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ABSTRACT OF THESIS 
 
 

INTEGRATING BASIC REMOTE SENSING, TERRAIN ANALYSIS 

AND GEOSTATISTICAL METHODS TO GENERATE SPATIALLY 

EXPLICATE CONTINUOUS SOIL ATTRIBUTE MAPS FOR FRASER 

EXPERIMENTAL FOREST 

 
 

Hans Jenny's Factors of Soil Formation, a system of quantitative pedology 

(1941), concisely summarized and illustrated many of the basic principles of pedology 

utilized to date (Jenny, 1941). This state factor model became the backbone for soil 

survey research and production because it proposed that a limited number of 

environmental factors could largely explain the distribution of soils within and among 

ecosystems.  

Advances in soil chemistry, soil physics, soil mineralogy, and soil biology, as 

well as in the basic sciences have helped increase our fundamental understanding of the 

spatial distribution of soil. In addition, new tools and new dimensions to the study of soil 

formation have evolved with the increasing power and utility of Geographical 

Information Systems (GIS) and geostatistical analysis to further quantify the complex 

spatial relationships of soils and landscapes. These advances have resulted in a new field 

of study termed pedometrics, which focuses on the application of mathematical and 

statistical methods for the study of the distribution and evolution of soils.   
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This study implements pedometric principles and methods to develop high 

resolution and spatially explicate soil attribute maps for Fraser Experimental Forest 

(FEF) based on simple terrain, remote sensing and geostatistical analyses.  The soil 

attribute models developed for this study provided a continuous representation of soil 

properties (Total soil depth, A-horizon and O-horizon thickness) at a fine scale (0.001 

ha).  These spatial models can be used as inputs to hydrological and ecological models to 

further evaluate the soil’s influence on water chemistry and vegetation distributions, and 

to provide an initial platform for future soil survey activities in FEF.  In addition to 

developing soil attribute surfaces for FEF, I tested the statistical, spatial and cost 

efficiencies of the Spatially Balances Survey (SBS) design developed to sample soils and 

inform the geostatistical models for FEF. 
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Chapter 1 
 

Introduction 
 

1.1 – Background 

 

 The worldwide interest in collecting, categorizing and mapping soils is increasing 

with the recognition that soil properties and the processes governing their development are 

critical to exchanges between terrestrial, aquatic and atmospheric systems.  Soil science and 

soil classification originated in the mid 1800s largely to address differences in land 

productivity.  It is now clear that reliable assessments of current and future ecosystem status 

(e.g. health) requires detailed, spatially-explicit information about soil properties across 

natural and managed landscapes.     

Our ability to integrate soils information across landscapes is hindered by the lack of 

theoretical models that incorporate the influence of topography on soil properties in complex 

terrain.  For individual sites our knowledge allows us to quantify and describe soil properties 

and relationships.  We currently have the ability extrapolate site-level information through 

space where terrain variables such as landform-type and topography remain relatively 

constant.   

Jenny 1941, formalized the state factor model to better account for how 

environmental variables such as climate, organisms, relief (topography), parent material and 

time and topography conditioned soil properties through space and time. With the exception 
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of topography, the spatial scales at which the other four state factors (organisms, climate, 

time, and parent material) vary through space are easily quantified.  Maps of potential natural 

vegetation, major land resource areas (USDA-NRCS, 1998), ecoregions of the United States 

(Bailey 1995) and geology illustrate our understanding of this variability and our ability to 

map it at broad geographic extents.  Topography, however, may influence the development 

of soil properties at a much finer spatial scale (Weitz et al., 1993).  Soil organic carbon and 

clay content variability within a soil profile are influenced by topographic relationships that 

vary within a hill slope (Aguilar et al., 1988; Kelly et al., 1988).  Much research has been 

directed towards the quantification of soil properties as a function of topographic controls; 

attention must now be focused on how to reasonably and appropriately incorporate this 

variability at large spatial extents (e.g., National Forests, watersheds or counties).  As such, 

the need to link soils to landscapes is of practical and scientific importance for the inventory 

and management of resources for federal, state, county and private lands. 

Current   data requirements for process-driven ecological or hydrologic models has 

sparked the need for high resolution spatially explicate soil attribute data that varies at a 

much finer spatial scale than current soil databases (e.g., STATSGO and SSURGO).  To 

compile such spatial databases, soil scientists are beginning to adopt geostatistical 

methodologies and beginning to develop spatially explicit soil property models based on 

multiple sample locations and terrain attributes as predictor variables.  This methodology 

also allows users of these data to quantitatively assess model performance as a global metric 

(e.g., R2, MSE, Moran’s I) or a spatial metrics (Confidence Intervals and MSE surfaces).  In 

addition, this approach relies on a spatial sampling scheme with a large number of field based 

observations and in wilderness and remote settings of the western U.S. this can make this 
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methodology cost prohibitive.  There is a critical need to collect these data necessary for 

forecasting global change in remote areas. Collecting these data can be costly and time 

consuming and new approaches and tools are needed.  This, in essence, is the focus of the 

research presented in my Master’s Thesis.   

1.2 - Objectives 

 

 The main objective of this thesis is to develop high resolution (0.001 ha) spatially 

explicate soil depth, A-horizon and O-horizon thickness maps (surfaces) for Fraser 

Experimental Forest (FEF) utilizing geostatistical techniques.  The development of the soil 

attribute surfaces required three components: 1.) geospatial data acquisition and analysis, 2.) 

development of an efficient sampling design to sample soils in remote inaccessible terrain, 

3.) geostatistical techniques to develop soil attribute surfaces and quantify model 

performance.  First, the geospatial acquisition and analysis entails downloading basic terrain 

and remote sensed data, as wells as performing simple spatial analysis to inform the 

geostatistical models.  Second, the sampling component of this thesis consists of selecting 

intensive sampling units in FEF, testing the sampling design’s efficiency performance, and 

field sampling techniques.  Finally, the geostatistical model development incorporates simple 

statistical modeling techniques utilizing terrain and remote sensing analysis and field based 

observations to generate the soil attribute surfaces.  The geostatistical model section also 

includes calculating soil attribute surface model performance summary statistics.     

  



4 

 

 

Chapter 2 

Methods 
 
 

2.1 - Study Site 

 

The Fraser Experimental Forest (FEF) provides a suitable test bed to investigate 

advanced techniques in the inventory of soils.  FEF was established in 1937 in the heart of 

the central Rocky Mountains located 50 miles (as the crow flies) from Denver, Colorado 

(Figure 2.1). This 9,300 ha (36 sq. mi) research facility (managed by the United States Forest 

Service Rocky Mountain Forest and Range Experiment Station) mission is to investigate how 

to better manage high elevation sub-alpine coniferous forest ecosystems to enhance timber, 

water and wildlife resources.   
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Figure 2.1 - Location of Fraser Experimental Forest in North Central, Colorado 
 

The FEF is bounded by the St. Louis Creek watershed, a tributary of the Fraser River 

and part of the Upper Colorado River system.  The St. Louis watershed is representative of 

Colorado and Wyoming high elevation headwaters which provide 85% of annual stream flow 

in Colorado and accounts for 20 million acre-feet of stream discharge annually.  The climate 

is cool and humid with long winters and short, cool summers (Popovich et al. 1993).  

Precipitation averages 74 cm annually; about 75% falls as snow.  Average annual 

temperature is 0.5° C (33° F) with an average annual range of 72° C (min. -40°, max. 32°) at 

FEF headquarters (9,000 feet).  The vegetation is typical of the sub-alpine forest zones of the 

central Rocky Mountains with elevation separating vegetation associations.  Engelmann 

spruce (Picea englmannii) and sub-alpine fir (Abies lasiocarpa) dominate at higher elevations 

that are north facing and along streams in lower elevations; lodgepole pine (Pinus contorta) 
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dominates lower elevations and drier upper slopes; herbaceous vegetation is sparse except 

along streams and disturbed sites; and barren rocks intermix with alpine tundra, meadows, 

and wetlands above timberline.  The major geologic features of FEF are Proterozic 

metamorphic, calcium-rich gneisses, granodiorite and schist (Retzer 1962; Eppinger et al. 

1985).  There are a few isolated inclusions of Cretaceous Dakota sandstone and Jurassic 

Morrison shale and limestone.  Topography of FEF is composed of steep, high mountain 

slopes with narrow, small flood plains.  Elevation ranges from 2,682 to 3,902 meters with 

three-fourths of the total area above 3,048 meters (10,000 feet) and one-third above 

timberline (3,505 meters or 11,500 feet).  Due to the irregular “boot” shape at the base of 

FEF, the watershed boundary of St. Louis Creek (APPENDIX 1) was chosen as the spatial 

extent of the analysis.  This was done to increase the spatial leverage of the intensive 

sampling units within FEF and to maintain hydrologic connectivity of the spatial models.  
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Figure 2.2 - Spatial extent of Fraser Experimental Forest 
 

 The only inventory of the soils at FEF was conducted during the mid-1950s (Retzer 

1962).  That survey provided basic soils information that assisted with development of 

research and natural resource management activities in the Fraser valley.  The current soil 
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survey is available in two forms—the traditional soil survey document and a spatially explicit 

digital format.  The survey document provides spatial (paper maps), taxonomic, chemical and 

physical data for 20 map units (APPENDIX 2) within FEF. In 2005, the Retzer (1962) paper 

maps were georectified and digitized into a GIS, with basic soil properties (soil depth, 

percent sand silt and clay, O- horizon thickness, and A-horizon thickness) attributed for each 

map unit (APPENDIX 3).  The digital information was used to gain an understanding of the 

soil landscape within FEF for field sampling purposes and to provide a comparison against 

the soil attribute models.  

 

2.2 - Geospatial data acquisition and analysis 

 

 Data collection entailed acquiring topographic, vegetation, spectral, and vector 

(streams and roads) spatial datasets from federal, state, and academic web-based data 

gateways (Table 2.1).  These datasets were chosen because they have national coverage and 

can be post-processed into datasets that capture biotic, abiotic, local climate, and hydrologic 

variability.  Landsat 7 ETM+ was chosen as the remote sensing platform for this study due to 

its vast spatial coverage (global), high temporal resolution (14 day repeat) and its multi-

sensor platform, which has been used to develop a wide array custom multi-band vegetation 

and soil indices.  The June 23, 2002 imagery was selected for this study because its cloud and 

snow cover free providing maximum contrast between alpine rock and alpine vegetation.   
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Table 2.1  - Spatial datasets downloaded from state and federal websites 
 

Spatial dataset Source link 
Digital Elevation Model (DEM)  http://seamless.usgs.gov/website/seamless/viewer.htm 
Hydrology (1:24,000) http://nhdgeo.usgs.gov/viewer.htm 
Colorado Vegetation Model (CVM) http://www.nrel.colostate.edu/~davet/cvm.html 
Landsat 7 ETM+ http://edc.usgs.gov/products/satellite/landsat7.php 
Roads and Trails http://svinetfc4.fs.fed.us/vectorgateway/index.html 
 

 The geospatial analysis consisted of processing the base layers (Table 2.1) utilizing 

terrain, spectral, and cost-analysis techniques to develop the sampling design inclusion 

probability surface and as covariates for the soil property models.  The terrain analysis 

consisted of simple metrics, such as slope and curvature (Table 2.2) to complex 

hydrologically-weighted metrics that account for movement of soil as a function on gravity 

and water.  

Table 2.2 – Primary terrain analysis methods ArcGIS 9.2 (ESRI 2007) tools 
 

Terrain attribute Tool  
Profile curvature                                     CURVATURE 
Slope                                           SLOPE 
Solar Radiation                           AREA SOLAR RADIATION 

 

The spectral analyses are based on three widely used indices and transformations that 

spectrally separate vegetation from exposed soil and rock: 

 

1.) Normalized Difference Vegetation Index  

       The Normalized Difference Vegetation Index (NDVI) is the mostly widely used 

vegetation index developed for Landsat 7 ETM+ because it’s simple to calculate, 

robust across biomes and is good proxy of above ground bio mass.  NDVI is 

calculated as the ratio between the red and near infrared (NIR) portions of the 
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spectrum (Equation 2.1).  These two spectral bands are most affected by the 

absorption of chlorophyll in leafy green vegetation, and by the density of green 

vegetation (Lillesand and Kiefer, 2000). 

  dNIR
dNIRNDVI

Re
Re

+
−

=     (Equation 2.1) 

 
 

2.) Tassel Cap Transformation 
 

 The Tassel Cap Transformation (TCT) (Crist and Cicone, 1984; Kauth and 

Thomas, 1976) for Landsat 7 ETM+ takes advantage of the high degree of 

correlation that exists between visible, near infrared, and mid-infrared spectrums.  

This transformation reduces the seven Landsat bands into three orthogonal indices 

called brightness, greenness, and wetness, which account for 97% of spectral 

variability of the original seven bands.  The three (Brightness, Greenness, and 

Wetness) TCT indices were calculated by summing the seven Landsat 7ETM+ 

bands weighted by the coefficients listed in Table 2.3. 

 

Table 2.3  - Tasseled Cap Transformation coefficients for Landsat 7 ETM+ bands 
 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 
Brightness 0.33183 0.33121 0.55177 0.42514 0.48087 0.25252 
Greenness -0.24717 -0.16263 -0.40639 0.85468 0.05493 -0.11749 
Wetness 0.13929 0.2249 0.40359 0.25178 -0.70133 -0.45732 

 
a) Brightness (TCT1), is a weighted sum of all bands defined in the direction 

of the principle variation in soil reflectance (Lillesand and Kiefer, 2000)  
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b) Greenness (TCT2), is orthogonal to brightness and is a contrast between 

near-infrared and reflectance (Lillesand and Kiefer, 2000).  It measures the 

presence and density of green vegetation. 

c) Wetness (TCT3), is a contrast between shortwave-infrared (SWIR) and 

visible/near-infrared reflectance, providing a measure of soil and canopy 

moisture (Crist and Kauth, 1986) 

 

3.) Modified Soil-Adjusted Vegetation Index 

 The Modified Soil-Adjusted Vegetation Index (MSAVI) adjusts for soil 

background reflectance allowing for a better representation of green healthy 

vegetation (Rondeaux et al. 1996).  This index is an important consideration in this 

study because alpine vegetation is intermixed with brightly reflecting parent material.  

Qi et al. (1994) developed several MSAVI indices ranging from simple straight 

forward equations to very difficult abstract equations.  The one used in this study is 

the simplest form of MSAVI and doesn’t require pre-calculation of other vegetation 

indices or the slope of the soil reflectance line (Equation 2.2) (Qi et al., 1994). 

 

)Re(8)12( 2

2
)1(2 dNIRNIRNIRMSAVI −+ −−

+
=   (Equation 2.2) 

 

The terrain analysis focused on primary and secondary terrain attributes derived from 

a 10 meter Digital Elevation Model (DEM).  Primary terrain attributes are derived directly 

from the DEM (Table 2.2) which capture local topographic phenomena that influences the 

soil landscape.  Secondary terrain attributes are not derived directly from the DEM, but rather 
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from combinations of primary attributes to account for movement of hill slope alluvium from 

source to sink.   

                                               

 
Figure 2.3 - Flow direction example A) Demonstrates the eight directions of hydrologic flow from center 
cell; B) contains the direction coding system for the eight directions; C) Demonstrates the direction of 
flow from the center cell if flow direction is north; D) The coding scheme if the flow direction is north. 
 
The secondary terrain analyses used for this study is the Topographic Wetness Index (TWI) 

(Sorensen et al. 2006) which correlates with areas of greater soil moisture and shallow 

groundwater levels (Equation 2.3) where α is upslope area and β is slope (degrees).  Upslope 

area (α) was calculated by generating a flow direction raster (Figure 2.3) form the DEM and 

accumulating the number of hydrologicaly connected cells (pixels) down slope.   The TWI 

equation produces small values for topographic positions that are steep with small upslope 

areas (sources) and large values for topographic positions that have large upslope areas with 

shallow slopes (sinks). 









=

β
α

tan
lnTWI   (Equation 2.3)  
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2.3 - Selecting Intensive Sampling Units 

 

 To capture soil variability at a scale less than 10 hectares for the entire FEF   

intensive sample units were confined to sub-watersheds that make up the upper St. Louis 

Creek watershed.  Selection of intensive sampling units began by identifying 11 sub-

watersheds that capture substantial terrain, vegetation, and physiographic variability in FEF.  

The 11 sub-watersheds indentified (Figure 2.4) are on average 436 hectares account for 56% 

of FEF area and are made up mostly of Spruce-fir with, Lodgepole pine, and Alpine meadow 

cover types.  Lexen Creek watershed was selected to provide detailed soil information for 

current and future research.  Iron Creek was selected as an intensive sampling due to its size, 

accessibility, composition of existing soil map units (Retzer 1962) and land cover types, as 

well as its fit with Lexen Creek in representing FEF.  Iron Creek was selected over Range 

and East St. Louis Creeks because it is smaller than East St. Louis Creek and its land cover is 

proportionally more representative of FEF (Table 2.4).  This allowed for the land cover types 

to be sampled more intensively and equally based on their respective proportions.  This is 

especially true for alpine meadow, lodgepole pine and spruce-fir land cover types, which are 

the top thee land cover types in FEF.   
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Figure 2.4 – Sub-watersheds involved in intensive sample unit selection with land cover from the 
Colorado Vegetation Model (CVM) database (Theobald et. al 2004) 
 
 
Iron Creek contains 70% of the map units delineated in FEF which is between East St. Louis 

and Range Creeks with East St. Louis having the highest proportion (Table 2.4).  Iron 

Creek’s topographic characteristics capture 82 percent of elevation and 97 percent of slope 

variability of FEF by having an elevation gain of 1028 meters and a slope range of 58.3 

degrees (Table 2.5).   Iron Creek is more accessible than East St. Louis and Range by having 
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shorter distances between sample points than East St. Louis Creek, and is closer to FEF 

headquarters and passable roads than Range Creek.   

Table 2.4  - Vegetation and Soil survey map unit summary statistics for 11 sub-watersheds involved in 
intensive sampling unit selection. 
 

 
 

Watershed 

 Alpine 
Meadow 

(%) 

 
Aspen 

(%) 

Lodgepole 
Pine 
(%) 

 
Riparian 

(%) 

 
Rock 
(%) 

Spruce-
fir 

 (%) 

Soil  
units 
(%) 

Byers 7.7 0.2 18.3 3.3 10.5 60.0 61.0 
Dead horse 1.6 0.7 53.3 2.9 4.2 37.9 43.5 

East St. Louis 20.0 0.1 13.9 2.9 5.4 57.7 91.3 
Fool 2.0 0.3 32.8 2.7 2.9 59.3 39.1 

Gordan 18.4 0.0 6.8 3.1 38.7 33.0 52.2 

Iron 21.6 0.1 19.2 3.2 17.8 38.1 69.6 
Lexen 6.5 0.4 31.3 4.2 6.6 51.0 17.4 

Lunch 13.0 0.6 9.8 3.7 31.6 41.3 52.2 
Mine 25.1 0.0 3.0 4.3 23.9 43.7 65.2 

Range 34.4 0.0 2.7 3.9 16.5 42.9 55.6 

West St. Louis 0.6 0.0 35.6 4.0 0.4 59.4 25.2 

Iron and Lexen 16.7 0.2 24.7 3.5 13.7 41.2 75.2 
FEF 14.2 1.4 28.2 0.1 11.7 44.4 100.0 

 
 

 The number of sample sites to sample in Lexen and Iron Creek was determined to be 

137, which provides an overall sampling intensity of 7.4 hectares per sample.  Lexen Creek 

was allocated 37 sample points to provide detailed soil characteristics (6 hectares) for 

research purposes.  Iron Creek was allocated 100 sample points to meet sampling time 

constraints, the sampling density threshold, and statistical model requirements. 
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Table 2.5 - Topographic and physical characteristics of the 11 sub-watersheds involved in the intensive 
sampling unit selection. 

  Elevation (meters) Slope (degrees) 

Watershed Area(ha) Min. Mean Max. Min. Mean Max. 

Byers 356 2851 3289 3781 0.6 20.3 47.1 

Dead horse 356 2800 3095 3526 0.1 19.5 49.8 
East St. Louis 975 2787 3343 3847 0.1 17.7 48.9 

Fool 402 2763 3117 3503 0.4 12.9 37.0 
Gordan 275 3017 3457 3856 1.8 26.1 54.5 

Iron 783 2876 3414 3904 0.0 25.2 58.3 
Lexen 136 2961 3256 3527 5.0 21.5 42.6 

Lunch 297 2913 3400 3861 0.2 23.9 55.4 
Mine 250 3065 3436 3784 0.0 22.9 57.3 

Range 774 2922 3502 3889 0.1 21.1 50.2 
West St. Louis 498 2835 3234 3524 0.0 18.3 49.7 

        

FEF 9078 2646 3312 3904 0.0 18.2 60.0 

 
 
 

2.4 - Development of the sampling design 

 

The sampling design is based on a relatively new technique called Spatially-Balanced 

Sampling (SBS) (Stevens and Olsen (2004), which is a probabilistic-based approach that 

generates points that are spatially regular and can be parameterized to optimize sampling 

efforts.  The SBS design for Lexen and Iron Creek watersheds was developed using the 

Reversed Randomized Quadrant-Recursive Raster (RRQRR) algorithm (Theobald et al. 

(2007); ArcGIS 9.2 Toolbox, ESRI 2007).  To optimize sampling efforts an inclusion 

probability surface (raster map) (Theobald et al. 2007) was developed to capture soil 

development variability and reduce sampling travel time. This was accomplished using 

terrain, remote sensing, and travel time analysis that captures hydrologic, biotic, and human 

movement processes.  The terrain analysis consisted of implementing TWI (Equation 2.3), 
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which takes into account the hill slope area above a given location and the local slope. The 

remote sensing analysis relied on NDVI (Equation 2.1) which estimates plant vigor and 

density.  The combination of TWI and NDVI is a proxy for soil development.  This assumes 

that areas with high above ground biomass that are lower in the drainage are more productive 

thus having a higher degree of soil development.  The human movement analysis entailed 

generating an accessibility (average one way travel time (hr)) surface which encompasses 

roads, trails, slope, and vegetation to from the headquarters of the FEF.  This was calculated 

using a land cover enhanced Tobler’s travel time function (Equation 2.4; Tobler 1961): 

 

νω β += +•− |)05.0)tan(|5.3exp(6                          (Equation 2.4) 

 

whereω  is travel velocity (km/hr), β is slope in degrees and ν is a land cover residence 

factor. These three surfaces (NDVI, TWI, travel time) were normalized between 0 (least 

desirable) and 1 (most desirable) and then averaged.  The averaged inclusion probability 

surface is based on a weighting scheme that weights NDVI and TWI with 0.45 each and 

travel time 0.1. Giving NDVI and TWI priority over travel time in the placement of sample 

locations, but travel time does have an underlying effect (Figure 2.5). 

 



18 

 
Figure 2.5  - Surfaces used to develop the inclusion probability surface for Iron creek: 
A) Normalized TWI surface; B) Normalized NDVI surface; C) Normalized travel time surface; D) Final 
inclusion probability surface; E) Inclusion probability surface with 100 RRQRR sample points 
 
 Calculating the 137 sample site x,y coordinates for Lexen and Iron Creek watersheds 

with the RRQRR algorithm required three basic steps.  The first step was to generate a 

“Sequence Raster” for Lexen and Iron Creeks using the RRQRR tool Generate Sequence 

Raster, which gives every raster cell a unique spatially balanced address (Theobald et. al 

2007).  The second step is to filter the “Sequence Raster” against the inclusion probability 

surface to alter sequenced values based on the inclusion probability using the RRQRR tool 
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Filter Sequence Raster.  The third step is to extract the 137 sample points from the filtered 

sequence raster using the RRQRR tool Extract Sample Points. 

 

2.5 - Spatially Balanced Sampling Efficiency Simulation (SBSES) 

 

Theobald (2007) tested the RRQRR algorithm for spatial efficiency (configuration) 

using the Efficiency Ratio (ER) metric (Stevens and Olsen 2004) and found that it produces 

point patterns that are spatially balanced (ER < 0.8) and that the proportion of samples that 

fall within the different inclusion probability zones “mimics” the inclusion probability 

surface.  The objective of the SBSES is to evaluate the spatial, statistical and economic 

efficiencies of sample points generated by the RRQRR algorithm in conjunction with 

inclusion probability surface developed to sample Lexen and Iron Creek watersheds.  The 

SBSES efficiency categories (Table 2.7) focus on metrics commonly used to quantify 

statistical model performance (Statistical efficiency), test the spatial configuration of a 

sample design (Spatial efficiency), and placement of points on the landscape (Economic 

efficiency).  The statistical efficiency metrics test how well a sampling design captures 

variability by producing models that are accurate (R2), precise (MSE), and are not influenced 

by spatial autocorrelation (Moran’s I).  The Spatial efficiency metric (ER) evaluates the 

spatial dispersion of sample points within FEF.  A sample design that positions sample points 

that are evenly dispersed is considered to be more spatially efficient (Stevens and Olsen 

2004).  Evaluating the economic efficiency focuses on the placement of the sample points in 

relation to topography and travel time from FEF headquarters.      
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At the heart of the SBSES analysis is a known soil property that is continuous and 

complete for FEF to sample, model and evaluate performance.  Since such a spatial dataset 

doesn’t exist, NDVI was used because it is continuous (30 x 30 meter resolution) and 

complete for FEF and it is highly correlated with soil depth (Figure 2.6).    

 The SBSES involves producing 137 SBS and Simple Random Sampling (SRS) 

points, extracting dependant (NDVI), independent, and economic spatial information for the 

points, developing a multiple regression linear model (LM), producing a NDVI prediction 

surface from the LM, and populating a database with the model efficiency metrics (Figure 

2.7 and APPENDIX 3).  These five basic steps where repeated 1000 times for SBS and SRS 

similar to Theobald (2007).  This was accomplished with a Python script implemented within 

ArcGIS (ESRI 2007) that utilizes GIS and R statistical language operations (R Development 

Core Team 2006).  

 The SBSES inputs are based on spatial information used for this project to sample 

soils and build geostatistical soil attribute models.  The spatial information parameters for the 

simulation are broken into four types:  1.) Sampling frame 2.) Dependant surface 3.) 

Independent surfaces 4.) Economic cost surface.  The sampling frame inputs are the RRQRR 

sequence raster (Theobald et al., 2007) and the inclusion probability raster, developed for 

FEF.  These two surfaces also provide the sampling frame to calculate random x,y locations 

for the SRS iterations.  The dependant surface is NDVI to mimic soil depth and is used to 

calculate Mean Squared Error (MSE).  The independent surface inputs consist of many 

surfaces that are used to predict NDVI (Table 2.5).  The economic cost input is the travel 

time (hr) from FEF headquarters surface, which is used to evaluate economic efficiency of 

sample point placement. 
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Figure 2.6 - Correlation between soil depth and NDVI based on 137 soil samples collected in Iron and 
Lexen Creek watersheds. 

 
Table 2.6  - Spatial variables used in the simulation 
 

Variable Units 
Elevation Meters 
Slope Degrees 
Solar insulation Index value (0-1) 
TWI Index value (0 -18) 
LS 7 ETM+ Band 1 Brightness (0-255) 
LS 7 ETM+ Band 2 Brightness (0-255) 
LS 7 ETM+ Band 5 Brightness (0-255) 
LS 7 ETM+ Band 7 Brightness (0-255) 
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Figure 2.7 - Simulation inputs, procedures and outputs 
 
 The simulation generated two ASCII files (pts_iteration.txt and iteration_stats.txt) 

that capture the spatial configuration and attributes of the points, as well as iteration 

summary statistics for SBS and SRS.  These two files were used to generate the efficiency 

metrics (Table 2.7) to evaluate SBS performance.  To evaluate SBS performance a single 

ASCII file was compiled that contains the efficiency metrics (Table 2.7) for SBS and SRS, 

which was necessary for the post simulation analysis.   

 
Table 2.7  - Simulation efficiency type and metric involved in the post simulation analysis 
 

Efficiency category Metric 
Statistical Efficiency Adjusted R2 

Statistical Efficiency Mean Squared Error 
Statistical Efficiency Moran’s I (p-value) 
Statistical Efficiency Modified Moran’s I 
Economic Efficiency Average travel time (hrs) 
Economic Efficiency Average elevation (m) 
Spatial Efficiency Efficiency Ratio (ER) 

 

The post simulation analysis utilized the data file compiled from the SBS and SRS 

simulations to evaluate efficiency differences and test if the differences are significant.  

Excluding the ER and Moran’s I p-value metrics, efficiency differences were evaluated based 

on average, median and standard deviation statistics, percent difference between SBS and 
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SRS averages, and testing if the SBS and SRS efficiency metric distributions are significantly 

different.  To test significance, the nonparametric Kolmogtov-Smironov test (Davis 1986) 

was used because of the large population size (1000) and it focuses on the distribution of the 

two populations instead of their means.  The ER metric is a ratio based on Voronoi polygon 

area variances formed by the SBS and SRS designs across all simulations (Stevens and Olsen 

2004).  If ER <1.0, then the SBS design is more spatially efficient than SRS.  The Moran’s I 

p-value analysis compares the proportion of SBS and SRS LM models that had a p-value less 

than or equal to 0.05.  The sampling design cost efficiency analysis also involves evaluating 

spatial variance captured to travel time.  This analysis is a ratio between SRS and SBS with 

the numerator and denominator being the product of average travel time to sample points and 

MSE.  If the ratio is >1.0, then the SBS is more cost efficient, because it is capturing more 

spatial variability in a more cost effective manner.  

 

2.6 - Sampling soils in the field 

 

The ability to accurately navigate to predetermined sample sites in the field is 

essential to tie geographical information with field-based observations.  Sample sites were 

located to within three meters using a Geographical Positioning System unit (GPS) (Garmin 

GPSMAP 60CSx) that was Wide Area Satellite System (WASS) enabled using a Universal 

Transverse Mercator WGS84, Zone 13 coordinate system.  Navigation to the sample sites 

was executed on foot with some sites taking up to 5 hours to reach, which required 

developing a sampling order strategy before each sampling trip to optimize sample collection 

and minimize hiking time.  This was done using a 1:24,000 Digital Raster Graphic (DRG) in 
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conjunction with the travel time surface to manually define sampling path to optimize the 

number of samples collected each outing.  Figure 2.8 is an example of how the DRG and the 

travel time raster were used to define sampling paths.   

  
 
Figure 2.8 - Example of sample site path selection in lower Iron creek:  A) Demonstrates sample points 
over laid on a DRG; B) Shows how the use of the accessibility surface in conjunction with the sample 
points and DRG to enhance sampling loop selection. 
 
 To reduce sampling time, field methods were made up of seven simple produces: 1.) 

Locate sample point using a (GPS), 2.) Dig a soil pit to the C or R horizon, 3.) Define genetic 
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horizons , 4.) Make field based observations, 5.) Complete field based sampling sheet (see 

Appendix B), 6.) Collect soil samples for every horizon, 7.) Take photographs of the soil pit 

and surrounding terrain and vegetation.   Post sampling procedures involved updating the 

GIS database for the sampled points with field based observations, air drying collected 

horizon samples and storing for future use. 

 

2.7 - Developing Soil Attribute Spatial Models 

 

Environmental correlation (geostatistical methods) have a form similar to Jenny’s 

(1941) functional factorial model (Equation 2.5) with factor interactions approximated using 

terrain and remote sensing techniques (Equation 2.6): 

 S = f(cl, o, r, p, t, …)                                       (Equation 2.5) 

 Si = f(cli, oi, ri, hyi, ki ... kj)                         (Equation 2.6) 

where for each site, Si is the soil property observed in the field.  The explanatory factors cli, 

oi, ri and hyi in (Equation 2.5) are geospatial representations (Table 2.8) that approximate 

climate, organisms, topographic dynamics and hydrologic processes that influence a soil 

property at observation Si, with (ki … kj)  representing other miscellaneous site specific 

environmental predictors that may be available for a survey area (e.g., Lidar, geology, high 

resolution multi-spectral imagery, etc.).   

Table 2.8  - Soil attributes modeled for FEF 
 

Soil Property (Si) Units 
Total soil depth Inches 
A-horizon Thickness Inches 
O-horizon Thickness Inches 
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A range of statistical analyses can be applied to develop models for spatial prediction 

using environmental correlation.  These include Bayesian rule-based systems (Cook et al., 

1996; Skidmorre et al., 1996), neural nets, fuzzy logic (Xhu et al., 1997), generalized linear 

models (McKenzie and Austin, 1993; Gessler et al., 1995), tree-based methods and co-

kriging (Odeh et al., 1994).  A thorough analysis of the advantages of different strategies for 

environmental correlation has yet to be done in soil survey although Austin et al. (1995) have 

undertaken such a study for vegetation prediction.  They concluded that a combination of 

generalized linear models and generalized additive models was superior to tree-based 

procedures but all were acceptable for practical applications.   

In an attempt to streamline the soil property modeling process, a generalized linear 

model (GLM) was chosen to model large scale variability and a tree-based method to model 

small scale variability. These methods were chosen because they are spatially robust to noisy 

conditional relationships that are common is soil sample data, they do not require specialized 

skills to parameterize, and they produce results that are easy to interpret and implement using 

spatial data.   

 
Table 2.9  - Independent spatial covariates used for soil property spatial models 
 

Independent variable Units 
Local Slope Degrees (0 - 90) 
TWI Index (-10 –10) 
Curvature Index (-13 – 12) 
Solar Insulation Index  (0 – 1) 
Wetness Index  (-5 – 167) 
Brightness Index  (130 – 373) 
Greeness Index  (-72 – 20) 
NDVI Index (-10 – 10) 
MSVAI Index (-236 – 16) 
TM Band 7 Index (0 - 255) 
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The GLM / tree-based modeling procedures (Figure 2.9) entail GLM prediction 

model to capture large scale soil variability.  The GLM residuals are modeled using a tree-

based method to capture small scale error not captured by the GLM.  The two surfaces GLM 

and tree-based are added together to get the final model.   

 

 

Figure 2.9 - Soil property modeling procedures 

The GLM is used to model large scale variability because it is effective at handing 

variables that are continuous (e.g., elevation) or discrete (e.g., land cover) and that are not 

normally distributed.  As a consequence, predictions are more realistic because they portray 

soil variation as being either gradual or discontinuous.  The residuals (model errors) from the 

GLM prediction surface analysis are modeled using a regression tree method, which accounts 

for non-parametric relationships by successively splitting the data into increasingly 

homogenous groups.   

The GLM soil property modeling process was executed in R (R Development Core 

Team 2006) requiring six basic steps: 

1) Generate a full GLM soil property (Table 2.8) regression model involves all 

independent variables (Table 2.6).   
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2) Perform a backward stepwise selection procedure, stepAIC MASS Package (Ripely 

2008) to identify significant predictor covatiates optimizing on Akaike 

Information Criteria (AIC) (Akaike 1969).  

3) Execute GLM model based on covariates selected by stepAIC. 

4) Calculate summary statistics, Mean Squared Error (MSE), and extract model 

residuals for the final GLM. 

5) Calculate partial and global Moran’s I on residuals to determine and record spatial 

bias of model. 

6) Build the GLM soil property prediction raster in ArcGIS 9.2 using spatial analysis 

tools SingleoutputMapAlgebra (ESRI 2007) equation string. 

The resulting soil property GLM accounts for parametric relationships between the 

dependant variables (Table 2.8) and covariates (Table 2.9).  Since the objective of this 

modeling project is to develop soil property surfaces for the entire FEF, performing spatial 

interpolation analysis on the residuals to account for spatial autocorrelation is not useful due 

to the limited spatial extent of the samples. A tree-based modeling technique was used to 

capture small scale variability of non-parametric relationships contained in the residuals of 

the GLM. The tree-based modeling of the residuals where executed in R (R Development 

Core Team 2006) in five steps (Figure 2.9; numbers 7 – 11): 

7) Model GLM residuals using regression tree analysis.  

8) Generate a 10-fold cross validation analysis on the full regression tree and select 

the best fitting regression tree based on the 10-fold cross validation and regression 

statistic. 

9) Prune the best fitting tree based on 10-fold cross validation statistics. 
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10) Calculate model performance stats for the regression tree 

11) The final step is to sum the GLM and tree-based prediction surfaces together 

resulting in the final soil property surface. 

 

2.8 - Soil property model validation 

 

 Validation is one of the crucial parts of the modeling process.  It can be achieved by 

comparing observed and predicted responses using an independent data set (Guisan et al., 

1998) or by cross-validation when a dataset can be split in several subsets (Lehmann et al. 

2002).  It is not clear whether independent datasets are really preferable to cross-validation.  

Additionally, test of spatial autocorrelation of residuals also provides insight of the model’s 

ability to capture spatial patterns independent of environmental predictors.  The soil attribute 

models were evaluated by splitting the original data set (n= 137) into a model training dataset 

(80%, n=110) and a model validation dataset (20%, n=27) (split-sample approach; see 

Guisan and Zimmermann, 2000) Guisan and Zimmermann (2000) suggest a 70% training 

and 30% evaluation split.  This degree of splitting would have resulted in 96 training points 

and 41 validation points, but due to the limited sample size, an 80/20 split was chosen.  The 

model performance was evaluated by calculating the correlation between the training and 

validation points using a linear regression, as well as quantifying the spatial autocorrelation 

of the residuals based on both a global Moran’s I p-value and Modified Moran’s I.  
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Chapter 3 
 

Results and Discussion 
 

3.1 - Watershed characterization and sampling efficiency 

 

A total of 137 soil pits were described and sampled in the Iron and Lexen Creek 

watersheds (Table 3.1).  The Iron Creek sampling sites had an average elevation of 3133 

meters with an average slope of 20.7 degrees and were on average 2.4 hours from the road. 

Lexen Creek’s sampling sites were at a lower elevation, on steeper slopes but generally more 

accessible (Table 3.1).  Spatially, the distribution of Lexen Creek’s sample sites is 25 percent 

more dense with each site representing an average area of 6.1 hectares (Table 3.1).  The 

average accessibility to sample locations from the nearest access point was 2.1 hours making 

it 85 percent more accessible than Iron Creek (Table 3.1). 

Table 3.1 - Sample plot description summary statistics 

 
  
 
 The results of the field sampling are split into two components that describe soil 

property and sampling time variability.  Soil property data include soil morphological 

properties.  Sampling time data explores the time required to navigate, dig and collect soil 

  
 

n 

Total 
Area 
(ha) 

 Average Area 
(ha) 

Mean STD 
 

Elevation 
(m) 

Mean STD 
 

Slope 
(deg.) 

Mean STD 
 

Accessibility 
(hr) 

Mean STD 
 

Iron 100 790 7.8 5.0 
 

3313 200.6 
 

20.7 10.7 
 

2.4 1.5 
 

Lexen 37 190 6.1 4.0 
 

3229 139 
 

21 5.4 
 

1.3 0.86 
 

Both 137 9.8 7.4 5.0 
 

3293 191.3 
 

21 9.7 
 

2.1 0.94 
 



31 

properties at each sample site providing further insight to the relative accessibility of the 

Lexen and Iron Creek watersheds for soil survey activities. 

Table 3.2 - Soil sampling summary statistics 
  

 
n 

 
# trips 
(day) 

Avg. 
Samples / 

Trip 

Avg. 
Sampling Time 

(min.) 

Avg. 
Travel Time 

(min.) 
Iron 100 11 8 20.5 73.8 
Lexen 37 4 5 18.6 27.0 
Both 137 15 6 19.3 57.0 

 
  

Of the 137 sample sites, 118 were collected in 142 hours over three months during 

2005 and 2006. The large size and low accessibility of the Iron Creek watershed resulted in a 

20% longer travel time between sites and a slightly longer sampling time than Lexen Creek 

(Table 3.2).  At a sample site, the time spent digging and describing a soil pit was 19.3 

minutes on average (Table 3.2).  Sampling time in Iron Creek was slightly higher than Lexen 

Creek due to GPS problems and also because the field sampling protocols became more time 

efficient as the study progressed.  The post processing of field samples required 30 hours to 

air dry and sort soil samples, as well as data entry and data management.   

Table 3.3 - Horizon thickness and total soil depth thickness summary statistics 

  
 
 

Lexen Creek soils have thicker A and B horizons than Iron Creek soils (Table 3.3).  

The O-horizon in Iron Creek is almost twice as deep on average than Lexen, due to large 

frequent wet lands, riparian zones and spruce-fir which have the deepest O-horizons (Table 

  
 

O-horizon 
Mean STD 

 

 
 
A-horizon (in) 
Mean STD 

 

 
 
B-horizon (in) 
Mean STD 

 

 
 
E-horizon (in) 
Mean STD 

 

 
Total Soil 
depth (in) 

Mean STD 
 

Iron 4.3 2.2 
 

3.3 2.1 
 

11.2 6.5 
 

5.3 3.3 
 

20.8 11.8 
 

Lexen 2.2 1.5 
 

4.7 2.3 
 

12.3 3.1 
 

4.17 1.7 
 

28.2 9.8 
 

Both 4.1 1.9 
 

4.3 2.1 
 

10.7 5.1 
 

4.6 2.7 
 

22.6 10.4 
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3.10).  The E- horizon in Iron creek was thicker due to cooler and wetter climatic conditions 

based on topographic position, aspect and elevation than Lexen Creek.  The total soil depth 

(including the C-horizon) of Lexen Creek is 28 percent greater than Iron Creek (Table 3.3) 

by having no exposed rock sampled (Table 3.5) and largely composed (82%) of lodgepole 

pine and spruce-fir stands (Table 2.4) which have the deepest soils (Table 3.10).   

Table 3.4 - Horizon texture summary statistics 

   
 

The soils in Lexen and Iron Creeks are coarse textured with the majority of the 

mineral matter consisting of sand size particles (Table 3.4).  The B-horizon is the finest 

textured of the all horizons sampled (Table 3.4) and these horizons were identified most 

frequently (Table 3.5).  The O-horizon is found more frequently than the E-horizon due to 

the higher number of organic soils found in Iron Creek.  Sample sites classified as rock 

outcrop occurred only in Iron Creek making up 18 percent of the samples. 

Table 3.5 - Horizon frequency  
  

 
A 

 
 

B 

 
 

E 

 
 

O 

 
Surface 

Rock 
Iron 67% 77% 21% 65% 18% 
Lexen 67% 93% 35% 48% 0% 
Both 67% 77% 21% 65% 14% 

 
 
 

 Sand (%) 
Mean STD 

 

Silt (%) 
Mean STD 

 

Clay (%) 
Mean STD 

 

Texture 
Class 

A-horizon 53 11.7 
 

34 9.76 
 

12 7.8 
 

Loam 
B-horizon 46 7.3 

 

39 6.2 
 

15 5.3 
 

Loam 
E-horizon 70 8.1 

 

27 5.7 
 

2.0 2.6 
 

Loamy Sand 
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3.2 - Spatially Balanced Survey Efficiency Simulation (SBSES) results 

 

 The main aim of the SBSES is to illustrate the effectiveness of the SBS in 

conjunction with the inclusion probability surface developed for sampling and spatially 

modeling soil properties in FEF.   

Table 3.6 – SBSES summary statistics 
 

 
Metric 

     Median 
SBS SRS 

 

      Mean 
SBS SRS 

 

STD 
SBS SRS 

 

Percent 
Difference 

Adjusted R2 0.92 0.91 
 

0.92 0.9 
 

0.015 0.02 
 

2.0 
Modified Moran’s I 0.21 0.25 

 

0.21 0.26 
 

0.025 0.12 
 

34.0 
MSE 0.004 0.07 

 

0.004 0.072 
 

0.023 0.032 
 

93.0 
Elevation (m) 3198 3221 

 

3198 3221 
 

20 25 
 

<1.0 
Travel Time (hr) 3.0 3.2 

 

3.0 3.2 
 

0.15 0.20 
 

6.0 

 

The SBSES statistical efficiency results provide evidence that SBS produces 

statistical models that are better fitting (Adjusted R2), 93 percent more spatially precise 

(MSE) (Table 3.6) with model residuals that are less influenced by spatial autocorrelation 

than SRS. The average Adjusted R2 difference between SBS and SRS is slight, but the 

cumulative distributions (Figure 3.1) differed significantly (two-sample Kolmogorov-

Smirnov P< 0.001) with a maximum percent difference of 33 percent (D = 0.33) (Table 3.7).  

The MSE cumulative distributions for SBS and SRS (Figure 3.1) along with the 

Kolmogorov-Smirnov test (Table 3.7) demonstrates that SBS generates more spatially 

precise models.  The majority of SBS and SRS models satisfy the assumption that the 

residuals are spatially independent with 92 percent of SBS models and 60 percent of SRS 

models have residuals that are not spatially correlated (Moran’s I P>0.05, Figure 3.2).  The 

Modified Moran’s I values show that the SBS model residuals are 34 percent less spatially 

correlated than SRS (Table 3.6), with a cumulative distribution (Figure 3.2) that is 43 percent 
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different (D=0.43) from SRS and are significantly different (two-sample Kologorov-Smiron 

test P<0.001, Table 3.7). 

 

 
Figure 3.1  SBSES Statistical efficiency metrics Cumulative Distribution Frequency analysis graphs for 
Adjusted R2 and MSE 

 

 
Figure 3.2 SBSES Statistical efficiency metrics Cumulative Distribution Frequency analysis graphs for 
Moran's I p-values less than 0.05 and Modified Moran's I 
 

The spatial efficiency analysis demonstrates that SBS produced a sampling design 

that is 28 percent more spatially efficient than SRS. The distribution of ER values for all 
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1000 (Figure 3.3) iterations is cented at 0.72 with a minimum value of 0.644 and a maximum 

value of 0.75.   

 

 
Figure 3.3 - SBSES Efficiency Ratio histogram with a mean of 0.72 and a standard deviation of 0.008 
 
 
 The cost efficiency results show that SBS and SRS sample sites are on average three 

hours from FEF headquarters with SBS points being 12 minutes closer to FEF headquarters 

and are located 23 meters lower in elevation than SRS (Table 3.6).  The Elevation and Travel 

time cumulative distributions (Figure 3.4) differed significantly (two-sample Kolmogorov-

Smirnov test P<0.001) with a maximum percent differences of 25 percent (D= 0.25) and 36 

percent (D= 0.36) respectively (Table 3.7).  The cost to variance ratio between SBS and SRS 

is 19.2 (>1.0) indicating that SBS captures more variability with less travel time.   
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Figure 3.4 - SBSES Cost efficiency metrics Cumulative Distribution Frequency graphs for average one 
way travel time form FEF headquarters and elevation. 
 
    

Table 3.7 – SBSES two-sample Kolmogorov-Smirnov test results on efficiency metrics  
 

Performance Metric D p-value 
Adjusted R2 0.33 <0.001 
MSE 0.98 <0.001 
Modified Moan’s I 0.42 <0.001 
Elevation 0.25 <0.001 
Travel Time 0.36 <0.001 

 
  

3.3 - Soil property spatial models 

 

The regression tree analysis on the Generalized Linear Model (GLM) residuals was 

investigated but not utilized, due to the strong performance of the GLMs and the added 

model complexity with very little added model performance.  The multi-model methodology 

is a useful method in generating robust spatial models for a wide range of applications, but 

was not necessary for this project.  
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The GLM equations for the soil property models, namely total soil depth, A and O 

horizon thickness derived from stepwise regression procedures, are shown in Table 3.8.  

Spectral indices explained the majority of variability across all models with the Tassel Cap 

Transformation indices (Brightness, Greeness, and Wetness) being incorporated into all three 

models.  Of the six terrain variables developed, three (curvature, TWI, slope) were selected 

as significant predictors of total soil depth and horizon thickness models.  These soil attribute 

models (Table 3.8) were developed from the 110 selected training sample sites in Iron Creek 

and Lexen Creek watersheds and were extrapolated to the entire geographical boundaries of 

FEF.    

Table 3.8 - Soil GLM covariates with coefficient and p-value 
 

Spatial Model   Variable Coefficient p-value 
 Intercept 31.4125 < 0.001 
 Brightness 0.9288 < 0.001 

Soil Depth Curvature -2.55842 < 0.001 
Model Greenness 0.4894 0.002 

 TM Band 7 0.69227 <0.001 
 MSVI 1.40585 < 0.001 
 Intercept -36.32 > 0.05 

A Horizon Depth Wetness 12.33 0.001 
Model Greenness 2.592 0.002 

 NDVI 9.664 <0.001 
 TWI 8.930 <0.001 
 Intercept -12.35 <0.001 
 Curvature -25.91 <0.001 

O Horizon Depth NDVI 18.53 <0.001 
Model Greenness -0.3262 <0.001 

 TWI 1.61 <0.001 
 Wetness 0.243 <0.001 
 Slope 25.621 <0.001 

 
 

The total soil depth spatial model (Figure 3.5) is made up  of spectral indices that are 

positively correlated and curvature which is negatively correlated with soil depth (Table 3.8).  

The positive correlation of the spectral indices indicates that areas with higher above ground 
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biomass have deeper more developed soils. The negatively correlation of curvature indicates 

that areas that are concave (curvature < 0) have deeper soils and convex areas (curvature > 0) 

have shallower soils.  The performance of the soil depth model is the most robust of the three 

models based on the following: 1) a high R2 (Table 3.9); 2) no spatial dependence within the 

residuals (Table 3.9); and 3) normally distributed residuals (Figure 3.2 A) that are random 

compared with the prediction values (Figure 3.2 B).  The plot of predicted verses observed 

(Figure 3.4 C) shows a strong linear trend indicating that the form of the model is valid and 

that model covariance is constant. 

 

Table 3.9 - Soil spatial model performance summary statistics 
 

 
Spatial Model 

R2  
Model 

p-value 
Model 

R2 
Validation 

 
Moran’s I 

p-value 
Moran’s I 

Modified 
Moran’s I 

Solum Thickness 0.88 < 0.001 0.91 -.001 0.67 0.06 
A-Horizon Thickness 0.86 <0.001 0.82 -0.051 0.091 0.18 
O-horizon Thickness 0.93 <0.001 0.85 -0.0098 0.91 0.10 
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Figure 3.5 – Total soil depth spatial model performance plots: A) Histogram of model residuals; B) 
Scatter plot between model residuals and predicted values; C) Scatter plot with trend line of model 
predicted and observed values; D)  Scatter plot with trend line between predicted values and validation 
values 
 
 As with total soil depth, spectral indices explain the majority of the variability in A-

horizon thickness spatial model (Figure 3.6).  The variable TWI (Topographic Wetness 

Index) has a significantly positive correlation with correlated with A-horizon thickness 

suggesting that wet areas have thicker A-horizons. The performance of the A-horizon depth 

model is not as strong as the soil depth or O horizon thickness models; however, it still 

explains 86 percent of the variability (Table 3.9) for the training data.  The residuals are 

normally distributed (Figure 3.3 A) and the predicted vs. observed scatter plot shows very 

little trend (Figure 3.3 B).  The spatial dependence of the residuals are weakly correlated 
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(Table 3.9) with a modified Moran’s I of 0.2 and a Moran’s I p-value > 0.005.  As with the 

total soil depth model, the form of the model is valid with constant covariance (Figure 3.3 C)

  

  

 

Figure 3.6 – A-horizon thickness spatial model performance plots: A) Histogram of model residuals; B) 
Scatter plot between model residuals and predicted values; C) Scatter plot with trend line of model 
predicted and observed values; D)  Scatter plot with trend line between predicted values and validation 
values 
 
 
 The O-horizon thickness spatial model (Figure 3.7) is a strong fitting model with all 

six covariates including the intercept being significantly correlated.  The covariates that make 

up the model are split between spectral indices that measure vegetation vigor and moisture 



41 

content and terrain covariates that capture terrain shape and hydrologic position (Table 3.8).  

The O-horizon thickness model accounted for 93 percent of the variability with the residuals 

being tightly clustered between 1 and -1 (Figure 3.4 A and B) with a mean value of 0.17.  

They are also not significantly spatially correlated with a Moran’s I p-value of 0.91 (Table 

3.9) and a Modified Moran’s I value of 0.1. 

 

 

Figure 3.7 – O-horizon thickness spatial model performance plots: A) Histogram of model residuals; B) 
Scatter plot between model residuals and predicted values; C) Scatter plot with trend line of model 
predicted and observed values; D)  Scatter plot with trend line between predicted values and validation 
values 
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3.4 - Soil attribute model validation 

 

 Validation of the soil attribute models utilizes three analyses to evaluate statistical 

and spatial performance.  The statistical performance analysis is based on the validation 

dataset withheld from the original sampled dataset in Iron and Lexen creek watersheds.  This 

analysis focuses how well the soil attribute prediction values correlate to the validation 

(measured) values.  The spatial performance analysis evaluates how well the spatial soil 

attribute model’s predictions compare with the measured (sampled) and soil survey map unit 

values.  This analysis involves calculating total soil depth, A-horizon and O-horizon 

thickness summary statistics for each land cover type and soil survey map unit in FEF (Table 

3.10, Appendix 5, Appendix 6 and Appendix 7). This is useful in determining where the 

model is robust and where its estimates are not reliable. 

The soil depth model has the best statistical fit of the three models by capturing 90 

percent of measured variability (Table 3.9 and Figure 3.2 D).  Soil depth summaries for the 

land cover types in FEF (Table 3.10) highlights Alpine Meadow, Lodgepole pine and the 

Spruce-fir as areas where the model performed strongly.  By producing mean soil depth 

estimates within 2 inches of the soil survey and measured datasets. These land cover types 

make up the majority of the sampling area (Figure 2.4) and account for 87 percent of FEF.  

The land cover types with the largest differential (>10 inches) between the model and soil 

survey are Aspen, Riparian and Rock (Table 3.10).  For Rock and Riparian areas the 

measured and modeled values are very similar (~1 inch).  

The soil survey map unit comparison between the model and individual map units 

(Appendix 5) is weak, with the majority of map units (70%) being greater than 10 inches 

from the model.  Of these map units with sample sites (Alluvial lands (Aa and Ac), 
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Ptarmigan (Pa, Pb, Pc, Pd) and Vasquez (Va)), have measured values that are within one inch 

of the model estimates.  The 30 percent of map units that are within 10 inches of the soil 

depth model make up 56 percent of FEF and are associated with forested, alpine organic, 

alpine meadow soils (Appendix 2).     

Table 3.10 – Soil property summary statistics for land cover types in FEF based on prediction model 
(Spatial Model),  sample points (Measured) and Fraser Alpine Area soil survey values.  The summary 
statistics calculated by intersection of soil survey map units and spatial model cell that fall inside a land 
cover type.  The mean and standard deviation values for soil survey values are based on area weights.  
The measured mean and standard deviations are calculated based on sampled point values weighted by 
the inclusion probability value. 

 
 

The A-horizon spatial model performed the poorest against the validation dataset 

capturing 82 percent of the measured variability (Table 3.9).  The scatter plot between 

predicted and measured (validation) (Figure 3.3 D) shows that the predicted A-horizon 

values are systematically higher against the measured values.   

 
Soil Attribute             Land cover  

Spatial Model 
Mean STD 

 

Measured 
Mean STD 

 

Soil survey 
Mean STD 

 

                                     Alpine Meadow 15.1 8.2 
 

18.7 8.7 
 

17.9 15.3 
 

                                     Aspen 33.6 7.2 
 

NA NA 
 

23.0 17.0 
 

 Soil Depth                   Lodgepole Pine 29.8 4.3 
 

32.1 4.1 
 

27.2 16.0 
 

                                     Riparian 29.5 7.8 
 

29.6 10.2 
 

18.9 15.9 
 

                                     Rock 2.5 7.0 
 

1.5 2.1 
 

11.2 15.8 
 

                                     Spruce-fir 27.6 5.3 
 

29.6 4.3 
 

27.0 16.4 
 

                                     Alpine Meadow 4.5 2.9 
 

4.9 3.1 
 

2.9 2.6 
 

                                     Aspen 4.9 2.1 
 

NA NA 
 

2.4 1.7 
 

A-Horizon                   Lodgepole Pine 4.2 1.8 
 

3.9 2.7 
 

2.8 1.6 
 

 Thickness                   Riparian 4.2 1.6 
 

3.9 2.1 
 

2.1 1.7 
 

                                    Rock 1.6 2.8 
 

1.2 4.2 
 

1.5 2.1 
 

                                    Spruce-fir 1.5 1.8 
 

3.8 2.4 
 

2.5 1.2 
 

                                    Alpine Meadow 0.8 9.7 
 

0.8 1.5 
 

0.5 1.9 
 

                                    Aspen 4.4 4.6 
 

NA NA 
 

3.6 5.3 
 

O-Horizon                  Lodgepole Pine 2.4 3.7 
 

2.3 1.7 
 

3.0 3.6 
 

 Thickness                  Riparian 5.1 4.4 
 

5.1 6.0 
 

3.3 2.5 
 

                                   Rock 0.5 0.2 
 

0.8 1.8 
 

0.7 1.8 
 

                                   Spruce-fir 3.2 2.4 
 

2.9 2.1 
 

3.1 2.0 
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The land cover summaries support the results from the validation analysis with the A-

horizon model over estimating thickness compared with the measured and soil survey 

thicknesses values (Table 3.10). The difference between the measured data and the model are 

slight with spruce-fir having the largest error.  Comparing the soil survey value with the 

model indicates that the model in most cases is over estimating A-horizon thickness by 1.75 

inches.   

The A-horizon thickness model estimated mean A-horizon thicknesses that are 

greater than the majority (60%) of the soil map unit estimates (Appendix 3).  This is 

especially true for map units with zero A-horizon thickness (Alluvial lands (Aa), Alpine 

lands (Ab, and Ac), Leal Series (La and Lb) and Rock outcrops (Ra and Rb)) of these map 

units the model has a large standard deviations and have measured estimates that are within 

2.5 inches of the model estimates (Appendix 3).  The other map units that the model 

estimated a higher mean A-horizon thickness are within 2.5 inches of the soil survey.   The 

40 percent of map units that model underestimated A-horizon thickness have a difference of 

about 2.5 inches with the measured values being within 1.5 inches. 

 The O-horizon model performed well against the validation dataset by capturing 85 

percent of measured variability (Table 3.9).  The scatter plot between predicted and measured 

(validation) (Figure 3.4 D) shows that at deeper O-horizon thickness (>15 inches) the model 

error increases.   

 The land cover O-horizon summaries indicate that there is a close agreement between 

the model, measured and soil survey map units across all land cover types (Table 3.10).  The 

lodgepole pine and Spruce-fir land cover types have the strongest agreement between all 

three dataset with less than 0.6 inches separating them and standard deviations the over lap.  
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The Alpine Meadow land cover has a close agreement (mean <0.3 inches) between all three 

datasets, but the model has a very high standard deviation.  The Riparian land cover shows a 

very close agreement between the model and measured with the soil survey map units having 

a mean depth 1.8 inches less than the modeled and measured datasets.   

 The soil survey map unit comparison (Appendix 7) shows a strong agreement with 

the majority of map units (60%) having modeled, measured, and soil survey thickness that 

are with one inch of each other.  The map units with the greatest difference between the 

model and soil survey are the Alluvial land (Aa), Lunch (Ld), Nystrom (Na) and Tabernash 

series (Appendix 2).  These map units have very large differences between the model and soil 

survey with the Lunch and Nystrom series exceeding 10 inches.  The Alluvial land and 

Tabernash series differences between the model are five inches with standard devotions equal 

to the mean indicating the there is a lot of variability within them. 
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Figure 3.8 – Total soil depth spatial model 
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Figure 3.9 - A-horizon thickness spatial model 
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Figure 3.10 - O-horizon thickness spatial model 
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3.5 - Summary and Conclusions 

 

 The overall objective of this thesis is to generate spatially explicate soil 

attribute surfaces for FEF.  This required acquiring geospatial datasets, performing remote 

sensing and terrain analysis, development of a sampling design, field sampling and 

geostatistical methods.  Due to personal, resource and climatic constraints, the need to 

streamline this process became evident resulting in an underlying theme of producing viable 

soil attribute models for FEF in a cost efficient manner.  This efficiency theme is most 

noticeable in the sampling design and the SBSES, but the efficiencies of the terrain and 

remote sensing analysis, field methods, and geostatistical methods streamlined the modeling 

effort as well.  The efficiencies of the terrain and remote sensing analysis are based on two 

factors: 1.) Rely on two datasets (elevation and Landsat 7 TM), which for FEF captures its 

diverse terrain and vegetation dynamics.  2.)  Based on widely used, robust across all biomes, 

and easy to calculate.  These metrics along with land cover played key roles in selecting 

intensive sampling units, developing the sampling design's inclusion probability surface, and 

generating the geostatistical soil attribute models. 
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 The SBS design, field sampling protocols and accessibility analysis used to 

intensively sample soils in the Iron and Lexen Creek watersheds produced field base 

information that captured soil property variability in a short period of time (142 hours).  The 

field based soil properties provided spatial information used to summarize soil depth, A-

horizon and O-horizon thickness for land cover types in the intensive sampling units, as well 

as to generate the soil attribute models.   

The methods implemented in the field were streamlined by collecting minimal soil 

property information and defining sampling loops using cost distance analysis allowing for 

many samples to be collected per sampling outing.  These methods can be implemented 

within a wide variety of landscapes with many degrees of accessibility. The sampling time 

statistics provide good estimates of accessibility in FEF for easily accessible watersheds like 

Lexen Creek (~40%) and also for very inaccessible watersheds like Iron Creek (~60%). 

 The SBSES analysis demonstrates that the SBS design implemented for this study 

produced stronger fitting statistical models (R2

The soil depth model is the most statistically robust of three models with a high R2 

(0.88), no spatial dependence in the residuals and a strong fit with the validation data 

(R2=0.91).  Spatially, the soil depth model performed strongly in Lodgepole pine, Spruce-fir, 

 by 2% and MSE by 93%) that are less 

influenced by spatial autocorrelation (93% Moran’s I p-values > 0.005 ) in a more cost 

effective manner (CR > 1.0).  The simulation results provides evidence that SBS in 

conjunction with the inclusion probability surface is effective at sampling soil properties to 

inform statistical algorithms by increasing model fit, reducing spatial bias, and sampling 

costs.   
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Alpine Meadow land cover types (Table 3.10) that make up 87 percent of FEF.  The model 

agreement with the soil survey (Appendix 5) is not as strong as the land cover types with 

70% of the map units being +/- 10 inches form the model means.  In most cases the measured 

data within the map units is in agreement with the model. 

The statistical and spatial performance of the A-horizon depth model shows a 

systematic inflation of thickness across the validation, land cover type and soil survey 

datasets.  The statistical comparison with the validation data (Figure 3.3 and Table 3.9) 

indicates that the model accounted for 82 percent of the variability with the residuals being 

slightly spatially correlated.  The spatial comparison for land cover types shows that the 

model is slightly higher than the measures data and is on average two inches greater than the 

soil survey.  The soil survey comparison shows that the model thickness estimates for soil 

map units are within two inches of the measured and the soil survey. 

The O-horizon thickness model has an R2 of 0.91 with model errors that are +/- 1.5 

and accounts for 85 percent of the validation thickness variability.  The spatial comparison 

on land cover types (Table 3.10) indicates that the model is on average +/- 1 inch form the 

measured and soil survey estimates.  The soil survey comparison (Appendix 7) shows that 

the model and measured data agree (+/- 0.56 inches) and the majority (60%) of map units are 

within +/- 1 inch.  The map units that are not in agreement are the organic soils (Lunch and 

Nystrom series) and the forested soil Tabernash series (Appendix 2).    

The soil attribute models developed from this study provide a continuous 

representation of soil properties (Total soil depth, A-horizon and O-horizon thickness) at a 

fine scale (0.001 ha).  These spatial models will provide inputs to hydrological and ecological 

models, statistical covariates to investigate soil’s influence on water chemistry and vegetation 
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distributions, and provide an initial platform for future soil survey activities in FEF.  The 

high statistical performance of the soil attribute models is only valid for Iron and Lexen 

Creek watersheds, but the spatial comparisons (model, measured, and soil survey) indicates 

that the models are robust for large areas in FEF. 

  The development of the soil attribute models have the potential to provide useful 

auxiliary information for the soil survey development and updating by quantifying soil 

property variability, enhancing map unit delineation, and providing insight into where 

additional samples would capture soil variability.  The use of the intensive sampling units 

within FEF (Iron and Lexen Creek watersheds) was useful in capturing fine scale variability 

of soil properties within these units, but lacks spatial leverage FEF wide and should be 

supplemented with more samples to enhance the soil attribute spatial models to increase 

accuracy and precision model predictions.     
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APPENDIX 1.  Analysis extent “window” in red used to generate soil attribute surfaces and 
evaluate SBS design efficiency  
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APPENDIX 2 
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APPENDIX 2A.  Fraser Alpine Area Soil Survey map unit symbols and component with 
brief descriptions 
 
Symbol Name Description 
 
Aa 

Alluvial 
land 

     Coarse-textured, cobbly stratified alluvium making up flood 
plains associated with the stem of St. Louis Creek.  
 

 
Ab 

Alpine 
rimland 

     A sandy, gravelly and rock soil with small amounts of silt 
and clay supporting sparse vegetation on alpine rimlands. 
 

 
Ac 

Alpine 
wind-eroded 

land 

     Wind swept alpine areas made up of coarse sand, gravel and 
rock with no vascular vegetation.  

 
Ba 

Bobtail 
series 

     A gravelly sandy loam lodgepole pine soil with a weak 
sopdic horizon, but not classified as a Spodosol.   
 

 
Bb 

 
Bottle 
series 

     A fine sandy spodic acidic soil with a strongly developed E-
horizon.  This soil is associated with sandstone in high-
elevations within the West St. Louis Creek watershed.  
 

 
 
Da 

 
Darling 
series 

     An excessively drained, deep, coarse textured Spodosol in 
wet shaded areas from the sup-alpine to low elevation areas.  
Spruce-fir is the dominate vegetation producing a large O-
horizon (4 inches) and thick E-horizon (3 inches).  
  

La       A coarse textured acidic Spodosol found along the lateral 
moraines of St. Louis Creek. Lb Leal 

series 
Lc  
 
Ld 

Lunch 
series 

     An organic soil that is one to two feet deep and is  associated 
with steep sub-alpine and alpine slopes. 
 

 
Na 

Nystrom 
series 

     An alpine organic soil found in areas where water 
accumulates and vegetation can grow.  The depth of organic 
material is on average 17 inches deep. 

Pa  
Ptarmigan 

series 

     
    A well-drained sandy loam soil associated with alpine 
meadows.  This series has four map units which differ by 
texture and development of the A-horizon. 
 

Pb 
Pc 
Pd 

Ra Rock 
outcrop 

     This map unit is made up of areas consisting of great masses 
of consolidated rock and large boulder fields. 
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APPENDIX 2B (Cont.). Fraser Alpine Area Soil Survey map unit symbols and component 
names with brief descriptions 
   
Symbol Name Description 
Rb Rock slides      This map unit is made up of areas consisting of loose rock 

ranging from large stones to gravel associated with scree fields, 
colluvium slides and rock glaciers. 
 

Ta Tabernash 
series 

    A medium to fine textured loam wooded soil associated with 
the north side of an extinct lake with zero slope. 
 

Vb Vasquez 
series 

     A sandy clay loam soil associated with depressed areas in the 
alpine and surrounded by alpine meadow (Ptarmigan series). 
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APPENDIX 3 
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APPENDIX 3.  Fraser Alpine Area Soil Survey georectified paper maps with digitized map 
units (red) and Fraser Experimental Forest boundary (black). 
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APPENDIX 4 
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APPENDIX 4. Spatially Balanced Survey Efficiency Simulation procedures per iteration 
with number corresponding to Figure 2.7 

 
1) Generate a 137 SBS and SRS points for the study area.  The SRS points were 

generated by randomly adding x and y locations that fall within the study area.  The SBS 

points were generated using a RRQRR sequence and inclusion probability raster where a 

random raster is generated, filtered against the random raster and then sequenced with the 

sequence raster.  The 137 sample points where then extracted from the resulting raster by 

taking the top 137 values.   

 

2) Voronoi polygons are then calculated at each iteration and ER is calculated between 

the two point processes.   

 

3) Generate SBS and SRS point data table to be used in the modeling and cost analysis 

processes.  This data table consists of NDVI (dependant variable), Independent variables 

(Table 4) and travel time, as well as, geographic coordinates (UTM WGS84, zone 13).  

 

4) In R, the LM is created using all independent variables (Table 4) and is then 

evaluated with a forward stepwise operation that finds the best fitting model.  This results in 

a LM intercept and coefficients, model performance statistics, and prediction residuals. 

5) Spatial dependence of the residuals is evaluated based on partial and global Moran’s 

I. 

 

6) The LM model is then converted into a spatial surface via a map algebra string 

executed in ArcGIS 9.2.   
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7) The LM prediction surface is subtracted from the true NDVI surface to calculate true 

spatial error.  The error surface is then averaged at each iteration as well as variance and 

standard deviation of error is calculated.   

 

8) During the simulation two different tables are generated the iteration statistics file 

focuses on global iteration statistics (R2, Moran’s I, p-value) that represents all points for a 

given iteration the point statistics data file captures each point involved in the simulation and 

statistics that pertain to it (partial Moran’s I and travel time)   

 

9)  During the simulation two different text files are generated: 

i. The point iteration file (pts_iteration.txt) records X and Y, dependant, 

independent and cost values for each SBS/SRS point generated, as well as, the 

LM residuals partial Moran’s I estimates.  This file consisted of 137000 

records for the full 1000 iterations. 

ii. The iteration statistics text file (iteration_stats.txt) records statistical 

information about each iteration (Table 5) resulting in 1000 records. 
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APPENDIX 5.  Fraser Alpine Area Soil Survey map units with total soil depth model 
(model) and sample site (measured) means and standard deviations, as well as soil survey 
estimates.  The soil survey estimates don’t include standard deviations because there is only 
one component per map unit and the soil survey supplies one depth value.   

 
 Total Soil Depth (inches) 

Map Model Measured Soil 
Symbol Mean STD 

 

Mean STD 
 

survey 
Aa 31.2 4.6 

 

31.8 0.4 
 

0 
Ab 8.5 9.3 

 

0.0 0.0 
 

0 
Ac 12.7 9.0 

 

NA NA 
 

0 
Ba 28.5 7.3 

 

29.9 4.0 
 

40 
Bb 26.5 8.9 

 

NA NA 
 

33 
Bd 28.5 1.7 

 

NA NA 
 

33 
Da 27.2 5.6 

 

26.0 11.4 
 

33 
La 30.4 3.8 

 

28.3 7.4 
 

38 
Lb 28.3 7.1 

 

27.4 1.4 
 

2 
Lc 28.6 6.7 

 

33.1 3.4 
 

2 
Ld 33.1 5.3 

 

NA NA 
 

2 
Na 19.3 6.2 

 

NA NA 
 

24 
Pa 12.7 9.3 

 

NA NA 
 

14 
Pb 18.8 7.2 

 

14.9 2.5 
 

30 
Pc 13.2 9.6 

 

24.4 1.5 
 

30 
Pd 11.5 9.0 

 

6.6 3.5 
 

30 
Pe 15.9 8.3 

 

NA NA 
 

30 
Ra 10.6 11.1 

 

14.2 14.5 
 

0 
Rb 15.2 13.1 

 

15.0 11.3 
 

0 
Ta 30.5 9.3 

 

NA NA 
 

36 
Va 15.7 9.6 

 

21.6 8.2 
 

31 
Vb 13.3 9.8 

 

NA NA 
 

31 
Vc 20.4 6.2 

 

NA NA 
 

31 
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APPENDIX 6.  Fraser Alpine Area Soil Survey map units with A-horizon thickness model 
(Model) and sample site means (Measured) and standard deviations, as well as soil survey 
estimates.  The soil survey estimates don’t include standard deviations because there is only 
one component per map unit and the soil survey supplies one depth value. 

 

 A-Horizon Thickness (inches) 
Map Model Measured Soil 

Symbol Mean STD 
 

Mean STD 
 

survey 
Aa 4.2 1.5 

 

5.8 3.0 
 

0 
Ab 2.6 3.3 

 

0.0 0.0 
 

0 
Ac 4.3 3.4 

 

N A NA 
 

0 
Ba 4.5 1.8 

 

3.6 2.6 
 

3 
Bb 3.4 1.6 

 

NA NA 
 

6 
Bd 5.0 1.3 

 

NA NA 
 

3 
Da 4.9 1.8 

 

3.5 3.9 
 

2 
La 4.4 1.5 

 

4.7 2.5 
 

2 
Lb 4.4 1.7 

 

4.0 2.6 
 

2 
Lc 4.8 1.7 

 

3.2 2.2 
 

0 
Ld 3.8 1.2 

 

NA NA 
 

0 
Na 4.2 1.9 

 

NA NA 
 

6 
Pa 4.1 3.4 

 

NA NA 
 

6 
Pb 5.0 2.2 

 

3.3 0.9 
 

6 
Pc 4.0 3.1 

 

8.6 1.7 
 

6 
Pd 3.9 3.5 

 

0.0 0.5 
 

6 
Pe 5.4 2.8 

 

NA NA 
 

6 
Ra 2.9 3.3 

 

2.3 3.2 
 

0 
Rb 3.8 3.4 

 

3.1 4.3 
 

0 
Ta 3.5 1.7 

 

NA NA 
 

5 
Va 4.3 3.1 

 

5.1 3.3 
 

4 
Vb 4.0 3.2 

 

NA NA 
 

4 
Vc 5.0 2.1 

 

NA NA 
 

4 
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APPENDIX 7.  Fraser Alpine Area Soil Survey map units with O-horizon thickness model 
(Model) and sample site (Measured) means and standard deviations, as well as soil survey 
estimates.  The soil survey estimates don’t include standard deviations because there is only 
one component per map unit and the soil survey supplies one depth value. 

 

 O-Horizon Thickness (inches) 
Map Model Measured Soil 

Symbol Mean STD 
 

Mean STD 
 

survey 
Aa 5.3 5.2 

 

4.3 1.2 
 

0 
Ab 0.5 0.7 

 

0.0 0.0 
 

0 
Ac 1.0 1.2 

 

NA NA 
 

0 
Ba 2.3 1.4 

 

1.8 1.6 
 

2 
Bb 2.7 2.3 

 

NA NA 
 

2 
Bd 2.5 1.6 

 

NA NA 
 

2 
Da 2.5 1.7 

 

2.1 1.9 
 

4 
La 2.9 1.8 

 

3.1 1.8 
 

2 
Lb 3.0 1.9 

 

2.9 2.1 
 

2 
Lc 3.7 2.4 

 

5.2 4.0 
 

2 
Ld 4.4 3.8 

 

NA NA 
 

24 
Na 1.8 1.2 

 

NA NA 
 

14 
Pa 1.0 1.1 

 

NA NA 
 

0 
Pb 0.9 1.0 

 

2.6 3.2 
 

0 
Pc 0.8 0.9 

 

0.0 0.0 
 

0 
Pd 0.5 0.8 

 

0.0 0.0 
 

0 
Pe 0.7 0.8 

 

NA NA 
 

0 
Ra 0.7 1.0 

 

0.8 1.3 
 

0 
Rb 1.4 1.6 

 

1.5 2.3 
 

0 
Ta 6.5 6.5 

 

NA NA 
 

1 
Va 1.3 1.3 

 

0.6 1.4 
 

0 
Vb 0.9 1.2 

 

NA NA 
 

0 
Vc 1.3 1.1 

 

NA NA 
 

0 
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FIELD DATA SHEET 
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