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ABSTRACT

BAYESIAN SHAPE-RESTRICTED REGRESSION SPLINES

Semi-parametric and non-parametric function estimation are useful tools to

model the relationship between design variables and response variables as well as to

make predictions without requiring the assumption of a parametric form for the re-

gression function. Additionally, Bayesian methods have become increasingly popular

in statistical analysis since they provide a �exible framework for the construction of

complex models and produce a joint posterior distribution for the coe�cients that

allows for inference through various sampling methods. We use non-parametric

function estimation and a Bayesian framework to estimate regression functions with

shape restrictions. Shape-restricted functions include functions that are monoton-

ically increasing, monotonically decreasing, convex, concave, and combinations of

these restrictions such as increasing and convex. Shape restrictions allow researchers

to incorporate knowledge about the relationship between variables into the estima-

tion process. We propose Bayesian semi-parametric models for regression analysis

under shape restrictions that use a linear combination of shape-restricted regression

splines such as I-splines or C-splines. We �nd function estimates using Markov chain

Monte Carlo (MCMC) algorithms. The Bayesian framework along with MCMC al-

lows us to perform model selection and produce uncertainty estimates much more

easily than in the frequentist paradigm. Indeed, some of the work proposed in this

dissertation has not been developed in parallel in the frequentist paradigm.

We begin by proposing a semi-parametric generalized linear model for regression

analysis under shape-restrictions. We provide Bayesian shape-restricted regression
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spline (Bayes SRRS) models and MCMC estimation algorithms for the normal er-

rors, Bernoulli, and Poisson models. We propose several types of inference that

can be performed for the normal errors model as well as examine the asymptotic

behavior of the estimates for the normal errors model under the monotone shape-

restriction. We also examine the small sample behavior of the proposed Bayes

SRRS model estimates via simulation studies. We then extend the semi-parametric

Bayesian shape-restricted regression splines to generalized linear mixed models. We

provide a MCMC algorithm to estimate functions for the random intercept model

with normal errors under the monotone shape restriction. We then further extend

the semi-parametric Bayesian shape-restricted regression splines to allow the number

and location of the knot points for the regression splines to be random and propose

a reversible jump Markov chain Monte Carlo (RJMCMC) algorithm for regression

function estimation under the monotone shape restriction. Lastly, we propose a

Bayesian shape-restricted regression spline change-point model where the regression

function is shape-restricted except at the change-points. We provide RJMCMC al-

gorithms to estimate functions with change-points where the number and location

of interior knot points for the regression splines are random. We provide a RJM-

CMC algorithm to estimate the location of an unknown change-point as well as a

RJMCMC algorithm to decide between a model with no change-points and model

with a change-point.
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Chapter 1

INTRODUCTION

1.1 Introduction to Regression Splines

Non-parametric regression methods have become quite popular recently to ex-

amine the relationship between design variables and response variables as well

as to make predictions. These non-parametric regression methods include kernel

smoothers (Altman, 1992; Wand and Jones, 1995), smoothing splines (Eubank, 1988,

Ch 5), and regression splines (Schumaker, 2007; de Boor, 2001; Ramsay, 1988). Non-

parametric methods have the bene�t of providing estimates of regression functions

without requiring the assumption of a parametric form. In addition to providing

greater �exibility, they allow local e�ects to parameter changes and provide a nice

framework for imposing shape restrictions (Ramsay, 1988; Meyer, 2008).

Polynomial regression splines or regression splines have properties that make

them particularly useful in the regression setting (Schumaker, 2007, Ch 1). A par-

ticularly useful property is that a space spanned by polynomial spines is a �nite

dimensional linear space with bases that are easy to construct and to manipulate

in a computer. For a �xed order polynomial spline, every continuous function on

an interval can be approximated arbitrarily well by regression splines given a suf-

�cient number of knot points. Therefore, polynomial splines are �exible enough to

approximate any function well. Compared to smoothing splines, estimation using

regression splines is often preferred because they involve fewer knots and therefore

involves the estimation of fewer parameters than smoothing splines (Ramsay, 1988).

Consider a function of a covariate x where the covariate takes on values in

[L, U ]. Estimation of the function using regression splines involves �tting piecewise
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polynomials of degree d over the interval [L, U ]. Given knot points t = (t1, . . . , tq)

with L = t1 < . . . < tq = U , polynomials of at most degree d are �t within the

sub-intervals [ti, ti+1) for i = 1, . . . q − 1 and continuity constraints at the interior

knot points require the polynomials to join with a given degree of smoothness. The

continuity constraints are imposed by requiring the derivative of the splines up to

d − 1 to be equal at the interior knot points. Thus, let pd,i (x) be the polynomial

between ti and ti+1 for the regression spline function of degree d and let p
(l)
d,i (x) be

the (l)th derivative evaluated at x. The regression spline function satis�es

p
(l)
d,i−1 (ti) = p

(l)
d,i (ti) (1.1)

for l = 1, . . . , d− 1 and i = 2, . . . , q − 1 (Dierckx, 1993, Ch 1). Function estimation

using regression splines is examined further throughout this chapter.

Regression splines provide a framework that facilitates shape-restricted re-

gression. A useful property of regression splines which is exploited for shape-

restricted regression is that a shape-restriction can be enforced by restricting the

coe�cients. For example, a spline function estimate created using a linear combina-

tion of quadratic I-spline basis functions (de�ned in Section 1.4.1) is monotonically

increasing if and only if the coe�cients on the quadratic I-spline basis functions

are positive. Thus, compared with kernel smoothers, regression splines produce a

framework that makes imposing shape restrictions easier. Using that the derivatives

of a polynomial spline are also polynomial splines and can be computed, one can

derive asymptotic properties for polynomial splines when estimating smooth func-

tions which we will use to demonstrate consistency of shape-restricted polynomial

splines.

We begin this dissertation with an introduction to regression splines. We ex-

plain how to construct regression splines using a linear combination of basis func-

tions. We describe how to construct several di�erent basis functions and estimate

the linear coe�cients. Next, we introduce shape-restricted regression and review

2



the existing literature on this topic. We describe basis functions for shape-restricted

function estimation. We conclude the �rst chapter with a literature review on

non-parametric and semi-parametric shape-restriction regression estimation in the

Bayesian paradigm. This will provide background information for the Bayesian

shape-restricted regression spline model proposed in Chapter 2.

1.2 Basis Functions

Regression splines can be constructed using several di�erent types of basis func-

tions. Given knot points t, regression splines are easily constructed using a linear

combination of basis functions that span the space of piecewise polynomials of de-

gree d. B-Splines (Eubank, 1988, Ch 7) basis functions are commonly used to

construct regression splines because they are rather straightforward to construct

and recursively de�ned. Figure 1.1 gives the B-spline basis functions for a variable

with range [0, 1] and four equally spaced interior knots. Degree 1 B-splines are

given in Figure 1.1(a) and degree 3 B-splines in Figure 1.1(b). For observed data

(xi, yi) for i = 1, . . . , n, a B-spline of degree d and order q = d + 1 is found by

�rst dividing the range of the covariate, [L,U ], into sub-intervals using knot points

t = (t1 = U, . . . , tk+2 = L) where k is the number of user-speci�ed interior knots.

De�ne mesh points ξ = (ξ1, . . . , ξk+2d)
′ to be the vector of knot points with addi-

tional knots created at the endpoints to allow for a recursive formula to construct

the B-splines. These mesh points are given by L = ξ1 = . . . = ξd = t1 < ξd+1 =

t2 < . . . < ξd+k = tk+1 < ξd+k+1 = . . . = ξd+2k = tk+2 = U . Using these mesh points,

j = 1, . . . , k + q B-splines of order q = d + 1, denoted by Bq
j , are recursively found

using

B1
j (x) =

{
1 ξj ≤ x < ξj+1

0 otherwise

Bq
j (x) =

x− ξj
ξj+q−1 − ξj

Bq−1
j +

ξj+q − x
ξj+q − ξj+1

Bq−1
j+1 for q > 1 (1.2)

3



(Eubank, 1988, Ch 7). Other basis functions include the truncated power function

(Eubank, 1988, Ch 5) and M -splines (Curry and Schoenberg, 1966).

M -splines of order q, denotedM q
j , can be integrated to create basis functions for

shape-restricted regression splines (Ramsay, 1988) (discussed further in Section 1.4)

and are related to B-splines. Consider a covariate with range [L, U ] and the knot

and mesh points as de�ned above for the B-splines. The j = 1, . . . , k+ q M -splines

of order q are found recursively by

M1
j (x) =

{
1

ξj+1−ξj ξj ≤ x < ξj+1

0 otherwise

M q
j (x) =

{
q[(x−ξj)Mq−1

j (x)+(ξj+q−x)Mq−1
j+1 (x)]

(q−1)(ξj+q−ξj)
ξj ≤ x < ξj+q

0 otherwise
for q > 1. (1.3)

Note the M -splines of order q are related to B-splines of order q by the identity

Bq
j (x) =

(ξj+q − ξj)
q

M q
j (x) (1.4)

(Ramsay, 1988).
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Figure 1.1: Plots of B-spline basis functions. The �X� and vertical dotted lines
represent the knot points. (a) Degree 1 B-splines. (b)Degree 3 B-splines.

1.3 Function Estimation

Once an appropriate set of basis functions has been constructed, we can create

a spline function estimate of the regression function, f . For a given observed data
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set (xi, yi) for i = 1, . . . , n , we use a spline function, denoted by s (x), of degree d

to estimate regression function f over the range of the covariate x, [L,U ] . Given

knot points t = (t1, . . . , tk+2) , the spline function estimate is

s (x) =
∑
j

βbj (x)

where bj (x) is the (j)th basis function. For each j, we evaluate bj at each xi to give

basis vector δj. To obtain the spline function estimate, we use the method of least

squares and a design matrix constructed from the basis vectors.

Consider the univariate case and observed data set (xi, yi) with i = 1, . . . , n.

Suppose

yi = f (xi) + σεi, (1.5)

where εi for i = 1, . . . n are independent and identically distributed (i.i.d.) random

errors. Using B-spline basis functions, the regression spline estimate for f is given

by

f̂ (xi) =
d+k∑
j=1

β̂jBj, (1.6)

where Bj =
(
Bq
j (x1) , . . . , Bq

j (xn)
)′
and Bq

j (xi) is as de�ned in (1.2). An estimate

for the regression coe�cient vector, β = (β1, . . . , βd+k)
T is found by minimizing

n∑
i=1

(
yi −

d+k∑
j=1

βjBj

)2

. (1.7)

Thus, the estimates can be computed by β̂ = (B′B)−1B′y where B = [B1 . . . Bd+k]

is the matrix of basis vectors and B′ denotes the transpose of matrix B (Dierckx,

1993, Ch 4). As we will explain in the following section, this estimation procedure

can be extended to shape-restricted regression splines.

1.4 Shape-restricted Regression

We will now focus on non-parametric and semi-parametric function estima-

tion under shape restrictions. Shape-restricted functions include functions that are
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monotonically increasing, monotonically decreasing, convex, concave, and combina-

tions of these restrictions such as increasing and convex. Shape restrictions allow

researchers to incorporate knowledge about the relationship between variables into

the estimation process. For example, we would like the regression function of a

growth curve to be non-decreasing and want to avoid function estimates that in-

correctly show the function as decreasing for some values of the predictor. Shape

restrictions can be imposed when estimating functions using non-parametric estima-

tors such as kernel smoothers (Hall and Huang, 2001; Mammen, 1991), smoothing

splines (Mammen and Thomas-Agnan, 1999), and regression splines (Meyer, 2008;

Ramsay, 1988).

Extensive research has been done on non-parametric function estimation under

shape restrictions and several di�erent non-parametric and semi-parametric shape-

restricted regression estimators have been proposed. Mammen (1991) combined

kernel smoothing and isotonic (monotonically increasing) regression in a two-step

procedure, and showed that they have the same convergence rate as for the uncon-

strained kernel estimator. Delecroix et al. (1995) examined non-parametric function

estimation using kernel smoothers and demonstrated through simulations that im-

posing shape restrictions on top of smoothing leads to substantial reductions of

squared error loss for moderately sized samples and many choices of underlying

function and error variance (when the shape assumptions are indeed correct). Hall

and Huang (2001) provided a method to make a kernel smoother monotone and

smooth.

Several other shape-restricted function estimation procedures have been pro-

posed using smoothing splines as opposed to kernel smoothers. Smoothing splines

are a penalized least-squares method involving polynomial splines where a penalty

on roughness is imposed (Wang and Li, 2008; Mammen and Thomas-Agnan, 1999).

Kelly and Rice (1990) used smoothing splines restricted to be monotone to estimate

dose-response curves. Mammen and Thomas-Agnan (1999) considered imposing
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shape restrictions on smoothing splines and showed that, under certain conditions,

shape-restricted smoothing splines have the same convergence rate as unconstrained

regression splines. They provided rates of convergence for shape-restricted smooth-

ing splines under various conditions, and proved that the convergence rates of the

smoothing splines are optimal for appropriate choices of the smoothing parameter.

Mammen et al. (2001) proposed a projection framework for constrained smoothing

for which a smoothed �t is projected onto a constraint set. Wang and Li (2008) con-

sidered the monotone shape restriction and smoothing splines created using natural

cubic splines. The function estimates were found by minimizing a linear objective

function over the intersection of an a�ne set. Turlach (2005) provided an algorithm

for constrained spline smoothing for several di�erent shape restrictions including

monotonicity and concavity that involves adaptively choosing to replace an in�nite

number of constraints with a �nite number.

Shape-restricted regression splines have also been studied by many researchers

and is the focus of this dissertation. Monotone shape-restricted regression splines

were discussed by Ramsay (1988). His work was later extended to include other

shape restrictions such as convexity and concavity (Meyer, 2008). Shape-restricted

regression splines provide �exible as well as smooth function estimates and are more

robust to knot selection than unconstrained splines (Meyer, 2008). Huang and Stone

(2002) established the consistency and convergence rate for unrestricted polynomial

splines and Meyer (2008) showed that the convergence rate for shape-restricted re-

gression splines is at least as good as the convergence rate for the unconstrained

polynomial splines. However, several other smooth shape-restricted estimators are

found in the literature. Tutz and Leitenstorfer (2007) applied regression spline tech-

niques to the generalized regression model under the monotone shape restriction, us-

ing I-spline basis functions, �boosting� techniques and a stopping rule based on AIC

model selection. Dilleen et al. (2003) proposed a monotone dose-response curve using
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least squares estimation procedures and B-splines along with a bias term adjust-

ment. Yatchew and Hardle (2006) used a non-parametric regression spline function

estimation procedure and constrained least squares for state price density estimation

under the monotone or convex shape restriction. Banerjee et al. (2009) proposed a

semi-parametric model for binomial data under the monotone shape restriction using

regression splines and maximum likelihood estimation along with likelihood ratio-

based inferential procedures. Our work focuses on using shape-restricted regression

splines (SRRS) to produce �exible estimates of smooth functions. Imposing shape

restrictions on regression splines produces more �exible �ts than assuming a para-

metric form and is less computationally intensive than imposing shape restrictions

on smoothing splines or kernel smoothers.

1.4.1 Monotone Shape-restricted Regression Splines

Monotone shape-restricted function estimates can be found using a linear com-

bination of B-spline basis functions de�ned in (1.2) and requiring the coe�cients on

the appropriately scaled m basis vectors to be ordered as in Kelly and Rice (1990).

One can also estimate monotone functions using a linear combination of integrated

splines or I-splines of degree 2 introduced by Ramsay (1988) and requiring the

coe�cients of the linear combination of these basis functions to be non-negative

(Ramsay, 1988; Meyer, 2008; Tutz and Leitenstorfer, 2007). The I-splines are simi-

lar to B-splines but are found by integrating the M -splines. In particular, I-splines

of order q + 1 are found by integrating M -splines of order q where M -splines are as

de�ned in (1.3). Thus, an I-spline of order q + 1 is given by

Iq+1
j (x) =

∫ x

L

M q
j (u) du, (1.8)

where j = 1, . . . , q+k, x ∈ [L,U ], q is the order of theM -splines, and k is the number

of interior knots. The degree 2 (quadratic) I-splines have the property that along

with the constant function they span the space of piecewise quadratic functions and
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any linear combination of the I-splines and the constant function is non-decreasing

if and only if the coe�cients on the I-splines are non-negative (Meyer, 2008). This

is not the case for degree 3 (cubic) I-splines since a linear combination of cubic

I−splines might be non-decreasing if one or more of the coe�cients is negative

(Meyer, 2008). For this reason, quadratic I-splines will be used in the estimation

of monotone regression. Examples and simulations in Chapter 2 suggest that they

are su�ciently �exible enough to estimate many types of regression functions well.

Figure 1.2 gives the basis functions (solid lines) excluding the one vector for the

monotone shape restriction for 30 equally spaced x-values over [0, 1] using four

interior knots placed at equal quantiles with basis vectors denoted by points and

knot points denoted by �X�.
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Figure 1.2: Quadratic basis functions for monotone shape-restricted regression
splines. The �X� and vertical dotted lines represent the knot points. The lines
represent the basis functions and the dots represent the basis vectors.

For the majority of the analyses in this dissertation, the basis functions and

basis vectors (excluding the one vector) are scaled such that they are orthogonal to

the one vector and have a range of one. Consider the univariate data set (xi, yi) with
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i = 1, . . . , n. Given the knot locations, the basis vectors for the monotone shape

restriction are constructed by �rst de�ning a set of vectors {σ1, . . . ,σd+k} where

σj = (σj1, . . . , σjn)T for j = 1, . . . , d + k and σji = I3
j (xi). Next, de�ne V as the

linear space contained in the constraint set so for the monotone shape restriction

V = L (1) where 1 is a n×1 vector of ones and L denotes the �linear space spanned

by.� The basis vectors δj, j = 1, . . . , d+ k are then created by δj = σj − P (σj|V ),

where P is the projection operator. For monotone regression splines

P (σj|V ) = P (σj|1) =
1

n

n∑
i=1

σji.

Therefore, under the monotone shape restriction we compute the basis vectors δj

with elements δji where

δji = I3
j (xi)−

1

n

n∑
i=1

I3
j (xi) . (1.9)

As with unconstrained regression splines, the shape-restriction regression spline

estimate for univariate data set (xi, yi) with i = 1, . . . , n can be found using least

squares estimation. Thus, it is found by minimizing

n∑
i=1

(yi − ηi)2 , (1.10)

with respect to η = (η1, . . . , ηn)′ over a constraint set. The constraint set for the

monotonically increasing shape restriction is

C =

{
η : η =

L∑
l=1

αlvl +
d+k∑
j=1

βjδj, and βj ≥ 0 for j = 1, . . . , d+ k

}
. (1.11)

where vl ∈ V for l = 1, . . . , L. To obtain the constraint set for the monotonically

decreasing shape restriction, replace the condition βj ≥ 0 with βj ≤ 0. Ramsay

(1988) used the gradient projection algorithm to obtain the estimates of the linear

coe�cients. Meyer (1999) extended this by noting that the constraint set for the

regression coe�cients is a closed convex polyhedral cone in Rn and found coe�cient

estimates using the hinge algorithm. This procedure projects the y = (y1, . . . , yn)′
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onto a linear subspaces and exploits the property of convex cones given in Proposi-

tion 1 in Meyer (2008).

Here we summarize the estimation procedure. Let Ω be the set of all pos-

sible non-negative linear combinations of δj, j = 1, . . . ,m = d + k where δj are

basis vectors. De�ne a �face� by F (J) =
{∑

j∈J βjδj : βj ≥ 0 and j ∈ J
}
where

J ⊆ {1, 2, . . . ,m} and there are 2m faces. The projection onto Ω that minimizes

condition (1.10) can be found by using one of the faces of the constraint cone. Us-

ing Proposition 1 from Meyer (2008), we know that the projection onto the cone is

equal to the projection onto the linear space coinciding with F (J) for some subset

J where the linear space coinciding with F (J) is spanned by D (J) = {δj : j ∈ J}.

Using the mixed primal dual algorithm (Fraser and Massam, 1989) or the hinge

algorithm (Meyer, 1996), we can e�ciently determine which face, F (J), the projec-

tion lies and then project onto the linear subspace spanned by D (J) to obtain the

function estimate. Thus, function estimate, η̂, is found by projecting onto the space

spanned by D (J) and V separately and then adding the projections. For instance,

suppose we are estimating a regression spline assuming a monotone increasing shape

restriction. Suppose we used the hinge algorithm to determine face indexed by J∗

is where the minimizer lies. Let NJ∗ be the matrix whose columns are δj where

j ∈ J∗ and let η∗ be the projection onto the linear space spanned by columns of

NJ∗ . Therefore, η∗ = NJ∗ (N ′J∗NJ∗)
−1N ′J∗y. Let η̃ be the linear projection onto

V . For the monotonically increasing shape restriction, V is spanned by v1 = 1

so η̃ = v1 (v′1v1)−1 v′1y. Hence, the estimate for the regression function is then

η̂ = η∗ + η̃.

1.4.2 Other Shape-restricted Regression Splines

The convex and concave shape restrictions can be imposed in a similar fashion

using C-spline basis functions (Meyer, 2008) which are integrated I-splines. The
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C-splines of degree q+ 1 and order q+ 2 are constructed by integrating I-splines of

order q + 1 and are given by

Cq+2
j (x) =

∫ x

L

Iq+1
j (u) du, (1.12)

for i = 1, . . . ,m = q + k and x ∈ [L,U ]. Similar to the monotone shape-restricted

regression splines, de�ne set of vectors {σ1, . . . ,σm} where σj = (σj1, . . . , σjn)T for

j = 1, . . . ,m and σji = Cq+2
j (xi). Again, let V be the linear space contained in the

constraint set. For the convex or concave shape restriction let V = L (1, x). As

with the I-splines, the basis vectors are then found by projecting onto V and are

given by δj = σj −P (σj|V ). The basis functions for the concave shape restrictions

over a range of [0, 1] with four equally spaced interior knots are given in Figure 1.3.
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Figure 1.3: Cubic basis functions for convex shape-restricted regression splines. The
�X� and vertical dotted lines represent the knot points. The lines represent the basis
functions and the dots represent the basis vectors.

Cubic C-splines have the property that a linear combination of them, the con-

stant function and the identity function is convex if and only if the coe�cients on

the cubic C-splines are non-negative (Meyer, 2008). A convex regression function
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can be estimated using a linear combination of the basis vectors created from cubic

C-splines where the linear coe�cients are restricted to be non-negative plus a lin-

ear combination of the one vector and identity vector with unrestricted coe�cients.

Similarly, a concave regression function estimate is created using a linear combina-

tion of the basis vectors created from cubic C-splines where the linear coe�cients

are restricted to be non-positive plus a linear combination of the one vector and

identity vector with unrestricted coe�cients. Thus, the estimate for the regression

spline can be obtained by minimizing (1.10) over constraint set in (1.11) with δj

equal to the C-spline basis vectors and l = 2 with v1 equal to the one vector of

length n and v2 an identity vector of length n with elements v2i = xi.

Estimates for regression functions under a combination of restrictions can be

found similarly. For instance, to impose the restriction of both an increasing and

convex function, we estimate the regression function using a linear combination of

cubic C-spline basis vectors plus the one vector and identity vector and restrict the

coe�cients of both the cubic C-spline basis vectors and the identity vector to be

positive. Likewise, a decreasing concave function can be estimated using a linear

combination of C-spline basis vectors plus the one vector and identity vector and

requiring the coe�cients of the C-spline basis vectors and the coe�cient for the

identity vector to be negative. The estimates for these functions can then be found

using the same minimization techniques as for the monotone and convex or concave

shape restrictions.

1.5 Bayesian Inference and Shape-restricted Regression

Non-parametric and semi-parametric regression estimation can be modeled us-

ing a Bayesian paradigm. Bayesian methods provide a joint posterior distribution for

the coe�cients and hence allow for inference through various sampling methods. A

number of methods for non-parametric and semi-parametric function estimation in

a Bayesian framework both with and without shape restrictions have been proposed.
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Silverman (1985) discussed a Bayesian approach to function estimation using

B-splines. Smith and Kohn (1996) used piecewise cubic polynomials and a Bayesian

framework to estimate additive regression models with error modeled using a mix-

ture of normal distributions. Zhao (2000) considered function estimation using

Bayesian methods and regression splines and found priors that attain the optimal

minimax convergence rate. Berry et al. (2002) provided a Bayesian model for func-

tion estimation using smoothing splines and penalized regression splines known as

P -splines. Lang and Brezger (2004) proposed a model that also uses P -splines and

allowed the smoothing parameters to be locally adaptive. They imposed normal pri-

ors on the basis function coe�cients, a gamma prior on the precision and used the

penalized likelihood. Muller and Quintana (2004) reviewed many non-parametric

Bayesian inference models including regression function estimation models.

Non-parametric and semi-parametric Bayesian shape-restricted regression mod-

els, especially under the monotone shape restriction, have been studied by several

researchers. Lavine and Mockus (1995) introduced a Bayesian monotone regres-

sion approach using Dirichlet process priors. Ramgopal et al. (1993) estimated a

monotone dose-response curve, also using a Dirichlet process prior. Perron and

Mengersen (2001) proposed a mixture of triangular distributions where the dimen-

sion is estimated as part of the Bayesian analysis. Holmes and Heard (2003) used

a piecewise constant model with the number and location of the jump points are

modeled as random. Neelon and Dunson (2004) proposed a piecewise linear model

where the monotonicity is enforced via prior distributions on the model parame-

ter. Their model allowed for �at spots in the regression function by using a prior

that is mixture of a continuous distribution and point mass at the origin. Dunson

(2005) considered modeling count data using a Bayesian semi-parametric model. He

modeled the mean of the process using isotonic function f assigning independent

gamma densities to increments on f according to a gamma process. Wang and

Li (2008) estimated monotone functions using cubic splines by minimizing a linear
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objective function over the intersection of an a�ne set. Wang (2008) extended the

method to a Bayesian framework in which the knot locations are free parameters

(free-knot splines). Bornkamp and Ickstadt (2009) applied a Bayesian monotonic

regression model to dose-response curves. Their regression function was a mixture

of parametric probability distributions with a general discrete random probability

measure as the prior for the mixing distribution. Johnson (2007) estimated item

response functions with free-knot splines restricted to be monotone by requiring

spline coe�cients to monotonically increasing and using truncated normal priors.

Cai and Dunson (2007) proposed a Bayesian model for multi-site tumor data us-

ing multivariate smoothing splines and a hierarchical Markov random �eld prior for

the spline coe�cients. Brezger and Steiner (2008) proposed a monotone regression

model that used linear inequality constraints along with truncated normal priors

on the basis function coe�cients to ensure monotonicity. Shively et al. (2009) pro-

posed two Bayesian approaches to non-parametric monotone function estimation

with one involving piecewise linear approximation and a Weiner process prior and

the other involving regression spline estimation and a prior that is a mixture dis-

tribution of constrained normal distributions for the regression coe�cients. They

discussed the asymptotic properties of shape-restricted regression splines under the

monotone shape restriction for a class of Bayesian estimators. Curtis and Ghosh

(2011) proposed a Bayesian model for function estimation under the monotone,

convex, or concave shape restriction using Bernstein polynomials. Shively et al.

(2011) used �xed and free-knot quadratic regression splines in a Bayesian context

for non-parametric function estimation subject to shape restrictions. However, the

shape-restrictions are imposed by requiring sums of spline coe�cients to be posi-

tive as opposed to just requiring the coe�cients themselves to be positive as with

shape-restricted estimation using quadratic I-splines or cubic C-splines. In the fol-

lowing chapter, we extend the previous work on shape-restricted regression splines
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and introduce a new Bayesian model for shape-restricted regression using I-splines

and C-splines .
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Chapter 2

BAYESIAN SHAPE-RESTRICTED REGRESSION SPLINES MODEL

2.1 Motivation for Model

In this chapter, we propose models that use the shape-restricted regression

splines of Meyer (2008) within a Bayesian framework for function estimation for

generalized linear models. The Bayesian paradigm allows for a wider range of in-

ferences and thus expands the usefulness of the models. By using I-splines or C-

splines, the shape-restrictions are imposed simply by requiring the coe�cients on

the spline basis functions to be non-negative as opposed to ordered as in Johnson

(2007) and Brezger and Steiner (2008). In the Bayesian setting, we adopt gamma

prior distributions for coe�cients that have support on the positive reals with hyper-

parameters chosen such that the variance is large and the mean is relatively small.

The basic model allows for both monotonic and convex shape restrictions with other

extensions such as increasing and convex. Furthermore, the di�use prior provides

estimates for the coe�cient of the spline basis functions that perform well when

estimating functions with both �at and steep spots as evidenced by a simulation

study. In addition to enabling implementation of several di�erent types of shape

restrictions, the generalized linear model framework can be used to model several

di�erent types of data such as normal, Poisson, and Bernoulli response variables. A

simulation study shows that the proposed method of function estimation performs

similarly, if not better, in terms of mean squared error when compared to the shape-

restricted maximum likelihood estimate (ML SRRS) (Meyer, 2008) and better than

the constrained monotone estimation of Brezger and Steiner (2008) for functions

that involve �at regions.
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We begin this chapter by proposing a Bayesian shape-restricted regression spline

(Bayes SRRS) model in a generalized linear model framework. In Section 2.3, we

brie�y discuss knot selection for this model which will be further addressed in Chap-

ter 4. Speci�c applications to data with independent normal errors are discussed in

Section 2.4. Several di�erent types of inference for the normal errors model are dis-

cussed in Section 2.6. Bernoulli and Poisson models are discussed in Section 2.5. In

Section 2.7, we establish consistency of Bayes SRRS estimate for the normal errors

model under the monotone shape restriction. In Section 2.8, we examine the small

sample behavior of this model via a simulation study. We give results from simula-

tion studies examining the inference methods proposed in Section 2.6 for the normal

errors model in Sections 2.8.2-2.8.4.3. We conclude Chapter 2 with the application

of the Bayes SRRS estimation procedure to two data sets.

2.2 Shape-restricted Regression Spline Model

Consider independent observations y1, . . . , yn generated from the distribution

p(yi; θ, φ) = exp{[yiθi − b(θi)]/φ− c(yi, φ)} (2.1)

where the speci�cations of b and c determine the sub-family of models. Common

examples are b(θ) = log(1 + eθ) for the Bernoulli, b(θ) = exp(θ) for the Poisson

model, and b(θ) = θ2/2 with c(yi, φ) = y2φ/2 for the normal errors regression

model. The mean vector µ = E(y) has values µi = b′(θi), and is related to a design

matrix of predictor variables through a link function g(µi) = ηi, i = 1, . . . , n. We

consider the additive model

ηi = f1(x1i) + · · ·+ fL(xLi) + z′iγ, (2.2)

where γ is a parameter vector and zi is a vector of variables to be modeled paramet-

rically. The functions fl of the continuous predictors xl are assumed to be smooth;
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shape restrictions such as monotonicity or convexity may be imposed on the func-

tions fl. For the general case, the vector η with elements ηi for i = 1, . . . , n is

approximated by

m1∑
j=1

β1jδ1j + · · ·+
mL∑
j=1

βLjδLj +

p∑
j=1

αjvj, where βlj ≥ 0, for all l, j. (2.3)

The δlj for j = 1, . . . ,ml are basis vectors corresponding to the appropriate shape-

restricted basis functions for fl. For example, suppose L = 2 and we assume that f1

is monotone increasing and f2 is convex. Two sets of knots are chosen to span the

ranges of the two predictors, and two sets of basis vectors δlj, j = 1, . . . ,ml, l = 1, 2

are computed, where the �rst set uses monotone I-splines and the second are cubic

C-splines. The vj consist of the one vector and the vectors of the observed values of

covariates to be modeled parametrically. Further, when fl is assumed to be convex,

the xl vector is included as one of the vj. Note that the γ in (2.2) is contained

within α = (α1, . . . , αp)
′. We adopt a Bayesian method for inference, de�ning prior

densities for the α and β coe�cients. To impose shape restrictions, we restrict the

prior for the β coe�cients to the positive reals.

2.3 Knot Selection

The basis functions in (2.3) depend on number and location of knots points. A

key advantage of shape-restricted function estimation is that this method is generally

robust to the choice of knot number and placement, a feature not typically shared

by unrestricted smoothing methods (Meyer, 2008). Because the monotonicity or

convexity obviates the wiggling associated with over-�tting, the number of knots

must simply be large enough to capture the overall curvature in the data. One

could increase the number of knots until the �t appears to converge.

Huang and Stone (2002) show that for unrestricted regression splines, the op-

timal number of knots to attain the pointwise convergence rate of Or

(
n−r/(2r+1)

)
is n1/(2r+1) where r is the order of the regressions splines. This rounds to two or
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three interior knots for n as large as 500. The default placement should be at equal

x-quantiles, although more knots may be placed where the function is thought to

change slope more quickly. Meyer (2008) found via a simulation study that for func-

tions with steep increases and sample sizes less than 200, estimates using more than

2 interior knots produce better �ts in terms of means squared error. The simulation

study in Section 2.8 uses 2 or 3 equally spaced interior knots for sample sizes of 20

and 50, respectively. For a more rigorous discussion of knot choice see Meyer (2008).

Robustness of shape-restricted regression splines to number of knots for the

normal errors model is demonstrated in Figure 2.1 which gives function estimates

using the Bayes SRRS model and priors as given in Section 2.4 with k equally spaced

interior knots over the range of covariate x. In Figure 2.1 (a), it appears that the

monotone �ts for the various knot choices are close together. The convex �ts in

Figure 2.1(b) are almost indistinguishable for k = 2 to 5 interior knots.

Though the Bayes SRRS are robust to the number and location of knot points,

the use of a Bayesian paradigm enables the joint estimation of regression parameters,

number of knots, and knot locations via reversible jump Markov chain Monte Carlo

(RJMCMC) (Green, 1995). A RJMCMC model will allow one to simultaneously

estimate the regression parameters (regression coe�cients and variance parameters)

in addition to the location and number of interior knots. The extension of this model

to free-knot splines is given in Chapter 4. We believe that �xing k interior knots is

su�cient for the majority cases as evidenced by the simulation study below while at

the same time being less computationally intensive. However, if one is uncomfortable

�xing the number and location of interior knots, the RJMCMC model in Chapter 4

can be implemented.
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Figure 2.1: (a) Estimated regression functions for n = 50 data points simulated from
sigmoid function f(x) = 5exp(10x−5)/(1+exp(10x−5) plus standard normal error
with k = 2, 3, 4, and 5 equally spaced interior knot points. (b) Estimated regression
functions for n = 50 data points simulated from cubic function f(x) = 5x3 plus
standard normal error with k = 2, 3, 4, and 5 equally spaced interior knot points.

2.4 Normal Errors Model

2.4.1 Bayesian Model

Suppose y = η+ ε, where η = (η1, . . . , ηn)′ is modeled as in (2.3) and ε is nor-

mally distributed with mean zero and covariance matrix τ−1I where I denotes the

identity matrix. To simplify notation, let β = (β11, β12, . . . , β1m1 , . . . , βL1, . . . , βLmL
)′,

and α = (α1, . . . , αp)
′. We assume a gamma prior for τ with shape d1 and rate d2

so its density is

τ d1 exp {−d2τ} I {0 < τ <∞}

and we denote it by Gamma(d1, d2). The prior parameters are chosen so that the

mean of the prior density, d1/d2, is the inverse of a guess for the model variance.

For a vague prior, let the prior variance d1/d
2
2 be some multiple of the mean, say

ten times the mean. The priors for the βlj coe�cients should have support on the

positive reals. For each βlj, we choose a gamma prior with shape cl1 and rate cl2
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so βlj ∼Gamma(cl1, cl2). Using this prior, the mean cl1/cl2 can be chosen to be

a prior guess for Rl divided by ml. Note that for monotone fl, if the range of

each basis function is one, then
∑ml

j=1 βlj coincides with the range of fl given by

Rl = fl(max(xl))− fl(min(xl)). To see this, note that (δljn − δlj1) = 1 for all j and

l so

Rl = fl(max(xl))− fl(min(xl)).

=

ml∑
j=1

βljδljn + α−

(
ml∑
j=1

βljδlj1 + α

)

=

ml∑
j=1

βj (δljn − δlj1) =

ml∑
j=1

βlj.

Here ml = kl + 2 where kl is the number of interior knots used for function fl

and δlji is the value for the (lj)th basis vector found using knot locations tl =

(tl,1 = min (xl) , . . . , tl,kl+2 = max (xl)) evaluated at xi . For a di�use prior that leads

to �exible �ts, the prior variance is some multiple of the mean. For all examples in

Section 2.9 and simulations in Section 2.8, that multiple is ten. A truncated normal

prior distribution might be considered, as used in Brezger and Steiner (2008) and

Johnson (2007). However, it is easily seen that whatever the mean and variance

of the original density, when a normal density is truncated above the mean, the

standard deviation is never larger than the mean (Barr and Sherrill, 1999). This

leads to non-di�use priors and a di�culty in modeling �at spots. We assume α ∼

N(0,MI) where M is chosen by the user; for all the simulations and examples

presented in Sections 2.8 and 2.9, we used M = 1000. Informative priors for the

regression function may also be imposed.

The likelihood for the normal errors model is proportional to

L (α,β, τ ; Y ) ∝ τn/2 exp

−τ2
n∑
i=1

(
yi −

p∑
j=1

αjvji −
L∑
l=1

ml∑
j=1

βljδlji

)2
 (2.4)
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and the joint prior density is proportional to

p (α,β, τ) ∝

[
L∏
l=1

ml∏
j=1

I(0,∞)(βlj)

][
L∏
l=1

ml∏
j=1

βcl1−1
lj exp(−βljcl2)

]
×[

exp

{
−

p∑
j=1

1

2M
α2
j

}
τ d1−1exp {−d2τ} I(0,∞)(τ)

]
. (2.5)

The posterior distribution is proportional to the product of the likelihood and the

prior. It is proper but analytically intractable, so Markov chain Monte Carlo meth-

ods (Givens and Hoeting, 2005, Ch 7) are used to obtain samples from the posterior

distribution.

In particular, we use a Gibbs sampler to sample from the posterior distributions

and the conditional distributions used in this sampler are given below. Let β(−j0)

be the β vector with βj0 removed and similarly let α(−j0) be the α vector with αj0

removed. The conditional distribution for αj0 , given the data, τ , β, and αj, j 6= j0,

p
(
αj0 |β,α(−j0), τ,y

)
, is distributed as

N

[τ n∑
i=1

rivji

]/[
1/M + τ

n∑
i=1

(vj0i)
2

]
,

[
1/M + τ

n∑
i=1

(vj0i)
2

]−1
 (2.6)

where, for each j0 = 1, . . . , p, ri = yi−
∑

j 6=j0 αjvji−
∑L

l=1

∑ml

j=1 βljδlji and N(µ, σ2)

denotes a normal distribution with mean µ and variance σ2. Note that the sum over

j 6= j0 is the sum from j = 1, . . . , p minus αj0vj0i. The conditional posterior density

for τ given the data, β and α coe�cients, is

p (τ |β,α,y) ∼ Gamma (d1 + n/2, d2 + SSE/2) , (2.7)

where SSE=
∑n

i=1 (yi − ri)2 with ri =
∑p

j=1 αjvji +
∑L

l=1

∑ml

j=1 βljδlji (the sum of

squared residuals given the coe�cients). The conditional posterior density for βl0j0 ,

given the data, τ , α, and β(−l0j0) is proportional to

β
cl01−1

l0j0
exp

−sl0j0τ2

[
βl0j0 −

(
n∑
i=1

riδl0j0i/sl0j0 − cl02/(sl0j0τ)

)]2
 I(0,∞) (βl0j0) ,

(2.8)
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where ri = yi −
∑p

j=1 αjvji −
∑L

l=1

∑ml

j=1 βljδlji + βl0j0δl0j0i and sl0j0 =
∑n

i=1(δl0j0i)
2.

The density is of the form f(x) ∝ xa exp{−b(x− c)2}I{x > 0} where x = βl0j0 , a =

cl01 − 1, b = sl0j0τ/2 > 0, c =
∑n

i=1 riδl0j0i/sl0j0 − cl02/(sl0j0τ), and I is the indicator

function. This can be sampled from using the Metropolis-Hastings algorithm or

an auxiliary variable Markov chain Monte Carlo technique (Meyer and Laud, 2002;

Givens and Hoeting, 2005, Ch 8.1).

The auxiliary variables method in the normal errors model involves the auxiliary

variable u and the joint density

f (x, u) ∝ xaI
{

0 < u < exp
(
−b (x− c)2)} I {x > 0} . (2.9)

Note that if you integrate f (x, u) over u, you get a density proportional to

p
(
βl0j0|β(−l0j0),α, τ,y

)
. By alternating between random draws from the conditional

distributions, where

f (u|x) ∝ I
{

0 < u < exp
(
−b (x− c)2)} (2.10)

and

f (x|u) ∝ xaI

{
max

{
0, c−

√
−ln (u)

b

}
< x < c+

√
−ln (u)

b

}
, (2.11)

and discarding the draws from the conditional distribution of u, we can generate a

chain whose stationary distribution is p
(
βl0j0|β(−l0j0),α, τ,y

)
.

Random draws from the conditional distribution for u are made by randomly

sampling from a Uniform
(
0, exp

(
−b (x− c)2)) where Uniform (a, b) denotes a con-

tinuous uniform distribution between a and b. To obtain random draws from the

conditional distribution of x given u, we randomly sample d from a Uniform (0, 1),

then �nd x(t) = F−1 (d) where x(t) is the (t)th random draw for the variable with

probability distribution function (pdf) f (x|u) with conditional distribution (cdf)

F . F−1 is the inverse of the cdf. The normalizing constant for the conditional

distribution f (x|u) in (2.11) is given by
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∫ l2

l1

xadx =
l
(a+1)
2 − l(a+1)

1

a+ 1
(2.12)

where l1 = max

{
0, c−

√
−ln(u)

b

}
and l2 = c +

√
−ln(u)

b
. Thus, the conditional

distribution for x given u is

f (x|u) =
a+ 1

l
(a+1)
2 − l(a+1)

1

xaI {l1 < x < l2} (2.13)

and integrating to obtain the cdf of the conditional distribution, we obtain

F (x|u) =


∫ x
l1
f (t|u) dt l1 < x < l2

1 x ≥ l2

0 x ≤ l1

(2.14)

with ∫ x

l1

f (t|u) dt =
a+ 1

l
(a+1)
2 − l(a+1)

1

∫ x

l1

tadt =
x(a+1) − l(a+1)

1

l
(a+1)
2 − l(a+1)

1

. (2.15)

Therefore, the inverse of the cdf for l1 < x < l2 is given by

F−1 (d) =
[
l
(a+1)
1 + l

(a+1)
2 d− l(a+1)

1 d
]( 1

a+1)
=
[
l
(a+1)
2 d+ (1− d)l

(a+1)
1

]( 1
a+1)

. (2.16)

At each iteration t, let the random draws from the full conditional distributions

for the parameters in the Gibbs Sampler (MCMC realizations) be denoted by a

subscript of (t) . Thus, β
(t)
l0j0

is the (t)th sampled value for βl0j0 and α
(t)
j0

is the (t)th

sampled value for αj0 . Let

η
(t)
i =

L∑
l=1

ml∑
j=1

β
(t)
lj δlji +

p∑
j=1

α
(t)
j vji. (2.17)

The function estimate at xi is found by taking the mean of these η
(t)
i values after

removing burn-in and is given by

f̂ (xi) =
1

N −B

N∑
t=B+1

η
(t)
i (2.18)

where N is the total number of iterations in the MCMC algorithm, and B is the

burn-in.
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2.4.2 Additive Regression Model

The normal errors model can be applied to the additive regression model where

there are multiple parallel curves. Consider the case where there is one continuous

variable and a categorical predictor variable with r levels. Let vq = (vq1, . . . , vqn)

for q = g, . . . , p be r − 1 dummy variables for all but one of the levels of the

categorical variable and let vq for q = 1, . . . , g − 1 be the other variables with

unconstrained regression parameters. For the monotonically increasing or decreasing

shape restriction with one continuous variable and a categorical predictor variable

with r levels, we would let p = r and let v1 be the one vector. Likewise, for

the convex or concave restriction with one continuous variable and a categorical

predictor variable with r levels, we would let p = r + 1 and let v1 be the one

vector and v2 be the vector of the observed values of the continuous covariates,

x = (x1, . . . , xn)′. The parallel curves model is given by

yi =
m∑
j=1

βjδji +

p∑
j=1

αjvji + εi (2.19)

with independent normal error εi ∼ N (0, τ−1). For the monotone shape restriction

with one continuous variable and a categorical predictor variable with r levels, an

alternative parametrization for the parallel curves model is to let p = r and each vj

for j = 1, . . . , p be indicator variables for level j of the categorical covariate. Using

either parametrization, this model along with the priors in the previous Section 2.4.1

can be used to estimate parallel curves under shape restrictions.

2.4.3 Non-Additive Regression Model

An interaction e�ect between a categorical and a continuous variable may be

included in the normal errors model. Consider a model with one continuous variable,

x, and one categorical variable with r levels. Let yi = f1(xi)d1i + · · ·+ fr1(xi)dri +

εi, where dl, l = 1, . . . , r are dummy variables for the r levels of the categorical

predictor. A monotone shape restriction is imposed on all fl by de�ning m I-spline

26



basis functions de�ned for a given set of knots on the range of the x-values (convex

assumptions may be similarly imposed).

Let xl = (xl1, . . . , xlnl
)′ be the values of covariate x observed at level l of the

categorical variable where nl is the number of observations at level l of the categorical

variable and let x be a vector of unique values created by combining and sorting

the vector xl for l = 1, . . . , r. Let δj for j = 1, . . . ,m = k + 2 be the I-spline basis

vectors create using vector x and k equally spaced interior knots over the range of

x. Create new vectors δlj for l = 1, . . . , r and j = 1, . . . ,m of length n =
∑r

l=1 nl

whose elements are de�ned by

δlj =

{
δj (xi) dli = 1

0 dli = 0

where δj (xi) denotes the element in δj that corresponds xi. Let v1 be the one vector

of length n and vl for l = 2, . . . , r be de�ned by

vli =

{
1 dl,i = 1

0 dl,i = 0
.

Thus, we approximate the mean of y by

r∑
l=1

m∑
j=1

βljδlj +
r∑
l=1

αlvli (2.20)

To impose the shape restrictions, we again use di�use gamma priors on each β

coe�cient. As before, we can assume a Gamma(d1, d2) prior for the precision τ and

vague normal priors for the unconstrained α coe�cients.

2.5 Other Generalized Linear Models

It is often natural to impose monotonicity restrictions on the mean function

in generalized linear regression models. If the link function is one-to-one, as for

Bernoulli or Poisson, this is equivalent to constraining the function components, fl,

in (2.3). In the following subsections, we propose Bayesian regression models for

the Bernoulli and Poisson models under the monotone shape restriction.
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2.5.1 Bernoulli Model

Assume yi has a Bernoulli distribution with probability pi for i = 1, . . . , n

and that pi increases as the values of some covariates increase. We can model

this relationship using the logit link function and letting logit(pi) = ηi with ηi the

elements of the η as de�ned as in (2.3). Since for this link function, pi increases as

covariates increase if and only if η increases as covariates increase, we can impose

the monotone shape restrictions by requiring η to be monotonically increasing. This

is done by using I−splines and restricting each βlj to be positive. The likelihood is

given by

L (α,β; Y ) ∝
n∏
i=1

exp (ηiyi)

1 + exp (ηi)
.

For the Bayesian model, we assume the restricted regression coe�cients (βlj for

j = 1, . . . ,ml and l = 1, . . . , L) are independent with a Gamma(cl1, cl2) prior for

each βlj. As with the normal error model, we could have assumed a normal prior

truncated on (0,∞) but this would not allow as much �exibility as the Gamma prior

since it does not allow the mean of each βlj to be smaller than the variance. For the

unrestricted regression coe�cients (αj for j = 1, . . . , p), we assume that they are

independent using a vague normal prior with mean of zero and large variance M ,

say 1000, for each αj. For the Bayesian SRRS Bernoulli model, the joint likelihood

is proportional to

L (α,β,Y ) ∝
n∏
i=1

exp (ηiyi)

1 + exp (ηi)

[
exp

{
−

p∑
j=1

1

2M
α2
j

}]
×[

L∏
l=1

ml∏
j=1

(
βcl1−1
lj I {0 < βlj <∞}

)
exp(−

L∑
l=1

cl2

ml∑
j=1

βlj)

]
(2.21)

where ηi =
∑p

j=1 αjvji +
∑L

l=1

∑ml

j=1 βljδlji.

As with the normal errors, the joint posterior distribution of the parameters is

proper but analytically intractable so we use a Gibbs sampler to estimate the re-

gression function. To sample from the full conditional distributions for each αj0 and

28



each βl0j0 we again use the auxiliary variable Markov chain Monte Carlo technique

(Meyer and Laud, 2002; Givens and Hoeting, 2005, Ch 8.1) as in Section 2.4.1 and

introduce auxiliary variables u = (u1, . . . , un)′ so

p (α,β,Y ,u)

∝
n∏
i=1

I
{

0 < ui < [1 + exp (ηi)]
−1} exp (ηiyi)

[
exp

{
−

p∑
j=1

1

2M
α2
j

}]
[

L∏
l=1

ml∏
j=1

(
βcl1−1
lj I {0 < βlj <∞}

)]
exp(−

L∑
l=1

cl2

ml∑
j=1

βlj) (2.22)

Integrating out the u in (2.22), we get a function that is proportional to

the likelihood for the Bernoulli Bayes SRRS model. The probability density for

ui given all other values of the parameters and data, denoted p (ui|·), follows a

Uniform
(
0, [1 + exp (ηi)]

−1). For each αj0 , the density given all other parameters,

auxiliary variables, and data is given by

p
(
αj0|α(−j0),β, τ,y,u

)
∝

[
n∏
i=1

I
{

0 < ui < [1 + exp (ηi)]
−1}] exp

− 1

2M

(
αj0 −M

n∑
i=1

yivj0i

)2


and is distributed as a normal distribution truncated on (lb, ub). To �nd the lower

truncation limit, lb, let Aj0 = {i : vj0i < 0} and

lb =

−∞ if Aj0 = ∅
max
i∈Aj0

{
v−1
j0i

[
log
(
u−1
i − 1

)
−
∑L

l=1

∑ml

j=1 βljδlji −
∑

j 6=j0 αjvji

]}
if Aj0 6= ∅

.

To �nd upper truncation limit, ub, let Bj0 = {i : vj0i > 0} which will not be empty

and de�ne

ub = min
i∈Bj0

{
v−1
j0i

[
log
(
u−1
i − 1

)
−

L∑
l=1

ml∑
j=1

βljδlji −
∑
j 6=j0

αjvji

]}
.
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The density for each βl0j0 given all other parameters, auxiliary variables, and data

is given by

p
(
βl0j0 |α,β(−l0j0), τ,y,u

)
∝ β

cl01−1

l0j0
exp

{
−βl0j0

[
cl02 −

n∑
i=1

yiδl0j0i

]}
I {0 < βl0j0 <∞}×

n∏
i=1

I
{

0 < ui < [1 + exp (ηi)]
−1}

∝ β
cl01−1

loj0
exp

{
−βl0j0

[
cl02 −

n∑
i=1

yiδl0j0i

]}
I {lb < βl0j0 < ub}

with lb de�ned by letting Al0j0 = {i : δl0j0i < 0} (which will not be empty if basis

functions are scaled such that they are orthogonal to v1) and

lb = max

{
0, max

i∈Al0j0

{
δ−1
l0j0i

[
log
(
u−1
i − 1

)
−
∑
l 6=l0

∑
j 6=j0

βljδlji −
p∑
j=1

αjvji

]}}
.

Similarly, let Bl0j0 = {i : δloj0i > 0} (which will not be empty if basis functions are

scaled such that they are orthogonal to v1) and

ub = min
i∈Bl0j0

{
δ−1
l0j0i

[
log
(
u−1
i − 1

)
−
∑
l 6=l0

∑
j 6=j0

βljδlji −
p∑
j=1

αjvji

]}
.

Thus, p
(
βl0j0|α,β(−l0j0), τ,y,u

)
is of a form of a Gamma(cl01, [cl02 −

∑n
i=1 yiδl0j0i])

truncated on (lb, ub) except that [cl02 −
∑n

i=1 yiδl0j0i] can and often will be nega-

tive. Thus, to sample from this distribution we can use another auxiliary variable.

Consider the auxiliary variable w and let

p
(
βl0j0 , w|α,β(−l0j0), τ,y,u

)
∝ β

cl01−1

l0j0
I {lb < βl0j0 < ub} I

{
0 < w < exp

(
−βl0j0

[
cl02 −

n∑
i=1

yiδl0j0i

])}
.

Note that if we integrate out w, we get p
(
βl0j0 |α,β(−l0j0), τ,y,u

)
. We alternate

sampling from p
(
βl0j0|w,α,β(−l0j0), τ,y,u

)
and p (w|α,β, τ,y,u). Under this spec-

i�cation, p (w|α,β, τ,y,u) has a uniform distribution on(
0, exp

(
−βl0j0

[
cl02 −

n∑
i=1

yiδl0j0i

]))
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and

p
(
βl0j0|w,α,β(−l0j0), τ,y,u

)
∝ β

cl01−1

l0j0
I {lb∗ < βl0j0 < ub∗} ,

where

lb∗ =

{
max

{
lb, − log(w)

cl02−
∑n

i=1 yiδl0j0i

}
if cl02 −

∑n
i=1 yiδl0j0i < 0

lb if cl02 −
∑n

i=1 yiδl0j0i > 0,

and

ub∗ =

{
ub if cl02 −

∑n
i=1 yiδl0j0i < 0

min
{
ub, − log(w)

cl02−
∑n

i=1 yiδlji

}
if cl02 −

∑n
i=1 yiδl0j0i > 0

.

To obtain random draws from this density , we invert the cdf as we did for βl0j0 in the

normal errors model. We randomly sample d from a Uniform (0, 1), then �nd β
(t)
l0j0

=

F−1 (d) where F is the cdf with corresponding pdf, p
(
βl0j0|w,α,β(−l0j0), τ,y,u

)
, and

β
(t)
l0j0

represents the value for βl0j0 at the (t)th random draw of the Gibbs sampler.

Note if cl02 −
∑n

i=1 yiδl0j0i = 0 then can sample from p
(
βl0j0|α,β(−l0j0), τ,y,u

)
by

inverting cdf and do not need auxiliary variable w.

2.5.2 Poisson Model

For the Poisson model, suppose you have independent observations yi for i =

1, . . . , n assumed to follow a Poisson distribution with mean λi and that the mean

is increasing with covariate(s). The shape restrictions can be imposed on the mean

in a similar fashion as with the Bernoulli model by assuming the mean of the y =

(y1, . . . , yn)′ is approximated by η in (2.3) and is related to design variables through

link function log (·). Note that η is increasing if and only if log (η) is increasing. As

with the normal errors model and Bernoulli model under the monotone assumption,

we can use I-spline basis functions and restrict each βlj to be positive. Thus, we

can again assume a Gamma(cl1, cl2) for each βlj, a Normal(0,M) prior for each αj,
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and assume the parameters are independent. The joint likelihood is given by

L (α,β,Y )

∝ exp

{
n∑
i=1

yiηi

}
n∏
i=1

{exp [−exp (ηi)]}
n∏
i=1

I
{
yi ∈ 0 ∪ Z+

}
×

L∏
l=1

m∏
j=1

(
βcl1−1
lj I {0 < βlj <∞}

)
exp

{
−cl2

L∑
l=1

m∑
j=1

βlj

}
exp

{
− 1

2M

p∑
j=1

α2
j

}
.

We sample from the posterior distribution using Gibbs sampler and as with the

Bernoulli model, we use auxiliary variables u = (u1, . . . , un)′. Consider the density

for all model parameters and the auxiliary variable vector,

p (β,α,y,u)

∝ exp

{
n∑
i=1

yiηi

}
n∏
i=1

I {0 < ui < exp [−exp (ηi)]} ×

L∏
l=1

m∏
j=1

(
βcl1−1
lj I {0 < βlj <∞}

)
exp

{
−cl2

L∑
l=1

m∑
j=1

βlj

}
exp

{
− 1

2M

p∑
j=1

α2
j

}
.

The density for each ui given all other parameters, auxiliary variables, and the

data follows a uniform distribution with a lower limit of zero and a upper limit

of exp {−exp (ηi)}. For each αj0 , p
(
αj0|β,α(−j0), τ,y,u

)
is a normal distribution

with mean of M
∑n

i=1 yivj0i and variance of M truncated on (lb, ub). For lb, let

Aj0 = {i : vj0i > 0} and de�ne

lb =

−∞ if Aj0 = ∅,
max
i∈Aj0

{
v−1
j0i

[log {− log (ui)} − ri]
}

if Aj0 6= ∅,

where ri =
∑L

l=1

∑ml

j=1 βlδlji +
∑

j 6=j0 αjvji and sum over j 6= j0 means take the sum

of j over j = 1, . . . , p excluding j = j0. Similarly, let B = {i : vj0i < 0} and de�ne

ub =

∞ if Bj0 = ∅,
min
i∈Bj0

{
v−1
j0i

[log {− log (ui)} − ri]
}

if Bj0 6= ∅.
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For each βl0j0 , the conditional distribution for the Gibbs sampler is given by

p
(
βl0j0|β(−l0j0),α, τ,y,u

)
∝

n∏
i=1

I {0 < ui < exp [−exp (ηi)]} β
cl01−1

l0j0
I {0 < βl0j0 <∞}×

exp

{
−βl0j0

[
cl02 −

n∑
i=1

yiδl0j0i

]}
,

and is the form of gamma distribution with shape and scale parameters cl01 and

cl02 −
∑n

i=1 yiδl0j0i that is truncated except that the scale parameter may and often

will be negative. This distribution is truncated on (lb, ub) with lb de�ned by letting

Al0j0 = {i : δl0j0i < 0} (which will not be empty if scale basis vectors to have range

of one) and

lb = max

{
0, max

i∈Al0j0

{
δ−1
l0j0i

[
log {− log (ui)} −

∑
l 6=l0

∑
j 6=j0

βljδlji −
p∑
j=1

αjvji

]}}
.

Similarly, let Bl0j0 = {i : δl0j0i > 0} (which will not be empty) and

ub = min
i∈Bl0j0

{
δ−1
l0j0i

[
log {− log (ui)} −

∑
l 6=l0

∑
j 6=j0

βljδlji −
p∑
j=1

αjvji

]}
.

To sample from this distribution we can use another auxiliary variable as we did for

the Bernoulli model described in Section 2.5.1.

2.6 Inference

The use of a Bayesian framework along with the Gibbs sampler aids in sev-

eral di�erent types of inference. We perform inference using random draws from

the posterior distribution This is helpful since the variance of the restricted regres-

sion coe�cient vector is not easy to obtain in a frequentist setting. Furthermore,

the Bayesian framework provides several di�erent model selection tools that aid in

determining whether a particular shape restriction appears reasonable for a given

data set while hypothesis tests to determine this are much more di�cult to per-

form (or not possible) in a frequentist setting. Several examples of inference using

the proposed Bayesian shape-restricted regression spline model are provided in the

following subsections.
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2.6.1 Credible and Prediction Intervals

Pointwise con�dence bands for the regression function are easily produced from

the same posterior draws from which the function estimate is calculated. For each

set of β and α parameters produced by an iteration of the Gibbs sampler (after burn-

in), we compute the function estimate at each x-value and get η
(t)
i as in (2.17). At

each x-value, we estimate the (0.95 · 100) % highest posterior density (HPD) using

these η
(t)
i values and the Chen-Shao estimation algorithm (Chen et al., 2000, Ch 7).

For a (q · 100%) pointwise HPD for f (xi), the algorithm involves �rst ordering η
(t)
i

from least to greatest where t = B + 1, . . . , N , B is the burn-in, and N is the total

number of iterations of the MCMC algorithm. Denote these ordered realizations by

θ(i)with i = 1, . . . , N − B and let K = dq · (N −B)e where d·e denotes the ceiling.

Compute the lengths li = θ(i+K) − θ(i) for i = 1, . . . , N − B − K and select the

i∗ = argmin
i

(li) . The (q · 100%) pointwise HPD is then
(
θ(i∗), θ(i∗+K)

)
.

For the normal errors model in Section 2.4, we can also construct prediction

intervals by generating η̃
(t)
i for each iteration t from a normal distribution with mean

equal to η
(t)
i and variance equal to the (t)th realization of the variance parameter

from the MCMC algorithm,
(
τ (t)
)−1

. We use η̃
(t)
i values and the Chen-Shao algo-

rithm to �nd the 95% pointwise HPD prediction interval.

2.6.2 Inference using the Posterior Distribution

For the normal errors model in Section 2.4, the Bayesian model provides a

joint posterior distribution for the α vector that is approximately normal so we can

perform many types of inference on the parameters that are modeled parametrically.

We can create con�dence intervals or compare mean values using the joint normal

distribution with estimates of mean vectors and variance easily obtained from the

MCMC output. Let J = {1, . . . , p} be the induces for the p parametrically modeled

αj parameters and J
′ = {j1, . . . , jq} ⊆ J . Suppose α

(t)
ji

is the (t)th MCMC replicate
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for αji with ji ∈ J ′. De�ne ᾱ = (ᾱj1 , . . . , ᾱjq) and the sample covariance matrix R

by

ᾱji =
1

T

T∑
t=1

α
(t)
ji

and Ril =
1

T − 1

T∑
t=1

(α
(t)
ji
− ᾱji)(α

(t)
jl
− ᾱjl), (2.23)

where T is the number of post-burn in posterior replicates.

In particular, consider the additive regression model as in Section 2.4.2 with

one continuous and one categorical predictor variable with r levels. Let dj, j =

1, . . . , r − 1 be dummy variables for all but one of the levels of the categorical

variable and model the data as

yi = α0 + f(xi) +
r−1∑
j=1

αjdji + εi, for i = 1, . . . , n (2.24)

where f is assumed to be smooth with a shape restriction and f(0) = 0 for iden-

ti�ably. If r = 2, to determine whether a parallel curves model is appropriate for

the data, we can compute the 95% credible interval for α1 and determine whether it

includes zero. For r > 2, we utilize the approximate normality of the joint posterior

and perform a chi-squared test with r − 1 degrees of freedom. The test statistic

X = ᾱ′R−1ᾱ, where ᾱ and R are de�ned in (2.23), is compared with a χ2(r − 1)

distribution and the hypothesis of a single regression curve is rejected if X is large.

2.6.3 Model Selection

Model comparison between the many di�erent possible model types is an im-

portant component to any regression modeling. There are several options for model

comparisons which include AIC (Akaike, 1974), AICC (Hurvich and Tsai, 1989),

BIC (Schwarz, 1978), DIC (Spiegelhalter et al., 2002), and Bayes Factors (Kass and

Raftery, 1995). We use Bayes factors to select models. For model M1 with pa-

rameters θM1 , the Bayes factor in comparison to model M2 assuming equal model

probabilities is given by BF = p (y|M1) /p (y|M2) where

p (y|M1) =

∫
p (y|θM1 ,M1) p (θM1|M1) dθM1
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is the integrated likelihood for M1. For our models the integrated likelihood is

generally intractable, so the BF must be estimated using numerical methods.

We approximate the BF using the harmonic mean estimate (Newton and Raftery,

1994; Raftery et al., 2007) given by

p̂ (y|M1) =

 1

T

T∑
t=1

1

p
(
y|θ(t)

M1
, M1

)
−1

(2.25)

where θ
(t)
M1

is the estimate of the parameters for M1 from iteration t of the MCMC

algorithm and T is the number of iterations after burn-in. This estimate is based

on the harmonic mean identity given by

1

f (y)
=

∫
[f (θ|y) /f (y|θ)] dθ = E

[
1

f (y|θ)

∣∣∣∣y] .
For some cases, we found this estimator was unsatisfactory with some extremely

small values of p(y|θ(t)
Mi
, Mi). We used importance sampling ideas (Givens and

Hoeting, 2005, Ch 6) to stabilize the estimate by discarding the realizations θ
(t)
Mi

from the MCMC realizations where
[
p(y|θ(t)

Mi
, Mi)

]−1

was above the 95th quantile

of these estimates. For simulations where we know the model that generated the

data, this approach lead to reasonable model selection results and generally lead to

BF estimates that converged to reasonable values. Below we refer to this approach

as the approximate BF. For the simulations in Section 2.8 we used a cuto� of BF=3

as suggested by Kass and Raftery (1995). Alternatively, the Bayes factor cuto� may

be calibrated to produce a desired test size.

2.7 Consistency

2.7.1 Background

We now focus on the asymptotic behavior of the Bayes SRRS estimate for the

normal errors model in Section 2.4.1 assuming the monotonicity constraint holds

and the interior knot locations are �xed. To demonstrate that the regression func-

tion and precision estimates under the strictly monotone assumption are consistent,
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we show convergence of Bayes SRRS parameter estimates to their corresponding

unconstrained maximum likelihood regression spline (ML RS) estimate which are

known to be consistent (Huang and Stone, 2002).

In this section, we consider the consistency of non-parametric strictly monotone

quadratic regression splines estimates for data assumed to be from the normal errors

model in Section 2.4.1 with unknown variance, �xed number and locations of interior

knot points, and assuming the constraint is valid. Recall that when �xing the

number and locations of interior knots, the Bayes SRRS estimate for the normal

errors model at xi is given by (2.18). Let the Bayes SRRS estimates for each βlj for

j = 1, . . . ,ml and l = 1, . . . , L, be denoted by β̂lj, the Bayes SRRS estimates for

each αj for j = 1, . . . , p, be denoted by α̂j, and the Bayes SRRS estimate for τ be

denoted by τ̂ . In the following subsections, we show that the Bayes SRRS estimate

for these parameters converge to their corresponding ML RS parameter estimates

and therefore converge to their corresponding parameters.

2.7.2 Consistency of the Unrestricted Regression Coe�cients

We de�ne each vj = (vj1, . . . , vjn)′ in (2.3) such that they form an orthogonal

set and thus vj is orthogonal to vk for all j, k ∈ {1, . . . , p} with j 6= k. We de�ne

δlj for j = 1, . . . ,ml and l = 1, . . . , L in (2.3) such that they are orthogonal to each

vj for j = 1, . . . , p using

δlj = δ∗lj −
v′1δ

∗
lj

v′1v1

v1 − . . .−
v′pδ

∗
lj

v′pvp
vp (2.26)

where δ∗lj is the (lj)th I-spline prior to rescaling. To obtain the unconstrained

maximum likelihood estimate of the parameters in (2.3), we let q =
∑L

l=1 ml and X

be a n×(p+ q) matrix consisting of vj for j = 1, . . . , p followed by δlj for l = 1, . . . , L

and j = 1, . . . ,ml as columns. Thus, X = [x1, . . . ,xp+q] = [v1 . . .vp δ11 . . . δLmL
].

The ML RS estimates for the parameter vector

θ = (θ1 . . . , θp+q)
′ = (α1, . . . , αp, β11, . . . , βLmL

)′
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denoted by

θ̃ =
(
θ̃1, . . . , θ̃p+q

)′
=
(
α̃1, . . . , α̃p, β̃11, . . . , β̃LmL

)′
is given by

θ̃ = X (X ′X)
−1
X ′y. (2.27)

This implies that the ML SR estimate for the unconstrained regression parameters

are found by

α̃j = θ̃j =
x′j

(
y − PX(−j)

y
)

x′jxj

for j = 1, . . . , p where xj is the (j)th column of X, X(−j) is the X matrix removing

xj, and PX(−j)
= X(−j)

(
X ′(−j)X(−j)

)−1

X ′(−j) (Takeuchi et al., 1982, Ch 3). Now

x′jPX(−j)
= 0 since xj is orthogonal to all columns of X(−j) so the ML RS is

α̃j =
x′jy

x′jxj
=

∑n
i=1 vjiyi∑n
i=1 v

2
ji

.

We now show that as the sample size, n, approaches in�nity, the Bayes SRRS

estimate for αj approaches α̃j. From (2.6), we know that the conditional distribution

for αj given all other parameters and the data that is used in the Gibbs sampler is

a normal distribution with mean

E
(
αj|α(−j),β, τ,y

)
=

τ
1
M

+ τ
∑n

i=1 v
2
ji

n∑
i=1

vji

(
yi −

L∑
l=1

ml∑
k=1

βlkδlki −
∑
k 6=j

αkvki

)

=
τ

1
M

+ τ
∑n

i=1 v
2
ji

n∑
i=1

vjiyi =
τM

∑n
i=1 vjiyi

1 + τM
∑n

i=1 v
2
ji

(2.28)

where summing over k 6= j means summing over k = 1, . . . , p excluding k = j. The

second line is obtained by noting that vj is orthogonal to other vk when k 6= j and

orthogonal to the I-spline basis vectors. We assume

τ
∑

v2
ji →∞

as n → ∞. So as n → ∞, τM
∑n

i=1 v
2
ji dominates the one in the denominator in

2.28. Thus, as n → ∞, the mean of full conditional distribution used in the Gibbs

sampler approaches ∑n
i=1 vjiyi∑n
i=1 v

2
ji
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which is the ML SR estimate.

Using (2.6), we note that the variance of the conditional distribution for αj

given all other parameters and the data that is used in the Gibbs samplerαj is given

by [
1/M + τ

n∑
i=1

v2
ji

]−1

.

Using the assumption that τ
∑
v2
ji goes to∞ as n→∞, we have that this variance

approaches zero as n→∞. Thus, the marginal distribution for each αj approaches

α̃j as n→∞. By Geman and Geman (1984), we know that the marginalization of

the target distribution is the limiting marginal distribution. Thus, the Bayes SRRS

estimate for αj converges to the ML SR as n→∞ and is therefore consistent.

2.7.3 Consistency of the Restricted Regression Coe�cients

In this section, we consider the consistency of the restricted regression coef-

�cients, βlj for j = 1, . . . ,ml and l = 1, . . . , L. To simplify the notation, we let

β = (β11, . . . , βLmL
)′ = (β1, . . . , βq)

′ where q =
∑L

l=1ml. To show consistency, we

consider the conditional distribution of β given all other parameters and the data

that is sampled from in the Gibbs sampler, denoted f (β|α, τ,y). We show that as

n→∞, f (β|α, τ,y) is a distribution with a mass point at the ML RS estimate for

β, β̃ =
(
β̃11, . . . , β̃LmL

)′
=
(
β̃1, . . . , β̃q

)′
= [∆′∆]−1 ∆′y where ∆ is a n by q matrix

with columns of the basis vectors as in (2.26). Thus the Bayes SRRS estimate for

β approaches the ML SR as n→∞.

To determine the limiting behavior for f (β|α, τ,y), we note that

f (β|α, τ,y) ∝
q∏
j=1

[
β
c∗j−1

j I {0 < βj <∞}
]

exp

{
−τ
2

(y −∆β − Vα)′ (y −∆β − Vα)− c′2β
}
, (2.29)

where V is a matrix with columns from the orthogonal set of vectors vj for j =

1, . . . , p, c∗j denotes the cl1 corresponding to βj, and c2 = (c21, . . . , c2L)′ is a vector
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of length q created using vectors c2l for l = 1, . . . , L where c2l is a vector of length

ml with elements cl2 . Since the columns of ∆ are orthogonal to the columns of V ,

exp
{
−τ

2
(y −∆β − Vα)′ (y −∆β − Vα)− c′2β

}
∝ exp

{
−τ

2
(y −∆β)′ (y −∆β)− c′2β

}
∝ exp

{
−τ

2

[
β′∆′∆β − 2β′

(
y′∆− 1

τ
c2

)]}
∝ exp

{
−τ

2
[β′∆′∆β − 2β′a]

}
∝ exp

{
−τ

2

(
β − [∆′∆]

−1
a
)′

∆′∆
(
β − [∆′∆]

−1
a
)}

∝ exp

{
−1

2

(
β − [∆′∆]

−1
a
)′

∆′∆
(
β − [∆′∆]

−1
a
)}

(2.30)

where a = ∆′y − 1
τ
c2. The second to last line of (2.30) is obtained by noting that(

β − [∆′∆]
−1
a
)′

∆′∆
(
β − [∆′∆]

−1
a
)

=
(
β′ − a′ [∆′∆]

−1
)

∆′∆
(
β − [∆′∆]

−1
a
)

=
(
β′∆′∆− a′ [∆′∆]

−1
∆′∆

)(
β − [∆′∆]

−1
a
)

= β′∆′∆β − β′∆′∆ [∆′∆]
−1
a− a′β + a′ [∆′∆]

−1
a

= β′∆′∆β − 2β′a+ a′ [∆′∆]
−1
a

∝ β′∆′∆β − 2β′a.

We use (2.30) and that the diagonal elements of [∆′∆]−1 approach zero (shown in

next two paragraphs) to show that f (β|α, τ,y) has a mass point at β̃ as n→∞.

Let A = ∆′∆ and note that A is symmetric as well as positive de�nite so A−1 is

positive de�nite. From page 338 of Horn and Johnson (1991), we have the following

corollary

Corollary 1. Let diag(A) = (a11, . . . , ann)′ denote the diagonal entries of the n×n

square matrix A, tr (A) denote the trace of matrix A, and λ1 (A) ≤ . . . ≤ λn (A) be

the eigenvalues of A then

tr (A) =
n∑
i=1

aii =
n∑
i=1

λi (A) .
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Using Corollary 1, we know that the sum of the eigenvalues of A−1 = [∆′∆]−1

are equal to the trace so tr (A−1) =
∑q

i=1 λi (A
−1) where we denote the ordered

eigenvalues of A−1 by λi (A
−1) for i = 1, . . . , q with λ1 (A−1) ≤ λ2 (A−1) ≤ · · · ≤

λq (A−1). Using that λi (A
−1) = [λi (A)]−1 (Johnson et al., 2002, pg 302), we can

also conclude tr (A−1) =
∑q

i=1 λi (A
−1) =

∑q
i=1 [λi (A)]−1. Since A is positive def-

inite, λi (A) ≥ 0 for all i ∈ {1, . . . , q} and
∑q

i=1 [λi (A)]−1 ≤
∑q

i=1 [λ1 (A)]−1 =

q · [λ1 (A)]−1. Thus,

tr
(
A−1

)
≤ q · [λ1 (A)]−1 . (2.31)

Consider Theorem 5.3.4 on page 316 of Horn and Johnson (1991) which states

Theorem 1. Let A, B be n × n Hermitian matrices and let A = [aij] be positive

semi-de�nite. Any eigenvalues λ (A ·B) of A ·B satis�es

λ1 (A)λ1 (B) ≤ min
1≤i≤n

{aii}λ1 (B)

≤ λ (A ·B)

≤ max
1≤i≤n

{aii}λn (B) ≤ λn (A)λn (B)

where A ·B is the dot product or Hadamard product of matrices A and B.

Recall that a Hermitian matrix is a matrix whose conjugate transpose is that

matrix. To apply this theorem to show that the diagonal entries of A = ∆′∆

approach ∞ as n → ∞, we let B be a q × q matrix with all o� diagonal elements

zero and all diagonal elements equal to −1. This diagonal matrix is Hermitian with

λ1 (B) = −1 and λq (B) = −1. A = ∆′∆ is the form
δ′1δ1 δ′1δ2 · · · δ′1δq
δ′1δ2 δ′2δ2 · · · δ′2δq
...

...
. . .

...
δ′1δq δ′2δq · · · δ′qδq

 (2.32)

so max
1≤i≤q

{aii} = δ′kδk for some k ∈ {1, . . . , q}. Using inequality λ1 (A)λ1 (B) ≤

max
1≤i≤n

{aii}λn (B) in Theorem 1, we can conclude −λ1 (A) ≤ −δ′kδk and therefore

λ1 (A) ≥ δ′kδk. (2.33)
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If we assume δ′kδk → ∞ as n → ∞ for some k ∈ {1, . . . , q}, then we can conclude

lim
n→∞

λ1 (A) =∞ and thus all diagonal entries of ∆′∆ approach∞ as n→∞. Using

lim
n→∞

λ1 (A) = ∞, lim
n→∞

[λ1 (A)]−1 = 0. From (2.31), we have that tr (A−1) ≤ 0 as

n→∞ and since A−1 is positive de�nite then the trace must go to zero as n→∞.

Therefore, we have shown that the diagonal entries of [∆′∆]−1 are zero.

Now we show that f (β|α, τ,y) will have a mass point at β̃ as n → ∞. First,

we note that the trace of a positive semi-de�nite matrix is zero if and only if the

matrix is a zero matrix (Horn, 1990, pg 80). Thus, since, as n → ∞, [∆′∆]−1

is a positive semi-de�nite matrix with a trace of zero, we have that that [∆′∆]−1

approaches the zero matrix as n→∞. We then note that the exponential term in

(2.30) is proportional to the pdf of a multivariate normal distribution with a mean

[∆′∆]
−1
a = [∆′∆]

−1
∆′y − 1

τ
[∆′∆]

−1
c2 (2.34)

and variance-covariance matrix [∆′∆]−1 which we have shown approaches zero as

n→∞. The mean in (2.34) approaches [∆′∆]−1 ∆′y since 1
τ

[∆′∆]−1 c2 approaches

zero vector. Since[∆′∆]−1 ∆′y is the ML SR estimate, we have that the term in

(2.30) is proportional to a multivariate normal pdf that has a mass point at β̃ as

n→∞. Since
q∏
j=1

[
β
c∗j−1

j I {0 < βj <∞}
]

(2.35)

from (2.29) does not depend on n, the exponential term in (2.30) denominates

f (β|α, τ,y). Thus, as n → ∞, f (β|α, τ,y) will have a mass point at β̃. Again

using Geman and Geman (1984), we know that the Bayes SRRS estimate converges

to the unrestricted ML SR estimate as n→∞ so we have consistency of the Bayes

SRRS estimates for the restricted coe�cients.

2.7.4 Consistency of Precision

We conclude this section with the consistency for the precision estimate τ . The

normal errors model in Section 2.4 is a linear regression model with Y = Xθ + ε
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with θ and design matrix X as de�ned in Section 2.7.2 and ε a n × 1 vector of

the independent identically distributed normal errors with mean zero and variance

τ−1. For the unrestricted regression model where the parameters can take on any

real value, the maximum likelihood estimate for the variance of the spline regression

model is

σ̃2 =
˜SSE

n

where ˜SSE =
(
y −Xθ̃

)′ (
y −Xθ̃

)
with θ̃ the ML SR estimate as de�ned in Sec-

tion 2.7.2. Using that σ̃2 is a consistent estimator for σ2 and that under certain

regularity conditions, a continuous function of consistent MLE estimator is also

consistent (Casella and Berger, 2002, p 470), we have that τ̃ = n/ ˜SSE = (σ̃2)
−1

is a

consistent estimator for τ .

From (2.7), f (τ |β,α,y) follows a Gamma(d1 + n/2, d2 + SSE/2) with mean

E (τ |β,α,y) approaches

E (τ |β,α,y) =
d1 + n/2

d2 + SSE/2

where SSE is as in (2.7). Using that the ML SR estimates for β and α converge

to their corresponding parameters, we have that ˜SSE converges to SSE as n→∞.

Thus, E (τ |β,α,y) approaches τ̃ as n→∞. Further note that the variance for the

distribution of τ given β, α, and τ from (2.7) is given by

d1 + n/2

(d2 + SSE/2)2 . (2.36)

For least squares linear regression, the SSE for the maximum likelihood estimation

is of order n and is the minimum variance estimator. Thus, the SSE in (2.36) will

be at least of order n. This implies that as n→∞, the variance of the conditional

distribution for τ in the Gibbs sampler will be of order no larger than n−1 and thus

goes to zero. So as n → ∞, the Bayes SRRS estimate for τ approaches the ML

SR estimate which is known to be consistent. Therefore, the Bayes SRRS spline

estimator is a consistent estimator for τ .
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2.8 Simulation Study

In this section, we perform a number of simulations to show that the proposed

Bayes SRRS estimates have desirable properties and performance. To obtain the

Bayes SRRS estimate, we �x the interior knot locations at k equally spaced x-

quantiles and use 5000 iterations for each run of the MCMC algorithms, with a

burn-in of 500 and the priors for the model parameters described in Section 2.4.1.

At each iteration, we compute an estimate for the regression function using the

realizations of the parameters for that iteration and the function estimate is found

by taking the mean of these 4500 estimates, η
(t)
i (after removing burn-in) as in

(2.18). The algorithms generally converged quickly unless the sample sizes were

quite small or the error variance so large that the signal to noise ratio was very low.

We performed a sensitivity analysis for the prior distributions about the parameters

and found that the estimates are insensitive to a wide range of hyperparameter

values.

2.8.1 Method Comparisons

For the normal errors model as in Section 2.4 with L = 1, we compare the Bayes

SRRS function estimates with maximum likelihood (ML) SRRS and the monotone

shape-restricted P-spline method of Brezger and Steiner (2008) using their default

priors and knot locations with a correction to their equation (19). The P-spline

procedure estimates the regression function using penalized B-splines and imposes

the monotone shape restriction by using truncated normal priors for the regression

coe�cients. For the P-spline estimation procedure, we used the recommended in-

verse Gamma priors for the smoothing parameter of the regression coe�cients and

the variance parameter for the independent normal errors with default hyperparam-

eters of a = b = 0.001. Following Brezger and Steiner (2008), we used 20 interior

knots and ran the MCMC algorithm for 11,000 iterations throwing out the �rst
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1000 as burn-in and taking every 10th iteration. To decrease the required computa-

tional time, for the single-move Gibbs sampler for the regression coe�cients given

in Brezger and Steiner (2008), we let T = 1 and found similar convergence results

as compared to using a larger values such as T = 10.

The ML SRRS, η̃, is found by minimizing
∑n

i=1 (yi − ηi)2 over the constraint

set

C =

{
η : η =

L∑
l=1

αlvl +
m∑
j=1

βjδj, where βj ≥ 0, j = 1, . . . ,m

}
. (2.37)

The set of all possible linear combinations of the basis vectors such that the shape

restriction is met make up a convex cone and the estimate for η can be found via a

projection onto a linear subspaces by exploiting the properties of convex cones. In

our analysis, an estimate was found using the hinge algorithm (Meyer, 2008).

For each method,

SMSE =

√√√√√ 1

N · n

N∑
j=1

n∑
i=1

{
f (xi)− f̂j (xi)

}2

(2.38)

is used to compare function estimates to the function that generated the data, f ,

where N is the number of data sets generated in the simulation study and f̂j is the

estimate for the regression function for the (j)th simulated data set.

Data were simulated under eight simulations scenarios, with results given in

Table 2.1. The regression functions in the study were the constant (f(x) = 0), slope

1 line (f(x) = x), slope 5 line (f(x) = 5x), sigmoid (f(x) = 5 exp(10x − 5)/[1 +

exp(10x − 5)]), truncated cubic (f(x) = 0 for x ≤ 0.6 and f(x) = (5x− 3)3 for

x > 0.6), and the truncated cubic function multiplied by 3 denoted 3(trun. cubic).

To create data sets, functions were evaluated at n equally spaced x values in [0, 1] and

independent standard normal errors with a standard deviation of 1.5 were added.

N = 1000 data sets were simulated for each scenario. Regression functions for four

of the scenarios are shown in Figure 2.2, along with typical data sets, to illustrate
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the di�erences in the methods under comparison. The Bayes and ML SRRS use

k = 2 interior knots for n = 20 data points, and k = 3 for n = 50. However, we �nd

the Bayes SRRS function estimates to be robust to the number of interior knots.

For example, the SMSE as in (2.38) is 0.20 for the Bayes SRRS estimate using k = 2

equally spaced interior knots and the SMSE is 0.25 for Bayes SRRS using k = 4

equally spaced interior knots for 500 data sets simulated from the slope 5 line with

n = 50 observations and normal errors with standard deviation of 1.5.

Figure 2.2 gives estimates using all three methods along with 95% pointwise

HPD credible intervals for Bayes SRRS method constructed as in Section 2.6.1. The

constant function, shown in Figure 2.2(a) as the dotted line, is challenging for the

P-spline (dashed curve) because the truncated normal prior is too sti� to allow �at

spots to be estimated well. The ML SRRS (dot-dash) is �at in the middle but

will dip at the edges if pulled by the data. Because of the lack of penalization or

prior information, the ML SRRS will rise sharply at either end if there are positive

errors at the right or negative errors at the left. The Bayes SRRS (solid) �ts �at or

steep spots equally well due to its vague prior, but resists pulling at the edges. In

Table 2.1, we see that the SMSE is over 30% smaller for the Bayes SRRS than for

the other two methods.

Two lines were considered, with slopes 1 and 5. The P-spline does well for these

(Table 2.1, cases 2 and 3), because the prior pulls all �ts towards a line. For the

sigmoid function, f(x) = 5 exp(10x− 5)/[1 + exp(10x− 5)], , shown in Figure 2.2(c)

and case 4 in Table 2.1, the P-spline is seen to be less �exible, while the ML and

Bayes SRRS �ts are quite close except at the right end where the ML SRRS is pulled

upward. The SMSE for the Bayes SRRS is about 30% smaller than for the P-spline

due to its greater �exibility, and about 15% smaller than that for the ML SRRS

because of its resistance to edge e�ects. The truncated cubic f(x) = (5x− 3)3
+ is

�at over most of the range, then quite steep (Figure 2.2(d)). The P-spline estimate

is outside the pointwise credible interval for the Bayes SRRS (shown as the shaded
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area). The Bayes and ML SRRS both have su�cient �exibility to estimate this

function well, and have considerably smaller SMSE than the P-spline for di�erent

choices of n and signal to noise ratio.
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(d) Truncated Cubic 
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Figure 2.2: For each plot, the solid line is the mean Bayes posterior estimate for
the Bayes SRRS method and the shading represents the corresponding pointwise
95% credible band. The dot-dash curve is the ML SRRS estimate using the same
basis functions. The dashed curve is the monotone P -spline with the the suggested
amount of knots. The true function f is shown as the dotted curve.

Using the procedure discussed in Section 2.6.1, pointwise credible intervals and

pointwise prediction intervals for the P-spline and Bayes SRRS methods were con-

structed for the eight scenarios in the simulation study. The means of the interval

lengths of 95% credible intervals and the 95% prediction intervals as well as the per-

cent coverage at xn/2 are show in Figure 2.3(a) and (b), respectively. The coverage

probabilities for the the Bayes SRRS are very close to target for all scenarios. Both
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Table 2.1: Estimated SMSE using three di�erent estimation procedures: Bayes
SRRS, ML SRRS, and P-spline method.

Case Function n ML SRRS Bayes SRRS P-spline

1 constant 50 0.32 0.23 0.34
2 slope 1 line 50 0.35 0.30 0.27
3 slope 5 line 50 0.44 0.47 0.32
4 sigmoid 50 0.41 0.35 0.50
5 3(trun. cubic) 20 0.94 0.95 3.87
6 3(trun. cubic) 50 0.47 0.51 1.14
7 trun. cubic 20 0.62 0.66 1.51
8 trun. cubic 50 0.40 0.38 1.17

methods appear to perform well for the steeper line and the sigmoid function but

the Bayes SRRS method appears to perform better in other cases, especially when

considering the truncated cubic functions where the prediction and credible interval

lengths for the P-spline method are larger than the Bayes SRRS method. Even

with the larger credible interval length for the truncated cubic function, the percent

coverage for P-spline method is much smaller than that of Bayes SRRS and the

P-spline coverage is well below 95%. The percent coverage for the credible interval

for the P-spline method is also relatively small for the constant function and less

than 90%. For the prediction intervals, the percent coverage for both methods is

similar and close to the target levels but interval lengths for the P-spline method

are larger when considering the truncated cubic functions. Hence, the simulation

study suggests that the prediction and credible intervals for Bayes SRRS method

work well for the x-values in the middle and are superior to the P-spline method for

many cases considered in the simulation study.

2.8.2 Parallel-curves Regression Model

Consider the regression model with one continuous and one categorical predictor

variable with r levels as in Section 2.4.2 where interest lies in the signi�cance of the

categorical predictor. If r = 2, the test for signi�cance of the categorical predictor

may be accomplished through credible interval calculation. For r > 2, we utilize the
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Figure 2.3: Mean lengths (left y-axis, solid points) for Bayes SRRS method (circles)
and P-spline method (triangles) as well as percent coverage (right y-axis, hollow
points) for the the estimate of the regression function evaluated at xn/2 for each of
the 8 cases in the simulation study. Horizontal dashed line denotes 95% coverage.

approximate normality of the joint posterior for the several α and perform a chi-

squared test with r − 1 degrees of freedom as in Section 2.6.2 with null hypothesis

that each αj = 0. Table 2.2 gives rejection rates for tests under Bayes SRRS model

with r = 2 and Table 2.3 gives rejection rates for r = 3. We generated 10,000 data

sets using the slope 5 line and sigmoid functions given in Section 2.8.1 and shown in

Figure 2.2(b) and (c), with independent standard normal errors and equally spaced

x values in [0, 1]. For each combination of choices of regression function, sample

size, and αj values, we generated data where the (i)th observation was assigned to

levels of the categorical variable in rotation. For data sets of size less than n = 100,

we used k = 2 interior knots; otherwise we used k = 3.

In Table 2.2 and 2.3, we compare rejection rates for inference using Bayes SRRS

to those of the standard F -test for the signi�cance of the categorical predictor, which

assumes that the relationship between the response and the continuous predictor is

linear. The alternative hypothesis value(s) for αj were selected such that when f

is linear, the F -test will have power of 50%. The results show that when the true
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regression function is linear, the Bayes method performs just as well as the as the

F -test. Otherwise, the Bayes method correctly rejects the one-curve model in favor

of the parallel-curves model more often than the F -test. For the sigmoid function,

the scatter plot often �looks linear� (Figure 2.2(c)) so that a practitioner might feel

con�dent using the F -test but as this simulation results suggest, this may result in

loss in power.

Table 2.2: Proportion of data sets for which the null hypothesis of a single curve
is rejected when using Bayes SRRS model and a credible interval for α1 (Bayes)
compared to the F -test.

f n α2 F -test Bayes

slope 5 line 40 0 0.051 0.050
slope 5 line 100 0 0.051 0.050
sigmoid 40 0 0.031 0.040
sigmoid 100 0 0.032 0.050

slope 5 line 40 0.637 0.497 0.506
slope 5 line 100 0.395 0.498 0.500
sigmoid 40 0.637 0.368 0.447
sigmoid 100 0.395 0.391 0.498

Table 2.3: Proportion of data sets for which the null hypothesis of a single curve
is rejected when using Bayes SRRS model and the chi-square test statistic given in
Section 2.6.2 (Bayes) compared to the F -test.

f n α2 α3 F -test Bayes

slope 5 line 60 0 0 0.048 0.050
slope 5 line 150 0 0 0.051 0.053
sigmoid 60 0 0 0.040 0.049
sigmoid 150 0 0 0.041 0.054

slope 5 line 60 0.543 1.085 0.500 0.518
slope 5 line 150 0.337 0.675 0.500 0.509
sigmoid 60 0.543 1.085 0.403 0.462
sigmoid 150 0.337 0.675 0.427 0.500

2.8.3 Non-parallel Curves Regression Model

Consider the non-additive normal error regression model given in Section 2.4.3

and the simpler additive model given in Section 2.4.2. To determine whether the
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non-additive normal error regression model explains signi�cantly more of the vari-

ation in the response for given data sets, we employ the model selection technique

using Bayes factors given in Section 2.6.3. We performed a simulation study to illus-

trate the performance of the method in this context where we have one continuous

variable and a categorical variable with r = 2 levels. We chose four sets of regression

functions; for the �rst two, the correct choice is the additive model (Section 2.4.2),

and for the second two, the correct choice is the model with interaction (Sec-

tion 2.4.3). The �parallel lines� regression curves are f(x) = 3x and f(x) = 3x+0.75,

and the �parallel sigmoids� models are f (x) = 3exp(10x−5)/(1+exp(10x−5)) and

f (x) = 3exp(10x−5)/(1+ exp(10x−5))+0.75. The �non-parallel lines� models are

f(x) = 3x and f(x) = x+ 0.75 , and the �non-parallel sigmoids� models are f (x) =

3exp(10x−5)/(1+exp(10x−5)) and f (x) = 5exp(10x−8)/(1+exp(10x−8))+0.75.

We generated 10,000 data sets with equally spaced x values and alternating assign-

ments of the categorical variable values. Table 2.4 gives percent of runs for which

the correct model is selected using the F -test compared with the Bayes SRRS model

and approximate BF discussed in Section 2.6.3. Again, the F -test assumes a linear

relationship between the response and the continuous covariate.

When the data are generated from the �parallel line� or �parallel sigmoids� cases,

the proportion of data sets for which the correct model is chosen is relatively large

for both the F -test and the Bayes SRRS. For the �non-parallel lines� case, the F -

test correctly selects the interaction model more often than the Bayes SRRS method

and the approximate BF. However, for �non-parallel sigmoids� case, the F -test does

not recognize the interaction between the sigmoid curves, while the approximate

BF method performs very well, especially for the larger sample size. A typical

data set generated from �non-parallel sigmoids� case is shown in Figure 2.4(a) for

n = 100. There is no obvious deviation from linearity, so that a practitioner might

feel comfortable using the F -test. Yet, as shown in Figure 2.4(b), the interaction

between the predictors would be missed. This example demonstrates the dangers of
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choosing a parametric model when the only valid assumptions are smoothness and

monotonicity.
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Figure 2.4: A scatter plot for a typical data set simulated from non-parallel sigmoids.
(b) The linear (dashed lines), and Bayes SRRS estimate (solid lines) alone with the
sigmoid functions used to generate the data (dot-dashed lines) and simulated data.

Table 2.4: Table gives the proportion of correct model selections using both Bayes
factors and the F -test with a signi�cance level 0.05.

Case n F -test Bayes

parallel lines 40 0.949 0.950
parallel lines 100 0.951 0.914

parallel sigmoids 40 0.963 0.924
parallel sigmoids 100 0.958 0.925
non-parallel lines 40 0.443 0.380
non-parallel lines 100 0.827 0.680

non-parallel sigmoids 40 0.031 0.267
non-parallel sigmoids 100 0.045 0.951

2.8.4 Model Selection

Practitioners typically prefer to use a simple parametric model, even when the

a priori assumptions are more qualitative such as �smooth and increasing.� Bayes

factors can be used to determine whether a parametric model or the less restrictive

52



model imposing shape and smoothness is appropriate. In this section, we report the

results of a simulation study to examine the small sample performance of the Bayes

SRRS model and Bayes factors when a more �exible shape-restricted regression

spline model is compared to a parametric function.

Bayes SRRS and approximate Bayes factors can also be used to compare an

exponential growth model to a more �exible convex and increasing model. While

exact tests for the case of constant versus increasing and linear versus convex exist in

the frequentist paradigm for the normal errors model as discussed in Meyer (2008),

a more general test has not yet been proposed.

2.8.4.1 Constant versus Increasing Regression Function

It is often of interest to examine the e�ect of a predictor variable, under the

assumption of monotonicity. We performed a simulation study to examine the per-

formance of our model selection methodology described in Section 2.8.1 comparing

a monotonically increasing normal errors model with one continuous covariate (M1)

to the constant model (M2). Note that the constant model is a subset of the mono-

tonically increasing model with the βj parameters set to zero. Thus, using method

discussed in Section 2.8.1, we compute p̂ (y|M1) for the monotonically increasing

model and p̂ (y|M2) for a constant model with βj = 0 for all j, a normal prior for α,

and a gamma prior for τ . The proportion of correct model selections as measured by

the approximate BF for sample sizes of n = 40 and n = 100 using k = 2 and k = 3

equally spaced interior knots, respectively, is shown in Table 2.5. The functions

considered in this analysis are the constant function f (x) = 3, the linear function

f (x) = 1.25x, and the exponential function 0.00007exp (10x). The latter is �at

over most of the range of (0, 1), then increases steeply at the right hand side. We

generated 10,000 data sets with independent standard normal errors with standard

deviation 1 and equally spaced x values in [0, 1]. For the larger sample sizes, the

approximate BF selects the correct model for a relatively large proportion of the

data sets but does not do as well for the smaller sample sizes.
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Table 2.5: Simulations to examine the performance of inference concerning the
constant versus increasing regression function models. The % correct columns give
the percentage of simulated data sets where the correct model was selected based
on approximate BFs.

f n % correct

constant 40 97.8
constant 100 98.2
linear 40 56.2
linear 100 91.5

exponential 40 38.0
exponential 100 75.1

2.8.4.2 Linear versus Monotone Regression Function

We also consider the simple example yi = f(xi)+εi and the question of whether

f can be modeled as a simple line, when it is known a priori that f is increasing

and smooth. We compare model selection performance of the parametric linear

versus shape-restricted monotone regression function. Thus, we compute p̂ (y|M1)

for the monotonically increasing model and p̂ (y|M2) for linear model and not that

if f is truly linear and the basis functions are scaled to have a range of one, then

all the coe�cients of the basis functions are equal giving η = β
∑m

j=1 δj + α. We

adopt the same priors for α and τ in the linear model as were used in the monotone

model discussed in Section 2.4 and the same prior for β as was used for each βj in

monotone model. The two regression functions were the slope-5 line and sigmoid

discussed in Section 2.8.1, and the sample sizes are n = 40 and 100. The proportions

of correct choices using the approximate BF as described in Section 2.6.3 are shown

in Table 2.6. When the true regression function is linear, the method produces the

correct choice over 90% of the time for both sample sizes. Otherwise, the percent

correct choice is larger for larger samples. This is similar to a frequentist testing

situation where the linear model constitutes the null hypothesis, and the power grows

with the sample size. With the smaller sample size, the model selection method

does a poor job determining whether the function is a line or simply monotonically
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increasing. However, this is not surprising considering the example in Figure 2.2(c).

Table 2.6: Simulations to examine the performance of inference concerning the
linear versus increasing regression function models. The % correct columns give the
percentage of simulated data sets where the correct model was selected based on
approximate BFs.

f n % correct

slope 5 line 40 92.2
slope 5 line 100 92.0
sigmoid 40 58.1
sigmoid 100 94.0

2.8.4.3 Constrained versus Unconstrained Regression Function

Often the shape assumptions are included in the a priori information, but occa-

sionally the shape assumptions are part of the research question. The unconstrained

regression spline model may be �t by changing the prior distribution for the βj coe�-

cients to the normal prior with large variance and zero mean. We compare the mean

of the MCMC realizations of β using the unrestricted model (β̂1) to the mean of the

MCMC realizations using the monotonically increasing shape-restricted model (β̂0)

by constructing χ∗ = (β̂1 − β̂0)′S1(β̂1 − β̂0) where S1 is the sample covariance ma-

trix realizations of β1. Since the joint posterior distribution of β1 is approximately

normal, χ∗ is compared with the 95th percentile of the χ2(m) distribution (where m

is the number of basis vectors) to determine if β̂0 is within the 95% credible ellipsoid

for β1.

Table 2.7 gives the proportions of correct model selections using χ∗ for four

choices of the underlying regression function: the constant function f (x) = 0 and

the functions fa (x) = 10
[
1 + x− aexp

{
− (x− 0.5)2 /0.02

}]
with a = 0.15, 0.25,

and 0.45. The functions fa (shown in Figure 2.5) are the functions of Bowman

et al. (1998) scaled by 10 to allow for comparison between our and their simulation

results (they use σ = 0.1; we use σ = 1). Their method for testing monotonicity of

55



a regression function involves a critical bandwidth. Note that the constant function

and f.15 are non-decreasing, while f.25 has a slight dip in the center of the range,

and f.45 has a more pronounced dip. We considered n = 50 and n = 100 and

four interior knots. The method using χ∗ is conservative, with small proportions of

rejection for the two non-decreasing scenarios and also for the scenario with a small

decreasing interval. The method using χ∗ has higher percent correct than found

for Bowman et al. (1998) for the steeper f.45. When the dip in the true function

is more pronounced (a = 0.45), the chi-square test selects the correct model for a

high proportion of the data sets even when n = 50. Figure 2.5(c) illustrates how

the unrestricted Bayes regression estimate is much closer to f0.45 than the Bayes

SRRS estimate and appears a more appropriate estimate since it captures the dip

in data points around 0.5. The lower percent correct for method using χ∗ than

for Bowman et al. (1998) for f.25 is supported by the simulated data and estimates

shown in Figure 2.5(b). It illustrates how both the Bayes SRRS and the unrestricted

Bayes regression spline estimate fail to capture the small dip around 0.5 in f.25.

Figure 2.5(b) also shows how di�cult it is to visually detect a dip in data points

around 0.5. Thus, supporting that it is hard to conclude that the unrestricted model

is more appropriate.

Table 2.7: Simulations to examine the performance of inference using the Bayes
SRRS model concerning the monotonically increasing shape assumption. The %
correct columns give the percentage of simulated data sets where the correct model
was selected based on χ∗.

f n χ∗ % correct Bowman et al. % correct

constant 50 99.6 �
constant 100 99.4 �
f0.15 50 100.0 98.2
f0.15 100 100.0 99.2
f0.25 50 2.0 10.0
f0.25 100 6.1 17.4
f0.45 50 80.9 54.4
f0.245 100 99.8 87.4
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Figure 2.5: Scatter plots for typical data sets simulated from fa (x) =
10
[
1 + x− a · exp

{
− (x− 0.5)2 /0.02

}]
with a = 0.15 (plot a), a = 0.25 (plot b),

and a = 0.45 (plot c) along with the functions used to generate the data (dot-dashed
lines), the Bayes SRRS estimate under the monotone assumption (solid lines) and
the Bayes unrestricted regression spline model estimate (dashed lines).

2.9 Examples

In this section, we apply the Bayes SRRS model to estimate regression functions

for three real data sets. We use the normal errors model to model fertility rate in

third world countries as a monotonically decreasing function of contraceptive use

and use the normal errors model with categorical covariate to model log of onion

yield (grams per plant) as a monotonically decreasing function of areal density of

plants (plants per square meter) for onions grown in two locations. We use the

Bernoulli model to estimate risk of diabetes as a monotonically increasing function

of cholesterol.

2.9.1 Normal Errors Examples

We adopt the normal errors model as in Section 2.4 to estimate the mean

function when analyzing the �Robey� data set available in the car library in the R

program (R Development Core Team, 2011). The data set obtained from Robey

et al. (1992) includes total fertility rate (children per woman), percent of married

women of childbearing age who use contraceptives, and a region variable that has
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levels of Africa, Asia and Paci�c, Latin America and Caribbean, and Near East and

North Africa. We estimate the mean fertility rate as a function of married women of

childbearing age who use contraceptives. We assume a normal errors model and that

the mean function is monotonically decreasing. Figure 2.6 gives the mean function

estimated using Bayes SRRS (solid black line) and quadratic I-splines with each

knot point indicated by a red �X� along with 95% pointwise HPD intervals (the

shaded region) computed as in Section 2.6.1. Figure 2.6 also gives the estimated

mean function under a simple linear regression model (dashed blue line). Notice

that the two estimates are rather similar but di�er for contraceptive use between 5

and 40 percent with the Bayes SRRS estimate lower for contraceptive use between 5

and 20% and higher for contraceptive use between 25 and 55 percent. However, the

simple linear regression estimate is within the 95% HPD for each data point. We

use the model selection procedure described in Section 2.6.3 to determine whether

the monotonically decreasing model or the simple linear model is most appropriate

for the data. The Bayes factor equals 0.19 suggesting that a simple linear regression

model is appropriate for this data set.

To illustrate how we can use our model to perform inference on a categorical

covariate, we adopt the normal errors model with a categorical covariate (as in

Section 2.4.2) to estimate the mean function for the �onions� data set available in

the SemiPar library in the R program (R Development Core Team, 2011). The

data set measures onion yield (grams per plant) and areal density of plants (plants

per square meter) from an experiment studying the production of white Spanish

onions at two South Australian locations (Virginia and Purnong Landing). This

data set is described in Ratkowsky (1983) and also discussed in Ruppert et al.

(2003). It has 84 sets of observations with 42 from Virginia and 42 from Purnong

Landing. We model log of onion yield as a monotonically decreasing function of

areal density of plants with an indicator function for location that equals 1 if grown

in Virginia. Figure 2.7(a) gives the Bayes SRRS estimate for each location (solid
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Figure 2.6: The Bayes SRRS estimate (solid black line) for the monotonically de-
creasing model along with the 95% pointwise HPD intervals (shaded region) where
each knot point is indicated by a red �X.� The simple linear regression estimate is
given by the dashed blue line.

lines) along with 95% HPD pointwise intervals for each function (shaded regions).

The linear regression model estimates are given by the blue dashed lines. Note that

the Bayes SRRS estimates for areal density less than 50 estimate lie between the

data points for both locations while the linear estimates lie below the data points

for both locations. Thus, the Bayes SRRS model appears to model the data better

than the linear regression model. The posterior distribution for the coe�cient on

the indicator for Virginia location, α2, is shown in Figure 2.7 (b). The vertical green

dashed lines mark the 95% HPD interval computed as in Section 2.6.1. Note that

it does not include zero suggesting that onion yield does depend on location.

2.9.2 Bernoulli Example

As an example of implementing the Bernoulli model described in Section 2.5.1,

we consider a study looking at cardiovascular risk factors for African Americans

in central Virginia (Willems et al., 1997). This study involved measuring 19 fac-

tors believed to contribute to heart disease including total cholesterol, stabilized
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Figure 2.7: (a) The Bayes SRRS estimate (solid black line) for the monotonically
decreasing model for onion data set along with the 95% pointwise HPD intervals
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regression estimate is given by the dashed blue line. (b) Histogram of posterior
draws after discarding burn-in for coe�cient on indicator for the Virginia location,
α2 where the vertical dashed lines mark the 95% HPD computed as in Section 2.6.1.

glucose, high density lipoprotein (hdl), cholesterol/hdl ratio (total cholesterol over

hdl), glycosolated hemoglobin, age, gender, height, weight, and postprandial time

when labs were drawn. The data were obtained from the website http://biostat.

mc.vanderbilt.edu/twiki/bin/view/Main/DataSets.

We focus on modeling risk of diabetes as a monotonically increasing function of

cholesterol/hdl ratio ignoring other covariates to simplify the analysis. A glycoso-

lated hemoglobin greater than 7.0 is an indicator of diabetes so an indicator variable

for diabetes was created and subjects with a hemoglobin of 7 or larger were coded as

1. Patients that were missing values for glycosolated hemoglobin or cholesterol/hdl

ratio were discarded from the analysis as well as one individual who had a choles-

terol/hdl ratio of 19.3 leaving a sample size of 388. Figure 2.8 gives the estimated

mean function using Bayes SRRS (solid line) with each knot point indicated by

a red �X� and 95% pointwise HPD intervals (shaded region) computed as in Sec-

tion 2.6.1. The risk of diabetes seems to increase at a larger rate for cholesterol/hdl

ratios greater than about 7. However, as indicated by the point wise HPD intervals,
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we are less certain about these estimates most likely due to the fact that we have

less observations for the higher cholesterol/hdl ratios. Considering the 95% HPD

at cholesterol/hdl ratio of 5.0, this analysis suggests that having a cholesterol/hdl

ratio of below 5.0 (vertical dotted line) will keep the risk of diabetes below 20%

(horizontal dotted line) for African Americans in central Virginia.
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Chapter 3

BAYESIAN SHAPE-RESTRICTED REGRESSION SPLINES AND

MIXED MODELS

3.1 Introduction to Generalized Linear Model

In this chapter, we extend the Bayes SRRS model to include variance compo-

nents and introduce a generalized linear mixed model (GLMM). Parameter estima-

tion for GLMMs is challenging because the maximum likelihood estimates are not

available in closed form. Generalized linear mixed models have been studied inten-

sively both using frequentist (Breslow and Clayton, 1993; McCulloch and Searle,

2001; Rice and Wu, 2001; Zeger and Diggle, 1994; Verbyla et al., 1999; Lin and

Zhang, 1999; Zhang, 2004; McCulloch, 1997) and Bayesian (Tiao and Tan, 1965;

Box and Tiao, 1968; Gelman, 2006; Namata et al., 2007; Natarajan and Kass, 2000;

Gelfand et al., 1995, 1996) frameworks. Breslow and Clayton (1993) examined the

performance of penalized quasi-likelihood (PQL) for function estimation for gen-

eralized linear mixed models. Walker (1996) used an EM algorithm (Dempster

et al., 1977) for function estimation for a nonlinear random e�ects model. McCul-

loch (1997) proposed a Monte Carlo Newton-Raphson algorithm which is a Monte

Carlo version of the EM algorithm to calculate maximum likelihood estimates for

GLMMS. Zeger and Diggle (1994) proposed a semi-parametric model for longitudi-

nal data that models the trend across time using a locally adaptive kernel estimate.

They used a back-�tting algorithm and cross validation to estimate the regression

functions. Rice and Wu (2001) proposed a nonparametric method for estimation

of mixed models using B-splines to model both the �xed and random e�ects and
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estimate the parameters using the EM algorithm. Verbyla et al. (1999) used cubic

smoothing splines to �t data for generalized linear models and estimated the param-

eters using Average Information REML (Gilmour et al., 1995). Namata et al. (2007)

used a generalized linear mixed model along with penalized splines and penalized

quasi-likelihood estimation (Ruppert et al., 2003) to estimate age-speci�c rates at

which susceptible individuals contract an infection. Zhang (2004) also proposed

a semi-parametric model for generalized linear mixed models that used penalized

splines and suggested using double penalized quasi-likelihood estimation (Lin and

Zhang, 1999) to estimate parameters.

Other researchers have considered analyzing linear and generalized linear mixed

models in a Bayesian setting. Gelfand et al. (1995) proposed a Bayesian model

to estimate normal linear mixed models using hierarchical centering. Hierarchical

centering is discussed further in Section 3.3. Gelfand et al. (1996) extended this

Bayesian model to generalized linear mixed models. Vines et al. (1996) proposed a

Bayesian random e�ects model and obtained function estimates using Gibbs sam-

pling. Zhang et al. (1998) proposed a semi-parametric model for mixed model for

longitudinal data using penalized natural cubic splines and compared both Bayesian

and frequentist inference methods for this model. Thompson and Rosen (2008) used

a Bayesian model and modeled curves as a linear combinations of B-splines with ran-

dom coe�cients. The curves are estimated using a MCMC algorithm.

It often can be di�cult to estimate the random e�ect variance components for

Bayesian models without using subjective priors (Natarajan and Kass, 2000; Gel-

man, 2006). Natarajan and Kass (2000) considered the performance of Bayesian

estimators for generalized linear mixed models and proposed two di�erent priors for

the random e�ect variance component, that along with uniform priors for the �xed

e�ects, lead to proper posterior distributions with desirable properties under given

conditions. Gelman (2006) considered some non-informative prior distributions for
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hierarchical variance parameters and examined their performance for several di�er-

ent hierarchical Bayesian models. He also proposed a half-t model and considered

models where it might be useful as a weakly-informative prior for variance parame-

ters.

Other researchers have proposed function estimation procedures for general-

ized linear mixed models under shape restrictions. Ghosh (2007) considered using

a semi-parametric regression model and smoothing splines to estimate regression

functions for mixed models for binary data under the monotone shape restriction.

He estimated the function using a two step procedure. He �rst used a likelihood-

based algorithm as in Lin and Zhang (1999) and then projected it on monotone

function using the PAVA algorithm (Robertson et al., 1988). Brezger and Steiner

(2008) proposed a random intercept model for function estimation under the mono-

tone shape restriction that used penalized splines and a Bayesian framework. The

monotone shape restriction was imposed by requiring the spline coe�cients to be

ordered and using truncated normal priors for the spline coe�cients. Schipper et al.

(2007) used a functional mixed model and a Bayesian framework to model e�ects of

radiation dose on normal tissue complications. They estimated the weight function

using regression splines and restricted the weight function in the functional mixed

model to be non-decreasing using either linear splines or quadratic I-splines and a

mixture of point mass at zero and gamma random variables. Our work also uses I-

splines and gamma random variables to impose the monotone shape restriction but

uses a generalized linear mixed model as opposed to a functional mixed model. Our

model allows a researcher to impose other shape restrictions besides monotonicity

such as convexity. Hazelton and Turlach (2011) considered using MCMC and penal-

ized regression splines to estimate regression functions for mixed models with shape

restrictions. They imposed the shape restrictions by using linear constraints on the

coe�cients. They used either linear or quadratic regression splines (for monotone

shape restriction), or cubic splines (for convexity). The linear constraints on spline

64



coe�cients are imposed using a Bayesian framework with truncated multivariate

normal priors. We also consider a Bayesian framework to estimate regression func-

tions for mixed models with shape restrictions such as monotonicity or convexity

but use the shape-restricted regression splines of Meyer (2008) as opposed to penal-

ized regression splines. This allows the shape restrictions to be imposed by simply

requiring the spline coe�cients to be positive and does not require the multivariate

truncated prior for the spline coe�cients, which simpli�es the MCMC algorithm.

In Section 3.2, we consider the generalized additive mixed model. We propose

a Bayesian framework to estimate generalized additive mixed models with shape

restrictions using either I-splines or C-splines, depending on the shape restriction.

We focus on the random intercept model under the monotone shape restriction in

Section 3.3 and conclude the chapter with some examples in Section 3.4.

3.2 Shape-restricted Splines Generalized Additive Mixed Model

We consider the generalized additive shape-restricted regression spline model

as de�ned in Section 2.2 and extend this to a generalized linear additive mixed

model by adding random e�ect terms. In particular, suppose we have conditionally

independent observations y1, . . . yn such that, conditional on a random e�ects vector

a = (a1, . . . , aq), the conditional distribution of yi given a is a member of the

exponential family with

f (yi|a) = exp {[yiθi − b (θi)] /hi (φ) + ci (yi, φ)}

where b (·), hi (·), and ci (·, ·) are known functions and φ is a dispersion parameter

(Jiang, 2007). As in (2.1), b′ (θi) = µi and g (µi) = ηi where g (·) is a given link

function and µi is the expected value of Y for xi. For the mixed model, we rede�ne

ηi to include the random e�ects and let

ηi = f1(x1i) + · · ·+ fL(xLi) + z′iγ +w′ia (3.1)
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where γ and zi are de�ned as is (2.2) and wi is the vector of known values cor-

responding to the random e�ects, a. Each fl for l = 1, . . . , L is assumed to be a

continuous and smooth function of a predictor xli for i = 1, . . . , n where n is the

number of observations for predictor xl.

As with the generalized linear model in Chapter 2, we assume fl follows some

shape restriction and model each shape-restricted function using the appropriate

shape-restricted regression splines. For a given covariate vector of n observations

given by xl = (xl1, . . . , xln)
′
and set of ml knot points given by min (xl) = t0 < · · · <

tml
= max (xl), we create basis vectors δlj = (δlj1, . . . , δljnl

)
′
with δlji = slj (xli).

Note the basis vectors will depend on the shape restriction. For instance, we would

use basis vectors created using quadratic I-spline for the monotone shape restriction.

Given these basis vectors, we model ηi in (3.1) as

L∑
l=1

ml∑
j=1

βljδlji +

p∑
j=1

αjvji +

q∑
j=1

ajwji (3.2)

with vj = (vj1, . . . , vjn)′ as in (2.3) and wj = (wj1, . . . , wjn)′ the vector of known

values corresponding to random e�ect aj.

As in Chapter 2, we estimate the regression functions using a Bayesian frame-

work. Since we again restrict the β parameters to be positive, we will use indepen-

dent gamma priors with a shape parameter equal to c1l and rate parameter equal to

c2l so βlj ∼Gamma(c1l, c2l) for l = 1, . . . L and j = 1, . . . ,ml. Since each αj can take

on any real value, we again use independent vague normal priors with mean zero

and large variance. For the random e�ect parameters, aj, we assume independent

normal priors with mean µa and variance σ2
a where depending on the model, these

parameters may be known or unknown.

3.3 Random Intercept Normal Errors Model

For the remainder of the chapter, we focus on a random intercept normal errors

model and the monotone shape restriction. Extensions to the convex/concave shape
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restriction can be made by replacing I-splines with C-splines. Monotone random in-

tercept models are useful tools to model regression relationships for several di�erent

types of data sets. For example, the monotone shape restriction could be assumed

if we are modeling growth of trees exposed to di�erent growing conditions across

time. We would expect that true relationship to be monotone increasing across time

so we would want to avoid models which allow the function to dip. We want to use

random intercepts because the initial level of tree growth is likely to be di�erent

across trees. Additionally, a monotonically decreasing random intercept model may

be used to model tumor growth for subjects in a cancer treatment study. We con-

sider the application of a monotone random intercept model to data set measuring

CD4 cell numbers for HIV patients in Section 3.4.2.

3.3.1 Bayesian Model

Let us �rst consider the random intercept normal errors model with one covari-

ate and assume we have j = 1, . . . , ni observations from group or individual i and

i = 1, . . . , q. We denote the observations by (xij, yij) and suppose

yij = ai + f (xij) + εij (3.3)

with independent random errors, εij ∼ N (0, σ2), and random e�ects vector a =

(a1, . . . , aq). We assume f is a smooth and monotonically increasing function. As

in Section 3.3, we assume each aj follows a normal distribution with mean µa and

variance σ2
a and further assume that they are independent of each other. We also

assume that the normal errors are independent of the random e�ects.

Let x =
(
x11, x12, . . . , x1n1 , . . . , xq1, xq2, . . . , xqnq

)′
be a vector of length n =∑q

i=1 ni of observed values of the covariate and let y be the vector of corresponding

observed response values,
(
y11, y12, . . . , y1n1 , . . . , yq1, yq2, . . . , yqnq

)′
. To create shape-

restricted basis vectors to approximate f (xij), we �x k interior knots and compute

sl (xij) = δlij for i = 1, . . . , q, j = 1, . . . , ni and l = 1, . . . , k + 2 where sl for
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l = 1, . . . , k + 2 are the quadratic I-spline basis functions created using the unique

values of x and �xed knot points. We de�ne f to have an intercept of zero to avoid

confounding with the random e�ects and let f (xij) be approximated by
∑m

l=1 βlδlij.

To estimate the shape-restricted regression function, we propose a hierarchical

Bayesian model (Gelfand et al., 1996) where the likelihood for y is conditional on the

random e�ects. We assume yij|ai, σ2,β ∼ N (ai +
∑m

l=1 βlδlij, σ
2) for i = 1, . . . , q

and j = 1, . . . , ni. We then assume the random intercepts are independent and

normally distributed with ai|µa, σ2
a ∼ N (µa, σ

2
a), µa ∼ N (0,M), and τa = 1/σ2

a ∼

Gamma (da1, da2). The hyperparameters for µa and τa are chosen such that the

priors for these parameters are weakly informative. We use a hierarchical model

to help improve mixing. The posterior surface of high dimensional models such as

those for random intercept models with vague priors can be di�cult to �explore�

due to weak identi�ability between the parameters. Using hierarchical centering, we

can reparameterize the model in such a way that the resulting posterior surface is

�better� behaved and easier to explore (Gelfand et al., 1996).

Letting β = (β1, . . . , βm)′ where m = k + 2, the hierarchical Bayesian model

using shape-restricted regression splines is given by

yij|ai, σ2,β ∼ N

(
ai +

m∑
l=1

βlδlij, σ
2

)
for i = 1, . . . q and j = 1, . . . , ni

ai|µa, σ2
a ∼ N

(
µa, σ

2
a

)
for i = 1, . . . q

τ = 1/σ2 ∼ Gamma (d1, d2) (3.4)

τa = 1/σ2
a ∼ Gamma (da1, da2)

µa ∼ N (0,M)

βl ∼ Gamma (c1, c2) for l = 1, . . .m

where independence is assumed among all parameters. Note that a vague uniform

prior may also be used for the variance parameters as in Gelman (2006), especially

if the value for σ2
a is believed to be very small.
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The posterior distribution,

p (β,a, µa, τa, τ |y)

∝ τn/2exp

−τ2
q∑
i=1

ni∑
j=1

(
yij − ai −

m∑
l=1

βlδlij

)2
 τ q/2a exp

{
−τa

2

q∑
i=1

(ai − µa)2

}
×

exp

{
− µ2

a

2M

}
τ da1−1
a exp {−da2τa} τ d1−1exp {−d2τ} ×

m∏
l=1

[
βc1−1
l I {0 < βl <∞}

]
exp

{
−c2

m∑
l=1

βl

}
,

is proper but analytically intractable so we use a Gibbs sampler to sample from the

posterior distribution of the parameters. The conditional distribution used in the

Gibbs sampler for ai0 given the data, β, τ , τa, µa, and all other random intercepts,

a(−io) = (a1, . . . , aio−1, ai0+1, . . . , aq), is

p
(
ai0|a(−io),β, τ, τa, µa,y

)
∼ N

((
τ ∗ai
)−1

[
τaµa + τ

ni0∑
j=1

(
yi0j −

m∑
l=1

βlδli0j

)]
,
(
τ ∗ai
)−1

)
where τ ∗ai = τni0 +τa. The conditional distribution for µa given all other parameters

and the data is given by

p (µa|a,β, τ, τa,y) ∼ N

((
τ ∗µa
)−1

[
τa

q∑
i=1

ai

]
,
(
τ ∗µa
)−1

)
where τ ∗µa = qτa+1/M . The conditional distribution for τa given all other parameters

and the data is given by

p (τa|a,β, τ, µa,y) ∼ Gamma

(
q/2 + da1, da2 +

1

2

q∑
i=1

(ai − µa)2

)
.

The conditional distribution for τ given all other parameters and the data is given

by

p (τ |a,β, τa, µa,y) ∼ Gamma

n/2 + d1, d2 +
1

2

q∑
i=1

ni∑
j=1

(
yij − ai −

m∑
l=1

βlδlij

)2
 .

Lastly, the conditional distribution for βl0 given the data, a, τ , τa, µa, and all other

β values denoted by β(−lo) = (β1, . . . , βlo−1, βl0+1, . . . , βm) is given by

p
(
βl0|a,β(−l0), τ, τa, µa,y

)
∝ exp

−sl0τ2

[
βl0j0 −

(
q∑
i=1

ni∑
j=1

rijδl0ij
sl0

− c2

sl0τ

)]2
×

βc1−1
l0

I {0 < βl0 <∞} ,

69



where slo =
∑q

i=1

∑ni

j=1 δ
2
l0ij

, rij = yij − ai −
∑

l 6=lo βlδlij, and the sum over l 6= l0

means take the sum over l = 1, . . . ,m subtracting the value when l = l0. Note

that p
(
βl0|a,β−(l0), τ, τa, µa,y

)
is of the same form as the conditional distribution

in the Gibbs sampler for βl0jo in Section 2.4 but with b = sl0τ/2 > 0, and c =∑q
i=1

∑ni

j=1 rijδl0ij/sl0 − c2/(sl0τ). Therefore, we can sample from this distribution

in the same way as described for βl0j0 in Section 2.4.

The estimate for the regression function for the (ij)th observation is computed

in the same manner as the function estimate in the generalized linear model in

Chapter 2. It is the mean of the function estimates at each iteration t of the Gibbs

sampler for the (ij)th observation excluding burn-in where the estimate at iteration

t is given by

η
(t)
ij = a

(t)
i +

m∑
l=1

β
(t)
l δlji (3.5)

and the superscript (t) on a parameter indicates the value for that parameter at the

(t)th iteration of the Gibbs sampler.

3.3.2 Random Intercept Normal Errors Model with Parametrically Mod-

eled Covariates

Let us extend the random intercept model in Section 3.3.1 to include paramet-

rically modeled covariates. First consider the case where there is one continuous

variable and a categorical predictor variable with r levels. Let vl =
(
vl11, . . . , vlqnq

)
for l = 1, . . . , r − 1 be r − 1 dummy variables for all but one of the levels of the

categorical variable. Thus, we model data using

yij = ai + f (xij) +
r−1∑
l=1

αlvli + εij (3.6)

where f (xij), ai, and εij are as in (3.3) and r−1 dummy variables are used to avoid

over-parameterizing the model. Again, assume f (xij) is a smooth monotonically

increasing function with intercept of zero and approximate the mean at each yij by

ai +
∑m

l=1 βlδlij +
∑r−1

l=1 αlvlij.
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We can further extend this model to include g parametrically modeled covariates

by simply including them in the
∑r−1

l=1 αlvli term in (3.6) and obtaining

yij = ai + f (xij) +

r−1+g∑
l=1

αlvli + εij.

Thus, the mean at each mean yij is approximated using ai+
∑m

l=1 βlδlij+
∑r−1+g

l=1 αlvli.

The hierarchical Bayesian model with a categorical variable with r levels and g

parametrically modeled covariates is

yij|a,β,α, µa, τa ∼ N

(
ai +

m∑
l=1

βlδlij +

r−1+g∑
l=1

αlvlij, σ
2

)
α ∼ N (0r−1,MαI) (3.7)

where N (θ,Σ) denotes a multivariate normal distribution with mean θ and variance-

covariance matrix Σ, 0r−1 is a (r − 1) vector of zeros, I is a (r − 1)×(r − 1) identity

matrix. We use the same priors for a, µa, τa, τ , and β as in (3.4). We again

use a Gibbs sampling algorithm to sample from the marginal distributions of the

parameters. The conditional distributions used in the Gibbs sampler for a, µa, τa,

τ , and β are very similar to the random intercepts model without a categorical

variable. The conditional distribution for ai0 given all other parameters is given by

p
(
ai0|a(−io),β,α, τ, τa, µa,y

)
∼ N

((
τ ∗ai
)−1

[
τaµa + τ

ni0∑
j=1

(ri0j)

]
,
(
τ ∗ai
)−1

)

where ri0j = yi0j −
∑m

l=1 βlδli0j −
∑r−1+g

l=1 αlvli0j. The conditional distribution for µa

given all other parameters is given by

p (µa|a,β,α, τ, τa,y) ∼ N

((
τ ∗µa
)−1

[
τa

q∑
i=1

ai

]
,
(
τ ∗µa
)−1

)
.

The conditional distribution for τa given all other parameters is given by

p (τa|a,β,α, τ, µa,y) ∼ Gamma

(
q/2 + da1, da2 +

1

2

q∑
i=1

(ai − µa)2

)
.

The conditional distribution for τ given all other parameters is given by

p (τ |a,β,α, τa, µa,y) ∼ Gamma

(
n/2 + d1, d2 +

q∑
i=1

ni∑
j=1

r2
ij

)
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where rij = yij − ai −
∑m

l=1 βlδlij −
∑r−1+g

l=1 αlvlij. The conditional distribution for

βl0 given all other parameters is given by

p
(
βl0|a,β−(l0),α, τ, τa, µa,y

)
∝ βc1−1

l0
exp

{
−sl0τ

2
(βl0j0 − c)

2
}
I {0 < βl0 <∞}

with c =
∑q

i=1

∑ni

j=1 rijδl0ij/sl0 − c2/(sl0τ) and rij = yij − ai −
∑

l 6=lo βlδlij −∑r−1+g
l=1 αlvlij. The conditional distribution in the Gibbs sampler for αl0 given all

other parameters and the data is

p
(
αl0|a,β,α(−l0), τ, τa, µa,y

)
∼ N

(
τ

τ ∗α

q∑
i=1

ni∑
j=1

vl0ijrij, (τ ∗α)−1

)
where rij = yij − ai−

∑m
l=1 βlδlij −

∑
l0 6=l αlvlij, τ

∗
α = τ

∑q
i=1

∑ni

j=1 v
2
l0ij

+ 1/Mα, and

the sum over l 6= l0 means take the sum over l = 1, . . . , r − 1 + g subtracting the

value when l = l0. The estimate of the regression function for the (ij)th observation

is the mean of the function estimates at each iteration t,

η
(t)
ij = a

(t)
i +

m∑
l=1

β
(t)
l δlij +

r−1∑
l=1

α
(t)
l vlij, (3.8)

excluding burn-in.

3.3.3 Inference with Mixed Model

As with the generalized linear model, the Bayes SRRS generalized linear mixed

model lends itself to several types of inference. Credible intervals can be easily

constructed by replacing η
(t)
i in Section 2.6.1 with η

(t)
ij in (3.5) or (3.8). Bayesian

model selection tools such as Bayes factors can be used to select the appropriate

model given the data as in Section 2.6.3. The approximate joint normality of the

posterior distribution of the �xed e�ects α in (3.2) can be used to determine the

signi�cance of these e�ects as in Section 2.6.2. In particular, considering the random

intercept model with a categorical variable as in Section 3.3, we can determine

whether the function depends on the level of the categorical variable by considering

the posterior distribution of α. If r = 2, we can construct a credible interval for α

and see if this interval includes zero. If r > 2, we can perform inference using (2.23)

to determine whether the α1 = α2 = . . . = αr−1 = 0.
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3.4 Applications

To examine the performance of the Bayes SRRS method for generalized linear

mixed models under the monotone shape restriction we consider applying our Bayes

SRRS estimation procedure to simulated data and a subset of a data set from the

Multicenter AIDS Cohort Study, �MACS�, discussed in Kaslow et al. (1987) and

analyzed by Zeger and Diggle (1994). We refer to this data set as the CD4 data set.

3.4.1 Simulated Data

For the simulated data set, we simulate data under the random intercept model

with a categorical covariate with r = 2 levels and let yij = ai+f (xij)+αvi+εij with

i = 1, . . . , 30. For each i we compute f at 20 equally spaced values between 0 and

1. We randomly generate nl = 20 ai values from N (2, 0.5) and randomly generate

600 normal errors εij values from N (0, 1) distribution. We let vl = (vl1, . . . , vl20)′,

v = (v11, . . . , v1,20, . . . , v30,1, . . . , v30,20)′ = (v′1 . . .v
′
30)′, and let vl be a vector of

zeros if l is odd and a vector of ones if l is even. We set α = 1.5 and let f (x) =

5exp (10x− 5) /(1 + exp (10x− 5)). To estimate f , we use k = 3 equally spaced

interior knots �xed at 0.25, 0.5, and 0.75, run the algorithm for 50,000 iterations

and discard the �rst 10,000 as burn-in. The Bayes SRRS estimate (solid red line)

along with the 95% HPD (grey shaded region) are given in Figure 3.1. Note that

the HPD intervals include the true values for all xij. The partial trace plot and

histogram of posterior draws for α is given in Figure 3.2. The posterior distribution

is centered close to the value of α used to simulate the data. The 95% HPD interval

for α is (1.20, 2.07) which includes the true value and supports that α is di�erent

from zero.

3.4.2 CD4 Data

To further examine the performance of our model, we use our model to estimate

regression curves for a subset of the data set from the Multicenter AIDS Cohort
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Figure 3.1: Data set generated from random intercept model with i = 3 (a), i =
14(b), and i = 21(c) along with f (xij) + ai used to simulate the data (grey dashed
line), the estimate found using the Bayes SRRS model estimate (solid red line), and
95% HPD interval found using Bayes SRRS model and method from Section 2.6.1.

Study (MACS) analyzed by Zeger and Diggle (1994). The MACS followed nearly

5,000 gay and bisexual men from Baltimore, Pittsburgh, Chicago, and Los Angeles

with approximately 37% of participants infected with HIV when the study began in

1984 and about 7% more seroconverted (HIV positive) during the follow-up. HIV

destroys CD4 cells and CD4 cell loss can be used to study disease progression.

We model the CD4 cell levels as a function of time (in years) since seroconversion

(HIV antibody positive). The data set includes several other covariates such as age

(relative to an arbitrary origin), packs of cigarettes smoked per day, an indicator

for recreational drug use, number of sexual partners (centered), and mental illness

score (depression symptoms as measured by CSED scale where larger values indicate

increased depressive symptoms). We focus on modeling CD4 levels (per 1000 cells)

for individual i as a monotonically decreasing function of years since seroconversion,

xij. We consider a subset of the data and include individuals who have at least 7

observations after seroconversion and smoked less than one pack a day. This results

in observations on 45 individuals who were HIV positive at some point. We omit

all other covariates except time since seroconversion to simplify the analysis and

use the random intercept normal errors model discussed in Section 3.3.1 to model

the regression relationship assuming a monotonically decreasing regression function.
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Figure 3.2: (a) Partial trace plots for α corresponding to the second level of the
categorical variable where the value of α used to generate the data is given by the
dashed red line. (b) Histogram of posterior draws for α after discarding burn-in
where the value of α used to generate the data is given by the dashed red line.

Thus, we model the mean for the (j)th observation for individual i, ηij, by

ai +
m∑
l=1

βl · (−δlij)

where i = 1, . . . , 45, m = 6, and ai is random intercept for individual i. δlij is

the value of the (l)th basis function evaluated at xij where xij is the time since

seroconversion for the (j)th observation of the (i)th individual. βl for l = 1, . . . ,m

are the regression coe�cients constrained to be positive. The I-spline basis vectors

are created using the unique observed x-values and knot points

(0.211, 1.254, 2.297, 3.340, 4.383, 5.426)′.

The Bayes SRRS estimate (solid red line) found by running the MCMC algo-

rithm for 50,000 iterations and discarding the �rst 10,000 as burn-in along with the

95% HPD (grey shaded region) for three of the individuals are shown in Figure 3.3.

The function estimates for these individuals suggest that there is a gradual decrease

in CD4 cells after seroconversion. The partial trace plot for τ , τa, and µa are given

in Figure 3.4 suggesting the algorithm is mixing well.
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Figure 3.3: The Bayes SRRS model estimates (solid black line) and 95% HPD
interval found using Bayes SRRS model for three individuals from the CD4 data
set.
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Figure 3.4: (a) Partial trace plot for τ . (b) Partial trace plot for τa . (c) Partial
trace plot for µa.

We could also consider a random intercept model including the recreational

drug use covariate and use the Bayes SRRS spline model with a categorical covari-

ate as discussed in Section 3.3 to determine if drug use a�ects the CD4 levels. Thus,

we estimate the mean of yij, ηij, by ai +
∑m

l=1 βl (−δlij) + αvij where vij is an indi-

cator whether the (ij)th observation was taken from an individual who is presently

participating in recreational drug use. The partial trace plot and histogram for α is

given in Figure 3.5. The 95% HPD for α is (-0.025, 0.107) and suggests that recre-

ation drug use to does not drastically a�ect CD4 levels when assuming the random

intercept normal errors model.
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Figure 3.5: (a) Partial trace plot for α. (b) Histogram of posterior draws for α.
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Chapter 4

BAYESIAN SHAPE-RESTRICTED REGRESSION WITH

FREE-KNOT SPLINES

4.1 Introduction

A key advantage of shape-restricted function estimation is that it is gener-

ally robust to the choice of knot number and placement compared to unrestricted

spline models (Meyer, 2008). However, the Bayesian framework allows one to use

reversible-jump Markov chain Monte Carlo (Richardson and Green, 1997; Green,

1995) to integrate over the number and location of interior knots. RJMCMC is a

generalization of the Metropolis Hastings sampler (Tierney, 1994) that allows moves

that increase or decrease the dimension of the parameter vector.

Estimation of regression splines where the knots for the B-splines are free pa-

rameters and the function estimates are found using reversible-jump Markov chain

Monte Carlo (RJMCMC) has been studied by many other researchers (Holmes and

Mallick (2003); DiMatteo et al. (2001); Biller (2000); Lindstrom (2002); Zhou and

Shen (2001); Denison et al. (1998)). In particular, Denison et al. (1998) used RJM-

CMC to determine the number and placement of knots for piecewise polynomials.

They used least squares to update and estimate the coe�cients so this approach is

not fully Bayesian. Biller (2000) and DiMatteo et al. (2001) used a fully Bayesian

approach involving a RJMCMC algorithm which estimate functions using cubic B-

splines. DiMatteo et al. (2001) assumed normal errors and used normal priors for the

regression coe�cients which simpli�es the algorithm by allowing them to marginal-

ize out the regression coe�cients. Thus, they used RJMCMC to simulate a chain

78



for the number of knots and knot locations only and obtained regression coe�cient

estimates from the marginal distribution separately. Biller (2000) suggested normal

priors for the regression coe�cients and used RJMCMC to simulate the number and

location of interior knots as well as the regression coe�cients. He assumed a grid

of possible knot locations over the range of the data as opposed to DiMatteo et al.

(2001) who allowed the knot locations to fall anywhere in the range of the data. Both

analyzes did not involve shape restrictions and imposing shape restrictions make the

choice of normal priors for the regression coe�cients inappropriate. Wang (2008)

considered using RJMCMC along with cubic B-splines to estimate monotonically

increasing functions. His method involved using normal priors for the unconstrained

regression coe�cients and then projecting the unconstrained distribution on the con-

strained space. He used second-order cone programming (Alizadeh and Goldfarb,

2003) and maximum likelihood estimation to obtain estimates for the regression

coe�cients, but this procedure can be di�cult to implement and may involve prob-

lems with optimization. Using B-splines and RJMCMC, Johnson (2007) considered

modeling dichotomous item response theory where the mean response function is

non-decreasing. The monotone shape restriction was imposed by truncated normal

priors that required the regression coe�cients on theB-splines to be ordered. Shively

et al. (2011) proposed a method for shape-restricted function estimation using free-

knot quadratic polynomial regression splines in a Bayesian context. They imposed

shape restrictions using linear constraints on the spline coe�cients and multivariate

a normal prior for them constrained to the multi-dimensional generalization of the

�rst quadrant.

The procedure described here considers estimating functions using I-splines

and RJMCMC where number and location of interior knots are unknown. Our use

of quadratic I-splines allows monotonicity to be imposed by requiring the spline

coe�cients to be positive, which simpli�es the RJMCMC algorithm. Our algorithm

can also be generalized to other shape restrictions by selecting the appropriate basis
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functions and restricting the coe�cients to be positive. Changes to the coe�cients

updates in the RJMCMC algorithm based on the properties of the basis vectors may

also be desired. In Section 4.2, we present the Bayesian model for function estimation

using free-knot splines under the monotonically increasing shape restriction with the

model and outline of the RJMCMC algorithm given in Section 4.2.1 and the priors

used in our analysis given in Section 4.2.2. In Section 4.3, we give the speci�cs of

the algorithm and describe each move in detail. This work can be found in Meyer

et al. (2011).

4.2 Free-knot Spline Model

4.2.1 Model and Algorithm

Consider the normal errors model described in Section 2.4 with L = 1 and the

monotonically increasing shape restriction. Similar to Biller (2000), we consider

three possible moves: �birth,� �death,� or �relocation,� of knots (described further

in Sections 4.3.1, 4.3.2, and 4.3.3, respectively) with probabilities bk, dk, and rk,

respectively. Let k be the current number of interior knots and as in DiMatteo et al.

(2001), we let bk = c ·min {1, fk( k + 1 )/fk (k)}, dk = c ·min {1, fk (k − 1) /fk (k)},

rk = 1−bk−dk, and c = 0.4 where fk (·) is the density of the prior on the number of

interior knots (discussed in Section 4.2.2). We place bounds on the possible values

for k with lower bound denoted by kmin and upper bound denoted kmax. To avoid

proposing moves with k outside of [kmin, kmax], we let bk = 1, dk = 0, and rk = 0 if

k = kmin knots and bk = 0, dk = 1, and rk = 0 if k = kmax knots. The parameters

proposed in each move are accepted with probability min {1, A} with

A = (likelihood ratio)× (prior ratio)× (proposal ratio)× |det (Jacobian)| (4.1)

where the Jacobian is found by �rst de�ning θ1 as the vector of all the parameter val-

ues in the current modelM1 and θ2 the parameter vector for the proposed model,M2.

We create auxiliary variable vectors u1 and u2 such that length (θ1)+ length (u1) =
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length (θ2) + length (u2) and de�ne g as a function that maps (θ1,u1)′ to (θ2,u2)′.

The Jacobian is
∂g
(
(θ,u1)′

)
∂ (θ,u1)′

. (4.2)

The proposal ratio is the probability of proposing (θ1,u1)′ given (θ2,u2)′ over the

probability of proposing (θ2,u2)′ given (θ1,u1)′ and it depends on the move type.

The acceptance probability for the birth, death, and relocation moves are given in

Sections 4.3.1, 4.3.2, and 4.3.3, respectively.

After each birth, death, or relocation move, we perform a �coe�cient update�

step, updating β = (β1, . . . , βm)′, α = (α1, . . . , αp)
′, and τ using a Gibbs sampler

and the conditional distributions given in Section 2.4.1. An estimate of the mean

regression function for the (t)th iteration is found by

η(t) =
m(t)∑
j=1

β
(t)
j δ

(t)
j +

p∑
i=1

α
(t)
i vji (4.3)

where β
(t)
j for j = 1, . . . ,m(t) and α(t) =

(
α

(t)
1 , . . . , α

(t)
p

)′
are the parameter values

for the (t)th iteration after the Gibbs sampler coe�cient update step, m(t) = k(t) +2,

k(t) is the number of interior knots for the (t)th iteration, δ
(t)
j is the (j)th quadratic

I-spline basis vector created using the k(t) interior knot locations for iteration t, and

vji is as in (2.3). The regression spline estimate is then found by averaging η
(t) after

discarding burn-in.

4.2.2 Priors on Model Parameters

As in Green (1995), Biller (2000), Denison et al. (1998) DiMatteo et al. (2001),

and Johnson (2007) we use a Poisson(λ) prior for the number of interior knots k.

We let the prior for k be truncated on kmin = 1 and kmax = 100 so the density is

given by

fk (k) =

(
kmax∑
i=kmin

λi

i!

)−1

λk

k!
.
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The hyperparameter λ can be adjusted to help improve mixing. Given k, we assume

a prior for the k interior knot locations as in the step function model in Green

(1995) and assume the knot locations are distributed as the even-numbered order

statistics from 2k + 1 locations uniformly distributed on [min (x) , max (x)]. Let

t = (t1, . . . , tk+2)′ be the ordered knot locations for model with k interior knots (set

t1 = min (x) and tk+2 = max (x)). The density of the prior for the k interior knot

locations is given by

(2k + 1)! · t2 (t3 − t2) · . . . · (tk+1 − tk) (max (x)− tk+1)

[max (x)−min (x)]2k+1
.

As with the �xed-knot model in Chapter 2, we use independent Gamma(c1, c2) priors

for βj, independent N(0,M) priors for the αj's, and a Gamma(d1, d2) prior for τ .

4.3 Implementation

In this section, we describe how we propose the new knot locations for each move

type as well as how we propose new values for the restricted regression coe�cients.

We also derive the acceptance probability for each move type.

4.3.1 Birth Move

4.3.1.1 Addition of knot

A birth move from a model with k interior knots to a model with k+ 1 interior

knots adds a new interior knot location by selecting a new knot location, t∗, from

a Uniform(min (x) , max (x)). Now, t∗ will fall between tj and tj+1 where tj is

the (j)th largest knot location in the current model with k interior knots and j =

1, . . . , k + 1. By exploiting the fact that quadratic I-spline basis functions can be

generated such that they have a range of one and that each I-spline has a positive

slope at one and only one knot location, we need only to update coe�cients in

close proximity of the new knot location. Let β = (β1, . . . , βk+2)′ be the current

I-spline basis function coe�cient values for a model with k interior knots where βj
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is the coe�cient for the basis function corresponding to the I-spline with a positive

slope at the (j)th largest knot location. Given the proposed knot locations t̃ =

(t1, . . . , tj, t
∗, tj+1, . . . , tk+2)′ =

(
t̃1, . . . , t̃k+3

)′
, we propose a new coe�cient vector

β̃ =
(
β̃1, . . . , β̃k+3

)′
using

β̃i =



βi i = 1, . . . , j − 1

(1− u) βi i = j

u (βi−1 + βi) i = j + 1

(1− u) βi−1 i = j + 2

βi−1 i = j + 3, . . . , k + 3

. (4.4)

where u ∼ Uniform (0, 1). Note that this coe�cient update ensures that the pro-

posed coe�cients are positive to preserve the shape assumption and ensures that∑j+1
i=j βi =

∑j+2
i=j β̃i to preserve the range of the estimate which is equal to the sum

of the regression coe�cients. Note that both α and τ are not updated until the

coe�cient update step in the Gibbs sampler algorithm. If we denote the current

values of these parameters by α and τ , the proposed values are α̃ = α and τ̃ = τ .

4.3.1.2 Acceptance Probability

Following (4.1), we derive the acceptance probability for a move from a model

with k interior knots to k + 1 interior knots where t∗, tj, tj+1, t, β, t̃ and β̃ are

de�ned as in Section 4.3.1.1. The likelihood ratio is given by∏n
i=1 fy

(
yi|k + 1, t̃,β̃,α, τ

)
∏n

i=1 fy (yi|k, t,β,α, τ)
(4.5)

where fy

(
yi|k + 1, t̃,β̃,α, τ

)
is the normal density with mean η̃i =

∑k+3
j=1 β̃j δ̃ji +∑p

j=1 αjvji and standard deviation of τ
−1/2, fy (yi|k, t,β,α, τ) is the normal density

with mean ηi =
∑k+2

j=1 βjδji +
∑p

j=1 αjvji and standard deviation of τ−1/2, δ̃ji is the

(i)th value of the (j)th I-spline basis vector created using proposed knot locations

t̃, and δji is the (i)th value of the (j)th I-spline basis vector created using current

knot locations t.
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With the priors as in Section 4.2.2, the prior ratio is

p (k + 1) p
(
t̃|k + 1

)
p
(
β̃|k + 1

)
p (α̃) p (τ̃)

p (k) p (t|k) p (β|k) p (α) p (τ)

=
λk+1

(k + 1)!
· (k)!

λk
· (2k + 3)! [max (x)−min (x)]2k+1

(2k + 1)! [max (x)−min (x)]2k+3
×

t2 (t3 − t2) · . . . · (tj − tj−1) (t∗ − tj) (tj+1 − t∗) · . . . · (max (x)−min (x)− tk+1)

t2 (t3 − t2) · . . . · (tj − tj−1) (tj+1 − tj) · . . . · (max (x)−min (x)− tk+1)
×∏k+3

j=1

[
c
c1
2

Γ(c1)
β̃c1−1
j exp

{
−c2β̃j

}
I
{

0 < β̃j <∞
}]

f (α̃) f (τ̃)∏k+2
j=1

[
c
c1
2

Γ(c1)
βc1−1
j exp {−c2βj} I {0 < βj <∞}

]
f (α) f (τ)

=
λ (2k + 3) (2k + 2) (t∗ − tj) (tj+1 − t∗) cc12

(k + 1) [max (x)−min (x)]2 (tj+1 − tj) Γ (c1)

(
β̃jβ̃j+1β̃j+2

βjβj+1

)c1−1

×

exp

{
−c2

[
k+3∑
j=1

β̃j −
k+2∑
j=1

βj

]}
(4.6)

Note that f (θ) is used to denote the density of the prior for a given parameter θ,

c1 and c2 are the hyperparameters for the priors for the β coe�cients, and λ is the

hyperparameter for Poisson prior for the number of interior knots.

Performing the birth move as in Section 4.3.1.1, the proposal ratio is given by

Pr (death in k + 1 model)Pr (delete t∗)

Pr (birth in k model)Pr (t∗)Pr (u)
=

dk+1 · 1
k+1

bk · 1

[max(x)−min(x)]
· 1

1−0

=
dk+1 [max (x)−min (x)]

bk (k + 1)
(4.7)

where Pr (death in k + 1 model) means probability of performing a death move

from a model with k + 1 interior knots to a model with k interior knots and

Pr (birth in k model) means probability of performing a birth move from a model

with k interior knots to a model with k + 1 interior knots. Recall that bk and dk+1

are de�ned as in Section 4.2.1.

The Jacobian in (4.1) is found by letting u1 = (t∗, u), (θ1, u1)′ = (k, t,β, α, τ, t∗, u)′,

and g (·) be the function that maps (θ1,u1)′ to the proposed θ′2 =
(
k̃ = k + 1, t̃, β̃, α̃, τ̃

)
given in (4.4). The Jacobian is ∂

[
g
(
(θ1,u1)′

)]
/∂ (θ1,u1)′. Hence, the determinant
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of the Jacobian is equal to the determinant of 1− u u 0
0 u 1− u
−βj βj + βj+1 −βj+1


so the absolute value of the determinant is given by

|(u− 1) (βj + βj+1)| =
∣∣∣βj + βj+1 − β̃j+1

∣∣∣ . (4.8)

To obtain the acceptance probability for birth move, substitute (4.5), (4.6), (4.7),

and (4.8) into (4.1) and obtain

A =

∏n
i=1 fy

(
yi|k + 1, t̃,β̃,α, τ

)
λ (2k + 3) (2k + 2) (t∗ − tj) (tj+1 − t∗) cc12∏n

i=1 fy (yi|k, t,β,α, τ) (k + 1) [max (x)−min (x)]2 (tj+1 − tj) Γ (c1)
×(

β̃jβ̃j+1β̃j+2

βjβj+1

)c1−1

× exp

{
−c2

[
k+3∑
j=1

β̃j −
k+2∑
j=1

βj

]}
×

∏k+3
j=1 I

{
0 < β̃j <∞

}
∏k+2

j=1 I {0 < βj <∞}
× dk+1 [max (x)−min (x)]

bk (k + 1)
×∣∣∣βj + βj+1 − β̃j+1

∣∣∣ (4.9)

4.3.2 Death Move

The death move from a model with k interior knots to a model with k − 1

interior knots deletes one of the existing interior knots and updates the coe�cients

in a deterministic fashion. From the existing ordered knot locations, one interior

knot location, say tj+1, is randomly selected to be removed giving proposed knot

locations t̃ = (t1, . . . , tj, tj+2, . . . , tk+2)′ =
(
t̃1, . . . , t̃j, t̃j+1, . . . , t̃k+1

)′
. The death

move is the inverse of a birth move from k−1 interior knots to k interior knots with

new knot location t∗ = tj+1 and the proposed values for the I-spline coe�cients can

be found by inverting the function given in (4.4). Thus, we propose a new coe�cient

vector β̃ =
(
β̃1, . . . , β̃k+1

)′
by letting

β̃i =


βi i = 1, . . . , j − 1
βi(βi+βi+1+βi+2)

βi+βi+2
i = j

βi+1(βi−1+βi+βi+1)
βi−1+βi+1

i = j + 1

βi+1 i = j + 2, . . . , k + 1

. (4.10)
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The acceptance probability is found by inverting the acceptance probability,

Ak−1, for a birth from k − 1 to k interior knots with t∗ = tj+1. The acceptance

probability is equal to min
{

1, A−1
k−1

}
where

Ak−1 =

∏n
i=1 fy (yi|k, t,β,α, τ)λ (2k + 1) (2k) (tj+1 − tj) (tj+2 − tj+1) cc12∏n

i=1 fy

(
yi|k − 1, t̃, β̃,α, τ

)
(k) [max (x)−min (x)]2 (tj+2 − tj) Γ (c1)

×

(
βjβj+1βj+2

β̃jβ̃j+1

)c1−1

× exp

{
−c2

[
k+2∑
j=1

βj −
k+1∑
j=1

β̃j

]}
×

∏k+2
j=1 I {0 < βj <∞}∏k+1
j=1 I

{
0 < β̃j <∞

} × dk [max (x)−min (x)]

bk−1 (k)
×
∣∣∣β̃j + β̃j+1 − βj+1

∣∣∣ .
Note that fy (yi|k, t,β,α, τ) is the normal density with mean ηi =

∑k+2
j=1 βjδji +∑p

j=1 αjvji and standard deviation of τ
−1/2 and fy

(
yi|k − 1, t̃, β̃,α, τ

)
is the normal

density with mean η̃i =
∑k+1

j=1 β̃j δ̃ji +
∑p

j=1 αjvji and standard deviation of τ−1/2.

Also, δ̃ji is the (i)th value of the (j)th I-spline basis vector created using proposed

knot locations after deleting knot tj+1, t̃, and δji is the (i)th value of the (j)th

I-spline basis vector created using knot locations before deleting tj+1, t.

4.3.3 Relocation Move

A relocation move keeps the same number of interior knots, k, but the location

of one knot is moved and the coe�cients are updated deterministically based on this

location change. From the set of existing ordered interior knots, a knot is randomly

selected to be moved and denoted tj+1. The new knot location t∗ is proposed

from Uniform(tj, tj+2) and the proposed knots for the relocation move are given by

t̃ =
(
t̃1, . . . , t̃k+2

)′
= (t1, . . . , tj, t

∗, tj+2, . . . , tk+2)′. To obtain updated coe�cients,

β̃ =
(
β̃1, . . . , β̃k+2

)′
, note that if t∗ ≥ tj+1 this will cause β̃j to be greater than

βj as well as β̃j+1 < βj+1 and β̃j+2 < βj+2. Since this change is in�uenced by the

magnitude of the di�erence between t∗ and tj+1, when t
∗ ≥ tj+1, the coe�cients are
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updated according to

β̃i =



βi i = 1, . . . , j − 1

βi + 0.5r2
r1+r2+r3

βi+1 i = j
r1+0.5r3
r1+r2+r3

βi + r2
r2+r3

βi+1 i = j + 1
r3

r2+r3
βi + 0.5(r2+r3)

r1+r2+r3
βi−1 i = j + 2

βi i = j + 3, . . . , k + 2

(4.11)

where r1 = tj+1 − tj, r2 = t∗ − tj+1, and r3 = tj+2 − t∗. Likewise, when t∗ < tj+1,

the coe�cients are updated according to

β̃i =



βi i = 1, . . . , j − 1
r1

r1+r2
βi + 0.5(r1+r2)

r1+r2+r3
βi+1 i = j

0.5r1+r3
r1+r2+r3

βi + r2
r1+r2

βi−1 i = j + 1

βi + 0.5r2
r1+r2+r3

βi−1 i = j + 2

βi i = j + 3, . . . , k + 2

(4.12)

where r1 = t∗ − tj, r2 = tj+1 − t∗, and r3 = tj+2 − tj+1.

Since the relocation move does not involve a change in dimensions, the accep-

tance probability is min{1, AMH} where

AMH = (likelihood ratio)× (prior ratio)× (proposal ratio)

=

∏n
i=1 fy (yi|k, t,β,α, τ) (t∗ − tj) (tj+2 − t∗)∏n

i=1 fy

(
yi|k − 1, t̃, β̃,α, τ

)
(tj+1 − tj) (tj+2 − tj+1)

(
β̃jβ̃j+1β̃j+2

βjβj+1βj+2

)c1−1

×

exp

{
−c2

[
k+2∑
j=1

β̃j −
k+2∑
j=1

βj

]}
×

∏k+2
j=1 I

{
0 < β̃j <∞

}
∏k+2

j=1 I {0 < βj <∞}
× 1

Note that fy (yi|k, t,β,α, τ) is the normal density with mean ηi =
∑k+2

j=1 βjδji +∑p
j=1 αjvji and standard deviation of τ

−1/2 and fy

(
yi|k − 1, t̃, β̃,α, τ

)
is the normal

density with mean η̃i =
∑k+2

j=1 β̃j δ̃ji +
∑p

j=1 αjvji and standard deviation of τ−1/2.

Also, δ̃ji is the (i)th value of the (j)th I-spline basis vector created using proposed

knot locations, t̃, and δji is the (i)th value of the (j)th I-spline basis vector created

using knot locations before moving knot, t.
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4.4 Examples

To examine the performance of the proposed RJMCMC algorithm, we con-

sidered applying the algorithm to two simulated data sets with the �rst data set

simulated using a smooth regression sigmoid regression function,

f (x) = 5 · exp (10x− 5) / [1 + exp (10x− 5)] (4.13)

(Figure 4.1) and the second data set simulated using a more wiggly piecewise sigmoid

function

f (x) = f1 (x) I[0,0.3] (x) + [f1 (0.3) + f2 (x)] I(0.3,0.65] (x)

+ [f2 (0.65) + f3 (x)] I(0.65,1] (x) (4.14)

with

f1 (x) = 8 · exp (40x− 4) / (1 + exp (40x− 4))

f2 (x) = 8 · exp (40x− 20) / (1 + exp (40x− 20))

f3 (x) = 8 · exp (40x− 36) / (1 + exp (40x− 36))

(Figure 4.5). The data sets are simulated under the normal errors model with yi =

f (xi) + εi where xi i = 1, . . . , n are n = 50 values at equally spaced quantiles over

the interval [0, 1] and εi are the random errors generated from a normal distribution

with mean zero and a standard deviation of 1.5. The algorithm is run 110,000

iterations with the �rst 10,000 discarded as burn-in.

4.4.1 Smooth Sigmoid Function

Figure 4.1 shows the data set generated from the sigmoid function (dotted-

line) given in (4.13) and the regression function estimate found using the RJMCMC

algorithm discussed in Section 4.3 with λ = 5 (red solid line) along with the 95%

pointwise highest posterior density (HPD) interval for the η =
∑m

j=1 βjδj + α1
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found using the η̂(i) values and Chen-Shao estimation algorithm (Chen et al., 2000,

Ch 7). Figure 4.1 also shows the constrained maximum likelihood estimator using

shape-restricted regression splines, denoted ML SRRS, (dashed line) found using

k = 3 interior knots at the 1/4, 1/2, and 3/4 x-quantiles marked by �X.� Note that

both the ML SRRS estimate and the estimate found using RJMCMC, which we will

denote RJMCMC, are close to the sigmoid function. This is further supported by

considering the square root of the estimate for MSE given by

ŜMSE =

√√√√ 1

n

n∑
i

(
f̂ (xi)− f (xi)

)2

(4.15)

where f̂ (xi) is the estimate for the function at xi for the given estimation procedure

and f (xi) is the true value of the regression function at xi. For ML SRRS, the

ŜMSE equals 0.40 and for RJMCMC, it equals 0.35. The 95% HPD found from the

RJMCMC algorithm output contains the true function for all xi.
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Figure 4.1: Data set generated from sigmoid function (grey dotted line) along with
RJMCMC estimate (red solid line), constrained maximum likelihood estimate using
shape-restricted regression splines (blue dashed line) �t using three �xed knot points
(marked by X's) and pointwise 95% highest posterior density interval for RJMCMC
estimate (shaded region).
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To further assess the performance of the RJMCMC algorithm, we examine

the mixing of k and the behavior of α and τ since these two parameters do not

change meaning as the value of k changes. Sisson (2005) discussed the current

approaches to assessing convergence of RJMCMC algorithms such as using a marked

point-process and di�culties in assessing convergence for trans-dimensional Markov

chains. Point processes are not easy to construct and are not the focus of this work

so we will focus on examining the mixing of k and behavior of α and τ through

some common diagnostics. Figure 4.2(a) shows good mixing for k and demonstrates

that the algorithm explores the parameter space. The convergence of the RJMCMC

is further supported by considering partial trace plots for α and τ (Figure 4.2(b)

and (c)). Likewise, the plots of the auto-correlation function (ACF) for α and τ

(Figure 4.3(c) and (d)) suggest that the algorithm is performing well. The histogram

of the posterior for τ found using RJMCMC has the mode very close to the true

value used to simulate the data (Figure 4.3(b)).

Another measure to consider when assessing the performance of our RJMCMC

algorithm is the Monte Carlo standard error (MCSE). We use MCSE to help de-

termine if the chain has run long enough. Using the batch method (Givens and

Hoeting, 2005, Ch 7) and considering realizations for a given parameter θ(i) from

the MCMC output, the MCSE is found by �rst separating the iterations after dis-

carding burn-in into L batches (L =2000 for our analysis) of m (m = 50 in our

analysis) consecutive iterations. The MCSE is found by

MCSE =
1√
L
·

√√√√ 1

L− 1

L∑
l=1

(
θ̄l − θ̄

)2

where θ̄l is the mean of batch l and θ̄ is the mean of the L batch means. As a rule of

thumb, if the MCSE for parameter θ is less than 5% of the sample standard deviation

of the MCMC realizations (minus burn-in) of θ, the chain is thought to have run

long enough. The MCSE for α equal to 0.0007 which is less than 5% of the sample
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standard deviation for α (0.011) and the MCSE for τ equal to 0 .0004 which is less

than 5% of the sample standard deviation for τ (0.005). Hence, when applying the

RJMCMC algorithm to this data set under the monotone shape restriction, we �nd

no evidence that our algorithm does not converge to the stationary distribution.
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Figure 4.2: (a) Partial trace plot for the number of interior knots, k for the sigmoid
example. (b) Partial trace plot for α for the sigmoid example. (c) Partial trace plot
for the precision for the normal errors, τ , for the sigmoid example.

We also compare the estimates for the regression function when using RJM-

CMC (free-knot splines) to the estimate found when �xing the number and knot

locations by comparing the function estimates for this data set found using the

RJMCMC algorithm to the function estimates found �xing knots at minimum of

x = (x1, . . . , xn)′, maximum of x, and k equally spaced quantiles in the interior of

the range of x. The function estimates using RJMCMC along with estimates with

k equal to 2 (blue dashed), 3 (dark green dotted), 4 (purple dot-dash) and 5 (orange

short-long dashed line) are shown in Figure 4.4. We �nd that having free versus

�xed knots gives similar estimates as evidenced by Figure 4.4 and the values ŜMSE

in Table 4.1.
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Figure 4.3: (a) and (b) Histogram of posterior draws after discarding burn-in for the
sigmoid example for α and τ , respectively. The vertical red dashed line represents
the true value of τ used to generate the data. (c) and (d) Auto-correlation functions
for α and τ , respectively.

For this smooth function, the estimate with �xed knots may be preferred since

the computational demand is signi�cantly less and the estimates with and without

�xing the knots are very similar. The run time on a DellTM InspironTM laptop

with an intel R© CoreTM i5 processor and Windows R© 7 Professional using the 64 bit

2.11.1 version of R is 1.515 minutes for 110,000 iterations of the MCMC algorithm

to estimate regression function for the data set in Figure 4.1(a) with �xed knots

and k = 3. The run time for RJMCMC estimate for the same data set on the same

computer for the same number of iterations is 11.734 minutes.

4.4.2 Wiggly Piecewise Sigmoid Function

To further examine the performance of RJMCMC, we examine the RJMCMC

estimate with λ = 10 for the wiggly function (Figure 4.5). Figure 4.5 gives the

RJMCMC (red solid line) and ML SRRS (blue dashed line) estimates with k =
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Figure 4.4: Data set generated from sigmoid function along with RJMCMC estimate
(solid line) and Bayesian shape-restricted regression spline estimates with �xed in-
terior knots at k equal quantiles over (0, 1) with k equal to 2 (blue dashed line), 3
(dark green dotted line), 4 (purple dot-dash line), and 5 (orange short-long dashed
line).

9 interior knots (knots marked by �X�) �xed at equal quantiles on (0, 1). Both

are close to the true function with ŜMSE = 0.34 for the RJMCMC estimate and

ŜMSE = 0.30 for ML SRRS estimate. The 95% pointwise HPD intervals found using

RJMCMC (Figure 4.5, shaded region) also contain the true function for most xi.

The partial trace plot for k shows good mixing and the partial trace plots for α and τ

support that the algorithm converged (Figure 4.6). The histograms of the posterior

distributions and ACF plots for α and τ (Figure 4.7) also suggest the algorithm has

converged. The MCSE of α and τ suggests that the algorithm has run long enough.

The MCSE for α equal to 0.0007 which is less than 5% of the sample standard

deviation for α (0.011), and the MCSE for τ equal to 0.0006 which is less than

5% of the sample standard deviation for τ (0.005). Thus, the RJMCMC algorithm

provides reasonable estimates for the the piecewise sigmoid function without having

to specify the number and location of interior knots even for functions that are not

very smooth.
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Table 4.1: Table of ŜMSE values as in (4.15) comparing the Bayes SRRS with k
equally spaced interior knots to the function used to generate the data as well as

the ŜMSE comparing the RJMCMC to the function used to generate the data.

k ŜMSE

2 0.44
3 0.26
4 0.41
5 0.27

RJMCMC 0.35

As with the smooth sigmoid function in Section 4.4.1, we compare the estimates

for the regression function when using RJMCMC to the estimate found when �xing

the number and knot locations. The function estimates using RJMCMC along with

estimates with k equal to 7 (blue dashed), 8 (dark green dotted), 9 (purple dot dash)

and 10 (orange short-long dashed line) are shown in Figure 4.8. Like the smooth

sigmoid function, the �xed and free-knot spline estimates are similar.

It is important to note that we found some sensitivity to the choice of the

hyperparameter λ for the RJMCMC algorithm and found that if λ is too small, τ

has slow convergence. Therefore, for functions that are wiggly, such as in Figure 4.5,

we recommend higher values of λ. For a simpler and computationally faster result,

one can �x the number and location of the interior knots. However, if one feels

uncomfortable �xing the knot locations, RJMCMC along with I-splines provide

reasonable estimates and is relatively easy to implement. It allows one to average

over several di�erent possible knot locations and estimate functions without having

to make assumptions about the number and location of knot points.
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Figure 4.5: Data set generated from the piecewise sigmoid function (grey dotted
line) along with RJMCMC estimate (red solid line), constrained maximum likelihood
estimate using shape-restricted regression splines (blue dashed line) �t using 9 �xed
knot points (marked by X's), and point wise 95% highest posterior density interval
(shaded region).

100000 102000 104000 106000 108000 110000

5
10

20

(a) Trace Plot for k

Iteration

 

100000 102000 104000 106000 108000 110000

11
.0

12
.0

(b) Trace Plot for α

Iteration

 

100000 102000 104000 106000 108000 110000

0.
2

0.
6

1.
0

(c) Trace Plot for τ

Iteration

 

Figure 4.6: Partial trace plots for the number of interior knots, k (a), the y-intercept,
α (b), and the precision for the normal errors, τ (c) when using RJMCMC to �nd
regression function estimate for data simulated from the piecewise sigmoid function.
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Figure 4.7: (a) and (b) Histogram of parameter realizations in the RJMCMC algo-
rithm after discarding burn-in for α and τ , respectively . The vertical red dashed line
represents the true value of τ used to generate the data. (c) and (d) Auto-correlation
functions for α and τ , respectively.
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Figure 4.8: Data set generated from the piecewise sigmoid function along with RJM-
CMC estimate (solid line) and Bayesian shape-restricted regression spline estimates
with �xed interior knots at k equal quantiles over (0, 1) with k equal to 7 (blue
dashed line), 8 (dark green dotted line), 9 (purple dot-dash line), and 10 (orange
short-long dashed line).
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Chapter 5

BAYESIAN SHAPE-RESTRICTED REGRESSION SPLINES MODEL

WITH CHANGE-POINTS

5.1 Introduction and Motivation

Consider an extension to the Bayes SRRS model discussed in Chapter 2 where

there exists an event or events that alter the relationship between covariates and

response variable that may violate the shape-restrictions. For instance, consider

measuring growth of vegetation in a given region across time but one suspects that

there were instances of major shock to the system (such as droughts, �res, �oods,

disease, or pollution) that may disrupt the monotonically increasing relationship

between vegetation growth and time. The number of major shocks and the time

when these events occur may be known or unknown. monotonically increasing

regression splines can be used to model the relationship between time and vegetation

growth between major events with more �exibility than assuming a parametric form

such as a line.

We consider a Bayesian model with shape-restricted regression splines and

change-points which imposes shape restrictions on the relationship between covari-

ates and a response variable between major events but accounts for events that

may violate the shape restrictions with change-points. We de�ne change-points as

covariate values for which violations of smoothness or the shape restriction occur

in the regression function. To obtain a multiple change-point model, we introduce

additional basis functions and combine them with the basis function for the Bayes

SRRS model in Chapter 2.
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We begin with some background on multiple change-point analysis in Sec-

tion 5.2. We propose a multiple change-point model with shape-restricted regres-

sion splines in a Bayesian framework in Section 5.3. In Section 5.4, we propose

a RJMCMC algorithm to estimate regression functions with h change-points with

the number of change-points and their locations known. In Section 5.5, we propose

a RJMCMC algorithm for function estimation for a model with a single change-

point whose location is unknown where we allow the number and location of knots

points between the minimum covariate value and the change-point be random as

well as allow the number and location of knots points between the change-point

and the maximum covariate to be random. We conclude the chapter by proposing

a RJMCMC algorithm to determine whether to use a Bayes SRRS model without

change-points or use a model with a single change-point. This model can be used

to determine the existence of a change-point for a given data set when it is as-

sumed that the relationship should be monotonically increasing between covariate

and response variable.

5.2 Background

Change-point models have been studied extensively and are currently a hot

topic in statistics literature. Non-parametric tests for the existence of a change-

point have been around for quite awhile. Wolfe and Schechtman (1984) performed

a simulation study to compare the performance of several non-parametric tests used

to determine whether or not a change-point is appropriate for a given data set. In

the context of regression analysis, Muller (1992) provided a non-parametric change-

point model to detect a single jump point or discontinuity in slope using kernel

smoothers. The change-point location was found by maximizing the di�erence in

function estimates using one-sided kernels. He provided asymptotic distributions

and rates of convergence for a Gaussian process. Braun and Muller (1998) extended
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this idea and examined the detection of multiple change-points using local polyno-

mial estimation with applications to the deoxyribonucleic acid (DNA) sequencing.

They assumed smooth polynomial functions between jump-points and suggested

using cross validation or a threshold for estimated jump-heights to determine the

number of jump points. Once the number of jump-points was found along with

an appropriate bandwidth, local polynomials were �t to segments of data between

estimated jump-points using an appropriate kernel. Other models that involve esti-

mating discontinuous regression functions using non-parametric smoothers between

change-points can be found in Wu and Chu (1993), Eubank and Speckman (1994),

Muller and Song (1997), Qiu and Yandell (1998), Gijbels et al. (1999), and Gijbels

and Goderniaux (2004), among others. The majority of these articles allowed discon-

tinuities in slope in the regression function as well as jumps. Koo (1997) estimated

regression functions with discontinuities using piecewise linear splines between dis-

continuities in a frequentist framework. The placement of knot and change-points

were determined by an algorithm that involves stepwise knot addition, stepwise knot

deletion, as well as deletion of basis vectors and what they termed �knot merging.�

They used knot merging to determine whether a continuous or discontinuous linear

spline was appropriate at a given candidate location for a change-point. Gijbels

et al. (2007) proposed a method for estimating regression curves with unknown dis-

continuities using local linear kernel smoothing and an algorithm which, for a given

value of x, decides between a local linear estimate based on data points to left of x,

data points to the right of x , or data points to the left and right of x.

Change-point models in a Bayesian framework have also been extensively stud-

ied. Carlin et al. (1992) used a hierarchical Bayesian model along with a Gibbs

sampler to model data with at most one change-point for a Poisson process model

and simple linear regression. Raftery (1993) produced a fully Bayesian framework

to model data where at most one change-point is assumed to occur and considered
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a linear regression model and a Poisson process. He extended his model to two di-

mensions and considered change curves. Chib (1998) provided a general framework

to estimate multiple change-point models using a Bayesian approach with a latent

discrete state variable used to determine the number of change-points. This method

involved a Markov chain Monte Carlo sampling algorithm and was applied to bi-

nary data and a Poisson process. However, it was not applied to non-parametric

models or regression splines. Rotondi (2002) also considered a change-point model

with an unknown number of change-points and change-point locations. He used a

RJMCMC algorithm to model a Poisson process and applied his method to earth-

quake data. Fearnhead (2006) provided an algorithm to estimate the number and

location of multiple change-points in a Bayesian setting that is based on recursions

as opposed to the RJMCMC algorithm and applied this algorithm to several data

sets including one that was �t using a piecewise constant model. However, he did

not consider any higher order regression splines or shape restrictions. He considered

two priors on the number and location of change-points with one prior similar to

the one used to in the RJMCMC algorithm to �t piecewise quadratic I-splines in

Chapter 4 and the other based on a point process on positive and negative integers.

His procedure was able to generate draws for the number of change-points separate

from the other parameters which can not be duplicated when there are constrained

regression splines. Giordani and Kohn (2008) approached change-points from a dif-

ferent perspective and modeled a time series with unknown magnitudes and number

of changes to parameters using a state-space representation. They modeled change-

points using mixture distributions for state innovations. Thomson et al. (2010) used

linear regression splines along with change-points to model changes in the relation-

ship between abundance of pelagic �sh species and time. They considered a model

that identi�es change-points common to multiple species. They essentially �t multi-

ple change-point models with piecewise linear splines �t between jump-points. The

knots for the piecewise linear splines as well as the jump points were treated as
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random and RJMCMC was used to estimate these values. We extend this idea by

considering piecewise quadratic splines and impose shape restrictions on the spline

functions. Since we are dealing with piecewise splines of a degree higher than one,

we also allow changes in slope as well as jumps at change-points.

Multiple change-points models with shape-restrictions have also been studied.

Holmes and Heard (2003) used piecewise constant functions to model monotonic

regression functions where the location and the number of steps were random. They

used a RJMCMC algorithm with priors for the unconstrained step function and

discarded draws where the monotone constraint was not met in order to estimate a

monotonically increasing function. For normal errors data, Alvarez and Dey (2009)

proposed a fully Bayesian parametric model for function estimation for several di�er-

ent shape restrictions including monotonicity that allowed for change-points. How-

ever, this model did not allow one to directly estimate the location and the number

of change-points and required the speci�cation of a �tuning� parameter which deter-

mined the smoothness of the �t. Ma and Yang (2010) provided a model for detecting

existence of jump points by using either piecewise constant or piecewise linear B-

splines. If change-points were found to exist, they used BIC as well as a hypothesis

test to determine the location and magnitude of the jump points. We extend pre-

vious work by proposing Bayesian models using quadratic I-splines which allow us

to imposed shape-restrictions on the regression functions between the change-points

simply by restricting some of the regression coe�cients to be positive.

5.3 Multiple Change-point Shape-restricted Regression Spline Model

The proposed multiple change-point model uses shape-restricted regression splines.

We begin by considering the shape-restricted regression spline model in Section 2.2

with ηi as de�ned in (2.2). We generalize the Bayes SRRS model to a multiple

change-point model under the monotone shape restriction and rede�ne the spline

approximation of η in (2.3) to include change-points. When we say the function
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f (x) has a change-point at x = ξi, we mean the function f has a discontinuity,

i.e., unequal left and right �rst derivatives, or a violation of the shape restriction

at ξi by a jump down at a change-point. This model allows for the estimation of

regression functions with a �nite number of violations of the shape restriction. To

simplify notation and the explanation of the multiple change-point shape-restricted

spline model, we describe a model for a single continuous covariate and assume we

observe data (xi, yi) for i = 1, . . . , n with x = (x1, , . . . , xn)′ and y = (y1, . . . , yn)′.

However, this model can be extended to include additional covariates.

5.3.1 Shape-restricted Spline Approximation

The shape-restricted spline approximation is created by �rst de�ning a new

set of basis functions and then taking a linear combination of these basis functions

to create our function estimate. For a model with h change-points, we assume

k interior knot points with which to create the basis functions. We assume that

the change-points occur at the interior knot points so k ≥ h. We de�ne a knot

location vector t = (t1, . . . , tk+2)′ with min (x) = t1 < t2 < . . . < tk+1 < tk+2 =

max (x). Let the ordered change-point location vector be ξ = (ξ0, ξ1, . . . , ξh, ξh+1)′

with min (x) = ξ0 < ξ1 < . . . < ξh < ξh+1 = max (x) with the h change-points,

ξq for q = 1, . . . , h. Since the change-points are required to occur at interior knot

points, (ξ1, . . . , ξh) = (tj1 , . . . , tjh) for ji ∈ {2, . . . , k + 1} and i = 1, . . . , h. Let

J = {j1, . . . , jh}. We de�ne basis functions δj (x) for j = 1, . . . ,m = k + 2 to be

the (j)th quadratic I-spline basis functions as de�ned in (1.8) created using x and

t where δj has a positive slope at the (j)th largest knot location. We de�ne basis

functions δm+q (x) for q = 1, . . . , h by

δm+q (x) = (x− ξq) I {x > ξq} (5.1)

where I {·} denotes the indicator function and note these basis functions allow for

a di�erence in the left and right derivatives at the change-points. De�ne v1 (x) =
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I {x ≤ ξ1} , vh+1 = I {x > ξh}, and vq (x) for q = 2, . . . , h by

vq(x) = I {ξq−1 < x ≤ ξq} , (5.2)

and note these functions allow for discontinuities in f at the change-points. Using

these basis functions, we approximate f (xi) by

m+h∑
j=1

βjδj (xi) +
h+1∑
j=1

αjvj (xi) (5.3)

where the shape restriction is imposed between change-points by constraining the

β = (β1, . . . , βm+h) parameter vector. The constraints on β are described in Sec-

tion 5.3.2. Note that if h = 0 then we have the shape-restricted spline model as in

Chapter 2.

5.3.2 Monotonicity Constraint

To impose the monotonically increasing shape restriction between change-points,

we require η′ (x) > 0 (or η′ (x) < 0 for monotonically decreasing) between change-

points. Note that since we estimate η (xi) with a piecewise quadratic polynomial

spline, the derivative of our estimate will be a piecewise linear polynomial spline.

Therefore, the derivative, given by

m∑
j=1

βjδ
′
j (x) +

h∑
j=1

βm+jI {x > ξj}

will be positive (negative) if it is positive (negative) at each knot point

t = (min(x) = t1, . . . , tm = max (x))

and the left and right derivatives evaluated at each ξq are positive (negative). For

quadratic I-splines, δ′j (x) is a degree one M -spline and δ′j (tl) is nonzero for j = l

only. Furthermore, each basis function can be scaled such that

δ′j (tj) = 1

δ′j (ti) = 0 for i 6= j.
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Therefore, we can enforce monotonicity by requiring βj ≥ 0 for j = 1, . . . , j1, βj +∑i
q=1 βm+q ≥ 0 for ji ≤ j ≤ ji+1 and i = 1, . . . , h − 1, and βj +

∑h
q=1 βm+q ≥ 0 for

jh ≤ j ≤ m.

We can reparameterize the model such that the constraints can be imposed

simply by requiring coe�cients of some of the transformed basis functions to be

positive. This is best illustrated by using matrix notation. De�ne ∆ as a matrix

with columns δj = (δj1, . . . , δjn)′ for j = 1, . . .m + h where δji = δj (xi) and V

as a matrix with columns vj = (vj1, . . . , vjn)′ for j = 1, . . . , h + 1. The vectors δj

are scaled such that δ′jvi = 0 for i = 1, . . . , h + 1. Let β = (β1, . . . βm+h)
′ and

α = (α1, . . . , αh+1)′. Thus, using matrix notation, the shape-restricted regression

spline estimate is

∆β + Vα. (5.4)

Using this matrix notation, the constraints can be imposed by letting

S =


Im Jj1+1 Jj2+1 · · · Jjh+1

ej1 1 0 · · · 0
ej2 1 1 · · · 0
...

...
... · · · ...

ejh 1 1 · · · 1


where Im is an m × m identity matrix, eji is a 1 × (m+ h) vector with elements

of zero except for the ji element that is equal to one, Jji+1 is a (m+ h)× 1 vector

with elements of zero for rows 1 to ji and elements of 1 from rows ji + 1 to m+ h.

The shape restriction is met by requiring Sβ ≥ 0 (Sβ ≤ 0 for monotonically

decreasing), where A ≥ 0 implies each element in A is greater than or equal to zero.

Let b = (b1, . . . , bm+h)
′ = Sβ and thus

β = S−1b. (5.5)

Using the reparameterization in (5.5) and substituting in (5.4), our estimate is

∆S−1b+ Vα = ∆∗b+ Vα. (5.6)
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Thus, we can approximate f (xi) by

m+h∑
j=1

bjδ
∗
ji +

p+h∑
j=1

αjvji (5.7)

where δ∗j =
(
δ∗j1, . . . , δ

∗
jn

)′
is the (j)th column of ∆∗ = ∆S−1. A monotone spline es-

timate is obtained by requiring bj ≥ 0 for all j = 1, . . . ,m+h. It is important to note

that ∆∗ will have a column equal to a zero vector if there are no data points between

a change-point and any of the interior knot points adjacent to that change-point.

When performing analysis using any of the three RJMCMC algorithms discussed in

Sections 5.4, 5.5, and 5.6, this will result in a division by zero. Thus, we want to

avoid placing knot points that are too close together.

For the Bayesian model, we assume the prior for α = (α1, . . . , αp+h)
′ is multi-

variate normal with mean equal to a zero vector of length h+ 1 and variance equal

to MIh+1 where M is a constant chosen by the user and Ih+1 is a (h+ 1)× (h+ 1)

identity matrix. For all the examples, we used M = 1000. We assume the b pa-

rameters are independent and note that the prior for each bj coe�cient should have

support on the positive reals and choose a gamma prior with a shape value of c1

and a rate value of c2 for each bj. The values for c1 and c2 can again be chosen such

that the mean of the gamma prior is large than the variance is relatively small to

aid in the estimation of functions with ��at� spots.

5.3.3 Normal Errors Model

We now focus on estimating the regression function under the normal errors

model. Suppose we observe data (xi, yi) with i = 1, . . . , n and yi = f (xi) + εi

where εi is a random normal error with variance σ2 and precision τ = 1/σ2. We

assume that f is monotonically increasing and smooth except at h change-points.

To estimate f we use the multiple change-point shape-restricted spline regression

model discussed in Section 5.3.2. We propose a Bayesian model using the priors for

α and b as given in Section 5.3.2 and assume τ ∼ Gamma(d1, d2), where the prior
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parameters are chosen so that the mean of the prior density, d1/d2, is the inverse of

a guess for the model variance.

The likelihood for the normal errors model is proportional to

L (α, b, τ ; Y ) ∝ τn/2 exp

−τ2
n∑
i=1

(
yi −

m+h∑
j=1

bjδ
∗
ji −

h+1∑
j=1

αjvji

)2
 (5.8)

and the joint prior density is

p (α, b, τ) ∝
[∏m+h

j=1 I {0 < bj <∞})
] [∏m+h

j=1

(
bc1−1
j exp {−bjc2}

)]
×[

exp
{
−
∑h+1

j=1
1

2M
α2
j

}
τ d1−1exp {−d2τ} I {0 < τ <∞}

]
. (5.9)

The posterior distribution is proper but analytically intractable, so Markov chain

Monte Carlo methods (Givens and Hoeting, 2005, Ch 7) are used to obtain samples

from the posterior distribution as with normal errors model in Chapter 2.

In particular, we use a Gibbs sampler to sample from the posterior distributions

and the conditional distributions used in this sampler are given below. Let b(−j0)

be the b vector with bj0 removed and similarly let α(−j0) be the α vector with αj0

removed. The conditional posterior density for αj0 , given the data, τ , b, and α(−j0)

is given by

p
(
αj0|b,α(−j0), τ,y

)
∼ N

(
τ

ταj0

n∑
i=1

rivji,
(
ταj0

)−1

)
, (5.10)

where ταj0
= 1/M + τ

∑n
i=1(vj0i)

2, ri = yi −
∑m+h

j=1 bjδ
∗
ji −

∑
j 6=j0 αjvji, and the sum

over j 6= j0 denotes the sum over j = 1, . . . , h+ 1 excluding j = j0. The conditional

posterior density for τ given the data, b and α coe�cients, is

p (τ |b,α,y) ∼ Gamma (d1 + n/2, d2 + SSE/2) , (5.11)

where SSE=
∑n

i=1 (yi − ri)2 with ri =
∑m+h

j=1 bjδ
∗
ji +

∑h+1
j=1 αjvji (the sum of squared

residuals given the coe�cients). The conditional posterior density for bj0 , given the
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data, τ , α, and b(−j0) is

p
(
bj0|b(−j0),α,y

)
∝ bc1−1

j0
exp

−s∗j0τ2

[
bj0 −

(
n∑
i=1

riδ
∗
j0i

s∗j0
− c2

s∗j0τ

)]2
×

I {0 < bj0 <∞} , (5.12)

where ri = yi −
∑

j 6=j0 bjδ
∗
ji −

∑h+1
j=1 αjvji, the sum over j 6= j0 denotes the sum over

j = 1, . . . ,m+h excluding j = j0, and s
∗
j0

=
∑n

i=1(δ∗j0i)
2. The density is of the form

f(x) ∝ xa exp{−d(x − c)2}I{x > 0} where x = bj0 , a = c1 − 1, d = s∗j0τ/2 > 0,

c =
∑n

i=1 riδ
∗
j0i
/s∗j0 − c2/(s

∗
j0
τ), and I {·} is the indicator function. This is the same

form as the conditional distribution for each βl0j0 in Section 2.4 and can be sampled

from using the Metropolis-Hastings algorithm or the auxiliary variable Markov chain

Monte Carlo technique (Meyer and Laud, 2002; Givens and Hoeting, 2005, Ch 8.1)

discussed in Section 2.4.

5.4 Multiple Change-point Model with Change-point Locations Fixed

In this section, we consider function estimation when change-points are known.

Assume the normal errors multiple change-point model discussed in Section 5.3.3.

Further, we assume h change-points with locations known and that the function

is monotonically increasing between the change-points. We also assume the func-

tion is monotonically increasing between the minimum value for the covariate and

the smallest change-point as well as monotonically increasing between the largest

change-point and the maximum value for the covariate. We refer to the minimum

and maximum values of the covariate as the endpoints. We estimate the regres-

sion function using free-knot splines with the number and location of interior knots

between change-points as well as number and location of interior knots between end-

points and change-points unknown using a RJMCMC algorithm, which we call the

RJMCMC 1 algorithm. The RJMCMC 1 algorithm estimates regression function

with h change-points where the change-points locations are known and �xed. For
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this algorithm, we scale x such that its range is the unit interval with min (x) = 0

and max (x) = 1 and scale y such that it has a mean of zero and variance of one.

5.4.1 Overview of the RJMCMC 1 Algorithm for Fixed Change-points

The RJMCMC 1 algorithm is similar to the RJMCMC algorithm for Bayes

SRRS model without change-points proposed in Chapter 4. The RJMCMC 1 algo-

rithm can be summarized as follows:

1. Perform a �birth�, �death�, or �relocation� move and accept the proposed pa-

rameters with a given acceptance probability.

2. Perform a �coe�cient update� step using a Gibbs sampler step to update α,

b, and τ .

3. Repeat until convergence.

The birth, death, and relocation moves are performed with probabilities bk, dk, and

rk, respectively, with these probabilities given in the next paragraph. The birth,

death, and relocation moves are discussed further in Sections 5.4.3.1, 5.4.3.2, and

5.4.3.3, respectively. Once a birth, death, or relocation move has been performed,

we perform the coe�cient update step using the values of k (the current number

of interior knots including change-points) and the interior knot locations obtained

from the birth, death, or relocation move. This is a Gibbs sampler step where the

conditional distributions in Section 5.3.3 are used to update the parameter values

for b, α, and τ .

Let k be the current number of interior knots including change-points and de�ne

bk = c ·min {1, fk( k+1 )/fk (k)}, dk = c ·min {1, fk (k − 1) /fk (k)}, rk = 1−bk−dk,

and c = 0.4 where fk (·) is the density of the prior on the number of interior knots

(discussed in Section 5.4.2). We place bounds on the possible values for k with

lower bound denoted by kmin and upper bound denoted by kmax. We choose to let
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kmin = 2h + 1 because we require interior knots at each change-point location, at

least one interior knot between change-points, at least one interior knot between

the minimum value of the covariate and the smallest change-point, and at least

one interior knot between the largest change-point and the maximum value of the

covariate. We suggest a large value for kmax but suggest that is be much smaller than

n to ensure quite a few data points between knot points. For the examples in this

chapter, we would like many data points between knot points so use kmax = n/4 or

kmax = n/5. To avoid proposing moves with k outside of [kmin, kmax], we let bk = 1,

dk = 0, and rk = 0 if k = kmin knots and bk = 0, dk = 1, and rk = 0 if k = kmax

knots.

As with the RJMCMC algorithm in Chapter 4, for the RJMCMC 1 algorithm,

the parameters proposed in each move in the �rst step of the algorithm are accepted

with probability min {1, A} with

A = (likelihood ratio)× (prior ratio)× (proposal ratio)× |det (Jacobian)| (5.13)

where the acceptance probability for the birth, death, and relocation moves are

given in Sections 5.4.3.1, 5.4.3.2, and 5.4.3.3, respectively.

5.4.2 Priors for the RJMCMC 1 Algorithm

Since the number and location of the interior knots that are not change-points

are random, we need to assume priors for the number of interior knots, k, and the

interior knot locations, t = (t1, . . . , tk+2)′. For k, we assume a Poisson(λ) prior

truncated on (kmin, kmax) as in Section 4.2.2 with values of kmin and kmax given in

Section 5.4.1. As with the RJMCMC algorithm in Chapter 4, the hyperparameter λ

can be adjusted to help improve mixing. For the examples in this section, we choose

a value λ that is at least as large as kmin.

We need to take two things into account when assuming a prior for t. Since the

change-point locations are known and they are assumed to be interior knots then

109



we only have k−h �free� interior knots. We also need to enforce the restriction that

there is at least one interior knot between change-points as well as one interior knot

between the minimum value of the covariate and the closest change-point and one

interior knot between the maximum value of the covariate and the closest change-

point. Thus, for h+1 interior knot locations, we have the following prior distribution

h+1∏
i=1

1

ξi − ξi−1

where ξ = (t1 = ξ0, ξ1, . . . , ξh, tk+2 = ξh+1)′ is as in Section 5.3.1 with ξ0 < ξ1 < · · · <

ξh < ξh+1. If k > (2h+ 1), the prior for these k−(2h+ 1) interior knots are indepen-

dent uniform distributions over the range of x excluding small intervals around the

change-points to avoid having interior knot points too close to the change-points. Let

dli be the second largest x value contained in the interval (tj, tj+1) where tj+1 = ξi.

Thus, of all interior knots smaller than the change-point, tj is the interior knot that

is closest to ξi. Let dui be the second smallest x value that is contained in the inter-

val (tj+1, tj+2) where tj+1 = ξi. Let d = (t1 = du0, dl1, du1 . . . , dlh, duh, dl,h+1 = tk+2).

Thus, the prior for these k− (2h+ 1) interior knot locations is the product of inde-

pendent uniform distributions over

h+1⋃
i=1

(du,i−1, dl,i)

Therefore, the priors for each of the k − (2h+ 1) interior knot locations (if they

exist) is a uniform distribution with density

1∑h+1
i=1 (dli − du,i−1)

.

For the remaining parameters in the Bayesian model, we used the priors given

in Sections 5.3.2 and 5.3.3. We use independent gamma priors with shape parameter

c1 and rate parameter c2 for the constrained basis spline coe�cients (b) and vague

normal priors with mean 0 and large variance M for the unconstrained basis splines

and coe�cients (α). We use a gamma prior with shape parameter d1 and rate

parameter d2 for the precision of the random error (τ = 1/σ2).
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5.4.3 RJMCMC 1 Algorithm Implementation

In this section, we describe how we propose the new knot locations for each

move type of the RJMCMC 1 algorithm where the change-points are �xed. We

explain how we propose new values for the restricted regression coe�cients and also

derive the acceptance probability for each move type.

5.4.3.1 Birth Move

In the birth move, we add a new interior knot that is not a change-point to

a model. As with the birth move in Section 4.3.1, we move from a model with k

interior knot locations to a model with k + 1 interior knot locations and update

the coe�cients based on the addition of the interior knot. Let t = (t1, . . . , tk+2)′

be the ordered current knot locations for the model with k interior knots. Let

ξ1, . . . , ξh be the ordered known change-points with (ξ1, . . . , ξh)
′ = (tj1 , . . . , tjh)′ for

ji ∈ {2, . . . , k + 1} and i = 1, . . . , h. Let J = {j1, . . . , jh}. As in Section 5.3.1, let

ξ = (t1 = ξ0, ξ1, . . . , ξh, tk+2 = ξh+1)′. For the change-point model, we require that

the new interior knot location is not a change-point and also want to avoid adding

an interior knot too close to existing interior knots. To meet these requirements, we

�rst �nd a set of candidate intervals de�ned by

tcand = {(tl, tl+1) : l = 1, . . . , k + 1 and at least four x′is are contained within (tl, tl+1)}

and denote the cardinality of tcand by nt. From tcand, we randomly select an interval

with which to generate the new knot point and denote this interval by (tj, tj+1).

The new knot location, denoted t∗, is then generated randomly from a continuous

uniform distribution on (lb, ub). The bounds on the uniform distribution, lb and ub,

are found by de�ning Uj = {xi : xi ∈ (tj, tj+1)}. Let lb be the second smallest xi in

Uj unless j = 1. If j = 1, let lb = min (x) = 0. Let ub be the second largest xi in

Uj unless j + 1 = k + 2. If j + 1 = k + 2, let ub = max (x) = 1. The proposed knot

location vector is t̃ =
(
t̃1, . . . , t̃k+3

)′
= (t1, . . . , tj, t

∗, tj+1, . . . , tk+2)′.
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With the addition of t∗, we need to propose new values for the b parameters that

preserve the shape restriction but also produce a function estimate that preserves

the properties of the current function estimate such as a function estimate with the

same range. Let b = (b1, . . . , bk+2+h)
′ be the current b values for the model with k

interior knots and let b̃ =
(
b̃1, . . . , b̃k+3+h

)′
be the proposed b values after adding

t∗. Let u be a random variable generated from a uniform distribution over (0, 1).

To update b, we consider two possible cases. The �rst case occurs when tj is not

a change-point and the second case occurs when tj is a change-point. For the �rst

case where tj is not a change-point, let

b̃l =



bl for l = 1, . . . j − 1

(1− u) bl for l = j

u (bl−1 + bl) for l = j + 1

(1− u) bl−1 for l = j + 2

bl−1 for l = j + 3, . . . , k + 3 + h

. (5.14)

Note that this coe�cient update function only changes coe�cients of δ∗l that have

positive slope between tj and tj+1. Thus, it produces a function estimate that is

close to the current function estimate. Furthermore, this coe�cient update function

ensures all elements of b̃ are positive so it also preserves the monotonically increasing

shape restriction. For the second case where tj is a change-point, we have that tj = ξi

for some i ∈ {1, . . . , h}. We let

b̃l =



bl for l = 1, . . . j

u (bl−1 + bl) for l = j + 1

(1− u) bl−1 for l = j + 2

bl−1 for l = j + 3, . . . , k + 3 + i− 1

(1− u) bl−1 for l = k + 3 + i

bl−1 for l = k + 3 + i+ 1, . . . , k + 3 + h

.k − 1 (5.15)

Note that this coe�cient update function also only changes coe�cients of δ∗l that

have positive slope between tj and tj+1 and ensures all elements of b̃ are positive

so it preserves the monotonically increasing shape restriction. We do not update α

and τ and leave this for the coe�cient update step.
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Next, we derive the acceptance probability for this birth move from a model

with k interior knots to a model with k+1 interior knots using (5.13). The acceptance

probability for the birth move is equal to min{1, Ab} with

Ab = LRb × Priorb × Propb × Jacobb (5.16)

where LRb is the likelihood ratio, Priorb is the prior ratio, Propb is the proposal ratio

and Jacobb is the absolute value of the Jacobian, |det (Jacobian)| for the birth move

from model with k interior knots to model with k+ 1 interior knots. The likelihood

ratio in (5.16) for the birth move is given by

LRb =

∏n
i=1 fy

(
yi|k + 1, t̃, ξ, b̃,α, τ

)
∏n

i=1 fy (yi|k, t, ξ, b,α, τ)
. (5.17)

Here, fy

(
yi|k + 1, t̃, ξ, b̃,α, τ

)
is the normal density with mean η̃i =

∑k+3+h
j=1 b̃j δ̃

∗
ji+∑h+1

j=1 αjvji and standard deviation τ−1/2 where vji is de�ned as in (5.7). δ̃∗ji as

de�ned in Section 5.3.2 is the (i)th element of δ̃∗j which is the (j)th basis vector

found using x, the knot location vector t̃, and ξ. In (5.17), fy (yi|k, t, ξ, b,α, τ) is

the normal density with mean ηi =
∑k+2+h

j=1 bjδ
∗
ji+
∑h+1

j=1 αjvji and standard deviation

τ−1/2 where vji is de�ned as in (5.7). δ∗ji is the (i)th element of δ∗j found using using

x, the knot location vector t, and ξ.

The prior ratio in for the birth move, Priorb in (5.16), is

Priorb

=
p (k + 1) p

(
t̃|k + 1, h, ξ

)
p
(
b̃|k + 1, h

)
p (α|h) p (τ)

p (k) p (t|k, h, ξ) p (b|k, h) p (α|h) p (τ)

=
λk+1

(k + 1)!
· (k)!

λk
·

[∏h+1
i=1 (ξi − ξi−1)−1

] [∑h+1
i=1 (dli − du,i−1)

]−(k+1−2h−1)

[∏h+1
i=1 (ξi − ξi−1)−1

] [∑h+1
i=1 (dli − du,i−1)

]−(k−2h−1)
×

∏k+3+h
i=1 fb

(
b̃i

)
∏k+2+h

i=1 fb (bi)

=
λ

k + 1

[
h+1∑
i=1

(dli − du,i−1)

]−1 ∏k+3+h
i=1 fb

(
b̃i

)
∏k+2+h

i=1 fb (bi)
. (5.18)
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Note that p (θ) is used to denote the density of the prior for a given parameter θ, λ

is the hyperparameter for Poisson prior for the number of interior knots, and fb (z)

is used to denote the density for the gamma prior for each bi evaluated at z. If we

have case (1) where tj is not a change-point, then the last line of (5.18) simpli�es to

cc12

(
b̃j b̃j+1b̃j+2

)c1−1

exp
{
−c2

(
b̃j + b̃j+1 + b̃j+2

)}
Γ (c1) (bjbj+1)c1−1 exp {−c2 (bj + bj+1)}

. (5.19)

If we have case (2) where tj is a change-point and tj = ξi, then the last line of (5.18)

simpli�es to

cc12

(
b̃j+1b̃j+2b̃k+3+i

)c1−1

exp
{
−c2

(
b̃j + b̃j+1 + b̃k+3+i

)}
Γ (c1) (bj+1bk+2+i)

c1−1 exp {−c2 (bj+1 + bk+2+i)}
. (5.20)

The proposal ratio for the birth move is found by �rst noting that the probability

of selecting the interval (tj, tj+1) from tcand is one over the cardinality of tcand , 1/nt,

and the probability of t∗ given we have selected interval (tj, tj+1) is 1/ (ub− lb).

Using this, we compute the proposal ratio and �nd it equal to

Propb =
Pr (death in k + 1 model)Pr (delete t∗)

Pr (birth in k model)Pr (interval (tj, tj+1))Pr (t∗)Pr (u)

=
dk+1 · 1

ndel

bk · 1
nt
· 1
ub−lb ·

1
1−0

=
dk+1 · nt · (ub− lb)

bk · ndel
, (5.21)

where Pr (death in k + 1 model) means the probability of a death move from a model

with k+ 1 interior knots to a model with k interior knots and Pr (birth in k model)

means the probability of a birth move from a model with k interior knots to a model

with k + 1 interior knots. In (5.21), ndel is the number of interior knots that are

eligible to be deleted in the model with interior knot location t̃ and discussed further

in Section 5.4.3.2. The values for bk and dk+1 are de�ned as in Section 5.4.1.

The absolute value of the determinant for the Jacobian for the birth move,

Jacobb in (5.16), is found by letting u1 = (t∗, u), (θ1, u1)′ = (k, t, b,α, τ, t∗, u)′,
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and letting g (·) be the function that maps (θ1,u1)′ to the proposed

θ′2 =
(
k̃ = k + 1, t̃, b̃, α̃, τ̃

)
. The Jacobian is ∂

[
g
(
(θ1,u1)′

)]
/∂ (θ1,u1)′. Hence,

when tj is not a change-point, we use the coe�cient update function proposed in

(5.14) and �nd that the determinant of the Jacobian is equal to the determinant of 1− u u 0
0 u 1− u
−bj bj + bj+1 −bj+1

 .
So the |det (Jacobian)| for the birth move for case (1) is

Jacobb = |(u− 1) (bj + bj+1)| =
∣∣∣b̃j+1 − bj − bj+1

∣∣∣ . (5.22)

Likewise, when tj is equal to change-point ξi, we use the coe�cient update function

proposed in (5.15) and �nd that the determinant of the Jacobian is equal to the

determinant of  u 0 0
u 1− u 1− u

bj+1 + bk+2+i −bj+1 −bk+2+i

 .
So the |det (Jacobian)| for the birth move for case (2) is

Jacobb = |(1− u) (bj+1 + bk+2+i)| =
∣∣∣bj+1 + bk+2+i − b̃j+1

∣∣∣ . (5.23)

5.4.3.2 Death Move

The death move deletes an interior knot that is not a change-point. It is a

move from a model with k interior knots to a model with k − 1 interior knots that

deletes one of the existing interior knots that is not a change-point and updates

the coe�cients in a deterministic fashion. From the existing ordered interior knot

locations excluding the change-points, we determine a set of candidate knot locations

for deletion and denote the set of them by tdel and denote the cardinality of tdel by

ndel. The set tdel is created by �rst de�ning the set L0 which is the set of all interior

knots that are not change-points. Let Li = {tj : tj ∈ (ξi−1, ξi)} for i = 1, . . . , h+ 1.

We de�ne t∗del to be the set of elements in L0 excluding any Li that have cardinality

of one. To ensure that the death move is the inverse of a birth move, we need at
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least four xi's between tj and tj+2 when we delete knot tj+1. Therefore, we remove

any tj+1 from t∗del for which there are less than four xi values between tj and tj+2.

This gives the set of candidate knots for deletion, tdel, with cardinality ndel. From

tdel, a knot location, say tj+1, is randomly selected to be removed giving proposed

knot locations t̃ = (t1, . . . , tj, tj+2, . . . , tk+2)′ =
(
t̃1, . . . , t̃j, t̃j+1, . . . , t̃k+1

)′
.

Given the new interior knot locations, we can update the coe�cients determin-

istically by de�ning the death move as the inverse of a birth move from k−1 interior

knots to k interior knots with new knot location t∗ = tj+1. The new b values are

denoted by b̃ =
(
b̃1, . . . , b̃k+1+h

)
and are found by inverting the coe�cient update

function in (5.14) or (5.15) depending on whether tj is a change-point. Thus, for

case (1) where tj is not a change-point, we propose a new coe�cient vector by letting

b̃l =


bl l = 1, . . . , j − 1
bl(bl+bl+1+bl+2)

bl+bl+2
l = j

bl+1(bl−1+bl+bl+1)

bl−1+bl+1
l = j + 1

bl+1 l = j + 2, . . . , k + 1 + h

. (5.24)

For case (2) where tj is a change-point and equal to ξi, we propose a new coe�cient

vector by letting

b̃l =



bl l = 1, . . . , j
bl+1(bl−1+bl+bk+2+i)

bl−1+bk+2+i
l = j + 1

bl+1 l = j + 2, . . . , k + i
bl+1(bj+1+bj+2+bl+1)

bj+2+bl+1
l = k + 1 + i

bl+1 l = k + 2 + i, . . . , k + 1 + h

. (5.25)

As with the birth move, we do not update α and τ until the coe�cient update step.

The acceptance probability for a death move is found by inverting the accep-

tance probability for a birth move from k − 1 to k interior knots with t∗ = tj+1.

Thus, the acceptance probability for the death move is equal to min
{

1, A−1
d

}
with

Ad = LRd × Priord × Propd × Jacobd

where LRd is the likelihood ratio, Priord is the prior ratio, Propd is the proposal

ratio and Jacobd is the absolute value of the determinant of the Jacobian, for a
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birth move from k − 1 to k interior knots with t∗ = tj+1. Thus,

LRd =

∏n
i=1 fy (yi|k, t, ξ, b,α, τ)∏n

i=1 fy

(
yi|k − 1, t̃, ξ, b̃,α, τ

) , (5.26)

where fy

(
yi|k − 1, t̃,ξ, b̃,α, τ

)
is the normal density with mean η̃i =

∑k+1+h
j=1 b̃j δ̃

∗
ji+∑h+1

j=1 αjvji and standard deviation τ−1/2. Here, vji is de�ned as in (5.7). δ̃∗ji as

de�ned in Section 5.3.2 is the (i)th element of δ̃∗j which is the (j)th basis vector

found using x, the knot location vector t̃, and ξ. fy (yi|k, t, ξ, b,α, τ) is the normal

density with mean ηi =
∑k+2+h

j=1 bjδ
∗
ji +

∑h+1
j=1 αjvji and standard deviation τ−1/2

where vji is de�ned as in (5.7). δ∗jiis the (i)th element of δ∗j found using using x,

the knot location vector t, and ξ.

For the death move,

Priord

=
p (k) p (t|k, h, ξ) p (b|k, h) p (α|h) p (τ)

p (k − 1) p
(
t̃|k − 1, h, ξ

)
p
(
b̃|k − 1, h

)
p (α|h) p (τ)

=
λk

(k)!
· (k − 1)!

λk−1
·

[∏h+1
i=1 (ξi − ξi−1)−1

] [∑h+1
i=1 (dli − du,i−1)

]k−2h−1

[∏h+1
i=1 (ξi − ξi−1)−1

] [∑h+1
i=1 (dli − du,i−1)

]k−1−2h−1
×

∏k+2+h
i=1 fb (bi)∏k+1+h
i=1 fb

(
b̃i

)
=

λ

k

[
h+1∑
i=1

(dli − du,i−1)

]−1

·
∏k+2+h

i=1 fb (bi)∏k+1+h
i=1 fb

(
b̃i

) . (5.27)

If we have case (1) where tj is not a change-point, then[∏k+2+h
i=1 fb (bi)

]/[∏k+1+h
i=1 fb

(
b̃i

)]
in the last line of (5.27) simpli�es to

cc12 (bjbj+1bj+2)c1−1 exp {−c2 (bj + bj+1 + bj+2)}

Γ (c1)
(
b̃j b̃j+1

)c1−1

exp
{
−c2

(
b̃j + b̃j+1

)} .

If we have case (2) where tj is a change-point and equal to ξi, then[∏k+2+h
i=1 fb (bi)

]/[∏k+1+h
i=1 fb

(
b̃i

)]
in the last line of (5.27) simpli�es to

cc12 (bj+1bj+2bk+2+i)
c1−1 exp {−c2 (bj+1 + bj+2 + bk+2+i)}

Γ (c1)
(
b̃j+1b̃k+1+i

)c1−1

exp
{
−c2

(
b̃j+1 + b̃k+1+i

)} .
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For the death move,

Propd =
Pr (death in k model)Pr (delete tj+1)

Pr (birth in k − 1 model)Pr (interval (tj, tj+2))Pr (tj+1)Pr (u)

=
dk · 1

ndel

bk−1 · 1
nt
· 1
ub−lb ·

1
1−0

=
dknt̃ (ub− lb)
bk−1ndel

(5.28)

where Pr (death in k model) denotes the probability of a death move from a model

with k interior knots to a model with k−1 interior knots and Pr (birth in k − 1 model)

denotes the probability of a birth move from a model with k − 1 interior knots to

a model with k interior knots. In (5.28), nt̃ is the cardinality of tcand found using t̃.

The values for ub and lb are found using x values in the interval (tj, tj+2).

For case (1) where tj is not a change-point,

Jacobd =
∣∣∣(u− 1)

(
b̃j + b̃j+1

)∣∣∣ =
∣∣∣bj+1 − b̃j − b̃j+1

∣∣∣ . (5.29)

Likewise, for case (2) where tj is equal to change-point ξi,

Jacobd =
∣∣∣(1− u)

(
b̃j+1 + b̃k+1+i

)∣∣∣ =
∣∣∣b̃j+1 + b̃k+1+i − bj+1

∣∣∣ . (5.30)

5.4.3.3 Relocation Move

A relocation move changes the location of an interior knot that is not a change-

point. It keeps the same number of interior knots, k, but the location of one knot

is moved and the coe�cients are updated deterministically based on this location

change. We create a candidate set of knots to move that excludes change-points

and also ensures that we do not place two interior knot points too close together.

We de�ne sets Wj+1 = {xi : xi ∈ (tj, tj+2)} for j + 1 = 2, . . . , k + 1 which are

the sets of data points between the two knot points surrounding tj+1. The set

of candidate knots, tmove, is the set of all knots, tj+1, for j = 1, . . . , k such that

tj+1 6= ξi for all i ∈ {1, . . . , h} and Wj+1 has cardinality of at least four. From

tmove, we randomly select an interior knot location and denote it by tj+1. Let nm
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be the cardinality of tmove so tj+1 is selected with probability 1/nm. We propose a

new interior knot location, t∗, from Uniform(lb, ub) where lb is the second smallest

xi in Wj+1 unless j = 1 then lb = 0 and ub is the second largest xi in Wj+1 unless

j = k then ub = 1. The proposed knots for the relocation move are given by

t̃ =
(
t̃1, . . . , t̃k+2

)′
= (t1, . . . , tj, t

∗, tj+2, . . . , tk+2)′.

Given new knot locations, t̃, we update the restricted regression coe�cients. We

update coe�cients for this relocation move similar to what is used for the relocation

move in Section 4.3.3 but we update the b values for the change-point model instead

of the β values. The distance between the tj and t
∗, the distance between t∗and tj+1

and the distance between t∗ and tj+2 which we denote by r1, r2, and r3, respectively,

will a�ect the magnitude of the change in the b values. Therefore, we use these to

update the restricted regression coe�cients. For case (1) where tj is not a change-

point and t∗ ≥ tj+1 , the coe�cients are updated according to

b̃l =



bl l = 1, . . . , j − 1

bl + 0.5r2
r1+r2+r3

bl+1 l = j
r1+0.5r3
r1+r2+r3

bl + r2
r2+r3

bl+1 l = j + 1
r3

r2+r3
bl + 0.5(r2+r3)

r1+r2+r3
bl−1 l = j + 2

bl l = j + 3, . . . , k + 2

(5.31)

where r1 = tj+1 − tj, r2 = t∗ − tj+1, and r3 = tj+2 − t∗. For case (1) where tj is not

a change-point and t∗ < tj+1, the coe�cients are updated according to

b̃l =



bl l = 1, . . . , j − 1
r1

r1+r2
bl + 0.5(r1+r2)

r1+r2+r3
bl+1 l = j

0.5r1+r3
r1+r2+r3

bl + r2
r1+r2

bl−1 l = j + 1

bl + 0.5r2
r1+r2+r3

bl−1 l = j + 2

bl l = j + 3, . . . , k + 2

(5.32)
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where r1 = t∗ − tj, r2 = tj+1 − t∗, and r3 = tj+2 − tj+1. For case (2) where tj is a

change-point and t∗ ≥ tj+1 , the coe�cients are updated according to

b̃l =



bl l = 1, . . . , j
0.5r3+r1
r1+r2+r3

bl + r2
r2+r3

bl+1 l = j + 1
0.5(r2+r3)
r1+r2+r3

bl−1 + r3
r2+r3

bl l = j + 2

bl l = j + 3, . . . , k + 1 + i
0.5r2

r1+r2+r3
bj+1 + bl l = k + 2 + i

bi l = k + 3 + i, . . . , k + 2 + h

(5.33)

where r1 = tj+1 − tj, r2 = t∗ − tj+1, and r3 = tj+2 − t∗. For case (2) where tj is a

change-point and t∗ < tj+1, the coe�cients are updated according to

b̃l =



bl l = 1, . . . , j
0.5r1+r3
r1+r2+r3

bl + r2
r1+r2

bk+2+i l = j + 1

bl + 0.5r2
r1+r2+r3

bl−1 l = j + 2

bl l = j + 3, . . . , k + 1 + i
r1

r1+r2
bl + 0.5(r1+r2)

r1+r2+r3
bj+1 l = k + 2 + i

bi l = k + 3 + i, . . . , k + 2 + h

(5.34)

where r1 = t∗− tj, r2 = tj+1− t∗, and r3 = tj+2− tj+1. As with the birth and death

moves, we do not update α and τ until the coe�cient update step.

The acceptance probability for the relocation move is min{1, Ar} where

Ar = LRr × Priorr × Propr.

Note that we do not have |det (Jacobian)| term in the acceptance probability for the

relocation move because the relocation move does not involve a change in dimen-

sions. The likelihood ratio for the relocation move is given by

LRr =

∏n
i=1 fy

(
yi|k, t̃, ξ, b̃,α, τ

)
∏n

i=1 fy (yi|k, t, ξ, b,α, τ)
, (5.35)

where fy

(
yi|k, t̃, ξ, b̃,α, τ

)
is the normal density with mean η̃i =

∑k+2+h
j=1 b̃j δ̃

∗
ji +∑h+1

j=1 αjvji and standard deviation τ−1/2 where vji is de�ned as in (5.7). δ̃∗j is the

(j)th basis vector with elements δ̃∗ji as de�ned in Section 5.3.2 and is found using

knot location vector t̃ and ξ. fy (yi|k, t, ξ, b,α, τ) is the normal density with mean
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ηi =
∑k+2+h

j=1 bjδ
∗
ji +

∑h+1
j=1 αjvji and standard deviation τ−1/2 where vji is de�ned as

in (5.7). δ∗j is the (j)th basis vector with elements δ∗ji as de�ned in Section 5.3.2

and is found using knot location vector t and ξ.

The prior ratio for the relocation move is

Priorr

=
p (k) p

(
t̃|k, h, ξ

)
p
(
b̃|k, h

)
p (α|h) p (τ)

p (k) p (t|k, h, ξ) p (b|k, h) p (α|h) p (τ)

=

[∏h+1
i=1 (ξi − ξi−1)−1

] [∑h+1
i=1 (dli − du,i−1)

]k−2h−1 [∏k+2+h
i=1 fb

(
b̃i

)]
[∏h+1

i=1 (ξi − ξi−1)−1
] [∑h+1

i=1 (dli − du,i−1)
]k−2h−1 [∏k+2+h

i=1 fb (bi)
]

=

∏k+2+h
i=1 fb

(
b̃i

)
∏k+2+h

i=1 fb (bi)
. (5.36)

We use the same notation in (5.36) as we did for the prior ratio for the birth move

in (5.18). If we have case (1) where tj is not a change-point, then the last line of

(5.36) simpli�es to(
b̃j b̃j+1b̃j+2

)c1−1

exp
{
−c2

(
b̃j + b̃j+1 + b̃j+2

)}
(bjbj+1bj+2)c1−1 exp {−c2 (bj + bj+1 + bj+2)}

. (5.37)

If we have case (2) where tj is a change-point and equal to ξi, then the last line of

(5.36) simpli�es to(
b̃j+1b̃j+2b̃k+2+i

)c1−1

exp
{
−c2

(
b̃j+1 + b̃j+2 + b̃k+2+i

)}
(bj+1bj+2bk+2+i)

c1−1 exp {−c2 (bj+1 + bj+2 + bk+2+i)}
. (5.38)

The proposal ratio for the relocation move is given by

Propr =
Pr (relocate in k model)Pr (move t∗)Pr (tj+1)

Pr (relocate in k model)Pr (move tj+1)Pr (t∗)

=
rk · 1

nm
· 1
ub−lb

rk · 1
nm
· 1
ub−lb

= 1 (5.39)

where Pr (relocate in k model) denotes the probability of selecting a relocation move

when current model has k interior knots. The values for ub and lb are found using

x values in the interval (tj, tj+2).
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5.4.4 Function Estimation for the RJMCMC 1 Algorithm

To estimate the regression function, we �rst compute the estimate of η as

in (5.6) at iteration i of the RJMCMC algorithm and denote it by η(i). We use

the values of k, t, b, α, and τ from the (i)th iteration of RJMCMC after the

coe�cient update step and denote them by k(i), t(i), b(i), and α(i), respectively.

The estimate of the mean regression function at iteration i is then given by η(i) =∑k+2+h
j=1 b

(i)
j δ
∗
j +
∑h+1

j=1 α
(i)
j vj where δ

∗
j and vj are the basis vectors created using the

vector of current knot locations, t, and ξ. The regression spline estimate is then

found by averaging η(i) after discarding burn-in iterations and is given by

η̂ =
1

N −B

N∑
i=B+1

η(i), (5.40)

where N is the total iterations in the RJMCMC algorithm and B is the burn-in.

5.4.5 Examples for the RJMCMC 1 Algorithm

In this section, we examine the performance of RJMCMC 1 algorithm discussed

in Sections 5.4.1, 5.4.2, and 5.4.3 by considering its application to two simulated data

sets. The �rst simulated data set is simulated from a model with one change-point

and is denoted the �single change-point� data set. The second simulated data set

is simulated from a model with two change-points and is denoted the �two change-

points� data set. For both data sets, we ran the algorithm for 50, 000 iterations and

threw out the �rst 10, 000 iterations as burn-in. For the single change-point data

set, we let λ = 5, kmin = 3, kmax = 25, c1 = 0.2, c2 = 0.1, d1 = 0.2, and d2 = 0.2.

For the two change-points data set, we kept all other hyperparameters the same

except we let λ = 9, kmin = 5, kmax = 37 because more interior knots are required

with the additional change-point.

The single change-point data set is generated using f (x) plus random normal

errors with a standard deviation of 0.35 and n = 100 equally spaced x-values between

0 and 1. The regression function for x-values less than or equal to the change-point
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of 0.5 is f(x) = 3exp(10x − 5)/(1 + exp(10x − 5)) and the regression function for

x-values greater than change-point is f(x) = 4exp(10(x− 0.5)− 5)/(1 + exp(10(x−

0.5) − 5)) + 0.3. The data are then scaled such that the mean of the y values is

0 and their variance is 1. The scaled data are shown in Figure 5.1 along with the

function estimate found using the RJMCMC 1 algorithm (red dashed line). The true

regression function (solid gray line) and the pointwise 95% credible intervals (shaded

region) found using method given in Section 2.6.1 are also shown in Figure 5.1. Note

that estimated regression function is close to the true function and the true function

is contained within the pointwise credible intervals.
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Figure 5.1: Simulated data from a regression function with a single change-point and
the estimated regression function (red dashed line) using the RJMCMC 1 algorithm
along with pointwise 95% HPD intervals (shaded region) and the function used to
simulate the data (solid gray line). The change-point is indicated by the vertical
line.

The partial trace plots for the number of interior knots, k, and the precision of

the normal errors discussed in Section 5.3.3, τ , are shown in Figures 5.2(a) and (c),

respectively. We selected to look at these parameters because they do not change

meaning throughout the RJMCMC 1 algorithm. They suggest good mixing for the

RJMCMC algorithm. We also look at the MCSE de�ned in Section 4.4.1 and note

that if the MCSE for parameter θ is less than 5% of the sample standard deviation

of the MCMC realizations (minus burn-in) of θ, the chain is thought to have run
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long enough. The MCSE for k equal to 0.0204 which is less than 5% of the sample

standard deviation for k (0.0433) and the MCSE for τ equal to 0.0044 which is

less than 5% of the sample standard deviation for τ (0.0264). The histograms of

posterior draws for k and τ are given in Figures 5.2(b) and (d), respectively. We

estimate the number of interior knots by averaging the posterior draws for k after

discarding burn-in iterations and �nd k̂ = 3.88 which is just above kmin. Given that

the function that simulated the data is not very �wiggly,� the smaller number of

interior knots seems appropriate. We estimate τ by averaging the posterior draws

for τ after discarding burn-in iterations and �nd τ̂ = 3.55. The estimate for τ is

larger than the value of τ used to generate the data, 3.03 (for the scaled data), but

3.03 is included in the 95% HPD interval for τ , (2.53, 4.60).
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Figure 5.2: (a) Partial trace plot for k for the single change-point data set. (b)
Histogram of posterior draws for k for the RJMCMC 1 algorithm for the single
change-point data set after discarding burn-in. (c) Partial trace plot for τ for the
single change-point data set. (d) Histogram of posterior draws for τ for the RJM-
CMC 1 algorithm for the single change-point data set after discarding burn-in. The
grey solid line denotes the value of τ used to generate the data and the red dashed
lines mark the 95% HPD interval for τ found using method discussed in Section
2.6.1.

The two change-points data set is generated using f (x) plus random normal

errors with a standard deviation of 0.05 and n = 150 equally spaced x-values between
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0 and 1. The change-points are at 0.3 and 0.7. The regression function for x-

values less than or equal to 0.3 is f(x) = 5 exp(10x − 5)/(1 + exp(10x − 5)). The

regression function for x-values greater than 0.3 and less than or equal to 0.7 is

f(x) = 7 exp(5(x−0.3)−5)/(1 + exp(5(x−0.3)−5)) + 0.1. The regression function

for x-values greater than 0.7 is f(x) = 3 exp(10(x − 0.7) − 5)/(1 + exp(10(x −

0.7) − 5)) + .22. The data are then scaled such that the mean of the y values is

0 and their variance is 1. The scaled data are shown in Figure 5.3 along with the

function estimate found using the RJMCMC 1 algorithm (red dashed line). The

true regression function (solid gray line) and the pointwise 95% credible intervals

(shaded region) found using the method given in Section 2.6.1 are also shown in

Figure 5.3. Note that the estimate found using RJMCMC is very close to the true

function. The estimate is able to capture the sharper increase in the function before

the �rst change-point as well as the slower increase in the function between the

change-points. Note that the true regression function is contained with pointwise

credible intervals except for a few x-values that are close to one.
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Figure 5.3: Simulated data from a regression function with two change-points and
the estimated regression function (red dashed line) using the RJMCMC 1 algorithm
along with pointwise 95% HPD intervals (shaded region) and the function used to
simulate the data (solid gray line). The change-points are indicated by the vertical
lines.
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The partial trace plots for k and τ for the two change-points data set are shown

in Figures 5.4(a) and (c), respectively. They suggest good mixing for the RJMCMC

algorithm. We again look at the MCSE de�ned in Section 4.4.1. The MCSE for k

equal to 0.0276 which is less than 5% of the sample standard deviation for k (0.0487)

and the MCSE for τ equal to 0.0057 which is less than 5% of the sample standard

deviation for τ (0.0407). The histograms of posterior draws for k and τ are given

in Figures 5.4(b) and (d), respectively. We estimate the number of interior knots

by averaging the posterior draws for k after discarding burn-in iterations and �nd

k̂ = 6.05. This supports that more interior knot points are needed when we increase

the number of change-points. We estimate τ by averaging the posterior draws for

τ after discarding burn-in iterations and �nd τ̂ = 6.80. The estimate for τ is larger

than the value of τ that generated the data, 6.58 (for the scaled data), but 6.58 is

included in the 95% HPD interval for τ , (5.26, 8.42).

5.5 Single Change-point Model with Change-point Location Unknown

We now discuss an RJMCMC algorithm to �nd the location of an unknown

change-point in a model with a single change-point and denote this algorithm by

the RJMCMC 2 algorithm. We use the Bayesian model discussed in Section 5.3.3

and extend the RJMCMC 1 algorithm discussed in Section 5.4. We assume the

normal errors model in Section 5.3.3 with the regression function monotonically

increasing between the change-point and the endpoints.

5.5.1 Overview of the RJMCMC 2 Algorithm

The algorithm can be summarized as follows:

1. Perform a �birth�, �death�, �relocation�, or �change-point relocation� move and

accept the proposed parameters with a given acceptance probability.

2. Perform a �coe�cient update� step using a Gibbs sampler step to update α,

b, and τ .
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Figure 5.4: (a) Partial trace plot for k for the two change-points data set. (b)
Histogram of the posterior draws for k for the RJMCMC 1 algorithm for the two
change-points data set after discarding burn-in. (c) Partial trace plot for τ for the
two change-points data set. (d) Histogram of the posterior draws for τ for the
RJMCMC 1 algorithm for the two change-points data set after discarding burn-in.
The grey solid line denotes the value of τ used to generate the data and the red
dashed lines mark the 95% HPD interval for τ found using method discussed in
Section 2.6.1.

3. Repeat until convergence.

The probabilities of performing birth, death, relocation, and change-point relocation

moves, denoted by bk, dk, rk, and rck, respectively, are given in Table 5.1 where bk,

dk, and rk are de�ned as in Section 5.4.1 and in Section 4.2.1 but with c = 0.2 and

di�erent values for bk, dk, and rk when k = kmin and k = kmax. The new values for

bk, dk, and rk when k = kmin and k = kmax are also given in Table 5.1. The four

moves in the RJMCMC 2 algorithm and their acceptance probabilities are discussed

in Section 5.5.3. The coe�cient update step updates parameters α, b, and τ using

a Gibbs sampler step and the conditional distributions for the model parameters

given in Section 5.3.3.
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Table 5.1: Probabilities for four moves in the proposed RJMCMC 2 algorithm to
determine the location of a change-point.

Move k = kmin kmin < k < kmax k = kmax
birth bk = 1

2
bk bk = 0

death dk = 0 dk dk = 1
2

relocation rk = 1
2

1
3
rk rk = 1

4

change-point relocation rck = 0 2
3
rk rck = 1

4

5.5.2 Priors for the RJMCMC 2 Algorithm

In addition to introducing new move probabilities, we also assume a new set of

priors for the RJMCMC 2 algorithm. In particular, we use the same prior for k as for

the RJMCMC 1 algorithm in Section 5.4.2 with kmin = 3. Given k, we use the same

prior for the interior knot locations as we did for the RJMCMC algorithm without

change-points given in Section 4.2.2 and assume the knot locations are distributed

as the even-numbered order statistics from 2k+1 locations uniformly distributed on

[min (x) , max (x)]. Since the change-point location is no longer �xed, the change-

point location is an unknown parameter which we denote by ξ1. We require the

change-point to occur at one of the interior knots points. We also require one interior

knot between t1 and ξ1 and one interior knot between ξ1 and tk+2. Given these

requirements and knot locations t = (min (x) = t1, t2, . . . , tk+1, tk+2 = max (x))′, we

create a set of candidate points for ξ1 given by CPcand = {t3, . . . , tk}. The prior for

ξ1 is then a discrete uniform distribution over CPcand so Pr (ξ1|t) = 1/ (k − 2). As

with the RJMCMC 1 algorithm, for the unconstrained coe�cients, αj, we assume

independent normal priors with mean of zero and variance of M . We again assume

a gamma prior for τ with shape d1 and rate d2. For the constrained coe�cients, bj

for j = 1, . . . , k + 2 + h, we again assume independent gamma priors with shape c1

and rate c2.

5.5.3 RJMCMC 2 Algorithm Implementation

In this section, we discuss each move type and their corresponding acceptance

probabilities for the RJMCMC 2 algorithm to estimate regression function with a
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single change-point whose location is unknown under the monotone shape restric-

tion.

5.5.3.1 Birth, Death, and Relocation Moves for the RJMCMC 2 Algo-

rithm

The birth, death, and relocation moves in the RJMCMC 2 algorithm propose

knot locations for interior knots that are not the change-point. Given current value

for ξ1 and h = 1, the birth, death, and relocation moves in the RJMCMC 2 algorithm

propose knot locations and update coe�cients in the same was as the birth, death,

and relocation moves in the RJMCMC 1 algorithm discussed in Sections 5.4.3.1,

5.4.3.2, and 5.4.3.3, respectively. However, we have a di�erent set of priors for the

RJMCMC 2 algorithm so the acceptance probabilities for these three moves are

di�erent for this algorithm. For the birth move for the RJMCMC 2 algorithm, the

acceptance probability is given by min {1, A∗b} where

A∗b = LR∗b × Prior∗b × Prop∗b × Jacob∗b .

The likelihood ratio for the birth move for the RJMCMC 2 algorithm is same as the

likelihood ratio for the birth move in the RJMCMC 1 algorithm. Thus, LR∗b = LRb

with LRb as in (5.17). The prior ratio for the birth move for the RJMCMC 2

algorithm is

Prior∗b =
λ (2k + 3) (2k + 2) (t∗ − tj) (tj+1 − t∗) (k − 2) cc12

(∏k+4
j=1 fb

(
b̃j

))
(k + 1) (tj+1 − tj) (k − 1) Γ (c1)

(∏k+3
j=1 fb (bj)

)
where fb, tj, tj+1, t

∗, b̃j, and bj are de�ned as in Section 5.4.3.1. If tj 6= ξ1, the

ratio of
∏k+4

j=1 fb

(
b̃j

)
over

∏k+3
j=1 fb (bj) reduces to ratio given in (5.19). If tj = ξ1,

the ratio of
∏k+4

j=1 fb

(
b̃j

)
over

∏k+3
j=1 fb (bj) reduces to ratio given in (5.20). The

proposal ratio for the birth move for the RJMCMC 2 algorithm is the same as the

proposal ratio for the birth move in the RJMCMC 1 algorithm so Prop∗b = Propb

with Probb as in (5.21). The absolute value of the determinant of the Jacobian for

129



the birth move for the RJMCMC 2 algorithm is the same as it is for the birth move

in the RJMCMC 1 algorithm. Thus, if tj 6= ξ1, Jacob
∗
b =

∣∣∣b̃j+1 − bj − bj+1

∣∣∣ and if

tj = ξ1, Jacob
∗
b =

∣∣∣bj+1 + bk+2+i − b̃j+1

∣∣∣ .
The acceptance probability for the death move is equal to min

{
1, (A∗d)

−1} where
A∗d = LR∗d × Prior∗d × Prop∗d × Jacob∗d.

As with the birth move, the likelihood ratio, the proposal ratio, and the absolute

value of the determinant of the Jacobian for the death move in the RJMCMC 2

algorithm is the same as they are for the RJMCMC 1 algorithm. Therefore, LR∗d =

LRd with LRd as in (5.26), Prop∗d = Propd with Propd as in (5.28), and Jacob∗d =

Jacobd with Jacobd as in (5.29) or (5.30) depending on whether tj = ξ1. The prior

ratio for the death move in the RJMCMC 2 algorithm is

Prior∗d =
λ (2k + 1) (2k) (tj−1 − tj) (tj+2 − tj+1) (k − 3)

∏k+3
j=1 fb (bj)

k (tj+2 − tj) (k − 2)
∏k+2

j=1 fb

(
b̃j

) ,

where fb, tj, tj+1, t
∗, b̃j, and bj are de�ned as in Section 5.4.3.2.

The acceptance probability for the relocation move in the RJMCMC 2 algorithm

is equal to min {1, A∗r} where

A∗r = LR∗r × Prior∗r × Prop∗r.

The likelihood ratio and the proposal ratio for relocation move for the RJMCMC 2

algorithm are the same as for the RJMCMC 1 algorithm. Thus, LR∗r = LRr with

LRr as in (5.35) and Prop∗r = Propr with Propr as in (5.39). The prior ratio for

relocation move for the RJMCMC 2 algorithm is

Prior∗r =
(t∗ − tj) (tj+2 − t∗)

∏k+3
i=1 fb

(
b̃i

)
(tj+1 − tj) (tj+2 − tj+1)

∏k+3
i=1 fb (bi)

where fb, tj, tj+1, tj+2, t
∗, b̃j, and bj are de�ned as in Section 5.4.3.3.
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5.5.3.2 Change-point Relocation

The change-point relocation move proposes a new location for the change-point.

It keeps the same number of interior knots but moves the change-point to a new

interior knot location. We propose a new change-point denoted ξ̃1 = tj∗1 such that

j∗1 = j1 − 1 or j∗1 = j1 + 1 where ξ1 = tj1 is the current change-point at the (j1)th

largest interior knot location. We let j∗1 = j1−1 and j∗1 = j1+1 with equal probability

except when j1 = 3 or when j1 = k. We let the probability that j∗1 = j1 + 1 = 4 be

one when j1 = 3 to ensure that there is at least one interior knot between t1 and the

change-point. Likewise, we let the probability that j∗1 = j1− 1 = k− 1 be one when

j1 = k to ensure that there is at least one interior knot between the change-point

and tk+2.

Given ξ̃1, we consider proposing new values for β = S−1b instead of b. We

denote the proposed values for β after moving ξ1 to ξ̃1 by β̃ =
(
β̃1, . . . , β̃k+3

)′
. Using

β̃, we obtain new values for b which are denoted b̃ =
(
b̃1, . . . , b̃m+1

)
and b̃ = S̃−1β̃

where S̃ is the constraint matrix created using new change-point location, ξ̃1 = tj∗1

and basis vectors created using knot locations t. To obtain β̃, we let u = 0.5 and

β̃i =



βi i = 1, . . . , j1 − 2

uβi−1 + uβi i = j1−1

(1− u) βi−1 + (1− u) (βi + βm+1)− uβm+1 i = j1

βi + (1− u) βm+1 i = j1 + 1, . . . ,m

uβi i = m+ 1

when j∗1 = j1 − 1. If j∗1 = j1 + 1 , we let

β̃i =



βi i = 1, . . . , j1 − 1

(1− u) βi + (1− u) (βj1 + βm+1) i = j1

uβi−1 + u (βi + βm+1) i = j1 + 1

βi + (1− u) βm+1 i = j1 + 2, . . . ,m

uβi i = m+ 1

.

The acceptance probability for the change-point relocation is {1, Arc} where

Arc = LRrc × Priorrc × Proprc.
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The likelihood ratio for change-point relocation move is

LRrc =

∏n
i=1 fy

(
yi|k, h, ξ̃1, t, b̃,α, τ

)
∏n

i=1 fy (yi|k, h, ξ1, t, b,α, τ)
.

Note that fy

(
yi|k, h, ξ̃1, t, b̃,α, τ

)
is the normal density with mean η̃i =

∑k+3
j=1 b̃j δ̃

∗
ji+∑2

j=1 αjvji and standard deviation τ−1/2 where vji is de�ned as in (5.7). δ̃∗ji as

de�ned in Section 5.3.2 is the (i)th element of δ̃∗j which is the (j)th basis vector

found using x , the knot location vector t, and proposed change-point ξ̃1. Here

fy (yi|k, h, ξ1, t, b,α, τ) is the normal density with mean ηi =
∑k+3

j=1 bjδ
∗
ji+
∑2

j=1 αjvji

and standard deviation τ−1/2 where vji is de�ned as in (5.7). δ∗jiis the (i)th element

of δ∗j found using using x, the knot location vector t, and change-point location

prior to the move, ξ1.

The prior ratio for the change-point relocation move is

Priorrc =
p (k) p (t|k, h = 1) p

(
ξ̃1

)
p
(
b̃|k, h = 1

)
p (α|h = 1) p (τ)

p (k) p (t|k, h = 1) p (ξ1) p (b|k, h = 1) p (α|h = 1) p (τ)

=

(∏k+3
i=1 b̃i∏k+3
i=1 bi

)c1−1

exp

{
−c2

[
k+3∑
i=1

b̃i −
k+3∑
j=1

bi

]}

The proposal ratio for the change-point relocation move, Proprc depends on the

values of k, j1, j
∗
1 , kmin, and kmax. If j1 = kmin and k > kmin + 1 or if j1 = k and

k > kmin + 1, Proprc = 2. Proprc = 0.5 under the following cases:

1. If j1 = kmin + 1, k > kmin + 1, and j∗1 = j1 − 1

2. If j1 = kmin + 1, k = kmin + 2, and j∗1 = j1 + 1

3. If j1 = k − 1,k > kmin + 2, and j∗1 = j1 + 1.

In all other cases, Proprc = 1.
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5.5.4 Function Estimation for the RJMCMC 2 Algorithm

To �nd the function estimate, we �rst need to determine the location of the

change-point using the RJMCMC 2 algorithm. We then �nd the function estimate

by running the RJMCMC 1 algorithm with the change-point �xed at the estimate

for the change-point found from the RJMCMC 2 algorithm. If we do not �x the

change-point �rst and average the MCMC draws from the RJMCMC 2 algorithm,

it is possible to get a function estimate that violates the shape restriction. Thus, we

�rst use the posterior draws from the RJMCMC 2 algorithm for the change-point

location to estimate the change-point location. Denote the value of ξ1 for the (i)th

iteration of the RJMCMC 2 algorithm by ξ
(i)
1 . Using a mode estimation procedure,

we estimate the mode of the RJMCMC 2 algorithm values of ξ(i), after discarding

burn-in and denote the mode estimate by ξ̂1. For our analysis, we use the mode

estimation method of Robertson and Cryer (1974). Given ξ̂1, we run the RJMCMC 1

algorithm discussed in Section 5.4 setting h = 1 and ξ1 = ξ̂1. We use the values

of k, t, b, α, and τ from the (i)th iteration after the Gibbs sampler update of the

RJMCMC 1 algorithm with change-point �xed at ξ̂1 and denote them by k(i), t(i),

β(i), and α(i), respectively. The estimate of the mean regression function at iteration

i is then given by η(i) =
∑k+3

j=1 b
(i)
j δ
∗
j +

∑2
j=1 α

(i)
j vj where δ

∗
j and vj are the basis

vectors created using vector of current knot locations, t, and ξ̂1. The regression

spline estimate is found by averaging η(i) after discarding burn-in and is given by

η̂ =
1

N −B

N∑
i=B+1

η(i) (5.41)

where N is the total iterations in the RJMCMC algorithm and B is the burn-in.

5.5.5 Example for the RJMCMC 2 Algorithm

To examine the performance of the RJMCMC 2 algorithm for single change-

point model with location of change-point unknown, we consider the single change-

point data set in Section 5.4.5 and shown in Figure 5.1. We run the algorithm
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for 100,000 iterations and discard the �rst 20,000 as burn-in. We use the same

hyperparameters as in Section 5.4.5. The posterior distribution for the change-

point location is given in Figure 5.5(a) along with the estimated mode, ξ̂1 = 0.509,

denoted by the dashed vertical red line and found using the method of Robertson

and Cryer (1974). The value for ξ1 used to generate the data is 0.5 and denote

by the vertical gray line in Figure 5.5(a). The function estimate found after �xing

the change-point at the estimate of 0.509 and using the RJMCMC 1 algorithm

in Section 5.4 is shown in Figure 5.5(b). The function estimate is similar to the

estimate �xed at the true value for ξ1 given in Figure 5.1.
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Figure 5.5: (a) Histogram of the posterior draws for ξ1 for the RJMCMC 2 algorithm
for the single change-point data set in Section 5.4.5 after discarding burn-in. The
vertical dashed red line is the estimate of ξ1 found using mode estimation procedure
of Robertson and Cryer (1974) and the vertical gray line is true value for ξ1 used
to generate the data. (b) Plot of simulated data from a regression function with
one change-points and the estimated regression function (red dashed line) using the
RJMCMC 2 algorithm along with pointwise 95% HPD intervals (shaded region)
when �xing ξ1 at ξ̂1 and the function used to simulate the data (solid gray line).
The value of the change-point estimate used to simulate the data is indicated by the
vertical line.

The partial trace plots for k and τ for the single change-point data set are shown

in Figures 5.6(a) and (c), respectively. Again, we selected to look at these parameters

because they do not change meaning throughout the RJMCMC algorithm. The

partial trace for k does appear to propose the same value for k for several iterations.

However, the RJMCMC 2 algorithm has two moves that do not change the value
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of k. In particular, many di�erent change-point locations can be explored using

the same value for k. Therefore, considering the mixing of k may not be the best

indicator of mixing for the entire algorithm. The partial trace for τ suggests good

mixing. We again look at the MCSE de�ned in Section 4.4.1 but only calculate

it for τ since k is thought to be a poor indicator of mixing for the RJMCMC 2

algorithm. The MCSE for τ equal to 0.0050 which is less than 5% of the sample

standard deviation for τ (0.0276) suggesting the algorithm has run long enough.

The histograms of posterior draws for k and τ are given in Figures 5.6(b) and (d),

respectively. We again �nd the estimates for k and τ by averaging the posterior

draws for each parameter after discarding burn-in. We �nd the estimate for k is

k̂ = 5.80 and the estimate for τ is τ̂ = 3.54. The estimate for τ is larger than the

value of τ used to generate the data, 3.03 (for the scaled data), but 3.03 is included

in the 95% HPD interval for τ , (2.53, 4.60).

5.6 Existence of Change-point Model

In this section, we propose a RJMCMC algorithm that moves between mod-

els with the number of change-points equal to zero (no change-points model) or

one (single change-point model) and we will denote this algorithm by the RJM-

CMC 3 algorithm. It can be used to determine if a model with a change-point or

no change-points is most appropriate for a given data set. We consider the normal

errors multiple change-point model under the monotone shape restriction discussed

in Section 5.3.3. In both the no change-points and single change-point model, the

number of interior knots and their locations are free parameters. For the model with

no change-points, the function is assumed to be monotone increasing or decreasing

over the range of the covariate, x. For the single change-point model, the function

is assumed to monotone increasing or decreasing between the minimum value for

the covariate and the change-point as well as monotonically increasing or decreas-

ing between the change-point and the maximum value for the covariate. Also, for

135



90000 92000 94000 96000 98000 100000

3
4

5
6

7
8

9
10

(a) Partial Trace for k

iteration

k

(b) Posterior for k

k

P
os

te
rio

r 
D

ra
w

s

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

3 4 5 6 7 8 9 10 11 12 13 14 15

90000 92000 94000 96000 98000 100000

2
3

4
5

6

(c) Partial Trace for τ

iteration

τ
(d) Posterior for τ

τ

P
os

te
rio

r 
D

ra
w

s

1 2 3 4 5 6

0
50

00
10

00
0

20
00

0

Figure 5.6: (a) Partial trace plot for k for the single change-point data set for
the RJMCMC 2 algorithm. (b) Histogram of the posterior draws for k for the
RJMCMC 2 algorithm for the single change-point data set after discarding burn-in.
(c) Partial trace plot for τ for the single change-point data set for the RJMCMC 2
algorithm. (d) Histogram of the posterior draws for τ for the RJMCMC 2 algorithm
for the single change-point data set after discarding burn-in. The grey solid line
denotes the value of τ used to generate the data and the red dashed lines mark the
95% HPD interval for τ found using method discussed in Section 2.6.1.

the single change-point model, the location of the change-point is assumed to be

unknown. The proposed RJMCMC 3 algorithm combines new moves with moves in

the RJMCMC 2 algorithm given in Section 5.5 as well as moves in the RJMCMC

algorithm for Bayes SRRS without change-points from Chapter 4.

5.6.1 Overview of the RJMCMC 3 Algorithm

The RJMCMC 3 algorithm can be summarized as follows:

1. Perform a �birth�, �death�, �relocation�, �birth of a change-point�, or �death of a

change-point� move and accept the proposed parameters with given acceptance

probability.
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2. Perform a �coe�cient update� step using a Gibbs sampler step to update either

α, b, and τ if have the single change-point model or update α, β, and τ if

have the no change-points model.

3. Repeat until convergence.

The probabilities of performing a birth, death, relocation, birth of a change-point,

or death of a change-point move, denoted by bk, dk, rk, bck, and dck, respectively, are

given in Table 5.2 for the no change-points model (h = 0) and in Table 5.3 for the

single change-point model (h = 1) where bk, and dk are de�ned as in Section 5.4.1

and in Section 4.2.1 but with c = 0.2. The new values for bk, dk, and rk when

k = kmin and k = kmax are given in Tables 5.2 and 5.3. These �ve moves and there

acceptance probabilities are discussed in Section 5.6.3. The coe�cient update step

when h = 1, updates the coe�cient using a Gibbs sampler step and the conditional

distributions for the model parameters given in Section 5.3.3. For the coe�cient

update step, if h = 0 and we have the no change-points model, we update the

parameters using the conditional distributions given in Section 2.4.

Table 5.2: Probabilities for �ve moves in the proposed RJMCMC 3 algorithm to
determine the existence of a change-point when h = 0.

Move k = kmin kmin < k < kmax k = kmax
birth bk = 1

3
bk bk = 0

death dk = 0 dk dk = 1
3

relocation rk = 1
3

rk = 1
3

(1− bk − dk) rk = 1
3

birth of a change-point bck = 1
3

bck = 2
3

(1− bk − dk) bck = 1
3

death of a change-point dck = 0 dck = 0 dck = 0

5.6.2 Priors for the RJMCMC 3 Algorithm

In addition to introducing new move probabilities for the model when the num-

ber of change-points, h, is allowed to take on the values of zero or one, we also

need to assume a prior for h. We assume a discrete uniform distribution over {0, 1}

for h so Pr (h = 0) = 0.5 and Pr (h = 1) = 0.5. Given h, we assume priors for
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Table 5.3: Probabilities for �ve moves in the proposed RJMCMC 3 algorithm to
determine the existence of a change-point when h = 1.

Move k = kmin kmin < k < kmax k = kmax
birth bk = 1

3
bk bk = 0

death dk = 0 dk dk = 1
3

relocation rk = 1
3

rk = 1
3

(1− bk − dk) rk = 1
3

birth of a change-point bck = 0 bck = 0 bck = 0
death of a change-point dck = 1

3
dck = 2

3
(1− bk − dk) dck = 1

3

the other model parameters as was used in the previous RJMCMC algorithms. In

particular, we use the same prior for k as for the RJMCMC 1 algorithm in Sec-

tion 5.4.2 with kmin = 3. Given k, we use the same prior for the interior knot

locations as the RJMCMC 2 algorithm given in Section 5.5.2 and the RJMCMC

algorithm without change-points given in Section 4.2.2. When h = 1, we assume

the same prior for the change-point, ξ1, as in the the RJMCMC 2 algorithm given in

Section 5.5.2. For both the no change-points (h = 0) and single change-point model

(h = 1), we assume independent normal priors with mean of zero and variance of

M for the unconstrained coe�cients, αj and a gamma prior for τ with shape d1 and

rate d2. For the constrained coe�cients in both the no change-points model and

the single change-point model, which are given by βj for j = 1, . . . k + 1 and bj for

j = 1, . . . , k + 2 + h, respectively, we assume independent gamma prior with shape

c1 and rate c2.

5.6.3 RJMCMC 3 Algorithm Implementation

In this section, we discuss each move type and the acceptance probabilities for

the RJMCMC 3 algorithm.

5.6.3.1 Birth, Death, and Relocation Moves for the RJMCMC 3 Algo-

rithm

The birth, death, and relocation move for the RJMCMC 3 algorithm propose

new knot locations for interior knots that are not change-points as in the RJMCMC 1

algorithm in Section 5.4. The new knot locations for the birth, death, and relocation
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moves in this algorithm are proposed the same way as in the RJMCMC 1 algorithm

in Sections 5.4.3.1, 5.4.3.2, and 5.4.3.3, respectively. If h = 0, the new coe�cients for

the birth, death, and relocation moves are proposed the same as in the RJMCMC

without change-points given in Sections 4.3.1, 4.3.2, and 4.3.3, respectively. Fur-

thermore, when h = 0, the acceptance probabilities for birth, death, and relocation

moves are the same as acceptance probabilities in Sections 4.3.1, 4.3.2, and 4.3.3,

respectively. If h = 1, the birth, death, and relocation moves propose coe�cients in

the same was as in the RJMCMC 1 algorithm given in Sections 5.4.3.1, 5.4.3.2, and

5.4.3.3, respectively. For single change-point model, the acceptance probabilities for

the birth, death, and relocation moves are the same as in the RJMCMC 2 algorithm

given in Section 5.5.3.1.

5.6.3.2 Birth of a Change-point Move

The birth of a change-point move adds a change-point to the no change-points

model. It proposes a move from a model with h = 0 to a model with h = 1.

For this move, we add a change-point at an existing interior knot location and

update the coe�cients based on this change-point addition. Let t = (t1, . . . , tk+2)′

be the ordered current knot locations for the model with k interior knots and no

change-point. We select the change-point from a set of candidate knot interior knot

locations, denoted by CPcand. Since we want at least one interior knot between t1 and

ξ1 and at least one interior knot between ξ1 and tk+2, we exclude t2 and tk+1 from the

candidate interior knot locations for the change-point. Thus, CPcand = {t3, . . . , tk}.

From CPcand, we randomly select an interior knot location and add a change-point

at this location. We denote the proposed change-point by ξ∗1 = t∗j . The probability

of ξ∗1 given t is 1/ (k − 2). Given ξ∗1 , we create basis vectors δ̃
∗
l for l = 1, . . . , k + 3

as de�ned in Section 5.3.2 using ξ∗1 and t. Let ṽ1 and ṽ2 be the basis vectors as

de�ned in Section 5.3.1 found after adding ξ∗1 .

Let δl for l = 1, . . . , k + 2 be the quadratic I-spline basis functions for the

model when h = 0 found using t as de�ned in Section 1.4.1. Furthermore, let
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β = (β1, . . . , βk+2) be the constrained coe�cients prior to adding ξ∗1 with βl the

coe�cient for δl where δl is the basis vector corresponding to the basis function

with a positive slope at the (l)th largest knot location. Let α1 be the unconstrained

coe�cient for model when h = 0 and the coe�cient of the vector v1 which is a

one vector of length n. Let b̃ =
(
b̃1, . . . , b̃k+3

)′
be the coe�cient vector for the

basis vectors δ̃∗l for l = 1, . . . , k + 3 after adding change-point ξ∗1 . Likewise, let

α̃ = (α̃1, α̃2)′ be the unconstrained coe�cients for the model after adding change-

point ξ∗1 . Note the ξ
∗
1 = tj for some j = 3, . . . k − 1 and will fall between tj−1 and

tj+1. Using this, we propose values for b̃ according to

b̃l =



βl for l = 1, . . . j − 1

(1− u) βl for l = j

(1− u) βl for l = j + 1

βl for l = j + 2, . . . , k + 2

u (βj + βj+1) for l = k + 3

(5.42)

where u is a random variable from a continuous uniform distribution on (0, 1). Note

that this coe�cient update step ensures all elements of b̃ are positive so it preserves

the monotonically increasing shape restriction. We propose values for α̃ according

to

α̃1 =

∑k+2
j=1 βj

∑n
i=1 δjiṽ1i∑n

i=1 ṽ
2
1i

+ α1

∑n
i=1 ṽ1i∑n
i=1 ṽ

2
1i

+ e1 (5.43)

and

α̃2 =

∑k+2
j=1 βj

∑n
i=1 δjiṽ2i∑n

i=1 ṽ
2
2i

+ α1

∑n
i=1 ṽ2i∑n
i=1 ṽ

2
2i

(5.44)

where e1 is a random normal random variable with mean 0 and standard deviation

σe. For the examples in this chapter, we let σe = 0.1. Note the unconstrained

coe�cient update is the estimate for the regression when h = 0 projected onto the

new basis functions plus some random error. These parameter coe�cient updates

were chosen because they give a regression function estimate after adding ξ∗1 that is

very similar to the function estimate prior to adding ξ∗1 .
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Next, we derive the acceptance probability for the birth of a change-point move

for the RJMCMC 3 algorithm which is equal to min {1, Abc} where

Abc = LRbc × Priorbc × Propbc × Jacobbc

The likelihood ratio for the birth of a change-point move for the RJMCMC 3 algo-

rithm is

LRbc =

∏n
i=1 fy

(
yi|k, h̃ = 1, ξ∗1 , t, b̃,α, τ

)
∏n

i=1 fy (yi|k, h = 0, t,β,α, τ)

where fy

(
yi|k, h̃ = 1, ξ∗1 , t, b̃,α, τ

)
is the normal density with mean η̃i =

∑k+3
j=1 b̃j δ̃

∗
ji+∑2

j=1 α̃j ṽji and standard deviation τ−1/2 where ṽji is the (i)th element of ṽj and δ̃
∗
ji

is the (i)th element of δ̃∗j . Likewise, fy (yi|k, h = 0, t,β,α, τ) is the normal density

with mean ηi =
∑k+2

j=1 βjδji + α1v1i and standard deviation τ−1/2 where v1i is the

(i)th element of v1 and δji is the (i)th element of δj.

The prior ratio for the birth of a change-point move in the RJMCMC 3 algo-

rithm is

Priorbc =
p (k) p

(
h̃ = 1

)
p (t|k, h) p (ξ∗1) p

(
b̃|k, h̃ = 1

)
p
(
α|h̃ = 1

)
p (τ)

p (k) p (h = 0) p (t|k) p (β|k, h = 0) p (α|h = 0) p (τ)

=

[∏k+3
i=1 fb

(
b̃i

)]
·
[∏2

i=1 fα (α̃i)
]

(k − 2) ·
[∏k+2

i=1 fβ (βi)
]
· fα (α1)

,

where fb (z) is the density of the gamma prior for the b parameters with hyperpa-

rameters c1 and c2 evaluated at z and fβ (z) is the density of the gamma prior for

the β parameters evaluated at z which is also a gamma prior with hyperparameters

c1 and c2. Also, fα (z) is the density evaluated at z for the normal prior with mean

zero and variance M for the unconstrained coe�cients in both the no change-points

and single change-points model.
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The proposal ratio for the birth of a change-point move in the RJMCMC 3

algorithm is

Propbc =
Pr(delete change-point for k model)Pr (delete ξ∗1)

Pr(add change-point for k model)Pr (ξ∗1)Pr (u)Pr (e1)

=
dck · 1

bck · 1
k−2
· 1

1−0
· fe (e1)

=
dck (k − 2)

bck · fe (e1)
(5.45)

where fe (e1) is the density for the normal distribution for e1 with mean zero and

standard deviation of σe evaluated at the value of e1 proposed in the add a change-

point move. Note that Pr(delete change-point for k model) is the probability of

performing a death of a change-point move with h = 1 and k interior knots. Like-

wise, Pr(add change-point for k model) is the probability of performing an birth of

a change-point move with h = 0 and k interior knots.

The absolute value of the determinant of the Jacobian for the birth of a change-

point move in the RJMCMC 3 algorithm, Jacobbc, is found by using the coe�cient

update functions given in (5.42), (5.43) and (5.44). For this move, the determinant

of the Jacobian is found by taking the determinant of a matrix of the form

J =

[
J1 J2

J3 J4

]
where J1, J2, J3, and J4 are found by �rst letting

ã1l =

∑n
i=1 δliṽ1i∑n
i=1 ṽ

2
1i

,

ã2l =

∑n
i=1 δliṽ2i∑n
i=1 ṽ

2
2i

,

s̃v1 =

∑n
i=1 ṽ1i∑n
i=1 ṽ

2
1i

,

and

s̃v2 =

∑n
i=1 ṽ2i∑n
i=1 ṽ

2
2i

.
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Then

J1 =


1− u 0 −βj 0 0

0 1− u −βj+1 0 0
u u βj + βj+1 0 0
ã1j ã1,j+1 0 s̃v1 1
ã2j ã2,j+1 0 s̃v2 0

 ,

J2 =


0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
ã11 ã12 · · · ã1,j−1 ã1,j+2 · · · ã1,k+2

ã21 ã22 · · · ã2,j−1 ã2,j+2 · · · ã2,k+2

 ,
J3 is a k × 5 matrix of zeros, and J4 is an k × k identity matrix. The Jacobbc is the

absolute value of the the determinant of J .

5.6.3.3 Death of a Change-point Move

The death of a change-point move is the inverse of the add the change-point

move in Section 5.6.3.2. The change-point location, ξ1, is removed from a model

with h = 1, k interior knots, knot location vector t = (t1, . . . , tk+2)′, constrained

coe�cients b = (b1, . . . , bk+3)′, and unconstrained coe�cients α = (α1, α2)′. Let

δ∗j =
(
δ∗j1, . . . , δ

∗
jn

)′
for j = 1, . . . , k + 3, v1, and v2 be the basis vectors for model

prior to deleting ξ1. After removing ξ1, we have only an interior knot at tj where

ξi was. Let δ̃l =
(
δ̃l1, . . . , δ̃ln

)′
for l = 1, . . . , k + 2 be the quadratic I-spline basis

functions found using t after deleting ξ1 and let ṽ1 be the one vector of length

n for the no change-points model after deleting ξ1. Let β̃ =
(
β̃1, . . . , β̃k+2

)′
be

the constrained coe�cients for the no change-points model after deleting ξ1. We

propose values for β̃ by inverting (5.42). Thus, the constrained coe�cients for the

no change-points are

β̃l =


bl for l = 1, . . . , j − 1
bl(bl+bl+1+bk+3)

bl+bl+1
for l = j

bl+1(bl+bl+1+bk+3)

bl+bl+1
for l = j + 1

bl for l = j + 2, . . . , k + 2

.
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The proposed value for the unconstrained coe�cient α̃1 for the no change-points

model is found by inverting (5.44) and is equal to

α̃1 =

(
α2 −

∑k+2
l=1 β̃j

∑n
i=1 δ̃jiv2i∑n

i=1 v
2
2i

)(∑n
i=1 v

2
2i∑n

i=1 v2i

)
.

Since the death of a change-point move is the inverse of the birth of a change-

point move from h = 0 to h = 1, the acceptance probability for the death of a

change-point move is found by inverting the acceptance probability for the birth of

a change-point move. It is equal to min
{

1, A−1
dc

}
with

Adc = LRdc × Priordc × Propdc × Jacobdc.

LRdc is the likelihood ratio used in the death of a change-point move and is equal

to

LRdc =

∏n
i=1 fy (yi|k, h = 1, ξ1, t, b,α, τ)∏n
i=1 fy

(
yi|k, h̃ = 0, t, β̃, α̃, τ

)
where fy (yi|k, h = 1, ξ1, t, b,α, τ) is the normal density with mean ηi =

∑k+3
j=1 bjδ

∗
ji+∑2

j=1 αjvji and standard deviation τ−1/2 where vji is the (i)th element of vj and

δ∗ji is the (i)th element of δ∗j . fy

(
yi|k, h̃ = 0, t, β̃, α̃, τ

)
is the normal density with

mean η̃i =
∑k+2

j=1 β̃j δ̃ji + α̃1ṽ1i and standard deviation of τ−1/2 where ṽ1i is the (i)th

element of ṽ1 and δji is the (i)th element of δ̃j. For the death of a change-point

move,

Priordc =
p (k) p (h = 1) p (t|k) p (ξ1|t) p (b|k, h = 1) p (α|h = 1) p (τ)

p (k) p
(
h̃ = 0

)
p (t|k) p

(
β̃|k, h̃ = 0

)
p
(
α̃|h̃ = 0

)
p (τ)

=

[∏k+3
i=1 fb (bi)

]
·
[∏2

i=1 fα (αi)
]

(k − 2) ·
[∏k+2

i=1 fβ (βi)
]
· fα (α̃1)

and

Propdc =
Pr(delete change-point for k model)Pr (delete ξ1)

Pr(add change-point for k model)Pr (ξ1)Pr (u)Pr (ẽ1)

=
dck · 1

bck · 1
k−2
· 1

1−0
· fe (ẽ1)

=
dck (k − 2)

bck · fe (ẽ1)
(5.46)
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where fe (ẽ1) is the density for a normal distribution with mean zero and standard

deviation of σe evaluated at the value of e1 proposed in the add a change-point move,

ẽ1. We �nd the value for ẽ1 by

ẽ1 = α1 −
∑k+2

l=1 β̃j
∑n

i=1 δ̃jiv1i∑n
i=1 v

2
1i

−
∑n

i=1 v
2
1i∑n

i=1 v1i

α̃1.

Jacobdc is found by taking the absolute value of the determinant of a matrix of the

form

J =

[
J1 J2

J3 J4

]
where

J1 =


1− ũ 0 −β̃j 0 0

0 1− ũ −β̃j+1 0 0

ũ ũ β̃j + β̃j+1 0 0
a1j a1,j+1 0 sv1 1
a2j a2,j+1 0 sv2 0

 ,

J2 =


0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
a11 a12 · · · a1,j−1 a1,j+2 · · · a1,k+2

a21 a22 · · · a2,j−1 a2,j+2 · · · a2,k+2

 ,
J3 is a k × 5 matrix of zeros, and J4 is an k × k identity matrix. For the death of a

change-point move,

a1l =

∑n
i=1 δ̃liv1i∑n
i=1 v

2
1i

,

a2l =

∑n
i=1 δ̃liv2i∑n
i=1 v

2
2i

,

sv1 =

∑n
i=1 v1i∑n
i=1 v

2
1i

,

sv2 =

∑n
i=1 v2i∑n
i=1 v

2
2i

,

and

ũ =
bk+3

bj + bj+1 + bk+3

.
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5.6.4 Function Estimation for the RJMCMC 3 Algorithm

To �nd the function estimate for the RJMCMC 3 algorithm, we �rst try to

determine whether the no change-points or the single change-point model is appro-

priate. We can do this by looking at the posterior draws for h after discarding

burn-in iterations for the RJMCMC 3 algorithm. If the majority of posterior draws

for h after discarding burn-in have h = 0 then this suggests that the no change-

points model is preferred over the single change-point model. If the majority of

the posterior draws for h after discarding burn-in have h = 1 then this suggests

that the single change-point model is the most appropriate model. If the number of

draws for h are about the same for h = 0 and h = 1, we can estimate the function

under both the no change-points and the single change-point model. We can give

the proportion of posterior draws of h after discarding burn-in for which h = 0 and

the proportion of posterior draws of h after discarding burn-in for which h = 1 to

give an indication of the preferences for both models. To �nd the function estimate

for the single change-point model, we estimate the function as in Section 5.5.4. To

�nd the function estimate for the no change-points model, we estimate the function

as in Section 4.2.1 using (4.3).

5.6.5 Examples for the RJMCMC 3 Algorithm

We consider three simulated data sets to examine the performance of the RJM-

CMC 3 algorithm to determine the existence of a change-point. The �rst simulated

data set is the single change-point data set discussed in Sections 5.4.5 and 5.5.5 and

shown in Figure 5.7(a). The second simulated data set is simulated from the same

single change-point model as the �rst data set but with the error standard deviation

equal to 0.5 as opposed to 0.35. Like the �rst data set, it is scaled such that y-values

have variance of 1 and mean of zero. The second data set is shown in Figure 5.8(a).

The third data set is generated from a function without change-points and we refer

to this data set as the no change-points data set. It is the data set from Section 4.4.1
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with the sample size, n, increased to 100 and the data scaled such that the y-values

have a mean of zero and variance of 1 and is shown in Figure 5.9(a). For all data

sets we run the algorithm for 100,000 iterations discarding the �rst 20,000 runs as

burn-in. We let λ = 5, kmin = 3, kmax = n/4, c1 = 0.2, c2 = 0.1, d1 = 0.2, d2 = 0.2,

and σe = 0.1.

For the �rst data set, the RJMCMC 3 algorithm has h = 1 for all posterior

draws of h (after discarding burn-in). Thus, the RJMCMC 3 algorithm easily detects

the existence of the change-point. The partial trace plot for τ for the �rst data

set with the error standard deviation 0.35 is given in Figure 5.7(c) and suggests

good mixing of the RJMCMC 3 algorithm. We feel that looking at the mixing

of the number of interior knots, k, is misleading for the RJMCMC 3 algorithm

because the number of interior knots will depend on whether h = 0 or h = 1.

As with the other examples in this chapter, we look at the MCSE as de�ned in

Section 4.4.1. We estimate the MCSE for τ for the �rst simulated data set to

be 0.0033 which is less than 5% of the sample standard deviation for τ (0.0270)

suggesting that the algorithm has run long enough. The histogram for the posteriors

draws (after discarding burn-in) for τ is given in Figure 5.7(d). We compute the

posterior estimate for τ by averaging the posterior draws after discarding burn-in

and �nd τ̂ = 3.61. The value of τ used to generate the data (for the scaled y-values)

is 3.03 so we do overestimate τ in this case. However, the 95% HPD interval for τ

is (2.59, 4.69) which includes 3.03.

For the second data set where we increased the error standard deviation to

0.5 (data shown in Figure 5.8(a)), the posterior draws (after discarding burn-in) of

the RJMCMC 3 algorithm for h is shown in Figure 5.8(b). Even with the larger

error standard deviation, the RJMCMC 3 algorithm still correctly selects the single

change-point model for the majority of the runs. The partial trace plot for τ for

the second data set with the error standard deviation 0.5 is given in Figure 5.8(c).

We again look at the MCSE and �nd the estimate of the MCSE for τ for the
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Figure 5.7: (a) Plot of the data set found using the single change-point example
in Section 5.4.5 with the error standard deviation equal to 0.35. (b) Histogram of
the posterior draws for h from the RJMCMC 3 algorithm to determine existence of
change-point for data set in plot (a).(c) Partial trace plot for τ for the RJMCMC 3
algorithm for the single change-point data set with the error standard deviation equal
to 0.35. The grey solid line denotes the value of τ used to generated the data (for
the scaled data). (d) Histogram of the posterior draws for τ for the RJMCMC 3
algorithm for the single change-point data set with the error standard deviation
equal to 0.35 after discarding burn-in. The grey solid lines denotes the value of τ
used to generate the data (for the scaled data) and the red dashed lines mark the
95% HPD interval as found in Section 2.6.1.

second simulated data set to be 0.0038 which is less than 5% of the sample standard

deviation for τ (0.0176) suggesting that the algorithm has run long enough. The

histogram for the posteriors draws (after discarding burn-in) for τ for the second

data set is given in Figure 5.8(d) . We compute the posterior estimate for τ by

averaging the posterior draws after discarding burn-in and �nd τ̂ = 2.19. The value

of τ used to generate the data (for the scaled y-values) is 1.83 so we do overestimate

τ in this case as well. However, the 95% HPD interval for τ is (1.52, 2.89) which

includes 1.83.

Next, we consider how our algorithm performs when the curve is continuous so

no change-point exists (Figure 5.9(a)). The histogram of posterior draws for h after

burn-in is shown in Figure 5.9(b). This algorithm selects the no change-points model
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Figure 5.8: (a) Plot of the second data set found using the single change-point
example in Section 5.4.5 with the error standard deviation equal to 0.5. (b) His-
togram of the posterior draws for h from the RJMCMC 3 algorithm to determine
existence of change-point for data set in plot (a). (c) Partial trace plot for τ for the
RJMCMC 3 algorithm for the single change-point data set with the error standard
deviation equal to 0.5. The grey solid line denotes the value of τ used to generated
the data (for the scaled data). (d) Histogram of the posterior draws for τ for the
RJMCMC 3 algorithm for the single change-point data set with the error standard
deviation equal to 0.5 after discarding burn-in. The grey solid lines denotes the
value of τ used to generate the data (for the scaled data) and the red dashed lines
mark the 95% HPD interval as found in Section 2.6.1.

for the majority of the runs. The partial trace plot for τ for the no change-points

data set is given in Figures 5.9(c). It suggests that the algorithm is mixing well. We

�nd the estimate of the MCSE for τ for the third simulated data set to be 0.0016

which is less than 5% of the sample standard deviation for τ (0.0202) suggesting

that the algorithm has run long enough. The histogram for the posteriors draws

(after discarding burn-in) for τ for the third data set is given in Figure 5.9(d). We

compute the posterior estimate for τ for the third data set and �nd τ̂ = 2.78. The

value of τ used to generate the data (for the scaled y-values) is 3.16 so we under

estimate τ in this case. Yet, the 95% HPD interval for τ is (2.00, 3.57) which still

includes value for τ that was used to generate the data,3.16.
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Figure 5.9: (a) Scatter plot of the no change-points data set. (b) Histogram of
posterior draws for h from the RJMCMC 3 algorithm for data set in plot (a). (c)
Partial trace plot for τ for the RJMCMC 3 algorithm for the no change-points data
set. The grey solid line denotes the value of τ used to generated the data (for
the scaled data). (d) Histogram of the posterior draws for τ for the RJMCMC 3
algorithm for the no change-points data set after discarding burn-in. The grey solid
lines denotes the value of τ used to generate the data (for the scaled data) and the
red dashed lines mark the 95% HPD interval as found in Section 2.6.1.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

In this dissertation, we introduced a Bayesian semi-parametric model for shape-

restricted regression which allows one to model the relationship between a response

variable and covariate(s) without having to assume a parametric form for the re-

gression function while incorporating knowledge about the shape of the regression

function. The proposed Bayesian shape-restricted regression spline (Bayes SRRS)

model uses the shape-restricted regressions splines discussed in Meyer (2008) to esti-

mate the regression functions. By using a linear combination of quadratic I-splines

(monotone functions) or cubic C-splines (convex or concave functions), we estimated

the regression functions and the shape restriction was imposed simply by requiring

the coe�cients of the spline functions to be positive. We used a Bayesian framework

which allows for several di�erent types of inference. The Bayesian paradigm lent

itself to the use of model selection tools such as Bayes factors and also provided

joint posterior distributions of the parameters that were used to construct pointwise

credible intervals and perform inference on categorical covariates.

A simulation study demonstrated that the proposed Bayes SRRS model per-

formed well, in terms of mean square error, at estimating several di�erent types

regression functions. It demonstrated how the Bayes SRRS model estimated both

functions with steep slopes and functions with ��at spots� well. The simulation study

also showed that the inference on categorical covariates using the Bayes SRRS model

performed as well as inference made in the frequentist paradigm for the majority of
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cases in the simulation study. If the assumptions of linear regression model were vi-

olated, the Bayes SRRS model performed better at model selection than frequentist

tests requiring the assumption of a linearity. Lastly, the simulation study demon-

strated good coverage probabilities for the credible intervals created using the Bayes

SRRS model. We also showed that the Bayes SRRS spline model produces consis-

tent estimates for data generated from the normal errors model under the monotone

shape restriction. We illustrated the usefulness of the Bayes SRRS model by using

it to analyze two real data sets.

The Bayes SRRS spline model was extended to generalized linear mixed models.

The proposed Bayes SRRS for generalized linear mixed models allows for function

estimation for several di�erent types of generalized linear mixed models without

having to assume a parametric form for the regression function while still requiring

the function to follow a given shape restriction. We illustrated how the Bayesian

framework again allowed for several types of inference including model selection,

credible intervals, and inference on categorical covariates. We provided a Markov

chain Monte Carlo (MCMC) algorithm to estimate data generated from a random

intercept model that did not require the same number of observations per group or

individual and also did not require the observations per group or individual to be

at the same values of the covariate(s) (unbalanced design). The application of the

proposed Bayesian SRRS model for generalized linear mixed models to a simulated

data set showed that the estimated regression functions were close to the function

that generated them. We also demonstrated that a credible interval for a categorical

covariate included the true value. We concluded with the application of the Bayes

SRRS random intercept model to a real data set.

Next, we considered the Bayes SRRS model in Chapter 2 and utilized the

Bayesian paradigm to extend it to a free-knot spline model. We proposed a re-

versible jump Markov chain Monte Carlo (RJMCMC) algorithm to estimate mono-

tone shape-restricted regression functions using shape-restricted regression splines
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without �xing the number or locations of the interior knot points used to create the

splines. Thus, we used the RJMCMC algorithm to average over several di�erent

models with di�erent knot locations. Other RJMCMC algorithms for monotone

shape-restricted functions use B-splines and require the coe�cients to be ordered.

The use of quadratic I-splines allowed us to enforce the shape restriction simply by

requiring the coe�cients to be positive and also allowed us to use gamma priors

for the spline coe�cients which simpli�ed the RJMCMC algorithm. We applied the

proposed Bayesian free-knot spline model to simulated examples and demonstrated

that the algorithm mixes well as well as produced reasonable function estimates for

both smooth and wiggly functions.

Lastly, we introduced a Bayes SRRS model for functions with change-points.

We proposed a model that requires the function to be monotonically increasing over

the range of the covariate except at change-points. We allowed for discontinuities in

�rst derivative or jumps at the change-points by introducing additional basis func-

tions to the Bayes SRRS spline model without change-points. We reparameterized

the model such that we could enforce the monotonicity shape restriction by requir-

ing the coe�cients of some of the basis function to be positive. We then proposed

three RJMCMC algorithms for function estimation for change-point models. The

�rst RJMCMC algorithm, denoted the RJMCMC 1 algorithm, estimated shape-

restricted functions where the number and location of change-points were known. It

allowed for the number and location of interior knots between change-points to be

random. The application of the RJMCMC 1 algorithm to simulated data sets showed

that the RJMCMC 1 algorithm mixed well and provided reasonable function esti-

mates. The second RJMCMC algorithm, denoted the RJMCMC 2 algorithm, found

the location of a single change-point. It allowed the number and location of interior

knots to be random. The application of the RJMCMC 2 algorithm to a simulated

data set showed that it provided an estimate for the unknown change-point location

that was very close to the true value. The third RJMCMC algorithm, denoted the
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RJMCMC 3 algorithm, was used to determine the existence of a change-point. It

moved between a model without change-points and a model with a change-point.

The application of the RJMCMC 3 algorithm to simulated data sets showed that

it selected the correct model. In all, we proposed a Bayesian shape-restricted re-

gression spline model to model a regression function under shape restrictions that

does not assume a parametric form. It produces reasonable function estimates and

has several extensions including extensions to generalized linear mixed models and

change-point models.

6.2 Future Work

There are several extensions to the work proposed in this dissertation. A sim-

ulation study examining the performance of the Bayes SRRS generalized linear

mixed model would provide valuable information on the small sample behavior of

this model and estimation procedures. Performing a simulation study examining the

Bayes SRRS generalized linear mixed model applied to data other than the normal

errors data such as binomial or Poisson data would also be of practical interest.

Additionally, a simulation study comparing the free-knot spline model proposed in

Chapter 4 to other free-knot spline models such as the one proposed in Shively

et al. (2011) would provide information on the advantages or any disadvantages

of using the proposed RJMCMC algorithm to estimate shape-restricted functions.

Likewise, simulation studies on all of the proposed RJMCMC algorithms for esti-

mating functions with change-points would provide information on the usefulness of

these algorithms under various conditions.

It is also important to study the asymptotic behavior of the Bayes SRRS gen-

eralized linear mixed model. In particular, we can determine the conditions under

which the regression function and variance component estimates are consistent. In

addition to studying the asymptotic behavior of the Bayes SRRS generalized lin-

ear mixed model, we could also examine the asymptotic behavior for the free-knot
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Bayesian SRRS model proposed in Chapter 4. We could again focus on showing the

consistency of the regression function estimate. Allowing the number and locations

of the interior knot to be free parameters greatly complicates the proof of consis-

tency and we will likely want to extend the work of Shively et al. (2011) regarding

the consistency of free-knot splines for smooth functions.

Furthermore, a RJMCMC algorithm that moves between models where the

number of change-points ranges from 0 to H where H > 1 is an obvious extension

to the RJMCMC algorithms for change-point models proposed in this dissertation.

When H > 1, we would want to use a prior for the change-point locations that

avoids placing the change-points too close together. If we allow the change-points

to be too close together then we can have problems distinguishing between models.

For instance, a function with a jump of height w at change-point ξ1 can be modeled

by both a model with one change-point and a jump of w or two consecutive change-

points with jumps of w/2. Another thing to consider when H > 1, is how to �nd the

locations of multiple change-points from the posterior distribution of change-point

locations. We would need to determine the best way to �nd the multiple modes of

the posterior distribution for the change-point locations.
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