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ABSTRACT

COMPUTATIONAL INVESTIGATION OF BIOLOGICAL DOSE-VOLUME

OUTCOME PREDICTORS IN 29 CANINE NASAL TUMOR PATIENTS TREATED

WITH STEREOTACTIC RADIATION THERAPY

The ability to mathematically model biological response to radiation dose in the tumors

of cancer patients is a significant goal for the medical physics community. Although much

work has been done in this area, novel treatment approaches are challenging the current

knowledge of the radiation biology and oncology communities. In particular, doses five to

ten times higher than traditional treatments are prescribed in stereotactic radiation therapy.

These new treatment techniques are thought to have different mechanisms that cause cell

death in comparison to classical treatments. These extraordinarily high doses are made

possible by using advanced imaging, treatment planning, linear accelerator capabilities and

immobilization to precisely target cancer while sparing healthy normal tissue.

Biologically guided radiation therapy (BGRT) and biologically based treatment planning

(BBTP) methods offer the next attractive step forward in radiation therapy. To examine the

capabilities of biological based dose parameters, a mature data set of 29 canine nasal tumor

patients was analyzed using the generalized equivalent uniform dose (gEUD) and the dose to

a relative volume. Over one hundred individual predictors were inspected, with greater than

five thousand individual tests, in search of optimal indicators of patient outcome. Testing

showed that high negative gEUD values and the minimum dose to the tumor were highly

significant predictors in the outcome of the patients. However, more robust techniqes need

to be added to the analysis in order to validate these results.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Radiation Therapy is a vital component in the treatment of many cancers. Recent techno-

logical advances have lead to exciting new treatment modalities and protocols. At Colorado

State University’s Veterinary Teaching Hospital and many human radiation oncology depart-

ments, stereotactic radiation therapy (SRT) or stereotactic body radiation therapy (SBRT)

is being used to deliver ablative doses of radiation with sub-millimeter accuracy [42,33,37,4,28].

SRT has many advantages over classical treatment protocols: a theoretical biological advan-

tage from an increased dose per fraction, fewer patient visits due to accelerated treatment

protocol, a reduction in treatment costs and a more effective use of resources [28]. Hypofrac-

tionated treatment protocols and SRT take principles from Conventional Radiation Therapy

(CRT), Three Dimensional Conformal Radiation Therapy (3D-CRT), Intensity Modulated

Radiation Therapy (IMRT), Image Guided Radiation Therapy (IGRT) and expand upon

them to create a more advantageous treatment modality.

Initially stereotactic radiation therapy (SRT) was used to treat brain tumors and was

defined as stereotactic radiosurgery (SRS) [3,39,15]. Treatments often consisted of a single

large dose and were administered using a collection of focused radioactive isotopes. The

radiobiological rationale for SRT is that a few large dose fractions, in a relatively short overall

treatment time, result in a more potent biological effect [42]. SRS, SBRT and SRT treatments

have been shown to be effective in many publications spanning several decades, confirming

their usefulness in the treatment of benign and malignant lesions [39,3,15]. Advancements in

linear accelerator technology have resulted in the capability to deliver the same high doses

of radiation as seen with previous radiosurgery approaches.

The use of computed tomography (CT) allows for accurate structure delineation and
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treatment planning. CT scans also allow for the estimation of the dose to the patient

by performing Monte Carlo based dose calculations. The density of the various tissues or

Houndsfield units are used to estimate the ability of the x-ray to penetrate the tissue along

the beams path to the tumor/target volume. Multi-leaf collimators are used to shape the

radiation beam to the tumor in all dimensions by using information from preliminary CT

scans. By using multi-leaf collimators (MLC), linear accelerators can form a thin narrow strip

of radiation and scan across the tumor, while varying the exposure time. This technique,

known as intensity modulation, allows the clinician to preferentially target dose to the tumor

volume. Using on board imaging and novel immobilization devices, current linear accelerators

are able to accurately setup patients, which minimized the planned target volume (PTV)

and reduced the normal tissue toxicity [20].

In addition to the technological advantages, hypofractionated protocols are more conve-

nient for the patient and a more cost-effective treatment modality than traditional radiation

therapy [4]. While traditional radiation therapy techniques, CRT and IMRT, strive for homo-

geneous dose distributions, heterogeneity within the target is increased with SRT treatments

and is considered acceptable for targets not involving normal tissue [33]. In addition, although

hypoxic subregions in solid tumors may not be stable, it has been hypothesized that hotspots

within the central region of a tumor might offer a special advantage in killing radioresistant

hypoxic cells [4].

Much work has been done on mathematical models of dose response to tumors and nor-

mal tissues and their application to treatment planning and treatment evaluation [31,7? ,35].

The linear-quadratic model, the most commonly used model for cell survival, has become

widely debated due to its over prediction of cell killing when applied to large dose per fraction

treatments such as SRT [32,6,36]. Alternatives have been offered to account for this difference,

such as the universal survival curve [36], but have not become widely accepted. Two other

models that have been used extensively to model tumor control are the equivalent uniform

dose (EUD) [34] or generalized equivalent uniform dose (gEUD) [35] and tumor control proba-
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bility (TCP). In relation to SBRT treatment it has been suggested that EUD is the preferred

indicator for prospective description due to its insensitivity to estimates of radiosensitivity

and tumor volume [27]. Due to this fact, the generalized equivalent uniform dose will be the

focus of this investigation.

1.2 Equivalent Uniform Dose

The concept of Equivalent Uniform Dose was introduced by Niemierko [34] and is defined as

the biologically equivalent dose that, if given uniformly, would lead to the same cell kill in the

tumor volume as the actual nonuniform dose distribution. The original definition of EUD

was based on the mechanistic linear quadratic cell survival model described above. EUD can

be calculated using the following equation:

EUD = 2 Gy ·
ln
[

1
V

∑N
i=1 Vi(SF2)

Di/2Gy
]

ln(SF2)
, (1.1)

where V is total volume, Vi is the volume of the ith subvolume within the dose-volume

histogram (DVH), Di is the dose to the ith subvolume, and SF2 is the surviving fraction after

2 Gy. The equivalent uniform dose in this form has been used in various applications [43,10,27]

but the majority of work has been focused on Niemierko’s second form of the equivalent

uniform dose, the generalized equivalent uniform dose.

1.3 Generalized Equivalent Uniform Dose [45,35]

Shortly after the original presentation of equivalent uniform dose Niemierko expanded his

definition to include both tumors and normal tissues and named it the Generalized Equivalent

Uniform Dose (gEUD):

gEUD =

(
1

V

∑
i

viD
a
i

) 1
a

, (1.2)
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where V is total volume, Vi is the volume of the ith subvolume within the dose-volume

histogram (DVH), Di is the dose to the ith subvolume, and a is a dimensionless variable

parameter. The equation is an applied version of a well known mathematical function called

the generalized mean. The gEUD has the property that as a → ∞, the gEUD approaches

the maximum dose to the volume of interest and as a → −∞, the gEUD approaches the

minimal dose. For a = 1, the gEUD is equal to the arithmetic mean, and for a = 0, it

is equal to the geometric mean. The arithmetic mean or simply the average is defined as

the sum of the number divided by the total number of elements. In contrast, the geometric

mean is often used to normalize the ranges being averaged, preventing over weighting of the

average for any range of values. The geometric mean is calculated by taking the nth root of

the products of the n values of interest.

While maintaining the original definition of EUD for tumors, the gEUD represents the

uniform dose which leads to the same probability of injury as the corresponding inhomo-

geneous dose distribution. The parameter a may be determined empirically by fitting with

published dose-volume data [18,14]or with analogous data used in an individual institutional

practice. Investigators have extensively studied and used this form of the EUD to both

evaluate and optimize plans with very good results [45,40,12,9,31,41], but are only recently being

applied to stereotactic protocols [11,38].

Another benefit of the gEUD formalism is that it can be connected to the other dose-

response models. In his 1999 paper [35], Niemierko proposed a way to link EUD with the

TCP. TCP can be calculated based on gEUD as

TCP =
1

1 +
(
TCD50

gEUD

)4γ50 (1.3)

where TCD50 is the tumor dose to control 50% of the tumors when the tumor is homo-

geneously irradiated and γ50 is a unitless model parameter that is specific to the tumor of

interest.
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In a 2007 paper, Gay and Niemierko [16] stated that gEUD could be extremely useful in

validating TCP models in hypofractionated radio-surgery. They believe that large doses per

fraction are challenging the current tumor control knowledge based on standard fractiona-

tion and clinicians can no longer rely on their acquired clinical intuition based on standard

fractions. Accurately validated models could assist the clinician in choosing safer and more

effective treatment plans with these cutting edge treatments. The need for such valida-

tion has prompted the American Association of Physicist in Medicine (AAPM) to recently

release a thorough report on the implementation of biologically guided radiation therapy

(BGRT) [31]. In addition, multi-institutional data sets are being established to further study

the issues related to biological dose models [5].

1.4 Canine Nasal Tumors [44]

Canine nasal tumors account for approximately 1% of all neoplasms in dogs. Radiation

therapy is the treatment modality of choice. On average, dogs with the disease are ten years

of age. Environmental components, such as tobacco smoke or fossil fuel combustion products,

have been suggested as contributors to the disease. Patients often present with clinical

signs of unilateral epistaxis or mucopurulent discharge. Definitive diagnosis is achieved via

tissue biopsy in conjunction diagnostic imaging, which is often highly suggestive of disease.

Carcinomas account for nearly two thirds of all tumors with sarcomas representing the

majority of the remaining types. Treatment is often only possible with radiation therapy

due to the locally invasive nature of the disease, making curative surgery nearly impossible.

Without treatment, canine patients have a median survival time of 95 days. Historically

patients are treated with 41 to 54 Gy in 10 to 18 fractions. Median survival for protocols

using CT-based computer treatment planning systems is 10 to 19.7 months. Over the course

of treatment, patients typically succumb to local progression of tumor resulting in decreased

quality of life. Canine nasal tumor patients used for this study were treated using advanced

SRT techniques with dose prescriptions of 30 Gy in 3 fractions of 10 Gy. The median survival
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time associated with SRT to these patients is 414 days [2].

1.5 Goal of this study

While many have used TCP models to evaluate treatment plans, assumptions made about

the underlying biology, such as linear quadratic formalism, may not be accurate. The goal

of this study was to investigate a simple model, the gEUD, to find new information about

the outcome of patients treated with stereotactic radiation therapy. For this study, two pre-

dictors were extensively tested to evaluate their ability to connect dose-volume information

to treatment outcome. Dose to a percentage of the structure volume, a common clinical pa-

rameter, and the generalized equivalent uniform dose were analyzed for the planned tumor

volume (PTV) and the gross tumor volume (GTV).
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CHAPTER 2

MATERIALS AND METHODS

2.1 Patient plan export

Twenty-Nine canine nasal tumor patients were selected for evaluation in the study. Stereo-

tactic radiation therapy (SRT) treatment protocols were prescribed to all patients in the

group with the dose prescription of 10 Gy per fraction for three fractions, for a total of 30

Gy. The dose planning technique for the treatment group was to create homogeneous dose

distribution within the tumor. All patient structures were contoured by veterinary radia-

tion oncology residents with the help of a boarded veterinary radiologist and approved by

a boarded veterinary radiation oncologist. Patients were planned using the Varian (Eclipse

version 8.6) treatment planning software. Cumulative dose and absolute volume information

was exported from the dose volume histogram (DVH) within the treatment planning soft-

ware in 1 cGy data steps. Exported data files contained all structures used for the plan in

a standard format, with a significantly reduced but representative example below in Data

example 1.

2.2 Python data analysis program [1,30,29,8]

A Python program was created to search and identify the single most significant predictor

of clinical outcome. Python was selected as the programming language due to simple syn-

tax, powerful general nature and its ability for mathematical computations. In combination

with a Linux based operating system, Python is capable of controlling other command line

programs such as gnuplot (plotting,graphics) and the statistical program R within the pro-

gramming environment. The desire was to create a single program capable of automatically

performing all analysis steps and generating useful output in a variety of formats. The

program input included the exported dose-volume information from Eclipse and patient out-
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Patient Name : Last, First (254791), ()

Patient ID : 254791

Date : 19.03.2012 16:45:35

Type : Cumulative Dose Volume Histogram

Description : The cumulative DVH displays the percentage

(relative) or volume (absolute) of structures

that receive a dose equal to or

greater than a given dose.

Plan: IMRS TX

Prescribed dose [cGy]: 3000.0

% for dose (%): 100.0

Structure: PTV

Approval Status: Approved

Plan: IMRS TX

Course: C1

Volume [cm]: 40.1

Dose Cover.[%]: 100.0

Sampling Cover.[%]: 100.0

Min Dose [cGy]: 2032.2

Max Dose [cGy]: 3455.0

Mean Dose [cGy]: 3089.7

Modal Dose [cGy]: 3123.7

Median Dose [cGy]: 3100.9

STD [cGy]: 120.4

Dose [cGy] Relative dose [%] Structure Volume [cm]

0 0 40.0898

500 16.6667 40.0898

1000 33.3333 40.0898

1500 50 40.0898

2000 66.6667 40.0898

2500 83.3333 40.0471

3000 100 32.4803

Data example 1: Example Eclipse exported data file for one patient and one structure. The
actual exported patient data contained more than 20 structures with dose steps of 1 cGy
totaling 100,000 data lines per patient and a total of over 3 million individual lines of data.

come information in Excel format obtained from the radiation oncologist. A list of patient

hospital ID numbers initiates the program and each input file is searched for the desired

information. Searches were performed using Python regular expressions to easily find blocks

of data within the large (>100,000 line) data files. Functions within the Scipy Python pack-

age [26] were used to read in the clinical Excel formatted information. Patient ID’s from the

DVH file are used as key values for the creation of a Python dictionary structure. Python

dictionaries are a data type capable of storing any other Python object and are well suited

for constructing a database style structure within the program. Dictionaries consist of key

and value pairs allowing stored data for each patient to be accessed by a common key. Once

the regular expressions were defined, a findall command was used to collect all file instances

that matched the regular expressions. The output of the findall command contains a list of

all found items matching the regular expression. The found output lists were then iterated

in order to allocate each found match to the correct location. A second level dictionary was
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Figure 2.1: Transverse CT slice with representative dose distribution for this group of pa-
tients.

created in order to store patient specific data such as the first and last name, plan name

and all the structures contained within the plan. Within the Patient structures a third level

dictionary was created to store structure specific data such as the raw data, total volume,

and minimum dose. A series of Python functions were then created to organize, manipulate

and store the desired predictors of the system.

At this stage, the raw input data stored inside the structure dictionary was organized into

total dose and absolute volume vectors. The created dose and volume arrays were placed

inside the structure dictionaries and auxiliary data files were produced to be used outside

the programming environment for collaborative and testing purposes. The relative dose and

volume were then computed, stored and used to produce dose volume histograms that would

become a part of the program output. Dose volume histograms are used by clinicians during

planning and evaluation, allowing for a common reference when viewing new data such as

the generalized equivalent uniform dose.
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Figure 2.2: Representative radiation beam arrangement for this group of patients.

2.3 Calculation of the generalized equivalent uniform dose (gEUD)

To calculate the gEUD for structures of interest (PTV, GTV), the exported cumulative dose

volume histogram had to be converted to a differential dose volume histogram. Conversions

were performed using a Python function that takes the dose at each step and adds half

the difference between its value and the subsequent value to get the differential dose. The

differential volume was calculated as the difference between the subsequent values. The

generalized equivalent uniform dose for each patient was calculated using the differential

dose-volume values with equation 2.1:

gEUD =
1

V

(
N∑
i=1

viD
a
i

)1/a

. (2.1)

Where V is the total volume of the structure, N is the total number of differential dose

volume data points, vi and Di are the i-th volume and dose point respectively, and a is
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Figure 2.3: Dose volume histogram produced from within the program

the variable parameter that was discussed earlier. To ensure the accuracy of this step,

program code and test cases were compared with published data from Gay and Niemieriko,

the creator of the gEUD concept [16]. The resulting gEUD calculations for a from -80 to 50

were placed in the structure dictionary as a two dimensional array (a,gEUD) assuring that

a and gEUD values did not get unsorted. Multiple output plots were made to visualize how

the gEUD function varies as a function of a. In order to make the analysis more robust,

additional common clinical variables, such as dose to a structure percent, were next to enter

the program.

2.4 Calculation of volume doses

Common clinical dose prescriptions are given in terms of achieving a prescribed dose to a

percent of the volume, often 50%, 90%, 95% or 99%. As a clinically relevant testing predictor

the dose to relative volume of 5 to 100 percent, in 5 percent increments was also calculated.

To accurately calculate the dose to percent volume a function was created that takes, as
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input, the main dictionary, the structure of interest, the percent volume of interest and a

epsilon factor. The epsilon value is an error factor used to determine how close to the desired

dose is acceptable for calculation. Given the relatively rough scale of output, initial program

runs with small epsilon values would return no results for the dose to a specified volume. The

final value used for epsilon was set at 1% and results were checked by hand from the Eclipse

treatment planning software to verify the accuracy. As with the other created variables in

the program, the results were stored into specific dictionary locations.

2.5 Predictor grouping

Each predictor (gEUD values, Dose to percent volume) was scanned amongst all patients

to create groupings. The value for an individual predictor was considered as a cutoff point

and given a value of zero. All other patient values were compared to this cutoff point,

assigned a value of zero if below or equal to the selected cutoff and given a one if the

value was above the cutoff. This technique allowed for all possible groupings, based on cut

off points, to be assumed for each predictor. The Python function created took the main

dictionary, structure of interest and the desired predictor as input. Output produced a

separate dictionary containing all the potential groupings for that predictor.

2500

2100

2400

2600

2500 = 0

2100 = 0

2400 = 0

2600 = 1

2500 = 1

2100 = 0

2400 = 1

2600 = 1

Figure 2.4: Patient grouping example showing starting position and two grouping examples.
The middle grouping starts with a value of 2500 and compares the rest of the values while
the right grouping shows a starting value of 2100.
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2.6 Clinical inputs

Clinical inputs were obtained and included the date of treatment, type of tumor, compli-

cations, censorship status and survival time. The clinical inputs were contained in excel

spreadsheets and imported into the Python programming environment. To insure correct

placement, patient ID numbers were used as verification and to place data under the ap-

propriate patient. Survival and censorship status were the only clinical outcome variables

of interest for this particular project. Two patients were censored due to an alive status at

time of last follow up with survival days being calculated to last follow up. Six patients were

censored due to retreatment of the disease, with censorship at the date of retreatment.

2.7 Survival analysis

Statistical analysis was performed by utilizing the rpy2 Python package to access R, an open

source and widely used statistical program, within the Python programming environment.

A log rank Kaplan Meier survival test [21] was performed using the survival package in R.

The R function took the survival days with censorship and compared them to each grouping

of over 200 predictors, a total of 5677 individual tests. Within the function a check was

performed to make sure there was at least one quarter of the total patients in each group.

Kaplan Meier curves were plotted, saved and the p-value associated with the analysis was

extracted back into Python. In order to pick out which predictors and associated cutoff

values had the best predictive capability, the output list of two values (predictor and cutoff,

p-value) were sorted and predictors that had a p-value of less then 0.05 were output. Checks

were also made within the function to handle cases where only one prediction group is given,

categorizing the predictor with a p-value of 1 and eliminating it as a possible significant

predictor. In addition to the Kaplan Meier survival plots, scatter plots were also created

with color coding based on grouping to allow for another visual verification of the results.
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2.8 Multiple testing correction

To analyze the uncertainty associated with the results, a simple Bonferroni correction was

applied. The Bonferroni modification is a method used to account for multiple compar-

isons. When multiple comparisons are made, the potential for falsely identifying significance

is increased. To account for this, the desired significance level is divded by the number of

comparisons to establish the level of significance needed with multiple comparisons. A signif-

icance level of 0.01 was desired for this analysis and upon applying the Bonferroni correction

to the total number of tests, a modified significance level would be 0.000002.

β =
α

n
≈ 0.01

5700
≈ 0.000002, (2.2)

where β is the level of significance needed for multiple comparisons, α is the desired signifi-

cance level and n is the number of tests performed. Using this level of significance, none of

the predictors would achieve the desired significance level. However, many of the groupings

were identical and the number of independent tests was much lower then 5700. Further

analysis of the groupings, to identify the number of indepentdent tests, would be needed to

correctly apply a Bonferroni correction.
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CHAPTER 3

RESULTS

3.1 Basic analysis

Twenty-nine patients were analyzed with the program. Basic summary statistics were ob-

tained for all patients in the group and summarized in tables 3.1 and 3.2. It can be seen

that for the dose variables used in the planning process, PTV90 and GTV90, there is less

variation in the distribution of patient values than in variables such as the PTV min dose

and EUD -37. Looking at the plot of the PTV EUD values versus the variable parameter a,

fig 3.1, the majority of patients begin very close to the prescribed dose of 30 Gy but begin to

disperse as a becomes more negative. This is to be expected as the mean dose is represented

by an a value of -1 and the spread shows that dose inhomogeneity is being taken into account

by the EUD value. Similarly a GTV EUD vs a plot was generated, fig 3.2, showing a more

complex distribution between the patients. From the EUD plots the grouping idea can also

be visualized by considering a horizontal line at an a value of interest. Based on the shape

of the EUD curve, and choice of cutoff point, the grouping of patients can be visualized.

Table 3.1: General summary statistics for the 29 patients in the study

Survival (d) PTV Min dose PTV EUD-80 (Gy) PTV EUD-37 (Gy) PTV 95 (Gy)

Mean 397 18.25 21.40 24.33 27.86
STD 267.1 3.24 3.67 3.91 2.08

Table 3.2: Continued summary statistics for the 29 patients in the study

PTV 90 (Gy) GTV 90 (Gy) GTV 95 (Gy) GTV 99 (Gy) PTV Total Vol cm3 GTV Total Vol cm3

Mean 29.80 29.84 29.41 28.7 93.48 70.22
STD 1.91 1.78 1.85 2.07 64.47 49.94

15



3.2 gEUD analysis

Figure 3.1: Graph of PTV EUD as a function of a. Negative values are highlighted based
on the fact that tumors are considered to be defined by negative a values

Figure 3.2: Graph of GTV EUD as a function of a. Negative values are highlighted based
on the fact that tumors are considered to be defined by negative a values
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3.3 Survival Analysis

The Kaplan-Meier based, two group analysis classified multiple highly significant individual

predictors of outcome. Six levels of significance were found for a p-value of under 0.01, with

multiple predictors per significance level. Multiple predictors were significant at each level

due to the same effective groupings being created by the cutoff values. The summary of the

analysis is presented in table 3.3, with Kaplan-Meier and scatter plots for each predictor

shown in the following figures.

Table 3.3: Results of Kaplan-Meier based, two group analysis

Predictor Cutoff value (Gy) p-value Survival above cutoff

EUD -80 19.26 0.00031 Increased
EUD -37 22.09 0.00031 Increased
Min Dose 16.23 0.00031 Increased
Min Dose 16.64 0.0041 Increased
PTV 10 32.25 0.0073 Decreased
PTV 10 32.40 0.0085 Decreased
GTV 15 32.08 0.0073 Decreased
GTV 15 32.34 0.0085 Decreased

The predictors, EUD-80 with cutoff 19.26 Gy, EUD-37 with cutoff 22.09 Gy and the

minimum dose at cutoffs of 16.23 and 16.64 Gy, showed that patients above the cutoff value

performed significantly better than patients below the cutoff. However, for dose to 10% of

the PTV and dose to 15% of the GTV the results showed that patients below 32.25 Gy

and 32.08 Gy performed better than patients above. Although, it is tempting to consider

that there is a preferred range of doses, the analysis was performed for individual predictors

only and results can not be combined for this particular technique. Analysis with combined

predictors could be performed in order to investigate this further.
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Figure 3.3: Kaplan-Meier two group survival analysis for PTV EUD with a=-80 predictor
and cutoff of 19.26 Gy

Figure 3.4: Two group scatter plot for PTV EUD with a=-80 predictor and cutoff of 19.26
Gy
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Figure 3.5: Kaplan-Meier two group survival analysis for PTV EUD with a=-37 predictor
and cutoff of 22.09 Gy

Figure 3.6: Two group scatter plot for PTV EUD with a=-37 predictor and cutoff of 22.09
Gy
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Figure 3.7: Kaplan-Meier two group survival analysis for PTV minimum dose predictor and
cutoff of 22.09 Gy

Figure 3.8: Two group scatter plot for PTV minimum dose predictor and cutoff of 16.23 Gy
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Figure 3.9: Kaplan-Meier two group survival analysis for PTV minimum dose predictor and
cutoff of 16.64 Gy

Figure 3.10: Two group scatter plot for PTV minimum dose predictor and cutoff of 16.64
Gy

21



Figure 3.11: Kaplan-Meier two group survival analysis for dose to 10% of the PTV predictor
and cutoff of 32.25 Gy

Figure 3.12: Two group scatter plot for 10% of the PTV predictor and cutoff of 32.25 Gy
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Figure 3.13: Kaplan-Meier two group survival analysis for dose to 10% of the PTV predictor
and cutoff of 32.40 Gy

Figure 3.14: Two group scatter plot for 10% of the PTV predictor and cutoff of 32.40 Gy

23



Figure 3.15: Kaplan-Meier two group survival analysis for dose to 15% of the GTV predictor
and cutoff of 32.08 Gy

Figure 3.16: Two group scatter plot for 15% of the GTV predictor and cutoff of 32.08 Gy
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Figure 3.17: Kaplan-Meier two group survival analysis for dose to 15% of the GTV predictor
and cutoff of 32.34 Gy

Figure 3.18: Two group scatter plot for 15% of the GTV predictor and cutoff of 32.34 Gy
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CHAPTER 4

DISCUSSION AND CONCLUSIONS

4.1 Discussion

The analysis was able to present significant predictors of clinical outcome for canine nasal

tumor patients. The dose-volume based predictors highlighted were able to identify specific

significant groupings but in themselves are not good predictors of outcome. In addition, a

single grouping can be assigned multiple interpretations based upon the predictor to which

it is applied. For example, using a gEUD predictor with an a value of -80 implies that the

near minimum dose to the PTV is of importance while an a value of -37 corresponds to an

assignment of average dose weighted away from the minimum and corresponds to a specific

dose volume weighting relationship. The most significant grouping applied to these different

predictors can lead to different clinical suggested actions, such as achieving greater then

16.23 Gy minimum dose to the tumor, each justifiable if analyzed individually.

The plot of the gEUD versus a for the PTV explains why a range of a values showed

significance. GEUD values held consistent groupings after certain thresholds, such as a =

−50 in figure 4.1 below. Studies have described a values of around -50 as being very effective

in the optimization of the dose distribution to tumors, while using an a value of -20 to describe

aggressive tumor types [41]. Others have used smaller negative values of the parameter a

(−2→ −10) to describe the dose to the PTV [45]. However, this analysis shows that assigning

a concrete a value is difficult and dependent on the non-uniformity of the treatment plan for

each patient.

Looking at figure 4.1, the dose distribution to the PTV of patients 245780 and 259086

can be described as having more non-uniformity then other patients in the study. This non-

uniformity is highlighted by the variation in gEUD value as a is varied. For example, in

the range between a = −20 and a = −10 the value of the gEUD varies from approximately
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17 Gy to 26 Gy. The gEUD model has the ability to classify the non-uniformity across a

structure by weighting different ranges of dose more or less dependent of the value of a.

Structures that have great dose variation over their volume will have gEUD plots that are

highly dependent on a because the gEUD will change greatly as different regions of the dose

distribution are weighted more. In contrast, a highly uniform dose distribution should have

little variation of the gEUD over different values of a as weighting different ranges will change

the value of the gEUD little. A representative uniform dose distribution in this study would

be patient 251419 in figure 4.1.

Figure 4.1: gEUD vs a plot showing the groupings created at a values below a = -50. The
groupings stay consistent for the majority of patients with only a few patients shuffling their
order.

The minimum dose and gEUD with large negative a values make intuitive sense based on

clinical experience. Patients may survive longer due to increased dose to the PTV resulting

in a higher probability of tumor cell killing. In contrast, the ten percent dose to the PTV

and fifteen percent dose to the GTV were unexpected significant predictors. Patients that

received increased dose had a shorter survival than patients that received a lower dose. A
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possible explanation of the ten percent dose to the PTV could be that normal tissues may

be included in the volume and an increased dose could lead to normal tissue complications

around the tumor. Explanations for the the dose to fifteen percent of the GTV is difficult to

justify and more work will need to be done to investigate its potential clinical implications.

Analysis of uncertainty for this technique is also of concern. Without an estimation on

the error of the computed p-values it is hard to justify their worth. If applied correctly

the Bonferroni modification could allow the current data to stay significant after taking

into consideration multiple comparisons. However, there would have to be only thirty-

one independent groupings for the highest significance grouping to stay significant. The

Bonferroni correction would be changed to

β =
α

n
≈ 0.01

31
≈ 0.00032, (4.1)

where β is the level of significance needed for multiple comparisons, α is the desired sig-

nificance level and n is the number of tests performed. Further analysis would need to be

conducted in order to determine if there are truly only thirty-one independent tests. Boot-

strapping, a computer-intensive method used to estimate the error in a calculation, is based

on resampling, and would be another good candidate for the estimation [24,13]. Data used

within a calculation, such as survival or predictor value, could be randomly resampled with

replacement many times (10,000 or more). The original calculation could then be performed

with this resampled data to obtain a distribution for the outcome values. The advantage of

using bootstrapping techniques to calculate error is that assumptions about the distribution

of data, such as normality, do not need to be made in order to validate the analysis.

Another potential improvement on the analysis would be to evaluate the ability of a pre-

dictor to classify good versus bad outcome without taking the cutoff value into consideration.

Time dependent survival receiver operating characteristic curves (ROC(t)) could be used as

the main search function as opposed to the two Kaplan-Meier tests presented [22]. ROC(t)
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analysis can be performed using the survivalROC package for R from within the python

environment to a clinically relevant time point, such as one year [23]. To quantitatively de-

termine if the predictor was useful, the area underneath the ROC(t) curve could be used.

Area underneath the ROC curve measures the probability that the predictor being analyzed

will accurately classify a favorable versus unfavorable outcome and can be connected to the

Wilcoxon statistic [19].

4.2 Future Work

Future work will include the analysis of additional canine nasal tumor patients treated with

the same dose prescription but modified dose distribution. Patients in the second group were

treated with simultaneous integrated boosts (SIB) to the center of the tumor. Adding in the

second group of patients could help to identify if predictors such as PTV10 and GTV15 have

any clinical significance, as patients were given higher dose to smaller volumes corresponding

to these regions on the dose volume histogram. The program will also be expanded to include

more robust techniques that were found in the literature. Techniques such as the Genetic

algorithms used in Gayou’s EUCLID outcome analysis tool [17], or Bayesian network and

support vector machine models used to predict two year survival by Jayasurya [25], can be

integrated into the current program.

4.3 Conclusion

In conclusion, the study investigated two dose volume parameters, the gEUD and dose to

volume, and their ability to connect to survival time. The analysis was able to produce multi-

ple significant predictor dose cutoff values, that when applied to the patient group separated

patients into decreased and increased survival groupings. However, the different patient

populations suggested by the predictor groupings cannot be conclusively applied to one par-

ticular gEUD value or dose to volume value. Instead, the analysis offers potential areas for

further investigation with larger patient populations and more robust methodologies.
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