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Abstract 

Subsequent to the original description of our linearized primitive equation model, several 

improvements to the its original design and corrections to its original description have been 

made. This manuscript represents a consolidation of these changes which include: 

• Numerous corrections (typographic and otherwise); 

• A provision for applying the horizontal boundaries at the p~les. This document gives 

the form of these boundary conditions along with their derivation; 

• An improved latitudinal finite differencing scheme in which the horizontal wind vari-

ables ( u, v) are staggered mid way between thermodynamic variables. This new grid 

structure eliminates grid scale numerical noise in the results and has the added benefit 

of increasing computational efficiency by a factor of two; 

• Treatment of the case where both the longitudinal wavenumber and frequency of 

the perturbation approach zero. In the original version of the model, considerable 

difficulty was encounter in computing a solution for this case. 
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1 Introduction 

The original description of our linearized primitive equation model was first presented in 

Stevens and Ciesielski (1984; hereafter referred to as SC). The characteristics unique to this 

model and/or important for application include: 

1. The specification of an 'arbitrary' mean zonal fl.ow which can depend on both latitude 

and height; 

2. Calculation of a mean meridional circulation which is dynamically consistent with 

the mean zonal flow (i.e., satisfies conservation of angular momentum, the balance 

approximation, the hydrostatic approximation, conservation of masE and energy) ; 

3. Vertical transport of momentum by the deep convective clouds in the tropics in both 

the mean and perturbation circulations; 

4. Spherical geometry; 

5. Coordinate stretching in both the vertical and latitudinal coordinates, which is repre-

sented in the coupled differential equations; 

6. Very fine vertical resolution: experiments have been run with 51 points in the vertical; 

computer processing increases only linearly with the number of grid points in the 

vertical; 

7. Horizontal resolution of up to 31 points (square matrices with approximately five times 

the number of horizontal points must be inverted) at each vertical level; 

8. Very economic computation; the global response in a single longitudinal wavenumber 

is obtained with approximately 13 seconds of NCAR CRAYl time (using 31 points in 

the vertical direction and 21 in the horizontal). 

Full spherical geometry enables applications to phenomena of middle latitudes, polar 

latitudes, and planetary scale as well as in tropics. Vertical and meridional stretched co-
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ordinates enable emphasis on specified regions of the atmosphere while retaining spherical 

geometry. Since computation time is linearly proportional to the number of vertical grid 

points , high vertical resolution is a fundamental asset . A major dynamical component 

excluded ( to our knowledge) from other linear models is the specification of a consistent 

meridional circulation as part of the basic state. 

In the course of using this model over the past several years, numerous improvements 

to the model's original design and corrections to its original description have been made. 

This manuscript represents a consolidation of these changes, the main ones of which are 

summarized below. 

• Sections 2-11 contained numerous corrections ( typographic and otherwise) to SC. 

• Section 8.2.2 lists the boundary conditions to be imposed when the horizontal bound-

aries of the model are at the poles. These polar boundary conditions are derived 

in Appendix A. The earlier version of the model had no provision for applying the 

horizontal boundaries at the poles. 

• In Section 9, we describe an improved latitudinal finite differencing scheme. Using 

a non-staggered grid with second-order centered differencing, the model results for 

certain choices of model parameters would contain numerical noise on the scale of 

the gr· d. Investigation of the one-dimensional shallow water equations (Appendix B) 

suggests that the numerical solution could be significantly improved (both in accuracy 

and efficiency) by changing to a staggered grid with the horizontal wind variables ( u, v) 

spaced midway between thermodynamic variables . 

• In the original version of the model, difficulty was encounter when computing a so-

lution for the case of a steady, zonally symmetric heating (i.e., where both longitudi-

nal wavenumber and frequency approached zero). This problem and its solution are 

treated in Section 12. 
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One must still refer to the original model write-up for details on the verification of the 

model (Section 12 of SC), its optimization on the CRAY (Section 13 of SC) and computation 

of the model's basic state (Section 14 of SC). 
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2 Full Primitive Equations and Model Parameters 

For consistency all three components of the zonal mean circulation in the a vection terms of 

the linearized perturbation equations are included. It is possible that some of the advective 

terms by the mean meridional cell (v, w) could be consistently scaled out for some problems, 

but in the interest of generality we have elected to leave them in. Following Holton (1975, p. 

29) with slightly different notation, the (hydrostatic) primitive equations in log p coordinates 

on a sphere are written as follows: 

Zonal-momentum 

8u u 8u v 8u uv 8u l 8<p 
-+---+--- -tan0+w- - fv+ ---8t a cos 0 8).. • a 80 a 8 z a cos 0 8).. • 

g 8 [ µt 8u] = -- Mc(u - Uc)+ --- - 0:RU p8z H 8z 

Meridional-momentum 

Continuity 

8v u 8v v 8v 8v u2 1 [)<p 
- +---+--+ w-+-tan0+ fu+--8t a cos 0 [))..• a 80 oz a a 80 

l OU l 8v v 8w ---+-- - -tan0+- - w = 0 
acos08>..• a80 a oz 

4 

(2.1) 

· (2.2) 

(2.3) 



Thermodynamic 

Hydrostatic approximation 

The vertical diffusion terms: 

[)if! = RT oz 

g a µt OU ~!_µt ov and ~!_M [)T 
poz H oz' poz H oz poz H oz 

(2.5) 

are required by the numerical integration scheme. As noted by Stevens et al. (1977) , van-

ishing of the mass flux Mc at the cloud-top level gives singular solutions of the inviscid 

equations which can be avoided by inclusion of small vertical diffusion terms. The indepen-

dent variables for this system of equations are: 

longitude 

0 latitude 

t = time 

The dependent variables for this system of equations are: 

u a cos 0di/ = horizontal velocity component in >.*-direction 

v a~: = horizontal velocity component in 0-direction 

w = = vertical velocity component 

T temperature 

geopotential height 

Other specifted variables and constants are: 
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f 2!1 sin 0 = coriolis parameter 

p p0 e-z = pressure 

Po 

Q 

H 

g 

R 

a 

= 

surface pressure (105 N m-2) 

cumulus mass flux 

diabatic heat source 

= scale height 

gravitational acceleration (9.81 m s- 2) 

gas constant for dry air (2.87 x 102 m2s-2K- 1 ) 

angular speed of rotation of earth (7.292 x 10-5 s- 1 ) 

mean radius of earth (6.37 X 106 m) 

height of cloud base 

Uc u(zc) = u-component of wind at cloud base 

Ve v(zc) = v-component of wind at cloud base 

Rayleigh friction (2!1 x DISWIND), where DISWIND 
is the nondimensional dissipation coefficient of the 
horizontal wind 

Newtonian cooling (2!1 X DISTEMP), where DIS-
TEMP is the nondimensional dissipation coefficient 
of temperature 

specific heat of air at constant pressure (1004 
m2s-2K-1) 

dynamic coefficient of viscosity 

dynamic coefficient of thermal diffusion 
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Other constants used in this model but not explicitly appearing in equations 2.1 - 2.5 are 

listed below for the readers convenience. 

1r = cos-1 (-1) 

<7 = angular frequency 

(Q/PERIOD) where PERIOD = period of disturbance in days 

<7 > 0, for eastward propagating disturbance 

<7 < 0, for westward propagating disturbance 

s = longitudinal wavenumber 

c = phase speed (<7 •a • cosO/s) 

surface temperature (300 K) 

horizontal wind scale used in non-dimensionalization (10 m s-1 ) 

Vo - gustiness factor (8 m s-1 ) 

CD - surface drag coefficient ((1.0 + 0.07 X V0 ] X 10-3) 

ST - static stability (878 m) 

r 1 s-~T (30.01 K) 

IZ number of points in z-direction 

IY = number of points in 0-direction 

ZT z(l) = value of z at top of model 

ZTROP - value of z at tropopause 
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3 Linearized Equations 

Using the perturbation method all variables are expanded into two parts: a basic state, 

which is assumed to be independent of time and longitude, and a perturbation, which is a 

local deviation of the field from the basic state. This expansion is shown below: 

u(>.* , 0,z,t ) u(0, z) + u'(0, z ) 

v(>.* , 0,z,t) = v(0, z) + v'( 0, z ) 

w( >. * , 0, z, t) = w(0, z) + w'(0, z ) 

<P(>.*,0, z,t) <P(0, z) + <P'(0, z ) 

T (>.*, 0,z , t ) T(0, z ) + T'(0 , z ) 
X ei(s>.• -O' t) 

Mc(>.* , 0, z, t) M c(0 ,z) + M~(0 , z ) 

Uc().*, 0, z , t) = Uc(0 , z) + u~(0, z ) 

Ve().*, 0, z, t) Vc(0, z) + v~(0,z) 

Q(>.*,0,z,t) Q(0, z) + Q'(0, z ) 

where 

() = basic state 

C ) = ( )'ei(s>.-O"t) = perturbation from basic state 

To illustrate how Eqs. 2.1 - 2.5 are linearized we have shown below how this method 

works for the u-component of the advection term in the zonal-momentum equation. Upon 

expansion: 

(3 .1) 

The assumption is made here that the basic state variables must themselves satisfy the 

governing equations so that the first term on the right hands side of (3.1) will cancel out 

with the other terms of the basic state equation. Secondly, we assume that terms which 
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involve products of perturbation variables ( e.g., last term on right-hand side of (3.1)) can 

be neglected since ( )' (). In addition, 

and 

so that 

BC) = is(-) 
B>.• 

BC)= -io-C) 
Bt 

Therefore Eq. 3.1 can be simplified to: 

By using this method to lineariz·e the other terms in Eqs. (2.1-2.5) , our system of equations 

now in their linearized perturbation form are given as follows where ei(sA*-ut) has been 

factored out. 

Zonal-momentum 

[ 
. isu v B B v g B - g B µt B ] , -io- + --+ 0:R + -- + w- - -tanO - --M - ---- u acosO a80 Bz a pBz c p8z H 8z 

9 

(3.2) 



Meridional-momentum 

[ 
2u ] , [ . isu v 8 8 1 av g 8 - g 8 µ t 8 ] , -tan0 + J u + -iu + -- + ar + -- + w- + -- - --Mc - ---- v 
a a cos 0 a 80 oz a 80 p oz p oz H oz 

(3.3) 

Continuity 

[ is ] , [ 1 8 tan0] , [ 8 ] , -- U + -- - -- V + - - 1 W = 0 
a cos 0 a 80 a 8 z 

(3 .4) 

Thermodynamic 

-- V + -+TK. w [18T] 1 [8T -i, 
a 80 oz 

[ 
. isu V a - fj - g fj M fj ] I Q' + -iu+--+ aN+--+w-+wK- - - --- T = -

a cos 0 a 80 oz p oz H oz cp 
(3 .5) 

Hydrostatic approximation 

[:z] ~' + [-R]T' = 0 (3.6) 
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4 Coordinate Stretching 

To allow us the capability of stretching the coordinates in certain regions of the model 's 

domain, ( e.g. , to increase resolution in regions of interesting phenomena) we transformed 

the vertical ( z) and horizontal ( 8) coordinates of the model into the independent variables 

-\(z) and TJ(Y ), respectively. By defining: 

1J = TJ(Y) is the st retched latitudinal coordinate 

y aO is the latitudinal distance from the equator 

TJ' = dy 

8 aTJ' %r, 80 

,\ -\(z) is the stretched vertical coordinate 

,\' 8>. 
8z 

8 ,\'2-8z 8>. 

k acosO 

V 14 is 
p the kinematic coefficient of viscosity 

v '11 is p the kinematic coefficient of thermal diffusion 

p = pRT = pgH 

Eqs. 3.2-3.6 can then be written as: 

Zonal-momentum 

[ 
. 'k- V {} I a \ I a g \ I a M g \ I a pv \ I a ] ' -iu + i u + aR - -tano + VT] - + WA - - -" - c - -" ---" - u a 81] 8-\ p 8-\ p 8-\ gH2 8-\ 

[ , au: u: {} !] , [, , au] , [ . 1 , g , a (- , ) g , , a [M' (- _)] + 1J - - -tano - V + " - w + ik + -,\ - Mcu = --" - Uc - u 81} a 8A P 8A C P 8A C 

( 4.1) 
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Meridional-momentum 

[ 
. .k · , 8v _ , 8 _,, 8 g , , 8 M g , , 8 pv , , 8 ] , ( 2) + -tCT+t u+o:R+TJ-+VTJ-+WA---A- c--A---A- V 4. a,,,, a,,,, aN P 8..\ P 8..\ 9n2 a..\ 

Continuity 

[ . l , [ , a tan8] , [ , a ] , ik u + T/ - - - v + ,\ - - 1 w = 0 a,,,, a 8..\ (4.3) 

Thermodynamic 

[ . .k_ _ , a _,, a _ g ,, a pv ,, a] T' Q' + -t(T + t U + 0:N + VTJ - + WA - + W~ - - A - --" - = -. a,,,, 8z p 8..\gH 2 8..\ Cp 
( 4.4) 

Hydrostatic approximation 

[,\' :,\] <P' + [-R]T' = O (4.5) 
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5 Flux Form of Equations 

To satisfy general conservation properties in finite difference form and to place the vertical 

advection and cumulus friction terms in the same form, we have chosen at this time to 

rewrite the equations in flux form. The advection operator in the meridional plane becomes 

a flux operator when combined with the continuity equation for the basic state: 

Using this identity the equations in flux form become: 

Zonal-momentum 

-iu + iku + aR - -tan0 u + --- v cos0u + -- -- -w - -- u ( . . v ) 1 r/ 8 ( ') ( ').,' ) 8 [ ( p gMc) '] 
a COS 0 8T] P/Po 8').. Po Po 

( ')..' ) a p v ,au' ( ,au u ) , ( ,au) , (. ) , - -- ---')._ - + TJ - - -tan0 - f v + A - w + ik <p 
P/Po 8').. Po H 2 8').. 8TJ a 8').. 

( 5.1) 

Meridional-momentum 

(
2
: tan0 + f) u' + ( -iu + iku + aR + TJ1 

::) v' + c:; 0 :TJ (v cos 0v') 

(5.2) 
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Continuity 

(5.3) 

Thermodynamic 

(5.4) 

Hydrostatic approximation 

( >.':).)~I+ (-R)T' = 0 (5.5) 
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6 Non-dimensional Form of Equations 

It is now convenient to non-dimensionalize the equations so that the solutions and the 

coefficients of the terms in the equations are 0(1). The following variables in our system of 

equations are non-dimensionalized as follows: 
f by 2n 

t by 

x , y by { 
1 for s = 0 L = a/s' wheres'= s for s Io 

z by 1 

- I - I u,u ,v, v by Uo 

w 9Mc gM~ w' by rlR-
' Po ' Po ' L 

<P' by 2!lU0 L 

T' by 2!lU0 L/R 

To simplify the form of the non-dimensional equations we define the following quantities: 

Ro - 2½1 is the Rossby number 

Ri lff'.; is the Richardson number 
0 

Fr ffi = Ro2
f. = Ri-1 is the Froude number 

- -;;, = e-z is non-dimensional pressure 

Eo - 2rf'H2 =Eo(17,>.) 

Eo - 2rt@ = Ea( 11, >.) 
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8 

r 
a• = 

u*' u'* ' v'"' v'* 

w'"' w'* = 

M* M'* C7 C = 
cp'• 

T'* 

Q'* 

.L 2n 
(1' 

Uo/L 

U u' tr v' 
Uo' Uo ' Uo ' Uo 

gM c _aM1__ 
PoUo/ L ' PoUo/ L 

~' 
20LU0 

T' 
20LU0 /R 

ULr ~ , where f1 is a typical stability 
o 1 Cp • 

where the ( )* represents a non-dimensional quantity. Using these definitions and notation 

the linearized system of equations in flux form are non-dimensionalized as follows . The 

zonal momentum equation is multiplied by (1/2f1.U0 ), and thus can be written as 

Uo (-ia + a~:~o + 0:R v/Uo ()) u' Uo Lr/ 8 ( v u') -- ---==-=-------tan -+----- -cos-
2f1.L U0 / L a/ L U0 2f1.L cos 8 81] U0 U0 

( 
Uo L I au/Uo - Uo L u () - f ) v' Uo (>.'{Ju/ Uo) iv' + 2f1.L 1J 81] 2D.L a U0 tan 2D. U0 + 2D.L 8>. Uo/ L 

Rewriting this equation in an alternate form yields 
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( 
io' is/ s' -• an l _. ) ,. L17' 8 c-• () '*) 

Ro - Uo/ L + cos() u + Uo/ L - s' v tan() u + Ro cos() 817 V cos u 

( 8u"' u ) ( Bu"' ) + RoL7J' 877 - Ros' tan() - J* v'* + Ro >.' 8>. w'* 

is/s' lf./* A.
1 

8 (-:-=.) I• '),_' 8 [ l•c-• -•)] + cos()~ + Roy 8>. Mc Uc = -R0 y 8>. Mc Uc - U 

Similarly, by multiplying the v-momentum equation by (1/2S1U0 ) , we can write 

( 
Uo L 2u () f) u' Uo (-io' + a~:~o + an L ,8v/Uo) v' ---tan+- -+- --~~--+ 77-- -

2S1L a Uo 2S1 Uo 2S1L Uo/ L 817 Uo 

Alternately 

U • '* UJ' ZS S - CiR I V '* 
( 

2.,..,... ) ( . . / ' 8-=-=-) 
Ro7tan8 + f u + Ro - Uo/ L +cos() u + Uo/ L + L17 817 v 

R L7J' 8 c-• () '*) R >.' 8 [ (' ___. -=-=-M) '•] + 0 cos () 817 V cos V + 0 y 8 >. .. w - C V 

17 
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L ,oifl* R >.' oM: ,. R ),.' 8 [M'*(- -)·] + Tf Of/ + 0-;:7»:Vc = - o-;: [)),. c Ve - V (6.2) 

The continuity equation is multiplied by (L/U0 ) 

is L , L r,' 8 ( , ) >.' 8 ( , L ) ---u +---- V cos(}+-- ew- =0 
a cos 0 U0 U0 cos 0 or, 8).. U0 

Alternately, 

( is/s') ,. Lr,' 8 ( ,. n) )..' 8 (' '*) 0 -- u +--- v cosv +-- .,,w = cos 0 cos 0 a,,., e a),. (6.3) 

The thermodynamic equation is multiplied by (L/U0 f 1) 

Alternately, 

18 



Finally, the hydrostatic approximation is multiplied by (1/2f2LU0 ) which yields 

Alternately, 

RT' a ( <P' ) 
- 2f2LUo +')..'a>. 2f2LU

0 
= O 

-T'* + >..'a<P'* = 0 a>. 

19 
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7 Equations Written with Coefficients 

One can readily note from the previous section that the equations in their linearized non-

dimensional flux form are rather lengthy and obviously would be cumbersome to work with. 

In view of this difficulty we have chosen to rewrite Eqs. 6.1-6.5 with coefficients which 

operate upon the non-dimensional dependent variables. With this strategy the appearance 

of the equations is simplified, and the programming aspects of the problem become more 

tractable. These coefficients are defined as follows : 

R ( -i<T is/s' -•) U0 ( -ia is/s' u) 
0 U0 / L + cos 8 u = 2D.L U0 / L + cosB U0 

-ia i(s/s')u -i<T is u 
= 2n + 2D.L cos 8 = 2n + cos 8 2D.a 

AR( 17, A) 

AN(17,A) 

Q9( 17, A) 
v* U0 v v AR- R0 -tan8 = AR- ----tanB = AR- -tanB s' 2D.L s'U0 2D.a 

Pl( 17) L17' Uo L17' Uo 171 

Ro--=----= ---
cos 8 2D.L cos 8 2D. cos 8 

P2( 17, A) = v* cos () = ;o cos () 

P3(17,A) 
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>..' D(>.) = 

F( 11, >.) = ~Eo>-' 

au- =- L TJ' au u f u () f* tanO- -Ql0(11,>.) = RoL11' 811 - Ro7 tan - = 2llL or, - 2lla 2ll 

Q3{ T/, >.) ' o'fi:' >.' au = Ro>- o>. = 2llL 8>. 

Q2( TJ) . s/s' = i-cos() 

AL2( T/, >.) = >.' 8 _ gMc = D~ ( gMc) 
R0 7: a>. Mc - D a>. 2llL PoUo/ L a>. 2llpo 

Bl( T/, >.) = >,' 8 '* -• -• _ [ gM~ ( u _ uc)] -ROT a>. [Mc ( Uc - u )] - D 8>. 2llL PoUo/ L Uo Uo 

= 8 [ gM~ ( u uc)] 
DE)). 2izp0 Uo - Uo 

B2( T/, >.) = >.' 8 '* -• * 8 U0 [ gM~ ( v _ vc)] 
-RoTa>. [Mc (~c-v )] =Da>.2nL PoUc/L Uo Uo 

21 



2u"' • U0 2u f _ 2utan8 j_ = R - tan 0 + f = - - tan 0 + 2n - 20. + 2n 0 s' 20.L s'U0 H a H 

Q13(77,.X) av- Lr/ av 
AR + RoL11' 817 = AR + 20.L 817 = 

Q5(17,.X) ,av- .x' av = Ro.X 8.X = 20.L 8.X 

Cl(77) I ar( = L17 = -s' 

Q22( 77) 

Lr/ C2(77) = cos0 

C3( 77) = cos 0 

C5(.X) = 

D2(A) = .X' 

Q6(17,.X) L77'8T = --r 1 811 

Q7(17, .X) = _!_ ( ,x,8T + 11:T) 
I'1 8.X 

C7(.X) = eKz 

22 



C8D(,\) = C8 · D 

CC(77,,\) 

C6(77, ,\) 

C8AN(77, ,\) = C8 • AN 

C8CC(77,,\) = C8 -CC 

C8C6( 11, ,\) = C8 · C6 

23 



By defining these coefficients, our systems of equations can now be written as: 

Zonal-momentum 

+(Q2)¢/* + (AL2)u~* = (Bl) (7.1) 

Meridional-momentum 

(Qll)u'* + ( Q13 + Pl :T/P2 + D :>.. P3 - D :>.. E :>..) v'* + (Q5)w'* 

+(Cl)a:~* + (AL2)vt = (B2) (7.2) 

Continuity 

(Q22)u'* + ( C2 :TJ C3) v'* + ( D :>.. C5) w'* = O (7.3) 

Thermodynamic 

(Q6)v'*+(Q7)w'*+ ( C8AN + C8CC :TJ + C8C6 :>.. C7- C8D :>.. F :>..) T'* = (B3) (7.4) 

Hydrostatic approximation 

-T'* + (D2) &¢/* = 0 a>.. 

24 
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8 Boundary Conditions 

In this section we consider the boundary conditions used with our model. These conditions 

will be expressed in non-dimensional form, and where necessary to simplify the equations, 

coefficients will be used. 

8 .1 Top and bottom boundaries 

Since our system of equations can be reduced to an eighth order differential equation in the 

vertical, the continuous solution requires eight boundary conditions at the top and bottom 

of the model. These boundary conditions in the stretched coordinate system ( TJ, ). ) are given 

as follows. 

At the upper boundary 

8u' 8v' 8T' 
8 ). = 8 ). = 8). = 0 (due to large dissipation) (8 .1) - (8 .3) 

w' = 0 (rigid upper lid) (8.4) 

In non-dimensional units these equations appear in the same form as in (8.1)-(8.4) except 

now the dependent variables are replace by ( u'*, v'*, w'* and T'*). 

At the lower boundary 

where 

8u' 
7IT 

8v' 
a>. 

BCU u' 

BCV v' 

8T' = BCT T' 85: 

(
BCU) BCV 
BCT 

bulk aerodynamic parameterization 

- RTo 
H o=--

g 
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V 0 = v(z = 0) 

Do= v(z = 0) 

The constants T0 , CD, v0 a.re defined is Section 2. 

In non-dimensional units (8.5) - (8.7) can be written a.s 

.!_(;;:)-(BCU BCV BCT)(;;:) =0 
{}>. T'* T'* · 

The fourth boundary condition a.t the bottom is given a.s: 

_, 0 ( h _, d</>') w = were gw = ---;Ji" 

Expanding out the total derivative (ft) we find 

d</>' . ( SU ) ,J./ , 8</>' , _ , 8</>' , , , 8<P O - = t -(7 + -- 'I' + 1J -V + V1J - + W A - = dt a cos 8 817 817 8 >. 

or in non-dimensional units 

B35</>'* + B32v'* + AC35 8:~• + B33w'* = O 

where the coefficients in (8 .12) a.re defined a.s 

B35(17) = . ( su <7 ) 
i s'U0 COS 8 - U0 / L 

B32( 17) = 1 L 8¢J/(2f2UoL) 
1J 01] 

AC35( 11) v 'L = -11 Uo 

B33( 17) = >.18¢/(!~UoL) = RT/(2D.LUo) 
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8.2 H orizontal b oundaries 

8.2 .1 Boundaries not at poles 

In the horizontal direction the system of equations is second order, so tha.t two boundary 

conditions are required on the sides of the model. These boundary conditions were chosen 

as v = 0 which inhibits flow through the side boundaries of the model. With this condition 

the v-momentum equation on the sides is replaced with v' = 0. In addition since v = 0 on 

boundaries, coefficients involving v ( i.e., P2 and C8CC) are also zero. This will be shown 

explicitly in Section 9.2.2.1 when the discretized form of the equation is presented. 

8 .2.2 Boundaries at poles 

When a horizontal boundary is extended to the pole, the boundary conditions which are 

imposed at that point are shown in the following table. The subscript pin this table implies 

that the condition is imposed at the pole. Details on the formulation of these boundary 

conditions are given in Appendix A. 

Table 8.2.2 

variable s=O s = ±1 isl> 1 

u' u' - 0 p- (~e') p = o u' - 0 p-

v' v' - 0 p- (~)P=O v' = 0 p 

w' ('v • v')p + 8
8~' - w' = 0 w' - 0 p- w' = 0 p 

T' (t~) = 0 T' = 0 T' = 0 p p p 

ef/ (~) 88 p = 0 </>~ = 0 </>~ = 0 
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For the s = 0 case, the condition on w' involves the horizontal divergence at the pole. This 

can be expressed as 

1 ( . , av; cos Op) ('v . V )p = -a-co_s_O_ isup + ao 
p p 

since u~ = 0 in this case 

I • (} vPsm P 
a cos OP 

Since in the second term on the right-hand side of the above equation both v; 
cos Op = 0, we use L'Hospital's Rule to evaluate it. This is shown below. 

I (} • (} (8v') _ v; sin OP _ lime-op lo ( -v' sin 0) _ -vP cos P - sm P ai P 
- 8 -a cos Op 1im8_ 8P 88 ( a cos 0) -a sin Op (av') 

aao P 

0 and 

Thus ("v • v')p = ( ~') P • Using a standard one-sided, first-order difference formula at the 

poles to approximate this term in the continuity equation is equivalent to assuming that 

the area average vertical motion, w' (i.e., -pw'), between the pole and the first grid point 

equals the average divergence over this same area. 

The continuity equation in flux form with coordinate stretching can be written as 

Note: the first term here was not expressed in stretched coordinates as 2rf a;: because 

when the stretched coordinate is 17 = sin 0, it follows that 17' = cos(}. Thus at the poles 

= cos Op = 0. For this reason the boundary conditions in table 8.2.2, which involve 

horizontal derivatives at the poles, are left expressed in the unstretched coordinate, 0. 

In non-dimensional form with coefficients this equation becomes 
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In non-dimensional units the other polar boundary conditions are in the same form as in 

Table 8.2.2, except now the dependent variables are replaced by ( u'*, v'*, w'*, T'* and </>'*) . 
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9 Discretized Equations 

The equations 7.1-7.5 are finite differenced in the latitudinal and vertical directions. To do 

this we define the following: 

where 

T/i = T/S + (i- l)~TJ where i--+ 1,JY 

Aj = >.1 + (j - 1).6.>. where j--+ 1,IZ 

~T/ = (TJN - TJs)/(IY - 1) 

T/S = T/ at southern boundary of model 

T/N = TJ at northern boundary of model 

IY = number of nodes in the latitudinal direction 

~>. = (>.rz - >-1)/(IZ - 1) 

>.rz = >. at bottom of model atmosphere 

>.1 = >. at top of model atmosphere 

IZ = number of levels in the vertical direction 

For brevity we drop the ( )* notation, but it must be realized that the dependent variables 

are still non-dimensional. 

In the revised version of the model we elected to use a staggered grid in the latitudi-

nal direction. This decision was motivated by the following observations. (1) For certain 

choices of model parameters ( e.g., s = 0, frequency small), adjacent perturbation variables 

appeared to be decoupled from each other in the latitudinal direction by exhibiting a large 

2.6.TJ oscillation. (2) Arakawa and Lamb (1977) have noted that proper finite differencing 

(i.e., staggering of the variables) is needed to properly maintain the geostropic adjustment 

process. For the one-dimensional shallow water equations the distribution of dependent 

variables which results in the best simulation of the geostropic adjustment process locates 

the u and v variables midway between the gr:d points where </> is carried. (3) Use of a 

properly staggered grid is computationally efficient in that it requires half the number of 
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grid points as the non-staggered grid to achieve the same level of accuracy. For more details 

on these last two observations one should refer to Appendix B. 

Based on the analysis in Appendix B, the latitudinal distribution of variables chosen for 

our staggered grid is shown in Fig. 9.1. In this configuration the variables w' , T' , and 4'> ' 

are located at whole grids points with u' and v' half way in between. The u' and v' variables 

are also carried at the horizontal boundaries where they are needed for computation in the 

thermodynamic and continuity equations. 

When a coefficient or a dependent variable is required a.t a. certain grid point but is not 

explicitly carried there, it is computed using linear interpolation. The example below shows 

how a field g, which is defined only at half grid points, is computed at a whole grid point . 

1 

u' 1 

v' 1 

w' 1 
T' 1 
<1>; 

2 

I w' I 
Ull 2 U21 

2 2 
I 

T~ 
I 

VI l. V21. 
2 2 

<1>; 

3 

w' 3 

T' 3 

<1>; 

JY -1 2 

I 
UIY-1 

2 
I 

VIY-1. 
2 

Fig. 9.1 Latitudinal distribution of perturbation variables. 
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9.1 Discretized equations at interior points 

Using grid structure shown in Fig. 9.1 the discretized equations at the interior points are 

shown below. 

Zonal-momentum at half grid points (~,IY - ½): i-+ 2,IY 

where 

Q3 - 1 · Q2 - l 
1-2,J [ , , ] 1-2 [;r../ ;r../ ] AL I B +--~ W· 1 · + W · · + - - 'J.' · 1 · + 'J.' • • + 2- 1 -U . l = 1- 1 · 2 ,- ,J 1,J 2 ,- ,J 1,J 1-2 ,J Ct-2 1-2,J 

{ 

[(P2 u')i+½,i + 3 (P2 u')i-½,i] /3!),.ry if i = 2 
(P2D u') ._1 . = - [(P2 u')i_;i

3
- +3(P2 u')i_1,·] /3!),.ry if i = IY 

I 2 ,J 2' 2' 

[(P2 u')i+½,i - (P2 u')i-f ,i] /2~TJ if 2 < i < IY 

(9.1) 

These formulas assume that the coefficient P2, which is a function of v is zero on the 

boundaries. To see where these formulas for (P2Du') come from, let us consider the zonal 

momentum equation at the first half grid point in from the southern boundary (i.e., i = ). 
Due to the distribution of the dependent variables (see Fig. 9.1), horizontal derivatives of 

quantities involving u' and v' at this point cannot be represented as centered differences. 

Thus to compute a horizontal derivative of some function, f(TJ ), at i = ~' the following 

second-order difference formula is used: 

A similar argument is used to derive the difference formula shown above at a half grid point 

in from the northern boundary (i.e, i = IY). 
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Meridional-momentum at half grid points (~ ,IY - ½): i-+ 2, IY 

(9.2) 

where (P2D v'\_1 ,· is defined by substituting v' for u' in the formulas for (P2D u')i_ l ,·· 
2' 2' 

Continuity at whole grid points: i -+ 2, IY - 1 

. [(C5 w' )i,i+I - (C5 w'ki-I] -+D, 2Ll.X - 0 (9.3) 

Thermodynamic at whole grid points: i -+ 2, IY - 1 

Q6i,i ( ' ' ) Q7 ' C8AN T' - 2- vi+ ½,i + vi-½,i + i,iwi,i + i,i i,i 

+C8CC· · i+ '3 ,-i,, + C8C6· · i,3+1 , ,, - 1 
[
T! 1 ·- T! ·] [(C7T') · · - (C7T')· · l 

i ,J 2fl. 17 i,J 2fl..X (9.4) 

Hydrostatic approximation at whole grid points: i - 2, IY 

(9.5) 
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9.2 Discretized equations at horizontal boundaries 

In this section the horizontal boundary conditions are applied to vertical levels j --+ 2, I Z -1. 

9.2.1 Boundaries not at poles 

Zonal-momentum at: i = 1 and i = IY 

Q9·. ~ . +Pl · (P2D r) .. + D · i ,1+1 i ,1-1 [(P3 u')· . - (P3 u') · · l 
i,1 ui,1 i u . i ,1 i 2~A 

where 

{ 
...L (P2 u'h . 

(P2D u') .. = Li.2
71 , 2 •1 

i ,J A71 (P2 u )IY-½,i if i = IY 
if i = 1 

These formulas for (P2D u')i,J assume that P21 = P2IY = 0 where P2 is a function of ii 

and ii = 0 on the horizontal boundaries. Also the term involving v' (i.e., QlOi,jV~,j) is zero 

and has been dropped from the above expression. 

Meridional-momentum at i = 1 and i = lY 

Continuity at i = 1 and i = IY 

Q22 · '· · + C2 · (C3D ') .. + D · i,i+i i ,i- = O [(C5 w') · · - (C5 w') · · 1 l 
iUi,J i V i ,J J 2~A 

if i = 1 
(C3D v') . . = Cl. 71 2 '1 

{ 
-1... (C3 v'h . 

i,1 ;; (C3 v'hY-½,i if i = IY 

These formulas for (C3D v')i,i assume that C31 = C3JY = 0 where C3 is a function of ii 

and ii = 0 on the horizontal boundaries. 
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Thermodynamic at i = 1 and i = IY 

Q7· -w~ · + C8AN· -T! . + C8C6 · · ,,,+l ,,1 - 1 [(C7 T') . . - (C7 T') . . l 
i,J i , j i,j i ,J i ,J 26.). 

The terms is this expression involving v' (i.e. , Q6 v') and ii (i.e. C8CC8J;,') are zero on the 

horizontal boundaries and have · dropped accordingly. 

Hydrostatic approximation at i = 2 and i = IY 

-T! · + D2 · ,,.1+1 , ,.1- = O 
[

J~ . - J~ . 1] 
t,J J 26.). 

9 .2.2 Boundaries at the poles 

Ifs= o 
at i = 1 and i = IY 

(D ) · · + D · ,,,+I t ,J- = 0 [(C5w') · • - (C5w') · · 1 ] 
V 1,3 J 26,). at i = 1 and i = IY 

where 
at i = 1 

at i = IY 

These formulas for ( Dv )i,i assume that v' = 0 at the poles. 

Ifs= ±l 

T~ . -T{ . ,.1 ,.1 = 0, J'2 . -J~ . ,J ,.1 = 0 at i = 1 

TIY' • -TIY' 1 • = 0 J'IY . -J'IY-I . = 0 at i = IY ,.1 - ,J , ,J ,J 

-u~ . ,J = 0, v~ . -vLi 
2 ,J 

=0 

I I 0 UIY ; -UIY 1 . = , ,... -2,J 
I I _ 0 

VJy.1· -VIY-1 . -
' 2 ,J 

w' - T' - J' - 0 at i = 1 1,j - 1,j - 1,j -

at i = 1 

at i = IY 

wIY' · = TIY' • = J'IY • = 0 at i = IY ,.1 ,.1 ,J 
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rr isl > 1 

1 _ 1 _ 1 _ y1 _ ho.I _ o U1 . - V1 . - W1 . - 1 . - '!.' 1 . -,J ,J ,J ,J ,J 

U 1 - v1 - w1 - T 1 - ho. 1 - 0 IY · - IY · - IY " - IY · -'!.'IY · -,J ,J ,J ,J ,J 

at i = 1 

at i = IY 

9.3 Discretized equations at vertical boundaries and corner points 

9.3.1 At upper boundary (j = 1) 

U~2 I =0 for i = 1 and i = IY ,, -ui,1 

I I -o for i-+ 2,IY u . l 2 -u . l 1 -1-2, •-2, 

I vi,1 =0 for i = 1 and i = IY 

I I =0 for i-+ 2,IY v._12 -v . l 1 
J 2 I •-2, 

I wi ,1 =0 for i-+ 1,IY 

T! 2 ,, . - T!l ,, = 0 for i-+ 1, IY 

-T! + D2 ' • '•1 [ <l>~ 2 - <l>I l 
,,1 1 ~). =0 for i-+ 1,IY 
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9.3.2 At lower boundary (j = IZ) 

( ui,J z ~u1,1 z -1 ) -BCUiui,IZ =0 for i = 1 and i = IY 

(u' -u' ) i-½ ,JZ i-½ ,JZ-1 
-BCUi_lU~_l IZ =0 for i--+ 2,IY A). 

2 ' 2 ' 

I vi,IZ =0 for i = 1 and i = IY 

(v' -v' ) i- ½,1z A1- ½,1z-1 -BCV;_iv~_ 1 IZ =0 for i --+ 2, IY 
2 ' 2 ' 

(Tf.IZj.Iz-1) -BCTi Tf,1z =0 for i --+ 1, IY 

B35i~i,IZ + AC35i (D~')i ,IZ + B33iWi,IZ =0 for i = 1 and i = IY 

{ •.• ,,,z-0;,,z if i = 1 
where D~' - AT/ ( )i,IZ - ~i JZ-~i-1 IZ if i = IY A11 

B35-~' + B32j ( ' + ' ) ' i,IZ 2 vi-½,IZ vi+½,IZ 

+AC35 · •±1• •-1• + B33 ·w~ ( ~
1 Iz-~'- JZ) 

' 2A11 ' ,,IZ =0 for i--+ 2,JY - 1 
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10 Matrix Form of the Equations 

To aid us in solving the system of discretized equations given in the previous section, it 

is convenient to conceptualize these equations at each point in the model's domain in the 

form of 10.1 given below 

where 

Xi,i = 
if i = 1 

if 2 i IY 

if i = IY + l 
represents perturbation variables at the model grid points and LLi ,j, UUi,j, J Ji ,i, BBi,j , 

AKi,j, BKi,j and CKi,j are defined respectively below. In these matrices the row index 

corresponds to the equation (1 - zonal momentum, 2 - meridional momentum, 3 - continuity, 

4 - thermodynamic, 5 - hydrostatic approximation) and the column index corresponds to 

the variable operated on (1 - u', 2 - v', 3 - w', 4 - T', 5 - <P'). For example, the matrix 

element (2,3) is the coefficient of w' in the meridional momentum equation. 
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AL2. 1 . i-2 ,J 0 0 0 0 
0 AL2 . 1 · 0 0 0 

J Ji ,j = 0 
i-2 ,J 

0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

Bl . l. i-2,J 
B2 - 1 . 

BBi,i = 
i-2,J 
0 

B 3i,i 
0 

( - P2 . ; ) Q3i-½ ,i Q2 . l. . Pl - ,- ,, 0 0 •-2 ,J 
i-½ 2A17 2 2 

0 ( -P2 . ; ) Q5i-½ ,i 0 
-Cl;_l. Pl- ,- ,, 

AKi,i = i-½ 2A17 2 Li1) 

0 0 0 0 0 
0 0 0 -CBCC;,i 0 2A17 
0 0 0 0 0 

[ D · - ] Q3i-½ ,i Q2 . l 

Q9i-½ ,i + tihEi-½,i QlO . 1 · 0 _____:::.i_ 
i-2 ,J 2 2 

[Q13 ._1 . + f>-¼ E-_1 ·] QSi-½,i Cl . 1. . 
Qll - J. . 0 •-2 ,J 

1-2,J i2,J i 2,J 2 A11 
BKi,i = 

C2i 
-C3i-½ 

0 0 0 2 A11 

0 Q6;,; Q7·. [ CBD · - ] 0 2 i,J C8ANi,i + ~Fi-½,i 
0 0 0 -1 0 

where Ei,· = E - •+1 + E- • 1 and Fi,·= P •+ 1 + P • 1 ' ,,, 2 t ,J-2 ' ,,, 2 , ,,-2 

Pl - •+ 2 •' (P2 . 1. ) 1-½ 2A17 0 0 0 0 

0 (P2 . ½ ·) 0 0 0 Pl - •+., 

CKi,i = 1-½ 2A11 

C3i+½ 
2 C2i A17 0 0 0 
0 Q6; ,; 0 CBCC; ,i 0 2 2A17 
0 0 0 0 0 

To implement the finite difference formulas following 9.1 and 9.2 in the previous section, 

the matrices BK and C 1( at i = 2 are altered as follows : 
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Likewise the matrices AK, and BK at i = IY are altered as follows: 

In computing the above matrices the following restrictions apply. At i = 1 certain 

formulas (e.g., LL1,j(l, 1)) contain coefficients at i = ½; in this case the coefficients should 

be computed instead at i = 1. Likewise, at i = IY + l coefficients which appear in formulas 

at i = IY +½should be evaluated instead at i = IY. In addition, elements in the last three 

rows of the matrices at i = IY + l are always zero. The remainder of this section deals 

with how the above matrices are altered to implement the boundary conditions. 

10.1 Horizontal boundaries 

The horizontal boundary conditions discussed in this section are applied at vertical levels 

j-t2,IZ-l. 

10.1.1 Boundaries not at poles 

At the southern boundary (i.e., i = 1), the discretized boundary conditions given in Section 

9.2 are implemented as follows. The matrices LL, UU , JJ and BB at i = 1 are defined 
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in a similar manner to that shown earlier with exceptions noted below. To set v' = 0 

the elements of the second row of the following matrices (i.e., LL1,j , UU1,j , AK1,j, BK1,j, 

CK1 ,j , JJ1,j , BB1 J ) are set to zero, then as shown below set BK1,j(2 ,2) = 1. Furthermore, 

since v = 0 and horizontal differences are one sided, the matrices AK, B K and CK are 

defined as follows: The elements of AK1,i are set to zero. 

[Q91,j + fh E1,j] 0 Q31 0 Q21 
0 1 0 0 0 

BK1,i = Q221 0 0 0 0 
0 0 Q71 [ CBD · - ] 0 C8AN1 ,i + F1,i 
0 0 0 - 1 0 

2 [P11 (~)] 0 0 0 0 
0 0 0 0 0 

CK1 ,i = 0 [ C3a] 2 C21-;r;- 0 0 0 
0 0 0 0 0 
0 0 0 O' 0 

At the northern boundary (i.e., i = IY) , the discretized boundary conditions given in 

Section 9.2 are implemented as follows . To set v' = 0 the elements of the second row of the 

following matrices (i.e., LLIY+I ,j , UU1Y+1,i , AKIY+t,i , BK1Y+1 ,i, CKIY+I ,j, JJJY+ I,i, 

BBIY+t ,i) are set to zero, then as shown below set BKIY+l,j(2, 2) = 1. Furthermore, since 

v = 0 and horizontal differences are one sided, the matrices AK, BK and CK at i = IY + 1 

are altered as follows: 

2 [PlIY (-P2Zi-½,i)] 0 Q3JY 0 Q2JY 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

[Q9JY,j + fhE1Y,i] 0 0 0 0 
0 1 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

The elements of CKIY+I ,i are set to zero. In addition, the matrices AK, BK and CK at 
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i = IY are altered as follows: 

BKIY,j(3 , 1) 

CKIY,j(3, 1) 

CI( IY,j ( 3, 2) 

0, smce wIY operates on CI( IY,i ( 3, 1) 

Q22JY 

2 [c2IY C3:,,-l] 
10.1.2 Boundaries at poles 

Initialize the following matrix elements: 

- set LL1 ,i, UU1 ,j, AK1,1, BK1,1, CK1,1, JJ1,1, BB1,1, to be 0 

- set LLIY+i,i, UUIY+i,i, AKIY+i .i, BKIY+i ,j, CKIY+i,j, JJrY+1 ,j, BB1Y+1 ,j to be 0 

- set row 3 of LLIY,j , UUrY,j, AKIY,j, BKIY,j, CKIY,j, JJIY,j, BBrY,j , to be 0 

- set row 4 of LLJY,j, UUIY,j, AKIY,j, BKIY,j, CKIY,j , JJIY,j, BBIY,j, to be 0 

- set row 5 of LLIY,j, UUIY,j, AKIY,j, BKIY,j, CKIY,j, JJIY,j, BBrY,j , to be 0 

Ifs= 0: 

at south pole 

BK1.i(l, 1) = 1 

BK1,i(2, 2) = 1 

CK1,i(3,2)=DVS } 
LL1,1(3,3) = -D21 (c2

5J:~1
) 

UU1,j(3, 3) = D2j ( c21f) 
BK1,j(4,4) = -1} 
CK1,j(4,4) = 1 
BK1,i(5,5) = -1} 
CK1,1(5,5) = 1 

at north pole 

u' · = 0 1,J 

r; · -T{ · = 0 ,J ,J 

<1>'2 . - <1>'1 . = 0 ,J ,J 
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BKIY+i,j{l, 1) = 1 

BKIY+1,;(2 , 2) = 1 

u'IY · = 0 ,J 

v'iIY • =O ,J 

BKIY,; (3,2) = DVN } 
LLIY,;(3,3) = -D2; ( 0

21tA1
) 

UU IY,;(3, 3) = D2; ( ~1t11
) 

AKIY,;(4,4) = -1} 
BKIY,;(4,4) = 1 

DV N I . + D2 . [ (CSw');1;+1 -(CSw'); 1;-1] _ O VIY _l J 2~..\ -
2 

TIY . - TIY -1 . = 0 ,J ,) 

AKIY,;(5,5) = -1} 
BKIY,;(5,5) = 1 cl>'IY . - cl>'IY-1 . = 0 ,J ,J 

Ifs= ±1: 

at south pole 

at north pole 

If Isl > 1: 

at south pole 

BJ(1,;(l , 1) = -1} 
CJ(1,;(l, 1) = 1 

~](1,;(2, 2) = -1} 
C K1,;(2, 2) = 1 

BK1,;(3,3) = 1 

BK1,;(4, 4) = 1 

BK1,;(5,5) = 1 

AKIY+1,;(l, 1) = -1} 
BKIY+1,;(l, 1) = 1 
AJ(IY+1,;(2, 2) = -1} 
BKIY+i,;(2,2) = 1 

BJ(IY,j(3,3) = 1 

BKIY,;(4,4) = 1 

BKIY,;(5,5) = 1 
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v~ . - v~ • = 0 
2 ,J ,J 

w' • = 0 1,J 

T{ . = 0 ,J 

cl>' . = 0 1,J 

vIY • - v' 1 . = 0 ,J IY-2,J 

w'IY · = 0 ,J 

TIY' - =0 ,J 



at north pole 

BK1,1(1, 1) = 1 

BK1,j(2, 2) = 1 

BK1.i(3, 3) = 1 

BK1,i(4,4) = 1 

BK1,j(5, 5) = 1 

BKIY+i,1(1,1) = 1 

BKIY +1,i(2, 2) = 1 

BKIY,/3, 3) = 1 

BKJY,j(4,4) = 1 

BKJY,j(5,5) = 1 

u~ • = 0 ,J 

v' • = 0 1,J 
... 

w' • = 0 1,J 

T{ · = 0 ,J 

= 0 ,J 

u'IY · = 0 ,J 

VrY,j = 0 

I -o WIY,j -

~'IY . = 0 ,J 

10.2 Vertical boundaries and corner points 

At top boundary (i.e., j = 1 ), the discretized boundary conditions given in the previous sec-

tion are implemented by setting all the elements of the matrices (i.e., LL, UU, AK, BK, CK, JJ, BB) 

to be zero, then altering BK and UU as follows: 

-1 0 0 0 0 1 0 0 0 0 
0 -1 0 0 0 0 1 0 0 0 

BKi,1 = 0 0 1 0 0 uui,1 = 0 0 0 0 0 
0 0 0 -1 0 0 0 0 1 0 
0 0 0 -1 _D21 0 0 0 0 D21 

AA AA 

At corner point (1,1) the matrices are defined in a similar manner to those above with the 

following alterations to impose the condition v' = 0. 

BK1,1 (2, 2) = 1 

UU1,1(2, 2) = 0. 
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Likewise, to impose v' = 0 at corner point (JY, 1) the last three rows of matrices BKrY+I ,i 

and UU IY +I,i are set to zero and 

BJ(IY+i,j(2,2) = 1 

UUIY+I,j(2 ,2) = 0. 

At the bottom boundary (i.e., j = IZ), the discretized boundary conditions given in 

the previous section are implemented by setting all the elements of the matrices (i.e. , LL , 

UU, AK, BK, CK, JJ, BB) to be zero, then altering BK, UU , AK and CK as follows: 

BKi,IZ = 

(1- b,.)..BCUj_l) 0 0 
2 

0 (1 - ~>.BC~_1) 0 
2 

0 
0 
0 

LLi,IZ = 

B32i 
2 
0 
0 

-1 0 
0 -1 
0 0 
0 0 
0 0 

AKi,rz(3,5) 

C Ki,rz(3, 2) 

C Ki,rz(3, 5) 

B33i 
0 
0 

0 0 
0 0 
0 0 
0 -1 
0 0 

_ -AC35j 
- 2C.I) 

_ B32i 
- 2 

_ AC35; 
- 2C.1J 

0 0 
0 0 
0 B35i 

(1- ~>.BCTi) 0 
- b,.).. D2rz 

0 
0 
0 
0 

-D2rz 

At corner point (1,JZ) the condition v' = 0 and one-sided horizontal derivatives are used 

by making the following alterations to the matrices defined above. 

(1- b,.)..BCU1) 0 0 0 0 
0 1 0 0 0 

BK1,IZ = 0 0 B331 0 B35 - AC351 
1 C.!J 

0 0 0 (1 - b,.)..BCT1) 0 
0 0 . 0 -~>. D2rz 
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LL1,IZ = 

-1 0 
0 0 
0 0 
0 0 
0 0 

AK1,1z(3,5) 

CKuz(3,5) 

CK1,1z(3, 2) 

0 0 0 
0 0 0 
0 0 0 
0 -1 0 
0 0 -D2rz 

=0 
_ AC351 
- ll.17 

=0 

Analogously, similar conditions are used at corner point (JY, IZ) by Il).aking the following 

alterations to the matrices defined above. 

(1 - t..).BCU IY) 0 0 0 0 
0 1 0 0 0 

Bl(IY+i ,IZ = 0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

-1 0 0 0 0 
0 0 0 0 0 

LL1Y+1,IZ = 0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

AK IY,Iz(3 , 5) -AC35IY = t..11 

BKIY,rz (3,5) = B35 AC35IY 
lY + t..11 

BKIY,rz (3,2) 0 

CKIY,rz(3 ,5) = 0 

Cl( IY,rz(3 , 2) = 0 
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11 Algorithm for Solving Problem 

For a specific heating function ( Q'), the response in the perturbation fields of the three-

dimensional wind ( u', v', w'), geopotential ( q/), and temperature (T') are calculated from 

Eqs. 9.1-9.5. The algorithm which solves for these perturbation fields can be divided into 

the following three sections. 

11.1) Filling of matrices 

11.2) Gaussian elimination 

11.3) Backsubstitution 

Each of these sections will be discussed in the order that they appear in our computer 

algorithm which is flowcharted in the Appendix of SC. 

11.1 Filling of matrices 

By combining Equation 10.1 for all the horizontal nodes on a level, we can write an equation 

for each level in the model as follows : 

(11.1) 

where j = vertical level of model. The Xj is a column vector which consists of the IY + 1 

grid point vectors Xi,j in sequence, where Xi,j is defined following Equation 10.1. Bi is a 

similar column vector 

(x1,i ) 
(x2,/I 
(X3,j) 

(XIY +1,j) 

(BB1J) 
(BB2J) 
(BB3J) 

The Lj, Uj, and Ji matrices are block diagonal, with the ith block sub-matrix being LLi,j, 

UUi,i, JJi,i, respectively. From Section 10, LLi,i , UUi,i, and JJi,i are themselves diagonal 

5 by 5 sub-matrices. For example, 
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Uj and Jj are similarly diagonal matrices. Lj, Uj and Jj each involves storage of 5 x IY + l 
elements on the diagonal. The Dj matrix, which is a combination of the AKi,i , BKi,i, and 

C Ki,j operators from Equation 10.1, is a block tri-diagonal matrix , with each block a 5 by 

5 submatrix. At some vertical level j: 

BK1,i CK1 ,i 
AK2,i BK2,j 

AK3,i 

O's 

CK2,i 
BK3,i 
AK4,i 

AKIY-2,i BKIY-2J 
AKIY-I,j 

O's 

CKIY-2,j 
BKIY- I,j 

AKIY,i 
CKIY-I,j 

BKIY,j 
AKIY+I ,j 

CKIY,j 
BKIY+i ,i 

Since Dj is a block tri-diagonal matrix, in storing Dj we have taken advantage of the fact 

that most of its elements are zero. In storage the compressed matrix D at any vertical level 

appears as follows: 

CK1,i 
BK2,i 
AK3,i 

CK2 ,i 
BK3,i 
AK4,i 

CKi-I ,j 
BKi,i 

AKi+I,j 

CK1Y-2J 
BKIY-IJ 

AKIY,j 

CK1Y-I ,j 
BKIY,i 

AK1Y+1,i 

where D is needed for computation, it is reformed into its original sparse structure. The 

memory requirements for storing the compressed version of D over its sparse structure are 

reduced by a factor of (JY /3). For example with typical values needed to resolve wave 

structure of JY = 21 and IZ = 31, the storage of the full matrix D for all levels in the 

models would require ~ 106 words of memory. On the other hand, the compressed D 

matrixes would require only ~ 1.3 x 105 words of memory or a factor of 8 less! By storing 

the matrices in Equation 11.1 as outlined above, the CRAY computer can easily contain in 

its memory these matrices for all the levels in the model simultaneously. 
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Filling the matrices in Equation 11.1 at a specific vertical level, requires that the com-

ponent sub-matrices: UU, LL, J J, BB, AK, BK, and CK be filled first at each horizontal 

node on that level. Once these sub- matrices are defined they are used to form the L, U, 

J, B, and D matrices at one vertical level. By repeating this process at each level in the 

model, our system of equations can now be represented in the form of the linear matrix 

equation, AX= B* which is shown schematically below. 

D1 U1 J1 X1 B1 
L2 D2 U2 h X2 B2 

L3 D3 U3 h X3 B3 

Ll-1 (U + J)e-1 Xl-1 Be-1 
Ll (D + J)e Ul Xe Be 

(L + J)e+i De+1 Ue+i Xe+i Be+i 

0 Lrz Drz Xrz Erz 

We have assumed here that Ji = 0 (i.e. no cloud mass flux) for j > l+ l. The parameter 

'£' as it appears here is defined as the level of cloud base and is computed from the following 

equation: 

l = IFIX().(ZC)/ .6.). + 0.5) (1 1.2) 

Because the vertical differentiation is at most second-order in the five variables , only 

vertical grid levels separated by t.). and 2t.). are related in the finite difference scheme. 

Thus the matrix A is a block tridiagonal matrix, with blocks of dimension 5 x IY by 

5 x IY. 

11.2 Gaussian elimination 

To reduce the linear matrix system AX = B• to an upper triangular matrix, we employ 

a Gaussian elimination scheme, slightly modified for the cumulus friction terms , from a 

version suggested by Lindzen and Kuo (1969). In this scheme, IZ matrices (5 X IY by 
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5 X IY) must be inverted in full-storage (non-sparse) mode. The procedure for using this 

scheme at the various levels in the model is shown below. 

where 

-Li(Xi-1 + 
L;X;-1 + 

where 

-Lt-1(Xe-2 + 
L1.-1Xt-2 + 

where 

D1X1 
X1 
X1 

!For j = 1 I 

+ U1X2 + J1X1. 
+ D11UiX2 + D11 J1Xt 
+ a1X2 + /31Xt 

81 n-1 
1 

a1 = 81U1 
/31 = 81J1 
,1 81B1 

I For j = 2,3, ... ,£ - 2 

ai-1Xi 
D;X; + 

= B1 
= D11B1 
= /1 

(D; - Liai-1)Xi + (Ui)Xi+1 + (Ji - L;/3i-1)Xt = 
Xi + (oiUi)Xi+I + oi(Ji - Lif3i_i)Xt 
Xi + aiXi-1 + /3iXe 

(Di - Liai-1)-1 

oiUi 
oi(Ji - Li/3i-i) 

'Yi = oi(Bi - L;,i-i) 

!For j = £-1 I 

Ot-2Xt-1 + 
D1.-1Xt-l + 

f3t-2Xt = 
(U + J)1.-1Xt 

(De-1 - Lt-1a1.-2)X1.-1 + [(U + J)t-1 - L1.-1f31.-2 ]X1. 
Xt-1 + a1.-1X1. 

81.-1 (Dt-1 - L1.-1a1.-2)-1 

Ot-1 81.-1[(U + J)t-1 - Lt-1/31.-2] 
,1.-1 8e-1(B1.-1 - Lt-1,1.-2) 
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oi(Bi - Ln1-1) 

'Yi 

,e-
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where 

-Ll(Xl-1 + 
LtXl-1 + 

If l + 1 < IZ: 

-(L + J)l+1(Xl + 
(L + J)l+1Xl + 

Ctl-lXl 
(D + J)lXl + ViXl+l 

[(D + J)l - Ltal-1]Xl + ulxl+l 
Xl + alXl+l 

8l = [(D + J)l - Ltal_i]-1 

Ctt = 8tUl 
1'l = 8t(Bl - Ll1'l-1) 

/For j = l + 1 j 

atXl+1 
Dt+1Xl+1 + Vi+1XH2 

[Dt+l - (L + J)H1adXH1 + Ul+1Xl+2 
xl+l + al+1Xl+2 

where 
8l+1 = [Dt+1-(L+J)t+1alJ-1 

al+1 = 8t+1 U1.+1 
1'l+l = 8t+1[B1.+1 - (L + J)l+11l] 

If l + 1 = IZ: 

-(L + J)H1(Xt + 
(L + J)l+1Xl + 

1'l-l) 
B1. 

Bt+i - (L + J)l+i , e 
1'l+l 

1'l ) 
Bl+l 

[DH1 - (L + J)H1adXH1 = B1,+1 - (L + J)e+11'l 

where 

If l + 1 < IZ: 

-LJ(Xj-1 + 
LjXJ-1 + 

Xl+l 1'l+l 

8l+1 = [Dt+l - (L + J)H1alJ-1 

1'l+1 = 8l+i[Bl+l - (L + J )l+11l] 

I For j = l + 2, l + 3, ... ,I Z - 1 I 

etJ-1XJ = 
DJXi + UiXi+i = 

(Di - LjetJ-1)Xi + UiXi+l = 
X · J + aiXi+i = 
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B · J 

Bi - LnJ-1 
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where 

If f. + 1 < IZ: 

where 

-Lrz(Xrz-1 + 
LrzXrz-1 + 

8j (Dj - LjO'.j-1)-1 

ai 8i Uj 
'Yi 8j(Bj - Lnj-1) 

arz-1Xrz 
DrzXrz = 

(Drz - Lrzarz-1)Xrz (Brz - Lrz'Yrz-1) 
Xrz = ,rz 

8rz (Drz - Lrzarz-1)-1 

,rz 8rz(Brz - Lrz,rz-1) 

The table at the end of Section 11 summarizes the form of the operators that are used in 

the Gaussian elimination scheme at the various levels (j) of the model. 

In an elegant extension of the Lindzen-Kuo method, Professor Paul Duchateau of the 

Mathematics Department of CSU developed a scheme to solve the linear matrix equation 

AX = B* with a considerable reduction in computer time. He observed that each of the five 

equations involves a vertical derivative in a single variable, and this variable is different for 

each equation: specifically, u', v', w' , T' , ¢l in that order. These equations are not all second 

order in the vertical, so we cannot directly use the Lindzen-Kuo scheme. However , if we 

finite difference them as they appear , without combining them, and retain all five variables 

as unknowns, we find again a block tridiagonal structure; but the off-diagonal blocks are 

themselves diagonal matrices! This is precisely the matrix structure outlined above. 

Duchateau noted that with non-vanishing viscosity and thermal diffusivity, the off-

diagnonal block matrices are guaranteed to be trivially invertable. Consequently, the algo-

rithm can be modified so that only a single 5 x IY by 5 x IY dense matrix need be inverted. 

In the standard method, such a matrix inversion must be accomplished at each vertical 

level. Thus Duchateau's scheme reduces the matrix inversion workload, which constitutes 
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the primary computational burden, by a factor of IZ which is typically a factor of 30 or 

more. 

In testing this scheme, we determined that its usefulness is limited to cases where vis-

cosity is rather large (e.g. 100 m2 s-1 ) throughout the model's domain. The restriction of 

this scheme results from using the L-1 matrix, which is inversely related to viscosity and 

diffusivity, to operate on a row of matrix A in reducing it to an upper triangular system 

(refer to schematic of AX = B* in Section 11.1). Apparently when the magnitude of L is 

small ( due to a small value of viscosity; e.g. v ::; 50m2 s-1 ), the condition number of the 

matrix to be inverted increases so that for all practical purposes the matrix is not invertible. 

Heuristically, all the ill-behaved aspects with small dissipation are collected into a single 

matrix inversion stage, which the algorithm cannot properly handle. When the ill behavior 

is distributed over many (time-consuming) matrix inversions, the algorithm works quite 

adequately. This result is apparently an application of the computer proverb, 'You don 't get 

something for nothing' . Note, however, that Duchateau's scheme may be useful in second-

order, dissipation-dominated problems. Unfortunately, that is not our area of interest. 

11.3 Backsubstitution 

Once the system AX = B* has been reduced to upper triangular form as shown below, it 

becomes a trivial matter to solve for the solution matrix X. 

I Ot f31 X1 ,1 
I 02 f32 X2 ,2 

I 03 ()3 X3 /3 

I Ot-1 Xe-1 'Yl-1 
I oe Xe 'Yl 

I Ot+l Xe+1 'Yl+l 
I Xrz 'YIZ 

In the backsubstitution, we compute 

Xrz = ,rz 
and Xj = ,; - OjXj+t - /3jXe for j = IZ - 1, 1 
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where /3; = 0 for j > £ - 2 

Since the ; , a , and /3 matrices are needed in the backsubstitution process, they are tem-

porarily stored on a random access file and recalled as needed. This was done because the 

size of these matrices prohibited storing them for all levels simultaneously. For example at 

each level ; and a consist of 50 x IY2 words and /3 of 10 x IY words. 

This completes the description of the model formulation . In the next section we describe 

our effort to understand and fix the problems our model has as both s and u -+ 0. 

54 



C.11 
C.11 

j 

1 

(2,l - 2] 

l-1 

l 

(l+ 1,JZ-1] 

IZ 

Summary of the operators that are used in the Gaussian 
elimination scheme at various levels (j) of the model 

8· J a · J {); 

n-:1 
J 8;U; 8;J; 

(D; - L;a;_i)-1 8;U; 8;(J; - L;fJ;-i) 

(D; - L;a;_i)-1 8;(( U + J); - L;fJ;-1] 

((D + J); - L,a;-1]-1 8;U; 

(D; - (L; + ~j,l-1Jl+10'.j-1J-1 8;U; 

[D; - (L; + ~j.l+I .Tl 1- i)a;_i]-1 -

{ 
O if j-/= l + 1 

where ~j,l+l = 1 if j = l + 1 

-

-

-

-

'Yi 

8;B; 

8;(B; - L;,;-d 

8,(D; - L;,;-1) 

8;(B; - L;,;-i) 

8;(B; - (L, + ~j.l+lJH1h;-il 

8;[B, - (L; + ~j,l+lJH1h;-1] 



12 Steady, Symmetric Response to Convective Heating 

Lim and Chang (1983) pointed out the importance of the zonally symmetric response to 

tropical heating, particularly for barotropic modes. Their conclusions involved dynamical 

arguments based on a shallow water system with constant coefficients (10 days) for the 

dissipation time scale of both Rayleigh friction and Newtonian cooling. 

On the other hand, studies of the Walker circulation using primitive equation models 

( e.g. Geisler, 1981, and Rosenlof et al., 1985) have generally avoided the steady, zonally 

symmetric response to tropical heating by formulating the model forcing so as to exclude the 

zonal average component. Investigation of the symmetric response has been avoided because 

an inadequacy in the primitive equation model occurs when both longitudinal wavenumber 

( k) and frequency (a) approach zero . However, in problems where this cannot be avoided 

(e.g., an isolated, stationary heat source over Sou th America), this inadequacy in the model 

must be resolved. 

To better understand the problem as k and o- - 0, we can separate the primitive 

equations into their horizontally and vertically varying parts. For the inviscid primitive 

equations with a basic state at rest, the horizontal structure equation is given as: 

[Dr1 2 df
2 

8 D2 
L 8 l . , [ (df

2
) 1 d (f O) ] ·k,1.J D2L (Q') v - - - + --- ta</> + f - - --- cos D t 'f' = -dy 8y Rr oz dy cosOdy r 

(12.1) 

where D = (!2 - a 2) and L = ¼ !P• For the k = 0, o- = 0 case, the dynamical adjustment 

on the left hand side of (12.1) is zero. ·Thus for a zonally symmetric (k = 0), stationary 

(o- = 0) heat source, (12.1) implies that a steady, inviscid response is prohibited. 

Within the context of the primitive equation model presented in this document the 

difficulty with the steady symmetric response is manifested primarily in the geopotential 

field. For example, in most of our runs with k = 0 and a 0, the velocity fields are 

qualitatively correct but the geopotential field is represented by a large constant value. 

The aberrant behavior of the perturbation </> field can be explained in part by considering 

equations (4.1)-(4.5) when k and a - 0. For this case all the terms in these equations 
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which involve the parameters k and u can be neglected. In this form the equations involve 

only derivatives of ¢/, and not ¢/ itself. Thus , no constraint exists in these equations to 

determine the overall amplitude of¢/. 

To examine the behavior of¢/ as u - 0, Fig. 12.1 shows the product u</J'max as a function 

of wave period obtained from several model runs with k = 0. In addition, these model runs 

used a dissipation time scale of 20 days for Rayleigh friction and Newtonian cooling, a heat 

source with a half width of ~ 9° centered on the equator and a resting basic state. The 

variable <P'max represents the maximum value of¢' over the model domain. We note from 

this plot that u</J'max asymptotes to a constant value ( ~ 9.5 x 10-4 ) as the wave period 

- oo ( or u - 0) . Further investigation showed that this value is determined directly from 

the lower boundary condition (8.11) which in this case simplifies to iu<jJ' = w' RT. Since the 

value of w' at the bottom boundary varies little as the wave period increases beyond 100 

days (see Fig. 12.2), the amplitude of u</J' becomes fixed. Thus at large wave periods , ¢' at 

the bottom boundary is inversely proportional to u so that as u - 0, the variable¢' - oo. 

This effect propagates throughout the domain in the back substitution process described in 

Section 11.3 via the hydrostatic equation. 

The horizontal and vertical variation in the ¢' field is concealed when the value of ¢/ 

introduced at the bottom boundary, as discusse~ above, becomes too large. In these cases, 

which occur when the wave period exceeds 100 days, we propose the following mechanical 

fix so that real physical variation in the ¢' field can be observed. This fix, outlined in the 

steps below, is equiyalent to assuming that there is no net accumulation of mass in the 

model domain (i.e., the average ¢' along the lower boundary of the model is zero). 

1. After the first step in back substitution process we have <P'rz( TJ ) = ef>'rz( TJ)+constant. 

2. Use mean value theorem to compute this constant. In our case this theorem takes the 

following form: 

1 1T/N constant = --- <Prz( TJ)dTJ. 
T/N - T/S T/s 
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3. Subtract the constant from ¢>'IZ( ry): 

¢'rz( TJ ) = c/>'rz( TJ) - constant 

4. Continue back substitution process as before using adjusted value, ¢'rz· 

We also have observed in the case k = 0 and <7 -+ 0, that the linear matrix problem, 

AX = B*, becomes ill-posed when w' = 0 is imposed as the upper boundary condition and 

thus cannot be solved. As an alternate upper boundary condition we set , ~, - w' = 0, 

which is equivalent setting divergence to zero at the upper boundary. This however produces 

a solution in w' and the thermodynamic fields which increases with height as e2
• A simple 

mechanical fix which does not allow w' to increase as rapidly in height is to impose 8
8~

1 = 0 

as the upper boundary condition. 

Finally, it is worth noting that the solution becomes increasingly sensitive to the pa-

rameterization of dissipation as <7 -+ 0. This is physically reasonable since in such cases the 

time scale of dissipation is short relative to the time scale of the wave. For example, when 

the specified wave period is 10,000 days, increasing the dissipation t ime scale by a factor of 

four reduces the amplitude of the ¢>' field by a similar factor. 
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Fig. 12.1. The product (14''ma~ (m2s-3) plotted as a function of wave period ( da.ys), where 4''maz r~pres, 
the maximum value of 4'' over the model doma.in. 
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Fig. 12.2. Perturbation vertical motion at the equator a.nd bottom boundary of the model, w' ( s 
plotted as a. function of wa.ve period ( da.ys ). 
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13 Concluding Remarks 

Due to the wide range of problems to which our model is applicable, several researchers 

in the field of atmospheric science have sought to use it on their problems. For these 

researchers to correctly use and understand the model in all its complexity, it is important 

that a current and accurate documentation of the model be maintained. This manuscript 

documents the numerous corrections and improvements that have been made to the model 

since its original design and description were presented in Stevens and Ciesielski (1984). 

The main improvements presented here include: (1) the capability of placing the horizontal 

boundaries at the poles, (2) an improved latitudinal differencing scheme, and (3) treatment 

of the k = 0, <7 = 0 case. 

To date we have successfully used our primitive equation wave model on several research 

problems. Of the problems completed, two have resulted in refereed publications. The first 

of these (Rosenlof fil....fil., 1985) examined the effects of a Hadley cell and cumulus friction 

upon the Walker circulation. The second (Shapiro et al., 1988) studied the differences in 

the structure and dynamics of easterly propagating tropical waves in the context of different 

mean zonal wind profiles. Ongoing projects are using the wave model to study atmospheric 

circulations driven by heat sources over South America, and to examine the effects of the 

quasi-biennial oscillation on structure of easterly waves. 

Recently we have developed and successfully tested a time integration (TINTG) version 

of our primitive equation model. In the frequency version (FREQ) of the model, the system 

of equations is represented in the form of a linear matrix equation AX = B* , where A, X 

and B* are matrices defined in Section 11. In the FREQ code the solution matrix, X, is 

obtained for a specified frequency with a Gaussian elimination scheme suggested by Lindzen 

and Kuo (1969). Alternately, we can write the system as 

AX= ~(X) + LX = B* at 
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or 

ax= B* -LX at 
In the TINTG code we solve this latter equation with a second-order Runge-Kutta time 

integration scheme. Since the matrix L is only a slight modification to the matrix A, a 

significant portion of the FREQ code was easily adapted to use in the TINTG version of 

the model. We plan to modify the linear TINTG code to a nonlinear version where only 

the zonally symmetric flow is considered, and with it study nonlinear, nonsteady Hadley 

circulations. 
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Appendix A 

Formulation of Polar Boundary Conditions 

At the singular points of the spherical coordinate system - i.e., the North and South 

Poles - we require all true scalar fiel s to be continuous variables that remain finite at the 

pole. This applies to the geopotential, vorticity, divergence, and deformation fields. The 

horizontal vector velocity field must also be continuously varying; otherwise infinite vorticity, 

divergence, and/or deformation would result. However, the two spherical components ( u, v) 

of velocity need not, in general, ~e continuous across the poles because the corresponding 

unit vectors (i ,]) change discontinu usly at the pole. 

Let us consider the linearized shallow water equations with a geostrophic zonal flow u 

as a basic state. 

with 

(~ + _!!__~) u' _ (! _ aucos0) v' _ _ 8<}' 
Bt acos08).. acos080 - acos08).. 

( a u a ) , ( 2u ) , 8<}' -+--- v + f+-tan0 u =--&t a cos 0 8 >-. a a80 

( 
8 u 8 ) h,.' h,. ( Bu' 8v' cos 0 ) , 8<} -+--- "-' +':I.' ---+--- +v-=O at a cos 0 8).. a cos 08).. a cos 080 a80 

-2 8<} 
· tan 0 + Ju= - -

a a80 

Writing a single Fourier component for each perturbation field 

we obtain 
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where 

. . J -is ,T,. -iau- 1V = --'i:" 
a cos fJ 

.. f at -iav+ 2u = --aofJ 

.. ,T,. ot ,T,. ( isu ov cos fJ ) O -ia'i:"+v-+'i:" --+--- = aofJ a cos (J a cos (Jc)(} 

u w _ is the relative angular velocity of the mean flow 
a cos fJ 

Cl - O' - SW 

f f 7 f oucosfJ 
1 - + ., = - a cos 080 

2u h - f +-tan fJ a 

For the basic state, continuity of the wind at the pole implies up = 0. Thus the angular 

velocity wp is finite and well- behaved at the pole. Suppose we focus on the North Pole and 

take a = J-0 to be the angular difference between the pole and latitude 0. [ Corresponding 

relationships apply to the South Pole.] We write u as a Taylor series in a: 

Thus 

Also, 

a3 
cosfJ = sina = a - 6 + O(a5

) 
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a2 
sin0 = cos a= 1- 2 + O(a4

) 

Expanding in a near the pole, 

u = wa cos O = wa sin a 

Therefore: 

Geostrophic balance on the sphere implies 

a c~s 0 u sin 0 + 2n sin 0u = u sin 0(w + 2n) 

u cos a(w + 2D) 

Therefore, 

Vorticity and divergence in spherical coordinates can be expressed as 

1 (&u 8ucos0) 
acos0 8).. -

a c~s 0 ( isv + u sin 0 - cos 0 i~) 
1 (au + 8vcos0) 

acos0 8).. 

a c~s 0 ( isu - v sin 0 + cos 0 i¼) 
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Taylor series expansions for u, v, cos 0 and sin 0 near the North Pole (0 = f, a = f - 0 = 0) 

give 

( = a s!n 0 ( isv + u cos a + sin a~:) 

r1 = l ( · · 8v) v • v asina isu- vcosa - s1na 80 

- (a - °s3 + .. . )(v1 + a2v2 + .. . )] 

Fors= 0: 
Finite vorticity at the pole implies u 0 = 0 

Finite divergence at the pole implies v0 = 0 

luP = oj 

lvP = oj 
where the subscript p implies that the condition is imposed at the pole. 

Perturbation equations: -iau - Ji v = 0 

- iav + f2u = _1 a<r1 = 1a<r1 a 88 a 8a 

0th order in a: 0 = 0 

or 
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The 0th order perturbation equations for s -:/ 0: 

-iau0 - fiv0 = :~(~0 + o:~1 + ... ) = -~"~1 , with I ~o = 0 I or I ~P = 0 I 
is required for continuity of~ across the pole 

Since 

For s 'I 0, continuous and fini te vorticity and divergence at the pole implies 

('V ·V)o = 0, (o = 0 

Therefore, 

isu0 - V0 = 0 isv0 + u0 = 0 for fitness 

isu1 - 2v1 = 0 isv1 + 2u1 = 0 for continuity 

Therefore: 

{ 
Uo = Q Fors 'I ±l: _ 0 Vo -

Fors= ±l : I V0 = isu0 I 

( is - 2 ) ( Ut ) ( Q ) 2 
2 is vi = 0 => 4 - s = 0 or u1 = v1 = 0 

Therefore: 
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Fors-/- ±2: 
{ 

U1 = 0 

V1 = 0 

(g0)P=O 
(go)P=O 

Fors -/- ±1 , u0 = v0 = 0 implies through the momentum equations: 

or 

Summary of polar boundary conditions for linearized shallow water equations 

variable s=0 s = ±1 Isl> 1 

-ia~p = ~p(-'v · v)p ~p = 0 ~p = 0 

u Up= 0 (~0)P=O Up= 0 

V Vp = 0 (~\ =0 Vp = 0 

Additional characteristics that have been determined: 

Fors= ±1: 

Fors-/- ±1 : 

For s -/- ±2 or 0: (au) _ 0 _ (av) 
88 P - - 88 P 
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Appendix B 

Motivation for Using a Staggered Grid in Horizontal Direction 

Al. Introduction 

Energy propagation by small-sc e dispersive gravity waves , excited by a local break-

down of geostrophy, is an importar.t mechanism in restoring quasi-geostrophic flow by 

the geostrophic adjustment process . Previous attempts (Winninghoff, 1968; Arakawa and 

Lamb, 1977) to numerically simulate geostrophic adjustment have shown the propagation 

of energy to be highly dependent upon the manner in which the dependent variables are 

distributed over the grid. In Section A2 the dispersion properties for the simplest flui d in 

which geostrophic adjustment can occur, namely the linearized shallow water equations , 

are analytically derived for several different arrangements of the discretized variables. For 

completeness, numerical results are presented (in Section A3) for a shallow water model 

using a staggered and a non-staggered grid. 

A2. Analytical analysis of energy propagation 

Consider the simplest fluid in which geostrophic adjustment can occur - namely a ro-

tating fluid which is incompressible: homogeneous in the vertical ( z) direction , non viscous , 

hydrostatic, and has a flat bottom and a free top surface. The basic equations which govern 

such a fluid are the so-called shallow water equations. 

'Ut - fv + ghx 0 

i-t+fu+ghy O 

ht + hux + hvy 0 
where the subscripts denote a derivative with respect to that variable. In these equations 

t is time, x and y the horizontal cartesian coordinates, g the g_avitational acceleration , J 

a constant coriolis parameter, u and v the velocity components in the x and y directions , 

respectively, and h the depth of the fluid. 
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Using the perturbation method the dependent variables are expanded into two parts: 

a basic state ( ) which is assumed to be independent of time and the x- direction, and a 

perturbation ( )' which is a local deviation of the field from the basic state. This expansion 

is shown below 

u(x,y,t) = u(y) + u'(x ,y,t) 

v(x , y,t) v(y) + v'(x , y,t) 

h(x, y, t) h(y) + h'(x, y, t) 

To simplify the analysis even further, consider the case with a resting basic state (i.e. 

u = v = 0 and h(y) = H) and perturbations that are independent of the y-direction, that 

is ( )~ = 0. With these assumptions the equations can be written as: 

u~ - J v' +gh~ = 0 

v~ + Ju' = 0 

h' + Hu' = 0 t X 

Assuming the perturbation solutions to be proportional to ei(kx-ut) as shown below: 

u' = u} 
v' = h~ X ei(kx-ut) 

h'= 

Equations (1) - (3) can be written as: 

-iau J v + ikgh = o 

-iav + Ju =0 

-iah + Hiku = 0 

(1) 

(2) 

(3) 

(4) 

In order for these equations to have a nontrival solution for u, v, and h, the determinant of 

( 4) must equal 0. This condition leads to the following cubic frequency equation: 

(-ia)3 + J2(-ia) - ikg(-ia)ikH = 0 

69 

(5) 



Equation 5 contains a geostrophlc mode 

(6) 

where r = JgH/ J is the Rossby radius of deformation. From (6) one can note that the 

frequency of the gravity-inertial waves increases monotonically with wavenumber k, unless 

r is zero. In addition, the group velocity (da/dk), whlch is the velocity at whlch energy 

propagates , is never zero except for case r = 0. 

The effect of the space discretization error on the frequency is now considered for the 

distributions of the dependent variables shown in Fig. Al. For scheme A, equations 1-3 

are finite differenced in the x-direction as shown below: 

=0 

=0 

(8) 

(9) 

where Xj = d x j. For the discrete grids shown in Fig. Al the solutions are now assumed 

proportional to ei(kxi-ut). With this assumption equations 7-9 become: 

=0 

=0 

To understand how (10) was arrived at, shown below is the derivation of a perturbation 

term at the (j + ½) point. 
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Setting the determinant of (10) equal to zero results in the following frequency relationship 

for gravity-inertial waves for scheme A: 

which when simplified yields the following equation 

Scheme A : ( (7 / J)2 = cos2
( kd/2) + 4(r / d)2

( kd/2) (11) 

In a similar manner, frequency relationships can be obtained for schemes B through D as 

given below: 

Scheme B: 

Scheme C: 

Scheme D: 

(<7//)2 = 1 +4(r/d)2sin2(kd/2) 

(<7//)2 = l+(r/d)2sin2(kd) 

( <7 / !)2 = cos2 ( kd/2) + (r / d)2 sin2 ( kd/2) 

(12) 

(13) 

(14) 

These frequencies (11) - (14) are compared to the differential frequency in Figs. A2 and 

A3 for the values of (r / d) equal to 2.0 and 0.2 , respectively. Since the shortest wavelength 

resolvable is 2d (i.e. k = 11" / d), it is sufficient to consider frequencies over the range 0 :S: 

kd/rr :S: 1. 

The results shown in Figs. A2 and A3 indicate that at small wavenumbers the difference 

schemes approximate well the differential frequency. However, for shorter waves the error in 

the group velocities becomes increasingly large and in some cases even spuriously negative. 

Scheme B results in the best simulation of the geostrophic adjustment process as described 

by continuous theory, while for (r / d) sufficiently larger than 0.5 Scheme A is nearly as 

good. At wavenumbers where the group velocity is zero (i.e. d<7/dk = 0) , energy from 

gravity-inertia waves excited somewhere in the domain would stay there. For example in 

Fig. A2 zero group velocity occurs at kd/rr = 0.5 for Scheme C, at kd/rr = 0.48 for Scheme 

D, and at kd/rr = 1.0 for Schemes A and B. 
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Cahn (1945) gave the solution of an initial value problem for which (1)-(3) are the 

governing equations. At the initial time he let h = constant, u = 0, v = V0 in the domain 

from x = -b to x = b, and v = 0 outside this domain. Some results of these calculations 

with b/d = 1 and (r /d) = 2 are shown in Figs. A.4 and A5. Figure A4 shows the time 

variation of h at x = b for the differential case and for each of the difference schemes. In a 

similar fashion Fig. A5 gives the space variation of h at t = 80 hours. As expected, Schemes 

A and B simulate the geostrophic adjustment better than the other schemes. 

It is of interest to note from Figs. A4 and A5 that even in the case of the best difference 

scheme, there remains a significant error in the solution when compared to the differential 

case. A further improvement in the accuracy of the solution without increasing the number 

of degrees of freedom, requires that a higher order difference scheme ( e.g. 4th order) be 

used or a spectral method (Fulton, 1984) be employed. A remarkable difference between 

the spectral and finite difference discretizations is the behavior of the error as the number of 

degrees of freedom is increased (Schubert et al., 1984). For problems with smooth (infinitely 

differentiable) solutions, the error in the finite difference discretization decreases slowly 

(algebraically) while that of spectral discretization decreases rapidly (exponentially). 

A3. Numerical Results 

In this section the energy propagation of gravity-inertial waves in numerically investi-

gated on a staggered grid (SG) and a non-staggered grid (NS G) using a linearized shallow 

water model on a sphere. These grids correspond to finite difference schemes B and C, 

respectively, in Fig. Al. A description of the model used here can be found in Stevens et 

al., (1984). In short, the solutions are assumed to be of the form e-i(s>.-ut), where s is the 

(integral) zonal wavenumber and A is longitude. In the lati tudinal (0) direction, derivatives 

are approximated with second-order finite differences. The model computes a set of eigen-

values <7n and corresponding eigenvectors ( Un, Vn. and hn) for a specified basic state u( 0), 

equivalent depth (H) and zonal wavenumber (s). 
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In order to have a theoretical comparison for the numerical results, the model described 

above was run with a resting basic state and a small equivalent depth. Under these condi-

tions , according to .B-plane theory (Lindzen, 1967), the solution begins to decay within 0d 

degrees of the equator. The parameter 0d is defined as: 

(15) 

where € = ( 2f2a )2 / gH , f2 is the earth's rotation rate, a is the radius of the earth and n is the 

number of nodal crossings in the v-eigenvector. For this investigation H was prescribed to 

be 0.088 meters ( or £ = 106), so that for modes n 15 the solutions begin to decay within 

ten degrees of the equator. Under this condition of strongly equatorially trapped waves , the 

spherical equations asymptotically approximate those on a ,B- plane for which the following 

dispersion relationship for gravity-inertia waves exists: 

cr2 = gHk2 + (2n + 1),B'1iif (16) 

where ,B = 2f2/ a. 

In order to adequately resolve the equatorially trapped waves in the model, an arbitrary 

stretching of the 0-coordinate was incorporated. This stretching was set up so that half the 

grid points were located between the latitudes +0d and -Od. 

In Fig. A6 the non-dimensional frequency of the gravity-inertia waves is plotted as 

a function of the number of nodal crossing of the v-eigenvector for a theoretical ,6-plane 

(solid line), the model described above with a SG (dotted line) and a NSG (dashed line). 

The numerical results shown here were computed using 40 grid points in the 0-direction. 

The range of numerical results as a function of n reflects the limits of resolvable modes. 

Although only lower order modes were resolvable in this case, one can note that the behavior 

of the numerical solutions for the SG and NSG is similar to the analytical results presented 

in Fig. A2. The frequencies computed using the SG provide a much better estimate to the 

theoretical values than the computations made with the NSG which produces a zero group 
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velocity near n = 10. In addition, the eigenvectors computed with the NSG contained a 

large 2D.x oscillation in which their amplitudes reverse sign at every other grid point . 

The error (e) in a finite difference scheme of order p and grid spacing D.x has the 

following asymptotic form: 

(17) 

where D.x = L / N, L being the length of the domain and N the number of grid points. 

By defining e as the difference between the differential and computed frequencies , Fig. A 7 

shows for the SG and NSG results the behavior of e as a function of N for the three gravest 

easterly gravity modes. From this figure and (17) one can note that as D.x -+ 0, the error 

likewise approaches zero. By substituting for D.x in (17) one obtains: 

e = cN-P 

where c = cLP. Taking the log of ( 18) yields: 

loge= loge - plog N. 

(18) 

(19) 

Equation (19) represents an equatjon for a line with slope (-p) and offset (log c). Table 

Al lists the values of p and :E corresponding to the modes in Fig. A 7, where :E is defined 

as follows: 

~=log CNSG - logcsa (20) 

As one would expect for a second order finite difference scheme, Table Al shows that p 2. 

Since the slopes of lines for the SG and NSG cases are nearly identical, their distinction 

must lie in the difference of the o::Isets (:E). Usjng 0.6 as the average value of :E in Table 

Al , (17) can be approximated for the SG and NSG cases, respectively, as: 

esa = c(D.xsa)2 
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(21) 

or 

(22) 

Thus if the grid intervals are equal in the two cases (i.e. 6.xsa = 6.xNsG ), eNsG will 

be approximately four times as large as esa. Viewed in a different sense, to achieve the 

same accuracy in both grid schemes (i.e. esa = eNsa), the grid interval of the NSG must 

be about half that of the SG (i.e. 6.xNsG = 0.56.xsa). In summary, use of a properly 

staggered grid is computationally efficient since it requires half the number of grid points as 

the non-staggered grid to achieve the same level of accuracy. 

A4. Concluding Remarks 

In this appendix the one-dimensional shallow water equations were investigated to ex-

amine the effects of different grid structures on the energy dispersion by gravity- inertial 

waves. Both numerical and analytical results support the premise that proper simulation 

of energy propagation will occur only with an appropriate distribution of dependent vari-

ables. For the one-dimensional case studied here the distribution which resulted in the best 

simulation located the u and v variables midway between the h grid points (i.e. Scheme B 

in Fig. A2). In addition it was demonstrated that a properly staggered grid can greatly 

improve computational efficiency. To obtain the best grid structure for problems which in-

volve finite differences in two dimensions or where non-linearities are dominant, one should 

refer to Arakawa and Lamb's (1977) treatment of these cases. Finally, the results presented 

in this appendix are used as a guide for the design of the horizontal finite difference scheme 

described in section 9 of this manuscript . 
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TABLE Al 

Values of p and E ( defined in equation 20) 

for the graviiy modes shown in Figure A7 

Order (n) 
of gravity Grid p E 10:i::: 

mode structure 

SG 2.07 
0 0.60 3.98 

NSG 2.09 

SG 1.97 
1 0.60 3.98 

NSG 2.10 

SG 2.00 
2 0.61 4.12 

NSG 2.04 
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Schema A 

v,h u v,h u v,h 

J- 1 j J+l 
f-- d 

Schema C 

J-1 j j+1 
+-- d ---+ 

Scheme B 

h u,v h 

J-1 
+-- d 

u,h V 

j 

Schema D 

u,h 

J-1 j 
~d 

u,v 

V 

h 

J+l 

u,h 

j+1 

Fig. Al. Distribution of dependent variables for difference schemes A - D on a one-dimensional grid 
with mesh spacing d. 
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'ig. A2. Non-dimensional frequency (<1/ f) plotted as a function of non-dimensional wavenumber (kd/1r) 
for the shallow water equations with r / d = 2.0. Solid line corresponds to differential case, 
whereas dotted lines correspond to difference schemes A - D which are labeled accordingly. 
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Fig. A3. Same as figure 2, except with r /d = 0.2. 
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Fig. A4. Time variation of the (non-dimensional) height perturbation at x = b for the initial value 
problem posed by Cahn (1945) with r / d = 2.0; comparison of differential results to those 
from difference schemes A - D (from Arakawa. and Lamb, 1977). 
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aid 

Fig. AS. The spatial variation of the (non-dimensional) height perturbation at t = 80 hours for the same 
initial value problem as in figure 4; comparison of differential results to those from difference 
schemes A - D. The thin vertical line at x / d 59 indicates the theorectical limit of influence 
(from Arakawa and Lamb, 1977). 
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'ig. A6. Non-dimensional frequency of gravity-inertia waves plotted as function of meridional wavenum-
ber (indicated by number of nodal crossings of v-eigenvector) £ r a theorectical /3-plane ( solid 
line), a shallow water model with a staggered grid ( dashed line) and with a non-staggered grid 
( dotted line). Results shown here are for s = 1 and h = 0.088 meters. 
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