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ABSTRACT

STATISTICAL MODELING AND COMPUTING FOR CLIMATE DATA

The motivation for this thesis is to provide improved statistical models and approaches to

statistical computing for analyzing climate patterns over short and long distances. In particular,

information needs for water managers motivate my research. Statistical models and computing

techniques exist in a careful balance because climate data are generated by physical processes

that can yield computationally intractable statistical models. Simplified or approximate sta-

tistical models are often required for practical data analyses. Critically, model complexity is

moderated as much by research needs and available data as it is by computational capabili-

ties. I start by developing a weighted likelihood that improves estimates of high quantiles for

extreme precipitation (i.e., return levels) from latent spatial extremes models. In my second

project, I develop a geostatistical model that accounts for the influence of remotely observed

spatial covariates. The model improves prediction of regional precipitation and related climate

variables that are influenced by global-scale processes known as teleconnections. I make the

model more accessible by providing an R package that includes visualization, estimation, pre-

diction, and diagnostic tools. The models from my first two projects require estimating large

numbers of latent effects, so their implementations rely on computationally efficient methods.

My third project proposes a deterministic, quadrature-based computational approach for es-

timating hierarchical Bayesian models with many hyperparameters, including those from my

first two projects. The deterministic method is easily parallelizable and can require substan-

tially less computational effort than common stochastic alternatives, like Monte Carlo methods.

Notably, my quadrature-based method can also improve the computational efficiency of other

recent, fast, deterministic approaches for estimating hierarchical Bayesian models, such as the

integrated nested Laplace approximation (INLA). I also make the quadrature-based method

accessible through an R package that provides inference for user-specified hierarchical mod-
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els. Throughout my thesis, I demonstrate how improved models, more efficient computational

methods, and accessible software allow modeling of large, complex climate data.
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Chapter 1

Introduction

1.1 Broad motivation for this work

The motivation for this thesis is to provide improved statistical models and approaches to

statistical computing for analyzing climate patterns over short and long distances. Here, we

adopt the broad perspective that climate represents distributions of potential weather out-

comes. We also refer to all data that are informative of climate as climate data. I present

a weighted likelihood that uses information about dependence between observations of ex-

tremes to improve estimates of spatially correlated marginal return levels (Chapter 2). I also

present a model that accounts for the impact of remote covariates on local precipitation (Chap-

ter 3). As estimation of statistical models for climate data is computationally expensive, I also

present a deterministic method for approximate Bayesian inference. The method can be ap-

plied to general hierarchical Bayesian models and is faster than commonly used Markov chain

Monte Carlo methods (Chapter 4). All of this research is motivated by the need for water man-

agers to have improved forecasts of future climate.

General circulation models (GCMs) can forecast changes in large-scale temperature pat-

terns and other variables, but precipitation is challenging for GCMs to predict and uncertainty

is not well quantified (Meehl et al., 2014). Similarly, while GCM output is available at increas-

ingly fine spatial resolutions, the output does not necessarily provide reliable information at

spatial scales smaller than 200 km or for extreme events (Maraun et al., 2010). Additionally,

GCMs do not explicitly quantify uncertainty. Most GCMs use physics-based models to deter-

ministically simulate future weather given input data and model parameters. Future climate

can be estimated by modeling distributions of weather patterns observed in the GCM output.

Uncertainty can be indirectly estimated by analyzing simulated weather output from a family

of carefully configured GCM simulations, known as climate model ensembles (cf. Kay et al.,
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2015). Climate ensembles perturb input data, physics models, or parameters to generate sev-

eral independent simulations of future weather. Together, the multiple simulations are used to

estimate uncertainty in future climate that can be attributed to the chaotic nature of physical

processes that generate weather. While statistics offers rich theory and models for quantifying

uncertainty, it can be difficult to adapt statistical modeling practices to climate processes.

Climate data are generated by interconnected physical processes that can be difficult to

model statistically. In this thesis I develop statistical models, methods, and computational tech-

niques to improve modeling of climate phenomena that arise from complex physics. Physical

scientists often use differential equation-based, dynamical systems to model climate phenom-

ena. Statistical estimation for dynamical systems is challenging because dynamical systems

often lack distributional forms that allow computationally fast inference (Cressie and Wikle,

2011). As a result, applied statistical analyses of climate data may use “phenomenological”

models instead, which focus on using hierarchical Gaussian processes to model first and

second-order behaviors of dynamical systems—i.e., variability around a mean state. Such mod-

els can still be challenging to fit. As with dynamical system models for climate, many phe-

nomenological models have high-dimensional spatio-temporal state spaces that are difficult to

explore computationally. Low-rank, sparse, and approximate Gaussian process models have

been proposed in recent years to reduce computational demands for analyses of spatially cor-

related data (Banerjee et al., 2008; Datta et al., 2016; Furrer et al., 2006; Katzfuss, 2016; Lindgren

et al., 2011). However, additional or alternate modeling is required for non-Gaussian climate

data, like counts of weather events or extreme precipitation.

Computationally tractable statistical models for climate data, in particular for extreme pre-

cipitation data, sometimes need to make simplifying assumptions that limit a model’s versa-

tility in order to achieve specific inferential goals. Engineers and urban planners rely on es-

timates of probabilities for extreme rainfall quantities to design durable roads, buildings, and

stormwater runoff systems. Extreme value theory (EVT) provides appropriate statistical models

for these information needs by studying asymptotic properties of block maxima and threshold
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exceedance data. Extending univariate EVT models to processes defined on continuous spatial

domains yields joint probability distributions that, in general, are computationally intractable

for datasets that include observations from more than 30 spatial locations (Davison et al., 2012).

Thus, EVT models can be difficult to apply to engineering problems with large spatial domains.

For some engineering problems, computationally tractable models can be formulated by mak-

ing the simplifying assumption that data are conditionally independent given parameters for

marginal distributions (Cooley et al., 2007). The resulting latent model for spatial extremes uses

standard spatial models to model dependence between the parameters of marginal EVT dis-

tributions and assumes data are conditionally independent, which limits use of the modeling

approach to climate regions without strong extremal dependence. In this thesis, I propose using

a weighted likelihood to overcome this limitation.

Like GCMs, statistical models are challenged to characterize future climate while account-

ing for complex physical processes, uncertainty, and dependence. The remainder of this sec-

tion briefly introduces two modeling problems for climate data (Sections 1.2 to 1.3) before they

are studied in detail (Chapters 2 to 3). In both problems, we propose extended modeling ap-

proaches that better account for different types of dependence induced by climate phenomena

at long and short distances. In Section 1.4, I describe that while standard Bayesian computa-

tional strategies are sufficient for estimating the proposed models for climate data, it will be-

come difficult to fit models to future datasets that are larger and more detailed. Motivated by

recent research related to statistical computing for large spatial models, the section briefly in-

troduces general challenges in statistical computing techniques for Bayesian inference before

they are studied in more detail (Chapter 4).

1.2 Improving return level estimation

Uncertainty in return level estimates for rare events—i.e., the intensity of low-probability

rainfall events—can be extremely high due to short observational records. Large uncertainty

makes it difficult to develop strategies to mitigate related hazards, like flooding. Latent spatial
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extremes models reduce uncertainty by exploiting spatial dependence in statistical character-

istics of extreme events to borrow strength across locations. However, these estimates often

underestimate return level uncertainty due to model misspecification: many latent spatial ex-

tremes models do not account for extremal dependence, which is spatial dependence in the

extreme events themselves. This thesis improves estimates from latent spatial extremes models

that make conditional independence assumptions by proposing a weighted likelihood that uses

the extremal coefficient to incorporate information about extremal dependence during estima-

tion. This approach differs from, and is simpler than, directly modeling the spatial extremal

dependence; for example, by fitting a max-stable process, which is challenging to fit to real,

large datasets. This thesis adopts a hierarchical Bayesian framework for inference, use simula-

tion to show the weighted model provides improved estimates of high quantiles, and apply our

model to more accurately estimate return level uncertainty for Colorado rainfall events with 1%

annual exceedance probability.

1.3 Spatial process models for remote effects

While most spatial data can be modeled with the assumption that distant points are un-

correlated, some problems require dependence at both far and short distances. This thesis

introduces a model to directly incorporate dependence in phenomena that influence a distant

response. Spatial climate problems often have such modeling needs as data are influenced by

local factors in addition to remote phenomena, known as teleconnections. Teleconnections

arise from complex interactions between the atmosphere and ocean, of which the El Niño–

Southern Oscillation teleconnection is a well-known example. This thesis model extends the

standard geostatistical modeling framework to account for effects of covariates observed on a

spatially remote domain. The model is framed as an extension of spatially varying coefficient

models. Connections to existing methods are highlighted and further modeling needs are ad-

dressed by additionally drawing on spatial basis functions and predictive processes. Notably,

this approach allows users to model teleconnected data without pre-specifying teleconnection
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indices, which other methods often require. This thesis adopts a hierarchical Bayesian frame-

work to conduct inference and make predictions. The method is demonstrated by predicting

precipitation in Colorado while accounting for local factors and teleconnection effects with Pa-

cific Ocean sea surface temperatures. The proposed model improves upon standard methods

for estimating teleconnection effects, and this thesis discusses the model’s utility for climate

applications.

1.4 Computationally efficient Bayesian inference

Computationally efficient posterior approximation remains a key challenge in applied

Bayesian analyses, especially for hierarchical models. Posterior distributions are challenging

to compute because their normalizing constant is often unavailable in closed form. Markov

chain Monte Carlo (MCMC) methods avoid this issue using sampling techniques to directly ap-

proximate quantities that can be expressed as posterior means. But, MCMC methods are com-

putationally expensive. Laplace approximations, including the integrated nested Laplace ap-

proximation (INLA, Rue et al., 2009), are computationally efficient alternatives, in particular for

marginal quantities. However, such approximations are often limited to models with relatively

few hyperparameters. Sparse grid quadrature methods allow computationally-efficient numer-

ical approximation of high dimensional integrals. We propose using sparse grid quadrature to

develop a new method to draw inference about hierarchical Bayesian models. This thesis refor-

mulates Bayesian posterior quantities, including densities and expectations so they may be ap-

proximated with sparse grid quadrature methods. The proposed method provides approximate

Bayesian inference for hierarchical models, allowing computationally efficient approximation

of marginal posterior quantities and normalization constants in computationally challenging

models. The approximation framework includes INLA as a special case, but can allow mod-

els with greater numbers of hyperparameters and more flexible hierarchical structures. The

proposed approximations take the form of weighted mixtures of posterior quantities, such as
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conditional means and densities, and the large computational savings relative to MCMC are

demonstrated for computationally challenging models.

6



Chapter 2

Improved return level estimation via a weighted

likelihood, latent spatial extremes model1

2.1 Introduction

Natural hazards with potentially catastrophic impacts arise as extremes of physical pro-

cesses that are inherently dependent over space, such as large storms that generate extreme

precipitation. Accordingly, the statistical modeling of spatially-referenced extreme values has

been an active research area in recent years. To effectively plan mitigation strategies for natural

hazards caused by extreme precipitation, it is important to build maps that estimate occurrence

probabilities and return levels for extreme precipitation events at individual locations. Return

level maps for individual locations inform building safety standards, insurance risks, and sur-

face water runoff requirements for stormwater management systems. However, extreme events

are rare by definition, so relevant datasets from networks of environmental monitoring stations

typically have relatively short observation lengths. Spatial extremes models allow the tails of

probability distributions to be estimated while “borrowing strength” from neighboring time se-

ries. Widely used to borrow strength, hierarchical models share statistical information across

sampling locations to obtain more accurate and spatially consistent estimates of extreme event

characteristics.

Often in extremes studies, the primary interest is in modeling return levels of extreme events

at individual locations. Latent spatial extremes models are a flexible and computationally ef-

ficient class of models for marginal distributions of spatial extremes and quantities derived

from them, like return levels. Latent spatial extremes models use a hierarchical framework

to add spatial structure to the parameters of an extreme value distribution. Many hierarchi-

1Accepted for publication in the Journal of Agricultural, Biological and Environmental Statistics with Fix, M.,

Hoeting, J. A., & Cooley, D. S.
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cal frameworks assume observations of extremes are independent across sampling locations,

conditional on the latent spatial processes that specify the data’s marginal distributions. Hi-

erarchical spatial layers induce smoothness and correlation in marginal return level estimates

across sampling locations, and—critically—allow return level maps to be built using spatial in-

terpolation techniques, like kriging. As such, return level estimates “borrow strength” because

estimates balance data at each sampling location with spatial smoothing induced by the latent

hierarchical layers. For example, Cooley et al. (2007) use latent Gaussian processes in a hierar-

chical Bayesian model to capture covariate-driven trends and spatial dependence in precipita-

tion data. Bayesian frameworks allow direct estimation of uncertainties in return levels since

the posterior distribution contains this information. Latent spatial Gaussian process models

can also be scaled to massive datasets with recent advances in models and computational tech-

niques (Lindgren et al., 2011; Rue et al., 2009). Other recent studies employ latent spatial ex-

tremes models in either Bayesian or frequentist paradigms (Cooley and Sain, 2010; Lehmann

et al., 2016; Opitz et al., 2018; Sang and Gelfand, 2009). However, due to the conditional in-

dependence assumption, these examples of latent spatial extremes model cannot account for

extremal dependence, which is dependence in observations of extreme events themselves.

Directly modeling extremal dependence poses theoretical and computational challenges.

Classical univariate and multivariate extreme value models are generated via asymptotic ar-

guments about the limiting distributions of appropriately renormalized block maxima. The

natural extension to the spatial setting is the max-stable process, which is the limiting process

of the componentwise maxima of a sequence of suitably renormalized stochastic processes.

Examples include the Smith (1990), Schlather (2002), and Brown-Resnick (Brown and Resnick,

1977; Kabluchko et al., 2009) processes. The advantage of max-stable process modeling is that it

directly models spatial dependence in the tail and thus permits inference about joint probabil-

ities in addition to marginal quantities, like return levels. However, full likelihood inference for

max-stable processes is only computationally tractable in relatively low-dimensional situations

(Castruccio et al., 2016; Davison et al., 2012).
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In particular, computationally efficient Bayesian methods for spatially-dependent extremes

data remains challenging. Frequentist inference for max-stable processes has typically been

based on computationally efficient models that use approximate likelihoods, such as compos-

ite likelihoods based on bivariate densities of max-stable processes (Padoan et al., 2010). How-

ever, composite likelihood methods are computationally expensive and difficult to implement

in hierarchical Bayesian models (Ribatet et al., 2012; Sharkey and Winter, 2018). Some Bayesian

models do not need to use approximate likelihoods, but are limited to specific max-stable pro-

cesses or require additional data for estimation (Reich and Shaby, 2012; Thibaud et al., 2016).

The latent spatial extremes approaches previously introduced address computational issues

while providing flexible models for estimating marginal parameters, but raise concerns about

the impact of model misspecification on inference. These models make a simplifying condi-

tional independence assumption by defining the likelihood to be the product of each location’s

marginal density. The misspecification due to the conditional independence assumption can

result in unrealistically narrow confidence intervals for return level estimates (Cao and Li, 2018;

Zheng et al., 2015). Alternative to assuming conditional independence or using computation-

ally expensive models to account for extremal dependence, we seek a compromise between the

two modeling approaches. We want to preserve computationally efficient and flexible mod-

els for marginal parameters provided by latent variable models, but also account for extremal

dependence in observations.

We propose a method for improving marginal inference that is supported by theory and

computationally efficient. We develop a weighted likelihood that uses spatial information to

induce an effective sample size correction that accounts for the loss of information due to de-

pendent observations. The likelihood weights improve uncertainty estimates in cases of mod-

erate to strong extremal dependence. The effective sample size motivation differs from previous

uses of weighted likelihoods. Weighted likelihoods have previously been used to approximate

Bayesian inference and as a method for conducting inference on data sampled from multi-

ple, related populations, for example in Hu and Zidek (2002); Newton and Raferty (1994); Wang
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(2006). Weighted likelihoods have also recently been proposed for latent spatial extremes mod-

els, but only as they relate to composite likelihood corrections (Sharkey and Winter, 2018). A

natural tradeoff in using likelihood weights to better account for estimation uncertainty is that

mean squared error can be slightly worse in these cases.

The remainder of the article is organized as follows. Section 2.2 introduces our weighted

likelihood and Bayesian implementation. Section 2.5 uses a simulation study to show that the

weighted likelihood improves estimates, as compared to several models with similar Bayesian

hierarchical structure. As part of our comparisons, we derive the penalized complexity prior

for the generalized extreme value (GEV) distribution (Section 2.5.2). Section 2.6 applies the

weighted likelihood latent model to daily rainfall observations in Colorado’s Front Range of the

Rocky Mountains. We conclude with discussions of extensions and other directions for future

work (Section 2.7).

2.2 Weighted likelihood latent spatial extremes models

We briefly review extreme value theory for modeling return levels from observations of an-

nual maxima (Section 2.2.1). In particular, we introduce the extremal coefficient, which we

will use to build our weights. We then propose and interpret a latent variable model with a

weighted likelihood to estimate marginal quantities from spatially-dependent extremes data

(Section 2.2.2, Section 2.2.3). When data are dependent, the weighted likelihood accounts for

model misspecification in the latent variable modeling approach by Cooley et al. (2007), which

assumes data are conditionally independent, given marginal parameters. The model has a hi-

erarchical spatial structure, for which posterior distributions can be approximated via Gibbs

sampling (Section 2.2.4, Section 2.3).

2.2.1 Max-stable processes and the extremal coefficient

Max-stable processes for spatially-referenced extremes data arise as the pointwise limit of

block maxima, which are pointwise maxima of replications of spatially-referenced processes.
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Let D be a continuous spatial domain and {Yi t (s)}s∈D , t ∈ {1, . . . ,m} be m independent repli-

cations of a spatial process at time block i ∈ T = {1, . . . ,T }. The size of each block i ∈ T is

represented by m. As the block size m increases, if the limit

Yi (s) = lim
m→∞

maxm
t=1 Yi t (s)−bm(s)

am(s)
, s ∈D

exists for continuous functions am(s) > 0 and bm(s) ∈R, then {Yi (s)}s∈D , t ∈T are independent

replications of a max-stable process (De Haan, 1984).

In general, the spatial dependence structure for max-stable processes {Yi (s)}s∈D is complex,

but is often summarized for pairs of random variables Yi (s) and Yi (t ) through the extremal

coefficient. The extremal coefficient θ(d) is a function that is traditionally defined implicitly for

stationary and isotropic fields such that

P
(

Yi (s) ≤ y,Yi (t ) ≤ y
)

= P
(

Yi (s) ≤ y
)θ(d)

(2.1)

for pairs of random variables Yi (s) and Yi (t ) where d = ‖s − t‖ (Schlather and Tawn, 2003). The

extremal coefficient is interpretable as the effective number of independent random variables

among pairs of variables separated by a distance d . As such, it takes values in the closed interval

[1,2].

Importantly, the univariate marginal distributions for max-stable processes belong to the

generalized extreme value distribution family Yi (s)∼GEV
(

η(s)
)

with distribution function

P
(

Yi (s) ≤ y
)

=



















exp

{

−

(

1+ξ(s)
(

y−µ(s)
σ(s)

))−1/ξ(s)

+

}

ξ(s) 6= 0

exp
{

−exp
{

y−µ(s)
σ(s)

}}

ξ(s) = 0

(2.2)

where a+ = max(0, a) (De Haan, 1984). The parameter vector η(s) =
(

µ(s), logσ(s),ξ(s)
)T

spec-

ifies the distribution’s location µ(s) ∈R, scale σ(s) > 0, and shape ξ(s) ∈R parameters. The GEV

quantile function Q
(

p
∣

∣η(s)
)

is derived from (2.2) and has the closed form
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Q
(

p
∣

∣η(s)
)

=















µ(s)+ σ(s)
ξ(s)

(

(

− log p
)−ξ(s)

−1
)

ξ(s) 6= 0

µ(s)−σ(s) log
(

− log p
)

ξ(s) = 0

(2.3)

with p ∈ [0,1].

Asymptotic convergence justifies use of the GEV distribution as an approximate model for

the annual maximum of daily precipitation in year i , which is a block maximum quantity that

has large but finite replication t ∈ {1, . . . ,m}. The approximation allows marginal return levels

for extreme precipitation events to be modeled as high quantiles of the GEV distribution at each

location s ∈D. Assuming a stationary climate, the quantile Q
(

p
∣

∣η(s)
)

with p = 1−1/r is inter-

pretable as the r -year return level—the amount of precipitation carried by a storm that occurs,

on average, once every r years. The quantile Q
(

p
∣

∣η(s)
)

is also associated with the 1−p percent

annual exceedance probability; the quantile expresses the amount of precipitation carried by a

storm that has a 1−p percent chance of occurring in a given year.

2.2.2 Weighted likelihood

We propose a latent variable model that uses a weighted marginal likelihood. In general,

weighted likelihoods are missspecified but can improve inference relative to unweighted like-

lihoods. A correctly-specified likelihood for spatial extremes data would fully account for ex-

tremal dependence, but be computationally intractable. Marginal likelihoods assume data are

conditionally independent across spatial locations and timepoints, given marginal parameters.

When the field {Yi (s)}s∈D is sampled at N spatial locations S = {s1, . . . , sN } ⊂ D, the weighted

marginal likelihood for a finite sample of observations
{

yi

(

s j

)

: i ∈T , s j ∈S
}

is defined via

L
(

η
)

=
N
∏

j=1

T
∏

i=1

f
(

yi

(

s j

)∣

∣η
(

s j

))ws j(2.4)

where f
(

yi

(

s j

)∣

∣η
(

s j

))

is the probability density function for the GEV distribution (2.2) and

η(s) is the associated parameter vector. The weighted marginal likelihood (2.4) uses likeli-
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hood weights
{

ws j
: j = 1, . . . , N

}

and marginal densities
{

f
(

yi

(

s j

)∣

∣η
(

s j

))

: j = 1, . . . , N
}

to es-

timate the marginal parameters
{

η
(

s j

)

∈R
3 : j = 1, . . . , N

}

that have been stacked to form the

vector η ∈ R
3N . During estimation, likelihood weights can be constructed to downweight ob-

servations for yi

(

s j

)

that exhibit strong dependence with neighboring observations. Models

assuming conditional independence naively assume the weights are unitary.

We use the extremal coefficient in (2.1) to construct weights that downweight likelihood

contributions from locations central to the spatial sampling pattern, where observations tend

to be most dependent. We construct each weight ws j
by first mapping extremal coefficients

θ
(

‖si − s j‖
)

for i 6= j to the interval [1/N ,1], then averaging the mapped values, yielding

ws j
=

1

N −1

N
∑

i=1, i 6= j

Nθ(‖si−s j ‖)−2,(2.5)

so ws j
∈ [1/N ,1]. The weights (2.5) are specifically constructed so that the statistical infor-

mation in the weighted marginal likelihood (2.4) matches the statistical information in non-

misspecified likelihoods in two special, limiting cases (Section 2.4.1). In the first limiting case,

the field is assumed to be independent, and ws j
= 1; in the second limiting case, the field

{Yi (s)}s∈D is assumed to have complete dependence over space, and ws j
= 1/N . The field

{Yi (s)}s∈D has complete dependence over space if all potential samples {Yi (s1), . . . ,Yi (sN )} can

be represented through a collection of continuous transformations
{

g j : j = 1, . . . , N
}

of a vari-

able Ui such that

(Yi (s1), . . . ,Yi (sN ))
d
=

(

g1(Ui ), . . . , gN (Ui )
)

.

2.2.3 Effective sample size interpretation

From an information-theoretic perspective, we show that the weighted likelihood (2.4) in-

duces an effective sample size that corrects inference on spatially correlated marginal param-

eters when data are also spatially dependent. Effective sample size statistics quantify the im-
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pact that dependence has on estimation uncertainty (e.g., Cressie, 1993, p. 13). We use effec-

tive sample size to determine factors that will impact estimator performance in our simulation

(Section 2.5). In our application, effective sample size also helps us better interpret losses in

statistical efficiency due to dependence in observations of extremes (Section 2.6).

The Fisher information for (2.4) is the block diagonal matrix I
(

η
)

∈R
N m×N m with j th diago-

nal block I
(

η
(

s j

))

∈R
m×m being

I
(

η
(

s j

))

= ws j
T IY•(s j )

(

η
(

s j

))

,(2.6)

where IY•(s j )
(

η
(

s j

))

is the expected Fisher information for each of the independent and iden-

tically distributed random variables
{

Yi

(

s j

)

: i ∈T
}

. Note that the j th block (2.6) is the Fisher

information for ws j
T independent observations of the response at s j . Thus, ws j

quantifies the

effective proportion of independent observations at location s j that contribute to inference for

the marginal GEV parameters η
(

s j

)

. As the likelihood weight ws j
decreases, uncertainty in-

creases about the marginal GEV parameters η
(

s j

)

and return level Q
(

p
∣

∣η
(

s j

))

. Latent spatial

extremes models with unweighted likelihoods can be interpreted as implicitly assigning ws j
= 1

for all locations s j ∈S . Such a strategy underestimates parameter uncertainty when data have

extremal dependence.

2.2.4 Hierarchical specification

We adopt a hierarchical Bayesian framework to conduct inference on the weighted marginal

likelihood, and facilitate spatial interpolation of marginal return levels (2.3). We specify a hierar-

chical spatial process model for the marginal parameters at each spatial location in the domain

η(s) =
(

µ(s), logσ(s),ξ(s)
)T

∈R
3 via

η(s) =















xµ(s)T

xlogσ(s)T

xξ(s)T





























βµ

βlogσ

βξ















+















εµ(s)

εlogσ(s)

εξ(s)















,(2.7)
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in which x(s) and β are respectively p ×1 vectors of regression covariates and coefficients, and

ε(s) represents spatially-correlated variation in the marginal parameters η(s). The matrix of

covariates in (2.7) is block-diagonal; the blank, off-diagonal entries represent zeros. We use dif-

fuse normal priors for regression coefficients β. Independent Gaussian processes model the

spatially-correlated variation in εµ(s), εlogσ(s), and εξ(s). Gaussian processes imply finite sam-

ples of parameters are jointly-normally distributed and allow estimation of spatially-coherent

marginal parameter maps
{

η(s)
}

s∈D
through kriging. Furthermore, stationary isotropic Gaus-

sian processes are sufficient models when departures from stationarity and isotropy are difficult

to detect (Cooley et al., 2007).

The Gaussian processes for marginal parameters are fully defined by specifying covariance

functions Cov
(

ε(s), ε(t )|φ
)

= ρ
(

‖s − t‖ ;φ
)

to model the spatial correlation in the parameters

between locations s, t ∈ D. Specific choices for covariance functions ρ and hyperprior dis-

tributions for covariance parameters φ = (σ0,λ0,ν0)T are discussed in Section 2.5.3 and Sec-

tion 2.6.2. In general, we use weakly informative Gamma priors for covariance range λ0 and

smoothness ν0 parameters, and weakly informative Inverse-Gamma priors for covariance sill

parameters σ0.

2.3 Bayesian implementation of model

A Gibbs sampler can be constructed for inference on the hierarchical Bayesian model spec-

ified in Section 2.2.4, in which likelihood weights (2.5) are updated with the aid of a plug-in

estimator for the extremal coefficient. The Bayesian framework allows estimates of return lev-

els Q
(

p
∣

∣η(s)
)

to be computed directly from posterior samples of the marginal parameter vector

η(s) since return levels are functions of marginal parameters. Standard hybrid Gibbs sampling

approaches are used to sample the marginal GEV parameters, covariance parameters, and re-

gression coefficients. The sampler is described in detail in Section 2.3.2. Estimation of likeli-

hood weights is discussed in Section 2.3.1.
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2.3.1 Likelihood weights

Likelihood weights (2.5) are computed with a plug-in estimator θ̂(d) for the extremal coeffi-

cient (Cooley et al., 2006). The plug-in estimator uses sample statistics from the data that have

been transformed to have unit Fréchet marginal distributions. Thus, the likelihood weights

depend on estimates of the marginal distributions, either estimated through the empirical cu-

mulative distribution function (CDF), or directly through the GEV CDF. Before Gibbs sampling

begins, we initialize all of the likelihood weights by using the empirical CDF at each location

F̂
(

y ; s j

)

= T −1 ∑T
i=11

{

yi

(

s j

)

≤ y
}

to transform the data via probability integral transforms.

These initial weights may be held fixed and used throughout Gibbs sampling or updated at each

Gibbs iteration. To update the weights at each Gibbs iteration, the data may be retransformed

by using the GEV CDF (2.2) with the marginal parameters η from the previous Gibbs iteration.

Updating likelihood weights during Gibbs sampling accounts for uncertainty in the likelihood

weights.

2.3.2 Gibbs sampler

Gibbs sampling begins by updating marginal GEV parameters at the sampling locations

{

η
(

s j

)

: j = 1, . . . , N
}

. The parameter vectors are updated sequentially, from j = 1, . . . , N . Sepa-

rate random walk Metropolis-Hastings steps—with proposal standard deviations sµ, slogσ, and

sξ—are used to update the entries of each parameter vector η
(

s j

)

=
(

µ
(

s j

)

, logσ
(

s j

)

,ξ
(

s j

))T
.

Proposal standard deviations are chosen in preliminary test runs of the Gibbs sampler to tune

acceptance rates so they are close to 44% (Roberts and Rosenthal, 2001).

Sampling then proceeds to update regression coefficients β and spatial covariance parame-

tersφ= (σ0,λ0,ν0)T for each of the independent Gaussian process priors for the GEV parameter

processes
{

µ(s)
}

s∈D
,
{

logσ(s)
}

s∈D
, and {ξ(s)}s∈D . Regression coefficients and spatial covariance

parameters determine the mean and covariance structures of the Gaussian processes. Separate

random walk Metropolis-Hastings steps update spatial range λ0 and smoothness ν0 parame-

ters. The random walk proposal distributions respectively have fixed proposal standard devia-
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tions sλ0
and sν0 , which are specified for each of the Gaussian processes. Regression coefficients

β and sills σ0 are sampled from conjugate distributions.

For example, the Gaussian process assumption in Section 2.2.4 implies the collection of GEV

location parameters µ=
[

µ
(

s j

)]N

j=1
∈R

N have the jointly-normal conditional prior distribution

µ
∣

∣βµ,φµ ∼ N
(

Xµβµ,Σµ

)

, where the matrix Xµ ∈ R
N×pµ is composed of the N row vectors

xµ

(

s j

)T
∈ R

pµ , j = 1, . . . , N , and Σµ ∈ R
N×N is a spatial covariance matrix specified via entries

(

Σµ

)

i j
= ρ

(∥

∥si − s j

∥

∥ ;φµ

)

. Since the regression coefficients have a normal prior distribution

βµ ∼ N
(

0,Λµ

)

in which Λµ is a fixed prior covariance matrix, the conjugate full conditional

posterior distribution for βµ is βµ

∣

∣µ,φµ, ···∼ N (m,Ψ) with covariance Ψ =

(

Λ
−1
µ +X T

µ ΣµXµ

)−1

and mean m = ΨX T
µ Σ

−1
µ µ. The covariance sill has an inverse gamma prior distribution

σ0 ∼ IG
(

aµ,bµ

)

and conjugate full conditional posterior distribution that depends on the cur-

rent iteration of the Gaussian process parameters and values specified via

σ0|µ,βµ,λµ,νµ, ···∼ IG
(

aµ+N /2,bµ+eT
(

Σµ/σ0

)−1
e/2

)

,

where e = µ− Xµβµ. The conjugate distributions for the regression and sill parameters of the

other Gaussian processes
{

logσ(s)
}

s∈D
and {ξ(s)}s∈D use similar notation and results for their

Gibbs steps.

If the model is being fit with Gibbs-updated likelihood weights or penalties, the weights

and penalty tuning parameters are updated next. Likelihood weights are computed from (2.5),

in which a plug-in estimator θ̂(d) is used for the extremal coefficient. The plug-in estimator

θ̂(d) is only a function of the data and marginal parameters, so does not explicitly rely on the

dependence parameter γ. The basis for the plug-in estimator is a relationship between the

extremal coefficient and the F-madogram νF (d). The F-madogram is an analog of the clas-

sical variogram for spatial statistics and measures spatial dependence in stationary max-stable

fields. If the marginal GEV shape parameters satisfy ξ(s) < 1 (i.e., they are not too large), then the

extremal coefficient is related to the F-madogram via θ(d) =
(

1+2νF (d)
)

/
(

1−2νF (d)
)

(Cooley

et al., 2006). After using marginal parameters η to transform data
{

yi

(

s j

)

: i ∈T , j ∈S
}

to have
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unit Fréchet margins, the sample F-madogram can be estimated in a similar manner as vari-

ograms, by working with the differences between pairs of observations separated by a distance

d . Likelihood weights may be estimated before Gibbs sampling by using the empirical cumu-

lative distribution function (CDF) to transform the data to have unit Fréchet margins in order

to estimate the sample F-madogram. Uncertainty in the likelihood weights (2.5) can also be

incorporated by updating them at each Gibbs iteration. Conditional on the data and marginal

parameters, the weights are deterministic because the sample F-madogram is deterministic.

Thus, the weights do not need to be sampled; weights can be updated by using the marginal

parameters η to re-transform the data to re-estimate the F-madogram at each Gibbs iteration.

The plug-in estimator θ̂(d) is updated by using the current Gibbs values of the GEV param-

eters at the sampling locations
{

η(s)
}

s∈S
to transform the data

{

yi

(

s j

)

: i ∈T , j ∈S
}

to have

unit Fréchet margins. The plug-in estimator θ̂(d) is recomputed from an estimate of the sam-

ple F-madogram, using the transformed data. If the model is using a penalized likelihood, as in

Section 2.5.2 and (2.22), the penalty’s tuning parameter λ may be updated as well. The penal-

ized complexity prior (2.23) does not have a conjugate distribution, so must be updated with

a random walk Metropolis-Hastings step. Unlike the other random walk updates, the sampler

uses a basic version of Algorithm 4 from Andrieu and Thoms (2008) to adaptively tune the pro-

posal standard deviation sλ during estimation so the acceptance rate is close to 44%.

2.4 Weights for completely dependent random variables

2.4.1 Motivation for range of weights

We discuss the two special, limiting cases mentioned in Section 2.2.2 in more detail. If

the field {Yi (s)}s∈D has complete dependence over space, or is spatially independent, then the

likelihood weights (2.5) yield the same statistical information about GEV parameters η as non-

misspecified likelihoods, which fully account for extremal dependence. We justify this claim by

showing that our weighted likelihood (2.4) is equivalent to non-misspecified likelihoods (2.8) in
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these special, limiting cases. We also make an informal argument that our weighted likelihood

will approximate non-misspecified likelihoods in neighborhoods of these limiting cases.

Let the vector γ ∈ R
p be used generically to parameterize extremal dependence in the field

{Yi (s)}s∈D at time block i ∈ T . Similarly, let the non-misspecified likelihood for observations

{

yi

(

s j

)

: i ∈T , s j ∈S
}

be defined via

L
(

η,γ
)

=
T
∏

i=1

f
(

yi (s1), . . . , yi (sN )
∣

∣η,γ
)

.(2.8)

Assume the joint density f
(

yi (s1), . . . , yi (sN )
∣

∣η,γ
)

is continuous with respect to γ, and let the

limiting conditions
∥

∥γ
∥

∥ → 0 and
∥

∥γ
∥

∥ → ∞ respectively parameterize fields that have no ex-

tremal dependence, and complete extremal dependence across space.

Alternative to the likelihood weights (2.5) we propose using, likelihood pseudo-weights
{

w̃s j ,γ : j = 1, . . . , N
}

can be explicitly constructed to allow the non-misspecified likelihood (2.8)

to be written in a weighted marginal form, such as

T
∏

i=1

f
(

yi (s1), . . . , yi (sN )
∣

∣η,γ
)

=
N
∏

j=1

T
∏

i=1

f
(

yi

(

s j

)∣

∣η
(

s j

))w̃s j ,γ .(2.9)

The pseudo-weights we will construct are purely theoretical tools because they cannot be com-

puted in practice. Using pseudo-weights to express the non-misspecified likelihood (2.8) as a

weighted marginal likelihood (2.9) implies the weighted likelihood we propose (2.4) will yield

the same inference as non-misspecified likelihoods when our likelihood weights (2.5) are equiv-

alent to the pseudo-weights. We refer to the alternative weights
{

w̃s j ,γ : j = 1, . . . , N
}

as pseudo-

weights because we will define them shortly in (2.12) to depend on the joint conditional density

f
(

yi (s1), . . . , yi (sN )
∣

∣η,γ
)

, which is not computationally tractable for spatially-referenced ex-

tremes data with N > 10, for example (Davison et al., 2012). Furthermore, computable pseudo-

weights imply the joint density is available, thus the non-misspecified likelihood (2.8) may be

used directly for inference and weighted likelihoods are unnecessary.
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The likelihood pseudo-weights in (2.9) can be constructed in two parts. Begin by defining

temporally-indexed weights
{

w̃i ,γ : i = 1, . . . ,T
}

that solve

f
(

yi (s1), . . . , yi (sN )
∣

∣η,γ
)

=
N
∏

j=1

f
(

yi

(

s j

)∣

∣η
(

s j

))w̃i ,γ

for each i ∈T via

w̃i ,γ =
ln f

(

yi (s1), . . . , yi (sN )
∣

∣η,γ
)

∑N
j=1 ln f

(

yi

(

s j

)∣

∣η
(

s j

)) .(2.10)

That is, w̃i ,γ is the ratio of the log-likelihood contribution in (2.8) at time i to the log-likelihood

contribution from the marginal likelihoods, which assume conditional independence. The

temporally-indexed weights (2.10) allow the likelihood (2.8) to be rewritten as

L
(

η,γ
)

=
N
∏

j=1

T
∏

i=1

f
(

yi

(

s j

)∣

∣η
(

s j

))w̃i ,γ .(2.11)

The desired likelihood weights
{

w̃s j ,γ : j = 1, . . . , N
}

, which are spatially-indexed, allow substi-

tution of the inner product in (2.11) over i = 1, . . . ,T by solving

T
∏

i=1

f
(

yi

(

s j

)∣

∣η
(

s j

))w̃s j ,γ
=

T
∏

i=1

f
(

yi

(

s j

)∣

∣η
(

s j

))w̃i ,γ

for each s j ∈S via

w̃s j ,γ =

∑T
i=1 w̃i ,γ ln f

(

yi

(

s j

)∣

∣η
(

s j

))

∑T
i=1 ln f

(

yi

(

s j

)∣

∣η
(

s j

)) .(2.12)

The likelihood weights we propose (2.5) converge to the pseudo-weights (2.12) as the ex-

tremal dependence approaches the special, limiting cases we consider. The extremal coeffi-

cient (2.1), combined with continuity of the joint density f
(

yi (s1), . . . , yi (sN )
∣

∣η,γ
)

with respect

to γ imply our likelihood weights (2.5) satisfy ws j
→ 1 and ws j

→ 1/N , respectively as
∥

∥γ
∥

∥ → 0

and
∥

∥γ
∥

∥ →∞. The pseudo-weights satisfy the same properties. In the first special case, con-
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vergence w̃s j ,γ → 1 as
∥

∥γ
∥

∥→ 0 is immediate because the joint density converges to a product of

independent densities f
(

yi (s1), . . . , yi (sN )
∣

∣η,γ
)

→
∏N

j=1 f
(

yi

(

s j

)∣

∣η
(

s j

))

. In the second special

case,
∥

∥γ
∥

∥→∞, convergence w̃s j ,γ → 1/N can be seen since the limiting joint density factors as

f
(

yi (s1), . . . , yi (sN )
∣

∣η
)

=
N
∏

j=1

f
(

yi

(

s j

)∣

∣η
(

s j

))1/N
×

1
{

F
(

yi (s1)
∣

∣η(s1)
)

= ·· · = F
(

yi (sN )
∣

∣η(sN )
)}

for certain configurations of marginal density parameters, such as when the data have common

marginals. This is a result of Corollary 2.4.1.1, presented and proved in Section 2.4.2.

Convergence of the likelihood weights we propose (2.5) to the pseudo-weights (2.12)

implies that the weighted likelihood we propose (2.4) also converges to the non-misspecified

likelihood (2.8). Furthermore, convergence of the likelihoods allows us to informally claim that

inference based on the two different likelihoods will be similar when data is sampled from a

process with extremal dependence γ in a neighborhood of the limiting cases
∥

∥γ
∥

∥ → 0 and

∥

∥γ
∥

∥→∞.

2.4.2 Theoretical results

Likelihood weights (2.10) and (2.12) are defined with respect to joint density functions.

Completely dependent random variables have been studied in detail in the insurance industry,

where they are referred to as comonotonic random variables. However, their joint density is not

usually considered. Comonotonic random variables serve as basic models of worst-case sce-

narios for insurance portfolios, which makes the sum of comonotonic random variables more

important than their joint distribution (Dhaene et al., 2002). To compute likelihood weights for

completely dependent, or comonotonic variables, we first derive their joint density in Theo-

rem 2.4.1. Proofs for all results are presented in Section 2.4.3.

Theorem 2.4.1. For any j ∈ {1, . . . , N }, the joint density g (x1, . . . , xN ) for a vector of comonotonic

random variables (X1, . . . , XN ) can be parameterized as
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g (x1, . . . , xN ) = f j

(

x j

)

1(F1(x1) = ·· · = FN (xN ))(2.13)

where F j and f j respectively denote the cumulative distribution function and density for X j

relative to Lebesgue measure on R. The density (2.13) is defined with respect to the dominat-

ing measure λN +λC for which λN is Lebesgue measure on R
N and λC is Lebesgue measure on

C = {(x1, . . . , xN ) : F1(x1) = ·· · = FN (xN )} ⊂R
N .

While Theorem 2.4.1 allows the likelihood weights (2.10) and (2.12) to be computed, devel-

oping intuition requires additional theory because the density (2.13) only explicitly includes

one density f j . Lemma 2.4.1 will allow the likelihood weights to be manipulated by providing a

means to express fi as a rescaling of f j for i 6= j .

Lemma 2.4.1. For a vector of comonotonic random variables (X1, . . . , XN ), the marginal density

fi (xi ) for Xi may be re-expressed in terms of f j

(

x j

)

using function composition ◦ and the quantile

density function q(u) = ∂
∂u

F−1(u) through

fi (xi ) = f j

(

x j

)

(

q j ◦F j

)(

x j

)

(

qi ◦F j

)(

x j

)(2.14)

for any j = 1, . . . , N , continuous Fi ,F j , and x j s.t. Fi (xi ) = F j

(

x j

)

.

Intuition for the likelihood weights (2.10) and (2.12) follows from algebraic manipulation. In

particular, Corollary 2.4.1.1 yields conditions under which likelihood weights are intuitive (e.g.,

w( j) = N−1), such as when X1, . . . , XN have common marginals.

Corollary 2.4.1.1. For any j ∈ {1, . . . , N }, the likelihood weight (2.10) for a single vector of

comonotonic random variables (X1, . . . , XN ) is

w( j) =
1

N +d( j)
(2.15)

where
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d( j) =
1

ln f j

(

x j

)

N
∑

i=1

ln

(

q j ◦F j

)(

x j

)

(

qi ◦F j

)(

x j

)

and the subscript highlights the dependence of the weight w( j) on the density f j used to parame-

terize the comonotonic density g . The average weight across all parameterizations is

w̄ =
1

N

N
∑

j=1

w( j) =
1

N
.

2.4.3 Proofs of theoretical results

Completely dependent densities: Proof of Theorem 2.4.1

A random vector of comonotonic variables (X1, . . . , XN ) has support C and cumulative dis-

tribution function (CDF) given by

F (x1, . . . , xN ) = min
i∈{1,...,N }

Fi (xi )

where Fi is the CDF for Xi (Dhaene et al., 2002, Theorem 2). The CDF F and support C imply

the probability measure P associated with F is absolutely continuous with respect to λN +λC .

Integrating (2.13) over a half-infinite rectangle

A =
{(

y1, . . . , yN

)

: yi ≤ xi , i = 1, . . . , N
}

yields F (x1, . . . , xN ) since

∫

A
g
(

y1, . . . , yN

)

d(λN +λC ) =

∫F−1
j

(mini Fi (xi ))

−∞

f j

(

y
)

d y(2.16)

=P

(

U ≤ min
i

Fi (xi )

)

, U ∼U (0,1)(2.17)

= min
i∈{1,...,N }

Fi (xi ).(2.18)

The integral (2.16) simplifies because g is measure-0 with respect to λN and a 1:1 mapping

exists between A∩C and R since for any j ∈ {1, . . . , N }
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A∩C =
{(

y1, . . . , yN

)

: F1

(

y1

)

= ·· · = FN

(

yN

)

; Fi

(

yi

)

≤ Fi (xi ), i = 1, . . . , N
}

=

{

(

y1, . . . , yN

)

: F1

(

y1

)

= ·· · = FN

(

yN

)

; F j

(

y j

)

≤ min
i

Fi (xi )

}

=

{

(

y1, . . . , yN

)

: F1

(

y1

)

= ·· · = FN

(

yN

)

; y j ≤ F−1
j

(

min
i

Fi (xi )

)}

.

The probability integral transformation yields (2.17), from which (2.18) naturally follows. The

Radon-Nikodym theorem and general properties of distribution functions imply g is a density

for (X1, . . . , XN ) with respect to λN +λC .

Rescaled marginal densities: Proof of Lemma 2.4.1

The rescaling (2.14) uses the identity

(

f ◦Q
)

(u)q(u) = 1,u ∈ [0,1](2.19)

in which Q(u) = F−1(u) is the quantile function for a continuous CDF F (Parzen, 1979, eqn.

2.6). The support constraint Fi (xi ) = F j

(

x j

)

implies xi =
(

Qi ◦F j

)(

x j

)

and allows fi (xi ) to be

rewritten as

fi (xi ) =
(

fi ◦Qi ◦F j

)(

x j

)

.(2.20)

The desired result (2.14) follows from applying the identity (2.19) twice to (2.20) since

fi (xi ) =
{(

qi ◦F j

)(

x j

)}−1

=

(

f j ◦Q j ◦F j

)(

x j

)(

q j ◦F j

)(

x j

)

(

qi ◦F j

)(

x j

)

= f j

(

x j

)

(

q j ◦F j

)(

x j

)

(

qi ◦F j

)(

x j

) .

Completely dependent weights: Proof of Corollary 2.4.1.1

Theorem 2.4.1 implies the likelihood weight (2.10) for a single vector of comonotonic ran-

dom variables (X1, . . . , XN ) is
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w( j) =
ln f j

(

x j

)

∑N
i=1 ln fi (xi )

(2.21)

for all (x1, . . . , xN ) that satisfy the support constraint F1(x1) = ·· · = FN (xN ). Lemma 2.4.1 yields

the first result (2.15) as it lets us re-express the denominator of (2.21) in terms of f j

(

x j

)

as

N
∑

i=1

ln fi (xi ) =
N
∑

i=1

(

ln f j

(

x j

)

+ ln

(

q j ◦F j

)(

x j

)

(

qi ◦F1

)(

x j

)

)

= ln f j

(

x j

)

(

N +d( j)

)

where

d( j) =
1

ln f j

(

x j

)

N
∑

i=1

ln

(

q j ◦F j

)(

x j

)

(

qi ◦F j

)(

x j

) .

The average weight w̄ follows directly from (2.21) since

w̄ =
1

N

N
∑

j=1

ln f j

(

x j

)

∑N
i=1 ln fi (xi )

=
1

N
.

2.5 Simulation study

We use simulation to show that the weighted marginal likelihood (2.4) improves high quan-

tile estimates on datasets with realistic GEV parametersη(s), sample sizes, and varying extremal

dependence. The simulation compares the weighted likelihood model (Section 2.5.2) to a stan-

dard, unweighted latent spatial extremes model and a penalized variation. Penalization is an

alternate approach used to correct return level estimates in extreme value models (cf. Opitz

et al., 2018; Schliep et al., 2010). Penalized models have hierarchical structures that are similar

to our weighted likelihood, so are comparison models with similar computational complexity

to our weighted likelihood. We compare models by contrasting properties of estimators of high

quantiles, including empirical coverage and mean squared error (Section 2.5.4).
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2.5.1 Datasets

We simulate data from four generating models with varying combinations of extremal de-

pendence, and spatial N and temporal T sample sizes. Properties of parameter estimators are

empirically approximated using 1,000 datasets simulated from each generating model. Our de-

cision to vary extremal dependence, N , and T is informed by the Fisher information (2.6) and

effective sample size discussion (Section 2.2.2), which provide intuition about how extremal

dependence and sample size affect estimation. Increasing extremal dependence decreases the

amount of statistical information available for parameter estimation, much as occurs with clas-

sical spatial dependence (Cressie, 1993, Section 1.3). Similarly, the impact of extremal depen-

dence increases when sampling more spatial locations S = {s1, . . . , sN } ⊂ D from a fixed do-

main D. Unweighted latent spatial extremes models are misspecified when data are dependent

because they assume the data are conditionally independent given model parameters. The

severity of the misspecification increases as the process is observed at more spatial locations

N because it becomes more likely that observations from spatially-dependent locations are in-

cluded in the sample. The Fisher information equation (2.6), however, suggests that statistical

information about the marginal parameters increases with the number of replications T despite

misspecification, albeit at a slower rate when using likelihood weights.

Simulated data have marginal GEV parameters η(s) that mimic estimates from observed

annual maximum daily precipitation across Colorado’s Front Range (Tye and Cooley, 2015).

Spatially-dependent GEV parameters η(s), s ∈ D = [−10,10]2 are sampled from Gaussian pro-

cesses GP
(

m, ρ
)

with mean functions m : D → R and powered exponential covariances

ρ : D2 → [0,∞) specified in Table 2.1. Shape parameters ξ(s) are resampled until ξ(s) > 0 for all

s ∈S to ensure data are heavy-tailed. Brown–Resnick processes model extremal dependence in

the simulated data (Kabluchko et al., 2009). The semi-variogram γ : D2 → [0,∞) specified in Ta-

ble 2.1 parameterizes a Brown–Resnick model that induces strong, medium, or weak extremal

dependence on D as measured by the extremal coefficient function θ(d). For comparison, in-

dependent data are also simulated.
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Table 2.1: Generating model configurations used to simulate data for comparing the weighted likelihood

(2.4) to alternate estimating models (Section 2.5.2). We evaluate model performance with 1,000 datasets

for each combination of spatial N and temporal T sample sizes, and extremal dependence.

Spatial sample size N ∈ {30, 50, 100} sites sampled uniformly on D = [−10, 10]2

Temporal sample size T ∈ {50, 100}

Extremal dependence

(Brown-Resnick parameters)

Semi-variogram γ(λ, α)(s1, s2) = (‖s1 − s2‖/λ)α

Independent (λ= NA, α= NA)

Weak (λ= .25, α= .75)

Moderate (λ= .5, α= .5)

Strong (λ= .75, α= .25)

Prior distributions

for GEV parameters η(s)
Covariance function

ρ(σ0, λ0, ν0)(s1, s2) =σ0 exp
{

−(‖s1 − s2‖/λ0)ν0
}

Gaussian processes

µ(s)∼GP
(

26+ [.5 0]T
s, ρ(4, 20, 1)

)

logσ(s)∼GP
(

log(10)+ [0 .05]T
s, ρ(.4, 5, 1)

)

ξ(s)∼GP
(

.12, ρ(.0012, 10, 1)

)
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2.5.2 Estimating models

The simulation compares estimation of conditionally independent models with weighted

(2.4) and unweighted likelihoods (i.e., (2.4) with ws j
= 1 for all s j ∈S ) and a variation that uses

penalized complexity priors as a likelihood penalty (Section 2.5.2). Key differences between the

estimating models are summarized in Table 2.2. The comparison models represent different

approaches proposed in the extremes literature to improve marginal estimation of GEV param-

eters and have similar computational complexity.

Penalized complexity prior

Likelihood-based parameter estimates for the univariate GEV distribution are known to per-

form poorly, but penalized likelihoods can reduce estimation bias (Coles and Dixon, 1999; Mar-

tins and Stedinger, 2000). Penalized likelihoods have been incorporated into spatial models for

marginal extremes (Opitz et al., 2018; Schliep et al., 2010). Penalization improves estimation of

marginal parameters by downweighting estimates of large shape parameters ξ(s), which tend

to be uncommon in many extreme precipitation data. We adapt a contemporary penalty for

use with the GEV distribution as a comparison model.

Penalized complexity (PC) priors have recently been proposed to improve parameter esti-

mation in a related extreme value family—the Generalized Pareto distribution (GPD), which

also uses scale σ(s) > 0, and shape ξ(s) ∈ R parameters to model threshold exceedances (Opitz

et al., 2018). Penalized complexity priors satisfy several properties that optimize the prior distri-

bution’s shape and scale to precisely control the prior’s influence over target likelihoods (Simp-

son et al., 2017). We implement PC priors as penalized likelihoods in our hierarchical spatial

model. We derive the penalized complexity prior π(ξ|λ) for the GEV distribution below and use

it with the log-likelihood

ℓ
(

η
)

=
N
∑

j=1

T
∑

i=1

log f
(

yi

(

s j

)∣

∣η
(

s j

))

+
N
∑

j=1

logπ
(

ξ
(

s j

)∣

∣λ
)

(2.22)
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in place of the log of the unweighted version of the likelihood (2.4), in which ws j
= 1 for all

s j ∈S .

Bayesian estimation optimizes the PC prior’s parameterization by specifying an Inverse-

gamma prior distribution for λ∼ IG(2,1). The Inverse-gamma distribution is parameterized to

have mean 1 and infinite variance. Prior distributions provide an alternative to cross-validation

approaches for optimizing the prior’s parameterization, which is computationally infeasible for

this simulation study (Hans, 2009; Park and Casella, 2008).

Following Simpson et al. (2017), the penalized complexity prior for the generalized extreme

value (GEV) distribution (2.2) is defined through the prior density

π(ξ|λ) =λe−λd(ξ)

∣

∣

∣

∣

∂d(ξ)

∂ξ

∣

∣

∣

∣

(2.23)

with tuning parameter λ> 0 and “distance” function d(ξ) =
√

2KLD
(

fξ‖ fξ0

)

. The distance func-

tion d(ξ) is based on the Kullback-Leibler divergence KLD
(

fξ‖ fξ0

)

between the GEV distribu-

tion with shape parameter ξ and reference shape parameter ξ0. The penalized complexity prior

encourages shrinkage of the shape parameter ξ toward the reference parameter ξ0. A natural

choice for the reference parameter is ξ0 = 0, the point at which the GEV distribution changes

from having a heavy tail (ξ> 0) to a light tail (ξ< 0). The Kullback-Leibler divergence is

KLD
(

fξ‖ fξ0

)

=

∫

S

fξ
(

y
)

log
fξ

(

y
)

fξ0

(

y
)d y

=

∫

S

1

σ
tξ

(

y
)ξ+1

exp
{

−tξ
(

y
)}

log

(

tξ
(

y
)ξ+1

exp
{

−tξ
(

y
)}

e−(y−µ)/σ exp
{

−e−(y−µ)/σ
}

)

d y

=(ξ+1)ψ(1)−1+ (Γ(1−ξ)−1)/ξ+exp{1/ξ} Iξ

(2.24)

where tξ
(

y
)

=
(

1+ξ
(

y −µ
)

/σ
)−1/ξ

, ψ(·) is the digamma function,

Iξ =
∫∞

0 exp
{

−
(

ξsξ
)−1

}

e−sd s, and S=
[

µ−σ/ξ, ∞
)

is the distribution’s support for ξ> 0. When

ξ< 0, the support is reversed S=
(

−∞, µ−σ/ξ
]

. The definite integral Iξ does not simplify ana-

lytically but includes the e−s “weight function” so can be efficiently approximated numerically
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with Gauss-Laguerre quadrature (Givens and Hoeting, 2013, Section 5.3). The Kullback-Leibler

divergence is trivially zero when ξ= 0 but otherwise expands to (2.24), the sum of the integrals

(2.25) to (2.28). The first integral (2.25) uses the substitution s = log tξ
(

y
)

, yielding

(ξ+1)

∫

S

1

σ
tξ

(

y
)ξ+1

exp
{

−tξ
(

y
)}

log tξ
(

y
)

d y =(ξ+1)

∫

R

s exp
{

s −e s
}

d s

=(ξ+1)ψ(1).

(2.25)

The transformed integral in (2.25) represents −1 times the expected value for a standard Gum-

bel random variable, allowing simplification. The second integral (2.26) uses the substitution

s = tξ
(

y
)

, yielding

−

∫

S

1

σ
tξ

(

y
)ξ+1

exp
{

−tξ
(

y
)}

tξ
(

y
)

d y =−

∫∞

0
se−sd s =−1.(2.26)

For ξ< 1 and ξ 6= 0, the third integral (2.27) is exactly equivalent to

Eξ

[(

y −µ
)

/σ
]

= (Γ(1−ξ)−1)/ξ.(2.27)

The last integral (2.28) also uses the substitution s = tξ
(

y
)

, yielding

∫

S

1

σ
tξ

(

y
)ξ+1

exp
{

−tξ
(

y
)}

exp
{

−
(

y −µ
)

/σ
}

d y = exp{1/ξ} Iξ.(2.28)

The penalized complexity prior (2.23) also uses the distance function’s partial derivative

∂
∂ξ

d(ξ) =
(

2KLD
(

fξ‖ fξ0

))−1/2 ∂
∂ξ

KLD
(

fξ‖ fξ0

)

. While differentiating the Kullback-Leibler diver-

gence (2.24) is straightforward

∂

∂ξ
KLD

(

fξ‖ fξ0

)

=ψ(1)−
Γ(1−ξ)

(

ξψ(1−ξ)+1
)

−1

ξ2
+exp{1/ξ}

(

∂

∂ξ
Iξ−

Iξ

ξ2

)

,

evaluating the derivative also requires Gauss-Laguerre approximation of the definite integral
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Table 2.2: Summary of differences between estimating models in simulation study (Section 2.5).

Model (Log-)Likelihood Weights Log-Likelihood penalty

Unweighted (2.4) None None

Weighted (2.4) (2.5) None

PC Prior (2.22) None
∑

j logπ
(

ξ
(

s j

)∣

∣λ
)

∂

∂ξ
Iξ =

∫∞

0

1+ξ log s

ξ2sξ
exp

{

−

(

ξsξ
)−1

}

e−sd s.

2.5.3 Bayesian specification

All models use a hierarchical Bayesian framework in which the GEV parameters η(s) are es-

timated as independent latent Gaussian processes with functional forms matching those spec-

ified in Table 2.1. Prior distributions for the mean and covariance function parameters are ei-

ther weakly informative or uninformative, and conjugate where possible. Inference is based on

a sample from the posterior distribution, drawn with a Gibbs sampler. Estimators based on the

weighted likelihood are evaluated with respect to both fixed and Gibbs-updated weights (See

Section 2.3).

Prior distributions for regression coefficients β and spatial covariance parameters σ0 and

λ0 used in the simulation study (Section 2.5) are specified in Table 2.3. The spatial smoothness

ν0 is fixed at the truth. Regression coefficient prior distributions are designed to be uninfor-

mative, while the spatial covariance prior distributions are designed to be weakly informative.

The spatial covariance prior distributions have infinite or large variation. The distributions are

parameterized such that the mean of the priors are centered at the true generating model pa-

rameters for the spatial range λ0; the mode of the priors for the sill parameters σ0 are centered

at the true generating model parameters. The penalized complexity prior parameter has prior

distribution λ ∼ IG(2,1). The proposal standard deviations for the random walk Metropolis-

Hastings samplers are sµ = 1.2, slogσ = .08, sξ = .08; and sλ0
is .7, .8. and .7, respectively for the

GEV location
{

µ(s)
}

s∈D
, scale

{

logσ(s)
}

s∈D
, and shape {ξ(s)}s∈D processes.
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Table 2.3: Prior distributions used in simulation study (Section 2.5.2).

GEV parameter process

{

µ(s)
}

s∈D

{

logσ(s)
}

s∈D
{ξ(s)}s∈D

(Regression coefs.)

β∼ N



0,





400

100







, N



0,





400

100







, N (0,100).

(Spatial covariance)

σ0 ∼ IG(1,8), IG(1, .8), IG(1, .0024).

λ0 ∼ Gamma(2,10), Gamma(2,2.5), Gamma(2,5).

Sample autocorrelation diagnostics indicate the Gibbs sampler mixes slowly, so the sam-

pler was run for 155,000 iterations to ensure Monte Carlo integration error is sufficiently small.

The first 5,000 samples were discarded. Posterior inference uses a thinned posterior sample

consisting of 10,000 of the remaining 150,000 samples; only every fifteenth sample was saved

because the entire posterior sample could not be efficiently stored and manipulated. Thinning

reduces statistical efficiency of Markov chain Monte Carlo methods, but can be a necessary

tradeoff when the full posterior sample is difficult to store and use to estimate posterior quan-

tities (MacEachern and Berliner, 1994).

2.5.4 Results

Assuming a stationary climate, the 1% annual exceedance probability Q
(

.99|η(s)
)

from

(2.3), also referred to as the 100-year return level, is often used to quantify risk for extreme

weather events. The weighted model’s results are nearly identical when comparing fixed

weights to Gibbs-updated weights. Figure 2.1 presents the empirical coverage of highest pos-

terior density (HPD) intervals for the return level Q
(

.99|η(s)
)

for each of the models listed in

Table 2.2. Figure 2.2 presents mean squared error (MSE) for the same data. Bias is small for all

estimators, so MSE mainly quantifies estimator variance. Since the return level Q
(

.99|η(s)
)

is
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greatly influenced by the shape parameter, ξ(s), results for return levels and shape parameters

are very similar.

Extremal dependence degrades the performance of all marginal models, but the weighted

marginal likelihood (2.4) provides the most accurate estimates of uncertainty. Empirical cover-

age of 95% HPD intervals is closest to the nominal HPD level across all levels of extremal depen-

dence. (Figure 2.1). For the N = 50,T = 50 simulation with moderate dependence, the weighted

model has a coverage rate of 86%, while the unweighted model and penalized complexity prior

model have coverage rates of 83% and 82% respectively. In the same scenario, the weighted

model also has nearly identical MSE as the other models, although the MSE for the weighted

likelihood model is somewhat greater for the simulation with strong dependence (Figure 2.2).

Figure 2.3 through Figure 2.14 present empirical coverage, mean squared error, and relative

bias for all GEV parameters µ(s), σ(s), and ξ(s) for all combinations of estimation models and

generating model configurations used in the simulation study described in Section 2.5. Relative

bias is the estimator bias scaled by the truth, for example

Rel. Bias
(

µ(s)
)

=
E

[

µ̂(s)−µ(s)
]

µ(s)
×100%.

2.6 Extreme Colorado precipitation

2.6.1 Data

Previous studies of extreme precipitation in Colorado find that there is weak extremal de-

pendence between locations along the state’s Front Range region (Cooley et al., 2007; Tye and

Cooley, 2015). We determine the impact the weighted likelihood (2.4) has on estimates of the

1% annual exceedance probability Q
(

.99|η(s)
)

, also referred to as the 100-year return level. Es-

timates are based on the same subset of annual maxima of daily precipitation Tye and Cooley

(2015) use from the Global Historical Climatology Network (GHCN) dataset (Menne et al., 2012).

The subset includes annual maxima from 71 stations along the Front Range. Tye and Cooley
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Figure 2.1: Empirical coverage rates of 95% highest posterior density intervals for 100-year return lev-

els Q
(

.99|η(s)
)

for four levels of extreme dependence across comparison models and simulations with

T = 50 observations per location. Nominal coverage is marked by the dotted horizontal reference line at

.95. While empirical coverage degrades for all estimating models as extremal dependence increases, the

weighted model is most robust to model misspecification caused by extremal dependence.

Figure 2.2: Empirical mean squared error (MSE) of posterior estimates for 100-year return levels

Q
(

.99|η(s)
)

for four levels of extreme dependence across comparison models and simulations with

T = 50 observations per location. The weighted model has similar or better performance than the stan-

dard, unweighted model in nearly all simulations. The unweighted model underestimates uncertainty,

so has slightly smaller MSE for the simulation with strong extremal dependence.
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Figure 2.3: Empirical coverage rates of 95% highest posterior density intervals for 100-year return levels

Q
(

.99|η(s)
)

across comparison models and all simulations. Nominal coverage is marked by the dotted

horizontal reference line at .95.

Figure 2.4: Empirical coverage rates of 95% highest posterior density intervals for GEV location param-

eters µ(s) across comparison models and all simulations. Nominal coverage is marked by the dotted

horizontal reference line at .95.
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Figure 2.5: Empirical coverage rates of 95% highest posterior density intervals for GEV scale parameters

σ(s) across comparison models and all simulations. Nominal coverage is marked by the dotted horizon-

tal reference line at .95.

Figure 2.6: Empirical coverage rates of 95% highest posterior density intervals for GEV shape parameters

ξ(s) across comparison models and all simulations. Nominal coverage is marked by the dotted horizontal

reference line at .95.
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Figure 2.7: Empirical mean square errors (MSE) of posterior estimates for 100-year return levels

Q
(

.99|η(s)
)

across comparison models and all simulations.

Figure 2.8: Empirical mean square error (MSE) of posterior estimates for GEV location parameters µ(s)

across comparison models and all simulations.
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Figure 2.9: Empirical mean square error (MSE) of posterior estimates for GEV scale parameters σ(s)

across comparison models and all simulations.

Figure 2.10: Empirical mean square error (MSE) of posterior estimates for GEV shape parameters ξ(s)

across comparison models and all simulations.
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Figure 2.11: Empirical relative bias of posterior estimates for 100-year return levels Q
(

.99|η(s)
)

across

comparison models and all simulations.

Figure 2.12: Empirical relative bias of posterior estimates for GEV location parameters µ(s) across com-

parison models and all simulations.
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Figure 2.13: Empirical relative bias of posterior estimates for GEV scale parameters σ(s) across compar-

ison models and all simulations.

Figure 2.14: Empirical relative bias of posterior estimates for GEV shape parameters ξ(s) across compar-

ison models and all simulations.
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(2015) fully describe their selection criteria, which, for example, include requirements that sta-

tions have been operational for at least 30 years. Additionally, annual maxima of daily precipi-

tation are only analyzed from years with few missing daily records of precipitation. Between 18

and 120 annual maxima are analyzed for each station, with roughly equal representation of all

temporal sample sizes.

Exploratory analysis suggests the Front Range GHCN data have between weak and mod-

erate extremal dependence. The estimated extremal coefficient function θ̂(d) : (0,∞) → [1,2]

is near-constant between 1.8 and 1.9 for all distances d , which implies the likelihood weights

will also have a small range. Schlather and Tawn (2003) also observe a near-constant extremal

coefficient function for extreme precipitation in south-west England. The authors remark that

the result may have a physical basis because the study region is small relative to the scale of

the meteorological systems that generate precipitation, which implies it is likely that no two

sites in the region are truly independent. Likelihood weights (2.5) for the GHCN data are sim-

ilar to weights for simulated data with moderate extremal dependence (Figure 2.21). Since the

average number of annual maxima per station (T = 60) is also close to our T = 50 simulation,

we anticipate the weighted likelihood will have closer to nominal coverage and the unweighted

likelihood will slightly undercover (Figure 2.1).

2.6.2 Model

As in the simulation, we use the weighted marginal likelihood (2.4) in a hierarchical Bayesian

framework in which the GEV parameters η(s) are estimated as independent latent Gaussian

processes. Since the simulation shows that estimators based on fixed and Gibbs-updated

weights have similar properties, we use fixed weights during estimation. We use annual mean

precipitation from the PRISM precipitation dataset (Daly et al., 2008) as a covariate for each of

the GEV parameters, and model the spatial correlation between parameters with the Matérn co-

variance function. For example, the Matérn specifies the correlation between parameters ξ(s)

and ξ(t ) at two locations s, t ∈D via
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κ
(

s, t ;τ,ρ,ν
)

=
1

τ2ν−1Γ(ν)
Kν

(

‖s − t‖/ρ
)

where Kν is the modified Bessel function of the second kind with order ν. The Matérn covari-

ance is parameterized through its inverse scale τ > 0, range ρ > 0, and smoothness ν > 0 pa-

rameters. Annual average precipitation from the PRISM dataset accounts for average weather

patterns and orographic effects on precipitation, such as elevation. In general, prior distribu-

tions are weakly informative, and prior distributions for spatial covariance parameters are cen-

tered around variogram-based estimates of spatial correlation between exploratory estimates

of marginal parameters η(s).

Prior distributions for regression coefficients β and spatial covariance parameters σ0 and λ0

used in the application to extreme Colorado precipitation (Section 2.6) are specified in Table 2.3.

Regression coefficient prior distributions are designed to be uninformative, while the spatial

covariance prior distributions are designed to be weakly informative. The spatial covariance

prior large variance. The distributions are parameterized such that the prior mode covers least-

square variogram estimates for the spatial covariance parameters. Variograms are based on

smoothed maximum likelihood fits of the GEV parameters. The proposal standard deviations

for the random walk Metropolis-Hastings samplers are sµ = 1.45, slogσ = .25, sξ = .11; sλ0
is .3,

.4. and .6, respectively for the GEV location
{

µ(s)
}

s∈D
, scale

{

logσ(s)
}

s∈D
, and shape {ξ(s)}s∈D

processes; similarly, sν0 is .12, .1, and .15.

2.6.3 Posterior inference and diagnostics

Inference uses a sample from the posterior distribution, drawn with a Gibbs sampler that

was run for 3,002,000 iterations. The first 2,000 samples were discarded. The sampler was run

for a large number of iterations because it was slowly mixing. Posterior inference uses 10,000

of the remaining samples; only every 300th sample was saved due to storage constraints. To

facilitate model comparison, we also fit the unweighted latent spatial extremes model using the

same priors and inference strategy. Diagnostics suggest no significant concerns with conver-
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Table 2.4: Prior distributions used in application to extreme Colorado precipitation (Section 2.6).

GEV parameter process

{

µ(s)
}

s∈D

{

logσ(s)
}

s∈D
{ξ(s)}s∈D

(Regression coefs.)

β∼ N (0,100), N (0,100), N (0,100).

(Spatial covariance)

σ0 ∼ IG(2,60), IG(2,10), IG(2, .03).

λ0 ∼ Gamma(2, .5), Gamma(2, .25), Gamma(2, .1).

ν0 ∼ Gamma(2,1), Gamma(2,1), Gamma(2,1).

gence and also that the chain has been run for long enough to control Monte Carlo integration

error. Due to the relatively small number of spatial locations in the dataset (N = 71), posterior

diagnostics indicate the spatial covariance parameters are at least weakly identified by the data.

Posterior learning is diagnosed by comparing prior and posterior distributions for the spatial

mean and covariance parameters.

Posterior diagnostics do not suggest the Gibbs sampler has not converged. Similarly, poste-

rior diagnostics suggest the sampler has been run for a long enough period of time and is able to

identify model parameters from the data. In particular, there is no strong evidence that poste-

rior inference is sensitive to the sampler’s initial state. We use potential scale reduction factors

(PSRFs) to assess posterior convergence by comparing inference from nine independent copies

of our Gibbs sampler. Potential scale reduction factors estimate the potential reduction in un-

certainty of posterior means if the Gibbs samplers were allowed to run for an infinitely longer

amount of time (Gelman and Rubin, 1992). Each copy of the sampler was randomly initialized

by drawing model parameters from the model’s prior distribution. The maximum upper con-

fidence limit of PSRFs for return levels at the observation locations is 1.04, suggesting that the

posterior uncertainty in return levels is inflated by up to 4% due to Gibbs sampling. A multi-

variate extension of the PSRFs estimates the largest potential scale reduction factor among all

linear combinations of a collection of posterior means (Brooks and Gelman, 1998). For return
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levels, this quantity is also 1.04. The multivariate PSRFs for GEV location and scale parameters

are each 1.01, and the multivariate PSRF for GEV shape parameters is 1.05.

Posterior traceplots, autocorrelation plots, and effective sample sizes indicate the Gibbs

sampler is slowly mixing, but additional diagnostics suggest the sampler has been run for

enough samples so as to control Monte Carlo integration error. Estimates of the Monte Carlo

integration error are small relative to the magnitude of posterior means of interest, such as pos-

terior means for marginal return levels, latent GEV parameters, and the spatial mean and co-

variance functions of the spatial processes that model the GEV parameters. In particular, Monte

Carlo integration errors are at most .6% of the magnitude of posterior return levels, scale param-

eters, and location parameters. Monte Carlo integration errors are at most 3.4% the magnitude

of posterior shape parameters. The relative sizes of Monte Carlo errors are more variable for the

mean and covariance function parameters of the latent GEV parameter fields, but are between

.1% and 2.5% for all mean and covariance function parameters except for three parameters.

Monte Carlo integration errors are respectively 4.5% and 6.1% of the magnitude of the poste-

rior mean for the smoothness parameters ν0 of the GEV scale
{

σ2(s)
}

s∈D
and shape {ξ(s)}s∈D

parameter processes. Lastly, Monte Carlo integration error is 37% of the magnitude of the pos-

terior mean for the effect of mean annual precipitation β1 on shape parameters {ξ(s)}s∈D . How-

ever, this ratio is artificially inflated because the parameter is estimated to be small or vanishing

(β̂1 = .001; 95% highest posterior density interval is (−.04, .04) ).

Posterior diagnostics also suggest the data at least weakly identify the mean and covariance

parameters for the latent GEV parameter fields. The posterior densities for the mean functions

of the Gaussian processes used to model the GEV parameters all differ from the prior distribu-

tions (Figure 2.15, Figure 2.17, Figure 2.19). Similarly, posterior densities for the parameters of

the spatial covariance functions for the latent GEV parameters differ from the prior densities

(Figure 2.16, Figure 2.18, Figure 2.20). However, the posterior distributions do not differ dra-

matically from the priors for the smoothness and range parameters of the covariance function

ρξ(s) of the GEV shape parameters.
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Figure 2.15: Comparison of prior and posterior distributions for the mean function of the latent Gaus-

sian process that models GEV location parameters
{

µ(s)
}

s∈D
. Prior and posterior means are marked by

vertical dotted lines. The plots show strong posterior learning in both the intercept β0 and slope parame-

ters β1, which model a linear trend between annual average precipitation and GEV location parameters.
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Figure 2.16: Comparison of prior and posterior distributions for the covariance parameters of the la-

tent Gaussian process that models GEV location parameters
{

µ(s)
}

s∈D
. Prior and posterior means are

marked by vertical dotted lines. The plots show strong posterior learning in the covariance range λ0 and

smoothness ν0. There is weaker posterior learning in the covariance sill σ2
0 parameter.
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Figure 2.17: Comparison of prior and posterior distributions for the mean function of the latent Gaus-

sian process that models GEV scale parameters
{

σ2(s)
}

s∈D
. Prior and posterior means are marked by

vertical dotted lines. The plots show strong posterior learning in both the intercept β0 and slope param-

eters β1, which model a linear trend between annual average precipitation and GEV scale parameters.
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Figure 2.18: Comparison of prior and posterior distributions for the covariance parameters of the latent

Gaussian process that models GEV scale parameters
{

σ2(s)
}

s∈D
. Prior and posterior means are marked

by vertical dotted lines. The plots show moderate posterior learning in the covariange smoothness ν0

parameter, but weak posterior learning in the covariance sill σ2
0 and range λ0 parameters.

48



Figure 2.19: Comparison of prior and posterior distributions for the mean function of the latent Gaus-

sian process that models GEV shape parameters {ξ(s)}s∈D . Prior and posterior means are marked by

vertical dotted lines. The plots show strong posterior learning in both the intercept β0 and slope pa-

rameters β1, which model a deterministic trend between annual average precipitation and GEV shape

parameters.
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Figure 2.20: Comparison of prior and posterior distributions for the covariance parameters of the latent

Gaussian process that models GEV shape parameters {ξ(s)}s∈D . Prior and posterior means are marked

by vertical dotted lines. The plots show strong posterior learning in the covariance sill σ2
0, but almost no

posterior learning in the covariance range λ0 or smoothness λ0 parameters.
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2.6.4 Results

The likelihood weights (2.5) have a spatial pattern and their effect can be interpreted by

their impact on the weighted Fisher information (2.6) (Figure 2.22). As expected, stations near

the edges of the sampled region tend to have the highest weights because annual maxima ob-

served at these locations are at most weakly dependent with observations at other stations.

Annual maxima at distant stations tend to be at most weakly dependent because they tend to

experience different large rain events than other stations.

Weighted estimates borrow more strength across locations, which impacts return level esti-

mates. The latent Gaussian processes increase smoothing as more strength is borrowed, shrink-

ing parameter estimates (Figure 2.24). Shrinkage manifests as additional smoothing in maps

of return levels (Figure 2.23). In particular, the weighted estimates better match physical fea-

tures that impact Colorado precipitation. The contours in the weighted return level map have

stronger north-south patterns, especially along 105◦ W—the boundary of the Rocky mountains

in the Colorado Front Range region (Figure 2.23 B). The size of the region with elliptical 150–

175mm return level contours (�) of extreme precipitation near Boulder, Fort Collins, and Col-

orado Springs also increase. The larger elliptical regions produced by the weighted model better

capture physical effects of the Palmer Divide and the Cheyenne Ridge on Colorado precipitation

(Daly et al., 2008; Karr and Wooten, 1976).

We verify that the weighted model’s changes are beneficial near the Palmer Divide and

Cheyenne Ridge regions by refitting the weighted and unweighted models with a holdout set to

test out-of-sample fit. Our holdout set uses data from seven stations (10% of the dataset) near

the Palmer Divide and Cheyenne Ridge, and where posterior estimates of return levels differ be-

tween the two models (stations marked by diamonds in Figure 2.22). Testing uses the log-score

ℓ(s0) at each holdout location s0. Log-scores form strictly proper scoring rules that compare the

log-likelihood from both models on data at each holdout location (Gneiting and Raftery, 2007).

In our spatial application, we use the posterior kriging distribution to draw a posterior sample

of GEV parameters at each test location s0, which we then use to compute the posterior mean
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Figure 2.21: Distribution of likelihood weights (2.5) for Colorado data and simulations with N = T = 50.

The Colorado weights suggest the data have moderate extremal dependence.

log-likelihood at each test location ℓ(s0). Resulting log-scores show that the weighted model

improves out-of-sample fit in six out of seven of the holdout locations (Table 2.5). The log-

scores also show that neither model fits the data well at Pueblo, CO, the southernmost holdout

station. In particular, the data at Pueblo, CO tend to be relatively less extreme. Separate ex-

ploratory analysis of Pueblo’s data suggests extreme precipitation is associated with a negative

shape parameter ξ(s0) < 0. However, the spatial models suggest a positive shape parameter is

more appropriate.

The weighted likelihood also model induces shrinkage of the GEV parameters η(s) and re-

turn levels Q
(

p
∣

∣η(s)
)

(Figure 2.24). In hierarchical models, estimates balance data with

smoothness constraints imposed by hierarchical layers. Shrinkage occurs in the weighted

model because the weighted model shifts the balance more toward the hierarchical layers.

2.7 Discussion

Estimating marginal return levels is an important step in planning for impacts of natural

hazards, especially those caused by precipitation. Extreme precipitation data have dependence,

which makes estimation more complicated. Models that explicitly account for dependence in

the data have limited ability to scale to large datasets, while models that assume conditional
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Figure 2.22: Spatial distribution of weights. Weights are smaller for locations central to the spatial sam-

pling pattern, where extremal dependence is more likely to impact data. Cities used in the hold-out

model comparison are marked by diamond outlines.

Figure 2.23: Spatially complete estimates Q̂
(

.99|η(s)
)

of 100-year return levels for daily precipitation in

Colorado’s Front Range. Estimates are compared from the unweighted (A) and weighted (B) unweighted

latent spatial extremes models. The weighted estimates have increased smoothness and spatial range,

and overall patterns that better match orographic features in Colorado. The locations of the 71 stations

whose data are analyzed are indicated by (◦). For reference, we include the names of several reference

cities. Cities used in the hold-out model comparison are marked by diamond outlines.
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Table 2.5: Comparison of log-scores for the weighted ℓw td (s0) and unweighted models ℓ(s0) at holdout

cities; the highest log-score is highlighted for each city. The weighted likelihood model tends to have

higher log-scores at holdout cities, suggesting better out-of-sample predictive performance in the tar-

geted regions. The low log-scores in the bottom row also suggest neither model is predictive of extreme

precipitation in Pueblo.

Lat. Lon. City ℓw td (s0) ℓ(s0)

40.4 104.7 Greeley −224 −225

40.2 105.1 Longmont −502 −508

40.0 105.6 Nederland −411 −415

39.6 104.8 Aurora −303 −307

39.5 104.7 Parker −262 −701

38.5 105.1 Penrose −198 −196

38.3 104.7 Pueblo −349,848 −1,779,826

independence in the data can scale well to large datasets, but do not account for dependence.

We develop a weighted likelihood that downweights observations from locations central to the

spatial sampling pattern in order to better estimate marginal return levels. We use the extremal

coefficient in (2.1) to construct weights that downweight likelihood contributions from loca-

tions central to the spatial sampling pattern, where observations tend to be most dependent.

Simulations confirm that the weighting scheme improved the uncertainty quantification of the

return level estimates in situations when data have extremal dependence. In application, es-

timates from the weighted model better align with expected changes in patterns of extreme

precipitation caused by physical features, like mountains.

Since weighted likelihoods are computationally inexpensive, they may be a useful technique

to adopt in most settings where latent spatial extremes models are employed. Weighting adds N

additional multiplications per likelihood evaluation, whereas alternatives like penalization add

N additional function evaluations. Penalization improves estimation for univariate extremes

data at a similar computational cost, but its main purpose is to discourage models from explor-

ing unrealistic or undesirable regions of the parameter space, such as those with large shape

parameters ξ(s). As a result, penalized models underestimate uncertainty almost as much as

unweighted models. Composite likelihood corrections are more computationally expensive
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Figure 2.24: Comparison of weighted Q̂w td

(

.99|η(s)
)

and unweighted Q̂
(

.99|η(s)
)

return level estimates

plotted against a dotted 1:1 reference line. The weighted model shrinks estimates toward a common re-

turn level. Shrinkage occurs as unweighted return level estimates below the unweighted average Q̄ tend

to increase in the weighted model, while unweighted return level estimates above Q̄ tend to decrease.

(Ribatet et al., 2012; Sharkey and Winter, 2018). In practice, weighting encourages borrowing

strength across locations to improve estimates at each location.

Refining the likelihood weights (2.5) could further improve the ability for marginal likeli-

hoods to account for extremal dependence when estimating marginal return levels. For ex-

ample, pairwise densities can be derived for specific max-stable processes (e.g., Padoan et al.,

2010). Pairwise densities explicitly model the dependence between pairs of observations, while

the extremal coefficient we use to build likelihood weights measures a summary of extremal

dependence instead. Empirical Bayes–like procedures could be developed that use likelihood

weights based on pairwise densities to further improve the performance of return level estima-

tors. While empirical Bayes procedures will not fully account for estimation uncertainty (e.g.,

in estimating dependence parameters in bivariate densities), the procedures may still provide

a fair compromise between computational complexity and accurate estimation of uncertainty.

Weighting schemes are flexible, so may be extended to accommodate complex issues in

modeling and estimation outside extremes applications. While we demonstrate the use of a

weighted likelihood for latent spatial extremes models, the theory we develop is more general.

The Fisher information interpretation of weighted likelihoods also applies to all weighted like-
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lihoods. Similarly, the limiting behaviors of likelihoods for independent data or completely

dependent data are largely based on copula theory for arbitrary data, rather than extreme value

theory. Importantly, the construction of the weighted likelihood (2.4) can be adapted to other

statistical problems where marginal inference is of interest but likelihoods are difficult to eval-

uate. The construction we propose is based on the idea that a computationally inexpensive

measure of dependence between observations can be used to develop a weighted likelihood

that better quantifies parameter uncertainty than related unweighted models. The main chal-

lenge in adapting our weighted likelihood to other applications is in identifying an appropriate

dependence measure that can be used to build likelihood weights.
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Chapter 3

Remote effects spatial process models for modeling

teleconnections2

3.1 Introduction

While most spatial data can be modeled with the assumption that distant points are un-

correlated, some problems require dependence at both far and short distances. Spatial climate

data is an example of the latter, as it is influenced by local (i.e., short distance) factors, as well

as by remote (i.e., far distance) phenomena called teleconnections. Teleconnections refer to

changes in patterns of large-scale atmospheric circulation that can drive changes in temper-

ature and precipitation in distant regions (e.g., Tsonis and Swanson, 2008; Ward et al., 2014).

Most teleconnection modeling approaches in the statistical literature do not explicitly estimate

dependence within remote phenomena. The statistical literature includes spatially varying co-

efficient models, analogs, and covariance matrix estimation (Calder et al., 2008; Choi et al., 2015;

McDermott and Wikle, 2016; Wikle and Anderson, 2003). Explicitly modeling dependence in re-

mote phenomena can add physically sensible structure that improves prediction accuracy and

addresses some modeling challenges. We propose a geostatistical model that addresses this

unmet modeling need for teleconnection.

Teleconnections can be forced by changes in sea surface temperature (SST), and there have

been many observational and modeling studies studying the link between SSTs, circulation pat-

terns, and impacts on global and regional climate. Several seminal studies connect U.S. pre-

cipitation with SST anomalies in the tropical Pacific due to the El Niño–Southern Oscillation

teleconnection (ENSO) (Montroy, 1997; Montroy et al., 1998), as well as with SST anomalies in

the Pacific (e.g., Dong and Dai, 2015). The ENSO teleconnection has been critical in seasonal

2Hewitt, J., Hoeting, J. A., Done, J. M., & Towler, E. (2018). Remote effects spatial process models for modeling

teleconnections. Environmetrics, 29(8). https://doi.org/10.1002/env.2523.
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climate forecasting (Goddard et al., 2001), and decadal variability of sea surface temperature

anomalies have been identified as a source of potential skill for decadal predictions that look

out one year to a decade (Meehl et al., 2009). In terms of the latter, decadal predictions pro-

duced from global climate models (GCMs) have shown skill in reproducing ocean and land

temperatures, and less skill in precipitation (Meehl et al., 2014). This is the general finding for

GCMs: while GCMs perform poorly in predicting precipitation directly, they can skillfully re-

produce surface temperatures and large-scale patterns (Flato et al., 2013). Direct precipitation

prediction by GCMs is challenging because of complex and interacting multi-scale physical pre-

cipitation processes, resulting in large uncertainty in future precipitation patterns (Deser et al.,

2012). As such, this provides a motivating example for demonstrating a teleconnection model

that can be used in conjunction with GCM output to estimate impacts on precipitation.

Developing a teleconnection model for application with GCM output has overlaps with the

burgeoning field of statistical downscaling. Statistical downscaling methods use large-scale

variables to draw inference on regional variables. Similar to what is being proposed here, a type

of statistical downscaling called perfect prognosis downscaling (Maraun et al., 2010) develops

a statistical relationship between observed large-scale predictors and local-scale weather phe-

nomena (e.g., Bruyere et al., 2012; Towler et al., 2016; Wilby et al., 1998). Common models used

for perfect prognosis downscaling do not explicitly model spatial dependence. Maraun et al.

(2010) review methods used in the climate literature, which include linear models, analogs, and

machine learning techniques like neural networks. Dependence is often indirectly modeled by

using principle component or canonical correlation basis functions as predictors and applying

various corrections to uncertainties (cf. Karl et al., 1990). After statistical relationships are de-

veloped and validated on observed datasets, models can be applied to large-scale GCM output

to obtain an estimate of the desired predictant. Clearly, perfect prognosis methods are highly

dependent on the selected predictors and model (Fowler et al., 2007).

We propose a remote effects spatial process (RESP) model that extends spatially varying co-

efficient models to directly model dependence in remote phenomena and address several mod-
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eling challenges. Spatially modeling dependence in remote phenomena adds sensible structure

to teleconnection models which, in turn, allows better use of the data than standard mod-

els. Standard spatially varying coefficient models regress a local response Y (s, t ) with spatio-

temporal error w(s, t ) onto local covariates x(s, t ) through

Y (s, t ) = x(s, t )Tβ+ z(t )Tθ(s)+w(s, t )(3.1)

which includes adjustment for spatially-varying effects θ(s) ∈R
k associated with a second vec-

tor z(t ) ∈ R
k of k covariates (Banerjee et al., 2015, Section 9.6.2). As applied to teleconnection,

the covariate vector z(t ) contains one or more indices that quantify the overall strength or state

of large-scale patterns, like ENSO or the North Atlantic Oscillation (Calder et al., 2008; Wikle

and Anderson, 2003). While effective, the model (3.1) assumes relevant large-scale patterns

are known a priori (e.g., ENSO). However, relevant teleconnection indices can depend on the

study region and thus be unknown at the start of an analysis (Towler et al., 2016). The spatially

varying coefficient model (3.1) will be inefficient if driven by poorly chosen teleconnection in-

dices. Standard formulations of (3.1) also model within-site covariances for spatially varying

effects Λ= Cov(θ(s)) ∈ R
k×k with non-spatial covariance matrices. While the issue may be less

important for orthogonal teleconnection indices, typical indices are defined with respect to dif-

ferent covariates and zonal averages so may not be orthogonal (cf. Ashok et al., 2007; Mantua

et al., 1997). Instead, teleconnection indices may have spatial structure induced by remote co-

variates. The RESP model introduced below directly incorporates remote covariates instead of

using teleconnection indices and can offer potential improvement for the a priori and spatial

structure concerns (Section 3.2.1). Notably, the RESP model does not lose generality since direct

connections can be drawn to standard spatially varying coefficient models (Section 3.2.3).

More generally, the RESP model represents a less-common class of spatial analysis problems

that provide rich opportunities for study. We introduce our teleconnection model in the gen-

eral context of a spatial regression problem involving local and spatially remote covariates (Sec-

tion 3.2.1). The local and spatially remote covariates are allowed to have different spatial cor-
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Figure 3.1: Schematic illustration of a teleconnection problem. Colorado precipitation Y (s, t ) is influ-

enced by both local covariates x(s, t ) and remote covariates z(r , t ). The remote covariates shown here

are standardized anomalies of average monthly Pacific Ocean sea surface temperatures during Winter,

1982. The data come from the ERA-Interim reanalysis dataset (Dee et al., 2011).

relations structures reflecting their different relationships with the response. fig. 3.1 schemat-

ically illustrates the general teleconnection problem in which local x(s, t ) and remote z(r , t )

covariates impact a local spatio-temporal response Y (s, t ). The RESP model accounts for the

influence of covariates observed on a geographically remote domain z(r , t ).

We demonstrate the capacity of the RESP model by validating its ability to predict Colorado

winter precipitation in a cross-validation study (Section 3.4). Our study represents a type of

perfect prognosis problem in which future precipitation will be studied with covariates that

have been simulated by GCMs. Since atmospheric processes have relatively short memory, it

is reasonable to assume winter precipitation is conditionally independent across years when

local and remote covariates are given. Therefore, we develop the RESP model assuming there

is no meaningful temporal dependence. We conclude with discussions of temporal extensions

and other directions for future work and further application (Section 3.5).

3.2 A geostatistical model for spatially remote covariates

Teleconnection manifests as an aggregate property of spatially continuous covariates. For

example, consider the sea surface temperature (SST) at location r and time t , z(r , t ). In spatially
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varying coefficient models (3.1), it is common to adopt a teleconnection index z(t ) ∈ R that is

defined as the average SST z(r , t ) over a region R ⊂DZ . In (3.1), the spatially varying coefficient

term z(t )θ(s) motivates the RESP model through the expansion

z(t )θ(s) =
1

|R|

∫

R

z(r , t )θ(s)dr .(3.2)

The RESP model extends the integral in (3.2) to the entire remote domain DZ and allows

θ(s) to vary with respect to r , distinguishing it from spatially varying coefficient models (Sec-

tion 3.2.1). Integration is a natural construct for aggregating effects of spatially continuous

covariates, represents the conceptual limit of studying teleconnection with increasingly fine

subsets of R, and allows study of teleconnection with additional spatial structure and without

defining indices a priori.

3.2.1 Model formulation

The remote effects spatial process (RESP) model extends the standard geostatistical setting

in which a local response variable Y (s, t ) ∈R and known covariate vector x(s, t ) ∈R
p are observ-

able at discrete time points t ∈ T =
{

t1, . . . , tnt

}

and at locations s in a continuous domain DY .

The RESP model includes the effects of known remote covariates z(r , t ) ∈ R, which are observ-

able at locations r in a continuous domain that is spatially disjoint from the local response—i.e.,

in a continuous DZ s.t. DY ∩DZ =;. The RESP model is given by

(3.3) Y (s, t ) = x
T (s, t )β+w(s, t )+ε(s, t )+γ(s, t )

where the regression coefficients β ∈ R
p , spatially correlated noise w(s, t ), and independent

noise ε(s, t ) are standard components for spatial regression models (Banerjee et al., 2015, Chap-

ters 6, 9, 11). In the RESP model the teleconnection effect given by γ(s, t ) is defined by

(3.4) γ(s, t ) =

∫

DZ

z(r , t )α(s,r )dr
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which describes the net effect of the remote covariates z(r , t ) on the continuous spatial process

Y (s, t ) at discrete time t . The integral (3.4) reduces to a sum for finite samples, in which the

remote covariates z(r , t ) are observed at nr <∞ locations. Multivariate extensions of (3.4) are

discussed in Section 3.5.

The remote coefficients α(s,r ), also called teleconnection coefficients, are spatially corre-

lated and doubly-indexed by (s,r ) ∈ DY ×DZ . The spatial correlation and double-indexing

of α(s,r ) represents teleconnection effects that vary regionally in the sense that the response

Y (s, t ) at one location s ∈ DY can respond to the remote covariates z(r , t ) more strongly than

the response Y
(

s
′, t

)

at another location s
′ ∈DY . Similarly, the response Y (s, t ) at one location

s ∈ DY can respond differently to remote covariates z(r , t ) and z
(

r
′, t

)

at distinct remote loca-

tions r ,r
′ ∈ DZ . Thus, the remote coefficients α(s,r ) vary spatially and use the remote covari-

ates z(r , t ) to provide local adjustment to the mean response. The teleconnection term γ(s, t ) is

well defined because we assume the remote covariates z(r , t ) are known and square-integrable

over DZ at each time point t (Adler and Taylor, 2007, Section 5.2).

The RESP model provides a simple geostatistical approach to modeling teleconnections by

extending spatial regression models to incorporate data from spatially remote regions. The tele-

connection term γ(s, t ) distinguishes the RESP model (3.3) from standard geostatistical models,

in which—for example—the responses Y (s, t ) and Y
(

s
′, t

)

at distinct spatial locations s, s
′ ∈DY

are only influenced by distinct covariates x(s, t ) and x
(

s
′, t

)

. To model the influence of telecon-

nection phenomena the RESP model lets the remote covariates z(r , t ) simultaneously influence

the responses Y (s, t ) and Y
(

s
′, t

)

.

Geostatistical modeling conventions use mean zero Gaussian processes to specify the ran-

domness of the unknown, spatially correlated components w(s, t ) and α(s,r ), and an inde-

pendent processes to specify the noise ε(s, t )—the nugget. We complete the Gaussian process

specifications by defining the covariance functions for the spatially correlated components. Let

Cw and Cα respectively be the covariance functions for w(s, t )+ε(s, t ) and α(s,r ), where
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Cw

{

(s, t ),
(

s
′, t ′

)}

=
(

κ
(

s, s
′;θw

)

+σ2
ε1

(

s = s
′
))

1
(

t = t ′
)

,(3.5)

Cα

{

(s,r ),
(

s
′,r

′
)}

=
(

κ
(

s, s
′;θw

)

+σ2
ε1

(

s = s
′
))

κ
(

r ,r
′;θα

)

.(3.6)

Our model may be developed with any spatial covariance function κ, but here we choose to

work with the stationary Matérn covariance

κ(u, v ;θ) =
σ2

2ν−1Γ(ν)

(

d(u, v )/ρ
)ν

Kν

(

d(u, v )/ρ
)

(3.7)

for spatial locations u and v , and parameter vector θ =
(

σ2, ρ, ν
)T

. The function d(u, v ) must

be an appropriate distance function (e.g., great-circle distances for locations on a sphere),

σ2 > 0 is a scaling parameter, ν > 0 is a smoothness parameter, ρ > 0 is a range parameter,

and Kν is the modified Bessel function of the second kind with order ν. In covariance function

definitions (3.5) and (3.6), 1 represents the indicator function and σ2
ε represents the variance

of the nugget process which we specify to be a collection of independent and identically dis-

tributed mean zero Gaussian random

variables—i.e., ε(s, t )
i i d
∼ N

(

0, σ2
ε

)

∀(s, t ) ∈DY ×T .

While the definitions (3.5) and (3.6) for the local and remote covariances Cw and Cα can be

generalized, the definitions restrict our use of the RESP model to working in the perfect prog-

nosis downscaling setting described at the end of Section 3.1. The responses Y (s, t ) and Y
(

s, t ′
)

for t 6= t ′ are independent given covariates and sufficiently separated time points, like succes-

sive winters (e.g., winter 1991, winter 1992, etc.). The remote covariates in the teleconnection

term (3.4) naturally induce temporal non-stationarity in the response’s variance; extensions to

accommodate serial dependence are discussed in Section 3.5. The remote covariance Cα also

induces a separable structure for the remote coefficients α(s,r ), which constrains the spatial

variability of teleconnection effect fields and simultaneously constrains the teleconnection ef-

fects {α(s,r ) : r ∈DZ } and
{

α
(

s
′,r

)

: r ∈DZ

}

to be similar for nearby locations s, s
′ ∈ DY . Sim-

pler covariance structures for the teleconnection effects α(s,r ) may not capture these physical
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properties of teleconnection as directly. Similarly, although climate data are often available as

gridded data products, we choose to work with geostatistical covariance models (or their dis-

crete approximations, e.g., Lindgren et al., 2011) instead of neighborhood-based spatial mod-

els so that we may avoid inducing potentially counterintuitive covariance structures (Assunção

and Krainski, 2009; Wall, 2004).

3.2.2 Reduced rank approximation

To apply the RESP model (3.3), additional constraints need to be imposed due to the poten-

tial multicollinearity in the covariates. Remote covariates z(r , t ) in teleconnection applications

will often consist of data that measure ocean properties at high spatial resolution, like sea sur-

face temperature or sea level pressure. This raises concerns for estimating the remote coeffi-

cients α(s,r ) in (3.4) as the main trends in the remote covariates z(r , t ) are highly collinear over

DZ . Physically, however, this suggests the remote coefficients should be highly correlated as

well. We use predictive processes to mitigate multicollinearity in the remote covariates, which

is an alternative motivation for predictive processes. Banerjee et al. (2008) originally introduce

predictive processes so that parameters of geostatistical models can be estimated for large spa-

tial datasets, rather than as an approach for mitigating spatial multicollinearity. We consider

more general basis expansions of remote coefficients in Section 3.2.3.

We assume the remote coefficients α(s,r ) can be well represented by weighted averages of

remote coefficients α(s,r
∗) at knot locations r

∗
1 , . . . ,r

∗
k
∈ DZ , so we make the simplifying ap-

proximation that a weight function h
(

r ,r
′
)

exists and induces h
∗(r ) =

[

h
(

r ,r
∗
j

)]k

j=1
∈ R

k , al-

lowing us to write

(3.8) α(s,r ) =
k
∑

j=1

h
(

r ,r
∗
j

)

α
(

s,r
∗
j

)

= h
∗(r )Tα∗(s),

where α∗(s) =
[

α
(

s,r
∗
j

)]k

j=1
∈ R

k . The predictive process approach uses kriging to motivate a

choice for the weight vector h
∗(r ), which induces a weight function h. Using Gaussian pro-
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cesses in Section 3.2.1 to model the remote coefficients implies that α(s,r ) and α∗(s) are jointly

normally distributed, yielding the conditional expectation for α(s,r )

(3.9) E
[

α(s,r )|α∗(s)
]

= c
∗(r )T R∗−1

α∗(s)

in which c
∗(r ) =

[

Cα

{

(s,r ),
(

s,r
∗
j

)}]k

j=1
∈ R

k and R∗ ∈ R
k×k such that R∗

i j
=Cα

{

(

s,r
∗
i

)

,
(

s,r
∗
j

)}

.

Note that the assumption in (3.6) that Cα is stationary means that c
∗(r ) and R∗ do not depend

on s, despite the term appearing in their definitions. The predictive process approach uses

the conditional expectation (3.9) to define the weight vector h
∗(r ) = R∗−1

c
∗(r ) in the approx-

imation (3.8). Banerjee et al. (2008) show that these types of approximations are reduced rank

projections that can capture large-scale spatial structures in data.

Beyond mitigating the statistical issue of multicollinearity in the remote covariates, the pre-

dictive process approach relates the RESP model to spatially varying coefficient models (3.1)

and also has a scientific interpretation for teleconnection. Using the reduced rank approxima-

tion (3.8) to manipulate the integral in (3.3) shows that the reduced rank approximation can be

interpreted as inducing transformed covariates z∗(r
∗, t ) via

∫

DZ

z(r , t )α(s,r )dr =

∫

DZ

z(r , t )
k
∑

j=1

h
(

r ,r
∗
j

)

α
(

s,r
∗
j

)

dr

=
k
∑

j=1

α
(

s,r
∗
j

)

z∗
(

r
∗
j , t

)

where z∗
(

r
∗
j

, t
)

=
∫

DZ
z(r , t )h

(

r ,r
∗
j

)

dr . The z∗
(

r
∗
j

, t
)

and α
(

s,r
∗
j

)

may be collected into the

covariate vector z(t ) and spatially varying effects θ(s) in (3.1). We remark that the RESP model

differs from standard spatially varying coefficient models in that the transformed covariates

z∗
(

r
∗
j

, t
)

represent induced—rather than a priori—covariates, and the α
(

s,r
∗
j

)

inherit spatial

structure from the model’s formulation.

Scientifically, the predictive process approach to addressing multicollinearity reduces the

remote covariates z(r , t ), r ∈ DZ at each time point to k spatially-averaged indices z∗(r
∗, t )
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centered at r
∗ for r

∗ ∈
{

r
∗
1 , . . . ,r

∗
k

}

. This manipulation is fairly generic and should be applica-

ble to all predictive process models. For teleconnection, this manipulation connects the RESP

model to one set of standard teleconnection methodologies in which teleconnection effects are

measured with respect to ocean indices based on spatial averages of remote covariates (Ashok

et al., 2007; Towler et al., 2016).

3.2.3 Spatial basis function transformation of remote coefficients

The RESP model (3.3) is also related to another set of standard teleconnection methodolo-

gies in which teleconnection effects are measured with respect to complex ocean indices such

as empirical orthogonal functions (Montroy, 1997; Ting and Wang, 1997). Spatial basis func-

tions provide a means to reparameterize the RESP model and show it can identify and leverage

known teleconnections with complex patterns. We use the following reparameterization of the

teleconnection effects α(s,r ) to discuss teleconnection between Pacific Ocean sea surface tem-

perature and Colorado precipitation in Section 3.4.

Complex teleconnection patterns are often based on spatial basis function expansions of

the remote covariates z(r , t ). If there exist weights {al (t ) : l = 1, . . . ,K ; t ∈T } such that the re-

mote covariates z(r , t ) can be written as a linear combination of continuous, time-invariant

basis functions
{

ψl (r ) : l = 1, . . . ,K ; r ∈DZ

}

via

(3.10) z(r , t ) =
K
∑

l=1

al (t )ψl (r ),

then linearity of the integral in (3.4) and reduced rank approximation (3.8) can induce a repa-

rameterized, reduced-rank teleconnection effect process α′(s, l ) for patterns l = 1, . . . ,K by

(3.11) α′(s, l ) =
k
∑

j=1

α
(

s,r
∗
j

)

∫

DZ

ψl (r )h
(

r ,r
∗
j

)

dr .

Note that the transformation appears naturally because
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∫

DZ

z(r , t )α(s,r )dr =

∫

DZ

K
∑

l=1

al (t )ψl (r )
k
∑

j=1

h
(

r ,r
∗
j

)

α
(

s,r
∗
j

)

dr

=
K
∑

l=1

al (t )
k
∑

j=1

α
(

s,r
∗
j

)

∫

DZ

ψl (r )h
(

r ,r
∗
j

)

dr

=
K
∑

l=1

al (t )α′(s, l ).

(3.12)

As with the reduced rank approximation (3.8), the transformation (3.12) also relates the RESP

model to spatially varying coefficient models (3.1) and has scientific relevance for teleconnec-

tion. The deterministic remote covariate weights al (t ) and reparameterized remote coefficients

α′(s, l ) may be collected into the covariate vector z(t ) and spatially varying effects θ(s) in (3.1).

While the covariate weights al (t ) suggest a priori selection of teleconnection indices, the repa-

rameterization may be applied after model estimation. The α′(s, l ) additionally inherit spa-

tial structure from the model’s formulation. Scientifically, a special case of (3.10) are princi-

pal component decompositions or the closely related truncated Karhunen–Lòeve expansions,

which are referred to as empirical orthogonal functions (EOFs) in climate science. EOFs are

particularly useful expansions for teleconnection because these transformations meaningfully

characterize phenomena that impact global climate (Ashok et al., 2007).

3.2.4 Inference

While inference for the RESP model (3.3) can use standard hierarchical Bayesian model-

ing techniques, the Bayesian framework provides crucial intuition and interpretation for es-

timates of teleconnection effects (3.8) and (3.11). Full description of model priors and com-

putational techniques for inference are discussed in Section 3.3. The Gaussian process as-

sumption and separable covariance (3.6) for the vector of teleconnection coefficients α∗(s)

with associated covariance matrix R∗ defined in Section 3.2.2 imply the normally-distributed

prior α∗(s)|R∗
∼N (0,R∗). Gaussian process assumptions for the RESP model’s spatial corre-

lation also imply that the likelihood for the vector of responses observed at all nt timepoints

Y (s) =
[

Y (s, t1), . . . ,Y
(

s, tnt

)]T
∈R

nt is
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Y (s)|α∗(s),β,R∗,c
∗,σ2

s ∼N

(

X (s)β+Z
∗T

α∗(s), σ2
s Int

)

with σ2
s = Cw {(s, t ), (s, t )} and matrices of local covariates X (s) =

[

x(s, t )T
]tnt

t=t1
∈ R

nt×p and

reduced-rank remote covariates Z
∗ ∈ R

k×nt . The matrix Z
∗ is comprised of column vectors

z
∗
t = R∗−1

c
∗T

zt ∈ R
k built from remote covariate vectors zt =

[

z
(

r j , t
)]nr

j=1
∈ R

nr . Our formula-

tion of the spatial correlation (3.5) implies the scalar σ2
s is constant across time; non-stationary

extensions are discussed in Section 3.5. Standard Bayesian linear regression results (Banerjee

et al., 2015, Example 5.2) yield the posterior distribution

α∗(s)
∣

∣Y (s),β,R∗,c
∗,σ2

s ∼N
(

σ−2
s ΨZ

∗
(

Y (s)−X (s)β
)

, Ψ
)

for

Ψ=

(

R∗−1
+σ−2

s Z
∗

Z
∗T

)−1
.

The connection to Bayesian linear regression lends intuition for inference on the remote

effects α∗(s). In particular, the connection provides intuition for using the RESP model when

some local covariates x(s, t ) are also teleconnected with remote covariates zt . Remote coeffi-

cients can be interpreted as residual teleconnection effects in the sense that they model the

impact of remote covariates on the response after removing local effects X (s)β. Properties of

regressions also imply patterns in maps of posterior means for α∗(s) may resemble patterns in

maps that show pointwise correlations Cort (z∗(r
∗, t ),Y (s, t )) between remote covariates at r

∗

and responses at s. Similar regression-based interpretations can be derived for the reparame-

terized teleconnection coefficients (3.11).

3.3 Bayesian implementation of the RESP model

We adopt a hierarchical Bayesian framework and use a hybrid Gibbs sampler for inference

for the RESP model (3.3) using the likelihood (3.13). The Bayesian framework allows estimates
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for the transformed teleconnection effects (3.11) to be computed directly from posterior sam-

ples of α̃∗ by using the definition for α̃′ specified after (3.14) to appropriately transform the

sampled teleconnection effects α̃∗. Algebraic manipulation and computational evaluation of

the RESP model (3.3) likelihood is simplified through properties of Kronecker products.

3.3.1 Model likelihood

Using Gaussian processes to specify the RESP model’s (3.3) randomness implies the data

model is jointly normal for finite samples with ns locations, nr remote locations, and nt time

points. Let the column vectors Yt = [Y (si , t )]
ns

i=1
∈R

ns and zt =
[

z
(

r j , t
)]nr

j=1
∈R

nr , and the matrix

X t ∈ R
ns×p with row vectors x(si , t )T for i = 1, . . . ,ns represent the observed response variables

and covariates at time t ; and let the column vector α(s) =
[

α
(

s,r j

)]nr

j=1
∈R

nr represent the tele-

connection coefficients for location s. The reduced rank assumption lets us use the Kriging

notation from (3.9) to write α(s) = c
∗R∗−1α∗(s). The matrix c

∗ ∈R
nr ×k is built with row vectors

c
∗(ri )T for i = 1, . . . ,nr that contain the covariances among the teleconnection effect α(s,ri )

and the teleconnection effects at knot locations

α
(

s,r
∗
j

)

, j = 1, . . . ,k. This yields the data model for Y =

[

Y
T

t1
. . .Y

T
tnt

]T
∈R

ns nt , which is given by

Y |β,α̃∗,R∗,c
∗,Σ∼N

(

µY , Int ⊗Σ
)

(3.13)

in which

µY = X̃
(

1nt ⊗β
)

+ Z̃
∗
(

1nt ⊗ α̃∗
)

,

where ⊗ denotes the Kronecker product, X̃ = diag
{

X t1 , . . . , X tnt

}

,

Z̃
∗ = diag

{

Ins ⊗ z
∗
t1

T , . . . , Ins ⊗ z
∗
tnt

T
}

, z
∗
t

T
= z

T
t c

∗R∗−1
∈ R

1×k , α̃∗ = [α∗(si )]
ns

i=1
∈ R

ns k , and

Σ ∈ R
ns×ns is the local covariance matrix with entries Σi j = Cw

{

(si , t ), (s j , t )
}

. While the covari-

ate matrices X̃ ∈ R
ns nt×pnt and Z̃ ∈ R

ns nt×ns knt are block diagonal, we later introduce alternate

notation to make evaluating posterior distributions easier.
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Each time-indexed block in the remote effects term Z̃
∗
(

1nt ⊗ α̃∗
)

has the form

(

Ins ⊗ z
∗
t

T
)

α̃∗, which helps show how each response Y (s, t ) at time t shares the same remote co-

variates z
∗
t . Although the remote coefficients α(s,r

∗), s ∈DY vary spatially across DY for a fixed

r
∗ ∈ DZ , the RESP model differs from traditional spatially varying coefficient models (Baner-

jee et al., 2015, Section 9.6) because all of these remote coefficients share the same covariate

z∗(r
∗, t ).

The likelihood (3.13) changes subtly when reparameterizing the teleconnection effects (3.4)

to interpret them with respect to the spatial basis function transformation defined by (3.11).

The spatial basis function expansion (3.10) of the remote covariates z(r , t ) yields the substitu-

tion

Z̃
∗
(

1nt ⊗ α̃∗
)

= Ã
(

1nt ⊗ α̃′
)

(3.14)

in the likelihood (3.13). Where Ã = diag
{

Ins ⊗ A
T
t1

, . . . , Ins ⊗ A
T
tnt

}

and

α̃′ =
(

Ins ⊗W T
c
∗R∗−1

)

α̃∗, and α̃∗ ∈ R
ns K where the vector At and matrix W form the matrix

decomposition of the remote covariate vector zt when expanded by spatial basis functions

zt = W At . The column vector At = [al (t )]l=1,...,K ∈ R
K contains the weights at time t for the

basis functions
{

ψl (r ) : l = 1, . . . ,K
}

, which are stored in the basis function matrix W ∈ R
nr ×K

with entries W j l =ψl

(

r j

)

.

3.3.2 Likelihood marginalization

We note that c A = A ⊗ c for c ∈ R and A ∈ R
m×n . This lets us use the mixed product rule

for Kronecker products (Banerjee and Roy, 2014, Thm. 14.3) to distribute matrix multiplication

across Kronecker products involving vectors. For example, let c ∈ R
n , A ∈ R

m×n , and B ∈ R
n×p ,

then

(A⊗ c)B = (A⊗ c)(B ⊗1) = AB ⊗ c.
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3.3.3 Numerical evaluation of likelihood

Evaluating the RESP likelihood involves computing matrix multiplications that involve Kro-

necker products. For example, define matrices A ∈R
m×n , B ∈R

p×q , and C ∈R
nq×r . While com-

puting (A⊗B)C naively requires O
(

mnpqr
)

floating point operations, it can be computed in

O
(

mpqr +mnqr
)

floating point operations by recognizing that

(A⊗B)C =















B
(

∑n
j=1 a1 j C j

)

...

B
(

∑n
j=1 am j C j

)















where C j represents the j th q × r block matrix in C , i.e., that C j ∈R
q×r for j ∈ {1, . . . ,n} and

C =















C1

...

Cn















.

While Banerjee and Roy (2014) discuss a similar idea in Section 14.7, they limit their treat-

ment to the case in which C is a vector. Their discussion also does not present this direct form

for numerical evaluation; they present results that rely on the vec(·) operation instead.

3.3.4 Gibbs sampler

We use conjugate prior distributions to specify our Bayesian model where possible, set-

ting β ∼ N (0,Λ) for a fixed prior covariance matrix Λ and σ2
w ∼ IG

(

aσ2
w

,bσ2
w

)

. We use stan-

dard choices for weakly informative priors for the remaining parameters: σ2
α ∼ IG

(

aσ2
α

,bσ2
α

)

,

σ2
ε ∼ IG

(

aσ2
ε
,bσ2

ε

)

, ρw ∼U
(

aρw ,bρw

)

, and ρα ∼U
(

aρα ,bρα

)

(Banerjee et al., 2008). As Matérn

smoothness parameters are difficult to estimate in standard applications, we estimate νw and

να from sample variograms and treat these parameters as fixed during model fitting.

Bayesian estimation is often more stable after integrating out latent fields (Banerjee et al.,

2015, pg. 126). The special case of Kronecker product rules reviewed in Section 3.3.2 facilitates
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this integration. The marginalized data likelihood with nt timepoints after integrating out α̃∗ is

given by

(3.15) Y |β,R∗,c
∗,Σ∼N

(

X̃
(

1nt ⊗β
)

, C−1
⊗Σ

)

where C−1 = Int + Z
∗T R∗

Z
∗. Since the Kronecker product is a bilinear operator, the marginal-

ized variance C−1 ⊗Σ decomposes into the sum
(

Int ⊗Σ
)

+
(

Z
∗T R∗

Z
∗⊗Σ

)

which more clearly

highlights how the remote covariates account for some of the spatial variability around the fixed

mean X̃
(

1nt ⊗β
)

.

The data likelihood (3.15) is almost fully identified. The spatial covariance matrix Σ has

entries Σi j = Cw

{

(si , t ), (s j , t )
}

based on the covariance function Cw defined in (3.5). The co-

variance’s scale parameters σ2
w and σ2

ε are only identifiable with respect to their product σ2
wσ2

ε.

We use parameter expansion to remedy the identifiability issue by reparameterizing the nugget

variance as σ2
ε = σ2

w σ̃2
ε. Therefore, in model fitting, we estimate σ̃2

ε instead of estimating σ2
ε

directly.

Model fitting employs a hybrid Gibbs sampler with adaptive random walk Metropolis steps

to estimate parameters for the marginalized likelihood (3.15). Likelihood evaluation uses re-

sults detailed in Section 3.3.3 that efficiently implement Kronecker product matrix multiplica-

tion. Sampling proceeds by updating the regression coefficient and spatial variance parameters

β and σ2
w by drawing from their full conditional posterior distributions

β
∣

∣ ··· ∼ N

(

Σβ|···X
T
(

C ⊗Σ
−1

)

Y , Σβ|···

)

,(3.16)

σ2
w

∣

∣ ··· ∼ IG
(

aσ2
w
+nsnt /2, bσ2

w
+eT

[

C ⊗
(

Σ/σ2
w

)−1
]

e/2
)

(3.17)

where X ∈ R
ns nt×p is a block row matrix with row blocks X ti

for i = 1, . . . ,nt , the column vector

e =
(

Y − X̃
(

1nt ⊗β
))

are the model residuals, and

(3.18) Σβ|··· =
{

Λ
−1

+X
T
(

C ⊗Σ
−1

)

X
}−1
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is the posterior covariance matrix for β. The remaining parameters ρw , ρα, σ2
α, and σ̃2

ε are

transformed to unconstrained supports and updated using adaptive random walk Metropolis

steps with normal proposals. Log transformations are used for the positive parameters σ2
α and

σ̃2
ε, and logit transformations are used for the bounded parameters ρw and ρα. The adaptive

proposal variance λ(·) differs for each parameter and is tuned at each iteration following a basic

version of Algorithm 4 from Andrieu and Thoms (2008). Additional computations, however, are

required to estimate the remote coefficients and make predictions.

Composition sampling (Banerjee et al., 2015, p. 126) provides a means to sample from the

posterior distribution of the remote coefficients α̃∗ (3.19) as well as from the posterior predic-

tive distribution of the response variables Yt0 at a new timepoint t0. This allows inference and

prediction of these processes, which the Gibbs sampler does not directly study.

The Gaussian process assumption and separable covariance (3.6) imply the remote coeffi-

cients have prior distribution

α̃∗
∣

∣Σ,R∗
∼N

(

0, Σ⊗R∗
)

.

The full conditional posterior distribution for α̃∗ is

(3.19) α̃∗
∣

∣ ···∼N
(

µ α̃∗|···, Σ α̃∗|···

)

,

where “···” represents conditioning on all remaining unknown quantities and

µ α̃∗|··· =
∑

t∈T

{

(

Yt −X tβ
)

⊗

(

R∗−1
+Z

∗
Z

∗T
)−1

z
∗
t

}

,

Σ α̃∗|··· = Σ⊗

(

R∗−1
+Z

∗
Z

∗T
)−1

,

and the matrix Z
∗ ∈ R

k×nt with column vectors z
∗
ti
∈ R

k for i = 1, . . . ,nt is a dense matrix that

contains the remote covariates.
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3.3.5 Computational approach for conducting inference on remote coeffi-

cients

We use standard hierarchical Bayesian spatial modeling techniques to draw inference on α̃∗

through composition sampling (Banerjee et al., 2015, p. 126). Composition sampling generates

a posterior sample
{

α̃∗(1), . . . ,α̃∗(G)
}

for α̃∗ by using the full conditional posterior distribution

(3.19) for α̃∗ with a posterior sample of the model parameters β, θw , θα, and σ2
ε. The compo-

sition samples may be drawn in parallel to reduce the computation time because composition

samples α̃∗(i ) are independent given the posterior parameter samples. Drawing inference on

α̃∗ also requires computational techniques to reduce memory demands.

The composition sample for α̃∗ requires storing ns × k ×G floating point numbers. Even

for moderately sized studies with ns = 200, k = 30, and G = 20,000, the composition sample

requires 915MB of memory. Although this demand increases linearly in k, ns , and G , it quickly

becomes burdensome for typical personal computers. We therefore estimate α̃∗ using the nor-

mal approximation to the posterior. The normal approximation only requires the composition

sample’s mean µ̂ α̃|Y = 1
G

∑G
g=1 α̃

∗(g ) and covariance matrix, the latter defined via

Σ̂ α̃|Y =
1

G −1

G
∑

g=1

(

α̃∗(g )
− µ̂ α̃|Y

)(

α̃∗(g )
− µ̂ α̃|Y

)T
.

These objects require storing (ns ×k)(ns ×k +3)/2 floating point numbers, which can dramati-

cally reduce memory requirements when G > (ns ×k +3)/2.

We use strategies from Pébay (2008) to facilitate computing these summary objects with

minimal memory requirements. We use partitions of the composition samples and compute

µ̂ α̃|Y and Σ̂ α̃|Y in a streaming fashion, which allows estimation of p(α̃∗|Y ) in parallel and with

minimal memory requirements (Pébay, 2008, eqs. 1.1, 1.3, 3.11, & 3.12). These benefits are

achieved by recognizing, for example, that a running estimate of µ̂ α̃|Y based on
{

α̃∗(1), . . . ,α̃∗(g )
}

is easy to update when the next composition sample α̃∗(g+1) is drawn, and that the updating

equations yield µ̂ α̃|Y after all G composition samples are processed.
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3.4 Climate application: Colorado winter precipitation

The RESP model (3.3) is applied here using remote and local covariates to estimate Col-

orado winter precipitation. Winter precipitation is important to estimate because it strongly in

influences Colorado’s annual water supply. We investigate the utility of our RESP model for this

application because there is considerable uncertainty regarding precipitation that is directly

predicted by GCMs. Further, the RESP model can be applied without specifying teleconnec-

tion indices a priori, as many common approaches require. Let Y (s, t ) denote average monthly

precipitation in winter for location s and year t via

Y (s, t ) =
(

YDec (s, t )+YJan(s, t )+YFeb(s, t )
)

/3

in which, for example, YDec (s, t ) represents the total December precipitation in year t at loca-

tion s. The atmosphere’s short memory suggests Y (s, t ) is independent from Y
(

s, t ′
)

for t 6= t ′,

which is confirmed in an exploratory analysis of Colorado precipitation. Winter precipitation

is important to estimate at long time scales because it strongly influences Colorado’s annual

water supply.

We formulate the problem of estimating precipitation as a need to estimate entire precipita-

tion fields when only covariates are available. We build the RESP model (3.3) with historical data

to estimate a statistical relationship between average monthly winter precipitation in Colorado

and land and sea surface temperatures. We discuss inference for the RESP model to illustrate

that it can estimate teleconnection patterns without specifying teleconnection indices a pri-

ori (Section 3.4.5). A leave-one-out cross-validation study validates the model’s effectiveness

(Section 3.4.5), especially in relation to other common downscaling methods (Section 3.4.3).

Although beyond the scope of this study, a next step for future work would be to apply the RESP

model to simulated GCM output.

75



3.4.1 Data

The ERA-Interim reanalysis dataset provides reconstructions of historical sea surface tem-

peratures and local covariates (Dee et al., 2011). The response, precipitation, comes from the

PRISM dataset (Daly et al., 2008). We limit our study period to 1981 through 2013 because earlier

records of large scale climate are less complete. Both datasets are reanalysis products, which

are necessary because working directly with observations can be challenging. Raw data may

be from various sources and are often spatially sparse and temporally incomplete. Reanalysis

products use statistical techniques and physical relationships to reproduce consistent datasets

at regular, gridded locations with complete records after removing or correcting observations

that are physically inconsistent or from stations with potential data collection issues.

This study uses data averaged over the boreal winter months (December, January, February)

because Northern Hemisphere teleconnections are often strongest in winter (Nigam and Bax-

ter, 2015). We simplify the demonstration using spatially-referenced variables average surface

air temperature over Colorado (T ) and average Pacific Ocean sea surface temperatures (SST )

between 120◦E–70◦W and 20◦S–60◦N to predict the spatially-referenced response, average win-

ter precipitation in Colorado (P ). We standardize all data to remove the impact of orographic

and other location-based effects by removing the pointwise mean from all data and scaling data

to have unit variance. We additionally scale the SST values by nr
−1 to ensure the remote coeffi-

cient magnitudes are independent of the resolution at which SST is measured. We standardize

our data before conducting the leave-one-out cross-validation study so all of the testing and

training data are comparable. Thus, our data are standardized climate anomalies that, for ex-

ample, represent the number of standard deviations P (s, t ) is above or below the time-averaged

value Et [P (s, t )] at location s. The data are also spatially aggregated so that ns = 240, 42 km-

resolution grid cells cover Colorado and nr = 5,252, 78 km-resolution grid cells cover the Pacific

Ocean. Distances between grid cells are measured with great-circle distances. We spatially ag-

gregate the PRISM data to increase the smoothness of the data and to make the problem com-

putationally tractable. We discuss alternate approaches to improve computational tractability
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Figure 3.2: Exploratory analysis plots. A) The first empirical orthogonal function (EOF) ψ1 : DY → R

for standardized anomalies of Pacific Ocean sea surface temperatures is an indicator of El Niño events,

during which sea surface temperatures are anomalously warm in the central and eastern Pacific Ocean

tropics but anomalously cool in the western tropics (Ashok et al., 2007). EOF 1 accounts for 30% of the

variability in sea surface temperatures. B) Pointwise correlations Cort (P (s, t ), a1(t )) between Colorado

precipitation P (s, t ) and the EOF 1 score a1(t ) suggest northern and western/central Colorado tends to

receive less precipitation than average during El Niño events while eastern Colorado tends to receive

more precipitation. Significant correlations (naive independent p-value < .05 ) are highlighted, while

non-significant correlations are faded slightly.

in Section 3.5. The spatial aggregation and standardization also increase the normality of the

data and provide a scale for precipitation with negative support, making it more appropriate for

analysis with the RESP model’s Gaussian likelihood.

Pacific Ocean sea surface temperature capture how the ocean influences Colorado precip-

itation through the El Niño–Southern Oscillation (ENSO) teleconnection (Lukas et al., 2014,

Figure 2.4). The ENSO teleconnection is characterized by sea surface temperatures that are

anomalously warm in the central and eastern Pacific Ocean tropics but anomalously cool in

the western tropics. The first empirical orthogonal function (EOF; i.e., principal component)

ψ1 : DY → R for Pacific Ocean sea surface temperature anomalies illustrates this pattern

(fig. 3.2). Pointwise correlations Cort (a1(t ),P (s, t )) between the ENSO teleconnection’s strength

a1(t ) and Colorado precipitation P (s, t ) provide standard evidence for teleconnection, sug-

gesting northern and western/central Colorado tend to receive significantly less precipitation

than average during ENSO events, which are periods of strong El Niño activity, while plains re-
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gions bordering eastern Colorado tend to receive significantly more precipitation than average

(fig. 3.2).

3.4.2 RESP model and prior specification

In the RESP model (3.3), we specify a linear relationship between the local covariate T and

response P so that β in (3.3) has intercept β0 and slope βT components β =
(

β0, βT

)T
. While

the RESP model as described in Section 3.2.1 uses a stationary covariance model and precipita-

tion is non-stationary in space, stationary models have comparable predictive performance in

Colorado (Paciorek and Schervish, 2006). For the RESP model’s remote coefficients, knots are

placed at 93 locations that are roughly evenly spaced across the Pacific Ocean and along coastal

locations (fig. 3.3). While knot selection can be problematic, Banerjee et al. (2008) find that rea-

sonably dense, regularly spaced grids can yield good results. Since the ENSO teleconnection is

scientifically meaningful, we will interpret the transformed teleconnection effects α′(s,1) from

(3.11), which are associated with ENSO through its connection to the first empirical orthogonal

function (EOF) of sea surface temperature anomalies ψ1 : DY →R.

We adopt a combination of weakly informative and non-informative prior distributions.

A dispersed normal prior is used for the fixed effects β ∼ N (0,10I ). We use σ2
w ∼ IG(2,1),

σ2
ε ∼ IG(2,1), ρw ∼U (1,600), and ρα ∼U (1,2000). The Matérn covariance smoothness param-

eters (3.7) are fixed at νw = να = .5, which correspond to the smoothest well-defined Matérn

covariances for Gaussian processes on spheres (Gneiting, 2013). In exploratory analysis, vari-

ograms for the local and remote data fit this parameterization well. The prior for σ2
α is informa-

tive to increase the identifiability of this parameter and the remote range ρα (Zhang, 2004). The

prior σ2
α ∼ IG(6,10) keeps the model from exploring parameter combinations that would imply

very large teleconnection influence relative to the scale of the data Y (s, t ).

3.4.3 Comparison models

We demonstrate the benefit of remote covariates by comparing the RESP model to RE and SP

submodels that, respectively, exclude local and remote covariates. We also show improvement
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to statistical downscaling and prediction by comparing RESP model validation scores to spa-

tially varying coefficient (SVC) models (3.1) and other common downscaling models, including

a hybrid local and non-local regression using the El-Niño–Southern Oscillation teleconnection

(ENSO-T) (van den Dool, 2007, Sections 8.4, 8.5), canonical correlation analysis (CCA) (von

Storch and Zwiers, 1999, Chapter 14), and a baseline climatological reference prediction (CLIM)

(van den Dool, 2007, Section 8.1).

While analog models provide an alternate means to model teleconnected processes, we do

not make comparisons to them in this application because analog models require more tem-

poral replication than our data provide. Analog models require considerable temporal replica-

tion because predictions are weighted combinations of past observations, where the weights

are based on distances between covariates at the prediction timepoint and all past observa-

tions (McDermott and Wikle, 2016). An advantage of analog forecasts, for example, is that the

reweighting scheme naturally generates forecasts that have the same spatial patterns as past

observations. Without enough past observations, however, the likelihood increases that past

observations are not diverse enough to sufficiently approximate future states (Van Den Dool,

1994).

Spatially varying coefficient model (SVC)

To facilitate comparison, the SVC model (3.1) is specified with the same linear relationship

between the local covariate T and response P we use with the RESP model. The scores a1(t ) and

a2(t ) for the first and second sea surface temperature (SST) anomaly EOFs ψ1, ψ2 capture ENSO

and ENSO-Modoki teleconnection relationships for Colorado precipitation with bivariate spa-

tially varying coefficients θ(s) ∈ R
2. The scores {ai (t ) : i = 1,2, t ∈T } quantify the strength of

ENSO activity and are similar to other measures of ENSO activity (Ashok et al., 2007). The first

and second EOFs ψ1 and ψ2 respectively account for 30% and 15% of the variability in SST.

We adopt a hierarchical Bayesian framework to estimate the SVC model (Banerjee et al.,

2015, Section 9.6.2). An Inverse-Wishart prior Λ ∼ IW (I ,2) is used for Λ = Cov(θ(s)) and a

dispersed normal prior is used for the fixed effects β ∼ N (0,10I ). We use σ2
∼ IG(2,1) and
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ρ ∼U (1,600) for the prior distribution of the Matérn covariance with fixed smoothness ν = .5

for the model’s spatial correlation.

Hybrid local and non-local regression (ENSO-T)

Pointwise regression models are commonly used to downscale climate data (e.g., Towler

et al., 2016). The ENSO-T model predicts precipitation P (s, t0) at a location s and new time point

t0 by applying a regression of training data P (s, t ) onto local surface air temperature T (s, t ) and

the score a1(t ) for the first sea surface temperature EOF ψ1 : DY → R. The ENSO-T downscaler

provides a comparison model that accounts for both local and remote effects, but not spatial

dependence.

Canonical correlation analysis (CCA)

Canonical correlation analysis uses the empirical correlation structure of sea surface tem-

perature SST and precipitation P vectors to linearly map these variables to a space in which

the transformed vectors are maximally correlated (von Storch and Zwiers, 1999, Chapter 14).

This mapping may be used in a multivariate regression context with sea surface temperatures

at new time points to predict precipitation. The mapping is often developed with some amount

of smoothing by removing higher order EOFs from the data. We retain 16 EOFs in our use of

CCA because this lets us capture approximately 90% of the variability in the predictors SST and

predictand P . The CCA downscaler provides a comparison model that only accounts for remote

effects and indirectly accounts for spatial dependence.

Climatological reference (CLIM)

Climatologists use the unconditional distribution of precipitation P (s, t ) at a location s.

When no other information is available, the average value of precipitation Et [P (s, t )] is used

as a climatological point prediction for precipitation, and the empirical distribution is used for

probabilistic predictions. The CLIM downscaler provides a baseline comparison model that

does not account for spatial dependence, local, or remote effects.
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3.4.4 Implementation of model assessment measures

Variance inflation factors for local effects

The posterior covariance matrix (3.18) for the regression coefficient vector β allows us to fol-

low Reich et al. (2006) and define conditional variance inflation factors that can help diagnose

multicollinearity between the local and remote covariate matrices X and Z via

VIF
(

βi

)

=

(

{

Λ
−1 +X

T
(

C ⊗Σ
−1

)

X
}−1

)

i i
(

{

Λ−1 +X T
(

Int ⊗Σ−1
)

X
}−1

)

i i

.

The VIF measures the proportional increase in the i th local coefficient’s posterior variance

caused by adding remote covariates to the model, conditional on the model’s covariance pa-

rameters. This interpretation follows since the denominator represents the i th local coeffi-

cient’s posterior covariance in a standard spatial regression model where the local covariates

and responses are observed at multiple, independent timepoints. Larger VIF values indicate

greater multicollinearity, while the smallest possible VIF value of 1 indicates no multicollinear-

ity. The VIF for βT is 1.1, which indicates that estimates of the local effects are not impacted

by the addition of remote covariates in the case study of Colorado winter precipitation (Sec-

tion 3.4).

Variance inflation factors for remote effects

As with the local effects, we can use the posterior covariance matrix in (3.19) for the remote

effects vector α̃∗ to define conditional variance inflation factors that can help diagnose multi-

collinearity in teleconnection effects
{

α
(

s,r
∗
i

)

: s ∈DY

}

associated with the i th knot location r
∗
i

denoted by

VIF
(

r
∗
i

)

=

(

(

R∗−1
+Z

∗
Z

∗T
)−1

)

i i
(

1/σ2
α+Z

∗
i ,·

Z
∗
i ,·

T
)−1

.

The notation Z
∗
i ,·

indicates the i th row of the matrix Z
∗, in which row i contains all observa-

tions of the remote covariate at location r
∗
i

, should be used in computations. Conditional on
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the model’s covariance parameters, the VIF measures the proportional increase in the marginal

posterior variance of teleconnection effects
{

α
(

s,r
∗
i

)

: s ∈DY

}

associated with the i th knot loca-

tion r
∗
i

that results from adding the remaining remote covariates
{

z
(

r j , t
)

: j 6= i , t ∈T
}

to the

model. In the case study of Colorado winter precipitation (Section 3.4), VIF
(

r
∗
i

)

ranged between

1.0 and 1.1 for all knot locations r
∗
i

. This indicates the reduced rank approximation and choice

of knot locations mitigates potential multicollinearity in estimation of teleconnection effects.

Heidke skill score

The Heidke skill score (HS) evaluates categorical predictions and is commonly used in cli-

mate science (von Storch and Zwiers, 1999, Section 18.1). The measure compares the proba-

bility the RESP model correctly predicts precipitation pRESP to the probability that a reference

model correctly predicts precipitation pRef. We adopt a standard, naive reference model that

assigns equal probability to all precipitation levels, implying pRef = 1/3 since our precipitation

levels represent empirical terciles. We additionally manipulate the Heidke skill score formula

(von Storch and Zwiers, 1999, eq. 18.1) to show that it is linear in pRESP. The manipulation also

yields an intuitive interpretation of the score:

HS(RESP) =
pRESP −pRef

1−pRef
=

(

pRESP/pRef −1
)

Odds
(

pRef

)

.

The Heidke skill score scales the odds that the reference model correctly predicts precipitation

by the RESP model’s relative change in prediction accuracy. Models have positive Heidke skill

when they are more accurate than the reference model; the maximum possible score is 1. Sim-

ilarly, models have negative skill when they are less accurate than the reference model.

The predictive distributions for the RESP, ENSO-T, and CLIM models are continuous, but

easily discretized with respect to the category cutpoints that are empirically determined from

the leave-one-out training data. Therefore, the posterior mode of these distributions provides a

natural choice for categorical point predictions of precipitation. The CCA model only produces

continuous point predictions, so its categorical predictions are defined by the category that
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matches the “above average”, “near average”, or “below average” range in which the continuous

point prediction lies.

The RESP model (3.3) frequently yields better point predictions than the comparison mod-

els (fig. 3.4). The CCA Heidke skill scores are lower, but about as variable as the RESP model,

which suggests the CCA model may adequately account for spatial dependence when making

predictions, but loses skill by not also incorporating local covariates. Similarly, the ENSO-T

model’s Heidke skill scores may be more variable than the RESP model’s scores since it does not

account for spatial dependence.

Ranked probability score

The ranked probability score (RPS) is closely related to the continuous ranked probability

score (CRPS), which is a proper scoring rule for probability measures with finite means (Gneit-

ing and Raftery, 2007). Epstein (1969) introduced the RPS to evaluate probabilistic predictions

of ordinal variables. Murphy (1971) presented an equivalent formulation of the RPS that shows

how the RPS, like the CRPS, sums the squared differences between the predicted and observed

cumulative distribution functions for an ordinal response Yo(s, t ) at location s and time t . Since

the RPS is defined pointwise, we follow common practice in climatological applications and av-

erage RPS scores over ns locations at which we observe the response Yo(s, t ) (Hersbach, 2000),

yielding the RPS score at time t for a model M that predicts the cumulative distribution F̂t

(

j ; s
)

for j ∈ {1, . . . ,k} ordered categories of the response at location s

RPS(M , t ) =
1

ns

ns
∑

i=1

k
∑

j=1

(

F̂t

(

j ; si

)

−1
{

Yo(si , t ) ≤ j
})2

.

3.4.5 Results

Model results are based on 20,000 samples from the posterior distribution after a burn in

period of 1,000 samples. Convergence was assessed by examining trace plots, autocorrela-

tion plots, and effective sample sizes in addition to comparing results from multiple runs with

randomly initialized parameters. Model adequacy was assessed using residual and qq-normal
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plots. These diagnostics suggest there are no serious violations of the convergence and distri-

butional assumptions. Variance inflation factors (VIFs) that account for the RESP model design

also show no concern for multicollinearity in the fitted model Section 3.4.4.

Inference

The parameter estimates for the RESP model yield reasonable scientific interpretations

(table 3.1). The sign of the regression coefficient βT for the temperature covariate T is consis-

tent with physical processes that influence precipitation (Daly et al., 2008). The local covariance

range parameter ρw implies the dependence between locations s ∈ DY has an effective range

between 500 and 570 km, which is the distance between locations beyond which the Matérn

correlation (3.7) is small (≤ .05). This length scale is in the size range of mesoscale weather pro-

cesses that produce precipitation (Parker, 2015). The remote covariance range parameter ρα

implies the dependence between locations r ∈DZ has an effective range between 720 and 2,200

km, which is roughly the size of the mid-sized structures seen in the EOF patterns in fig. 3.2 A.

Since local temperature T is teleconnected with sea surface temperatures SST , remote effects

must be interpreted as residual teleconnection effects, as described at the end of Section 3.2.4.

Significant remote effects suggest Colorado’s teleconnection with the Pacific Ocean cannot be

represented through a linear relationship with temperature alone; the teleconnection likely in-

volves non-linear relationships and additional variables or interactions. Posterior estimates for

the transformed remote effects
{

α′(s,1) : s ∈DY

}

associated with ψ1 : DY → R (fig. 3.5) largely

match the exploratory pointwise correlations between P (s, t ) and a1(t ) found in the exploratory

plot (fig. 3.2), indicating the RESP model (3.3) is capturing known Colorado teleconnections.

Fewer locations have significant teleconnection, however, as the estimates incorporate more

uncertainty due to spatial correlation; significance is determined with respect to evaluating

highest posterior density intervals, separately for each location s ∈DY .
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Table 3.1: Posterior mean estimates and 95% highest posterior density (HPD) intervals for the RESP

model’s parameters, which include an intercept β0 and temperature effect βT on the mean response

(see equation (3.3)), and covariance scale σ2 and range ρ parameters for the local w and remote α spatial

dependence and nugget effect ε (see (3.5) and (3.6)). The smoothness parameters νw and να were fixed

(Section 3.4.2).

Posterior mean 95% HPD

Local effects β0 −0.00 (−0.14, 0.14)

βT −0.18 (−0.24, −0.12)

σ2
w 0.55 (0.49, 0.62)

σ2
α 6.05 (1.04, 14.81)

Covariance σ2
ε 0.01 (0.01, 0.01)

ρw 248.00 (220, 280)

ρα 509.00 (266, 799)

Model validation

Leave-one-out cross-validation scores demonstrate the RESP model benefits from including

remote covariates and offers improvement over comparison models in the intended prediction-

like setting of perfect prognosis downscaling (fig. 3.6). The RESP and comparison models are

trained on all but one year of available data, then used to predict the responses {P (s, t ) : s ∈DY }

for the test year t to mimic the perfect prognosis downscaling setting in which a climate vari-

able must be completely inferred from covariate data only. The process is repeated with all

years of available data. While the RESP and comparison models yield continuous predictive

distributions, we discretize the distributions before assessing them. Climate forecasts are often

discretized because it is inherently difficult to develop more precise climate predictions at sea-

sonal and longer time scales (Mason, 2012; van den Dool, 2007, Section 9.6). We use the empiri-

cal terciles q̂(1/3; P (s, ·)) and q̂(2/3; P (s, ·)) to discretize the predictive distribution f (P (s, t0)|P )

at each location s ∈ DY into “below average”, “near average”, and “above average” categories.

While it is possible to directly fit discrete models to the data, doing so is not necessarily help-

ful. For example, a probit-link RESP or SVC model would require re-estimation of observed

continuous data P (s, t ) as latent fields (Higgs and Hoeting, 2010).

85



We use ranked probability scores (RPS) to assess probabilistic forecasts for ordinal vari-

ables, giving lower scores to models that generate predictive distributions that better match

the true distribution (Gneiting and Raftery, 2007). The CCA model only yields point predictions

since predictive uncertainties are difficult to obtain. Thus, the CCA’s validation scores are in-

flated since its discretized predictive distribution is defined by a point mass on the category

that matches the tercile in which the point prediction lies.

The RESP model (3.3) frequently yields better probabilistic predictions than the comparison

models. In particular, the RESP model performs better than the RE or SP submodels which high-

lights the advantage of combining local and remote information. Sample maps of predictions

and uncertainties are presented in Section 3.4.5. The RESP model also tends to perform better

than the SVC model which highlights the advantage of not specifying teleconnection indices

a priori and adding additional spatial structure to estimates of teleconnection effects. Simi-

lar results are obtained using Heidke skill scores to compare models. Heidke skill scores are

commonly used in climate science to measure a model’s misclassification rate for categorical

point predictions (von Storch and Zwiers, 1999, Section 18.1). Formulas and details for RPS and

Heidke skill scores can be found in Section 3.4.4.

Model validation maps

Section 3.4.5 builds support for the RESP model by comparing it to submodels and alterna-

tives (fig. 3.6). fig. 3.7 and fig. 3.8 show continuous and discretized (categorical) predictions and

uncertainties for the 1982 validation set. Shrinkage and uncertainty in the continuous predic-

tions can be anticipated because even though teleconnection effects contain predictive infor-

mation, their overall influence on precipitation tends to be relatively weak (fig. 3.2 B).

The categorical predictions for average monthly precipitation in winter across Colorado are

better determined near teleconnected regions. Posterior logits (fig. 3.8 C) for the categorical

forecasts (fig. 3.8 B) quantify uncertainty on an interpretable scale in this application. Since the

modes of the discretized posterior predictive distributions are the categorical forecasts, odds

compare the the forecasted category probabilities to the other categories. The logit (log-odds)
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allows zero to be a natural reference point for comparing uncertainties. Since we discretize pos-

terior predictive distributions into three categories, the probability for each categorical forecast

is at least 1/3. Non-negative logits indicate at least 50% greater certainty since their categorical

forecast probability is at least 1/2. Regions with non-negative logits occur near locations with

significant teleconnection effects (fig. 3.5).

3.5 Discussion

The RESP model (3.3) expands geostatistical frameworks that incorporate the effect of both

local and remote covariates on spatially correlated responses, like precipitation, but can be ex-

tended to address additional spatio-temporal modeling needs. For example, while we use the

RESP model to draw inference on entire response fields, the model’s process-formulation also

allows it to be applied to more standard spatial interpolation problems as well. Since there is

great uncertainty in global climate model (GCM) predictions of future precipitation, statisti-

cal downscaling methods have been widely used in regional climate change studies. Validating

the RESP model on historical data marks an improvement on existing approaches and implies

it can be used with GCM predictions of surface temperatures and large-scale patterns to infer

predictions for precipitation from covariate data only. By comparison with the RESP model,

other models directly model less of the spatial structure in teleconnected data, but other mod-

els have been studied in broader statistical contexts. Fortunately, it is possible to formulate the

RESP model more broadly.

Many scientific disciplines work with spatially-referenced non-Gaussian data, for which the

RESP model can be adapted. For example, the RESP model could be adapted to study telecon-

nective effects on the number of large rain events, which are important for many ecological

systems and sectors of society. Following approaches common to generalized linear models

for spatial data, the existing RESP response Y (s, t ) may be reinterpreted as a latent Gaussian

field that helps parameterize the distribution for non-Gaussian observations (Diggle et al., 1998;

87



Higgs and Hoeting, 2010). The primary technical challenge for Bayesian implementations of

such models is to develop efficient estimation procedures since conjugacy is lost.

Modeling effects for multivariate remote covariates or data on large spatial domains could

both be facilitated by modeling spatial dependence with sparse geostatistical models. Infer-

ence and prediction for many geostatistical models involves matrix operations with O
(

ns
3
)

computational complexity. Sparse geostatistical models can avoid these costs on large spa-

tial domains, for example, by using Gaussian Markov random field approximations to specific

classes of Gaussian fields with Matérn covariances (Lindgren et al., 2011), covariance tapering to

generate spatial covariance matrices with banded structure (Furrer et al., 2006), multiresolution

covariance models (Katzfuss, 2016), or hierarchical nearest neighbor models (Datta et al., 2016).

While computational savings may be minimal for small spatial domains like Colorado, they may

offset computational costs of estimating teleconnection effects for multiple sets of remote co-

variates. The RESP model may naturally be extended to include multiple teleconnection effects

(3.4) to model impacts from Pacific and Atlantic Ocean temperatures, for example. Multivariate

teleconnection effects can also be used to model impacts from a vector z(r , t ) ∈R
m of m remote

covariates at location r ∈DZ . Both extensions require sensibly modifying the remote coefficient

covariance function (3.6) and will yield likelihood structures similar to the RESP model (3.3), es-

pecially if relationships between additional teleconnection effects are modeled with separable

covariances.

Non-stationary covariance models and temporal extensions can also allow the RESP model

to be applied to more diverse data and problems. While the teleconnection term (3.4) ad-

mits temporal non-stationarity moderated by the remote covariates, modeling temporal de-

pendence across timepoints can allow the RESP model to be used in more traditional forecast-

ing problems. Similarly, modeling spatial non-stationarity can potentially improve model fit

and prediction at unobserved spatial locations. In particular, nonstationary covariances could

allow the remote coefficients to vary temporally. This extension may be relevant because Ma-

son and Goddard (2001) find that teleconnection effects can vary across seasons. As in Choi
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et al. (2015), however, changes over time may be difficult to detect because the effects tend to

be weak.

Without considering any extensions, however, the RESP model yields additional discussion

about spatial modeling. The RESP model’s inclusion of dependence at both long and short

distances echoes descriptions of the screening effect (Stein, 2015). Carefully studying spectral

densities of covariance functions show that if they decay quickly enough, then spatial predic-

tions are primarily driven by data from nearby locations. While the RESP model allows distant

locations to influence spatial prediction, the RESP model does not contradict the screening ef-

fect because it explicitly models long range dependence through the teleconnection term (3.4)

and the screening effect is a property of local covariance functions (3.5). Of similar subtlety,

maps of estimated teleconnection effects (fig. 3.5) raise discussion about uncertainty estimates

for spatial patterns. Significance in fig. 3.5 is determined pointwise with respect to the poste-

rior distribution for α′(s,1) at each location so can provide inference for teleconnection effects

at individual points. Here, pointwise significance can help individual municipalities determine

whether they are strongly impacted by teleconnection effects and may benefit from use of the

RESP model. Determining uncertainty for entire regions is a multiple testing problem not con-

sidered in this study (Bolin and Lindgren, 2015; French and Hoeting, 2016). Uncertainties for

entire regions are more important, for example, when trying to estimate boundaries for pol-

luted areas.

There is potential for more diverse application of the RESP model because teleconnections

exist in other fields, like ecology (Brierley et al., 1999) and human geography (Seto et al., 2012).

The model’s general introduction in Section 3.2 as a spatial regression problem highlights a less-

common class of spatial analysis problems because it addresses problems that require depen-

dence at both long and short distances, at odds with typical assumptions that data at distant

points are effectively independent. While the RESP model assumes the response and remote

covariates are defined on disjoint spatial domains, it suggests even broader classes of problems

in which overlapping domains characterize dependence between distant locations, or in which
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teleconnected domains are not known a priori and need to be estimated. The latter problem

is reminiscent of general covariance or graphical model structure estimation problems, which

may provide possible directions for future spatial statistics research topics.
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Figure 3.3: Average monthly sea surface temperature standardized anomalies from Winter, 1982. Black

dots mark knot locations.
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Figure 3.4: Comparison of Heidke skill scores for categorical point predictions on the leave-one-out test

datasets for the RESP, ENSO-T, CCA, and CLIM models. The dashed line at 0 marks the Heidke skill for

a naive reference model that produces random point predictions The RESP model generally has better

(i.e., higher) and less variable skill than the comparison models.
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Figure 3.5: Estimated teleconnection effects α̂′(s,1) for EOF 1 ψ1 : DY → R. The overall patterns yield

similar interpretations as those made with the fig. 3.2 exploratory plots, however, the RESP model re-

duces the regions in which evidence exists for significant teleconnection. Significant teleconnection

effects, as determined using 95% highest posterior density intervals, are highlighted.
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Figure 3.6: Comparison of Ranked probability scores (RPS) for probabilistic categorical predictions on

the leave-one-out test datasets for the RESP and comparison models. RPS scores are reported relative to

the median RPS for the CLIM reference model’s unconditional predictions. The RESP model generally

has better (i.e., lower) and slightly less variable skill than the “Sub” and “Common” comparison models.
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Figure 3.7: Comparison of predictions for the 1982 validation set in the leave-one-out cross-validation

study. The pattern of the posterior predictive means (B) matches the PRISM responses (A) well, but the

color scale indicates shrinkage of the forecasted magnitudes. Posterior predictive standard errors (C)

indicate uncertainty for the forecast.
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Figure 3.8: Comparison of discretized (categorical) predictions for the 1982 validation set in the leave-

one-out cross-validation study. The pattern of the posterior predictive modes (B) matches the PRISM

responses (A) well. Logits for the posterior predictive modes (C) indicate higher uncertainty for the fore-

casts (blue), especially in regions without significant teleconnection effects.
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Chapter 4

Approximate Bayesian Inference via Sparse grid

Quadrature Evaluation for hierarchical models3

4.1 Introduction

Computationally efficient posterior approximation remains a key challenge and concern

in applied Bayesian analyses, especially for hierarchical models. Hierarchical Bayesian mod-

els allow flexible modeling of complex data, but make posterior inference challenging because

simple, conjugate distributions are typically unavailable. Posterior densities, expectations, and

other quantities involve computing integrals that often require numerical approximation. The

required approximations can be computationally expensive or challenging since many hier-

archical models include many unknown parameters, thus integrals are defined over high di-

mensional state spaces. Sampling-based approaches, like Markov chain Monte Carlo (MCMC)

methods, are widely used because they are generally reliable and relatively simple to imple-

ment (Gelfand and Smith, 1990). However, MCMC approximations can be computationally ex-

pensive for many models as many full conditional posterior distributions have high correlation

or are difficult to sample. As a result, if n dependent samples are drawn via MCMC methods,

the stochastic approximation error rate can often be higher than the error Op

(

n−1/2
)

for direct

Monte Carlo approximations, which are often infeasible since many full posterior distributions

cannot be sampled directly. Alternate approximation is available via a range of stochastic and

deterministic methods, including Laplace and Integrated Nested Laplace approximations (Rue

et al., 2009; Tierney and Kadane, 1986), classical quadrature-based approximations (Naylor and

Smith, 1982), Variational Bayes (Attias, 2000), and Approximate Bayesian Computing (Rubin,

1984; Tavare et al., 1997) to just name a few. Generally, each method is motivated by com-

3In preparation for submission with J. A. Hoeting.

95



putational issues and structures found in different classes of models, so no method is neces-

sarily well-suited for all hierarchical models. In particular, technical limitations of Integrated

Nested Laplace approximations (INLA) and classical quadrature motivate us to develop a strat-

egy to yield approximate Bayesian Inference via Sparse grid Quadrature Evaluation (BISQuE)

for a wider range of hierarchical models.

INLA approximates marginal posterior distributions by using a discrete numerical integra-

tion grid of hyperparameters to average over Laplace approximations of conditional posterior

densities. The method is developed for models that link observations to latent Gaussian vari-

ables through link functions, similar to generalized linear models. The approximation enables

fast inference for a wide range of scientifically relevant models. However, it can sometimes be

difficult to reparameterize, reformulate, or otherwise embed models without latent Gaussian

structures to the INLA framework. Additionally, the numerical integration can become compu-

tationally infeasible for models with too many hyperparameters. The latter issue is a limitation

shared by classical quadrature-based approximations for posterior quantities.

Classical quadrature methods can approximate marginal posterior distributions and expec-

tations for general Bayesian models, but like INLA, the models must have relatively small di-

mension (Naylor and Smith, 1982). Quadrature methods approximate an integral by evaluating

its integrand at deterministic locations, then weighting the results. Locations and weights are

chosen using known information about the shape of the integrand. However, classical quadra-

ture methods have limited practical use for approximate Bayesian inference. Classical methods

integrate over all unknown parameters—not just hyperparameters—and the size of the inte-

gration grids suffer from the curse of dimensionality, growing exponentially as parameters are

added to models.

More recent quadrature literature formalized theory and methods that yield sparse inte-

gration grids, thereby mitigating the curse of dimensionality for quadrature approximations of

high dimensional integrals (Gerstner and Griebel, 1998; Novak and Ritter, 1996,9). In statis-

tics, sparse grid quadrature methods have been used to approximate likelihoods that involve
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high dimensional integrals, as can arise from econometric models (Heiss and Winschel, 2008).

Sparse grid quadrature has also been used to approximate posterior expectations, densities,

and integration constants for non-linear inverse problems with normal errors (Emery and John-

son, 2012; Schillings and Schwab, 2013), estimate Kullback-Leibler information gains to solve

Bayesian experimental design problems (Long et al., 2013), and to accelerate computations for

specific non-linear Kalman filters (Arasaratnam and Haykin, 2009; Jia et al., 2012). By compari-

son, we consider approximate Bayesian posterior inference more generally.

We propose reformulating Bayesian posterior quantities, such as densities and expecta-

tions, so that they can be efficiently approximated by combining conditioning techniques with

sparse grid quadrature methods. Our reformulation lets us apply sparse grid quadrature meth-

ods to hierarchical Bayesian models with non-Gaussian structures and potentially many hy-

perparameters. The resulting computational approach greatly reduces computation time as

compared to MCMC approaches for many models, including fully non-Gaussian models. Our

framework can also potentially be combined with INLA to allow fast inference for latent Gaus-

sian models with many hyperparameters.

We briefly review quadrature and sparse grid methods (Section 4.2), then introduce the

Bayesian Inference via Sparse grid Quadrature Evaluation (BISQuE) strategy to yield approxi-

mate inference for hierarchical Bayesian models (Section 4.3). Our method reduces the compu-

tational effort required to approximate posterior densities, means, and variances in examples

where traditional MCMC methods are relatively slow (Section 4.5). We conclude with discus-

sions of extensions and other directions for future work (Section 4.6).

4.2 Quadrature and Sparse grid methods

Let f (x) be a map from a d-dimensional space S onto the real line R, and w(x) be a weight

function with the same support. The integral

I
(

f
)

=

∫

S

f (x)w(x)d x(4.1)
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may be approximated via the weighted sum

Î
(

f
)

=

ki
∑

ℓ=1

f
(

x
(i ,ℓ)

)

w (i ,ℓ)(4.2)

for some choice of summation length ki ∈N, nodes A
i =

{

x
(i ,ℓ) : ℓ= 1, . . . ,ki

}

⊂S , and weights

W
i =

{

w (i ,ℓ) : ℓ= 1, . . . ,ki

}

⊂ R
ki . We will use the index i shortly. The approximation (4.2) is

called a quadrature rule if the integration domain S , weight function w , and desired approxi-

mation accuracy or computational cost are used with specific procedures to specify ki , A
i , and

W
i (Givens and Hoeting, 2013, Section 5.3). The number of nodes and weights ki balances the

approximation error in (4.2) with the approximation’s computational cost. Large ki can yield

more accurate approximation (or even exact evaluation) of (4.1), but at potentially high com-

putational cost. In practice, sequences of increasingly accurate quadrature rules defined by

(

k1,A 1,W 1
)

,
(

k2,A 2,W 2
)

, . . . such that k1 < k2 < . . . can be used to estimate and control ap-

proximation error (Laurie, 1985). Quadrature rules can yield highly accurate approximations

for integrals I
(

f
)

of smooth functions f defined on S , but computational efficiency is difficult

to achieve if S has high dimension.

The simplest quadrature rules to construct for multidimensional S are product rules, but

these suffer from the curse of dimensionality. Product rules are formed by iteratively apply-

ing univariate quadrature rules along each dimension of S to approximate (4.1); they are aptly

named because their nodes A
i are a Cartesian product of nodes from the underlying univari-

ate quadrature rules (cf. Novak and Ritter, 1996). To be precise, let S be the product space

S =S1×·· ·Sd of one-dimensional, σ-finite measure spaces S1, . . . ,Sd , and let the weight func-

tion w(x) be the product w(x) =
∏d

i=1 wi (xi ) of weight functions w1(x1), . . . , wd (xd ) that are re-

spectively defined on S1, . . . ,Sd . If the target integral (4.1) is well defined, then Fubini’s theorem

implies (4.1) may be evaluated as an iterated integral. Iterated integration allows approxima-

tion by applying univariate quadrature rules along each dimension of S . Define U
i1

1 , . . . ,U
id

d

to be univariate quadrature rules that respectively approximate integrals on S1, . . . ,Sd with

ki1 , . . . ,kid
nodes A

i1

1 , . . . ,A
id

d
and weights W

i1

1 , . . . ,W
id

d
. The product rule that approximates
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(4.1) is defined via

(

U
i1

1 ⊗·· ·⊗U
id

d

)

(

f
)

=

ki1
∑

ℓ1=1

· · ·

kid
∑

ℓd=1

f
(

x
(i1,ℓ1)
1 , . . . , x

(id ,ℓd )

d

)

w
(i1,ℓ1)
1 . . . w

(id ,ℓd )

d
.(4.3)

Note that the product rule (4.3) is a special case of the general approximation form (4.2). The

product rule (4.3) requires evaluation of f at
∣

∣

∣A
i1

1 ×·· ·×A
id

d

∣

∣

∣ = ki1 · · ·kid
nodes. The number

of quadrature nodes grows exponentially as d ↑ ∞ if f is explored equally in all dimensions,

i.e., if ki1 = ·· · = kid
. The curse of dimensionality for product rules can be partially mitigated

by exploring f unequally in different dimensions, but this approach is only practical if f is

extremely smooth in some dimensions.

By comparison, sparse grid quadrature rules are computationally efficient approximations

for integrals on multidimensional S . Novak and Ritter (1996,9) use the Smolyak (1963) formula

to combine univariate quadrature rules U
i1

1 , . . . ,U
id

d
in a computationally efficient approxima-

tion (4.2) of (4.1). The Smolyak formula specifies a linear combination A
(

q,d
)

of product rules

(4.3) that approximates (4.1) via

A
(

q,d
)(

f
)

=
∑

q−d+1≤|i |≤q

(−1)q−|i |

(

d −1

q −|i |

)

(

U
i1

1 ⊗·· ·⊗U
id

d

)

(

f
)

,(4.4)

in which q ≥ d and |i | = i1 + ·· · + id . Note that the Smolyak rule (4.4) is also a special case of

the general approximation form (4.2). The constant q ∈ N is called the rule’s level and most

directly controls the accuracy and computational cost of the approximation in applications.

The Smolyak rule (4.4) is called a sparse grid quadrature rule if each of the j = 1, . . . ,d univariate

quadrature rules have nested nodes in the sense that A
1
j
⊂ A

2
j
⊂ ·· · . The rule (4.4) requires

evaluation of f at the nodes

A
(

q,d
)

=
⋃

q−d+1≤|i |≤q

A
i1

1 ×·· ·× A
id

d
.
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Adopting the convention that A0
j
= x0

j
for some base point x0

j
∈S j , nesting implies A

(

q,d
)

is a

sparse subset of the nodes used by the product rule
(

U
q
1 ⊗·· ·⊗U

q

d

)(

f
)

.

The sparse grid quadrature rule (4.4) mitigates the curse of dimensionality by creating

sparse integration grids relative to product rules, but requires f to satisfy stricter smoothness

properties in exchange. Novak and Ritter (1999) present growth rates, bounds, and approxima-

tions for k =
∣

∣A
(

q,d
)∣

∣ under different scenarios. Novak and Ritter (1996) also show that the

approximation’s order of convergence is

∣

∣I
(

f
)

− A
(

q,d
)(

f
)∣

∣=O

(

k−r
(

logk
)(d−1)(r /d+1)

)

if f has a bounded mixed derivative f (r,...,r ). Even more precisely, Novak and Ritter (1999) show

that I
(

f
)

= A
(

q,d
)(

f
)

if f is a polynomial with bounded total degree, i.e., that the approxima-

tion (4.4) is exact for the integral (4.1). The specific bound depends on exactness properties of

the underlying univariate quadrature rules U
i1

1 , . . . ,U
id

d
. The total degree of a polynomial is the

maximum degree of its monomials, and the total degree of each monomial is the sum of the

exponents of the variables that appear in it. For example, the total degree of the polynomial

x3
1+x2

1 x3
2+x4

2 is 5. In practice, the sparse grid quadrature rule (4.4) is most computationally effi-

cient for functions f that behave approximately as polynomials with relatively low total degree.

In statistical contexts, this is similar to saying that the rule (4.4) is most useful for polynomial

surfaces f that are mainly driven by main effects and low order interaction terms. We will sat-

isfy this requirement for computational efficiency in our application by appealing, in part, to

the Bayesian central limit theorem to claim that many posterior surfaces and other quantities

can be well approximated by the product of a Gaussian weight function w(x) with a relatively

low-order correction term f .
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4.3 Posterior inference via weighted mixtures

We combine conditioning techniques with sparse grid quadrature rules to develop special-

ized, computationally efficient formulas like (4.4) that approximate Bayesian posterior infer-

ence for marginal quantities. For example, when used to approximate marginal posterior den-

sities, our method will yield a weighted mixture of full conditional posterior distributions. We

briefly motivate the Bayesian Inference via Sparse grid Quadrature Evaluation (BISQuE) ap-

proximation strategy by arguing that it can be computationally inefficient to use sparse grid

quadrature rules to directly approximate posterior quantities. First, our motivation simulta-

neously highlights the general strategy used to apply sparse grid quadrature rules to Bayesian

models as well as key technical issues BISQuE addresses. Then, the remainder of Section 4.3

defines the family of posterior quantities to which BISQuE applies (Section 4.3.1), the BISQuE

approximation (Section 4.4.3), and a nested integration technique that is useful for applying

BISQuE to models that lack closed form expressions of posterior densities (Section 4.4.4).

Consider a generic hierarchical Bayesian model. Let X ∈ Ω0 be a sample of continuous,

discrete, or mixed random variables from an arbitrary process. Define a conditional probability

model for X such that

X |θ1,θ2 ∼ f ( X |θ1,θ2)

(θ1,θ2)∼ f (θ1,θ2)

(4.5)

for parameters θ1 ∈ Ω1 and θ2 ∈ Ω2. Many Bayesian models can be written like (4.5). For ex-

ample, many hierarchical Bayesian models add conditional independence assumptions and

hierarchical structure to (4.5) so that

f ( X |θ1,θ2) = f ( X |θ1)

f (θ1,θ2) = f (θ1|θ2) f (θ2).
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Non-hierarchical models also fit within our framework (4.5). For example, Bayesian formula-

tions of some linear regression models specify prior independence between regression coeffi-

cients θ1 and variance components θ2, thus define f (θ1,θ2) = f (θ1) f (θ2).

The marginal posterior density f (θ1|X ) is often of interest in posterior inference. The den-

sity may be computed by integrating θ2 out of the joint posterior density

f (θ1|X ) =

∫

f (θ1,θ2|X )dθ2.(4.6)

Sparse grid quadrature rules (4.4) yield weighted-sum approximations (4.2) of (4.6) by introduc-

ing a weight function w(θ1,θ2, X ) and proceeding via

f (θ1|X ) =

∫

f (θ1,θ2|X )

w(θ1,θ2, X )
w(θ1,θ2, X )dθ2 ≈

ki
∑

ℓ=1

f
(

θ1,θ(i ,ℓ)
2

∣

∣

∣ X

)

w
(

θ1,θ(i ,ℓ)
2 , X

)w (i ,ℓ,θ1),(4.7)

in which quadrature nodes θ(i ,ℓ)
2 and weights w (i ,ℓ,θ1) are determined by applying the Smolyak

formula (4.4) to a collection of univariate quadrature rules that are appropriate for the support

of θ2. For fixed θ1 ∈ Ω1, the Gaussian approximation to f (θ1,θ2|X ) will often be a sensible

default choice for the weight function w(θ1,θ2, X ) since the weight ratio f /w in (4.7) accounts

for deviations from normality in f (θ1,θ2|X ).

The direct marginal posterior density approximation (4.7) has two key inefficiencies that the

BISQuE approximation completely avoids or minimizes. First, the weight function w depends

on θ1, which implies a separate weight function must be used to approximate f (θ1|X ) at each

θ1 ∈Ω1. Second, the approximation (4.7) assumes f (θ1,θ2|X ) is computable. Oftentimes, the

joint posterior density f (θ1,θ2|X ) is only known in closed form up to a proportionality con-

stant because the density’s integration constant requires numerical approximation for many

Bayesian models. While sparse grid quadrature rules could approximate the integration con-

stant, BISQuE is able to avoid or reduce cost of the approximation.
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4.3.1 Targeted posterior quantities

We develop BISQuE to approximate marginal posterior quantities h(θ1; X ) of hierarchical

models (4.5) that are defined implicitly with respect to a function or random variable

h(θ1,θ2; X ) via

h(θ1; X ) =

∫

h(θ1,θ2; X ) f (θ2|X )dθ2.(4.8)

For example, the construction (4.8) defines the marginal posterior density h(θ1; X ) = f (θ1|X )

when h(θ1,θ2; X ) = f (θ1|θ2, X ). The posterior marginal density f (θ2|X ) and all other marginal

posterior quantities may be formed by switching the roles of θ1 and θ2. In comparison to

the definition (4.6) used in the direct sparse grid approximation (4.7), the BISQuE construc-

tion (4.8) uses conditioning results to express the joint posterior density in conditional form, as

f (θ1,θ2|X ) = f (θ1|θ2, X ) f (θ2|X ). The construction (4.8) allows us to develop sparse grid

quadrature rules with weight functions w(θ2, X ) that only depend on θ2 (Section 4.4.3), thus

addresses the first technical issue described at the end of the Section 4.3 introduction.

The BISQuE construction (4.8) allows one set of quadrature nodes and weights to be reused

to approximate many posterior quantities. For example, (4.8) defines the posterior mean

h(θ1; X ) = E
[

g (θ1)
∣

∣ X
]

when h(θ1,θ2; X ) = E
[

g (θ1)
∣

∣θ2, X
]

. Again, the approach relies on con-

ditioning as

E
[

g (θ1)
∣

∣ X
]

=Eθ2|X

{

E
[

g (θ1)
∣

∣θ2, X
]}

=

∫

E
[

g (θ1)
∣

∣θ2, X
]

f (θ2|X )dθ2.

Posterior predictive distributions, variances and higher central moments, cumulative distribu-

tion functions, and model selection criteria such as the deviance information criteria (DIC,

Spiegelhalter et al., 2002) and the Watanabe-Akaike information criterion (WAIC, Watanabe,

2010) can also be expressed through one or more applications of (4.8). To be precise, the poste-

rior variance Var
(

g (θ1)
∣

∣ X
)

can be approximated by using the law of total variance to introduce
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expectations with respect to f (θ2|X ) via

Var
(

g (θ1)
∣

∣ X
)

=Eθ2|X

[

Var
(

g (θ1)
∣

∣θ2, X
)]

+(4.9)

Eθ2|X

[

(

E
[

g (θ1)
∣

∣θ2, X
]

−E
[

g (θ1)
∣

∣ X
])2

]

,

for which

h(θ1,θ2; X ) = Var
(

g (θ1)
∣

∣θ2, X
)

+
(

E
[

g (θ1)
∣

∣θ2, X
]

−E
[

g (θ1)
∣

∣ X
])2

.(4.10)

Note that the marginal posterior expectation E
[

g (θ1)
∣

∣ X
]

must be approximated before (4.9).

We present expressions for the other quantities mentioned in Section 4.3.2.

4.3.2 Additional posterior quantities

We briefly formulate additional posterior quantities as integrals of functions with respect to

the posterior density f (θ2|X ), which is required for our construction (4.8).

Posterior predictive distributions

Posterior predictive distributions f ( X0|X ) naturally fit into the framework described in Sec-

tion 3.2.1 because

f ( X0|X ) =

∫

f ( X0,θ1,θ2|X )d(θ1,θ2)(4.11)

=

∫

f ( X0|θ1,θ2, X ) f (θ1,θ2|X )d(θ1,θ2).

The posterior predictive distribution (4.11) is exactly a marginal posterior quantity as in (4.8)

for a hierarchical model like (4.5) in which θ′
1 = X0 and θ′

2 = (θ1,θ2).

Higher order central moments

Posterior variances Var(θ1|X ) can be computed with assistance from the law of total vari-

ance (4.9), which uses conditional variances and expectations to facilitate computation. The
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decomposition is convenient as conditional variances and expectations may be available in

closed form. However, decompositions similar to the law of total variance are not available for

general higher order central moments. Approximations must be constructed from the defini-

tion of higher order central moments via

E
[

(θ1 −E[θ1|X ])n
∣

∣ X
]

=

∫

Eθ1|θ2,X

[

(θ1 −E[θ1|X ])n
]

f (θ2|X )dθ2.

The integrand Eθ1|θ2,X

[

(θ1 −E[θ1|X ])n
]

does not represent a conditional central moment be-

cause the moment is centered around the posterior mean E[θ1|X ] while the expectation is

taken with respect to the conditional posterior density f (θ1|θ2, X ). If the moment cannot be

computed in closed form, approximation strategies may depend on the hierarchical model in

question. For example, sparse grid quadrature rules could directly approximate the conditional

expectation Eθ1|θ2,X

[

(θ1 −E[θ1|X ])n
]

, or it may also be possible to use Laplace approximations.

Cumulative distribution functions

Marginal cumulative distribution functions (CDFs) may be formulated as a weighted aver-

age of conditional CDFs. The posterior density f (θ1|X ) may be expressed as an integral with

respect to f (θ2|X ), and Fubini’s theorem allows an exchange of integrals that yield the result

via

F (θ1 ≤ t |X ) =

∫

t

−∞∞∞

(∫

f (θ1|θ2, X ) f (θ2|X )dθ2

)

dθ1

=

∫

F (θ1|θ2, X ) f (θ2|X )dθ2.

Information criteria

The Deviance information criteria (DIC, Spiegelhalter et al., 2002) allows for model compar-

ison and is based on the deviance, defined via

D(θ1,θ2) =−2ln f ( X |θ1,θ2)+C
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for a constant C that depends on the data. The DIC is defined via

DIC = E[D(θ1,θ2)|X ]+pD ,

in which pD = E[D(θ1,θ2)|X ] − D(E[θ1|X ] ,E[θ2|X ]). Only the posterior expectation

E[D(θ1,θ2)|X ] requires additional formulation. The law of total expectation yields an integral

with respect to f (θ2|X ) via

E[D(θ1,θ2)|X ] =

∫

Eθ1|θ2,X [D(θ1,θ2)] f (θ2|X )dθ2.

Similar to the formulation of higher order central moments (Section 4.3.2), closed form expres-

sions may be available for the integrand Eθ1|θ2,X [D(θ1,θ2)], or it may need to be approximated

directly via sparse grid quadrature rules or via Laplace approximations. The Watanabe-Akaike

information criterion (WAIC) uses similar quantities as the DIC, so may be similarly approxi-

mated (Watanabe, 2010).

4.4 Additional computational techniques

BISQuE approximations use weighted sums of densities and likelihoods, however, it is of-

ten more numerically stable to evaluate log-densities and log-likelihoods. This section reviews

techniques that allow log-densities and log-likelihoods to be used to compute weighted sums

of densities.

4.4.1 Evaluating an unnormalized density

Let f (x) be a probability density function such that f (x) ∝ g (x) for some unnormalized

density function g (x). If g (x) or ln g (x) are known, then one strategy to evaluate f (x) is to first

compute the integration constant C =
∫

g (x)d x. In special cases, quadrature techniques can

efficiently approximate the integration constant C . However, the numerical stability of such ap-

proximations are often better when ln g (x) is used to compute kC for some scale factor k > 0. An
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m point quadrature rule with quadrature nodes
{

x(i ) : i = 1, . . . ,m
}

and weights {wi : i = 1, . . . ,m}

approximates the scaled constant kC via

kC =

∫

exp
{

ln g (x)+ lnk
}

d x ≈
m
∑

i=1

exp
{

ln g
(

x(i )
)

+ lnk
}

wi .(4.12)

Choosing k can be difficult, but the approximation (4.12) suggests that k such that

lnk = −m−1 ∑m
i=1 ln g

(

x(i )
)

will often be a reasonable choice since lnk centers the shifted un-

normalized log-densities
{

ln g
(

x(i )
)

+ lnk : i = 1, . . . ,m
}

around 0. The integration constant C

can be recovered via C = exp{lnkC − lnk} after kC and lnk are numerically evaluated.

4.4.2 Evaluating mixture densities

Let f (x) be a mixture of densities
{

fi (x) : i = 1, . . . ,m
}

with weights {wi : i =, . . . ,m} specified

via

f (x) =
m
∑

i=1

fi (x)wi .

One strategy for evaluating f (x) is to again introduce a scale factor k > 0. This allows for nu-

merically stable evaluation of f (x) via

f (x) =
k f (x)

k
=

∑m
i=1 exp

{

ln fi (x)+ lnk
}

wi

k
.

Choosing k can be difficult, but as in Section 4.4.1, k such that lnk =−m
∑m

i=1 ln fi (x) will often

be reasonable.

4.4.3 Approximate posterior inference

We specialize the integral form (4.1) and use sparse grid quadrature rules (4.4) to approxi-

mate marginal posterior quantities (4.8) of hierarchical Bayesian models (4.5). While we define

marginal posterior quantities by integrating functions over the posterior density f (θ2|X ), nu-

merical integration methods often use transformations to increase computational stability and
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efficiency. Thus, we develop quadrature rules that integrate over f (ν|X ) where ν= T (θ2) ∈ R
p

is defined by a monotone transformation to a real coordinate space T : Ω2 → R
p . Change of

variable results imply the transformed density is specified via

f (ν|X ) = f
(

T −1(ν)
∣

∣ X
)∣

∣J
(

T −1(ν)
)∣

∣ ,

in which
∣

∣J
(

T −1(ν)
)∣

∣ is the determinant of the Jacobian for the transformation T −1. We propose

using sparse grid quadrature rules (4.4) to derive quadrature nodes and weights that approxi-

mate marginal posterior quantities (4.8) via the BISQuE approximation

h(θ1; X ) =

∫

h
(

θ1,T −1(ν); X
) f (ν|X )

w(ν, X )
w(ν, X )dν(4.13)

≈

ki
∑

ℓ=1

h
(

θ1,θ(i ,ℓ)
2 ; X

)

w̃ (i ,ℓ),

in which

w̃ (i ,ℓ)
=

f
(

ν(i ,ℓ)
∣

∣ X
)

w
(

ν(i ,ℓ), X
)w (i ,ℓ),

w(ν, X ) is a weight function; and w (i ,ℓ), ν(i ,ℓ), and θ(i ,ℓ)
2 = T −1

(

ν(i ,ℓ)
)

are respectively quadrature

weights, nodes, and back-transformed nodes. Software libraries, including the mvQuad pack-

age for R and the SGMGA libraries for C and C++ (Burkardt, 2007; Weiser, 2016), contain tables

and routines that compute sparse grid quadrature nodes and weights if w(ν, X ) is a member of

a standard family of weight functions (Givens and Hoeting, 2013, Table 5.6).

Sparse grid quadrature theory implies the computational efficiency of the approximation

(4.13) relies on several statistical and numerical assumptions. The weight function w(ν, X )

should approximate the transformed density f (ν|X ) well and have known, computationally

efficient, nested quadrature rules. In particular, such quadrature rules have been developed

for Gaussian weight functions (Genz and Keister, 1996). Thus, we appeal to Bayesian analogs

of the central limit theorem if sample size is large and the dimension of the model is fixed to
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justify proposing the Gaussian approximation f G (ν|X ) at the posterior mode of f (ν|X ) as

a sensible default choice for a weight function for many Bayesian models (Berger, 1985, pg.

224–225). Sparse grid quadrature rules will also be most efficient if the modified integrand

h
(

θ1,T −1(ν); X
)

f (ν|X )/w(ν, X ) in (4.13) can be well-approximated by a low-order polynomial

in ν. This requirement is easier to satisfy if the weight function w(ν, X ) approximates f (ν|X )

well and h
(

θ1,T −1(ν); X
)

is slowly varying with respect to ν.

Standardizing the BISQuE approximation (4.13) weights w̃ (i ,ℓ) can address part of the sec-

ond technical issue described at the end of the Section 4.3 introduction. For example, it is

possible to have Bayesian models in which both the joint f (θ1,θ2|X ) and marginal f (θ2|X )

posterior densities are known up to a proportionality constant while the full conditional pos-

terior f (θ1|θ2, X ) is completely known (Section 4.5). In such cases, using standardized weights

w̃ (i ,ℓ)
∗ = w̃ (i ,ℓ)/

∑ki

j=1
w̃ (i , j ) that sum to one can approximate marginal posterior quantities

h(θ1; X ) like f (θ1|X ) by implicitly cancelling the unknown integration constants. The result

borrows ideas from importance sampling (Givens and Hoeting, 2013, pg. 181). An alternate

definition for posterior quantities,

h(θ1; X ) =

∫

h(θ1,θ2; X ) f (θ2|X )dθ2
∫

f (θ2|X )dθ2
,(4.14)

is equivalent to the original construction (4.8) since
∫

f (θ2|X )dθ2 = 1. Plugin BISQuE approx-

imations (4.13) for the numerator and denominator in (4.14) yield quadrature approximations

with standardized weights via

∫

h(θ1,θ2; X ) f (θ2|X )dθ2
∫

f (θ2|X )dθ2
≈

∑ki

ℓ=1
h
(

θ1,θ(i ,ℓ)
2 ; X

)

w̃ (i ,ℓ)

∑ki

j=1
w̃(i , j)

=

ki
∑

ℓ=1

h
(

θ1,θ(i ,ℓ)
2 ; X

)

w̃ (i ,ℓ)
∗ .(4.15)

Standardization also allows approximations of f (θ1|X ) to integrate exactly to one.

Table 4.1 summarizes the procedures outlined in this section as they would be applied when

using a Gaussian approximation to the transformed posterior density to approximate posterior

quantities (4.8).
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Table 4.1: Summary of steps to develop a BISQuE approximation.

1. Write posterior quantity of interest in BISQuE form (4.8).

Computable approximations or exact expressions must exist for the components

h(θ1,θ2; X ) and f (θ2|X ). Section 4.4.4 proposes nested integration strategies (4.17)

and (4.18) if approximation is necessary; nested Laplace approximations can also be

used for components in latent Gaussian models (cf. Rue et al., 2009).

2. Select transformation ν= T (θ2) to map θ2 ∈Ω2 to ν ∈R
p .

Favor transformations T that yield an approximately Gaussian posterior density

f (ν|X ).

3. Apply the BISQuE approximation that uses unstandardized (4.13) or standardized (4.15)

weights.

The level q ∈N of the underlying sparse grid quadrature rule (4.4) determines the in-

tegration nodes ν(i ,ℓ) and weights w (i ,ℓ).

4. Increase the level q of underlying quadrature rule (4.4) until the approximation (4.13) or

(4.15) converges.

Nested quadrature rules allow the level q approximation to reduce computational cost

by reusing quadrature nodes and weight ratios from the level q −1 approximation.
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4.4.4 Nested integration strategies

While hierarchical Bayesian models (4.5) typically have closed form expressions for the like-

lihood f ( X |θ1,θ2) and prior f (θ1,θ2), many models do not have closed form expressions for

the posterior densities f (θ2|X ) and f (θ1|θ2, X ). Lack of closed form expressions is a concern

related to the second technical issue described at the end of the Section 4.3 introduction. We

propose a nested numerical integration scheme to address the concern and allow application of

BISQuE to a wider range of models. Recall that for a fixed dataset X , the joint posterior density

f (θ1,θ2|X ) is often only known up to a proportionality constant since

f (θ1,θ2|X ) =
f (θ1,θ2, X )

f (X )
∝ f ( X |θ1,θ2) f (θ1,θ2)

and the marginal density f (X ) often requires prohibitively expensive numerical approximation.

The densities f (θ2|X ) and f (θ1|θ2, X ) may be derived (and ultimately approximated) in-

directly, by factoring the joint density f (θ1,θ2, X ) into components g1(θ1,θ2; X ) and g2(θ2; X )

such that

f (θ1,θ2, X ) = g1(θ1,θ2; X )g2(θ2; X ).(4.16)

The factored joint density (4.16) implies

f (θ2|X ) =

∫

f (θ1,θ2|X )dθ1 =
g2(θ2; X )C1(θ2)

f (X )
(4.17)

and

f (θ1|θ2, X ) =
f (θ1,θ2|X )

f (θ2|X )
=

g1(θ1,θ2; X )

C1(θ2)
,(4.18)

for which the integration constant C1(θ2) must be approximated numerically and is specified

via
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C1(θ2) =

∫

g1(θ1,θ2; X )dθ1.(4.19)

The alternate expressions (4.17) and (4.18) allow BISQuE to approximate posterior infer-

ence for models that lack closed form expressions for the densities f (θ2|X ) and f (θ1|θ2, X ).

Standardized BISQuE weights w̃ (i ,ℓ)
∗ implicitly cancel the unknown factor f (X ), and standard

quadrature techniques can efficiently approximate the integration constant (4.19) when the pa-

rameter vectorθ1 has small dimension. The parametersθ1 andθ2 can often be defined or repar-

titioned to satisfy this requirement because the hierarchical model (4.5) places few restrictions

on the parameters; we use this flexibility in Section 4.5. The added computational cost that

the nested integration (4.19) adds to the BISQuE approximation is minimized as the integration

constant (4.19) only needs to be approximated relatively few times, specifically, at the quadra-

ture nodes and when developing the weight function—e.g., the Gaussian approximation at the

posterior mode.

4.5 Examples

We demonstrate the benefits of the BISQuE approximation (4.13) on data that are typically

analyzed with standard, Gibbs sampling techniques for approximate Bayesian posterior infer-

ence. We approximate posterior inference for a fully non-Gaussian capture-recapture model

(Section 4.5.1), a spatial Gaussian process model (Section 4.5.2), and a more complex, applied

spatial Gaussian process model for climate teleconnection (Section 4.5.3). Posterior distribu-

tions in the first and third examples respectively require integration over 8 and 5-dimensional

parameter vectors θ2. Posterior approximations for the second and third examples have com-

putational complexity that is O
(

M N 3
)

in the number of spatial observations N and M points

at which the posterior distribution is explored, thus computational strategies like BISQuE that

reduce the number of points required for posterior approximation can be extremely beneficial.

We compare posterior inference and computational effort between standard Gibbs sam-

pling techniques and BISQuE. Computational effort is measured indirectly with respect to com-
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putation time. All computations are conducted on a modest workstation with eight logical

processors. We use parallelization to compute the BISQuE approximation’s ki mixture compo-

nents, and to draw posterior predictive samples via composition sampling in the spatial exam-

ples (cf. Banerjee et al., 2015, pg. 126). For each posterior quantity, the level q for the underlying

sparse grid quadrature rule (4.4) is chosen to be the smallest value (i.e., the simplest approxi-

mation) such that the posterior density approximations have converged. The number of Gibbs

steps used in each approximation is similarly chosen. The BISQuE approximation also requires

specification of univariate quadrature rules, for which we choose nested Gauss-Hermite rules

(Genz and Keister, 1996).

4.5.1 Fur seals

Data and model

Givens and Hoeting (2013, example 7.7) analyze data from a capture-recapture study con-

ducted in New Zealand. The study’s research goal was to estimate the total number of pups in a

fur seal colony N ∈N. Researchers visited the colony I = 7 times throughout the course of a sin-

gle season. In each visit, the researchers captured and marked all of the fur seal pups present,

noting the total number of pups captured in each visit c = (c1, . . . ,cI ) ∈ N
I in addition to the

number of newly captured pups m1, . . . ,mI ∈N. The data are analyzed using a Bayesian model

for capture-recapture data (4.20), and posterior distributions are approximated with a Gibbs

sampler. Gibbs sampling is particularly inefficient as one pair of hyperparameters has high

posterior correlation and are only weakly identified by the data. By comparison, the BISQuE

strategy (4.13) approximates posterior quantities for this model with substantially less compu-

tational effort.

The model (4.20) assumes N remains fixed during the time period of the study (i.e., the

model assumes a closed population). Let r =
∑I

i=1 mi be the total number of pups captured

during the study. Givens and Hoeting (2013) introduce a vector α = (α1, . . . ,αI ) ∈ [0,1]I with

capture probabilities for each census attempt and discuss modeling the data with the hierar-
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chical model

f ( c ,r |N ,α) ∝
N !

(N − r )!

I
∏

i=1

α
ci

i
(1−αi )N−ci

f (N ) ∝1/N

f (αi |θ1,θ2)∼Beta(θ1,θ2) for i = 1, . . . , I

f (θ1,θ2) ∝exp{−(θ1 +θ2)/1000} ,

(4.20)

in which (θ1,θ2) are hyperparameters for the capture probabilities. We use the Beta distribu-

tion’s mean–sample size parameterization to increase the identifiability of the hyperparame-

ters. Specifically, let U1 = logit(θ1/(θ1 +θ2)) and U2 = log(θ1 +θ2) and fix U2 = 5.5.

Derivations

We derive components required for the BISQuE approximations of posterior quantities for

the fur seals example, as specified in Table 4.2.

Joint posterior

The joint posterior density is known up to a proportionality constant via

f ( N ,α,θ1,θ2|c ,r ) ∝ f (c ,r |N ,α) f (N ) f (α|θ1,θ2) f (θ1,θ2)(4.21)

∝
(N −1)!

(N − r )!

exp{−(θ1 +θ2)/1000}

B(θ1,θ2)I

I
∏

i=1

α
ci+θ1−1
i

(1−αi )N−ci+θ2−1,

in which B(θ1,θ2) = Γ(θ1)Γ(θ2)/Γ(θ1 +θ2) is the beta function.

Population size

The BISQuE approximation for f ( N |c ,r ) uses the two conditional posterior densities

f ( N − r |α,θ1,θ2,c ,r ) and f (α,θ1,θ2|c ,r ), which are derived from the joint posterior density

(4.21). Factoring (4.21) yields
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f ( N |α,θ1,θ2,c ,r ) ∝
(N −1)!

(N − r )!

I
∏

i=1

(1−αi )N ,

which implies the change of variable k = N − r yields the result

f ( N − r |α,θ1,θ2,c ,r )∼Neg. Bin.

(

r,1−
I

∏

i=1

(1−αi )

)

.

The posterior density f (α,θ1,θ2|c ,r ) may be computed by marginalizing (4.21) with respect to

N , via

f (α,θ1,θ2|c ,r ) ∝
∞
∑

N=r

f ( N ,α,θ1,θ2|c ,r )(4.22)

∝h(α)
exp{−(θ1 +θ2)/1000}

B(θ1,θ2)I

I
∏

i=1

α
ci+θ1−1
i

(1−αi )θ2−ci−1,

in which

h(α) =
∞
∑

N=r

(N −1)!

(N − r )!

(

1−p
)N

∝
(

1−p
)r

p−r
∞
∑

k=0

(

k + r −1

r −1

)

(

1−p
)k

pr

∝
(

1−p
)r

p−r

for 1−p =
∏I

i=1 (1−αi ) and the change of variable k = N − r . The marginalized posterior may

be simplified further since (4.22) contains kernels for Beta distributions. Thus,

f (α,θ1,θ2|c ,r ) ∝
exp{−(θ1 +θ2)/1000}

B(θ1,θ2)I
×(4.23)

p−r
I

∏

i=1

B(θ1 + ci ,θ2 + r − ci ) f (αi |θ1 + ci ,θ2 + r − ci ).

Capture probabilities
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The BISQuE approximation for f (αi |c ,r ) uses the posterior densities f (αi |N ,θ1,θ2) and

f ( N ,θ1,θ2|c ,r ). Factoring (4.21) immediately yields

f (αi |N ,θ1,θ2)∼Beta(θ1 + ci ,θ2 +N − ci ).

Similarly, marginalizing (4.21) with respect to α immediately yields

f ( N ,θ1,θ2|c ,r ) ∝
(N −1)!

(N − r )!

exp{−(θ1 +θ2)/1000}

B(θ1,θ2)I

I
∏

i=1

B(θ1 + ci ,θ2 +N − ci ).

Hyperparameters

The BISQuE approximation for f (U1|c ,r ) uses the posterior densities f (θ1,θ2|α,c ,r ) and

f (α|c ,r ). Factoring (4.23) yields

f (θ1,θ2|α,c ,r ) ∝
exp{−(θ1 +θ2)/1000}

B(θ1,θ2)I

I
∏

i=1

α
θ1

i
(1−αi )θ2 .

The marginal posterior f (α|c ,r ) must be approximated via nested integration, and is specified

via

f (α|c ,r ) ∝p−r

(

I
∏

i=1

α
ci−1
i

(1−αi )r−ci−1

)

∫

f (θ1,θ2|α,c ,r )d(θ1,θ2).

Posterior inference and results

Givens and Hoeting (2013) use standard Gibbs-sampling approaches to draw posterior sam-

ples for model parameters. The full conditional posterior distributions f ( N |c ,r,α,θ1,θ2) and

f (α|c ,r, N ,θ1,θ2) are conjugate and easy to sample. Posterior samples for U1 are drawn using

Metropolis steps. The sampler is run for 100,000 iterations, taking 298 seconds to complete;

posterior inference uses the final 50,000 samples.

We use the BISQuE strategy to approximate the posterior marginal densities f ( N |c ,r ),

f (αi |c ,r ), and f (U1|c ,r ). Table 4.2 connects this example’s notation to that used with BISQuE.
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Figure 4.1: BISQuE (x) and Gibbs (�) approximations to the posterior density for total number of fur seal

pups f ( N |c ,r ) are nearly identical.

When used as the BISQuE conditioning variable θ2, we map parameters to the real line by using

log transforms with N −r and logit transforms with the capture probabilities α. We also rely on

the Gaussian approximation to the negative binomial distribution in order to justify using N as

a conditioning variable θ2 in BISQuE. Almost all conditional and marginal posterior densities

required for BISQuE are computable in closed form up to a proportionality constant (Givens

and Hoeting (2013, eqs. 7.16, 7.17) and Section 4.5.1). The posterior for f (U1|c ,r ) requires

approximation via nested integration strategies (Section 4.4.4).

Posterior inference via BISQuE is effectively identical to posterior inference via Gibbs sam-

pling, but is computed with substantially less effort. Gibbs sampling takes 298 seconds to com-

plete on our test machine, whereas the BISQuE approximations require a total of 5 seconds

(Table 4.2), and posterior densities are nearly identical (Figures 4.1 to 4.3).
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Table 4.2: Definitions of the parameters and posterior quantities for the BISQuE approximations in Sec-

tion 4.5. X = (c ,r ) for the fur seals example (Section 4.5.1), and X = Y for the Remote effects spatial

process model example (RESP, Section 4.5.3). The marginal posterior densities for the covariance pa-

rameters
(

σ2,ρ,ν
)

in the spatial example (Section 4.5.2) are computed using sparse-grid quadrature

methods (4.4) to directly marginalize the joint posterior distribution f
(

σ2,ρ,ν
∣

∣ X
)

at each evaluation

point. Computation times are also presented. For the RESP example, let θ∗ =
(

σ2
w ,σ2

ε,σ2
α,ρw ,ρα

)

and

I (s) = (ci−1(s),ci (s)).

Time (sec.)

Example h(θ1; X ) h(θ1,θ2; X ) θ1 θ2 BISQuE Gibbs

Fur seals

f ( N |c ,r ) f ( N |θ2,c ,r ) N (α,U1) 0.3 298

f (αi |c ,r ) f (αi |θ2,c ,r ) αi (N ,U1) 0.1 298

f (U1|c ,r ) f (U1|θ2,c ,r ) U1 α 5.0 298

Spatial

E[ X0|X ] E[ X0|θ2, X ] X0

(

σ2,ρ,ν
)

6 2,651

Var( X0|X ) (4.10) X0

(

σ2,ρ,ν
)

6 2,651

f ( X0|X ) f ( X0|θ2, X ) X0

(

σ2,ρ,ν
)

6 2,651

f
(

σ2
∣

∣ X
)

N/A σ2
(

ρ,ν
)

74 2,043

f
(

ρ
∣

∣ X
)

N/A ρ
(

σ2,ν
)

74 2,043

f (ν|X ) N/A ν
(

σ2,ρ
)

74 2,043

RESP
f (Y0|Y ) f (Y0|θ2,Y ) Y0 θ∗ 118 9,086

f (Ỹ0|Y ) P (Y0(s, t ) ∈ I (s)|θ2,Y ) Y0 θ∗ 118 9,086
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Figure 4.2: BISQuE (—) and Gibbs (-·-) approximations to the posterior densities f (αi |c ,r ) are nearly

identitcal.

Figure 4.3: BISQuE (—) and Gibbs (-·-) approximations to the joint posterior density f (U1|c ,r ) are nearly

identitcal.
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4.5.2 Spatial

Simulated data and model

We work with data simulated from a geostatistical spatial model. Gibbs sampling is com-

putationally expensive for such models because it involves decomposing spatially-structured

covariance matrices in R
N×N at each Gibbs iteration, where N is the number of observations.

Let {X (s)}s∈D be a random field, whose stochasticity is defined by a mean-zero Gaussian process

on a continuous spatial domain D ⊂ R
2. Let the covariance Cov (X (s), X (t )) between random

variates X (s), X (t ) be specified by the isotropic Matérn covariance function, defined via

κ
(

s, t ;σ2,ρ,ν
)

=
σ2

2ν−1Γ(ν)

(

‖s − t‖/ρ
)ν

Kν

(

‖s − t‖/ρ
)

,

in which ‖···‖ is the Euclidean norm, Kν is the modified Bessel function of the second kind

with order ν > 0, which governs the smoothness of the process; σ2 > 0 is a scaling parame-

ter; and ρ > 0 is a range parameter. Gaussian processes imply that the vector of observations

X = (X (s1), . . . , X (sN ))T ∈R
N at the finite collection of sampling locations S = {s1, . . . , sN } ⊂D is

normally distributed X ∼N (0,Σ). The covariance matrix Σ ∈R
N×N is spatially-structured, with

entries Σi j = κ
(

si , s j ;σ2,ρ,ν
)

. The Gaussian process assumption allows estimation of the field

{X (s)}s∈D at unobserved locations S0 = {s01, . . . , s0M } ⊂ D via kriging, which uses conditional

normal distributions for the unobserved responses. Standard Bayesian hierarchical modeling

techniques for spatial data (e.g., Banerjee et al., 2015, Chapter 6) use conjugate or weakly infor-

mative priors for the covariance parameters, specified via

σ2
∼Inverse-Gamma(a,b),

ρ∼Uniform(L0,U0),

ν∼Uniform(L1,U1).
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We simulate one dataset with N = 300 locations, sampled uniformly from the unit square

D = [0,1]2 and with covariance parameters
(

σ2,ρ,ν
)

= (1, .3, .5). We then estimate the covari-

ance parameters as well as the field {X (s)}s∈D at M = 400 unobserved, gridded locations S0 ⊂D.

The priors are specified via (a,b,L0,U0,L1,U1) = (2,1,0,1,0,1).

Posterior inference and results

Standard techniques approximate posterior distributions with a Gibbs sampler and com-

position sampling (e.g., Banerjee et al., 2015, Chapter 6). Conjugate distributions are used to

sample the scale σ2 and unobserved field values X0 = (X (s01), . . . , X (s0M )) ∈ R
M , but Metropo-

lis steps are used for the range ρ and smoothness ν parameters. The Gibbs sampler is used

to draw 60,000 posterior samples for the covariance parameters, taking 2,043 seconds to com-

plete; posterior inference uses the final 30,000 iterations. After drawing posterior samples for

the covariance parameters, composition sampling is used to draw samples for the unobserved

field values X0 in parallel, taking 608 seconds to complete (Banerjee et al., 2015, pg. 126).

We use the BISQuE strategy to approximate the posterior density f ( X0|X ). Sparse grid

quadrature techniques are used to directly approximate the marginal posterior covariance den-

sities f
(

σ2
∣

∣ X
)

, f
(

ρ
∣

∣ X
)

, and f (ν|X ). Table 4.2 connects this example’s notation to that used

with BISQuE. When used as the BISQuE conditioning variable θ2, we map covariance param-

eters to the real line by log-transforming the scale parameter σ2, and logit-transforming the

range ρ and smoothness ν parameters. All conditional and marginal posterior densities re-

quired for BISQuE are computable in closed form up to a proportionality constant; refer to

Banerjee et al. (2015, eqs. 2.15–16) for details.

Posterior inference via BISQuE and sparse grid quadrature is effectively identical to poste-

rior inference via Gibbs sampling, but is computed with substantially less effort. Drawing pos-

terior covariance parameter samples takes 2,043 seconds and composition sampling takes an

additional 608 seconds, whereas the BISQuE and sparse grid quadrature approximations take a

total of 238 seconds (Table 4.2), and posterior inference is nearly identical (Figures 4.4 to 4.6).
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Figure 4.4: Relative differences ∆(Y ) =
(

YB I SQuE −YGi bbs

)

/YGi bbs × 100% between BISQuE and Gibbs

approximations to the posterior predictive means (A) and standard errors (B) for the field {X (s)}s∈D at

unobserved locations S0. Nearly all (95%) relative differences in the posterior mean (A) are less than

5.5% (median=0.4%); relative differences in the mean are artificially large in regions where the posterior

mean is near 0. All relative differences in the posterior standard errors (B) are below 3.3% (median=1.4%).

Figure 4.5: Sparse grid quadrature (—) and Gibbs (-·-) approximations to the posterior densities for

the spatial covariance parameters
(

σ2,ρ,ν
)

are nearly identitcal. The true values of the parameters are

marked by grey vertical lines.
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Figure 4.6: BISQuE (—) and Gibbs (-·-) approximations to the posterior density for X (s0) is nearly iden-

tical at s0 = (.5, .2), for example.

4.5.3 Remote effects spatial process models

Data and model

While most spatial data can be modeled with the assumption that distant points are uncor-

related, large-scale atmospheric circulations can induce dependence between fields separated

by large distances. The resulting climate phenomena, known as teleconnection, may be mod-

eled using remote effects spatial process (RESP) models, which can improve teleconnection-

based predictions of seasonal precipitation (Hewitt et al., 2018). The RESP model is given by

Y (s, t ) = x
T (s, t )β+w(s, t )+γ(s, t ),(4.24)

which uses a stochastic teleconnection term

γ(s, t ) =

∫

DZ

z(r , t )α(s,r )dr(4.25)

to extend standard geostatistical regression models for a process {Y (s, t ) : s ∈DY , t ∈T } de-

fined on a continuous spatial domain DY for discrete times T . Regression coefficients β and
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spatially-correlated variation w(s, t ) are augmented by (4.25), which uses doubly-indexed ran-

dom effects α(s,r ) to aggregate the impact of remote covariates {z(r , t ) : r ∈DZ , t ∈T }, such as

sea surface temperatures, on a distant response, such as the standardized deviation Y (s, t ) from

mean seasonal precipitation. The authors adopt the climate science convention that mean pre-

cipitation is treated as known, and the standardized deviation Y (s, t ) is the scientifically inter-

esting response variable to model.

The RESP model uses two Matérn covariances κ
(

s, s
′;σ2

w ,ρw ,νw

)

, κ
(

r ,r
′;σ2

α,ρα,να
)

, and a

nugget effect σ2
ε to define Gaussian processes that model the spatial variation {w(s, t ) : s ∈DY }

and teleconnection effects {α(s,r ) : s ∈DY ,r ∈DZ }. The Matérn smoothness parameters νw

and να are treated as fixed, and standard priors are used to model the remaining regression

coefficients β and covariance parameters σ2
w , ρw , σ2

ε, σ2
α, and ρα (cf. Section 4.5.2).

We follow Hewitt et al. (2018) and use the RESP model to analyze Colorado precipitation

data in a statistical downscaling-like scenario. The RESP model regresses standardized devi-

ations Y (s, t ) from mean Colorado precipitation observed at 240 locations s ∈ DY onto local

surface temperatures x(s, t ) and Pacific Ocean sea surface temperatures z(r , t ). The model is

fit to Winter averages from 1981–2012 and an ordinal response Ỹ (s, t ) ∈ {v1, . . . , vm} is predicted

for Winter 2013, given the covariate values x(s, t ) and z(r , t ) for t = 2013. The distribution for

the ordinal responses Ỹ (s, t ) is induced by known cut points c0(s), . . . ,cm(s) and defined such

that P (Ỹ (s, t ) = vi ) = P (ci−1(s) < Y (s, t ) < ci (s)). In this application, the ordinal response Ỹ (s, t )

represents below average v1, about average v2, or above average precipitation v3.

Posterior inference and results

Hewitt et al. (2018) construct a Gibbs sampler that approximates posterior distributions for

the RESP model (4.24). Gibbs sampling is computationally expensive for the RESP model be-

cause two spatially-structured covariance matrices must be decomposed at each Gibbs itera-

tion. Let Y denote all observations Y (s, t ) from t = 1981, . . . ,2012; Y0 denote all unobserved re-

sponses Y (s, t ) at t = 2013; and Ỹ0 denote all unobserved ordinal responses Ỹ (s, t ) at t = 2013.

Conjugate distributions are used to sample the regression parameters β, scales σ2
w and σ2

α, and
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continuous predictions Y0; and Metropolis steps are used for the ranges ρw and ρα. The Gibbs

sampler is used to draw 41,000 posterior samples for the regression and covariance parame-

ters, taking 8,331 seconds to complete; posterior inference discards the first 1,000 iterations as

the chain mixes quickly, but requires many iterations to control Monte Carlo integration error.

Composition sampling is then used to draw samples for the predicted response Y0 in parallel,

taking 755 seconds to complete. The continuous posterior predictive density f (Y0|Y ) is dis-

cretized after sampling to approximate f (Ỹ0|Y ) by using the empirical quantiles of historical

precipitation as cut points c0(s), . . . ,c3(s).

We use the BISQuE strategy to approximate the posterior predictive densities f (Y0|Y ) and

f (Ỹ0|Y ). In particular, we use the BISQuE strategy to directly approximate f (Ỹ0|Y ) by letting

h(θ1,θ2; X ) in (4.13) be the conditional cumulative distribution function for Y0. Table 4.2 con-

nects this example’s notation to that used with BISQuE. When used as the BISQuE conditioning

variableθ2, we map covariance parameters to the real line by log-transforming scale parameters

σ2 and logit-transforming range parameters ρ. All conditional and marginal posterior densities

required for BISQuE are computable in closed form up to a proportionality constant; refer to

Hewitt et al. (2018) for distributional results.

Posterior inference via BISQuE is effectively identical to posterior inference via Gibbs sam-

pling, but is computed with substantially less effort. Drawing posterior covariance parame-

ter samples takes 8,331 seconds and composition sampling takes an additional 755 seconds,

whereas the BISQuE approximations take a total of 118 seconds (Table 4.2), and posterior infer-

ence is nearly identical (e.g., Figure 4.7). The approximate BISQuE and Gibbs posterior masses

P̂ (Ỹ0(s, t ) = vi |Y ) agree to at least two decimal places for all 240 locations s ∈ DY and values

v1, v2, v3; additional computing effort can further reduce approximation errors, but offers lim-

ited practical benefit because the discretization is coarse.
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Figure 4.7: BISQuE and Gibbs approximations to the mode of the discretized posterior predictive distri-

butions f (Ỹ0|Y ) are nearly identical.

4.6 Discussion

We combine conditioning with sparse grid quadrature rules to approximate Bayesian Infer-

ence via Sparse grid Quadrature Evaluation (BISQuE). Approximations (4.13) are developed by

reformulating Bayesian posterior quantities, such as densities and expectations, so that they

may be approximated as weighted mixtures of conditional quantities h(θ1,θ2; X ). The integra-

tion nodes and weights from sparse grid quadrature rules are used to build mixing weights w (i ,ℓ)

and conditioning values θ(i ,ℓ)
2 . In a similar manner as general quadrature techniques and im-

portance sampling methods, the final BISQuE approximation weights w̃ (i ,ℓ) use weight ratios

f (ν(i ,ℓ)|X )/w(ν(i ,ℓ), X ) to align the “theoretical distribution” f (ν|X ) with the “sampling distri-

bution” w(ν, X ) (Givens and Hoeting, 2013, pgs. 143, 181). Nested integration strategies can

help compute BISQuE approximations (4.13) when models do not have closed form expres-

sions for required components (Section 4.4.4). Posterior approximation via BISQuE is deter-

ministic and computationally efficient, offering faster computation than MCMC methods for

a wide range of models (4.5) and posterior quantities (4.8). In our applications, we find that
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BISQuE often reduces overall computing time by two orders of magnitude and yields nearly

identical inference to standard MCMC approaches (Section 4.5).

The BISQuE approximation is similar to, and can be combined with Integrated Nested

Laplace approximations (INLA) for latent Gaussian models (Rue et al., 2009). Combining the

BISQuE approximation with INLA can yield an approximation technique that scales better to

models with more hyperparameters. Similar to INLA, our framework will be most efficient when

used to approximate low-dimensional posterior quantities, like marginal densities or joint den-

sities with computationally tractable closed form expressions (e.g., f ( X0|X ) in Section 4.5.2).

However, BISQUE does not require that a model have a latent Gaussian structure and is thus

applicable to a broad class of models such as the population estimation model of Section 4.5.1.

We can combine the BISQuE approximation (4.13) and INLA because both methods use

conditioning and integration grids to yield fast deterministic posterior approximation. In terms

of the general hierarchical model (4.5), INLA specifies a hierarchical parameter model such that

f (θ1,θ2) = f (θ1|θ2) f (θ2) in which f (θ1|θ2) is Gaussian and f (θ2) is a prior distribution for rel-

atively low-dimensional hyperparameters θ2. Rue et al. (2009) define θ1 = (θ11, . . . ,θ1i , . . . ,θ1n),

develop an integration grid, and use Laplace approximations for f (θ1i |θ2, X ) and f (θ2|X ) to

approximate the marginal posterior density f (θ1i |X ). The nested Laplace approximations can

be embedded in the BISQuE approximation (4.13), yielding posterior approximation that uses

an alternate integration grid to INLA. The embedding can be beneficial because sparse grid

quadrature rules allow for more computationally efficient approximation in models with higher

dimensional hyperparameters θ2. Specifically, Rue et al. (2009) suggest creating integration

grids for models with high-dimensional θ2 by using central composite design (CCD) methods—

an experimental design and response surface technique for approximating second order sur-

faces with relatively few function evaluations (Box and Wilson, 1951). When integration is

the main concern, sparse grid quadrature methods can require substantially fewer integra-

tion nodes in high dimensions (Novak and Ritter, 1999, Table 2, ℓ = 3) than CCD-based grids

(Sanchez and Sanchez, 2005, Table 3).
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Our BISQuE approximation advances Bayesian computing for hierarchical models, but

open questions remain for wider application of the method. Notably, our approximation re-

quires the ability to evaluate h(θ1,θ2; X ) quickly, so may often be limited to marginal posterior

inference for θ1 with relatively small dimension. Our approximation also relies on the avail-

ability of nested quadrature rules for θ2. It is difficult to develop quadrature rules for discrete

variables, thus practical use of our approximation may be limited to models with parameters

θ2 defined on continuous spaces Ω2. Fast convergence of our approximation also relies on the

availability of accurate approximations to f (θ2|X ). If the BISQuE approximation (4.13) has

not converged, intuition about numerical integration suggests the resulting approximation will

likely underestimate posterior variability (Rue et al., 2009). However, Rue et al. (2009, Section

6.5) also point out that f (θ2|X ) often becomes increasingly Gaussian as the dimension of θ2

grows since the Bayesian structure will increase variability and regularity will the dimension,

which will help accelerate convergence.

The BISQUE methodology suggests continued develop in several areas. More thorough di-

agnostics should also be developed for wider practical application of the BISQuE approxima-

tion (4.13). The approximation’s convergence can be monitored by checking the approxima-

tion’s stability as the level q of the underlying sparse grid quadrature rule (4.4) is increased (Lau-

rie, 1985). However, this does not necessarily provide a diagnostic that can assess how well con-

ditioned a model (4.5) or posterior quantity (4.8) is for use with BISQuE. Drawing from impor-

tance sampling, studying the weight ratio f (ν(i ,ℓ)|X )/w(ν(i ,ℓ), X ) in (4.13) at quadrature nodes

ν(i ,ℓ) may help diagnose practical issues. Theoretical smoothness properties of h(θ1,θ2; X ) or

concentration of the posterior density f (θ2|X ) may also provide insight into the conditioning

for specific models.
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Chapter 5

Conclusions and Future work

The research in this thesis improves geostatistical models to better account for dependence

induced by both local and global-scale phenomena that impact climate data. This thesis also

proposes a computational method to make estimation and prediction for Bayesian models

more computationally efficient. Advancing statistical models and computing can improve pre-

dictions of future climate to allow policy makers, resource managers, engineers, and other con-

sumers of climate forecasts to make more informed decisions about how to manage risk of

varied impacts on communities, water resources, and agriculture. I briefly discuss directions

for continuing the research in this dissertation.

5.1 Improving efficiency of weighted likelihood latent spatial

extremes models

Chapter 2 proposes a weighted likelihood that improves coverage for estimates of marginal

return levels from latent spatial extremes models applied to data with extremal dependence.

The weighted likelihood correction allows latent spatial extremes models to be applied to data

that violate the model’s underlying conditional independence assumption, but uncertainty is

still underestimated when extremal dependence is strong. Proposing alternate weight func-

tions can improve this issue. The likelihood weights in Chapter 2 are based on the extremal

coefficient, which is an exploratory measure of pairwise extremal dependence. Unlike depen-

dence in spatially-correlated data arising from Gaussian processes, dependence in spatially cor-

related extremes data is not uniquely characterized by pairwise dependence functions. Defin-

ing a weight function that uses higher-order exploratory measures or borrows information from

composite likelihoods can allow more accurate measurement of return level uncertainty.
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The likelihood weights could also be extended via non-stationary weight functions. The

weighted likelihood latent spatial extremes modeling approach is attractive because the latent

Gaussian processes employed can scale to large spatial datasets with data collected from thou-

sands of monitoring stations. However, the proposed weight function assumes extremal depen-

dence is stationary across space. As the spatial domain analyzed grows, stationarity becomes

harder to justify. Non-stationary weight functions could be developed from “local” versions

of the extremal coefficient. If weight functions can be developed from composite likelihoods

for stationary extremes processes, then it may be possible to extend such methods using com-

posite likelihoods for non-stationary extremes processes, such as those proposed in Huser and

Genton (2016).

5.2 Extending RESP models for non-Gaussian data and

broader application

Chapter 3 proposes a remote effects spatial process (RESP) model for spatially-correlated

climate data impacted by teleconnection effects, which requires modeling dependence at both

long and short distances. The model is developed for normally distributed data, but should

be extended for analysis of non-Gaussian data and temporally-varying teleconnection effects.

Mason and Goddard (2001) find that teleconnection effects may change over time, and an-

nual counts of tornadoes and large storms have been linked to teleconnection effects (Timm

et al., 2011; Wikle and Anderson, 2003). Temporally-varying teleconnection effects may be mod-

eled using methods for modeling dynamical spatio-temporal models (Cressie and Wikle, 2011).

Modeling non-Gaussian data is more complicated.

While it is easy to formulate the RESP model as a generalized linear model (GLM) for non-

Gaussian data influenced by spatial random effects, estimation is computationally challenging.

Posterior inference via integrated nested Laplace approximations (INLA) is possible, but is dif-

ficult to implement and effectively requires the RESP model to replace its latent Gaussian pro-

cesses with Gaussian Markov Random Fields (GMRF, Rue and Held, 2005). Markov chain Monte
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Carlo (MCMC) is often used for estimating spatial GLMs, but the MCMC samplers can have

slow convergence properties since conjugacy of the spatial effects is lost (Diggle et al., 1998;

Higgs and Hoeting, 2010). Computationally efficient MCMC samplers may be feasible by com-

bining stochastic partial differential equation (SPDE) approximations to Gaussian processes

with one-block Metropolis-Hastings proposals (Lindgren et al., 2011; Rue and Held, 2005). The

SPDE approximation to Gaussian processes yields a GMRF proposal distribution for the MCMC

sampler, for which it is easy to sample the entire latent field. All model parameters may be

updated in a single Gibbs sampling block using a Metropolis-Hastings step to jointly accept or

reject the GMRF-based proposals.

5.3 Further development and application of weighted mixtures

approximations

This thesis proposes a method for weighted mixtures approximations to posterior distri-

butions, in particular using sparse-grid quadrature methods. To further demonstrate the wide

applicability of the methodology proposed in Chapter 4, I plan to apply it to a wider set of hi-

erarchical models. Application is especially important because detailed comparisons between

MCMC methods and product-grid quadrature methods are difficult to make using theory alone.

Theoretical comparisons can be difficult to make because the theoretical accuracy for each

technique is developed from different assumptions. For example, the accuracy of sparse-grid

quadrature methods and product-grid quadrature methods is studied for integrals of different

classes of integrands. Additionally, quadrature approximations are deterministic, while MCMC

approximations are stochastic.

The weighted mixtures approximation can be studied further to develop diagnostics and

refined theory for models that do not have closed form expressions for the weighting density

f (θ2|X ). This thesis proposes one solution for such models, but implicit assumptions and po-

tential limitations are not thoroughly explored. Similarly, diagnostics can be developed to help

identify when the weighted mixture approximation is inaccurate. Diagnostics for weighted mix-
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ture approximations may be able to be adapted from importance sampling techniques. The

weighted mixtures approximation uses weight ratios, which also appear in importance sam-

plers (Givens and Hoeting, 2013, Section 6.3.1). Diagnostics for importance samplers look for

outliers in histograms of weight ratios because importance samplers are known to perform

poorly when the empirical distribution of sampling weights includes several very large weights.

Weight ratio diagnostics could help identify if the weighting density f (θ2|X ) is not well approx-

imated by a Gaussian density. The weighted mixture approximation also requires the integrand

h(θ1,θ2; X ) to be smooth relative to θ2. Empirical coefficients of variation may provide a simple

way to study the relative smoothness of h(θ1,θ2; X ) with respect to θ2.
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