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ABSTRACT

CHANNEL CODING FOR NETWORK COMMUNICATION: AN INFORMATION

THEORETIC PERSPECTIVE

Channel coding helps a communication system to combat noise and interference by adding
“redundancy” to the source message. Theoretical fundamentals of channel coding in point-to-
point systems have been intensively studied in the research area of information theory, which was
proposed by Claude Shannon in his celebrated work in 1948. A set of landmark results have
been developed to characterize the performance limitations in terms of the rate and the reliability
tradeoff bounds. However, unlike its success in point-to-point systems, information theory has not
yielded as rich results in network communication, which has been a key research focus over the past
two decades. Due to the limitations posed by some of the key assumptions in classical informa-
tion theory, network information theory is far from being mature and complete. For example, the
classical information theoretic model assumes that communication parameters such as the infor-
mation rate should be jointly determined by all transmitters and receivers. Communication should
be carried out continuously over a long time such that the overhead of communication coordina-
tion becomes negligible. The communication channel should be stationary in order for the coding
scheme to transform the channel noise randomness into deterministic statistics. These assumptions
are valid in a point-to-point system, but they do not permit an extensive application of channel
coding in network systems because they have essentially ignored the dynamic nature of network
communication. Network systems deal with bursty message transmissions between highly dynamic

users. For various reasons, joint determination of key communication parameters before message
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transmission is often infeasible or expensive. Communication channels can often be non-stationary
due to the dynamic communication interference generated by the network users. The objective of
this work is to extend information theory toward network communication scenarios. We develop
new channel coding results, in terms of the communication rate and error performance tradeoff, for
several non-classical communication models, in which key assumptions made in classical channel

coding are dropped or revised.
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Chapter 1

INTRODUCTION

1.1 Channel Coding Basics

In a point-to-point communication system, messages are transmitted from the transmitter to
the receiver through a communication channel, which introduces ambient noise and various forms
of interference. The mathematical model of a point-to-point communication system was abstracted
by Shannon in his celebrated work [1], summarized below.

Assume that the message to be transmitted, denoted by w, is randomly selected from a finite
set {1,---, W}, with equiprobability. At the transmitter, message w is mapped into a codeword
consisting of IV channel input symbols, with each symbol, denoted by X, chosen from a finite input
alphabet X'. The mapping {1, -, W} — X is termed the encoding function of the system, usu-
ally characterized by a code book C™V). After encoding, a discrete-time memoryless channel maps
each input symbol to an output symbol Y € ), where ) is the finite output alphabet, following a
conditional distribution Py|x. At the receiver, based on the channel output sequence, the decoder
determines an estimate of the original message w € {1,--- ,W}. The mapping Y — {1,--- , W}
is termed the decoding function of the system. With an abuse of the notation, we use CV) to
denote the channel coding scheme, which includes both the encoding and the decoding functions.
Communication error probability is defined as the maximum conditional error probability over all
possible messages. Namely,

PWN) = max Pr{w # w|w}. (1.1)



The information rate is defined as the number of encoded information nats normalized by the
channel codeword length, given by R = (log W)/N.!

Using this mathematical model, Shannon derived the fundamental limit of the communication
channel, in terms of the maximum information rate it can support for reliable communication,
known as the channel capacity or the Shannon capacity [1] [2]. For a discrete-time memoryless

channel Py |x, the Shannon capacity is given by

C = maxI(X;Y)
Px

Px(X)Pyx(Y]X)

= max Z Px(X) Py x (Y]X) log Px(X) >y Px(X)Pyx (Y]X)’

P
* Xy

(1.2)

where I(-;-) is the mutual information function and Px is the input distribution. Let W)
and Pe(N) be the number of messages and the error probability associated with coding scheme
C™) of codeword length N. For any information rate R < C, there exists a sequence of channel
coding schemes CN) with limpy_, a0 + log(W®™)) = R, such that, as the codeword length N is
taken to infinity, we have limy_ s Pe(N) = 0 [1]. Or in other words, the receiver can reliably
recover the transmitted message. For any rate R > C, on the other hand, for all coding scheme
sequences with limpy s % log(W ™)) = R, the error probability is asymptotically bounded away
from zero [1] [3] [4].

In [5], Feinstein derived a stronger version of the channel coding theorem, showing that, for

)

information rate R < C, error probability Pe(N can be made to decrease to zero exponentially fast

in N. The corresponding exponent is termed the error exponent, defined in [6] by,

log PN
E(R) = lim —OgT, (1.3)

which is a function of R. Elias derived a lower bound on error exponent for binary symmetric

channels (BSCs) in [7]. The bound was generalized to discrete-time memoryless channels by

1We use natural logarithm throughout this thesis.



Fano, known as the “random coding exponent” [8]. Gallager provided a simpler derivation of
the random coding exponent in [4] and also tightened the bound in the low rate case, known
as the “expurgated exponent”. An upper bound on the error exponent was given by Shannon,
Gallager, and Berlekamp [9] [10]. The upper bound for BSCs was improved by Litsyn [11]. Without
complexity constraints, the maximum achievable error exponent for a discrete-time memoryless
channel is called “Gallager’s exponent”, which equals the random coding exponent for high rates
and the expurgated exponent for low rates [4].

Computational complexity is an important factor that determines the implementation feasi-
bility of a channel coding scheme. To achieve Gallager’s exponent, decoding complexity of the
coding scheme needs to increase exponentially in the codeword length [6]. Such an exponential
complexity is often unaffordable especially when the codeword length is large. Consequently, how
to construct capacity-approaching channel codes with both good error performance and low cod-
ing complexity is of significant research and practical interests. The best known constructive error
exponents are Forney’s exponent and Blokh-Zyablov exponent (or Blokh-Zyablov bound), which
can be achieved by one-level concatenated codes [12] and multi-level concatenated codes [13] with
polynomial coding complexity, respectively. In [14], Guruswami and Indyk showed for BSCs that
Forney’s exponent can be arbitrarily approached with both the encoding complexity and the de-

coding complexity growing linearly in the codeword length.

1.2 Network Communications

Classical information theory was originally developed with a significant emphasis on point-
to-point communication [1]. However, over the past two decades, research foci have been slowly
shifted to network communication systems where multiple transmitters and receivers interact with
each other to achieve joint or individual communication objectives. The complication of multi-user
networking has given rise to a wide range of new research problems.

The study of multi-user information theory dates back to Shannon’s other significant work [15],

where the two-way channel model was investigated. Since then, various multi-user channel models



have been proposed, e.g., multi-access channels [16] [17], interference channels [18] [19], broadcast
channels [20] and relay channels [21] [22], etc.? Research emphasis has been put on developing
coding theorems to characterize the rate and error performances of these systems. However, unlike
the single-user case, rate and error tradeoff problems in multi-user information theory turned
out to be highly challenging in general. A significant number of capacity and rate-error tradeoff
problems remain open after decades of research efforts. Aside from the technical challenges, some
of the key assumptions made in the classical information theoretic framework posed significant
limitations that do not permit a full extension of information theoretic results, more specifically
channel coding results, to network communication.

Classical information theoretic model assumes stationary communication channel. Informa-
tion rate and codeword length should be predetermined at the transmitter. In network commu-
nication, however, non-stationary and unknown channel variation is commonly seen due to the
dynamic nature of networking activities. If the transmitter has limited channel information, a con-
servative information rate must be chosen to guarantee the reliable message delivery. We will show
in Chapter 2 that this inefficiency can be avoided using the fountain communication model [24],
which essentially shifted the responsibility of information rate determination from the transmitter
to the receiver. Rate and error tradeoff performance analysis, although originally developed for a
classical communication model, can be effectively extended to fountain communication systems.

Classical multi-user information theory assumes that each transmitter is backlogged with an
infinite reservoir of traffic. Before message transmission, transmitters and receiver should jointly
determine their codebooks and information rates. The only responsibility of the receiver is to
decode its message with the best effort. However, when messages are short and bursty, and
require timely dissemination, joint codebook and rate determination among multiple users may

be expensive or infeasible. Consequently, reliable message recovery at the receiver often implies a

2A detailed survey on multi-user information theory can be found in [23].



communication overhead that can be overly expensive or infeasible. In Chapter 3, we will show that
channel coding theoretic results can be extended to packet-based random access communication
systems where users do not jointly determine their channel codes and information rates.

In this work, we investigate several non-classical network communication scenarios and analyze
the corresponding rate and error performance tradeoff under various complexity constraints. The
research work is part of the general effort of bridging Information Theory with Network Theory

by extending the classical frameworks.

1.3 Outlines

This dissertation is organized as follows.

In Chapter 2, we extend linear complexity concatenated coding schemes to fountain com-
munication for a discrete-time memoryless channel. We derive the achievable error exponent of
the proposed fountain codes. It is also shown that the proposed coding schemes possess some
interesting and important properties in several multi-user fountain communication scenarios.

In Chapter 3, we develop channel coding theorems for distributed random multiple access
communication over a discrete-time memoryless channel. Based on the channel coding approach
proposed in [25], we derive the achievable rate and error tradeoff bound under the assumption
of a finite codeword length. The result is further extended to random access communication over

compound channels, where channel states are known neither at the transmitters nor at the receiver.
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Chapter 2
ERROR PERFORMANCE OF LINEAR-COMPLEXITY FOUNTAIN CODES

Fountain communication [24] [26] is a new communication model proposed for reliable data
transmission over erasure channels. In a point-to-point fountain communication system, the trans-
mitter maps a message into an infinite sequence of channel symbols, which experience arbitrary
erasures during transmission. The receiver decodes the message after the number of received
symbols exceeds certain threshold. With the help of randomized coding, fountain communication
achieves the same rate and error performance over different channel erasure realizations correspond-
ing to an identical number of received symbols. Under the assumption that the erasure statistics
are unknown at the transmitter, communication duration in a fountain system is determined by
the receiver, rather than by the transmitter.

The first realization of fountain codes was the Luby transform (LT) codes introduced by
Luby [27] for erasure channels. LT codes can recover k information nats from k+ O (\/E In?(k/ 5))
encoded symbols with probability 1 — ¢ and a complexity of O(kln(k/J)), for any § > 0 [27].
Shokrollahi proposed the Raptor codes in [28] by combining appropriate LT codes with a pre-code.
Raptor codes can recover k information nats from k(1 + €) encoded symbols at high probability
with complexity O (klog(1/€)). LT codes and Raptor codes can achieve optimum rate with close
to linear and linear complexity, respectively. However, under a fixed rate, error probabilities
of the two coding schemes do not decrease exponentially in the number of received symbols.
Generalization of Raptor codes from erasure channels to binary symmetric channels (BSCs) was

investigated by Etesami and Shokrollahi in [29]. In [30], Shamai, Telatar and Verdu systematically



extended fountain communication to arbitrary channels and showed that fountain capacity [30]
and Shannon capacity take the same value for stationary memoryless channels. Achievability of
fountain capacity was demonstrated in [30] using a random coding scheme whose error probability
decreases exponentially in the number of received symbols. Unfortunately, the random coding
scheme considered in [30] is impractical due to its exponential complexity.

In this chapter, we show that classical concatenated coding schemes can be extended to foun-
tain communication over discrete-time memoryless channels to achieve a positive fountain error
exponent (defined in Section 2.5) at any rate below the fountain capacity with a linear coding
complexity. Achievable error exponents for one-level and multi-level concatenated fountain codes
are derived. We show that these error exponents are close in value to their upper bounds, which are
Forney’s exponent [12] for one-level concatenation and Blokh-Zyablov exponent [13] for multi-level
concatenation, respectively. We also show that concatenated fountain codes possess several inter-
esting properties useful for network applications. More specifically, when one or more transmitters
send common information to multiple receivers over discrete-time memoryless channels, concate-
nated fountain codes can often achieve near optimal rate and error performance simultaneously for
all receivers even when the receivers have different prior knowledge about the transmitted message.

This chapter is organized as follows. In Section 2.1, we introduce the concatenated block
codes proposed by Forney [12] and generalized by Blokh and Zyablov [13], which can achieve
Forney’s exponent for one-level concatenation and Blokh-Zyablov exponent for multi-level con-
catenation respectively, with polynomial coding complexity. We prove, in Section 2.2, that the
encoding/decoding complexity of concatenated codes can be reduced to linear in the codeword
length, while the Forney’s and Blokh-Zyablov exponents are still arbitrarily approachable. In Sec-
tion 2.3, we introduce the fountain communication model. In Section 2.4, we review the random
fountain codes [30], which are basic components of the concatenated fountain coding schemes in-
troduced in Section 2.5. Rate and error tradeoff performance of the linear complexity concatenated

fountain codes is analyzed in Section 2.5. Special properties of the proposed concatenated foun-



tain codes in network communication scenarios are discussed in Section 2.6. Proofs of the main

theorems are given in Section 2.7.

2.1 Concatenated Block Codes

One-level concatenated codes were proposed by Forney in his doctoral thesis in 1966 [12]. The
key idea of code concatenation is to break a long and powerful code into two relatively short codes,
each of which can be easily encoded and decoded. For general discrete-time memoryless channels,
one-level concatenated codes can achieve a positive error exponent, i.e., Forney’s exponent, at any
rate less than the channel capacity with coding complexity increasing polynomially in codeword
length. Blokh and Zyablov generalized the concatenated codes from one-level to multi-level [13].
The corresponding achievable error exponent is improved as the concatenation level increases, and
becomes the Blokh-Zyablov exponent as the concatenation level approaches infinity. Note that, in

both Forney’s and Blokh-Zyablov’s schemes, codes are serially concatenated®.

2.1.1 One-level Concatenated Block Codes

The idea of code concatenation is illustrated in Figure 1 [12]. Assume that the channel is

Message |outer encoder . |Inner encoder

(N,7,) | (V.R) v

Channel

Estimate
<«——Outer decoder [« Inner decoder 4—,

Figure 2.1: Code concatenation.

discrete-time and memoryless. The message to be transmitted is first encoded by a block channel

code, termed the outer code with codeword length N, and rate r,, and then encoded by another set

IBarg and Zémor proposed in [31] a parallel concatenated coding scheme, whose analysis is beyond the scope
of this work. In the rest of the discussion, whenever concatenated coding is mentioned, we refer to Forney’s and
Blokh-Zyablov’s serial concatenated coding schemes.



of block channel codes, termed the inner codes, each with codeword length N; and rate r;. This
two-layer encoding therefore creates a supercode for the channel with eV codewords of length
N = N,N; and rate R = r,R;.2 At the receiver, two decoders are concatenated to decode the
inner and outer codes respectively, which eventually yields the estimate of the original message.

The encoding detail of one-level concatenated codes is shown in Figure 2.2. The encoder first

51 >
Xy, s Koo X
w Y
—> 2 Tl Xow, e X Xy
: —»
§N0 I AN, T AN, 20 AN

Outer codeword Inner codewords

Figure 2.2: One-level concatenated codes.

maps the message w into an outer codeword with length N, at rate r,, denoted by & = [£1, -+ , &N, ]-
Each outer codeword symbol & (k € {1,---, N,}), taking e™Vif¥i possible values, is further encoded
by an inner code into N; channel input symbols at rate R;, denoted by @y = [zk1,- - ,zkn,]. In

Forney’s original scheme, Reed-Solomon code [32], a nonbinary BCH code with polynomial-time
coding complexity, was chosen as the outer code. The inner codes are assumed to be the best
block channel codes in the sense that they can achieve the optimal complexity-unconstrained error

performance [12].

2.1.2 Generalized Minimum Distance Decoding

The decoding scheme used in Forney’s one-level concatenation codes is the generalized min-
imum distance (GMD) decoding , which combines both probabilistic and algebraic decoding ap-

proaches [12]. In GMD decoding, the inner codes are first decoded using maximum likelihood

2To simplify the notation, we assume that eN® eNofo and eNifli are all integers.
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decoding. The inner decoder forwards not only the maximum likelihood estimates of the outer
codewords symbols, but also the corresponding reliability information (explained in detail below),
to the outer decoder where multiple trials of algebraic erasures-and-errors decoding are carried
out to decode the outer code. The outer decoding is a conditional searching procedure, which
terminates when a certain distance criterion is met.

Assume message w is encoded by the one-level concatenated codes and transmitted over the
channel. Given the channel output sequence and the channel state information, the inner decoder
outputs the maximum likelihood estimate of the outer codeword, denoted by [51, e ,é ~,], along
with a weight vector [y, ,an,] containing the reliability information of all outer codeword

symbols, with ag € [0,1] (k € {1,---,No}). Let &, = [w1, - ,&wn,] be the outer codeword

corresponding to message w. Let a represent the pair of the estimate vector [él, e ,éND] and the
weight vector [ay, - ,an,]. Given a and £,,, we define the following dot product,
No
a'Sw = Zaks(gkugwk)u (21)
k=1

where function s(-,-) is given by

s(€,€) = { T : (2.2)
§#¢
The following theorem gives the distance criterion of the GMD decoding [12].

Theorem 2.1.1. [12, Theorem 3.1] There is at most one codeword &,, from a code of length N,
and rate 1, for which

a-§&, > Noro, (2.3)

where - €, is defined in (2.1) and oy, € [0,1].
Note that when ay, =1 (k € {1,---, N,}), the inner decoder provides no effective reliability
information, but only the maximum likelihood estimates. Given the estimated outer codeword

symbols, the source message can be recovered by the outer decoder using hard decision decoding,

known as the errors-only decoding [12], with the criterion of maximizing the dot product a - &,,.

11



If a, € {0,1} (k € {1,---,N,}), the output of the inner decoder is equivalent to either an
estimate (when aj = 1) or an erasure (when ay = 0). A conditional decoding scheme, called
erasures-and-errors decoding [12], can be applied to search for the codeword that satisfies (2.3).
According to Theorem 2.1.1, if such a codeword does exist, it must be unique.

In (2.3), the reliability information is further preserved by letting ag, € [0, 1] (k € {1,---, N,}).
The key idea of GMD decoding is to make use of the reliability information to create erasure
patterns, with which multiple trials of erasures-and-errors decoding can be applied. The erasure
pattern created by Forney is described as follows.

We rearrange the elements of [y, - ,an,] in the increasing order of their values. Let
i1,72+ -+ ,in, be the indices such that a;, < a;, < -+ < gy, . Define a set of N,-dimensional

vectors q; = [qi(a1), -+ ,q(ay,)], for 1 €{0,1,...,N,}, with

0, 1
o= {8

In each gq;, the elements corresponding to the [ least reliable symbols (with the smallest weight

(2.4)

values) are set at 0, while the others at 1. For example, g, is an all-ones vector, equivalent to
the weight vector for the errors-only decoder; q; erases the symbol with the smallest weight by
setting the corresponding element at 0, while the others elements equals 1; g, erases the two least
reliable symbols in the same fashion, etc. The vectors q; therefore can be regarded as the weight
vectors of the erasures-and-errors decoder with various numbers of erasures. Similarly, we define
the following dot product,
N, No
@€ = Y a(on)s(ShCur) = > ailan)s. (2.5)
k=1 k=1

Theorem 2.1.2. [12, Theorem 3.2] If o - €, > Noro, then, for somel, q; - &, > Noro.

Theorem 2.1.1 and Theorem 2.1.2 imply that by going through up to N,+1 rounds of erasures-
and-errors decoding, each corresponding to a q; vector, an unique codeword &, satisfying (2.3)

can be found, if there exists one.

12



2.1.3 Theoretical Performance Analysis

It was proved in [12] that, for any information rate less than Shannon capacity, denoted
by C, Forney’s one-level concatenated codes can achieve a positive error exponent with encod-
ing/decoding complexity increasing polynomially in the overall codeword length. The maximum

achievable error exponent, known as Forney’s exponent, is given by,

E.R) = max (1—r,)Eq (5), (2.6)

roe[g,l] To

where Eg (%) is the Gallager’s exponent [4], defined as

R max,>1 {—p% + E.(p, PX)} 0 R,
Er <_7PX) =< —E 4+ Eo(1, Px) R, < £ < Rewt
maxo< <1 {—p% + Eo(p, PX)} R,

(1+p)

E.(p,Px) = —plog Z PX Px(X')
X, X!

1/p
X <Z \/PY|X(Y|X)PYX(Y|XI)> : (2.7)

In (2.7), Px is the input distribution of the inner codes; Py|x is the channel conditional probability
function; the definitions of rate thresholds Rei; and R, can be found in [4]. The error exponent
n (2.6) will be reduced by half if the hard decision (errors-only) decoding is used instead of the
GMD decoding [12].

To investigate the coding complexity of the one-level concatenated codes, we assume that
the outer codeword length N, increases exponentially fast as the inner codeword length N;, i.e.,
N, = O(e™i). Since the Reed-Solomon code, used by Forney as the outer code, is a linear block
code, it is straightforward to verify the polynomial overall encoding complexity. As for the decoding
complexity, the inner maximum likelihood decoding complexity grows exponentially in N;, and

therefore polynomially (more specifically, quadratically) in N,. Furthermore, as shown in Section
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2.1.2, the outer erasures-and-errors decoding needs to be carried out for a number of trials upper-
bounded by N,. Each trial, for Reed-Solomon outer code, requires decoding complexity of O(N2)
[12]3. The overall decoding complexity is therefore O(N2), which is polynomial in the overall

codeword length N = N,N;.

2.1.4 Multi-level Extension

For a positive integer m, an m-level concatenated code consists of m outer codes of length
N,, and N, inner codes each with length N; [13] [35]. As shown in Figure 2.3, the message is first
encoded by m outer codes, yielding the outer codewords [{{, e ,f{vo} for j € {1,---,m}. For

")

el e

Xy, " Ko X

A 4

Xon, "0 Xaps KXoy

A
<Y
v

—>
1 2 m
§Nn ch” §Nu P Xy N, Xy s Xy
Outer codewords Inner codewords
Figure 2.3: m-level concatenated codes.
ke {1,---,N,}, the corresponding symbols of all outer codewords [5;, e ,5,’6”} are then regarded

as a macro message, which is mapped into an inner codeword of N; channel input symbols, denoted
by [%k1, - ,2kn;]. The overall codeword length of this m-level concatenated code is therefore
N = N,N;. Let ro; (j € {1,---,m}) be the rates of the outer codes and assume that all inner
codes have the same rate R;. The overall code rate is then given by R; Z;n:l Toj-

The decoding procedure of the m-level concatenated codes consists of m stages [35]. At each
stage, GMD decoding is applied and one of the outer codes is decoded. For example, at the

first stage, maximum likelihood decoding is used to decode the inner codes and to determine the

3Further complexity reduction on decoding the Reed-Solomon code is possible [33] [34].
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estimates of all outer codeword symbols with the corresponding weight values. The information
encoded by the first outer code is then decoded using multi-trial of algebraic erasures-and-errors
decoding. With the assumption that the first outer code is decoded correctly, codewords cor-
responding to the “erroneous” messages are ruled out. At the second stage, with the “shrunk”
codebooks, the information encoded by the second outer code is decoded in the same fashion, and
more incorrect codewords are struck out accordingly. Such procedure continues till all outer codes
are decoded.

If we assume that all outer codes have the same rate r,, for an m-level concatenated code, the

maximum achievable error exponent is given in [13] [35] by

B T () -

where Ep(-,-) is given in (2.7). The error exponent in (2.8) becomes Forney’s exponent when

m = 1. As the concatenation level goes to infinity, this asymptotic error exponent is termed the

Blokh-Zyablov exponent [13] [35], defined by,

R
o dx

; 7EL($7 PY) (2.9)

E™)(R)=  max (£—R>

PX)TOG[%)]"] To

Following an analysis similar to Section 2.1.3, the polynomial coding complexity of multi-level

concatenated codes can be easily verified.

2.2 Error Performance of Linear-Complexity Block Codes

In this section, we illustrate the achievability of Forney’s and Blokh-Zyablov exponents for
general discrete-time memoryless channels with linear encoding/decoding complexity. The key
result is an extension to Justesen’s GMD decoding algorithm [36], which enables a low complexity
integration of Guruswami-Indyk’s outer code [14] into Forney’s and Blokh-Zyablov’s concatenated

coding schemes [12] [13] reviewed in Section 2.1.
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2.2.1 Linear-time Encodable/Decodable Block Codes

Guruswami and Indyk constructed in [14] a family of linear error-correction codes with coding
complexity growing linearly in codeword length. These codes are near maximum distance separable
(MDS) in the sense that, for any code rate 0 < r < 1 and an arbitrarily small constant € > 0, a
code can be constructed to asymptotically correct up to a fraction (1 —r —¢)/2 of symbol errors.

By concatenating these near-MDS codes (as outer codes) with good binary inner codes, to-
gether with Justesen’s GMD decoding (proposed in [36]), Forney’s and Blokh-Zyablov exponents
can be arbitrarily approached with linear encoding/decoding complexity for BSCs. Justesen’s
GMD decoding used the Hamming distance between the channel output sequence and the esti-
mate given by the inner decoder as the reliability information. With the key assumption that the
inner codeword length N; is a constant, the outer decoder therefore only carries out a constant
number (up to N;) of erasures-and-errors decoding trials. According to the complexity analysis in
Section 2.1.3, this is a required property for GMD decoding to achieve the overall linear decoding
complexity. For BSCs, since Hamming error-correction is equivalent to (or can be transformed to
an equivalent form of) maximum likelihood decoding, Forney’s error exponent can be arbitrarily
approached by using Guruswami-Indyk’s coding scheme [14]. Note that the above results only hold
for BSCs. Further revision of the GMD decoding is required in order to generalize the results to

discrete-time memoryless channel, which is the main task of the next section.

2.2.2 Revised GMD Decoding

Consider Forney’s one-level concatenated coding scheme over a general discrete-time memo-
ryless channel. We use Guruswami-Indyk’s linear encodable/decodable code introduced in Section
2.2.1, with length N, and rate r,, as the outer code. Hence, for an arbitrarily small constant
g1 > 0, the outer code can correct ¢ errors and s erasures so long as 2t + s < N,(1 —r, — 7). To
simplify the notation, we assume that N,(1—r,—e1) is an integer. The outer code is concatenated
to suitable inner codes with fixed length N; and rate R;. The overall codeword length and rate of

the concatenated code are therefore N = N,N; and R = r,R;, respectively.
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Similar to the original GMD decoding scheme, the inner decoder outputs not only the estimate
of the outer codeword [, ,&n,], but also the weight vector [ay,--- ,ay,]. With the same

definition of the dot product as in (2.1), we have the following theorem.

Theorem 2.2.1. There is at most one codeword &,, that satisfies
a-&, > Ny(ro+e1). (2.10)

Theorem 2.2.1 is implied by Theorem 2.1.1.
Similarly, we rearrange the elements of o according to their values and let i1,is,--- ,in, be
the indices such that a;; < a;, < -+ < gy, . Let €2 be a positive constant with 1/e2 being an

integer. Define q; = [qi(c1), ..., q(an,)], for all i € {0,1,---,1/ea —1} and j € {1,--- , N, }, as

0 a;;, <leg and i; < Ny(1—r,—¢q)
) — J J
qlai;) = { 1 otherwise ' 211)

Recall that in the original GMD decoding scheme, vectors g, are defined, as in (2.4), to erase
symbols one by one. For the revised GMD decoding, however, we define a set of grid values le
(1 € {0,1,---,1/e2}), and round the elements of a up to the closet grid values. For each newly
defined g, in (2.11), we erase all the symbols with grid values no larger than le5. Therefore, the
number of vectors defined in (2.11) is determined by the constant 2. Note that since the outer
code can correct t errors and s erasures only when 2t + s < N,(1 —r, — &1) , there is no need to
consider the g; vectors with more than N,(1 — r, — 1) zero elements.

The following theorem gives the key result that enables the revision of Forney’s GMD decoder.

Theorem 2.2.2. Ifa- &, > N, (2 + (1o +1)(1 — 22)), then, for some l € {0,1,---,1/es — 1},

qi-€w > No(ro+¢1).

The proof of Theorem 2.2.2 is given in Section 2.7.1.
Theorems 2.2.1 and 2.2.2 indicate that, if &, is transmitted and, for some ! € {0,1,---,1/e2—
1}, it satisfies o€y, > N, (2 + (1o +€1)(1 — %)), errors-and-erasures decoding specified by g

2

(where symbols with q;(ay) = 0 are erased) will output &,,. Since the total number of q; vectors is
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upper bounded by a constant, the outer errors-and-erasures decoding only needs to be operated for
a constant number of times. Consequently, a GMD decoding that carries out errors-and-erasures
decoding for all q; vectors and compares their decoding outputs can recover £,, with a complexity
of O(N,). Since the inner code length N; is fixed at a constant, the overall decoding complexity
is O(N), i.e., linear in the overall codeword length. Proving the linear encoding complexity is
straightforward, because of the linear-encodable property of the outer code and the fixed inner
codeword length.

The following theorem gives an error probability bound on the one-level concatenated codes
with Guruswami-Indyk’s outer code and the revised GMD decoding, for general discrete-time

memoryless channels.

Theorem 2.2.3. Assume inner codes achieve Gallager’s error exponent in (2.7). Let vector o be
generated according to Forney’s algorithm presented in [12, Section 4.2]. Let £, e the transmitted
outer codeword. For large enough N, error probability of the one-level concatenated codes is upper

bounded by

P. < Pr{a&, <N, (Z+ @ +ea)1-3))}

< exp[-N (E(R) - <)) (2.12)

where E.(R) is Forney’s error exponent given by (2.6), and € is a function of €1 and g2 with e — 0

Zf €1,€2 — 0.

The proof of Theorem 2.2.3 follows an idea similar to Forney’s analysis presented in [12, Section
4.2]. The decoding failure condition in [12, Section 4.2], a- &€, < N,r, (which is supported by [12,
Theorem 3.2]), should be replaced by a - &€, < Ny (2 + (ro +e1)(1 — %)) (which is supported
by Theorem 2.2.2). Since the introduced losses, €1 and €2 can be made arbitrarily small, it is
straightforward to combine them into € in (2.12), and to show that € can also be made arbitrarily

small.
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The difference between Forney’s and the revised GMD decoding schemes lies in the definition of
errors-and-erasures decodable vectors g;, the number of which determines the decoding complexity.
Forney’s GMD decoding needs to carry out errors-and-erasures decoding for a number of times
linear in N,, whereas the revised GMD decoding uses a constant number. Although the idea
behind the revised GMD decoding is similar to Justesen’s GMD algorithm [36], Justesen’s work
has focused on error-correction codes where inner decoder forwards Hamming distance information
(in the form of an a) to the outer decoder. The number of outer code decodings performed in
Justesen’s GMD decoding depends on the number of possible values the elements of o can take,
which is upper-bounded by the inner codeword length in the BSC case. However, such a bound
does not hold for a general memoryless channel.

For one-level concatenated codes to approach Forney’s exponent, the only requirement for
the inner codes is that they should achieve Gallager’s error exponent given in (2.7), for any rate
below the capacity. In order to approach a better error exponent with m-level concatenated
codes (m € {2,3,---}), the inner code must possess certain special properties. Take two-level
concatenated codes as an example (i.e., m = 2), the required property and the existence of optimal

inner code are stated in the following lemma.

Lemma 2.2.4. Consider a discrete-time memoryless channel, let ¢ > 0 be an integer and Px
an input distribution. There exists a code of length N; and rate R; with ¢Ni™' codewords, which

are partitioned into qNZéRi groups each having qNZéRi codewords. Define the error probability of the

code by Pe§2) (R;, Px) and the maximum error probability of the codes each characterized by the
codewords in a particular group of the partition by Peg2) (R;/2, Px). The error probabilities satisfy

the following inequalities

log P.\" (R, Px)

. - }
legloo N, > Er(Ri, Px),
log P.\?)(R; /2, P
lim 108 Fes /2P0 o poopo poy (2.13)
N;— o0 Nz

where Er(-,-) is given in (2.7).
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Proof. We first prove the Lemma for R; < R,, where R, is defined in (2.7) and in [4]. For

a random block code with length N; and H > ¢Vif¥ codewords, partition these codewords into

q groups with at least | H/q codewords in each group. Consider a particular codeword
xpn, (h € {1,---,H}) the following two expurgation operations [4] are performed.

In the first operation, we consider only codeword «j; and codewords that are not in the same
group with xp. In other words, we temporarily strike out the codewords in the same group with
xp,. Define P.j, as the probability of decoding error if @, is transmitted. Let By > 0 be a threshold
such that Pr(P.p; > B1) < 1/2. We expurgate xy, if P.p; > Bj.

Assume xj, survives the first expurgation. In the second operation, consider the codewords
within the group of ;. Define by P.po the probability of decoding error if codeword xj is
transmitted. Let Bs > 0 be a threshold such that Pr(P.,2 > Bs) < 1/2. We expurgate xj,
if Pepo > Bo.

Since

Pr(Pep1 < Bi, Pepa < Bo)
= PT‘(Pehl < Bl)PT(PehQ < BQlPehl < Bl)

ZPT‘(Pehl <Bl)PT(Peh2 <Bg)

Y
rO| =

- (2.14)

N | =
e

the probability that @, survives two expurgation operations is at least 1/4.
With (2.14), for R; < R,, the conclusion of Lemma 2.2.4 follows naturally from Gallager’s
analysis about expurgated code in [4, Section V]. When R, > R,, at most one expurgation

operation is needed. It is easily seen that the Lemma still holds. O
Lemma 2.2.4 can be extended to m-level concatenated coding schemes, with m > 2 as follows.

Lemma 2.2.5. For a discrete-time memoryless channel, for any integer m > 0, there exists

a code of rate R; and length N; with ¢"if codewords, where ¢ > 0 is an integer. The code
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satisfies the following properties with m-level partition. Define the error probability of the code

by Pegm)(Ri,PX), where Px is a source distribution. Name the group of all codewords as the 15

N; R;

level group. For 1 < k < m, partition the codewords in each (k — 1)t group into ¢ =  groups
. NiR;(m—k+1) (m) .
each having q m codewords. Define by P.)"’ (Ri(m — k + 1)/m, Px) the mazimum error

probability of the codes each characterized by the codewords in a particular k'"-level group of the

partition. The error probabilities Pe,(cm) for all 1 < k <m satisfy

log P (Hmttl) py Ri(m —k+1
lim — ( ) > Ep (M,PX) (2.15)

N;—00 Ni m

where Er(-,-) is given in (2.7).

The proof of Lemma 2.2.5 can be easily obtained by extending the proof of Lemma 2.2.4.
With Lemma 2.2.4 and Lemma 2.2.5, the error performance of multi-level concatenated codes,
with Guruswami-Indyk outer codes and the revised GMD decoding scheme, is given in the following

theorem.

Theorem 2.2.6. For a discrete-time memoryless channel, for any € > 0 and integer m €
{1,2,---}, one can construct a sequence of m-level concatenated codes whose encoding/decoding

complexity is linear in N, and whose error probability is bounded by

log P,
im ——2o-¢ > pim) _
am -y ZETER) -
£ _R
E™(R) =  max Lo (2.16)

. 1
Pl s By ()2, Py

where Er(-,-) is given in (2.7).

The proof of Theorem 2.2.6 can be obtained by combining Theorem 2.2.3, Lemma 2.2.4 and
the derivation of E(™)(R) in [13] [35].

Note that lim,, oo E(™)(R) = E(™)(R), where E(*)(R) is the Blokh-Zyablov error exponent
given in (2.9). Theorem 2.2.6 implies that, for discrete-time memoryless channels, Blokh-Zyablov

error exponent can be arbitrarily approached with linear encoding/decoding complexity.

21



Theorem 2.2.6 holds for linear codes over BSCs [6] [37], however, the optimal inner code
required by Theorem 2.2.6 is often not linear. Therefore, the concatenated codes may not be
linear although their outer codes possess linearity. One may wonder what error performance can
be achieved by concatenated codes if we require the inner codes should also possess a partial linear

structure. The corresponding result is stated in the following theorem.

Theorem 2.2.7. For a discrete-time memoryless channel, for any € > 0 and integer m €
{1,2,---}, one can find an integer ¢ > 0 and construct a sequence of m-level concatenated codes,
such that each code in the sequence consists of a linear code defined on GF(q) and a mapping
device that maps each GF(q) symbol to a channel symbol. The encoding/decoding complexity of the

constructed codes is linear in N. The error probability is bounded by

log P,
lim ——22¢ > M (R) — ¢,
N —o00
£ _R
EM™(R) =  max Lo (2.17)

Pl L B (@2 )]

where E, ((#) TE,PX) is given by

i\ R N\ R
" <(E> E’PX) ~ozpet {_p <5> - +Eo(p,Px)},
(1+p)

s (Z PR YlX)l”) ' .19

Proof. According to [6], one can construct a linear code on GF(q) followed by a mapping device
specified in the theorem to achieve the random coding exponent. Adopting this code as the inner

codes gives the desired result by following the same proof of Theorem 2.2.6. O

Theorem 2.2.7 implies that the following error exponent can be arbitrarily approached by the

constructed codes with linear complexity

E)(R)= max ) (5 —R) (2.19)

PX1TO€[%1
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Figure 2.4: Fountain communication over a memoryless channel.

2.3 Fountain Communication Model

Consider the fountain communication system illustrated in Figure 2.4. Assume the encoder
uses a fountain coding scheme [30] with W codewords to map the source message w € {1,--- ,W}
to an infinite channel input symbol sequence {1, Zw2, - }. Assume the channel is discrete-
time and memoryless, characterized by the conditional point mass function (PMF) or probability
density function (PDF) Py |x, where X € & is the channel input symbol with A’ being the finite
channel input alphabet, and Y € ) is channel output symbol with ) being the finite channel
output alphabet, respectively. Assume that the channel information is known at both the encoder
and the decoder®. The channel output symbols are then passed through an erasure device which
generates arbitrary erasures. Define schedule N = {iy, o, ,i|n7} as a subset of positive integers,
where |V is its cardinality [30]. Assume that the erasure device generates erasures only at those
time indices not belonging to schedule N. In other words, only the channel output symbols with
indices in AV, denoted by {Yuwiys Ywis, - s Ywi | }, are observed by the receiver. The schedule A is
arbitrarily chosen and unknown at the encoder.

Rate and error performance variables of the system are defined as follows. Assume that the
decoder, after observing |[N| > N channel symbols, outputs an estimate w € {1,2,---, W} of the

source message based on {Yuwi,, Ywis, * " - ’yW\N\} and . We say the fountain rate of the system

4The case when channel information is not available at the encoder will be investigated in Section 2.6.2.
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is R = (logW)/N. Define error probability P as,

PN —max  sup Pr{w # wlw, N'}. (2.20)
W NN|>N

We say a fountain rate R is achievable if there exists a fountain coding scheme with limy_, oo M) =

0 at rate R [30]. The exponential rate at which error probability vanishes is defined as the fountain

error exponent, denoted by Er(R),

1
Er(R) = lim —NlogPe(N). (2.21)

N —oc0
Define fountain capacity Cp as the supremum of all achievable fountain rates. It was shown in [30]
that Cp equals Shannon capacity of the stationary memoryless channel. Note that the scaling law

here is defined with respect to the number of received symbols.

2.4 Random Fountain Codes

In a random fountain coding scheme [30], encoder and decoder share a fountain code library
L ={Cy: 0 € O}, which is a collection of fountain codebooks Cy indexed by a set ©. All codebooks
in the library have the same number of codewords and each codeword has an infinite number of
channel input symbols. Let Cp(w); be the 4t codeword symbol in codebook Cy corresponding
to message w, for j € {1,2,---}. To encode the message, the encoder first selects a codebook by
generating 6 according to a distribution 1, such that the random variables z,, ; : 0 — Cy(w); are
ii.d. with a pre-determined input distribution Py [30]. Then the encoder uses codebook Cy to map
the message into a codeword. We assume the actual realization of 8 is known to the decoder but
is unknown to the erasure device. Therefore channel erasures, although arbitrary, are independent
from the codebook generation. Maximum likelihood decoding is assumed at the decoder given the
knowledge of the codebook, schedule, and channel information [30]. Due to the random codebook
selection, without being conditioned on 6, the error probability experienced by each message is

identical. Therefore, the error probability P\™ defined in (2.20) can be written as follows [30],

1
PN —max  sup Pr{w #ww,N}= sup — g Pri{w # wlw,N}. (2.22)
YNINZN NINIZN W
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Theorem 2.4.1. Consider fountain communication over a discrete-time memoryless channel
Py|x. Let Cr be the fountain capacity. For any fountain rate R < Cp, random fountain codes

achieve the following random-coding fountain error exponent
EFT(R) = H]lDaXEFL(R, Px), (223)
X
where Epy, (R, Px) is defined as follows
EFL(R7 PX) = 01%13%(1 {_pR + Eo(p, PX)} )
(1+p)
1
Eo(p, Px) = —log (Z PX<X>PYX<Y|X>1+0> : (2:24)
y \ X
If the channel is continuous, then summations in (2.24) should be replaced by integrals.

Theorem 2.4.1 was claimed implicitly in, and can be shown by, the proof of [30, Theorem 2].

Er-(R) given in (2.23) equals the random-coding exponent of a classical communication sys-
tem over the same channel [4]. For BSCs, since random linear codes simultaneously achieve the
random-coding exponent at high rates and the expurgated exponent at low rates [37], it can be
easily shown that the same fountain error exponent is achievable by random linear fountain codes.
However, it is not clear whether there exists an expurgation operation, such as the one proposed
in [4], that is robust to the observation of any subset of channel outputs. Therefore, it is un-
known whether the expurgated exponent is achievable for fountain communication over a general

discrete-time memoryless channel.

2.5 Concatenated Fountain Codes

Consider a one-level concatenated fountain coding scheme illustrated in Figure 2.5. Assume
that source message w can take |exp(NR)] possible values with equiprobability, where R is the
targeted fountain information rate. Assume that the communication terminates after N channel
output symbols are observed at the decoder. The one-level concatenated fountain code consists of

an outer code and several inner codes. The encoder first encodes the message using the outer code
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Figure 2.5: One-level concatenated fountain codes.

into an outer codeword {&;1,&2,- -+, &N, }, with N, outer symbols, each belonging to a finite field of
appropriate size. We assume that the outer code is a linear-time encodable/decodable near MDS
error-correction code of rate 7, € (0,1]. The encoding and decoding complexities are linear in the
number of outer codeword length N,. An example of such linear complexity error-correction code
was presented by Guruswami and Indyk in [14] and reviewed in Section 2.2.1. Each outer symbol
& (ke {l,---,N,}) can take {exp (NAO %)J possible values.

We use a set of random fountain codes described in Section 2.4 as the inner codes, each
with |exp(N;R;)| codewords, where N; = Nﬂo and R; = %. To simplify the notations, we have
assumed that N; and N, are both integers. We also assume that N, > N; > 1. The encoder
then uses these inner codes to map each outer symbol & into an inner codeword, which is an
infinite sequence of channel input symbols {xg1,zk2, - }. The inner codewords are regarded as
N, channel input symbol queues, as shown in Figure 2.5. In each time unit, the encoder uses a
random switch to pick one inner code and sends the first channel input symbol in the corresponding
queue through the channel as modeled in Section 2.3. The transmitted symbol is then removed
from the queue. We use 0 to index the realization of the compounded randomness of codebook
generation and switch selection. Let C(Sk) (&k); be the jt" codeword symbol of the k" inner code
in codebook Ce(k), corresponding to &. Let Z;9 € {1,---,N,} be index of the queue that the
random switch chooses at the [** time unit for [ € {1,2,---}. We assume that index 6 is generated
according to a distribution ¥ such that random variables zy¢, ; : 0 — C'(gk) (&); are i.i.d. with a

pre-determined input distribution px, random variables I; : 0 — Z; ¢ are i.i.d. uniform, xj ¢, ; and
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I; are independent. The decoder is assumed to know the outer codebook and the code libraries of
the inner codes. We also assume that the decoder knows the exact codebook used for each inner
code and the exact order in which channel input symbols are transmitted.

Decoding starts after N = N,N; channel output symbols are received. The decoder first dis-
tributes the received symbols to the corresponding inner codes. Assume that, for k& € {1,---, N, },
zkN; channel output symbols are received from the kY inner code, where z; > 0 and z;N; is
an integer. We term z;, the “effective codeword length parameter” of the k™ inner code. By
definition, we have ZkN:"l z = N,. Based on zp, and the received channel output symbols,
{Ykiy» Ykin, - - - ,ykiZkNi}, the decoder computes the maximum likelihood estimate ék of the outer
symbol & together with an optimized reliability weight oy € [0,1]. We assume that, given zj
and {Ykiy, Ykiq, - s Ykiz, v, }, reliability weight ay, is computed using Forney’s algorithm presented
in [12, Section 4.2]. With all the {£;} and {4}, the decoder then carries out the revised GMD
decoding introduced in Section 2.2.2, and outputs an estimate w of the source message.

Due to the random codebook selection and the random switching, without conditioned on
0, error probabilities experienced by all messages are equal, i.e., PB(N) satisfies (2.22). Compared
with a classical concatenated code where all inner codes have the same length, in a concatenated
fountain coding scheme, numbers of received symbols from different inner codes may be different.
Consequently, error exponent achievable by one-level concatenated fountain codes, given in the

following theorem, is less than Forney’s exponent.

Theorem 2.5.1. Consider fountain communication over a discrete-time memoryless channel Py x
with fountain capacity Cr. For any fountain rate R < Cp, the following fountain error exponent

can be arbitrarily approached by one-level concatenated fountain codes,

R 147,
Er:(R) = max (1—=r,) (—pr— + Eo(p, Px) |1 — T

Px, % <re<1,0<p<1 o 2

Eap.Px)]). (229

where Eo(p, Px) is defined in (2.24).
Encoding and decoding complezities of the one-level concatenated codes are linear in the number

of transmitted symbols and the number of received symbols, respectively.
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The proof of Theorem 2.5.1 is given in Section 2.7.2.

Corollary 2.5.2. Ep.(R) is upper-bounded by Forney’s error exponent E.(R) given in [12], and

is lower-bounded by Ep.(R), defined by

Ere(R)=  max  (1-r,) (—pg+Eo<p,PX>[1—Eo<p,PX>]). (2.26)

Px, L <r,<1,0<p<1
The bounds are asymptotically tight in the sense that

lim EFC(R)
R—Cp EFC (R)

=1. (2.27)

The proof of Corollary 2.5.2 is given in Section 2.7.3.
In Figure 2.6, we illustrate Ep.(R), E.(R), and Ep.(R) for a BSC with crossover probability
0.1. We can see that Epr.(R) is closely approximated by Er.(R), especially at rates close to the

0.14 I T

Fountain error exponent
0.12] \ —-— Upper bound (Forney’s exponent)
\ = === Lower bound

Fountain error exponent

|

6 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Fountain rate R

Figure 2.6: Comparison of fountain error exponent Er.(R), its upper bound E.(R), and its lower
bound Er.(R).
fountain capacity.

Extending the one-level concatenated fountain codes to the multi-level concatenated fountain
codes is essentially the same as in classical communication systems [13] [38] except that random
fountain codes are used as inner codes in a fountain system. For a positive integer m, the achievable

error exponent of an m-level concatenated fountain codes is given in the following Theorem.
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Theorem 2.5.3. Consider fountain communication over a discrete-time memoryless channel Py | x
with fountain capacity Cp. For any fountain rate R < Cp, the following fountain error exponent
can be arbitrarily approached by an m-level (m € {1,2,---}) concatenated fountain codes,

(m) n R
E;Y(R)=  max ‘o T

" - -
Px,gpSrosl Toim Ezl |:EFL ((#) %,PX)}

Epp (z,Px) = Jrax, (=pz + Eo(p, Px)[1 = Eo(p, Px)]), (2.28)

where Eo(p, Px) is defined in (2.24).
For a given m, the encoding and decoding complexities of the m-level concatenated codes are

linear in the number of transmitted symbols and the number of received symbols, respectively.

Theorem 2.5.3 can be proved by following the analysis of m-level concatenated codes pre-
sented in [13] [35] and replacing the error exponent of code in each concatenation level with the

corresponding error exponent lower bound given in Corollary 2.5.2.

Corollary 2.5.4. The following fountain error erponent can be arbitrarily approached by multi-

level concatenated fountain codes with linear encoding/decoding complezity,

N _
R To dx

E(Oo) R) = ——R _ 2.29

re (F) Px gag)i“ogl (To ) o FErr(z,Px) ’ (2:29)

where Epy, (x, Px) is defined in (2.28).

In Figure 2.7, we illustrate Egof) (R) and the Blokh-Zyablov exponent E,EOO)(R) for a BSC
with crossover probability 0.1. It can be seen that Egof) (R) does not deviate significantly from the
Blokh-Zyablov exponent, which is the error exponent upper bound for multi-level concatenated

fountain codes.

2.6 Network Applications

In the previous section, the rate and error performance of the concatenated codes for point-to-
point communication is obtained. In this section, we extend the results to two network applications,

i.e., rate compatible communication and rate combining communication.
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Figure 2.7: Comparison of mulit-level fountain error exponent Egof)(R) and the Blokh-Zyablov
exponent B (R).

2.6.1 Rate Compatible Communication

In this section, we consider the fountain communication where the receiver already has partial
knowledge about the transmitted message. Take the application of software patch distribution as
an example. When a significant number of patches are released, the software company may want
to combine the patches together as a service pack. However, if a user already have some of the
patches, he may only want to download the new patches, rather than the whole service pack. On
one hand, for the convenience of the patch server, all patches of the service pack should be encoded
jointly. On the other hand, for the communication efficiency of each particular user, we also want
the fountain system to achieve the same rate and error performance as if only the novel part of the
service pack is transmitted. We require such performance objective to be achieved simultaneously
for all users, and define such a fountain communication model as the rate compatible fountain
communication. We will show next that efficient rate compatible fountain communication can be
achieved using a class of extended concatenated fountain codes with linear complexity.

Assume a source message w, which takes |exp(INR)| possible values, is partitioned into L

sub-messages [wy, wa, -+ ,wr], where w; (i € {1,---,L}) can take |exp(Nr;)| possible values with
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>, = R. Consider the following extended one-level concatenated fountain coding scheme. For

each i € {1,---, L}, the encoder first uses a near MDS outer code with length N, and rate 7, to
encode sub-message w; into an outer codeword {&1,--- ,&n, }, as illustrated in Figure 2.8. Next,
[
Su L1 Pl L X Xy [T
12 S p XX
E Random switch
§1No CfLNo > s XN Xy

Outer codewords Inner codewords ~ Encoded symbols

Figure 2.8: Concatenated fountain codes for rate compatible communication.

forall k € {1,---, N,}, the encoder combines outer codeword symbols {1, -, &Lk} into a macro
symbol & = [€1, -+ ,€nk]. A random fountain code is then used to map & into an infinite channel
input sequence {x1, Tp2,- - }.

Without loss of generality, we assume that there is only one decoder (receiver) and it already
has sub-messages {wj41, - ,wr}, where [ € [1,L — 1] is an integer. The decoder estimates the
source message after N; = N # channel output symbols are received®. From the decoder’s
point of view, since the unknown messages [wy,--- ,w;] can only take [exp(N Zé:l r;)] possible
values, the effective fountain information rate of the system is R.r = %l:l” = R. According
to the known messages {w;41,---,wr}, the decoder first strikes out from fountain codebooks all
codewords corresponding to the wrong messages. The extended one-level concatenated fountain
code is then decoded using the same procedure as described in Section 2.5. Assume the average
- N NXim

number of symbols received by each inner codeword N; = ¥ = i is large enough to

enable asymptotic error performance analysis. By following a similar analysis given in the proof

5Assume N; and N;/N, are both integers.
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of Theorem 2.5.1, it can be seen that error exponent Er.(R) given in (2.25) can still be arbitrarily
approached.

Therefore, given a rate partitioning R = [r1,--- ,7z], the encoder can encode the complete
message irrespective of the sub-messages known at the decoder. The fountain system can achieve
the same rate and error performance as if only the unknown sub-messages are encoded and trans-
mitted. If the system has multiple receivers with different priori sub-messages, the rate and error
performance tradeoff as characterized in Theorem 2.5.1 can be achieved simultaneously for all

receivers. Extending this scheme to the multi-level concatenated codes is straightforward.

2.6.2 Fountain Communication over Unknown Channel

In previous sections, we have assumed that concatenated fountain codes should be optimized
based on a known discrete-time memoryless channel model Py |x. However, such an optimization
may face various challenges in practical applications. For example, suppose that a transmitter
broadcasts encoded symbols to multiple receivers simultaneously. Channels experienced by dif-
ferent receivers may be different. Even if the channels are known, the transmitter still needs to
optimize fountain codes simultaneously for multiple channels. For another example, suppose the
source message (e.g., a software patch) is available at multiple servers. A user may collect encoded
symbols from multiple servers separately over different channels and use these symbols to jointly
decode the message. By regarding the symbols as received over a virtual channel, we want the
fountain system to achieve good rate and error performance without requiring the full statistical
model of the virtual channel at the transmitter. We term the communication model in the latter
example the rate combining fountain communication. In both examples, the research question is
whether key coding parameters can be determined without full channel knowledge at the trans-
mitter. In this section, we show that, even when the channel state is unknown at the transmitter,
it is still possible to achieve near optimal rate and error performance using concatenated fountain

codes.
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Consider fountain communication over a discrete-time memoryless channel Py |y using one-
level concatenated fountain codes. We assume the channel is symmetric, and hence the optimal
input distribution Py is known at the transmitter. Other than channel alphabets and the symmetry
property, we assume channel information Py |x is unknown at the transmitter, but known at the
receiver. Given Py, define I(Px) = I(X;Y) as the mutual information between the input and
output of the memoryless channel. We assume the transmitter and the receiver agree on achieving
a fountain information rate of vI(Px) where v € [0,1] is termed the normalized fountain rate,
known at the transmitter.

Recall from the proof of Theorem 2.5.1 that, if Py |x is known at the transmitter, the outer
code rate 1, can be predetermined at the transmitter and the following error exponent can be

arbitrarily approached,

Epc(v, Px) = OgaﬁlEFc(%Px,To),
Epe(7,Px,10) = max (1 —70)I(Px)
v Eo(p, Px) 1+
—pL 1— Eolp, P . 2.30
><< P + T(Px) 5 o(p, Px) (2.30)

Without Py |x at the transmitter, the optimal 7, cannot be derived. However, with the knowl-
edge of v, we can set a suboptimal outer code rate by letting r, = 7”228777 and define the

corresponding error exponent by

2+8 _
Eres(v, Px) = Erc (%anro = %) . (2.31)

The following theorem indicates that Fp.s(7, Px) approaches Fp.(v, Px) asymptotically as ~

approaches 1.

Theorem 2.6.1. Given the discrete-time memoryless channel Py x and a source distribution Px,

the following limit holds,

E cS 7P
lim —£es b2 X) (7, Px)

=1. 2.32
I ey, Py (2.32)
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The proof of Theorem 2.6.1 is given in Section 2.7.4.

In Figure 2.9, we plot Epcs(v, Px) and Ep.(vy, Px) for BSC with crossover probability 0.1.
_ e
2

It can be seen that setting r, at r, = is near optimal for all normalized fountain rate

values. Indeed, computer simulations suggest that such an optimality conclusion applies to a wide
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Figure 2.9: Error exponents achieved by optimal r, and suboptimal r, =
malized fountain rate ~y.

range of channels over a wide range of fountain rates. However, further investigation on this issue

is outside the scope of our research.

2.7 Proofs

In this section, the proofs of the main theorems are provided.

2.7.1 Proof of Theorem 2.2.2

Define L = N,(1 — r, — £1), which is assumed to be an integer. Define a set of values
cj = (j—1/2)eq, for j € {1,--+,1/e2} and an integer p = [, /2], where p € {1,---1/e5}.¢ Note

that 1/e9 is an integer.

SNote that the value of p cannot be 0. Because if p = 0, i.e., a;, =0, then there are at least No(1 — 170 —€1)
€

zeros in vector a. Consequently, a - &, < No(ro 4 €1) < No(52 + (10 +¢1)(1 — %)), which contradicts with the
assumption that o - &, > No(% + (1o +e1)(1 — 3)).
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Let

)\0 = C1
Al =cp1—c,1<I<p—-1,1<p<1/ey
Ap = Qi —Cp
An = Qiy_pirpr — Qip_piry P<h<p+N,—1L
)\p+No(To+51) =1- Ay, -
We have
Jj—1 .
Z)‘ ] o 1<5<p
T i P<iSpHNo—L
and
p+No—L
> oa=1L
1=0
Define a new weight vector & = [aq, -+, ay,] with, for k € {1,--- , N,},

. o o
ap = { argmin,, 1 <;<,|¢j — arl  or < i

Define p; = [pi(a1), - ,pi(an,)] with 1 <1 <p+ N, — L, such that for 0 <1 <p

and for p<I<p+N,—L

Thus we have

Define a set of indices

a2 g > Qi

b, = qy,

plag) = | O Qi
t T ag>ai_,,,

p+No—L

a= >y \p.
=0

U= {i17i25' o 7iL}-

According to the definition of &y, for k ¢ U, & = «y. Hence

d-{w:a-gw—i—Z(dk—ak)sk.

keUd

35

(2.33)

(2.34)
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(2.39)
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Since |ar — ai| < e2/2, and s = £1, we have

> (an —on) sp > _%. (2.42)

keU

Consequently, ac- &€, > N, (2 4 (r, +e1)(1 — %)) = N, — L(1 — 22) implies
&€, >Ny—L=Ny(ro+e1). (2.43)

If p; - €, < N, — L for all p; vectors, then

p+No— P+No

Z Ap; €, < ( Z M\ o= (2.44)

which contradicts to (2.43). Therefore, there must be some p; that satisfy
pl'£w>N0_L:No(ro+€l)- (245)

Since for | < p, p; has no more than N,(r, +£1) number of 1s, which implies p; - &, < N,(r, +¢€1).
Therefore, the vectors that satisfy (2.45) must exist among p; with 1 <1 < p. In other words, for
some 1, q;-&y, > No(ro +€1).

2.7.2 Proof of Theorem 2.5.1

We first introduce the basic idea of the proof.

Assume that the decoder starts decoding after receiving N = N, N; symbols, where N, is the
length of the outer codeword, NN; is the expected number of received symbols from each inner code.
In the following error exponent analysis, we will obtain asymptotic results by first taking N, to
infinity and then taking N; to infinity.

Let z be an N,-dimensional vector whose k" element z; is the effective codeword length

parameter of the k" inner code, for k € {1, -+, N,}. Note that z is a random vector. Let dz > 0
be a small constant. We define {z,4|z, = ndz,n =0,1,...,} as the set of “grid values” each can be
(dz)

written as an non-negative integer multiplying dz. Define a point mass function (PMF) f, as
follows. We first quantize each element of z, for example zj, to the closest grid value no larger than

2. Denote the quantized z vector by z(9, whose elements are denoted by zi(Q) forie {1,---,N,}.
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For any grid value z,, we define 7, = {z

zi(q) = zg} as the set of indices corresponding to which

the elements of z2(?) vector equal the particular zg. Given z, the empirical PMF f édz) is a function
defined for the grid values, with f**)(z,) = %\79‘, where |Z., | is the cardinality of Z . Since Fu)

is induced from random vector z, itself is random. Let Pr { édz)} denote the probability that the

received effective inner codeword length parameter vector z gives a particular PMF f édz).

Let us now consider a decoding algorithm, called “dz-decoder”, which is the same as the
one introduced in Section 2.5 except that the decoder, after receiving N;z; symbols for the k"
inner code (for all k € {1,---,N,}), only uses the first Niz,(f) symbols to decode the inner code.
Assume that the fountain information rate R, the outer code rate r,, and the input distribution
Px are given. Due to symmetry, it is easy to see that, without being conditioned on random
variable 6 (defined in Section 2.4), different z vectors corresponding to the same fédz) (which is
indeed induced from z(‘J)) give the same error probability performance. Let P. ( édz)) be the
communication error probability of the dz-decoder given f édz). Communication error probability

(d2)

P, of the dz-decoder without given f, " can be written as,

P.=Y P (fgiz)) Pr {fgiz)} . (2.46)
e
For a given fédz), define E( édz)) = —limp, oo limpy, o0 ﬁNo log P. ( édz)). Consequently,
we can find a constant Ko(N;, N,), such that the following inequality holds for all fédz) and all

Ni; N07

P. (£57)) < Ko(Ni, No)exp (=NiNoEy (£5)).

lim lim —IOgKO(Ni’NO)

N;—00 No—00 Nl'NO =0 (247)

Given dz, N;, N,, let K1(N;, N,) be the total number of possible quantized 2(D vectors (the

quantized vector of z). K1(N;, N,) can be upper bounded by

K1(N;,N,) < 2Ne ([52]+ N, —1)!

([%W(NO — (2.48)
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In the above bound, the term (([( - Y represents the total number of possible outcomes of
assigning [%1 identical balls to N, distinctive boxes. This is the number of possible z(9) vectors
we can get if the received symbols are assigned to the inner codes in groups with N;dz (assumed
to be an integer) symbols per group. Let us term the assumption of assigning received symbols
in groups the “symbol-grouping” assumption. To relax the symbol-grouping assumption, we note
that, if the number of symbols obtained by an inner code, say the k*" inner code, is a little less that

(q)
k

an integer multiplication of N;dz, then the quantization value z;"’ obtained without the symbol-

grouping assumption can be one unit less than the corresponding value with the symbol-grouping
assumption. Therefore, the total number of possible z(?) vectors we can get without the symbol-
grouping assumption is upper bounded by 2Ve multiplying the corresponding number with the
symbol-grouping assumption. Note that, given dz, the right hand side of (2.48) is not a function
of N;, and it is also an upper bound on the total number of possible fédz) functions.

log K (

Ni,No
T) < o0, and

Due to Stirling’s approximation [39], (2.48) implies that limy, oo
hence

lim lim log K1(Ni, No) (Ni, No)

N;—oo N,—00 NiNO =0 (249)

Combining (2.46), (2.47) and (2.49), the error exponent of a dz-decoder is given by

. . log P.
Epe = = Jim T -
_ . (dz)) Y . 1 { (dz)}
e {Ef ( z ML N NN, e Tz g (2:50)

The rest of the proof contains four parts.

The expression of limy, 00 limy, o0 ﬁ log Pr {fédz)} is derived in Part I. In Part II, we
derive the expression of Ef ( édz)). In Part III, we use the results of the first two parts to obtain
limg, o Fr.. Complexity and the achievable error exponent of the concatenated fountain code is
obtained based on the derived results in Part IV.

Part I: Let z(i) (for alli € {1,---, N,}) be an N,-dimensional vector with only one non-zero

element corresponding to the i'" received symbol. If the i received symbol belongs to the k‘*
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inner code, then we let the k*" element of z(i) equal 1 and let all other elements equal 0. Since

the random switch (illustrated in Figure 2.2) picks inner codes uniformly, we have

1 . 1 1
N, N, " N2

(2.51)

where 1 is an N,-dimensional vector with all elements being one, and Iy, is the identity matrix
of size N,. According to the definitions, we have z = N% Zfi{v" z(4). Since the total number of
received symbols equal N; N,, we must have 172 =N,.
Let w be a real-valued N,-dimensional vector whose entries satisfy —mvN;N, < wp <
7V N;N,,Vk € {1,--- | N,}. Since z equals the normalized summation of N;N,, independently dis-
tributed vectors (i), the characteristic function of  / F* Ni (2—1), denoted by vz (w) = F [exp (j %WT(z - 1))},

can therefore be written as

pz(w) = E

I
=
&

&5

@

5
/_\
'2 —
=

€

S
x

|
S
=
N—

NoN;
1Q wH2 Q" w|?
1-= 2.52
2 NZN; N2N (2:52)

where in the last equality, @ is a real-valued N, x (N, — 1)-dimensional matrix satisfying QrQ =
Iy, 1 and Q"1 = 0, which imply QQ" = I'y, — 3-11". In other words, ||Q" w||* = w” (I, —
+~11"w

Note that, since z is discrete-valued, pz(w) is similar to a multi-dimensional discrete-time
N; N; NiNo _, (-
7 (z—1). Because v N; N, [1 [ (z — 1)} =301 2()—N;1

takes integer-valued entries, the ¢z (w) function is periodic in w in the sense that ¢z (w + 27r\/NZ-NOe;€) =

Fourier transform of the PMF of

oz(w), k€ {1,---,N,}, where ey, is an N,-dimensional vector whose k' entry is one and all other

entries are zeros. This is why we can focus on “frequency” vector w with —7mvN; N, < wy <

VNN, Vk € {1, -, N,}.
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Equation (2.52) implies that

lim {goz(w) — exp (— ! wTQQTw)} = 0. (2.53)

N,—o00 2NO

Therefore, with a large enough N, and for any z, the probability Pr{z} is upper-bounded by

Priz) < (W)N () e (-5 =12 = a=up?] ). (2:54)

where the constant 2mv/N; N, in the denominator of the first term on the right hand side of (2.54)
is due to the range of —m/N;N, < wi, < m/N;N,,Vk € {1, , N,}. The constant dz||1||? in the
exponent of (2.54) is added to ensure the existence of a large enough N, to satisfy the inequality,

as implied by (2.53). Inequality (2.54) further implies that

1\ NN TE
P < | ——— 2
r{zh = (27n/NZ-NO> <2w>
N;
X exp (—7 [Hz(q) 2 3dz||1|2D , (2.55)

where z(?) is the quantized version of z. Consequently, the probability of 2(?) is upper-bounded

by
N No—1
1 ©(N,\ 2
P { (Q)} < [NidzVo [ ——— o
" s N o or
N;
X exp <_7 [Hz(q) —12- 3N0d4> . (2.56)
The probability of any PMF fédz) is upper-bounded by
Pr{ édz)} < Kl(Ni,NO)Pr{z(‘I)}
N No—1
1 © (N, "2
< Ki(N;,N,) [Nydz|Ve [ ——— 2
s K ) [Nidz] <2m/NZ-NO> <27r>
N;
X exp (—7 [||z<q> 12— 3N0dzD , (2.57)

where K (N;, N,) is the total number of possible z(9) vectors satisfying (2.49).

From (2.57), we can see that for all fédz) the following inequality holds,

log Pr { édz)}
T JIm N

= %Z [(2g = 1)” = 3dz] 15" (z). (2.58)

Zg
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where fédz)(zg) is the value of PMF fédz) at zg.

Note that, because 172 = N,, for all empirical PMFs fédz), we have Zzg ngédz)(zg) €
[1—dz,1].

Part II: Next, we will derive the expression of Ef ( édz)), which is the error exponent

conditioned on an empirical PMF f édz).
Let z be a particular N,-dimensional effective inner codeword length parameter vector fol-

lowing the empirical PMF f édz)

, under a given dz. Let P.(z) be the error probability given z (or
2(D). Let P,( fédz)) be the error probability given fédz). From the definition of the concatenated
fountain codes, we can see that the inner codes are logically equivalent, so do the codeword sym-
bols of the near MDS outer code. In other words, error probabilities corresponding to all z vectors
with the same PMF f édz) are equal. This consequently implies that P.(z) = P.( édz)). Therefore,
when bounding Ef ( fédz)), instead of assuming a particular fédz) which corresponds to multiple
z vectors, we can assume a single z vector whose corresponding empirical PMF is fédz).

Assume that the outer code has rate r,, and is able to recover the source message from dN,
outer symbol erasures and tN, outer symbol errors so long as d + 2t < (1 — r, — (p), where
Co > 0 is a constant satisfying limy, 00 limy, 500 (o = 0. An example of such near MDS code
was introduced in [14]. Assume that, for all k, the k" outer codeword symbol is &, and the k"
inner code reports an estimate of the outer symbol ék together with a reliability weight ay € [0, 1].

Applying Forney’s GMD decoding to the outer code [38], the source message can be recovered if

the following inequality holds [12, Theorem 3.1b],

N,
Dk > (ro+ Go)No, (2.59)
k=1

where u, = 1 if ék =&, and pp = —1if ék =% £, Consequently, error probability conditioned on

the given z vector is bounded by

N,
Pe(fédZ)) = Pe(z) < Pr {Z Qg < (7'0 + CO)NO}
k=1
E —sN; N
< min [eXp( N e akﬂk)} , (2.60)

s>0  exp(—sN;(ro + (o) No)

41



where the last inequality is due to Chernoff’s bound.
Given the effective inner codeword length parameter vector z, random variables aypy for

different inner codes are independent. Therefore, (2.60) can be further written as

1Y Blexp (M)
s>0  exp(—sN;(ro + o) No)

. OXP (ZkNil log E [exp (_SNiakﬂk)])
N Isnzlg exp(—sN;(ro + o) No)

P.(f57) = P.(2)

IN

(2.61)

Now we will derive the expression of log E [exp (—sN;axux)] for the k" inner code.
Assume that the effective codeword length parameter is z;. Given zx, whose quantized value
is z,(cq), depending on the received channel symbols, the decoder generates the maximum likelihood

outer code estimate ék, and generates «, using Forney’s algorithm presented in [12, Section 4.2].

Define an adjusted error exponent function E,(z) as follows.

R
E.(2) = onax, —p -+ zEo(p, px) (2.62)

where Eg(p,px) is defined in (2.24). By following Forney’s error exponent analysis presented

in [12, Section 4.2], we obtain

—log F [exp (—sN;ag ;)]
> max {min{NiEz (z,g@) N (ZEZ (sz)) _ s)  Nis), 0} + Kao(Ni,N,), (2.63)

K2 (Ni,No) —=0.

where Ko(N;, N,) is a constant satisfying limy, oo imn, 500 =370

Define a function ¢(z, s) as follows,

—8T z,E.(z) <s/2
d(z,8) = 2E,(2) — (1+7r)s 2,8/2<E,(2)<s . (2.64)
(1 —r,)s z,E.(2) > s

Substitute (2.63) into (2.61), and take N;, N, to infinity (which implies (o — 0), we get the

following bound on the conditional error exponent E'¢ ( édz)),

dz dz
By (157) zglgggjqb(zg,s) ) (z,). (2.65)
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Part ITI: According to (2.50), (2.58) and (2.65), we have

EFc

Y

dz) dz) 3
min + (z4) p — =dz
§9.50., 20 /5 (z0)€l1—dz,1] Z ’ 2

(29 — 1)2) (dz) 3
min max O(z4,8) + —— zq) — —dz. (2.66
SRS, 2af S (2g)€l1—dz,1] 520 - ( (2,5) ) 7z (2) 5 (2.66)

Define El(po) = limg.—0 Epe. Let fz be a probability density function defined for z € [0, 00).

C

Inequality (2.66) implies that

Eg)c) > ma, Ooo (¢(z,s) + (2 _21)2) fz(2)dz

fz, [y zfz(z)dz 1 S>0

= max min /000 (¢(2,s) + (2 _21)2) fz(2)dz. (2.67)

820 fz,[5° 2fz(2)dz=1

Assume that f} is the density function minimizing the last term in (2.67). If we can find

0 < A < 1, and two density functions fél), g) with [ 2 ( dz=1, [[7z (2) dz = 1, such
that
fr=MP+ =01, (2.68)

then it is easy to show that the last term in (2.67) must be minimized either by fél) or féz).
Since this contradicts the assumption that f} is optimum, a nontrivial decomposition like (2.68)
must not be possible. Consequently, f7 can take non-zero values on at most two different z values.
Therefore, we can carry out the optimization in (2.67) only over the following class of f functions,

characterized by two variables 0 < zp <1 and 0 <~ < 1,

fz(z2) =~0(z —2z0) + (L — 7)o (z— 1—207> ) (2.69)

where §() is the impulse function.
Let us fix 7 first, and consider the following lower bound on E( )( ), which is obtained by

substituting (2.69) into (2.67),

EE,?C)( ) > min maxvyé(zo,s) + (1 — )¢ <1 — ZO’Y, S> + (- Z0)2. (2.70)

0<20<1 >0 1—7 1—7 2
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Since given zg, Y¢(z0,$) + (1 — )¢ (1%?;1, s) is a linear function of s, depending on the value of

7, the optimum s* that maximizes the right hand side of (2.70) should satisfy either s* = E,(zo)

* __ 1—z0y
or s —Ez( — )

When v > 1= we have s* = E. (). This yields

2
(0) > . Yy (1 — Zo) B
Epe 2 min_| {1 — 2 T (1 =ro)Bx(20) | - (2.711)

When v < %, we have s* = E, (11__%), which gives

2
© o v (1-2) o 1= vz
Epe 2 o [Z”YEZ(ZO) + R — +(1 =7, —2v)E, T . (2.72)

By substituting E,(z) = maxogpgl[—p% + zEo(p, px)] into (2.72), we get

J - B R
Bpe 2, iy, (225, {(1 ro) { P +E0(p’pX)}

- ﬁ {(1 +70)(1 = 20) Eo(p, px) — %] } . (2.73)

Note that if (1 4+ 7,)(1 — z0)Eo(p,px) — % < 0, then EI(;OC) > (1 —r,) [—p% —l—Eo(p,pX)}
with the right hand side of the inequality equaling Forney’s exponent for given px and r,. This
contradicts with the fact that Forney’s exponent is the maximum achievable exponent for one-level

concatenated codes in a classical system [12]. Therefore, we must have (1+r,)(1—20)Eo(p, px) —

@ > 0. Consequently, the right hand sides of both (2.71) and (2.73) are minimized at the

margin of v* = 1_2”’. This gives
2
(ONES . _ 1—7,(1—20)
Ep > oJin {(1 ro)E.(20) + [ —

= min max {(1 —7,) <—p§ + Eo(p,px))

0<20<10<p<1
1—7r, (1 —20)
1+7, 2

(1= 20) — 21 + ro>Eo<p,px>1} . (2.74)

Note that if p is chosen to satisfy (14 r,)Eo(p, px) > 1, the last term in (2.74) is minimized

at z5 = 0, which gives

0 < R 1—m
EFC_Orél;i%(l{ pro(l ro)+1+T0 . (2.75)
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The right hand side of (2.75) is maximized at p* = 0. However, p = 0 implies (1 + 7,)Eo(p,px) =
0 < 1 which contradicts the assumption (1 4 7,)Eo(p,px) > 1. Therefore, we can assume that
(1+70)Eo(p,px) < 1. Consequently, the last term in (2.74) is minimized at z§ = 1 — (1 + r,)Ep.

This gives

1+,

0) & (B ~
B > quax (1= ) (<o 4 Bolpx) [L= S5 B | ). 270)

By optimizing (2.76) over px and r,, it can be seen that the error exponent given in (2.25) is
achievable if we first take N, to infinity and then take NV, to infinity.

Part IV: To achieve linear coding complexity, let us assume that N; is fixed at a large
constant while N, is taken to infinity. According to [14], it is easy to see that the encoding
complexity is linear in the number of transmitted symbols’. At the receiver, we keep at most
2N, symbols for each inner code and drop the extra received symbols. Consequently, the effective

codeword length parameter of any inner code is upper-bounded by 2. Because (2.71) and (2.73)

are both minimized at v* = 1*2“’, according to (2.69), the empirical density function fz(z) that

minimizes the error exponent bound takes the form f(z) = 1526(z—2)+ L= (2 — %),
with zp, %ﬁ:“) < 2. Therefore, upper bounding the effective codeword length parameter by 2

does not change the error exponent result. However, with z; < 2, Vk, the decoding complexity of
any inner code is upper-bounded by a constant in the order of O(exp(2N;)). According to [38],
the overall decoding complexity of the concatenated code is therefore linear in N,, and hence is
linear in N. Since fixing N; causes a reduction of (; > 0 in the achievable error exponent, and (;
can be made arbitrarily small as we increase N;, we conclude that fountain error exponent Ep.(R)
given in (2.25) can be arbitrarily approached by one-level concatenated fountain codes with a linear

coding complexity.

"In other words, we assume that no encoding complexity is spent on codeword symbols that are not transmitted.
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2.7.3 Proof of Corollary 2.5.2

Because 0 < r, < 1, it is easy to see EFC(R) < Ep.(R) < E.(R). We will next prove

limp e, FE = 1.
Define
R 1+7,
9(Px, 70, p) = (1= 15) (—pT— + Bolp, Px) |1 - "2 By, PX)D | (2.77)
such that
Er (R) = max g(Px, 70, p). (2.78)

Px, L <r,<1,0<p<1

Using Taylor’s expansion to expand ¢g(Px, 7., p) at 7, = 1 and p = 0, we get

9P, 7o) =3 ﬁﬁ(z’,jxro — 1), (2.79)

]

(i+3)
where (i, j) = 2 9Px.ro.p)

Briop , with ¢ and j being nonnegative integers. It can be verified

ro=1,p=0

that 8(i,7) =0if i =0or j = 0.
We also have

R 9Eo(p, Px)

dEo(p, Px)
1,1)=4—5— ——————= +2r,Fy(p, Px) ———————= =R-Cp,
B(1,1) {r% o + 2r,Eo(p, Px) op N F
B(2,1) = —2R#£0,
9*Eo(p, Px) dEo(p, Px)\*
1,2) = — -2 . 2.
51,2 { je ) g (2R B o (2.50)
p=0
Similarly, define
- R
§(Px,ro,p) = (1=70) (—pr— + Eo(p, Px) [1 = Eo(p, Px)]) : (2.81)
such that
EFC (R) = R max g(PX7r07p)' (282)
Py, L <ro<1,0<p<1
Using Taylor’s expansion to expand §(Px, 7., p) at 7, = 1 and p = 0, we get
~ r - i
G(Px.10,p) = > ——PB(i,5)(ro — 1)'p. (2.83)

(i +5)!

0]

46



9D 5(Px ro,p)

Bri D0 Similarly, we have 3(i,j) = 0if i = 0 or j = 0 and

where ((i,7) = _
ro=1,p=

By L’Hospital’s rule, the following equality holds,

li EFC(R) _
1m =
R—Cp EFC(R)

%B(la 1)(7’0 - 1)/) + Eﬂ(27 1)(T0 B 1)2[) + _B(lv 2)(T0 B 1)/)2 o
im T 1 3 1 5 = 1.
Rescr a0 SA(L1) (7o — Dp+ 182 1)(0 — 129 + LA(1,2)(r0 — )p
(2.84)
2.7.4 Proof of Theorem 2.6.1
Define
2 2
. gl p~ [ O°Eo(p, P
9710, p) = (L —10) | pI(Px) (1 - —) iy % —2*(Px) | |,
To P =0
Epe(7, Px,ro) = max §(v,70,p);
EFC(’%PX) :Oglrgj')élEFc(’)/’PX’TO)' (285)
We will first prove that
lim Zres0nPx) (2.86)
=1 EFC(’Yu PX)
Note that g(v, 7., p) is maximized at p = p*, with
I(Px) (1 - %)
P = ° , (2.87)
_82E%(pp2,PX)‘ . +2I2(PX)
o=

where we have assumed 0 < p* < 1. This assumption is valid when 7, is also optimized. Conse-

quently, EFC(V, Px,71,) is maximized at r, = r}, with

(1 = 1)2 _ VRS (2.88)

*
ry = argmax(l — 1)
0<ro<1

2

Therefore,

Epes(y, P .
1imAF(77X) > lim

|:EFCS(’77PX7p)
121 Epe(y,Px) — 71

g(’yuanpa/rO)

1 =1. (2.89)
pP=pP*To=T]

Following a similar idea as the proof of Corollary 2.5.2, it can be shown that

=1. (2.90)



Combining (2.89) and (2.90), we get

lim Eres(v, Px) ~ fim ‘E;FCS(,Y7PX) lim Erpc(v, Px)

> 1. 2.91
~—1 EFC(’}/,PX) y—1 EFc('%PX) ~y—1 EFC(’}/,P)() - ( )

Ercs(v,Px) —

Because Epcs(7, Px) < Epc(y, Px), (2.91) implies lim~_,q Fr (5. Px)
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Chapter 3

CODING THEOREMS FOR RANDOM ACCESS COMMUNICATION

In multiple access communication, two or more users (transmitters) send messages to a com-
mon receiver. The transmitted messages confront distortion both from channel noise and from
multi-user interference. Two related communication models, the multi-user information theoretic
model and the random access model, have been intensively studied in the literature [40].

The information theoretic multiple access model, on one hand, assumes that each user is
backlogged with an infinite reservoir of traffic. Users should first jointly determine their codebooks
and information rates, and then send the encoded messages to the receiver continuously over a
long communication duration. The only responsibility of the receiver is to decode the messages
with its best effort. Under these assumptions, channel capacity and coding theorems are proved
by taking the codeword length to infinity [1] [2]. Rate and error performance tradeoffs of single
user and multiple access systems were analyzed in [4] [40]. The information theoretic model uses
symbol-based statistics to characterize the communication channel. Such a physical layer channel
model enables rigorous understandings on the fundamental impact of channel noise and multi-
user interference. However, classical coding results have been derived under the assumption of
coordinated communication, in the sense of joint codebook and information rate determination
among the multiple users and the receiver. Such an assumption precludes the common scenarios of
short messages and bursty traffic arrivals, since in these cases the overhead of full communication
coordination is often expensive or infeasible.

The random multiple access model, on the other hand, assumes bursty message arrivals.

According to message availability, users independently encode their messages into packets and
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randomly send these packets to the receiver. It is often assumed that the transmitted packets should
be correctly received if the power of the multi-user interference is below a threshold. Otherwise
the receiver should report a packet collision and the involved packets are erased [41] [42]. Standard
networking regards packet as the basic communication unit, and counts system throughput in
packets per time slot as opposed to bits/nats per symbol. Communication channel is characterized
using packet-based models, such as the collision channel model [43] and the multipacket-reception
channel model [44] [45]. Although packet-based models are convenient for upper layer networking
[46], their abstract forms do not permit an insightful understanding about the impact of physical
layer communication to upper layer networking.

In [25], a new channel coding approach was proposed for time-slotted random multiple access
communication over a discrete-time memoryless channel using a symbol-based physical layer chan-
nel model. Assume that in each time slot, each user independently encodes an arbitrary number of
data units into a packet and transmits the packet to the receiver. Define the normalized number of
data units per symbol as the communication rate of a user in a time slot, which is shared neither
among the users nor with the receiver. It was shown in [25] that, fundamental performance limi-
tation of the random multiple access system can be characterized using an achievable rate region
in the following sense. As the codeword length goes to infinity, if the random communication rate
vector of the users happens to be inside the rate region, the receiver can decode all messages with
zero asymptotic error probability; if the random communication rate vector happens to be outside
the rate region, the receiver can detect a packet collision with an asymptotic probability of one.
The achievable rate region was shown to equal Shannon’s information rate region, possibly without
a convex hull operation.

In this chapter, we derive stronger versions of the coding theorems given in [25] by charac-
terizing the achievable rate and error performance of random multiple access communication over
a discrete-time memoryless channel with a finite codeword length. We assume that the channel

state information is known at the receiver. Our work is motivated by the existing non-asymptotic
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channel coding results, surveyed in [47], for classical single-user communication. Following the
framework of [25], we assume that the random multiple access system predetermines an “opera-
tion region” of the rate vectors in the following sense. For all communication rate vectors within
the region, the system intends to decode the messages; while for all communication rate vectors
outside the region, the system intends to report a packet collision. Given the operation region,
there are two types of error events. If the communication rate vector is within the region, the
event that the receiver fails to decode the messages correctly is defined as a decoding error event.
If the communication rate vector is outside the region, the event that the receiver fails to report
a collision is defined as a collision miss detection event. An achievable bound on the system error
probability, defined as the maximum of the decoding error probability and the collision miss detec-
tion probability, is obtained under the assumption of a finite codeword length. We show that, if the
operation region is strictly contained in an achievable rate region, then the system error probability
can decrease exponentially in the codeword length. The corresponding exponent is defined as the
system error exponent, whose achievable bound is obtained from the error probability bound by
taking the codeword length to infinity.

Furthermore, we relax the assumption that the channel state information is perfectly known at
the receiver. Since random access communication deals with bursty short messages, transmission
activities of a user are often fractional. Without frequent data support, accurate real-time channel
estimation and tracking become difficult at the receiver. Understanding the system performance
limitation without channel state information therefore becomes essential [48]. We illustrate how
previously derived coding theorems can be extended to random multiple access communication over
a compound discrete-time memoryless channel [49] [50], consisting of a family (set) of channels
over which the communication could take place. Both the transmitters and the receiver know
about the compound channel set, but neither knows about the actual channel realization. The
compound channel communication problem investigated here is different from a conventional one

in the following two key aspects. First, in a conventional system, information rates are jointly
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determined by the transmitters and the receiver [2], while communication rates in a random access
system are determined distributively and the rate information is unknown at the receiver [25].
Second, in a conventional system, in order to achieve reliable communication, the transmitted rate
vector should be supported by all channel realizations in the compound set [51] [48]. In random
access communication, however, even though the receiver needs to guarantee the reliability of
its decoding output, the receiver also has the additional choice of reporting a collision to avoid
confusing the upper layer networking [42]. This therefore allows the transmitted rate vector to be
supported only by a subset of channel realizations. If the actual channel realization belongs to this
subset, the receiver should decode the messages. Otherwise, the receiver should report a collision.
Clearly, the decoding and collision report decisions made at the receiver are affected jointly by the
communication rates of the users and the actual channel realization. The system error probability
bound of such system is derived for a finite codeword length. We also show how the compound
channel results help in obtaining error performance bounds for the random multiple access system
where the receiver is only interested in recovering messages from a user subset [25]. This is based
on the observation that, conditioned on the receiver not decoding messages for the rest of the users,
the impact of their communication activities on the user subset of interest is equivalent to that of
a compound channel.

The chapter is organized as follows. In Section 3.1, we study the coding theorems for single-
user random access communication. The results are generalized to multi-user random access com-
munications in Section 3.2. The error performance with generalized random coding scheme is
analyzed in Section 3.3. In Section 3.4, we investigate the random access communication over
compound channels. The corresponding results are used in Section 3.5 to study the random access
system where the receiver only decodes for a subset of users. The proofs of the main theorems are

given in Section 3.6.

3.1 Single-user Random Access System
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For easy understanding, we will first consider single-user random access communication over
a discrete-time memoryless channel. The channel is modeled by a conditional distribution function
Py | x. Assume that time is partitioned into slots each equaling N symbol durations, which is also
the length of a packet. We focus on coding within a time slot or a packet.

Suppose that the transmitter has no channel information except the channel alphabets!'. At
the beginning of each time slot, according to message availability and the MAC layer protocol,
the transmitter chooses a communication rate r € {rqy,---,ryp}, in nats per symbol, without
sharing this rate information with the receiver. Here {ry,--- ,ry} is a pre-determined set of
rates with cardinality M, known by both the transmitter and the receiver. The transmitter
then encodes | Nr| data nats, denoted by a message w, into a codeword using a “random coding
scheme” described as follows [25]%. Let £ = {Cy : 0 € O} be a library of codebooks indexed by
a set ©. Each codebook contains M classes of codewords. The it* (i € {1,---,M}) codeword
class contains |e™N"| codewords, each of N symbol length. Let Cy(w,7); be the j* codeword
symbol of message and communication rate pair (w,r) in codebook Cy, for j € {1,---  N}. The
transmitter first randomly generates 6 according to a distribution +, such that random variables
Xw,ry,j o0 — Co (w,r); are independently distributed according to an input distribution PX‘T3.
The random access codebook Cp is then used to map the message into a codeword. This is
equivalent to mapping a message and rate pair (w,r) into a codeword, denoted by ®(,, ), of N
channel input symbols. We denote (£, ) as this random coding scheme.

We assume the receiver knows the channel Py |x and the randomly generated codebook Cy.

Based on this information, the receiver chooses a rate subset R C {ry,---,7y}. According to

IThe significance of this assumption will become clear when we investigate multi-user systems.

2Note that the coding scheme is an extended version of the random coding introduced in [30] and Section 2.4.

3We allow the input distribution to be a function of communication rate. In other words, codewords corre-
sponding to different communication rates may be generated according to different input distributions.

4This can be realized by sharing the codebook generation algorithm with the receiver.
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the channel output symbol vector y, the receiver outputs an estimated message and rate pair
(w, ) if and only if # € R and a predetermined decoding error probability requirement is satisfied.
Otherwise the receiver outputs a collision. Note that the term “collision” here is used to maintain
consistency with the networking terminology. Throughout the paper, collision means outage,
irrespective whether it is caused by multi-user interference or by excessive channel noise.

Since the receiver intends to decode all messages with » € R and to report collision for messages
with r € R, we say R C {rq,---,rn} is the “operation region” of the system. Conditioned on
(w,r) is transmitted, for r € R, we define the decoding error probability with codeword length N
as

PE(N)(w,T) = Pr{(w,#) # (w,r)|(w,r)}, V(w,r),r € R. (3.1)

For r ¢ R, we define the collision miss detection probability with codeword length N as
PN (w,r) =1 — Pr{“collision”|(w,)}, V(w,r),r € R. (3.2)

As defined in [25], a rate region R is said to be achievable if there exists a series of random
coding schemes (E(N ) (N )) with the decoding error probability and the collision miss detection

probability given in (3.1) and (3.2), such that

lim PM)(w,r) =0, Y(w,r),r € R,

N —oc0

lim PN (w,r) =0, Y(w,r),r&R. (3.3)

N —oc0

In other words, asymptotically, the receiver can reliably decode the message if the random commu-
nication rate r is inside the rate region; the receiver can reliably report a “collision” if r is outside

the rate region. The maximum achievable communication rate region R. is given in [25] by
RC:{T|T€{r17"' 7TM}7T<IT(X;Y)}7 (34)

where I,.(-, -) is the mutual information function of the channel input and output symbols, computed
using input distribution Px|,.. We assume that the operation region is contained in the maximum

achievable rate region, i.e. R C R..
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Equation (3.3) only gives the asymptotic limits on the error probabilities. In the rest of this
section, we derive an achievable error probability bound under the assumption of finite codeword

length N.

Define the system error probability with codeword length N, denoted by P(N) as

Pe(év)—max{ max P™N(w,r), max PN (w,r) (3.5)

(w,r),reR (w,r),r¢R }

The following theorem gives an achievable upper bound on Pe(év ),

Theorem 3.1.1. Consider single-user random access communication over discrete-time memo-
ryless channel Py|x. Assume random coding with input distributions Px|., defined for all r €
{ri,--,rm}. Let R C {ry,--- ,ram} be an operation region. Given a codeword length N, there

erists a decoder whose system error probability Pe(sN ) s upper bounded by

Y ier XP{—NEn (7, Px|r, Px|#)}

PN) < max MaXreR +maxzgr exp{—NEj(r, Px|,, Px|7)} , (3.6)
> rer maxsgr exp{ —NE;(r, Px|., Px|7)}
where By, (7, Px|p, Px|7) and E;(r, Px|., Px|z) are given by
En (7, Pxjr, Pxir) = 05021 —pT‘—FOIil;ié(l
p
—ng ZPX\A )Py x (Y]X)'™ ] > Pxp(X)Pyix (YX)7 |
Ei(r, PX‘T’PX‘T) B omaé —pr+0<r£1<alx p
s+ 1—s
—log ) ZPXT(X>PY|X(Y|X)SLJ‘| > Pxa(X) Py x (Y]X) -(3.7)
Y

The proof of Theorem 3.1.1 is given in Section 3.6.1. In the proof, we assumed the following
decoding algorithm at the receiver to achieve the error probability bound given in (3.6). Upon
receiving the channel output symbols y, the receiver outputs an estimated message and rate pair

(w,r) with r € R if the following condition is satisfied,

1 1
Cl: — NlogPr{ykc(w)r)} < —NlogPr{y|w(w7,:)},
for all (w,7) # (w,r),r,7 € R,

1
C2: — N 1Og‘PT{:y'w(w,r)} < Tr(y)7 (38)
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where 7,.(+) is a pre-determined function of the channel output vy, associated with codewords of
rate . We term 7,.(-) a typicality threshold function. If there is no codeword satisfying (3.8), the
receiver reports a collision. In other words, the receiver decodes only if the log-likelihood of the
maximum likelihood estimation exceeds certain threshold. Note that the random access codebook
used to encode the message contains a large number of codewords, but the receiver only searches
codewords corresponding to rates inside the operation region.

Define the corresponding exponent as the system error exponent Fy = limpy_, —% log Pe(iv ),

Theorem 3.1.1 implies the following achievable bound on Ej.

Corollary 3.1.2. The system error exponent of single-user random access communication given

in Theorem 3.1.1 is lower-bounded by

. 1 N . . -
E, = A}gnoo N log Pe(s ) > min {rr,gg%zEm(r’PXlr’PXF)’re

%ﬁzn Ei(rv PX'T? PX|F)} ) (39)
where By, (7, Px|,, Px|#) and E;(r, Px|., Px#) are defined in (3.7).

Corollary 3.1.2 is implied by Theorem 3.1.1. An alternative proof is given in [52].
Note that if we define the decoding error exponent E; and the collision miss detection exponent

FE,. as

1
Bo=  min 3 "o P (w, 7),

E. = (w,rrr;g‘lgR J\}E}noo —% log PN (w, r), (3.10)
then the system error exponent equals the minimum of the two exponents, i.e., E; = min{Ey, E.}.
The lower bound of E given in (3.9) is obtained by optimizing the typicality threshold function
7-(-) as done in the proof of Theorem 3.1.1. Tt is easy to see that, for each y, the decoding error
exponent E; increases in 7,.(y), while the collision miss detection exponent E. decreases in 7,.(y).
Therefore, 7,.(-) can be used to adjust the tradeoff between E; and E..

Also note that the first term on the right hand side of (3.9) corresponds to the maximum

likelihood decoding criterion C1 in (3.8). This term becomes Gallager’s random-coding exponent [4]
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if the input distributions associated to all rates are identical. The second term is due to the typical
sequence decoding criterion C2 in (3.8). The two criteria, in conjunction, enabled collision detection
at the receiver with a good decoding error performance.

We end this section by pointing out that the probability bound given in (3.6) can be further
tightened, especially when the input distributions corresponding to r € R are similar to each
other. In the special case if the input distributions are identical for all rates, then the term
> rer Xp{—NE,, (7, Px|r, Px|)} in (3.6), which corresponds to the maximum likelihood decoding
criterion C1 in (3.8), can be further improved to Gallager’s bound given in [4]°. However, in a
general case, such improvement makes the error bound less structured comparing to (3.6), and it

gives the same error exponent results. Therefore, we choose to skip the detailed discussion.

3.2 Random Multiple Access System

In this section, we consider K-user time-slotted random multiple access communication over a
discrete-time memoryless channel. The channel is modeled by a conditional distribution Py |x, ... x
where Xy, € Xy (k € {1,---, K}) is the channel input symbol of user k with &}, being the the finite
input alphabet, and Y € ) is the channel output symbol with ) being the finite output alphabet.
Assume that the slot length equals N symbol durations, which is also the length of a packet. We
again focus on coding within one time slot.

Suppose that at the beginning of a time slot, each user, say user k, chooses an arbitrary
communication rate rj, in nats per symbol, and encodes | N7y | data nats, denoted by a message wy,,
into a packet of N symbols. Assume ry € {rg,, - , Tk, }, where {rg,, -+, rg, } is a predetermined
set of rates, with cardinality M, known at the receiver. We assume the actual communication
rates of the users are shared neither among each other, nor with the receiver. Whether the channel

is known at the users (transmitters) is not important at this point. Because the global rate

7

5Specifically, we mean the bound given by (18) in [4] with R = % log ZFGR eNT.
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information is not available, an individual user cannot know a priori whether or not its rate is
supported by the channel in terms of reliable message recovery. Encoding is done using a random
coding scheme described as follows. Let Ly, = {Cpg, : 0r € Ok} be a codebook library of user k,
the codebooks of which are indexed by set ©f. Each codebook contains M classes of codewords.
The " codeword class contains |e™": | codewords, each with N symbols. Denote Cig, (wi, %),
as the j* symbol of the codeword corresponding to message wp and communication rate 7 in
codebook Cig, . User k first generates ), according to a distribution ~, such that random variables
X(w,rn)j - 0r — Cro, (wg, 7)), are independently distributed according to an input distribution
Px|,. User k then uses codebook Cig, to map (ws,r:) into a codeword, denoted by x(y, ), and
sends it to the receiver.

Assume that the receiver knows the channel Py |y, ... x, and the randomly generated code-

K
books of all users. Based on the channel and the codebook information, the receiver predetermines
an “operation region” R, which is a set of communication rate vectors under which the receiver
intends to decode the messages. In each time slot, upon receiving the channel output symbol
vector y, the receiver outputs the estimated message and rate vector pair (w, ) (that contains the
estimates for all users) only if 7# € R and a predetermined decoding error probability requirement
is satisfied. Otherwise the receiver outputs a collision.

To simplify the notations, we will use bold font vector variables to denote the corresponding
variables of multiple users. For example, @ denotes the message estimates of all users, r denotes
the communication rates of all users, P x|, denotes the input distributions conditioned on commu-
nication rates r, etc. For a vector variable r, we will use 75 to denote the element corresponding
to user k. Let S C {1,--- , K} be an arbitrary subset of user indices. We will use rs to denote the
communication rates of users in S, and will use wz to denote the messages of users not in S, etc.

Similar to the single-user system, conditioned on (w, r) is transmitted, we define the decoding

error probability for (w,r) with » € R and codeword length N as

PN (w,r) = Pr{(w, ) # (w,r)|(w,r)},Y(w,r),r € R. (3.11)
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We define the collision miss detection probabilities for (w,r) with » € R and codeword length N
as

PN (w, r) =1 — Pr{“collision” |(w, r)},V(w,r),” & R. (3.12)

A rate region R is said to be achievable if there exists a series of random coding schemes
(L) ~(N)) with the decoding error probability and collision miss detection probability defined in

(3.11) and (3.12), such that

lim P(N)(w,r) =0, Y(w,r),r € R,

e
N—o00

lim PN (w,r) =0, Y(w,r),r ¢ R. (3.13)

N—o00

In other words, asymptotically as N goes to infinity, the receiver can reliably decode the messages
for all rate vectors inside R and can reliably report a collision for all rate vectors outside R. It
has been proved in [25] that the maximum achievable communication rate region for such multiple

random access system R, is given by

RC—{’P

where I.(X 5;Y|Xs) is the conditional mutual information computed using input distribution

e € {rp1, - rem b, ke {l,--- K} }

14
VS C L K1 s 1k < (X Y|Xs) (3:.14)

Px .. We still assume the operation region satisfies R C R..

Define the system error probability Pe(SN ), with codeword length N, as
PN) — max{ max PN (w,r), max PWN) (w,r)} . (3.15)
(w,r),reER (w,r),r¢R

The following theorem gives an upper bound on Pe(sN ),

Theorem 3.2.1. For K-user random multiple access communication over a discrete time memo-
ryless channel Py x. Assume finite codeword length N, and random coding with input distribution

Px |, for all v with ry € {rkyy Tk b 1 <k < K. Let R be the operation region. There exists
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a decoding algorithm, whose system error probability Pe(év ) s upper bounded by

PIY) < max max > ~ Z exp{—NE,(S, 7, Px|r, Px|7)}
SC{l,---,K} TER,PFS=Ts

+ max exp{_NEi(Surv-PXh'uPX\T’)} )

rER,r's=rs

max max exp{—-NE;(S,7,Px,, Px|y , 3.16
heR Z Z; R s p{ ( X| X| )} ( )
Sc{l, ,K}reR,rs=rs

where By (S, 7, Px|r, Px|7) and E;(S,r, Px ., Px|,) are given by

En(S, 7, Px|r, Px|) = max —erk—l- max _IOgZZ HPXW (Xk)

0<p<1

Y Xs keSS
P
DI P X Prix (YIX)' | | D0 T P (Xi) Py x (VX7 |
X s k¢S Xs k¢S
Ei(S,r,Px,, P - - 1 Py (X
(8.7, Pxjr, Pxjpr) = max, PZTk‘i‘Og?Sai’ip ngy:;kgg X (X))
s+p 1—s
ST Pt (X0) Prix (Y| X) 57 ST Py (X0)Prix(Y]X)
X5 k¢S X5 k@S

(3.17)

The proof of Theorem 3.2.1 is given in Section 3.6.2. In the proof, we assumed the following
decoding algorithm at the receiver to achieve the error probability bound given in (3.16). Upon
receiving the channel output symbols y, the receiver outputs an estimated message vector and rate

vector pair (w,r) with » € R if both the following two conditions are satisfied.

1 1
Cl: = log Priyl@w n} < — log Pri{yle,m ),
for all (w,7) # (w,r),r,7 € R,

1
C2: — N log Pr{y|®(w,r} < 7 (Y), (3.18)

where 7,.(+) is a pre-determined typicality threshold function of the channel output vy, associated
with codewords of rate r. If there is no codeword satisfying (3.18), the receiver reports a collision.
Define the corresponding exponent as the system error exponent Fy; = limpy_, —% log Pe(év ),

Theorem 3.2.1 implies the following achievable bound on FEj.
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Corollary 3.2.2. The system error exponent of the random multiple access communication system

gwen in Theorem 3.2.1is lower-bounded by

E, > min min min En(S,7, Px|r, Px|7),
Sc{1, ,K}r,7reER,rs=Ts

i i Ei(S,7, Pxip, Pxis) b 1
Sc{rﬂ?.riK}’r‘GRi‘gl']lzr}’r‘s:f‘s (S T XIT XIT)} (3 9)

where Ep, (S, 7, Px|r, Pxi) and E;(S,r, Px|,, Px|) are defined in (3.17).

Corollary 3.2.2 is implied by Theorem 3.2.1.
Similarly to the single-user system, if we define the decoding error exponent E; and the

collision miss detection exponent F. as

1
Foeomin i L loe POV
! (w,f*r)l,l?en,zvl_rgo N 8 te (w, ),

1 _
_ . . L (N)
E. (w,%l,ggn A}gr(l)o I log P.") (w, r), (3.20)
then the system error exponent equals the minimum of the two exponents, i.e., E; = min{Ey, E.}.

Again, instead of optimizing the typicality function 7.(-) to lower bound Ej, 7,.(-) can be used to

adjust the tradeoff between F; and E..

3.3 Error Performance under Generalized Random Coding

In the previous sections, we used the practical definition of communication rate, i.e., com-
munication rate equals the normalized data nats per symbol encoded in a packet. Codewords of
each user are partitioned into M classes each corresponding to a rate option. This is equivalent
to indexing the codewords using a message and rate pair (w,r). We assumed codeword symbols
within each class, i.e., corresponding to the same r, should be randomly generated according to the
same input distribution. In this section, we extend the results to the generalized random coding
scheme [25] where symbols of different codewords, as opposed to different codeword classes, can
be generated according to different input distributions.

We will index the codewords in a codebook using a macro message W, which is essentially

another expression of the (w,r) pair used in previous sections. In other words, W contains both
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information about the message w and the rate r in practical senses. The generalized random

coding scheme is defined originally in [25] as follows.

Definition 3.3.1. (generalized random coding [25]) Let L = {Cyp : 0 € ©} be a library of
codebooks. Fach codebook in the library contains e™NTmax codewords of length N, where Ripax is an
arbitrary large finite constant. Let the codebooks be indexed by a set ©. Let the actual codebook
chosen by the transmitter be Cyp where the index 6 is a random variable following distribution ~y. Let
W e {1, ,eNtmax} be a macro message used to index the codewords in each codebook. Denote
Co(W); as the j" symbol of the codeword corresponding to macro message W in codebook Cp. We
define (L,v) as a generalized random coding scheme following distribution Pxw, if the random
variables Xy ; : 0 — Co(W);, Vi, W, are independently distributed according to input distribution

PXIW.

Note that a generalized random coding scheme allows codeword symbols corresponding to
different messages to be generated according to different input distributions. Because codewords
are indexed using macro message W, communication rate r becomes a function of W. Consequently,
the practical communication rate r used in previous sections only represents a specific choice of
the rate function. In order to distinguish codewords from each other in rate and error performance
characterization, in this section, we will switch to the following standard communication rate

definition, originally introduced in [25].

Definition 3.3.2. (standard communication rate [25]) Assume codebook C' has e™NFmax code-
words of length N, where Rmax 15 an arbitrary large finite constant. Let the corresponding messages
or codewords be indexed by W € {1,--- eNBmax}l For each message W, we define its standard

commaunication rate, in nats per symbol, as r(W) = % logW.
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Since the standard rate function r(W) = % log W is invertible, system performance charac-
terized in any other rate function can be derived from that of the standard rate function [25]°.
The following definition specifies a sequence of generalized random coding schemes following

an asymptotic input distribution.

Definition 3.3.3. (asymptotic input distribution [25]) Let {(L™), v} be a sequence of
random coding schemes, where (E(N),W(N)) is a generalized random coding scheme with codeword

NR,

length N and input distribution p) Assume each codebook in library L&) has e™NTmex code-

X|W ) -
words. Let Py, be an input distribution defined as a function of the standard rate v, for all

r € [0, Ruax]. We say {(LN), NN} follows an asymptotic input distribution Px|y., if for all

(WY sequences with well defined rate limit limy oo 7(WWN)), we have

. N .
J\}E)noo P;(qv)vu\z) = J}gnw Py jrwa)- (3.21)

Note that since we do not assume PX‘T is continuous in r, we may not have impy_, o leT(W(N)) =
PX| limpy o0 (W) -

Let us still use bold font vector variables to denote the corresponding variables of multiple
users. Theorem 3.3.4 gives the achievable error exponent of a random multiple access system using

generalized random coding.

Theorem 3.3.4. Consider K-user random multiple access communication over a discrete-time
memoryless channel Py |x using a sequence of generalized random coding schemes, denoted by
(™) NN, Assume that {(LN),yNN} follows asymptotic distribution Px\.. For any user

k, assume Px, ), is only discontinuous in 13, at a finite number of points. Let the operation region

75
R be strictly contained in an achievable rate region, specified in [25]. Equation (3.19) gives an

achievable lower bound on the system error exponent Es, with rates in the equation being the

standard communication rates.

6Note that the standard rate is defined here using the natural logarithm, while it was defined using the base-2
logarithm in [25].
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The proof of Theorem 3.3.4 is given in Section 3.6.3. In the proof, an achievable error proba-

bility bound in the case of a finite codeword length is also given in Lemma 3.6.1.

3.4 Random Access Communication over Compound Channels

In this section, we relax the assumption that the channel state information is known at the
receiver. We assume that the random multiple access communication takes places over a compound
channel, which consists of a family of discrete-time memoryless channels, characterized by a finite
set of conditional probabilities {Px(/lﬁxv cee P)(,If))(} with cardinality H. For each time slot, a channel
realization is randomly generated from this set and remains static within the slot duration. We
assume that all users and the receiver know the compound channel set, but not the actual channel
realization. For the time being, we will assume that H < oo. The case when the compound channel
set contains an infinite number of channels will be discussed at the end of this section.

Similarly as in Section 3.1 and Section 3.2, we still focus on channel coding within one time
slot. The same random coding scheme is used to encode the transmitted messages of all users.
We assume that the receiver is shared with the random codebook generation algorithms and
hence knows the randomly generated codebooks of all users. Before packet transmission, the
receiver pre-determines an “operation region” R = {(r, Py|x)}, which is a set of rate vector and
channel realization pair, where each entry of r is chosen from the corresponding rate set, i.e.,
re € {resemary (€ {1+ KD, and Pyix € {Pk. o PYY L Let (r, Prix) be the
actual realization of the transmitted rate vector and channel pair. We assume that the receiver
intends to decode all messages if (r, Py|x) € R, and intends to report a collision if (r, Py x) ¢ R.
Note that the actual rate and channel realization (r, Py|x) is unknown at the receiver. Therefore
the receiver needs to make decisions whether to decode messages or to report a collision only based
on the received channel symbols. More specifically, in each time slot, upon receiving the channel
output symbols y, the receiver estimates the rate and channel pair, denoted by (7, Py‘ x ), for all

users. The receiver outputs the corresponding estimated message and rate vector pair (w, ) if

(7, Py| x) € R and a pre-determined decoding error probability requirement is satisfied. Otherwise,
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the receiver reports a collision. Also note that, whether the receiver should recover the messages
or report a collision not only depends on the rates, but also depends on the channel realization. In
other words, for the same transmission rate vector, the receiver may be designed to take different
actions for different channel realizations. This is opposed to the conventional compound channel
communication scenario where, if a rate is supported by the system, the receiver should always
decode the messages irrespective of the channel realization.

Given the operation region R, and conditioned on that (w,r) is transmitted over chan-
nel Py x, we define the following three error probabilities. The decoding error probability, for

(w,r, Py|x) with (r, Py|x) € R, is defined as
Pe(w,r, Py x) = Pr {(ﬁ;,f“) + (w,r)|(w,r,Py‘X)} , Y(w,r, Py x),(r,Pyx) €R. (3.22)
The collision miss detection probability, for (w,r, Py|x) with (r, Py|x) ¢ R, is defined as

Pc(wm)py‘x) =1 — Pr { “collision”|(w, r, Py x)}

—Pr{(w,7) = (w,7)|(w, 7, Prix)},

V(’LU,"’,Py|X),('r’,Py‘X) %R (323)

Note that in (3.23), when (r, Py|x) ¢ R, we have excluded the correct message and rate pair
estimation from the collision miss detection event.

Let S C {1, -+, K} be an arbitrary user subset. Assume that >, s 7k < I, py ) (X5 Y[ Xs)
for all (r, Py x) € R, where X s denotes the channel input symbols of users in set S, and X 5 de-
notes the channel input symbols of users not in set S. I, Py x) is the mutual information function
computed using input distribution corresponding to rate vector r (i.e., Px|,) and channel Py |x.

We define the system error probability P.s as

P., = max {

max Pe(wm Py x)»
(w,r,Py|x),(r,Py|x)ER ' ‘

max P, . 3.24
(1,7, Py 3 ),(m Py x ) ER (’””’PYX’} (3:24)

The following theorem gives an upper bound on the achievable system error probability Pe.
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Theorem 3.4.1. Consider K-user random multiple access communication over compound discrete-
time memoryless channel {P)(/1|)X7 e ,P)(,Ir;)(}, where H < 00 is a positive integer. Lel Px |, be the

input distribution for all users and all rates. Let R be the operation region. Assume finite codeword

length N. There exists a decoding algorithm, whose system error probability Pe(SN) is upper bounded

by,
Pe(év) < max max Z
("')PY\X)GRSC{I)'”)K}
Z exp{—NE,(S,7,7, Py x, Pyx)}

(#Py|x)ER,Fs=Ts

max eXp{—NEi(S,T,T/,Pylx,P{/X)}] )

(1, Py x )ER T =75

max ) >

(T’PY‘X)QRSC{L'“ K} (r, Py |x)ER,rs=Fs

max exp{—NEi(S,r,r’,PY‘X,P)’,IX)} , (3.25)
(r",P ‘X)QR ’r‘s—’!‘s

where Em(S,r,i’,PHX,Py‘X) and EZ—(S,T,T’,PY‘X,P)’,IX) are given by

E.(S,r,T Py‘X,Pylx = max —erk—l— max _1OgZZHPXW k)

0<p<1

Y Xs keS
P
YOI P X Prix (YIX)' | | D0 T P (Xi) Py x (VX7 |
Xg k¢S X g k¢S
!/ /
Ei(Svrvr aPY|X7PY‘X - Oglggl _PZ Tk + <m<a'X logzz H P,X\’r;c
Y Xs keSS
s+p 1—s
ST P (Xi) Py x (Y] X) 55 ST P (X0) P x (Y]X)
X5 k¢S X5 k@S

(3.26)

The proof of Theorem 3.4.1 can is given in Section 3.6.5.

When the compound channel is randomly generated at the beginning but remains static
afterwards, one can take codeword length to infinity to obtain the system error exponent as Ey =
mpy— oo —% log P.s. The following lower bound on the achievable system error exponent F, can

be easily derived from Theorem 3.4.1.
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Corollary 3.4.2. The system error exponent of a K-user multiple random access system over

compound discrete-time memoryless channels given in Theorem 3.4.1 is lower-bounded by

ES Zmln le E’m(SvrvaaPY|X7PY\X)a
(r,Py|x),(7,Py|x)€ER,
min _ Ey(S,7, % Pyx.Pyx) ¢, (3.27)
(r,Py|x)ER, (7 Py |x)ER,

where Em(S,’f’,’;’,Pyp(,Py‘X) and Ei(S,’r’,’;’,Pyp(,py‘X) are given in (3.26).

Compared with the error exponent derived in Corollary 3.2.2, we can see that, even though the
channel stays static forever, the system still needs to pay a penalty in error exponent performance
for not knowing the channel at the receiver”.

In both Theorem 3.4.1 and Corollary 3.4.2, we have assumed that there are only a finite
number of channels in the compound set. Next, we will extend the result to the case when the
cardinality of the compound channel set can be infinity.

We first assume that the the channels in the compound set can be partitioned into H classes,
denoted by {}'(1), e ,]-'(H)}, where H < oo is a positive integer. For example, if the compound
channel set contains fading channels with continuous channel gains, one could quantize the channel
gains and define the set of channels with the same quantization outcome as one channel class.

We next assume that the receiver should choose an operation region R to satisfy the following

constraint for any rate vector r and channel class F € {f(l), e ,f(H)}.

C1: For any (r,F), either (r, Py|x) € R VPy|x € F,
or (’I’,Py‘X>€RVPy‘X€]: (328)
We say (r, F) € Rif (r, Py|x) € R for all Py|x € F, and we say (r, F) ¢ R otherwise.

For each channel class F and for each channel output symbol Y and input symbol vector X,

we define the following upper and lower bounds on the conditional probability values yielded by

"We assume that such a conclusion should be well known for the conventional compound channel communica-
tion. However, we are not able to find a reference that made such a clear statement.
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channels in F, denoted by PZ_ (YV|X) and PZ, (YV|X),

Y|X P, Y| X
max( | ) P;I}‘l)?)éf Y\X( | )a

Y|X in P Y|X). 3.29
mln( | ) PJTI;%]__ Y|X( | ) ( )

The following theorem gives an upper bound on the achievable system error probability.

Theorem 3.4.3. Consider a K -user multiple random access communication system over a com-
pound discrete-time memoryless channel. Assume that the compound set is partitioned into H
classes, denoted by {f(l), e ,f(H)}, where H is a finite positive integer. Assume that the oper-
ation region R satisfies constraint C1 given in (3.28). The system error probability P.s is upper

bounded as follows.

Pes< _NElsv ) /afvf/
< max (T{I}%)E(RSC{; . [(r’,F')rg%);js—rs exp { (S,r,r )}

+ Y e {-NEuSFF P}

(;‘,.7:—)67?,7';‘5:1'5

‘max Z Z o _max  exp{—NE(S,r,v",F,F)}| o. (3.30)
FFVER s i k) |(rF)eRms=rs T ERTS=TS

where Em(S,r,i“,]:,]:') and E;(S,r,v', F,F') are given by

S5 5) = s 0 e s s £ T P 0

Y Xs keS

Z H PX|rk X/C Prfax(le) mm(Y|X)

X5 k¢S
P
Z H PX|7~‘k (Xk)Prfax(Y|X)%
X5 k¢S
!
E/(S,r, v, F,F')= Jnax, —pZm +0<r£1§af< logzz H Pxp, (Xk)
k¢S Y Xs keS

s+p

Z H PX|rk X/C Pn]l:dx(le) mm(Y|X)
X s k€S
1-s
Z H PX|7‘ Xk Pnjl:ax(Y|X)
X s k¢S
(3.31)
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The proof of Theorem 3.4.3 is given in Section 3.6.6. As shown in the proof that, in order
to make decoding and collision report decisions, the receiver only needs to search over the finite
number of channel classes using statistics P, and PZ. defined in (3.29), as opposed to searching

max min

among all possible channels.

3.5 Individual User Decoding

In Section 3.2, we have assumed that the receiver either decodes messages or reports collisions
for all users in the system. In practical applications, even though many users compete for the
wireless channel, it is common that the receiver may not be interested in recovering messages for
all of them. In this section, we show that the results obtained in Section 3.2 can help to derive
error probability bounds in a random multiple access system where the receiver is only interested
in recovering the messages from a user subset. However, to simplify the notations, we will only
consider a special case when the communication channel is known at the receiver, and when the
receiver is only interested in decoding for a single user. Generalizing the results to decoding for
multiple users over a compound channel is straightforward.

Let the discrete-time memoryless channel be characterized by Py |x, which is known at the
receiver. In each time slot, each user chooses a communication rate and encodes its message using
the random coding scheme described in Section 3.2. The rate information is shared neither among
the users nor with the receiver. We assume that the receiver is only interested in recovering the
message for user k € {1,---, K}. We assume that the receiver chooses an operation region R, such
that if the transmitted rate vector r satisfies r € R, the receiver intends to decode for user k, and
if » € R, the receiver intends to report a collision for user k. It is important to note that, first,
whether the receiver will be able to decode the message of user k, not only depends on the rate of
user k, but also depends on the rate of other users. Therefore, the operation rate region R should
still be defined as a set of rate vector r, as opposed to the rate of user k. Second, even though the
receiver only cares about the message of user k, the receiver still has the option of decoding the

messages for some other users if this helps to improve the communication performance of user k.
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This implies that, based upon the received symbols, the receiver will essentially need to make a
decision on which subset of the messages should be decoded.

Due to the above understandings, we first define an elementary decoder, called the “(D, Rp)-
decoder”. Given a user subset D C {1,---, K} and an operation rate region Rp, the “(D, Rp)-
decoder” intends to recover messages for users in D while regarding signals from users not in D
as interference, if the communication rate vector is within the operation region Rp. We define
the following error probabilities for a (D, Rp)-decoder. Conditioned on users in D transmitting
(wp,rp) and users not in D choosing rate r5, let us denote the estimated messages and rates
by (wp,#p) and 745 if the decoder does not report a collision. We define the decoding error

probability of the (D, Rp)-decoder for (wp,rp,rs) with » € Rp as

Pe(wp,rp,7p) = Pr{(wp,?p) # (wp,rp)|(wp,rp,75)},

Y(wp,rp,r5),T € Rp. (3.32)

We define the collision miss detection probability for (wp,rp,r5) with r € Rp as

P.(wp,rp,rp) =1— Pr{“collision”|(wp,rp,r5)}
—Pr{(wp,7p) = (wp,rp)|(wp, 7D, 75)},

Y(wp,rp,r5), T € Rp. (3.33)
System error probability of the (D, Rp)-decoder is defined by

P.s(D,Rp) = max{ max P.(wp,rp,r5),

(wp,rp,7p),”ERD

max P.(wp,rp, ’I“D)} . (3.34)

(wp,rp,rp), "R
Given a finite codeword length N, the following lemma gives an upper bound on the achievable

system error probability of a (D, Rp)-decoder.

Lemma 3.5.1. The following system error probability bound is achievable for a K-user random

multiple access communication system over a discrete-time memoryless channel Py x with an
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(D, Rp)-decoder,

Pes (Dv RD) < max { max E exp{_NEmD(Sa r, ’F)}
TERD _
SCD T € Rp,
g =Tg

+ max exp{—NE;p(S,r,7")}|,
T'QRDy
rs="Tg

maxz Z max exp{—NE;p(S,r,7")} 7,

7¢R r ¢ Rp,
DSCD ’:5637?5’ 'r'fs :i??s
(3.35)
where Epmp(S,r,7) and E;p(S,r,r") are given by,
E.p(S,r,7) = max —p Z T + max —1ogzz H Px |, (Xk)
0<p<1 reD\S 0<s<1 Y Xahes
<\ > I Pan(X0P(Y|Xp,rp)
Xp\s keD\S
P
<| > Il Pxin(X0P(YIXp.7p)7 |
Xp\s keD\S
" _
Eip(S,rr') = max —p 3 rt max —logd > [] Pxin.(X)
keD\S Y Xs keS
s+p
x| > I Pxin(X0PY|Xp.rp) 7
Xp\s keD\S
1—s
< | >° T P (Xe)P(Y|Xp,75) ; (3.36)
Xp\s keD\S
with P(Y| X p,r5) in the above equations defined as
P(Y|Xp,rp) = [] Pxir(Xi)Pyix (Y] X). (3.37)

Xp keD

Proof. Since the decoder regards signals from users not in D as interference, given that users not
in D choose rate r5, the multiple access channel experienced by users in D is characterized by
P(Y|Xp,rp) as specified in (3.37). The system can therefore be regarded as a random multiple
access system with |D| users communicating over a compound channel characterized by the set

{P(Y|Xp,75)|¥vrp}. Consequently, Lemma 3.5.1 is implied directly by Theorem 3.4.1. O
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Next, we will come back to the system where the receiver is only interested in the message
of user k. We assume that for each user subset D C {1,---, K} with k € D, the receiver assigns
an operation region Rp C R for the (D, Rp)-decoder. That is, if the transmission rate r satisfies
r € Rp, the receiver intends to use the (D, Rp)-decoder to recover the message of user k. It is

easy to see that we should have,

R = U Rop. (3.38)
D:DC{1,--,K},keD

Assume that the receiver (single-user decoder) carries out all the (D, Rp)-decoding operations.
The receiver outputs an estimated message wy, for user k if at least one (D, Rp)-decoder outputs
an estimated message, and all estimation outputs of the (D, Rp)-decoders for user k are identical.
Otherwise, the receiver reports a collision for user k.

Let the transmitted rate vector be r, and the transmitted message of user k be wy. We define

the decoding error probability P.(wy,r), the collision miss detection probability P.(wy,r) and the

system error probability P., as follows,

Pe(wk,r) = PT{(lI)k,fk) 75 (wk,rk)|(wk,'r)} ,V(wk,r),r €ER,

P.(wy,r) =1 — Pr{“collision”|(wy, r)}
_PT{(wka":k) = (wk,Tk)Kwk,’l")},V(’LU]C,’I’),T' ¢ R,

Pes_max{ max _ P.(wg,r), max Pc(wk,'r)}. (3.39)

(wk,’l'),'I‘ER (wk)r)vrgR
The following theorem gives an upper bound on the achievable system error probability of the

single-user decoder.

Theorem 3.5.2. Consider a K-user random multiple access system over a discrete-time memory-
less channel Py x, with the receiver only interested in recovering the message for user k. Assume
the receiver chooses an operation region R. Let o be an arbitrary partitioning of the operation

region R satisfying

R - U RDv
D:DC{1,--- ,K},keD

Rp NRp =¢,¥D,D' C{1,--- ,K},D' #D,keD,D. (3.40)
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System error probability of the single-user decoder is upper-bounded by,
P., < min > P.o(D,Rp), (3.41)

where Pes(D, Rp) is the system error probability bound of the (D, Rp)-decoder, and can be further

bounded by (3.35).

Proof. Because a (D, Rp)-decoder can always choose to report a collision even if it can decode
the messages, its system error probability can be improved by shrinking the operation region Rp.
This implies that the receiver of the random access system should partition its operation region
R into Rp regions that do not overlap with each other. In other words, replacing (3.38) by (3.40)

will not hurt the system error performance. The rest of the proof is implied by Lemma 3.5.1. O

Note that the system error probability bound provided in Theorem 3.5.2 is implicit since the
optimal partitioning scheme o that maximize the right hand side of (3.41) is not specified. To
find the optimal partitioning, one essentially needs to compute every single term on the right hand
side of (3.41) and (3.35) for all rate options and all user subsets. Because both F,,p(S,r,#) and
Eip(S,r,r") defined in (3.36) involve the combinations of two user subsets and two rate vectors,

the computational complexity of finding the optimal partitioning scheme is O ( (2M)2E )

3.6 Proofs

In this section, the proofs of the main theorems are provided.

3.6.1 Proof of Theorem 3.1.1

To derive the system error probability upper bound, we assume that the receiver uses the
decoding algorithm whose decoding criteria are specified in (3.8).

We next define three probability terms that will be extensively used in the probability bound
derivation.

First, assume that (w,r) is the transmitted message and rate pair with » € R. We define

Pur,7 as the probability that the receiver finds another codeword with rate 7 € R that has a
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likelihood value no worse than the transmitted codeword.

Pm[r,f‘] =Pr {P(y|w(w,7‘)) < P(y|w(w,7~‘))} s (’(D, 7:) 7é (wa T)a rER. (342)

Second, assume that (w,r) is the transmitted message and rate pair with r € R. We define
Py, as the probability that the likelihood of the transmitted codeword is below a predetermined
threshold.

Por = Pr{P(ylw, ) < V0], (3.43)

where 7,.(y) is a threshold, as a function of r and y, that will be optimized later®.
Third, assume that (@,7) is the transmitted message and rate pair with 7 ¢ R. We define
Pjj7,1 as the probability that the receiver finds another codeword with rate r € R that has a

likelihood value above the required threshold.
Pisry = Pr{Pylag.n) > e V@1, (w,r) # (@,7),r € R, (3.44)

With these probability definitions, we can upper bound the system error probability Pe(SN ) by

(N) < _ -
Pes = max {lglea%i;apm[r,r] + By, IFI;{%,%CTGZRH[T,T]} . (345)

Next, we will upper bound each of the probability terms on the right hand side of (3.45).

Step 1: Upper-bounding P, 7-

Assume that (w,r) is the transmitted message and rate pair with r € R. Given r,7 € R,
Pujr,7 can be written as

P = Eo Zp(y|$(w,r))¢m[r,f](y) ; (3.46)
Yy

where ¢m[r,7’] (y) = 1if P(ylw(w,r)) < P(ylw(ﬁ)f)) for some (u~)7f) 7& (w,r), and ¢m[r,7’] (y) =0

otherwise.

8Note that the subscript r of 7, (y) represents the corresponding estimated rate of the receiver output. Although
with an abuse of the notation, we occasionally use the same symbol r to denote both the transmitted rate and the
corresponding rate estimation at the receiver, it is important to note that we do not assume the receiver should
know the transmitted rate.
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Revised from Gallager’s approach [4], for any p > 0 and s > 0, we can bound ¢, (y) by

Zi),(qﬂ,f‘);ﬁ(w,r) P(y|?:(@7;))%
P(y|w(w,r));

P
Prmpri (Y) < [ ] ., p>0,5>0. (3.47)

Consequently, P, 7 is upper bounded by

IN

Ey

Pm[r,f‘] Zp(y|w(w,r))

Y

s9p
[Zw,(w,f)#w,r)P(y|m(w,f))”] ]
P(y|w(w,r));

p

Ey Zp(y|w(w,r))l_s Z (yl:c w,T) )%

Y w,(0,7)#(w,r)

p

ZEG y|w(w 7‘)) _S} Ey Z P(y|m(u~1,?))% ) (348)

w,(w,7)#(w,r)

where in the last step, we can separate the expectation operations due to independence between

cc(w)r) and m(@i)'

Now assume that 0 < p < 1. Inequality (3.48) can be further bounded by

p
Zpy|w(wr) ;] ‘|

p

IN

Pm[r,f‘] Z EG y|w(w 7‘) S

NPTZEG (Y[ (0)) ] [Ee [P(y|$(@,f))%ﬂ

IN

ZPX|T )Py x (Y]X)?

o\ N
= eNﬂf{zyj } (3.49)

Since (3.49) holds for all 0 < p < 1, s > 0, and it is easy to verify that the bound becomes

ZPXM )Py x (Y|X)'~ ]

trivial for s > 1, we have

Pm[r,f‘] < exp{_NEm(f7PX|r7PX|7~‘)} ) (350)

where E, (7, Px|, Px|#) is given in (3.7).
Step 2: Upper-bounding P;,.

Assume that (w, ) is the transmitted message and rate pair with » € R. Rewrite P, as

Py, = Ey Zp(y|w(w,r))¢tr(y) ’ (351)
Yy

where ¢y (y) = 1 if P(y|z () < e V™), otherwise ¢, (y) = 0. Note that the value of 7,(y)

will be specified later.
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For any s; > 0, we can bound ¢ (y) as

e~ Ns17r(y)

rY) < 57—
(bt (y) P(y|w(w,7‘))sl

51> 0. (3.52)

This yields

S
5
INA

B |3 Pl e e

ZE@ (Y] (w,r )1_51} e Ns17r(v), (3.53)

We will come back to this inequality later when we optimize 7,.( y).

Step 3: Upper-bounding Py .

Assume that (w,7) is the transmitted message and rate pair with 7 ¢ R. Given r € R, we
first rewrite Pz, as

Pz = Ey

ZP(y|w(wi)>¢i[F,r] (y)] ) (3.54)

Y

where ¢;(7,1(y) = 1 if there exists (w,r) with r € R to satisfy P(y|z(, ) > e V¥ otherwise

¢i[f~,r] (y) =0.
For any sy > 0 and p > 0, we can bound ¢;[7 () by
527P
Z P( wr))72 ~
Gir(y) < N , 89>0,p>0. (3.55)

This gives,

p
Pi[f‘,r] ZP(y|m(w,r))§‘| 6N52Tr(y)

IN

ZP(y|w(w,f))
y

= ZEH (Ylz

Note that we can separate the expectation operators in the last step due to independence between

P
ZP(y|m<w,r))Sﬁ2] eNo2Tr(y), (3.56)

:I}(w_rr) and :I}(ﬁm:).

Assume 0 < p < 1. Inequality (3.56) leads to

2 p SaT, or
Pi[F,r] < ZEG y|m(w 7‘))] |: |:P(y|m(w,r)) ? :|:| eN 2 T(y)eNp

maXZEg (ylT@,m)] {Ee |:P(y|$(wm))sﬁ2:|}ﬁestTr(y)eNﬁT' (3.57)

IN
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Note that the bound obtained in the last step is no longer a function of 7.

Step 4: Choosing 7,(y).

In this step, we determine the typicality threshold 7,.(y) that optimizes the bounds in (3.53)
and (3.57).

Let us define 7 ¢ R as

P —argmaXZEe y|w(wr))]{ [P(y|$(w,r))%2}}ﬁeN””(y)eNﬁT. (3.58)
TR

Given r € R, y, and the auxiliary variables s1 > 0, so > 0, 0 < p < 1, we choose 7,.(y) such that

the following equality holds,

Eg [P(yla,n)' " e V@)

= Ey [P(y|m(w,f*))} {Ee |:P(y|w(w,r))572:| }peN””(y)eNﬁT. (3.59)

This is always possible since the left hand side of (3.59) decreases in 7,.(y) while the right hand
side of (3.59) increases in 7, (y).
Equation (3.59) implies

52

(o [Pl )]} {Ea [Plylagun) #]) 7 Mot

e Nmy) = - (3.60)
{EG [ y|w(w 7‘))1 Sl} } e
Substituting (3.60) into (3.53) yields
51
P < Z {Eo [Pyl@n)' =1} 7% (B [Plylegs-)]} 777
[ V. 515
x {Ee [P(ylww,r))ﬂ }”“2 eVt (3.61)
Let sy < pands; =1-— %2. Inequality (3.61) becomes
3 __p=sy p(p—s2)
Por < Z{E‘) [ (ylz w))ﬂ}p o {Bo [P(ylwa,)] } 7072 N0AnT. (3.62)
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Now do a variable change with p = % and s =1 — %, and note that s+ p < 1.

Inequality (3.62) becomes

P, < Z {Eg [P(y|w(wﬁd))¢sp} }S+P {Ee [P(y|fv(u~1i*))]}l—s eNor

y
s+p
= max Z ZPX|T(X)PYX(Y|X)SL)‘|
y L'x
1-s\ NV
X | > Pxip(X) Py x (Y] X) eNer. (3.63)
X

Following the same derivation, we can see that Pj; . is also upper-bounded by the right hand

side of (3.63). Because (3.63) holds for all 0 < p <1 and 0 < s <1 — p, we have
Pir, Py 41 < max exp{—NE;(r, Px|r, Px|7)}, (3.64)

where E;(r, Px|,, Px|7) is given in (3.7).
Finally, substituting (3.50) and (3.64) into (3.45) gives the desired result.

3.6.2 Proof of Theorem 3.2.1

Due to the involvement of multiple users, notations used in this proof are rather complicated.
To make the proof easy to follow, we carefully organize the derivations according to the same
structure as the proof of Theorem 3.1.1. Because Theorem 3.1.1 is indeed a simplified single-user
version of Theorem 3.2.1, it will help significantly if the reader follows the proof of Theorem 3.2.1
by comparing it, step by step, to the proof of Theorem 3.1.1.

We assume the receiver uses the decoding algorithm whose decoding criteria are specified in
(3.18). However, to facilitate the derivation, we first need to make a minor revision to the decoding

rules.
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Given the received channel symbols y, the receiver outputs a message and rate vector pair

(w,r), with » € R, if for all user subsets S C {1,---, K}, the following two conditions are met.

1 1

CIR: — < log Priyl@(w,n} < -5 log Pr{ylzw@.m},
for all (w, ) with 7 € R, (ws,Ts) = (ws,Ts),
and (ﬁ}k,fk) 75 (’u}k,T;@),Vk €S,

1
C2R: — N log Pr{y|®(wr} < 7(r.5)(Y) (3.65)

Note that in Condition C1R, we added the requirements of (ws,7s) = (ws,rs) and (wg, ;) #
(wi, 1), Vk ¢ S. The union of Conditions C1R over all user subsets S C {1,---, K} gives Condi-
tion C1 in (3.18). In Condition C2R, we assume that the typicality threshold 7, s)(y) depends on
both r and S. By taking the union over § C {1,---, K}, Condition C2R in (3.65) implies that the
typicality threshold in Condition C2 of (3.18) should be set at 7.(y) = mingc(i.... x} T(r,s)(Y)-
In the rest of the proof, we will analyze the probabilities and optimize the thresholds 7, s)(y)
separately for different S.

Given a user subset S C {1,---, K}, we define the following three probability terms that will
be extensively used in the probability bound derivation.

First, assume that (w,r) is the transmitted message and rate pair with » € R. We define
Ppr7,s] as the probability that the receiver finds another message and rate pair (w, ) with € R,
(ws,7s) = (ws,rs), and (W, Tr) # (wg,rk), Vk € S, that has a likelihood value no worse than

the transmitted codeword.
Ppipis) = Pr{P@|@wm) < PYlew:)},
(ﬁ)v ’F)v T C Ra ('11)5, 7:5) = (wSa 7"5), (’UNJk, ’Fk) # (U)k, Tk)a vk g S. (366)

Second, assume that (w,r) is the transmitted message and rate pair with r € R. We define
Py 51 as the probability that the likelihood of the transmitted codeword is no larger than the

predetermined threshold 7, s)(y).
Pt[r,S] =Pr {P(y|w(w,r)) < e_NT(T’S)(y)} s (367)
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where the threshold 7(, s)(y) will be optimized later?.

Third, assume that (w,7) is the transmitted message and rate pair with # ¢ R. We define
P r.s] as the probability that the receiver finds another message and rate pair (w,r) with r € R,
(ws,rs) = (ws,Ts), and (wg, ) # (Wk,7),Vk € S, that has a likelihood value above the

required threshold 7, s)(y).

Pily r.5) = Pr {P(y|:c(w),,)) > e*N"(r,&(y)} 7

('w,r),r eR, (wg, ’l“s) = (’1173, ’l~“3), (wk, T‘k) 75 (ﬂ)k,fk),Vk € S. (3.68)
With these probability definitions, we can upper bound the system error probability Pe(sN ) by

PN < max{ maXrer ZSC{L»»»,K} 2R is=rs Lmir.s] T Pt[hs]} ’ } ) (3.69)

maXsgR 230{1,»»» K} Eren,rszis Piig s
Next, we will upper bound each of the probability terms on the right hand side of (3.69).
Step 1: Upper-bounding P, #,s]-
Assume that (w,r) is the transmitted message and rate pair with » € R. Given r,7 € R,
Ppr.7#,5) can be written as

Pm[r,’?-,S] = Fg Zp(y|w(w,T))¢m[T,i',$] (y)] ) (370)
Yy

where ¢ppr 7.5)(Y) = 1 if P(Y|T(w,r) < P(y|T@.7) for some (w,7), with (ws,7s) = (ws,rs),
and (Wg,7x) # (Wi, ),V € S. dmir5.s51(y) = 0 otherwise.

For any p > 0 and s > 0, we can bound ¢,,[» 7 s)(y) by

Eﬁh(ﬁ’si‘s):(ws17‘5)1(71)1@fk)#(wkmk)Nk?ZS P(y|:13(ﬁ,1,:))5
Pylx(wr)*

P
Pnr.7,5(Y) < ] . p>0,5>0. (3.71)

9As in the single-user case, the subscript r of T(,,.,s)(y) represents the corresponding estimated rate of the
receiver output. Note that we do not assume that the receiver should know the transmitted rate.
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Consequently, P, #s) is upper bounded by

Pm[r,?',S] < EO Zp(y|$(w,r))
Yy
sqp
X Db (s 7 )=(wes ) (k. 74) £ (Wi i) VKES (y|""<@-i‘>)p] ]
(y|$ 'w.,T))
= ZEO ylw(w r)) -
P
X Z P(y|w(ﬁ;,i'))%
ﬂ) (@s,;‘s):(ws,rs) (ﬁlk fk)#(wk;"’k) Vk&s
= ZEHS Eos [P(YlT(w,r)'*] Eos
P
X Z P(y|$(w,;«))% 5

w,(Ws,Ts)=(ws,rs),(Wr,7r)#(Wk, k), VEES

(3.72)

where in the last step, we can take the expectations operations over users not in S due to inde-

pendence between the codewords of (wg,rg) and (wg,7s).

Now assume that 0 < p < 1. Inequality (3.72) can be further bounded by

Pm[r,'?‘,S] < ZEBS y|.’13 (w 7‘))1 S] EGS
p
x Z P(?JI|QU(11;5~));j
w,(Ws,7s)=(ws,Ts)
< NP X gs Tr ZEQS [Egg [P(y|$(w7,,.))l_s}
Yy
s P
x |:E95 [P(y|$(@,f~))"H } : (3.73)

Since (3.73) holds for all 0 < p < 1, s > 0, and it is easy to verify that the bound becomes trivial

for s > 1, we have

Pm[r,?',S] < exp {_NEm(87 T, PX"!‘? PX|?')} ) (374)

where E,,(S, 7, Px|», Px|#) is given in (3.17).

Step 2: Upper-bounding P s
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Assume that (w,r) is the transmitted message and rate pair with » € R. Rewrite Py}, g as

Pyr.s) = Eo Zp(y|m(w,7'))¢t[r,5] )|, (3.75)
Yy

where ¢y, s1(y) = 1 if P(Y|T () < e N7 (W) | otherwise b4r,s5)(y) = 0. Note that the value of
T(r,s)(y) will be specified later.
For any s1 > 0, we can bound ¢y, s)(y) as

e~ Ns17(r,5)(¥)

e B — 0. 3.76
P(y|$(w,r))sl’ S1 > ( )

¢t[r,8] (y) <

This yields

Pirs < Fo ZP<y|w<w,T>>1-sle—Nw,sxw]
Yy
= ZEOS |:E95 [P(y|w(w,r))lisl} e*NSlT(r,S)(y):| ) (3.77)
Yy

We will come back to this inequality later when we optimize 7(, s)(y).

Step 3: Upper-bounding Pj; , s]-

Assume that (w,7) is the transmitted message and rate pair with # ¢ R. Given r € R, we
first rewrite Pj7 , s) as

Pyir.s) = Eo | Y Pyl (w.m)dim.r.s1¥)| . (3.78)
Yy

where ¢;7 » s)(y) = 1 if there exists (w,r) with r € R, (ws,rs) = (Ws,Ts), and (wg, %) #
(W, 1),V & S to satisfy P(y|e(y,r) > e N7 () Otherwise Gif,r,s)(y) = 0.
For any sy > 0 and p > 0, we can bound ;7 » s)(y) by

s 4
Do, (ws s )= (s 78 ), (wh,rw) £ (0 ,70) VEES L (YT (w,m)) 7
e~ NF 7.5 (Y)

Gifir,5)(Y) < . 82>0,p>0. (3.79)
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This gives,

Pirs < Y Fe [eNSQT(’“S)(y)P(y|fB(w,;))
y
e
s
) 3 Pyl )
w,(ws,rs)=(Ws,Ts),(Wk,rK) (W, Tr ), VEES
< ZEBS EOS |w(w 7‘))]
5 _
xEog ) Pyl 7| [eNVmeo® ] (380)
'w,(’ws,'l‘s):(ﬁls,’;'s)

Note that we can separate the expectation operators in the last step due to independence between
the codewords of (wg,rs) and (Wwg,73).
Assume that 0 < p < 1. Inequality (3.80) leads to

Pgrs < Y FEog |:EBS [Pylza.m)] {Ees [P(ylw(“”"))%”ﬁ

Y

welVs2T(r, s)(y) NPZkgsTk}

™

'§Z7§1§§_TSZE"S |:E9$ (Y] T (wr )] {Egs {P(mm(wm))%}}

w eN527(r,8) (¥) N6 s rk} _ (3.81)

Note that the bound obtained in the last step is no longer a function of 5.
Step 4: Choosing 7(, s)(y)-

In this step, we determine the typicality threshold 7(, s)(y) that optimizes the bounds in

(3.77) and (3.81).

Define 7* ¢ R as

™

7= argmax ZEBS [Ees[ (Yl (wr )] {E" [ (y|:ch))72}}

T ER,T's="s y

w eN527(r.) (¥) NP s k} _ (3.82)
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Given r € R, y, and the auxiliary variables s; > 0, s, > 0, 0 < p < 1, we choose 7(, s)(¥)

such that the following equality holds.
Eo [P(y|w(w,r))1isl} e Ns17(r.5)(y)
s F; i
= EGg [P(y|m(ﬁ)*)i~*)ﬂ {EGS |:P(y|.’13(w7,,,))72:|} 8NS2T(T’S)(y)8NPEkgs T (383)

This is always possible since the left hand side of (3.83) decreases in 7(, sy(y) while the right hand
side of (3.83) increases in 7(, s)(y)-
Equation (3.83) implies

1

efNT('r,S)(y) _ {EGS [P(y|.’1}(,a)*),;,*))}}sl+s2
1

{EGS [P(y|m(w,r))1isl}}sl+s2

_bh 5
X {Egg [P(y|$(wT))72] }S1+52 6N451+52 Ykgs Tk (384)

Substitute (3.84) into (3.77), we get

Pijr.s) <) _ Fos [{Eas [P(ylw) ']} 77 {Eog [P(ylaar +)]} 777

Yy
s1p 615
% { Bog [Pylwm) 7|} 77 N rim Znes (3.85)
Assume that so < p. Let 51 =1 — 2. Inequality (3.85) becomes
52
52 p—(1=p)s2
Pt[r,S] < ZEGS {EGS {P(y|m(w,r)) ’ :|} D
y
h—s 5(p—s3)
x {Eg [P(y|m(@),~,*))]}ﬁfflfp?>sz N7 Ses Tk:| ' (3.86)
Now do a variable change with p = % and s =1— ;5—?1_7—82)52’ and note that s +p < 1.
Inequality (3.86) becomes
_s ] 5FP
Pirs) < Y Eog [{Eos [P(y|fv(w,r))5“”
y
1-s r
< {Bo, [Plylogar po)] " 7 Dres ]
s+p
< max 33 ST P (X0) | 2 [T Pt (X0) Py x (V] X) 77
TERTS=Ts | T XG kes X5 kgS
1—s N
< [ " T Pty (X Prix (Y1 X) NP Tnes T (3.87)

X5 k¢S
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Following the same derivation, we can see that P . s) is also upper-bounded by the right

hand side of (3.87). Because (3.87) holds for all 0 < p <1 and 0 < s < 1 — p, we have

Pyr.s)s Pifpr,s) < max  exp{—=NEi(S,r, Px|,, Px|y)}, (3.88)

r'ER,r's=rs
where E;(S,r, Px|., Px|y) is given in (3.17).
Finally, substituting (3.74) and (3.88) into (3.69) gives the desired result.

3.6.3 Proof of Theorem 3.3.4

We first present in the following lemma an achievable error probability bound for a given

codeword length N.

Lemma 3.6.1. Consider K-user random multiple access communication over a discrete-time
memoryless channel Py x. Assume generalized random coding (E(N),'y(N)) with a finite code-
word length N and e™NFmax codewords in each codebook. Let the codewords of user k be partitioned
into My, classes, with the it" codeword class corresponding to the standard rate interval (Tg)i_l , Tg)l]
Assume that /o < 0 < rily <y - <y = Ruax. We term {r vy, iy } the grid
rates of user k. For any rate r, € (rgifl,rlgi], we define function U(ry) = Tllc],w which rounds ry, to
its grid rate value. Let U(r) be the vector version of the U(r) function. Denote rU as a rate vector
whose entries only take grid rate values of the corresponding users. Given an operation region R

strictly contained in an achievable rate region, system error probability is upper-bounded by

P, < max { max E
reR
Sc{l, K}

Z exp{—NEn(S, 7Y, Px|r, Px|s vicR,U#) =iV #s=rs)}

U, 7%=U(rs)

+  max exp{_NEi(SvU(r)va?,V'?'ER,U(?)—U(T),?S—rgaPXIr’)}]7

IR, rs=rs

max D)

SC{1, K} eV rZ=U(ts)

max exp{_NEi(Su TUu PX|7-,V7'€R,U(7'):1-U,T5:7-fS ) PX|7")}} ) (389)

IR, rs=Ts

85



- ~U 3 U
where exponents Ey, (S, 7, Px|r, Px |7 vier,U(7)=#V is=rs) and Ei(S, T ,PX|,,)V,.6R)U(,.):,.U7TS:,.IS,PXW)

are defined by

~ U U
Ep(S8, 77, Px|r, Px |5 vieR,U(#)=iV 7s=rs) = MAX —Pzrk + max

0<p<1 7% 0<s<1
—log > > I Pre (X) [ D T Preire (X) Pryx (VX))
Y Xs keS X5 k¢S
P
X min ST Pxie (Xe) Prix (YIX)? |

?ER,U(?‘):?‘U,;‘Ssz, X g kgS
S

~ U § U
Ei(S, r 7PX\T,V’!‘GR,U(T):T‘U,TSZTfsvPX\T/) = OIila,X —p Tk + max

p<1 s 0<s<1—p
1—s
—1og > > T Pxire (Xe) | D T Py (Xi) Prix (Y] X)
Y Xs keS X 5 kgS
s+p
X min ST P (X)) Py x (Y| X) 5 . (3.90)

reRU(m=rV rs=rs \ £~ [

The proof of Lemma 3.6.1 is given in Section 3.6.4.

We will now prove Theorem 3.3.4 based on Lemma 3.6.1. Let the sequence of generalized
random coding schemes {(ﬁ(N ), ~()} follow asymptotic input distribution P x|r- Given a finite
codeword length N, the input distribution of (E(N),'V(N)) is denoted by P x|yv). We assume
that convergence on the sequence of input distributions {P X|w(N)} to its asymptotic limit P x|,
is uniform!?.

Assume that for each user, say user k, we partition its codewords into Mj, classes, as described
in Lemma 3.6.1. The i'" codeword class corresponding to standard rate interval (T]Zi_l,Tg)i].
Assume that 7/ <0 <7} <rily--- <l = Rumax. For any rate r, € (rf/;_,, 7}, we define
function U(ry) = rlgi, which rounds 7y, to its grid rate. Let U(7) be the vector version of the U (r)

function. Denote r¥ as a rate vector whose entries only take grid rate values of the corresponding

users. Given a finite codeword length NV, and the operation region R, system error probability is

10Note that {PX\W(N)} is a deterministic sequence.
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upper-bounded by (3.89) given in Lemma 3.6.1. Let us regard the codebook partitioning as a rate
partitioning, specified by r,go <0< 7“1[@],1 < r,ZQ s < r,ng = Rpax for user k, Vk. If we fix the
rate partitioning and take the codeword length to infinity, we can lower-bound the system error

exponent as

. . ~ U
E, > min{ MinSc (1. i} My 720 En (S, 77, Pxjrs Px |7 vier,UF) =70 #s=rs ) } (3.91)
s . . ~ U b) .
Mingc(1,... .k} MiNsgr o0 Bi(S, 77, Px|p vreR,U@r)=rV rs=is: PX|7)

where Em(sai“UaPX\raPX|%,V%€R,U(;):%U,51$:TS) and Ei(Sa7“U=PX|r,VreR,U(r):rU,rs:;~s,PX|%)
are defined in (3.90).

Define § as the maximum width of the rate intervals.

" K i Ths 3.92
ke{ly“',K},ié{{ly...yMk} ki k,i—1 ( )

Because (3.91) holds for any arbitrary rate partitioning, if we first take codeword length N to
infinity, and then slowly revise the rate partitioning by taking § to zero (which means M, for all
k are taking to infinity), and make sure all input distributions within each rate class converge
uniformly to a single asymptotic distribution, then (3.91) implies (3.19). Note that the action of
“slowly taking ¢ to zero” is valid since rate partitioning is only used as a tool for error exponent
bound derivation. Revision on the rate partitioning does not require any change to the encoding
and decoding schemes. The requirement that all input distributions within each rate class should
converge uniformly as d is taken to zero is also valid since the asymptotic input distribution function

of each user is only discontinuous at a finite number of rate points.

3.6.4 Proof of Lemma 3.6.1

Since the codewords in each codebook are partitioned into classes, we will prove Lemma 3.6.1
by following steps similar to the proof of Theorem 3.2.1, with revisions on the bounding details
due to the fact that input distributions corresponding to codewords within each class can be
different. We will not repeat the proof of Theorem 3.2.1, but only explain the necessary revisions.
Throughout the proof, whenever we talk about a message and rate pair (W, r), we assume r is

the standard communication rate of W.

87



We assume a similar decoding algorithm as given in (3.65), with the second condition being
revised to

1
C2R: — N log Pr{y|w(W),.)} < T(,.S)U(,,S))(y). (3.93)

In other words, we assume that the typicality threshold 7(,5 t(r4))(y) is a function of the standard
rates for users in S and a function of the grid rates for users not in S.

Given a user subset S C {1,---, K}, we define the following three probability terms.

First, assume that (W, ) is the transmitted message and rate pair with » € R. We define
P ir#v ) as the probability that the receiver finds another codeword and rate pair (W, 7) with

FeR, U®F) =Y, Ws,is) = (Ws,rs), and (Wi, 7)) # (Wi, i), Yk € S, that has a likelihood

value no worse than the transmitted codeword. That is

Pm[T,?'U,S] =Pr {P(y|$(W,T)) < P(y|w(v~[/f))} ) (W7,F)7,F € Ru U(If.) = If.Ua

(Ws,’f‘s) = (WS,’PS), (Wkﬂ:k) 75 (Wk,Tk),Vk Q S. (3.94)

Second, assume that (W, r) is the transmitted message and rate pair with » € R. We define
Py[r,s) as in (3.67) except the typicality threshold is replaced by 7(rs U (rg)) (¥)-

Third, assume that (W, 7) is the transmitted message and rate pair with 7 ¢ R. We define
Py »v s) as the probability that the receiver finds another codeword and rate pair (W, r) with
reR, U®r)=r", (Ws,rs) = (Ws,7s), and (Wi, ) # (Wi, 7), Yk & S, that has a likelihood

value above the required threshold 7; Smg)(y). That is

Pijg yv 5] = Pr {P(y|:c(W7T)) > e_NT(;S‘Tg)(y)} ,(W,r),re R,U(r) = rY,

(Ws,TS) = (WS, ’7“3), (Wk,ﬁg) 75 (Wk,fk),Vk §Z S. (3.95)

With the probability definitions, we can upper bound the system error probability P.s by

Pes < max{ MAXreR DSc {1, K} |20 7Y =U(rs) Pmir 70,5 + Pt["vs]} ’ } : (3.96)
maxsgR ZSC{I,--- K} ErU,rg:U(i's) P rv 8]

We will then follow similar steps as in the proof of Theorem 3.2.1 to upper bound each of the

probability terms on the right hand side of (3.96).
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To upper bound P,,,}, v s, we assume that 0 < p <1, 0 <s <1, and get from (3.73) that

Pm[rj‘U,s] < ZEOS y|:13 W, r)) _S]

X Z Eoq [P(y|cc(v~v7;,))%r

W,(Ws,7s)=(Ws,rs),U#)=7V

S SNPEI@QS 7:1? ZE@S [Egg [P(y|$(W77.))175]
y
p
x| max Eog [P(y|w Vo )%}
W (Ws,7s)=(Wers) UE=i W
<

exp{—NEn (8,7, Px|p, P x| vicR,U(#)=#0 7 5=rs) } (3.97)

where Em(S, 'IN"U, P)(lfr-7 PX‘;‘,V%GR,U(;‘):;‘U,%Ssz) is defined in (390)

To upper bound Py, 57, we get from (3.77) for s; > 0 that

,.s]<ZEes[ 05 [Pyl )= e s v @], (3.98)

To upper bound Py v g], we get from (3.81) for sz > 0 and 0 < p < 1 that

NsoT . T ( )
Piprvs) < Ze H s Eg [Eog {P(ylw(w_’;,))}
Yy

X Z Eoq {P(yh@(w,r))%}

(W,T),Tszi's,U(Tg):Tg

= ZGNSZT(iS’rg)(y)eNﬁEkzs ¥ Fo, [Eos [P(ka(VV,%))}
y
X ma. E |: ( |$ )T2j| P
X )7
(er)ms:'?'S,U(rS):,,.g 0s Y|rw.r)
: R ZeNSZT(iS’Tg)(y)eN’BZws "V o, [Bos [P(ylzw )]

" gR,r's=rs
s y

}}p . (3.99)

Next, by following a derivation similar to Step 4 in the proof of Theorem 3.2.1, we can optimize

<

X {( max Eg, [ (y|£lt(W7.))

W.r)rs=rs,U(rg)=rY

(3.98) and (3.99) jointly over T(,:Sy,ﬁg)(y) to obtain the desired result.

3.6.5 Proof of Theorem 3.4.1
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We assume that the following decoding algorithm is used at the receiver. Given the received
channel output symbols y, the receiver outputs a message and rate vector pair (w,r) together
with a channel realization Py |x such that (7, Py x) € R if the following condition is satisfied, for

all user subsets S C {1,--- , K},

1 1 -

— N 108 Py w,r), Pyix} < — 57 log Priylz,s, Prix},
for all (N 7,’27PY\X)7 (1173777.8) = (’UJS,’PS), (mkafk) 7& (’U}k,’f’k),Vk ¢ Su
and (117,7‘, Y|X)7 (’LU,’I",Py‘X) S R(S,'y)7 with

Riswy) = { (@,7, Py|x)| (7, Py|x) € R,

1 5
— o8 Pr{ylxe,m, Pyix} < T(;.,pyx,s)(y)} , (3.100)

where 7. Py 1x.S) (+) is a per-determined typicality threshold function of the channel output symbols
y, associated with the rate and channel realization pair (7, Py| x) and the user subset S. If there
is no codeword satisfying (3.100), the receiver reports a collision. In other words, for a given S, the
receiver searches for the subset of codewords with likelihood values larger than the corresponding
typicality threshold. If the subset is not empty, the receiver outputs the codeword with the
maximum likelihood value as the estimate for this given S. If the estimates for all S C {1,--- , K}
agree with each other, the receiver regards this estimate as the decoding decision and outputs the
corresponding decoded message and rate pair. Otherwise, the receiver reports a collision. Note that
in (3.100), for given S and (w, r), we only compare the likelihood value of codeword vector @y, )
with those of the codeword vectors satisfying (ws,7s) = (ws,rs), (Wk, 7x) # (wg, ), Vk ¢ S.
We will first analyze the error performance for each user subset S and then derive the overall error
performance by taking the union over all S.

Given a user subset § C {1,---, K}, we define the following probability terms.

First, assume that (w,r) is transmitted over channel Py x, with (r,Py|x) € R. Let

Piir, Py x,8] be the probability that the likelihood value of the transmitted codeword vector over

90



the channel Py |x is no larger than the corresponding typicality threshold,
Pinpy .81 = Pr{ Pz s, Prix) < ¢ VT @ (3.101)

Define P

ml(r, Py x )7, Py x),5] the probability that the likelihood value of the transmitted code-

word vector over the channel realization Py |x is no larger than that of another codeword (w, )

with (ws,7s) = (ws,rs), (W, ) # (wg, ), Vk € S, over channel PY‘X with (f“,ﬁyp() €R,

Pl Py 30,7, Py x),8) = LT {P(y|m(w,r)7PY\X) < P(y|$(ﬁ>,;~),PY|X)}

(ﬁ],’f’, Y\X)a (’IN",Py|X) S R, (’&]5,’?‘5) = ('ws,’l‘g), (ﬁ)k,fk) 75 (wk,rk),Vk §é S. (3102)

Second, assume that (w,7) is transmitted over channel Py‘ x, with (’;’,Py| x) ¢ R. Define
P, By x).(r Py 1x),8] 85 the probability that the decoder finds a codeword (w,r) with (ws,rs) =
(Ws,7Ts), (Wk, k) # (Wk,Tr),Vk ¢ S, over channel Py x with (r, Py|x) € R, such that its likeli-

hood value is larger than the corresponding typicality threshold,

7N7-7', B ( )
Pi[(i',ﬁy‘x),(r,Py‘X),S] = PT’{P(M‘B(w,r)aPYlX) >e et },

(’UJ,’I",PY‘X), (’l",Py|X) S R, (’ws,’l‘g) = ('11)5,’;‘5), (wk,rk) 75 (’LZ)]C,?:]C),V]{I §é S. (3103)

With the above probability definitions, by applying the union bound over all S, we can upper-

bound the system error probability by

Pes < max (7 [Dmax) = Z Z Pi[(ﬁlsy\x)ﬁ(ﬂpwx)vs]’
mPyix)e Sc{l,,K} (r,Py|x)ER,rs=T5s

max Z Pt[rﬁPY‘Xﬁg] + Z Pm[(Tva\X)a(;‘JSY\X)yS] (3104)
(r,Py|x)ER o )
SC{L---,K} (T,Py‘x)GR,Tssz

Next, we will derive individual upper-bounds for each of the probability terms on the right hand
side of (3.104).
By following a derivation similar to (3.70)-(3.74) in Section 3.6.2 (Proof of Theorem 3.2.1),

we can bound Pm[(r,Py‘x),(ixPy‘x),S] by,

Pm[('r‘,Py\x)7('7‘,15y\x)7S] < exp {—NEm(S,’I‘,’;‘, PY|X7 PY\X)} ) (3'105)
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where Em(S,’l",’;’,Pyp(,py‘X) is given in (3.26).
Similarly, by using the same bounding techniques as in (3.75)-(3.77) and (3.78)-(3.81) in
Section 3.6.2 (Proof of Theorem 3.2.1), we can upper bound Py Py x 5] by, for s1 >0,

s —Ns17; p (y)
Bir Py x5 < ZEGS [Eeg [P(y|@(wry, Pyix) 5t ]e O Pvix®) Y } , (3.106)
Yy

and upper bound P[(r Py 1x).(r Py 1 x).5) by, for so > 0,0<p <1

Py, Py 1x).(m Py x),S] = (v P H)lgza%,rg:szgs |:E9§ [P(y|$('w/)r/)7P)//|X>}
y

p S2T,
% Bos { [ Pyl@ (), Prix) T |} e N”Zkes”} . (3.107)

The value of T(,,ﬂpy‘xﬂg)(y) can be determined by jointly optimizing the bounds in (3.106) and
(3.107). Consequently, given (r, Py|x) € R, y and auxiliary variables s; > 0, s >0, 0 < p < 1,

we choose 7, p,, x.5)(y) such that the following equality is satisfied,

—Ns17(r Py | x.5)(¥)

Eo s [P(y|@(wr), Prix)' "] e
:EG [ (y|w'w SP*) Y|X:|

216 Neor ]
x o {{P(y|w(w,r)7PY\X)72:|} V2T Py W NF s T (3.108)

where (77, PY‘X) is defined as!!

(7:*7ﬁ;;|X) = argmax ZE@S {Egs [ (Y2 (w7, PY‘X)}
(r/,P)’,X)gR ris=rs y

xBos { | Pyl () Prix) 7 | }’”eNWPYX*“(y’e“zm”] - (3.109)

Finding a solution for (3.108) is always possible since that the left hand side of (3.108) decreases

with 7(, p, x.s)(¥), while the right hand side of (3.108) increases with 7(, p, , s)(y). This yields

1L Although the notation of w* is used in (3.108), the result is actually invariant to any choice of the message
vector.
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the desired typicality threshold, denoted by T(T Py ix. 5)( ), which gives

1
e*N"'(*r,PY‘X,s)(y) {E95 [P(y|w(ﬁ’*ﬁ“*)’ PY\X)} }

{EGS[ ylw'w'r) PY|X)1 Sl}}ﬁ

% Bog { [ Pylw (), Prix) 7 | 777 Mot Zues (3110

Substituting (3.110) into (3.106), we get

sl Tty _s1p r
Pty < X B [Eoy (P4l Priac)' =] 78 o s T
y

s1p

~ % s 1t 52 s1+s
X {EQS |:P(y|w(ﬁ)*";'*)’PY\X):|} 1+s2 EGS {[P(y|m(’w,7')’PY\X) 5 :|} 1+s2

] . (3.111)

Let so < pand 51 = 1— 22 "and then do a variable change with p = % and s = 1— ﬁ.

Consequently, inequality (3.111) becomes,

P, < max eNPXikgs Tk Py (X
e {zxn i (X0
s+p 1-s\ N
ST P (Xi) Py x (Y] X) 77 1 Pxir (X0) Py x (Y]X) (3.112)
X s k¢S X5 k¢S

Similarly, we can obtain the same upper bound for Pi[(';',ﬁy‘x) (r.Py x).5] 3 given at the right hand

side of (3.112). Since (3.112) holds for all 0 < p <1 and 0 < s <1 — p, we have

Pt["=PY\X=5] ’ Pi[(f‘-,ﬁyxx)v(ﬂpwx)-,s]

< max exp{—NEi(S,r,r',Py‘X,P{qX)}, (3.113)

(' Py ) ER s =rs
where Ei(S,r,r’,Py‘X,P)’,‘X) is given in (3.26).
By substituting (3.105) and (3.113) into (3.104), we get the desired result.

3.6.6 Proof of Theorem 3.4.3

We assume that the following decoding algorithm is used at the receiver. Given the channel
output sequence y, the receiver outputs a message and rate vector pair (w,r) together with a

channel class F such that (r, F) € R if for all user subset S C {1,---, K}, the following condition
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is satisfied,

1 r 1 7
N log Pr {y|:13(w7r), Pmin} < N log Pr {y|:13(,1,1,~1), Pmax} ,
for all ( 0 ,’f’,]‘i), (ﬁ)g, ’IN"S) = (wg, 7"5), (’LZ)k,?:k) # (wk, ’I”k),Vk ¢ S,
and (w,r, L), (0,7, P2,.) € R(sy). with
7?'(S,y) - {(ﬁ)7’;‘,Pﬁ)|(’;‘7f) € Ra

1 N
_NPT {y|$(11,7,;.)7P]:} < 7'(;;‘7P_7Z-78)(y)} s (3114)

where T PF, S)(~) is the typicality threshold function. Again, we will first analyze the error per-
formance for each individual S and then derive the overall error performance by taking the union
over all S.

For a given user subset S C {1,---, K}, the following probability terms are defined.

First, assume that (w,r) is transmitted over channel Py|x € F, with (r,F) € R. Let
Py 7, Py x,S] be the probability that the likelihood value of the transmitted codeword vector

calculated using P7,

min

is no larger than the corresponding typicality threshold,
—NT, ; (y)
Pt["',f,Py‘X,S] = PT {P(y|:1}(w77,), PI‘I]l-ln) S e ( ‘Pfiln’s) v } . (3115)

Define Pm[(n F).(5.F) Py x.8] 35 the probability that the likelihood value of the transmitted codeword

vector calculated using P7.

min

is no larger than that of another codeword (w,r) with (ws,7s) =

(ws,rs), (Wk, ) # (wg, ri), Vk ¢ S, calculated using P7  with (7, F) € R,

max
P - = Pr{ Py|z Plin) < P(ylz . Pﬁ)
m[(r,F),(#F),Py|x,S] (w,r)y F'min) = (w,7)> ' max

(w, 7, F), (7 F) € R, (s, Ts) = (ws,Ts), (g, 7%) # (wp, 1), Yk ¢ S. (3.116)

Second, assume that (w,7) is transmitted over channel PyIX € F, with (#, F) ¢ R. Define
Pi[(i‘,]}),(r,]-'),fz’y‘x,S] as the probability that the decoder finds a codeword (w,r) with (ws,rs) =

(ws,Ts), (wi,ri) # (W, Tr), Vk ¢ S, over channel class F with (r, F) € R, such that its likelihood
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value calculated using PZ.

is larger than the corresponding typicality threshold,

—N7(,. pF 5@
P, 7).t 7). Byix 5] = LT {P(ylfc(w,T),Pnﬁn) > e P }

)

(w,'r,}'), (T,F) €ER, (’ws,’l‘s) = (ﬁ]s,’;‘g), (wk,rk) 75 (’LZ)]C,’I:k),Vk §é S. (3117)

Consequently, the system error probability P.s can be upper-bounded using the above prob-

abilities terms as follows,

Fes < max S, L S > {Pt[r,]-',Py‘x,S]
7‘) : )r)
v Sc{l, K}

+ Z Pm[("')]:))(';')]})vPY\X)S] !

(;‘,.7:—)67?,7';‘5:1'5

by ) e e F (7 Py, 7) (7). P . (3.118)
(f',Pyx):Pyx6F7($,F)¢RSC{;7K} (Tﬁf)e%s_;s [(#,F),(r.F),Py|x,S]

Note that we have used the union bound over all user subsets S to obtain the probability bound
in (3.118). Next, we will derive individual bound for each of the probability terms on the right
hand side of (3.118).

By using the same bounding techniques as in Section 3.6.2 and Section 3.6.5, we can bound

Pl 7), (7,7, Py x,5) PY:

F \—s
Pl 7)., F).Py 1 x.8] = ZEOS [Eos [P(yl2w,r): Pyix)PYTw,r), Pan) ]
Yy

8 {EBS {P(mw(’biﬁpnfax)%”p} NP Xhgs Tr

IN

exp {—NEm(S,r,f«,f, ﬁ)} , (3.119)

where E,,(S,r,#,F,F) is given in (3.31). Note that the second inequality in (3.119) is due to
the fact that P(y|Z(w,r), Py|x) < P(y|w(w7r),P}- ), and the right hand side of (3.119) is not a

max

function of Py |x.
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We can also upper bound Pt[,,.yj:7py‘x7$] for any s1 > 0 by,

m

Pirr.pyxs) <Y Fos [Bog [Pl wr), Prix) Pl s, Ph) "]
Yy

—Ns17 F Yy
xe (T’Pnlin’s)( )

IN

Z E9$ [EBS [P(ylw(wm)v Prfax)P(ylw(w,r)v Pnfin)_ﬁ]
Yy

—N
xXe SIT(T’Pxfin’S) (y):|

) (3.120)
and upper bound ‘P’L'[(’;‘,]}),(’f‘,]:),lsy‘x,s] for any s > 0,0 < p <1 by,
Pi[(f‘f)y(nf),ﬁy‘x,s] < ZEGS [Ees [P(y|$(ﬁ;,i‘)uPY\X)}
Yy
X Eg {[P(y|cc(w),,), Prﬁn)% }p €N52T<r,Pr§in,s>(y)eN,azk&S rk:| 7

Eos |Eo [P oy P
(T"x}—’)lg%fi‘fg:rs; 0s Os L (y|cc(w ) max)

52117 ST, ~
*xEeos {[P(ylww,r),PIfin)% } e “"Prfin’&(y)eNPstT@a.m)

Note that the upper bound given in (3.120) is not a function of Py x. Similarly, the bound in

(3.121) is not a function of Pylx.

Optimization of the typicality threshold T(,,p7, s) can be carried out using the similar tech-

nique as introduced in (3.108)-(3.110) in Section 3.6.5. By substituting the optimal 7, pr g into

(3.120) and (3.121), we get

Pt[r,F,Py‘x,S]v Pi[(i',ﬁ),(r,F),IE’y‘x,S]

< max exp{—-NE;(S,r,v",F,F)}, 3.122
< m ew{-NE( ) 3122

where F;(S,r,r’, F,F’) is given in (3.31).
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Combining (3.119), (3.122) and (3.118), we obtain

P.s < max max E
P Py x EF,(r,F)ER
(r,Py|x):Py|x (r,F) Sc{l K}

—NE(S,r, v, F,F
[(r,f,)rél%ﬁs_rsexr){ (S, ", F, F)}

+ Z eXp{—NEm(S,T,’;‘,J—",]})} )
(;‘,]})GR,;‘S =rs

max E

(7, Py x): Py | x €F,(*,F)ER Sc{l, K}

max exp {~NE;(S,r, v, F,F' . 3.123
> T p{ ( )} (3.123)
(r,F)ER,rs=7s

Since the upper bounds given in (3.119) and (3.122) are not functions of individual channels (but
functions of channel classes), the right hand side of (3.123) can be simplified to the right hand side

of (3.30).
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