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ABSTRACT

NUMERICAL AND WIND TUNNEL SIMULATION OF RESPONSE OF
STRATIFIED SHEAR LAYERS TO NONHOMOGENEOUS SURFACE FEATURES

Two-dimensional airflows over various nonuniform surfaces in a
stratified atmosphere are studied both numerically and experimentally.
Three problems are investigated, classified by the effect of the
external forcing functions upon the basic airflow. They are: 1)
mountain lee waves, 2) heat islands (sea breezes are included here),
and 3) heated mountain phenomena in a stratified airflow. Both experi-
ments and numerical analyses are conducted for each case. A wind
tunnel was designed and constructed for these particular problems, since
they require very small velocities and a strong temperature stratifica-
tion.

Both numerical and wind tunnel experiments succeed in producing
clear lee waves behind the square obstacle. The amplitude of the first
wave is about the same order of magnitude as the obstacle height, and
wave length closely agrees with that predicted by the linear theory.

Perturbations of a stratified shear flow by a heated boundary,
which may represent a heated island or an urban region, are investigated
experimentally and numerically. These experiments are apparently the
first attempt to simulate the urban heat island effect in a wind tunnel
facility. The results obtained by both numerical and experimental
methods agree quantitatively. Several modifications of meteorological
factors by urbanization are reproduced: a downward wind and accelera-

tion of a horizontal velocity in the surface layer of an approach flow
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to a city, temperature cross over, and frequent elevated inversion but
less frequent surface inversion over the city during the night.

If the obstacle is heated, then the flow combines the features of
the airflow over an obstacle and that over a heated island.

A detailed examination of the results reveals a strong nonlinearity
which does not allow one to utilize conventional linearization techniques
as a first approximation of the phenomenon.

Tetsuji Yamada

Fluid Mechanics Program
Department of Civil Engineering
Colorado State University

Fort Collins, Colorado 80521
June 1971
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CHAPTER I
INTRODUCTION

The major effort of this research is a direct attack by laboratory
studies and numerical analysis on two-and three-dimensional shear flows
produced by non-uniform boundary conditions. The following non-
uniformities were chosen for detailed study of the perturbations they
produce on an approaching two-dimensional shear flow:

1. Non-uniform surface temperature on a plane;

2. Mountain-like surface irregularities;

3. Mountain-like surface irregularities associated with non-

uniform temperature distributions.
All of these boundary conditions produce flows and cross-flows, which
in turn result in turbulence interactions about which very little is
known.

The aerodynamic research reported here focuses on fluid mechanics
problems related to environmental winds within the lower layer of the
atmosphere, and is primarily experimental in nature. The objectives of
this program, complemented by analysis and experiments on mathematical
models achieved through use of a digital computer and correlation with
available field data, are:

1. To develop a body of fundamental knowledge of the physical
nature of shear flows with complex boundary conditions which lead to
two- or three-dimensional mean motion.

2. To establish similarity criteria relating laboratory shear
flows to corresponding flows (winds) in the lower layer of the atmos-

phere.



3. To further develop the potential use of low-speed thermal wind
tunnels for the purpose of predicting local winds at specific sites and

for specific purposes.

1.1 Non-uniform Surface Temperature on a Plane

Some of the most dramatic atmospheric phenomena occur as a result
of sudden changes in the earth's surface temperature. In fact the
driving mechanisms for the atmospheric circulation can be visualized
as a complex extension on the global scale of the cellular motions of
Benard's problem. On the smaller mesoscale the vagrancies of sca-land
breezes, the effects of inversions on pollution in cities, or the
flow over a heated island or a city represent examples of two- and three-
dimensional interaction of a thermal boundary with the lower atmospheric
shear flow. Specifically, the interaction of a metropolitan area as a
heat source of finite extent with wind patterns, and the potential
penetration of hecat plumes through inversion layers resulting in
fumigation, are relevant research topics which have received little or
no attention. It has been postulated that convection motions and dif-
fusion patterns recently encountered in the extensive study of Ft. Wayne,
Indiana, (Hilst and Bowne, 1966) may be a result of the heat island
phenomenon; however, some individuals argue that these motions may be
more directly related to non-uniformity of the surface roughness.

A review of the literature reveals that past attention to the
effects of thermal convection on the atmosphere has been limited to
three areas. First are those mathematical studies related to the
idealized case of free convection cell origin between parallel infinite

flat plates -- i.e., the Rayleigh-Jeffreys or Benard problem (Saltzman,



1962; Segel and Stuart, 1961). Second are those studies of the effect
of stratification upon wind profiles, turbulence, and transport
phenomena when the flow is developed and the boundary conditions are
laterally and longitudinally homogeneous (Plate and Lin, 1966; Lumley
and Panofsky, 1964; Monin and Obukhov, 1954). The third group includes
the effect of non-homogencities in the surface boundary condition of
the atmospheric boundary layer.

The response of a two-dimensional turbulent boundary layer to
abrupt changes in surface conditions has received extensive recent
attention (Townsend, 1965a, 1965b; Chanda, 1958; Meroney and Cermak,
1967). The growth of the inner boundary layer due to a step change in
roughness or temperature has been studied with respect to the sea-land
breeze, evaporation, forest and agricultural crop meteorology, and for
wind break design (Cermak and Koloseus, 1953; Plate, 1964). The
implications of the effects of finite non-homogeneous temperature
distribution on the atmospheric boundary layer have not received such
attention.

Numerical analysis of the problem of airflow over a mountain
barrier has been discussed at considerable length in the literature
and is well documented. It was found some years ago by Malkus and Stern
(1953) that from a thecretical point of view, the introduction of a
heating function at the surface of a stratified fluid could be inter-
preted as a heat mountain. Thus, alternately, the mountain problem
could be considered from a thermodynamic point of view (with certain
modifications for energy consideration). The heating problem has been
studied numerically by Tanouye (1966), Estoque (1968, 1969, 1970),

Spelman (1969), Myrup (1968), Tag (1969), and Delage and Taylor (1970).



The last three papers study specifically the urban heat island phenomena.
Olfe and Lee (1971), and Vukovich (1971) provide two of the very few
analytical treatments of urban heat island convection.

Malkus and Stern studied the effects of the flow of a stable
atmosphere over the heated islands of Puerto Rico and Nantucket,
(Malkus and Stern, 1953; Malkus and Bunker, 1952; Malkus, 1955). Simple
numerical models have been developed for their case, (Stern, 1955;
Smith, 1955). These suggested that the rising air above the island may
result in an upsurging in the stabilized layer followed by a wave
propagating outward much like a stone thrown into the water. The
possible case of complete penetration of the stable layers above a

heated island was apparently not considered.

1.2 Mountain-like Surface Irregularities

As a density-stratified flow passes over obstacles, such as
mountains or hills, the air current tends to be wavy in the lee of the
obstacles. This lee-wave phenomenon greatly affects aerodynamics
since associated with the formation of mountain lee-waves, strong down-
slope wind occurs in the lee of the mountain and high turbulence exists
in the rotor region underneath the wave crest,

Since Lyra first studied lee-waves in 1943, a number of analyses
and experiments have been conducted to explain the physics of the
phenomenon (see Queney, 1960, for a historical review). A few labora-
tory experiments were conducted by Long (1955), Davis (1969), and Lin
and Binder (1967). Several field observations are well documented by
Queney (1960). Foldvik and Wurtele (1967) presented the first attempt
to numerically integrate the governing equations. Both laboratory and

field observations revealed that the lee-wave phenomenon has nonlinear



characteristics; hence, it is desirable to retain nonlinear

terms in a numerical approach. Long (1955) cleverly avoided the
necessity of solving the nonlinear equations by introducing special up-
stream boundary conditions. Nevertheless, in order to simulate the
general problem under less restricted situations, laboratory and
numerical experiments are necessary.

1.2.1 Laboratory experiment - Geometric and dynamic similitude

with matched boundary conditions must be satisfied to reproduce proto-
type atmospheric phenomena by model experiments (Cermak et al., 1966).
It is extremely difficult to satisfy all similitude requirements
simultaneously in the laboratory. For example, although Long (1955)
generated wavy motions downwind of a moving obstacle towed in a water
channel, exact similarity to atmospheric lee-wave motions was not
obtained due to the absence of Prandtl number similarity and incorrect
upper boundary conditions.

Lin and Binder (1967) improved laboratory simulation by utilizing
the meteorological wind tunnel at Colorado State University. In a wind
tunnel experiment it is possible to measure directly dependent variables
such as velocity, temperature, and turbulence. A typical wind tunnel
experiment conducted by Lin and Binder (1967) is reproduced in Fig. 1-1.
The second lee wave crest is apparent in the isotherm results. The
velocity downslope of the bell-shaped obstacle has a large magnitude
which coincides with field observations.

Similarity in a wind tunnel experiment requires a verv small
velocity (- 10 cm/sec) and strong stratification ( - XOC/cm). In
practice it 1s not easy to change temperature and velocity profiles

independently because of their mutual interactions.



The effect of viscosity in a wind tunnel experiment is not yet
"_'-‘-'-—-""‘"—'-—-—..._.__._-_.__..__________-..___... e e e -3

fEii{:fEEEEEEEEL_ It is commonly accepted that in the prototype lee-
wave phenomenon, viscosity does not affect the nature of the phenomenon
since the Reynolds number is large. It may be adequate for Reynolds
number similarity to use an eddy viscosity in the prototype and a

molecular viscosity in the model experiment (Scorer, 1953, p. 72).

1.2.2 Numerical approach - Ideally, numerical simulation can

avoid all the difficulties encountered in a laboratory experiment.
Since the former is a direct one-to-one simulation there is no need to
consider scaling effects. The accuracy of a numerical experiment, how-
ever, depends on many factors, such as the particular differencing
scheme used, the magnitude of grid and time increments, the boundary
conditions imposed, the size of the computational area, etc. Therefore
it is necessary to investigate the reliability of numerical results by
other means. If the problem is simple enough, a comparison with a
known analytical solution might be possible. This is not normally the
case, however, for such nonlinear problems as are described here. A

wind tunnel is extremely useful in determining the reliability of

numerical results. Once confidence is established in numerical pro-

cedures through a wind tunnel simulation, then the direct application
of the numerical program to the atmosphere is reasonable. Another
advantage to a numerical approach is that it is possible to extend or
change meteorological variables easily. For example, pggvgffggz_gf
Effliﬂ§—33§59§333a5“—? wind tunnel experiment may be examined by a
Jemerical caperiment.

In this manner, theoretical, experimental, and numerical simulation

improve the understanding of complicated fluid motions.
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1.3 Cross Flow Effects Associated with Non-homogeneous Surface

Irregularities

Probably the strongest statement regarding the three dimensional
aspects of such flows has been made by Bradshaw (1966) in his review of

turbulent bcundary layers,

When the crossflow is small, the same simplifications can be

made as in laminar flow -- although one feels intuitively that

the interactions between streamwise flow and crossflow will be

more important in turbulent flow.
Accordingly, this research was designed to help reach an understanding
of the fundamental behavior of mildly three-dimensional turbulent shear
flows.

But in addition, this research specifically hopes to provide a
working knowledge of some commonly occurring atmospheric flows near
the earth's surface. Lettau (1955) emphasizes the dependence of
aerodynamic processes on the horizontal variability of conditions at
the earth-air interface and the need for systematic studies to determine
the resulting flow interactions. In spite of this recognition that
three-dimensional shear flows represent a common natural aerodynamic
state, the bulk of analytical and field studies have been restricted
to two-dimensional situations. The research discussed here, although

difficult and tedious, represents an attempt to provide needed basic

information of practical importance.

1.4 Objectives of Research

To put the forcing problem into proper perspective, therefore, it
seems that both the heating and topographically forced flows should be
studied independently; then, the results should be compared and precise

analogies discussed. If the physical and kinematic parameters are



properly selected, the results of the experiments should be applicable
also to the atmosphere -- for scales small enough so that rotation can
be ignored. It should then be possible to state the atmospheric con-
ditions necessary for instability due to surface heating and to explore
the possibility of establishing those required conditions. Among the
practical problems to which these results could be applied are the
initiation of convection and resulting precipitation, and the disper-
sion of pollution, fog, dust and other stable but undesirable atmos-
pheric contaminants.

Investigations are specifically conducted in a stably stratified
atmosphere (temperature increases with height), since effects of urban
heat islands are more significant during the night (Mitchell, 1961)
when the atmosphere is frequently in an inversion configuration. More-
over some interesting phenomena in the atmosphere, such as gravity waves

‘behind a mountain, or a heated island, or an atmospheric jet flow, are

the results of the interaction of inertia and buoyancy forces caused by

stratification.



CHAPTER II

LITERATURE REVIEW

2.1 Review of Mountain Lee-Wave Phenomena

2.1.1 Introduction - The subject of a fluid motion over obstacles

has been of continuing interest to fluid dynamicists and meteorologists
because it relates to such important phenomena as separation, wakes
(rotors), hydraulic jumps, and mountain lee-waves.

At least four recent reviews are available for airflows over
mountainous terrains (Corby, 1954; Queney, 1960; Krishnamurti, 1964;
Lin and Cermak, 1969). In this report we shall describe in detail only
more recent efforts, especially those which approach time dependent
problems by a numerical integration. In order to provide continuity
to the present work, a brief review of its historical context

follows.

2.1.2 Observational evidences - Discontinuous clouds over

mountainous regions have been observed; this indicates the existence of
pairs of ascending and descending motions. The fluid motion associated
with these cloud rows is commonly known as a '"'mountain lee-wave'
phenomenon. The formation of clouds corresponds to the wave crest
position. Cloud spacing, which corresponds to wave length, ranges from
5 to 25 km but is primarily between 8 and 10 km (Queney, 1960). As
many as eleven waves have been counted while five or six waves are
commonly observed (Scorer, 1951).

Glider pilots commonly testify to the presence of strong wave
motions near the mountains. They are able to glide to a very high

altitude riding on the ascending motion of a mountain lee-wave. Many
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ascents are recorded to well above 12,000 m, and vertical components
of velocity of 10 m/sec are common. It is believed that the vertical
velocity may exceed 25 m/sec occasionally (Corby, 1954, p. 494).
Queney (1960, p. 35) reports from the results obtained by the Sierra
Wave Project that the double wave amplitude exceeded 2,100 m at mean
altitude 4,100 m and vertical components in the wave motion were

12.5 m/sec and -9.5 m/sec.

Observations suggest that the occurrence of wave phenomena is
limited to certain favorable physical and meteorological situations.
Férchtgott suggests, for example, ''that for a ridge of 900 m high, a
wind of 12 m/sec was necessary for wave streaming. If the obstacle is
a solitary hill, rather than a very long ridge, a much stronger wind
speed is necessary for a given type of flow than in the case of a long
ridge of a similar height" (Corby, 1954, p. 516). Observations have
shown that wave motions exist when the atmosphere is appreciably stable.
Commonly the distribution of the lapse rate was more stable at lower
levels, 1 to 4 km, and less stable above 4 km (Queney, 1960, p. 32).

2.1.3 Theoretical studies - Analytical models for airflow over

mountains were all based on a linear perturbation method until Long
developed his nonlinear model in 1953. Queney, Lyra, Scorer and others
made important contributions to develop the linear theory. Primary
contributions to Long's model are found, in addition to Long's own
works (Long, 1953, 1954, 1955), in Yih (1960), Drazin and Moore (1967),
Miles (1968a, 1968b), Davis (1969), and Pao (1969).

Common characteristics of both linearized and nonlinear models are
the assumptions that they are two-dimensional and stationary. The

latter assumption introduces the incorrect mathematical possibility of
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an infinite set of upstream waves associated with solution

singularities (see Queney, 1960, pp. 53, 54). In order to assure unique-
ness with statements, Rayleigh introduced Rayleigh friction terms in

his system of equations. Further, an alternative way to establish uni-
queness is to treat the problem as an initial value problem rather than
a stationary one (Krishnamurti, 1964, p. 594). However, if the problem
is treated as an initial value problem, then the convenient transforma-
tion of variables which Yih introduced is no longer possible (Yih, 1965).
This limitation explains why research programs since the 1950's are
primarily based on numerical integrations utilizing a digital computer
(Foldvik and Wurtele, 1967; Lin and Apelt, 1970).

The complete meteorological description of the mountain lee-wave
phenomenon is, of course, extremely complex. A total description must
include thermal energy balance, humidity, condensation and evaporation,
insolation, etc. A few authors have attempted to include some secondary
variables; however, they could not include all of the factors mentioned
above (Magata and Ogura, 1967; Orville, 1965, 1968a, 1969).

In order to include lateral effects of an obstacle, a horizontally
two-dimensional model may in some cases be constructed utilizing shallow
water theory (Spelman, 1969; Oobayashi, 1970). This theory recognizes
that '"the trade-wind atmosphere has a relatively simple structure for
modeling purposes, namely a well-mixed layer below about 2 km having
nearly homogeneous potential temperature and wind fields in the vertical,
capped by an inversion' (Spelman, 1969, p. 73).

If one combines the above approaches, then a complete three-

dimensional picture is obtained. Several papers based on linear
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perturbation theory (Sawyer, 1967; Onishi, 1969), are available for
such a three-dimensional treatment.

2.1.3.1 Linearized theory - The following derivation of the

basic equation for the airflows over mountains is taken from the work
by Lin and Cermak (1969).

The basic system of the equations consists of the equation of
motion along the longitudinal x and vertical 2z axes, the equation
of continuity, the statement of adiabatic motion, and an equation of
state for air. No heating and an inviscid fluid are assumed. The list
of the symbols used below is presented at the beginning of this report.

Equations of Motion

ou Ao 2D
U +t W = 5 3x (2.1.3.1-1)
oW ow _ 1 3p
VEs YW ¥ K — w2 g (2.1.3.1-2)
Equation of Continuity
9p N o . 3
Yax T VWaz T ax ' oz (2.1:3.1-3)

Adiabatic Equation
u%%— + W P . c?Z (u 9 4 W il )

All dependent variables are replaced by

u = u(z) + u'(x,z),

w

0+ w'(x,z),
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p=p(z) + o' (x,2),

p=p(z) +p'x,z2),
and

c=c¢ =+ c'(x,z)

where bared quantities are mean values and primed ones are the pertur-

bations.

The mean quantities are governed by the relations:

p= pRT; Equation of State

%E = - g; Hydrostatic Balance.

The perturbations, their derivatives, and their products are neglected
in comparison with those containing mean quantities because the
linearizing assumption requires that the perturbed quantities be at
least one order of magnitude less than their mean values.

In the following expressions the primes are eliminated from the

perturbation quantities. Table 2-1 shows both retained and neglected

terms.

Linearized equations are

— — Ju sU ap

o (U -l = ) 3 T (2.1.3.1-4)
ST .. 9 J
p U e a7z pg, (2.1.3.1-5)
— 3 p  — _a3u ow B

u % + W EE-+ p (3; + oy ) =0, (2.1.3.1-6)

and
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U 2R oy e 2 (ﬂ'EE‘+ W §E—) = 0, (2.1.3.1-7)
ax 9z

Through lengthy algebraic manipulations, and incorporating the

assumptions that U? << ¢? U gg << g, and U %% << ¢2, a simple

wave equation with respect to the vertical velocity component, w, is

obtained
32U
2 2 == Z
I R (2:1:3:1-8)
U 1]
where s = - 2% /p and B =5 - g/E2 . The various steps to obtain

Eq. (2.1.3-8) from Eqs. (2.1.3.1-4) to (2.1.3.1-7) are described in

Lin and Cermak (1969, p. 20) or in Krishnamurti (1964, p. 596). The
final expression is slightly different from those shown in Queney (1960,
p- 51) or in Krishnamurti (1964, p. 597). In their expressions the
first term is multiplied by M =1 - U?Ez and a term s — / U is
included in the parenthesis of the fourth term. As long as the
assumptions above are justified, both expressions coincide.

2.1.3.2 Necessary conditions for lee-waves and the factors

influencing their amplitudes - Scorer (1949) developed necessary con-

ditions for the occurrence of lee-waves. His parameter & must

normally decrease upwards, where

@
o
=l

22 = = (2.1.3.2-1)

-
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With two layers, the lower of depth h, waves can occur if

B o i m =
22 - 02> 0, (2.1.3.2-2)

where subscripts 1 and 2 refer to lower and upper layers, respective-
ly.

Corby and Wallington (1956) investigated the factors which influence
the lee-wave amplitude. They investigated the influence in the special

case of an idealized two-dimensional ridge described by the bell-shaped

equation

2
a<b
M(X) = W
where a is the height of the ridge and b is the '"half-width"
parameter. The flow pattern by such a ridge is indicated by the term

oy
§(z) = - 2ma b e-kb (ﬁi/ﬁ) wz K (—wéiEJ_l sin kx

where §&(z); displacement of a streamline from its undisturbed level at
height =z,
k; the lee wave number,
U; horizontal wind speed,

Y; satisfies the equation

(=2
(%]

+ (22 - k*)y =0

[=E]
[}

and the suffix 1 refers to ground level.
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If the height of a ridge is kept constant, then the factor abe_Rb

takes a maximum value at b = k 1. If the shape of a ridge is changed

keeping the ratio a : b constant, then the maximum occurs at b = 2k_1.
On first glance a wind speed decreasing with height apparently increases
the wave amplitude. Velocity, however, is also included in the expres-
sion for %22 by Eq. (2.1.3.2-1). Since a decrease of 22 is the
necessary condition for waves, a combination of wind and stability
distributions should be considered. Hence if two airstreams have the
same &2 profiles with different combinations of wind and stability,
then the airstream for which Ui/ﬁ' is larger will have the greater
amplitude waves.

Wik 1 2

The last factor wk(——gi——~ ) is directly related to the £
profile. But 22 is interrelated with the lee-wave number k and the
factor abe_kb . If the effect &2 alone is investigated, then there
exists an optimum value of %2 which provides for the maximum value of
the factor wk {Eé%ik‘)'l. However, if &2 conditions are made more
favorable for waves to occur, the amplitude falls off sharply.

Lee-wave amplitudes were interpreted to be very sensitive to
optimum meteorological conditions. Apart from this sensitive region,
Corby and Wallington (1956, p. 274) concluded that '"larger amplitude
waves were theoretically more likely in airstreams containing a shallow
layer of great stability than in conditions of slight stability through

a deep layer."

2.1.3.3 The validity and limitations of the results of

perturbation theory - The linear theory results obtained by Queney and

Lyra showed apparent violations of the assumptions used to derive the

linearized wave equation. The mountain involved was always a finite
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amplitude perturbuation. The solutions exhibited very large vertical
velocities at great heights above the grcunds; thus, the neglect of the
nonlinear terms is not justified. The results obtained by Lyra and
Queney are shown in Queney (1960, p. 57 and p. 61). These unrealistic
results may be a result of the fact that both Queney's and Lyra's mean
atmosphere was characterized by a constant temperature and wind.

Scorer (1949) was the first to examine a two layer model, i.e.,
the atmosphere was characterized by two layers which have different
wind and temperature distributions, but stability parameters are
constants in each layer. This innovaticn eliminated the second
deficiency obtained by Lyra and Queney. Stability and velocity profiles
were chosen so that they satisfied the necessary conditions for
occurrence of lee-waves as given by relation (2.1.3.2-2). The result
is shown in Fig. 2-1..

Meteorological measurements of the lee-wave phenomenon are not
complete enough to provide a critique of Scorer's model. However, it
is appropriate to examine the credibility of Scorer's underlying assump-
tions. Corby (1954) examined the assumptions involved in Scorer's model
in detail: a) inviscid fluid, b) isentropic, c) steady flow, d) small
perturbation, and e) neglect of the earth's rotation. Corby justified
assumptions b), and e). He concluded that the restriction to steady
laminar flow was serious since there was ample evidence that the flow
over mountains was commonly unsteady. The effect of the viscosity
would be expected to exert a damping effect on the disturbances.
Janowitz (1968) examined the effect of viscosity on wave length and wave
amplitude. When the Reynolds number, defined by the cubic root of the

square of the product of the internal Froude number and the internal
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Reynolds number of the shear wave, is small (<7), then viscosity

lengthens the wave and alternates its amplitude.

This Reynolds number becomes very large under meteorological con-
ditions typical of mountain lee-wave phenomena. For this very large
Reynolds number (order of 102) there are no viscosity effects either on
the wave length or on the attenuation constant.

A small displacement is a fundamental requirement of the
perturbation theory. It is reasonable to accept the results, at least
qualitatively, provided the mountain height is no more than about ten
percent of the width. (Queney claims rough validity if the ratio
'height to width' is up to 1/4 or even 1/2 in special cases (Corby,
1954, p. 510)).

Scorer (1953) himself noted that the disturbance could be as large
as the mean quantity. Strictly speaking, the second-order terms in the
equations of motion were thus neglected unjustifiably; however, the
solutions are still qualitatively correct, and the neglected terms
would have only a‘modifying influence.

Anticipating the results obtained by the nonlinear model proposed
by Long, we may explain the unusually good agreement between the linear
theory and mountain lee-wave observations. If the vertical gradients
of the density and the kinetic energy of the basic flow are constant
far upstream, then the nonlinear terms vanish exactly in the wave
equation; thus the finite amplitude flow is given by the linear
dynamics (Krishnamurti, 1964, p. 622; Queney, 1960, p. 109).

2.1.3.4 Long's model and its solutions - Long (1953)

obtained a linear wave equation which was applicable even for finite

amplitude waves, provided that special boundary conditions were
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satisfied far upstream. Motion was assumed to be steady, incompressible,
inviscid and two-dimensional in the vertical plane normal to the
obstacle.
The complete governing stream function equation under these
circumstances is
1 dp

By 4 L ()% _ L (doy v .
VRS @ e ¢ AL Gl R EE Y]

(2.1.3.4-1)
where ¢ is a stream function, p(¥), and z(¢y) are the density and the
vorticity upstream, respectively. zo(w) and z(y) are the height of
the streamlines, ¢ = constant, far upstream and downstream, respec-
tively. U 1is a horizontal velocity component upstream which is a
known function of z, or .

Equation (2.1.3.4-1) is an exact expression for an arbitrary
density and velocity distribution upstream. It is, however, a nonlinear
equation; therefore, it is very difficult to solve the equation
analytically. Long sought a model which is linear and mathematically

tractable. Long first introduced the notation

-

g
(=t ko
o
(o]

provided that U does not vanish anywhere and

Equation (2.1.3.4-1) transforms to
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2 1 2 8 ,d 20y = B30 s
Ves  + 5 [(V8)4 + v 0 ] dzo (&n U%p) 0o dzo F

(2.1.2.4-2)
If U% = constant and the density is linear in I the above

equation reduces to

V2§ + 02§ = 0, (2.1.3.4-3)
where 1 dp
g ls
02 = g
u2
02 is a stability factor which is related to a global Richardson

number Ri and the internal Froude number Fr by

Ri = o2H?
and
1
Fr—m

where H 1is the channel height.

In a subsequent paper Long (1955) discussed solutions of the flow
over an obstacle of finite length and height. He also conducted
experiments with a stratified fluid in a water channel. Agreement
between theory and experiment was excellent. Some of Long's figures
are reproduced here (see Fig. 2-2). Long also analytically obtained
criteria for overturning instability (density increases with height)
for a given stability and obstacle height. Fig. 2-3 displays the

; : X 1 ) s
result; it suggests that if Fi < & there is a critical obstacle
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height for overturning instability. Higher obstacles will produce a
negative density gradient at some point in the flow field. Figure 2-3
indicates that there are singularity points in the flow fields cor-
responding to the Froude number = [pﬂ)_l where p 1is an integer
number. When the Froude number is decreased and the obstacle is large,
a stable steady-state solution cannot be obtained theoretically.
Experiments showed that impulses are sent upstream by the obstacle;
this leads to alternate jets and stagnation regions in the vertical.
Simultaneously turbulence is produced over the obstacle and in its lee;
this result is obviously not a steady state.

Since Long published his original papers many authors, utilizing
Long's model, have contributed to the study of fluid motion over
various obstacles. Different mathematical approaches were attempted
to obtain more realistic solutions and to simplify computational
procedures.

'Lin and Cermak (1969) discussed all mathematical aspects of these
works, hence we shall only review their conclusions and the interesting
contradiction which arises.

Yih (1960) generalized Long's equations (Eq. (2.1.3.4-2)) through
transformations of variables. He could obtain three different classes
of flow which provide linearization, one of which was obtained by Long
earlier (1953). A detailed discussion of the solutions for these three
classes of flow are given in Yih (1965, pp. 78-113). Both Long and
Yih employed an inverse calculation method; that is, the exact obstacle
shape is obtained after the flow field has been calculated. Therefore,
a flow pattern cannot be conveniently investigated for a pre-prescribed

obstacle shape.
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Drazin and Moore (1967) developed a mathematical model which was
applicable for arbitrary obstacle shapes. Two examples were given:
one was for a dipole, and another was for a vertical wall. They found
an interesting but contradictory result of Long's theory (1955). Long
(1955) suggested that a sufficiently large obstacle in a strong
stability fluid exerts a blocking effect. Waves may be propagated
upstream boundary to disturb the prescribed upstream boundary conditions.
Dazin and Moor concluded that there is no critical internal Froude
number to destroy the existence of a steady flow solutions if no
restrictions are placed on the amount of energy available to drive the
flow. Pao (1969) came to a similar conclusion.

The wave drag associated with stratified flow past various
obstacles was investigated by Miles (1968a, b). He computed wave drag
utilizing Long's model and found that there is a region where wave drag
increases with decreasing wind velocity. Experiments conducted by Davis
(1969) showed that the wave drag coefficient was not, for a thin
barrier, the dominant function of stratification. Both Miles and Davis
pointed out that these anormalous predictions are subject to two serious
objections: those solutions which are associated with large drag are
not consistent with the derivation of Long's equation and, even if they
are interpreted as legitimate steady-state flows, these solutions
probably represent unstable motions (Davis, 1969, p. 141).

Indirectly speaking Miles and Davis support Long's contension that
there are physical limitations to the application of Long's equation.
Davis' measurements of wave drag demonstrated that for a larger value
of k(1 <k < 4), the results predicted phenomena which were not

described by Long's equation.
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Davis (1969) conducted numerical and water channel experiments
over a triangular and a thin barrier. Figure 2-4 shows some of his
results. The agreement of the results is at least qualitatively cor-
rect when k 1is small. The first wave crest in the experiments is,
however, always located further downstream than predicted by the theory.
With increasing stability k, the experimental results exhibit strong
turbulent, or at least very unstable, regions next to the boundary.
In this range of stratification, Long's solution could not predict
the flow, because non-stationary cases can not be included in Long's
final equation.

Pao (1969) investigated a stratified flow over a single obstacle
and a series of semi-circular obstacles constructed from vortex pairs
and doublets. His boundary conditions were somewhat unique. He
required not only that all the disturbances generated by the obstacle
vanish far upstream, but also that far upstream the disturbance pres-
sure force, the total disturbance kinetic energy, and the total dis-
turbance potential energy vanish. These additional restrictions were
added to obtain a unique solution of an inviscid stratified flow. His
results over a single barrier could simulate a rotor phenomenon. The
effect of the second barrier placed in line with the first weakened
or strengthened the waves depending on the stability.

2.1.3.5 Some concluding remarks on Long's model - As we have

seen, Long's model is a remarkable mathematical simplification for two-
dimensional, steady, incompressible, and inviscid stratified flows
involving finite amplitude waves. However, if stratification is
increased and a larger obstacle is used, then the predictability of the

theory is doubtful, since the flow tends to become unstable. Since
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experiments often show evidence of turbulent motion, Long's assumption
of stationary flow is no longer valid. Solutions obtained from Long's
model often indicate regions of closed streamline flow. This violates
the initial model derivation, since it was assumed that all fluid
particles were connected to upstream origins. The model's prediction
of upstream blockage is also controversial (Long, 1955; Drazin and
Moore, 1967; Pao, 1969).

2.1.4 Time dependent treatment - A time dependent treatment is an

alternative way to assure the uniqueness of a mountain lee-wave
analytical solution. If the problem is treated as an initial value
problem, then the main deficiencies of Long's model can be eliminated.
For example, negative density gradients which may lead to unstable
motion are acceptable, closed streamlines do not violate the equation,
and the blocking effect propagating to the upstream boundary may be
eliminated.

Time dependent solutions can also be applied to more realistic
cases where the meteorological factors such as wind, temperature, and
pressure are varying.

Some simple time dependent cases are described in Krishnamurti
(1964), i.e., the works by Wurtele (1953), Palm (1953), and Queney
(1954). We shall not discuss their works here, because their search
for a closed form analytical time dependent solution has resulted in
overly restrictive geometries and initial conditions.

2.1.5 Numerical research - The many complicated, interacting,

nonlinear, diffusive effects such as veloEity, temperature, topography
and surface heating make numerical modeling an attractive method.

Stationary, two-dimensional linear or nonlinear mountain lee-wave



25

problems were solved numerically by Sokhov and Gutman (1968),
Kozhevnikov (1968), and Pekelis (1969). Since we are primarily interest-
ed in a non-stationary treatment, those papers which have a time de-
pendent nature will be discussed.

Foldvik and Wurtele (1967) constructed a numerical model of an
airflow over a rectangular-shaped mountain. They used the Boussinesq
approximaticn to derive the vorticity equation, but friction terms were
not included.*

Foldvick and Wurtele used periodic (cyclic) boundary conditions for
the two streamwise boundaries. Their solution developed a computational
instability from the boundary when the number of integrations was
large.** A nonlinear instability (see section 4.27) was also evident
in the Foldvick-Wurtele scheme. It developed upwind from the obstacle,
yet its magnitude was small so that the majority of the field was
apparently not affected. They claimed that the numerical results
provided a good qualitative agreement with some observations.

Lin and Apelt (1970) conducted numerical experiments of fluid
motion over a thin barrier. The Boussenesq approximation, including

friction terms, was used. The numerical method was a combination of the

*We also utilized a similar basic equation which was obtained from
physical consideration of the phenomena. The majority of the papers
were characterized by the Boussinesq approximation. Therefore the

significance of the approximation will be described later in sections
4.6 and 4.7.

** Since inflow and outflow boundary conditions cannot be specified
in advance for a specific problem, the least restrictive conditions
should ordinarily be used. These will depend upon the characteristics
of the individual problems. A numerical investigation of different
boundary coaditions will be discussed in sections 4.25 and 4.26.
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Crank-Nicolson method (see Smith, 1965, p. 17) with a strongly implicit
iterative method developed by Stone (1968). They used the Milne pre-
dictor formula at lateral boudaries. This also introduced boundary
perturbations at the upstream boundary for increasing integration
times. Two cases were computed - one for Re = 397, Pr = 10 and

Ri = 1.58 and another for Re = 5000, Pr = 1 and Ri =1.58. The two
results did not display considerable differences primarily because

the amplitude of the lee-waves generated was so small. Strong damping
or diffusing effects were evident due to the finite difference scheme
used. Their upstream difference scheme has a very large pseudo-
viscosity (see section 4.11.2) which can eliminate otherwise wavy motion
behind an obstacle.

Magata and Ogura (1967) investigated the effect of heating and
cooling on the airflow over a mountain. The governing equations were
the same as used in his sea breeze modeling (Magata, 1965). Hydrostatic
balance was assumed; therefore, the vertical velocity component and the
pressure term were obtained from the diagnostic equations. The results
obtained could explain qualitatively the local phenomenon observed in
Japan. Local strong wind appeared under the lee of the mountain when
air passing over the mountain was cooled by the earth's surface.

Orville (1965, 1967, 1968a, 1969, 1970) has been investigating air
flow over mountains, including moisture effects. His model assumed
two-dimensionality, incompressibility, and constancy and equality of
eddy coefficients for heat, moisture and momentum. Since it is beyond
the scope of the present study to include the moisture budget, Orville's
results will be referred to in the later discussion of the heated

mountain. Very important observational data over a mountain ridge have
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been supplied by Fosberg (1967, 1969). Data were taken in the San
Jacinto Mourtains about 130 km east of Los Angeles, California (1967),
and across the Santa Ana mountains of Southern California (1969).

Finer detail data points were obtained by a numerical integration of the
basic fluid equation incorporating field data. Results obtained by
Magata, Orville, and Fosberg will be compared with results obtained
here in Chapter V.

2.1.6 Application of shallow water theory - It is natural to seek

a more realistic mathematical model to simulate the actual three-
dimensional airflow over mountains. Infinitely long mountains are not
realistic. Two papers (Oobayashi, 1970 and Spelman, 1969) are available
which utilize the shallow layer theory, to include the lateral effects
of discontinuities. Since Spelman included the effects of surface
heating, roughness and topography, the results will be discussed in
detail during comparison with the results of this research.

2.1.7 Further applications and some concluding remarks on

numerical works - Three-dimensional models have been presented for

mountain waves. Such examples are discussed by Sawyer (1962) and Onishi
(1969). Their equations were linearized by the perturbation method.
Since we do not yet know the effect of nonlinearity of convection terms
even for two-dimensional flows, it seems inappropriate to discuss here
the justification of the perturbation method used for a three-
dimensional problem.

In principle, a numerical integration by finite difference
approximation is a very powerful approach to apply to the complicated
nonlinear problems. The validity of results so obtained is not clear,

however, because there are very few observational data available. In
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addition there are many important unresolved problems in the finite
difference approximation itself, such as criteria of stability, con-
vergence, proper assignment of boundary conditions, etc.

Another limitation, of course, is the finite capacity of a digital
computer. In order to simulate turbulent phenomena accurately, we need
a very small grid size if energy-containing eddies are also small. This
generally requires a large number of grid points. An expanded grid
system is sometimes an alternative way to reduce the number of grid
points; but unfortunately finite lee-wave motions are expected even far
downstream from the initial forcing perturbation, therefore an expanded
grid may lose wave characteristics.

Consequently, in the future, if the capacity of a computer is not
grossly expanded, a combination of analytical and numerical approaches
may be required rather than a strictly computational one, especially for
three-dimensional, turbulent flow.

2.1.8 Model experiments - Very few experimental results are

available on stratified flow over obstacles. Long (1955) and Davis
(1969) obtained results in a water channel. Lin and Binder's (1967)
results are the only ones available from wind tunnel experiments.

Model experiments in wind tunnels are very difficult, as pointed out by
Scorer (1953), since similarity law requires a very strong temperature
gradient and a very small velocity. Fortunately it is not impossible
to have a vertical temperature gradient of loc/cm and a horizontal
velocity of 10 cm/sec (see Chapter III on wind tunnel design). The
experimental results discussed here were specifically generated to

verify any numerical scheme proposed.
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2.2 Review of Heat Island Phenomena

2.2.1 Introduction - The climate over cities is quite different

from that over the surrounding rural areas. Figure 2-5 shows diurnal
variation of temperature in Vienna, Austria (Mitchell, 1961) and in
Frankfurt, Germany (Georgii, 1968). As one can see, the urban station
remained warmer most of the time ("urban heat island'). The largest
temperature differences were observed at night both in summer and in
winter. Maximum and minimum temperatures in the cities occurred one
or two hours after those in the suburbs. Many other climatic elements
such as wind, radiation, humidity, cloudiness, and pollution are also
changed by urbanization. Landsberg (1968) organized such climatic
data into a table (see Table 2-2) to provide a quick understanding

of average differences in climatic factors of urban and non-urban
regions. The rest of this chapter will discuss how those differences
developed, and how recent observations are correlated with meteoro-
logical factors.

Only a few attempts to explain the phenomena above are recorded
(Myrup, 1969; Tag, 1969; Olfe and Lee, 1971; Vukovich, 1971). However,
similar phenomena to those of urban heat islands have been observed in
oceanographic fields. Malkus and Bunker (1952) observed periodically-
spaced rows of small cumuli leeward of small islands on sunny summer
days. This occurrence is now known as a "heated island" phenomenon
(Malkus and Stern, 1953). Wavy air motion at the lee side of an island
in a strongly stable stratified airflow is the result of unbalanced
buoyancy forces which have been produced by the temperature difference
between the island and the surrounding ocean. Since this is a "lee-

wave'' phenomenon as described previously in Section 2.1, Malkus and
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Stern (1953) looked for the similarity between the heated island
convection and airflow over a physical mountain. The heated island

was replaced by an "equivalent mountain" whose shape is a function of

the difference in temperature between the island and the ocean, stability
of the air, wind speed, and eddy diffusivity. This theory will be
described in detail in a later section.

2.2.2 Urban heat island - That certain cities have warmer

temperatures than their surroundings has been known since the beginning
of the eighteenth century, 'but it was not until the relationships
between the cities' heat island and the pathogenic and pernicious effects
of air pollution were made evident that the study of this urban
phenomenon was stimulated and accelerated" (Kopec, 1970, p. 602).
Comprehensive reviews of recent works on the matter are available in
Peterson (1969) and in a W.M.0. technical note (1968).

2.2.2.1 Basic causes of an urban heat island - Many authors

have contributed to the discovery of the various physical and
meteorological factors responsible for the formation of urban heat
islands (Landsberg, 1956; Mitchell, 1961; Bornstein, 1968). Their
conclusions are somewhat similar. The following description is primarily
from Landsberg's work (1956, p. 585). The first effect of urbanization
is an alteration in surface texture and roughness. Relatively smooth or
hilly grass-covered regions are replaced by a formation of rocklike
substances, such as stone, brick, concrete and asphalt. Naturally

moist areas are drained and the reduced surface moisture decreases

the need for energy for evaporation, thus increasing the energy
available for transfer to the atmosphere and to the urban surfaces

(Bornstein, 1968). Aerodynamic roughness is increased by building
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structures of varying size which reduce surface wind velocity and
introduce a more turbulent motion. The fluid motions are also
favorable tc the formation of an urban heat island. In addition, these
urban structures absorb large amounts of solar radiation during the
day. Most building and structural materials have a large heat capacity
and a high heat conductivity; these thermal properties prevent rapid
cooling after sunset and rapid warming after sunrise (Bornstein, 1968).

The second cause for climatic change is artificial heat generation
through combustion processes in industry, homes, automobile engines,
and human and animal metabolisms. Garnett and Bach (1965) computed
the ratio of artificial heat generation to natural radiation heating
in Sheffield, England. Their conclusion was that the artificial heat
represented nearly one-third of the net radiation balance. This is
comparable with results reported for several other cities -- 1/3 for
Berlin, Germany, and 1/6 to 1/4 for Vienna, Austria (Peterson, 1969,

p. 16). Bornstein (1968) obtained for Manhattan, New York, values of
5/2 in winter and 1/6 in summer.

The third major factor in urbanization is the change produced in
atmospheric composition. More pollutants are emitted into the
atmosphere with growing population and increased industrialization.
Georgii (1968) presents an excellent discussion of the effects of air
pollution on the various climatic elements in Frankfurt, Germany, such
as the intensity of solar radiation, the range of visibility, the
temperature distribution, the relative humidity, the local wind dis-
tribution, and the distribution of precipitation. We are primarily
interested here in temperature and local velocity distributions;

therefore, only a brief discussion of the remaining factors will be



32

given here. Georgii provided a comparison of the concentration of
trace constituents in both pure and polluted atmospheres, and he showed
a reduction of incoming solar radiation due to the haze dome above
cities (see Table 2-3). The greatest loss of sunshine is commonly
observed during the winter months, when pollutants emitted from domestic
heating are at a maximum. In addition to the "blanketing effect' of
pollutants on incoming solar radiation during the day, at night the
pollutants absorb heat energy transmitted from a city surface ancd
reradiate it downward to intensify the nocturnal heat island.
An elevated inversion layer may be generated over the city when the
pollution upper surface is cooled by long wave radiation to the sKky.
This, in turn, promotes the further increase of pollution concentration
in the city, until morning when the sun's heat may finally destroy the
inversion (Mitchell, 1961).

A very interesting explanation concerning the formation of fog
in a city is given in Georgii (1968, p. 221). "The frequency of fog
formation in urban environment is higher in spite of the fact that
the air temperature in cities is higher and the relative humidity is
lower within the cities compared to the countryside. The explanation
for this contradiction must be seen in the mechanism of fog formation.
High concentration of sulfur dioxide, the formation of sulfuric acid
by catalytic oxidation on the surface of particulate matter in a humid
environment leads to the formation of small fog droplets under condi-
tions when in a pure atmosphere fog would not yet form."

Five to ten percent precipitation increase over cities is commonly
accepted. But a quantitative verification of the relation between

precipitation and urbanization is not available. Several possible
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reasons for an increase of precipitation over an urban complex are:
increased convection by added heat, added updraft motions from
friction-barrier effects, added water vapor, and added condensation
nuclei and freezing nuclei (Changnon, 1968; Peterson, 1969). Oke and
Hannel (1968) noted a formation of small cumulus clouds at about

300 m over steelmills.

Three major causes of urban heat islands have been discussed. The
following sections describe recent observational evidences of urban
heat islands over several major cities, show their common characteristics,
and seek to correlate meteorological factors with the formation of a
heat island.

2.2.2.2 Observations of urban heat islands (temperature

and local wind distributions) - Since urban heat island effects are

most pronounced at night, almost all past observers described the
nocturnal heat island. Daytime temperature differences have also
been observed (Ludwig and Kealoha, 1968; Preston-Whyte, 1970), but
their magnitudes are generally small. Furthermore, measurement
difficulties arise since ''daytime attempts to record temperature
patterns were frustrated by constant sun-shade changes along the roads
traveled, caused by trees, buildings and other roadside obstructions"
(Kopec, 1970).

a) Duckworth and Sandberg's work (California)

Duckworth and Sandberg (1954) measured horizontal and vertical
temperature gradients cver three California cities, San Francisco,
San Jose, and Palo Alto, by intensive traverse with automobile-
mounted thermistors and by release of a wire sonde simultaneously at

urban centers and peripheral open areas.
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Most surveys were made in the evening, between 2000 and 2400
hours, when urban differentials appear to be most pronounced; no
correction for change of temperature with time appeared necessary.

The maximum temperature was almost always located in the most densely
built-up area, defining the center of an urban heat island; the minimum
temperature almost always appeared at some point on peripheral open
lands. To characterize the scale of urban effects, three different
measures were developed: wurban differential Dp s which was defined

as the difference between the maximum and minimum observed temperatures
in the traversed area; R/AT, which was defined as the least distance
in miles along which a 1°F temperature change might be obtained; and
area A, which was defined as the area continguous to the urban center,
with a temperature more than 2%F greater than the mean of the chart, as
based upon the maximum and minimum temperatures.

The urban differential D.,, increases with increasing city size

T

but at a relatively slow rate. Representative values of D_. are

T
4-6°F for Palo Alto, 7-9°F for San Jose, and 10-12°F for San
Francisco, even though the population of San Francisco is 24 times
greater than that of Palo Alto. On two consecutive nights with nearly
identically favorable meteorological conditions the observed DT
values were 12°F for Palo Alto and 20°F for San Francisco, indicating
the difference in city size.

The quantity R/AT shows values increasing somewhat more rapidly
with city size, i.e., from 0.05 - 0.15 mi/°F for Palo Alto to
0.30 - 0.40 mifOF for San Francisco. This relation follows from the

fact that the total differential varies slowly with increase in city

size; hence a slight increase in differential must spread over a
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greater distance in the city. Consequently, the larger city has a
flatter temperature gradient near its center. The heat island
area A 1in square miles is 0.1 - 0.3 for Palo Alto, 1.5 - 2.0 for
San Jose, and 4.0 - 6.0 for San Francisco.

For times between 2000 and 0100 PST, 32 pairs of comparable
soundings resulted; 30 of the 32 showed a radiation type inversion
over open land while in built-up areas there was inversion in only
7 cases, isothermal conditions in 7, and lapse conditions in 18.

At some point between 100 and 300 feet the soundings over
built-up and undeveloped areas usually coincided, indicating a possible
limit to the direct effect of heating from the urban surface.
Temperatures above this point were significantly cooler over the
built-up area than over the open area ('cross over'") in 6 out of the
12 surveys for which simultaneous vertical soundings were made.

An example of pronounced ''cross over' effect was observed at
San Francisco on March 26, 1952. The two-meter temperature at the
built-up site was over lloF greater than that at the undeveloped.

At 70 feet, however, the two temperatures coincided, and between 70
and 320 feet the observed temperatures remained about 2°F colder over
the business district than over the open park.

On the other hand, a temperature survey of Palo Alto March 25,
1952, under very similar meteorological conditions, showed no appreci-
able "cross over'" effect.

b) DeMarrais' work (Louisville, Kentucky)

Similar observations were reported by DeMarrais (1961) at the
60, 170, and 524 ft, levels on the WHAS-TV tower in Louisville,

Kentucky. The data indicated that the heat island of an urban area
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had considerable effects on the vertical temperature differences
observed at night, so that the normal diurnal range of stability
conditions over an urban area is much smaller than that over open
country.

Temperature-difference records from flat, unpopulated areas
showed that surface inversions formed almost every night and
superadiabatic conditions existed during most of the daylight
hours; weak lapse conditions (between isothermal and adiabatic)
prevailed during the transitional hours. The times of occurrence
of the various temperature-difference categories were so regular
that they could be predicted with a fair degree of accuracy.

The 60 to 524 ft. layer at Louisville (urban area), however,

did not show the daily temperature pattern demonstrated at non-urban
sites. Even though the average hourly temperature differences for
alternate hours for each half-month showed prevailing superadiabatic
conditions during the day light hours, no generalizations could be
made for the other hours. Inversions were observed during
approximately 10 percent of the nocturnal hours from mid-November

to mid-April (winter months) and during about 30 percent of the night-
time hours in the remaining part of the year.

One of the outstanding features of the bi-hourly, semi-monthly
plot of average temperature differences for the 60 to 170 ft. stratum
was that only two of these averages showed an inversion condition.
During the night hours in June, July, and September the averages were
often greater than adiabatic, indicating that the 60 to 170 ft. stratum

was thermally unstable most of the time during those periods.
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DeMarrais' conclusions were (1) that, during the day,
Louisville experienced lapse rates which differed only slightly
from those cbserved in a non-urban area, and (2) that, during
the night, Louisville experienced temperature differences unlike
those observed in non-urban areas. Nocturnal inversions through the
60 to 524 ft height existed infrequently.

c) Bornstein's work (New York City)

Bornstein (1968) observed the differences in the temperature
fields through the lowest 700 m of the atmosphere in and around
New York City during the period from 2 hours before to 2 hours
after sunrise.

In summary, he pointed out that the main features of the tempera-
ture distribution in the hours around sunrise are the following: 1)
intense surface inversions at non-urban sites, 2) absence of surface
inversions over the city, 3) one or more relatively weak elevated
inversion layers over the city, and 4) an urban temperature excess
which decreases rapidly with height.

Twenty-nine out of forty mornings studied exhibited surface
inversions at rural sites, while on only four out of forty-two mornings
were surface inversions observed at the city.

Two of the characteristics of an urban heat island effect are
the existence of one or more weak elevated inversion layers over
the city and the presence of ''cross over'", which means that the temper-
ature over the city is lower than that over the rural region. Thirty-
seven out of forty-two mornings showed one or more elevatcd inversion
layers which had mean depths over the city of 95 m, while elevated

inversions were observed over the rural area 5 out of 34 mornings.
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The height variation of the mean urban-rural temperature
differences between the 50 m averaged temperatures at these sites
showed an almost linear decrease in the mean urban temperature excess
from 1.7°C at 1.25 m to 0°C at 300 m. Above 300 m the magnitude
of the difference is less than O.ZOC, and is negative from 300 to 500 m.
During more than two-thirds of the test mornings a reverse heat
island effect (cross over) was observed through a layer whose base
was always above 150 m.

d) Further observations

Ludwig and Kealoha (1968) conducted very extensive temperature
and humidity field observations over the city of Dallas, Texas. They
presented a comprehensive coverage of measurements, which were obtained
not only at night but also during the day. The daytime temperature
differences were, however, very small - about 1°C. One of the very
interesting findings of their study is that the magnitude of the urban-
rural temperature difference is found to be highly correlated with the
stability factor of the upwind rural region. The details will be dis-
cussed in a la;er section.

An urban heat island effect is not limited to very large cities.
Kopec (1970) took night measurements of Chapel Hill, N.C., whose
population is around 24,900. An urban temperature excess as large as
14°F was observed.

Preston-Whyte (1970) provided some of the very scarce daytime data
by motor-traversing the Darban area, South Africa, during the summer
of 1968-69. A temperature difference of 1.0°C was observed, and the

center of the heat island was displaced away from the central business
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district by the sea breeze. It has been commonly observed that the
warm-air mass is displaced in the direction of the prevailing wind
(Sundborg, 1950).

e) Convergence of airflow into cities

It has been observe that in order to compensate for an upward
current in a convection cell induced by a city-rural temperature
difference, there exist convergent flows on the ground into a city.
Okita (1960) deduced the magnitude of such convergent currents in Japan
by estimating the direction of rime formations on trees. Similar
figures were prepared by Davidson (1967) for New York City and by
Pooler (1963) for Louisville, Kentucky. All of the results showed clear,
strong convergent current toward cities.

2.2.2.3 Summary of urban heat island observations - Commonly

observed urban heat island characteristics are:

1) Regular variation of daily temperature over flat unpopulated
areas, no generalizations of variation over urban regions;

2) Formation of one or more elevated inversion layers over
cities, less frequent formation over rural regions;

3) Formation of ''cross over" phenomena over cities;

4) Displacement of heat island center windward;

5) Less frequent occurrence of nocturnal inversion over a city;

6) Day time urban heat islands are less intense than their
counterparts at night;

7) Stronger nocturnal urban heat islands are observed in a calm,
clear atmosphere;

8) The intensity of an urban heat island depends on meteoro-

logical (wind, stability) and physical (city size) factors;
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9) The upper limit of an urban heat island's direct effect
extends occasionally up to 1000 m but the average height
ranges 50 ~ 400 m.

2.2.2.4 Empirical formulae to correlate meteorological

and physical factors with urban heat island formation - As mentioned

above, intensity of urban-rural temperature differences depends on many
meteorological and physical factors. Since their contributions are
nonlinearly interrelated, a physical explanation of each contribution
to the phenomenon is very difficult. Therefore, only empirical regres-
sion formulae are possible from observational data. These may be
helpful in guiding further study and useful in practical investigations.

a) Sundborg's Formula (1950)

The temperature contrast ﬁT(OC) between a city aﬂd its rural

area is assumed to be expressed by the linear combination:

AT = Cl + C2N + 63U + C4T + Cse

where N 1is cloudiness in the ten-degree scale, U 1is the wind
velocity (m/sec), T is temperature (OC), and e 1is absolute
humidity (g/kg). From his work in Uppsala City, Sandborg computed

constants and obtained

{&T)Day =1.4 -001N-0.09U-0.01T-0.04¢e,
and

(&T)Night =2.8-0.10N-0.383U-0.02T + 0.03¢ .
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The last expression was applied by Duckworth and Sandberg (1954)
to their measurements in the San Francisco Bay area, and found to be
in general agreement with observational data.

b) Ludwig and Kealoha's Formula (1968)

AT = € - Cyy
where vy is the rate of change of temperature with pressure in degrees
centigrade per millibar. In practice 7y is obtained from

Ty~ Ty

Y=F5—o% »
po PI

where subscripts "o and "1" refer to the values at the surface and
at the first level measured above the surface, respectively. Numerical
values of constants are found to be a function of city size (population)

and are given as

AT = 1.3 - 6.78 vy for P < 500,000,

AT = 1.7 - 7.24 vy  for 500,000 < P < 2 million,
and

AT = 2.6 - 14.8 v for P > 2 million

where P is the population of a city.

c) Oke and Hannell's Formula (1968)

Calm nights create favorable conditions for the formation of a
strong nocturnal urban heat island. On the other hand, strong winds
necessarily obliterate the heat island effect. Such a critical wind

speed was fitted by the exponential equation:

U iy = 3.4 log P - 11.6
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where P is population as before. From this relation, a P = 2000
gives Ucrit = 0 which means that a city with a population of around
2000 does not generate a significant heat island, even under calm

conditions.

2.2.2.5 A theoretical model of an urban heat island - Because

of the complexity of the urban heat island effect, very few analytical
modelings are available. Two numerical models will be presented here -
one by Tag (1969) and another by Myrup (1969). In both models, the
surface temperatures were pre-specified and the general flows over the
surface were very much simplified. Tag utilized the equation of motion
in his numerical integration, while an energy balance equation for the
surface of the earth was a basic equation in Myrup's treatment.

(a) Tag's work (1969)

Tag utilized a numerical model for the atmosphere which is
essentially the same as Estoque's (Estoque, 1962). They divided the
atmosphere into two parts: a constant flux layer of 50 m depth and
a transition layer where eddy mixing decreased linearly with height.

A soil layer with 50 cm depth was also added. Horizontal advection
terms were assumed to be zero.

The results obtained showed clearly the effects of certain
characteristic parameters on city-rural temperature contrasts. These
parameters were soil diffusivity, soil constant, albedo, and soil
mositure. City surface temperature remained warmer when the
appropriate parameters were chosen separately for the city and the
country. If however, the same numerical values for moisture and
albedo were used for both city and country, a higher rural temperature

was obtained at noon time. Therefore, it was concluded with further
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analysis that moisture and albedo parameters are dominant factors in
the daytime temperature distribution, whereas correct diffusivity and
soil constant are essential in forming a nocturnal heat island.

(b) Myrup's work (1969)

Myrup started with an energy balance equation for the surface of
the earth

Ry =LE+H+sS (1)

where RN is the net radiation flux; E, the evaporation rate; L,
the latent heat of water (so that LE is the latent heat flux); H,
the sensible heat flux to the air; and S, the flux of heat into
the soil. The net radiation term is a function of albedo, transmission
coefficient for the atmosphere, latitude, etc., and an empirical
formula was assumed. Turbulent fluxes of heat (H) and latent
energy (LE) were related to gradients of potential temperature and
specific humidity. A logarithmic profile was assumed for the horizontal
velocity component; all eddy diffusivities for heat, mass and water
vapor were constants. A set of equations were integrated by a finite
difference technique. The results were summarized as follows.

The rural heat budget showed that the majority of the available
solar energy was going into evaporating water, while in the city it
was consumed to heat the concrete. No erergy appeared in the latent
heat flux term in the city because only & 10 percent evaporating area
was assumed. This model could produce a daytime heat island of
3.9°C and a nocturnal heat island of 6.0°C.

In order to see more clearly how the various competing parameters

combined to produce the calculated temperatures, a systematic
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sensitivity analysis was made for the leading parameters, such as
rural wind speed and temperature, albedo, roughness factor, and
evaporation. Results indicated that the urban temperature excess

was the net effect of several competing physical processes, each

of which, if acting alone, could produce relatively large temperature
contrasts. Generally, there was a tendency for a cancellation

effect so that ordinarily the temperature contrast between city and
country was small. For instance, the decrease in evaporation as

the city center was approached was balanced by the increasing size

of the buildings, which augments the diffusion of heat upward. In a
city park case these two factors work together to produce the largest
contrast at the city center.

2.2.2.6 Heat islands on the prairie - Heat island effects

are not limited to urbanized regions only. As we saw in Section 2.2.2.1,
alteration of the earth's surface character is one of the major causes

of a temperature difference. Holmes (1969) made observations to identify
thermal discontinuities in the atmospheric boundary layer over the

South Alberta Prairie, Canada, mainly during the hours between 1200 and
1500 when the highest surface temperatures were established.

Three different types of '"oasis effect'", defined as the climatic
result (e.g., modification of air temperature, atmospheric moisture,
diffusion) of many types of discontinuities in the surface, were
reported: 1) the prairie-lake oasis, 2) the irrigation oasis, and
3) the agricultually complex region. In the first case, the cooling
effect on the air of two lakes, Lake Pakowki and Lake Murray, was

examined. In both oases large variations in surface temperature were
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noted, with the lake surface temperature about 30°C lower than the
surrounding agricultural land.

The surface temperature variation with time (1200, 1600, and
2100 hours) showed the rapid cooling of the soil surfaces compared with
the lake. The effect of the lake on the temperature of the air passing
over it was noted at both 15 and 45 m height; the temperature per-
turbations were 3°C and ZOC, respectively. At 75 m on this particular
day, there was no measurable effect. An interesting discovery was that
the regions of cool temperature at 15 and 45 m are almost entirely
displaced from the lake, while the regions where air temperature at 2 m
is influenced by known ground conditions were almost completely
restricted to the immediate area. The reason that the cooled air was
displaced to the lee was not immediately obvious, but important factors
such as radiational heating of the surface (stability), wind speed, and
wind direction were suggested.

In both the second and third cases results similar to the
first were observed; the surface temperatures had a local character
influenced by the ground condition, while those at higher levels had
been affected by surface heating, wind speed, and wind direction.

2.2.2.7 Heated island (observations and analytical

treatments) - The heat island effect introduced by a physical island
in the ocean will be described here. It has been previously
mentioned (see 2.2.1) that this phenomenon was produced by mechanisms
similar to those which produced an urban heat island. Therefore, only
the analytical models will be presented in this section.

Malkus and Stern (1953) and Stern and Malkus (1953) developed an

analytical model for a heated island problem assuming that the flow is
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stationary, two-dimensional, incompressible, and inviscid. Furthermore,
the governing equations were linearized by a perturbation method. The
final equation for a perturbed stream function has a formulation similar
to that previously used for airflow over mountains. The only additional
feature is a "heating function" which is responsive to the surface
temperature distribution. The solution, except in the immediate
vicinity of the island, has many characteristics of airflows over an
"equivalent physical mountain''.

If g,(ﬁéglfz and 2D (width of a heated area) are large,

U

then the mountain function is

M(x) = Mlﬁ""’l (2.2.2.7-1)
-
k .gs\1/2 _.1
If T (87-) <5
U
_gsk

1-e U3 for x < 2D

M(x) = 2 (2.2.2.7-2)
_ﬁk X 2[)8___.51(
e U3 e U3 -1

e

where T 1is the dry-adiabatic lapse rate, is the lapse rate for
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undisturbed temperature, s = (I-a)/T where T is the mean
temperature, k is the eddy diffusivity, and e is an exponential
function. (The rest of the variables are listed in the table of

symbols.) The amplitude of an equivalent mountain is

AmSh. = B2 (2.2.2:7~3)

and its shape parameter is

X (2.2.2.7-4)

o~ gsk’

where X is the distance where the mountain function takes the

height of A(1 - éﬂ. The dimensionless coordination is introduced

as

Y
1]
=l
>

o,

n
~ <

o

then Eq. (2.2.2.7-2) is reduced to

L
-b &
1 -e for ¢ < 2,

ML) N y (2.2:2.7-5)
-b £ 2db
e (e - 1)

for £ > 2d ,
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where

2 2 1 1
Bs BE wkis o » i
u U2 U2H

It is interesting to note that 1/b“* is the square of the
product of the Froude number and the Reynolds number based on the
eddy diffusivity. Janowitz (1968) utilized a special Reynolds

/3

number which was equivalent to b_4 but the derivation was
different.

Figure 2-6 displays the equivalent mountain shape as given
by Eq. (2.2.2.7-2) associated with a shape parameter X, In order
to compute quickly an equivalent height from a given set of
meteorological parameters, several graphs are drawn in Fig. 2-7.
By adding observational data points to the figures, they may also be
used to predict the appearance of rows of cumulus clouds over the lee
side of a heated island. Suppose from meteorological observations
following values are obtained: velocity, U(m/sec); eddy diffusivity,
K (mzlsec); width of a heated island 2D(m); surface temperature
excess on a heated island, &T(OC); stability of the atmosphere, s(m_lj;
and characteristic height, L(m) . From Fig. 2-7c, and Fig. 2-7d
the Froude number is obtained. The Reynolds number may be determined
utilizing Fig. 2-7a and Fig. 2-7e. The equivalent mountain height at
x = 2D 1is obtained with the dimensionless island width 2d from Fig.
2-7b and the non-dimensional parameter b“ from Fig. 2-7f.

Observed values are also plotted: solid symbols show the

variables when rows of cumulus clouds were produced, and an empty
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symbol indicates that no convection clouds were observed. A cross
represents a typical meteorological condition for a mountain lee-
wave phenomenon. The sources of data and numerical values used in
plotting are provided in Table 2-4. From these results we can see
that a very low velocity (less than 8 m/sec), a small Froude number
(less than 0.05), and a large value of the parameter b (~0.1)
created favorable conditions for the formation of a lee-wave motion
downwind of the heated islands.

In a subsequent paper, Malkus (1955) reported the existence of
a fairly symmetrical orographic-convection cell over the island of
Puerto Rico. From the numerical values of meteorological factors
the equivalent mountain height obtained from Eq. (2.2.2.7-2) was
900 m, 1 1/3 times as high as the actual mountain. The maximum rate
of descending motion was computed as 3.3 cm/sec at 900 m and the
average value of ascending air over the island was 10 cm/sec at 1,000 m.
Calculated streamlines had a maximum amplitude of 800 m, which was close
to the equivalent mountain height. These computations were based on
the sea-breeze circulation theory developed by Stern and Malkus (1953).
The values seem to be reasonable magnitudes for a pure sea breeze
motion; however, they are at least one order of magnitude smaller than
the commonly observed mountain lee-wave phenomenon with a wave amplitude
equivalent to the computed mountain height here.

Black and Tarmy (1963) proposed the deliberate creation of a
thermal mountain, in order to reap the benefit of precipitation from
orographically produced clouds. Soil temperature under asphalt
coatings may be almost 20°F higher than that under nearby uncoated

soil (Black, 1963). The temperature excess of an asphalt-coated surface
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was safely assumed to be 9°F. Black and Tarmy concluded that with
favorable meteorological conditions the asphalt-coating technique
could theoretically produce an economical water supply.

Observations made by Garstang, et al. (1965) reported that the
theoretical height from Eq. (2.2.2.7-1) showed overestimations in
almost all cases. The results were plotted in Fig. 2-8. The observed
trajectories of balloons, however, definitely indicated the existence
of thermal mountains over heated islands as predicted by the theory.

Smith (1955) treated the heated island phenomenon as a time
dependent problem. His model differs from that proposed by Malkus
and Stern (1953) in that 1) convection terms were neglected, 2) no
mean large motion was included, and 3) his model was time dependent.
The time dependent vertical velocity components calculated had values
similar to those obtained by Malkus and Stern. The model produced
a reasonable sea breeze circulation.

2.2.2.8 Heated island (numerical treatment) - In order

to retain the convection and the diffusion terms in the original
governing equations, several numerical models have been examined by
Tanouye (1966), Estogue and Bhumralkar (1968), and Spelman (1969).
Tanouye numerically modeled heated island convection, utilizing
a slightly modified version of the scheme which Estoque (1961, 1962)
used for sea breeze analyses. Large scale fluid motions of 1, 3,
and 5 m/sec were used for each of three island surface temperature
excesses of 3, 5, and 10°C. In all of the nine cases strong upshafts
over the islands were produced. The maximum vertical velocity
increased with larger island temperature excess and/or decreasing

synoptic velocity. The variation of the maximum vertical velocity
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computed and large scale motion and/or temperature excess over the
island are shown in Table 2-5. The place where the maximum velocity
occurred was displaced from the center to the lee of the island with
increasing synoptic wind. Assumed meteorological factors used in the
computation were included in Fig. 2-7a to Fig. 2-7h. Although they
were very close to the conditions reported by Malkus (1963) when a
well developed cumulus cloud row was observed, Tanouye's model could
not produce any ascending and descending motions over the lee of the
island. There are two possible reasons for this: his model itself
or his numerical technique. Instead of a vertical equation of motion,
Tanouye's model utilized a hydrostatic equation which has resulted in
elimination of horizontal variation of the vertical velocity component
according to the linearized argument by Magata (1968). Therefore,
wavy motions are not expected. The second reason lies in the strong
damping effects introduced in the upstream difference molecule
utilized; they destroy the wave phenomenon, if any. Anticipating the
analysis in Chapter IV, we can conclude that Tanouye's model appears
to be inappropriate to simulate atmospheric wave motions.

Moisture budget and non-uniform surface roughness were added to
the model by Estoque and Bhumralkar (1968). Approach flows were more
strongly retarded when larger roughness elements were added over the
island. Otherwise, the results obtained were very similar to those
given by Tanouye.

Spelman (1968) described a numerical model for heated island
effects utilizing a shallow water theory (see Section 2.1.6). Spelman
claimed his results were consistent with observations by Malkus (1955).

Vertical updrafts of 4.5 cm sec_1 and maximum upward displacement
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of the inversion layer of nearly 400 m from its undisturbed height
were recorded. Spelman obtained larger maximum upward vertical
velocities by increasing the speed of the basic current. But Tanouye's
results were completely opposite, i.e., the maximum vertical velocities
decreased with increasing basic wind speed. Spelman argued that the
different results might arise from the differences in the basic
modeling techniques.

Malkus' theory (1963) supported Spelman's results, i.e.,

an averaged upward disturbance at level h is

W = %Uﬁ R (2.2.2.8-1)
and
U3
= =5 (2.2.2.8-2)

where M is the effective height of an equivalent mountain obtained

from Eq. (2.2.2.7-2) and expressed as
1
M=A( - E—) ; (2.2.2.8-3)

As we can see from Eq. (2.2.2.8-1), w is proportional to the speed

of the basic current, U.

2.3 Review of Sea Breeze Problems

2.3.1 Introduction - During the daytime on a sunny day, summer

breezes from the sea to the land are often observed near a shoreline.
This atmospheric circulation is called a sea breeze and is caused by the
temperature difference between the water and the land. After sunset the

flow direction is reversed and the phenomenon is called a land breeze.
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Similar motions are observed near lakes (lake breeze) or forests
(forest breeze).

Although a sea breeze is quite a familiar phenomenon, very few
observational data are available. This is partially due to the dif-
ficulty of measurements over the sea; moreover, it is not easy to
distinguish the breeze from superposed large scale motions.

An extensive effort has been made to work out an analytical
explanation of this rather simple convectional motion in the hope that
the solution will lead to the explanation for more complicated heat
transfer problems in the atmosphere.

2.3.2 Observational evidence - The sea breeze circulation system

consists of a landward current near the earth's surface and a much
weaker but deeper return flow above it about two orders of magnitude
smaller. The horizontal scale of the circulation is about 30 to 50 km
from the seashore landward, but it varies with land-sea temperature
contrasts, or the prevailing synoptic situation. Magnitude of the
horizontal velocity is around 10-20 m/sec, and that of the vertical
velocity component is 10-20 cm/sec (Fisher, 1960). Humphrey (1964,

pp. 157-159) estimated the scale of a sea breeze by using a simple model
assuming hydrostatic equilibrium and a constant temperature distribu-
tion. He predicted a horizontal scale of about 30 km and a vertical
scale of around 300 m -- somewhat smaller than observations. The

scale of a sea breeze is mainly determined by a combination of many
factors, such as temperature contrast over the sea and the land,
stability conditions in the air, surface roughness of the sea and the
land, or insolations by cloud cover. Consequently the magnitude of the

velocities is also a function of a combination of the above conditions.
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A land breeze has a smaller scale than a sea breeze. It is weaker over
the sea because of smaller temperature differences during the night and
the dissipation of energy over the land's rougher surface.

Moroz (1967) observed a lake breeze at a site on the eastern shore
of Lake Michigan. The depth of onshore flow in a fully developed lake
breeze at the lake shoreline was about 750 m, and horizontal onshore
velocities exceeding 7 m/sec have been observed. The region of onshore
flow extended 25 to 30 km inland but did not reach 53 km inland for any
of the cases observed.

2.3.3 Analytical treatment - A sea breeze circulation is a result

of a temperature difference over land and sea coupled with a pressure
gradient. This may be understood by applying the circulation theorem
(for example, Hess, 1959, pp. 244-246). By taking a curl operation over
the two-dimensional equation of motion, a vorticity transport equation
with a solenoidal term -V %—x VP is obtained. This forcing function
produces a y-direction vorticity component. It always exists unless

-V % and VP are parallel. In a sea breeze situation pressure dis-
tribution is safely assumed to be hydrostatic, which means VP is
directed vertically downward. The density over land has a smaller value
than that over the sea if height is held constant, because air over

land is heated from the surface. Therefore constant density lines
decline in the vicinity of a shoreline, which is the physical explana-
tion for the existence of a solenoidal term - V % X VP. Since the
governing equations are non-linear, exact analytical solutions for the
sea breeze phenomenon have not yet been obtained. Therefore some
simplifications were unavoidable in order to obtain analytical

expressions.
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Haurwitz (1947) provided one of the earliest efforts in this field
by using a circulation theorem. He incorporated a viscosity term in
the equations of motion which is assumed to be proportional to, and
in opposite direction to the local velocity. His conclusion was that
the friction term in his model brings the maximum intensity of a sea
breeze earlier in the day while without the friction term it occurs
when the temperature difference between land and water decreases to
zero.

The intensity of a sea breeze is influenced by many factors besides
land-water temperature difference. The important roles of a gradient
wind, topography near the coast, and stability of the atmosphere were
explained in Wexler (1946).

2.3.4 Numerical treatment - Fisher (1961) designed a numerical

model based on his earlier sea breeze observations along a portion of
the New England coast near Block Island, Rhode Island (Fisher, 1960).

He assumed an infinitely long beach and neglected the variables along

it. He generated a vorticity transport equation to describe the motion
in a vertical plane perpendicular to the coast line. Evaluating the
magnitude of solenoidal terms in the equation under certain pre-specified
ideal atmospheric conditions, he finally obtained the same expression

as that obtainable from the Boussinesq approximation. In his original
equations of motion he assumed that viscous stresses might be neglected
for the vertical component of motion, that horizontal variations of the
horizontal components of motion may be neglected, and that eddy viscosity
coefficients in both horizontal directions may be regarded as the same.
The coefficient of eddy diffusivity with height was given based on

observations.
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Fisher's model simulated not only general features of the wind
system but many of its small details as well. Unfortunately a direct
comparison with his earlier observations was not possible because in
his model the large scale synoptic motions were assumed to be zero.
Fisher's study is not the first to solve a sea breeze problem by
numerical analysis (Pearce, 1955), but he did suggest many interesting
and important aspects of a numerical analysis, even though he could not
prove them all. For example, he noted that solutions depend on dif-
ferent finite difference approximations, size of the finite domain of
computation, initial and boundary conditions, etc. Since the need to
discuss these factors was encountered in the course of the present
numerical formulation of the problem, they will be described in
Chapter IV.

Estoque (1961) added the hydrostatic equation to those utilized
in Fisher (1961). He decomposed the dependent variables into the sum
of two components: one is due to a large scale synoptic motion and the
other is a perturbation due to the effects of friction, and differential
heating. Consequently he had to solve two sets of equations. He solved,
however, only the disturbance quantities, assuming that no synoptic
motion existed. The region was divided into two horizontal sublayers;

a relatively thin layer, 0 < x < h = 50 m characterized by constant
vertical eddy fluxes of heat and momentum, and an overlying transition
layer, h< x < H = 2 km where the effect of eddy fluxes decreased with
elevation.

Estoque (1962), by an extension of his first paper, eventually
investigated the effect of the prevailing synoptic motion on the develop-

ment of a sea breeze circulation. He assumed as initial conditions
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that the lapse rate was 7 °k/km and that the geostropic wind had a
magnitude of 5 m/sec, with various shoreline approach angles. His
results simulated the diurnal development of a sea breeze. At an

early time stage the perturbation remained in the vicinity of the shore-
line; it grew with time and eventually penetrated further landward.

The circulation recorded a maximum development at eight hours after the
motion started, then it decreased. The maximum computed velocity
components of 10 m sec_1 in the horizontal and * 14 cm/sec in the
vertical direction were consistent with earlier observations.

Magata (1965) added the effects of condensation and evaporation in
his energy equation. He derived the temperature distribution at the
surface of the land and the water by balancing insolation, nocturnal
radiation, conduction and eddy transfer of heat. The distribution of
the eddy diffusivity coefficient was assumed to be a function of the
vertical coordinate only and was obtained by a numerical analysis of an
observed inversion layer. He concluded that the magnitude of synoptic
motions and the vertical shear they introduce are significant during
sea breeze development.

A universal expression for eddy diffusivity which is appropriate
for all atmospheric conditions is not yet available. Fisher and Magata
used typical profiles based on an evaluation of atmospheric data.
Estoque and Bhumralkar (1968) utilized semi-empirical expressions which
are a function of stability, shear, and the roughness element in the
lowest constant flux layer. In the upper layer eddy diffusivity is
assumed to decrease linearly to zero at the upper boundary. The ef-
fect of change of surface roughness and mositure budget was included

in all of Estoque's sea breeze modeling (1968).
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2.3.5 Some concluding remarks on simulation of sea breeze by

a numerical experiment - The above review suggests that the following

physical factors should be included in any simulation of sea breeze
circulation development:
i) Appropriate expressions for eddy diffusivity including the
effects of local velocity and temperature.

ii) Temperature distribution at the surface along the land and
the water as governed by the heat balance associated with
insolation, nocturnal radiation, conduction into a soil
layer and eddy transfer to the atmosphere.

iii) Effect of shear of a basic wind;
iv) The release of a latent heat by condensation and evaporation,
and
v) The effect of surface roughness change over the land and the
sea.
In addition to improvements in numerical modeling techniques,

extensive prototype observations are essential in augmenting theoretical

results.
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CIHHAPTER ITI
EXPERIMENTAL FACILITILES AND PROCEDURES

5.1 Introduction (Necessity of a Wind Tunnel Experiment)

The following methods are available to study small scale
geophysical flows, such as a lee-wave motion, a sea breeze circulation,
or an urban heat island convection:

1) analytical,

2) numerical,

3) field experimental, and

4) laboratory experimental.

Each method has its own merits and demerits. For example, analytical
solutions are not yet available for a complete set of nonlinear
governing equations. A numerical solution may be inferior to an
analytical one in accuracy, but it is an extremely useful approach when
analytically rigorous solutions are not available. A field study

may be time consuming and expensive compared with a laboratory
simulation. A further advantage of wind tunnel simulation is that
important variables may be changed systematically. However, difficulties
may arise because it is necessary to consider scaling effects which are
not yet fully understood for turbulent motion.

Therefore, it is good strategy to utilize the advantages of
each, combining the different methods for a better understanding of

complicated geophysical problems.
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3.2 Basic Requirements

3.2.1 Similarity in mountain lee-wave phenomena - The complete

similarity requirement for a mountain lee-wave phenomenon was
described in Cermak et al. (1966, pp. 39-51). Here only certain
aspects of geometric and dynamic similarity will be discussed.

Following the arguments in Queney (1960, p. 104) the Scorer

function is given as

9%u
s =M2 (3B - 327
. u? u

If the shear term is neglected, then the Scorer function may be
interpreted as a global Richardson number based on the mountain
height, M. The following values are substituted from a typical

mountain lee-wave situation:

y = 0.006° c/m ,
T = 250 k, and
u = 20 m/sec ,
then
s=1.6 x10" m " and g% - 0.4 km 2 for the atmosphere.
i
If a geometric scaling is 1:3 X 10_5 and the temperature

gradient in a wind tunnel can be maintained at IOC/cm, the velocity
in a model experiment must be 8.6 cm/sec for dynamic similarity.
These values are extremely difficult to obtain in the ordinary wind
tunnel. Moreover, instruments to measure accurately such a low

velocity in a strong temperature stratification have not yet been

developed.
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3.2.2 Similarity in heated island phenomena - According to a

linearized theory proposed by Stern and Malkus (1953), it is necessary
to satisfy fE%%ﬁ > %- in order to simulate an equivalent mountain
capable of developing strong gravity waves downwind of a heated
boundary. It will be easily seen that the above relation, because it

requires an unusually large stability and a small velocity; cannot

be satisfied in any existing wind tunnel facility, for example,

s=3x10° cn} (%% ~1°C) and k = 0.2 cm2/sec requires

A

u<o0.83 cm/sec . If u =4 cm/sec and k = 0.2 cm2/sec then a

5 3> 1.63 cm-l is required for a simulation, which is equivalent to
SOOOC/cm. It is impossible to satisfy the relation /EE'R/UZ >~%
unless viscosity k is artificially modified by a factor of at least
30. Thus a thermal equivalent mountain in a wind tunnel experiment
must take a plateau shape as described by Eq. (2.2.2.7-2): the
mountain starts at the leading edge of the island and increases
asymptotically to reach its maximum height directly above the end of
the island, then decreases exponentially.

To see the shape of a thermal mountain which might possibly be
simulated, the following numerical values are substituted into the same

equation.

u = 4 cm/sec ,

4,67 x 107 L 2L
9z

Molecular viscosity of 0.2 cmZ/sec , an island width of 8 cm, and a

1}

s = 1.4°C/cem, T = 300 k).
temperature excess over the island of 56°C were assumed. The computed
mountain increased its height almost linearly to 8.4 cm at the end of

the island, then decreased exponentially, taking the values of 6.1,
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2.3, and 0.1 em at x = 30, 100, and 350 cm, respectively. It would
be simple to compare the maximum mountain height of 8.4 with experimental
results for airflow over an obstacle whose height is 8 cm.

Summarizing, it evidently is necessary to obtain a velocity ranging
from 4 to 15 cm/sec, and a temperature gradient of 0.5°Cfca to
1.5°C/cm, in order to simulate atmospheric lee-wave phenomena and heated
island problems in a wind tunnel facility. The above requirements are
equivalent to attaining a Froude number based on the wind tunnel

height (60 cm) from 0.030 to 0.196.

3.3 Design and Construction

3.3.1 Existing thermal wind tunnels - Although there are quite

a few low speed, small wind tunnels (see Pope and Hooper, 1966, for
general information), guidance for the design of a thermal wind tunnel
is limited. Several reports are available, including Plate and Cermak
(1963), Strom and Kaplin (1968), Charpentier (1967), Scotti (1969), and
Hewett et al. (1970). Since their facilities were designed to satisfy
special ﬁurposes, duplication of their designs was not desirable. The
tunnels of Strom and Kaplin, and Charpentier could not produce the
strong temperature gradient required here; Scotti was primarily
interested in a free shear layer whose thickness was about 1/4 inch,
and Hewett treated flows whose duct Froude numbers were greater than

1

i Thus, it is necessary to develop our own design criteria.

3.3.2 Test section - Dimensions of the test section of the

proposed wind tunnel are 2 ft height x 2 ft width x 15 ft length

(see Fig. 3-1).
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a) Removable Windows

One side of the wind tunnel wall has five removable windows with
3 ft x 3 ft square area for the convenience of measurements. Two of
them are made of plexiglas and seven slots are cut over one quarter
of the area of each window. Instruments are inserted from the outside
of the wind tunnel so that supports do not disturb the flow inside the
test section. Two series of slots shown in Fig. 3-2 provide access
to the entire test section by rotating the windows.

b) Adjustable Ceiling

Ceilings are adjustable to compensate for acceleration of the
free stream as induced by the growth of boundary layers along the
floors, ceiling, and both side walls. The ceiling can be raised to
a maximum of about 20 cm near the end of the test section while a
displacement thickness for a typical flow situation is around 2.5 cm.
Fig. 3-1 displays four pairs of adjustment devices, each of which
consists of a screw and a crank.

3.3.3 Entrance and ceiling heaters - A simple computation was

conducted to estimate the transport of energy supplied by electric
heaters to a wind tunnel atmosphere.

a) Entrance Heaters

The dimensions of an electric sheet heater are assumed to be
6 in. x 24 in. The rate of total heat transfer by convection over

the heater is (see Kreith, 1968, p. 296)

q=0.66a kR Y2p3pr 1),
eL r S oo
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where

b: width of the heater,

TS: heater surface temperature,
T_,: ambient air temperature,
ReL: Reynolds number at x = L, and
k: conductivity.
Then numerical values of b = 24 inch, TS = SOOOF, T, = 75° F,

L = 6 inch, u = 0.5 ft/sec, and k = 0.0171 Btu/hr ft F are

substituted to obtain
q = 155 Btu/hr = 45.4 watts .

Since heat energy may be transferred from both sides of the heater,
q 1is 90.8 watts per heater. If sixteen heaters are used, then a total
of 1453 watts would be transferred to the air in the wind tunnel. The
final arrangement of heaters is displayed in Fig. 3-2.

b) Ceiling Heaters

A similar calculation was performed assuming that the'temperature
at the heater surface was 200°F and the air temperature was 170°F.
Four large heaters 2 ft x 3 ft were selected. Under these conditions,

the heat energy convected from the heaters is
q = 49.5 btu/hr = 14.5 watts.

Adding this to the previous result, we find that a total of 1500 watts

is emitted from the heaters.
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c) Energy Transferred from Wind Tunnel to the Atmosphere
Under stationary conditions the rate of energy supply from the
heaters will balance energy transferred from a wind tunnel to the

atmosphere. The latter energy is expressed as
= Ap C_ uAT ,
1 P

where
A: area of a wind tunnel cross section, and
AT: averaged air temperature difference between inside and
outside wind tunnel.
The following numerical values were substituted

A =4 ft®, o = 0.071 1bm/ft>, Cp = 0.240 Btu/lbm F,

0.5 ft/sec, and AT = 30°F .

c
n

3681 Btu/hr

L
n

n

1078 watts,
which is approximately the same amount as the energy available if losses
of energy from the wall, ceiling, or floor of the wind tunnel are
included.
To summarize, heaters should meet the following requirements:
i) maximum surface temperature should be more than SOOOF,
ii) power consumption should be more than 45 watts per heater
(= 0.3 watts/inz) for the entrance heaters and 4 watts
per heater (= 0.005 watts/inz) for the ceiling heaters.
The following characteristics are specified for commercial heaters

available from Chromalox Division:
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Area (inz) Power (watts/inz)
24 x 6 4. 5%
24 x 36 2.0%*

These apparently satisfy all the requirements derived from the simple

calculation.

3.3.4 Cooling device (heat sink) - It is necessary to install

a heat sink along the floor to maintain a strong temperature gradient.
For this purpose, cooling panels for tap water were constructed; their
dimensions were determined from a simplified heat transfer calculation.
The results obtained indicate that a 1/2 inch-depth water panel covered
with a 1/4 inch thick aluminum plate (see Fig. 3-3) can remove 480
Btu/hr of heat energy over the surface area. A velocity of 4 cm/sec,
for the running water in the panel, an air temperature of QODF, and a
water temperature of 42°F were assumed. The average temperature in-
crease over a 12 ft panel length was computed to be 0.9°F. The

measured temperature difference of water between inlet and outlet was

about 1°C.

3.4 Instrumentation

3.4.1 Velocity measurements (smoke wire) - Low speed velocity

measurements in a thermally stratified flow field are extremely dif-
ficult to make by conventional techniques. For example, a Pitot static
tube is suitable for a higher velocity ( ~100 cm/sec), hot-wire

techniques are very sensitive to ambient temperature changes, and a

* P/N 171-881155-002 TYPE SL/PSA Heater
** P/N 171-881155-001 TYPE SL/PSA Heater
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laser doppler velocimeter method was not available for immediate
application.

A smoke wire method has been utilized to investigate flow field
during thermal stratification. It has been perfected for practical
use at the Engineering Research Center, Colorado State University.
Figure 3-4 shows a smoke wire with attached instruments for velocity
measurements. The advantage of the smoke wire method is an instantane-
ous visualization of the velocity profile.

The principle of the technique is to follow photographically a
white smoke emitted from a wire when light oil is vaporized. In
Fig. 3-4 A 1is a nichrome wire which is heated electrically, thus
vaporizing an oil coating. O0il is dropped down by gravity through
an oil outlet B . B 1is connected to an oil reservoir C and an air
bag D which is kept outside of the wind tunnel. Squeezing the air
bag pushes the oil in the reservoir through the outlet. To measure
velocity profiles quantitatively, several auxiliary devices are nec-
essary: a strobe, a strobe delay system, an electronic counter, a trig-
ger circuit, and a camera (see Fig. 3-4). A schematic diagram which
shows an arrangement for velocity measurements is provided in Fig. 3-5,
A trigger circuit is connected to the smoke wire, to a strobe through
a delay unit, and to an electronic counter. When a start button on the
front panel of the trigger unit is pushed, a high voltage (~700 volts)
is applied to the nichrome wire, vaporizing the oil coating. A white
smoke is released instantaneously and is carried along by the ambient
wind. A typical time-delay photograph is included in Fig. 3-4. The

actual velocity profile can be reduced from the picture by use of the
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recorded time difference between the moment of firing the wire and the

moment of the strobe picture.

3.4.2 Temperature measurements - Copper-constantan thermocouples

of 30 gage were utilized to monitor temperature variations. Sixteen
thermocouples were mounted on the entrance heaters, four were on the
ceiling heaters, and three were on the floor. Nine thermocouples
mounted on a rake were used for vertical temperature distribution
measurements. A total of thirty-three thermocouples were connected
to a thermocouple rotary switch, and voltages generated were read
by a digital voltage meter. Figure 3-6 displays the complete set of

devices for temperature measurements.

3.5 Characteristics of the Wind Tunnel

3.5.1 Temperature profile - An example of a vertical temperature

profile where neither an obstacle nor a heated island was placed on the
floor is given in Fig. 5-7. Froude number 0.100 was obtained in the
lower layer from the velocity, 6 cm/sec, and the temperature gradient,
1.25°C/cm. As seen, there are two nearly constant stability layers --
one of strong stability near the surface (0 < z < 13 cm), and another
less stable above it (z >13 cm). This feature of two-layer stability
is a common characteristic of the temperature profiles throughout the
study, although the height of intersection of the two stability lines
varies from case to case.

3.5.2 Standing waves - A Froude number less than %— provides

a necessary condition for the formation of standing waves if there
exists an appropriate disturbance (obstacle) (Long, 1955). Scotti

(1969) experienced finite amplitude waves and stagnation regions in
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his free shear flow study. Segur (1969) analyzed Scotti's case
utilizing Long's model and concluded that his (Scotti's) wind tunnel
had a strong contraction at the entrance section which disturbed air-
flow. Strong standing waves were also observed by Hewett et al. (1970);
In order to minimize heat transfer through the wind tunnel side walls,
the average temperature inside the tunnel was kept close to that of the
room temperature. The authors believed that this temperature distri-
bution arrangement resulted in two natural convection cells which
blocked the tunnel stream and induced waves. They argued that in the
upper section colder air particles next to the wall moved down along
the wall because of gravity. At the mid-point of the wind tunnel where
particles experienced an equilibrium state, they flowed toward the
center line of the tunnel. On the other hand, in the lower section,
warmer particles moved upward along the wall and at the mid-point they
also rotated toward the center line as before. These two flows from
both side walls collided and formed stagnation regions.

Fortunately, such strong standing waves were not experienced in
the test section of the present experiments. OSmoke was released to
visualize flow six feet downstream from the end of the heater section.
Nearly horizontal streamlines were obtained (as seen in Fig. 3-7)
when Fr = 0.0824; temperature surveys in the same area also
indicated parallel flow (see Fig. 3-8). Isotherms in the cross
sections upstream and downstream of the heated island are shown in
Fig. 3-9.

So far there was no evidence to indicate a strong wave motion
in the wind tunnel as found in other wind tunnels. Temperature

distributions just downstream of the entrance heaters, however,
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indicated that there existed strong disturbances in the airflow
which were generated by large temperature differences between the
heaters and the ambient stream (see Fig. 3-10). These disturbances
fortunately diminished rapidly in the streamwise direction, and no
significant variations were experienced after x = - 130 cm.

3.5.3 A numerical simulation of airflow in a wind tunnel - A

numerical computation was performed to test whether the strong
disturbances were generated by the heaters at the entrance section.
The program used is discussed in detail in Chapter IV. In the first
run, no heaters were placed in the computational region. In the
second run, however, entrance heater temperatures were specified along
the vertical line at j = 30. The results are displayed in Fig. 3-11.
The upper configuration had no heaters, and the lower one included
heaters. A definite effect of the entrance heaters was detected, and
isotherm patterns were qualitatively similar to those obtained by
measurements (see Fig. 3-10).

3.5.4 A summary of wind tunnel design - We may conclude that:

1) when Froude number is less than % , standing waves may
be introduced by one or more of the following factors:
a) contractions of a wind tunnel section,
b) natural convections of density differences generated
by side walls, and
c) a temperature difference between the heaters and
approaching air.
2) If a wind tunnel is long enough and waves are not strong,
fairly horizontal flow will be obtained in the downstream

test section.
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CHAPTER 1V

THEORETICAL ANALYSES BY NUMERICAL METHODS

4.1 Analytical Approach

Since the governing equations of the fluid motion are given by a
set of nonlinear partial differential equations no analytical solutions
in closed form have been obtained without simplifications based on
intuition, experience, prototype observation, or laboratory experiment.
Many different methods have been used to simplify the equations.
Generally these may be classified as:

1. Perturbation techniques which linearize the equations after
neglecting higher order terms of small quantities.

2. Similarity assumptions which develop a set of ordinarily
differential equations from those of the original partial differential
equations.

3. Boundary layer type assumptions which produce equations of a
parabolic type rather than the original elliptic ones.

Meteorologists have also introduced other simplifications such as
the assumptions of hydrostatic and geostrophic equilibrium.

One must decide which simplification or simplifications can be
utilized for his special problem. This is not always easy because
in many cases needed justifications are only possible after solutions
are obtained. There are many examples where the simplified governing
equations include solutions which are contradictory to the original
assumptions. For example, equations linearlized by perturbation
techniques may include solutions in which the perturbations are com-

parable with or larger than a mean quantity.
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We also know, however, that such simplified analytical solutions
give a very good insight into even very complicated problems. Thus one
of the advantage of analytical solutions is that they may correctly
develop functional dependence. Therefore analytical methods are usually

preferred where possible.

4.2 Limitations to an Analytical Approach

Long (1953) derived exact analytical expressions for a flow over an
obstacle when the flow is two dimensional. Yih (1965) extended Long's
model for a broader, more general classification to reduce the original
nonlinear equations to linear ones which can be solved analytically.
This transformation is possible, however, only when the flow is steady
and nonviscous.

Restrictions to the type of solution considered also arise from
the upstream boundary conditions required in Long's model, i.e., a
linear variation of density with height and a constancy of a dynamic
head upstream. These restrictions impose a problem of uniqueness and
existence of a solution. Long (1955) himself observed a blocking effect
of an obstacle when the Froude number was very small, which by means
of an upstream wave alters the assumed density and dynamic pressure dis-
tribution at the upstream boundary. Thus the problem is overspecified.

Segur (1969) discussed an existence criterion for solutions of a
stratified flow into a two dimensional contraction using Long's model.
He suggested an existence criterion which is a function of a stability
parameter and a contraction ratio of the channel. According to his
notations, this is stated as follows.

For any one-sided contraction with k > 1, a bounded solution

to Long's model exists uniquely if
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(k] = [k 2=

m

where [S] denotes the integer corresponding to any real number S such
that 0 < S - [S] < 1. k is an inverse Froude number based on the
height H/m and related to a global Richardson number by Ri = k2n2.

H 1is the original channel height. Ap is the contracted section height
nondimensionalized by H/n. Therefore, Ap/m 1is a contraction ratio of
the channel. He included symmetric ard asymmetric contractions, but
only the statement for the one sided contraction was quoted here which
represents a flow over a plateau.

The above criterion was applied to predict the blocking effect of
Long's experiments when a barrier was used. The predicted instabilities
were verified by Long's experiments (Table 1 in Segur, 1969). Apparently
this is one of the very few cases to have been extensively studied
analytically and verified by experiments for a criterion of existence
of a solution of Long's equation under the assumed boundary conditions.

This test is not always feasible, however, because of its time
consuming procedures. In addition, it may not be suitable for more
general problems.

One possible way to eliminate the difficult mathematical existence
proof is to treat the problem as an initial value problem rather than a
boundary value one.

Transformations of variables are, however, no longer possible
(Yih, 1965) which means we cannot use the same procedure which Long or
Yih used to reduce the nonlinear governing equations to linear ones for

steady problems.
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4.3 Necessity of Numerical Integration

An alternative solution approach is a numerical integration using
a digital computer. This is one of the most powerful methods available
at present for nonlinear problems with complicated boundary and initial
conditions. Numerical integration had a long history even before digital
computers were developed; however, there are still many unsolved problems
in the techniques themselves, especially for nonlinear problems. A
stability analysis is considered the most important and yet difficult
technique for unsteady problems. The finite difference scheme is said
to be stable if the difference between the exact solution of the dif-
ferential equation and that of the finite difference equation is bounded
as the integration time goes to infinity for fixed time and space
increments. The stability analysis required depends on the particular
differencing molecule chosen. Therefore, it will be discussed in detail
after a finite difference scheme for the current problem has been

developed.

4.4 Formulation of Problem

4.4.1 Two dimensionality - The formulation of the problem is

initially based on the assumption of two dimensonality. Variations in
dependent variables are limited only to the planes vertical and
longitudinal to the source of flow disturbance, i.e., a heat island or
an obstacle.

Physically this indicates that a heat island or an obstacle extends
to infinitely in the lateral to the flow direction.

The equation of continuity in two dimensional space may be stated

as
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Dp u oW
——— ——— —_— 4 - 4 . . -
Dt * P (ax = az) 0 (4:4,1-1)

The x and z coordinates are to be taken in the direction
perpendicular to the discontinuity (heat island or obstacle) and
vertical, respectively. The origin is located upwind of the discontinuity
where the flow is from left to right.

Velocity components u and w are in the x and =z direction,
respectively. p is density and D/Dt is the Eulerian operator which

is expressed as

4.4.2 Incompressibility - When Dp/Dt = 0 the fluid is incompres-

sible which means a fluid particle does not change its density along
the streamline. This situation is truz for homogeneous fluids as long

as the fluid velocity is small compared to the speed of sound, i.e.,

For stratified flow, however, one has to evaluate the magnitude
of 1/p (Dp/Dt) for the specified proolem. Fisher (1961) evaluated a
typical value of 1/p(Dp/Dt) as order of 1{)_6 sec_l, where the maximum
rates of individual temperature change in the lower layers of the
atmosphere was conventionally assumed to'average less than 0.5 deg C
per hour, pressure p was 1,000 mb, and temperature T was 300°k.
The horizontal divergence term in the equation of continuity in a small-

scale circulation such as a sea breeze is approximately 10"4 sec_l
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(10 m per sec per 50 km). Therefore, the divergence term is two orders
of magnitude larger than the compressibility term in the equation.

The heat island problem and gravity wave phenomena are also the
same sort of circulation (horizontal scale, 50 ~ 100 km, and vertical
scale, 1 ~ 10 km). Therefore, incompressibility may be safely assumed
except perhaps in the local vicinity of the surface temperature dis-
continuity itself.

A similar argument is given to show the approximate v‘kidity of an

incompressibility assumption for fluids in wind tunnel experiments. The

compressibility term % %% is evaluated anticipating the following
variable magnitudes:

w ~ 10 cm/sec

du aw 10 cm/sec _ -1

ox * 3z 20 cm = G

aT 0
e 1°C/cm, and
T ~ 300°K

Since > Dt g: 35 @ substitution of the above numerical values gives
F

Do _ 10 ) 2
S gop X1 3% 10

T | =

which is one order of magnitude less than the divergence terms, %%

or %E—. Therefore incompressibility of flow is also justified in wind

tunnel experiments.
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In past studies of mountain lee waves, incompressibility was not
commonly assumed, but linearlizing perturbation techniques were used.
Here we take a reverse situation, i.e., we retain nonlinearlity but
incompressibility is assumed. Thus the equation of continuity (4.4.1-1)

is finally written as

e =0 (4.4.2-1)
09X dz

4.5 Vorticity Transport Equation

The x and z components of the equation of motion are

Du _ 1 3p 2 _
—D?— 0 ™ + KV u [4.5 1)
Dw =~ 13 2 .
_Dt,-b__ﬁaz-g»,mw 4 (4.5-2)

where K is a total diffusivity and is taken to be a constant. Better
functional forms for K should be taken if atmospheric turbulent motion
is simulated. For example Fisher (1961), Estoque (1961, 1962) and
Magata (1965) have used variable diffusivity K in their numerical
models. However, as summarized in the paper by Zilitinkevich et al.
(1967), the variations of K are quite complicated. Therefore, we take
K as a constant for simplicity. Since all numerical works presented
here simulate wind tunnel results, a constant K is more realistic.

It will be assumed here that K 1is the same in horizontal and vertical

directions. g 1is the acceleration of gravity. Coriolis force due to
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the earth's rotation is neglected for this kind of small circulation.
(For example, see Cermak et al., 1966).

?2 is the Laplacian operator in two dimensional space

2 a2 X

= —_— —
! axz az2
In two dimensional homogeneous flow it is often convenient to use a
vorticity transport equation rather than the original equations of
motion. In the former equation, pressure terms are absent. It is
interesting to note that pressure does not appear in the vorticity
equation. However, for nonhomogeneous flow it is not necessarily true
that a vorticity transport equation is more convenient than the original
equation of motion. It again depends on the problems studied.
The vorticity in y direction, which is the only component, which

exists in two dimensional flow, is defined as
r= o - 5 . (4.5-3)

Cross differentiations of Eqs. (4.5-1) and (4.5-2) and subtraction

gives (utilizing the incompressibility (4.4.2-1)),

Dy _da 3p _du 3p , 42 , )
Dt z 93X ax 9z o (4.5-4)

where ¢ 1is defined in Eq. (4.5-3) and o is the specific volume,

a = 1/p. If the flow field is homogeneous, then the solenoidal term

is always zero. Fisher (1961) evaluated the numerical value of the
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solenoidal term for the sea breeze phenomena and concluded that the
first term  (3a/3z) (9p/3x) was at least one order of magnitude smaller
than the second term (3a/3x)(9p/dz) and therefore might be neglected.
Since our study includes an attempt to verify a numerical model
by wind tunnel simulation experiments, it is necessary to rejustify the
simplified solenoidal term in the vorticity transport equation.
o may be eliminated from the solenoidal term by use of the

equation of state, p = % RT, then we obtain

dup dudp R (3T 3p _ 3T 3p,
9z dx 98X 3z p ‘9z 9X  IX 3z (4.5-5)

where R is the gas constant for dry air.
The following numerical values were obtained by the wind tunnel

test experiments:

=5}
._3
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ap/9x 1is estimated as a first approximation through the Bernoulli

equation.

where p = 10_3 grcm ©, u=~ 20 cm sec_l, and 3u/9x = 5 cm/sec/10 cm

are assumed.

-2

Then (3T/3z)(9p/3x) = 10 % dynes cm—4. Hydrostatic equilibrium

is assumed as a first approximation for dp/3z, i.e.,

an i _ - _3
3e pg = 1 dvne cm
0

2 E o
aT 2°C 10 1 % em 1 .

IxX 20cm
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Therefore,

oT 3 -1 o0 -4
i EE' = 10 C dynes cm

The conclusion is thus the same as for the prototype case derived
by Fisher. The (9T/9z)(9p/9x) term is one order of magnitude smaller

than (3T/9x)(9p/d9z). Hence, the former may be neglected.

4.6 Simplified Vorticity Transport Equation

Further transformation is conducted on the remaining solenoidal term
(8T/3x) (3p/3z). Hydrostatic equilibrium is assumed as a first approxi-

mation, then we obtain,

3T 3p _ _pg 3T
aX 3z RT 3x ¥

where the equation of state is again used to eliminate density p. The

final simplified expression of the solenoidal term is, from Eq. (4.5-5),

da 3p da3p . da 3p
9z 909X aX 92 9X 9z
. g T
T 3x

as

(4.6-1)

C:" =
(a2 (m
]
-~
=]
o
+
=3joa
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4.7 Boussinesq Approximation

The simplified vorticity equation can also be obtained from the
Bossinesq approximation. This equation states that the density change
caused by temperature nonhomogeneity aZfects only body forces but not
inertia terms (Chandrasekhar, 1961). For simplicity of argument one

can neglect diffusion terms from the equation of motion, i.e.,

bW wds AP
Dt ~ o ¥x
0
Dw 1 3 _ _ F
Dt = 5-;32 g{l B(T Tm)} >

where B 1is the coefficient of expansion and T - T 1is the tempera-
ture difference between a hotter fluid particle and the colder sur-

roundings. Cross differentiating and subtracting the two equations we

have

If the diffusion terms are reinserted, expression (4.6-1) is

obtained.

4.8 Stream Function

The continuity equation of incompressible fluid (4.4.2-1) permits

the existence of a stream function ¢ such that

u= - £ and w = 20

92 9X y (4.8-1)

Introduction of a stream function ¢ guarantees that the
continuity equation (4.4.2-1) is satisfied. Substituting the stream

function into Eq. (4.5-3) we obtain a relation between the vorticity
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¢t and the stream function ¢ as

= VY (4.8-2)

4.9 Equation of Energy

The equation of energy in this case is given as

DT _ .,.2 4.9-1
o = K'v°T ( )

where K' 1is a total heat diffusivity.
The set of equations (4.6-1), (4.8-2) and (4.9-1) with the defini-
tion of the stream function (4.8-1) are to be integrated numerically

with appropriate boundary and initial conditions.

4.10 General Discussion of Finite Difference Approximations

Partial differential equations may be approximated by finite
difference analogy. Variables are represented at a finite number of
discrete grid points rather than over a continuous field. Therefore, it
is necessary to examine how accurately they represent the exact solutions
of the equations. Two different but interrelated criteria must be
considered. One is a convergence condition and another is a stability
criteria. Detailed discussions are given in many textbooks (for example,
Forsythe and Wascow, 1960; Smith, 1965; Richtmyer and Morton, 1967;
Carnahan et al., 1969).

4.10.1 The concept of convergence - A finite difference equation

is said to be convergent when the exact solutions of a difference equa-
tion tends to the exact solution of the original partial differential
equation as both space and time grid increments tend to zero.

Convergent criteria for linear equations with fairly generaly boundary
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conditions are established (Smith, 1965). However, they are not known
as yet for nonlinear partial differential equations except for a few
special cases.

The convergent criteria for the problem studied herein is not
apparent; however, stability of the problem may secure convergence as
stated by Lax's equivalence theorem developed for linear problems.
Lax's equivalence theorem states that: given a properly posed initial-
value problem and a finite-difference approximation to it that satisfies
the consistency conditions, stability is the necessary and sufficient
conditions for convergence (Richtmyer and Morton, 1967, p. 45). This
may not be true of course, for nonlinear problems without a rigorous
mathematical proof; however, we will assume that even for nonlinear

problems Lax's theorem may hold.

4.10.2 The concept of stability - During numerical integration of

a finite difference equation computations are carried out with a finite
number of decimal places which introduces a '"round off" error. If a
stability criterion is not satisfied, round off errors may accumulate as
integration proceeds and cause solutions to take unreasonably large
values. In such a situation a difference equation is said to be un-
stable.

The mathematical description of stability requires that the
difference between the exact solution of a differential equation and
that of its difference equation is bounded after an infinite number of
integration steps when time and space grid increments are fixed.

The most frequently applied stability analysis is that of Von Neuman.
A Fourier series representation for error is introduced into the finite

difference equations and behavior of the amplitude of an error is
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examined. A stability analysis for the difference equations used here
will be presented in the appropriate sections.

4.10.3 Explicit method - For initial value problems there are two

different kinds of finite difference schemes depending on the time step
at which the space derivatives are approximated. If they are represent-
ed completely at a time when all quantities are known, the scheme is
called explicit. The scheme is considered implicit if the space deriva-
tives are expressed as a sum of the finite differences at both new and
previous time steps. In the explicit system, values at all grid points
at each new time step are computed explicitly point by point using the
previously calculated or initial values. But in the implicit case,

each new value is related to surrounding new values which are not yet
known. Thus, all unknown values have to be solved for simultaneously.

Implicit methods have an advantage in computational stability for
linear equations (Richtmyer and Morton, 1967), i.e., the scheme is
computationally stable for arbitrary size of integration time increments.
Therefore, one can save computational time to reach the desired
integration time. In general the size of the integration time increments
of explicit schemes are limited, and they are considerably smaller than
those for implicit schemes which theoretically have no upper limit.

The DuFort-Frankel method (Smith, 1965) is a popular explicit
scheme, and it is unconditionally stable for linear parabolic equations.
For this reason it has been used frequently to solve even nonlinear
equations. However, stability criterion for the entire difference
equations including both diffusion and convection terms have not yet been
obtained. Fromm (1963) prepared a stability condition for the DuFort-

Frankel scheme by separating the equation into two parts; one is without
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diffusion terms and the other is without convection terms. Then
stability conditions were evaluated for each case and the more severe
one was used for the computation. However, the second equation (without
convection terms) are unconditionally stable in any event, which means
no matter how large a time increment is chosen the finite difference
approximation is computationally stable.

Generally speaking, an equation with convection terms produces more
stringent stability constraints than one without them. Consider the
following order of magnitude argument. Simple analysis shows a stability

condition for an explicit approximation of the equation

2

Ju du
— = K —
ot sz
is
1 6x”
X
Staier 27 X
where thiff and 6x are time and space grid increments. Whereas

an upstream difference approximation for the wave equation

gives a stability condition

< dX
convec — u

The ratio of the maximum allowable increments for each case produces

Stiiff  uex
= K

t
convec
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given the following approximate numerical values for a simulation of
wind tunnel experiments
u = 20 cm/sec
§x = 4 cm
2
k = 0.2 cm™/sec
then

8t,.
diff _ 102 .

é
teonvec

For a simulation of atmospheric phenomenon

u = 20 m/sec
6x =50m
k = 105 cm2/sec

might be assumed, which gives

*taifs 2
T - 107 .
convec

We can see from this simple calculation that for our present problem
a two order of magnitude smaller time step may be required for an
equation with any convection terms to satisfy stability conditions.

For nonlinear problems, stability depends not only on the structure
of the finite difference system but also generally on the solution being
obtained; and for a given solution, the system may be stable for some
values of t and not for others, (Richtmeyer and Morton, 1967, p. 205).
Since &t depends on a local value of velocity wu it is desirable to

change the size of dt every time step such that all local velocities

satisfy the stability condition.
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4.11 Difference Approximation for Heat Island Problem

Test computations indicated that it is necessary to use different
schemes for heat island and mountain lee wave problems. The arguments
are heuristic and based on experimental evidence. An upstream difference
approximation is used for the case of the pure heat island and the
heated mountain obstacle. An Arakawa scheme (1966) with an upstream
difference step inserted every ten times is used for the mountain lee

wave problems.

4.11.1 Upstream difference system - The primary difficulty

associated with the approximation of a partial differential equation
by a finite difference equation is due to the existence of nonlinear
inertial terms such as u%% or w%% . If one uses a forward dif-
ference for a time derivative and a central difference for a space
derivative then the difference equation for a differential equation
9r/9t + wu 9z/3x = 0 is unconditionally unstable (Richtmyer and
Morton, 1967). Hence, no matter how small a time step is chosen,
small errors intrcduced in the computation grow without limit.

A solution to this instability has been provided by a '"'forward-

backward" molecule which replaces convection terms by

n n
0 o =
P n , 2 -1,% n
(u 5%0 = uj 9 J 5= J when uj,g >0
ok AT -
n o B
N np. J+1,§x L% yhen u? < 0
J» ’

This relation states that when the velocity u? 2
3

space derivative is approximated by a backward difference, and when

is positive then the
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u? e is negative a forward difference is used. In this way the

,

direction of the convection is always the same as that of the local
velocity components. All variables are transported from the upstream
side of the point in a local sense, which is the origin of the name of
an "upstream difference" scheme. Where subscript j and 12 are jth
and £th grid points in x and =z direction, respectively. In the
same manner, the superscript n stands for the nt time step of

integration. n =1 is an initial time. Relations with actual

coordinates and time are given as

x = (j-1) x 8k,
x = (2-1) x6z,
and t=(n-1) x6t,

where dx and 6z are space grid increments in the x and z
directions, respectively. &t is a time grid increment.

The upstream difference scheme has been used in many place, (for
example, Estoque, 1961, 1962, 1968; Tonouye, 1966; Orville, 1968;
Torrance and Rockett, 1969; Roache and Muller, 1970; Muller and O'Leary,
1970).

4.11.2 Pseudo viscosity - The upstream difference scheme may

introduce an ''unexpected" numerical damping which may under certain
circumstances modify or control the solution for a given problem. The
one dimensional, unsteady, and incompressible vorticity transport

equation without a diffusion term is expressed as

9z

= 0

8L,
t Y

Its first order approximation in the upstream scheme is given as
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Cn+1 ) Cn Cn ) Cn
A3 g Adh G, (4.11.2-1)
6t §x

when u 1is not negative and a forward approximation is used for the
time derivative. By a Taylor's series expansion (neglecting higher order

terms than st or 6t3)

P e () 8 ey’
-1 T % . y
j j 3x ; 2 32 ;
and
n 2 2. n
c?” = 7 o+ st (g—i + % (a—g) + o
. j ot

The first term represents an expansion with respect to space and the
second one is an expansion with respect to time. The first expansion
is substituted into the second term in Eq. (4.11.2-1) and the second

expression is substituted into the time difference term. Thus we have

i Z. - ¢
i I (W MO
§t §x
) 3 8 st 8°
_ 9% 9g _ udx _udét., 9 ¢
3t "YU -2 oI TT ot (4.11.2-2)

where the relation

3t _ 2203
_Z_u ————
at ox

is used from the original equation assuming u 1is constant. A similar
expression is obtained when u 1is negetive. If the finite difference
equation (4.11.2-1) is solved exactly then the differential equation

becomes (combine Eq. (4.11.2-2) with Ec. (4.11.2-1)),
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2
T 9z _ Ju|éx _ Jujét 3T
) TUeR T T2 (1 8x ) 5%
The term
_ |u|5x u|ét
Up = 5 (1 - 5 ) (4.11.2-3)

has been called the pseudo viscosity or pseudo diffusivity (Molenkamp,
1968). Molenkamp evaluated vp for typical thermal convection
situations and numerical values were of the order of 35 mzsec_l, which

is comparable with typical measured turbulent viscosities ranging from

0 to 40 mzsec_l.

Molenkamp (1968) conducted numerical experiments to show how
solutions were deformed with integration for seven different finite
difference approximations. For example, as we can see from Eq.
(4.11.2-3), Up will be smaller if ©6x is chosen to be smaller. The
solution was improved greatly when d&x was chosen as half of the
previous calculation. From his numerical experiments, Molenkamp con-
cluded that only the Roberts-Weiss approximation advected the initial
distribution correctly of all eight schemes investigated.

A similar study has been prepared by Crowley (1967) who reduced
distortions by two-time-step schemes, i.e., the state vector is known
at time t, and with this information and some intermediate calculated
information at t + 1/2 6t, the system is advanced to time t + &t
(Crowley, 1967, p. 472). He extended his work from the second order

scheme to the fourth order one and showed that the solution by the fourth
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order approximation was very accurate compared with that given by the
second order scheme (Crowley, 1968).

Both Crowley (1968) and Molenkamp (1968) concluded that a simple
first order scheme (upstream difference) is not accurate enough to
simulate diffusion problems.

Orville (1968b) commented on the matters discussed above. Even
though he accepted the conclusions by Crowley or Molenkamp on the
inaccuracy of the upstream difference for pure advection problems, he
argued that the inaccuracy of that scheme applied to the broader
turbulent-plus-advection problems has not been established by either of
the studies mentioned above. He also stated that it must be realized
that upstream differencing was most often applied to problems in which
diffusion was an important physical ccnsideration.

Continuous efforts have been made for a long time by different
authors to seek accurate finite-difference approximation schemes applied
to the Navier-Stokes equation. (Recert works include Fromm, 1969;
Cheng, 1970, etc.) However, a complete exact analysis is not available
at the present stage for full Navier-Stokes equation. Therefore, the
only practical way of judgement on the accuracy of the approximation
used is by the comparison with prototype observations and/or laboratory
experiments if both advection and turbulence are modeled in the numerical

computation.

4.11.3 Usefulness of pseudo-diffusivity - The large damping effect
introduced automatically in the upstream difference system is sometimes
very convenient to filter or smooth out the computational errors
developed near a large temperature discontinuity. These disturbances

exist in the unstably stratified regions around a model heat island



92

which magnifies even a small error introduced during computations.

These perturbations usually do not represent physically meaningful
phenomena; therefore they should be numerically reduced or eliminated.
Hino (1965) used an averaging method to disperse the computational
errors. All the values computed were averaged with surrounding points
every certain number of integration. However, if the upstream difference
scheme is used, any additional steps for smoothing are not necessary

since the upstream finite-difference approximation itself acts as a

smoothing operator.

4.12 Finite Difference Expression for the Vorticity Transport Equation

A finite difference approximation of the vorticity transport
equation (4.6-1) is obtained by replacing the diffusion terms by
centered differences while the color equation (Substantial Derivative),

LA LA 14

St Ut W T 0, 1is approximated by the upstream numerical system.

The final form is, when u and w are positive,

n+l

n két n n n
55,0 T %50 " e 2 (B541,07 255,80 ¥ %5-1,0)
két n n n
* = {cj,9.+1 = zcj,i * cj,i’,—l)
6z
n n n
= t
gt g+l Y516 %0 % o n
+ - (c. , = L. )
28x Tn 86X I 5% j-1,2
1,2
w? i %% 4 n
62 [Ej,ﬁ = Cj,f—“l) (4'12_1}

A detailed derivation is given in Appendix A.
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4.13 Successive Over Relaxation Method for Stream Function

The stream function is obtained Dy solving the Poisson equation
with known vorticity values. There are many methods available to solve
such an elliptic equation numerically (see for example: Smith, 1965;
Thom and Apelt, 1961, etc.).

Herein a successive over relaxation method (S.0.R. method) was
utilized. Improvements upon this method or developments of other methods
such as "Alternating Direction Implicit'" (A.D.I) method or 'Fast
Fourier Transformation" (F.F.T) method are desirable - especially since
the most computation time is utilized to solve the Poisson equation.
(Reference is made to Peaceman and Rachford (1955) and Douglass (1955)
for the A.D.I. method and to Cooley, et al. (1967) for the F.F.T.

method) .

The finite difference expression for stream function given by the

S.0.R. method is

T+l
Voot e W T
3,2 h 2 {1+(5_~‘) } j+1,% j-1,8
6x.2 ) o i
*'(E W + ] - ¢, £6x2 o, (4.13-1)
j,a+l j,e-1 Js

where w 1is an over relaxation factor which lies between one and two.
The exact value of w for a general grid system is determined by a
test calculation since no analytical sxpression for such an optimum
value is yet available. When a square mesh system is used (i.e.,

§x = 6z = h) then « 1is analytically given as
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2 (4.13-2(a))
1 1

( i _-._-J
2 2

—
+
=5
(881

when the domain of integration has a rectangular area, Kh x Lh. And

when the domain is square

~ 2

(see for example, Apelt, 1969).
The convergence criterion of the iteration procedure given by

Eq. (4.13-1) is

r+l rl

i.e., if the absolute value of the maximum difference between the
(r+1)th iteration and the previous rth iteration is less than §
then the iteration is stopped. & should be determined by numerical
experiments and here we adjusted & from 0.01 to 0.10 depending on
the magnitude of stream function at the top boundary. In other words,
a

| ) [¢top|

The derivation of Eq. (4.13-1) is given in Appendix A.
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4.14 Finite Difference Expression of Energy Equation

The finite difference approximation for the energy equation
(4.9-1) has a very similar appearance to that of the vorticity transport

equation. The final difference approximation to Eq. (4.9-1) is

T+l n k'ét ..n n n
i =T, - =
Je& T CFm T a2 (Tia1,0 = 25,0 * Tiog,9)
kY8t n n n
"2 T T 2y T )
z
ul ¢ 6t % 4 Wh 1y 6t & -
- A = & e e - T, 4.14-1
§x (Tj,ﬁ Tj—l,ﬂ) 8z (Tj,ﬂ J,F«-IJ ( )
when both u? 2 and w? g are not negative. If they take different

signs then the last two terms for convection are changed according to the

upstream difference system described in the previous section (see section

4.11.1).

4.15 Stability Condition for the Upstream Difference Scheme

An accurate stability analysis is the most important and funda-
mental requirement to obtain reasonably approximated solution to the
original differential equations. Since the finite difference
approximations for both the vorticity transport and the energy
equations have similar expressions, a stability analysis is completed
only for the former expression. A Von Neuman stability analysis was
applied and the details are given in Appendix A. The final condition

which should be satisfied in order to maintain stability is
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0.8
6t < [a] Tw] (4.15-1)
max max 2k 2k
[\ 2 ?
% ¢ §x” 622
where |u|max and |w|max are the magnitudes of the maximum

velocity components u and w, respectively, in the entire com-
putation region. The stability criterion is thus a variable depending
upon the magnitude of each set of newly calculated velocity components.

In practice |u|max and |w|max were calculated at each time
step and &t was selected such that it satisfied the stability
condition (4.15-1).

It is desirable to choose 6t as large as possible within the
computational stability criterion (4.15-1) in order to save computation
time. If a larger time step is chosen, more iterations may be required
in the solution of the Poisson equation because the source terms
(vorticities) vary by larger steps also. Since the associated iteration
technique is a time consuming calculation, a larger time increment does
not necessarily save computational time as one might expect.

A simple experiment was prepared to compare the computational time
for different sizes of time increments. It was found for example that
when the time step was chosen as one-half the maximum value suggested
by the stability condition the calculation was faster than that for the
maximum time step. A similar argument concerning the proper size time

increment is found in Fromm (1963).
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4.16 Boundary Conditions

Boundary conditions for the vorticity transport equation cannot be
given directly. However, they are closely related with interior
values of vorticity and stream functions by means of a Taylor's series
expansion. For rigid boundaries this relation is very simple and may
be derived analytically from the known boundary conditions of velocities
and stream functions.

In this study both the upper and the lower boundaries are rigid

and a no-slip velocity condition is used. i.e.

where H is the height of the top boundary. The stream function is
assigned to zero value along the bottom boundary and a constant value
is maintained along the top boundary.

A detailed derivation is again available in Appendix A. The final

expression is

3

LB, o o
(c)bound B (wint Yhounc 7 %int

(4.16-1)
(62)°

where Cbound and wbound are the boundary values of vorticity and
stream function, respectively. Subszript "int'" indicates the values
at one grid inside from the boundary. Similar expressions have been
used previously (Lin and Apelt 1970; Roache and Mueller; 1970).
Boundary conditions at the up-and down-stream boundaries are more
difficult and must be determined more or less empirically. If the
computational boundaries could be extended infinitely in the horizontal

direction simple boundary conditions are possible such as no disturbances
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are detected at x = * «, For numerical computations, however, horizontal
boundaries are always finite, and the size depends on the capacity of the
digital computer available.

Boundary conditions are sought which imposed the least severe
restrictions on the solutions in the interior region, i.e., such
that no distorted values at the boundaries propagate into the interior
area. The following boundary conditions have been determined from
experiments to give the least apparent restrictions and the least
distortions.

Streamlines are assumed to change linearly i.e., maintain constant

slopes at the lateral boundaries. Thus,

(4.16-2)

However since this numerical model is formulated in terms of the vorticity
equation one needs boundary conditions for vorticities at the lateral
boundaries.

With the assumption that the stream function varies linearly at the

lateral system boundaries one may conclude from

2% _ 3%y, @2 (32¢)
2 4 2 2
ax ax oz X
Bzc
that N Q . (4.16-3)
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Boundary conditions for the encrgy cquation at x = - L, and L

are similarly

2

2Ll s n . (4.16-4)
2

ax

4.17 Initial Conditions and Grid System

To integrate the set of the equations described above, initial
values must be specified to initialize the numerical integration. Hence,
initial velocity components u and w are originally given, and the
vorticities and stream functions are initialized by their definitions.

In terms of the finite difference expressions

W, -W, u. - u,

s = j*l,% J-1,% N J,4+1 j,-1

Tk 28x 26z
and

y .- u x 8z x (22-3

i, =72 Ynit A -2l
for the interior the region and boundaries along Xx = - L1 and L2.
Cj ¢ and wj , are respectively the vorticity and stream function

at (j,&) position. is the initial value of u which is

Yinit
assumed to be constant. At initial time t = 0 all the values of w
are assumed to be zero; therefore vorticity is calculated neglecting

the first term of the above expression, g;-. The trapezoidal rule

is used to integrate velocity numerically
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For the values along the boundaries z = 0 and H forward and back-

ward differences are used, respectively.

= (u. -u. L)
22 o1
T B along 2 = 0
. _ Ty M 7 Yy ey
5 ,ML 32 along z =H,

where £ =1 and ML represents the locations along z = 0 and H,

respectively. For the stream functions, constant values are maintained

throughout the integration along the boundaries z =0 and =z = H.
Arbitrary temperature distributions may be assumed in the vertical

direction, but kept constant in horizontal direction at initial time

t=20

TJR=F(Z) (j=l:2)--'sM‘J; 2‘=l’2""’ ML)

where F(z) 1is an arbitrary function of z.
When a heat island is located along z = 0 and has a higher
temperature AT over the surroundings. Then,

Tisland = To % BT

where T, and T _ are temperatures at the heat island and
island 0

surrounding surface temperature, respectively. T T0 and AT

island’

are kept constant throughout the computation. All the variables, u, w,

z, ¥ and T are now initialized and a numerical integration may

start.



101

Numerical integrations and experiments have been conducted in such
a way that they may be directly compared. Therefore, it was convenient
to use the same coordinate system in each case since a direct comparison
of results was desirable. Wind tunnel test section is 50 cm height x
60 cm width x 450 cm length. Hence, a region of comparable size was
utilized in the numerical computation (see Fig. 4-1). The area was
divided by a 81 x 16 square mesh whose dimension is 4 x 4 cm.
Therefore, a 60 cm height x 320 cm length area is the computational

region - about the same size as the effective wind tunnel test section

area.

4.18 Procedures of Integration

1) Using the initial values given at t = 0 vorticities interior
to the region studied, are obtained by Eq. (4.12-1). Boundary values
along x = - L1 and L2 except the corners are calculated by the

finite difference expression of Eq. (4.16-3)

B1,0 2% " 3, along x = - L,

and

i,z T % Pwy-1,p T Gwi-2,p  3tomg x =L, ,
where j = 1, and MJ show the location along the boundary x = Ll’
and LZ’ respectively.
2) Interior values of stream functions are obtained by iterating
Eq. (4.13-1) until a given convergence is achieved. Then the boundary
values along x = - Ll and L2 are computed by the equivalent ex-

pression for vorticity ¢, 1i.e.,
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w1,£=2¢2,£‘w 810Hg X=~L

o

and

"Mr,e T % Yg-1,0 T YMa-2,s along x = Ly

Since boundary values along z = 0 and H are kept constant, all new
values of stream functions are now known.

3) Velocity components u and w are calculated by the finite
difference forms of (4.8-1). For the interior region, central difference
approximations are used to evaluate u and w, but along boundaries
X = - Ll and x = L2 , w are computed by the forward and the back-
ward differences, respectively. u and w are zero along boundaries
z =0 and H by the boundary condition.

4) Boundary values of vorticities along z =0 and H are
obtained by Eq. (4.16-1). Thus, all new values of vorticities are known.

5) The temperature field is calculated by Eq. (4.14-1) for the
interior region, and Eq. (4.16-4) gives boundary values along x = - L1
and L2. Since values along the boundaries z = 0 and H are constant,
a new temperature field is obtained.

A set of calculations 1) to 5) is repeated until a pre-specified
time period has past.

A somewhat unconventional procedure has been utilized to evaluate
the boundary values. Boundary values are obtained from the boundary
conditions only, whereas a more rigorous approach would be to use the

entire governing equation with consideration of boundary conditions.

For example in order to calculate boundary values along x = - Ll
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from Eq. (4.12-1), the values outside the region To g Or ¢

should be eliminated through the boundary condition and boundary values

[
O,k

may then be obtained just as for those interior to the region. In this
manner, boundary values satisfy both the equation and the boundary
condition. However, in the technique specified here, only the boundary
condition is satisfied. There is no a priori justification to use this
simplified procedure, but it is quite convenient in practice because the
boundary values are calculated independently from the governing equation.

In this study many different boundary conditions such as ¢ = const,

2 3
%%'= 0, : g = g“%'= 0, a pericdic poundary condition, and an

extrapolatigg methodazave been examined and it was found very tedious

to change equations of boundary values for each trial. Therefore,
boundary vqlues are obtained only thrcugh the boundary conditions as
discussed. In any event since there is no general way to impose correct

boundary conditions at inflow and outflow boundaries a trial and error

method might suggest appropriate boundary conditions.

4.19 Modification of the Scheme for Mountain Lee Wave Problems

It is necessary to make some modifications of boundary and initial
conditions to apply the previous finite difference scheme to airflow
over an obstacle. A rectangular obstacle is adopted for its simplicity
and convenience in the numerical programming. The obstacle is placed
on the lower surface from grid number MST to MEND, and its top
surface corresponds to £ = MHEI as shown in Fig 4-1. Therefore,
actual dimensions of the obstacle are (MEND-MST) x éx width x (MHEI-1)
x 6z height. Along the obstacle surface the stream function is kept

constant due to the no-slip condition that velocity components
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u and w are zero. Stream functions are assigned a constant value
along the upper boundary, z = H. The temperature of the obstacle can
be varied from that of the surrounding surface temperature if heating
or cooling effects of the mountain are to be investigated. For a
simple unheated mountain case, the temperature of the obstacle is
maintained at the same value as the surrounding air temperature.

Initial velocity profiles over the simulated mountain are calculated
to satisfy continuity. Uniform velocity profiles are assumed whose
magnitudes are obtained from a uniform upstream initial velocity profile.
Vorticities on the obstacle surface are calculated in the same manner

as for the rigid boundaries (see Eq. 4.16-1).

4.20 Test Computations of Airflow over an Obstacle

The first computation of airflow over an obstacle was conducted
under very simple conditions. The temperature along the bottom surface
was taken as 298°K and temperature gradient was 10C/cm. Therefore, at
the top surface (Z = 60 cm) the temperature was 358°K. The values
along the boundaries were kept constant during the computation. A
uniform velocity of 8 cm/sec was given at t = 0. Froude number in this
case was (Fr)H = 0.077. An obstacle was placed between J = 21 and
30, and its height was 8 cm. Results were printed out every K time
steps where K 1is between 25 to 50. They include velocity components
u and w, stream function, vorticity and temperature. A microfilm
recorder 280 was used to plot contour lines of the above variables.
Figure 4-2 shows the resulting contoured plots of stream function,

vorticity and temperature at t = 16.15 sec.
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Streamlines in Fig. 4-2 do not show strong waves behind the
obstacle. If a comparison, however, is made with a result obtained in
a neutral atmosphere (no stratification) which is also included in
Fig. 4-2, we can see definite effects of stratification. In the
stratified case, streamlines over the obstacle have been displaced
downward because of the negative buoyancy forces introduced by the density
difference between a particle and its surroundings. This force together
with the requirement of continuity bends streamlines downward behind the
obstacle. Because of its inertia, a particle drops down beyond its
equilibrium position and encounters a positive buoyancy force which
again would 1lift the particle beyond its equilibrium if no dissipation
of energy exists. Fig. 4-3 shows the time variations of a horizcntal
velocity component u at different locations. All had uniform
profiles at t = 0. Even at N = 150 (T = 16.15 sec) they have rot
precisely reached a steady state but differences from N = 100 (t =
11.14 sec) are very small. The velocity profiles at N = 150 clearly
show jet phenomena, i.e., there exist maximums and minimums in tle
velocity profile (Long, 1959; Janowitz, 1968). In this particuler case,
there are two maximums and two minimums. Very strong velocities are
observed downstream of the obstacle whose magnitude is about twice as
large as the averaged velocity. In the same manner, Fig. 4-4 shows
horizontal velocity components u at different locations in a neutral
situation. Jet phenomena or strong winds were not observed. Figure
4-4 shows only a blocking effect of the obstacle, while Fig. 4-3 also

includes the effect of stratification.

The initial calculations obtained displayed many interesting

aspects of stratified airflow over an obstacle. They did not generate
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lee waves downwind of the obstacle. Since a lee wave amplitude

is comparable to the obstacle height, it was suggested that a higher
obstacle might give visible lee waves. The obstacle height was

increased from 8 ¢m to 20 cm. The Froude number was still (Fr)H = 0.077.
Stream function, vorticity, and temperature contour lines at t =

9.45 sec., are shown in Fig. 4-5. Horizontal velocity profiles

at the same time are shown in Fig. 4-6. They again display clear effects

of stratification.

4.21 Simul-tion of Davis' Result

In order to investigate the reason why the initial scheme did
not produce lee waves, the program was run under the same conditions
for which the best lee waves are observed in Davis' paper (1969). In
his paper, the characteristic parameter is expressed by k which is the
inverse of the Froude number based on the characteristic length
H/m, where H 1is the channel height. The relation between k and

a global Richardson number is given by

R. = m2k?
1

Since k = 1.5 gave Davis the strongest lee wave result, we used this
value in our computation.

P e =i oo0.2122
m

r k
/@
In his paper, dynamic pressure and vertical density gradient at the
far upstream boundary are kept constant (Long's model). From these

conditions, an upstream temperature distribution was calculated from
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u® dz (4.21-1)

where TO: Temperature at surface (assumed SOOOK)

H : Depth of the wind tunnel = 60 cm

k : =15
g : acceleration of gravity
U : average velocity (assumed 20 cm/sec).

The resulting temperature profile is shown in Fig. 4-7. Temperature
varies almost linearly except for the region very close to the surface.
The temperature gradient read from the figure was O.81°C/cm. Stability
was 2.48466 x 10"3 cmﬂl, thus the Froude number was 0.2136 which is very
close to the exact value 0.2122. Temperatures obtained by Eq. (4.21-1)
were used as initial values. Numerical integration was carried out
in 150 steps and results were plotted. Figure 4-8 shows the results.
They show very weak first wave crests somewhere near x = 80 cm but
compared to Davis' result (Fig. 2-4), they are very small.

Several authors have suggested that the upstream finite-difference
approximation introduces a strong damping effect (see section 4.11.2).

Pseudo viscosity is expressed by Eq. (4.11.2-3), i.e,

_ Julsx lulst
up = 5 (1 - X T 3 (4.11.2-3)

where v is a parabolic function with respect to |u| and it has a

maximum value
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In order to have an accurate prediction by the upstream finite difference
approximation, the physical viscosity v should be much greater than the

pseudo viscosity Up (Fromm, 1969), i.e.,

8
lu! (Up)max X
(vp)max - 4 it
or
lu| 6x
(v,)
(R)g = vp S <<

Therefore, grid Reynolds number, (Re)g, should be much less than 4.
In the previous calculation (Fig. 4-2) &t = 0.09675 sec and 6x = 4 cm

when t = 8.96 sec. Therefore pseudo viscosity vp has a maximum value

Opnax = 85t = Sx0.00675 - 20-67 cen/sec
when
= BX 4 B

p’max
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If the actual viscosity is about 0.15 cmZ/sec (ZOOCJ, the grid Reynolds
number 1is
[Ul, y 6  20.67 x 4

(R - p max - _
e)g - e = 551

Equation (4.11.2-3) was plotted under this special condition in Fig.
4-9a which also shows the pseudo viscosity distribution with height at
various locations when t = 8.96 sec. (Fig. 4-9b).

Pseudo viscosity distributions with height have a very similar
profile to those of horizontal velocity components because the relation
between the pseudo viscosity, vp and absolute velocity |u| is almost
linear as seen from Fig. 4-9a. Since the pseudo viscosity appears to be
as large as 100 times the actual viscosity, it is inappropriate to
simulate the prototype experiment by the upstream difference approximation.

In order to see the effect of the viscosity in the upstream scheme,
the calculations were repeated for a viscosity of 20 cmzlsec which is
about 100 times bigger than the previous value. The same obstacle and
the same conditions specified for Fig. 4-2 were used except for the
magnitude of the viscosity. Figure 4-10 shows streamline, vortex and
temperature contour lines, respectively. Comparisons with Fig. 4-2 do
not indicate any great difference; however, the velocity profiles
(Fig. 4-11) show the clear effect of a viscosity difference. In Fig.
4-11 velocity profiles for v = 0.18 cm2/5ec are also presented with
broken lines for comparisions. A large viscosity definitely smoothes
out the maximums or minimums of the profiles. Figure 4-12a and 4-12b

show the relation between the pseudo viscosity and the absolute velocity
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in this case (6x = 4 cm, 8t = 0.05588 sec) and pseudo viscosity profiles
at various locations. Magnitudes as large as 20 cmz/sec are seen at

many locations. The grid Reynolds number in this case was

Ry = 7,
which is close to the critical value 4.

Thus, even if the magnitude of viscosity is hypothetically increased
100% over the previous calculation, we may not see any significant
differences in the solutions, because that change in viscosity is less
than 1% of the pseudo viscosity.

We cannot predict how accurately the scheme can predict
phenomena when the true viscosity is much greater than the numerical
one. Any conclusions must depend on other tests such as prototype
observations, or laboratory experiments. We shall not try to examine
this here, because we know that a laminar flow in a wind tunnel cannot
have such a large value of viscosity (20 cmzfsec) and wind tunnel (Lin
and Binder, 1967) and water channel (Long 1955; Davis 1969) experiments
showed the definite existence of lee waves behind the obstacle. Hence,
one can at least conclude that the upstream difference approximation
is not suitable for the lee wave problem.

One is now led to search for some second order method with a
smaller damping effect. Arakawa's (1966) explicit scheme is one of such
differencing techniques. Molenkamp (1968) showed that Arakawa's
scheme has increased accuracy compared with the upstream difference

method just discussed.
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4.22 Arakawa's Scheme

Arakawa (1966) developed his finite difference scheme for the
vorticity transport equation in such a manner that it conserves the mean
vorticity, the mean kinetic energy, and the mean square vorticity in a
closed domain. Since we found the upstream difference approximation
system is not appropriate to simulate wave motions behind an obstacle
and Arakawa's scheme has been proven to often have better accuracy, we

reprogrammed using his scheme.

4.23 Arakawa's Scheme for the Vorticity Transport Equation

Arakawa's scheme for the vorticity transport equation is,

9z 1

- o [(wj,g_1 *¥ie1,0-1 Y 5,041 T ¢j+1,£+1)(cj+1,ﬂ—cj,Q)
*050,0-1%%5,0-17 Y5-1,001 7 Y5000 (5,07 Byen,0)
*(51,0 a1, 001 Y5-1,0 Y5-1,000) 5001785, 0)
*O5a1,01 Y501, Yen,0-1 51,0 Gyle 7 8,0
+ (Y

j+l,2 —wj,£+l) (Cj+l,£+1 _Cj,i)
+{ij,£—l_wj”1,£](i;3,i _Cj_l’i_l)
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and here only the advection terms are approximated by the finite
differences because they are the most important factor to maintain

accuracy and computational stability. The time derivative is approximated

by a centered difference as

n+1 n-1

Aoyn . "3, T %0
at j,8 26t
2%r 2% 3T
The diffusion term K(—= + —=) and the source term £ S are also
axz Bz2 T ox

approximated by centered difference molecules. This scheme was expected
to give a better result, and it is computationally stable if an appro-
priate integration time step is used.

The subsequent programming efforts provides a good opportunity
to examine the appropriate boundary conditions at up and down-stream
boundaries. Therefore, the following paragraphs discuss the process

in some detail.

4.24 Preliminary Computations and Improvements of the Programming

The first computation in Arakawa's scheme produced unreasonably
large velocities at some grid locations after it had been integrated
forty-one times. There was no way to trace exactly where the instabili-
ty occurred in the programming. The boundary values of the vorticities

at up and down-stream boundaries were calculated from the definition
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where all w and u were known from stream functions. Although
computational stability is predicted by the linear stability analysis,
there is no reason to believe this condition is sufficient for the
nonlinear original equations.

One solution would be to reduce the size of time increments to
maintain stable computations. However, another route was chosen; it was
decided to intermittently utilize the strong damping effects of the
upstream difference approximation*.

Hence, as a second computational scheme, it was decided to insert
at every ten integration time steps an upstream difference representa-
tion for the inertia terms to stabilize the field. The result was not
much different from the previous calculation where only Arakawa's scheme
was used. Thus the rate of insertion of the upstream scheme was in-
creased. In the third computation an upstream difference scheme was
used every other step. At N = 51 (t=2.61 sec), a velocity at one
place exceeded 100 cm/sec hence the computation terminated. Figure
4-13a displays the record of stream function at t = 2.61 sec. Ve
can see an obvious error which is confined to both top and bottom
corners of the downstream boundary.

Therefore, the boundary values computed from the equation
= %; - %% must have introduced errors at the downstream boundary.

Another error is observed in the regicn in front of the obstacle. It

is not clear why errors at the upstream boundary and behind the obstacle

*Personal suggestion by Dr. E. C. Nickerson who is one of author's
Ph.D. program committee.
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are not generated. In order to eliminate those unreasonable values, a
smaller time step was used. All previous calculations used half of the
magnitude of the maximum allowable time step by the stability analysis.
This time factor was reduced to 0.10. The results (Fig. 4-13b) show

no improvement in the regions where large errors were observed. Several
other trials were conducted and the results are given in Fig. 4-14,
here maximum absolute values of horizontal and vertical velocity
components are plotted with integrated physical time and if either

of them reached 100 cm/sec computation was terminated. As is noted
from Fig. 4-14, none of the variations tried could eliminate errors
introduced both in the front of the obstacle and at the downstream
boundary. Moreover the smaller time steps gave worse results, they
were stable over less physical time although the number of integrations

increased.

4.25 Improvements of Boundary Conditions

4,.25.1 Milne prediction formula - Now it was clear that the large

errors at the downstream boundary are not caused by either the size of
the time step nor the scheme itself. They come from the incorrect
expression for the boundary values. Initially an extrapolation

method was used, i.e., boundary values were calculated from the inner
value or values. Lin and Apelt (1970) used the Milne predictor formula
in their computation of airflow over a fence. Stream function contour
lines calculated with such a boundary condition are shown in Fig.
4-13c. The distortions at the downstream boundary were removed but

we now have unreasonable disturbances at the upstream boundary. Since
the physical time is 2.83 sec and velocity is 20 cm/sec and positive

it is not possible to conclude that these disturbances were introduced
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by waves propagating backward from the obstacle. Lin and Apelt
(1970) also experienced a similar distortion at the upstrcam boundary
when numbers of integration was increased.

4.25.2 Periodic (cyclic) boundary condition - The next attempt

involved the use of a periodic boundary condition. Foldvik and Wurtele
(1967) used this condition in their numerical work for airflow over a
rectangular obstacle. The idea is that the flow is supposed to repeat
cyclicly. Therefore all variables at the downstream boundary becomes

the new boundary values at upstream boundary. The results shown in Fig.
4-13d represent correctly this condition, but as we expected, distortions
introduced either at up or downstream boundary are transferred to the other
boundary immediately. At this point we halted the search for alternate
boundary conditions, and we examined in detail how those disturbances

are introduced.

4.26 Conclusion on Boundary Condition Trials

The conclusion was that the best boundary conditions we found at

lateral boundaries were

e — (:l’

321;’ 9 T a T
2
X
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which have also physical meaning as explained in the section (4.16).

The conclusion was drawn from the trials of various boundary conditions
described in the previous scction. The Milne Predictor formula gave

a reasonable value at downstream boundaries. At upstream boundaries,
however, it introduced unexplained disturbances of the variables. Table
4-1 shows detail output printings of stream function, velocity components

u and w and vorticity at upstream boundary and its adjacent locations.
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The boundary values in the parentheses were computed from the present
proposed boundary conditions. All these values are data at t = 0t,
namely the first output from the initial values. As we can see from
Table 4-1 the proposed boundary conditions introduced fewer disturbances
in all variables. The improvements were significant in velocity com-
ponent w field.
A computation was conducted utilizing the lateral boundary conditions
3%y u 3T
= —= =0, and —5 =
2 2
X X

—x = 0, 5 = 0. As a typical result, temperature field
is presented in Fig. 15a and 15b. They show evidently complete elimina-

3 9x

tion of errors at boundaries. Therefore we decided to use the proposed

boundary conditions as the final ones in this study.

4.27 Nonlinear Instability

Unfortunately the disturbances produced in front of the obstacle
still existed. These disturbances appear to propagate backwards against
the mean flow with time as seen clearly in Figs. 4-15a and 4-15b. The
speed of propagation was roughly 16 cm/sec. It is not clear why these
errors did not propagate downstream (a possible explanation may be
obtained from Matsuno (1966), Reference should be made to Phillips
(1959) for nonlinear computational instability).

These errors are probably generated because the original equation
is nonlinear and a finite difference representation has been used.
Phillips (1959) described how nonlinear interactions of two waves mis-
present variables in the finite difference system. Matsuno (1966)
discussed computational modes which are defined as the solutions given
only by the difference equations but do not exist in the original
differential equations. In either case we have to eliminate physically

unreasonable phenomena introduced by the numerical technique.
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Hinc (1965) used as averaging technique which spreads the errors

to the surrounding points. Here we tried a similar concept

, (1-a)

j,L ] (Z541,2%%5-1,2% %5,241" Zi,0-1)

where o was taken to be 0.75.

This procedure eliminated the errors in front of the obstacle
as seen in Fig. 15c¢ but it introduced new distortions at the upstream
boundary. The averaging process takes extra calculation time. More-

over it was not desirable to change boundary conditions further since
i 32; 32w BZT
we found that the boundary conditions — = 0, — = 0 and — = 0
9x X 9X

gave a physically reasonable representation (see section 4.16) and

better computational results.

4.28 Mixed Scheme with Upstream Difference

Hence, as a result of computational expediency the computational
grid was divided into two regions - one in front of the obstacle and
another over and behind the obstacle. The latter region was approximated
by Arakama's scheme and the upstream difference system was used in the
first one. It was expected that the upstream scheme could disperse
numerical errors introduced in front of the obstacle by its large
numerical damping effect. Since waves are expected only on the lee
side not on the upstream side of a obstacle, we should be able to see

lee waves if Arakawa's scheme can represent the original differential

azw - azc _ BZT -
sz 3x2 axz

equations accurately. Boundary conditions were

0

at both lateral boundaries.
The result of a test calculation shown in Fig. 4-16 gives pictures

which do not show any computationally introduced errors. Therefore, we
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continued calculations and contour lines of stream functions, vorticities
and temperatures at different time of integration are shown in Fig. 4-17,
4-18 and 4-19, respectively. Here we can clearly perceive the
development of lee waves behind the obstacle with time. Two waves are
observed at t = 20.84 sec and amplitude of the first wave is about

the same magnitude of the obstacle height. The wave length measured
from the picture is about 76 cm which is close to 80 cm as predicted by
the linear theory. Figure 4-20 shows the developments of horizontal
velocity profiles at different locations with time. After t = 15.10

sec the velocity field does not change significantly.

4.29 Conclusion on Numerical Simulation of Strong Gravity Effects

A simple explicit upstream difference system was found by test
computation to satisfactorily simulate airflow over a flat heat
island in the thermal wind tunnel

This same scheme, however, failed to produce observed lee waves
behind a finite height obstacle placed in the wind tunnel.

The reason is the large pseudo viscosity introduced by the upstream
difference scheme which does introduce a large numerical viscosity.
Arakawa's scheme was tested and found to give reasonable results.

Trial and error methods were used to find suitable boundary
conditions at the up and down-stream boundaries. It was found that
when the second derivatives of all dependent variables with respect to
X were set zero, physically reasonable results were obtained. Finally
it should be mentioned what happened if we used Arakawa's scheme to the
heat island problem. The results are shown in Fig. 4-21. Apparently,
large nonlinear instabilities were introduced over the heated surface

for all variables, ¢, ¢ and T.
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Therefore, the upstream difference scheme will be utilized for the
problems with surface heating (heat island, heated mountain) while

Arakawa's scheme with the upstream difference method will be utilized

for finite height obstacles.

4.30 Programming

In this section a brief discussion about the program itself is
given. A block diagram of the program structure, instead of complicated
flow charts of each program, is given in Fig. 4-22. One main and seven
subroutines have been written and contour line plotting subroutines were
obtained from the C.S.U computer center library. A brief description
of each program follows.

Two different programs were completed, one for the flat heat
island and another for mountain obstacles. The latter program can be
used for the former problem if the mountain height and width were set

Z2€T0.

4.30.1 Main Program "MTWAVE'" - This program reads constants

necessary for the calculations such as space grid size, initial time
grid size, viscosity, number of grids in x and z directions, etc.
All subroutines are called from this program. If any one of the sub-
routines give unreasonable values then the main program terminates the
computation and prints out the reason. For example, if stream functions
do not converge in one hundred iterations or if any velocity components
exceed 100 cm/sec then the calculation is stopped.

4.30.2 Subroutine "INITIA" - All variables such as velocity

components, vorticities, stream functions, and temperatures are

initialized and printed out.
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If the computation is the continuation from a previous run then the
subroutine "INITIA" reads the required variables from punched cards.
Usually one run was terminated after 300 seconds of computation time
and all variables were punched on cards which become the input for the
next time period. In this way complete loss of the computation is
prevented although an extra time is used to punch cards. In order to
complete one complete computation it requires from 300 to 1000 seconds
computer time depending on the problem.

4.30.3 Subroutine "VORTI 1" - The upstream difference system

is used to approximate the vorticity transport equation. The interior
values and values along the boundaries x = - Ll and x = L2 are
calculated.

4.30.4 Subroutine "VORTI 2" - The same calculation in

subroutine "VORTI 1'" is conducted by Arakawa's scheme combined with the
upstream differences. The front region of the obstacle is approximated
by the upstream system and Arakawa's scheme is used in the rest of the
area. Boundary values at x = - L1 and + L2 are calculated.

4.30.5 Subroutine "STREAM" - Using the vorticities just

obtained from "VORTI 1'" or '"VORTI 2'" together with previous boundary
values stream functions are obtained solving the Poisson equation
iteratively. When the maximum difference between the repeated iterations
becomes less than a certain limit, then the values are considered to be
converged. The criterion selected was

r+l r|

W' -y | < 0.10

where wr+1 and wr stands for r+l th and r th iteration.

respectively.
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The number of iterations are counted and if it exceeds one hundred
times then the computation is terminated. Results are printed out and
contour lines are drawn by every K times of integration. At the
final integration step all the values are punched on cards, which are
used in a continuative run if necessary.

4.30.6 Subroutine "VELOC'" - Velocity components are obtained

from the finite difference definition of stream function. Interior
values are evaluated by centered differences and boundary values are
by forward or backward differences. Final data are printed and punched
on the cards in the same manner as stream function.

Maximum values of u and w are obtained and used to determine
the size of time step in the next calculation to satisfy the computational
stability condition (4.15-1).

4.30.7 Subroutine '"BOUNDA" - Boundary values of vorticity

along the rigid boundaries are computed according to Eq. (4.16-1).
Outputs are printed, contour lines are plotted, and the final values are
punched on cards as for the other variables.

4.30.8. Subroutine "TEMPE 1" - Energy equation is solved by

the upstream finite difference equation. Data are recorded exactly in
the same manner as in "BOUNDA'". Prandtl number 0.72 was used.

4.30.9. Subroutine "TEMPE 2" - Arkawa's scheme with the

upstream difference system is used to solve the energy equation. The

same output format is used as in "TEMP 1'".



122

CHAPTER V
DISCUSSION OF NUMERICAL AND WIND TUNNEL RESULTS

5.1 General

In this chapter the results of wind tunnel and numerical experiments
of the mountain lee-wave, the heat island, and the heated mountain
problems are presented. The data has been organized into the following
categories:

Case A: Airflow over a mountain,

Case B: Airflow over a heat island,

Case C: Airflow over a heated mountain.

One experiment in Case A, three in Case B and one in Case C are
reported. Where possible, numerical simulation of these wind tunnel
experiments was conducted. Table 5-1 shows a complete tabulation of
various cases of wind tunnel and numerical simulation. Numbers fol-
lowing the letter, for example, B-3, indicate the number of the run

in the specified case.

5.2 Airflow Over an Obstacle

In this section the order of magnitude of nonlinear fluid inter-
actions will be examined, the characteristics of the laboratory experi-
ments will be compared to prototype experience, and Case A-1 will be
discussed.

5.2.1 An initial test calculation by the Arakawa's numerical model-

Figure 5-1 displays streamlines obtained by the program discussed in
Section 4.28 when Fr = 0.21. The original rectangular obstacle is

indicated by the double hatched region, and an effective mountain based
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on a separation streamline is shown by the single hatched area. A
comparison is made with Long's theoretical prediction and his water
channel test. A numerical example was conducted to satisfy Long's
experimental conditions, i.e., a constant temperature (density) gradient
and a uniform dynamic pressure distritution far upstream.

The wave patterns obtained by the present analysis agree with Long's
experimental results. The positions cf wave crests and troughs have been
connected by broken lines. The linearized theory predicts that the
location of the first wave crests is 3/4 wave length downwind from the
top of the obstacle. Almost all laboratory experiments, however, report-
ed that the first wave crests were very much further displaced down-
stream (Long, 1955; Lin and Binder, 1967; Davis, 1969).

The wave length, A may be computed according to linear theory

from the relation

A= 2n(F ), T H.

Wave lengths were observed to increase with height. Thus there existed
a wave phase shift in the vertical dirsction. Wind tunnel experiments
by Lin and Binder (1967, Fig. 40) noted a functional variation of wave
length with height and Froude number. The present numerical model
contains both features, increased wave length and phase shift with
height. Nonuniformity of wave length thus makes it difficult to compare
the computed wave length with that predicted by the linearized theory.
In the present example, the wave length at 2z = 30 cm coincides roughly
with the theoretical value of 80 cm. The difference between the

present numerical model and Long's analysis is that the latter requires
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a constancy of pU2 with height at the far upstream boundary, but the
former does not. Friction terms were neglected in both cases.

5.2.2 Case A-1 - Airflow over a square obstacle (8 cm x 8 cm) 1is
discussed. Figure 5-2 displays streamlines obtained from a smoke
visualization picture taken on October 7, 1970. A five-second exposure
time indicated that the flow was very s&eady. The smoke was dispersed
very rapidly under the first wave crest by the presence of a turbulent
rotor. Such motions were reported by both prototype (Queney, 1960) and
previous laboratory observations (Long, 1955; Lin and Binder, 1967;
Davis, 1969).

Temperature contour lines have been constructed from the tempera-
ture profiles at various locations as shown in Fig. 5-3. Isotherms taken
from experiments performed on different days are superimposed to
indicate laboratory reproducibility. A streamline from a smoke picture
on September 30, 1970, is also shown in the same figure.

Since the measured temperature distributions were not linear with
height, (see Fig. 5-7) two different Froude numbers might be computed.
The lower region (0 < z < 13 cm).had a greater stability than the
region above (z >13 cm). Three different Froude numbers have been
computed for each case, one for the lower layer (subscript 1), one for
the upper layer (subscript 2), and one for averaged value (see Table
5-1).

A numerical experiment was performed for identical flow conditions.
Streamlines and isotherms are shown in Fig. 5-4, which were enlarged
from microfilm contours in Fig. 5-5. General agreement with the wind
tunnel experiment was obtained. The wave amplitude in the numerical

model was not so large.
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Temperature profiles at various locations for both wind tunrel
and numerical experiments are presented in Fig. 5-6. The location
x = 0 corresponds to the upwind edge of the obstacle. A dashed line
in each profile indicates the initial distribution provided to the
numerical integration. Initial profiles can be arbitrary; however, for
a faster convergence a reasonable initialization is desirable. An
averaged temperature distribution for the clean wind tunnel fielc was
used as an initializing distribution (Fig. 5-7). Data at x = - 60
and - 20 cm in Fig. 5-6 show clear evidence of upstream flow modifica-
tion by the existence of an obstacle. Numerical temperature distribu-
tions at x = 12, 16, and 20 cm appear to simulate regions of overturning
instability (%% < 0), where the flow was supposed to be very unstable.
According to Long's analysis (1955) this region should corresponc to a
reversed flow area.

The existence of turbulent motion under the first wave crest can
be seen from the temperature profiles at x = 48, and 60 cm. Experi-
mental results at these locations show constant values near the ground
as a result of strong turbulent mixing. The numerical model failed to
simulate the phenomena in this region primarily due to insufficient
numbers of grid points near the ground where the temperature varies
rapidly.

A detailed examination of the flow field immediately behind the
obstacle is shown in Fig. 5-8. The square obstacle is indicated by a
double hatched area, and the effective mountain is represented by a
single hatched region. A streamline and the observed flow directions
are as indicated. Velocity profiles at x = 12, 40, and 60 cm were

obtained from smoke wire photographs. The velocity distribution
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sketched at x = 12 cm represents an average from two pictures taken
three minutes apart. Both pictures presented similar profiles; there,
fore, the result shown here seems to be very reliable.

The measured temperature field behind the obstacle shows a very
complicated picture (see Fig. 5-9). Temperature data at all points
measured in the experiment are available in Table 5-2.

The motion inside the separated region (or core) was quite dif-
ferent from that observed for neutral density flows. Velocity close to
the surface was positive, a negative flow was observed above it, and
the flow reversed again outside the core (see Fig. 5-8). The tempera-
ture distributions at x = 12, 16, 20, 24 and 28 cm also exhibit
alternative positive and negative gradients.

This peculiar motion may be easily explained. A fluid particle
trapped into the core region originates at some high temperature level
(Fig. 5-3). The particle is less dense than the surrounding strata,

and thus buoyancy forces drive a counterclockwise circulation.

5.3 Results and Discussion of Heated Island Effects

In a heated island phenomenon the surface temperature is a result
of the total heat energy balance, including insolation, heat conduction
into a soil layer or a building, convection and radiation to the
atmosphere, etc. Since the above mechanism is complicated and not yet
fully understood, it is convenient, in constructing a model, to specify
a priori the surface temperature as a function of space and time. The
daily change of the surface temperature is well described by a simple
function such as a Fourier series with a small number of terms

(Lonnquist, 1962). Since the purpose here was to simulate the basic
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fluid phenomenon and not its time-dependent characteristics, a constant
value for the temperature of the heated surface was selected in all cases.

Extensive temperature surveys in the wind tunnel were conducted
to draw accurate isotherms over a heated area. A thermocouple-mounted
rake was set along the centerline of the wind tunnel. Vertical measure-
ments were made utilizing nine thermocouples of fixed heights, mounted
on the rake (Fig. 3-6). In the horizontal direction different intervals
were selected, depending upon the horizontal temperature gradient; over
the approach region to the island a coarse interval of 4 cm was used,
while over and in the leeward vicinity of the heated plate, the increment
was decreased to 2 cm. For the far downstream fetch (x > 40 cm), the
4 cm interval was used.

Less extensive velocity measurements were obtained. The difficulty
in measuring such small velocities in a temperature-stratified flow has
already been described in Chapter III. The smoke-wire technique gave
a very fast and clearly visible resul: in some regions. However, when
the area of interest was located in turbulent flow regions (over the
island, under the crest of lee waves, and close to the surface) smoke
released from the heated wire dispersed rapidly due to the mixing effect
of turbulence; hence the smoke trace on a picture was very poor.
Therefore, construction of streamlines from a measured velocity field
was not possible.

Flow visualization of streamlines using TiC14 streamers was
attempted; however, results were only partial since, due to the very
small basic wind speed, it was not possible to neglect the weight of

the smoke.
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Three heat islands were studied experimentally and numerically
to investigate the effects of the intensity of heating at the island
and of stability in the basic current. The Froude numbers shown in the
figures are the averaged values of lower and upper regions. It is
necessary to characterize the intensity of heating of different urban
situations. It appears to be difficult to arrive at a parameter which
does not contradict some prior usage or intuition. A non-homogeneity
parameter is proposed here whose variations will be discussed when
laboratory and numerical results are obtained. One example will be
given in section 5.3.4 to evaluate this parameter for a prototype
observation of a heated island effect.

The non-homogeneity parameter introduced here is:

~( oT
N = 9z’z = 0
h Tistand = To
L 3
where T, and T_ are the temperature at the island and that of
island o

the surrounding surface, respectively. Temperature gradient over the
island, —[%%Jz=0 , was taken from the experimental data at the center
of the island. L 1is the width of a heated region. Additional
information about flow conditions, such as basic wind speed, stability,
wave length, viscosity, etc., are available in Table 5-1. Cases B-1
and B-2 had the same basic wind speed and stability (thus the same
Froude number), but the intensity of heating varied (different Nh
number). Case B-3 had a stronger stability but the same current of

6 cm/sec. Case B-3 also had the highest temperature excess of the
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three cases, but the Nh number was approximately the same magnitude as
in Case B-1. Each numerical computation was conducted under the same
flow conditions as in the corresponding experiment. The following
sections describe the results of each case separately.
5.3.1 Case B-1 - The Froude number was 0.100 which was averaged

from values of 0.065 and 0.134 in the lower (0 < z < 9 cm) and upper
(z > 9 cm), regions respectively. Isotherms of 295, 300, 302, 303,
and 305°K were drawn from the vertical temperature distribution at
various locations. The result is shown in Fig. 5-10, together with
velocity profiles in the vicinity of the island. The equivalent thermal
mountain shape was computed from the linear theory given in Eq.
(2.2.2.7-2). The height increased exponentially from 0 at x =0
to the maximum height, 1.15 cm at the downward edge of the island
(x = 8 cm). The height then decreased exponentially through the values
of 1.14 cm, 1.05 cm, and 0.76 cm at x = 15, 50, and 200 cm respectively.
The theoretical equivalent mountain had a very flat and broad structure
more like a plateau than a step change mountain. Computation of the
equivalent mountain height was based on the following initial conditions;

AT = 47.6°K

T = 296.8°K,

S, = 2.422 x 1073 en? (stability in the lower region,

z <8.9cm,

U =6 cm/sec,

and

K=20.2 cmz/sec (kinematic viscosity).
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The concept of the equivalent mountain can be applied only in
the upper regions where the direct effect of heating from the island
is negligible. In the present case it appears that the region is
above z = 15 cm. The displacement of the 303°K temperature contour
line was about 8 cm. This is too large for the mountain height of
1.15 cm obtained theoretically from linear theory.

Existence of the basic current destroyed the symmetric thermal
plume behavior which is seen in the field when there is no prevailing
synoptic current (Delage and Taylor, 1971). The thermal plume over
the island was swept streamward, and the isotherm structure was also
displaced to the wind direction.

The velocity profiles at x = 3, 12 and 20 cm, as reduced from
smoke wire photographs, are shown in the same figure (Fig. 5-10).

The profile at x = 3 cm indicates a strong surface wind accelerated
by a counterclockwise sea breeze circulation at the windward edge of
the island. This sea breeze motion introduced a strong negative
velocity at the upper levels. Interaction with the basic current
resulted in a weak negative flow as indicated in the figure. The
surface currents in the lee side of the island were reversed; this
indicates that the negative flow induced by the sea breeze circulation
(generated by the temperature difference at the end portion of the
heated island) was stronger than the basic wind. Further, the return
currents of the sea breeze motion magnified the positive horizontal
velocity component.

TiCl4 smoke was introduced at the surface about 50 cm downwind
from the heated plate (see the photograph in Fig. 5-10). Smoke was

propagated backward against the basic current and rotated upward
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at the lee side of the island. Then the smoke trajectory separated
into two directions - one traveled upstream and the other downstream.

The flow directions are shown by arrows added to the picture.
These coincide with temperature and velocity measurements discussed
above.

A numerical simulation under the equivalent flow condition was
conducted. The temperature of the island, however, was set at 3200K,
whereas the laboratory measurement indicated 341°K. The justification
for this variation is as follows. The laboratory model developed
very strong temperature gradients in the surface region over the
heated island, especially between the surface and the first point
from the surface (z = 0.635 cm). This effect cannot be represented
by the numerical model because minimum grid size is 4 cm. Therefore,
an effective surface temperature was obtained by linearly extrapolating
the first two values from the surface. Justification of this
boundary condition approximation depends, of course, on the comparison
of the numerical results with the laboratory measurement.

The computed stream function, vorticity, and temperature
contour lines at t = 27.11 sec. are provided in Fig. 5-11. The stream-
line shows a closed region behind the island starting at the lee edge
of the heated plate; this region corresponds to the shape of the
equivalent thermal mountain. (This interpretation of the equivalent
mountain from a separated streamline is one similar to that adopted in
the field observation by Garstang et 2l. (1965), where a trajectory of
a balloon released at the surface of the island was used to compute the
thermal mountain height). Now we can see definite evidence of a thermal

mountain induced by a heated island.



132

Its shape is broad as predicted by the linear theory, but the
height is considerably higher (14 cm) than the theoretically predicted
value (1.15 cm). In the theoretical evaluation of the thermal height,
only the viscosity was an assumed value; the rest of the input values
were obtained from the laboratory measurements. It has been mentioned
that locally strong turbulent areas were observed over the heated
island; thus, the turbulent mixing effect must be included in the
numerical analysis.

A calculation was reversed to evaluate effective K values for
the numerical model of the laboratory flow conditions and the thermal
mountain height which was obtained from a computed separate streamline.

In Fig. 5-12 the relation:

Mx=8) =T a-e )
sT

is plotted, where M(x = 8) 1is the height of the equivalent mountain
at x = 8 cm. From the figure K appears to be 2.7 cmzfsec, vhich
is 14 times larger than the assumed value. This suggests that any
numerical analysis which hopes to be exact must incorporate the
variations in turbulent mixing introduced by the unstable thermal
mechanisms.

Both the laboratory and the numerical heated island models predict
rotation of the flow stream upward at the lee edge of the island and
a maximum height at x = 28 cm, whereas the linearized theory for
the heated island suggests that the equivalent mountain rises abruptly
from the upstream edge of the island and the maximum height is attained

at the lee edge of the island. Thus, the numerically computed mountain
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was displaced downstream. Vorticity contour lines indicate a pair of
sea breeze circulations at both edges of the island. These cells are
also convected downstream by the basic wind.

Isotherms in Fig. 5-11 reproduced many features described previously
in the discussion of the experimental temperature measurements. The
central region from x = -20 to 60 cm and z = 0 to 40 cm has been
enlarged in Fig. 5-13 for a direct comparison with the wind tunnel
result. A strong thermal plume with inclined axis is observed, dut
the temperature contour lines in the upper region do not show as a
strong variation as that seen in the experiment.

To provide a detailed and direct comparison with experimental
results, the numerically computed values of temperature have been added
to the plottings of experimental vertical temperature distributions
(see Fig. 5-14). Measured values are connected by a solid line and
solid circles indicate the computed values. A dashed line indicates
the initial temperature distribution in the numerical model. Both
results are in close agreement, except in the region close to the island
where temperature varies so rapidly that the numerical model, being
limited to a finite number of discrete points, is incapable of resolving
small scale perturbations between adjacent grid points. From x = 14 cm
downstream numerical and experimental temperatures coincide very well.

Experimental temperature distributions over and just leeward
of the island show different characteristics from the rest of the
locations: thermal profiles vary taking maximum and minimum values
rather than monotonically increasing with height. Let us define
the inversion haze as the point at which a minimum temperature first

occurs. This haze height increases with distance x to 1.3, 2.4, 2.9,
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5.0, 7.7, and 12.7 cm at x =0, 2, 3, 6, 8, and 10 cm, respectively.
These results explain part of the mechanism which creates "elevated
inversions" observed over urban areas. In the prototype urban heat
island phenomenon, a multi-leveled set of elevated inversion layers
are observed. These additional layers may result from the radiation
balance to urban pollutant haze.

Another interesting phenomenon observed in these measurements is
a '"thermal cross over'". The "cross over' phenomenon occurs when
temperatures at some height over a city take smaller values than those
over the upstream rural area, i.e., there is a cooler region over
the heated island before it matches with upstream temperature at
some greater height. Temperature perturbations about the upwind norm,
chosen as that at x = -20 cm, are plotted in Fig. 5-15; cooler regions
are observed above z = 15 cm at x =12 and 20 cm. Measured
temperature values are tabulated in Table 5-3.

Numerically computed velocity components u and w are displayed
in Fig. 5-16, and may be compared with experimental results in Fig. 5-10.
Sea breeze effects are again clearly evident in the surface area.
Profiles indicate very complicated features: positive and negative
values, minimums and maximums. Stern and Malkus (1953) derived from
the linearized theory the height at which a sea breeze reversal occurs

on the windward side of the island:

1
h = w(%i)“é'.

1
2

The order of magnitude of sea breeze perturbation was
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u' = Er % ‘E‘Z In — U; 2
T K(gs)™”
The predicted values for Case B-1 are h = 7.8 cm and u' = 4.7 cm/sec.

The complete numerically solved equat-on developed h = 10 cm and
u' = 3 cm/sec.

Vertical velocity profiles in Fig. 5-16 indicate that there
existed a strong updraft over the heated area, but that the return
downward current was very weak with a wide horizontal extent.

5.3.2 Case B-2 - To examine the effect of heating intensity upon
the airflow, the surface temperature excess was increased to 84°K. The
equivalent mountain height predicted by the linear theory Eq.
(2.2.2.7-2) was 2.02 cm, an increase of 76% over the previous case.

Figure 5-17 presents wind tunnel temperature and velocity measure-
ments. General features are similar to the previous results shown in
Fig. 5-10. In this case, however, the thermal plume penetrated more
deeply into the basic current and larger variations of the isotherms
were observed. The amplitude of the 306°K contour line was about 14 cm,
while the maximum variation of the previous case was 10 cm. Since the
air over the heated island was displaced upward considerably, a
formation of cumulus clouds might be seen over its atmospheric
equivalent if the air had enough moisture to condense. The cross over
effect will be experienced traversing horizontally at height 30 cm from
left to right in the figure. At first a high temperature is encountered
until directly above the leading edge of the heated island. Nex: a
cooler region exists up to about x = 25 cm or directly over the island;

then a high temperature region again appears until the environment
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finally returns to the original temperature at x = 60 cm. Table 5-4
includes all information necessary to construct isotherms in Fig. 5-17.

Velocity profiles in the same figure indicate a deeper sea breeze
circulation than in Case B-1. Over the island a strong wind with
negative flow above it was again observed. Therefore the wind profile
at this location had at least two maximums and one minimum. These were
generated by the interactions of stratification of the air, sea breeze
circulation induced by the heated plate, and the basic current. Negative
flow downstream of the island extended about 20 cm upward and more than
60 cm horizontally.

A numerical simulation of the experiment was conducted with the same
flow characteristics, except that the temperature at the island was
341°K rather than the measured value of 377°K. The argument justifying
this modification has already been mentioned in the discussion of the
previous Case B-1. Stream function, vorticity, and temperature contour
lines at t = 17.42 sec are plotted in Fig. 5-18. A dividing
streamline separated from the lee edge of the island, reached a maximum
height of 28 cm at around x = 40 cm, and subsequently decreased its
height gradually. Inside of this streamline was a closed region, which
may correspond to an equivalent thermal mountain, whose height was
again very large compared to the linear theory's predicted value of
2.02 cm. Utilizing the evaluated displacement value of 28 cm from the
streamline contour, the value of the effective viscosity was computed
as before. Figure 5-12 indicates that K was 6.3 cm2/5ec. which
is more than 30 times larger than the kinematic viscosity, and about
three times as large as the previously obtained value. Thus Case B-2

may have developed greater vertical turbulent mixing than Casc B-1.
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Computed horizontal velocity profiles are plotted in Fig. 5-16
for comparision with those obtained in Case B-1. The effects of the
higher level of heating are seen in the stronger perturbed profiles
and deeper sea breeze circulations.

Two large vorticities of opposite sign were again well developed
over the island; both vorticities were bent streamward because of the
basic current (see Fig. 5-18).

Computed 1sotherms in the same figure indicate many features
similar to those of the wind tunnel experiment. But a quantitative
comparison shows that agreement of the vertical temperature distributions
(Fig. 5-19) is not as close as in case B-1l.

Several reasons might be proposed to explain variations between the
numerical and wind tunnel experiments: (1) since the island was
heated more intensely in Case B-2, an extended region of turbulent
motion developed which prevented the present programming from simulating
the phenomenon, (2) the effective island temperature was not properly
estimated for the numerical experimenz, and (3) the computed flow field
was still developing while the wind tunnel results were at quasi-steady
state. The most probable explanation seems to be either (1) or (2),
since (3) may be eliminated from the result shown in Fig. 5-20, where
time variations of the maximum absolute velocity components u and w
are shown. They increased rapidly from their initial values and
continued to grow until t = 15 sec, after which they remained at
constant values of [u]max 14 cm and 16 cm of |w|max

Both numerical and wind tunnel experiments simulated the effect
of an introduction of an intense energy source. They reproduced the

deep penetration of the heat plume, the large variation of isotherms,
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the intense development of a sea breeze circulation, the development of
turbulent motion, and the complicated velocity profiles.

5.3.3 Case B-3 - In this case both stability and surface
temperature were varied from the previous two cases in order to
examine the effect of stability. The average Froude number was
0.064 as against 0.100. The same basic wind of 6 cm/sec was
retained. Stronger stability effects are seen in Fig. 5-21 where
measured isotherms and velocity profiles are plotted. Smaller
penetration of the thermal plume in comparison with Case B-2 was due
to the much smaller Froude number in spite of the surface temperature
increase to 412°K from 377°K. Case B-3 (Fig. 5-21) displays a very
similar isotherm pattern to that of Case B-1 (Fig. 5-10). The
counteraction of the more intense surface heating was a result of
the more stable free stream retarding forces. This result underlines
the necessity of using two different parameters to characterize the
flow - one for the stability of the basic flow (Froude Number), and
another to specify the heat island intensity (non-homogeneity parameter).
The Nh numbers in Cases B-1 and B-3 were nearly equivalent; the Froude
number in Case B-3, however, is smaller than that in Case B-1, resulting
in less plume penetration. In fact, the scale of the sea breeze cir-
culation in Case B-3 is about 40% smaller than that in Case B-1. Table
5-5 includes all the measured values of temperatures from the wind
tunnel.

Numerical results are provided in Fig. 5-22. Estimated
equivalent mountain height from a separated streamline was 24 cm,
about ten times as large as the theoretically predicted value of 2.42 cm.

Reverse calculation of K from the evaluated mountain height was
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2.30 cmzlse: from Fig. 5-12. Both numerical and wind tunnel results of
vertical temperature distributions are provided in Fig. 5-23. Generally
they agreed quite well except in the area close to the heated island
where strong turbulent motions were observed.

5.3.4 Comparison with prototype observations and other studies -

Agreement of the results presented here with observational data (Stern
and Malkus, 1953, Fig. 4, p. 111 and Fig. 6, p. 112; Fosberg, 1967, Fig.
2 on p. 893; Bornstein, 1968, Fig. 3, p. 578; Spelman, 1969, Fig. 9 on

p. 116) is strikingly close. In each case the larger the Froude number
and the larger the non-homogeneity parameter, the more deeply a neat
plume penetrates into the atmosphere. There also exists an unstable
region over the island, and isotherms display wavy configurations (see
Fig. 5-17). The crest of an isotherm wave is always displaced streamward

for larger Froude numbers and/or smal_er N, values (see Figs. 5-10 and

h
5-21 in the present results and Fig. 9 in Spelman (1969)).

Observational data described in Chapter II include extremely
small Froude number flows. In Table 2-4 Malkus' (1955) observations
indicate the largest Froude number, 0.06, for which a formation of
cumulus cloud was observed. A very crude calculation was conducted
to evaluate the Nh number, a heating intensity, for Malkus'
observation. An island surface temperature excess of I.SOC,
an island width of 80 km, and a temperature gradient at the surface of

3

0.3 x 1072 m ! were utilized to obtain N, = 16. In the present

study, Case B-3 has Fr = 0.064 and Nh = 5.65 which are approximately
the same order of magnitude. Both results (Fig. 7 in Malkus and Fig.
5-21 in the present study) display many common features; howcver, the

wave crests of the isotherms in the present study were displaced more
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streamward than those observed by Malkus. In the latter casc a stronger
blocking effect developed because of its larger N, number.

5.3.5 A direct measurement based on the predicted (linear

theory) equivalent mountain in Case B-3 - In the previous sections,

both experimental and numerical results in all cases indicated that
the linear theory might have underestimated the thermal mountain
height. It is not certain, however, that the interpretation of the
equivalent mountain from a separated streamline has a sound physical
meaning. Therefore a direct examination of the concept of an
"equivalent thermal mountain' proposed by Stern and Malkus (1953)

has been attempted. Case B-3 provided the highest equivalent
mountain in this study. The thermal mountain suggested by linear
theory started at the leading edge of the island. The heights
increased almost linearly to 2.42 cm at the end of the island, then
decreased exponentially; 2.2 cm at x = 30 cm, 1.67 cm at x = 100 cm,
and 0.74 cm at x = 300 cm. In the experiment examined here a simpler
mountain form with a 4 cm height plateau and a short transition nose
was used, as shown in Fig. 5-24. The flow conditions were maintained
as in Case B-3. The isotherm plottings are also available in

Fig. 5-24. A comparison with Case B-3 (Fig. 5-21) immediately
indicates that the linear theory has grossly underestimated the equiva-
lent mountain height. The reason may be the incorrect estimation of
K values (viscosity of value 0.2 cmz/sec was used to evaluate the
mountain height). Recall that the numerical simulation predicted

the mountain height of 24 cm and an effective K = 2.3 cm2/5ec

in the vicinity of the island.
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On the other hand Garstang et al. (1965) concluded that, according
to their observations, the linear theory overestimated the equivalent
mountain heights. Thermal mountain boundaries have been determined from
the zero 1ift balloon trajectories released at the upwind leading edge

of the island. Theoretical effective mountain shapes were computed

from

_ AT 1
== -3,

which has a constant height over the island. Here an eddy diffusivity
term does not appear because the shape factor X, is so small, compared
with the island width, that the effect of K can be neglected.

The discrepancies between the linear theory and the observations
may result from the difficulty of a correct estimation of eddy dif-
fusivity and the uncertainty about whether a balloon trajectory
represented the equivalent mountain concept division by Stern and

Malkus (1953).

5.3.6 Case B-3 in neutral stratification - As an extreme case,

all stable stratification effect was eliminated in Case B-3. A
slight surface inversion was introduced by the cooled aluminum ground
plate.

The resultant isotherms are shown in Fig. 5-25. The computed
N, number was 10.22 - double that in Case B-3. The plume caused a
strong blocking effect and deep sea breeze circulations.

Vertical temperature distributions are given in Fig. 5-26. An
elevated inversion as high as 24 cm is seen at x = 16 cm. Profiles

at x = 0, 4, and 8 cm indicate strong mixing by turbulence.
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5.4 Airflow Over a Heated Mountain

5.4.1 Joint influence of heating and obstacles - It is interesting

to investigate the combined effect of topography and heating. For
example, buildings in a city may maintain higher temperatures than the
surrounding grounds because the building materials have a higher heat
conductivity which enables them to store more heat energy during the
day. A mountain in a coastal area may have higher surface temperatures
than the ocean during the day (Fosberg, 1969). Islands in the ocean
may have topographic effects in addition to those of the temperature
differences. The linearized heated island theory was developed to
investigate effects of surface temperature excess upon airflow. Stern
and Malkus (1953, p. 119), however, suggested that a heated mountain
solution might be obtained by superposing solutions for a physical
mountain and an equivalent thermal mountain. This superposition pro-
cedure is mathematically correct as long as the linear theory holds.
Both mountain and heated island phenomena are not, however, linear
problems, as proved by both prototype observations and wind tunnel
experiments. 8Spelman (1969, p. 126) concluded in his numerical modeling
of a heated mountain phenomenon that the combined effects of surface
heating, topography, and roughness produced a greater disturbance in the
mixed layer than any of the individual surface features acting alone.
Specifically terrain, roughness, and temperature excess, respectively,
produced +25, -15, and +400 m displacements at the lee side of the
surface nonuniformity. A combination of the above three factors resulted
in a 575 m displacement, a much greater effect than the superposed value
of 410 m. Similar results in wind tunnel experiments support the actual

importance of the nonlinear characteristics.
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5.4.2 Case C-1 - An experiment demonstrating airflow over a
non-heated obstacle was first conducted. Flow conditions equivalent
to those in Case B experiments were used, i.e., a (?E)H = 0.100 was
obtained from u = 6cm/sec, and s = 1.5 x 10°% enl. A flow
visualization picture by Ti Cl4 smoke is seen in Fig. 5-27. A stream-
line sketch was made from the photograph for a better illustration.
There existed several characteristic flow regions; at the surface
downstream of the obstacle, turbulence was observed where smoke mixed
uniformly and propagated upstream. A dark region in the photograph
indicates a high velocity layer, thus smoke was convected dowstream in
a wavy trajectory. A stagnation area was found between the high speed
region and the ambient area. The wave length observed is about 20 cm.
The linear theory predicted value of 25 cm.

Isotherms are shown in Fig. 5-28 as constructed from vertical
temperature distributions displayed in Fig. 5-29. Table 5-7 incorporates
all measured temperature data. The temperature contour line for 300 K
exhibits wave-like motion equivalent to that found in Fig. 5-27. Thus
isotherms must approximately represent streamlines. Streamlines are
displaced upward just above the obstacle; i.e., the maximum displace-
ment occurs directly over the mountain. All experiments for Case B had
similar flow patterns and the results showed that the maximum displace-
ment of the isotherms always occurred at x = 12 to 22 cm (see Fig. 5-10,
5-17, and 5-21). Therefore a thermal mountain produced by a surface
temperature excess does not necessarily remain over the heated area.
Both Spelman's (1969, Fig. 9, p. 116) and the present numerical results

(Fig. 5-11, 5-18, and 5-22) suggest this behavior, while the linear
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theory requires that an equivalent mountain starts at the leading edge
of the island and attains a maximum height at the end of the island.

To develop the effect of a heated mountain, an aluminum obstacle
was heated by six electric heaters attached inside of the obstacle.
Surface temperature was maintained at 310 K, 20°C higher than the floor
temperature. Streamlines were visualized by smoke (see Fig. 5-30).

An experiment for a heat island with a temperature excess of
exactly 20°C was not examined. However, results for a similar flow
condition at a low level Froude number = 0.070 (here 0.065) and
AT = 18°C did not have any appreciable effects on the airflow. No
influence of the heating was detected as low as 5 cm above the island.
Therefore, it may be reasonably concluded that heating alone did not
create any appreciable disturbance of the basic flow.

A comparison of Fig. 5-30 with Fig. 5-27, however, displays an order
of magnitude larger streamline displacements because of the coupled
influence of an obstacle and heating. The lowest streamline sketched
in Fig. 5-27 is displaced upward about 18 cm in Fig. 5-30. Thus, linear
superposition to evaluate the combined effect of heating and topography
is not permissible. Figure 5-31 and Fig. 5-32 display isotherms and
vertical temperature distributions, respectively. Above the heated
obstacle unstable areas were observed. All temperature data are
available in Table 5-8. Numerically computed isotherms shown in Fig.
5-33 reproduce the experimental features in Fig. 5-31. Other variables
computed are plotted in a contour line; they include stream function,

vortex, and velocity components u and w (see Fig. 5-34).
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5.5 Three Dimensional Airflow Over a Heated Island (Experimental)

5.5.1 Influence of y direction inhomgeneity - Surface

inhomogeneities in a longitudinal direction only, as discussed in the
previous chapters, are exceptional cases in nature. Fortunately the
assumption of two-dimensionality does not remove the possibility of
examining many interesting general effects of heating and topographic
discontinuities. However, the horizontal convergence of wind into an
urban area (Okita, 1960; Pooler, 1963) cannot be explained by a two-
dimensional treatment. Horizontal temperature observations in an
urban area, as reported elsewhere (Duckworth and Sandberg, 1954,
Kopec, 1970; Preston-Whyte, 1970), always display distorted but usually
concentric isotherm patterns centered somewhere near the central
business district.

Very few theoretical studies are available due to the mathematical
difficulty of solving a set of the nonlinear three-dimensional zoverning
equations. Olfe and lee (1971) did utilize a linear perturbation
technique and managed to provide analytical expression for temperature
perturbation over a circular heated area. The solution was obtained by
superimposing the results from two-dimensional airflow over a heated
island where the temperature was distributed in a mountain shape. If
the cross section of this profile is rotated +90° a three-dimensional
heated island will be constructed. Thus the superimposed solution
obtained from the integration of the two-dimensional solutions from
-90° to +90° represents a three-dimensional flow. Their result suggests
that there will be no significant differences from previous twc-
dimensional solutions, yet slightly larger temperature perturbztions

were obtained in the three-dimensional case.
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Estoque and Bhumralkar (1970) constructed a three-dimensional
numerical model which had a grid system of 15 x 5 x 14 in the
X, ¥, z directions respectively. They provided a comparison only
of the lateral velocity component for the two-and three-dimensional
configurations. Their results indicated that larger magnitudes of
lateral velocity components were obtained in the latter case. Here
an attempt has been made to reveal differences between the two
configurations in a wind tunnel laboratory experiment.

5.5.2 A wind tunnel experiment of airflow over a rectangular

heated area - A rectangular area 30 cm x 8 cm was heated as shown
in Fig. 5-35. TiCl4 smoke was released at two locations on the
floor symmetric with respect to the central axis of the wind tunnel,
in order to display the unique effect of lateral convergence.

The observed flow trajectories are as follows (see Fig. 5-35):
smoke started from A, followed a curve ABC, and at point C a
vertical vortex which lifted smoke upward was observed. The vertical
vortex is bent streamward by the background flow field. Another vortex
was observed along the lateral boundaries of the heated plate. It
was initially generated in a manner similar to the development of a
sea breeze when the synoptic flow is along the coastline.

The vertical vortex formation observed here is that often seen
in the motion of dust or leaves behind a building on a windy day.
Therefore a heated area seems to have acted as a physical obstacle;
this supports the concept of a thermal mountain.

The natural occurrence of a vertical vortex motion in the atmosphere,
such as a fire whirl is the result of the simultaneous presence of

ambient vorticity and rising air (Emmons and Ying, 1966). Here the



147

three-dimensional heated island has apparently provided the two
conditions; i.e., the ambient vorticity was created by the thermal
mountain, and heat energy from the island heated the air and raised it.
Therefore it might be concluded that the rectangular high temperature
region reproduced a mechanism similar to natural whirls in a wind
tunnel.

Figure 5-36 displays horizontal temperature isopleths at
three different heights. At 2z =1 cm from the floor, isotherms
have shapes symmetric about the heated area, but at z = 5 cm their
upwind edges are tilted downstream because of the finite extent
of the heated area in the y direction. Moreover the center of
the distribution was displaced about 5 cm downwind from the center
of the heated area. Displacement of the maximum temperature region
by the general flow field from the central business district (which
had the highest surface temperature) has often been reported
(Sundborg, 1950; Preston-Whyte, 1970). A relatively weak temperature
gradient in the direction of increasing temperature and a sharp
gradient as temperature again declines is observed at z = 5 cm.
This may correspond to a hydraulic jump phenomenon over an obstacle.
At z = 10 cm less than a 1°C temperature difference is encountered,
except over a limited region along the centerline of the island.

Isotherms in vertical planes parallel to the flow direction
are constructed at several locations on the y axis. They are
constructed from vertical temperature distributions measured at
many locations in the x direction (shown in Fig. 5-37) and
y =0, 5, +10, +13, *15, +17 and +20 cm. Although distributions

were symmetric with respect to the y = 0 plane, there existed
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large differences very close to the center plane where the flow was
very unstable. Therefore values averaged from the corresponding
two symmetric planes in the positive and negative y direction

were utilized to construct isotherms in Fig. 5-37.

Stronger gradients of the approach isotherms are noted for
three-dimensional islands; this contrasts with two-dimensional cases
where the gradients were almost horizontal (Fig. 5-10, Fig. 5-17, and
Fig. 5-21).

One such example in the atmosphere is provided by comparing Fig.
10 with Fig. 19 in Malkus and Bunker (1952). The former figure shows
a stronger horizontal gradient in isotherms which was observed in more
three-dimensional flow situation than that in the latter figure.

Olfe and Lee (1971) computed from their linearized analytical
model temperature perturbations both for two and three-dimensional
cases. The same tendency, i.e., higher temperature perturbations in
three-dimensional flow, was obtained (see Fig. 5 in Olfe and Lee).

An immediate explanation of the isotherms' behavior is not apparent;
however, the following argument might be reasonable: Isotherms removed
from the heated island are usually considered to closely represent
streamlines. Therefore it might be sufficient to give a physical
explanation for a stronger dipping of the approach flow streamlines in
the three-dimensional model. The most significant difference between
the flow fields in two-and three-dimensional configurations is the
existence of the lateral component of a velocity, i.e., air flows not
only across the island but also toward either side of the island.
Because cf the finite extent of the island in the y direction, the

cooler surface regions beyond the side boundaries of the heated island
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do not have any blocking effects on the flow. They might act as sinks
in comparison with the area over the heated island where strong blocking
effects are imposed on the flow. Thus when a portion of the approach
flow is sucked to the sides, streamlines may abruptly dip. An excellent
example of a blocking effect of an obstacle on a two-dimensional flow

into a line sink is given in Yih (1965, p. 82-94).
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CHAPTER VI
CONCLUSION

In this report four different categories of flow are investigated
in a thermal wind tunnel:

1) Airflow over an infinitely wide obstacle,

2) Airflow over an infinitely wide heated island,

3) Airflow over an infinitely wide heated obstacle, and

4) Airflow over a heated island with a finite width.
The first three categories are two dimensional aspects of prototype
phenomena: a mountain lee-wave, an urban heat island, and a heated
mountain, respectively. The last displays a three dimensional
feature of a corresponding urban heat island phenomenon. Numerical
models were constructed for the first three cases. However, for the
three dimensional problem, only the wind tunnel experiment was conducted
since a numerical integration for such a three dimensional problem is
not practical yet.

1) Both laboratory and numerical results showed close agreement.
They indicated strong nonlinearity; perturbation quantities could not
be neglected compared with their mean values especially in the vicinity
of the disturbing source (obstacle, heated area), and a linear super-
position rule could not be applied to predict the solution of combined
effects of heating and topography.

2) The present results were compared with a linearlized theory by
Stern and Malkus (1953). Definite evidence that a thermal mountain is
generated by a heated island was observed; however, the shape and the

position of the maximum height of the observed equivalent mountain were
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different from that predicted by linear theory. Both observed ard
numerically computed thermal mountains were displaced downstream
depending on the scale of the basic current, whereas the linear theory
predicts that the effective mountain will always start at the lezding
edge of the island and attain its maximum height directly above the lee
end of the island.

3) Some characteristic features of urban heat island effects were
simulated qualitatively both in a wind tunnel and by numerical ccm-
putation. Both results displayed the less frequent surface and the
more frequent elevated inversion layers over a city. A heat cap or a
heat plume is projected into the atmosphere which introduces a wavy
motion over the city. As a result, temperature cross over (cooler
temperature over the city) is observed over the heat island. Moreover
a downward wind and an acceleration of a horizontal velocity in the
surface layer of the approaching flow to a city were also reproduced.

4) An experimental result of a three-dimensional heated island
has shown several different features from those observed in two-
dimensional cases. Among them the following are significant:

(1) Horizontal convergence of wind, and
(2) Development of longitudinal vortexes along the latzral
boundaries.
A simultaneous occurrence of a formation of vertical vortexes behind the
heated area and rising air provided a similar mechanism of a generation
of a fire whirl in the atmosphere.

5) It is proposed to utilize a non-homogeneity parameter to

characterize a heating intensity in heated island problems in add-tion

to a Froude number. A complete justification to use this number as a
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similarity parameter, however, cannot be given until more reliable
comparisons of prototype and laboratory observations are made.

6) The complexities of analytical solutions introduced by a set
of nonlinear partial differential equations are resolved by the use of
a direct numerical integration on a digital computer. Additional
advantages, over an analytical treatment, of the numerical approach
suggested by this research are that:

(1) arbitrary upstream conditions are rather easily given;

(2) more realistic expressions of diffusion terms may be
included,

(3) arbitrary expression of time dependent heating and cool-
ing of the surface are possible,

(4) in principle more complicated topography can be
programmed, and

(5) wuniqueness of the solution is assured by the time
dependent treatment.

7) The numerical program as justified through wind tunnel experi-
ments may be applied directly to predict atmospheric phenomena discussed
here (a mountain lee-wave, an urban heat island, and a heated mountain
phenomena) with minor changes of boundary or initial conditions. If
eddy diffusivities, however, take special functional forms rather than
the constant values assumed here, then it is necessary to modify the
finite-difference expressions for the diffusion terms. Wind tunnel
results for urban heat island phenomena may be used for quantitative
predictions of the corresponding atmosphere if conclusion (5) is

accepted.
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APPENDIX A.
Herein are the detailed derivations of the equations which were

used in the previous chapters.

Equation (4.12-1)

The vorticity transport equation is given by Eq. (4.6-1),

2 2
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Let us assume u and w are positive, then we use the backward dif-

ference for the convection terms.
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Multiplying &t and rearranging so that C?+1 is expressed in terms

3
of the known values at time n , equation (4.12-1) is obtained. When
both u and w are negative then the forward differences are used in-
stead of the backward ones in the convection terms.

If u and w have different signs then convection terms are
approximated according to the rule of the upstream difference, i.e.
one is backward and another is forward depending on the signs of u
and w . In the programming, four different approximations are given

depending on the combinations of signs of u and w
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Equation (4.13-1)

The Poisson equation 9%z was approximated by

b =29, ot v

. - I
Ti+1,8 it Yi-1,e 0 Yi,e s TS TS
5] = &
6x2 sz~
multiplying 6éx2 and rearranging
2
" 1 §x
¥k T oz Vien,e Ve T2 O 41 * %551
2(1+ —3)
8z
2
-6x Cj R}

Using the over relaxation factor ®, r+l st iteration was ex-

pressed as
r+] r
V. = y. + WR,
i, " Y, 5 (A)
where Rj s is the remainder given by
2
1 5x
R. = —_— e
i 2 s Wain ™ B ® o O g * Y5 g-17
2(1+ £ 6z
2
6z
_ 2
Rl R W)
Substitution of Rj 0 into Equation (A) gives equation (4.13-1).

Equation (4.14-1)

The derivation is exactly the same as equation (10) except for

oT

; g 9°
the buoyancy term T 3%
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Equation (4.15-1)

Let us suppose u 2 0 and w 2 0 then the vorticity transport

equation is approximated as

n+1 n n n n n

e I L S a1 S L Y T
5t Y50 5x j,e 3z
n n n n n n
- : Il + L.
- X Cj+1,2 ij,l * cj-l,i " g3,24-1 CJ,R Cj,i—l)
=Kk 2 2
8x 8z
(A)

3 : "
where the source term 3% is omitted.

—|o2

When the error is given by a Fourier series and satisfies the

finite difference equation, then the error is assumed to be given by

k i (8.
Ej,g = £ el(BjJax +8,462) (B)

g _ _ Pn _qn _
where i = /-1 , Bj = p5xc and B, = ¥z P and Q are the num

bers of mesh points in x and 2z direction. Since the maximum wave
lengthes expressed in the region Péix X Qdz are 2PSx and 2 GSz in

x and =z direction, respectively, smaller wave lengthes are given by

8 . .
ZPix and 2qu in each direction, where
PE Lp 2y wvnns P
g & Ly 2y wess Q
Now wave numbers g. and BR are expressed as
B. = X PR in x
j T ZPex T Pex
p
and
B = ..

27 : . 2
2 §§E; =05z in z direction.
q
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g = et and « is a constant either real or complex. Strictly

speaking E? . should be given by the summation over p and q as

n P ? k i :

i _ z ) A ¢ el(BjJGx + Bﬂﬁéz)

p:]_ q=l Pq

However, if one of the arbitrary components grows up then the whole
system is considered unstable. Therefore, it is sufficient to consider
one of the components for the stability analysis.

For the linear equations, if the numerical solution of the finite

difference equation N 1is given by

where u? 9 is the exact solution of the finite difference system and
3

Eg is the error, then E%

iL ) itself satisfies the finite difference
3 ]

equation. For the nonlinear equations above argument is not true, but

for simplicity we assume E? . also satisfies the equation (A).

As we can see from equation (B), for stability |£|j_1 should be

satisfied, otherwise, E? g > ™ as k -+ o , where k is the number

of integration (t =k 8§ t ) . Substituting equation (B) into equa-
tion (A) and dividing by

£h el(BjJﬁx + By L6z) gives

a - e—lBjéx) i wét BY e-lﬂgéz)

i 1% 8z

§x
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iB.6x -iB.d8x

= E—;— (e -2+ e J )
8x
ip 6z -iB, 6z
+ Eé% (e ¥ 2 +e b )
8z
Using the relations
-iB.68x
e J = Ccos Bjéx - i sin Bjéx
iB.8x -iB.6x
@ 9 g 9
cos B.6x = etc.
j 2
we obtain
ust . ust .
= 1% ===I(1 » tos Bjax) * i 5~ sin Bjéx
wét . wét .
3 (1 - cos 3£5z) * 15— sin Bﬂéz
- 2K (cospéx - 1) + 2ROt (cosd 8% ~ 1)
j 2 L
8§x 8z

B. 6X 1 - cos B.68x
Using the relation sin? % @ > J

B.d&x
2udt .2 75 . udt .
X sin > + i X sin Bjéx

B 6z
T . wét
sin 1 5%

2wét
8z

sin Bzéz

_ B.ox B, 8z
4kgt (sin2 % ) - 4k6; Sinz 2

2
§x Sz
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Rearranging
B.6x B .6z
c1ost (Y sin? i, 25
£ =1 St (Gx sin” —5—+ = sin” —
B.6x B &8z
5 2 7 2 2
X 6z
- i (& sin B.6x + Y sin B, 62) &t
ox ; 5z sin B) 8z
Let
B.6x B, 6z
_ 2u S | 2 ; %
s = 3x sin > + 7 sin >
B.6X B, 6z
” 4k sin2 j . 4k sin2 2 and
2 2 2 2
8x 8z
u : w ;
s1 ol 3 sin Bjéx + Fr sin Bzaz
Then
.‘;=l—56t—i516t and
£E=1-s6t +i s, 6t

where E 1is the complex conjugate of & . The square of the

magnitude of £ is

2
(1-56t)2 + s st

lg]2 =¢E

oS I ot ]

1 - 2s6t + s 6t2 * si dtz <1

for stability

2
-2 58t + (52 + sf) §t” < 0
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divided by &t > 0

~2s 4 (P e sh) Bt e

Since S 1is always positive

1
WE 3
s 1
2s
52+ §_ 2
5 x 1
To get the minimum value of 6t we need the maximum value of S

Since

(Max ;) < 1/2 (Max S)

2 2 2 1 2
s” + 5] ST+ 7S
) = ) =G
Naw B 43 max max max
|U| ]W| B.8x
S _ 2 { Gmax 6max % 25? Sinz %
m X z -
2k 2 By82
+ = sin 3 }
8§z
0.8
. 8t <
' = [u] [w] B.8x B 6z
(_max max 2k .02 7J L2k .2 78
68X §z 6x2 2 632 2

Equation (4.16-1)

By Taylor series expansion of the stream function at a boundary

_ . 1 32y 2
Vint © wbound * (Bn) oH * 2! (__5 (én)
bound ain
bound
1 33¢ 3 4
3 (;;30 (6n)” + 0(sn") (A)

bound
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a . . . .-
where T is a normal derivative with respect to the boundary. Sub-

script "bound" and "int" means at boundary and at one grid inside the
boundary, respectively. &n is the grid size normal to the boundary.
O(Gn“) represents higher order terms which has multiplication at least
n't

Substituting equation (4.8-2) into (A) we obtain

4
. ay. 1 9%y 2
Yint Ybound * (an) on % 2! (¢ - 2) (én)
bound as
bound
1 3 32y 3 4
3 o5 (- =5 (6m)” « 0(en") (B)
as
bound

where 5%— is the tangential derivatives along the boundary. Suppose
we have a rigid boundary along z = 0 then no-slip condition is used,
i.e. u=0 and w=0

Equation (B) reduces to

R 2
n ay. 1 3%y 2
¢int = wbound + ("z) (8z) + 5‘(5 - __EJ (62)
bound X
bound
13 32w 3 4
o E'EE'(G E ;;EJ (6z)™ + 0(6z")
bound
" :_ 1 W. 2
* Yboumd * ( u)bcn.nf'ad(e‘:'z) *3 (T - ax) (62)
bound
1l .3 82u 3 4
re sz o+ axz} (62)° + 0(62")

bound
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where we used the definition

u=- and
9z
-3
W aX
Moreover from the no-slip condition (%gabound = 0 and
therefore
C. =&
N ! 2 - 1“4 bound 3
Yinit = Yeound *'T "boung 09 * § 5z (s2)
+ 0(624)
2 2
; ¢2)° (DN 4
- q"bound "3 ®bound * T 6 Sint * 0(827)
Rearranging
g S 3 1 2
“bound ~ 2 (wint wbound) "2 %nt T 0(sz")

(62)

3cu _
(giiabound -

0,
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TABLES



TABLE 2-1

Retained and Neglected Terms in a Linearlized Equation
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TABLE 2-2

Average Changes in Climatic E_ements Caused by
Urbanization (Landsberg, 1968)

Element

Comparison with rural environment

Contaminants:

condensation nuclei and
particulates;

gascous admixtures
Cloudiness:

cover;

fog, winter;

fog, summer
Precipitation:

totals;

days with less than 5 nm;

snowfall

Relative humidity:

winter;
sSummer

Radiation:

global;

ultra-violet, winter;
ultra-violet, summer;
sunshine duration

Temperatura:
annual mean;
winter minima (average)
heating degree days
Wind speed:
annual mean;

extreme gusts;
calms

10 times more

5 to 25 times more

5 to 10% more
100% more
30% more

5 to 10% more
10% more
5% less

2% less
8% less

15 to 20% less
30% less

5% less

5 to 15% less

0.5 to_1.0%C more
1 to 2°C more
10% less

20 to 30% less
10 to 20% less
5 to 20% more
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TABLE 2-3

Average of Bright Sunshine,
London 1921-1950 (Georgii, 1968)

Hours per day

January July Year
Surrounding Country 1.7 6.6 4.3
Outer Suburbs 1.4 6.5 4.1
Inner High-level Suburbs 1.3 6.3 4.0
Inner Low-level Suburbs 1.3 6.3 4.0
Central London 0.8 6.2 3.6




TABLE 2-4

COLLECTION OF DATA OBTAINED IN IIFATED TSLAND PHENOMENA

et

P

Buserival

M. Tee

Iadisba: ic

Variables |[Velocity [Stability Diffusivity|Temp Cxcess |[Island Width|Charuc. Fr Re |Amplitude [lffcctive t'.ls:t::‘i::er Sysibo ]
i Data u S r-a K AT 20 Length A= ?}:T: Height 03 used in
| Sources (nfsec) (n'lj (®c/m) (uzlsec) ) (m) L (m) M-(l-;_]c] Xo™ gsh  Irig. 2-7!
(m) (m) (m)
Stern and
|Malkus(1953),| 1.5 1073 2.86x1073| 60 2.0 10,000 1,000 |0.015 |25 |700 442 570 A
|
% stern and 9.0 |10 |lasx0}| 10 2.0 20,000 150 [0.190 | 135 |135 85 74,000 o
_. (“alkus(1953)
'-_-: | Case 3
Y e e
Zivalbus(1955) | 4.0 |o.ex107S [1.88x1073| 90 1.5 80,000 1,000 |0.052 | 44 |8o0 506 12,100 L
Puerto Hico (assumed) (assuied)
Malbug(1963) | 5.0 [1.12x10"%] 3.3x107%| 120 3.0 9,000 5,000 0.000s | 203 |p00 575 $,500 °
Carstang
et al.(1963) 4.04x107>| 100 1.5 22,000 380 239 =
9. 3.11x107|(assumed) 3.5 1,120 706 faa
Z | quency (1960) | 14.0 1.5x10°% 40 1,000 0.120 | 400 x
Tanouye 1.0 3,5, 10 0.0018 | 56 |857(4T+3) [342(aT=3) 90{U=1) ()
[1906) 3.0 1.2x10°% |3.50x007%| 90 3, 5, L0 10,000 5,000 0.0055 | lo7 | 1429(AT=5) |903(aT=5) $50(U=3) s |
= 5.0 (assumed) |3, 5, 10 0.0092 | 278 | 2857 (aT=10]1806(4T=10)| 2360(U=5) O
=1 -5 e
% estoqueand | 5.0 L.Sx10T 1, 4501673 99 10 10,000 4,314 |0.095 |240 (2,273 1,437 9,400 v
z Shumralker (assumed)
3 (1968)
"~ | spelman 90 5 80,000 1,500 83 @
r1969) 5.0 (assumed)

641
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TABLE 2-5

Maximum Vertical Velocity for Given Basic
Wind and Island Temperature Excess (Tanouye 1966)

Speed of AT (OC) Maximum Vertical Velocity
Basic Wind
(m/sec) (cm/sec)

3 12

1 5 55

10 250

3 6

3 - 20

10 180

3 2

5 5 3

10 10




TARLE 2-6

Clussification of Literatures (Airflow over an Obstacle)

Analytical Numerical Experiments
Lincar Nonlinear . Linear Nonlinear Water Wind General
Observa-
tion
Un- Un- Un- Un- Channel Tunnel Review
Steady steady Steady steady Steady steady Steady steady
Scarer kurtele Long Pekelis Long lin and Quency Corhy
11449, 11953) (1953, (1969) (1954, Binder (1960) (1954)
1951, 1954, 1955) (1967)
1933) 1955)
Foldvik Fosberg Queney
Lyra Yih & Wurtele (1967, (1960)
r1943) (1960) (1967) 1969)
Nuency Krish-
(1547) namnurti
(1964)
Yih
(1965)
Drazine Magata Yih
b Moure (1907) L1905)
(1967)
Spelman Lin &
Miles (1969) Cermak
(1968a, (1909)
1968h)
Orville
Davis (1965,
(1969) 1968,
1969)
Pao
(1969) Lin and
Apelt
(1970)
Oobayashi
(1970)

18T



TABLE 2-6 (Continued)

(Urban Heat Island)

Analytical Numerical
J Observations General
. Review
Linear Nonlinear Linear Nonlinear
Steady | Unsteadv |[Steady | Unsteady | Steady | Unsteady [Steady Unsteady
0lfe and puckworth and Sandberg (1954), Okita Landsberg (1956)
Lee (1971) Myrup
Valovick (1969) (1960), DeMarrais (1961), Mitchell Peterson (1969)
(1971) .
Tag (1969) (1961), Pooler (1963), Bornstein
(1968), Ludwig and Kealoha (1968), Oke
and Hannell (1968), Georgii (1968),
Holmes (1969), Kopec (1970), Preston -
thte (1970).
(Sea Breeze)
(__ Analytical Numerical
s it - ti
Linear Nonlinear Linear Nonlinear Oervstims
Steady | Unsteady |Steady | Unsteady | Steady| Unsteady| Steady Unsteady
IStern Fisher Wexler (1946), Fisher (1960),
“::i;: . (1961) Moroz (1967)
us
(1953) Estoque
Haurwitz (1961,1962)
[1947) Magata
Smith (1965)
(1955

Z81



TABLE 2-6 (continued)

(Heated Island)

Analytical Numerical Wind dbsarvarions
Linear Nonlinear Linear Nonlinear
Tunnel
Un- Un- Un- Un-
Steady steady Steady steady Steady steady Steady steady Experiments
Malkus Smith Tanouye
and (1955) (1966)
Stern Malkus and
(1953) Estoque Bunker (1952]
and
Stern Bhum- Malkus
and ralkar (1955, 1963)
Malkus (1968)
(1953)
Spelman
(1969)
(Heated Mountain)
Analytical Numerical Wind Obsérviiions
Linear Nonlinear Linear Nonlinear Tunnel
Un- Un- Un- Un-
Steady steady Steady steady Steady steady Steady steady Experiments
Orville Fosberg
(1968) (1967, 1969)
Spelman
(1969)

¢8Il
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TABLE 4-1

A Comparison of Boundary Values of Variables Obtained by the
Milne Predictor Formula and 22¥/9x? = 3%g/ax2 = 32T/3x? = 0
which are shown in the parentheses.

x(cm) -96 -92 -88
z(cm) (Boundary)
4 -40.46486 -39.97349 -39.94883
(-39.99815)
8 -119.51804 -119.94967 -119.96633

(.119.93301)

12 -200.52165 -200.00090 -199.91299
(-200.08881)

16 -279.92819 -279.85564 -279.70390
(-280.00740)

48 -919.99244 -919.92868 -919.85275
(-920.00461)

4 14.93975 14.99371 14.99579
(14.99163)
16 19.94467 19.98897 19.98244
(20.0093)
4 0.12284 0.06450 0.00007
(-0.006165)
8 -0.10791 -0.05604 0.00784
(0.004165)
12 0.13019 0.07608 0.01957
(-0.021978)
48 0.01594 0.01746 0.01993
(0.01898)
0 -6.33716 -6.24503 -6.24041
(-6.24965)
4 -2.50000 -2.50000 -2.50000

(-2.50000)




TABLE 5-1

A Summary of Wind Tunnel and Numerical Studies

S8T1

EXPERIMENTAL TRICRITION. flincarlized) Wl I
Variables Velocity | Stability it Diffusivity| Temp| IsTand [Charac. ARPIL-] o Ffuc- L S ) o ~ o)
v s 7z X Excesy Width |Length tude | tive s i i S
Case ; 5 i AT X i (em) | (e=) | (e=™/sec) | JC) %)
(en/sec) | (en ) (°c/em) (ca’/sec) | g7 3 )y, o)l | Avpoy | teighe | o Wydxan
(c)| (em (cm) Mear-dy R
(cm) " i
{ea) |
i-1 (obstacle) 12 2.90% :B-l 0.91 0.2 8 x 3 60 0,126 3600
-
(4.04,1.78) (1.25,0.57) (assumed) pbstacle {0.100,0.152)
B-1 (ilcated Tsland) 6.0 I.Silﬂ‘s 0.45 0.2 48 B &0 0.100 1800 | 5.40 66 42 735 1.i5 | 14 2.7 <o 0,93
(2.42,0.57) (0.72,0.17) (assumed) (0.065,0.134)
B-2 fiieated Island’ [ 6.0 | 1.5x107° 0.45 0.2
(2.42,0.57) | (0.72,0.17) | (assumed) 84 | 8 80 0.100 1800 | 7.40 |116 73 735 |2.02 i 5.3 57| o.s8
(0.005,0.134)
b-3 6.0 Lﬂ}xlo‘s 0.95 0.2 o7 8 60 0.064 1800 | 5.55 76 48 364 [2.42 =4 -3 3% 0.71
4.46,1.59) | (1.40,0.52) | (assumed) (0.048,0.080)
8-3 =
fieated | fyuivalend 6.0 3.03x10 0.95 0.2 Mem highl 60 0.084 1800
Island; |'® 10 B-3 (4.46,1.59) | (1.40,0.52) | (assumed) Plateau (0.048,0,080) |
B-3 in 6.0 Neutral 107 L] &0 0.064 1800 l|
heutral (0.048,0.080)
Situation
Unheated | 6.0 | 1.sx107%
-1 Obstacle (2.42,0.57) 5 x 8 60 |o.100 1800
hstaclie (0.065,0.134)
Heated 6.0 1‘5!.30" 0 Bx8 60 0.100 1800
Ghstacle (2.42,0.57) hstacle (0.065,0.134)
P =3
I-dim. leated 6.0 1.5z10 64 I8 x 30 60 0.100 1800 | 10.08
Island (2.42,0.57) (0.065,0.134)

* The firat number showve the valus in the lowar llyir and the segond one
indlcates the value in the upper layer



TABLE 5-2

Case A-1 : Experimental Temperaturc Distribution Data
x(cm)
-60 -48 -40 -32 =20 -12 -4 8 12 16 20 24 28 32
z(cm)

0.64 307.2 306.7 306.5 306.2 304.3 302.6 301.4 307.5 307.7 301.9 302.9 305.5 304.8 306.5

1.27 309.2 308.9 308.6 308.7 306.7 305.3 304.1 308.9 308.2 307.0 307.9 310.1 309.9 308.9

2.54 311.0 310.8 310.8 310.6 309.4 308.2 306.8 311.3 310.3 310.8 312.0 311.7 311.3 310.3

5.08 311.3 311.0 311.0 310.8 310.3 309.6 308.4 313.1 313.1 313.4 311.5 310.3 311.0 311.0

7.62 313.1 312,7 312.4 312.0 311.3 310.6 309.7 317.6 313.4 310.3 312.7 315.3 316.0 314.8
12.70 316.2  315.7 315.5 315.3 314.8 314.5 313.9 314.8 316.7 318.8 319.7 320.6 320.9 321.1
17.78 320.2 319.7 319.9 319.5 319.0 319.0 319.4 320.6 321.1 322.5 322.3 322.8 322.5 323.0
22.86 323.5 323.2 323.5 323.5 331.7 323.0 323.3 323.9 323.7 324.2 323.9 323.9 323.7 324.2
38.10 332.6 332.6 332.4 332.1 332.7 331.2 330.8 331.2 331.0 331.0 330.7 330.7 330.3 330.0

TABLE 5-2 (Continued)
Case A-1 : Experimental Temperature Distribution Data
x(cm)
2(cm) 36 40 44 48 52 56 60 64 72 80 100 120 140

0.64 305.8 306.7 305.8 306.2 306.2 306.2 307.5 305.5 306.5 307.2 306.5 307.0 305.8

1.27 307.9 308.4 308.7 30%8.7 308.7 309.2 308.9 308.7 307.7 308.2 308.2 307.7 306.7

2.54 310.1 309.9 309.6 309.4 309.9 310.3 310.3 309.9 309.6 310.1 308.9 309.4 308.9

5.08 310.8 310.3 310.1 309.9 309.9 309.6 310.3 310.3 310.8 311.0 309.9 310.3 310.3

7.62 315.3 313.8 312.2 311.7 311.7 311.7 312.4 312.4 312.9 313.6 312.4 313.1 313.8
12.70 320.6 319.5 318.3 317.4 316.9 316.7 316.4 315.7 318.1 319.7 318.8 319.0 319.2
17.78 322.3 322.0 321.1 320.6 320.2 219.9 320.2 320.2 321.8 322.8 321.6 322.0 321.8
22.86 323.5 323.5 322.5 322.8 322.0 329.3 322.8 322.3 323.5 323.9 323.9 324.4 324.2
38.10 329.8 329.8 329.8 329.5 329.3 323.0 329.3 329.1 329.1 329.3 329.5 329.1 328.1

981



TABLE 5-3

Case B-1 : Experimental Temperature Distribution Data
x(cm)
-20 -16 -12 -8 -4 0 2 4 6 8 10 12 14 16 18 20
z(cm)

o 290.0 290.0 290.0 290.0 250.0 341 341 341 341 341 2590.0 290.0 290.0 250.0 280.0 290.0
0.64 292.8 292.5 291.8 291.8 283.0 303.0 315.7 320.6 319.2 300.9 297.3 296.0 294.5 292.8 292.5 252.3
1.27 294.3 294.0 293.8 293.8 294.8 297.0 299.9 308.7 306.7 303.6 297.8 296.8 296.0 295.3 295.0 2848
2.54 296.0 295.8 295.8 295.8 296.5 297.8 298.2 299.2 308.7 306.5 299.2 298.2 298.0 297.5 297.3 287.3
2.08 298.7 298.5 298.2 298.5 299.0 299.7 299.7 299.7 299.9 305.0 305.3 300.7 300.2 300.2 300.2 299.9
7.62 300.4 300.2 300.2 300.4 300.9 300.9 300.9 300.9 300.7 301.6 303.3 302.4 301.2 301.2 301.2 301.2

12.70 302.1 302.1  302.1 302.1 302.4 302.6 302.9 302.6 302.6 302.6 302.4 302.4 302.4 302.1 301.9 301.9
17.78 303.1 303.1 303.1 303.1 303.1 303.1 303.1 303.1 303.1 303.1 303.1 302.9 302.6 302.4 302.4 302.1
22.86 303.6 303.6 303.6 303.6 303.6 303.6 303.6 303.6 303.6 303.6 303.3 303.5 303.1 302.9 302.6 302.6
38.10 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.2 306.2
IABLE 5-3 (Continued)
Case B-1 : Experimental Temperature Distribution Data
x(cm)
22 24 26 28 30 32 34 36 38 40 44 48 52 56 60
z(cm)

0 290.0 290.0 290.0 290.0 290.0 290.0 290.0 290.0 290.0 290.0 290.0 290.0 290.0 290.0 290.0
0.64 292.1 292.1 292.1 292.5 292.5 292.8 292.8 293.3 293.5 293.5 293.8 293.8 294.0 294.0 294.0
1.27 294.8 294.8 294.8 295.0 295.0 295.0 295.0 295.3 295.5 295.5 285.8 295.8 296.0 296.0 286.0
2.54 207.0 297.0 297.0 297.3 297.0 287.0 207.0 297.3 297.3 297.3 297.3 297.5 297.5 297.5 297.5
2.08 299.9 299.7 299.7 299.7 299.5 299.5 299.5 299.5 299.5 299.5 299.7 299.7 299.7 299.7 299.9
7.62 301.2 301.2 300.9 301.2 301.4 301.2 301.4 301.2 301.2 301.2 301.2 300.9 300.9 301.2 301.2

12.70 302.1 302.1 302.1 302.1 302.1 302.1 302.1 302.1 302.4 302.4 302.4 302.4 302.4 302.4 302.4
17.78 302.1 302.4 302.4 302.4 302.6 302.4 302.6 302.6 302.9 302.9 302.9 302.9 302.6 302.6 302.6
22.86 302.4 302.4 302.6 302.9 302.9 303.1 303.3 303.,1 303.1 303.3 303.3 303.1 303.1 303.1 303.3
38.10 306.2 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0

L8T



TABLE 5-4

Case B-2 : Experimental Temperature Distribution Data
x(cm)
-20 -16 -12 -8 -4 0 4 6 8 10 12 16 18
z(em)

0 290.0 290.0 290.0 290.0 290.0 377.3 377.3 377.3 377.3 290.0 290.0 290.0 290.0
0.64 293.5 293.3 292.8 292.8 294.0 305.0 327.7 329.5 318.1 300.7 298.5 294.3 293.5
L..27 294.8 294.8 299.5 299.5 295.8 298.7 313.8 316.7 312.2 300.2 298.2 296.8 296.3
2.54 296.8 296.5 296.5 296.8 298.0 300.0 303.8 316.4 316.7 302.1 300.4 299.2 298.5
5.08 299.5 299.2 299.2 299.5 300.2 301.4 302.1 303.8 309.9 307.5 302.6 301.9 301.6
7.62 304.3 304.3 304.3 304.3 304.6 304.6 304.6 304.8 304.8 305.5 306.0 305.0 304.6

12,70 303.3 303.3 303.6 303,66 303.8 304.1 304.1 304.6 304.6 307.0 307.2 304.6 304.3
17.78 304.3 304.3 304.3 304.3 304.6 304.6 304.6 304.8 304.8 305.5 306.0 305.0 304.6
22.86 305.0 305.0 305.0 305.0 305.3 305.3 305.3 305.3 305.5 305.8 306.2 305.3 305.0
38.10 306.7 306.7 306.7 306.7 307.0 306.7 306.2 306.5 306.2 306.0 306.2 306.2 306.2
TABLE 5-4 (Continued)
Case B-2 ; Experimental Temperature Distribution Data
x(cm)
z(cm) 20 22 24 26 28 30 32 34 38 40 42 44

0 290.0 280.0 290.0 290.0 290.0 290.0 290.0 290.0 290.0 290.0 250.0 290.0
0.64 293.3 293.3 293.5 293.5 293.5 294.3 294.3 294.5 294.8 294.8 295.0 295.5
1.27 296.0 295.8 296.0 296.0 296.3 296.3 296.5 296.5 296.8 296.8 297.0 297.0
2.54 298.2 298.2 298.2 298.2 298.5 298.5 298.5 298.7 298.5 298.7 299.0 299.0
5.08 301.4 301.2 301.2 301.4 301.4 301.4 301.4 301.4 301.4 301.4 301.6 301.6
7.62 02,6 302.9 302.6 302.6 302.9 302.9 302.9 302.9 302.9 303.1 303.1 303.1
.27 304.3 304.3 304.3 304.3 304.3 304.3 304.6 304.6 304.3 304.6 304.6 304.6

17,78 304.8 304.8 304.8 304.8 304.8 304.8 305.0 305.0 305.0 305.0 305.3 305.0
22.86 305.0 305.3 305.5 305.3 .305.5 305.5 305.8 305.8 306.0 306.0 305.8 305.5
38.10 306.2 306.2 306.2 306.2 306.2 306.5 306.5 306.7 307.0 307.2 307.5 307.5
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TABLI: 5-5

Case B-3 : Experimental Temperature Distribution Data
x(cm)
2 (em) -20 -16 =12 -8 -4 0 4 8 10 12 16 18 20
0 298.0 298.0 298.0 298.0 298.0 411.9 411.9 411.9 298.0 298.0 298.0 298.0 298.0
0.64 304.6 300.9 300.2 301.9 301.6 328.4 364.8 326.7 314.3 312.7 307.0 304.3 302.9
1.27 307.9 306.5 306.0 306.2 306.0 311.7 332.1 324.4 313.8 312.7 511.3 309.9 309.2
2.54 312.7 312.0 311.5  312.0 312.2 315.5 317.8 328.8 318.1 318.1 317.1 316.4 315.7
5.08 318.3 317.6 317.4 317.8 318.3 319.7 319.9 326.7 325.1 321.1 321.6  321.3 321.1
7.62 323.2 322.8 322.8 323.0 323:2 323.5 323.7 324.9 325.8 323.5 324.2 324.2 324.2
12.70 326.7 327.0 326.7 327.0 327.2 327.7 327.9 327.0 326.3 326.3 326.0 326.0 326.3
17.78 328.4 328.6 328.6 328.6 328.8 328.8 337.1 327.9 327.4 327.4 327.2 327.7 327.7
22.86 329.8 330.0 330.0 330.0 330.3 330.0 330.2 329.8 329.1 329.1 328.1 328.6 328.6
38.10 336.7 336.7 336.7 336.9 336.9 356.9 330.3 337.1 337.3 337.3 337.6 337.6 337.6
TABLE 5-5 (Continued)
Case B-3 : Experimental Temperature Distribution Data
x(cm)
b (ca) 22 24 26 28 30 32 34 36 38 40 42 44

0 298.0 298.0 298.0 298.0 298.0 298.0 298.0 298.0 298.0 298.0 298.0 298.0

0.64 301.6 302.6 303.8 305.3 305.8 306.7 306.0 307.7 307.2 307.7 307.5 307.7

1.27 308.4 308.7 309.6 310.3 310.8 311.3  311.0 312.0 311.7 312.0 312.0 312.2

2.54 315.3 315.5 315.7 316.2 316.2 316.4 316.0 316.7 316.4 316.4 316.7 3l6.7

5.08 320.6 320.4 320.6 320.9 321.1 321.3  321.1 321.6 321.6 321.6 321.3 321.6

7.62 324.2 323.9 324.2 324.2 324.4 324.4 324.4 324.6 324.9 324.6 324.6 324.6

12.70 326.7 327.0 327.0 327.0 327.0 327.0 327.0 327.2 327.2 327.2 327.4 327.2

17.78 328.4 328.8 329.1 329.1 329.1 328.8 328.8 329.1 329.1 329.1 329.1 329.1

22.86 329.8 330.3 330.7 331.0 331.0 331.0 330.7 331.0 331.0 331.2 331.0 331.0

38.10 337.6 337.8 337.8 338.0 338.0 338.2 338.2 338.2 338.2 338.3 338.2 338.2
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Case B-3 Neutral :

TABLL 5-6

Experimental Temperature Distribution Data

x(cm)
=12 - 2
- con) 12 -8 4 0 ] 8 12 16 20 24 28 36 44 52

0 290.0 290.0 290.0 412.0 412,0 412.0 290.0 290.0 290.0 290.0 290.0 290.0 290.0 290.0
0.64 290.6 290.8 292.1 298.0 311.5 322.5 300.4 291.6 290.6 290.6 290.3 250.8 250.8 290.8
1.27 290.8 291.1 292,353 295.0 314.8 518.5 296.5 292.0 291.3 291.3 291.1 281.6 291.3 291.3
2.54 291.1 291.6 292.8 294.3 305.0 321.3 208.2 293.3 292.3 292.3 292.1 292.1 292.1 292.1
5.08 292.5 292.8 293.0 293.8 294.8 305.0 301.4 294.8 293.8 293.5 293.3 293.3 293.3 293.0
7.62 293.3 293.8 294.3 294.5 294.5 296.3 301.8 295.8 294.5 294.3 294.0 293.8 293.8 293.5
12.70 294.5 294.8 295.3 295.0 295.0 294.8 297.0 299.0 295.8 295.0 294.5 294.5 294.3 294.5
17.78 295.3 295.3 295.3 295.0 295.0 295.0 295.3 297.3 297.0 295.8 295.0 294.8 299.8 299.5
22.86 295.3 295.5 295.8 295.3 295.0 295.0 295.0 295.8 297.3 296.5 295.8 295.3 295.0 295.0
38.10 296.5 296.3 296.5 296.5 296.5 296.5 296.5 296.5 296.5 296.5 296.3 295.8 295.8 295.8
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TABLE 5-7

Case C-1 (lnhcated Mountain) @ Faperimental Temperature Distribution Data

xfem)
-,‘N =20 -16 =12 -8 -4 10 12 14 16 18 2 22 24 26 8 30

290.0 240.0  290.0 290.0 290.0 290.0 290.0 290.0 290.0 290.0 290.0 290.0 290.0 290.0 0.0 290.0
292.3 292.1 1.6 291.3 290.8 294.8 204.5 293.5 291.8 1.3 M1.3 91.3 291.3 291.3 9l.e 2¥i.8
2935.8 293.8 293.3 293.0 292.8 295.5 295.3 294.8 294.0 294.0 203.8 293.8 293.8 293.8 295.8 I91.0
295.8  205.8  205.3 295.0 294.8 297.0 296.8 296.8 290.5 296.3 296.3 290.3 296.5 296.5 I1%0.5 lun.5
297.5  247.% 207.0 2008  206.8 2983 299.0 299.2 209.2 9.2 Q1990 Q98,2 Q2982 2985 2087 2p3.7
299.0 299.0 298.7 298.2 298.2 299.5 300.2 300.4 300.7 300.4 300.2 300.0 297.7 299.9 299.9
.o 3l.e  3ul.6 31,6 30l.4  3UI.6 3019 30l.6  30l.6  3WL.6  3Wi.6  Sul.o  301.6  30l.6  301.9
3.3 3033 3031 30 303.1 2.6 302.9 302.9 303.1 303.1 302.9 302.9 303.1 303.1 305.1

34,1 304.1  304.1 304.1 304.1 3033 303.6 303.6 303.8 303.8 303.8 303.8 305.8 303.8 303.8 303.8
6.7 306.7 306.7 306.7 306.7 306.2 306.5 306.5 306.5 306.7 306.7 306.7 306.5 306.7 306.7 306.7

TABLE 5-7 (Continued)

Case C-1 (Unheated Mountain) : Experimental Tesperature Distribution Uata ution Data

alumy
stemi 32 M 36 38 40 42 44 46 48 50 54 58

U] M0 299.0  29%9.0  200.0 290.0 290.0 290.0 290.0 290.0 WO.0 290.0 290.0

n. A1 2%2.1 2.1 292.5% 92.5 292.8 202.R8 293%.0 293.0 293%.0 2m.3 29%.5 2038
1.27 0 2,3 2.5 24,5 294.5  294.8  294.8  295.0 295.0 2u5.0 295.3  295.3
2.3 6.5  296.8 206,68 296.8 297.0 297.0 297.0 297.3 297.0 297.0 297.3 297.5
5.08 209.2 299.2 299.2 299.2 209.2 299.2 299.2 299.5 299.5 299.2 299.5 299.5
7.62 Ann.2 nn., 2 0.2 300.2 300.2 300.2 300.4 300.4 300.2 30n.4 300.4 360.7
12.70 Inl.9 Jul.9 301,49 3uL.9 31,9 301.9 302.1 302.1 302.1 302.1 302.4 302.4
17.78 LR 3nz2.9 LIRS 3nz2.9 30G2.9 303.1 303.1 303.1 303.1 303.1 33,1 303.1
22,86 4.1 303.8 3038 3038 303.8 303.8  304.1 304.1 304.1  304.1 304.1  304.1
38.10 306.7  306.7 306.7 306.7 306.7 306.7 306.7 306.7 306.7 306.7 306.7 307.0

TABLE 5-7

Case C-1 (Unheated Mountain) : Experimental Temperature Distribution Data

x(cm)
z{cm) 2 2 '

8 300.0  300.0 300.0
9,27 303.6 303.6 303.6
24.51 8.9 299,27 2099
29,59 4.4 3046 3046
34.67 305.5 305.5 305.8
39.75 306.7  306.7 307.0
42,29 I08.0  30R.0  30R,0
44.83 308.7 308.9 309.2
46,10 309.2  309,2  309.4
46,74 310.0  310.0 310.4
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Case C-1 (llcated Mountain) :

TABLL 5-8

Experimental Temperature Distribution Data

xfer)
-20 =16 -12 -R -4 10 1 14 - | 23 25 27 29
2l
9 0.0 200.0 90,0 290.0  290.0 290.0 290.0 200.0 200.0 90,0 290.0 290.0 200.0
n.64 291.6 91.3 289.8 289.8 2R9.3 297.3 296.8 295.3 290.1 290.1 290.1 290.3  290.3
1.27 293.3  293.3  292.1 292.1 291.6 296.5 196.5 296.0 293.0 93,0 293.0 295.0 293.0
2.5¢ 235.8 205.5 204 .8 204.8  294.5 298.7 208.7 208.7 296.8 296.8 296.8 296.8 296.8
5.9% 297.5 297.3% 206.8 296.5 196.5 300.4 300.2 300.2 299.2 299.2 299.0 299.0 299.2
T.02 29,5 299.5 299.2  299.2  299.2 302.1 301.9 301.9 301.4 3.4 301.4 301.6 301.6
2.7 Wii.9 1.4 3Inl.6  301.4  301.6 3016 302.4 303.% 302.1 302.1 302.1 302.1 302.1
17,78 303.6 303.6 303.3 303.6 303.1 303.1 303.1 303.1 303.1  503.1 303.1 3050 3l
22,46 304.6 304.6 304.6 304.6 304.3  304.1 304.1 304.1 304.1 304.1 303.8 303.8 303.8
38,10 306.7 306.7 306.7 306.7 306.7 306.0 306.2 306.2 306.2 306.2 306.2 306.5 306.5
TABLE 5-8 (Continued)
Case C-1 (lleated Mountain) : Experimental Temperature Distribution Data
xfem)
trer) 31 33 i5 37 39 41 45 51 53 55 57
n 2990 2000 200.0 290.0 290.0 290.0 90.0 290.0 290.0 290.0 290.0
.64 29n.8  291.1 291.3 291.8 292.1 292.1 292.3 292.5 2925 292.5 93,0
1.27 29%.3 293.3  203.5 293.5 293.8 293.8 294.0 .0 94,3 294.3  294.3 2945
2,54 296.8 96.8 296.8 297.0 297.0 297.0 297.3 .0 297.3 297.3 297.3 297.5
5.0% 293.2 299.2 299.5 299.5 299.5 299.5 299.7 .5 299.7  299.7 299.7  299.7
.62 301.4 Jul.6  301.6 301.6 301.6 301.6 301.9 2 301.9 301.9 31.9 301.9
12,70 2.1 3N2.1 M2.1 302,10 302.4 302.4 302.4 4 302.4 302.4 2.4 302.4
1°:°8 303.1 3031 3033 3031 303.1 303.1 303.3 5 | 303.1 303.1° 303.1 303.3
22,86 3N3.8 304.1 304.1 304.1 304.1 303.8 304.1 -1 304.1 304.1 304.1 304.3
158.10 306.5 306.5 306.5 306.5 306.5 306.5 306,5 5 306.5 306.7 306.5 306.7

TABLE 5-8 (Continued)

Case C-1 (Heated Mountain) : Exmerimental Temperature Distribution Data

x(cm)
2(cm) o F i 4 8

8 310.0 310.0 310.0 310.0 310.0
R.64 5.1 306.8 307.0 30R.3 307.5
9.27 301.9 303.2 303.6 304.1 304.1
10.54 301.4 301.9 302.7 302.9 303.2
13.08 301.4 301.9 302.2 302.2 302.2
15.62 303.2 303.2 303.4 303.4 303.4
0.70 Any.4 30%.4  303.4 30%.6  303.8
25.78 304.4 304.4 304.4 304.4 304.4
46.10 305.5 305.5 305.5 305.5 305.5
30.86 300.3 309.3 309.3 309.7 309.7
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mountain lee-wave simulation in a wind tungel 1 (Fr)L = 0.238,

U=7.25 cm/sec, L = 18 cm, s = 3.83 x 10 (Lin"and Blnder
1967).
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Fig. 2-1 Scorer's two-layer model of airflow over a mountain ( 1949 ).
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Fig. 2-2 Some of Long's {1955) theoretically computed streamlines
of fluid flow over an obstacle.
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Fig. 2-3 Crizeria of overturning instability ( Long, 1955 ). B is
a dimensionless obstacle height; obstacle height/channel
height. b is a dimensionless half width of the obstacle
and Fr is the Froude number. Overturning instability is

observed if an obstacle exceeds the critical height given
by the solid lines.



198

m’”,
% e ,/////////// =~

Observed Flow over Thin Barrier for k = 1.50

Calculated Flow over Thin Rarrier for k = 1.50

Observed Flow over Triangular Obstacle for k = 2.70

———
—_—
e s ———
— - - ~

//////7//1 yyIIIIIIY

Calculated Flow over Triangular Obstacle for k = 2.70

Fig. 2-4 Some of Davis' results ( 1969 ). In each case the upper figure
was obtained from a water channel experiment and the lower one
was computed from Long's model. Hatched region indicates the
area where turbulent motion was observed.



199

80 —l

- T—1" ~
//.-"/ — \‘\\\
75 AP N
0 . N\
g y N\ \
July, 1956 // AN
65 \ / /’I "\
~ ‘\“. —] ’, 4 f'
60 \.‘\ = ,/ Vienna ( Austria )
b " “‘*d-—-léég - Urban Station
& veraged { l | e Suburban Station
:g Frankfurt ( Germany )
® —-— Urban Station
Q i
g 25 —--— Suburban Station
!_
20 £ -
N Feouary, 1956 // B o
—
15— =< 2
~=~J1_1l
10

2 2 4 6 8 1012 2 4 6 8 |10 |2
AM. Noon PM.
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Fig. 2-6 Sketch of an equivalent thermal mountain ( Stern and Malkus,
1953 ).



Eddy Viscosity, K(m?/sec)

NN O ® O N b
(@] &) (@] (@] O o

O O

(a) . (b)
b
- g 7000 )
oy o © Q& O D A
s & & 0‘3\\ Y ’_ 0o o o
- ” . 6000} -
Y &= &
2 e % 2 5000} ,o°
, ) 4 &
] A/E Qb AL Q-
a 24 € 4000}
o? 2 oﬁ
- o 3000}
Q
£ 0% § 2000} e
04 W
E 1000f 4 Q.
/ - O 10 Q / P YAY
—— I | I | J o]’ 2 | I I ﬂﬁ I
o 2 4 (9) 8 0 12 1|4 0 2 4 ) 8 10 12
Velocity , U (m/sec) Island Width, 2D (m)
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Fig. 3-1 General views of the stratified wind tunnel.
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Fig. 3-2 Final arrangements of the entrance heaters. Sixteen
heaters of 2' x 6" were used.



(A) Ceiling Insulation

(B) Ceiling Heater (2' x 3')

(C) Slots for Instrumentation

(D) Cooling Panel

Fig. 3-3 Removable plexiglas windows with slots for instrumen-
tation. Ceiling heaters, insulation, and cooling panels
are also included.
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Fig. 3-4 Smoke wire and attached instruments for velocity mea-

surements. A typical velocity profile is included.
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Fig. 3-5 A schematic diagram of a smoke wire arrangement.
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(A) Thermocouple Rake

(B) Thermocouple Rotary Switch

(C) Digital Voltags Meter

3-6 Instruments used in the temperature measurements.



Fig.
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3-7 Flow visualization by TiCl, smoke when no obstacle was

placed on the floor.

TFr ), = 0.082.
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Fig. 3-8 Temperature contour lines when no obstacle was placed on the floor.
(Fr:)H = 0.168.
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Fig. 3-9 Temperature distributions in the cross sections up-

stream ( x = -56 cm ) and downstream ( x = 148 cm ) of
the heated island. ( Fr ) = 0.163.



~ 310(°K)

305

302

.300

[ %]

F 295

0 I e — = L | 1 ! I |

-200 -190 -180 -170 -160 -150 -140 =130 -120
Distance , x (cm)

®
L ]

Fig. 3 10 Tecmperaturo contour lineo downctream of the entrance heaters.
( Fr ) = 0.159.



216

PRI : ] T ; |
A L L IR 1l LI 1 L Iish 1l L Iab 1l L R 1L 1 108 13 -- - .- - -
AT TRE 2900008 S S BEIOe0F CONTOIR KTERL L. XS000e0! SCdL N el AT 2.20e (KIS

t = 23.19 sec

Rl Lt L=ty

TEOOLOOT CONTOLR INTERI L 000! CAL KGR L IEe00 PTI2. 200 (L TSEC0S

SONENR SRR 29000008 T

t = 6.29 sec

Fig. 3-11 Numerically computed isotherms with and without en-
trance heaters. a ) without and b ) with heaters.



£
60 + ML
8 +MHEI
L O 1
j
X

y=const. , u=w=0, T = const.
(j, 2+1) 8x=8z=4 cm.
22y 5. 2y
—_—— i—| 2z . -
rv (j=1, £) (i+1, L) 572 =0
32
> -0
ox
=T
Ix2 0
Yy =0, u=w=0, T= const.
MST MEND ' MJ
t } } =
—1?0 (0] 8 220
_L[ O |_2

Fig. 4-1 Schematic diagram of the numerical computational
region, the grid system, and boundary conditions.

LIt



218

Stream Function

4 4 4 4
* *

- 3 U= T 4——e - v A 3 B -t
v - bt s P i et - v Tt
L3 14—t 4 - 1 e ¢ e e i SEPEE T SEDPE § - d v v rrvie 4
¥ ¥ T L2 | v -t 4 I | 51 P - - - v L v T - =
¥ T ¥ 3 > > - - v v - - v -~y
¥ L3 L] . + m i - B v v v - i

Ill]ll

CONTOUR FROR - 10000+03 T0 . 6000003 CONTOUR INTERVL . SSO0L02  SCALING= . IL+00 PTI2, 210 . 2496%8!

Vorticity

LR R
sresrreee

LA X R S S SRR

IRB AR
L B B ]
e afe

’wl’/ui -.:::

CORTOUR FROR - IS00L#02 TO . ISP0Le82 CONTOUR [RTERVAL . 1000F#0! SCaLIW6e [ IEvQT PTI2.21% =, 7S9Eed8

Temperature

SO ML AEL AR AR L AR AR LA i i . 2 7
=08 T 3%+ 3%+ 9% 4 SN 5 U85 ) £ _¢ 38 [ & 8K  ® -3 &8 . & .1
=35 F 5% 1 38+ 38" ¢ 58 “;“: LR 1§ ¢ 88 §8 4 Wi 55 84 o 84 o
=30 F 34 F 4T 34 VA4« B4 s 3 -3 91+ 84 s 83« 1> 854 85 5 85 5 84 4 84 5 84
DI NE ML LM S | R TR R R ML B VIR T I Y R B VR TR TR
5.\r-.anuxu:":“hﬂ}ntnL“L“rnrnrnvxnt“ (8~ 5 385 8% 5 B35, 3
MR MR MR ¢ A u:ﬂt"}”b“;n;n;ﬂ:ntntn [~ ¢+ 88, 88, 8§83, §
S50 SR L L - ML g+ 35 TSNV AN-T NV S ¢ SN NN o+ 3% o+ N9 3+ 3% ¢ ¢
:;"-"-_;.:-l;--~-‘vnv-&r-‘;"rnintnrnr“P“*“‘“'“‘“‘v-‘j
podi—tbd b —sBd 343 F Ry v F% 32 % 3% N -+ 34+ 3¢ 355 374 3 2 o

e * 2
-.1-_._;‘;-“
1“1-_“1-—- -unﬂmmmmmmmmu:
:J‘-. ?nnn NSNS l.lril‘/'m h!nl‘ll‘ﬂ“l‘]l‘ll‘] RS AnAci NN

oy a-vs
L N IR SR EnE N i=
CONTOUR FROR 30000008 T0 . J6000#05 CONTOUR [NTERVAL  40000#0)  SCHIN6= 10200 PTI2, 21 . 3OIL+85

Stream Function in Neutral Situation

-
s e e D = =

CORTON FIOR -, 1000403 T .6000E403 CONTOUR IWTERVIL . JSOUEVEE  SCALINGs . 10000 PTi2. 200 . 630007

Fig. 4-2 Numerical (upstream difference scheme); contour
lines of stream function, vorticity, and temperature
at t = 16.15 sec when (Fr}H 0.077.

The bottom one is the streamlines in a neutral
situation at t = 23.33 sec.

+ 4 +
- o .-‘ A v er v v el V21 ¥
L 4 B J Pia L3
4 1 L 1 $.1 ‘Iivn + ' v e
rY 1 re P al | 3 1B T 18 F v -
el 1 P H—TT | L MY Y 1 L3 | T T - -
s - > e . . ] v v d
Y Py i - 4 P L‘T“*-—-o....‘ : :' v +
VR 77 . lll[lllIllIIltl ;

U
[ T P ey et



Height (cm)

(cm)

Height

60
50
40
30
20

10

Distance (cm)

Fig. 4-3 Time variations of u

in the same flow situation as in Fig. 4-2.

= 1
|
\
= ] \
| :
it il \ ‘ \. I
i \ |
) J
I (4 4 .
/ l A | |
-50 0 50 100
s \ \ —— - — N= 50, t= 6.1 sec
) [ N N=100, t=11.14sec
i l | N=150, t=16.15 sec
- i
i *.
I 0O 10 20 cm/sec
- ; —t—
| 1 1
150 200 250

51IZ



(cm)

Height

Height (cm)

60
S0

30
20

10

Iy

I
—C?OO -50 0 50 |00

60
A A
O 10 20 cm/sec.

30 ——
20

|OF

1 1 1
150 200 250
Distance (cm)

Fig. 4-4 Horizontal velocity profiles in the neutral situation corresponding
to the last picture in Fig. 4-2.

0ze



Stream Function

THE N T VR S VR VI VPG VE VDG VDG VI s T BT 36
e : 3 t L - LARRL ;
| SIS TR
| = Ay +oEREy SEDaw
Ty ¥ vt
=+ NI RN - A
hn3d. 3 S8 S¥—1
T L L
B ¢ SED + D+ B ;
S | S L0
- +
o 1N S0 (R
l.‘ 1
&} HIRR: 1
:
ORI FRO® BQQIEe2S D (JELOL S CONTIUR INTERVAL APOOL027 SCIL NG 10000 PTI2.210 . J0IE0T
Vorticity
T T T e e e et e 2
- . m! . . . . . . * . . N . . . . * -
b - . . . - - " . . . . . . . * . . -
- . . . » . . .%. . . . - * . . . ® . -1
— . . . . . . 0 . . - * . . - . . —4
— . - . - Y . . . . Y . * . - - - =
. " 5 2 . . . * . . . * . * -
— L] * = & = @ L . L] . - -
= . *® = & = @ - - -
— . * = & = @ st O i -
— . * = & = -
- - - - - - -
- . s = s = -
l cwena@RS=TIC 0 ettt ettt et L e e ] .i
ORI TUCR - 1800002 TO L ISEROLORE CONTOUR [NTERVEL . 10000007 SCaL /W6 L1087 PTIZ 210 = 778008
Temperature
a5
4 4 4 4 4 & 4 ¢ 4 a4
45 + 4% o . 4§ o dd » . a1
. . e 41 o 7
. +
¥ * 1
4
v 1
T ) 5 sy T VTt +9- 19
! e T ¥ I —ad H-
T el — U R L L | B BEAL BiAL) DAL SRS ADEL: BT 4 :;
.{-4F1“1'fH Rl il oo ws i T M08, MR TR RS 464D 20 SRR EreE 55 z
2t 18

CONTOR FROR = 10000008 70 L 6000640F CONTOUR INTERVA, IS00L402 SCALINER 10000 PTI2, 210 7I9L0!

Fig. 4-5 Numerical (upstream difference scheme); contour lines
of stream function, vorticity, and temperature at
t = 9.45 sec in the same flow situation as in Fig. 4-2
but the obstacle height was increased to 20 cm from
8 cm.



Height (cm)

Height (cm)

|
-50 O 50 100

—t—

1 1
150 200 250
Distance (cm)

Fig. 4-6 Horizontal velocity profiles corresponding to Fig. 4-5.

O 10 20 cm/sec.

cze



223

60 K2 g2 L
i
T, @
50}
40}
=
(6]
~ 30}
E
=)
[}
I
20}
0T . 346.5-306 _ 40.5 _, g
oz 60-10 50 .
10}
1 dT .|
=2.48466 x 1072 c¢cm™!
o |

| | | | J
300 310 320 330 340 350 360
Temperature (K)

Fig. 4-7 A temperature distribution to satisfy upstream bouncary
condition of Long's model.



Stream Function

3 3 i s 1 2 Ad r. Ad s i s 2 . 4 A s A s 1
AU I A S A L A R T T T T A L AR AR ey s
LI ] 1 1 i b 1 Sl TF | 1 .l 1 . T Y T 1]
L3 1 1 A 2 5 -t & 1 & 1 T 1 & b r Al el a :
- : S v : - v v . ad : _: E ,

" : 3 : : : e : e e _lg

- : : e - . d L 3 = 3 1 3 = L 3 ; : : a4

: 3 ' > 5 T > re re - - 4

— z > Y - - . | ]

1. - A : - e & {
]

MR TR S 20000003 TO L TQ000e04 CONTOUR [NTERVEL 65000002 ScaLlhge  (IL-01 PTi2 210 | IR2EM2

Vorticity

—— T me T = = i o o e e o R B &
e 3 3 - - R et

""h‘—_—_—-‘ v — e e e - 2

. . . . . ° . . .

. . . . . . . . .

. ¢ cappp- ¢ . . . . .

* . . * . . . . .

- L] L] L] L3 - L3 L] -

. . * . . . . L] .

- * L] L] L] - L - L 3

. » . * L ) . - .

- B " P & -
a— el - & = & = & = & = & = &
e o - B

17.en LLCgitedn

CORTOUR THOR -, 1800082 10 . I1S8OC*88 CONTOUR IWTERYEL . 1008Le8!  SCALIBEe . IEo8) PIES21e = I 700e8!

Temperature

»
a
:
wle
-
-
-
-
.
-
.
*
.

L Kd

.
-
-
3
.

[
e g o
.

-

L, Ad

*
»
»
o
£l
-
- -
-
.
-
.
.
.
.
*
bttt g 3

SONTNR SR Fp00e08 10 (6000 CONTOUR INTERVEL 40008007 SCALIMEe I 00 PTI2.210 BpILeSS

Fig. 4-8 Numerical (upstream difference scheme); contour lines of
stream function, vorticity and temperature at t = 8.96 sec
when upstream boundary condition in Fig. 4-7 was used.
(Fr)H = 0.2122.



30

20

10

Yo (cmzlsec)

225
Pseudo Viscosity (a)

lul &x lul St

60

50

40

30

Height (cm)

20

60

50

40

30

Height (cm)

20
10

0

Fig. 4-9

L
0] 10 20

|
I
I
|
1]

Absolute Value of Velocity (ul (cm/sec)

0, 2 ‘OI (cm?/sec)
B (b)

>
n

-96 cm -6 cm x=4 cm

>
n

x=24 cm x=44 cm x=224 cm
Numerical pseudo viscosity in the flow situation described
in Fig. 4-8; a) vp vs. |u| when 6x = 4 cm and

6t = 0.09675 sec, b) computed pseudo viscosity profiles
at several locations.



226

Stream Function

vy

L ILo08 PII2 21

IS0Ie8E  SCH IN6e

IR

. -l.t_lt W
- 4

- o8 W

. = m

: b

- ..'LO mo

13 s

ﬁ -HD w

e ; L B2 m

- - -o

CONT ripw

Vorticity

(AR R R R

LR R LN

LEE R RN ]

LE R LR X ]

LR R RN ]

T E]

sssase

Py
pesosae
SR NN
pessss
proaa
paseses
bt v
SRR RN ]
p ot
pass s
o
passae
R
possss
RN
b esosse
LR
p o oses s
R ]
S

RN E

PSR AESARE SRR SRR SRR AR VAR SRR R NN A AR A AN SRR SRR SRR LAY A

R R

sassas

LR RN

TR ]

s deane

- SRR o8

A8 PTRPI=

SCaL 6o

00eLe0t

 IBO0L 82 CONTRR [NIERVY

= 18008 70

Conlod raow

Temperature

REPRIATRR RS

02005

N80 PTIL L

gl 21 5 31 % 31

SCal Jée

IR/ R E P R ME R NI NI IO C

. ”&‘ff 'o’l CONTOUR [RTERVL

AO00L00?

.u,n.u,,u.n__‘ s
AR

.-
e

iR
TS
SARRREESBERREE
SERIRRRERRERE:
UM T e &

t = 8.52 sec
0.18 cm?/sec).

am difference scheme); contour lines of

stream function, vorticity, and temperature at

Numerical (upstre

Fig. 4-10

Vo=

v = 20 cm?/sec (cf. Fig. 4-2 where

when



Height (cm)

Height (cm )

60|—
50+

30+

L L |

———— v =0.18 cm?/sec., t=11.14 sec.

v=20cm?/sec. , t = 8.52sec.

O 10 20 cm./sec.
e m—

150

200

Distance (cm )

250

Fig. 4-11 Horizontal velocity profiles corresponding to Fig. 4-10. Dashed lines

are those of Fig. 4-2.

Lz



228

Pseudo Viscosity

_duldx . lul 3t (a)
iz U7 e
©
(4]
i l By
“e | 3x=4 cm
o l S51=0.05588 sec
‘"; 0 | | | |
B (@] |10 20 30 40 50
lul (cm/sec)
0 510 2
—1—1 (cm</sec)
60 (b)
50}

40t

Height (cm)
o
O
T

20

Xx==96 cm X =—|6cm x=4 cm

60

40f
30}

201

Height (cm)

x =24 cm x =44 cm x =224 cm

Fig. 4-12 Numerical pseudo viscosity in the flow situation described
in Fig. 4-10; a) v, Vs. lu| when 6x = 4 cm and

§t = 0.0558 sec, b) computed pseudo viscosity profiles at
several locations.



‘1-\9

(a)

L-_' Ll 3d 14 Ad il s 1 24 22 4 2 A L4 — s e b bd- -
IRPHEB PRI ERENARENERPNERPHERPH IR HARENER AN EDRIENRNEREIEEEN AR EE: !I
; e e e e et e e e e s s S S -
2 ' T ¥ - T - L ) 'y ¥ - T - 3 - - T e 1
= . 1 - = e = e +- ;1 - _: -~ - > ot -1 -6
= st : x : ST et o
v T | | v E v -; Y r - I = = -'; 3 —; T T v -g
e v X I T v ra - nd Y L -5 -g
-~ 1 BEE - - -
- . I ;T e re = = v v v - " c -
o e s B Y, T T ~ %
N . . = - : :. I re T - T T ——ay -::
1 1| 1 11 { i 'Ilﬁl i ity susmsmsmmms i 5
S RS L SRR LR e R L s RAS B ' T R £ 1.7 SR 4 Lo Nee LD PR 200 2 2TIeS2
(b)
— " " b . " . ad 2 " a0 2y s M " . " ax a2 T
N1 it e T e T R T L T TR :
A * ¥ ' ¥ ¥ 4- a2 .a 1 <4 - * ¥ b, et -
o '.-ﬁli—‘i 2 s s s - s ommt 2220 *
. .1 e - 4 - v - > B b L1 “l‘ o e h - b a - :’
! v b = 9 A =5 L] v . 2 . - ->- e -‘
m e ! O I T S . v v v v T v ]
b A FIBT . . 4 - Y Y r ry - - O = -8
R o o e e e S s A 2 B0 20 o e S s e o e s e s 0
'lllvillili‘;l;l;l;l:l I_E'l T‘ET Iil l;l l:l ';'E;:: *

P R A R A A R s A T T 1 T Scap/h6e L I0-20 PTLL, I; e - 18000

Pl 31l 33 13 11 11 Ll 12 i 14 . ! 4 14 3 i 1A LA 1 14 -
| JPHERENEN NGNS NENERONERPHARPNEDONED NSRRI R A] JIEITI LT T R T T e T L T L] ”
+ v ey ! 4 + + + o + + - . bt -1
i ¥ - Y i 1 -! _: = v v v e e i o i v - v -
D =1 - ':EtT LEO) MR RO B WO —+— MO SR R B0 = = -2
STaam? - . RO ) MR > - - - e n r - -1
= s e o Tt S e M 2 3 > 3 . -7
n & L B ST Y - v T TR TS ad v ~ -6
—r—tt — i . e T M TR Bt . T T T M . O . I -5
= 5 ad L I = s _ad 'l . Y Y Y -4
r LY. S, - s » - =4
== Se===—c—c——cccf
= v . = - = Sy e .
- e B — . T SIS il Y e ——y— ~ o GeR T e W .Y
LEL 1R x 1 h!]ilsl;lil;l"il;l:l:l;l it lil:Is_IiT!'l_ E

Rl AR B Al SRS AN Y SR ASEIIE SR {0 A Bl A g P A L2 KA A LI e IR 7 AP F R N 1 4

(d)
vemENeBENENENEBENERENINNENONERENIRONIBENIRSNERE RS AN0 ARG IS0 10EN UEE- i
T e i S S s A s B B S S S o e -
. e —— = . = = ‘!
- e Lt B et e - e v e R o |
— 1 A = v - - - - = v -3
r 1 5 r r e 0. IR ¥ LI L -5
e e - ry ry ry ry ‘E
= Y = L 2 v o o T ] 1
2 & = = - e v - . = -

H _ - B N G : r : el I = O - = ) re ;
Al L ll]tlllllil ll?'li_li]i‘l;‘l..il 31;15- Elilelll&lll‘ :

AT RAR B AL R AR £ o e N A T RS P B £ /P A OB S2 A A PRI SR b A0 AR i & £ 5 4

Fig. 4-13 Trials of different lateral boundary conditions; a)

= %E-- %E- in Arakawa's scheme with upstream difference
x z
ow Ju . ; ;
every other step, b) T =3 - 37 1R Arakawa's scheme with
upstream difference every 20 time steps, c) Milne pre-
diction, and d) periodic boundary condition.



(cm/sec)

lmux

Velocity, lul,,, and

————— Ul IWI g

max
120
St
@@ Upstream Difference Was m @ @

100}k @ Every 30 Time Steps, 0.05

o0t (@ Every 30 Time Steps, 0.10 ®
80} (3 Arakaw's Scheme Alone , 0.50

70} @ Every 10 Time Steps, 0.50

6ol (® Every Other Step, 0.50

] 1

|
.0 1.5 2.0 2.5
Time,t (sec)

Fig. 4-14 Maximum velocity components |u and |w|max vs.

integrated time in different finite difference schemes.

0¢e



231

(a)
»
* * * > L3 » > -
* - & Ld hd - *
.
& * L3 & L3
- - * * L - * - - - 4
BN L LR LN o !
* & L3
CONTOUR FROR JoD20+08 10 . J600L#0F CONTONN INTERVEL 40000027 SCaL M6 L IERO0 PTI2.21e IENIT
(b)
‘ 35

i ttetdtdabdtbandt-dabd | 1Ll I el LRI L L T T Y T L L T L L R T T T e T T R T T TR T
o] rilbet rid -0 r MDE IS I

A 3o i o ' s P P P P
iive arinrnrnornnrnrnrnrnnnrG
CONTOMR FROR S0020403 70 . BEQ0L+03 CONTOUR JRTERVIL . 40000407 SCALINER 1000 PTI2 210 BIE#08

(c)
T IR R R A R B R
T T T I T L T I T LT LRI TR =t
ret a A o & 2 AR & Y - e A .
e v L - - v .
. ———— v
nd il
o e e e o e ae Seatt -5
e e M A o
a - e
)

s - ree- = P - -
Ottt ittt ittt ittt i i ®
\ g - ¢ ® g " g > > >

CONTOUR FIOW -, 12000004 T . 1000C0T CONTOUR [NIEOVIL . ESPICRS  SCULINEe . IL-8) PTE2.2)0 - PMEobE

Fig. 4-15 Further investigations of lateral boundary conditions;
a) and b) are isgtherms respectively at t = 2.84 and
4.38 sec when %;§‘= 0 werezused, c) averaging
procedures were added to g;g— =0 .



i
j

o=

TE 1l

=5

aa
-
LEAL

=2

E=

5
LA L

A0 PTL D)=

-
it

b
LITAITTATITR]L

IO EE M

Vorticity

Stream Function

*

BN

« OO +0T CONTOR [ BTERYEL

LI1EL

AOTEIIT

~ 12008 TO

conlouw riow

Ol ik wx oy N RAXARERRG 5505
. LUZRLUIRL

HEATKEATE
"EEEE

(X R E R ]

.:..:.;f

LR R X XN KX ]

TR EREERN

(IEEE R R RN

(O I B B O B N

LR R R E R R R

I EE R R R RN ]

I8t PIEB2)n
Ae88 PTLL, 2=

LR X RN NN

LU U B ]

KaL il
SCdL Inge

- I0aLe o7
AP0OL87

H{THHTHTS
ARAAERANEE:
mmmuuna&.\;

po o b b

Temperature

0........‘
[ N O B B B B )

0T (HIM f#?ﬂrﬂ

 IEROE A7 CORTIRE [HTIRVAY

-

.:E:__ﬁ
T 8
:::E.m m

Nldu?

CONTRE Fiew -.MD

ssrssssbbae
O O O B B A
ifeessssasee
R LR

|
L3
1
]
|
|
Gsssssssne _
1

Mesrovr s

fesssssssse

--: -.-:--I

= 0 were used at lateral boundaries.

_ 97T
ax% — 3x?

and Arakawa's one in the downstream of the obstacle.

3x<

Fig. 4-16 A mixed scheme; upstream difference scheme in the upstream
92y



Stream Function at t

ra
(7]
[#3]

5.74 sec

x 111J111¢111311131111i~ AT T T T TIIIIlLIfl&ll[ﬁllIIllLﬁlllﬁllt-H
pu b~ swifc putt-pat . Azly. *T s et v - -3
u-i'_“:‘i"r‘-i T 3o s S R Ets ayri TEa et Spanis St Sqpapis Sinais Shan) S 1
=5 WIS o > AJ]L:?"' e EA0 BrRS MR RO ML B0 SEEC MR Mae MEED BE RO bm N0 B~ -i

s at. . - Y M e, DO M FEc MRt MR MR My pc B s -
s e P Pt B S DL —— e T W TE S e P B . B . A -
= FP 'p;:‘a;. - = TR D ey B e - ~—v=eg -g
SH e s e e M ae E ERO B i ot B . B 2 = .
-adaaits. il B B0 SRy B 3% Y By i Y S Iy Sy SR -4

s B e R e R SRS ST EmEE s T 4
2 MRt ek SR ‘P-.__.Jn-:" == Eb"-“ - V:F-?T“"“f"'jz—i::;..a.._;,' 2 Y S N7 ol Ry i "z
e - g ST o —a T B B B S S ST 2O & I
*-mnrmnrnlrnnnmrnn Eingidldlninnistansasssnatsniasalifoasananni i
SOUSN O PRI BNLOd N NENLE SN NI L, SO SCALNGs et PRA2e a2

at t = 12.11 sec

s > . . " PR e " - . " N 2 4 "
SHANSHANCNENCH AR AR HAR AR SR/ 2 Iu.juJ. T AT T T TR TR T LRI L ¢y
3 ol aal =1 T v hdiz ] .= =11 s=] anl o =1 =1 o] + + A 1t

- =] Vi =1 =1 = o 2=1 Fwel 'i

v v " Y + LR - b il -

5 - = - 1 - - — T T = ¥ -5t - =

- > | T —— - T ¥ - ¥ = v v T = ry : 2. :

LI L L = = = : * : e = - - +- < ‘g
e : = g e

SESS===2s == S

[T Ipnhipatnint ity ittt frieietef . o
CONTN TBIR o 2OEeNE O IOOL0DT CONTOUR INTERVIL . ESO0L002  SCALINE® . IL-07 PII2. 21 -, 1906002

at t = 17.82 sec
N s — g o an oo i " TR fa o ooy "
1 FELAT LS80 Jl 'lr"lr"lh TIHTERAGTIT] LLhl! T e =11
| - L Ty b= 1 - sall A Y & el T i
.x L 2 T n .- '™ .-l.r'"._.'ol : & & :
= = ; == =
- - v ¥ - t e --
HOTTITTI L g 1:1 lllllll[l 1Rty ot e .
CONTOUR FROR -, 12080084 70 . 10FL#0S LOWTOUR rarcova MEOI A  SCALINEe I8! PRIE LI - 1EELAS
at t = 20.84 sec
TN T Ma s ek aa g o al oy "
41U ] jEqeEEEqMgERYERETERRTAEEE]

14 i ; -I-I.i.!.uﬁ.__ - + s+ . 1"

SE==SScesssnEsark

2o e 2 =

b LI 3 -:

e — : . .

SSS==== : ===k

jaR4RaR{BARIRINT 111 P D Dy g CTT T gt gutig 3
CONTOUR FROR -, 12000204 70 . 1000003 CORTOUR IKTERVIL . 65000402 SCALINGs . IL-01 PIid,20e =, '4dfedl

Fig. 4-17 Streamlines at t

in Fig. 4-16.

5.74, 12.11,

17.82, and 20.84 sec
obtained by further integration of the scheme described
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Fig. 4-22 Schematic diagram of the flow chart of the

program.
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—
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7.
300°K .
(Fr),, = 0.21, b = 0.57, A= 0.20

Fig. 5-1 A test calculation of airflow over a square obstacle by the
present numerical model and comparison with Long's results
(1955). b: half width of the obstacle, £#: obstacle
height/channel height.



Height, z (cm)

39

30

251

20

-20

I
—10

0 10 20 30 40 50 60 70 80

Distance, x (cm)

Fig. 5-2 Streamlines obtained from a smoke visualization picture when (E;kf 0.144,

(October 7, 1970).
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Fig. 5-3 Case A-1 (Experimental): Isotherms over square obstacle. (Fr{f 0.126.
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Fig. 5-4 Case A-1 (Numerical): Streamlines and isotherms obtained by the present
numerical model under the same boundary conditions as the wind tunnel

experiment. (F_r‘_l= 0.126
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Fig. 5-6 Case A-1: Temperature profiles at various locations obtained
by wind tunnel and numerical experiments.
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Fig. 5-6 (continued) Case A-1: Temperature profiles at various loca-
tions obtained by wind tunnel and numerical ex-

periments.
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Fig. 5-6 (continued) Case A-1: Temperature profiles at various loca-

tions obtained by wind tunnel and numerical ex-

periments
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Fig, 5-6 (continued) Case A-1: Temperature profiles at various loca-

tions obtained by wind tunnel and numerical ex-
periments.
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Fig. 5-7 Case A-1: Temperature profiles at various locations obtained
by wind tunnel experiments without an obstacle.
Distribution shown by a solid line was used as an
initial value of the numerical model.
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Fig. 5-12 Relation between an equivalent thermal mountain height at
x =8 cm and viscosity K from Eq. 2.2.2.7-2.
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Fig. 5-13 Case B-1 (Numerical): Isotherms in the vicinity of the heated island
(enlarged from the bottom figure in Fig. 5-11).
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