truck weight capacity is met, i.e. that vehicle volumetric capacity is not limiting.   

 

C.4.  Thermochemical Conversion Product Yields and Qualities 

Thermochemical conversion product fractions and associated carbon concentrations and 

higher heating values used in the model are plotted as a function of production temperature for 

the main technologies analyzed in figures C.2-C.4. While the entire fast pyrolysis dataset 

(including product yields and qualities) is derived from a single study, the limited studies 

available in the literature for the slow pyrolysis and gasification of pine necessitated that data 

from multiple similar (but not identical) studies be combined to form composite datasets 

representing these technologies.  Data on slow pyrolysis yields for pine wood (Şensöz & Can 

2002) and pine bark (Şensöz 2003) were combined in a weighted average based on their relative 

proportion in the stems of pine trees as reported by Peichl & Arain (2007).  Data on the 

associated quality of those products is taken from Şensöz (2003) for production at 450 °C, and 

adjusted as a function of production temperature based on the curve fits for the DeSisto et al. 

(2010) fast pyrolysis dataset.  For the pine gasification dataset, continuous product yield and gas 

composition data for the steam gasification of pine wood chips were taken from Herguido et al. 

(1992) and paired with static estimates of char carbon content and heating value from air-blown 

gasification as reported in Brewer et al. (2009).   
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Figure C.2.  Estimated product yields and qualities from the slow pyrolysis of pine 
 

 

 

Figure C.3.  Estimated product yields and qualities from the fast pyrolysis of pine 
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Figure C.4.  Estimated product yields and qualities from the gasification of pine 
 

In scenarios where the char produced is used locally as biocoal in boilers or power 

stations it was assumed to displace 8,800 BTU/lb (20.5 MJ/kg) Powder River Basin coal from 

Wyoming on an energy equivalent basis, with an associated emissions footprint of 1.98 kg 

CO2eq/kg based on GREET data.  Recovered pyrolysis oils were modeled as being used locally 

as fuel for industrial boilers (Oasmaa and Czernik, 1999; Laird et al., 2009) displacing the 

consumption of heavy fuel oil with a footprint of 3.64 kg CO2eq/kg (GREET).  Recovered 

pyrolysis gas was assumed converted to electricity, modeled conservatively based on a small-

scale compression ignition engine using data from Uma et al. (2004) and Bond et al. (2004) for 

thermal efficiency (22.5%) and associated tailpipe non-CO2 pollutant estimates (46 g 

CO2eq/kWh).  The GHG emissions embodied in the grid electricity displaced in this scenario 

were estimated at 0.83 kg CO2eq/kWh for the WECC Rockies sub-grid using the US EPA 

eGRID2012 database (US EPA, 2011).  In the charcoal kiln scenario estimates of charcoal mass 

yields (29%) and gaseous air pollutant emissions (2.45 kg CO2eq/kg charcoal) were taken from 

Pennise et al. (2001) for an improved round Brazilian kiln of intermediate performance, 



 228 

supplemented with generic estimates of BC (0.21 g/kg feedstock) and OC (1.43 g/kg feedstock) 

emissions for charcoal-making from Bond et al. (2004).  In scenarios where the pyrolysis gases 

are flared, a conversion efficiency estimate of 67% based on values measured for the Canadian 

gas industry (Strosher, 2000; Leahey et al., 2001) was applied uniformly to all air pollutant 

species.  

 

C.5.  Biochar Amendment to Agricultural Soils 

Biochar was modeled as being incorporated into farm soils to a depth of 10 cm using 

conventional tillage techniques and assuming negligible additional disturbance of the soil beyond 

what would normally occur in the conventional cultivation of winter wheat.  Tractor diesel fuel 

use was assumed to increase by 20% over a baseline estimate of 13.6 gal/ha from GREET for the 

cultivation of maize, and the associated additional labor requirement of 0.19 man-hours/Mg char 

was estimated from Williams & Arnott (2010).  Biochar recalcitrance was modeled as a function 

of production temperature by fitting a conservative response function to the dataset developed in 

Spokas (2010), equivalent to the lower 10th percentile of the data range:   

        

where T is the thermochemical conversion process temperature and t1/2bc the half-life of the 

biochar in soil.  Data used in the regression of char calcium carbonate equivalence (CCE) are 

detailed in Table C.1.  For the three new data points included in that dataset, CCE was measured 

using a back-titration method (Williams, 1984, Method 1), and base element and total ash 

content were evaluated at Hazen Research (Golden, Colorado).   
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Table C.1.  Biochar liming potential prediction dataset 

Data source Biochar description 
CCE 
(%) 

C 
content 

(%) 

Base (Ca, 
Mg, K, 

Na)  (%) 

Total 
ash   
(%) 

(Van Zwieten, 
Kimber, Morris, 
et al., 2010) 

Green waste feedstock, converted 
by Pacific Pyrolysis via slow 
pyrolysis at 350 °C 

8.4 62 0.538 3.055 

“ Green waste feedstock, converted 
by Pacific Pyrolysis via slow 
pyrolysis at 550 °C 

7.5 75 0.242 1.483 

“ Biosolids feedstock, converted by 
Pacific Pyrolysis via slow 
pyrolysis at 550 °C 

1.7 21 7.17 65.71 

“ Poultry litter feedstock, converted 
by Pacific Pyrolysis via slow 
pyrolysis at 550 °C 

8.8 42 8.1 35.53 

“ Papermill waste feedstock, 
converted by Pacific Pyrolysis via 
slow pyrolysis at 550 °C 

18 38 11.86 23.04 

(Van Zwieten, 
Kimber, Downie, 
et al., 2010) 

Green waste feedstock, converted 
by Pacific Pyrolysis via slow 
pyrolysis at 600 °C 

0.5 78 0.272 1.771 

(Van Zwieten et 
al., 2009) 

Paper mill waste feedstock, 
converted by BEST Energies 
Australia1 via slow pyrolysis at 
550 °C 

33 50 19.56 - 

“ “ 29 52 43.88 - 
This study Pine feedstock, converted by 

Biochar Engineering Corporation2 
via char-optimized gasification in 
the B-1000 system 

6.88 93.04 0.744 1.864 

“ Wheat straw feedstock, converted 
by Biochar Engineering 
Corporation2 via char-optimized 
gasification in a TLUD3 device 

14.05 51.56 9.380 41.74 

“ Corn stover feedstock, converted 
by the National Renewable 
Energy Laboratory via an 
unspecified fast pyrolysis method 

16.93 37.07 15.77 65.39 

1Now Pacific Pyrolysis 
2Now Biochar Solutions Inc. 
3TLUD = Top-lit updraft 
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Data on the yield response of winter wheat to changes in soil pH were compiled from 

multiple sources (James & Jackson 1984; Rhoads & Manning 1989; Slattery & Coventry 1993; 

Tsadilas et al., 1997; Adhikari et al., 2006; Kovacevic et al., 2010) and regressed to generate the 

following liming response function: 

 

where Y is the relative yield expected (adjusted R2=0.44, p=0.001), shown in Figure C.5.  The 

resulting reduction in nitrogen fertilizer that can be tolerated to maintain the same yield was then 

back-calculated from a nitrogen response curve given in Halvorson et al. (2004).  

  

 

Figure C.5.  Relative winter wheat yield response to changes in soil pH 
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 Biochar application has been hypothesized to reduce N2O emissions by sorbing some of 

the nitrate substrates of the denitrification process, as well as through increases in soil pH which 

tend to shift denitrification products away from N2O and towards N2 (Van Zwieten, Kimber, 

Morris, et al., 2010).  This assessment used the results of a biochar incubation experiment 

(Zheng et al., 2012) that give N2O suppression as a function of final soil pH: 

      

where fN2O is the fraction of baseline N2O emissions persisting after biochar application and ΔpH 

is the increase in soil pH from the biochar liming effect.  These correction factors for reduced 

fertilizer use and reduced N2O emissions rate were then applied to compute GHG avoidance 

assuming a baseline scenario of 150 kg ammonia applied per hectare, fertilizer embodied 

emissions (2.18 kg CO2eq/kg NH3) from GREET, and an IPCC Tier I emission factor of 1.3% 

N2O-N/N applied that includes both direct N2O emissions as well as downstream N2O emissions 

associated with fertilizer volatilization and leaching (Eggleston et al., 2006).   

 

C.6.  Economic Assessment 

Estimates for all prices used in the model are detailed in Table C.2.  Labor use for 

transport operations was based on an assumed average truck speed of 45 miles per hour, plus one 

hour of material loading and one hour unloading per trip.  Labor requirements at the conversion 

facility of 0.8 man-hours per dry Mg of feedstock processed were estimated from Badger et al. 

(2011) and assumed uniform across all conversion technologies.  While CO2 emissions have 

been linked to global climate change (Denning et al., 2003), the financial impact and social costs 

of carbon emissions have been the source of diverse opinions and spirited debate.  Social cost of 

carbon (SCC) estimates vary widely because climate change impacts are highly uncertain and 



 232 

may be geographically diffuse.  Although previous researchers have reviewed the impact of 

carbon prices on profitability of biochar systems (Pratt and Moran, 2010; Galinato et al., 2011), 

the U.S. carbon market is not considered stable at this time.  The Interagency Workgroup 

estimate of SCC used in this analysis reflects annual monetized damages associated with an 

incremental increase in anthropogenic GHG emissions in a given year, including changes in net 

agricultural productivity, human health effects, property damages from increased flood risk, and 

loss of ecosystem services due to climate change.  The values are based upon different climate 

scenarios of three scientifically accepted integrated assessment models: FUND (Tol, 2009), 

DICE (Nordhaus, 2008), and PAGE (Hope, 2008).   
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Table C.2.  Prices for all operating costs, displaced fuels & products, and non-market variables  

Parameter Unit Value(s)1 Detail Reference 
Operating Costs: 
Pine waste harvest ($/wet 

ton) 
88.85 Average value across 

several field studies 
Lynch and 
Mackes, 2003 

Pine handling & 
grinding 

($/dry ton) 14.38 Point estimate Hess et al., 
20092 

Spent grain 
opportunity cost 

($/wet 
ton) 

36.01, 
54.42, 
115.64 

Mean values, Feb 2006-
June 2007 

Tonsor, 20093 

Spent grain handling ($/dry ton) 2.10 Point estimate Hess et al., 
20092 

Transport labor ($/hr) 19.74 Mean national wage, 2011 US BLS, 20114 
Conversion labor ($/hr) 26.46 Mean national wage, 2011 US BLS, 20115 
Farm labor ($/hr) 13.06 Mean national wage, 2011 US BLS, 20116 
Diesel fuel ($/gallon) 3.58 Average of 2006-2012 

mean national values 
US EIA, 2012a 

Natural gas  ($/tCF)7 9.29 Average of 2001-2010 
mean Colorado values 

US EIA, 2012b 

Displaced Fuels & Products: 
Electricity  ($/kWh) 0.0349 2012 City of Fort Collins 

utility price 
City of Fort 
Collins, 20128 

Coal ($/ton 
delivered) 

19.38 2010 price for Powder 
River Basin coal  

US EIA, 2011a, 
2011b)9 

Heavy fuel oil  ($/ton) 331.92 Average of 2001-2008 
mean national value 

US EIA, 2010 

Nitrogen fertilizer10 ($/ton) 420.91 Average of 2006-2012 
mean national value 

Apodaca, 2012 

Crushed limestone  ($/Mg) 8.72 2010 mean national value Willet, 2010 
Non-Market Variables: 
Greenhouse gases  ($/Mg 

CO2eq) 
23.09 Median marginal damage 

cost estimate 
Keske, 2011 

1All values adjusted to 2012 dollars 
2Based on an estimate for switchgrass feedstock 
3Range based on DGS moisture content, 65-70%, 50-55%, and 10% moisture content, 
respectively 
4Tractor-trailer driver rate 
5Boiler operator rate 
6General farm labor rate 
7tCF = thousand cubic feet 
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8Range reflects the Schedule GS750 Industrial non-summer prices 
9Price reflects mine gate price plus rail transport to Fort Collins 
10Ammonia as the nitrogen fertilizer source 
 

C.7.  Results of Other Biochar Assessment Studies 

Several other studies in the literature have estimated the GHG mitigation value of 

biochar-producing slow pyrolysis systems.  Gaunt & Lehmann (2008) found that 

bioenergy/biochar systems using dedicated energy crop (DEC) and crop waste feedstocks 

mitigate 2-19 Mg CO2/ha annually when the biochar is applied to croplands at a moderate rate of 

5 Mg-C/ha, corresponding to 1.4 Mg CO2eq/Mg feedstock in the DEC case.  Woolf et al. (2010) 

showed that an aggressive worldwide strategy of pyrolyzing crop wastes and DEC grown on 

marginal or abandoned lands could result in the mitigation of 1.8 Gt CO2-C eq annually, which 

averaged across all feedstocks and all scenarios (at the maximum rate of emissions mitigation 

prior to the adoption of alternate biochar disposal options) corresponds to 1.4 Mg CO2eq/Mg 

feedstock.  Hammond et al. (2011) predicted 0.7-1.3 Mg CO2eq/Mg feedstock mitigation across 

a wide range of different feedstocks (crop wastes, forestry residues, and DEC including short 

rotation woody crops) and facility scales, with the best performance coming from the large-scale 

conversion of forestry residues.  The only negative GHG outcome was reported by Roberts et al. 

(2010) who found that, while bioenergy/biochar from crop waste and municipal waste feedstocks 

mitigate 0.8-0.9 Mg CO2eq/Mg, this system might actually be a slight net GHG source for DEC 

feedstocks when a high estimate of indirect land use change is included (Searchinger et al., 

2008).  Additionally, one study (Kauffman et al., 2011) examined the effect of producing bio-oil 

via fast pyrolysis from corn stover from the same corn crops used for first-generation ethanol 

production.  That study estimates a mitigation of ~0.6 Mg CO2eq per Mg of corn stover for the 

thermochemical part of the system, though note that the assessment boundary is somewhat 
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different from that of the other studies included due to the more complex scenario investigated.  

Thus, the range of GHG mitigation estimates encountered across all of these biochar-bioenergy 

studies (including a variety of diverse feedstocks and at least two different conversion 

technologies) is 0.6-1.4 Mg CO2eq/Mg feedstock. 


