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ABSTRACT

KEYPS model and Monin-Obukhov's log-linear model were
examined pertaining to their adequacy of describing wind and
temperature profiles in thermally stratified shear flows for
diversified thermal stability. The dimensionless wind shear
and lapse rate for all ranges of thermal stability studied,
-2.0 < Ri < 0.4, were shown to be linearly dependent on the
dimensionless height derived from the log-linear model.
Deacon numbers behaved quite differently from what were pre-

dicted by KEYPS model.
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INTRODUCTION

Wind and temperature profiles in thermally stratified
shear flows are of great interest not only to the atmospheric
scientist but also to the fluid dynamicist. Monin-Obukhov's
well-known similarity theorv (1) leads to the log-plus-linear
profiles for flows in near-neutral conditions. Chuang and
Cermak (2) used the field and laboratory data to show that
wind and temperature profiles obtained in the laboratory as
well as in the field approximately conform to the log-plus-
linear model. A limited improvement of data scatter was made
by adding a quadratic term to the log-plus-linear model (3).
Bernstein (4) examined the existing three wind profile hypo-
theses--the log-linear profile, the KEYPS profile (5), and
the exponential profile (6), and concluded that presently
available data measured at O'Neill, Nebraska (7) and Kerang,
Australia (8) were not sufficient to verify or refute any
one of the three hypotheses. Pandolfo (9) introduced a
free-convection model and claimed that it described the
observed wind profiles quite accurately. However, he indicated
that the free-convection profile was indistinguishable from
the KEYPS profile.

Since KEYPS model is for interpolating the free and
forced convection profiles, it is imparative to examine if
this model can be used to describe wind and temperature
profiles in all ranges of thermal stability. Monin-Obukhov's
log-linear model has been proven (2) to be appropriate, even

though not the most accurate method, for describing wind and



temperature profiles in thermally stratified shear flows of
diversified stability. Therefore, these two models are
examined in this paper. As to the free-convection model,
which is nothing more than one of the "power law" profiles,
it will be examined and presented in a separate paper.
Deacon numbers are defined and examined for the above-
mentioned two models. The rate of change of eddy Prandtl

number for different thermal stabilities is also studied.



BASIC EQUATIONS

The dimensionless wind shear, S, and lapse rate, R,

are defined (5) as

_ kZ U

ST %4, 3z ¢
and

_aZ T

R=7, 752

where k 1is von Karman's constant; u,, the friction velocity;
U, mean wind velocity; 2, height; T,, the friction
temperature; T, mean air temperature, and a, the ratio

of eddy conductivity, Kh’ to eddy viscosity, Km’ defined

in the following form

= 1/eddy Prandtl number
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R Dbecomes identical with S if the above equation inserted
for o and if u*2 = -uw and u,T, = - tw. In Reynolds
analogy o 1is equal to unity.

When the mean wind velocity and temperature profiles
are measured, the magnitudes of u,/k and T,/a can be
estimated by means of the regression theory. Conseguently,
the dimensionless wind shear and lapse rate can be calculated
to a moderate degree of accuracy provided that the velocity
and temperature gradients in the vertical direction are

accurately measured. This is not difficult to achieve in

the laboratory where a continuous profile can be obtained



easily on an x-y plotter but is always a problem to face

in the field. However, the method of interpolation can be

used to find the velocity or temperature between two measured

points and a more accurate gradient can then be determined.
KEYPS equation is an interpolation equation between free

and forced convection. This equation was established in order

to describe the gradual transition from forced to free con-

vection. Hence, it cannot be expected to hold true in all

ranges of thermal stability. KEYPS equation can be written

in terms of Richardson number, Ri, as follows:

s = (1 - Y'Ri)_l/4 i

where y' 1is an arbitrary constant which can be determined
by means of the least squares method when S and Ri are
known. Similarly, the dimensionless lapse rate as defined
previously will be identical with the above equation. This
implies that the dimensionless wind shear and lapse rate are
only a function of Richardson number.

Deacon numbers are defined as

d(1ln s )
oo 7 -1 - d (1nS) (1)
= a"('mz_r_' dianS !
and
2T
e d(ln|5Z]) _, _ d(nR) (2)
= aanzy - d(Inz) °

When the dimensionless wind shear and lapse rate profiles

are known the above dimensionless numbers can be easily



calculated. However, both Deacon numbers depend largely on
the functional form of the dimensionless wind shear and lapse
rate. When KEYPS equation is used for the dimensionless

wind shear and lapse rate, both Deacon numbers will assume

the same form as follows:

IR‘
T3, ¢ (3)

where Deacon numbers are unity at Ri 0 (neutral flows) and

approach 4/3 as Richardson number approaches negative infinity

Since y' may be different for different velccitv and tempera-

ture profiles, it is conceivable that y' becomes a para-

meter in the plot of Deacon numbhers versus Richardson number.
In the log-plus-linear model, the mean wind velocity

and temperature are written as

U - Uo = Alan + BlZ + Cl’
and
T - To = Azlnz + Bzz + C2,
where Al = u,:k, A2 = T,/0, the B's are constants divided

by a length scale, L', and the C's are constants. The
dimensionless wind shear and lapse rate, then, assume the

following form:

z , (4)

and



2 (5)

Since S and R are identical, according to the similarity

hypothesis, Bl/Al should be egual to B2/A2. Assuming that

B;/A; = By/A, = B'/L' ,

where B' 1is an arbitrary constant, and using the identity

that SRi = Z/L' the above equations can be rewritten as

i )

S=R= (1 - B'Ri) (6)

Equation (6) is similar in form to KEYPS equation except
for the difference in power. Combining Egs. (1) and (4)
yvields DEU = 1/S. Similarly DET = 1/R. Therefore, Deacon

numbers assume the following form:
DEU = DET = 1 - B'Ri (7)

Equation (7) is valid in both stable and unstable thermal
stratification since Egs. (4) and (5) hold true in all stability.
It shows that Deacon numbers are linearlv dependent on Rich-
ardson number under log-plus-linear model.

The relative rate of change of o in a, where «a
has been defined previously, can be shown to be a function of

Deacon numbers, DEU and DET, as follows:

do/a = (DET - DEU) dz/Z



If Egs. (4) and (5) are indeed identical, then the above
equation implies that the relative rate of change of o 1in

o should vanish, namely o should be constant in the whole
profile under consideration. Similarity between the mean
wind velocity and temperature profiles is not always exact
but is an approximation. Therefore, Bl/A1 is only approxi-
mately equal to B2/A2, and the above eguation is rewritten

as

B B

_ 2 .
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The relative rate of change of Richardson number can

also be shown to be a function of Deacon number as follows:
dRi/Ri = (2DEU - DET) d4z/Z - d4dT/T
The above equation can be rewritten as

i _ _ dT/T
—az/z. - 2 DEU DET 3777 . (9)

The length scale is defined as

=

v = u, (30/3Z) . m 1
g k(3T/32 " g A !

where Tm is the mean temperature, in absolute temperature
scale, averaged over the whole profile and g 1is the gravita-

tional acceleration.



EXPERIMENTAL RESULTS AND DISCUSSION

Mean wind velocity and temperature profiles in a wind-
tunnel boundary layer were measured and reported by Chuang
and Cermak (3). The flow over a horizontal flat plate was
made thermally stable or unstable by cooling the plate and
heating the air stream (inversion) or vice versa (lapse).
For the purpose of easy handling, data were taken at closely
spaced equidistant points from the continuous profiles of
mean wind velocity and temperature. The range of height
considered here is from 0.5 up to 8.2 cm., about one-seventh
the total boundary layver thickness, with data points 0.7
cm apart. Figure 1 shows the results of log-plus-linear
profile by means of regression theory and least squares
method. Data of Project Prairie Grass (7) were calculated
by means of interpolation between heights from 25 up to 750
cm at an equidistant interval of 50 cm, except the first
increment being 25 cm, and were fitted to the profile by
the least squares method. These results were also shown in

the same figure where it was defined that

RUU = k(Ui - U )/u, - 8 (zi - Zm)/L ,
RTT = a(Ti - Tm)/T* - B8 (zi - Zm)/L',
and
1 N
RZZ = 1nZ, - & z 1nz.



The subscript i refers to data point at 1 where

l < i <N with total data points N, and the subscript
m refers to the ensemble average over the profile of the
named variables.

The dimensionless wind shear, lapse rate and Richardson
number can be computed numerically when the derivatives of
mean wind velocity and temperature with respect to the
height are approximated by the ratios of finite increments
of mean velocity and temperature about a stepwise sequence
of points to that of height. The data-point interval,
which is 0.7 cm for the laboratory data and 50 cm for the
field data, is small and there is no abrupt change in bcth
velocity and temperature profiles so that the approximation
is fairly good. According to KEYPS equation, the dimensionless
wind shear and lapse rate are a function of Ri only and
in the case of dimensionless wind shear the constant '
is equal to 18 as reported by Panofsky, et al (10). Figure
2 shows both the labhoratory and field data of these two
dimensionless quantities versus Richardson number. For
comparison, Egs. (4) and (5) were plotted in Fig. 3, where
A's and B's were determined from the velocity and temperature
profiles by the regression theory described in the last
paragraph. It is evident that the diabatic wind and tempera-
ture profiles are better represented by Egs. (4) and (5)
than by KEYPS eguation. The constant, y' for both
laboratory and field data is not pescessarily equal to 18
but varies with height, wind and temperature profiles, and

stability even though the over-all average value of it for
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the field data may be 18. However, the variance of '

is quite high.
Deacon numbers were computed according to Egs. (1) and
(2) and the finite difference approximation. They were
plotted against Richardson number as shown in Fig. 4. Con-
sider only the unstable cases where Ri < 0. Equation (3)
is hardly descriptive of either laboratory or field data.
This is due not only to the fact that KEYPS equation can
vary with y' as a parameter but also that the Deacon
numbers are the second order derivatives of the diabatic
wind and temperature profiles with respect to height Z.
As the order of derivatives of a mean profile with respect
to height increases, accuracy of the derivatives will
decrease accordingly. Therefore, Deacon numbers will
definitely amplify the scattering of data. Figure 5
shows the relationship between Deacon numbers and 3'Ri.
It reveals that Deacon numbers may not be exactly linearly
dependent on Richardson number as predicted by Eq. (7).
Figure 6 shows the relative rate of change of o in
a. Since da/a was reduced from Deacon numbers its accuracy
was bad. However, this may show the general picture of
similarity between the mean wind velocity profile and the
mean temperature profile. It is imparative to measure the
eddy Prandtl number directly. Figure 7 shows the effect of
relative temperature gradient on the relative rate of change
of Richardson number. The relative rate of change of Richardson
number was computed by using the finite difference of Rich-=

.ardson number in a finite increment of height from the boundary.
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CONCLUSIONS

The dimensionless wind shear and lapse rate for all
ranges of thermal stability do not necessarily follow the
prediction made by KEYPS equation. However, they are linearly
dependent on the dimensionless height. Deacon numbers behave

quite differently from what can be predicted by KEYPS model.
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LIST OF SYMBOLS

Definition

Al = u,/k, om/sec; A, = T,/a, %

2
Arbitrary constants

Specific heat of air at constant pressure, calories/
OC/gm.

Arbitrary constants
Gravitational acceleration, cm/sec2

Heat flux in the vertical direction, calories/
cmz/sec

von Karman constant

Eddy thermal conductivity, cm2/sec

Eddy viscosity, cm2/sec

Monin-Obukhov length scale, L' = oL, cm
Total number of data collected in a profile
Dimensionless lapse rate

Richardson number, g %%/ [T(%%)Zl
Dimensionless wind shear

O

Mean absolute temperature, K

—H/(cppku*), friction temperature, ¢
Friction velocity, cm/sec

Local mean velocity, cm/sec

Height, cm
Kh/Km
Arbitrary constant

Arbitrary constant

Density of air, gm/cm3
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LIST OF SYMBOLS (Continued)

Definition

The variable at height Z;

Mean value averaged over the profile

The variable at height 2Z_ , an equivalent
. . o
roughness heiaght
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