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ABSTRACT 

KEYPS model and Monin-Obukhov's log-linear model were 

examined pertaining to their adequacy of describing wind a nd 

temperature profiles in thermally stratified shear flows fo r 

diversified thermal stability. The dimensionless wind shear 

and lapse rate for all ranges of thermal stability studied, 

- 2 .0 < Ri ~ 0.4, were shown to be linearly dependent on t h e 

dimensionless height derived from the log-linear model. 

Deacon numbers behaved quite differently from what were pre­

dicted by KEYPS model. 
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INTRODUCTION 

Wind and temperature profiles in thermally stratified 

shear flows are of great interest not only to the atmospheric 

scientist but also to the fluid dynamicist. Monin-Obukhov's 

well-known similarity theory (1) leads to the log-plus-linear 

profiles for flows in near-neutral conditions. Chuang and 

Cermak (2) used the field and laboratory data to show that 

wind and temperature profiles obtained in the laboratory as 

well as in the field app roximately conform to the log-plus­

linear model. A limited imp rovement of data scatter was made 

by adding a quadratic term to the log-plus-linear model (3). 

Bernstein (4) examined the existing three wind profile hypo­

theses--the log-linear profile, the KEYPS profile (5), and 

the exponential profile (6), and concluded that presently 

avai lable data measured at O'Neill, Nebraska (7) and Kerang, 

Australia (8) were not sufficient to verify or refute any 

one of the three hypotheses. Pandolfo (9) introduced a 

free-convection model and claimed that it described the 

observed wind profiles quite accurately. However, h e indicated 

that the free-convection profile was indistinguishab le from 

the KEYPS profile. 

Since KEYPS model is for interpolating the free and 

forced convection profiles, it is imparative to examine if 

this model can be used to describe wind and tempera t ure 

profiles in all ranges of thermal stability. Monin-Obukhov's 

log-linear model has been proven (2) to be appropriate, even 

tho gh not the most accurate method, for describing wind and 
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temperature profiles in thermally stratified shear flows of 

diversified stability. Therefore, these two models are 

examined in this paper. As to the free-convection model, 

which is nothing more than one of the "power law" profiles, 

it will be examined and presented in a separate paper. 

Deacon numbers are defined and examined for the above­

mentioned two models. The rate of change of eddy Prandtl 

number for different thermal stabilities is also studied. 
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BASIC EQUATIONS 

The dimensionless wind shear, s, and lapse rate, R, 

are defined (5) as 

s kZ au 
= az u* 

and 

R aZ aT 
= az T* 

where k is von Karman's constant; u*' the friction velocity ; 

U, mean wind velocity; Z, height; T*' the friction 

temperature; T, mean air temperature, and a , the ratio 

of eddy conductivity, Kh ' 

in the following form 

a = tw 

uw 

au 
az I 

aT 
az 

to eddy viscosity, K ' m 

= 1/eddy Prandtl number 

defined 

R becomes identical wi th S if the above equation inser t e d 

for a and if = - uw and In Rey nolds 

analogy a is equal to unity. 

When the mean wind velocity and temperature profiles 

are measured, the magnitudes of u*/k and T*/a can be 

estimated by means of the regression theory. Consequently, 

the dimensionless wind shear and lapse rate can be calculated 

to a moderate degree of accuracy provided that the velocity 

and temperature gradients in the vertical direction are 

accurately measured. This is not difficult to achieve in 

the laboratory where a continuous profile can be obtained 
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easily on an x-y plotter but is always a problem to face 

in the field. However, the method of interpolation can be 

used to find the velocity or temperature between two measured 

points and a more accurate gradient can then be determined. 

KEYPS equation is an interpolation equation between free 

and forced convect i on. This equation was established in order 

to describe the gradual transition from forced to =ree con­

vection. Hence, it cannot be expected to hold true in all 

ranges of thermal stability. KEYPS equation can be written 

in terms of Richardson number, Ri, as follows: 

S = (1 - y'Ri)-l/ 4 

where y' is an arbitrary constant which can be determined 

by means of the least squares method when S and Ri are 

known. Similarly, the dimensionless lapse rate as defined 

previously will be identical with the above equation. This 

implies that the dimensionless wind shear and lapse rate are 

only a function of Richardson number. 

Deacon numbers are defined as 

aU 

DEU 
d(ln az 

1 
d ( lnS) 

= - d (lnZ) = - d(lnZ) (1) 

and 

DET 
d (ln I!~ I) 

1 
d ( lnR) 

= d(lnZ) = - d(lnZ) ( 2) 

When the dimensionless wind shear and lapse rate profiles 

are known the above dimensionless numbers can be easily 
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calculated. However, both Deacon numbers depend largely on 

the functional form of the dimensionless wind shear and lapse 

rate. When KEYPS equation is used for the dimensionless 

wind shear and lapse rate, both Deacon numbers will assume 

the same form as follows: 

DEU = DET Y'Ri = 1 - 4 - 3y 'Ri 
( 3) 

where Deacon numbers are unity at Ri = 0 (neutral flows) and 

approach 4/3 as Richardson number approaches negative infinity 

Since y' may be different for different velocity and tempera­

ture profiles, it is conceivable that y ' becomes a para­

meter in the plot of Deacon numhers versus Richardson number. 

In the log-plus-linear model, the mean wind velocity 

and temperature are written as 

and 

where A1 = u*;k, A2 = T*/a, the B's are constants divided 

by a length scale, L', and the C's are constants. The 

dimensionless wind shear and lapse rate, then, assume the 

following form: 

( 4) 

and 
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·B 
R = 1 + A

2 
Z . 

2 
( 5) 

Since S and R are identical, according to the similarity 

hypothesis, B1/A1 should be equal to B2/A2 . Assuming that 

where 8' is an arbitrary constant, and using the identity 

that SRi = Z/L' the above equations can be rewritten as 

S = R = (1 - 8 ' Ri )-l ( 6) 

Equation (6) is similar in form to KEYPS equation except 

for the difference in power. Combining Eqs. (1) and (4) 

yields DEU = 1/S. Similarly DET = 1/R. Therefore, Deacon 

numbers assume the following form: 

DEU = DET = 1 - 8 'Ri (7) 

Equation (7) is valid in both stable and unstable t hermal 

stratification since Eqs. (4) and (5) hold true in all stability. 

It shows that Deacon numbers are linearly dependent on Rich­

ardson number under log-plus-linear model. 

The relative rate of change of a in a , where a 

has been defined previously, can be shown to be a f unction of 

Deacon numbers, DEU and DET, as follows: 

d a / a = (DET - DEU) dZ/Z 
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If Eqs. (4) and (5) are indeed identical, then the above 

equation implies that the relative rate of change of a in 

a should vanish, namely a should be constant in the who e 

profile under consideration. Similarity between the mean 

wind velocity and temperature profiles is not always exact 

but is an approximation. Therefore, B1/A1 is only approxi­

mately equal to B2/A 2 , and the above equation is rewritten 

as 

da/a 
dZ/Z 

B2 
-) L'Ri 
A2 

(8) 

The relative rate of change of Richardson number can 

also be shown to be a function of Deacon number as follows: 

dRi/Ri = (2DEU - DET) dZ/Z - dT/T 

The above equation can be rewritten as 

The 

dRi/Ri 
dZ/Z 

length scale 

T 
L' m = g 

= 2 DEU - DET - dT/T 
dZ/Z 

is defined as 

u*Ou/az) 
T A 2 

m 1 
k(aT/ aZ) 

::: 
g A2 

( 9) 

where T is the mean temperature, in absolute temperature 
m 

scale, averaged over the whole profile and g is the gravita-

tional acceleration. 
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EXPERIMENTAL RESULTS AND DISCUSSION 

Mean wind velocity and temp erature profiles in a wind­

tunnel boundary layer were measured and reported by Chuang 

and Cermak (3). The flow over a horizontal flat plate was 

made thermally stable or unstable b y cooling the plate and 

heating the air stream (inversion) or vice versa (lapse). 

For the purpose of easy handling, data were taken at closely 

spaced equidistant points from the continuous profiles of 

mean wind velocity and temperature. The range of height 

considered here is from 0.5 up to 8.2 cm., about one-seventh 

the total boundary lay er thickness, with data points 0.7 

cm apart. Figure 1 shows the results of log-plus-linear 

profile by means of regression theory and least squares 

method. Data of Project Prairie Grass (7) were calculated 

by me a ns of interpolation between heights from 25 up to 750 

cm at an equidistant i nterval of 50 cm, except the first 

increment being 25 cm, and were fitted to the profile by 

the least squares method. These results were also shown in 

the same figure where it was defined that 

RUU = k(U. - U )/u* - 8 I ( z • - z ) /LI 
l m l m 

RTT = a (T . - T )/T* - s I (Z. - z ) /LI , 
l m l m 

and 

1 
N 

RZZ = lnZ. - I lnZ. 
l N i=l l 
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The subscript i refers to data point at 1 where 

1 < i < N with total data points N, and the subscript 

m refers to the ensemble average over the profile of the 

named variables. 

The dimensionless wind shear, lapse rate and Richardson 

number can be computed numerically when the derivatives of 

mean wind velocity and temperature with respect to the 

height are approximated by the ratios of finite increments 

of mean velocity and temperature about a stepwise sequence 

of points to that of height. The data-point interval, 

which is 0.7 cm for the laboratory data and 50 cm for the 

field data, is small and there is no abrupt change in both 

velocity and temperature profiles so that the approximation 

is fairly good. According to KEYPS equation, the d ~mensionless 

wind shear and lapse rate are a function of Ri only and 

in the case of dimensionless wind shear the constan ~ y' 

is equal to 18 as reported by Panofsky, et al (10). Figure 

2 shows both the laboratory and field data of these two 

dimensionless quantities versus Richardson number. For 

comparison, Eqs. (4) and (5) were plotted in Fig. 3, where 

A's and B's were determined from the velocity and temperature 

profiles by the regression theory described in the last 

paragraph. It is evident that the diabatic wind and tempera­

ture profiles are better represented by Eqs. (4) and (5) 

than by KEYPS equation. The constant, y' for both 

laboratory and field data is not necessarily equal to 18 

but varies with height, wind and temperature profiles, and 

stability even though the over-all average value of it for 
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the field data may be 18. However, the variance of y ' 

is quite high. 

Deacon numbers were computed according to Eqs. (1) and 

(2) and the finite difference approximation. They were 

plotted against ~ichardson number as shown in Fig. 4. Con­

sider only the unstable cases where Ri < 0. Equation (3) 

is hardly descriptive of either laboratory or field data. 

This is due not only to the fact that KEYPS equation can 

vary with y' as a parameter but also that the Deacon 

numbers are the second order derivatives of the diabatic 

wind and temperature profiles with respect to height Z. 

As the order of derivatives of a mean profile with respect 

to height increases, accuracy of the derivatives will 

decrease accordingly. Therefore, Deacon numbers will 

definitely amplify t he scattering of data. Figure 5 

shows the relationship between Deacon numbers and B'Ri. 

It reveals that Deacon numbers may not be exactly linearlv 

dependent on Richardson number as predicted by Eq. (7). 

Figure 6 shows the relative rate of change of a in 

a. Since d a / a was reduced from Deacon numbers its accuracy 

was bad. However, this may show the general picture of 

similarity between the mean wind velocity profile and the 

mean temperature profile. It is imparative to measure the 

eddy Prandtl number directly. Figure 7 shows the effect of 

relative temperature gradient on the relative rate of change 

of Richardson number. The relative rate of change of Richardson 

number was computed by using the finite difference of Rich~ 

.ardson number in a f inite increment of height from the boundary. 
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CONCLUSIONS 

The dimensionless wind shear and lapse rate for all 

ranges of thermal stability do not necessarily follow the 

prediction made by KEYPS equation. However, they are linearly 

dependent on the dimensionless height. Deacon numbers behave 

quite differently from what can be predicted by KEYPS model. 
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