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ABSTRACT 

NUMERICAL AND WIND TUNNEL SIMULATION OF RESPONSE OF 
STRATIFIED SHEAR LAYERS TO NONHOMOGENEOUS SURFACE FEATURES 

Two-dimensional airflows over various nonuniform surfaces in a 

stratified atmosphere are studied both numerically and experimentally. 

Three problems are investigated, classified by the effect of the 

external forcing functions upon the basic airflow. They are: 1) 

mountain lee waves, 2) heat islands (sea breezes are included here), 

and 3) heated mountain phenomena in a stratified airflow. Both experi­

ments and numerical analyses are conducted for each case. A wind 

tunnel was designed and constructed for these particular problems, since 

they require very small velocities and a strong temperature stratifica­

tion. 

Both numerical and wind tunnel experiments succeed in producing 

clear lee waves behind the square obstacle. The amplitude of the first 

wave is about the same order of magnitude as the obstacle height, and 

wave length closely agrees with that predicted by the linear theory. 

Perturbations of a stratified shear flow by a heated boundary, 

which may represent a heated island or an urban region, are investigated 

experimentally and numerically. These experiments are apparently the 

first attempt to simulate the urban heat island effect in a wind tunnel 

facility. The results obtained by both numerical and experimental 

methods agree quantitatively. Several modifications of meteorological 

factors by urbanization are reproduced: a downward wind and accelera­

tion of a horizontal velocity in the surface layer of an approach flow 
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to a city, temperature cross over, and frequent elevated inversion but 

less frequent surface inversion over the city during the night. 

If the obstacle is heated, then the flow combines the features of 

the airflow over an obstacle and that over a heated island. 

A detailed examination of the results reveals a strong nonlinearity 

which does not allow one to utilize conventional linearizati on techniques 

as a first approximation of the phenomenon. 

Tetsuji Yamada 
Fluid Mechanics Program 
Department of Civil Engineering 
Colorado State University 
Fort Collins, Colorado 80521 
June 1971 
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CHAPTER I 

INTRODUCTION 

The major effort of this research is a direct attack by laboratory 

studies and numerical analysi s on two-and three-dimensional shear flows 

produced by non-uniform boundary conditions. The following non-

uniformities were chosen for detailed study of the perturbations they 

produce on an approaching two-dimensional shear flow: 

1. Non-uniform surface temperature on a plane; 

2 . Mountain-like surface irregularities; 

3. Mountain-like surface irregularities associated with non-

uniform temperature distributions. 

All of these boundary conditions produce flows and cross-flows, which 

in turn result in turbulence interactions about which very little is 

known. 

The aerodynamic research reported here focuses on fluid mechanics 

problems re l ated to environmental winds within· the lower layer of the 

atmosphere, and is primarily experimental in nature. The objectives of 

this program, complemented by analysis and experiments on mathematical 

models achieved through use of a digital computer and correlation with 

available f i eld data, are: 

1. To develop a body of fundamental knowledge of the physical 

nature of shear flows with complex boundary conditions which lead to 

two- or three-dimensional mean motion. 

2. To establish similarity criteria relating laboratory shear 

flows to corresponding flows (winds) in the lower layer of the atmos­

phere. 
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3. To further develop the potential use of low-speed thermal \,·i nd 

tunnels for the purpose of predicting local winds at specif ic sites and 

for specific purposes . 

1.1 Non-uniform Surface Temperature on a Plane 

Some of th e most dramatic atmospheric phenomena occur a~ a re sult 

of sudden changes in the earth' s surface temperature . In fact the 

driving mechani sms for the atmospheric circulation can be visualized 

as a complex extension on the global scale of the cellular motions of 

Benard's probl em. On th e sma ll er mesoscale the vagrancies of sea- land 

breezes, the effects of inversions on pollution in cities, or the 

flow over a heated isl and or a city represent examples of two- and three­

dimensional interaction of a thermal boundary with the lower atmospheric 

shear flow. Specifically, the interaction of a metropolitan area as a 

heat source of finit e extent with wind patterns, and the potential 

penetration of hea t plumes through i nversion l ayers resulting in 

fumigation, are relevant research topics which have received little or 

no attention. It has been pos tulated that convection motions and dif­

fusion patterns recently encountered in the extensive study of Ft. Wayne, 

Indiana, (Hilst and Bowne, 1966) may be a result of the heat island 

phenomenon; however, some i ndividual s argue that these motions may be 

more directl y related to non-un iformi t y of the surface roughness. 

A review of th e literature reveals that past attention to the 

effects of therma l convection on the atmosphere has been limited to 

three areas. Firs t ar e tho se mathematical studies r e lated to the 

idealized case of free convection cell origin between para ll e l infinite 

flat plates - - i .e ., the Ray l eigh-Je ffre ys or Benard pro bl em (Saltzman, 
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1962; Segel and Stuart, 196 1). Second are thos e studies of th e effect 

of stratification upon wind profiles, turbul ence, and transport 

phenomena when the flow is developed and the boundary conditions are 

laterally and longitudinally homogeneous (Plate and Lin, 1966; Lumley 

and Panofsky, 1964; Monin and Obukhov, 1954). The third group includes 

the effect of non-homogeneities i n the surface boundary condition of 

the atmospheric boundary layer . 

The response of a two-dimensional turbulent boundary layer to 

abrupt changes i surface conditions has received extensive recent 

attention (Towns end, 1965a, 1965b; Chanda, 1958; Meroney and Cermak, 

1967). The growth of the inner boundary layer due to a step change in 

roughness or temperature has been studied with respect to the sea-land 

breeze, evaporation, forest and agricultural crop meteorology, and for 

wind break design (Cermak and Koloseus, 1953; Plate, 1964). The 

implications of the effects of finite non-homogeneous temperature 

distribution on the at mospheric boundary layer have not received such 

attention. 

Numeri~al analysis of the problem of airflow over a mountain 

barrier has been discus sed at considerable length in the literature 

and is we ll documented . It was found some years ago by Malkus and Stern 

(1953) that from a theor etica l point of view, the introduction of a 

heating function at th e sur f ace of a s tratified fluid could be inter­

preted as a heat mount a in. Thus, alternately, t he mountain problem 

could be considered from a thermodynamic point of vi ew (with cert ain 

modifications for energy consideration). The heating problem has been 

studied numericall y by Tanouye (1966), Estoque (1968, 1969, 1970), 

Spe lman (1969), Myrup (1968) , Tag (1969), and Delage and Tay lor (1970) . 
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The last three papers study specifically the urban heat island phenomena. 

Olfe and Lee (1971), and Vukovich (1971) provide two of the very few 

analytical treatments of urban heat island convection. 

Malkus and Stern studied the effects of the flow of a stable 

atmosphere over the heated islands of Puerto Rico and Nantucket, 

(Malkus and Stern, 1953; Malkus and Bunker, 1952; Malkus, 1955). Simple 

numerical models have been developed for their case, (Stern, 1955 ; 

Smith, 1955). These suggested that the rising air above the island may 

result in an upsurging in the stabilized layer followed by a wave 

propagating outward much like a stone thrown into the water. The 

possible case of complete penetration of the stable layers above a 

heated island was apparently not considered. 

1.2 Mountain-like Surface Irregularities 

As a density-stratified flow passes over obstacles, such as 

mountains or hills, the air current tends to be wavy in the lee of the 

obstacles. This lee-wave phenomenon greatly affects aerodynamics 

since associated with the formation of mountain lee-waves, strong down­

slope wind occurs in the lee of the mountain and high turbulence exis ts 

in the rotor region underneath the wave crest. 

Since Lyra first studied lee-waves in 1943, a number of analyses 

and experiments have been conducted to explain the physics of the 

phenomenon (see Queney , 1960, for a historical review). A few labora­

tory experiments were conducted by Long (1955), Davis (1969), and Lin 

and Binder (1967). Several field observations are well documented by 

Queney (1960). Foldvik and Wurtele (1967) presented the first attempt 

to numerically integrate the governing equations. Both l aboratory and 

field observations revealed that the lee-wave phenomenon has nonlinear 
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characteristics; hence, it is desirable to retain nonlinear 

terms in a numerical approach. Long (1955) cleverly avoided the 

necessity of solving the nonlinear equations by introducing special up ­

stream boundary conditions. Nevertheless, i n order to simulate th e 

general problem under less r es tr icted situations, laboratory and 

numerical experiments are necessary. 

1.2.1 Laboratory expe riment - Geometric and dynamic simi litude 

with matched boundary conditions mu s t be sati s fied to reproduce proto­

type atmospheric phenomena by model experiments (Cermak et~., 1966). 

It is extremely difficult to sati sfy all similitude requirements 

simultaneous l y in the laboratory. For example, although Long (1955 ) 

generated wavy motions downwind of a moving obstacle towed in a water 

channel, exact s imilarit y to atmospheric lee-wave motions was not 

obtained due to the absence of Prandtl number similarity and incorrect 

upper boundary conditions . 

Lin and Binder (196 7) improved laboratory simulation by util izing 

the meteorological wind tunnel at Colorado State University. In a wi nd 

tunnel experiment it is possible to measure directly dependent variables 

such as velocity, temperat ure, and turbulence. A typical wind tunne l 

experiment conducted by Lin and Bi nder (1967) is reproduced in Fig. 1-1. 

The second lee wave crest is apparent in the i sotherm results. The 

velocity downslope of the bell-shaped obstacle has a l ar ge magnitude 

which coincides with field observations. 

Similarity in a 1vi nd tunnel experi ment r equire s a very small 

ve loc i t y ( - 10 cm/sec) and s tron g s tratification 0 ( - 1 C/ cm). In 

practice it is not easy to change t emper ature and velocity profil es 

independently because of their mutual i nterac t ions. 
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The effect of viscosity in a wind tunnel experiment is not yet 

fully widerstood. It is commonly accepted that in the prototype lee­

wave phenomenon, viscosity does not affect the nature of the phenomenon 

since the Reynolds number is large. It may be adequate for Reynolds 

number similarity to use an eddy viscosity in the prototype and a 

molecular viscosi t y in the model experiment (Scorer, 1953, p. 72). 

1.2.2 Numerical approach - Ideall y , numerical simulation can 

avoid all the difficulties encountered in a laboratory experiment. 

Since the former is a direct one-to-one simulation there is no need to 

consider scaling effects. The accuracy of a numerical experiment, how­

ever, depends on many factors, such as the particular differencing 

scheme used, the mag itude of grid and time increments, the boundary 

conditions imposed, the size of the computational area, etc. Therefore 

it is necessary to investigate the reliability of numerical results by 

other means. If the problem is simple enough, a comparison with a 

known analytical solution might be possible. This is not normally the 

case, however, for such nonlinear problems as are described here. A 

wi useful in determining the reliability of 

numerical results. Once confidence is established in numerical pro­

cedures through a wind tunnel simulation, then the direct application 

of the numerical program to the atmosphere is reasonable. Another 

advantage to a numerica l approach is that it is possible to extend or 

change meteorologica l variables easily. For examp le, the effect of 

varying viscosi t y in a wind tunne l ex eri mel!.!__may be ex ined by a 

-~erical experiment. 

In this manner, theoretical, experimental, and numerical simulation 

improve the understanding of complicated fluid motions. 



7 

1.3 Cross Flow Effects Associated with Non-homogeneous Surface 

Irregularities 

Probably the strongest statement regarding the three dimensional 

aspects of such flows has been made by Bradshaw (1966) in his rev iew of 

turbulent boundary layers. 

When the crossflow is small, the same simplifications can be 
made as in laminar flow -- although one feels intuitively that 
the interactions between streamwi se flow and crossflow wi ll be 
more important i n t urbulent flow. 

Accordingly, this research was designed to help reach an understanding 

of the fundamental behavior of mildly three-dimensional rurbulent shear 

flows. 

But in addition, this research specifically hopes to provide a 

working kno~ledge of some commonly occurring atmospheric flows near 

the earth's surface. Lettau (1955) emphasizes the dependence of 

aerodynamic processes on the horizonta l variability of conditions at 

the earth-air interface and the need for systematic studies to determine 

the resulting flow interactions. In spite of this recognition that 

three-dimensional shear flows represent a common natural aerodynamic 

state, the bulk of analytical and field studies have been restricted 

to two-dimensiona l situations. The research discussed here, although 

difficult and tedi ous, r epresents an attempt to provide needed basic 

information of practical importance. 

1.4 Objectives of Research 

To put the fo rcing prob l em into proper perspective, therefore, it 

seems that both the heating and topographically forced flows should be 

studied independently; then, the resu lt s should be compared and precise 

analogies discussed. If the physical and kinematic parameters are 
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properly selected, the result s of the experiments should be app licable 

also to the atmosphere -- for sca le s small enough so that rotation can 

be ignored. It should then be possible to state the atmospheric con­

ditions necessary for instability due to s urface heating and to explore 

the possibi lity of estab l i shing those required conditions. Among the 

practical problems to which the s e result s could be applied are the 

ini tiation of convection and resulting precipitation, and the disper­

sion of pollution, fog, dust and other stab le but undesirable atmos­

pheric contaminants. 

Investigations are spec ifically conducted in a stably stratified 

atmosphere (t emperature increases with height), since effects of urban 

heat islands are more significant during the night (Mitchell, 1961) 

when the atmosphere is frequently in an inversion configuration . More­

over some interesting phenomena in the atmosphere, sll.ch as gravity waves ✓ 

behind a mountain, or a hea ted island, or an atmospheric jet flow , are 

the results of the interaction of inertia and buoyancy forces caused by 

stratification. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Review of Mountain Lee-Wave Phenomena 

2.1.1 Introduction - The sub j ect of a fluid motion over obstacles 

has been of continuing i nterest to fluid dynamicists and meteorologists 

because it relates to such important phenomena as separation, wakes 

(rotors), hydraulic jumps, and mountain lee-waves. 

At least four recent reviews are available for airflows over 

mountainous terrains (Corby , 1954; Queney, 1960; Krishnamurti, 1964; 

Lin and Cermak, 1969). In this report we shall describe in detail only 

more recent efforts, especially those which approach time dependent 

problems by a numerical integration. In order to provide continuity 

to the present work, a brief review of its hi s torical context 

follows . 

2.1.2 Observational evidences - Discontinuous clouds over 

mountainous regions have been observed; this indicates the existence of 

pairs of ascending and descending motions. The fluid motion associated 

with these cloud rows is commonly known as a "mountain lee-wave" 

phenomenon. The formation of clouds corresponds to the wave crest 

position. Cloud s pacing , which corresponds to wave length, ranges from 

5 to 25 km but is primaril y between 8 and 10 km (Queney , 1960). As 

many as eleven waves have been counted while five or s ix waves are 

commonly obs erved (Scorer , 1951). 

Glider pilot s commonl y t es t i f y to the presence of s trong 1vave 

motions near the mountains . They are able to glide to a very high 

altitude riding on the as cending motion of a mount a in l ee -~ave . Many 
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ascents are recorded to well above 12,000 m, and vertical components 

of velocity of 10 m/sec are common. It is believed that the vertical 

velocity may exceed 25 m/sec occasionally (Corby, 1954, p. 494). 

Queney (1960, p. 35) reports from the results obtained by the Sierra 

Wave Project that the double wave amplitude exceeded 2,100 mat mean 

altitude 4,100 m and verti~al components in the wave motion were 

12.5 m/sec and -9.5 m/sec. 

Observations suggest that the occurrence of wave phenomena is 

limited to certain favorable physical and meteorological situations. 

Ftlrchtgott suggests, for example, "that for a ridge of 900 m high, a 

wind of 12 m/sec was necessary for wave streaming. If the obstacle is 

a solitary hill, rather than a very long ridge, a much stronger wind 

speed is necessary for a given type of flow than in the case of a long 

ridge of a similar height" (Corby, 1954, p. 516). Observations have 

shown that wave motions exist when the atmosphere is appreciably stable. 

Commonly the distribution of the lapse rate was more stable at lower 

levels, 1 to 4 km, and less stable above 4 km (Queney, 1960, p. 32). 

2.1.3 Theoretical studies - Analytical models for airflow over 

mountains were all based on a linear perturbation method until Long 

developed his nonlinear model in 1953. Queney, Lyra, Scorer and others 

made important contributions to develop the linear theory. Primary 

contributions to Long's model are found, in addition to Long's own 

works (Long, 1953, 1954, 1955), in Yih (1960), Drazin and Moore (1967), 

Miles (1968a, 1968b), Davis (1969), and Pao (1969). 

Common characteristics of both linearized and nonlinear models are 

the assumptions that they are two-dimensional and stationary. The 

latter assumption introduces the incorrect mathematical possibili t y of 
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an infinite set of upstream waves associated with solution 

singularities (see Queney, 1960, pp. 53, 54). In order to assure unique­

ness with statements, Rayleigh introduced Rayleigh friction terms in 

his system oi equations. Further, an alternative way to establish uni­

queness is to treat the problem as an initial value problem rather than 

a stationary one (Krishnamurti, 1964, p. 594). However, if the problem 

is treated as an initial value problem, then the convenient transforma­

tion of variables which Yih introduced is no longer possible (Yih, 1965). 

This limitation explains why research programs since the 1950's are 

primarily based on numerical integrations utilizing a digital computer 

(Foldvik and Wurtele, 1967; Lin and Apelt, 1970). 

The complete meteorological description of the mountain lee-wave 

phenomenon is, of course, extremely complex. A total description must 

include thermal energy balance, humidity, condensation and evaporation, 

insolation, etc. A few authors have attempted to include some secondary 

variables; however, they could not include all of the factors mentioned 

above (Magata and Ogura, 1967; Orville, 1965, 1968a, 1969). 

In order to include lateral effects of an obstacle, a horizontally 

two-dimensional model may in some cases be constructed utilizing shallow 

water theory (Spelman, 1969; Oobayashi, 1970). This theory recognizes 

tha.t "the trade-wind atmosphere has a relatively simple structure for 

modeling purposes, namely a well-mixed layer below about 2 km having 

nearly homogeneous potential temperature and wind fields in the vertical, 

capped by an inversion" (Spelman, 1969, p. 73). 

If one combines the above approaches, then a complete three­

dimensional picture is obtained. Several papers based on linear 
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perturbation theory (Sawyer, 1967; Onishi, 1969), are available for 

such a three-dimensional treatment. 

2.1.3.1 Linearized theory - The following derivation of the 

basic equation for the airflows over mountains is taken from the work 

by Lin and Cermak (1969). 

The basic system of the equations consists of the equation of 

motion along the longitudinal x and vertical z axes, the equation 

of continuity, the statement of adiabatic motion, and an equation of 

state for air. No heating and an inviscid fluid are assumed. The list 

of the symbols used be low is presented at the beginning of this report. 

Equations of Motion 

au 
u­ax 

aw 
u­ax 

au 
+ w "az = 

Equation of Continuity 

ap 
u­ax + w az 

Adiabatic Equation 

+ w ~ = c 2 az 

1 
p 

1 
p 
~ az - g 

(au + 
ax 

aw) 
az 

All dependent variables are replaced by 

u = u(z) * u'(x,z) , 

w = 0 + w'(x,z), 

(2.1.3.1-1) 

(2.1.3.1-2) 

(2 .1. 3.1-3) 



p = p(z) + p '(x,z), 

p = p(z) + p'(x,z), 

and 

c=c-"-c'(x,z) 
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where bared quantities are mean values and primed ones are the pertur­

bations. 

The mean quantities are governed by the relations: 

p = p R f; 

1 

p 
~ = - g; az 

Equation of State 

Hydrostatic Balance. 

The perturbations, their derivatives, and their products are neglected 

in comparison with those containing mean quantities because the 

linearizing assumption requires that the perturbed quantities be at 

least one order of magnitude less than their mean values. 

In the following expressions the pri mes are eliminated from the 

perturbation quantities. Table 2-1 shows both retained and neglected 

terms. 

Linearized equations are 

and 

~ Cu au + w au ) 
p dx dz = ax' 

-- aw ~ 
p u ax = - az - pg, 

u 
ap ar, 
-+ w -+ ax az (au+ 

P ax 
aw ) = O 
az ' 

(2.1.3.1-4) 

(2.1.3.1-5) 

(2.1.3.1-6) 
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-U a.E. + w ~ - -:-ic ax az (- ap ~ ) o u ax + w az = . (2.1.3 .1- 7) 

Through lengthy algebraic manipulations, and incorporating the 

assumptions that D2 << 2 au u -- << az d -U ~ «-:-2c, · 1 g, an az a s1 mp e 

wave equation with respect to the vertical velocity component, w, is 

obtained 

where 

a2w - aw 
+~- s- + az az (~g 

u 

~/ s = - az p and 8 = s - g/c2 

a2u· 
az7 
u 

) w = 0, (2.1.3.1-8) 

The various steps to obtain 

Eq. (2.1.3-8) from Eqs. (2.1.3 . 1-4) to (2.1.3.1-7) are described in 

Lin and Cermak (1969, p. 20) or in Krishnamurti (1964, p. 596). The 

final expression is s lightly different from those sho~n in Queney (1960, 

p. 51) or in Krishnamurti (1964, p. 597). In their expressions the 
_ 2_2 

first term is multiplied by M = 1 - U/c and a term 
- au -
s - I u az 

included in the paren thesis of the fourth term. As long as the 

assumptions above are justified, both expressions coincide. 

is 

2.1.3.2 Necessary conditions for lee-waves and the factors 

influencing their amplitudes - Scorer (1949) developed necessary con­

ditions for the occurrence of lee-waves. His parameter t must 

normally decrease upwards, where 

(2.1.3.2-1) 
u 
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With two layers, the lower of depth h, waves can occur if 

n2 _ n2 > 1T
2 

(2 1 3 2 2) 
"'1 "'2 4h 2 ' • • • -

where subscripts 1 and 2 refer to lower and upper layers, respective­

ly. 

Corby and Wallington (1956) investigated the factors which influence 

the lee-wave amplitude. They investigated the influence in the special 

case of an idealized two-dimensional ridge described by the bell-shaped 

equation 

M(x) 

where a is the height of the ridge and b is the "half-width" 

parameter. The flow pattern by such a r i dge is indicated by the term 

6 (z) -kb 
= - 2na b e (U/U) 

where o(z ); displacement of a streamline from its undisturbed level at 

height z, 

U; 

lji; 

the lee wave number, 

horizontal wind speed, 

satisfies the equation 

and the suffix 1 refers to ground leve_. 
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If the height of a ridge is kept constant, then the factor 
-kb abe 

takes a maximum value at b = k- 1 . If the shape of a ridge is changed 

keeping the ratio a : b constant, then the maximum occurs at 

On first glance a wind speed decreasing with height apparently increases 

the wave amplitude. Velocity, however, is also included in the expres­

sion for 12 by Eq. (2.1.3.2-1). Since a decrease of 1 2 is the 

necessary condition for waves, a combination of wind and stability 

distributions should be considered. Hence if two airstreams have the 

same 12 profiles with different combinations of wind and stability, 

then the airstream for which u1;u is larger will have the greater 

amplitude waves. 

The last factor 
al/I 

l/1 ( 1, k 
k ak is directly related to the 

profile. But 12 is interrelated with the lee-wave number k and the 

factor abe-kb If the effect 12 alone is investigated, then there 

exists an optimum value of 12 which provides for the maximum value of 
al/I 

the factor l/J ( l,k )-l However, if 12 conditions are made more k ak 

favorable for waves to occur, the amplitude falls off sharply. 

Lee-wave amplitudes were interpreted to be very sensitive to 

optimum meteorological conditions. Apart from this sensitive region, 

Corby and Wallington (1956, p. 274) concluded that "larger amplitude 

waves were theoretically more likely in airstreams containing a shallow 

layer of great stability than in conditions of slight stability through 

a deep layer." 

2.1.3.3 The validity and limitations of the results of 

perturbation theory - The linear theory results obtained by Queney and 

Lyra showed apparent violations of the assumptions used to derive the 

linearized wave equation. The mountain involved was always a finite 
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amplitude perturbuation. The solutions exhibited very large vertical 

veloci ties at great heights above the grounds; thus, the neglect of the 

nonlinear t erms is not justified. The results obtained by Lyra and 

Queney are shown in Queney (1960, p. 57 and p. 61). These unrealistic 

results may be a result of the fact that both Queney's and Lyra ' s mean 

atmosphere was characterized by a constant temperature and wind. 

Scorer (1949) was the first to examine a two layer model, i.e., 

the atmosphere was characterized by two layers which have different 

wind and temperat ure distributions, but stability parameters are 

constants in each layer. This innovation eliminated the second 

deficiency obtained by Lyra and Queney. Stability and velocity profiles 

were chosen so that they satisfied the necessary conditions for 

occurrence o lee-waves as given by relation (2.1.3.2-2). The result 

is shown in Fig. 2-1., 

Meteorological measurements of the lee-wave phenomenon are not 

complete enough to provide a critique of Scorer's model. However, it 

is appropriate to examine the credibility of Scorer's underlying assump­

tions. Corby (1954) examined the assumptions involved in Scorer's model 

in detail: a) inviscid fluid, b) isentropic, c) steady flow, d) small 

perturbation, and e) neglect of the earth's rotation. Corby justified 

assumptions b), and e). He concluded that the restriction to steady 

laminar flow was serious since there was ample evidence that the flow 

over mountai ns was commonly unsteady. The effect of the viscosity 

would be expected to exert a damping effect on the disturbances. 

Janowitz (1968) examined the effect of viscosity on wave length and wave 

amplitude. When the Reynolds number, defined by the cubic root of the 

square of the product of the internal Froude number and the in tern al 
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Reynolds number of the shear wave, is sma ll (<7), then viscosity 

lengthens the wave and alternates its amplitude. 

This Reynolds number becomes very large under meteorological con­

ditions typical of mountain lee-wave phenomena. For this very large 

2 Reynolds number (order of 10) there are no viscosity effects either on 

the wave length or on the attenuation constant. 

A small displacement is a fundamental requirement of the 

perturbation theory. It is reasonable to accept the results, at least 

qualitatively, provided the mountain height is no more than about ten 

percent of the width. (Queney claims rough validity if the ratio 

'height to width' is up to 1/4 or even 1/2 in special cases (Corby, 

1954, p. 510)). 

Scorer (1953) himself noted that the disturbance could be as large 

as the mean quantity. Strictly speaking, the second-order terms in the 

equations of motion were thus neglected unjustifiably; however, the 

solutions are still qualitatively correct, and the neglected terms 

' would have only a modifying influence. 

Anticipating the results obtained by the nonlinear model proposed 

by Long, we may explain the unusually good agreement between the linear 

theory and mountain lee-wave observations. If the vertical gradients 

of the density and the kinetic energy of the basic flow are constant 

far upstream, then the nonlinear terms vanish exactly in the wave 

equation; thus the finite amplitude flow is given by the linear 

dynamics (Krishnamurti, 1964, p. 622; Queney, 1960, p. 109). 

2.1.3.4 Long's model and its solutions - Long (1953) 

obtained a linear wave equation which was applicable even for finite 

amplitude waves, provided that special boundary conditions were 
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satisfied far upstream. Motion was assumed to be steady, incompressible, 

inviscid and two-dimensional in the vertical plane normal to the 

obstacle. 

The complete governing stream function equation under these 

circumstances is 

(Vl/1) 2 = 
\} 

s(l/1) + .!_ (dp) [u2 + g(z -z)] 
p dl/1 v o 

(2.1.3.4-1) 

where ljJ is a stream function, p(l/1), and s(l/1) are the density and the 

vorticity upstream, respectively. z (l/1) and z (l/1) 
0 

are the height of 

the streamlines, ljJ = constant, far upstream and downstream, respec­

tively. U is a horizontal velocity component upstream which is a 

known function of z or ljl. 
0 

Equation (2.l.3.4-1) is an exact expression for an arbitrary 

density and velocity distribution upstream. It is, however, a nonlinear 

equation; therefore, it is very difficult to solve the equation 

analytically. Long sought a model which is linear and mathematically 

tractable. Long first introduced the notation 

d 1 d 
d;JJ = - uaz 

0 

provided that U does not vanish anywhere and 

o = z - z. 
0 

Equation (2.1.3.4-1) transforms to 
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v2o + 
1 [(Vo) 2 + v ~ ] d (t n u2p) 
2 az dz 

= g dp o Wpdz , 
0 0 

If U2p = constant and the density is linear in 

equation reduces to 

where 

(J2 = 

I.!. ~I g p dz 
0 

u2 

z 
0 

(2.1.2.4-2) 

the above 

(2.1.3.4-3) 

cr 2 is a stability factor which is related to a global Richardson 

number Ri and the i nternal Froude number Fr by 

and 

Fr= 
crH 

1 

where H is the channel height. 

In a subsequent pape r Long (1955) discussed solutions of the flow 

over an obstacle of finite length and height. He also conducted 

experiments with a stratified fluid in a water channel. Agreement 

between theory and experiment was excellent. Some of Long's figures 

are reproduced here (see Fig. 2-2). Long also analytically obtained 

criteria for overturning instability (density increases with height) 

for a given stability and obstacle height. Fig. 2-3 displays the 

result; it suggests that if Fi< l 
TT 

there is a critical obstacle 
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height for overturning instability. Higher obstacles will produce a 

negative density gradient at some point in the flow field. Figure 2-3 

indicates that there are singularity points in the flow fields cor­

responding to the Froude number = (pn)-l where p is an integer 

number. When the Froude number is decreased and the obstacle is large, 

a stable steady-state solution cannot be obtained theoretically. 

Experiments showed that impulses are sent upstream by the obstacle; 

this leads to alternate jets and stagnation regions in the vertical. 

Simultaneously turbulence is produced over the obstacle and in its lee; 

this result is obviously not a steady state. 

Since Long published his original papers many authors, utilizing 

Long's model, have contributed to the study of fluid motion over 

various obstacles. Different mathematical approaches were attempted 

to obtain more realistic solutions and to simplify computational 

procedures. 

' Lin and Cermak (1969) discussed all mathematical aspects of these 

works, hence we shall only review their conclusions and the interesting 

contradiction which arises. 

Yi h (1960) generalized Long's equations (Eq. (2.1.3.4-2)) through 

transformations of variables. He could obtain three different classes 

of flow which provide l inearization, one of which was obtained by Long 

earlier (1953). A detailed discussion of the solutions for these three 

classes of flow are given in Yih (1965, pp. 78-113). Both Long and 

Yih employed an i nverse calculation method; that is, the exact obstacle 

shape is obtained after the flow field has been calculated: Therefore, 

a flow pattern cannot be conveniently investigated for a pre-prescribed 

obstacle shape. 
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Drazin and Moore (1967) developed a mathematical model which was 

applicable for arbitrary obstacle shapes. Two examples were given: 

one was for a dipole, and another was for a vertical wall. They found 

an interesting but contradictory result of Long's theory (1955). Long 

(1955) suggested that a sufficiently large obstacle in a strong 

stability fluid exerts a blocking effect. Waves may be propagated 

upstream boundary to disturb the prescribed upstream boundary conditions. 

Dazin and Moor concluded that there is no critical internal Froude 

number to destroy the existence of a steady flow solutions if no 

restrictions are placed on the amount of energy available to drive the 

flow. Pao (1969) came to a similar conclusion. 

The wave drag associated with stratified flow past various 

obstacles was investigated by Miles (1968a, b). He computed wave drag 

utilizing Long's model and found that there is a region where wave drag 

increases with decreasing wind velocity. Experiments conducted by Davis 

(1969) showed that the wave drag coefficient was not, for a thin 

barrier, the dominant function of stratification. Both Miles and Davis 

pointed out that these anormalous predictions are subject to two serious 

objections: those solutions which are associated with large drag are 

not consistent with the derivation of Long's equation and, even if they 

are interpreted as legitimate steady-state flows, these solutions 

probably represent unstable motions (Davis, 1969, p. 141). 

Indirectly speaking Miles and Davis support Long's contension that 

there are physical limitations to the application of Long's equation. 

Davis' measurements of wave drag demonstrated that for a larger value 

of k (1 < k < 4), the results predicted phenomena which were not 

described by Long's equation. 
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Davis (1969 ) conducted numerical and water channel experiments 

over a triangular and a thin barrier. Figure 2-4 shows some of his 

results. The agreement of the results is at least qualitatively cor­

rect when k is small. The first wave crest in the experiments is, 

however, always located further downs tream than predicted by the theory. 

With increasing s tab ility k, the experimental results exhibit strong 

turbulent, or at least very unstable, regions next to the boundary. 

In this range of stratification, Long's solution could not predict 

the flow, because non-stationary cases can not be included in Long's 

final equation. 

Pao (1969) investigated a stratified flow over a single obstacle 

and a series of semi-circular obstacles constructed from vortex pairs 

and doublets. His boundary conditions were somewhat unique. He 

required not only that all the disturbances generated by the obstacle 

vanish far upstream, but also that far upstream the disturbance pres­

sure force, the total disturbance kinetic energy, and the total dis­

turbance potential energy vanish. These additional restrictions we re 

added to obtain a unique so lution of an inviscid stratified flow. His 

results over a single barrier could simulate a rotor phenomenon. The 

effect of the second barrier placed in line with the first weakened 

or strengthened the waves depending on the stability. 

2.1.3.5 Some concluding remarks on Long's model - As we have 

seen, Long's mode l is a remarkable mathematical simplification for two­

dimensional, steady, incompressible~ and inviscid stratified flows 

involving finite amplitude waves . However, if stratification is 

increased and a larger obstacle is used, then the predictability of the 

theory is doubtful, since the flow tends to become unstable. Since 
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experiments often show evidence of turbu l ent motion, Long's assumption 

of stationary flow is no longer valid. Solutions obtained from Long's 

model often indicate regions of closed streamline flow. This violates 

the initial model derivation, since it was assumed that all fluid 

particles were connected to ups tream origins. The model's prediction 

of ups tream blockage is also controversial (Long, 1955; Drazin and 

Moore, 1967; Pao, 1969). 

2.1.4 Time dependent treatment - A time dependent treatment is an 

alternative way to assure the uniqueness of a mountain lee-wave 

analytical solution. If the problem is treated as an initial value 

problem, then the main deficiencies of Long's model can be eliminated. 

For example, negative densi t y gradients which may lead to unstable 

motion are acceptable, closed s treamlines do not violate the ·equation, 

and the blocking effect propagating to the upstream boundary may be 

eliminated. 

Time dependent so lut ions can also be applied to more realistic 

cases where the meteorological factors such as wind, temperature, and 

pressure are varying. 

Some simple t ime dependen t cases ar e described in Krishnamur ti 

(1964), i.e., the works by Wurtele (1953), Palm (1953), and Queney 

(1954). We shall not discuss their works here, because their search 

for a closed form analy t ica l t ime dependent solution has resulted in 

overly restrictive geometries and i nit ia l conditions. 

2.1.5 Numerical research - The many complicated, interacting, 

nonlinear, diffusive effect s such as velocity , t emperature , topography 

and surface heating make numerical modeling an at trac tive method . 

Stationary, two-di mensi onal linear or nonlinear mountain lee-ivave 
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problems were solved numerically by Sokhov and Gutman (1968), 

Kozhevnikov (1968), and Pekelis (1969). Since we are primarily interest­

ed in a non-stationary treatment, those papers wh i ch have a time de­

pendent nature will be discussed. 

Foldvik and Wurtele (1967) constructed a numerical model of an 

airflow over a rectangular-shaped mountain. They used the Boussinesq 

approximation to derive the vorticity equation, but friction terms were 

not included.* 

Foldvick and Wurtele used periodic (cyclic) boundary conditions for 

the two streamwise boundaries. Their solution developed a computational 

instability from the boundary when the number of integrations was 

large.** A nonlinear instability (see section 4.27) was also evident 

in the Foldvick-Wurtele scheme. It developed upwind from the obstacle, 

yet its magnitude was smal 1 so that the majority of the field was 

apparently not affected. They claimed that the numerical results 

provided a good qualitative agreement with some observations. 

Lin and Apelt (1970) conducted numerical experiments of fluid 

motion over a thin barrier. The Boussenesq approximation, including 

friction tenns, was used. The numerical method was a combination of the 

*We also utilized a similar basic equation which was obtained from 
physical consideration of the phenomena. The majority of the papers 
were charact erized by the Boussinesq approximation. Therefore the 
significance of the approximation will be described later in sections 
4. 6 and 4. 7. 

** Since inflow and outflow boundary conditions cannot be specified 
in advance for a specific problem, the least restrictive conditions 
should ordinarily be used. These will depend upon the characteristics 
of the individual problems. A numerical investigation of different 
boundary co~ditions will be discussed in sections 4.25 and 4.26. 
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Crank-Nicolson method (see Smith, 1965, p. 17) with a strongly implicit 

iterative method developed by Stone (1968). They used the Milne pre­

dictor formula at lateral boudaries. This also introduced boundary 

perturbations at the upstream boundary for increasing integration 

times. Two cases were computed - one for Re= 397, Pr= 10 and 

Ri = 1.58 and another for Re= 5000, Pr= 1 and Ri = 1.58. The two 

results did not display considerable differences primarily because 

the amplitude of the lee-waves generated was so small. Strong damping 

or diffusing effects were evident due to the finite difference scheme 

used. Their upstream difference scheme has a very large pseudo­

viscosity (see section 4.11.2) which can eliminate otherwise wavy motion 

behind an obstacle. 

Magata and Ogura (1967) investigated the effect of heating and 

cooling on the airflow over a mountain. The governing equations were 

the same as used in his sea breeze modeling (Magata, 1965). Hydrostatic 

balance was assumed; therefore, the vertical velocity component and the 

pressure term were obtained from the diagnostic equations. The results 

obtained could explain qualitatively the local phenomenon obs erved in 

Japan. Local strong wind appeared under the lee of the mountain when 

air passing over the mountain was cooled by the earth's surface. 

Orville (1965, 1967, 1968a, 1969, 1970) has been investigating air 

flow over mountains, including moisture effects. His model assumed 

two-dimensionality, incompressibility, and constancy and equality of 

eddy coefficients for heat, moisture and momentum. Since it is beyond 

the scope of the present study to include the moisture budget, Orville's 

results will be referred to in the later discussion of the heated 

mountain. Very important observational data over a mountain ridge have 
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been supplied by Fosberg (1967, 1969). Data were taken in the San 

Jacinto Mou~tains about 130 km east of Los Angeles, California (1967), 

and across the Santa Ana mountains of Southern California (1969). 

Finer detail data points were obtained by a numerical integration of the 

basic fluid equation incorporating field data. Results obtained by 

Magata, Orville, and Fosberg will be cJmpared with results obtained 

here in Chapter V. 

2 .1. 6 Application of shallow water theory - It is natural to seek 

a more realistic mathematical model to simulate the actual three­

dimens ional airflow over mountains. Infinitely long mountains are not 

realistic. Two papers (Oobayashi, 1970 and Spelman, 1969) are available 

which utilize the shallow layer theory, to include the lateral effects 

of discontinuities. Since Spelman included the effects of surface 

heating, roughness and topography, the results wil l be discussed in 

detail during compariso with the results of this research. 

2.1.7 Further applications and some concluding remarks on 

numeri cal works - Three-dimensional models have been presented for 

mountain waves. Such examples are discussed by Sawyer (1962) and Onishi 

(1969). Their equations were linearized by the perturbation method. 

Since we do not yet know the effect of nonlinearity of convection terms 

even for two-dimensional flows, it seems inappropriate to discuss here 

the justification of the perturbation method used for a three­

dimensional problem. 

In principle, a numerical integration by fini t e difference 

approximation is a very powe rful approach to apply to the complicated 

nonlinear problems. The validity of results so obtained is not clear, 

however, because there are very few observational data available. In 
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addition there are many important unresolved problems in the finite 

difference approximation itself, such as criteria of stability, con­

vergence, proper assignment of boundary conditions, etc. 

Another limitation, of course, is the finite capaci t y of a digital 

computer. In order to simulate turbulent phenomena accurately, we need 

a very small grid size if energy-containing eddies are also small. This 

generally requires a large number of grid points. An expanded grid 

sys tem is sometimes an alternative way to reduce the number of grid 

points; but unfortunately finite lee-wave motions are expected even far 

downstream from the initial forcing perturbation, therefore an expanded 

grid may lose wave characteristics. 

Consequently, in the future, if the capacity of a computer is not 

grossly expanded, a combination of analytical and numerical approaches 

may be required rather than a strictly computational one, especially for 

three-dimensional, turbulent flow. 

2.1.8 Model experiments - Very few experimental results are 

available on stratified flow over obstacles. Long (1955) and Davis 

(1969) obtained results in a water channel. Lin and Binder's (1967) 

results are the only ones available from wind tunnel experiments. 

Model experiments in wind tunnels are very difficult, as pointed out by 

Scorer (1953), since similarity law requires a very strong temperature 

gradient and a very small velocity. Fortunately it is not impossible 

to have a vertical temperature gradient of 1°c/cm and a horizontal 

velocity of 10 cm/ sec (see Chapter III on wind tunnel design ). The 

experimenta l results discussed here were specifical l y generated to 

verify any numerical scheme proposed. 



29 

2.2 Review of Heat Island Phenomena 

2.2.1 Introduction - The climate over cities is quite different 

from that over the surrounding rural areas. Figure 2-5 shows diurnal 

variation of temperature in Vienna, Austria (Mitchell, 1961) and in 

Frankfurt, Germany (Georgii, 1968). As one can see, the urban station 

remained warmer most of the time ("urban heat island"). The largest 

temperature differences were observed at night both in summer and in 

winter. Maximum and minim m temperatures in the cities occurred one 

or two hours after those i n the suburbs. Many other climatic elements 

such as wind, radiation, humidity, cloudiness, and pollution are also 

changed by urbani zation. Landsberg (1968) organized such climatic 

data into a table (see Table 2-2) to provide a quick understanding 

of average differences in climatic factors of urban and non-urban 

regions. The rest of this chapter will discuss how those differences 

developed, and how recent observations are correlated with meteoro­

logical factors. 

Only a few attempts to explain the phenomena above are recorded 

(Myrup, 1969; Tag, 1969; Olfe and Lee, 1971; Vukovich, 1971). However, 

similar phenomena to those of urban heat islands have been observed in 

oceanographic fields. Malkus and Bunker (1952) observed periodically­

spaced rows of small cumuli leeward of small islands on sunny summer 

days. This occurrence is now known as a "heated island" phenomenon 

(Malkus and Stern, 195 3) . Wavy air motion at the lee side of an island 

in a strongly stable stratified airflow is the result of unbalanced 

buoyancy forces which have been produced by the temperature difference 

between the island and the surrounding ocean. Since this is a "lee­

wave" phenomenon as described previously in Section 2.1, Malkus and 
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Stern (1953) looked for the similarity between the heated island 

convection and airflow over a physical mountain . The heated island 

was replaced by an "equivalent mountain" whose shape is a function of 

the difference in temperature between the island and the ocean, stability 

of the air, wind speed, and eddy diffusivity. This theory will be 

described in detail in a later section. 

2. 2. 2 Urban heat is land - That certain cities have warmer 

temperatures than their surroundings has been known since the beginning 

of the eighteenth century, "but it was not until the relationships 

between the cities' heat island and the pathogenic and pernicious effects 

of air pollution were made evident that the study of this urban 

phenomenon was stimulated and accelerated" (Kopec, 1970, p. 602). 

Comprehensive reviews of recent works on the matter are available in 

Peterson (1969) and in a W.M.O. technical note (1968). 

2 . 2.2.1 Basic causes of an urban heat island - Many authors 

have contributed to the discovery of the various physical and 

meteorological factors responsible for the formation of urban heat 

islands (Landsberg, 1956; Mitchell, 1961; Bornstein, 1968). Their 

conclusions are somewhat similar . The following description is primarily 

from Landsberg's work (1956, p. 585). The first effect of urbanization 

is an alteration in surface texture and roughness. Relatively smooth or 

hilly grass-covered regions are replaced by a formation of rocklike 

substances, such as stone, brick, concrete and asphalt. Naturally 

moist areas are drained and the reduced surface moisture decreases 

the need for energy for evaporation, thus increasing the energy 

available for transfer to the atmosphere and to the urban surfaces 

(Bornstein, 1968). Aerodynamic roughness is increased by building 
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structures of varying size which reduce surface wind velocity and 

introduce a more turbulent motion. The fluid motions are also 

favorable to the formation of an urban heat island. In addition, these 

urban structures absorb large amounts of solar radiation during the 

day. Most buil di ng and structural materials have a large heat capacity 

and a high heat conductivity; these thermal properties prevent rapid 

cooling after sunset and rapid warming after sunrise (Bornstein, 1968). 

The second cause for climatic change is artificial heat generation 

through combus tion processes in industry, homes, automobile engines, 

and human and animal metabolisms. Garne tt and Bach (1965) computed 

the ratio of artificial heat generation to natural radiation heating 

in Sheffield, England. Their conclusion was that the artificial heat 

represented nearly one-thi rd of the net radiation balance. This is 

comparable with r esults reported for several other cities -- 1/3 for 

Berlin, Germany, and 1/6 to 1/4 for Vienna, Austria (Peterson, 1969, 
I 

p. 16). Bornstein (1968) obtained for Manhattan, New York, values of 

5/2 in winter and 1/6 in summer. 

The third major factor in urbanization is the change produced in 

atmospheric composition. More pollutants are emitted into the 

atmosphere with growing population and increased industrialization. 

Georgii (1968) presents an excellent discussion of the effects of air 

pollution on th e various climatic elements in Frankfurt, Germany, such 

as the intensity of solar radiation, the range of visibility, the 

temperature distribution, the relative humidity, the local wind dis­

tribution, and the distribution of precipitation. We are primarily 

interested here in temperature and local velocity distributions; 

therefore, only a brief discussion of the remaining factors wi ll be 
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given here. Georgii provided a comparison of the concentration of 

trace constituents in both pure and polluted atmospheres, and he showed 

a reduction of incoming solar radiation due to the haze dome above 

cities (see Table 2-3). The greatest loss of sunshine is commonly 

observed during the winter months, when pollutants emitted from domes tic 

heating are at a maximum. In addition to the "blanketing effect" of 

pollutants on incoming solar radiation during the day, at night the 

pollutants absorb heat energy transmitted from a city surface and 

reradiate it downward to intensify the nocturnal heat island. 

An elevated inversion layer may be generated over the city when the 

pollution upper surface is cooled by long wave radiation to the sky. 

This, in turn, promotes the further increase of pollution concentration 

in the city, until morning when the sun's heat may finally destroy the 

inversion (Mitchell, 1961). 

A very interesting explanation concerning the formation of fog 

in a city is given i Georgii (1968, p. 221). "The frequency of fog 

formation in urban environment is higher in spite of the fact that 

the air temperature in cities is higher and the relative humidity is 

lower within the cities compared to the countryside. The explanation 

for th is contradiction must be seen in the mechanism of fog formation. 

High concentration of sulfur dioxide, the formation of sulfuric acid 

by catalytic oxidation on the surface of particulate matter in a humid 

environment leads to the formation of small fog droplets under condi­

tions when in a pure atmosphere fog would not yet form." 

Five to ten percent precipitation increase over cities is commonly 

accepted. But a quantitative verification of the relation between 

precipitation and urbanization is not available. Several possib le 
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reasons for an increase of precipitation over an urban complex are: 

increased convection by added heat, added updraft motions from 

friction-barrier effects, added water vapor, and added condensation 

nuclei and freez i ng nuclei (Changnon, 1968; Peterson, 1969). Oke and 

Hannel (1968) noted a formation of small cumulus clouds at about 

300 m over steelmills. 

Three major causes of urb~n heat islands have been discussed. The 

following sections describe recent observational evidences of urban 

heat islands over several major cities, show their common characteristics, 

and seek to correlate meteorological factors with the formation of a 

heat island. 

2.2.2.2 Observations of urban heat islands (temperature 

and local wind distributions) - Since urban heat island effects are 

most pronounced at night, almost all past observers described the 

nocturnal heat island. Daytime temperature differences have also 

been observed (Ludwig and Kealoha, 1968; Preston-Whyte, 1970), but 

their magnitudes are generally small. Furthermore, measurement 

difficulties arise since "daytime attempts to record temperature 

patterns were frustrated by constant sun-shade changes along the roads 

traveled, caused by trees, buildings and other roadside obstructions" 

(Kopec, 1970). 

a) Duckworth and Sandberg's work (California) 

Duckworth and Sandberg (1954) measured horizontal and vertical 

temperature gradients over three California cities, San Francisco, 

San Jose, and Palo Alto, by intensive traverse with automobile­

mounted thermistors and by release of a wire sonde simultaneously at 

urban centers and peripheral open areas. 
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Most surveys were made in the evening, between 2000 and 2400 

hours, when urban differentials appear to be most pronounced; no 

correction for change of temperature with time appeared necessary. 

The maximum temperature was almost always located in the most densely 

built-up area, defining the center of an urban heat island; the minimum 

temperature almost always appeared at s ome point on peripheral open 

lands. To characterize the scale of urban effects, three different 

measures were developed: urban differential DT, which was defined 

as the difference between the maximum and minimum observed temperatures 

in the traversed area; R/~T, which was defined as the least distance 

in miles along which a 1°F temperature change might be obtained; and 

area A, which was de fined as the area continguous to the urban center, 

0 with a temperature more than 2 F greater than the mean of the chart, as 

based upon the maximum and minimum temperatures. 

The urban differential DT increases with increasing city size 

but at a relatively slow rate. Representative values of DT are 

0 0 0 4- 6 F for Palo Alto, 7-9 F for San Jose, and 10-12 F for San 

Francisco, even though the population of San Francisco is 24 times 

greater than that of Palo Alto. On two consecutive nights with nearly 

identically favorable meteorological conditions the observed DT 

values were 12°F for Palo Alto and 20°F for San Francisco, indicating 

the difference in city size. 

The quantity R/ ~T shows values increasing somewhat more rapidly 

with city size, i.e., from 0.05 - 0.15 mi/°F for Palo Alto to 

0.30 - 0.40 mi/°F for San Francisco. This relation follows from the 

fact that the total differential varies slowly with increase in city 

size; hence a slight increase i n differential must spread over a 
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greater distance in the city. Consequently, the larger city has a 

flatter temperature gradient near its center. The heat island 

area A in square miles is 0.1 - 0.3 for Palo Alto, 1.5 - 2.0 for 

San Jose, and 4.0 - 6.0 for San Francisco. 

For times between 2000 and 0100 PST, 32 pairs of comparable 

soundings resulted; 30 of the 32 showed a radiation type inversion 

over open land while in built-up areas there was inversion. in only 

7 cases, isothermal conditions in 7, and lapse conditions in 18. 

At some point between 100 and 300 feet the soundings over 

built-up and undeveloped areas usually coincided, indicating a possible 

limit to the direct effect of heating from the urban surface. 

Temperatures above this point were significantly cooler over the 

built-up area than over the open area ("cross over") in 6 out of the 

12 surveys for which simultaneous vertical soundings were made. 

An example of pronounced "cross over" effect was observed at 

San Francisco on March 26, 1952. The two-meter temperature at the 

built-up site was over 11°F greater than that at the undeveloped. 

At 70 feet, however, the two temperatures coincided, and between 70 

0 and 320 feet the observed temperatures remained about 2 F colder over 

the business district than over the open park. 

On the other hand, a temperature survey of Palo Alto March 25, 

1952, under very similar meteorological conditions, showed no appreci­

able "cross over11 effect. 

b) DeMarrais' work (Louisville, Kentucky) 

Similar observations were reported by DeMarrais (1961) at the 

60, 170, and 524 ft. levels on the WHAS-TV tower in Louisville, 

Kentucky. The data indicated that the heat island of an urban area 
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had considerable effects on the vertical temperature differences 

observed at night, so that the normal diurnal range of stability 

conditions over an urban area is much smaller than that over open 

country. 

Temperature-diff erence records from flat, unpopulated areas 

showed that surface i nversions formed almost every night and 

s uperadiabatic conditions existed during most of the daylight 

hours; weak lapse conditions (between isothermal and adiabatic) 

prevailed during the transitional hours. The times of occurrence 

of the various temperature-difference categories were so regul ar 

that they could be predicted with a fair degree of accuracy. 

The 60 to 524 ft. layer at Louisville (urban area), however, 

did not show the daily temperature pattern demonstrated at non-urban 

sites. Even though the average hourly temperature differences for 

alternate hours for each half-month showed prevailing superadiabatic 

conditions during the day light hours, no generalizations could be 

made for the other hours. Inversions were observed during 

approximately 10 percent of the nocturnal hours from mid-November 

to mid-April (winter months) and during about 30 percent of the night­

time hours in the remaining part of the year. 

One of the outstanding features of the bi-hourly, semi-monthly 

plot of average temperature differences for the 60 to 170 ft. stratum 

was that only two of these averages showed an inversion condition. 

During the night hours in June, July, and September the averages were 

often greater than adiabatic, indicating that the 60 to 170 ft. stratum 

was thermally unstable mos t of the time during those periods. 
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DeMarrais' conclusions were (1) that, during the day, 

Louisville experienced lapse rates which differed only slightly 

from those observed in a non-urban area, and (2) that, during 

the night, Louisville experienced temperature differences unlike 

those observed in non-urban areas. Nocturnal inversions through the 

60 to 524 ft height existed infrequently. 

c) Bornstei n's work (New York City) 

Bornstein (1968) observed the differences in the temperature 

fields through the lowest 700 m of the atmosphere in and around 

New York City during the period from 2 hours before to 2 hours 

after sunrise. 

In summary, he pointed out that the main features of the tempera­

ture distribution in the hours around sunrise are the following: 1) 

intense surface inversions at non-urban sites, 2) absence of surface 

inversions over the city, 3) one or more relatively weak elevated 

inversion layers over the city, and 4) an urban temperature excess 

which decreases rapidly with height. 

Twenty-nine out of forty mornings studied exhibited surface 

inversions at rural sites, while on only four out of forty-two mornings 

were surface inversions observed at the city. 

Two of the characteristics of an urban heat island effect are 

the existence of one or more weak elevated inversion layers over 

the city and the presence of "cross over", which means that the temper­

ature over the city is lower than that over the rural region. Thirty­

seven out of forty-two mornings showed one or more elevat0d inversion 

layers which had mean depths over the city of 95 m, while elevated 

inversions were observed over the rural area 5 out of 34 mornings. 
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The height variation of the mean urban-rural temperature 

differences between the 50 m averaged temperatures at these sites 

showed an almost linear decrease in the mean urban temperature excess 

from l.7°C at 1.25 m to o0 c at 300 m. Above 300 m the magnitude 

0 of the difference is less than 0.2 C, and is negative from 300 to 500 m. 

During more than two-thirds of the test mornings a reverse heat 

island effect (cross over) was observed through a layer whose base 

was always above 150 m. 

d) Further observations 

Ludwig and Kealoha (1968) conducted very extensive temperature 

and humidity field observations over the city of Dallas, Texas. They 

presented a comprehensive coverage of measurements, which were obtained 

not only at night but also during the day. The daytime temperature 

0 differences were, however, very small - about 1 C. One of the very 

interesting findings of their study is that the magnitude of the urban­

rural temperature difference is found to be highly correlated with the 

stability factor of the upwind rural region. The details will be dis­

cussed in a later section. 

An urban heat island effect is not limited to very large cities. 

Kopec (1970) took night measurements of Chapel Hill, N.C., whose 

population is around 24,900. An urban temperature excess as large as 

14°F was observed. 

Preston-Whyte (1970) provided some of the very scarce daytime data 

by motor-traversing the Darban area, South Africa, during the summer 

of 1968-69. A temperature difference of l.0°C was observed, and the 

center of the heat island was displaced away from the central business 
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district by the sea breeze. It has been connnonly observed that the 

warm-air mass is displaced in the direction of the prevailing wind 

(Sm1dborg, 1950). 

e) Convergence of airflow into cities 

It has been observe that in order to compensate for an upward 

current in a convection cell induced by a city-rural temperature 

difference, there exist convergent flows on the ground into a city . 

Okita (1960) deduced the magnitude of such convergent currents in Japan 

by estimating the direction of rime formations on trees. Similar 

figures were prepared by Davidson (1967) for New York City and by 

Pooler (1963) for Louisville, Kentucky . All of the results showed clear, 

strong convergent current toward cities. 

2 . 2.2.3 Sunnnary of urban heat island observations - Commonly 

observed urban heat island characteristics are: 

1) Regular variation of daily temperature over flat unpopulated 

areas, no generalizations of variation over urban regions ; 

2) Formation of one or more elevated inversion layers over 

ci~ies, less frequent formation over rural regions ; 

3) Formation of "cross over" phenomena over cities; 

4) Displacement of heat island center windward; 

5) Less frequent occurrence of nocturnal inversion over a ci ty; 

6) Day time urban heat islands are less intense than their 

counterparts at night; 

7) Stronger nocturnal urban heat islands are observed in a calm, 

clear atmosphere; 

8) The intensity of an urban heat island depends on meteoro ­

logical (wind, stability) and phystcal (city si ze) factors; 
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9) The upper limit of an urban heat island's direct effect 

extends occasionally up to 1000 m but the average height 

ranges SO~ 400 m. 

2.2.2.4 Empirical formulae to correlate meteorological 

and physical factors with urban heat island formation - As mentioned 

above, intensity of urban-rural temperature differences depends on many 

meteorological and physical factors. Since their contributions are 

nonlinearly interrelated, a physical explanation of each contribution 

to the phenomenon is very difficult. Therefore, only empirical regres­

sion formulae are possible from observational data. These may be 

helpful in guiding further study and useful in practical investigations. 

a) Sundborg's Formula (1950) 

The temperature contrast ~T(°C) between a city and its rural 

area is assumed to be expressed by the linear combination: 

where N is cloudiness in the ten-degree scale, U is the wind 

velocity (m/sec), T is temperature (°C), and e is absolute 

humidity (g/kg). From his work in Uppsala City, Sandborg computed 

constants and obtained 

and 

(~T) 0 = 1.4 - 0.01 N - 0.09 U - 0.01 T - 0.04 e , ay 

(~T)Night = 2.8 - 0.10 N - 0.38 U - 0.02 T + 0.03 e . 
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The last expression was applied by Duckworth and Sandberg (1954) 

to their measurements in the San Francisco Bay area, and found to be 

in general agreement with observational data. 

b) Ludwig and Kealoha's Formula (1968) 

t.T = C - Cy 
1 2 

where y is the rate of change of temperature with pressure in degrees 

centigrade per millibar. In practice y is obtained from 

y = 
T 

0 
p 

0 

- T 
1 

where subscripts "o" and "l" refer to the values at the surface and 

at the first level measured above the surface, respectively. Numerical 

values of constants are found to be a function of city size (population) 

and are given as 

and 

t.T = 1. 3 

t.T = 1. 7 

6.78 y 

7.24 y 

t.T = 2.6 - 14.8 y 

for P < 500,000, 

for 500,000 < P < 2 million, 

for P > 2 million 

where P is the population of a city. 

c) Oke and Hannell's Formula (1968) 

Calm nights create favorable conditions for the formation of a 

strong nocturnal urban heat island. On the other hand, strong winds 

necessarily obliterate the heat island effect. Such a critical wind 

speed was fitted by the exponential equation: 

Ucrit = 3.4 log P - 11.6 
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where P is population as before. From this relation, a P z 2000 

gives U . = O which means that a city with a population of around 
crit 

2000 does not generate a significant heat island, even under calm 

conditions. 

2.2.2.S A theoretical model of an urban heat island - Because 

of the complexity of the urban heat island effect, very few analytical 

modelings are available. Two numerica l models will be presented here -

one by Tag (1969) and another by Myrup (1969). In both models, the 

surface temperatures were pre-specified and the general flows over the 

surface were very much simplified. Tag utilized the equation of motion 

in his numerical integration, while an energy balance equation for the 

surface of the earth was a basic equation in Myrup's treatment . . 

(a) Tag's work (1969) 

Tag utilized a umerical model for the atmosphere which is 

essentially the same as Estoque's (Estoque, 1962). They divided the 

atmosphere into two parts: a constant flux layer of SO m depth and 

a transition layer where eddy mixing decreased linearly with height. 

A soil layer with 50 cm depth was also added. Horizontal advection 

terms were assumed to be zero. 

The results obtained showed clearly the effects of certain 

characteristic parameters on city-rural temperature contrasts. These 

parameters were soil diffusivity, soil constant, albedo, and soil 

mositure. City surface temperature remained warmer when the 

appropriate parameters were chosen separately for the city and the 

country. If however, the same numerical values for moisture and 

albedo were used for both city and country, a higher rural temperature 

was obtained at noon time. Therefore, it was concluded with further 
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analysis that moisture and albedo parameters are dominant factors in 

the daytime temperature distribution, whereas correct diffusivity and 

soil constant are essential in forming a nocturnal heat island. 

(b) Myrup's work (1969) 

Myrup started with an energy balance equation for the surface of 

the earth 

RN= LE+ H + S (1) 

where ¾ i s the net radiation flux; E, the evaporation rate; L, 

the latent heat of water (so that LE is the latent heat flux); H, 

the sensible heat flux to the air; and S, the flux of heat into 

the soil. The net radiation term is a function of albedo, transmission 

coefficient for the atmosphere, latitude, etc., and an empirical 

formula was assumed. Turbulent fluxes of heat (H) and latent 

energy (LE) were related to gradients of potential temperature and 

specific humidity. A logarithmic profile was assumed for the horizontal 

velocity component; all eddy diffusivities for heat, mass and water 

vapor were constants. A set of equations were integrated by a finite 

difference technique. The results were summarized as follows. 

The rural heat budget showed that the majority of the available 

solar energy was going into evaporating water, while in the city it 

was consumed to heat the concrete. No energy appeared in the latent 

heat flux term in the city because only a 10 percent evaporating area 

was assumed. This model could produce a daytime heat island of 

3.9°C and a nocturnal heat island of 6.o 0 c. 

In order to see more clearly how the various competing parameters 

combined to produce the calculated temperatures, a systematic 
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sensitivity analysis was made for the leading parameters, such as 

rural wind speed and temperature, albedo, roughness factor, and 

evaporation. Results indicated that the urban temperature excess 

was the net effect of several competing physical processes, each 

of which, if acting alone, could produce relatively large temperature 

contrasts. Generally, there was a tendency for a cancellation 

effect so that ordinarily the temperature contrast between city and 

country was small. For instance, the decrease in evaporation as 

the city center was approached was balanced by the increasing size 

of the buildings, which augments the diffusion of heat upward. In a 

city park case these two factors work together to produce the largest 

contrast at the city center. 

2.2.2.6 Heat islands on the prairie - Heat island effects 

are not limited to urbanized regions only. As we saw in Section 2.2.2.1, 

alteration of the earth's surface character is one of the major causes 

of a temperature difference. Holmes (1969) made observations to identify 

thermal discontinuities in the atmospheric boundary layer over the 

South Alberta Prairie, Canada, mainly during the hours between 1200 and 

1500 when the highest surface temperatures were established. 

Three different types of "oasis effect", defined as the climatic 

result (e.g., modification of air temperature, atmospheric moisture, 

diffusion) of many types of discontinuities in the surface, were 

reported: 1) the prairie-lake oasis, 2) the irrigation oasis, and 

3) the agricultually complex region . In the first case, the cooling 

effect on the air of two lakes, Lake Pakowki and Lake Murray, was 

examined. In both oases large variations in surface temperature were 
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0 
noted, with the lake surface temperature about 30 Clower than the 

surrounding agricultural land. 

The surface temperature variation with time (1200, 1600, and 

2100 hours) showed the rapid cooling of the soil surfaces compared with 

the lake. The effect of the lake on the temperature of the air passing 

over it was noted at both 15 and 45 m height; the temperature per-

o 0 turbations were 3 C and 2 C, respectively. At 75 m on this particular 

day, there was no measurable effect. An interesting discovery was that 

the regions of cool temperature at 15 and 45 mare almost entirely 

displaced from the lake, while the regions where air temperature at 2 m 

is influenced by known ground conditions were almost completely 

restricted to the immediate area. The reason that the cooled air was 

displaced to the lee was not immediately obvious, but important factors 

such as radiational heating of the surface (stability), wind speed, and 

wind direction Kere suggested. 

In both the second and third cases results similar to the 

first were observed; the surface temperatures had a local character 

influenced by the ground condition, while those at higher levels had 

been affected by surface heating, wind speed, and wind direction. 

2.2.2.7 Heated island (observations and analytical 

treatments) - The heat island effect introduced by a physical island 

in the ocean will be described here. It has been previously 

mentioned (see 2.2.1) that this phenomenon was produced by mechanisms 

similar to those which produced an urban heat island. Therefore, only 

the analytical models will be presented in this section. 

Malkus and Stern (1953) and Stern and Malkus (1953) developed an 

analytical model for a heated island problem assuming that the flow is 



46 

stationary, two-dimensional, incompressible, and inviscid. Furthermore, 

the governing equations were linearized by a perturbation method. The 

final equation for a perturbed stream function has a fonnulation similar 

to that previously used for airflow over mountains. The only additional 

feature is a "heating function" which is responsive to the surface 

temperature distribut i on. The solution, except in the immediate 

vicinity of the island, has many characteristics of airflows over an 

"equivalent physical mountain". 

If ~(gs). l/2 and 2D ("dh f h d ) 1 -=-z: wit o a eate area are arge, u u 
then the mountain function is 

If 

where 

M(x) = lff(x,o) 
r - a 

fr (~) 1/2 
u 

1 
<<-

2 

6T 
M(x) = r -a 

(2.2.2.7-1) 

-~x 
1 - e u3 for x < 2D 

(2.2.2.7-2) 

_gsk x 20gsk 

e u3 (e u3 - 1) 

for x > 2D 

r is the dry-adiabatic lapse rate, a is the lapse rate for 
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undisturbed temperature, s = (f- a)/T where T is the mean 

temperature, k is the eddy diffusivity, and e is an exponentia l 

function. (The rest of the variables are listed in the table of 

symbols.) The amplitude of an equivalent mountain is 

llT 
A = sTm = 

llT 
r- :x , 

and its shape parameter is 

u3 
X = o gsk' 

(2.2 . 2 .7-3) 

(2 .2. 2 .7-4) 

where x is the distance where the mountain function takes the 
0 

height of A(l - l). The dimensionless coordination is introduced 
e 

as 

~ 
u = kx 

d = ~ D 
k 

then Eq. (2.2.2.7-2) is reduced to 

4 
- b ~ 

1 - e for ~ < 2d, 

M (0 -~~= 
A 4 4 

-b ~ 2db 
(2.2. 2. 7-5) 

e (e - 1) 

for ~ > 2d , 
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where 

b4 = gsk 2 
= gsH2 k 

u4 u2 u2H2 

It is interesting to note that l/b4 is the square of the 

product of the Froude number and the Reynolds number based on the 

eddy diffusivity. Janowitz (1968) utilized a special Reynolds 

number which was equivalent to 

different. 

-4/3 
b but the derivation was 

Figure 2-6 displays the equivalent mountain shape as given 

by Eq . (2.2.2.7-2) associated wi th a shape parameter X • 
0 

In order 

to compute quickly an equivalent height from a given set of 

meteorological parameters, several graphs are drawn in Fig. 2-7. 

By adding observational data points to the figures, they may also be 

used to predict the appearance of rows of cumulus clouds over the lee 

side of a heated island. Suppose from meteorological observations 

following values are obtained: velocity, U(m/sec); eddy diffusivity, 

2 K (m /sec); width of a heated island 2D(m); surface temperature 

excess on a heated island, ~T(°C); stability of the atmosphere, 

and characteristic height, L(m) . From Fig. 2-7c, and Fig. 2-7d 

-1 
s (m ) ; 

the Froude number is obtained. The Reynolds number may be determined 

utilizing Fig. 2-7a and Fig. 2-7e. The equivalent mountain height at 

x = 2D is obtained with the dimensionless island width 2d from Fig. 

2-7b and the non-dimensional parameter b4 from Fig . 2-7f. 

Observed values are also plotted: solid symbols show the 

variables when rows of cumulus clouds were produced, and an empty 
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symbol indicates that no convection clouds were observed. A cross 

represents a typical meteorological condition for a mountain lee­

wave phenomenon. The sources of data and numerical values used in 

plotting are provided in Table 2-4. From these results we can see 

that a very low velocity (less than 8 m/sec), a small Froude number 

(less than .05), and a large value of the parameter b4 (~0.1) 

created favorable conditions for the formation of a lee-wave motion 

downwind of the heated islands. 

In a subsequent paper, Malkus (1955) reported the existence of 

a fairly symmetrical orographic-convection cell over the island of 

Puerto Rico. From the numerical values of meteorological factors 

the equivalent mountain height obtained from Eq. (2.2.2.7-2) was 

900 m, 1 1/3 times as high as the actual mountain. The maximum rate 

of descending motion was computed as 3.3 cm/sec at 900 m and the 

average value of ascending air over the island was 10 cm/sec at 1,000 m. 

Calculated streamlines had a maximum amplitude of 800 m, which was close 

to the equivalent mountain height. These computations were based on 

the sea-breeze circulation theory developed by Stern and Malkus (1953). 

The values seem to be reasonable magnitudes for a pure sea breeze 

motion; however, they are at least one order of magnitude smaller than 

the commonly observed mountain lee-wave phenomenon with a wave amplitude 

equivalent to the computed mountain height here. 

Black and Tarmy (1963) proposed the deliberate creation of a 

thermal moW1tain, in order to reap the benefit of precipitation from 

orographically produced clouds. Soil temperature under asphalt 

coatings may be almost 20°F higher than that under nearby uncoated 

soil (Black, 1963). The temperature excess of an asphalt-coated surface 
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0 was safely assumed to be 9 F. Black and Tarmy concluded that with 

favorable meteorological conditions the asphalt-coating technique 

could theoretically produce an economical water supply. 

Observations made by Garstang, et al. (1965) reported that the 

theoretical height from Eq. (2.2.2.7-1) showed overestimations in 

a lmost all cases. The results were plotted in Fig. 2-8. The observed 

trajectories of balloons, however, definitely indicated the existence 

of thermal mountains over heated islands as predicted by the theory. 

Smith (1955) treated the heated island phenomenon as a time 

dependent problem. His model differs from that proposed by Malkus 

and Stern (1953) in that 1) convection terms were neglected, 2) no 

mean large motion was included, and 3) his model was time dependent. 

The time dependent vertical velocity components calculated had va l ues 

similar to those obtained by Malkus and Stern. The model produced 

a reasonable sea breeze circulation. 

2.2.2.8 Heated island (numerical treatment) - In order 

to retain the convection and the diffusion terms in the original 

governing equations, several numerical models have been examined by 

Tanouye (1966), Estoque and Bhumralkar (1968), and Spelman (1969). 

Tanouye numerically modeled heated island convection, utilizing 

a slightly modified version of the scheme which Estoque (1961, 1962) 

used for sea breeze analyses. Large scale fluid motions of 1, 3, 

and 5 m/sec were used for each of three island surface temperature 

0 excesses of 3, 5, and 10 C. In all of the nine cases s trong upshafts 

over the islands were produced. The maximum vertical velocity 

increased with larger island temperature excess and/or decreasing 

synoptic velocity. The variation of the maximum vertical velocity 
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computed and large scale motion and/or temperature excess over the 

island are shown in Table 2-5. The place where the maximwn velocity 

occurred was displaced from the center to the lee of the island with 

increasing synoptic wind. Assumed meteorological factors used in the 

computation were included in Fig. 2-7a to Fig. 2-7h. Although they 

were very close to the conditions reported by Malkus (1963) when a 

well developed cumulus cloud row was observed, Tanouye's model could 

not produce any ascending and descending motions over the lee of the 

island. There are two possible reasons for this: his model itself 

or his nwnerical technique. Instead of a vertical equation of motion, 

Tanouye's model utilized a hydrostatic equation which has resulted in 

elimination of horizontal variation of the vertical velocity component 

according to the linearized argwnent by Magata (1968). Therefore, 

wavy motions are not expected. The second reason lies in the s trong 

damping effects introduced in the upstream difference molecule 

utilized; they destroy the wave phenomenon, if any. Anticipating the 

analysis in Chapter IV, we can conclude that Tanouye's model appears 

to be inappropriate to simulate atmospheric wave motions. 

Moisture budget and non-uniform surface roughness were added to 

the model by Estoque and Bhumralkar (1968). Approach flows were more 

strongly retarded when larger roughness elements were added over the 

island. Otherwise, the results obtained were very similar to those 

given by Tanouye. 

Spelmai, (1968) described a numerical model for heated island 

effects utilizing a shallow water theory (see Section 2.1.6). Spelman 

claimed his results were consistent with observations by Malkus (1955). 

-1 Vertical updrafts of 4.5 cm sec and maximum upward displacement 
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of the inversion layer of nearly 400 m from its undisturbed height 

were recorded. Spelman obtained larger maximum upward vertical 

velocities by increasing the speed of the basic current. But Tanouye's 

results were completely opposite, i.e., the maximum vertical velocities 

decreased with increasing basic wind speed. Spelman argued that the 

different results might arise from the differences in the basic 

modeling techniques. 

Malkus' theory (1963) supported Spelman's results, i.e., 

an averaged upward disturbance at level h is 

and 

u3 
h = gsk ' 

(2.2.2.8-1) 

(2.2.2.8-2 ) 

where M is the effective height of an equivalent mountain obtained 

from Eq. (2.2.2.7-2) and expressed as 

M = A(l - !_) (2.2.2.8-3) 
e 

As we can see from Eq. (2.2.2.8-1), w is proportional to the speed 

of the basic current, U. 

2.3 Review of Sea Breeze Problems 

2.3.1 Introduction - During the daytime on a sunny day, summer 

. breezes from the sea to the land are often observed near a shoreline. 

This atmospheric circulation is called a sea breeze and is caused by the 

temperature difference between the water and the land. After sunset the 

flow direction is reversed and the phenomenon is called a land breeze. 
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Similar motions are observed near lakes (lake breeze) or forests 

(forest breeze). 

Although a sea breeze is quite a familiar phenomenon, very few 

observational data are available. This is partially due to the dif­

ficulty of measurements over the sea; moreover, it is not easy to 

distinguish the breeze from superposed large scale motions . 

An extensive effort has been made to work out an analytical 

explanation of this rather simple convectional motion in the hope that 

the solution will lead to the explanation for more complicated heat 

transfer problems in the atmosphere. 

2.3.2 Observational evidence - The sea breeze circulation system 

consists of a landward current near the earth's surface and a much 

weaker but deeper return flow above it about two orders of magnitude 

smaller. The horizontal scale of the circulation is about 30 to SO km 

from the seashore landward, but it varies with land-sea temperature 

contrasts, or the prevailing synoptic situation. Magnitude of the 

horizontal velocity is around 10-20 m/sec, and that of the vertical 

velocity component is 10-20 cm/sec (Fisher, 1960). Humphrey (1964, 

pp. 157-159) estimated the scale of a sea breeze by using a simple model 

assuming hydrostatic equilibrium and a constant temperature distribu­

tion. He predicted a horizontal scale of about 30 km and a vertical 

scale of around 300 m somewhat smaller than observations. The 

scale of a sea breeze i s mainly determined by a combination of many 

factors, such as temper ature contrast over the sea and the land, 

stability conditions in the air, surface roughness of the sea and the 

land, or insolations by cloud cover. Consequently the magnitude of the 

veloci ties is also a function of a combination of the above conditions. 
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A land breeze has a smaller scale than a sea breeze. It is \veaker over 

the sea because of smaller temperature differences during the night and 

the dissipation of energy over the land's rougher surface. 

Moroz (1967) observed a lake breeze at a site on the eastern shore 

of Lake Michigan. The depth of onshore flow in a fully developed lake 

breeze at the lake shoreline was about 750 m, and horizontal onshore 

velocities exceeding 7 m/sec have been observed. The region of onshore 

flow extended 25 to 30 km inland but did not reach 53 km inland for any 

of the cases observed. 

2.3.3 Analytical treatment - A sea breeze circulation is a result 

of a temperature difference over land and sea coupled with a pressure 

gradient. This may be understood by applying the circulation theorem 

(for example, Hess, 1959, pp. 244-246). By taking a curl operation over 

the two-dimensional equation of motion, a vorticity transport equation 

with a solenoidal term 1 -V - x VP 
p 

is obtained. This forcing function 

produces a y-direction vorticity component. It always exists llllless 

1 
- V -

p 
and VP are parallel. In a sea breeze situation pressure dis-

tribution is safely assumed to be hydrostatic, which means VP is 

directed vertically downward. The density over land has a smaller value 

than that over the sea if height is held constant, because air over 

land is heated from the surface. Therefore constant density lines 

decline in the vicinity of a shoreline, which is the physical explana-

tion for the existence of a solenoidal term 1 - V - x VP. Since the p 

governing equations are non-linear, exact analytical solutions for the 

sea breeze phenomenon have not yet been obtained. Therefore some 

simplifications were unavoidable in order to obtain analytical 

expressions. 
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Haurwitz (1947) provided one of the earliest efforts in thi s fie ld 

by using a circulation theorem. He incorporated a viscosi t y t er m in 

the equations of motion which is assumed to be proportional to, and 

in opposite direction to the local velocity . His conclusion was that 

the friction term in his model brings the maximum intensity of a sea 

breeze earlier in the day whil e without the friction term it occurs 

when the t emperature difference between land and water decr eases to 

zero. 

The intensity of a sea breeze is influenced by many factors besides 

land-water temperature differ ence . The important roles of a gradient 

wind, topography near the coas t, and s tab i lity of the atmosphere we re 

explained in Wexler (1946). 

2.3.4 Nwnerical trea tment - Fishe r (1961) designed a numerical 

model based on his earlier sea breeze observations along a portion of 

the New England coast near Block Island, Rhode Island (Fisher, 1960). 

He asswned an infinitely long beach and neglected the variables along 

it. He generated a vorticity transport equation to describe the motion 

in a vertical plane perpendicular to the coast line. Evaluating the 

magnitude of solenoidal terms in the equation under certain pre-specified 

ideal atmospheri c conditions, he finally obtained the same expression 

as that obtainable from the Boussinesq approximation. In his original 

equations of motion he as sumed that viscous stresses might be neglected 

for the vertical component of motion, that horizontal variations of the 

horizontal components of motion may be neglected, and that eddy viscos ity 

coefficients in both horizontal directions may be regarded as the same. 

The coefficient of eddy di ffusivity with height was given based on 

observations. 
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Fisher's model simulated not only general features of the wind 

system but many of its small details as well. Unfortunately a direct 

comparison with his earlier observations was not possible because in 

his model the large scale synoptic motions were assumed to be zero. 

Fisher's study is not the first to solve a sea breeze problem by 

numerical analysis (Pearce, 1955), but he did suggest many interesting 

and important aspects of a numerical analysis, even though he could not 

prove them all. For example, he noted that solutions depend on dif­

ferent finite difference approximations, size of the finite domain of 

computation, initial and boundary conditions, etc. Since the need to 

discuss these factors was encountered in the course of the present 

numerical formulation of the problem, they will be described in 

Chapter IV. 

Estoque (1961) added the hydrostatic equation to those utilized 

in Fisher (1961). He decomposed the dependent variables into the sum 

of two components: one is due to a large scale synoptic motion and the 

other is a perturbation due to the effects of friction, and differential 

heating. Consequently he had to solve two sets of equations. He solved, 

however, only the disturbance quantities, assuming that no synoptic 

motion existed. The region was divided into two horizontal sublayers; 

a relatively thin layer, 0 < x < h ~ SO m characterized by constant 

vertical eddy fluxes of heat and momentum, and an overlying transition 

layer, h< x < H ~ 2 km where the effect of eddy fluxes decreased with 

elevation. 

Estoque (1962), by an extension of his first paper, eventually 

investigated the effect of the prevailing synoptic motion on the develop­

ment of a sea breeze circulation. He assumed as initial conditions 
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that the lapse rate was 7 °K/km and that the geostropic wind had a 

magnitude of 5 m/sec, with various shoreline approach angles. His 

results simulated the diurnal development of a sea bree ze. At an 

early time s tage the perturbation remained in the vicinity of the shore­

line; it grew with time and eventually penetrated further landward. 

The circulation recorded a maximum development at eight hours after the 

motion started, then it decreased. The maximum computed velocity 

components of 10 m sec-l in the horizontal and± 14 cm/sec in the 

vertical direction were consistent with earlier observations. 

Magata (1965) added the effects of condensation and evaporation in 

his energy equation. He derived the temperature distribution at the 

surface of the land and the water by balancing insolation, nocturnal 

radiation, conduction and eddy transfer of heat. The distribution of 

the eddy diffusivity coefficient was assumed to be a function of the 

vertical coordinate only and was obtained by a numerical analysis of an 

observed inversion layer. He concluded that the magnitude of synoptic 

motions and the vertical shear they introduce are significant during 

sea breeze development. 

A universal expression for eddy diffusivity which is appropriate 

for all atmospheric conditions is not yet available. Fisher and Magata 

used typical profiles based on an evaluation of atmospheric data. 

Estoque and Bhumralkar (1968) utilized semi-empirical expressions which 

are a function of stability, shear, and the roughness element in the 

lowest constant flux layer. In the upper layer eddy diffusivity is 

assumed to decrease linearly to zero at the upper boundary. The ef­

fect of change of surface roughness and mositure budget was included 

in all of Estoque's sea breeze modeling (1968). 
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2.3.5 Some concluding remarks on simulation of sea breeze by 

a numerical experiment - The above review suggests that the following 

physical factors should be included in any simulation of sea breeze 

circulation development: 

i) Appropriate expressions for eddy diffusivity including the 

effects of local velocity and temperature. 

ii) Temperature distribution at the surface along the land and 

the water as governed by the heat balance associated with 

insolation, nocturnal radiation, conduction into a soil 

layer and eddy transfer to the atmosphere. 

iii) Effect of shear of a basic wind; 

iv) The release of a latent heat by condensation and evaporation, 

and 

v) The effect of surface roughness change over the land and the 

sea. 

In addition to improvements in numerical modeling techniques, 

extensive prototype observations are essential in augmenting theoretical 

results. 
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CIIAPTER III 

EXPERIMENTAL FACILITIES AND PROCEDURES 

3.1 Introduction (Necessity of a Wind Tunnel Experiment) 

The following methods are available to study small scale 

geophysical flows, such as a lee-wave motion, a sea breeze circulation, 

or an urban heat island convection: 

1) analytical, 

2) numerical, 

3) field experimental, and 

4) laboratory experimental. 

Each method has its own merits and demerits. For example, analytical 

solutions are not yet available for a complete set of nonlinear 

governing equations. A numerical solution may be inferior to an 

analytical one in accuracy, but it is an extremely useful approach when 

analytically rigorous solutions are not available. A field study 

may be time consuming and expensive compared with a laboratory 

simulation. A further advantage of wind tunnel simulation is that 

important variables may be changed systematically. However, difficulties 

may arise because it is necessary to consider scaling effects which are 

not yet fully understood for turbulent motion. 

Therefore, it is good strategy to utilize the advantages of 

each, combining the different methods for a better understanding of 

complicated geophysical problems. 
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3.2 Basic Requirements 

3.2.1 Similarity 1n mountain lee-wave phenomena - The complete 

similarity requirement for a mountain lee-wave phenomenon was 

described in Cermak et al. (1966, pp. 39-51). Here only certain 

aspects of geometric and dyn~nic similarity will be discussed. 

Following the arguments in Queney (1960, p. 104) the Scorer 

function is given as 

S = M2 (~ 
C u2 

If the shear term is neglected, then the Scorer function may be 

interpreted as a global Richardson number based on the mountain 

height, M. The following values are substituted from a typical 

mountain lee-wave situation: 

then 

y = 0.006° c/m, 

f = 250 k, and 

u = 20 m/sec, 

S = 1.6 X 10-5 -1 
m and for the atmosphere. 

I f a geometric scaling is 1:3 x 10-5 and the temperature 

gradient in a wind tunnel can be maintained at 1°C/cm, the velocity 

in a model experiment must be 8.6 cm/sec for dynamic similarity. 

These values are extremely difficult to obtain in the ordinary wind 

tunnel. Moreover, instruments to measure accurately such a low 

velocity in a strong temperature stratification have not yet been 

developed. 
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Similarity in heated island phenomena - According to a 

theory proposed by Stern and Malkus (1953), it is necessary 

~k uz > ½ in order to simulate an equivalent mountain 

capable of developing strong gravity waves downwind of a heated 

boundary. It will be easily seen that the above relation, because it 

requires an unusually large stability and a small velocity; cannot 

be satisfied in any e1 isti~g wind tunnel facility, for example, 

and 
2 k = 0.2 cm /sec requires 

u < 0.83 cm/sec. If u = 4 cm/sec and 2 k = 0.2 cm /sec then a 

-1 s > 1.63 cm is required for a simulation, which is equivalent to 

0 500 C/cm. It is impossible to satisfy the relation /gs k/U
2 1 

> -2 

unless viscosity k is artificially modified by a factor of at least 

30. Thus a thermal equivalent mountain in a wind tunnel experiment 

must take a plateau shape as described by Eq. (2.2.2.7-2): the 

mountain starts at the leading edge of the island and increases 

asymptotically to reach its maximum height directly above the end of 

the island, then decreases exponentially. 

To see the shape of a thermal mountain which might possibly be 

simulated, the following numerical values are substituted into the same 

equation. 

u = 4 cm/sec, 

s = 4.67 x 10-3 cm- 1 c:; = 1.4°C/cm, f = 300 k). 

Molecular viscosity of 0.2 cm2/sec, an island width of 8 cm, and a 

temperature excess over the island of 56°C were assumed. The computed 

mountain increased its height almost linearly to 8.4 cm at the end of 

the island, then decreased exponentially, taking the values of 6.1, 
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2.3, and 0.1 cm at x = 30, 100, and 350 cm, respectively. It would 

be simple to compare the maximum mountain height of 8.4 with experimental 

results for airflow over an obstacle whose height is 8 cm. 

Summarizing, it evidently is necessary to obtain a velocity ranging 

from 4 to 15 cm/sec, and a temperature gradient of 0.5°C/c.n to 

0 1. 5 C/cm, in order to simulate atmospheric lee-wave phenomena and heated 

island problems in a wind tunnel facility. The above requirements are 

equivalent to attaining a Froude number based on the wind tunnel 

height (60 cm) from 0.030 to 0.196. 

3.3 Design and Construction 

3.3.l Existing thermal wind tunnels - Although there are quite 

a few low speed, small wind tunnels (see Pope and Hooper, 1966, for 

general information), guidance for the design of a thermal wind tunnel 

is limited. Several reports are available, including Plate and Cermak 

(1963), Strom and Kaplin (1968), Charpentier (1967), Scotti (1969), and 

Hewett et al . (1970). Since their facilities were designed to satisfy 

special purposes, duplication of their designs was not desirable . The 

tunnels of Strom and Kaplin, and Charpentier could not produce the 

strong temperature gradient required here; Scotti was primarily 

interested in a free shear layer whose thickness was about 1/4 inch, 

and Hewett treated flows whose duct Froude numbers were greater than 

1 
TI 

Thus, it is necessary to develop our own design criteria. 

3.3.2 Test section - Dimensions of the test section of the 

proposed wind tunnel are 2 ft height x 2 ft width x 15 ft length 

(see Fig. 3-1). 
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a) Removable Windows 

One side of the wind tunnel wall has five removable windows with 

3 ft x 3 ft square area for the convenience of measurements. Two of 

them are made of plexiglas and seven slots are cut over one quarter 

of the area of each window. Instruments are inserted from the outside 

of the wind tunnel so that supports do not disturb the flow inside the 

t es t sectiJn. Two series of sl ots shown in Fig. 3-2 provide access 

to the entire test section by rotating the windows. 

b) Adjustable Ceiling 

Ceilings are adjustable to compensate for acceleration of the 

free stream as induced by the growth of boundary layers along the 

floors, ceiling, and both side walls. The ceiling can be raised to 

a maximum of about 20 cm near the end of the test section while a 

displacement thickness for a typical flow situation is around 2.5 cm. 

Fig. 3-1 displays four pairs of adjustment devices, each of which 

consists of a screw and a crank. 

3.3.3 Entrance and ceiling heaters - A simple computat ion was 

conducted to estimate the transport of energy supplied by electric 

heaters to a wind tunnel atmosphere. 

a) Entrance Heaters 

The dimensions of an electric sheet heater are assumed to be 

6 in. x 24 in. The rate of total heat transfer by convection over 

the heater is (see Kreith, 1968, p. 296) 

q = 0 .664 k R l/ 2 P l/3 b(T - T) 
eL r s oo ' 
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where 

b: width of the heater, 

T: heater surface temperature, 
s 

T
00

: ambient air temperature, 

R Reynolds number at x = L, and 
eL 

k: conductivity. 

Then numerical values of b = 24 inch, T = 300°F, T = 75° F, 
S 00 

L = 6 inch, u = 0.5 ft/sec, and k = 0.0171 Btu/hr ft F are 

substituted to obtain 

q = 155 Btu/hr= 45.4 watts . 

Since heat energy may be transferred from both sides of the heater, 

q is 90.8 watts per heater. If sixteen heaters are used, then a total 

of 1453 watts would be transferred to the air in the wind tunnel. The 

final arrangement of heaters is displayed in Fig. 3-2 . 

b) Ceiling Heaters 

A similar calculation was performed assuming that the temperature 

at the heater surface was 200°F and the air temperature was 170°F. 

Four large heaters 2 ft x 3 ft were selected. Under these conditions, 

the heat energy convected from the heaters is 

q = 49.5 btu/hr = 14.5 watts. 

Adding this to the previous result, we find that a total of 1500 watts 

is emitted from the heaters. 
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c) Energy Transferred from Wind Tunnel to the Atmosphere 

Under stationary conditions the rate of energy supply from the 

heaters will balance energy transferred from a wind tunnel to the 

atmosphere. The latter energy is expressed as 

where 

q = Ap C ullT, 
p 

A: area of a wind tunnel cross section, and 

llT: averaged air temperature difference between inside and 

outside wind tunnel. 

The following numerical values were substituted 

Then 

A = 4 ft 2, 3 p = 0.071 lbm/ft, Cp = 0.240 Btu/lbm F, 

u = 0.5 ft/sec, and 

q = 3681 Btu/hr 

= 1078 watts, 

0 llT = 30 F • 

which is approximately the same amount as the energy available if losses 

of energy from the wall, ceiling, or floor of the wind tunnel are 

included. 

To suJIIIlarize, heaters should meet the following requirements: 

i) 

ii) 

0 maximum surface temperature should be more than 300 F, 

power consumption should be more than 45 watts per heater 

(= 0.3 watts/in2) for the entrance heaters and 4 watts 

per heater(= 0.005 watts/in2) for the ceiling heaters. 

The following characteristics are specified for commercial heaters 

available from Chromalox Division: 
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2 Area (in) Power (watts/in2) 

24 X 6 

24 X 36 

4.5* 

2.0** 

These apparently satisfy all the requirements derived from the simple 

calculation. 

3 . 3.4 Cooling device (heat sink) - It is necessary to install 

a heat sink along the floor to maintain a strong temperature gradient. 

For this purpose, cooling panels for tap water were constructed; their 

dimensions were determined from a simplified heat transfer calculation. 

The results obtained indicate that a 1/2 inch-depth water panel covered 

with a 1/4 inch thick aluminum plate (see Fig. 3-3) can remove 480 

Btu/hr of heat energy over the surface area. A velocity of 4 cm/sec, 

for the running water in the panel, an air temperature of 90°F, and a 

0 water temperature of 42 F were assumed. The average temperature in-

o crease over a 12 ft panel length was computed to be 0.9 F. The 

measured temperature difference of water between inlet and outlet was 

about 1°c. 

3.4 Instrumentation 

3.4.1 Velocity measurements (smoke wire) - Low speed velocity 

measurements in a thermally stratified flow field are extremely dif­

ficult to make by conventional techniques. For example, a Pitot static 

tube is suitable for a higher velocity ( ~100 cm/sec), hot-wire 

techniques are very sensitive to ambient temperature changes, and a 

* P/N 171-881155-002 TYPE SL/PSA Heater 
** P/N 171-881155-001 TYPE SL/PSA Heater 
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laser doppler velocimeter method was not available for immediate 

application. 

A smoke wire method has been utilized to investigate flow fie ld 

during thennal stratification. It has been perfected for practical 

use at the Engineering Research Center, Colorado State University . 

Figure 3-4 shows a smoke wire with attached instruments for velocity 

measurements. The advantage of the smoke wire method is an instantane­

ous visualization of the velocity profile. 

The principle of the technique is to follow photographically a 

white smoke emit t ed from a wire when light oil is vaporized. In 

Fig. 3-4 A is a nichrome wire which is heated electrically, thus 

vaporizing an oil coating. Oil is dropped down by gravity through 

an oil outlet B B is connected to an oil reservoir C and an air 

bag D which is kept outside of the wind tunnel. Squeezing the air 

bag pushes the oil in the reservoir through the outlet. To measure 

velocity profiles quantitatively, several auxiliary devices are nec­

essary: a strobe, a strobe delay system, an electronic counter, a t r ig ­

ger circuit, and a camera (see Fig. 3-4). A schematic diagram which 

shows an arrangement for velocity measurements is provided in Fig. 3-5 . / ! 

A trigger circuit is connected to the smoke wire, to a strobe through 

a delay unit, and to an electronic counter. When a start button on the 

front panel of the trigger tmit is pushed, a high voltage (~700 volts) 

is applied to the nichrome wire, vaporizing the oil coating. A white 

smoke is released instantaneously and is carried along by the ambient 

wind. A typical time-delay photograph is included in Fig. 3-4. The 

actual .velocity profile can be reduced from the picture by use of the 
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recorded time difference between the moment of firing the wire and the 

moment of the strobe picture. 

3.4.2 Temperature measurements - Copper-constantan thermocouples 

of 30 gage were utilized to monitor temperature variations. Sixteen 

thermocouples were mounted on the entrance heaters, four were on the 

ceiling heaters, and three were on the floor. Nine thermocouples 

mounted on a rake were used for vertical temperature distribution 

measurements. A total of thirty-three thermocouples were connected 

to a thermocouple rotary switch, and voltages generated were read 

by a digital voltage meter. Figure 3-6 displays the complete set of 

devices for temperature measurements. 

3.5 Characteristics of the Wind Tunnel 

3.5.1 Temperature profile - An example of a vertical temperature 

profile where neither an obstacle nor a heated island was placed on the 

floor is given in Fig. 5-7. Froude number 0.100 was obtained in the 

lower layer from the velocity, 6 cm/sec, and the temperature gradient, 

0 1.25 C/cm. As seen, there are two nearly constant stability layers --

one of strong stability near the surface (0 .::_ z .::_ 13 cm), and another 

less stable above it (z >1 3 cm). This feature of two-layer stability 

is a common characte r istic of the temperature profiles throughout the 

study, although the height of intersection of the two stability lines 

varies from case to case. 

3.5.2 Standing waves - A Froude number less than 1 
TI 

provides 

a necessary condition for the formation of standing waves if there 

exists an appropriate disturbance (obstacle) (Long, 1955). Scotti 

(1969) experienced finite amplitude waves and stagnation regions in 
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his free shear flow study. Segur (1969) analyzed Scotti's case 

utilizing Long's model and concluded that his (Scotti's) wind tunnel 

had a strong contraction at the entrance section which disturbed air­

flow. Strong standing waves were also observed by Hewett et~- (1970); 

In order to minimize heat transfer through the wind tunnel side walls, 

the average temperature inside the tunnel was kept close to that of the 

room temperature. The authors believed that this temperature distri­

bution arrangement resulted in two natural convection cells which 

blocked the tunnel stream and induced waves. They argued that in the 

upper section colder air particles next to the wall moved down along 

the wall because of gravity. At the mid-point of the wind tunnel where 

particles experienced an equilibrium state, they flowed toward the 

center line of the tunnel. On the other hand, in the lower section, 

warmer particles moved upward along the wall and at the mid-point they 

also rotated toward the center line as before. These two flows from 

both side walls collided and formed stagnation regions. 

Fortunately, such strong standing waves were not experienced in 

the test section of the present experiments. Smoke was released to 

visualize flow six feet downstream from the end of the heater section. 

Nearly horizontal streamlines were obtained (as seen in Fig. 3-7) 

when Fr= J.0824; temperature surveys in the same area also 

indicated parallel flow (see Fig. 3-8). Isotherms in the cross 

sections upstream and downstream of the heated island are shown in 

Fig. 3-9. 

So far there was no evidence to indicate a strong wave motion 

in the wind tunnel as found in other wind tunnels. Temperature 

distributions just downstream of the ent rance heaters, however, 
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indicated that there existed strong disturbances in the airflow 

which were generated by large temperature differences between the 

heaters and the ambient stream (see Fig. 3-10). These disturbances 

fortunately diminished rapidly in the streamwise direction, and no 

significant variations were experienced after x = - 130 cm. 

3.5.3 A numerical simulation of airflow in a wind tunnel - A 

numerical computation was performed to test whether the strong 

disturbances were generated by the heaters at the entrance section. 

The program used is ~iscussed in detail in Chapter IV. In the first 

run, no heaters were placed in the computational region. In the 

second run, however, entrance heater temperatures were specified along 

the vertical line at j = 30. The results are displayed in Fig. 3-11. 

The upper configuration had no heaters, and the lower one included 

heaters. A definite effect of the entrance heaters was detected, and 

isotherm patterns were qualitatively similar to those obtained by 

measurements (see Fig. 3-10). 

3.5.4 A summary of wind tunnel design - We may conclude that: 

1) when Froude number is less than 1 ;, standing waves may 

be introduced by one or more of the following factors: 

a) contractions of a wind tunnel section, 

b) natural convections of density differences generated 

by side walls, and 

c) a temperature difference between the heaters and 

approaching air. 

2) If a wind tunnel is long enough and waves are not strong, 

fairly horizontal flow will be obtained in the downstream 

test section. 
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CHAPTER IV 

THEORETICAL ANALYSES BY NUMERICAL METHODS 

4.1 Analytical Approach 

Since the governing equations of the fluid motion are given by a 

set of nonlinear partial differential equations no analytical s olutions 

in closed form have been obtained without simplifications based on 

intuition, experience, prototype observation, or laboratory experiment. 

Many different methods have been used to simplify the equations. 

Generally these may be classified as: 

1. Perturbation t echniques which linearize the equations after 

neglecting higher order terms of small quantities. 

2. Similarity assumptions which develop a set of ordinarily 

differential equations from those of the original partial differential 

equations. 

3. Boundary layer t ype assumpt i ons which produce equations of a 

parabolic type rather t han the original elliptic ones. 

Meteorologists have also introduced other simplifications such as 

the assumptions of hydros tatic and geostrophic equilibrium. 

One must decide which simplification or simplifications can be 

utilized for his special problem. This is not always easy because 

in many cases needed justifications arB only possible after solutions 

are obtained. There are many examples where the simplified governing 

equations include solutions which are contradictory to the original 

assumptions. For example, equations linearlized by perturbation 

techniques may include solutions in which the perturbations are com­

parable with or larger than a mean quantity. 
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We also know, however, that such simplified analytical solutions 

give a very good insight into even very complicated problems. Thus one 

of the advantage of analytical solutions is that they may correctly 

develop functional dependence. Therefore analytical methods are usually 

preferred where possible. 

4.2 Limitations to an Analytical Approach 

Long (1953) derived exact analytical expressions for a flow over an 

obstacle when the flow is two dimensional. Yih (1965) extended Long's 

model for a broader, more general classification to reduce the original 

nonlinear equations to linear ones which can be solved analytically. 

This transformation is possible, however, only when the flow is steady 

and nonviscous. 

Restrictions to the type of solution considered also arise from 

the upstream boundary conditions required in Long's model, i.e., a 

linear variation of density with height and a constancy of a dynamic 

head upstream. These restrictions impose a problem of uniqueness and 

existence of a solution. Long (1955) himself observed a blocking effect 

of an obstacle when the Froude number was very small, which by means 

of an upstream wave alters the assumed density and dynamic pressure dis­

tribution at the upstream boundary. Thus the problem is overspecified. 

Segur (1969) discussed an existence criterion for solutions of a 

stratified flow into a two dimensional contraction using Long's model. 

He suggested an existence criterion which is a function of a stability 

parameter and a contraction ratio of the channel. According to his 

notations, this is stated as follows. 

For any one-sided contraction with k > 1, a bounded solution 

to Long's model exists uniquely if 
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[k] = [k L', JJ] 
TT 

where [S] denotes the integer corresponding to any real number S such 

that O ~ S - [S] ~ 1 . k is an inverse Froude number based on the 

height H/n and related to a global Richardson number by R. = k
2n2. 

1 

H is the original channel height. L',JJ is the contracted section height 

nondimensionalized by H/n . Therefore, L',JJ/TT is a contraction ratio of 

the channel. He included symmetric aLd asymmetric contractions, but 

only the statement for the one sided contraction was quoted here which 

represents a flow over a plateau. 

The above criterion was applied to predict the blocking effect of 

Long's experiments when a barrier was used. The predicted instabilities 

were verified by Long's experiments (Table 1 in Segur, 1969). Apparentl y 

this is one of the very few cases to have been extensively studied 

analytically and verified by experiments for a criterion of existence 

of a solution of Long's equation under the assumed boundary conditions. 

This test is not always feasible, however, because of its time 

consuming procedures. In addition, it may not be suitable for more 

general problems. 

One possible way to eliminate the difficult mathematical existence 

proof is to treat the problem as an initial value problem rather than a 

boundary val ue one. 

Transformations of variables are, however, no longer possible 

(Yih, 1965) which means we cannot use the same procedure which Long or 

Yih used to reduce the nonlinear governing equations to linear ones for 

steady problems. 
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4.3 Necessity of Numerical Integration 

An alternative solution approach is a numerical integration using 

a digital computer. This is one of the most powerful methods available 

at present for nonlinear problems with complicated boundary and initial 

conditions. Numerical integration had a long history even before digital 

computers were developed; however, there are still many unsolved problems 

in the techniques themselves, especially for nonlinear problems. A 

stability analysis is considered the most important and yet difficult 

technique for unsteady problems. The finite difference scheme is said 

to be stable if the difference between the exact solution of the dif­

ferential equation and that of the finite difference equation is bounded 

as the integration time goes to infinity for fixed time and space 

increments. The stability analysis required depends on the particular 

differencing molecule chosen. Therefore, it will be discussed in detail 

after a finite difference scheme for the current problem has been 

developed. 

4.4 Formulation of Problem 

4.4.1 Two dimensionality - The formulation of the problem is 

initially based on the assumption of two dimensonality. Variations in 

dependent variables are limited only to the planes vertical and 

longitudinal to the source of flow disturbance, i.e., a heat island or 

an obstacle. 

Physically this indicates that a heat island or an obstacle extends 

to infinitely in the lateral to the flow direction. 

The equation of continuity in two dimensional space may be stated 

as 



!2.e. 
Dt + p 

au 
(- + ax 
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aw ) = 0 a z 

The x and z coordinates are to be taken in the direction 

perpendicular to the discontinuity (heat island or obstacle) and 

(4. 4.1-1) 

vertical, respectively. The origin is located upwind of the di scontinuity 

where the flow is from left to right. 

Velocity components u and w are in the x and z direction, 

respectively. p is density and D/Dt is the Eulerian operator which 

is expressed as 

a 
at 

a a 
+ u - + w ax az 

4.4.2 Incompressibility - When Dp /Dt = 0 the fluid is incompres ­

sible which means a fluid particle does not change its density along 

the streamline. This situation is true for homogeneous fluids as long 

as the fluid velocity is small compared to the speed of sound, i.e . , 

2 
u 

M= 2 « 1 
C 

For stratifi ed flow, however, one has to evaluate the magnitude 

of 1/p (Dp/Dt) 

typical value of 

for the specified pro.::>lem. Fisher (1961) evaluated a 

-6 -1 1/p (Dp/ Dt) as order of 10 sec , where the maximum 

rates of individual temperature change in the lower layers of the 

atmosphere was conventionally assumed to average less than 0.5 deg C 

per hour, pressur e p was 1,000 mb, a~d temperature T was 

The horizontal divergence term in the equation of continuity in a small-

-4 -1 scale circulation such as a sea bree ze is approximately 10 sec 
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(10 m per sec per 50 km). Therefore, the divergence term is two orders 

of magnitude larger than the compressibility term in the equation. 

The heat island problem and gravity wave phenomena are also the 

same sort of circulation (horizontal scale, 50 ~ 100 km, and vertical 

scale, 1 ~ 10 km). Therefore, incompressibility may be safely assumed 

except perhaps in the local vicinity of the surface temperature dis­

continuity itself . 

A similar argument is given to show the approximate v: 1;dity of an 

incompressibility assumption for fluids in wind tunnel experiments. The 

compressibility term 

variable magnitudes: 

1 
p 

Op 
Ot is evaluated anticipating the following 

w ~ 10 cm/sec 

Since 

au aw 
ax , az ~ 

10 cm/sec -1 
= 5 X 10 

20 cm 

aT o az ~ 1 C/cm, and 

1 Op ~ w aT 
p Dt T az 

1 
p 

a substitution of the above numerical values gives 

which is one order of magnitude less than the divergence terms, 

or aw 
az Therefore incompressibility of flow is also justified in wind 

tunnel experiments. 
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In past studies of mountain lee waves, incompressibility was no t 

commonly assumed, but linearlizing perturbation techniques were used . 

Here we take a reverse situation, i.e., we retain nonlinearlity but 

incompressibility is assumed. Thus tte equation of continuity (4.4.1-1) 

is finally written as 

clu cl w 
+ = 0 

cl x cl z 

4.5 Vorticity Transport Equation 

The x and z components of the equation of motion are 

Du 
Dt = 

Ow 
Dt = 

1 
p 

- !~ 
p cl z 

2 
+ Kil u 

2 
g + Kil w 

(4 .4. 2-1 ) 

(4.5-1 ) 

(4.5-2) 

where K is a total diffusivity and is taken to be a constant. Better 

functional forms for K should be taken if atmospheric turbulent motion 

is simulated. For example Fisher (1961), Estoque (1961, 1962) and 

Magata (1965) have used variable diffusivity K in their numerical 

models. However, as summarized in the paper by Zilitinkevich et al. 

(1967), the variations of K are quite complicated. Therefore, we take 

K as a constant for simp l icity. Since all numerical works presented 

here simulate wind tunnel results, a constant K is more realistic. 

It will be assumed here that K is the same in horizontal and vertical 

directions. g is the acceleration of gravity. Coriolis force due to 
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the earth's rotation is neglected for this kind of small circulation. 

(For example, see Cermak et al., 1966). 

v2 is the Laplacian operator in two dimensional space 

v2 = 
a2 
-- + 
ax2 

In two dimensional homogeneous flow it is often convenient to use a 

vorticity transport equation rather than the original equations of 

motion . In the former equation, pressure terms are absent. It is 

interesting to note that pressure does not appear in the vorticity 

equation. However, for nonhomogeneous flow it is not necessarily true 

that a vorticity transport equation is more convenient than the original 

equation of motion. It again depends on the problems studied. 

The vorticity in y direction, which is the only component, which 

exists in two dimensional flow, is defined as 

I;; = 
aw 
ax 

au 
az (4.5-3) 

Cross differentiations of Eqs. (4.5-1) and (4.5-2) and subtraction 

gives (utilizing the incompressibility (4.4.2-1)), 

where 

~ = aa ~ 
Dt a z ax (4.5-4) 

i;; is defined in Eq. (4.5-3) and a is the specific volume, 

a= 1/p. If the flow field is homogeneous, then the solenoidal term 

aa ~ _ 
az ax 

is always zero. Fisher (1961) evaluated the numerical value of the 
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solenoidal term for the sea breeze phenomena and concluded that the 

first term (a a/az)(ap/ ax) was at least one order of magnitude smaller 

than the second term (aa/ ax)( ap/ az) and therefore might be negl ected . 

Since our study includes an attempt to verify a numerical model 

by wind tunnel simulation experiments, it is necessary to r e justi fy the 

simplified solenoidal tenn in the vorticity transport equation. 

a may be eliminated from the solenoidal tenn by use of the 

equation of state, 1 p = - RT, then we obtain 
a 

~ ~ - ~ ~ - R [aT ~ - aT ~] 
az ax ax az - p az ax ax az 

where R is the gas constant for dry air. 

(4.5-5) 

The following numerical values were obtained by the wind tunnel 

test experiments: 

aT 
az = 

1 °c 
1 cm 1 

o -1 
= c cm 

ap/ax is estimated as a first approximation through the Bernoull i 

equation. 

where 

~ au -2 -3 
= - p u ;--x - 10 dynes cm ax a 

3 -3 
p "' 10- gr cm -1 u ~ 20 cm sec 

are assumed. 

Then ( aT/ 3z)( ap/ 3x) = 10- 2 0 c dynes 

and 

-4 cm 

au/ax= 5 cm/sec/10 cm 

Hydrostatic equilibrium 

is assumed as a first approximation for ap/ az, i.e., 

~ ::: 1 dyne -3 - pg = cm az 

aT 2°c 10- 1 oc -1 ax= 20cm = cm 



Therefore, 

aT 
ax 
~ = 
az 

80 

-1 0 -4 10 C dynes cm 

The conclusion is thus the same as for the prototype case derived 

by Fisher. The (aT/az)(ap/ax) term is one order of magnitude smaller 

than (aT/ax)(ap/az). Hence, the former may be neglected. 

4.6 Simplified Vorticity Transport Equation 

Further transformation is conducted on the remaining solenoidal term 

(aT/ax)(ap/ az). Hydrostatic equilibrium is assumed as a first approxi-

mation, then we obtain, 

aT ~ - - EK aT 
ax az - RT ax 

where the equation of state is again used to eliminate density p. The 

final simplified expression of the solenoidal term is, from Eq. (4.5-5), 

as 

aa ~ _ ~~::: 
az ax ax az 

g aT 
T ax 

Therefore the simplified vorticity transport equation is obtained 

Ds _ 2 g aT 
Dt - KV s + T ax (4.6-1) 
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4.7 Boussinesq Approximation 

The simplified vorticity equation can also be obtained from the 

Bossinesq approximation. This equation states that the density change 

caused by temperature nonhomogeneity a=fects only body forces but not 

inertia terms (Chandrasekhar, 1961). For simplicity of argument one 

can neglect diffusion terms from the equation of motion, i.e., 

Du 
Dt = 

Ow l_ ~ _ 
Dt = - p a z g {1 - S (T-T oo) } , 

0 

where s is the coefficient of expans ~on and T - T 
CX) 

is the tempera-

ture difference between a hotter fluid particle and the colder sur­

roundings. Cross differentiating and subtracting the two equations we 

have 

Dz;; .[ aT 
Dt = T ax 

If the diffusion terms are reinse~ted, expression (4.6-1) is 

obtained. 

4.8 Stream Function 

The continuity equation of incompressible fluid (4.4.2-1) permits 

the existence of a stream function ~ such that 

u = -~ az and w 
(4.8-1) 

Introduction of a stream function ~ guarantees that the 

continuity equation (4.4.2-1) is satisfied. Substituting the stream 

function into Eq. (4.5-3) we obtain a ~elation between the vorticity 
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s and the stream function t as 

(4.8-2) 

4.9 Equation of Energy 

The equation of energy in this case is given as 

(4.9-1) 

where K' is a total heat diffusivity. 

The set of equations (4.6-1), (4.8-2) and (4.9-1) with the defini­

tion of the stream function (4.8-1) are to be integrated numerically 

with appropriate boundary and initial conditions. 

4.10 General Discussion of Finite Difference Approximations 

Partial differential equations may be approximated by finite 

difference analogy. Variables are represented at a finite number of 

discrete grid points rather than over a continuous field. Therefore, it 

is necessary to examine how accurately they represent the exact solutions 

of the equations. Two different but interrelated criteria must be 

considered. One is a convergence condition and another is a stability 

criteria. Detailed discussions are given in many textbooks (for example, 

Forsythe and Wascow, 1960; Smith, 1965; Richtmyer and Morton, 1967; 

Carnahan et al., 1969). 

4.10.1 The concept of convergence - A finite difference equation 

is said to be convergent when the exact solutions of a difference equa­

tion tends to the exact solution of the original partial differential 

equation as both space and time grid increments tend to zero. 

Convergent criteria for linear equations with fairly generaly boundary 
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conditions are established (Smith, 1965). However, they are not known 

as yet for nonlinear partial differential equations except for a few 

special cases. 

The convergent criteria for the problem studied herein is not 

apparent; however, stability of the problem may secure convergence as 

stated by Lax's equivalence theorem developed for linear problems. 

Lax's equivalence theorem states that: given a properly posed initial­

value problem and a finite-difference approximation to it t hat satisfies 

the consistency conditions, stability is the necessary and sufficient 

conditions for convergence (Richtmyer and Morton, 1967, p. 45). This 

may not be true of course, for nonlinear problems without a rigorous 

mathematical proof; however, we will assume that even for nonlinear 

problems Lax's theorem may hold. 

4.10.2 The concept of stability - During numerical integration of 

a finite difference equation computations are carried out with a finite 

number of decimal places which introduces a "round off" error . If a 

stability criterion is not satisfied, round off errors may accumulate as 

integration proceeds and cause solutions to take rmreasonably large 

values. In such a situation a difference equation is said to be un­

stable. 

The mathematical des cription of stability requires that the 

difference between the exact solution of a differential equation and 

that of its difference equation is bounded after an infinite number of 

integration steps when time and space grid increments are fixed. 

The most frequently applied stability analysis is that of Von Neuman. 

A Fourier series representation for error is introduced into the finite 

difference equations and behavior of the amplitude of an error is 
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examined. A stability analysis for the difference equations used here 

will be presented in the appropriate sections. 

4.10.3 Explicit method - For initial value problems there are two 

different kinds of finite difference schemes depending on the time step 

at which the space derivatives are approximated. If they are represent­

ed completely at a time when all quantities are known, the scheme is 

called explicit. The scheme is considered i mplicit if the space deriva­

tives are expressed as a sum of the finite differences at· both new and 

previous time steps. In the explicit system, values at all grid points 

at each new time step are computed explicitly point by point using the 

previously calculated or initial values. But in the implicit case, 

each new value is related to surrounding new values which are not yet 

known. Thus, all unknown values have to be solved for simultaneously. 

Implicit methods have an advantage in computational stabtlity for 

linear equations (Richtmyer and Morton, 1967), i.e., the scheme is 

computationally stable for arbitrary size of integration time increments. 

Therefore, one can save computational time to reach the desired 

integration time. In general the size of the integration time increments 

of explicit schemes are limited, and they are considerably smaller than 

those for implicit schemes which theoretically have no upper limit. 

The DuFort-Frankel method (Smith, 1965) is a popular explicit 

scheme, and it is unconditionally stable for linear parabolic equations. 

For this reason it has been used frequently to solve even nonlinear 

equations. However, stability criterion for the entire difference 

equations including both diffusion and convection terms have not yet been 

obtained. Fromm (1963) prepared a stability condition for the DuFort­

Frankel scheme by separating the equation into two parts; one is without 
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diffusion terms and the other is without convection terms. Then 

stability conditions were evaluated for each case and the more severe 

one was used for the computation. Ho~ever, the second equation (without 

convection terms) are unconditionally stable in any event, which means 

no matter how large a time increment is chosen the finite difference 

approximation is computationally stable. 

Generally speaking, an equation with convection terms produces more 

stringent stability constraints than one without them. Consider the 

following order of magnitude argument. Simple analysis shows a stability 

condition for an explicit approximation of the equation 

is 

au 
at 

where otdiff and ox are time and space grid increments. Whereas 

an upstream difference approximation for the wave equation 

gives a stability condition 

cS ox t < 
convec - u 

The ratio of the maximum allowable increments for each case produces 

otdiff 
ot convec 

u 8x 
= 2k 
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given the following approximate numerical values for a simulation of 

wind tunnel experiments 

then 

u = 20 cm/sec 

ox= 4 cm 

2 
k = 0.2 cm /sec 

otdiff 
ot convec 

For a simulation of atmospheric phenomenon 

u 

ox 

k 

= 20 m/sec 

= SO m 

S 2 
= 10 cm /sec 

might be assumed, which gives 

otdiff 
ot convec 

= 

We can see from this simple calculation that for our present problem 

a two order of magnitude smaller time step may be required for an 

equation with any convection terms to satisfy stability conditions. 

For nonlinear problems, stability depends not only on the structure 

of the finite difference system but also generally on the solution being 

obtained; and for a given solution, the system may be stable for some 

values of t and not for others, (Richtmeyer and Morton, 1967, p. 205). 

Since ot depends on a local value of velocity u it is desirable to 

change the size of ot every time step such that all local velocities 

satisfy the stability condition. 
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4.11 Difference Approximation for Heat Island Problem 

Test computations indicated that it is necessary to use different 

schemes for heat island and mountain lee wave problems. The arguments 

are heuristic and based on experimental evidence. An upstream difference 

approximation is used for the case of the pure heat island and the 

heated mountain obstacle. An Arakawa scheme (1966) with an upstream 

difference step inserted every ten times is used for the mountain lee 

wave problems. 

4.11.1 Upstream difference system - The primary difficulty 

associated with the approximation of a partial differential equation 

by a finite difference equation is due to the existence of nonlinear 

inertial terms such as u~ or 
ax 

az;; 
W­az If one uses a forward dif-

ference for a time derivative and a central difference for a space 

derivative then the difference equation for a differential equation 

a[/at + u az;;/ax = 0 is unconditionally unstable (Richtmyer and 

Morton, 1967). Hence, no matter how small a time step is chosen , 

small errors introduced in the computation grow without limit . 

A solution to this instability has been provided by a "forward­

backward" molecule which replaces convection terms by 

(u ~)n 
ax . t 

J ' 

n n 
z;; j+l, £ - z:j , £ 

ox 

when 

when 

n 
U. 

0 
> 0 

J ' )(, 

n This relation states that when the velocity u. Q, is positive then the 
J ' 

space derivative is approximated by a backward difference, and when 



n 
u. !l J , 
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is negative a forward difference is used. In this way the 

direction of the convection is always the same as that of the local 

velocity components. All variables are transported from the upstream 

side of the point in a local sense, which is the origin of the name of 

an "upstream difference" scheme. Where subscript j and !l are .th 
J 

and !l
th . d . . gri points in x and z direction, respectively. In the 

h d f h th . f same manner, t e superscript n stan s or t e n time step o 

i ntegration. n = 1 is an initial time. Relations with actual 

coordinates and time are given as 

X = (j -1) X o k 

X = ( !l -1) X O Z 

and t = (n-1) x c t 

where ox and oz are space grid increments in the x and z 

directions, respectively. ct is a time grid increment. 

The upstream difference scheme has been used in many place, (for 

example, Estoque, 1961, 1962, 1968; Tonouye, 1966; Orville, 1968; 

Torrance and Rockett, 1969; Roache and Muller, 1970; Muller and O'Leary, 

1970). 

4.11.2 Pseudo viscosity - The upstream difference scheme may 

introduce an "unexpected" numerical damping which may under certain 

circumstances modify or control the solution for a given problem. The 

one dimensional, unsteady, and incompressible vorticity transport 

equation without a diffusion term is expressed as 

~ a, -at + u ax - 0 

Its first order approximation in the upstream scheme is given as 
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n+l n 
r; . - r; . 

J J 
ot 

+ u 

n n 
r; . - r;. 1 

J J -
ox 

= 0 , (4.11. 2-1) 

when u is not negative and a forward approximation is used for t he 

time derivative. By a Taylor's series expansion (neglecting higher order 

terms than ox 3 ot 3) or 

n 
(~ ) 

n ox 2 2 n n cU ) r; . 1 = r.; . - ox + - 2-J- J ax 
j a 2 . 

X J 

and 

n+l n ot2 2 n n + ot (~) cU ) r; . = r; . + -2- + ... 
J J ax . 

at
2 

j J 

The first term represents an expansion with respect to space and the 

second one is an expans i on wi th respect to time. The first expans i on 

is substituted into the second term in Eq. (4.11.2-1) and the second 

expression is substituted into the time difference term. Thus we have 

n+l n n n r;. - r; . r; . - r; . 1 
J J + u J J-

ot ox 

? 

= ~ + a r; uox 
(1 uot) a~r; 

u- - -2- -
at 2 

+ ... at ax ox (4.11.2-2) 

where the relation 

is used from the original equation assuming u is constant. A similar 

expression is obtained when u is negative. If the finite difference 

equation (4.11.2-1) is solved exactly then the differential equation 

becomes (combine Eq. (4.11.2-2) with Eq . (4.11.2-1)), 
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a r; + u ~ = I u I ox 
at ax 2 

The tenn 

_ lul ox (l _ lul ot) 
\)p - 2 ox (4.11.2-3) 

has been called the pseudo viscosity or pseudo diffusivity (Molenkamp, 

1968). Molenkamp evaluated \) 
p 

for typical thermal convection 

2 -1 situations and numerical values were of the order of 35 m sec , which 

is comparable with typical measured turbulent viscosities r~nging from 

0 
2 -1 to 40 m sec . 

Molenkamp (1968) conducted numerical experiments to show how 

solutions were defonned with integration for seven different finite 

difference approximations. . For example, as we can see from Eq . 

(4.11.2-3), \) will be smaller if iSx is chosen to be smaller. p 

solution was improved greatly when ox was chosen as half of the 

The 

previous calculation. From his numerical experiments, Molenkamp con­

cluded that only the Roberts-Weiss approximation advected the initial 

distribution correctly of all eight schemes investigated. 

A similar study has been prepared by Crowley (1967) who reduced 

distortions by two-time-step schemes, i.e., the state vector is known 

at time t, and with this information and some intermediate calculated 

information at t + 1/2 ot, the system is advanced to time t + ot 

(Crowley, 1967, p. 472). He extended his work from the second order 

scheme to the fourth order one and showed that the solution by the fourth 
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order approximation was very accurate compared with that given by the 

second order scheme (Crowley, 1968). 

Both Crowley (1968) and Molenkamp (1968) concluded that a simple 

first order scheme (upstream difference) is not accurate enough to 

simulate diffusion problems. 

Orville (1968b) commented on the matters discussed above . Even 

though he accepted the conclusions by Crowley or Molenkamp on the 

inaccuracy of the upstream difference for pure advection problems, he 

argued that the inaccuracy of that scheme applied to the broader 

turbulent-plus-advection problems has not been established by either of 

the studies mentioned above. He also stated that it must be real ized 

that upstream differencing was most often applied to problems in which 

diffusion was an important physical consideration. 

Continuous efforts have been made for a long time by different 

authors to seek accurat e finite-difference approximation schemes applied 

to the Navier-Stokes equation. (Recer.t works include Fromm, 1969 ; 

Cheng, 1970, etc.) However, a complete exact analysis is not available 

at the present stage for full Navier-Stokes equation. Therefore, the 

only practical way of judgement on the accuracy of the approximation 

used is by the compari son with prototype observations and/or laboratory 

experiments if both advection and turbulence are modeled in the numerical 

computation. 

4 .11 .3 Usefulnes s of pseudo-diffusivity - The large damping effect 

introduced automatically in the ups tream difference system is sometimes 

very convenient to filt er or smooth out the computational errors 

developed near a large temperature discontinuity. These disturbances 

exist in the unstably stratified regions around a model heat island 
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which magnifies even a small error introduced during computations . 

These perturbations usually do not represent physically meaningful 

phenomena; therefore they should be numerically reduced or eliminated. 

Hino (1965) used an averaging method to disperse the computational 

errors. All the values computed were averaged with surrounding points 

every certain number of integration. However, if the upstream difference 

scheme is used, any additional steps for smoothing are not necessary 

since the upstream finite-difference approximation itself acts as a 

smoothing operator. 

4.12 Finite Difference Expression for the Vorticity Transport Equation 

A finite difference approximation of the vorticity transport 

equation (4.6-1) is obtained by replacing the diffusion terms by 

centered differences while the color equation (Substant ial Derivative), 

:~ + u :~ + w :~ = 0, is approximated by the upstream numerical system. 

The final form is, when u and w are positive, 

n+l kot n n n n 
l; . Q, = l; . Q, + -- ( l; j+l, £ 2 l; . Q, + l; j-1, £) J J J ' ox 2 J ' 

kot n n n + -- Csj, £+l - 2 l; . Q, + l; j , £-1) 
oz2 J ' 

n n n ot T . 1 - T. 1 £ u. Q, n + ill J+ J - ' n J ' ( l; . Q, - l; j-1, £) 2ox n ox 
T. £ J ' 

J , 

(4.12-1) 

A detailed derivation is given in Appendix A. 
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4.13 Successive Over Relaxation Method for Stream Function 

The stream function is obtained oy solving the Poisson equati on 

with known vorticity values . There are many methods available t o s olve 

such an elliptic equat i on numerically (see for example: Smith, 1965; 

Thorn and Apelt, 1961, etc.). 

Herein a successive 'bver relaxation method (S. 0. R. method) was 

utilized. Improvements upon this method or developments of other methods 

such as "Alternating Di rection Implicit" (A.D.I) method or "Fast 

Fourier Trans fo rmation" (F.F.T) method are desirable - especi ally since 

the most computation t i me is utili zed to solve the Poisson equation. 

(Reference is made to Peacernan and Rachford (1955) and Douglass (1 955 ) 

for the A.D.I. method and to Cooley, et al. (1967) for the F.F.T. 

method). 

The finite difference expression for stream function given by the 

S.O.R. method is 

r+l 
(1 -w) 1/1 

r w {1/ir r 1/1 = + +1/1 
j, R. j, 2 {l+( ox/} j +I, t j-l, R. o;:: 

+( ox/ (i)i r r 
) - z; , to x 2 } + 1/1 oz 

j , i +l j, R. -1 J , 
(4 .1 3-1) 

where w is an over relaxation facto~ which lies between one and two. 

The exact value of w for a general grid system is determined by a 

test calculation since no analytical expression f or such an optimum 

value is yet available . When a square mesh system is used (i.e., 

ox= oz= h) then w is analytically given as 
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2 
w = (4.13- 2(a)) 

1 + 1T 

when the domain of integration has a rectangular area, Kh x Lh. And 

when the domain is square 

2 w = 
1 + sin(h) ( 4. 13- 2 (b)) 

(see for example, Apelt, 1969). 

The convergence criterion of the iteration procedure given by 

Eq. ( 4 .13-1) is 

i.e., if the absolute value of the maximum difference between the 

(r+l)th iteration and the previous rth iteration is less than o 

then the iteration is stopped. o should be determined by numerical 

experiments and here we adjusted o from 0.01 to 0.10 depending on 

the magnitude of stream function at the top boundary. In other wnrds, 

The derivation of Eq. (4.13-1) is given in Appendix A. 
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4.14 Finite Difference Expression of Energy Equation 

The finite difference approximation for the energy equation 

(4.9-1) has a very simi lar appearance to that of the vorticity transport 

equation. The final di fference approximation to Eq. (4.9-1) is 

when both 

n 
u . n ct 

J , JC, 

ox 

n 
u. £ J , 

and 

+ k ' o t (Tn 2Tn Tn ) 
2 . n 1 - . n + J", " -1 oz J , JC, + J, JC, JC, 

(4 .14-1) 

n 
w. £ J , 

are not negative. If they take different 

signs then the last two terms for convection are changed according to the 

upstream difference system described in the previous section (see section 

4.11.1). 

4.15 Stability Condition for the Upstream Difference Scheme 

An accurate stability analysis is the most important and funda­

mental requirement to obtain reasonably approximated solution to the 

original differential equations. Since the finite difference 

approximations for both the vorticity transport and the energy 

equations have similar expressions, a stability analysis is completed 

only for the former expression. A Von Neuman stability analysis was 

applied and the details are given in Appendix A. The final condition 

which should be satisfied in order to maintain stability is 
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ot < 
0.8 

lulmax 
(4 .15-1) 

2k ---+ 
ox + -- + 

ox2 

where lwl are the magnitudes of the maximum 
max 

velocity components u and w, respectively, in the entire com­

putation region. The stability criterion is thus a variable depending 

upon the magnitude of each set of newly calculated velocity components. 

In practice lwl were calculated at each time 
max 

step and ot was selected such that it satisfied the stability 

condition (4 . 15-1). 

It is desirable to choose ot as large as possible within the 

computational stability criterion (4.15-1) i n order to save computation 

time. If a larger time step is chosen, more iterations may be required 

in the solution of the Poisson equation because the source terms 

(vorticities) vary by larger steps also. Since the associated iteration 

technique is a time consuming calculation, a larger time increment does 

not necessarily save computational time as one might expect. 

A simple experiment was prepared to compare the computational time 

for different sizes of time increments. It was found for example that 

when the time step was chosen as one-half the maximum value suggested 

by the stability condition the calculation was faster than that for the 

maximum time step. A similar argument concerning the proper size time 

increment is found in Fromm (1963). 
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4.16 Boundary Conditions 

Boundary conditions for the vort i city transport equation cannot be 

given directly. However, they are closely related with interior 

values of vorticity and stream functions by means of a Taylor's series 

expansion. For rigid boundaries this relation is very simple and may 

be derived analytically from the known bJundary conditions of velocities 

and stream functions. 

In this study both the upper and the lower boundaries are rigid 

and a no-slip velocity condition is used . i.e., 

u = w = 0 at z = 0 and : = H 

where H is the height of the top boundary. The stream function is 

assigned to zero value along the bottom boundary and a constant value 

is maintained along the top boundary. 

A detailed derivation is again a'rnilable in Appendix A. The final 

expression is 

where and 

3 1 
= -- (~int - ~bounc) - 2 ~int 

( o z ) 2 
(4.16-1) 

~bound are the boundary values of vorticity and 

stream function, respectively. Subs::ript "int" indicates the values 

at one grid inside from the boundary. Similar expressions have been 

used previously (Lin and Apelt 1970; Roache and Mueller; 1970 ) . 

Boundary conditions at the up-ani down-stream boundaries are more 

difficult and must be determined more or less empirically. If the 

computational boundari es could be extended infinitely in the horizontal 

direction simple boundary conditions are possible such as no di sturbances 
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are detected at x = ± 00 • For numerical computations, however, horizontal 

boundaries are always finite, and the size depends on the capacity of the 

digital computer available. 

Boundary conditions are sought which imposed the least severe 

restrictions on the solutions in the interior region, i.e., such 

that no distorted values at the boundaries propagate into the interior 

area. The following boundary conditions have been determined from 

experiments to give the least apparent restrictions and the least 

distortions. 

Streamlines are assumed to change linearly i.e., maintain constant 

slopes 

In 

at the lateral boundaries. 

·a2w 
= 

331); 
= 

341); = ...... -2 -3 4 
ax ax ax 

terms of velocity component 

aw 
0 ax = 

Thus, 

= 0 (4 .16-2) 

w this specifies 

However since this numerical model is formulated in terms 0f the vorticity 

equation one needs boundary conditions for vorticities at the lateral 

boundaries. 

With the assumption that the stream function varies linearly at the 

lateral system boundaries one may conclude from 

a2r; 341); a2 2 
c U) -2 = 

ax4 + -2 
ax az ax2 

that 
a2 
_ l; = 0 

ax2 
(4.16-3) 
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Boundary conditions for the energy equation at 

are similarly 

X = - L 
1 

and 

0 ( 4 . 16-4) 

4.17 Initial Conditions and Grid System 

To integrate the set of the equations descri bed above, init ial 

values must be specified to initialize the numeri cal integration. Hence, 

initial velocity components u and w are origi nally given, and the 

vorticities and stream functions are initialized by their definitions. 

In terms of the finite difference expressions 

and 

s . Q, J , 

1j;. 
J , 

= 
W.l n -W · 1 n J+ , ,, J- , ,, U . n 1 - UJ., " -1 J , ,,+ )(, 

2ox 2oz 

1 
= - -2 U. . t X OZ X (2 l -3) 

1n1 

for the interior the region and boundaries along X = - L 
1 

and 

l;,. Q, and ~- Q, are respectively the vorticity and stream function 
J , J , 

at (j, Q,) position. is the initial value of u which is 

assumed to be constant. At initial time t = 0 all the values of w 

are assumed to be zero; therefore vorticity is calculated neglecting 

the first term of the above expression, 

is used to integrate velocity numerically 

z 
y = J udz 

0 

aw 
ax The trape zoidal rule 
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For the valu~s along the boundaries z = 0 and H forward and back­

ward differences are used, respectively. 

i;; . ML 
J ' 

= -(uj,ML - uj,ML-1) 
cSz 

along z = 0 

along z = H , 

where £ = 1 and ML represents the locations along z = 0 and H, 

respectively. For the stream functions, constant values are maintained 

throughout the integration along the boundaries z = 0 and z = H. 

Arbitrary temperature distributions may be assumed in the vertical 

direction, but kept constant in horizontal direction at initial time 

t = 0 

T . 
0 

= F ( z) ( j = 1 , 2, ... , MJ; £ = 1 , 2, •.• , ML) 
J ' )(, 

where F(z) is an arbitrary function of z. 

When a heat island is located along z = 0 and has a higher 

temperature 6T over the surroundings. Then, 

T . l d = T + 6T , is an o 

where T and T are temperatures at the heat island and island o 

surrounding surface temperature, respective l y. T T and 6T 
island' o 

are kept constant throughout the computation. All the variables, u, w, 

i;; , ~ and T are now initialized and a numerical integration may 

start. 
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Numerical integrations and experiments have been conducted in such 

a way that they may be directly compared . Therefore, it was convenient 

to use the same coordinate system in each case since a direct comparison 

of results was desirable. Wind tunnel test section is 50 cm height x 

60 cm width x 450 cm length. Hence, a region of comparable size was 

utilized in the numerical computation (see Fig. 4-1). The area was 

divided by a 81 x 16 square mesh whose d~mension is 4 x 4 cm. 

Therefore, a 60 cm height x 320 cm length area is the computational 

region - about the same size as the effective wind tunnel test section 

area. 

4.18 Procedures of Integration 

1) Using the initial values given at t = 0 vorticities interior 

to the region studied, are obtained by Eq. (4.12-1). Boundary values 

along X = - L 
1 

and except the corners are calculated by the 

finite difference expression of Eq. (4.16-3) 

along 

and 

- i:MJ-2 Q, 
' 

X = - L 
1 

along x = L2 , 

where j = 1, and MJ show the location along the boundary x = L1, 

and L2, respectively. 

2) Interior values of stream functions are obtained by iterating 

Eq. (4.13-1) until a given convergence is achieved. Then the boundary 

values along x = - L1 and L2 are computed by the equivalent ex­

pression for vorticity i: , i.e., 
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along 

and 

X = - L 1 

along x = L2 

Since boundary values along z = O and H are kept constant, all new 

values of stream functions are now known. 

3) Velocity components u and w are calculated by the finite 

difference forms of (4.8-1). For the interior region, central difference 

approximations are used to evaluate u and w, but along boundaries 

X = - L 1 and x = L2 , w are computed by the forward and the back-

ward differences, respectively. u and w are zero along boundaries 

z = 0 and H by the boundary condition. 

4) Boundary values of vorticities along z = 0 and H are 

obtained by Eq . (4.16-1). Thus, all new values of vorticities are known. 

5) The temperature field is calculated by Eq. (4.14-1) for the 

interior region, and Eq. (4.16-4) gives boundary values along x = - L1 

and L2 . Since values along the boundaries z = 0 and H are constant, 

a new temperature field is obtained. 

A set of calculations 1) to 5) is repeated until a pre-specified 

time period has past. 

A somewhat unconventional procedure has been utilized to evaluate 

the boundary values. Boundary values are obtained from the boundary 

conditions only, whereas a more rigorous approach would be to use the 

entire governing equation with consideration of boundary conditions. 

For example in order to calculate boundary values along x = - L1 



103 

from Eq. (4.12-1), the values outside the region T o, t or 

should be e l iminated through the boundary condition and boundary values 

may then be obtained just as for those interior to the region. In this 

manner, boundary values satisfy both the equation and the boundary 

condition. However, in the technique specified here, only the boundary 

condition is satisfied. There is no a priori justification to use this 

simplified procedure, but it is quite convenient in practice because the 

boundary values are calculated independently from the governing equation. 

In this study many 

~ = o ,i2w = o 
ax ' ax2 

different 

a3w 
ax3 = o, 

boundary conditions such as ljJ = canst, 

a pericdic boundary condition, and an 

extrapolation method have been examined and it was found very tedious 

to change equations of boundary values for each trial. Therefore, 

boundary values are obtained only through the boundary conditions as 

discussed. In any event since there is no general way to impose correct 

boundary conditions at inflow and outflow boundaries a trial and error 

method might suggest appropriate boundary conditions. 

4.19 Modification of the Scheme for Mountain Lee Wave Problems 

It is necessary to make some modifications of boundary and initial 

conditions to apply the previous finite difference scheme to airflow 

over an obstacle. A rectangular obst~cle is adopted for its simplicity 

and convenience in the numerical programming. The obstacle is placed 

on the lower surface from grid number MST to MEND, and its top 

surface corresponds to t = MHEI as shown in Fig 4-1. Therefore, 

actual dimensions of the obstacle are (MEND-MST) x ox width x (MHEI-1) 

x oz height. Along the obstacle surface the stream function is kept 

constant due to the no-slip condition that velocity components 
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u and w are zero. Stream functions are assigned a constant value 

along the upper boundary, z = H. The temperature of the obstacle can 

be varied from that of the surrounding surface temperature if heating 

or cooling effects of the mountain are to be investigated. For a 

simple unheated mountain case, the temperature of the obstacle is 

maintained at the same value as the surrounding air temperature. 

Initial velocity profiles over the simulated mountain are calculated 

to satisfy continuity. Uniform velocity profiles are assumed whose 

magnitudes are obtained from a uniform upstream initial velocity profile. 

Vorticities on the obstacle surface are calculated in the same manner 

as for the rigid boundaries (see Eq. 4.16-1). 

4.20 Test Computations of Airflow over an Obstacle 

The first computation of airflow over an obstacle was conducted 

under very simple conditions. The temperature along the bottom surface 

was taken as 298°K and temperature gradient was 1°c/cm. Therefore, at 

the top surface (Z = 60 cm) 0 the temperature was 358 K. The values 

along the boundaries were kept constant during the computation. A 

uniform velocity of 8 cm/sec was given at t = 0. Froude number in this 

case was (Fr)H ~ 0.077. An obstacle was placed between J = 21 and 

30, and its height was 8 cm. Results were printed out every K time 

steps where K is between 25 to 50. They include velocity components 

u and w, stream function, vorticity and temperature. A microfilm 

recorder 280 was used to plot contour lines of the above variables. 

Figure 4-2 shows the resulting contoured plots of stream function, 

vorticity and temperature at t = 16.15 sec. 
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Streamlines in Fig. 4-2 do not show strong waves behind the 

obstacle. If a comparison, however, is made with a result obtained in 

a neutral atmosphere (no stratification) which is also included in 

Fig. 4-2, we can see definite effects of stratification. In the 

stratified case, streamlines over the obstacle have been displaced 

downward because of the negative buoyancy forces introduced by t he density 

difference between a particle and its surroundings. This force together 

with the requirement of continuity bends streamlines downward behind the 

obstacle. Because of its inertia, a particle drops down beyond i ts 

equilibrium position and encounters a positive buoyancy force which 

again would lift the particle beyond its equilibrium if no dissiration 

of energy exists. Fig. 4-3 shows the time variations of a horizcntal 

velocity component u at different locations. All had uniform 

profiles at t = 0. Even at N = 150 (T = 16.15 sec) they have ~ot 

precisely reached a steady state but differences from N = 100 (t = 

11.14 sec) are very small. The velocity profiles at N = 150 clearly 

show jet phenomena, i.e., there exist maximums and minimums in t t e 

velocity profile (Long, 1959; Janowitz, 1968). In this particuls r case, 

there are two maximums and two minimums. Very strong velocities are 

observed downstream of the obstacle whose magnitude is about twi ce as 

large as the averaged velocity. In the same manner, Fig. 4-4 shows 

horizontal velocity components u at different locations in a neutral 

situation. Jet phenomena or strong winds were not observed. Fi gure 

4-4 shows only a blocking effect of the obstacle, while Fig. 4-3 also 

includes the effect of stratification. 

The initial calculations obtained displayed many interesting 

aspects of stratified airflow over an obstacle. They did not generate 



106 

lee waves downwind of the obstacle. Since a lee wave amplitude 

is comparable to the obstacle height, it was suggested that a higher 

obstacle might give visible lee waves. The obstacle height was 

increased from 8 cm to 20 cm. The Froude number was still (Fr)H = 0.077. 

Stream function, vorticity, and temperature contour lines at t = 

9.45 sec., are shown in Fig. 4-5. Horizontal velocity profiles 

at the same time are shown in Fig. 4-6. They again display clear effects 

of stratification. 

4.21 Simul , tion of Davis' Result 

In order to investigate the reason why the initial scheme did 

not produce lee waves, the program was run under the same conditions 

for which the best lee waves are observed in Davis' paper (1969). In 

his paper, the characteristic parameter is expressed by k which is the 

inverse of the Froude number based on the characteristic length 

H/TI, where H is the channel height. The relation between k and 

a global Richardson number is given by 

Since k = 1.5 gave Davis the strongest lee wave result, we used this 

value in our computation. 

F r = 
1 --
~ 

l 

1 
= Tik = 0.2122 

In his paper, dynamic pressure and vertical density gradient at the 

far upstream boundary are kept constant (Long's model). From these 

conditions, an upstream temperature distribution was calculated from 
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k2/ z 
2 

gH2 
I u dz 
0 

= e 

0 Temperature at surface (assumed 300 K) 

H Depth of the wind tunnel= 60 cm 

k = 1.5 

g acceleration of gravity 

U average velocity (assumed 20 cm/sec). 

(4 . 21-1) 

The resulting temperature profile is shown in Fig. 4-7. Temperature 

varies almost linearly except for the region very close to the surface. 

0 The temperature gradient read from the figure was 0.81 C/cm. Stability 

was 2.48466 x 10-3 cm-l thus the Froude number was 0.2136 which is very 

close to the exact value 0.2122. Temperatures obtained by Eq. (4.21-1) 

were used as initial values. Numerical integration was carried out 

in 150 steps and results were plotted. Figure 4-8 shows the results. 

They show very weak first wave crests somewhere near x = 80 cm but 

compared to Davis' result (Fig. 2-4), they are very small. 

Several authors have suggested that the upstream finite-difference 

approximation introduces a strong damping effect (see section 4.11.2). 

Pseudo viscosity is expressed by Eq. (4.11.2-3), i.e, 

v = lulox (1 - ~) 
p 2 ox ' (4.11. 2-3) 

where v is a parabolic function with respect to lul and it has a p 

maximum value 
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lul(v ) ox 
p max 
4 

In order to have an accurate prediction by the upstream finite difference 

approximation, the physical viscosity v should be much greater than the 

pseudo viscosity \) (Fromm, 1969), i.e.' p 

lul ox 

(vp)max = 
(vp)max 

< < \) 
4 

or 

< < 4. 
\) 

Therefore, grid Reynolds number, (R) , should be much less than 4. 
e g 

In the previous calculation (Fig. 4-2) ot = 0.09675 sec and ox= 4 cm 

when t = 8.96 sec. Therefore pseudo viscosity v has a maximum value p 

when 

ox2 42 

=S ot= Sx0.09675 = 
2 20 . 67 cm /sec 

I ul = 2o;t = -::-:~40--,--_ 
(vp)max u 2x0.09675 = 20 . 67 cm/sec. 
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If the actual viscosity is about 0.15 cm2/sec (20°C), the grid Reynolds 

number is 

20.67 X 4 

= 
\) 0.15 = 551. 

Equation (4.11.2-3) was plotted under this special condition in Fig . 

4-9a which also shows the pseudo viscosity distribution with height at 

various locations when t = 8.96 sec. (Fig. 4-9b). 

Pseudo viscosity distributions with height have a very similar 

profile to those of horizontal velocity components because the relation 

between the pseudo viscosity, v and absolute velocity 
p lul is almost 

linear as seen from Fig. 4-9a. Since the pseudo viscosity appears to be 

as large as 100 times the actual viscosity, it is inappropriate to 

simulate the prototype experiment by the upstream difference approximation. 

In order to see the effect of the viscosity in the upstream scheme, 

the calculations were repeated for a viscosity of 20 cm2/sec whi : h is 

about 100 times bigger than the previous value. The same obstacle and 

the same conditions specified for Fig. 4-2 were used except for the 

magnitude of the viscosity. Figure 4-10 shows streamline, vortex and 

temperature contour lines, respectively. Comparisons with Fig. 4-2 do 

not indicate any great difference; however, the velocity profiles 

(Fig. 4-11) show the clear effect of a viscosity difference. In Fig. 

4-11 velocity profiles for 2 
v = 0.18 cm /sec are also presented with 

broken lines for comparisions. A large viscosity definitely smoothes 

out the maximums or minimums of the profiles. Figure 4-12a and 4-12b 

show the relation between the pseudo viscosity and the absolute velocity 
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i n this case (ox= 4 cm, ot = 0.05588 sec) and pseudo viscosity profiles 

at various locations. 2 Magnitudes as large as 20 cm /sec are seen at 

many locations. The grid Reynolds number in this case was 

which is close to the critical value 4. 

Thus, even if the magnitude of viscosity is hypothetically increased 

100% over the previous calculation, we may not see any significant 

differences in the solutions, because that change in viscosity is less 

than 1% of the pseudo viscosity. 

We cannot predict how accurately the scheme can predict 

phenomena when the true viscosity is much greater than the numerical 

one. Any conclusions must depend on other tests such as prototype 

observations, or laboratory experiments. We shall not try to examine 

this here, because we know that a laminar flow in a wind tunnel cannot 

have such a large value of viscosity (20 cm2/sec) and wind tunnel (Lin 

and Binder, 1967) and water channel (Long 1955; Davis 1969) experiments 

showed the definite existence of lee waves behind the obstacle. Hence, 

one can at least conclude that the upstream difference approximation 

is not suitable for the lee wave problem. 

One is now led to search for some second order method with a 

smaller damping effect. Arakawa's (1966) explicit scheme is one of such 

differencing techniques. Molenkamp (1968) showed that Arakawa's 

scheme has increased accuracy compared with the upstream difference 

method just discussed. 
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4.22 Arakawa's Scheme 

Arakawa (1966) developed his finite difference scheme for the 

vorticity transport equation in such a manner that it conserves the mean 

vorticity, the mean kinetic energy, and the mean square vorticity in a 

closed domain. Since we found the upstream difference approximation 

system is not appropriate to simulate wave motions behind an obstacle 

and Arakawa's scheme has heen proven to often have better accuracy, we 

reprogrammed using his scheme. 

4.23 Arakawa's Scheme for the Vorticity Transport Equation 

Arakawa's scheme for the vorticity transport equation is, 

+(ljJ. 1 ° -1 +ljJ .+l O -ljJ . _l £-1 - iµ ._l £) ( r; J. £ - r;J. £-1) J+ , I(, J , I(, J , J , , , 

+(ljJ. " -1-iµ._l £)(r;J. £ - r; J.-1 £-1) 
J , I(, J , ' ' 

+(ljJ_ 0 +1-ljJ·_1 Q, )( r; J.-1 £+1- r;J. Q, ) ], ](, J , , , 
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2 2 
+K(a ~ + U) + _g_ 

ax az2 T 

aT 
ax ' 

and here only the advection tenns are approximated by the finite 

differences because they are the most important factor to maintain 

accuracy and computational stability. The time derivative is approximated 

by a centered difference as 

The diffusion tenn 
2 2 

K(U + ~) 
ax2 az 2 

and the source tenn £ aT 
T ax are also 

approximated by centered difference molecules. This scheme was expected 

to give a better result, and it is computationally stable if an appro­

priate integration time step is used. 

The subsequent programming efforts provides a good opportunity 

to examine the appropriate boundary conditions at up and down-stream 

boundaries. Therefore, the following paragraphs discuss the process 

in some detail. 

4.24 Preliminary Computations and Improvements of the Programming 

The first computation in Arakawa's scheme produced unreasonably 

large velocities at some grid locations after it had been integrated 

forty-one times. There was no way to trace exactly where the instabili­

ty occurred in the programming. The boundary values of the vorticities 

at up and down-stream boundaries were calculated from the definition 

aw au z;=ax - az 
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where all w and u were known from stream functions. Al though 

computational stability is predicted by the linear stability analysis , 

there is no reason to believe this condition is sufficient for t he 

nonlinear original equations. 

One sol ution would be to reduce the size of time increments to 

maintain stable computations. However, another route was chosen; it was 

decided to i ntermittently utilize the strong damping effects of the 

* upstream di f ference approximation. 

Hence, as a second computational scheme, it was decided to insert 

at every ten integration time steps an upstream difference representa­

tion for the inertia tenns to stabilize the field. The result was not 

much different from the previous calculation where only Arakawa' s scheme 

was used. Thus the rate of insertion of the upstream scheme was in­

creased . In the third computation an upstream difference scheme was 

used every other step. At N = 51 (t=2.61 sec), a velocity at one 

place exceeded 1 0 cm/sec hence the computation terminated. Figure 

4-13a displays t he record of stream function at t = 2.61 sec. Vie 

can see an obvious error which is confined to both top and bottom 

corners of t he downstream boundary. 

Therefore, the boundary values computed from the equation 

au aw z; = ax - az must have introduced errors at the downstream boundary. 

Another error is observed in the region i n front of the obstacle. It 

is not clear why errors at the upstream boundary and behind the obstacle 

*Personal suggestion by Dr . E. C. Nickerson who is one of author ' s 
Ph.D. program committee. 
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are not generated. In order to eliminate those unreasonable values, a 

smaller time step was used. All previous calculations used half of the 

magnitude of the maximum allowable time step by the stability analysis. 

This time factor was reduced to 0.10. The results (Fig. 4-13b) show 

no improvement in the regions where large errors were observed. Several 

other trials were conducted and the results are given in Fig. 4-14, 

here maximum absolute values of horizontal and vertical velocity 

components are plotted with integrated physical time and if either 

of them reached 100 cm/sec computation was terminated. As is noted 

from Fig. 4-14, none of the variations tried could eliminate errors 

introduced both in the front of the obstacle and at the downstream 

boundary. Moreover the smaller time steps gave worse results, they 

were stable over less physical time although the number of integrations 

increased. 

4.25 Improvements of Boundary Conditions 

4.25.1 Milne prediction formula - Now it was clear that the large 

errors at the downstream boundary are not caused by either the size of 

the time step nor the scheme itself. They come from the incorrect 

expression for the boundary values. Initially an extrapolation 

method was used, i.e., boundary values were calculated from the inner 

value or values. Lin and Apelt (1970) used the Milne predictor formula 

in their computation of airflow over a fence. Stream function contour 

lines calculated with such a boundary condition are shown in Fig. 

4-13c . The distortions at the downstream boundary were removed but 

we now have unreasonable disturbances at the upstream boundary. Since 

the physical time is 2.83 sec and velocity is 20 cm/sec and positive 

it is not possible to conclude that these disturbances were introduced 
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by waves propagating backward from the obstacle. Lin and Apelt 

(1970) also experienced a similar distortion at the upstream boundary 

when numbers of integration was increased. 

4.25.2 Periodic (cyclic) boundary condition - The next attempt 

involved the use of a periodic boundary condition. Foldvik and Wurtele 

(1967) used this condition in their numerical work for airflow over a 

rectangular obstacle . The idea is th at the flow is supposed to repeat 

cyclicly. Therefore all variables at the downstream boundary becomes 

the new boundary values at upstream boundary. The results shown in Fig. 

4-13d represent correctly this condition, but as we expected, distortions 

introduced either at up or downstream boundary are transferred to the other 

boundary immediately. At this point we halted the search for alternate 

boundary conditions, and we examined in detail how those disturbances 

are introduced. 

4.26 Conclusion on Boundary Conditio~ Trials 

The conclusion was that the best boundary conditions we found at 

lateral boundaries were 

a21jJ 
--2 = 0 , 
ax 

and 
2 

cl T 

ax2 = 0 , 

which have also physical meaning as explained in the section (4.16). 

The conclusion was drawn from the trials of various boundary conditions 

described in the previous section. The Milne Predictor formula gave 

a reasonable value at downstream boundaries. At upstream boundaries, 

however, it introduced unexplained disturbances of the variables. Table 

4-1 shows detail output printings of stream function, velocity components 

u and w and vortic i t y at ups tream coundary and its adjacent locations. 
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The boundary values in the parentheses were computed from the present 

proposed boundary conditions. All these values are data at t = ot, 

namely the first output from the initial values. As we can see from 

Table 4-1 the proposed boundary conditions introduced fewer disturbances 

in all variables. The improvements were significant in velocity com­

ponent w field. 

A computation was conducted utilizing the lateral boundary conditions 
a2iµ a2r;; 

ax2 = 0' ax2 = 0' 
a2

T and - 2 = 0. 
ax 

As a typical result, temperature field 

is presented in Fig. 15a and 15b. They show evidently complete elimina-

tion of errors at boundaries. Therefore we decided to use the proposed 

boundary conditions as the final ones in this study. 

4.27 Nonlinear Instability 

Unfortunately the disturbances produced in front of the obstacle 

still existed. These disturbances appear to propagate backwards against 

the mean flow with time as seen clearly in Figs. 4-15a and 4-15b. The 

speed of propagation was roughly 16 cm/sec. It is not clear why these 

errors did not propagate downstream (a possible explanation may be 

obtained from Matsuno (1966), Reference should be made to Phillips 

(1959) for nonlinear computational instability). 

These errors are probably generated because the original equation 

is nonlinear and a finite difference representation has been used. 

Phillips (1959) described how nonlinear interactions of two waves mis­

present variables in the finite difference system. Matsuno (1966) 

discussed computational modes which are defined as the solutions given 

only by the difference equations but do not exist in the original 

differential equations. In either case we have to eliminate physically 

unreasonable phenomena introduced by the numerical technique. 
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Hine (1965 ) used as averaging technique which spreads the errors 

to the surroundi ng points. Here we tried a similar concept 

where a was taken to be 0.75. 

This procedure el i minated the errors in front of the obstacl e 

as seen in Fig. 15c but it introduced new distortions at the upstream 

boundary. The averaging process takes extra calculation time. More-

over it was not desirable to change boundary conditions further since 

we found that the boundary conditions 
a2 i;; 

ax2 = 

a2
~ a2

T 
O' ax2 = O and ax2 = 0 

gave a physically reasonable representation (see section 4.16) and 

better computational results. 

4.28 Mixed Scheme with Upstream Difference 

Hence, as a result of computational expediency the computational 

grid was divided into two regions - one in front of the obstacl e and 

another over and behind the obstacle. The latter region was approximated 

by Arakama's scheme and the upstream difference system was used in the 

first one. It was expected that the upstream scheme could disperse 

numerical errors intro uced in front of the obstacle by its large 

numerical damping effect. Since waves are expected only on the lee 

side not on the upstream side of a ob~tacle, we should be able to see 

lee waves if Arakawa's scheme can represent the 

equations accurately. Boundary conditions were 

at both lateral boundaries. 

original differential 

a2~ a2i;; a2T 
-=-=-=0 
ax2 ax2 ax2 

The result of a test calculation shown in Fig. 4-16 gives pictures 

which do not show any computationally introduced errors. Therefore , we 
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continued calculations and contour lines of stream functions, vorticities 

and temperatures at different time of integration are shown in Fig. 4-1 7 , 

4-18 and 4- 19, respectively. Here we can clearly perceive the 

deve lopment of lee waves behind the obstacle with time. Two waves are 

observed at t = 20.84 sec and amplitude of the first wave is about 

the same magnitude of the obstacle height. The wave length measured 

f rom the picture is about 76 cm which is close to 80 cm as predicted by 

the linear theory. Figure 4-20 shows the developments of horizontal 

ve loci ty profiles at different locations with time. After t = 15.10 

sec the velocity field does not change significantly. 

4. 29 Conclusion on Numerical Simulation of Strong Gravity Effects 

A simple explicit upstream difference system was found by test 

computation to satisfactorily simulate airflow over a flat heat 

i s land in the thermal wind tunnel 

Thi s same scheme, however, failed to produce observed lee waves 

behind a f i nit e height obstacle placed in the wind tunnel. 

The r eason is the large pseudo viscosity introduced by the upstream 

difference scheme which does introduce a large numerical viscosity. 

Arakawa's scheme was tested and found to give reasonable results. 

Trial and error methods were used to find suitable boundary 

conditions at the up and down-stream boundaries. It was found that 

when the second derivatives of all dependent variables with respect to 

x were set zero, physically reasonable results were obtained. Finally 

it should be mentioned what happened if we used Arakawa's scheme to the 

heat island problem. The results are shown in Fig. 4-21. Apparently, 

large nonlinear instabilities were introduced over the heated surface 

for all variables, ~' s and T. 
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Therefore, the upstream difference scheme will be utili zed for the 

problems with surface heating (heat i s land, heated mountain ) whi le 

Arakawa's scheme with the upstream difference method will be uti lized 

for finite height obstacles. 

4.30 Programming 

In this section a brief discussion about the program itse lf is 

given. A block diagram of the program structure, instead of complicat ed 

flow charts of each program, is given in Fig. 4-22. One main and seven 

subroutines have been written and contour line plotting subroutines we r e 

obtained from the C.S . U computer center library. A brief descript i on 

of each program follows. 

Two different programs were completed, one for the flat heat 

island and another for mountain obs tacles. The latter program can be 

used for the former problem if the mountain height and width were set 

zero. 

4.30.1 Main Program "MTWAVE" - This program reads constants 

necessary for the calculations such as space grid size, initia l t i me 

grid size, viscos ity, number of grids in x and z di rect i ons, etc . 

All subrout i nes are called from this program. If any one of the sub­

routines give unreasonable values then the main program terminat es the 

computation and rints out the reason. For example, if stream f~nct i ons 

do not converge in one hundred iterations or if any velocity comronent s 

exceed 100 cm/sec then the calculation is stopped. 

4 . 30.2 Subroutine "INITIA" - All variables such as vel oci t y 

components, vorticities, stream functions, and temperature s are 

initialized and printed out. 
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If the computation is the continuation from a previous run then the 

subroutine "INITIA" reads the required variables from punched cards. 

Usually one run was terminated after 300 seconds of computation time 

and all variables were punched on cards which become the i nput for the 

next time period. In this way complete loss of the computation is 

prevented although an extra time is used to punch cards. In order to 

complete one complete computation it requires from 300 to 1000 seconds 

computer time depending on the problem. 

4.30.3 Subroutine "VORTI l" - The upstream difference system 

is used to approximate the vorticity transport equation. The interior 

values and values along the boundaries 

calculated. 

and X = L 
2 

are 

4.30.4 Subroutine "VORTI 2" - The same calculation in 

subroutine "VORTI l" is conducted by Arakawa's scheme combined with the 

upstream differences. The front region of the obstacle is approximated 

by the upstream system and Arakawa's scheme is used in the rest of the 

area. Boundary values at x = - 11 and + 12 are calculated. 

4.30.S Subroutine "STREAM" - Using the vorticities just 

obtained from "VORTI l" or "VORTI 2" together with previous boundary 

values stream functions are obtained solving the Poisson equation 

iteratively. When the maximum difference between the repeated iterations 

becomes less than a certain limit, then the values are considered to be 

converged. The criterion selected was 

lwr+l - wrl < 0.10 

where wr+l and wr stands for r+l th and r th iteration. 

respectively. 
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The number of iterations are counted and if it exceeds one hundred 

times then the computation is terminated. Results are printed out and 

contour lines are drawn by every K times of integration. At the 

final integration step all the values are punched on cards, which are 

used in a continuative run if necessary. 

4 . 30 .6 Subrout i ne "VELOC" - Velocity components are obtained 

from the finite difference definition of stream function. Interior 

values are evaluated by centered differences and boundary values are 

by forward or backward differences. Final data are printed and punched 

on the cards in the same manner as stream function. 

Maximum values of u and w are obtained and used to determine 

the size of time step in the next calculation to satisfy the computational 

stability condition (4.15-1). 

4.30.7 Subroutine "BOUNDA" - Boundary values of vorticity 

along the rigid boundaries are computed according to Eq. (4.16-1). 

Outputs are printed, contour lines are plotted, and the final val ues are 

punched on cards as for the other variables. 

4.30.8. Subroutine "TEMPE l" - Energy equation is solved by 

the upstream finite difference equation. Data are recorded exactly in 

the same manner as in "BOUNDA". Prandtl number 0. 72 was used. 

4.30.9. Subroutine "TEMPE 2" - Arkawa's scheme with the 

upstream difference system is used to solve the energy equation. The 

same output format is used as in "TEMP l 11. 
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CHAPTER V 

DISCUSSION OF NUMERICAL AND WIND TUNNEL RESULTS 

5.1 General 

In this chapter the results of wind tunnel and numerical experiments 

of the mountain lee-wave, the heat island, and the heated mountain 

problems are presented. The data has been organized into the following 

categories: 

Case A: Airflow over a mountain, 

Case B: Airflow over a heat island, 

Case C: Airflow over a heated mountain. 

One experiment in Case A, three in Case Band one in Case Care 

reported. Where possible, numerical simulation of these wind tunnel 

experiments was conducted. Table 5-1 shows a complete tabulation of 

various cases of wind tunnel and numerical simulation. Numbers fol­

lowing the letter, for example, B-I, indicate the number of the run 

in the specified case. 

5.2 Airflow Over an Obstacle 

In this section the order of magnitude of nonlinear fluid inter­

actions will be examined, the characteristics of the laboratory experi­

ments will be compared to prototype experience, and Case A-1 will be 

discussed. 

5.2.1 An initial test calculation by the Arakawa's numerical model­

Figure 5-1 displays streamlines obtained by the program discussed in 

Section 4.28 when Fr= 0.21. The original rectangular obstacle is 

indicated by the double hatched region, and an effective mountain based 
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on a separation streamline is shown by the single hatched area . A 

comparison is made with Long's theoretical prediction and his water 

channel test. A numerical example was conducted to satisfy Long' s 

experimental conditions, i.e., a constant temperature (density) gradient 

and a uniform dynamic pressure distritution far upstream. 

The wave patterns obtained by thE present analysis agree with Long's 

experimental results. The positions cf wave crests and troughs have been 

connected by broken lines. The linearized theory predicts that the 

location of the first wave crests is 3/4 wave length downwind from the 

top of the obstacle. Almost all laboratory experiments, however, report­

ed that the first wave crests were very much further displaced down­

stream (Long, 1955; Lin and Binder, 1967; Davis, 1969). 

The wave length, A may be computed according to linear theory 

from the re l ation 

Wave lengths were observed to increase with height. Thus there existed 

a wave phase shift in the vertical direction. Wind tunnel experiments 

by Lin and Binder (1967, Fig. 40) noted a functional variation of wave 

length with height and Froude number. The present numerical model 

contains both features, increased wave length and phase shift with 

height. Nonuniformity of wave length thus makes it difficult to compare 

the computed wave length with that predicted by the lineari zed theory. 

In the present example, the wave length at z = 30 cm coincides roughly 

with the theoretical val ue of 80 cm. The difference between the 

present numerical model and Long's analysis is that the latter r equires 
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a constancy of pU2 with height at the far upstream boundary, but the 

former does not. Friction terms were neglected in both cases. 

5.2.2 Case A-1 - Airflow over a square obstacle (8 cm x 8 cm) i s 

discussed. Figure 5-2 displays streamlines obtained from a smoke 

visualization picture taken on October 7, 1970 . A five-second exposure 

time indicated that the flow was very steady. The smoke was dispersed 

very rapidly under the first wave crest by the presence of a t urbulent 

rotor. Such motions were reported by both prototype (Queney, 1960) and 

previous laboratory observations (Long, 1955; Lin and Binder, 1967; 

Davis, 1969). 

Temperature contour lines have been constructed from the tempera­

ture profiles at various locations as shown in Fig. 5-3. Isotherms taken 

from experiments performed on different days are superimposed to 

indicate laboratory reproducibility. A streamline from a smoke picture 

on September 30, 1970, is also shown in the same figure. 

Since the measured temperature distributions were not linear with 

height, (see Fig. 5-7) two different Froude numbers might be computed. 

The lower region (0 ~ z < 13 cm) had a greater stability than the 

region above (z >13 cm). Three different Froude numbers have been 

computed for each case, one for the lower layer (subscript 1), one for 

the upper layer (subscript 2), and one for averaged value (see Table 

5-1). 

A numerical experiment was performed for identical flow conditions. 

Streamlines and isotherms are shown in Fig. 5-4, which were enlarged 

from microfilm contours in Fig. 5-5. General agreement with the wind 

tunnel experiment was obtained. The wave amplitude in the numerical 

model was not so large. 
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Temperature profiles at various locations for both wind tunLe l 

and numerical experiments are presented in Fig. 5-6. The location 

x = 0 corresponds to the upwind edge of the obstacle. A dashed line 

in each profile indicates the initial distribution provided to t he 

numerical integration. Initial profiles can be arbitrary; however, for 

a faster convergence a reasonable initialization is desirable. An 

averaged temperat ure distribution for the clean wind tunnel fiek was 

used as an initializing distribution (Fig. 5-7). Data at x = - 60 

and - 20 cm in Fig. 5-6 show clear evidence of upstream flow modifica­

tion by the existence of an obstacle. Numerical temperature distribu­

tions at x = 12, 16, and 20 cm appear to simulate regions of overturning 

clT instability Caz < 0), where the flow was supposed to be very unstable . 

According to Long 's analysis (1955) this region should correspond to a 

reversed flow area. 

The exi stence of turbulent motion under the first wave crest can 

be seen from the temperature profiles at x = 48, and 60 cm. Experi­

mental results at these locations show constant values near the ground 

as a result of strong turbulent mixi ng. The numerical model failed to 

simulate the phenomena in this region primarily due to insufficient 

numbers of grid points near the ground where the temperature vari es 

rapidly. 

A detailed examination of the flow field immediately behind the 

obstacle is shown in Fig. 5-8. The square obstacle is indicated by a 

double hatched area, and the effective mountain is repres ented by a 

single hatched region. A streamline and the obse rved flow directions 

are as indicated. Velocity profiles at x = 12, 40, and 60 cm 1vere 

obtained from smoke wire photographs. The velocity distribution 
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sketched at x = 12 cm represents an average from two pictures taken 

three minutes apart. Both pictures presented similar profiles; there, 

f ore , the result shown here seems to be very reliable. 

The measured temperature field behind the obstacle shows a very 

complicated picture (see Fig. 5-9). Temperature data at all points 

measured in the experiment are available in Table 5-2. 

The motion insi de the separated region (or core) was quite dif­

f erent from that observed for neutral density flows. Velocity close to 

the surface was positive, a negative flow was observed above it, and 

the flow reversed again outside the core (see Fig. 5-8). The tempera­

ture distributions at x = 12, 16, 20, 24 and 28 cm also exhibit 

alternative positive and negative gradients. 

This peculiar motion may be easily exp l ained. A f luid particle 

trapped into the core region originates at some high temperature level 

(Fig. 5-3). The particle is less dense than the surrounding strata, 

and thus buoyancy forces drive a counterclockwise circulat ion. 

5.3 Results and Discussion of Heated Island Effects 

In a heated island phenomenon the surface temperature is a result 

of the total heat energy balance, including insol ation, heat conduction 

into a soil layer or a building, convection and radiation to the 

atmosphere, etc. Since the above mechanism is complicated and not yet 

fully understood, it is convenient, in constructing a model, to specify 

a priori the surface temperature as a function of space and time. The 

daily change of the surface temperature is we ll described by a simple 

function such as a Fourier se ri es with a small number of terms 

(Lonnquist, 1962). Since the purpose here was to simulate the basic 
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fluid phenomenon and not its time-dependent characteristics, a constant 

value for the temperature of the heated surface was selected in all cases. 

Extensive temperature surveys in the wind tunnel were conducted 

to draw accurate isothenns over a heated area. A thermocouple-~ount ed 

rake was set along the centerline of the wind tunnel. Vertical measure­

ments were made utilizing nine thennocouples of fixed heights, mounted 

on the rake (Fig. 3-6). In the horizontal direction different intervals 

were selected, depending upon the horizontal temperature gradient; over 

the approach region to the island a coarse interval of 4 cm was used, 

while over and in the leeward vicinity of the heated plate, the increment 

was decreased to 2 cm. For the far downstream fetch (x > 40 cm), the 

4 cm interval was used. 

Less extensive velocity measurements were obtained. The difficulty 

in measuring such small velocities in a temperature-stratified flow has 

already been described in Chapter III. The smoke-wire technique gave 

a very fast and clearly visible resul~ in some regions. However , when 

the area of interest was located in turbulent flow regions (over the 

island, under the crest of lee waves, and close to the surface) smoke 

released from the heated wire dispersed rapidly due to the mixing effect 

of turbulence; hence the smoke trace on a picture was very poor. 

Therefore, construction of streamlines from a measured velocity field 

was not possible. 

Flow visualization of streamlines using TiC1 4 streamers was 

attempted; however, results were only partial since, due to the very 

small basic wind speed, it was not possible to neglect the weight of 

the smoke. 
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Three heat islands were studied experimentally and numerically 

to investigate the effects of the intensity of heating at the island 

and of stability in the basic current. The Froude numbers shown in the 

figures are the averaged values of lower and upper regions. It is 

necessary to characterize the intensity of heating of different urban 

situations. It appears to be difficult to arrive at a parameter which 

does not contradict some prior usage or intuition. A non-homogeneity 

parameter is proposed here whose variations will be discussed when 

laboratory and numerical results are obtained. One example will be 

given in section 5.3.4 to evaluate this parameter for a prototype 

observation of a heated island effect. 

The non-homogeneity parameter introduced here is: 

= 

where Tisland 

aT 
-Caz)z = o 

Tisland 
L 

and T 
0 

- T 
0 

are the temperature at the island and that of 

the surrounding surface, respectively. Temperature gradient over the 

island, aT -(-) , was taken from the experimental data at the center az z=o 

of the island. L is the width of a heated region. Additional 

information about flow conditions, such as basic wind speed, stability, 

wave length, viscosity, etc., are available in Table 5-1. Cases B-1 

and B-2 had the same basic wind speed and stability (thus the same 

Froude number), but the intensity of heating varied (different Nh 

number). Case B-3 had a stronger stability but the same current of 

6 cm/sec. Case B-3 also had the highest temperature excess of the 
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three cases, but the Nh number was approximately the same magnitude as 

in Case B-1. Each numerical computation was conducted under the same 

flow conditions as in the corresponding experiment. The followi ng 

sections describe the results of each case separately. 

5.3.1 Case B-1 - The Froude number was 0.100 which was averaged 

from values of 0.065 and 0.134 in the lower (0 ~ z ~ 9 cm) and U?per 

(z > 9 cm), regions respectively. Isotherms of 295, 300, 302, 303, 

and 305°K were drawn from the vertical temperature distribution at 

various locations. The r esult is shown in Fig. 5-10, together with 

velocity profiles in the vicinity of the island. The equivalent thermal 

mountain shape was computed from the linear theory given in Eq. 

(2.2.2.7-2). The height increased exponentially from O at x = 0 

to the maxi~um height, 1.15 cm at the downward edge of the island 

(x = 8 cm). The height then decreased exponentially through the values 

of 1.14 cm, 1 . 05 cm, and 0.76 cm at x = 15, 50, and 200 cm respectivel y. 

The theoretical equivalent mountain had a very flat and broad structure 

more like a plateau than a step change mountain. Computat ion of the 

equivalent mountain height was based on the following initial conditions; 

and 

0 ~T = 47.6 K, 

- 0 T = 296 . 8 K, 

-3 1 s
1 

= 2.422 x 10 cm- (stability in the lower region, 

z < 8.9 cm), 

U = 6 cm/sec, 

K = 0.2 cm2/sec (kinematic viscosity). 



130 

The concept of the equivalent mountain can be applied only in 

the upper regions where the direct effect of heating from the island 

is negligible. In the present case it appears that the region is 

above z = 15 cm. 
0 The displacement of the 303 K temperature contour 

line was about 8 cm . This is too large for the mountain height of 

1.15 cm obtained theoretically from linear theory. 

Existence of the basic current destroyed the symmetric thermal 

plume behavior which is seen in the field when there is no prevailing 

synoptic current (Delage and Taylor, 1971). The thermal plume over 

the island was swept streamward, and the isotherm structure was also 

displaced to the wind direction. 

The velocity profiles at x = 3, 12 and 20 cm, as reduced from 

smoke wire photographs, are shown in the same figure (Fig. 5-10). 

The profile at x = 3 cm indicates a strong surface wind accelerated 

by a counterclockwise sea breeze circulation at the windward edge of 

the island. This sea breeze motion introduced a strong negative 

velocity at the upper levels. Interaction with the basic current 

resulted in a weak negative flow as indicated in the figure. The 

surface currents in the lee side of the island were reversed; this 

indicates that the negative flow induced by the sea breeze circulation 

(generated by the temperature difference at the end portion of the 

heated island) was stronger than the basic wind. Further, the return 

currents of the sea breeze motion magnified the positive horizontal 

velocity component. 

TiC1 4 smoke was introduced at the surface about 50 cm downwind 

from the heated plate (see the photograph in Fig. 5-10). Smoke was 

propagated backward against the basic current and rotated upward 
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at the lee side of the island. Then the smoke trajectory separated 

into two directions - one traveled upstream and the other dOlin Stream. 

The flow directions are shown by arrows added to the picture. 

These coincide with temperature and velocity measurements discussed 

above. 

A numerical simulation under the equivalent flow condition was 

conducted . 0 
The temperature of the island, however, was set at 320 K, 

whereas th e laboratory measurement indicated 341°K. The justification 

for this variation is as follows. The laboratory model developed 

very strong temperature gradients in the surface region over the 

heated island, especially between the surface and the first point 

from the surface (z = 0.635 cm). This effect cannot be represented 

by the numerical model because minimum grid size is 4 cm. Therefore, 

an effective surface temperature was obtained by linearly extrapolating 

the first two values from the surface. Justification of this 

boundary condition approximation depends, of course, on the comparison 

of the numerical results with the laboratory measurement. 

The computed stream function, vorticity, and temperature 

contour lines at t = 27.11 sec. are provided in Fig. 5-11. The stream­

line shows a closed region behind the island starting at the lee edge 

of the heated plate; this region corresponds to the shape of the 

equivalent thermal mountain. (This interpretation of the equivalent 

mountain from a separated streamline is one similar to that adopted in 

the field observation by Garstang et~- (1965), where a trajectory of 

a balloon released at the surface of the island was used to compute the 

thermal mountain height). Now we can see definite evidence of a thermal 

mountain induced by a heated island. 
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Its shape is broad as predicted by the l inear theory, but t he 

height is considerably higher (14 cm) than the theoret ically pr edicted 

value (1.15 cm) . In the theoretical evaluation of the thermal height, 

only the viscosity was an assumed value; the rest of the input values 

were obtained from the laboratory measurements. It has been mentioned 

that locally strong turbulent areas were observed over the heated 

is land; thus, the turbulent mixing effect must be included in the 

numerical analysis. 

A calculation was reversed to evaluate effective K values for 

the numerical model of the laboratory flow conditions and the theI1nal 

mountain height which was obtained from a computed separate streamline. 

In Fig. 5-12 the relation: 

M(x = 8) = 6T - ~ ~ x 
(1 - e ) 

sT 

is plotted, where M(x = 8) is the height of the equivalent mountain 

at x = 8 cm. From the figure K appears to be 2. 7 cm2 /sec, \':hich 

is 14 times larger than the assumed value. This suggests that any 

numerical analysis which hopes to be exact must incorporate the 

variations in turbulent mixing introduced by the unstable thermal 

mechanisms. 

Both the laboratory and the numerical heated island models predict 

rotation of the flow stream upward at the lee edge of the island and 

a maximum height at x = 28 cm, whereas the linearized theory for 

the heated island suggests that the equivalent mountain rises abruptly 

from the upstream edge of the island and the maximum height is attained 

at the lee edge of the island. Thus, the numerically computed mountain 
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was displaced downstream. Vorticity contour lines indicate a pair of 

sea breeze circulations at both edges of the island. These cell s ar e 

also convected downstream by the basic wind. 

Isothenns in Fig. 5-11 reproduced many features described previ ous l y 

in the discussion of the experimental temperature measurements. The 

central region from x = -20 to 60 cm and z = 0 to 40 cm has be en 

enlarged in Fig. 5-13 for a direct comparison with the wind tunne l 

result. A strong thennal plume with inclined axis is observed, j ut 

the temperature contour lines in the upper region do not show as a 

strong variation as that seen in the experiment. 

To provide a detailed and direct comparison with experimenta l 

results, the numerically computed values of temperature have been added 

to the plottings of experimental vertical temperature distributions 

(see Fig. 5-14). Measured values are connected by a solid line and 

solid circles indicate the computed values. A dashed line indicates 

the initial temperature distribution in the numerical model. Bo~h 

results are in close agreement, except in the region close to the is l and 

where temperature vari es so rapidly that the numerical model, be i ng 

limited to a finite number of discrete points, is incapable of r es olving 

small scale perturbations between adjacent grid points. From x = 14 cm 

downstream numerical and experimental temperatures coincide very we ll. 

Experimental temperat ure distributions over and just leeward 

of the island show different characteristics from the rest of the 

locations: thennal profiles vary taking maximum and minimum values 

rather than monotonically increasing with height. Let us define 

the inversion haze as the point at which a minimum temperature f i r s t 

occurs. This haze height increases with distance x to 1. 3, 2.4, 2 . 9 , 



134 

5.0, 7.7, and 12.7 cm at x = 0, 2, 3, 6, 8, and 10 cm, respectively. 

These results explain part of the mechanism which creates "elevated 

inversions" observed over urban areas . In the prototype urban heat 

island phenomenon, a multi-leveled set of elevated inversion layers 

are observed. These additional layers may result from the radiation 

balance to urban pollutant haze. 

Another interesting phenomenon observed in these measurements is 

a "thermal cross over". The "cross over" phenomenon occurs when 

temperatures at some height over a city take smaller values than those 

over the upstream rural area, i.e., there is a cooler region over 

the heated island before it matches with upstream temperature at 

some greater height. Temperature perturbations about the upwind norm, 

chosen as that at x = -20 cm, are plotted in Fig. 5-15; cooler regions 

are observed above z = 15 cm at x = 12 and 20 cm. Measured 

temperature values are tabulated in Table 5-3. 

Numerically computed velocity components u and w are displayed 

in Fig. 5-16, and may be compared with experimental results in Fig. 5-10. 

Sea breeze effects are again clearly evident in the surface area. 

Profiles indicate very complicated features: positive and negative 

values, minimums and maximums. Stern and Malkus (1953) derived from 

the linearized theory the height at which a sea breeze reversal occurs 

on the windward side of the island: 

1 
h = l (~) - 2 2 n u 

The order of magnitude of sea breeze perturbation was 
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u2 
ln 

K(gs)l/2 

The predicted values for Case 8-1 are h = 7.8 cm and u' = 4.7 ~m/sec . 

The complete numerically solved equat~on developed h = 10 cm ani 

u' = 3 cm/ sec. 

Vertical velocity profiles in Fig. 5-16 indicate that there 

existed a strong updraft over the heated area, but that the return 

downward current was very weak with a wide horizontal extent. 

5.3.2 Case B-2 - To examine the effect of heating intensity upon 

the airflow, the surface temperature excess was increased to 84°K. The 

equivalent mountain height predicted by the linear theory Eq. 

(2.2 . 2.7-2) was 2.02 cm, an increase of 76% over the previous case . 

Figure 5-17 presents wind tunnel temperature and velocity measure­

ments. General features are similar to the previous results shown in 

Fig . 5-10. In this case, however, the thermal plume penetrated more 

deeply into the basic current and larger variations of the isotherms 

"{ere observed. The amplitude of the 306°K contour line was about 14 cm, 

while the maximum vari ation of the previous case was 10 cm. Since the 

air over the heated island was displaced upward considerably, a 

formation of cumulus clouds might be seen over its atmospheric 

equivalent if the air had enough moisture to condense. The cross over 

effect will be experienced traversing horizontally at height 30 cm from 

left to right in the figure . At first a high temperature is encountered 

until directly above the leading edge of the heated island . Nex~ a 

cooler region exists up t o about x = 25 cm or directly over the island; 

then a high temperature region again appears until th e environment 
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finally returns to the original temperature at x = 60 cm. Table 5-4 

includes all information necessary to construct isotherms in Fig. 5-17. 

Velocity profiles in the same figure indicate a deeper sea breeze 

circulation than in Case 8-1. Over the island a strong wind with 

negative flow above it was again observed. Therefore the wind profile 

at this location had at least two maximums and one minimum. These were 

generated by the interactions of stratification of the air, sea breeze 

circulation induced by the heated plate, and the basic current. Negative 

flow downstream of the island extended about 20 cm upward and more than 

60 cm horizontally. 

A numerical simulation of the experiment was conducted with the same 

flow characteristics, except that the temperature at the island was 

0 0 341 K rather than the measured value of 377 K. The argument justifying 

this modification has already been mentioned in the discussion of the 

previous Case 8-1. Stream function, vorticity, and temperature contour 

lines at t = 17.42 sec are plotted in Fig. 5-18. A dividing 

streamline separated from the lee edge of the island, reached a maximum 

height of 28 cm at around x = 40 cm, and subsequently decreased its 

height gradually. Inside of this streamline was a closed region, which 

may correspond to an equivalent thermal mountain, whose height was 

again very large compared to the linear theory's predicted value of 

2.02 cm. Utilizing the evaluated displacement value of 28 cm from the 

s treamline contour, the value of the effective viscosity was computed 

as before. Figure 5-12 indicates that K was 6.3 cm2/sec. which 

is more than 30 times large r than the kinematic viscosity, and about 

three times as large as the previously obtained value. Thus Case 8-2 

may have developed greater vertical turbulent mixing than Case 8-1. 
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Computed horizontal velocity profiles are plotted in Fig. 5-16 

for comparision with those obtained in Case B-1. The effects of the 

higher level of heating are seen in the stronger perturbed profiles 

and deeper sea breeze circulations. 

Two large vorticities of opposite sign were again well developed 

over the island; both vorticities were bent streamward because of the 

basic current (see Fig. 5-18). 

Computed i. sothe rm s i n the same f i gure indicate many features 

similar to those of the wind tunnel experiment. But a quantitat ive 

comparison shows that agreement of the vertical temperature distributions 

(Fig. 5-19) is not as close as in case B-1. 

Several reasons mi ght be proposed to explain variations between the 

numerical and wind tunnel experiments: (1) since the island was 

heated more intensely in Case B-2, an extended region of turbulent 

motion developed which prevented the present programming from simulating 

the phenomenon, (2) the effective island temperature was not properly 

estimated for the numerical experimen~, and (3) the computed flow field 

was still developing while the wind tunnel results were at quasi-steady 

state. The most probable explanation seems to be either (1) or (2), 

since (3) ay be eliminated from the result shown in Fig. 5-20, where 

time variations of the maximum absolu~e velocity components u 

are shown. They increased rapidly from their initial values and 

continued to grow until t = 15 sec, after which they remained at 

constant values of juj 14 cm and 16 cm of lwl . max max 

and w 

Both numer i cal and wind tunnel experiments simulated the effect 

of an introduction of an intense energy source. They reproduced the 

deep penetration of the heat plume, t e large variation of isothe rms , 
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the intense development of a sea breeze circulation, the development of 

turbulent motion, and the complicated velocity profiles. 

5.3.3 Case B-3 - In this case both stability and surface 

temperature were varied from the previous two cases in order to 

examine the effect of stability. The average Froude number was 

0.064 as against 0.100. The same basic wind of 6 cm/sec was 

retained. Stronger stability effects are seen in Fig. 5-21 where 

measured isotherms and velocity profiles are plotted. Smaller 

penetration of the thermal plume in comparison with Case B- 2 was due 

to the much smaller Froude number in spite of the surface temperature 

increase to 412°K from 377°K. Case B-3 (Fig. 5-21) displays a very 

similar isotherm pattern to that of Case B-1 (Fig. 5-10). The 

counteraction of the more intense surface heating was a result of 

the more stable free stream retarding forces. This result underlines 

the necessity of using two different parameters to characteri ze the 

flow - one for the stability of the basic flow (Froude Number), and 

anothe r to specify the heat island intensity (non-homogeneity parameter). 

The Nh numbers in Cases B-1 and B-3 were nearly equivalent; the Froude 

number in Case B-3, however, is smaller than that in Case B-1 , resulting 

i n less plume penetration. In fact, the scale of the sea breeze cir­

culation in Case B-3 is about 40 % smaller than that in Case B-1. Tabl e 

5-5 includes all the measured values of temperatures from the wind 

tunnel. 

Numerical results are provided in Fig. 5-22. Estimated 

equivalent mountain height from a separated streamline was 24 cm, 

about t en times as large as the theoretically predicted value of 2. 42 cm. 

Reverse calculation of K from the evaluated mount ain hei ght was 
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2 2.30 cm /se from Fig. 5-12. Both numerical and wind tunnel results of 

vertical temperature distributions are provided in Fig. 5-23. Generally 

they agreed quite well except in the area close to the heated island 

where strong turbulent motions were observed. 

5.3.4 Comparison with prototype observations and other studies -

Agreement of the results presented here with observational data (Stern 

and Malkus, 1953, Fig. 4, p. 111 and Fig. 6, p. 112; Fosberg, 1967 , Fig. 

2 on p. 893; Bornstein, 1968, Fig. 3, p. 578; Spelman, 1969, Fig. 9 on 

p. 116) is strikingly close. In each case the larger the Froude number 

and the larger the non-homogeneity parameter, the more deeply a i eat 

plume penetrates into the atmosphere. There also exists an unstable 

region over the island, and isotherms display wavy configurations (see 

Fig. 5-17). The crest of an isotherm wave is always displaced streamward 

for larger Froude numbers and/or smal : er Nh values (see Figs. 5-10 and 

5-21 in the present results and Fig. 9 in Spelman (1969)). 

Observational data described in Chapter II include extremely 

small Froude number flows. In Table 2-4 Malkus' (1955) observations 

indicate the largest Froude number, 0.06, for which a formation of 

cumulus cloud was observed. A very crude calculation was conducted 

to evaluate the Nh number, a heating intensity, for Malkus' 

observation. 0 An island surface temperature excess of 1.5 C, 

an island width of 80 km, and a temperature gradient at the surface of 

-o.3xlo - 3 m-l · 1 · dt bt· were u 1 1ze o o a1n In the present 

study, Case B-3 has Fr= 0.064 and ~h = 5.65 which are approximately 

the same order of magnitude. Both results (Fig. 7 in ~lalku s and Fig. 

5-21 in the present study) di splay many common features; however, the 

wave crests of t he isothe rms in the present study 1,ere di sp laced more 
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streamward than tho se observed by Malkus. In the latter c.:isc a s tron ger 

blocking effect deve loped because of its larger Nh number. 

5.3.5 A direct measurement based on the predicted (linear 

theory) equivalent mountain in Case 8-3 - In the previous sections , 

both experimental and nwnerical results in all cases indicated that 

the linear theory might have underestimated the thennal mountain 

height. It is not certain, however, that the interpretation of the 

equivalent mountain from a separated streamline has a sound physical 

meaning. Therefore a direct examination of the concept of an 

"equivalent thermal mountain" proposed by Stern and Malkus (1953) 

has been attempted. Case B-3 provided the highest equivalent 

mountain in this study. The thennal mountain suggested by linear 

theory started at the leading edge of the island. The heights 

increased almost linearly to 2.42 cm at the end of the island, then 

decreased exponentially; 2.2 cm at x = 30 cm, 1.67 cm at x = 100 cm, 

and 0.74 cm at x = 300 cm. In the experiment examined here a simpler 

mountain form with a 4 cm height plateau and a short transition nose 

was used, as shown in Fig. 5-24. The flow conditions were maintained 

as in Case B-3. The isothenn plottings are also available in 

Fig. 5-24. A comparison with Case B-3 (Fig. 5-21) immediately 

indicates that the linear theory has grossly underestimated the equiva-

lent mountain height. The reason may be the incorrect estimation of 

K 
2 

values (viscosity of value 0.2 cm /sec was used to evaluate the 

mountain height). Recall that the numerical simulation predicted 

the mountain height of 24 cm and an effective 

in the vicinity of the island. 

2 K = 2.3 cm /sec 
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On the other hand Garstang et~- (1965) conc luded that, according 

to their observations, the linear theory overestimated the equivalent 

mountain heights. Thennal mountain boundaries have been determined from 

the zero lift balloon trajectories released at the upwind leading edge 

of the island. Theoretical effective mountain shapes we re computed 

from 

M = t,T 
r-y 

1 (1 - -) 
e 

which has a constant height over the island. Here an eddy diffusivity 

term does not appear because the shape factor X 
0 

is so small, compared 

with the island width, that the effect of K can be neglected. 

The di screpancies between the linear theory and the observations 

may result from the difficulty of a correct estimation of eddy dif­

fusivity and the uncertainty about whether a balloon trajectory 

represented the equivalent mountain concept division by Stern and 

Malkus (1953). 

5.3.6 Case B-3 in neutral stratification - As an extreme case, 

all stable stratification effect was eliminated in Case B-3. A 

slight surface inversion was introduced by the cooled aluminum ground 

plate. 

The resultant isothenns are shown in Fig. 5-25. The computed 

Nh number was 10.22 - double that in Case B-3. The plume caused a 

strong blocking effect and deep sea breeze circulations. 

Vertical temperature distributions are given in Fig. 5-26. An 

elevated inversion as hi gh as 24 cm is seen at x = 16 cm. Pro=iles 

at x = 0, 4, and 8 cm indicate strong mixing by turbulence. 
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5.4 Airflow Over a Heated Mountain 

5.4.1 Joint influence of heating and obstacles - It is interesting 

to investigate the combined effect of topography and heating. For 

example, buildings in a city may maintain higher temperatures than the 

surrounding grounds because the building materials have a higher heat 

conductivity which enables them to store more heat energy during the 

day. A mountain in a coastal area may have higher surface temperatures 

than the ocean during the day (Fosberg, 1969). Islands in the ocean 

may have topographic effects in addition to those of the temperature 

differences. The linearized heated island theory was developed to 

investigate effects of surface temperature excess upon airflow. Stern 

and Malkus (1953, p. 119), however, suggested that a heated mountain 

solution might be obtained by superposing s olutions for a physical 

mountain and an equivalent thermal mountain. This superposition pro­

cedure is mathematically correct as long as the linear theory holds. 

Both mountain and heated island phenomena are not, however, linear 

problems, as proved by both prototype observations and wind tunnel 

experiments. Spelman (1969, p. 126) concluded in his numerical modeling 

of a heated mountain phenomenon that the combined effects of surface 

heating, topography, and roughness produced a greater disturbance in the 

mixed layer than any of the individual surface features acting alone. 

Specifically terrain, roughness, and temperature excess, respectively, 

produced +25, -15, and +400 m displacements at the lee side of the 

surface nonuniformity. A combination of the above three factors resulted 

in a 575 m displacement, a much greater effect than the superposed value 

of 410 m. Similar results in wind tunnel experiments support the actual 

importance of the nonlinear characteristics. 
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5.4.2 Case C-1 - An experiment demonstrating airflow over a 

non-heated obstacle was first conducted. Flow conditions equival ent 

to those in Case B experiments were used, i.e., 

obtained from u = 6cm/sec, and - -3 
S = 1 .5 X 10 

a (Fr)H = 0.100 was 

cm-l A flow 

visualization picture by Ti c1
4 

smoke is seen in Fig. 5-27. A stream­

line sketch was made from the photograph for a better illustration . 

There existed several characteristic =low regions; at the surface 

downstream of the obstacle, turbulence was observed where smoke mixed 

uniformly and propagated upstream. A dark region in the photograph 

indicates a high veloci ty layer, thus smoke was convected dowstream in 

a wavy trajectory. A stagnation area was found between the high speed 

region and the ambient area. The wave length observed is about 20 cm. 

The linear theory predicted value of 25 cm. 

Isotherms are shown in Fig. 5-28 as constructed from vertical 

temperature distributions displayed in Fig. 5-29. Table 5-7 incorporates 

all measured temperature data. The temperature contour line for 300 K 

exhibits wave-like motion equivalent to that found in Fig. 5-27. Thus 

isotherms must approximately represent streamlines. Streamlines are 

displaced upward just above the obstacle; i.e., the maximum displace­

ment occurs directly over the mountain. All experiments for Case B had 

similar flow patterns and the results showed that the maximum di splace­

ment of the isotherms always occurred at x = 12 to 22 cm (see Fig. 5-10, 

5-17, and 5-21). Therefore a thermal mountain produced by a surface 

temperature excess does not necessarily remain over the heated area. 

Both Spelman's (1969, Fig. 9, p. 116) and the present numerical results 

(Fig. 5-11, 5-18, and 5-22) suggest this behavior, while the linear 
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theory requires that an equivalent mountain starts at the leading edge 

of the island and attains a maximum height at the end of the island. 

To develop the effect of a heated mountain, an aluminum obstacle 

was heated by six electric heaters attached inside of the obstacle. 

Surface temperature was maintained at 310 K, 20°c higher than the floor 

temperature. Streamlines were visualized by smoke (see Fig. 5-30). 

An experiment for a heat island with a temperature excess of 

exactly 20°c was not examined. However, results for a similar flow 

condition at a low level Froude number= 0.070 (here 0.065) and 

6T = 18°C did not have any appreciable effects on the airflow. No 

influence of the heating was detected as low as 5 cm above the island. 

Therefore, it may be reasonably concluded that heating alone did not 

create any appreciable disturbance of the basic flow. 

A comparison of Fig. 5-30 with Fig. 5-27, however, displays an order 

of magnitude larger streamline displacements because of the coupled 

influence of an obstacle and heating. The lowest streamline sketched 

in Fig. 5-27 is displaced upward about 18 cm in Fig. 5-30. Thus, linear 

superposition to evaluate the combined effect of heating and topography 

is not permissible. Figure 5-31 and Fig. 5-32 display isotherms and 

vertical temperature distributions, respectively. Above the heated 

obstacle unstable areas were observed. All temperature data are 

available in Table 5-8. Numerically computed isotherms shown in Fig. 

5-33 reproduce the experimental features in Fig. 5-31 . Other variables 

computed are plotted in a contour line; they include stream function, 

vortex, and velocity components u and w (see Fig. 5-34). 
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5.5 Three Dimensional Airflow Over a Heated Island (Experimental) 

5.5.1 Infl uence of y direction inhomgeneity - Surface 

inhomogeneities in a longitudinal direction only, as discussed in the 

previous chapters, are exceptional cases in nature. Fortunately the 

assumption of two-dimensionality does not remove the possibility of 

examining many interesting general effects of heating and topographic 

discontinuities. However, the horizontal convergence of wind into an 

urban area (Okita, 1960; Pooler, 1963) cannot be explained by a two­

dimensional treatment. Horizontal temperature observations in an 

urban area, as reported elsewhere (Duckworth and Sandberg, 1954 ; 

Kopec, 1970; Preston-Whyte, 1970), always display distorted but usually 

concentric isotherm patterns centered somewhere near the central 

business district. 

Very few theoretical studies are available due to the mathematical 

difficulty of solving a set of the nonlinear three-dimensional governing 

equations. Olfe and lee (1971) did utilize a linear perturbati)n 

technique and managed to provide analytical expression for temperature 

perturbation over a circular heated area. The solution was obtained by 

superimposing the results from two-dimensional airflow over a heated 

island where the temperature was distributed in a mountain shape. If 

the cross secti on of this profile is rotated ±90° a three-dimensional 

heated island will be constructed. Thus the superimposed solution 

obtained from ~he integration of the two-dimensional solutions from 

-90° to +90° represents a three-dimensional flow. Their result suggests 

that there will be no significant differences from previous twc­

dimensional solutions, yet slightly larger temperature perturb~tions 

were obtained in the three-dimensional case. 
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Estoque and Bhumralkar (1970) constructed a three-dimensional 

numerical model which had a grid system of 15 x 5 x 14 in the 

x, y, z directions respectively. They provided a comparison only 

of the lateral velocity component for the two-and three-dimensional 

configurations. Their results indicated that larger magnitudes of 

lateral velocity components were obtained in the latter case. Here 

an attempt has been made to reveal differences between the two 

configurations in a wind tunnel laboratory experiment. 

5.5.2 A wind tunnel experiment of airflow over a rectangular 

heated area - A rectangular area 30 cm x 8 cm was heated as shown 

in Fig. 5-35. TiC14 smoke was released at two locations on the 

floor symmetric with respect to the central axis of the wind tunnel, 

in order to display the unique effect of lateral convergence. 

The observed flow trajectories are as follows (see Fig. 5-35): 

smoke started from A, followed a curve ABC, and at point C a 

vertical vortex which lifted smoke upward was observed. The vertical 

vortex is bent strearnward by the background flow field. Another vortex 

was observed along the lateral boundaries of the heated plate. It 

was initially generated in a manner similar to the development of a 

sea breeze when the synoptic flow is along the coastline. 

The vertical vortex formation observed here is that often seen 

in the motion of dust or leaves behind a building on a windy day. 

Therefore a heated area seems to have acted as a physical obstacle; 

this supports the concept of a thermal mountain. 

The natural occurrence of a vertical vortex motion in the atmosphere, 

such as a fire whirl is the result of the simultaneous presence of 

ambient vorticity and rising air (Ennnons and Ying, 1966). Here the 
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three-dimensional heated island has apparently provided the two 

conditions; i.e., the ambient vorticity was created by the them.al 

mountain, and heat energy from the island heated the air and raised it. 

Therefore it might be concluded that the rectangular high temperature 

region reproduced a mechanism similar to natural whirls in a wind 

tunnel. 

Figure 5-36 displays horizontal temperature isopleths at 

three different heights. At z = 1 cm from the floor, isotherms 

have shapes symmetric about the heated area, but at z = 5 cm their 

upwind edges are tilted downstream because of the finite extent 

of the heated area in the y direction. Moreover the center of 

the distribution was displaced about 5 cm downwind from the center 

of the heated area. Displacement of the maximum temperature region 

by the general flow field from the central business district (which 

had the highest surface temperature) has often been reported 

(Sundborg, 1950; Preston-Whyte, 1970). A relatively weak temperature 

gradient in the direction of increasing temperature and a sharp 

gradient as temperature again declines is observed at z = 5 cm. 

This may correspond to a hydraulic jump phenomenon over an obstacle. 

At z = 10 cm less than a 1°c temperature difference is encountered, 

except over a limited region along the centerline of the island. 

Isotherms in vertical planes parallel to the flow direction 

are constructed at several locations on the y axis. They are 

constructed from vertical temperature distributions measured at 

many locations in the x direction (shown in Fig. 5-37) and 

y = 0, ±5, ±10, ±13, ±15, ±17 and ±20 cm. Although distributions 

were symmetric with respect to the y = 0 plane, there existed 
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large differences very close to the center plane where the flow was 

very unstable. Therefore values averaged from the corresponding 

t wo symmetric planes in the positive and negative y direction 

were utilized to cons truct isotherms in Fig. 5-37. 

Stronger gradients of the approach isotherms are noted for 

three-dimensional islands; this contrasts with two-dimensional cases 

where the gradients were almost horizontal (Fig. 5-10, Fig. 5-17, and 

Fi g. 5-21). 

One such example in the atmosphere is provided by comparing Fig. 

10 with Fi g. 19 in Malkus and Bunker (1952). The former figure shows 

a stronger horizontal gradient in isotherms which was observed in more 

three-dimensional flow situation than that in the latter figure. 

Olfe and Lee (1971) computed from their linearized analytical 

model temperature perturbations both for two and three-dimensional 

cases. The same tendency, i.e., higher temperature perturbations in 

three-dimensional flow, was obtained (see Fig. 5 in Olfe and Lee). 

An immediate explanation of the isotherms' behavior is not apparent; 

however, the following argument might be reasonable: Isot herms removed 

from the heated island are usually considered to closely represent 

streamlines. Therefore it might be sufficient to give a physical 

explanation for a stronger dipping of the approach flow streamlines in 

the three-dimensional model. The most significant difference between 

the flow fields in two-and three-dimensional configurations is the 

existence of the lateral component of a velocity, i.e., air flows not 

only across the island but al so toward either side of the island. 

Because of the finite extent of the island in t he y direction, the 

cooler surface regions beyond the side boundari es of the heated i s land 
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do not have any blocking effects on the flow. They might act as sinks 

in comparison wi t h the area over the heated island where strong clocking 

effects are imposed on the flow. Thus when a portion of the approach 

flow is sucked to the sides, streamlines may abruptly dip . An excellent 

example of a bl ocking effect of an obstacle on a two-dimensional flow 

into a line sink is given in Yih (1965, p. 82-94). 
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CHAPTER VI 

CONCLUSION 

In this report four different categories of flow are investigated 

in a thennal wind tunnel: 

1) Airflow over an infinitely wide obstacle, 

2) Airflow over an infinitely wide heated island, 

3) Airflow over an infinitely wide heated obstacle, and 

4) Airflow over a heated island with a finite width. 

The first three categories are two dimensional aspects of prototype 

phenomena: a mountain lee-wave, an urban heat island, and a heated 

mountain, respectively. The last displays a three dimensional 

feature of a corresponding urban heat island phenomenon. Numerical 

models were constructed for the first three cases. However, for the 

three dimensional problem, only the wind tunnel experiment was conducted 

since a numerical integration for such a three dimensional problem is 

not practical yet. 

1) Both laboratory and numerical results showed close agreement. 

They indicated strong nonlinearity; perturbation quantities could not 

be neglected compared with their mean values especially in the vic i nity 

of the disturbing source (obstacle, heated area), and a linear super­

position rule could not be applied to predict the solution of combined 

effects of heating and topography. 

2) The present results were compared with a linearli zed theory by 

Stern and Malkus (1953). Definite evidence that a thennal mountain is 

generated by a heated island was observed; however, the shape and the 

position of the maximum height of the observed equivalent mountain were 
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different from t hat predicted by linear theory. Bot h observed a~d 

numerically computed thermal mountains were displaced downstream 

depending on the scale of the basic current, whereas the linear theory 

predicts that the effective mountain will always start at the le~ding 

edge of the island and attain its maximum height directly above the lee 

end of the island. 

3) Some characteristic features of urban heat island effects were 

simulated qualitatively both in a wind tunnel and by numerical ccm­

putation. Both results displayed the less frequent surface and the 

more frequent elevated inversion layers over a city. A heat cap -0r a 

heat plume is projected into the atmosphere which introduces a W[IVY 

motion over the city. As a result, temperature cross over (cooler 

temperature over the city) is observed over the heat island. Moreover 

a downward wind and an acceleration of a horizontal velocity in the 

surface layer of the approaching flow to a city were also reprodlll:ed. 

4) An experimental result of a three-dimensional heated island 

has shown several different features from those observed in two­

dimensional cases. Among them the following are significant: 

(1) Horizontal convergence of wind, and 

(2) Development of longitudinal vortexes along the lat =ral 

boundaries. 

A simultaneous occurrence of a formation of vertical vortexes behind the 

heated area and rising air provided a similar mechanism of a generation 

of a fire whirl in the atmosphere. 

5) It is proposed to utilize a non-homogeneity parameter to 

characterize a heating intensity in heated island problems in add~t i on 

to a Froude number. A complete justification to use this number as a 
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simi larity parameter, however, cannot be given until more reliable 

comparisons of prototype and laboratory observations are made. 

6) The complexities of analytical solutions introduced by a set 

of nonlinear partial differential equations are resolved by the use of 

a direct numerical integration on a digital computer. Additional 

advantages, over an analytical treatment, of the numerical approach 

suggested by this research are that: 

(1) arbitrary upstream conditions are rather easily given; 

(2) more realistic expressions of diffusion terms may be 

included, 

(3) arbitrary expression of time dependent heating and cool­

ing of the surface are possible, 

(4) in principle more complicated topography can be 

programmed, and 

(5) uniqueness of the solution is assured by the time 

dependent treatment. 

7) The numerical program as justified through wind tunnel experi­

ments may be applied directly to predict atmospheric phenomena discussed 

here (a mountain lee-wave, an urban heat island, and a heated mountain 

phenomena) with minor changes of boundary or initial conditions. If 

eddy diffusivities, however, take special functional forms rather than 

the constant values assumed here, then it is necessary to modify the 

finite-difference expressions for the diffusion terms. Wind tunnel 

results for urban heat island phenomena may be used for quantitative 

predictions of the corresponding atmosphere if conclusion (5) is 

accepted. 



153 

BIBLIOGRAPHY 



154 

BIBLIOGRAPHY 

Angell, J. K., Pack, D. H., Dickson, C. R., and Hoecher, W. H., 1971; 
"Urban Influence on Nighttime Airflow Estimated from 
Tetroon Flights," J. Appl. Meteor., .!.Q_, pp. 194-204. 

Apelt, C. J., 1969; Lecutre notes distributed in summerschool, Colorado 
State University. 

Arakawa, A., 1966; "Computational Design for Long-Term Numerical 
Integration of the Equation of Fluid Motion: Two-Dimensional 
Incompressible Flow. Part 1," J. Comp. Phys. , !_, No. 1, 
pp. 119-143. 

Black, J. F., 1963; "Weather Control: Use of Asphalt Coatings to 
Tap Solar Energy," Science, 139, pp. 226-227. 

Black, J. F., and Tarmy, B. L., 1963; "The Use of Asphalt Coatings 
to Increase Rainfall," J. Appl. Meteor., I, pp. 55 7-564. 

Bornstein, R. D., 1968; "Observations of the Urban Heat Island Effect 
in New York City," J. Appl. Meteor.,]_, pp. 575-582. 

Bradshaw, P., 1966; "Boundary-layer Problems of 1966," NPL AERO Report 
1203. 

Carnahan, B., Luther, H. A., and Wilkes, J. 0., 1969; Applied Numerical 
Methods, John Wiley and Sons, Inc., New York, 604 pp. 

Cermak, J. E. and Koloseus, H.J., 1953; "Lake Hefner Model Studies 
of Wind Structure and Evaporation," Final Report Part I and II, 
Contract No. bsr-57053, Bureau of Physics, U.S. Navy, 
Colorado State University Report No. CER54JEC20. 

Cermak, J. E., ed., 1966; "Simulation of Atmospheric Motion by Wind 
Tunnel Flows," Fluid Dynamics and Diffusion Lab., Colorado 
State University. 

Chanda, Benoyendra, 1958; "Turbulent Boundary Layer over Heated and 
Unheated Plane, Rough Surfaces," Colorado State University 
Report CER58BC21, AFCRC TN-58-428. 

Chandra-sekhar, S., 1961; Hydrodynamic and Hydromagnetic Stability, 
Oxford University Press. 

Changnon, S. A., Jr., 1968; "Recent Studies of Urban Effects on 
Precipitation in the United States," in Urban Climates, W. M. 0. 
Tech. Note No. 108, pp. 325-341. 

Charpentier, C., 1967; "Etude de la Stabilite d'un Gradient Thermique 
Produit Artificiellement dans un Ecoulement a Basse Vitesse 
au Mayen d'une Grille d'Elements Chauffants," Department 
Mechanique Theorique, Electricite de France 6, Quai Watier-
78 Chatou, 12 pp. 



155 

Cheng, S. I., 1970; "Numerical Integration of Navier-Stokes Equations," 
AIM J., ~' No. 12, pp. 2115-2122. 

Cooley, J. W., Lewis, A. w., and Welch, P. D., 1967; "Historical Notes 
on the Fast Fourier Transform," IEEE Transactions on Audio 
and Electroacoustics, Vol. Au-15, No. 2, pp. 76-79. 

Corby, G. A., 1954; "The Airflow over Mountains," Quart. J. R. Met. 
Soc., 80, pp. 491-521. 

Corby, G. A., and Wallington, C. E., 1956; "Airflow over Mountains: 
Tr.e Lee-Wave Amplitude," Quart. J. R. Met. Soc.,~' 
pp. 266-274. 

Crowley, W. P., 1967; "Second-Order Numerical Advection," J. Comp. 
Ptysics, _!_, No. 4, pp. 471-484. 

Crowley, W. P., 1968; "Numerical Advection Experiments," Monthly 
Weather Rev.,~' No. 1, pp. 1-11. 

Davidson, B., 1967; "A Summary of the New York Urban Air Pollution 
Dynamics Research Program," J. Air Poll. Con tr. Assoc., 
1 7 , pp . 15 4 -15 8 . 

Davis, R. E., 1969; "Two-Dimensional Flow of a Stratified Fluid 
Over an Obstacle," J. Fluid Mech., 36, pp. 127-143. 

Delage, Y., and Taylor, P.A., 1970; "Numerical Studies of Heat 
Island Circulation," Boundary Layer Meteorology,.!_, 
pp. 201-226. 

DeMarrais, G. A., 1961; "Vertical Temperature Difference Observed 
over an Urban Area," Bul 1. Amer. Meteor. Soc. , 42, 
No. 8, pp. 548-554. 

Douglas, J., Jr., 1955; "On the Numerical Integration of 
a2u/ ax2 + a2u/ay2 = au/at by Implicit Methods," J. Soc. 
Indust. Appl. Math., 1, No. 1, pp. 42-65. 

Drazin, P. G. and Moore, D. W., 1967; "Steady Two-Dimensional Flow 
of Variable Density Over an Obstacle," J. Fluid Mech., 
28, pp. 353-370. 

Duckworth, F. S., and Sandberg, J. S., 1954; "The Effect of Cities 
upon Horizontal and Vertical Temperature Gradients," Bull. 
Amer. Meteor. Soc.,~' No. 5, pp. 198-207. 

Emmons, H. W., and Ying, S., 1966; "The Fire Whirl," 11th International 
Combustion Symposium, The Combustion Institute. 

Estoque, M.A., 1961; "A Theoretical Investigation of the Sea Breeze," 
Q. J. Roy. Meteor. Soc., 87, pp. 136-346. 



156 

Estoque, M.A., 1962; "The Sea Breeze as a Function of the Prevailing 
Synoptic Situation," J. Atmosp. Science., ..!2_, pp. 245-250. 

Estoque, M.A. and Bhumralkar, C. M., 1968; "Theoretical Studies of the 
Atmospheric Boundary Layer," Final Rep., Grant DA-AMC- 28-
043-67-G2, Institute of Atmospheric Science, University of 
Miami, Coral Gab l es, Florida 33124. 

Estoque, M.A., and Bhumralkar, C. M., 1970; "A Method for Solving the 
Planetary Boundary-Layer Equations," Boundary-Layer Meteorology 
l, pp. 169-194. 

Fisher, E. C., 1960; "An Observational Study of the Sea Breeze," J. 
Meteor., .!2_, pp. 645-660. 

Fisher, E. C., 1961; "A Theoretical Study of the Sea Breeze," J. 
Meteor.,~, pp. 216-233. 

Foldvik, A. and Wurtele, M. G., 1967; "The Computation of the Transient 
Gravity Wave," Geophys. J. R. Astr. Soc., _!l, pp . 167-185. 

Forsythe, G. E., and Wascow, W. R., 1967; Finite-Difference Methods 
for Partial Differential Equations, John Wiley and Sons, New 
York, pp. 494. 

Fosberg, M.A., 1967; "Numerical Analysis of Convective Motions over 
a Mountain Ridge," J. Appl. Met. , §_, No. 5, pp. 889-904. 

Fosberg, M.A., 1969; "Airflow over a Heated Coastal Mountain," J. 
Appl. Met.,~, No. 3, pp. 436-442. 

Fromm, J. E., 1963; "A Method for Computing Nonsteady, Incompressible 
Viscous Flows," LA-2910, Los Alamos Scientific Laboratory 
of the University of California, Los Alamos, New Mexico. 

Fromm, J. E., 1969; "Practical Investigation of Convective Difference 
Approximations of Reduced Dispersion," Phys. Fluids, Supple­
ment II, pp. II-3 - II-12. 

Garnett, A., and Bach, W., 1965; "An Estimation of the Ratio of 
Artificial Heat Generation to Natural Radiation Heat in 
Sheffield," Mon. Wea. Rev., 93, No. 6, pp. 383-385. 

Garstang, M, Boaz, W. J., and La Seur, N. E., 1965; "The Equivalent 
Heat Mountain, A Preliminary Study," Florida State University 
Department of Meteor., 26 pp. 

Georgii, H. W., 1968; "The Effects of Air Pollution on Urban Climates," 
in Urban Climates, W.M.O. Tech. Note No. 108, pp. 214-237. 

Haurwitz, B., 1947; "Comments on the Sea-Breeze Circulation," J. 
Meteor., .i_, No. l, pp. 1-8. 



157 

Hess, S. L., 1959; Introduction to Theoretical Meteorology, Ho lt, 
Rinehart and Winston, New York, 362 pp. 

J Hewett, T. A., Fay, J. A., and Hoult, D. P., 1970; "Laboratory 
Experiments of Smokestack Plumes in a Stable Atmosphere," 
Fluid Mechani cs Laboratory, Department of Mechanica l 
Engineering, Massachusetts Institute of Technology, 31 pp. 

Hilst, G. R. and Bowne, N. E., 1966; "A Study of the Diffusion of 
Aerosols Released from Aerial Line Sources Upwind of an 
Urban Compl ex," Final Report, Project No. 4V025001Al28, 
Hartford, Conn., The Travelers Research Center, Inc., 
Vol. I, and Vol. II. 

Hino, M., 1965; "Numerical Anal ysis of Smoke Concentration Profiles, 
I Finite Difference Method ," Rep. No. 65058, Central Research 
Center of Electric Power Association, 38 pp. (in Japanese). 

Holmes, R. M., 1969; "Airborne Measurements of Thermal Discontinuities 
in the Lowest Layers of Atmosphere," Inland Waters Branch, 
Department of Energy, Mines and Resources, 3303-33rd Street, 
N. W., Calgary, Alberta. 

Humphreys, W. J., 1964 ; Physics of the Air, Dover, 676 pp. 

Janowitz, G. S., 1968; "On Wakes in Stratified Fluids," J. Fluid 
Mech., 33, pp. 417-432. 

Kopec, R. J. , 1970; "Further Observations of the Urban Heat 
Island in a Small City," Bull. Amer. Meteor. Soc., 51, 
No. 7, pp. 602-606 . 

Kozhevnikov, V. N., 1968; "Orographic Perturbations in the Two­
Dimensional Stationary Problem," Izv. , Atmospheric and 
Oceanic Phys i cs,~, ~o. 1, pp. 33-52. 

Kreith, F., 1968; Principles of Heat Transfer, Second Edition, 
International Testbook Company, Scranton, Pennsylvania, pp. 
620. 

Krishnamurti, T. N., 1964; "Theory of Two-Dimensional Mountain 
Waves , " Review of Geophysics, ~ No. 4, pp. 593-624. 

Landsberg, H. E., 1956; "The Climate of Towns," in Man's Role in 
Changing the Face of the Earth, Chicago, Illinois, University 
of Chicago Press, pp. 584-606. 

Landsberg, H. E., 1968, "Climates and Urban Planning," in Urban 
Climates, W.M.O. Tech. Note No. 108, pp. 364-374. 

Lettau, Heinz, 1959; "Research Problems in Micrometeorology," 
Final Report Contract DA-36-039-SC-80063 Meteorology 
Department, U.S. Army Electronic Proving Ground, Fort 
Huachuca , Arizona. 



158 

Lin, J. T., and Binder, G. J., 1967; "Simulation of Mountain 
Lee-Waves in a Wind Tunnel," Fluid Dynamics and 
Diffusion Lab., U.S. AI1lly Research Grant DA-AMC-
28-043-65-G20, Colorado State University. 

Lin, J. T. and CeI1!lak, J.E., 1969; "Dynamics of Stably Stratified 
Flows," Project THEMIS, Tech. Rep. No. 4, CER69-70JTL2, 
Fluid Dynamics and Diffusion Laboratory, Colorado State 
University, Fort Collins, Colorado, 167 pp. 

Lin, J. T., and Apelt, C. J., 1970; "Stratified Flow over an 
Obstacle, A Numerical Experiment," Project THEMIS, Tech. 
Rep. No. 7, CER69-70JTL-CJA25, Fluid Dynamics and Diffusion 
Laboratory, Colorado State University, Fort Collins, 
Colorado, 78 pp. 

Long, R. R., 1953; "Some Aspects of the Flow of Stratified Fluids, 
I: A Theoretical Investigation," Tellus, I, pp. 42-58. 

Long, R. R., 1954; "Some Aspects of the Flow of Stratified Fluids, II. 
Experiments with a Two-Fluid System," Tellus, §_, pp. 97-115. 

Long, R. R., 1955; "Some Aspects of the Flow of Stratified Fluids, 
III: Continuous Density Gradients," Tellus, 7, pp. 241-
357. -

Long, R. R., 1959; "A Laboratory Model of Air Flow Over the Sierra 
Nevada Mountains," The Rossby Memorial Vol., pp. 372-380. 

Lonnquist, 0., 1962; "On the Diurnal Variation of Surface Temperature," 
Tellus, XIV, 1, pp. 96-101. 

Ludwig, F. L. and Kealoha, J. H. S., 1968; "Urban Climatological 
Studies," Stanford Research Institute, Menlo Park, 
California. 

Lumley, J. L. and Panofsky, H. A., 1964; The Structure of Atmospheric 
Turbulence, Interscience, New York. 

Magata, M., 1965; "A Study of the Sea Breeze by the Numerical 
Experiment," Meteor. and Geophysics, 16, 
No. 1, pp. 23-37. -

Magata, M., and Ogura, S., 1967; "On the Airflow over Mountains 
Under the Influence of Heating and Cooling," J. Met. Soc. 
Japan, 45, No. 1, pp. 83-95. 

Malkus, J. S., 1955; "The Effects of a Large Island Upon the Trade­
Wind Air Stream," Q. J. Roy. Meteor. Soc.,~' pp. 538-550. 

Malkus, J. S., 1963; "Tropical Rain Induced by a Small Natural Heat 
Source," J. Appl. Meteor., ~. No. 5, pp. 54 7-556. 



159 

Malkus, J. S. and Bunker, A. F., 1952; "Observational Studies of 
the Air Flow over Nantucket Island During the Summer 
of 1950,: Pap. Phys. Ocean. Meteor., Mass. Inst. Tech. 
and Woods Hole Ocean. Inst. g, No. 2, 50 pp. 

Malkus, J. S., and Stern, M. E., 1953; "The Flow of a Stable 
Atmosphere Over a Heated Is land, Part I," J. Meteor. , 
.!_Q_, pp. 30-41. 

Matsuno, T. , 1966; "False Reflection of Waves at the Boundary Due 
to the Use of Finite Differences," J. Meteor. Soc., Japan, 
i_!, No. 2, pp. 145-157. 

Meroney, R. N. and Cermak, J. E., 1967; "Characteristics of Diffusion 
Within Model Crop Canopies," Symposium on the Theory and 
Measurement of Atmospheric Turbulence and Diffusion in the 
Planetary Boundary Layer, Albuquerque, December 5-7, 1967. 

Miles, J. W., 1968a; "Lee Waves in a Stratified Flow, Pt. I, Thin Bar­
rier," J. Fluid Mech., g, pp. 549-567. 

Miles, J. W., 1968b; "Lee Waves in a Stratified Flow, Pt. II, 
Semi-Circular Obstacle," J. Fluid Mech., 33, pp. 803-
814. 

Mitchell, J.M. , Jr., 1961; "The Temperature of Cities," Weatherwise, 
_!i, pp. 224-229. 

Molenkamp, C. R., 1968; "Accuracy of Finite-Difference Methods 
Applied to the Advection Equation," J. Appl. Meteor., 
J_, pp. 160-167. 

Monin, A. S. and Obukhov, A. M., 1954; "Basic Regularity in 
Turbulent Mixing in the Surface Layer of the Atmosphere," 
li.S.S.R. Acad. Sci. Geophys. Inst., No. 24. 

Moroz, W. J., 1967; "A Lake Breeze on the Eastern Shore of Lake 
Michigan; Observation and Model," J. Atmosp. Sci., ~. 
pp. 337-355. 

°'\./ Mueller, T. J., and O'Leary, R. A., 1970; "Physical and Numerical 
Experiments i n Laminar Incompressible Separating and 
Reattaching Flows," AIAA 3rd Fluid and Plasma Dynamics 
Conference, Los Angeles, California, June 29- July 1, 
1970, 15 pp. 

Myrup, L. O.; 1969; "A Numerical Mode l of the Urban Heat Island, ' ' 
J. Appl. Meteor.,~. No. 6, pp. 908-918. 

Oke, T. R., and Hannel , F. G., 1968; "The Form of the Urban Heat 
Island in Hamilton, Canada," in Urban Climates, W.M.O. 
Tech. Note No. 108, pp. 113-126. 



160 

Okita, T., 1960; "Estimation of Direction of Air Flow from 
Observations of Rime Ice," J. Meteor. Soc., Japan, 38, 
No. 4., pp. 207-209. 

Olfe, D. B., and Lee, R. L., 1971; "Linearlized Calculations of 
Urban Heat Island Convection Effects," AIAA Paper 
No. 71-13, AIAA 9th Aerospace Sciences Meeting, New York, 
New York, 14 pp. 

Onishi, G., 1969; "A Numerical Method for Three-Dimensional Mountain 
Waves," J. Met. Soc. Japan, 47, No. 5, pp. 352-359. 

Oobayashi, T., 1970; "A Numerical Study of Two-Dimensional Airflow 
Over an Isolated Mountain," J. Met. Soc. Japan, 48, 
No. 2, pp. 118-127. -

Orville, H. D., 1965; "A Numerical Study of the Initiation of 
Cumulus Clouds Over Mountainous Terrain," J. Atm. Sci., 
~' No. 6, pp. 684-699. 

Orville, H. D., 1967; "The Numerical Modeling of Mountain Upslope Winds 
and Cumulus Clouds," Rep. 67-2, Contract No. 14-06-D-5979, Inst. 
Atmos. Sci., South Dakota School of Mines and Technology, 
Rapid City, South Dakota. 

Orville, H. D., 1968a; "Ambient Wind Effects on the Initiation and 
Development of Cumulus Clouds Over Mountains," J. Atm. Sci., 
~' No. 3, pp. 385-403. 

Orville, H. D., 1968b; "Comments on 'Accuracy of Finite-Difference 
Methods Applied to the Advection Equation, "' J. Appl. Meteor. , 
?_, No. 5, pp. 938. 

Orville, H. D., 1969; "Numerical Modeling of Precipitation and Clouds 
Shadow Effects on Mountain-Induced Cumuli," J. Atm. Sci., 
~. pp. 1283-1298. 

Orville, H. D., 1970; "A Numerical Simulation of the Life History of a 
Rainstorm," J. Atm. Sci.,'!}__, No. 8, pp. 1148-1159. 

Palm, E., 1953; "On the Formation of Surface Waves in a Fluid Flowing 
Over a Corrugated Bed and on the Development of Mountain 
Waves," Astrophysica Norvegica, ~' No. 3. 

Pao, Y. H., 1969; "Inviscid Flows of Stably Stratified Fluids Over 
Barriers," Quart. J. R. Met. Soc.,~' No. 403, pp. 104-118. 

Peaceman, D. W., and Rachford, H. H., Jr., 1955; "The Numerical 
Solution of Parabolic and Elliptic Differential Equations," 
J. Soc. Indust. Appl. Math., i, No. 1, pp. 28-41. 

Pearce, R. P., 1955; "The Calculation of a Sea-Breeze Circulation 
in Terms of the Differential Heating Across the Coastline," 
Q. J. Roy. Meteor. Soc.,~' pp. 351-371. 



161 

Pearson, C. E., 1965; "A Computational Method for Viscous Flow 
Problems," J'ournal of Fluid Mech., ~, Part 4, pp. 
611-622. 

Pekelis, E. M., 1969; "A Numerical Method of Calculating Lee Waves 
with an Arbitrary Distributions of the Basic-Flow Parameters 
(Two-Dimensional Linear Problem)," I zv., Atmospheric and 
Oceanic Physics,~, No. 1, pp. 3-16. 

Peterson, J. T., 1969; "The Climate of Cities: A Survey of Recent 
Literature," U.S. Department of Health, Educ., and Welfare, 
Pub. Health Service, Consumer Protection and Environmental 
Health Service, Nat. Air Poll. Contr. Admin., Raleigh, North 
Carolina, 48 pp. 

Phillips, N. A., 1959; "An Example of Non-Linear Computational 
Instability," in The Atmosphere and the Sea in Motion, pp. 501-
504. 

Plate, E. J., and Cermak, J. E., 1963; "Micrometeorological Wind Tunnel 
Facility, Description and Characteristics," Final Report on 
Contract No. DA36-039-SC-80371 with Meteorology Department, 
U.S. Army Electronic Research and Development Activity, Fort 
Huachuca, Arizona, Fluid Dynamics and Diffusion Laboratory, 
Colorado State University, Fort Collins, Colorado, 
CER63-EJP-JEC9, 39 pp. 

Plate, E. J., 1964; "The Drag on a Smooth Flatplate with a Fence," 
Paper No. G4FE17 presented at ASME Symposium on Fully 
Separated Flow, held in Philadelphia, 1964, CER63-EVP66. 

Plate, E. J., and Lin, C. W., 1966; "Investigations of the Thermally 
Stratified Boundary Layer," Fluid Mechanics Paper No. 5, 
Colorado State University, February 1966. 

Pooler, F., Jr., 1963; "Airflow Over a City in Terrain of Moderate 
Relief," J. Appl. Meteor. I, pp. 446-456. 

Pope, A., and Hooper, J. J., 1966; Low-Speed Wind Tunnel Testing, 
John Wiley and Sons. 

Preston-Whyte, R. A., 1970; "A Spatial Model of an Urban Heat Island," 
J. Appl. Meteor.,~, pp. 571-573. 

Queney, P., 1959; "Initial Value Problem in a Double Couette-Flow," 
Autobarotropic Flow Project, Scientific Rep. No. 1, Contract 
No . AF19(604)-728, Air Force Cambridge Research Center, 
Cambridge, Mass. 

Queney, P. , ed., 1960; "The Airflow Over Mountains," W.M.O. Tech. Note 
No. 34 , 132 pp . 



162 

Richtmyer, R. D. and Morton, K. w., 1967; Difference Methods for 
Initial-Value Problems, Interscience Publishers, New York, 
405 pp. 

Roache, P. J. and Muller, T. J., 1970; "Numerical Solutions of Laminar 
Separated Flows," AIAA J., ~' No. 3, pp. 530-538. 

Saltzman, B., 1962; Selected Papers on the Theory of Thermal 
Convection, Dover Publications, Inc., New York. 

Sawyer, J. S., 1962; "Gravity Waves in the Atmosphere as a Three­
Dimensional Problem," Quart. J. R. Met. Soc., 88, pp. 412-425. 

Scorer, R. S., 1949; "Theory of Waves in the Lee of Mountains," Quart. 
J. R. Met. Soc.,~. pp. 41-56. 

Scorer, R. S., 1951; "Forecasting the Occurrence of Lee Waves," Weather, 
~. pp. 99-103. 

Scorer, R. S., 1953; "Theory of Airflow Over Mountains, II. The Flow 
Over a Ridge," Quart. J. R. Met. Soc., 79, pp. 70-83. 

Scotti, R., 1969; "An Experimental Study of a Stratified Shear Layer," 
Rep. No. AS-69-1, Contract No. USCDE-22-129-68(G), College 
of Engineering, University of California, Berkeley, 154 pp. 

Segel, L.A., and Stuart, J . T., 1961; "On the Tendency Toward 
Hexagonal Cells in Steady Convection," Renselaer Polytechnic 
Institute, Mat. Dep., No. 47. 

Segur, H. L., 1969; "Stratified Flow into a Contraction," Rept. No. 
AS-69-15, Contract No.: USCDE-22-129-68(G), College of 
Engineering, University of California, Berkeley, 178 pp. 

Smith, G. D., 1965; Numerical Solution of Partial Differential 
Equations, Oxford University Press, New York, 179 pp. 

Smith, R. C., 1955; "Theory of Air Flow Over a Heated Land Mass," 
Q. J. Roy. Meteor. Soc., g, pp. 382-395. 

Sokhov, T. Z. and Gutman, L. N., 1968; "The Use of the Long-Wave 
Method in the Nonlinear Problem of the Motion of a Cold Air 
Mass Over a Mountain Ridge," Izv., Atmospheric and Oceanic 
Physics,±, No. 1, pp. 23-32. 

Spelman, M. J., 1969; "Atmospheric Modification of Surface Influences, 
Pt. II. Response of the Atmosphere to the Surface Features 
of a Tropical Island," Rep. No. 15, Department of Meteorology, 
The Pennsylvania State University, University Park, 
Pennsylvania, pp. 73-132. 



163 

Stern, M., 1955; "Theory of the Mean Atmospheric Perturbations 
Produced by Differential Surface Heating," J. of Met., 
.!l_, pp. 495-502. 

Stern, M. E. , and Malkus, J. S., 1953; "The Flow of a Stable Atmosphere 
Over a Heated Island, Part II," J. of Meteor. !Q_, pp. 105-120. 

Stone, H. L., 1968; "Iterative Solution of Implicit Approximations 
of Multi-Dimensional Partial Differential Equations," 
J. Num. Anal. SIAM,~' pp. 530-558. 

J Strom, G. H., and Kaplin, E. J., 1968; "Final Report Convective 
Turbulence Wind Tunnel Project," Rep. No. 504.04, New 
York University, School of Engineering and Science, 
University Heights, New York, New York 10453, 38 pp. 

Sundborg, A., 19.30; "Local Climatological Studies of the Temperature 
Conditions in an Urban Area," Tellus, ~' pp. 222-232. 

Tag, P. M., 1969; "Surface Temperatures in an Urban Environment," 
in Atmospheric Modification by Surface Influences, Depart­
ment of Meteor., The Pennsylvania State University, 
University Park, Penn., 72 pp. 

Tanouye, E.T., 1966; "The Response of the Atmosphere to a Localized 
Heat Source at the Earth's Surface," in Theoretical 
s · udies of the Atmospheric Boundary Layer, Hawaii Institute 
of Geophysics, University of Hawaii, pp. 123-173. 

Thorn, A., and Apelt, C. J ., 1961; Field Computations in Engineering 
and Physics, D. Van Nostrand, Princeton. 

Torrance, K. E., and Rocket, J. A., 1969; "Numerical Study of Natural 
Convection in an Enclosure with Localized Heating from Below -
Creeping Flow to the Onset of Laminar Instability," J. Fluid 
Mech., 36, Part 1, pp. 33-54. 

Townsend, A. A., 1965a; "Self-Preserving Flow Inside a Turbulent 
Boundary Layer," J. Fluid Mechanics, ~' pp. 773 -797. 

Townsend, A. A., 1965b; "The Response of a Turbulent Boundary Layer 
to Abrupt Changes in Surface Conditions," J. Fluid Mechanics, 
~. pp. 799-822. 

Vukovich, F. M., 1971; "A Theoretical Analysis of the Effect of Mean 
Wind and Stability on a Heat Island Circulation Characteristic 
of an Urban Complex," Month. Weather Review (to be published). 

Wexler, R., 1946; "Theory and Observation of Land and Sea Breezes, " 
Bull. Amer. Meteor. Soc.,!!_, pp. 272-287. 

W.M.O. Tech. Note No. 108, 1968; "Urban Climates," Proceedings oi the 
W.M.O. Symposium on Urban Climates and Building Climatology, 
Brussels, (Vol. I) , 390 pp. 



164 

Wurtele, M., 1953; "The Initial-Value Lee-Wave Problem for the 
Isothermal Atmosphere," Scientific Rep. No. 3, Sierra Wave 
Project, Contract No. AF19(122)-263, Air Force Cambridge 
Research Center, Cambridge, Mass. 

Yih, C. S., 1960; "Exact Solutions for Steady Two-Dimensional Flow 
of a Stratified Fluid," J. Fluid Mech.,~, pp. 161-174. 

Yih, C. S., 1965; Dynamics of Nonhomogeneous Fluids, MacMillan, New 
York, 306 pp. 

Zilitinkevich, S. S., Laikhtman, D. L., and Monin, A. S., 1967; 
"Dynamics of the Atmospheric Boundary Layer," Izv., 
Atmospheric and Oceanic Physics, 3, No. 3, pp. 170-
191. -



165 

APPENDIX 



166 

APPENDIX A. 

Herein are the detailed derivations of the equations which were 

used in the previous chapters. 

Equation (4.12-1) 

The vorticity transport equation is given by Eq. (4.6-1), 

g aT 
rax 

Let us assume u and w are positive, then we use the backward dif­

ference for the convection terms. 

n+l 
s . JI, J , 

ot 

n n n 
s . JI, J , n s . JI, J , s - 1 Jl n J - , 

+ u. JI, 
J , 

n - 2s. + 
J , !l 
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s . 1 J - , 

ox
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j+l, !l 

2ox 

n 
T. 1 Jl J - , 

+ 

n n 
s - - s-Jll J, !l J, -

oz 

n - 2s. + 
J , !l 

Multiplying ot and rearranging so that n+l s- !l is expressed in t erms 
J , 

of the known values at time n, equation (4.12-1) is obtained. When 

both u and w are negative then the forward differences are used in­

stead of the backward ones in the convection terms. 

If u and w have different signs then convection terms are 

approximated according to the rule of the upstream difference, i.e. 

one is backward and another is forward depending on the signs of u 

and w In the programming, four different approximations are given 

depending on the combinations of signs of u and w 
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Equation (4 . 13-1) 

The Po i sson eq_uation v2 r, was approximated by 

wj+l, £ - 2wj, £ + wj-i, i 

ox2 
+ 

multiplying cS x2 and rearranging 
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cS 2 J + ' ,., 
-2._) 
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wj, i +i - 2wj, ~ + wj, i -i 

oz2 
= :., 

Using the over relaxation factor w, r+l st iteration was ex­

pressed as 

r+l 
W, n = 
J, ,., 

r w. + 
J ' £ 

w R. £ 
J ' 

where R. 
0 

is the remainder given by 
J ' ,., 

R. £ = 
J ' 

1 
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2(1+ ~) 
cS z
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2 
- OX [, · n} - W · n 

J , ,., J , ,., 

(A) 

Substitution of R. 
0 

into Equation (A) gives equation (4.13-1). 
J ' ,., 

Equation (4.14-1) 

The der ivation is exactly the sa~e as equation (10) except for 

the buoyanc y term _[ ~ 
T ax 
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Equation (4.15-1) 

Let us suppose u ~ O and w > 0 then the vortici t y transport 

equation is approximated as 

n+l n n n 
sj , £ - s j, £ n sj, £ - s j-l, £ 

ot + uj, £ ox 

n 
2s. £ + 

J ' 
ox2 

n 
S · 1 n J - ' J<., 

n 
+ w. £ 

J ' 

where the source term is omitted. 

n n 
sj , £ - s j , £-l 

oz 

n 
2s . £ + 

J ' 

(A) 

When the error is given by a Fourier series and satisfies the 

finite difference equation, then the error is assumed to be given by 

E~ == ~k i(S.j ox +S £o z) 
(B ) J, £ e J £ 

where i ;:y s . 
PTT and s == ~ p and Q the == == Pox are num-

J £ Qo z 

bers of mesh points in x and z direction. Since the maximum wave 

lengthes expressed in the region Pox x QSz are 2Pox and 2 Go z in 

x and z direction, respectively, smaller wave lengthes are given by 

2Pox 
p 

and in each direction, where 

p == 1, 2, P 

q== l,2, Q. 

Now wave numbers s. and s£ are expressed as 
J 

s . 21T E2:.._ in == == X 
J 2P ox Pox --

p 

and 

s£ 
21T ~ in direction. == 2Qoz == z Qoz 
q 
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c- -- ea: 6 t and a: · t t · th 1 1 s is a cons an ei er rea or comp ex. 

speaking n 
E. £. J , 

should be given by the summation over 

p 

I 
p=l 

r 
q=l 

A l;k i(B.j6x + B £6z ) 
pq e J £. 

Strictly 

p and q as 

However, if one of the arbitrary components grows up then the whole 

system is considered unstable. Therefore, it is sufficient to consider 

one of the components for the stability analysis. 

For the linear equations, if the numerical solution of the finite 

difference equation N is given by 

where 

k 
E. £. 

J ' 

k 
u. £, 

J ' 
is the exact solution of the finite difference system and 

is the error, then k 
E. £. 

J ' 
itself satisfies the finite difference 

equation. For the nonlinear equations above argument is not true, but 

for simplicity we assume k E. 
0 

also satisfies the equation (A). 
J ' J<., 

As we can see from equation (B), for stability I 1; I ~ 1 should be 

satisfied, o~herwise, k E. £ + oo ask + 00 , where k is the number 
J ' 

of integration (t = k 6 t) 

tion (A) and dividing by 

Substituting equation (B) into equa-



170 

kot (e 
i B.ox - if3 . ox 

= J - 2 + e J ) 
ox2 

kot i Bi oz -i Bio z 
+ -2 (e - 2 + e ) 

oz 

Using the relations 

we obtain 
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Rearranging 

Let 

Then 
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where E;, is the complex conjugate of E;, The square of the 

magnitude of E;, is 
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divided by ot > 0 
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1

) ot < o 

Since S is always positive 
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To get the minimum value of ot we need the maximum value of 

Since 

(Max S1) ~ 1/2 (Max S) 
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Equation (4.16-1) 

By Taylor series expansion of the stream function at a boundary 
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int= o/bound + an 
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2! an2 
bound 
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+ 3! (A) 
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where 
a 

an is a normal derivative witi respect to the boundary. Sub-

script "bound" and "int" means at bou:1dary and at one grid inside the 

boundary, respectively. on is the grid size normal to the boundary . 

O( on4 ) represents higher order terms which has multiplication at least 

on4 

Substituting equation (4.8-2) into (A) we obtain 
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as 2 
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bound 

is the tangential derivat i-.res along the boundary . 

( B) 

Suppose 

we have a rigid boundary along z = 0 then no-slip condit i on is used, 

i.e. u = 0 and w = 0 

Equation (B) reduces to 
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where we used the definition 

u = - ~ 

w = ~ ax 

az and 
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~w ~2u 
Moreover from the no-slip condition c; x)bound = 0 and c; x2)bound = 0, 

therefore 

Rearranging 
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TABLE 2-2 

Average Changes in Climatic E'. ements Caused by 
Urbanization (Landsberg , 1968) 

Element Comparison wi t h 

Contaminants: 

condensation nuclei and 
particulates; 10 times more 

gaseous admixtures 5 to 25 times 

Cloudiness: 

cover; 5 to 10~, mo r e 
fog. ~·inter; 100~, more 
fog, summer 30\ more 

Precipitation : 

t ota l s; 5 to 10·, more 
days .-i th leis than 5 nm; 10\ more 
snowfa 11 5% less 

Relative humidity : 

winter; 2'o less 
summer 8\ less 

Radiation : 

global; 15 to 20% less 
ultra -vio let, winter; 30% less 
ultra -viole t , summer; 5% l ess 
sunshine duration 5 to 15\ less 

Temperature : 

rura l 

more 

annual mean; 0.5 to 1.0°c more 
winter mjnima (average); l to 2°c more 
heating degree days 10\ less 

Wind speed: 

annual mean; 20 to 30\ less 
extreme gusts; 10 to 20\ less 
calms 5 to 20% a,ore 

environment 
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TABLE 2-3 

Average of Bright Sunshine, 
London 1921-1950 (Georgii, 1968) 

Hours per 

January July 

Surrounding Country 1. 7 6.6 

Outer Suburbs 1.4 6.5 

Inner High-level Suburbs 1.3 6.3 

Inner Low-level Suburbs 1.3 6.3 

Central London 0.8 6.2 

day 

Year 

4.3 

4.1 

4.0 

4.0 

3.6 
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TABLE 2-4 

COLLECTION OF DATA OBTAINED IN IIF.ATED ISLAND PHENOMENA 

Uiffus iv i ty Temp Excess I s land Width Cha r a c. 
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TABLE 2-5 

Maximum Vertical Velocity for Given Basic 
Wind and Island Temperature Excess (Tanouye 1966) 

Speed of tiT (C) Maximum Vertical Velocity 
Basic Wind 

(m/sec) (cm/sec) 

3 12 

1 5 55 

10 250 

3 6 

3 5 20 

10 180 

3 2 

5 5 3 

10 10 



Aualyti c ...il 

Li near Nonlinear . 

Un- Un-
St ~ad y steady Steady steady 

Stor~ r t,.'urtclc Long 
( 1~4~. ()%3) (1 953, 
1 ~5 1, 1954, 
l 'J~ 3J 1955) 

l / ra Yih 
fl ~43J (1960) 

'lucncy 
( ! !14 7) 

Yi h 
(I Y65) 

Orazine 
l.. Moure 
(J!)(,7) 

~1i l cs 
(1968a, 

1968b) 

lJavj s 
(1969) 

Pao 
(1969) 

TARI.I: ~-<• 

C:tu ssjfication or Literatures (Airflow ov ... •r un Ohsta..:lt·) 

Numerical Exiwr i mt.•nt ~ 

Linear Nonlinear h'ater Wind 

Un- Un- Channel Tunnel 
Steady steady Steady steady 

Pekclis Long I.in and 
(1969) (1954, Binder 

1955) (1967) 

Foldvik 
& Wurtele 

( 1967) 

Magata 
(191,7) 

Spelman 
(1969) 

Orvil le 
(1965, 
1968, 
1969) 

Lin and 
Apelt 
(1 970) 

Oobayashi 
(1970) 

Observa-
tion 

Quency 
(1960) 

Fosberg 
(1967, 
1969) 

General 

Revic~· 

Corh,· 
(1 95~) 

Queney 
(1960) 

Krish-
na.11urti 
()%4) 

Yih 
ll~oS) 

Lin~ 
Ccrmak 
(19o9) 

I-' 
00 
I-' 



Analyt ica·1 

Linear Nonlinear 

Stt•ady Unstcadv Steady Unsteadv 

Olfe and 
Lee (1971) 

Vukovich 
(1971) 

Analytical 

---
Linear Nonlinear 

Steady Unstead y Steady Unsteady 

Stt,l"ll 

and 
~I.< l~us 
( 19S~J 

Haurw i tz 
( 19-47 J 

S1111 th 
C 195S J - ---

TABLE 2-6 (Continued) 

(Urban Heat Island) 

Numerical 
Observations 

Linear Son linear 

Steady Unsteady Steady Unsteady 

Duckworth and Sandberg (1954), Oki ta 
~lyrup 
( 1969) (1 960), DeMarrais (1961), Mitchell 

Tag (1969) (1961), Pooler ( 1963), Bornstein 

(1968), Ludwig and Kealoha (1968), Oke 

~nd Hannel 1 (1968), Georgi i ·(1968), 

Holmes (1969), Kopec (1970), Preston -

~yte (1 970). 

(Sea Breeze) 

Numerical 

Observations 
Linear Nonlinear 

Steady unsteady Steady· Unsteady 

Fisher Wexler (1946), Fisher (1960), 
(1961) Moroz (1967) 
Estoque 

(1961, 1962) 

Magata 
(1965) 

I 
General 

Review 

Landsberg (1956) 

Peterson ( 1969) 

...... 
00 
N 



... ---· ~ - ----- ---· 
Analytical 

Linear Nonlinear 

Un- Un-
Steady steady Steady steady 

Malkus Smith 
and (1955) 

Stern 
(1953) 

Stern 
and 
Malkus 
(1953) 

Analytical 

Linear Nonlinear 

Un- Un-
Steady steady Steady steady 

TABLE 2-6 (continued) 

(Heated Island) 

-
Numerical 

-

Linear Nonlinear 

Un- Un-
Steady steady Steady steady 

Tanouye 
(1966) 

Estoque 
and 

Bhum-
ralkar 
(1968) 

Spelman 
(1969) 

(Heated Mountain) 

Numerical 

Linear Nonlinear 
Un- Un-

Steady steady Steady steady 

Orville 
(1968) 

Spelman 
(1969) 

Wind Observations 

Tunnel 

Experiments 

Malkus and 
Bunker (1952 

Malkus 
(1955, 1963) 

Wind Observations 

Tunnel 

Experiments 

Fosberg 
(1967, 1969) 
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TABLE 4-1 

A Comparison of Boundary Values of Variables Obtained b~ the 
Milne Predictor Formula and a21/ax2 = a2~/ax2 = a2r/ax = O 
which are shown in the parentheses. 

~ -96 -92 -88 
(Boundary) ) 

4 -40 . 46486 -39.97349 -39.94883 
(-39. 99815) 

8 -119. 51804 -119.94967 -119 .96633 
(.119.93301) 

12 -200.52165 -200.00090 -199.91299 
( -200. 08881) 

16 -279.92819 -279.85564 -279. 70390 
(-280.00740) 

48 -919.99244 -919.92868 -919.85275 
(-920.00461) 

4 14.93975 14 . 99371 14.99579 
(14.99163) 

16 19.94467 19.98897 19.98244 
(20.0093) 

4 0.12284 0.06450 0.00007 
(-0.006165) 

8 -0.10791 -0.05604 0.00784 
(0.004165) 

12 0 .13019 0.07608 0.01957 
(-0.021978) 

48 0.01594 0.01746 0.01993 
(0.01898) 

0 -6. 33716 -6. 24503 -6.24041 
(-6.24965) 

4 -2.50000 -2.50000 -2 . 50000 
(-2.50000) 



TABIL S-1 

A Summ3T)' of Wind Tunnel Anri NumPT ic- :.1 Sturlic!-

HP~RIMl,NTAL 
\ 'tt1r.i.ab!cs \'cloc1ty Stn bil1ty n Oj ffusivity Temp . ,s1..and 

u s IT 
K 

Excest Width 
Cut-

(c■ •l) (c■2 /sec) 
20 

(c■/sec) (°C/c■) 
(8~) (c■) 

,-1 (obHac le) 12 2 . 90• 10·3 
0 . 91 0 . 2 8 x 8 . 

( 4 .04 ,1.76) (1.2S ,0 . S7) (assumed) obstacle 

8-1 rncatc-d hhnd) 6.0 1.s,10· 3 0.45 0.2 48 8 

(2 .42 ,O . S7) (0.72,0.17) (aSSUllled) 

B-2 fliclletl 1,Jand ' 6.0 I. s,10· 3 
0 .4S 0.2 

(2.42,0.57) (0.72,0.17) (assumed) 84 8 

b•J 6 . 0 3 . 03xlo·l 0 . 9S 0. 2 107 8 

(4.46,1.SYJ (1.40,0.Sl) (assWDed) 

B-J 
l.OJx10·l 'll•::1t:\:•J l.•t•Ji v.i l cn l 6 .0 0.9S 0 .2 14cm hi&h 

Is landJ 
~•It in 8-3 

(4.46,1.59) (l.40,0.S2) (assU111ed) Plateau 

I 
b-3 10 6.0 ~cutra.l 107 8 

'. ,c:utral 

Situation 

Unl,1:""'te:d 6.0 1.s,10·3 

C-1 Obstac le (2 . 42,0.S7) 8 X 8 

obstacle 

Heated 6.0 1.sx10·3 20 8 X 8 

Q~suc l e (2.42,0 . S7) obstacle 

3~dim . lleatcd 6.0 
-3 

I. SxlO 
64 8 • JO 

Island (2 , 42,0.S7) 

• The firnt m•b•r ohova the value in th• lover layer and th• 1eoond one 
indicate• the value in the upper layer 

Charac. 
Len&th 

L (fr)L (Re)L (Nh)x•D 
(cm) 

60 0.126 3600 

(0.100 ,0 .152) 

60 0.100 1800 5.40 

(O. 06S, 0 . 134) 

60 0.100 1800 7 , 40 

(O.OoS,0.134) 

60 0 , 064 1800 s . ss 

(0.048,0.080) 

60 0 . 064 16GO 

(0.048 ,0 .080) 

60 0 . 064 !&00 

(0,048,0.080) 

60 0.100 1800 

(0.06S,0 . 134) 

60 0.100 1800 

(0 . 06S,0 , 134) 

60 0 . 100 1800 10.08 

(0.06S,0.134) 

l i:1'.C::ff il C \I : :, i ::,.• ;1 r l : :.;-~! ) I t.n~· :::u ;-. L 
Arnpl l- : i't'<c-1 ,,1, -, Ii~-.. ;. 
tuJ.,, t JVC 

J (;,,;j (cm) (cc-/~c.:.) >T . X ,\•- lk·11:ht ,, 

I I 
r- -• 

n =,\(l _.!..) (ci;j 
(cm) (c:,) c I ! I 

I 

i 
66 42 735 I 1.15 14 ; . 7 

I 

116 73 ;35 : .o~ .?S b , 3 

76 48 36J 2 .4: ;4 : .J 

I 
I 
I 

I 

-
.:.t 

\ ~\; J 

~o 

~:-

1!. 

\:•:-,>x .. D 

o.~:;, 

Q_j(S 

o. 71 

~ 

00 
CJ1 



TABLE 5-2 

Case A-1 Experimental Temperature Distribution Data 

·~ ) 
-60 -48 -40 -32 -20 -12 -4 8 12 16 20 24 28 32 

0.64 307.2 306.7 306 . 5 306 .2 304.3 302.6 301.4 307.5 307 . 7 301.9 302.9 305.5 304.8 306.S 
1.27 309 .2 308.9 308.6 308 .7 306.7 305.3 304.l 308.9 308 . 2 307.0 307.9 310.l 309.9 308.9 
2.54 311.0 310.8 310 . 8 310.6 309.4 308.2 306.8 311.3 310.3 310.8 312.0 311. 7 311.3 310.3 
5.08 311. 3 311. 0 31 I. 0 310.8 310.3 309.6 308.4 313.l 313.1 313.4 31 I. 5 310.3 311. 0 311.0 
7.62 313.1 312.7 312.4 312.0 311.3 310.6 309.7 317 . 6 313.4 310.3 312.7 315.3 316.0 314.8 

12.70 316.2 315.7 315 .5 315.3 314.8 314.5 313.9 314.8 316.7 318.8 319.7 320.6 320.9 321.l 
17.78 320.2 319.7 319.9 319.5 319.0 319.0 319 .4 320.6 321 . l 322.5 322.3 322.8 322.5 323.0 
22.86 323.5 323.2 323.5 3:?3.5 331.7 323.0 323.3 323.9 323.7 324.2 323.9 323.9 323.7 324.2 
38 . 10 332 . 6 332 . 6 332.4 332.l 332.7 331. 2 330.8 331.2 331.0 331.0 330.7 330.7 330.3 330.0 

TABLE 5- 2 (Continued) 

Case A-1 Experimental Temperature Distribution Data 

~ 36 40 44 48 52 56 60 64 72 80 JOO 120 140 . 

0 .64 305 . 8 306 .7 305.8 306.2 306.2 306.2 307.5 305.5 306.5 307.2 306 . 5 307 . 0 305.8 
l. 27 307.9 308.4 308.7 30~.7 303.7 309 . 2 308.9 308.7 307.7 308.2 308.2 307.7 306.7 
2.54 310.1 309 .9 309 . 6 309.4 309.9 310.3 310.3 309 . 9 309.6 310.l 308.9 309.4 308.9 
5.08 310.8 310.3 310.l 309.9 309.9 309.6 310.3 310.3 310.8 311 . 0 399.9 310.3 310.3 
7.62 315.-3 313.8 312 . 2 311. 7 311. 7 311. 7 312.4 312.4 312.9 313 .6 312 .4 313.l 313.8 

12. 70 320.6 319.5 318 .3 317.4 316.9 316.7 316.4 315 .7 318 . l 319.7 318 . 8 319.0 319.2 
17.78 322.3 322.0 321.l. 320 . 6 320.2 219.9 320.2 320 . 2 321.8 322 . 8 ·321.6 322 . 0 321.8 
22.86 323.5 323.5 322.5 322.8 322.0 329 . 3 322.8 322.3 323 . 5 323.9 323.9 324 .4 324 . 2 
38.10 329 . 8 329. 8 329.8 329 . 5 329.3 323.0 329 . 3 329 . l 329 . l 329.3 329.S 329.l 328 . l 



TAllLE 5-3 

Case 8-1 Experimental Temperature Distribution Data 

~ 
' 

-20 -16 -12 -8 -4 0 2 4 6 8 10 12 14 16 18 20 
) 

0 290.0 290.0 290.0 290.0 290.0 341 341 341 341 341 290.0 290.0 290.0 290.0 290.0 290.0 
0.64 292. 8 292. 5 291.8 291.8 293.0 303 .0 315.7 320.6 319 .2 300.9 297.3 296.0 294. 5 292.8 292.5 292. 3 
I. 27 294. 3 294 . 0 293.8 293.8 294. 8 297 .0 299.9 308.7 306.7 303.6 297 .8 296.8 296.0 295. 3 295.0 294.8 
2.54 296.0 295.8 295.8 295.8 296.5 297.8 298. 2 299.2 308 . 7 306.5 299. 2 298.2 298.0 297.5 297 .3 297.3 
2.08 298.7 298.5 298.2 298. 5 299.0 299.7 299. 7 299.7 299.9 305.0 305.3 300.7 300.2 300.2 300.2 299.9 
7.62 300.4 300 . 2 300.2 300.4 300.9 300.9 300.9 300.9 300.7 301.6 303.3 302.4 301. 2 301. 2 301. 2 301. 2 

12 .70 302.1 302.1 302.1 302.1 302.4 302.6 302 . 9 302.6 302.6 302.6 302.4 302.4 302.4 302.1 301.9 301. 9 
17 .78 303.1 303.1 303.1 303 . 1 303.1 303.1 303.l 303 . 1 303.1 303.1 303. I 302.9 302.6 302.4 302.4 302.1 
22.86 303.6 303.6 303.6 303.6 303.6 303.6 303.6 303.6 303 . 6 303.6 303.3 303.5 303.l 302.9 302.6 302.6 
38.10 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.2 306.2 

!A&Ll: 5-3 (ContlnueJ ) 

Case 8-1 Experimental Temperature Distribution Data 

~ ) 
22 24 26 28 30 32 34 36 38 40 44 48 52 56 60 

0 290.0 290.0 290.0 290.0 290.0 290.0 290.0 290,0 290.0 290.0 290.0 290.0 290.0 290.0 290.0 
0.64 292. I 292.1 292.1 292. 5 292.5 292.8 292.8 293.3 293.5 293.5 293.8 293 .8 294.0 294.0 294.0 
1. 27 294. 8 294.8 294.8 295.0 295.0 295.0 295.0 295.3 295.5 295.5 295.8 295.8 296.0 296.0 296.0 
2.54 297 .0 297 .0 297 .0 297.3 297.0 297.0 297.0 297. 3 297.3 297.3 297 .3 297. 5 297.5 297.5 297.5 
2. 08 299.9 299.7 299.7 299.7 299.5 299. 5 299.5 299. 5 299.5 299.5 299.7 299.7 299.7 299.7 299.9 
7.62 301. 2 301. 2 300.9 301. 2 301.4 301. 2 301.4 301. 2 301. 2 301. 2 301. 2 300.9 300.9 301.2 301. 2 

12 .70 302.1 302.1 302.1 302.1 302 .1 302.l 302.1 302.1 302.4 302.4 302.4 302.4 302.4 302.4 302.4 
17.78 302.1 302.4 302.4 302.4 302.6 302.4 302 .6 302.6 302.9 302.9 302.9 302.9 302.6 302.6 302.6 
22.86 302.4 302.4 302.6 302.9 302.9 303.1 303.3 303.1 303.l 303.3 303.3 303.1 303.1 303.1 303.3 
38.10 306.2 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 306.0 



TABLE 5-4 

Case 8-2 Experimental Temperature Distribution Data 

~ ) 
-20 - 16 -12 -8 -4 0 4 6 8 

0 290.0 290.0 290.0 290.0 290.0 377. 3 377. 3 377.3 377. 3 
0.64 293.5 293 . 3 292 . 8 292.8 294 . 0 305.0 327 . 7 329 . 5 318 . l 
I. 27 294.8 294 .8 299.5 299.5 295.8 298 . 7 313.8 316 . 7 31 2.2 
2.54 296.8 296.5 296.5 296 .8 298.0 300 . 0 303 . 8 316.4 316.7 
5 .08 299.5 299.2 299. 2 299.5 300 . 2 301.4 302 . 1 303.8 309.9 
7.62 304.3 304 . 3 304. 3 304 . 3 304.6 304.6 304.6 304.8 304.8 

12 .70 303.3 303.3 303.6 303,f, 303.8 304 . 1 304.1 304 . 6 304 . 6 
17.78 304.3 304. 3 304.3 304.3 304.6 304.6 304 . 6 304 .8 304 . 8 
22.86 305.0 305.0 305 . 0 305.0 305.3 305.3 305 . 3 305 . 3 305 . 5 
38 . 10 306.7 306.7 306.7 306 . 7 307.0 306.7 306.2 306.5 306.2 

TABLE 5-4 (Continued) 

Case B-2 Experimental Temperature Distribution Data 

!~ z 20 22 24 26 28 30 32 34 38 

0 290.0 290.0 290.0 290 . 0 290 . 0 290.0 290.0 290.0 290.0 
0.64 293.3 293.3 293 . 5 293.5 293 . 5 294 . 3 294 . 3 294.5 294.8 
1. 27 296.0 295 . 8 296.0 296 . 0 296.3 296.3 296.5 296.5 296.8 
2.54 298. 2 298 . 2 298.2 298. 2 298.5 298.5 298.5 298.7 298.5 
5.08 301.4 301.2 301.2 301.4 301.4 301.4 301.4 301.4 301.4 
7.62 302.6 302.9 302.6 302.6 302.9 302. 9 302.9 302.9 302.9 
1.27 304.3 304 . 3 304.3 304.3 304.3 ·304 .3 304 .6 304.6 304 .. 3 

17.78 304.8 304.8 304.8 304.8 304.8 304.8 305.0 305.0 305.0 
22.86 305.0 305.3 305.5 305 . 3 . 305.5 305.5 305.8 305 . 8 306.0 
38.10 306.2 306.2 306.2 306.2 306.2 306.5 306 . 5 306 . 7 307.0 

10 12 

290.0 290 . 0 
300.7 298.5 
300.2 298.2 
302 .1 300.4 
307.5 302.6 
305.5 306.0 
307.0 307.2 
305.5 306.0 
305.8 306.2 
306.0 306.2 

40 42 

290.0 290.0 
294.8 295.0 
296.8 297.0 
298.7 299 .0 
301.4 301.6 
303.1 303.1 
304.6 304.6 
305.: 0 305.3 
306.0 305.8 
307.2 307.5 

16 

290 . 0 
294.3 
296 .8 
299 . 2 
301.9 
305.0 
304.6 
305.0 
305.3 
306.2 

44 

290.0 
295. 5 
297. 0 
299.0 
301.6 
303.1 
304.6 
305.0 
305.5 
307.S 

18 

290.0 
293.5 
296.3 
298.5 
301.6 
304.6 
304.3 
304.6 
305 . 0 
306.2 

~ 

00 
00 



TABLE S-5 

Case B-3 Experimental T('mp('raturc Distribution Data 

~ ) 
-20 -16 - 12 -8 -4 0 4 8 10 12 16 18 20 

0 298.0 298.0 298.0 298.0 298.0 4 I I .9 411.9 411.9 298.0 298.0 298.0 298.0 298.0 
0.64 304,6 300.9 300.2 301.9 301 . 6 328.4 364.8 326.7 314.3 312.7 307.0 304.3 302.9 
l. 27 307.9 306 . 5 306,0 306.2 306.0 311. 7 33~.l 324.4 313.8 312.7 311. 3 309.9 309.2 
2.54 312.7 312.0 31 I. 5 312.0 312.2 315.5 317.8 328.8 318.1 318 .1 317 .l 316.4 315.7 
5.08 318.3 317.6 317.4 317.8 318. 3 319.7 319.9 326.7 325.J 321. l 321.6 321.3 321. l 
7,62 323.2 322.8 322.8 323.0 323.2 323.5 323.7 324.9 325 .8 323.5 324. 2 324.2 324 .2 

12.70 326.7 327.0 326.7 327.0 327. 2 327.7 327.9 327.0 326.3 326.3 326.0 326.0 326.3 
17 .78 328.4 328.6 328.6 328 . 6 328.8 328.8 337.l 327.9 327.4 327.4 327.2 327.7 327.7 
22.86 329.8 330,0 330.0 330.0 330.3 330.0 330.2 329.8 329. l 329.l 328 .1 328.6 328 .6 
38.10 336,7 336.7 336.7 336.9 336.9 336.9 330.3 337.l 337 . 3 337.3 337.6 337.6 337.6 

TABLE 5-5 (Continued) 

Case B-3 Experimental Temperature Distribution Data 

~ 22 24 : 26 28 30 32 34 36 38 40 42 44 

0 298.0 298. 0 298.0 298 .0 298.0 298.0 298.0 298.0 298.0 298 .0 298 .0 298.0 
0.64 301.6 302.6 303 .8 305.3 305 . 8 306.7 306 .o 307.7 307.2 307.7 307.5 307.7 
l. 27 308.4 308.7 309.6 310 .3 310.8 311. 3 311.0 312 .0 31 l. 7 312.0 312.0 312.2 
2.54 315.3 315.5 315.7 316.2 316.2 316.4 316.0 316.7 316.4 316. 4 316.7 316.7 
5.08 320.6 320.4 320.6 320.9 321 . l 321. 3 321.l 321.6 321.6 321.6 321.3 321.6 
7.62 324 .2 323.9 324.2 324.2 324.4 324.4 324.4 324.6 324.9 324.6 324.6 324.6 

12 .70 326.7 327.0 327.0 327.0 327. 0 327.0 327.0 327.2 327.2 327. 2 327.4 327.2 
17,78 328.4 328.8 329.l 329.l 329.l 328 . 8 328.8 329. l 329. l 329.l 329.l 329 .1 
22.86 329.8 330,3 330.7 331. (} 331.0 331.0 330, 7 331.0 331.0 331. 2 331.0 331.0 
38.10 337.6 337.8 337 .8 338 .0 338 . 0 338 ,2 338.2 338,2 338.2 338.3 338.2 338 .2 



Ti\l!LE 5-6 

Case B-3 Neutral Experimental Temperature Distribution Data 

~ -12 -8 -4 0 4 8 12 16 20 24 
7 

0 290 . 0 290.0 290.0 412.0 412.0 412.0 290 ,0 290.0 290.0 290.0 
0.64 290 . 6 290.8 292.1 298.0 311. 5 322.5 300.4 291. 6 290.6 290.6 
1. 27 290.8 291. l 292.3 295.0 314.8 318.5 296. 5 292.0 291. 3 291.3 
2.54 291.1 291.6 292.8 294.3 305.0 321.3 298.2 293.3 292. 3 292. 3 
5.08 292.5 292.8 293.0 293.8 294.8 305.0 301.4 294.8 293.8 293.5 
7.62 293.3 293.8 294.3 294. 5 294.5 296.3 301 . 6 295.8 294.5 294.3 

12.70 294.5 294 .8 295.3 295 .0 295.0 294 . 8 297.0 299.0 295.8 295.0 
17 .78 295.3 295.3 295. 3 295.0 295.0 295.0 295.3 297.3 297 . o 295.8 
22.86 295.3 295.5 2%.8 295.3 295.0 295.0 295.0 295.8 297 .3 296.5 
38.10 296.5 296.3 296.5 296.5 296.5 296 . 5 296.5 296.5 296.5 296.5 

28 36 

290.0 290.0 
290 . 3 290.8 
291.1 291.6 
292.1 292.1 
293.3 293.3 
294.0 293.8 
294.5 294.5 
295.0 294.8 
295.8 295.3 
296.3 295.8 

44 

290 . 0 
290.8 
291. 3 
292.1 
293. 3 
293.8 
294. 3 
299.8 
295.0 
295.8 

52 

290.0 
290.8 
291. 3 
292. l 
293.0 
293.5 
294.3 
299.5 
295.0 
295.8 

~ 

ID 
0 



(~ 
-20 

: 

0 290.0 
,,.,,4 2n.l 
1.27 nl.8 
2.:; I 2!JS. R -,. ,,~ L'JI. ~ 
1 .(,2 299.0 

u.-:,, 31,1 .<, 
17. "~ 103 . 3 
::z. ~6 3/J4. I 
-, .10 306. 7 

~-~ 32 

() 2 'Jf), Q 

fl.M 202 . I 
1 . ·,7 :?~J .,, 
z. ;-1 n~ .s 
S. ~R 2~~- 2 
7 . 62 JOO. 2 

12. -o ~,,1 . !.I 
11.n Vi'\, I 
22. 86 lfl4. l 
lb . 10 JU6. 7 

TARI.E S-7 

Cusc C-1 (llnhcatccl Mount:iln) r:xrcrimcnt..11 Tcmpcr:1t11re lll~trihu ti un Oat:i 

-16 -12 -8 -4 10 12 14 16 18 20 22 24 

2!J0,0 290.0 290.0 290 .0 290,0 290.0 290.0 290 .0 290 . 0 2~0.0 290, 0 290.0 
2n.1 291.6 29 1. 3 290.8 294. 8 294. S 293. S 291.8 2~)1. 3 :?~ll. 3 291. l 291. l 
293. 8 293. l 29J.O 292 . 8 29S. S 295. l 294 .8 294 ,0 294 .0 293.8 293.8 29 3 . 8 
2!JS. 8 295. 3 295. 0 294. 8 297 .0 296.8 296.8 2!lb. S 296. 3 296. l 29h. 3 296. S 
207 .. I 207 . 0 2~fi. ft 2!><, . S 2n., 2!.J'.> . O 299. 2 299. 2 21J~I. 2 :~1•). 0 :? !>R,:? :" !HI. J 
299.0 298 . 7 298. 2 298. 2 299. S JOO . 2 300 . 4 300. 7 300.4 JOO. 2 300.0 297. 7 
301 ,6 JOI. 6 301. 6 301.4 301. 6 301 .9 JUI . 6 301.6 301. 6 301 .b JL}l. b 3al . b 
301. l 303 . 1 lOl. I 30.1.1 102. 6 302. 9 302 , 9 303.1 303.1 302. 9 30= . 9 303.1 
304. I 304. I 304.1 304 . l 303. 3 303. 6 303. 6 303.8 303.8 303. 8 303.8 303.8 
106, 7 306. 7 306, 7 306. 7 30(>. 2 306. S 306. S 306.S 306. 7 306. 7 306. 7 306. S 

TABI.E S-7 (Cont I nucd) 

Cas e C-1 (Unheated ~k>untain) : Experimental Te1r.pcrature Distribution U.ita 1ution Data 

l< 

2'J(J.0 

n2. 1 
2~4, 3 
296.8 
2~9. 2 
:IOO . 2 
301. !.I 
.102. 9 
303. 8 
306. 7 

l6 l8 40 42 44 46 48 so S,1 ss 

2'JfJ.O no.a 290. 0 290.0 290,0 290 . 0 290.0 :'!JO. 0 2~0.0 29U.O 
292 . , 292.S 292 . R 292. R 291.0 2!'1:\.0 :!9'.\.0 :!!l.'\.~ :!H.S :9'.\.~ 
2~4, S 2Y4. S 294. 5 294 . 8 294 . 8 295.0 295.0 295 . 0 295. l 295. 3 
2~6.8 296. 8 297 . 0 297 . 0 297 . 0 297 . 3 297 .o 297 .0 297. l 297. S 
29'). 2 299, 2 299. 2 299. 2 299. 2 299. S 299. S 299. 2 299. S 299. S 
100. 2 300, 2 300. 2 300. 2 l00.4 300.4 JOO. 2 JOO . 4 .100.4 lCO. 7 
3CJ 1 , !.I 301.9 3111.9 301.9 302.1 302.1 302.1 302. l 302.4 302.4 
.,o:L l ~02.9 :\C,2 . 9 303. I 301. I 303, 1 303 . l 303.1 3C3 . l 303. 1 
303.8 303.8 303 . 8 303.8 304 .1 304 .1 304. I 304 . I 304. I 304. l 
306. 7 306. 7 306. 7 306. 7 306. 7 306. 7 306 . 7 306. 7 306. 7 307 .0 

TABLE S-7 

Case C-1 (Unheated Mountain) : Experimental Tc11opcrature Distribution Data 

8 
9 .27 

24. SI 
29 . ~9 
34 ,67 
39. 75 
42 . 29 
44 .83 
46 . 10 
46 . 74 

0 

300.0 
303 .6 
29R.9 
30< . 4 
305. 5 
306. 7 
lOR, 0 
308. 7 
309 . 2 
310.0 

300.0 
303.6 
299. 2 
'.\0,1,-(, 

30S. S 
306. 7 
JOR . O 
308.9 
309 , 2 
310 . 0 

300.0 
303 . 6 
299,9 
.10• -~ 
305.8 
307 .o 
JOR , O 
309. 2 
309.4 
310.4 

26 =s :;o 

290.0 290.0 290.1) 
=91. l 291.t> 1~1 . S 
293.8 293 . 8 :'. 9J. 0 
296, S : 9b. S =~It>. 5 
.!O:l. S lt>~. 1 ,; \IS. 7 
299 .9 299.9 299. 9 
31.Jl. 6 301. 9 3tll .9 
303.1 30,.1 3\1~. l 
303.8 303 . 8 303.8 
306. 7 306 . 7 306. i 



l'lllil.li S-8 

Case C•I (llcatcd Mountain) I:.xpcrill<'nt<1l Temperature Oistribution Uata 

...._ 
~rcr.,J 

-21) - ) '1 -12 -8 -4 10 12 14 16 18 21 23 2S 27 29 z , c :, ) .'""'-

'J 2'JIJ.0 2'JO.O 2'JO.O 290 . 0 290.0 290 . 0 290 . 0 290.0 290.0 290.0 2!'10 . 0 :!J0 , 0 290.0 2!\0.0 :90.0 
fJ. ',4 291. 6 291.l 289 . 8 289 .8 289 . 3 297. 3 296.8 295. J 292.S 290.6 290.1 290 . 1 290 . l 290. J 290 . J 
1. 27 293. J 293. J 292 . 1 292.1 291.6 296.S 296. S 29(, , 0 294.S 293 , 8 293.0 293,0 293.0 293 . 0 193. 0 
2 . :.1 ns.R 29S . S 294 . 8 294.8 294. S 298 . 7 298 . 7 298 . 7 298. 7 297 . 3 296 . 8 296 . 8 296.8 296. 8 296.8 
5.f)'i n 1.s 297 . l 2%.8 296. S 296. S 300 . 4 300 . 2 300. 2 299. 7 2!19 . 2 299. 2 2!J9. 2 299 . 0 299.0 :?9!J. ~ 
7. ,,2 "J'J'J. s 2!.l'J. S 2'J9. 2 299 . 2 299 . 2 302 . I 301.9 301.9 301.6 301.6 301 . 4 lOl . 4 301 .4 301.6 301.6 

12 . 7,, ,,,,.".) lOl.4 JOI.<> 301.4 301 , 6 301 . 6 302.4 303. 3 302 . 9 302 .6 302.1 302.1 302 . 1 302.1 302.1 
17. ;3 303. 6 303 . 6 303 . 3 303 . 6 303.1 303 . 1 303 . 1 303 . 1 303 . 1 303.1 303 . 1 303.1 JOJ. l 303.1 Jul. I 
22. lif, 304.6 .,04 , 6 304.6 304 . 6 304 . 3 304 . 1 304 , 1 304 . 1 304 . 1 304 . 1 304 . I 304 . I 303.8 303.8 303 . 8 
l~.10 306 . 7 306. 7 306 . 7 306 . 7 306 . 7 306.0 306.2 306 ,2 306 ,2 306.2 306,2 306.2 306.2 306.S 306.S 

TABLE S-8 (Continued) 

Case c. J (Heated Mountain) : Experimental Temperature Distribution Data 

' ~ JI 33 JS 37 39 41 43 4S 47 49 SI S3 ss S7 

0 2'J'1 . 0 2')0,0 2')0,0 290 , 0 290.0 290.0 290.0 290.0 290 . 0 290.0 290.0 :?90.0 290. 0 :?90,0 
o.~~ 290 . 8 291. l 291. 3 291.8 292.1 292.1 292,3 292. l 292 . 3 292 . 3 292 . S 291. S :?92. S :!J3 . 0 
I. 27 n,. l 2n.1 2!.JJ.S 293. S 293 . 8 293 . 8 294.0 294 . 0 294.0 294 . o :?94. 3 294. 3 294 . 3 294 ; 5 
2 . 5,i 296.8 296 . 8 296.8 297 . 0 297 . o 297 . o 297 . o 297. 3 297 .o 297. 3 297 , 3 297. 3 297 . 3 :?!J7. S 
;, '", 'i 297 . 2 299. 2 299. 5 299.5 299. 5 299 . 5 299. 5 299. 7 299 . 5 299. 7 299. 7 299. 7 299 . 7 299 . 7 
• -~2 3</l ,4 301. 6 301.6 301.6 301.6 301.6 301.9 301.9 301.9 301.9 301.9 301.9 301.9 301. 9 

12 . 70 102. I 302 .1 102 , I 102 . 1 302 . 4 302 . 4 302.4 302 . 4 302.4 302 . 4 302.4 302.4 302 . 4 302.4 
, - . ~8 JOJ . l 303 . 1 303 . J 303. 1 303 . l 303 . 1 JOJ. l 303.J 303.1 303.1 303 .l JOJ. 1 · 303.1 303, 3 
22 .A;,, JOl . 8 304. I 304 . 1 l04 , l 304. I 303 . 8 304.1 304. l 304. 1 304. I 304.1 304.l J04. l 304, 3 
IJ8 . IO 306 . 5 306.5 306.S 306,5 30~. 5 306.S 306.5 306.5 306.S 306. 7 306.5 306.7 306.5 306, 7 

TABLE 5-8• (Continued) 

Case C- 1 {Heated Mountain) : F.xncriacntal Temperature Distribution Data 

-~ 
J 

0 2 4 6 8 

• JIO.O 310,0 310 . 0 310.0 310.0 
11,64 305 , I 306 : .• 1·01.0 30R.3 107 . 5 
9 . 27 301.9 303 . Z 303.f> 304.1 304.1 

10.54 301.4 301.9 302. 7 302,9 303.2 
ll.08 301.4 301.9 302. 2 302.2 302 . 2 
15.62 303 . 2 303. 2 303 , 4 303.4 303 . 4 
20. 70 l03,4 :\0:l.4 30l.4 30l,6 30l.8 
25. 78 304.4 304.4 304 . 4 304 , 4 304 .4 
46.10 305.S 305 . S 305.S 305.5 305 , S 
30,86 309 , 3 309 . 3 309.3 309,·7 309. 7 
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Flow Direction Velocity Profiles 
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Fig. 1-1 Typical constant temperature lines and velocity profiles from a 
mountain lee-wave simulation in a wind tu~~el:

1 (Fr) L = 0.238, 
u = 7.25 cm/sec, L = 18 cm, s = 3.83 x 10 cm (Lin and Binder, 
1967). 
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Fig. 2-1 Scorer's two-layer model of airflow over a mountain ( 1949 ). 
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(Fr) H = 0. 50, #= 0. 10, b = 0. 40 

(Fr)H = 0.25,P= 0.15, b = 0.40 

(Fr)H = 0.20, {J= 0.20, b = 1.0 

~= 0.124, b = 0.4 

Fig. 2-2 Some of Long's (1955) theoretically computed streamlines 
of fluid flow over an obstacle. 
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.20 

/3 
. 10 

0 
0 .10 .20 .30 

Fr 

Fig. 2-3 Criteria of overturning instability ( Long, 1955 ). $ is 
a dimensionless obstacle height; obstacle height/channel 
height. bis a dimensionless half width of the obstacle 
and Fr is the Froude number. Overturning instability is 
observed if an obstacle exceeds the critical height given 
by ·he solid lines . 
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Observed Flow over Thin Barrier fork= 1.50 

Calculated Flow over Thin Barr i er fork= 1.50 

Observed Flow over Triangular Obstacle fork= 2.70 

Calculated Flow over Triangular Obstacle fork= 2.70 

Fig ~ 2-4 Some of Davis' results ( 1969 ).. In each case the upper figure 
was obtained from a water channel experiment and the lower one 
was computed from Long's model. Hatched region indicates the 
area where turbulent motion was observed. 
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v,:..- r:::--: -..;,,.: 
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\ \..' 
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:::.. .._ I, , I 

·~ ' -· // Vienna ( Austria ) ......._ 
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_, 
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..... ,..,,, - -- i---
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10 12 2 4 6 8 10 12 
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Fig. 2-5 Diurnal temperature variation in Vienna, Austria ( Mitchell, 
1961) for February and July, and Frankfurt, Germany, ( 
Georgii, 1968) in summer for both an urban and a suburban 
stations. 
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A = ~I r-a 
X = 

u3 
0 gsk 
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I 

r 
d. 
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Temperature Excess over an Island 
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aT 
~z 
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s Stability, ~ 

Fig. 2-6 Sketch of an equivalent thermal mountain ( Stern and Malkus, 
1953 ). 
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Fig . 2-7 Meteorological factors observed and assumed in numerical 
s i mulations. • Stern and Malkus (1953), Case 4; ■ Malkus 
(1955), Puerto Rico ; • Malkus (1963), o Stern and Malkus 
(1953), Case 3; x A typical mountain lee-wave (Queney, 
1960); □ Tanouye (1966), u = 1 m/sec; A Tanouye (1966), 
u = 3 m/sec; o Tanouye (1966), u = 5 m/sec; v Estoque ( 
1968); @ Spelman (1968); e , EB Garstang et al. (1965). 
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Fig . 2-7 (continued) 
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Fig. 2-7 (continued) 
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Fig. 2-7 (continued) 
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Fig. 2-8 Correlation of observed ana predicted height of equivalent 
thermal mountains (Garstang et al., 1965). 
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Fig. 3-2 Final arrangements of the entrance heaters. Sixteen 
heaters of 2 1 x 6" were used. 
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(A) Ceiling Insulation 

(B) Ceiling Heater (2' x 3') 

(C) Slots for Instrumentation 

(D) Cooling Panel 

Fig. 3-3 Removable plexiglas windows with slots for instrumen­
tation. Ceiling heaters, insulation, and cooling panels 
are also included. 



(A) Nichrome Wire 

(B) Oi l Outlet 

(C) Oil Reservoir 

(D) Ai r Bag 

209 

(E) Trigger Circuit 

(F) Strobe System 

(G) Electronic Counter 

A Typ ical Ve locity Profile (Neutral Case) 

Fig. 3-4 Smoke wire and attached i ns truments for velocity mea­
surements . A typical veloci ty profile is included. 
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--- Smoke Wire 

I Camera I L,.s_t_r_ob_e ___ .....__o_ei ... a_y ..... Unit 

Starter 

0 

Trigger Circuit 
(Back) 

(Front) 

Inside of Wind Tunnel 

Plexiglas Window 

Outside of Wind Tunnel 

Electronic Counter 
Start Stop 

Fig. 3-5 A schematic diagram of a smoke wire arrangement. 
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■ 

(A) Thermocouple Rake 

(B) Thermocouple Rotary Switch 

(C) Digital Voltage Meter 

Fig. 3-6 Instruments used in the temperature measurements. 



Fig. 3-7 

212 

Flow visualization by TiClt smoke when no obstacle was 
placed on the floor. ( Fr = 0.0824. 
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Temperature distributions in the cross sections up­
stream ( x = -56 cm) and downstream ( x = 148 cm) of 
the heated island. (Fr)= 0.163. 
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Fig. 3-11 

t = 23 .19 sec 

t = 6.29 sec 

Numerically computed isotherms with and without en­
trance heaters. a) without and b) with heaters. 
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Numerical (ups tream difference scheme); contour 1: nes 
of stream function, vorticity, and temperature at 
t = 9.45 sec in the same flow situation as in Fig. 4-2 
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Fig. 4-7 A temperature distribution to satisfy upstream boundary 
condition of Long's model. 
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Pseudo Viscosity (a) 

ii. = p 
lul 8x (I- lul 8t ) 

2 8x 

8x = 4 cm , 8t = 0.09675 sec 

- - - - - --- - -=--::::.:=--=-=-=-----,----

10 20 
Absolute Value of Velocity I u I (cm/sec) 

o~o (cm 21sec} 

x=-96 cm x =-16 cm x = 4 cm 

( b) 

x = 24 cm x = 44 cm x=224 cm 

Numerical pseudo viscosity in the flow situation described 
in Fig. 4-8; a) v vs. lul when ox= 4 cm and p 
ct= 0.09675 sec, b) computed pseudo viscosity profiles 
at several locations. 
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Pseudo Viscosity 

= lulox , 1_ lul 8t) 
VP 2 \ OX 

( a) 

::o~~~~=-
1 I 

~Q. 0 10 20 30 40 

~8x= 4 cm 
8 t = 0.05588 

50 

sec 

60 

50 

~ 40 

1: 30 
Ol 
Q.) 

I 20 

10 

IUI ( cm I sec) 

0'--------'""---------.l:----------L--------
x = - 96 cm x = -16 cm x = 4 cm 

60 

50 

E 40 
u 

..... 30 

..c 
c,, 
Q.) 20 I 

10 

0 

Fig. 4-12 

x = 24 cm x = 44 cm x = 224 cm 

Numerical pseudo viscosity in the flow situation described 
in Fig. 4-10; a) v vs. juj when ox= 4 cm and 
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Fig. 4-16 A mixed scheme; upstream difference scheme in the upstream 
and Arakawa's one in the downstream of the obstacle. 
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Stream Function at t = 5.74 sec 
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Fig. 4-17 Streamlines at t = 5.74, 12.11, 17.82, and 20.84 sec 
obtained by further integration of the scheme described 
in Fig. 4-16. 
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Vorticity at t 5.74 sec 
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Fig. 4-18 Vorticity contour lines corresponding to Fig . 4- 17. 
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height/channel height. 



35 

30 

25 

E 
L) 20 
N 

15 
+-
.c 
CJl 
(1) 10 
I 

5 

0 
-20 -10 0 10 20 30 40 50 60 70 80 

Distance, x (cm) 

Fig. 5-2 Streamlines obtained fro~ a smoke visualization picture when (Fr)= 0.144, 
(October 7, 1970) . H 



40 

35 

30 

~ 25 
N 

~ 20 -..c 
O'l 

a, 15 
I 

10 

5 

Isotherms On Sept. 30, 1970 

Isotherms · On Sept. 24, 1970 

----- A Streamline Drawn From A Picture Taken On Sept. 30, 1970 

330 (K) 

-=.,._=Y=--~=-==-=.:=:.=:.:.:==:=~=--~-~---~-~------~-~- -----------• 

325 ___ .;:..::~--------
------------- -- ----- - ........ -===========-=-:.:==----------------=-::::: ------- ', ------------------- ',, ....... , 

' 

-30 -20 -10 0 10 20 30 40 50 60 70 
Distance , x (cm) 

Fig. 5-3 Case A-1 (Experimental): Isotherms over square obstacle. (Fr~= 0.126. 



E 
u 

N 

--.c 
CJ'I 
Cl) 

I 

----- Streamlines 

------- Isotherms 
40 

~-=====:.:::.:::.:::.:::.=:.=:.=:.:::.::.==.====-==~~.J0iL:=::.::::;::::.:-:-::.:::.:::.:::.~~==---------351 -----------------------330 lK) -----

30c::.:::::.:.:~~~~~~==-~-::-=----------------------L --------

25 ----- -------------------- - --- --- .._ -.... ---- --- ---
- - 324 - -20 -----------------------~ -------------................. .,,,,.,,.,,------

15 -- ..-------------------- --320----- ---""':'."=-----------
10 
5 

~--------~~~-~======~-~~-~~, ------------- ------......_;: ,___ ------------- ---------- ----,._ -316 -----
........_ - ------ __.. ------- .__ --314---- ------

0 10 20 30 40 50 60 
Distance, x (cm) 

Fig. 5-4 Case A-1 (Numerical): Streamlines and isotherms obtained by the present 
numerical model under the same boundary condit i ons as the wind tunnel 
experiment. (Fr~= 0.126 . 

70 

N 
~ 
N 



243 

. . . . . . . . . 

::1 •:. I r1:• . .!li.'.'i•:f ., . f!:.'l•:f (,:11'f(JI.II /l'filYli 

Fig. 5-5 Case A-1 (Numerical): Computed stream function, 
vorticity, and temperature contour lines at 
t = 7.21 sec. under the same flow conditions as 
in Fig. 5-3. 

. =1'; : t 
. ' ·•5 .,, 
:If -1, .z, 
·11 

·!~ 
·f 

' l 

., ., 



E 
u 

+-
..c: 
O'I 
Q) 

I 

E 
u --..c: 
O'I 
"<i> 
I 

244 

x = -60 cm 
40.----~----,------, 

8 Experimental 
( Empty Wind Tunnel) 

0 
Experimental 
(Obstacle) 

30 • Numerical 
(Obstacle) 
Numerical 
( Initial) 

310 320 

x =- 20 cm 

330 

40------------....... ----

20 

10 

310 320 330 
Temp. ( K) 

300 

300 

x=-40 cm 

310 320 

x=-12 cm 

310 320 
Temp. ( K) 

330 

330 

Fig. 5-6 Case A-1: Temperature profiles at various locations obtained 
by wind tunnel and numerical experiments. 



-E 
u --..c 
CJ'I 
(1) 

I 

-
E 
u 

-..c 
CJ'I 
(1) 

I 

245 

x = -4 cm 
40 

0 Experime tal 

• Numerical 

I nitia I 
30 

20 

10 

x = 12 cm 
40,----,----,,..------

30 

20 

10 

310 320 330 
Temp. (K) 

300 

300 

X = 8 cm 

310 320 

x = 16 cm 

310 320 
Temp. ( K) 

330 

330 

Fig. 5-6 (continued) Case A-1: Temperature profiles at various loca­
tions obtained by wind tunnel and numerical ex­
periments. 



246 

x = 20 cm 
40 

0 Experimenta I 

• Numerical 

30 
I nitia I 

E 
u 

_ 20t-------t~ ---+i~---+----I 
.c 
OI 
Q) 

I 

-E 
u --.c 
OI 

.Q) 

I 

0
300 310 320 330 

x = 28 cm 
40.-----r------.-------, 

20 

10 

0
300 310 320 330 

Temp. ( K) 

300 

300 

x = 24 cm 

310 320 

x = 32 cm 

310 
Temp. 

320 
( K) 

330 

330 

Fig. 5-6 (continued) Case A-1 : Temperature profiles at various loca­
tions obtained by wind tunnel and numerical ex­
periments. 

I 
✓ 



E 
u 

-..c 
Ol 
(I) 

I 

E 

40 

30 

0 

• 

/ 
/ 

/ 

X = 40 cm 

Experimental 

Numerical 

I ni ti al 

/ 
/ ,.. 

0
300 310 320 

247 

330 

x = 60 cm 
40r-----r----,,---........ -, 

301-----+----+--~--+--~ 

~ 20i------1---~r1------1---1 
-..c 
Ol 
(I) 

I 

310 320 
emp. ( K) 

330 

300 

300 

x = 48 cm 

310 320 

x = 100 cm 

310 320 
Temp. ( K) 

330 

330 

Fig, 5-6 (continued) Case A-1: Temperature profiles at various oca­
tions obtained by wind tunnel and numerical ex­
periments. 



40 

0 

6 

35 • 
• 
• 
□ 

V 

30 

E 
25 

(.) 

---
-..c 
Ol 20 
(1.) 

I 

15 

10 

5 

x (cm) 

-60 
-10 
20 
40 
60 
80 

100 

6 0 

6 0 
0 

248 

310 320 
Temperature , T ( K) 

330 

Fig. 5-7 Case A-1: Temperature profiles at various locations obtained 
by wind tunnel experiments without an obstacle. 
Distribution shown by a solid line was used as an 
initial value of the numerical model. 



20 

E 
15 

(..) 

N 10 

-.c 
O'l 
<l) 5 
I 

0 
0 

Fig . 5-8 

10 20 

10 cm/sec l-+----1 
0 20 

30 
Distance, · x ( cm) 

40 50 

Case A-1 (Experimental): Flow behind the obstacle; (Fr)= 0. 
H 126, b = 0.567, 8 = 0.15. 

60 



E 
u 
N 

+-
.c 
O'l 
a.> 
:r: 

10 A 309 (K) .. 310 
9 D 0 311 

• 312 

8 
D 313 

7 

6 

5 

4 

3 

2 

0 L........J... _ __Ji:......:::::....IL-L..--L.....-....L..---'--....L..----L--...L..----L--...L..-.....1.--...L..-.....1.--_.__.,....-__._ 

0 50 100 
Distance , x (cm) 

Fig. 5-9 Case A-1 (Experimental): Temperature field behind the ob­
stacle; (Fr¾= 0.126. 

N 
(Jl 

0 



30 

25 

E 20 
u 

15 

10 

5 

Horizontal Velocity 

t:i 
0u.......J_,5cm/sec . 

I 

J 
/ 

I 
I 

_,,,, , .... 0L---.l-::::~ _ _.1_ __ __.._.,. _____ ~-----"-----=-'="--
-20 -10 0 341 K 10 20 30 

35 

30 

25 

~ 20 

.c 15 
Cl 
Q) 

I 10 

Isotherms 
• • • ~ • - •,____...--a • 

••-•--■-1■i--,■r--i■---■■ ..... -wr • ■-- • 

• 
• 

• 
• 

Distance (cm) 

.__ 305 (°K) 

Fig. 5-10 Case B-1 (Experimental) : Measured horizontal velocity pro files and 
isotherms when (Fr) = 0.100, and Nh = 5.40. Photograph shows a 
flow visualization ~y TiC1

4 
smoke introduced at the right bottom 

corner of the picture. 



.. 

. . ., ... ,, . ·• . 
•· · 
... 11 . .. 

77 
•· . 

. -.-. . 

.. : 
•• 11 

'! 

252 

Strearrl Function 

' ;1 I 11 ., I I .. .. 
•· •· .. . .. .. '· . . 

~ - . 

.. 

. . .. 

. . .. 
-:-. 

11 

•· .. .. .. 
. . -

~::=-~-~~t:::::::--::r..,:r::+.;.-;;....;...~-;...;~::::;:.:-:J. - ;. -- • -... • - • _--w- -..... 

~-"I • - • ... • -- • l • t • t • 1 • • • - • 
'"1·1 1 r ,· i t 1· ({ r , i, r , 11 t , I I t I I I t I I I t I I , r , , 1 r , , 1 t • ~ 1 r i l I r I r I ·11 . 

::, ·:., ,,_.. · . .1:::r-:.1 
~ 

. ·::.·r•:.1 ::1 ·:; , : 1 ·r,, J. 

Vorticity 

~ 
~ . . . . . . . 

- . - . . . . . 
• 1 • ... • • • • • 

• • • 1 •• ' 

:.••··:. ·, ,,_._., -. .. s.•:r•,✓ !J • ,sur-:✓ r,#,,v, /#f£11'1i . ,sur-,, 

Temperature 

11 

'· .. . . 
•· 

11 

.. .. 
•· .. .. 

... . . .. -
... . - ,,. . 

·'4 .,, . ,i 
- ·21 

·2' 
::H 
- ·11 
- -1, - .,, 

• 11 
·I 
·5 ., 

-. I [ I t I [ r 

•1 

Fig. 5-11 Case B-1 (Numerical): 
and temperature contour 
same flow conditions as 

Computed stream function, vorticity, 
lines at t = 27.11 sec. under the 
in Fig. 5-10. 

51 
51 
51 
51 ,, 
51 
51 
51 ,o 
50 ,o 
Sl 
Sl 
,0 ,i 
H 



40 

30 

E 
(.) 

00 20 II 

X -
~ 

10 

0 
0 

253 

11

K
11 

Values Calculated from the 
Numerical Results 

C\J 
I 

en 
Q,) Q,) Q,) 
en en en 
00 0 
l) l) l) 

2 4 6 
2 

K (cm /sec) 
8 10 

Fig. 5-12 Relation between an equivalent thermal mountain height at 
x =8 cm and viscosity K from Eq. 2.2. 2.7- 2. 



.• . ,J • slJ s 
• 51 
• 50 

o ♦ •9~ a 

• 50 
• 50 
♦ 

• s)J C . ,, 
t rlO a 
• 50 
• 50 
• 50 

50 

f 5
~, 5 

• 50 
• 50 
• 50 

♦ l I • 
• •94 • ~ 
• 50 • 
$ •9t a • 

• 50 • 
• 50 • 

50 • 
50 

Fig. 5-13 Case 8-1 (Numerical): Isotherms in the vicinity of the heated island 
(enlarged from the bottom figure in Fig. 5-11). 

306 (K) 

304 

30 2 

300 

298 



40 

30 

20 

10 

E 0 
'-' 292 

~ 

"' 40 ., 
I 

30 

x •-20cm ' • 
o Experimental 

• Numencol 

-- - lnot,al 

295 300 305 292 295 300 305 291 

x •-4cm x • 0cm 

305 

Temperature, T ( K ) 

x = - 12cm 

' I 
/> 

I 
;-

1. 
I 

/2 

t 

295 300 305 

• 
x • 2cm 

• 

• 

• 

305 310 

• 

x = 4cm 

• 

315 299 n 310 315 320 

Fig. 5-14 Case B-1 (Experimental and Numerical): Comparison of exp~rimen~al and 
numerical vertical temperature distributions at various locations 

.. 

N 
(Jl 
(Jl 



40 ., , 
x = 6cm X = 8cm x = 10cm x = 12cm 

36 o Experimento I 

32 
• Numerical 

---Initial 

28 
/, 

24 . / 
/ 

20 / . 
/ 

16 / • 
/ 

12 / • • / 
8 

4 • • 
E 0 u 

300 310 320 300 305 297 300 305 296 300 305 .. 
~ 

co 
40 , • N .. x = 14cm X = 16cm x = 20cm u, 

I (]\ 
36 

32 

28 

24 

20 I • 
16 I I 

I • I • I 
12 I I I • I I I 
8 ,) I J 

/ / / 
/ / / 

4 / / / 
/ / / 

0 
/ 

294 300 305 292 300 305 292 300 305 

Temperature, T ( K ) 

Fig.5-14 (continued) 



40 ' x = 28cm 
x = 22cm x = 24cm x = 26 cm 

0 Experimental • • • 
• Numerical • 1/ 

30 
-- -Initial I 

I 
I 

f 
I . I • 20 • • 

I I • I • • • I I I 
I I I 

10 I I I 
/ / / 

/ / / 
/ / / 

/ / / 

E 305 
" 

292 300 305 292 300 305 292 300 305 

N 

- 40 ' 
N 

.c x = 30cm x = 32cm x = 34 cm x = 36cm (Jl 

"' 
---..J 

·-.. 
I 

30 • 

20 I • I I • I • 
I 

I I 
10 I I 

/ J 
/ 

/ 
/ 

/ / 
/ / 

0 
292 300 305 292 300 305 292 300 305 292 300 ~ 

Temperature, T ( K) 

Fig. 5-14 (continued) 



40 
,. • • 

x = 38cm x = 40 cm x = 44 cm xz 48cm 

0 Experimental 

• Numerical 

30 --Initial f 
1/ 

20 I 
I 

I 
I 

I 
10 I 

J 
E 

/ 
/ u / 

/ .. .,.,:; 
0 

293 D) 305 293 300 305 293 300 305 293 300 305 
.s: 

"' ·-.. 
% 40 • • N 

X = 52cm x = 56cm x = 60 cm (J1 

00 

f 

I • I ~-
I • I • 

I I 
I I 

I I ,,, / 
/ / 

//. / 
/ 

/ / 

293 300 305 293 300 305 

Tempera lure, T (Kl 

Fig. 5-14 (continued) 



40 

35 

30 

25 

E 
u 

N 20 
+­
.c 
Ol 
Q) 

I 
15 

10 

5 

259 

x (cm) 

0 4 
~ 8 

□ 12 

• 20 

Distance, x (cm) 

Fig. 5-15 Case B-1 (Experimental): Measured vertical profiles of 
temperature defect, Tx - Tx=-

20
. 



t = 27.11 sec Case 8- I 
-10 0 10 (cm/sec) --- t = 17.42 sec Case 8-2 

40 I \ \ 
I \ \ 

35 I \ 
I 

30 I ----- \ 
I - ~ I / 

/ 
\ ---25 -E ----- I I u 

N 20 I I 
--+-

.c 
CJl 

<1> 
I 

\ I 
I 15 \ 

\ I I 
10 \ I I 

---- l 5 \ 
\ 

\ 

0 
-20 -10 0 10 20 30 40 50 60 

Distance, x (cm) 

Fig. 5-16 Case B-1 and Case B-2 (Numerical): Computed horizontal and vertical 
velocity profiles; -- Case B- 1, ------ Case B-2 . 

\ 
\ 
\ 
I 
I 
I 

I 
I 

I 

N 
(]\ 

0 



E 
(.) 

-..c 
Ol 
Q.) 

I 

E 
(.) 

-..c 
Ol 
Q.) 

I 

30 

25 

20 

15 

Horizontal Velocity 

10 

5 

O -20 

I 
I 
I 
I 
\ 
\ 
\ 
\ 
\ 
\ 
I 
\ 
\ 
I 
I 
I 

.I 
/ 

/ __ .,, 

-10 

35 

30 

25 

20 

Isotherms 

15 

10 

5 

O -20 -10 

\ 

0 377°K 10 

• 

• 

0 377 K 10 

0 5 cm/sec ............... 

\ \ 

20 30 40 50 60 

,,e,-<i-<>--C>--O--O-C>--o,-.o-o-~1..0...0-0-.0-0~300 
295 

20 30 40 50 

Distance (cm) 

Fig. 5-17 Case B-2 (Experimental): Measured horizontal velocity profiles and 
isotherms when(Fr~E 0.100, and· Nh = 7. 40. 

N 
C]\ ..... 



Fig. 5-18 

262 

Stream Function 

-54 

:U 
=n 
:H _,. 
-,z 
:l 
- 5 
- 5 _, 

0 
SOI. /Al~• • 1£,/J/J ,'ff,?,,?/ • -. 1,?,l"•/J.? 

Vorticity 

-•-•-•-•-· -•-•-•- •-·-· -•-•-•·•-·-· 
-1 • •1 • -1 • -1 • • • - • -•-•-•·•·•-· 

- l 
. ,s,,r-,, 

Temperature 

Case B-2 (Numerical): Computed stream function, vorticity 
and temperature contour lines at t = 17.42sec under the 
same flow conditions in Fig. 5-17. 

,, ,, ,, ,, 
;: ,, ,, ,, 
;~ 

u 
Z9 



40 

30 

20 

x=- 20 cm 

o Experimental 

• Numerical 

---Initial 

x= - 16 cm 

i 
I 
1. 

I 
1. 

I • 
I 

I • 
I 

J 
I 

• 
I 

x=-l2cm 7 

I 

I 

l 
i 

1. 
I 

I • 
I 

I • 

x=-8 cm 

I 

I , 
I 

1• 
I 

I • 
I 

I • 
I 

I • 

' I 

' 

I • 
I 

I • I • 
I 

I • 
I 

I • 
I 

I • 
10 

e 
0 
o----~~~~~~~~~-

/ 

// 
/'. 

,,,✓ 
1. 

/ 
/2 

1. 
/ ,,,,,,,,, 

/ 

/ 
/ 

/ 

I 
,,.,,I • 

/ 

" 293 295 300 305 293 295 300 305 292 295 300 305 292 295 300 

30 

20 

10 

x=0cm x =4cm • x=6cm • x=Bcm 

/ 

/ 
/ 

/ 

I 
/ 

I 
/ 

/ 

• 

/ 

/ 
/ . 

/ 

/ . 
• 

• 

" 
•/ 

/ 

305 

., 
I 
r 
f 
/. 
I 
I• 
I 
I • 
I 
I 

300 

• 
• 

310 320 

., • 
I • • 

I ,~ • 

'· I 
I 
I • • 
I 
I • • 
I 
I 

• 
• 

300 310 320 330 302 305 310 

Te mpe rature, T ( K) 

Fig. 5-19 Case B-2 (Experimental and Numerical): Comparison of experimental and 
numerical vertical temperature distributions at various locations. 

305 

• 

31~ 



40 x:IOcm 

o Experimental • / 

• Numerical 1 

--- Initial /
1 

30 , 

/ 

/ 

/ 

/ 
/ 

20 / 
/ 

.: 
~ -. :,:: 

/ 

10 / / 

/ 
/ 

/ 
/ 

40 a•20cm 

30 

20 

10 

/ ,-·---· 

I 
I 

I 
I 

I • 
I 

/ . 
/ 

// . 

300 

I 
I 

I 

I 

305 

• -= 12cm . 
., 
I 

t • 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

• "' 22cm 

/ 
/ 

/ 

293 295 

/ 
/ 

I 

I 
I 

I 

I 
I 

I 

300 

I 
I 

I 

I 
I 

I 
I 

I 

310 

I 
I 

J 

305 

1, zl6 cm 

/ 
/ 

/ 
/ 

/ 

293 295 

11. =24 cm 

293 295 

Temperature, T ( K ) 

Fig. 5-19 (continued) 

/ 

I 
I 

I 
I 

J • ,, 

300 

I 

I 
I 

I 

300 

• I 

I • 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

305 

·1 
I • 

I 
I • 

I 

. 

r. • 18cm 

I • 
I 

I 
I 

293 295 

P26cm 

I 
I 

I 
I 

I • 
I 

300 

I 
I 

I 

I 
I 

I 

I • 
I 

,,, . 
/ 

/ 

/ 
,,,,,..,,,,,,,,,,. . 

293 295 300 

305 

I 
I • 

I 
I • 

I 

. 

. 



E 
0 

l: 
"' ·.; 
I 

40 

30 

20 

x=28 cm 

o Experimental 

• Numerical 

---Initial 

I 

I 
I 

I 
I 

I • 
I 

I 
I 

• I 
I 

I 
I 

I 
• 

I • 
IO 

/ 
/ 

/ 
// . 

/ 

I 
I 

o-'--'--'----'----'---'-..L--'-L...J'--'--'----'---' 

293 295 300 

40 x=38 cm 

30 

20 

10 

/ 
L 

I 
I 

//// . 

,,-/• 

I 

I 
I 

I 

I 

305 

I 
I 

I 

I 

. ' 
I 

;. 

I • 

0 '-''--"'--'----'----'--'--..L--'-L...JL.J--l.--L..J 
293 295 300 305 

x=30cm • / x = 32 cm • 1 
I 

/ 
/ 

293 295 

293 295 

I 
I 

I 

I 
I 

I 

I 
I 

I • 

/ 

I 
,,,' . 

/ 

/ . 
300 

I 
I 

I 
I 

1. 
I 

305 

/ 

/ 

//. 
/ 

293 295 

x = 42 cm 

/ 

I 
I 

I 

I 
I 

I 

I • 
I 

I 
I • 

I 
,I • 

I 
I 

I 

1. 
I 

300 305 

I 
I 

I 

I 
I 

I • / 

I 

I 
I 

I 

I 

I 
I 

I 

/ 

300 305 

Temperature , T ( K ) 

/ 

/ /4 
// 

Fig. 5-19 (continued) 

3uu 305 

x=34cm • ; 

I 
I 

I 

I 
I 

I 

I 
I 

I 

I 
I 

I 

I 
1. 

I • 

/ 

293 295 

/ 
/ . 

/ 

I 
/I • 

/ 

300 305 

x=44 cm • I 

/ 

/ 
//. 

/ 

293 2~ 

,,,✓ 

I 
I 

I 

300 

I 

I 
I 

I 
I 

I 
I 

I 

I 
1. 

I 
I 

I • 
I 

I 
I 

30G 

N 

°' tn 



20 

18 

16 

u 
Q.) 14 
(/) 

'-
E 
u 12 

__, 

>, 10 -u 
0 
Q.) 8 
> 

6 

4 

2 

00 

• lulmax 
• lw I max 

5 10 
Actual Integrated Time 

Fig. 5-20 Case B-2 (Numerica~: Variation of /u/ 
grated time in the computational region~ax 

15 - 20 

and /wf with inte-max 



20 

E 15 
(.) 

10 
-+-
..c 
Ol 5 
Q.) 

I 
0 

40 

35 

30 

E 25 
(.) 

20 
-+-
..c 
Ol 15 
Q.) 

I 
10 

5 

0 

Horizontal Velocity 

0 5 
H+++-1 

cm /sec 

-20 -10 40 50 60 

Isotherms 

A /\ oil, oil, 0 -0 

335 lK) 

330 

328 
327 

325 

320 
315 
310 

0 412 K 10 20 30 40 50 60 
Distance (cm) 

Fig. 5-21 Case B-3 (Experimental): Measured horizontal velocity profiles and 
isotherms when (FrlH= 0. 064 , and Nh = 5. 55. 

N 
Q\ 
--.J 



268 

Stream Function 

(#kft?v,I rlt?tr •. ,11/lbll '" . 1lllr•U et?kfi?VI lkfrh',/1 .Hllr•I✓ sua•~· . lbll ,n;.;,. -. IIH•N 

. . . . - . . . - . - . . . - . - . . . - . 
~ .! - • -

Vorticity 

. . . 
~ 

. 
• • • . . . . . 

. . . . 
•1 • • • - • 

. 
• 

• . • . • 
• ♦ • ♦ • 1 • •1 • 

. . 
........ •I • •I • •I 

• • 
. 
• 
i 
• 

• • • • • • • • • • • . • • • • • . 
• • • • • • • • - • • • • • - • - • - • - • 

N•'""' rNtr -. 1111r•1; '" • 1111r•1; u1,N1 11,r,n, , 11llbll Sfll/H• , tr•II '11;.~1• •,U?r•II 

Temperature 

-

. 
• . 
• . . 

. . . . .. . r: ~ . ~ . ~ . .. I• ♦ ~ . ; : ~ . ~ . i : 
. . . r: ,.. . • • • : . • • • • • • • • • • • • • • • • • • • • • .. . • • • • • . • • . • • • • • • '~ • • • • • .~ • • • • • • • - ,. . . ,.. • • • • • ' • • • ' • • • • • • • • • i, • • • • • i, • I • • • .. • • • • • • • • • • • • • • • • • • • • • • • • • • • ... • • • . . --· • • • • • • • • • • • :i • . . . • . . 

~ • • • • • • • • • • • • • • • • • 
~ • . • . • • • • . • • • • • • • • • • . • • • • • • • • • • • • • • • • • - . . . • • • • • • • . . . . . • • • . . . . . . • • • • . . . . . . 

(##fW, rlt?tr . ;111r-,, ,, ,Nllr•II elkfi?Vl lkfrh',/1 , ,,,,r.,, Sfll/11• , lbll ,,,~.~/• .,,,r-,, 

Iii 
:,I 

:: 
•-•--
-----

•I 
.,, 

_, 

s 
, . 

• 

Fig. 5-22 Case B-3 (Numerical): Computed stream function, vorticity 
and temperature contour lines at 
same flow condition in Fig. 5-21. 

t = 16.94 sec under the 



40 

30 

20 

10 

E 
0 

N 

E 
Cl 

Cl> 
::c 40 

30 

20 

10 

x=-20 cm x=-16 cm x= -12 cm x= -8 cm 

o Experimental 

• Numerical 

---Initial 

320 340 340 300 320 340 300 320 

x= -4 cm x =0 cm x= 4 cm i. x=B cm •/4 
.u n 

I 
I 

I • 
I • I 

,J • 
/ 

/ • 
/ 

L._ • 

320 340 330 350 310 330 350 310 330 
Temperature, T ( I( ) 

Fig. 5-23 Case B-3 (Experimental and Numerical): Comparison of experimental and 
numerical vertical temperature distributions at various locations. 

340 

N 

°' I.O 

• 
350 



40 ., I. x = 10 cm • I, x= 16 cm x:..-f:8 cm x = 20 cm ·t 
o Experimental /2 

30 • Numerical 

- -- Initial 

20 I 
I 

J 
10 / 

/ . 
/ 

/ • 
/,. 

0
300 320 340 300 320 340 300 320 340 300 320 340 

E 
0 

N N 

" - 0 
.c 

40 C'I ~ Q) x = 22 cm x = 24 cm x = 26 cm x= 28 cm 
I • I, 

• I, 
30 Ii 

I I } I 
20 I I 

I /· I 

10 / ,J 
/ 

/ / 
/ / 

/• / • 
0300 320 340 300 320 340 300 320 340 300 320 340 

Temperature, T ( K ) 

Fig. 5-23 (continued) 



E 
u 

N 

+­
.c 
Cl 

40 

30 

20 

10 

~ 40 

30 

20 

10 

x = 30 cm ' •I 
o Experimental •/ 

• Numerical ;, 

---Initial 

/./ 
./ . 

./ 

I 
I 

I 
I 

I 
J 

./ 
./ 

320 340 300 

• 
x = 38 cm I 

J 
./ 

/// 

// . 
320 

' I 

" I 
I' 

I 
I 

I 
I 

I 
I 

340 300 

• x = 32 cm / 

./ 
./ 

/e 
./ 

// 

320 

•1 

·/ • I 
I 

I 
I 

I 
I 

340 300 

~ 

x =40 cm I 

' J 

././ 

/ 

// 

.// . 
J 

I 
~ 

I 
1• 

I 
I 

I 
I 

,. 
x = 34 cm I r 

./ 

·/ 
/, 

I 
I 

I 
I 

I 
I 

/ 

.//J 

/ 

./ . 
320 340 300 

;• 
x=42 cm /, 

// 

.//. 
/ 

// 

I 
I 

I 
I 

I 
J 

I • I 
I­

I 

x= 36 cm 

320 

x = 44 cm 

320 340 300 
Temperature , T ( K ) 

320 340 300 320 

Fig. 5-23 (continued) 

340 

340 

N 
--..J ,_. 



45 

40 

35 

,....., 
30 E 

u 

N 25 

+- 20 .c 
O'l 
Q) 

I 15 

10 

5 

• • • • • I 

----.. I e a ----. ...... 1 
• --........ 335 {K) 

... .. • ♦ • ♦ 

* ~ * * * • ...__ • • 330 

• • • • • • • • • • • 

30 40 

Distance , x {cm) 

Fig. 5-24 The first application of Case B-3 (Experimental): Measured isotherms 
over the equivalent mountain given by the flow conditions in Case B-3 . 

50 

N 
'1 
N 



45 
296 {K) 

I 
40 I 

I 
I 

35 297 I 
I 

I 

30 I 
I 

I 

E 6 

u 25 6 

--- 295 
N 

~ 20 N - -..J 
.c 295 vi 
OI 
Q.) 15 
I 

10 

5 292 292 

0 
-10 0 412 K 10 20 30 40 50 60 

Distance , x (cm) 

Fig. 5-25 The second application of Case B-3 (Experimental): Measured isotherms 
in Case B-3 in a neutral stratification. 



40 

x = - 12 cm 

• Experimental 

30 

20 

10 

E 
u 

N 0'---"'---'----'-----'----'------'---L--_..j 

.<: 
"' ;;; 
I 

290 295 

40 
x = 0 cm 

30 

20 

10 

0L.J..____I::::J===1.. __ _ 

x = - 8 cm 

291 295 

x = 4 cm 

293 295 294 310 

Temperature , T ( K ) 

x = - 4 cm 

292 295 

x = 8 cm 

294 300 310 320 

Fig. 5-26 The second application of Case B-3 (Experimental): Measured 
vertical temperature distributions of Case B-3 in a neutral 
stratification. 



40 
x = 12 cm X = 16cm X = 20cm 

• Experimental 

30 

20 

10 

0 
E 
u 295 D) 291 295 290 295 

40 
.c x = 24cm x = 28 cm x = 36cm 

"' .; 
I 

30 

20 

10 

295 290 295 290 

I emperoture, T ( K) 

Fig. 5-26 (continued) 



276 

20 -E --(.) 15 -
N .. 10 -.c 
OI 
Q) 5 
I Turbulent 

0 
-10 0 10 20 30 40 50 

Distance , X (cm) 

Fig. 5-27 Cas e C- 1 (Experimental): A flow visualization by Ti Cl 4 
smoke when the obstacle was not heated. (Fr ) = 0 .100 . 

H 



E 
0 

N 

-.c 
O') 

(1.) 

I 

40 

35 

30 

25 

20 

303 
15 

10 • 302 

5 300 

295 
0 

-20 -10 0 10 20 30 40 50 60 
Distance , X (cm) 

Fig. 5-28 Case C-1 (Experimental): Isotherms under the same flow conditions in 
Fig. 5-27. 

N 
---I 
,J 



E 
u 

N 

50 

• 
A 

• 
T 

40 • 

x t cm) 

-20 
-8 

0 
10 
16 

295 

278 

300 

Temperature , T ( K) 

305 

Fig. 5-29 Case C-1 (Experimental): Vertical temperature distributions 
under the same condition in the previous figures. 

310 



279 

50 

x (cm) 
0 20 
0 24 
6. 28 
V 32 

40 
◊ 40 

E 30i------+------+-------/ll-- - - - ----l 
u 

N 

-.c: 
O'I 
Q) 

I 

20t-------t---------+-----jrl------ -l----- --_J 

295 300 

Temperature , T ( K) 

305 

Fig. 5-29 (continued) Case C-1 (Experi mental): Vertical temperatu~ 
distributions under the same condition in the 
previous figure~. 

310 



E 
u 

N 

-.c 
OI 
Q) 

I 

280 

25 

20 

15 

10 

5 

0 
-10 0 10 20 30 40 50 

Distance , x ( cm) 

Fig. 5-30 Case C-1 (Experimental): A flow visualization by Ti Cl
4 smoke when the obstacle was heated at 310°K while floor 

temperature was 290°K. (Fr¾= 0.100. 

60 



40 

35 

30 

E 25 
0 

N 20 

-.s::: 15 Cl 
Q) 

I 
10 

5 

0 

• • • • • !" • • • • ■• •• • • • ------ • • • • · ■ • • • ■ I ■ ■ • • • .- • 

6 

• 

-20 

A 
~6 

6 6 .e, A 6 6 0. 6 il. 6 0 .e, ,0, 6 
,0, 6 ...0. 

6 6 b--0, 6 6 

• 
• • 

• 
0 

-10 0 10 20 30 40 50 60 

Distance, x ( cm) 

Fig. 5-31 Case C-1 (Experimental): Isotherms under the same flow conditions in 
Fig. 5-30. 

• ■ 305 (K) 

6 ~303 

N 

302 
00 
I-' 

300 

295 
70 



-E 
0 -N 

-.c 
c,, 
.iii 
I 

282 

50 

x (cm) 

0 -8 
6. 0 
□ 6 

• 10 

40 ... 31 

301-------+-------~---------.JH----------i 

20 

300 
Temperature , T ( K) 

Fig. 5-32 Case C-1 (Experimental): Vertical Temperature distribu­
tions under the same flow situations in the previous fig­
ures. 

310 



• • ~· • ~· • ~· • ~· • 
• • •5.J C • ,SJ • t .,J t ·Ji C • I 306 (K) a 

• • 51 • ,, • • • 1 

• • • ,It• • .sa • 50 • ·Ji • 
50 50 

a I ·-,~ 0 I C C C 304 • • • • • • 0 50 • 50 • 50 • 50 • 50 • 50 • 
302 

300 

Fig. 5-33 Case C-1 (Numerical): Isotherms computed numerically under the same 
flow situations of the experiment. 

N 
00 
vi 



284 

Stream Function 

e rn i ~i 1.1 .. 1 
.. 
1 
~ 

~
=Ii ·11 _,, .,, 
-1; 
•I 
•II 

~ f :1--: . : : .: : .s : : : : : : 
~r1t1ut1ut1ut1· 1t1• 1 t . • l i i o t • • • • • • • • • •~ 

'1 f I l If Ill f I l If I l If I l It I l It I l It I l ! f I (II IN t I [It I [ r' 
.·.•t,•.•.-, ,,_.,, • • .fNll•l.f fJ • 1/llbl.f (t'l'f/V, /l'ffll',/J ,./lllt-1,1 SUJ II'~• • !f♦II Jlfl,l.,I!• ·.IIK•II 

Vorticity 

. . . . . • . . . . . :~ • • . . . • • • . . . . • . . . . . . . . . . . . . . . • • • • • . . • • . • . . • • . • . . . . . . . • • • . . . • . • . . • . . . • • . . . • . . • • • • • • . . • • . . . . . • . • . • . • - • . • . . . • 
I • . • . • 

:.•l'f-'t,-, "'°" •• 1/lll•l,I fl • 11lll•N (#111111 /l'!(ll'I• • 1llll•II HI/, IN• • !foll Jl!t,l,,11• ·• d'C•II 

Horizontal Velocity u 

:.•l'f-'t,-, I'~" •• 11/ll•l,I fl , 1/lll•l,I (ll'!M ll'ffll'I• .,Ill/foll HI/, IN• • !foll Jlfl~.~I• -~•II 

Vertical Velocity w 

;.••·-••••-, "••" •• -'llll•l,I fl • 1111(•1,1 (ll'f/v,t /l'ffll'IJ .,llllfol! su, II'~• • lf•l1 Jlfl,l.~J• ·• uq-11 

Fig. 5-34 Case C-1 (Numerical): Computed stream function 
vorticity, and velocity components u and w 
at t = 27.84 sec. 

=• :1 
·l 



285 

Fig - 5-35 Airflow over a rectangular heated islands (Fr)H" 0.100, 
Nh" 10.08 . The heated ares is 30 x 8 cm rectangular. 
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