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A7 Abstract
Subsequent to the original description of our linearized primitive equation model, several

improvements to the its original design and corrections to its original description have been

made. This manuscript represents a consolidation of these changes which include:

e Numerous corrections (typographic and otherwise);

e A provision for applying the horizontal boundaries at the poles. This document gives

the form of these boundary conditions along with their derivation;

e An improved latitudinal finite differencing scheme in which the horizontal wind vari-
ables (u,v) are staggered midway between thermodynamic variables. This new grid
structure eliminates grid scale numerical noise in the results and has the added benefit

of increasing computational efficiency by a factor of two;

e Treatment of the case where both the longitudinal wavenumber and frequency of
the perturbation approach zero. In the original version of the model, considerable

difficulty was encounter in computing a solution for this case.
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1 Introduction

The original description of our linearized primitive equation model was first presented in
Stevens and Ciesielski (1984; hereafter referred to as SC). The characteristics unique to this

model and/or important for application include:

1. The specification of an ‘arbitrary’ mean zonal flow which can depend on both latitude

and height;

2. Calculation of a mean meridional circulation which is dynamically consistent with
the mean zonal flow (i.e., satisfies conservation of angular momentum, the balance

approximation, the hydrostatic approximation, conservation of mass and energy);

3. Vertical transport of momentum by the deep convective clouds in the tropics in both

the mean and perturbation circulations;
4. Spherical geometry;

5. Coordinate stretching in both the vertical and latitudinal coordinates, which is repre-

sented in the coupled differential equations;

6. Very fine vertical resolution: experiments have been run with 51 points in the vertical;
computer processing increases only linearly with the number of grid points in the

vertical;

7. Horizontal resolution of up to 31 points (sQuare matrices with approximately five times

the number of horizontal points must be inverted) at each vertical level;

8. Very economic computation; the global response in a single longitudinal wavenumber
is obtained with approximately 13 seconds of NCAR CRAY1 time (using 31 points in

the vertical direction and 21 in the horizontal).

Full spherical geometry enables applications to phenomena of middle latitudes, polar

latitudes, and planetary scale as well as in tropics. Vertical and meridional stretched co-



ordinates enable emphasis on specified regions of the atmosphere while retaining spherical
geometry. Since computation time is linearly proportional to the number of vertical grid
points, high vertical resolution is a fundamental asset. A major dynamical component
excluded (to our knowledge) from other linear models is the specification of a consistent
meridional circulation as part of the basic state.

In the course of using this model over the past several years, numerous improvements
to the model’s original design and corrections to its original description have been made.
This manuscript represents a consolidation of these changes, the main ones of which are

summarized below.

o Sections 2-11 contained numerous corrections (typographic and otherwise) to SC.

e Section 8.2.2 lists the boundary conditions to be imposed when the horizontal bound-
aries of the model are at the poles. These polar boundary conditions are derived
in Appendix A. The earlier version of the model had no provision for applying the

horizontal boundaries at the poles.

e In Section 9, we describe an improved latitudinal finite differencing scheme. Using
a non-staggered grid with second-order centered differencing, the model results for
certain choices of model parameters would contain numerical noise on the scale of
the grid. Investigation of the one-dimensional shallow water equations (Appendix B)
suggests that the numerical solution could be significantly improved (both in accuracy
and efficiency) by changing to a staggered grid with the horizontal wind variables (u, v)

spaced midway between thermodynamic variables.

e In the original version of the model, difficulty was encounter when computing a so-
lution for the case of a steady, zonally symmetric heating (i.e., where both longitudi-
nal wavenumber and frequency approached zero). This problem and its solution are

treated in Section 12.



One must still refer to the original model write-up for details on the verification of the
model (Section 12 of SC), its optimization on the CRAY (Section 13 of SC) and computation

of the model’s basic state (Section 14 of SC).



2 Full Primitive Equations and Model Parameters

For consistency all three components of the zonal mean circulation in the advection terms of
the linearized perturbation equations are included. It is possible that some of the advective
terms by the mean meridional cell (%, W) could be consistently scaled out for some problems,
but in the interest of generality we have elected to leave them in. Following Holton (1975, p.
29) with slightly different notation, the (hydrostatic) primitive equations in log p coordinates

on a sphere are written as follows:

Zonal-momentum
_6_2+ u au :U.a_u ﬂ)-t 0+ @_f + 1 2?.
ot acos00/\"+a80_a an "’az v acos @ ON*
_99 _ ptou] _
=09z [Mc(u u°)+H6z aRu (2.1)
idional-mo; u

%+__lf_av+2§q+~@.+u_2t 0+fu+la_¢
Ot  acos@ N adl “’az a an a 00
g0 pt av]
= P 2 =y Ll = - (2.2
pOoz Me(v—v.) + H 0z R (22)
Continuity
1 Ou 10v v dw
- =2 2 2L v 2.3
acosf ON* * a 06 atanO + 0z it (<)



Thermodynamic

OT , w O 00T T . Q g0pdl_
ot acos03A‘+ 30+ 0z +wKT—c,,+p62HBz ot

Hydrostatic approximation

The vertical diffusion terms:

g 0 ptdu g 0 ptdv gam‘t?T

p0z HOz pdzHOIz C pdzH 0z

(2.4)

(2.5)

are required by the numerical integration scheme. As noted by Stevens et al. (1977), van-

ishing of the mass flux M, at the cloud-top level gives singular solutions of the inviscid

equations which can be avoided by inclusion of small vertical diffusion terms. The indepen-

dent variables for this system of equations are:

A* = longitude
8 = latitude
t = time

N
I

In (%)

The dependent variables for this system of equations are:

u = acos 0% = horizontal velocity component in A*-direction
v = a%—f— = horizontal velocity component in #-direction

w = ‘z = vertical velocity component

T = temperature

® = geopbtentia.l height

Other specified variables and constants are:



Po

M.

Ue

Ve

QR

an

2Qsin @ = coriolis parameter

po€~? = pressure

surface pressure (10° N m~?)

cumulus mass flux

diabatic heat source

% = scale height

gravitational acceleration (9.81 m s™2)

gas constant for dry air (2.87 x 102 m?s~2K 1)
angular speed of rotation of earth (7.292 x 10~% s~1)
mean radius of earth (6.37 x 10° m)

height of cloud base

u(2.) = u-component of wind at cloud base
v(2.) = v-component of wind at cloud base

Rayleigh friction (22 x DISWIND), where DISWIND
is the nondimensional dissipation coefficient of the
horizontal wind

Newtonian cooling (22 x DISTEMP), where DIS-
TEMP is the nondimensional dissipation coefficient
of temperature

specific heat of air at constant pressure (1004
m2s~2K~1)

R/c,
dynamic coefficient of viscosity

dynamic coefficient of thermal diffusion



Other constants used in this model but not explicitly appearing in equations 2.1 — 2.5 are

listed below for the readers convenience.

T = cos”!(-1)
o = angular frequency
= (Q/PERIOD) where PERIOD = period of disturbance in days
o > 0, for eastward propagating disturbance

o < 0, for westward propagating disturbance

s = longitudinal wavenumber
¢ = phase speed (0-a-cosf/s)
T, = surface temperature (300 K)
U, = horizontal wind scale used in non-dimensionalization (10 m s™%)
V, = gustiness factor (8 m s™%)
CD = surface drag coefficient ([1.0 4+ 0.07 x V;] x 1073)
ST = static stability (878 m)
I = 237 (30.01K)
IZ = number of points in z-direction
IY = number of points in #-direction
ZT = z(1) = value of z at top of model
ZTROP = value of z at tropopause



3 Linearized Equations

Using the perturbation method all variables are expanded into two parts: a basic state,
which is assumed to be independent of time and longitude, and a perturbation, which is a

local deviation of the field from the basic state. This expansion is shown below:

u(A*,0,2,t) = ud,z) + 4'(0,z) )
v(A%,0,2,t) = v(0,z) + (8,2)
w(A*,0,z,t) = w,z) + w(6,2)
®(A\*,0,2z,t) = B(6,2) + ¥'(4,2)
* M ’ .
T()‘ 0,2, t) - T(G,z) + T (0’ Z) % ez(a/\ —ot)

M.(\*0,2z,t) = M.8,2) + M.6,z2)
uc(A*,0,2,t) = T(0,z) + wul(6,2)
ve(A*,0,2,t) = T(6,2z) + v.(6,2)

Q(A*0,z,t) = 5(072) + Ql(o7z)

() = basic state

(") =( )e'**=) = perturbation from basic state

To illustrate how Eqgs. 2.1 - 2.5 are linearized we have shown below how this method
works for the u-component of the advection term in the zonal-momentum equation. Upon
expansion:

U—+tUu Tt u

U T T T Uig

acosf dN*  acosb

U u 1 ( Ju dw _0u _0u ) (3.1)
The assumption is made here that the basic state variables must themselves satisfy the

governing equations so that the first term on the right hands side of (3.1) will cancel out

with the other terms of the basic state equation. Secondly, we assume that terms which



involve products of perturbation variables (e.g., last term on right-hand side of (3.1)) can

be neglected since ( )’ < (). In addition,

i ST

ax = ()
and

o) . .

o = ~0)
so that

di 9
= = oa

(u'(0, z)e‘(”\‘"”t)) =1is [u’(ﬂ,z)ei("\""‘)] = isd

Therefore Eq. 3.1 can be simplified to:

u Ou _ [H isu/ v OU] ierc-ot)
acos@ON* ~ |acosf ' acosf I\*

By using this method to linearize the other terms in Egs. (2.1-2.5), our system of equations
now in their linearized perturbation form are given as follows where €(*A*=9%) has been

factored out.

Zonal-momentum

i IWC ————— u

; v _0 T g
[—za+ +aR+a + W— — —tanf — 92 H

18U 9
acosf 00 0z a poz

l@ - E / _Q-E ’ i3 ’ _ gi _, P
+ [a B f] v [az] v+ [amso] ¥=- 5 (Mo, + M3 -9)] (3.2)



Meridional-momentum

[2—61; 0+f] 1 [ o + il + +?2.+m_a_+l@_gi__giﬁig_] d
Pl Wt acosd T 200 0z a0 pOdz ° pOzHOz

av] , [10].,, g0 [, b
b = S e s - 3.3
+ [az] w + [a 60] ® paz [Mc'vc + Mc(vc v)] ( )
Continuity
is , [10 tand] , [ 3} ] p
-2 2 e 5 - 34
[acosB]u+[a86 a v+ 0z o kot 34)
Thermodynamic
10T| , |oT = | ,
la(%]v [(?z-*-TK]w
i 4 58 0 59 . % gf_ﬁi] o @
+ —w+acos0+aN+a80+waz+ p0z H 0z T—cp (3-5)
Hydrostatic approximation
(3.6)

[%] ® +[-R]IT' =0
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4 Coordinate Stretching

To allow us the capability of stretching the coordinates in certain regions of the model’s

domain, (e.g., to increase resolution in regions of interesting phenomena) we transformed

the vertical (2) and horizontal (#) coordinates of the model into the independent variables

A(z) and 7(y), respectively. By defining:

n

<

=

B

>~

n(y) is the stretched latitudinal coordinate

af is the latitudinal distance from the equator

dn

dy

arn/ %

A(z) is the stretched vertical coordinate

A
9z

19
A 2N

s
acosf

‘%1 is the kinematic coefficient of viscosity

is the kinematic coefficient of thermal diffusion

1B

PRT = pgH

Eqgs. 3.2-3.6 can then be written as:

Zonal-momentum

[—ia +ikT + ap - —Z—tanﬁ s VA BVAAy y O
P

- [17'@ ~ Ztand —

on a

a
an oA

o8

f] v + [A' 5 /\] W + (ke + I D (Meu) = - %/\’— [M!(3. - 7)]

p OA
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Meridional-momentum

[—tan0+f] u
. G & 8 P 00— 9., 0 p 6]
+[ w+zku+aR+nan+ na + @ /\(9/\’ /\a M, p’\a,\gm’\a,\ v (4.2)

[’\'a,\] +[ ‘9]@' g,\'a(M"v')= g,\' - MUz, - 9)]

oA
Continuity
[iK]u’ + [ = tane] [,\’— e 1] W =0 (4.3)
Thermodynamic

[n'%%] v+ [/\'-a—T- + TR] w'

U= o B ATy By L ]
' 9 1 O ’
+[ za+zku+aN+vnan+w/\az+wn ’\a,\gm R (4.4)
Hydrostatic approximation
[x i ] &'+ [-R|T' = 0 (4.5)
oA

12



5 Flux Form of Equations

To satisfy general conservation properties in finite difference form and to place the vertical
advection and cumulus friction terms in the same form, we have chosen at this time to
rewrite the equations in flux form. The advection operator in the meridional plane becomes
a flux operator when combined with the continuity equation for the basic state:

d

9 '
vn—6—+w/\a)‘—

-?—6 cosf + ——— A0 p_
on (p/po) OX o

Using this identity the equations in flux form become:

Zonal-momentum

(—to + kT + ap — —tanG)u t— T’,

(Jcoseu) + ( /Po) aﬁ- l(ﬁw— g—ﬁ?) u’jl

- X Bp 8“ /@_E _ ) ’ (,W) ’ . 7
(p/po) X po sz\ a + <n a1 atanﬁ flv+1A £ w' + (ik)® (5.1)

* (P/po> 6i (

Meridional-momentum

) () & 2]

/

n
cos On

A9 P gM .\ |, AN\Opuwv 0 (,(?v) ,
+p/poa’\ [( B Po )U} _(P/Po> a/\poH2/\ 3/\+ /\8,\ (5.2)

+1 Qq)—'+ X 9 (‘qm)vﬁ:—('\—,)aﬁ[ Ml(vc—v)]

—(Tcos 6v')

(%utane + f) o' + (—ia + kU + ap + n’%;-) v+

p/po OX p/Po Do
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Continuity

(ik)u’ e 7]’ (v cos ) + ( /po) ai (—w’) =0 (5.3)

Thermodynamic

(n’a—T) v+ (z\'aT - Tn) w + (—io + iku + an)T’

an oA
orT’ N dpwv 0T _ Q
2 B —nz— REPEY o X =T
o1 on +e (e T) e Hz/\ I (5.4)

Hydrostatic approximation

(A’ ;,\) ' + (—~R)T' = 0 (5.5)
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6 Non-dimensional Form of Equations

It is now convenient to non-dimensionalize the equations so that the solutions and the
coefficients of the terms in the equations are O(1). The following variables in our system of

equations are non-dimensionalized as follows:

f by 2Q
o by U,/L
t by L/U,
_ , , _[lfors=0
z,y by L =a/s wheres _{sfors;éO

z by 1
u,u',o,v" by U,
- gM. gM U,
w,g_i Lﬁ,w’ by T
® by 2QU,L
T' by 2QU,L/R

To simplify the form of the non-dimensional equations we define the following quantities:

R, = 5%% is the Rossby number

R = %}‘- is the Richardson number

Fr = % = Ro%¢ = Ri~! is the Froude number
£ = -’% = e~ 7 is non-dimensional pressure

Eo = ﬁyf_{f = Eo(na ’\)

Eo = ﬁ!’ = Eo(ns ’\)

272 2 40242 2 -
40212 _ L2 40% =(2QL) Uz _ ~2Fr = R72R;

15



r=
ot = §JL
Ut T Y = Uajv'%’Uio’v_;
o™ = UF/L’ UZ’;L
M_,M* = ,,,,z%/L’ poljff;L
" = 2qulvo

gr = 'U,,L_I‘l%’ where I'; is a typical stability

where the ( )* represents a non-dimensional quantity. Using these definitions and notation
the linearized system of equations in flux form are non-dimensionalized as follows. The

zonal momentum equation is multiplied by (1/2QU,), and thus can be written as

U, —ia+aiﬁo+aR_E/Uot = u_’+ U, L’/i(icosl')
2QL U,/L a/L U, 2QLcos@on\U, U,

U, XN & [( £w g M. )u’] No ., v 0w u)
- =l A

20L € 0X |\ U,/L ~ p,U,/L ?55 20H2"  9A

o T IHLa T M =4g

+( U, Ln,aﬂ/Uo Us LT

f) o U, (A,a-a/Uo) W'
20L

mtar\" oy UL

is 20U,L & U, N 8 ( gM, ) ul
Us

acos 20U, 20U,L T 20L € A \poUs/L ) Ts

Lo Zuk b rcailis (v 2]
T T20L € ox lpU./I \U, _ U,

Rewriting this equation in an alternate form yields

16



. . 7 /
R, (— ey OB —'375%&119) w + Bl 0 (5 cos gu™)

Uo/L ~ cosf Uo/L cos 6 On
o ?a_,\ (Gamrely zaiw N
+<RLU%—T’—.—R0,ta.n€ f‘)v’*-{-R (,\/%:) I
+ZZ£89‘I’“+R°£ oy (Mo)us = Ro':aa/\ (M (a2 - )] (6.1)

Similarly, by multiplying the v-momentum equation by (1/2QU,), we can write

(_.UL_I_’.2u f> v’ Uo (-w'+ a::?;0 t+ar L ,3'17,'(]0) i
U,

20020, 20) 7, t 201 U./L r

+_UL_L77I.Q.<icosgi> o ili 13 w - ch i
2QL cos 8 0n \U, U, 2QL £ oA U,/JL p,U,/L) U,

X8, ¥ 0 (_) 4 U (A,av/Uo) W’
€ ON"2QH2" OA \U,) ' 2QL ax ) U,/L

20U,L7 & @ U N0 ( gM. \ vl
20U, 0n2QU,L ' 2QL € ox \p,U./L) U,

e [ (7 7))
T2QL € aX [p,U,/L U,

Alternately

s e I o + Ly ——

2u* i I o ’LS/S aR /65*) %
(Ro s’ tand 4 J )u * Ro( U,/L cosf " U,/L

T/ ( cos 9v™) + R, 21 33/\ [(E o - F) v"’]
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No,. . .0 ,aﬂ) %
ga,\fEA an TR (’\ )
Ith‘l ’\’ aMc hr - )" I- —4 o —-c

The continuity equation is multiplied by (L/U,)

is L, L 7 /\'0< )__
acosOUou+U cos 8 dn (v c080) + £ OA fw' U, b

Alternately,

is/8"\ ﬂi 1% A w*) =
(cos())u +cos€6n(v mel)+ ga,\(f I=

The thermodynamic equation is multiplied by (L/U,I';)

L{,6T\v , L ,aT - S [( . isT ) 3
= (7= < '
| Y (77 377) Uo (/\ aA L U, + U,y gudtid acos6’+aN

—Ia_T" —KZ e Ia
+77 an + e WA 6/\(

] L XN 9p 0T L Q'
U,T'1 p/po 0X po H"’ L &

Alternately,

)0 z " /\’aaT +&T\ ,. [( —ioc is/s_. an )
[L" I\ |7 T Y ke G e T BT

0 A’ s S il
+5.L7] - + e—nz—tAI nz] TI# _ § aA on aA

an T

18
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(6.4)



Finally, the hydrostatic approximation is multiplied by (1/2QLU,) which yields

RT' 0 ( & \_
~2017, TV (mwa) =0

Alternately,

a@/#

_I- /
"+ X355

=0 (6.5)
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7 Equations Written with Coefficients

One can readily note from the previous section that the equations in their linearized non-
dimensional flux form are rather lengthy and obviously would be cumbersome to work with.
In view of this difficulty we have chosen to rewrite Eqs. 6.1-6.5 with coefficients which
operate upon the non-dimensional dependent variables. With this strategy the appearance
- of the equations is simplified, and the programming aspects of the problem become more

tractable. These coefficients are defined as follows:

-t 18/s'_ ) U, ( -0 1is/s TZ)
A — ) > b—v em—
Al ) & (UO/L + cosf 2QL \U,/L + cosb U,

—io  i(s/s)u _ —io is T

20 T 20Lcos8 ~ 20 T cos020a

B QR U, QR '\ _ AR
AR(mA) = A+ Rogp =4+ 300 (Ua/L> =4t

AN(mA) = A+ RN — g4 Do ("”)=A N

/L~ " T 200 \U,JL 20
Q9(n,\) = AR-— Ry’ tanf= AR - 2% " tanf = AR — —— tan¥
Al = oy AnO= 2L U, YT 20a
A A
Pi(n) = RocosG_QQLcos0-2Qcos0

P2(n,A) = ﬁ‘cosO:Ulcos()

P3(n,A) = R,(¢w" - M)

_ U (&w  gM:. \ _&@ _ gM.
T 20L\U,/JL pU,JL] 22 2Qp,

20



D(A)

E(n,A)

F(n, )

Q10(n, A)

Q3(n,A)

Q2(n)

AL2(n, A)

Bl(n, )

B2(n, )

B3(n,A)

4
EE,N
EEN

0w TR/, L. . TSP 5
RLna -—R ta.n0 f —2QL81;_2Q tan 6 50

o N ou

’_—_-—

BoX 35X = 201 0n
s/s
cos()
R _A_Ii—* o —3- L’o gﬁc =D£ gﬁc
X)) OX2QL pU,/L ~ ~ 9x \ 2Qp,

R ey N ) <a a)}
'RgaA M@ - %) = Dayoat [poUo/L 0, - o,
pd [ﬂ (E_E)]
ax [20p, \U, ~ T,

Ny o _pd U [_gM (1 i)]
~Roe o (M (7 — 2] = Dpysat 2U./L \U, _ T,

5 5 (7~ 7))
E3) 2wp, \U, U,
Ix __ L g
Q I Uol"l Cp
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Q11(m, A)

Q13(n,A)

Q5(n, A)

C1(n)

Q22(n)

C2(n)

C3(n)

C5())

D2())

Q6(m, A)

Q7(m,A)

C1())

2u* U, 2u

u tan 9

tanf + <= =
0L, Mt 59 = To0a

o Ly 0%
,_ f— —_— —
AR+ R,Ln on AR + 20.L 91

o XN 9%
P e S 2
Bol o\ 2QL A

a
Ln':s—r,’,

cos @

/\I

Ly o
I‘] 67]

1 (,,0T =

KZ

22

S

2Q



C8

C8D())

CC(n,A)

C6(n, )

C8AN(n,\)

C8CC(n,\)

C8C6(n,\)

40212
RT,

C8-D

U,

R.v* Ly’ =

Roe~*w* )\ =

C8-AN

c8-CC

C8-C6

i Ly

2QL U,

UO Kz

20L°

23



By defining these coefficients, our systems of equations can now be written as:

onal-mo tum

9 9 0 g9 ) +(Q10)v" + (Q3)w'™

(Q9+ Pla—nP2+ DgePd — Doz Boc fu

+(Q2)¢™ + (AL2)ul* = (B1)

Meridional-momentum

(Q11)u™ + (Q13 + Plaﬁ-P2 + D;i\ P3 - D;/\Eaa/\) v + (Q5)w™
+(Cl)a¢ +(AL2)v* = (B2)
Continuity
(Q22)u" + (02303) o + (D s cs) =0
oan oA
Thermodynamic

0 0 g 0

(7.1)

(7.3)

(Q6)v™ +(QT)w™ + (CSAN + C8CC— + C8C6-—=CT — C8D~m F— ) T = (B3) (7.4)

on oA dA 00X

Hydrostatic approximation

a ¢I*

~T" +(D2) 55 =0
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8 Boundary Conditions

In this section we consider the boundary conditions used with our model. These conditions
will be expressed in non-dimensional form, and where necessary to simplify the equations,

coefficients will be used.

8.1 Top and bottom boundaries

Since our system of equations can be reduced to an eighth order differential equation in the
vertical, the continuous solution requires eight boundary conditions at the top and bottom |
of the model. These boundary conditions in the stretched coordinate system (7, A) are given
as follows.

At the upper boundary

— = —— = —— =0 (due to large dissipation) (8.1) - (8.3)

w' =0 (rigid upper lid) (8.4)

In non-dimensional units these equations appear in the same form as in (8.1)—(8.4) except
now the dependent variables are replace by (u'*,v*,w™ and T"*).

At the lower boundary

%qu' = BCU w
%”yl = BCV bulk aerodynamic parameterization
& = BCT T
where
BCU - v1
(BC’V) = H"'i,D Yo (uo‘)
BCT p1
y: RT,
g



v, =¥z =10)
By = bz = 0)

The constants T,, CD, v, are defined is Section 2.

In non-dimensional units (8.5) - (8.7) can be written as
a ul- ula
— | v* | =(BCU BCV BCT)| v* | =0
a/\ T;. Th-

The fourth boundary condition at the bottom is given as:

. ., d¢’
/ — ! — —
w =0 (where guw' = dt)

Expanding out the total derivative (j‘%) we find

d¢' il

dt

or in non-dimensional units

a ¢It
on

B35¢™ + B32v"™ + AC35

where the coefficients in (8.12) are defined as

s SU o
By = (s’Uocosﬁ a UO/L)

,. 09/(2QU,L
B32(n) = L—Q-/LW—)
AC35(n) = Uzﬂ,L
B33(n) = A’W:RT/@QLUO)
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8.2 Horizontal boundaries

~

8.2.1 Boundaries not at poles

In the horizontal direction the system of equations is second order, so that two boundary
conditions are required on the sides of the model. These boundary conditions were chosen
as v = 0 which inhibits flow through the side boundaries of the model. With this condition
the v-momentum equation on the sides is replaced with v/ = 0. In addition since v = 0 on
boundaries, coefficients involving 7 (i.e., P2 and C8CC) are also zero. This will be shown

explicitly in Section 9.2.2.1 when the discretized form of the equation is presented.

8.2.2 Boundaries at poles

When a horizontal boundary is extended to the pole, the boundary condisions which are
imposed at that point are shown in the following table. The subscript p in this table implies
that the condition is imposed at the pole. Details on the formulation of these boundary

conditions are given in Appendix A.

Table &.2.2
variable 5= 8= %1 |s|] > 1
u’ u;,=0 (%—*,;’)p:o u;,=0
v v, =0 (%)p:O v, =0
w (V-v)+% —w=0| w,=0 |w,=0
e (g—’-g)p=o T'=0 |T,=0
¢ (%), =0 $=0 |4,=0
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For the s = 0 case, the condition on w’ involves the horizontal divergence at the pole. This

can be expressed as
1 dv}, cos 0,
V s W)y 2 s | fttl o maiBebais
(V-v)y acos b, (zsup N a0, )
since u, = 0 in this case
o v} sin @
v - = p oMYy SRR
(V¥ (aﬁ&)p acos b,
Since in the second term on the right-hand side of the above equation both v, = 0 and

cos 6, = 0, we use L’Hospital’s Rule to evaluate it. This is shown below.

: o'
_vpsinb, _ limgg, % (—v/sin6) —vp cos B — sin by (79—0_),, <19_v_’_)
add/,

acos b, . limg_g, % (acosf) O —asin,
Thus (V- v'), = (%aa"—o')p . Using a standard one-sided, first-order difference formula at the
poles to approximate this term in the continuity equation is equivalent to assuming that
the area average vertical motion, w’ (i.e., —pw’), between the pole and the first grid point

equals the average divergence over this same area.

The continuity equation in flux form with coordinate stretching can be written as

200 N9 [(p ,)_
a60+p/p03/\ (pgw =4

Note: the first term here was not expressed in stretched coordinates as 27/ %”;’ because
when the stretched coordinate is 7 = sin @, it follows that #/ = cosf. Thus at the poles
n, = cosf, = 0. For this reason the boundary conditions in table 8.2.2, which involve
horizontzal derivatives at the poles, are left expressed in the unstretched coordinate, 6.

In non-dimensional form with coefficients this equation becomes

v i .
o (D5XC5) w* =0
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In non-dimensional units the other polar boundary conditions are in the same form as in

Table 8.2.2, except now the dependent variables are replaced by (u*, v, w™, T’ and ¢).

29



9 Discretized Equations

The equations 7.1-7.5 are finite differenced in the latitudinal and vertical directions. To do

this we define the following:
i =7ns+ (i—1)An where i — 1,IY

Aj =M+ (j-1)AX where j— 1,IZ

where
An = (v —1s)/(IY - 1)

ns = 7 at southern boundary of model

nn = 7 at northern boundary of model
IY = number of nodes in the latitudinal direction
AN = (Ar1z—-M)/(IZ - 1;

Arz = A at bottom of model atmosphere

A1 = A at top of model atmosphere

1Z

number of levels in the vertical direction

For brevity we drop the ( )* notation, but it must be realized that the dependent variables
are still non-dimensional.

In the revised version of the model we elected to use a staggered grid in the latitudi-
nal direction. This decision was motivated by the following observations. (1) For certain
choices of model parameters (e.g., s = 0, frequency small), adjacent perturbation variables
appeared to be decoupled from each other in the latitudinal direction by exhibiting a large
2An oscillation. (2) Arakawa and Lamb (1977) have noted that proper finite differencing
(i.e., staggering of the variables) is needed to properly maintain the geostropic adjustment
process. For the one-dimensional shallow water equations the distribution of dependent
variables which results in the best simulation of the geostropic adjustment process locates
the u and v variables midway between the grid points where ¢ is carried. (3) Use of a

properly staggered grid is computationally efficient in that it requires half the number of
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grid points as the non-staggered grid to achieve the same level of accuracy. For more details
on these last two observations one should refer to Appendix B.

Based on the analysis in Appendix B, the latitudinal distribution of variables chosen for
our staggered grid is shown in Fig. 9.1. In this configuration the variables w’, 7", and &’
are located at whole grids points with «’ and v’ half way in between. The ' and v’ variables
are also carried at the horizontal boundaries where they are needed for computation in the
thermodynamic and continuity equations.

When a coefficient or a dependent variable is required at a certain grid point but is not
explicitly carried there, it is computed using linear interpolation. The example below shows

how a field g, which is defined only at half grid points, is computed at a whole grid point.

gl’+£,'-g"-i'>
9ii =9i-3;t n‘.+; -n.-_; (’7='+% - )

+ 2tdstinha (4n)

= 9i-1i
Iisy i H9i-ts
= 2
1 1 — &
1 12 2 23 3 Y — 3 IY

/ ! ! ] ! ! ' g
ul ul% w2 uz_% w3 uIy_% uIY

! ] ' ! ' ! !
V] Vi3 T3 Va3 T; Viy-1 vy

! ] ! !
wy 2 3 w'IY

1

] e

/ Pry

Fig. 9.1 Latitudinal distribution of perturbation variables.
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9.1 Discretized equations at interior points

Using grid structure shown in Fig. 9.1 the discretized equations at the interior points are
shown below.

Zonal-momentum at half grid points (2,IY - 1): i - 2, 1Y

le—%,_‘lu:—%g + P].‘_% (P2D u,)‘_%,J

(P3 ul)i—%,j-}-l - (P3 "’).‘-%,j-l
2A)

+Dj[

/ / / /
= u

i-1,j i-3, Ti-4-1
i~ _F. ;. 1—2 2 ]+Q10i_%,jvt’._%,j (9.1)

A

where

(P2 W)y + 3(P2 u')‘-_%,j] [3An ifi=2
(P2D u’)'._%'j =< - [(P2 u')‘-_%,j + 3 (P2 u’)‘-_%,j] [3An fi=1Y

(P2 w1 (P2u)ig,] /280 if2<i<IY
These formulas assume that the coefficient P2, which is a function of 7 is zero on the
boundaries. To see where these formulas for (P2Du’) come from, let us consider the zonal
momentum equation at the first half grid point in from the southern boundary (i.e., i = ).
Due to the distribution of the dependent variables (see Fig. 9.1), horizontal derivatives of
quantities involving u’ and v’ at this point cannot be represented as centered differences.
Thus to compute a horizontal derivative of some function, f(7), at i = %, the following

second-order difference formula is used:

fy= (-4 +3f3 + f5) 380

A similar argument is used to derive the difference formula shown above at a half grid point

in from the northern boundary (i.e, ¢ = IY).
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Meridional-momentum at half grid points %,IY - %) i—2,1IY

(P3 v’)i—:},j+l - (P3 ”’)i-§,j—1]

Q11,1 ju;_y +Q13;_1 ;v 4 +PL_1 (P2D v'),._%'j+1)j[

J t‘—%,j 24 i_%vj 2AA
’ o ! -
D; Vil T Y-l Yi-14 Y-l
~2x | Bicti+d AN ~ Eicgi-g AX @2
@51 ; o -,
where (P2D v');_ 1;is defined by substituting v’ for 4’ in the formulas for (P2D u'),_ L
Continuity at whole grid points: ¢ — 2,1Y — 1
. (C3v");01.—(C3V');_1;
%[’u'. 1.+l 1~]+C2i a4 L L.
2 29 t=3d An
C5w'); .. ,—(C5w),._
+DJ [( ) 7J+12AA( ) ¥ 1] = 0 (9-3)
Thermodynamic at whole grid points: 1 — 2,1Y — 1
Q6ij (. + v +Q7; ;wl; + C8AN; ;T!;
2 \Ui+di T Y%i-1 i Wi Bt
T ,;-T.,; (CTT); ;4. —(CTT"),;
S et 2 7 i=1,7 e 1,7+1 L
soncc [Tz, cce, @1 Thin = >
C8D; Tl = Ti; Ti—Tia| _
Y [ 0 R v g S e
Hydrostatic approximation at whole grid points: ¢ — 2,IY
.. — .
1,741 =1 _
—T,-’,j + D2j l—m#—] =0 (9.5)
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9.2 Discretized equations at horizontal boundaries

In this section the horizontal boundary conditions are applied to vertical levels j — 2,17 1.

9.2.1 Boundaries not at poles

Zonal-momentum at: 2 =1and : = IY

P3 4. . —P3u’.._
Qgi,ju:',j + P1; (P2D ur)‘.,j + D; ( )w+1 ( )s,] 1]

2A\
DL Ui e = Ui _E Ui ;= Uiy
AN | Thitd AN -3 AN

+Q3;,jwf,j + Q2,“I’:-,j + AL2; ju,; = Bl;;

where

2 n. P
(P2D W), . = (& ((P2u)y,  ifi=1
WU\ R (P2, i=IY

These formulas for (P2D u');;; assume that P2; = P2;y = 0 where P2 is a function of &
and ¥ = 0 on the horizontal boundaries. Also the term involving v’ (i.e., @10; ;v ;) is zero

and has been dropped from the above expression.

Meridional-momentum at ¢t =1 and 1 = IY

Continuity at ¢t =1and ¢ = IY

(C5 w/)i,j+1 - (C5 w,)i,j—l

24\ =8

Q22iu:-,j + C2; (C3D v')i’j + D; [

Z(C3 ) ifi=1
(C3D v'),.j={‘f;’( ,)3,: _—
’ A_ﬂ(C3 v)Iy_%,j 1f1=.&Y
These formulas for (C3D v');; assume that C3; = C3ry = 0 where C3 is a function of o

and ¥ = 0 on the horizontal boundaries.
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Thermodynamicat ¢ =1 and i = IY

QT:jw.; + CBAN; ;T!; + C8CE6; ;

[(07 T'); ;41— (CT Tl)i,j—l]

24
CSDJ t]+l T’ T'il fT’J-1 —_ -
o T e R T | T B

The terms is this expression involving v’ (i.e., @6 v') and % (i.e. C8CC Q;Ta#) are zero on the

horizontal boundaries and have dropped accordingly.

Hydrostatic approximation at ¢ =2 and ¢ = IY

P .. — P
=7 B i 17 2 2 S el )

9.2.2 Boundaries at the poles

Ifs=0
w;=vi;=0 ati=landi=TY
(C5W'); i1 — (C5W'); 54 , : )
(Dv);,; + D;j J+2A/\ g =0 ati=1landi=1TY
where
2 _ .
(D ) Wv%,j = DVS ‘U'%’J. at1=1
V)ij =

-2 _ >
et v’n,_%,j = DVN v}},_%’j at 1 =T1Y
These formulas for (Dv); ; assume that v/ = 0 at the poles.

T2',J —TI,,J = 0, Qé,J —QII,J = 0 at i =1

TI,Y,J —T}Y—l,j = 0, @,[Y,] —QIIY—I,J' = 0 at 1= IY

Ha=41
’ ’ ’ :
uy . —uf =0, v5. —v]; =0 ati=1
%v.’ l'J ? %'J 1,
/ ! b— ! o o= / — 3 -—
U[Y':' un,_%,j == 0, vIY,J le-—%,j 0 at 1 IY

v =T; =®,; =0 ati=1

/ —_ ! — &/ s ) -
wIY'J = TIY,] - QIY,J = 0 at 1 = IY
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/
b ¥

"'IY,

P 4
= W

— . =T . =& .
=34 _TI,J ‘1’1,3

=0

=V =Wh:=Th: = & . =
i = v, =Wy, = Try; = ®y,; =0

! {4
Uiz  —Uy
u -’

—%y2 i—%v

/
Vi

' 4
v. 1 -0, 1

1—2,2 1—5,1

/
Wi

/ /

Ti,2 _Ti,l
/
—ﬂJ+D%[

9.3.1 At upper boundary (j = 1)

fori=1 and

for 1 — 2,IY

fore=1 and

for i1 — 2,1Y

fori — 1,IY

fori — 1,IY

/
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ati=1

at i1 =1Y

9.3 Discretized equations at vertical boundaries and corner points

1=1Y

i=1Y -

3!, —
——-—1] =0 for i—1,IY



9.3.2 At lower boundary (j = IZ2)

“:',Iz'“f,lz—x
AN

( i-4,12 A;-i,mq) —BCU;_%u'

—BCU{’U:',IZ

!
V:,1Z

i-1,12

vl % _u' %
i-312" i-},12-1 ’
( 9 ) —BCVi—%vi-%,IZ

—-BCT: T}z

T.",:z"T-",Iz—l
AX

B35 1, + AC35;(D®'); 17 + B33iw 5

Riy1,12-Pi 1z
where (D®'); ;, = a2

D 12-Pi_1,12
An

Hfi=1
ifi=1Y

B32;
B35,® 17 + 32 (”"-g,zz + ":'+§,Iz>

®
24An

-I-AC35,'( fix,lz"q’:‘-l,lz) 4 B33;w£'12
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=0

=0

fori=1andi=1Y

fori — 2,IY

fort=1andi=1Y

for: — 2,IY

fori — 1,IY

fori=1and:=1IY

fori —2,IY -1



10 Matrix Form of the Equations

To aid us in solving the system of discretized equations given in the previous section, it
is convenient to conceptualize these equations at each point in the model’s domain in the

form of 10.1 given below

LL; ;xij-1+ AK; jXi-1,; + BK; jXi,; + CKi jXiv1,; + UUijXij+1+ I JijXei = BB;; (10.1)

where
T
!/ / W ! / 3 N
("1,1" v Wi T 1,:‘) ifi=1
T
s o e / /4 ! / ¢ :
Xt,] ('U, -%,J" 'U'._%’j, w,-,j, Ti,j’ Qi,j) lf 2 S (3 S IY

/ / T o e o IY
(uIY,j’ 'U[y'j, 0, 0, 0) ifi = +1
represents perturbation variables at the model grid points and LL;;, UU;;, JJ;;, BB;;,
AK;;, BK;; and CK;; are defined respectively below. In these matrices the row index
corresponds to the equation (1 - zonal momentum, 2 - meridional momentum, 3 - continuity,
4 - thermodynamic, 5 - hydrostatic approximation) and the column index corresponds to
the variable operated on (1 -/, 2 -, 3-w',4- T’ 5- ®). For example, the matrix

element (2,3) is the coefficient of w’ in the meridional momentum equation.

-P3. . E. )
( Dj[ it 'g;‘%]o 0 0 0
-P3. . E. )
0 D; [kt - Sk o 0 o
LLi;= 5y
’ 0 0 -D; (5552) 0 0
CT5= C8D;
0 0 0 [-c8ce:; (Fa) - B Fis- 1302-
\ 0 0 0 224
( P3_yiv1 Bicgied
D; 2AN T T AX 0 0 0 0
P3. E. )
0 D; [—L‘;A;“ = - ] 0 0 0
g 0 0 D; () 0 0
0 0 0 [c8C6i; (Fat) - Tt Fijet] O
\ 0 0 | 0 0 5
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AL2;_y 0 0 0 0
JJi; = 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Bl,_y,
B2, 1.
BBi;=| 0
B3; ;
0
-P2,_ Q3,_ Q2,_
P14 (T,,ﬁ) 0 — 0 G
-P2 x Q5. -C1.
|—§, |—%, -
AK,'J' = 0 Pl‘_% ( 24n J) 2 = 0 T"Ii
, 0 o 0 082'0' v
0 0 0 =Kl 0
0 0 0 0 0
. Q3,_ Q2 _1
([@9i1;+ 2By Q104 ks 0 i
I Q5. 1 . Gl g .
D -, -3,
B Q1L _1; [Q13i-§,j + E\%Ei-g.j] —ge 0 T;ii
(1= -C3.
" 222 5y M 0 0 0
L C8D; £
0 s QTi; [CSANi.j + mﬁf}-%.j] 0
\ 0 0 0 - 0
where E;j=E; ;1 + By and Fij = F 1+ F 4
(p1,_, (Diths 0 0 0 0)
i—% 2An
P2, b
0 P1,_y (T{}i) 0 0 0
CK;;= 3,
9a% Cu—mt o 0 0
6 ; C8CCi ;
0 QWi 0o B o
\ 0 0 0 0 0/

To implement the finite difference formulas following 9.1 and 9.2 in the previous section,

the matrices BK and CK at : = 2 are altered as follows:

P23 .
BK,;(1,1) =old BK,;(1,1)+ Pl% (—A%’—J)
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J

p
%]
~

BK;j(2,2) =old BK,;(2,2)+ P13 ( =

P25 .
CKa,;(1,1) = }[old CKa;(1,1)] = Ply (T}ﬂi)

P25 .
CK2(2:2) = 3lold CKz(2,2)] = Pl (Tj,,—’)

Likewise the matrices AK, and BK at ¢ = IY are altered as follows:

_P2IY—E 4 )

AKry;(1,1) = %[old AKry(1,1)] = PlIy_% A7

AK1y;(2,2) = 3[old AK1y(2,2)] = Plpy_y
-P2
BKry;(1,1)  =old BK;j(1,1)+ Plyy_s (—ffﬁ

BKry,j(2,2) =old BK,;(2,2)+ Pln,__%

In computing the above matrices the following restrictions apply. At ¢ = 1 certain
formulas (e.g., LLyj(1,1)) contain coefficients at i = ; in this case the coefficients should
be computed instead at : = 1. Likewise, at ¢ = I'Y + 1 coefficients which appear in formulas
ati=1Y + % should be evaluated instead at ¢ = I'Y. In addition, elements in the last three
rows of the matrices at ¢ = IY + 1 are always zero. The remainder of this section deals

with how the above matrices are altered to implement the boundary conditions.
10.1 Horizontal boundaries

The horizontal boundary conditions discussed in this section are applied at vertical levels

J—2,1Z-1.

10.1.1 Boundaries not at poles

At the southern boundary (i.e., i = 1), the discretized boundary conditions given in Section

9.2 are implemented as follows. The matrices LL, UU, JJ and BB at i = 1 are defined
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in a similar manner to that shown earlier with exceptions noted below. To set v/ = 0
the elements of the second row of the following matrices (i.e., LL; ;, UUy ;, AK; j, BK1 j,
CK,j, JJ1,j, BBy j) are set to zero, then as shown below set BK1 j(2,2) = 1. Furthermore,
since ¥ = 0 and horizontal differences are one sided, the matrices AKX, BK and CK are

defined as follows: The elements of AK ; are set to zero.

@91+ B&Ers] 0 Q3 0 Q2
0 1 0 0 0
BK,; = Q22 0 0 0 0
0 0 Qn [csAN1,+%’,zF1, 0
0 0 0 0
P2 j
2 [Pll (—LM' )] 0 0 0 0
0 s 000
CKyj= 0 [021 —3-] 0 0 0
0 0 0 0
0 0 0 0

At the northern boundary (i.e., ¢ = IY), the discretized boundary conditions given in
Section 9.2 are implemented as follows. To set v’ = 0 the elements of the second row of the
following matrices (i.e., LLry 41,5, UUry+1,j, AKry+41,5, BKry41,5, CKry41,5, JJ1v 415,
BBy 41,;) are set to zero, then as shown below set BKy41,(2,2) = 1. Furthermore, since
% = 0 and horizontal differences are one sided, the matrices AKX, BK and CK ati =Y +1

are altered as follows:

-P2 .
2 [Pl]}/ (in-ﬁ—])] 0 Q3ry 0 Q2ry
0 0 0 0 0
AKys,; = 0 0 0 0 0
0 0O 0 0 0
0 0 0 0 0
D. ~
Qv+ 2By 0 0 0 0
0 1 0 0 0
BKiyq15 = 0 0 0 0 0
0 o 0 0 0
0 o 0 0 0

The elements of C Ky 4+1,; are set to zero. In addition, the matrices AK, BK and CK at
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1t = IY are altered as follows:

BKy(3,1) = 0, since wpy operates on CKry,;(3,1)

CKryj;(3,1) = Q22ry

Cgly_l
CK[Y,J'(3,2) = 2[02[y 2

An
10.1.2 Boundaries at poles

Initialize the following matrix elements:

-set LL,; UUy;, AK1j, BKyj, CK,;, JJ1,j, BByj, tobe0

-set LLry41,j, UUry,j, AKry41j, BKry+1,, CKry 41,5, JJ1v 41,5, BBry 41,5 to be 0
-set row 3of LLry;, UUry,j, AKryj, BKry,j, CKry,;, JJrv,j, BBry,j, to be 0

-set row 4 of LLry,;, UUry,j, AKyy,j, BKry,j, CKry,;, JJrv,j, BBry,j, to be 0

-set row 5of LLyy,;, UUry,j, AKry,j, BKry,j, CKry,j, JJrv,j, BBry,j, to be 0

If s=0:

at south pole

BKy1;(1,1) =1 W ;=0
BK1'1(2,2) =1 'Ull’J =0
CK1;(3,2) = DVS

C5;- ) PO il Vi
L115(3,3) = -D2 (545) | DVsv, + Dy [(ChunzlOswlum] _g
2

24
Ulh,;(3,3) = D2; (3%

BKl.j(4’4)=—1} ' '
CKI,](474) =1 T’bj lej =0
BKI,J'(575)="1} I & —
CKi15(5,5) = 1 P25~ %1, =0

at north pole
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BKry41,(1,1) =1 Wy, =0

BK1y41,i(2,2) =1 viy; =0

BK1y,;(3,2) = DVN

LLry;(3,3) = —D2; (0_2521\;/\1_) DVNW,_, + D2; [(CSW')-',H;ZE\CW’)u—l] =0
UUry,;(3,3) = D2; (%&\& ’
AKry j(4,4) = —1}
BKryj(4,4)=1

AK1y;(5,5) = _1}

' ’ _

wi =Ty =0

’ ’ _
‘I)[Y,j - (I’[Y-l,j =0

Ifs=41:

at south pole

BI(I’j(l,l) = —1} T T
CKl'j(l,l) =1 3 Wi = 0
BELED =<1y
C'Kl'j(2,2) =1 ‘U%, vi,J =0
BK;(3,3)=1  w,,=0

BK,;(4,4)=1 T{; =0
BKy,(5,5) =1 $1,=0

at north pole

AKpyi1,(1,1) = -1}
BKry41,5(1,1) =1

AK1y414(2,2) = —1}
BKry41,i(2,2) =1

BKry,;(3,3) =1 w’[y'j=0
BKpy,;(4,4) =1 Thy; =0
BK1y,;(5,5) =1 fy;i=0

If |s| > 1:

at south pole
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BKy;(1,1)=1 u,;=0
BE1j(2,2)=1 v,,=0
BK,;3,3)=1 w};=0
BKyj(4,4)=1 T,,;=0

BK,;(5,5) =1 1 =0

at north pole

BKry4+1;(1,1) =1 upy,; =0

BKiy413(2,2)=1 tpy,; =0

BKry;(3,3)=1  wly,;=0

BKryj(4,4)=1  Th, =0

BKy;(5,5) =1 Ty; =0
10.2 Vertical boundaries and corner points

At top boundary (i.e., j = 1), the discretized boundary conditions given in the previous sec-

tion are implemented by setting all the elements of the matrices (i.e., LL, UU, AK, BK, CK, JJ, BB)

to be zero, then altering BK and UU as follows:

-1 0 0 0 0 1000 0

0 -1 0 0 0 0100 0
BEKiy=|0 0 1 0 0 |[UUp=|0000 0
0 0 0 -1 0 0001 0

D D2

0 0 0 -1 -2 0000 Z&

At corner point (1,1) the matrices are defined in a similar manner to those above with the

following alterations to impose the condition v = 0.

BK11(2,2) =1

UU11(2,2) = 0.
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Likewise, to impose v/ = 0 at corner point (Y, 1) the last three rows of matrices BKy+1,;

and UUry 41,; are set to zero and
BK1y41,j(2,2) =1

UUIY+1)J(272) = 0'

At the bottom boundary (i.e., j = IZ), the discretized boundary conditions given in
the previous section are implemented by setting all the elements of the matrices (i.e., LL,

UU, AK, BK,CK, JJ, BB) to be zero, then altering BK, UU, AK and CK as follows:

(1- AXBCU,_y) 0 0 0 0
0 (1-AMBCV,._1) 0 0 0
2
BKiiz = 0 Bon B33; 0 B35;
0 0 0 (1-AXBCT)) 0
0 0 0 —-AX D21z
-1 0 0 0 0
0 -1 0 0 0
LL; iz = 0 0 0 0 0
0 0 0 -1 0
0 0 0 0 -D2;z7

—AC35;
A.K,',Iz(3,5) = TAnL
CK;1z(3,2) = 3—32‘

CKi1z(3,5) =45

At corner point (1,1Z) the condition v = 0 and one-sided horizontal derivatives are used

by making the following alterations to the matrices defined above.

(1-AXBCU;) 0 0 0 0
0 1 0 0 0
BKy1z = 0 0 B33 0 B35, — 4831
0 0 0 (1-AXBCTy) 0
0 0. 0 —-A) D21z
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-1 0 0 0 0
0 0 0 0 0
LLy 1z = 0 0 0 0 0
0 0 0 -1 0
0 0 0 0 -D217
AKi 12(3,5) =0

CKi12(3,5) = A—?:’Tsl-

CK1,12(3,2) =0

Analogously, similar conditions are used at corner point (IY, IZ) by making the following

alterations to the matrices defined above.

(1- AABCUpy) 0 0 0 0
0 1 0 0 0
BKry 41,1z = 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
-1 0 0 0 0
0 0 0 0 0
LLiyy1,1z = 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
. ~AC35y
AK -
1v,1z(3,5) i
BKry1z(3,5) = B35y + ACZ:”

BI(W'12(3,2) = 0
CI(IY,IZ(3,5) = 0

CKry,12(3,2)

I
o
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11 Algorithm for Solving Problem

For a specific heating function (Q’), the response in the perturbation fields of the three-
dimensional wind (u/,v’, w’), geopotential (¢'), and temperature (7’) are calculated from
Eqgs. 9.1-9.5. The algorithm which solves for these perturbation fields can be divided into
the following three sections.

11.1) Filling of matrices

11.2) Gaussian elimination

11.3) Backsubstitution
Each of these sections will be discussed in the order that they appear in our computer

algorithm which is flowcharted in the Appendix of SC.

11.1 Filling of matrices

By combining Equation 10.1 for all the horizontal nodes on a level, we can write an equation

for each level in the model as follows:

Lij_1+Dij+Uij+l+Jch=B:‘ (11.1)

where j = vertical level of model. The Xj is a column vector which consists of the IY + 1
grid point vectors x;; in sequence, where x; ; is defined following Equation 10.1. B, is a

similar column vector

(x1,5) (BB1,)

(x2.5) (BBa,;)

X;=| (xs4) Bj=| (BBs;)
(Xry+1,5) (BBry+1,5)

The Lj, U;, and J; matrices are block diagonal, with the i** block sub-matrix being LL; ;,

UU;;, JJ; j, respectively. From Section 10, LL; ;, UU; j, and JJ; ; are themselves diagonal

1

5 by 5 sub—matrices. For example,
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(LLi;)
» (LL,;)

(LL1y+1,5)
U; and J; are similarly diagonal matrices. L;, U; and J; each involves storage of 5x IY +1

elements on the diagonal. The D; matrix, which is a combination of the AK; ;, BK; ;, and
CK; ; operators from Equation 10.1, is a block tri-diagonal matrix, with each block a 5 by

5 submatrix. At some vertical level j:

[BK,; CK,;
AK,; BK,; CK,; 0’s
AK3; BKj; CKs;
AKy BK,; CKsj

AKry_2; BKry-2; CKry-a;
AKry_1; BKpy-1; CKry-1;
0'3 AK[y,j BK[Y'J' C'If[y,j
AKry41,; BKry41,; ]

Since D; is a block tri-diagonal matrix, in storing D; we have taken advantage of the fact
that most of its elements are zero. In storage the compressed matrix D at any vertical level

appears as follows:

BEy; CKi; CKij ... CKiiy .. OKrpeny CEwogy 0
D;=|AK;; BK;; BK3; ... BK;; ... BKry_.1; BKpy; CKry,;
0 AK3; AK.; ... AKi1; ... AKry; AKry+1,; BKryi,;

where D is needed for computation, it is reformed into its original sparse structure. The
memory requirements for storing the compressed version of D over its sparse structure are
reduced by a factor of (IY/3). For example with typical values needed to resolve wave
structure of IY = 21 and IZ = 31, the storage of the full matrix D for all levels in the
models would require ~ 10° words of memory. On the other hand, the compressed D
matrixes would require only ~ 1.3 X 10°> words of memory or a factor of 8 less! By storing
the matrices in Equation 11.1 as outlined above, the CRAY computer can easily contain in

its memory these matrices for all the levels in the model simultaneously.
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Filling the matrices in Equation 11.1 at a specific vertical level, requires that the com-
ponent sub-matrices: UU, LL,JJ, BB, AK, BK, and CK be filled first at each horizontal
node on that level. Once these sub— matrices are defined they are used to form the L, U,
J, B, and D matrices at one vertical level. By repeating this process at each level in the
model, our system of equations can now be represented in the form of the linear matrix

equation, AX = B* which is shown schematically below.

Dy U J1 117 X1 7 [ By ]
Ly Dy U, Ja Xs B,
Lz Dj3 Us J3 X3 B3
Leey (U4 J)er Xe-1| = | Bex
L, (D+J)e U X B,
(L+J)ey1 Deyr Uppar Xepr By
L 0 Liz Dizl L X1zl LBz

We have assumed here that J; = 0 (i.e. no cloud mass flux) for 7 > £+1. The parameter
'¢’ as it appears here is defined as the level of cloud base and is computed from the following

equation:

¢ = IFIX(A(ZC)/AA +0.5) (11.2)

Because the vertical differentiation is at most second—order in the five variables, only
vertical grid levels separated by A\ and 2A\ are related in the finite difference scheme.
Thus the matrix A is a block tridiagonal matrix, with blocks of dimension 5 X IY by

5xIY.

11.2 Gaussian elimination

To reduce the linear matrix system AX = B* to an upper triangular matrix, we employ
a Gaussian elimination scheme, slightly modified for the cumulus friction terms, from a

version suggested by Lindzen and Kuo (1969). In this scheme, IZ matrices (5 x IY by
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5 x IY') must be inverted in full-storage (non-sparse) mode. The procedure for using this

scheme at the various levels in the model is shown below.

DX, + U X; + hXe = By
Xi + D{'UyX, + D'hX, = D{'B,
X1 + a1 X + hXe = T
where
& = Dit
a = (51U1
b = &
N = 6b
|Forj=2,3,...,0 -2
-Lj(Xj-1 + aj1X; + Bi-1Xe = Yimt)
LiXj-1 + DiX; + UiXjn + JiXe = B;
(Dj - Lijaj1)X; +  (Uj)Xjy1a +  (Jj—LiBi-1)Xe =  (Bj— Ljvj-1)
X; + (6Uj)Xjm + 6;(Jj = LiBi-1)Xe = 6;(Bj— Ljvj-1)
X; + a;Xj-.1 + BiXe = Vi
where
§ = (Dj=Ljaj1)™
aj = &;U;
Bi = 6;(J;—L;jBj-1)
7 = (B — Livj-1)
[Forj:l— 1 |
—Le1(Xp—2 + ap_2Xe—1 + Be-2Xe = Ye-
L1 Xe—2 + Dy1Xe-1 + (U4 J)e-1Xe = By
(D=1 — Le—r104-2)Xp—1 + [(U+ J)e=1 — Le-1Be-2]Xe = (Be—1— Le—17e-
X1 + o1 Xy = Ye
where
bi-1 = (De—1— Lemyag—3)™?
ar-1 = 8-1[(U + J)e=1 — Le-1Be-2]
Ye-1 = 51-1(Bt—1 —Le—1‘7£—2)
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—Ly(Xe-1 + ap-1Xe = Ye-1)
LeXe—1 + (D+ )Xy + UXeg1 = B,
(D+J)e— Leag-1]Xe + UeXey1 = Be— Leyea
Xe + aXepr = e
where
by = [(D + J)[ - Lga[_ll'l
ar = 6Up
Ye = 6¢(B¢— Leve-1)
Forj=4£+1 I
fe+1<1Z:

_(L + ‘I)l+l(Xl + a(Xl.',l =
(L+ e Xe + Dyp1Xey1 + UppaXego =
(Deg1 — (L + J)er10e]Xev1 + UtiXeg2 = Beyr — (L + J)epr7e
Xeyr + 0ppaXey2 =
where
b1 = [Deg1— (L4 J)egr1e)™?
Qi1 = 5t+1 Ut+1
Yer1 = bepa[Beyr — (L + J)eg17e]
fe+1=12Z:
—(L+ )es1(Xe + e Xey1 = Ye)
(L+ e Xe + D1 Xep1 = By
[Deg1 = (L + Dew10e)Xewr = Bogr — (L+ T )er17e
X1 = Ye+1
where
Se41 = [Deg1 = (L + J)egre]™?
Yer1 = Oeg1[Beyr — (L + J)eg17e)
|Forj=0+2,+3,...,1Z — 1]
fe+1<I1Z:
-Lj(X;-1 + aj-1X; = Yj-1)
LiX;1 + DiX; + UiXjn = B;
(Dj - Ljaj-1)X; + UjXjp1 = Bj—Ljvi
X; + ojXjn = j
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where

o
|

(Dj = Ljaj—1)7!
6;U;
7 = &(Bj— Ljvj-1)

Q
<.
|

fi+1<IZ:
—Liz(X1z-1 + arz1 X1z = Y12-1)
LizX1z_1 + DizX1z = Brz
(Drz = Lizarz—1)X1z = (Brz — Lizviz-1)
X1z = Y12
where
61z = (Diz — Lizarz—1)™!
Y1z = 612(Brz — Lizv1z-1)

The table at the end of Section 11 summarizes the form of the operators that are used in
the Gaussian elimination scheme at the various levels () of the model.

In an elegant extension of the Lindzen-Kuo method, frofessor Paul Duchateau of the
Mathematics Department of CSU developed a scheme to solve the linear matrix equation
AX = B* with a considerable reduction in computer time. He observed that each of the five
equations involves a vertical derivative in a single variable, and this variable is different for
each equation: specifically, v’, v/, w', T, ¢’ in that order. These equations are not all second
order in the vertical, so we cannot directly use the Lindzen—Kuo scheme. However, if we
finite difference them as they appear, without combining them, and retain all five variables
as unknowns, we find again a block tridiagonal structure; but the off-diagonal blocks are
themselves diagonal matrices! This is precisely the matrix structure outlined above.

Duchateau noted that with non-vanishing viscosity and thermal diffusivity, the off-
diagnonal block matrices are guaranteed to be trivially invertable. Consequently, the algo-
rithm can be modified so that only a single 5 x IY by 5 X I'Y dense matrix need be inverted.
In the standard method, such a matrix inversion must be accomplished at each vertical

level. Thus Duchateau’s scheme reduces the matrix inversion workload, which constitutes
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the primary computational burden, by a factor of IZ which is typically a factor of 30 or
more.

In testing this scheme, we determined that its usefulness is limited to cases where vis-
cosity is rather large (e.g. 100 m? s=!) throughout the model’s domain. The restriction of
this scheme results from using the L~! matrix, which is inversely related to viscosity and
diffusivity, to operate on a row of matrix A in reducing it to an upper triangular system
(refer to schematic of AX = B* in Section 11.1). Apparently when the magnitude of L is
small (due to a small value of viscosity; e.g. ¥ < 50m? s™1), the condition number of the
matrix to be inverted increases so that for all practical purposes the matrix is not invertible.

Heuristically, all the ill-behaved aspects with small dissipation are collected into a single
matrix inversion stage, which the algorithm cannot properly handle. When the ill behavior
is distributed over many (time-consuming) matrix inversions, the algorithm works quite
adequately. This result is apparently an application of the computer proverb, ‘You don’t get
something for nothing’. Note, however, that Duchateau’s scheme may be useful in second-

order, dissipation-dominated problems. Unfortunately, that is not our area of interest.

11.3 Backsubstitution

Once the system AX = B* has been reduced to upper triangular form as shown below, it

becomes a trivial matter to solve for the solution matrix X.

(I o b1 17T Xa ] [ n ]
I o B2 Xs Y2

I a3 B3 X3 73

I ap, D O Ye-1
I a Xe Ye

I oy Xeg1 Ye+1

L I] L Xzl L1z

In the backsubstitution, we compute

X1z = vz
and XJ' ’)'J—-anj.’_l—ﬁjX[ for j=IZ—1,1

53



where 8; =0 for j>£-2
Since the v, @, and # matrices are needed in the backsubstitution process, they are tem-
porarily stored on a random access file and recalled as needed. This was done because the
size of these matrices prohibited storing them for all levels simultaneously. For example at
each level 7 and « consist of 50 x IY? words and 3 of 10 x IY words.

This completes the description of the model formulation. In the next section we describe

our effort to understand and fix the problems our model has as both s and o — 0.
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1Y

Summary of the operators that are used in the Gaussian
elimination scheme at various levels (j) of the model

J 6; ; Bi i
1 i 8;U; §;J; 8;B,
(2,¢-2] (Dj = Ljaj—1)™" 6;U; 8;(J; — LjBj-1) 8;(Bj — Ljvj-1)
t-1 (Dj = Ljaj1)7" (U + J); — L;iPj] = 6;(B; = Ljvj-1)
¢ (D +J); — Ljoj]™ 6;U; — 6;(B; — Lm—l)‘
[+ 1,1Z -1] | [Dj - (L; + AjerJepraja]™ 6;Uj — 8i[B; — (Lj + Ajesrdes1)vi-1]
1Z — 8;(Bj — (Lj + Ajev1de41)7i-1]

[Dj = (Lj + Ajepr1de1)aj—1] " =

0 ifj#€+1

VhiemR S = {1 ifj=C+41




12 Steady, Symmetric Response to Convective Heating

Lim and Chang (1983) pointed out the importance of the zonally symmetric response to
tropical heating, particularly for barotropic modes. Their conclusions involved dynamical
arguments based on a shallow water system with constant coefficients (10 days) for the
dissipation time scale of both Rayleigh friction and Newtonian cooling.

On the other hand, studies of the Walker circulation using primitive equation models

(e.g. Geisler, 1981, and Rosenlof et al., 1985) have generally avoided the steady, zonally

symmetric response to tropical heating by formulating the model forcing so as to exclude the
zonal average component. Investigation of the symmetric response has been avoided because
an inadequacy in the primitive equation model occurs when both longitudinal wavenumber
(k) and frequency (o) approach zero. However, in problems where this cannot be avoided
(e.g., an isolated, stationary heat source over South America), this inadequacy in the model
must be resolved.

To better understand the problem as k¥ and ¢ — 0, we can separate the primitive
equations into their horizontally and vertically varying parts. For the inviscid primitive

equations with a basic state at rest, the horizontal structure equation is given as:
d 2 2 2 /
DV2—L1+B—£i iod + | f gy L i(fcos())l) ik¢' = D*L <Q>
dy cos 8 dy r
(12.1)

where D = (f2—0?) and L = %%p. For the k = 0, o = 0 case, the dynamical adjustment
on the left hand side of (12.1) is zero. Thus for a zonally symmetric (k = 0), stationary
(o = 0) heat source, (12.1) implies that a steady, inviscid response is prohibited.

Within the context of the primitive equation model presented in this document the
difficulty with the steady symmetric response is manifested primarily in the geopotential
field. For example, in most of our runs with & = 0 and o =~ 0, the velocity fields are
qualitatively correct but the geopotential ﬁéld is represented by a large constant value.
The aberrant behavior of the perturbation ¢ field can be explained in part by considering

equations (4.1)-(4.5) when k and ¢ — 0. For this case all the terms in these equations
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which involve the parameters k¥ and o can be neglected. In this form the equations involve
only derivatives of ¢’, and not ¢’ itself. Thus, no constraint exists in these equations to
determine the overall amplitude of ¢'.

To examine the behavior of ¢’ as o — 0, Fig. 12.1 shows the product o¢/,,, as a function
of wave period obtained from several model runs with £ = 0. In addition, these model runs
used a dissipation time scale of 20 days for Rayleigh friction and Newtonian cooling, a heat
source with a half width of ~ 9° centered on the equator and a resting basic state. The

variable ¢/, ., represents the maximum value of ¢’ over the model domain. We note from

maz
this plot that o¢/,,, asymptotes to a constant value (~ 9.5 x 10~*) as the wave period
— 00 (or ¢ — 0). Further investigation showed that this value is determined directly from
the lower boundary condition (8.11) which in this case simplifies to ic¢’ = w’RT. Since the
value of w’ at the bottom boundary varies little as the wave period increases beyond 100
days (see Fig. 12.2), the amplitude of 0@’ becomes fixed. Thus at large wave periods, ¢’ at
the bottom boundary is inversely proportional to o so that as ¢ — 0, the variable ¢/ — cc.
This effect propagates throughout the domain in the back substitution process described in
Section 11.3 via the hydrostatic equation.

The horizontal and vertical variation in the ¢’ field is concealed when the value of ¢’
introduced at the bottom boundary, as discussed above, becomes too large. In these cases,
which occur when the wave period exceeds 100 days, we propose the following mechanical
fix so that real physical variation in the ¢’ field can be observed. This fix, outlined in the

steps below, is equivalent to assuming that there is no net accumulation of mass in the

model domain (i.e., the average ¢’ along the lower boundary of the model is zero).
1. After the first step in back substitution process we have ¢},(n) = ¢}5(n)+constant.

2. Use mean value theorem to compute this constant. In our case this theorem takes the

following form:

1 N
constant = —/ A1z(n)dn.
IN — 1S Jns
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3.  Subtract the constant from ¢’ ,(n):
¢yz(n) = #77(n) — constant

4.  Continue back substitution process as before using adjusted value, q@’,z

We also have observed in the case ¥ = 0 and o — 0, that the linear matrix problem,
AX = B*, becomes ill-posed when w’ = 0 is imposed as the upper boundary condition and
thus cannot be solved. As an alternate upper boundary condition we set, ag"—zl -w =0,
which is equivalent setting divergence to zero at the upper boundary. This however produces
a solution in w’ and the thermodynamic fields which increases with height as e*. A simple
mechanical fix which does not allow w’ to increase as rapidly in height is to impose %‘% =0
as the upper boundary condition.

Finally, it is worth noting that the solution becomes increasingly sensitive to the pa-
rameterization of dissipation as ¢ — 0. This is physically reasonable since in such cases the
time scale of dissipation is short relative to the time scale of the wave. For example, when
the specified wave period is 10,000 days, increasing the dissipation time scale by a factor of

four reduces the amplitude of the ¢’ field by a similar factor.
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Fig. 12.1. The product o¢/,,, (m?s~?) plotted as a function of wave period (days), where ¢, repres
the maximum value of ¢’ over the model domain.
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Fig. 12.2. Perturbation vertical motion at the equator and bottom boundary of the model, w' (s’
plotted as a function of wave period (days).
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13 Concluding Remarks

Due to the wide range of problems to which our model is applicable, several researchers
in the field of atmospheric science have sought to use it on their problems. For these
researchers to correctly use and understand the model in all its complexity, it is important
that a current and accurate documentation of the model be maintained. This manuscript
documents the numerous corrections and improvements that have been made to the model
since its original design and description were presented in Stevens and Ciesielski (1984).
The main improvements presented here include: (1) the capability of placing the horizontal
boundaries at the poles, (2) an improved latitudinal differencing scheme, and (3) treatment
of the k =0, 0 = 0 case.

To date we have successfully used our primitive equation wave model on several research
problems. Of the problems completed, two have resulted in refereed publications. The first

of these (Rosenlof et al., 1985) examined the effects of a Hadley cell and cumulus friction

upon the Walker circulation. The second (Shapiro et al., 1988) studied the differences in

the structure and dynamics of easterly propagating tropical waves in the context of different
mean zonal wind profiles. Ongoing projects are using the wave model to study atmospheric
circulations driven by heat sources over South America, and to examine the effects of the
quasi-biennial oscillation on structure of easterly waves.

Recently we have developed and successfully tested a time integration (TINTG) version
of our primitive equation model. In the frequency version (FREQ) of the model, the system
of equations is represented in the form of a linear matrix equation AX = B*, where 4, X
and B* are matrices defined in Section 11. In the FREQ code the solution matrix, X, is
obtained for a specified frequency with a Gaussian elimination scheme suggested by Lindzen

and Kuo (1969). Alternately, we can write the system as

9 -
AX = 5 (X)+LX =B
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or

In the TINTG code we solve this latter equation with a second-order Runge-Kutta time
integration scheme. Since the matrix L is only a slight modification to the matrix A, a
significant portion of the FREQ code was easily adapted to use in the TINTG version of
the model. We plan to modify the linear TINTG code to a nonlinear version where only
the zonally symmetric flow is considered, and with it study nonlinear, nonsteady Hadley

circulations.
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Appendix A
Formulation of Polar Boundary Conditions

At the singular points of the spherical coordinate system — i.e., the North and South
Poles — we require all true scalar fields to be continuous variables that remain finite at the
pole. This applies to the geopotential, vorticity, divergence, and deformation fields. The
horizontal vector velocity field must also be continuously varying; otherwise infinite vorticity,
divergence, and/or deformation woulfi result. However, the two spherical components (u, v)
of velocity need not, in general, be continuous across the poles because the corresponding
unit vectors (2,7) change discontinucusly at the pole.

Let us consider the linearized shallow water equations with a geostrophic zonal flow u

as a basic state.

<i+ U i) '—(f BEcos0) ,_ 0¥
Ot  acosf O\ “ " acosfob v= acos 8O\

<2+ u i) ’+(f gEt 0) - .(?_g:
Ot  acosf O\ v * a o u——a80

(-2+L—(?—)(I>'+$( o’ +6v’cosﬂ)+ ,_8_2(_;__0
0t ' acosf O\ acosf9d) ' acosfb V208 =

with

- w? 0®
?tan9+fﬂ— ~ 208

Writing a single Fourier component for each perturbation field

( )/ =( )ei(aA—at)

we obtain
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—18

—10U — flv =
acos @

0d

—16v + fou = —;55

.. % _/ isu dvcosf
=M i ”a_ao =% (acosO ¥ acos0(90) =0

where

o = Zs 7 is the relative angular velocity of the mean flow
G = o0-—3sw
- Ot cosb
Iy .= f+c-f_acos000
fa = f+ %‘ tan @

For the basic state, continuity of the wind at the pole implies %, = 0. Thus the angular
velocity @, is finite and well- behaved at the pole. Suppose we focus on the North Pole and

take @ = § -6 to be the angular difference between the pole and latitude 8. [ Corresponding

relationships apply to the South Pole.] We write @ as a Taylor series in a:

(@) =T, + T + Ta? + ...

Thus

Also,

3

cosf =sina =a - %+O(a5)
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2

sinf =cosa=1- %-+O(a4)

Expanding in a near the pole,

U =wacosf = wasina

3
ﬂ1a+ﬂga2+...=(UO+UIa+o_.:2a2+...)a (a—%+)

Therefore:

Geostrophic balance on the sphere implies

-2 -3 = —Z_Wsing + 2Qsin 7 = Tsin (@ + 202)
i (51 + 2%5a + ) = Tucosa(@+ 29Q)

= (Mma+ma?+..)(1-F+...) 20+, +@a+...)

= (2Q + Uo)ﬂ‘la + az['l_lllwl + (29 + wo)ﬂ2] +...

Therefore,

— 2
‘Pl = O, E@g = (2Q +LTJ-O)—’[I1

Vorticity and divergence in spherical coordinates can be expressed as

— I _ 1 v ducosd
C:k'VXV - acos&(a)\— a6 )
= L_ (isv + usinf — cos 2%
~  acosf a6
_ 1 u dvcosé
Ve = =3 (a,\ + =59 )
= L (isu — vsinf + cos 0%
~  acosf a6



Taylor series expansions for u, v, cos § and sin 8 near the North Pole (6 = g

Il
5]
|

S

give

1 du

( = 2= (1sv+ucosa+smaaa)

= l—13+— [is(vo+avl+...)+(uo+au1+...)(1—"’—;—-}-...)

Lo
+(a - 9’63+...)(u1+2u2a+...)]

= aa—zs_—;—— [(isvo + uo) + a(isvy + 2u1) + a®(isva + 3ug — %) + .. ]

V.v = —L—(isu—vcosa—sinaj?)

= 11 [is(ua-f-a?h+...)—(vo+av1+...)(1-“72-}-...)

a--gsi+...
~(a=F +.. ) (0 + 020 +...)]
= :11-—113—;— [(isuo — v5) + a(isus — 2v1) + @®(isug — vz + %) + .. ]

For s = 0:

Finite vorticity at the pole implies u, =0 =
Finite divergence at the pole implies v, =0 =

where the subscript p implies that the condition is imposed at the pole.
Perturbation equations: —iou— fjv =0

- 10v + fau = —i—% =

Q=

2%
da

-w(I>+vaaa+( v)=0
Othorderina: 0=0

0=10, =

—i0®, + 8- 1(=201) =0 = |—ioc®, =P, 2

5]

or




The 0th order perturbation equations for s # 0:

—i8U, — five = Z2(8, 4+ ady +...) = =12,, with [®, = 0|or |®, =0

a

is required for continuity of ® across the pole

—-i6®, + uoé(—il) +®,(V-v),=0

Since

$,=0, &, =0, 3, #0 = (V-v),=0

For s # 0, continuous and finite vorticity and divergence at the pole implies

(V'V)o=0, =0

Therefore,

18U, — V=0 isv,+u, =0  for fitness

1su; —2v; =0 1svy +2u; =0 for continuity

s -1 Uo _ 0 2 _ _ _
(1 is)(vo) = (0) =21—-58=0 or upo=v,=0
Therefore:
Ju=0 u,=0

Fors;éztl.{vozo .

s =2 uy _ 0 2 _ _ _
(2 is)(vl)-<0)¢4—s =0 or uyy=v1=0

Therefore:
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[u=o (@),
For s # 2 - (%):=0

For s # £1,u, = v, = 0 implies through the momentum equations:

o [(3), =0

Summary of polar boundary conditions for linearized shallow water equations

variable s=0 s==%1 | |s|>1
® —i0®, = ®p(-V-v), | =0 |[&,=0
U up =0 (g“—o)p = up =0
v vp =0 (g—%)p = o =0

Additional characteristics that have been determined:

Vo = 18U,

(5),

For s # +2 or 0: (%—)p =0= (g%)p

For s = +1:

Il
o

For s # £1:
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Appendix B

Motivation for Using a Staggered Grid in Horizontal Direction

Al. Introduction

Energy propagation by small-scale dispersive gravity waves, excited by a local break-
down of geostrophy, is an important mechanism in restoring quasi-geostrophic flow by
the geostrophic adjustment process. Previous attempts (Winninghoff, 1968; Arakawa and
Lamb, 1977) to numerically simulate geostrophic adjustment have shown the propagation
of energy to be highly dependent upon the manner in which the dependent variables are
distributed over the grid. In Section A2 the dispersion properties for the simplest fluid in
which geostrophic adjustment can occur, namely the linearized shallow water equations,
are analytically derived for several different arrangements of the discretized variables. For
completeness, numerical results are presented (in Section A3) for a shallow water model

using a staggered and a non-staggered grid.
A2. Analytical analysis of energy propagation

Consider the simplest fluid in which geostrophic adjustment can occur — namely a ro-
tating fluid which is incompressible. homogeneous in the vertical (z) direction, nonviscous,
hydrostatic, and has a flat bottom and a free top surface. The basic equations which govern

such a fluid are the so—called shallow water equations.

Il
o

ut_fv+ghz

Il
o

v+ fu+ ghy

ht+ hug + hvy, = 0

where the subscripts denote a derivative with respect to that variable. In these equations
t is time, z and y the horizontal cartesian coordinates, g the gravitational acceleration, f
a constant coriolis parameter, u and v the velocity components in the z and y directions,

respectively, and h the depth of the fluid.
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Using the perturbation method the dependent variables are expanded into two parts:
a basic state ( ) which is assumed to be independent of time and the z—direction, and a
perturbation ( )’ which is a local deviation of the field from the basic state. This expansion

is shown below

u(e,y,t) = u(y) + v(z,9,1)

v(z,9,1) = Wy) + V(2,91

h(z,y,t) = h(y) + K(z,,0)
To simplify the analysis even further, consider the case with a resting basic state (i.e.
z=7=0and h(y) = H) and perturbations that are independent of the y—direction, that

is (), = 0. With these assumptions the equations can be written as:

up— fv' +ghy =0 (1)
v, + fu' =0 (2)
R, + Hu!, =0 (3)

Assuming the perturbation solutions to be proportional to e'(kz=7t) 35 shown below:

/

= 4
v = ’f)} X ei(ka:—at)
W= h

Equations (1) - (3) can be written as:

—icd — fd + ikgh =0
—iod + fa =0 (4)

—ich + Hiki =0
In order for these equations to have a nontrival solution for %, ¥, and iz, the determinant of

(4) must equal 0. This condition leads to the following cubic frequency equation:

(=i0)® + f*(—io) — ikg(—io)ikH =0 (5)
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Equation 5 contains a geostrophic mode

(0/f)* = 1+ T2 (6)

where ' = /gH/f is the Rossby radius of deformation. From (6) one can note that the
frequency of the gravity—inertial waves increases monotonically with wavenumber k, unless
I is zero. In addition, the group velocity (do/dk), which is the velocity at which energy
propagates, is never zero except for case I' = 0.

The effect of the space discretization error on the frequency is now considered for the
distributions of the dependent variables shown in Fig. Al. For scheme A, equations 1-3

are finite differenced in the z—direction as shown below:

(8)s = /D,y 40 +(0fd) Ky K =0 ()
(vi); + (f/2)(u;+% ¥ u’._% =0 (8)
() + (/) — ) 0@

where z; = d X j. For the discrete grids shown in Fig. Al the solutions are now assumed

proportional to e'(*%i=7%) With this assumption equations 7-9 become:
—ioh _(f/z)[eikd/z 4 e“i"d/z]ﬁ +(g/d)[e"kd/2 _ e—z’kd/z]il =0
—iot  +(f/2)[e*? + e~kd/2)4 =0 (10)

—ich +(H/d)[e*/? + e~k =0

To understand how (10) was arrived at, shown below is the derivation of a perturbation

term at the (j + }) point.

(y = O™
= ()eilkdli+3)=o1)

_ (‘) eilkdi—at) gikd /2
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Setting the determinant of (10) equal to zero results in the following frequency relationship

for gravity—inertial waves for scheme A:

ot = (f2/4)(eikd/2 + e—ikd/2)2 _ (gH/dZ)(eikd/2 _ e—ikd/2)2

which when simplified yields the following equation
Scheme A : (0/f)? = cos?(kd/2) + 4(T/d)*(kd/2) (11)

In a similar manner, frequency relationships can be obtained for schemes B through D as

given below:

Scheme B:  (0/f)? = 1 +4(T/d)?sin?(kd/2) (12)
Scheme C:  (o/f)? = 1+ (T'/d)?sin?(kd) (13)
Scheme D:  (o/f)? = cos?(kd/2) + (T'/d)?*sin?(kd/2) (14)

These frequencies (11) — (14) are compared to the differential frequency in Figs. A2 and
A3 for the values of (I'/d) equal to 2.0 and 0.2, respectively. Since the shortest wavelength
resolvable is 2d (i.e. k = 7/d), it is sufficient to consider frequencies over the range 0 <
kd/m < 1.

The results shown in Figs. A2 and A3 indicate that at small wavenumbers the difference
schemes approximate well the differential frequency. However, for shorter waves the error in
the group velocities becomes increasingly large and in some cases even spuriously negative.
Scheme B results in the best simulation of the geostrophic adjustment process as described
by continuous theory, while for (I'/d) sufficiently larger than 0.5 Scheme A is nearly as
good. At wavenumbers where the group velocity is zero (i.e. do/dk = 0), energy from
gravity—inertia waves excited somewhere in the domain would stay there. For example in
Fig. A2 zero group velocity occurs at kd/m = 0.5 for Scheme C, at kd/r = 0.48 for Scheme

D, and at kd/7 = 1.0 for Schemes A and B.
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Cahn (1945) gave the solution of an initial value problem for which (1)—(3) are the
governing equations. At the initial time he let A = constant, u = 0, v = V,, in the domain
from z = —b to z = b, and v = 0 outside this domain. Some results of these calculations
with b/d = 1 and (I'/d) = 2 are shown in Figs. A4 and A5. Figure A4 shows the time
variation of A at z = b for the differential case and for each of the difference schemes. In a
similar fashion Fig. A5 gives the space variation of h at t = 80 hours. As expected, Schemes
A and B simulate the geostrophic adjustment better than the other schemes.

It is of interest to note from Figs. A4 and A5 that even in the case of the best difference
scheme, there remains a significant error in the solution when compared to the differential
case. A further improvement in the accuracy of the solution without increasing the number
of degrees of freedom, requires that a higher order difference scheme (e.g. 4th order) be
used or a spectral method (Fulton, 1984) be employed. A remarkable difference between
the spectral and finite difference discretizations is the behavior of the error as the number of
degrees of freedom is increased (Schubert et al., 1984). For problems with smooth (infinitely
differentiable) solutions, the error in the finite difference discretization decreases slowly

(algebraically) while that of spectral discretization decreases rapidly (exponentially).
A3. Numerical Results

In this section the energy propagation of gravity—inertial waves in numerically investi-
gated on a staggered grid (SG) and a non-staggered grid (NSG) using a linearized shallow
water model on a sphere. These grids correspond to finite difference schemes B and C,
respectively, in Fig. Al. A description of the model used here can be found in Stevens et
al., (1984). In short, the solutions are assumed to be of the form e~*(*=9%) where s is the
(integral) zonal wavenumber and ) is longitude. In the latitudinal () direction, derivatives
are approximated with second—order finite differences. The model computes a set of eigen-
values ¢, and corresponding eigenvectors (uyn, v, and hy,) for a specified basic state u(#),

equivalent depth (H) and zonal wavenumber (s).
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In order to have a theoretical comparison for the numerical results, the model described
above was run with a resting basic state and a small equivalent depth. Under these condi-
tions, according to B-plane theory (Lindzen, 1967), the solution begins to decay within 6,

degrees of the equator. The parameter 8, is defined as:

0s=€1(2n+ 1) (15)

where € = (2Qa)?/gH, Q is the earth’s rotation rate, a is the radius of the earth and 7 is the
number of nodal crossings in the v—eigenvector. For this investigation H was prescribed to
be 0.088 meters (or € = 108), so that for modes n < 15 the solutions begin to decay within
ten degrees of the equator. Under this condition of strongly equatorially trapped waves, the
spherical equations asymptotically approximate those on a f—plane for which the following

dispersion relationship for gravity—inertia waves exists:

o? = gHk* + (2n + 1)8/gH (16)

where 8 = 2Q/a.

In order to adequately resolve the equatorially trapped waves in the model, an arbitrary
stretching of the f—coordinate was incorporated. This stretching was set up so that half the
grid points were located between the latitudes +6; and —8;.

In Fig. A6 the non-dimensional frequency of the gravity—inertia waves is plotted as
a function of the number of nodal crossing of the v—eigenvector for a theoretical f-plane
(solid line), the model described above with a SG (dotted line) and a NSG (dashed line).
The numerical results shown here were computed using 40 grid points in the #-direction.
The range of numerical results as a function of n reflects the limits of resolvable modes.
Although only lower order modes were resolvable in this case, one can note that the behavior
of the numerical solutions for the SG and NSG is similar to the analytical results presented
in Fig. A2. The frequencies computed using the SG provide a much better estimate to the

theoretical values than the computations made with the NSG which produces a zero group
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velocity near n = 10. In addition, the eigenvectors computed with the NSG contained a
large 2Az oscillation in which their amplitudes reverse sign at every other grid point.
The error (e) in a finite difference scheme of order p and grid spacing Az has the

following asymptotic form:

e = ¢(Az)? (17)

where Az = L/N, L being the length of the domain and N the number of grid points.
By defining e as the difference between the differential and computed frequencies, Fig. A7
shows for the SG and NSG results the behavior of e as a function of N for the three gravest
easterly gravity modes. From this figure and (17) one can note that as Az — 0, the error

likewise approaches zero. By substituting for Az in (17) one obtains:

e=e¢NF (18)

where ¢ = ¢L”. Taking the log of (18) yields:

loge = loge — plog N. (19)

Equation (19) represents an equation for a line with slope (—p) and offset (log ). Table
Al lists the values of p and ¥ corresponding to the modes in Fig. A7, where I is defined

as follows:

Y =log Ttnsg —logtsa (20)
As one would expect for a second order finite difference scheme, Table A1 shows that p = 2.
Since the slopes of lines for the SG and NSG cases are nearly identical, their distinction
must lie in the difference of the ofsets (X). Using 0.6 as the average value of £ in Table

A1, (17) can be approximated for the SG and NSG cases, respectively, as:

esg = ¢(Azsg )2
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ENSG = 10(:"66(A2:1\{5G')2 (21)

or
eENSG = 4C(A3NSG)2 (22)

Thus if the grid intervals are equal in the two cases (i.e. Azgg = Aznsg),ensg will
be approximately four times as large as esg. Viewed in a different sense, to achieve the
same accuracy in both grid schemes (i.e. esg = ensg), the grid interval of the NSG must
be about half that of the SG:(i.e. Aznysg = 0.5Azgsg). In summary, use of a properly
staggered grid is computationally efficient since it requires half the number of grid points as

the non-staggered grid to achieve the same level of accuracy.
A4. Concluding Remarks

In this appendix the one-dimensional shallow water equations were investigated to ex-
amine the effects of different grid structures on the energy dispersion by gravity—inertial
waves. Both numerical and analytical results support the premise that proper simulation
of energy propagation will occur only with an appropriate distribution of dependent vari-
ables. For the one-dimensional case studied here the distribution which resulted in the best
simulation located the u and v variables midway between the h grid points (i.e. Scheme B
in Fig. A2). In addition it was demonstrated that a properly staggered grid can greatly
improve computational efficiency. To obtain the best grid structure for problems which in-
volve finite differences in two dimensions or where non-linearities are dominant, one should
refer to Arakawa and Lamb’s (1977) treatment of these cases. Finally, the results presented
in this appendix are used as a guide for the design of the horizontal finite difference scheme

described in section 9 of this manuscript.
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TABLE Al

Values of p and ¥ (defined in equation 20)

for the gravity modes shown in Figure A7

Order (n)
of gravity Grid P ¥ | 10%
mode structure
SG 2.07
0 0.60 | 3.98
NSG 2.09
SG 1.97
1 0.60 | 3.98
NSG 2.10
SG 2.00
2 0.61 | 4.12
NSG 2.04
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Scheme B
vsh u vy,h u  v,h ) u,v h uv h
L. il £ i § L 5 N 3 p
= 4 i+1 i-1 3 j+1
——d —> - d 3
Scheme c' Scheme D
usvsh usvyh Usveh ush v ugh v u,h
L 1 - | ] [ .- 1 1 ]
b | J J+1 3=1 J J+1
€ d 3 % d -

Fig. Al. Distribution of dependent variables for difference schemes A - D on a one-dimensional grid

with mesh spacing d.
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I/d = 2.0

7 ! I ' | : I % I

-------- difference schemes
differential solution

O L | . | L | L 1 4..*
00 02 04 06 0.8 1.0

kd/m

ig. A2. Non-dimensional frequency (o/f) plotted as a function of non-dimensional wavenumber (kd/r)
for the shallow water equations with I'/d = 2.0. Solid line corresponds to differential case,
whereas dotted lines correspond to difference schemes A - D which are labeled accordingly.

F/d = 0,2

1.4 - T T T y T T T

F e difference schemes 1
1.2 differential solution

1.0 ‘- ......... ............................... A -
. 08} T i
0.6 |- —
0.4 C*
0.2 | .
- D 1
0.0 . | ; 1 ; L ; I P
0.0 0.2 0.4 0.6 0.8 1.0

kd/m

Fig. A3. Same as figure 2, except with I'/d = 0.2.
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Fig. A4. Time variation of the (non-dimensional) height perturbation at z = b for the initial value
problem posed by Cahn (1945) with I'/d = 2.0; comparison of differential results to those
from difference schemes A - D (from Arakawa and Lamb, 1977).

g 8

g

(h-H)/H

§g6 68688 &

Fig. A5. The spatial variation of the (non-dimensional) height perturbation at ¢ = 80 hours for the same
initial value problem as in figure 4; comparison of differential results to those from difference
schemes A - D. The thin vertical line at z/d ~ 59 indicates the theorectical limit of influence
(from Arakawa and Lamb, 1977).
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0'20 1 1 1 1 I T ] 1 I I T 1 1 1

0.13

-/ —— differential -
0.05 -
---- staggered grid .

0.00 b v v 1 v v v
0 5 10 15

meridional wavenumber

‘ig. A6. Non-dimensional frequency of gravity-inertia waves plotted as function of meridional wavenum-
ber (indicated by number of nodal crossings of v-eigenvector) for a theorectical 3-plane (solid
line), a shallow water model with a staggered grid (dashed line) and with a non-staggered grid
(dotted line). Results shown here are for s = 1 and h = 0.088 meters.
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