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ABSTRACT

CONSTITUTIVE MODELING OF THE BIAXIAL MECHANICS OF BRAIN WHITE

MATTER

It is important to characterize the mechanical behavior of brain tissue to aid in the
computational models used for simulated neurosurgery. Due to its anisotropy, it is of particular
interest to develop constitutive models of white matter based on experimental data in order to
define the material properties in computational models. White matter has been shown to exhibit
anisotropic, hyperelastic, and viscoelastic properties. The majority of studies have focused on
the shear or compressive properties, while few have tested the tensile properties of the brain.
Brain tissue has not previously been tested in a multi-axial loading state, even ithairgh
brain tissue is in a constant multi-axial stress state due to fluid pressure, and data from uniaxial
experiments do not sufficiently describe multi-axial stresses.

The main objective of this projesias to characterize the biaxial tensile behavior of brain
white matter via experimentation and constitutive modeling. A biaxial experiment was
developed specifically for testing brain tissue. Experiments were performed at a quasi-static
loading rate, and an Ogden anisotropic hyperelastic model was derived to fit the Adata.
structural analysis was performed on biaxially tested specimens to relate the structure to the
mechanical behaviorThe axonal orientation and distribution were measured via histology, and
the axon area fraction was measured via transmission electron microscopy. The measured
structural parameters were incorporated into the constitutive model. A probabilistic analysis was

performed to compare the uncertainty in the stress predictions between models with and without



structural parameters. Finally, dynamic biaxial experiments were performed to characterize the
anisotropic viscoelastic properties of white matter. Biaxial stress-relaxation experiments were
conducted to determine the appropriate form of a viscoelastic model. It was found that the data
were accurately modeled by a quasi-linear viscoelastic formulation with an isotropic reduced
relaxation tensor and an instantaneous elastic stress defined by an anisotropic Ogden model.
Model fits to the stress-relaxation experiments were able to accurately predict the results of
dynamic cyclic experiments.
The resulting constitutive models from this project build upon previous models of brain

white matter mechanics to include biaxial interactions and structural relations, thus improving

computational model predictions.
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1. BACKGROUND

1.1 Brain Anatomy & Structure

1.1.1 General Anatomy

The neural tissue of the brain can be divided into two components: grey matter and white
matter. Grey matter consists of a large number of neuronal cell bodies and has a pink-grey hue
due to the presence of capillaries. Functionally, grey matter can be thought of as the signal
processing tissue, while white matter provides the conduits for signal transmission. White matter
contains relatively few neuronal cell bodies, but a high density of myelinated axons. Signals are
sent through the axons of neurons between regions of the brain as well as between the brain and
the peripheral nervous system. White matter gets its white color from myelin surrounding the
axons. Figure 1.1 highlights many key regions of the brain discussed throughout this document.
Axons in the corona radiata extend from the globus pallidus, radially outward to the grey matter
of the cerebral cortex. The corpus callosum connects the two hemispheres of the brain and
contains highly aligned axons.

The brain is surrounded and protected by the meninges, made up of three fibrous layers:
the pia mater, the arachnoid mater, and the dura mater. The pia mater is a very thin membrane
attached to the surface of the brain, following its folds and contours. The arachnoid mater is a
web-like structure tethering the pia to the dura. The dura mater is a thicker tough membrane that
lies closest to the skull. Cerebrospinal fluid, located in the subarachnoid space between the
arachnoid mater and the pia mater, is a viscous fluid that mechanically cushions the brain. A

network of capillaries penetrates the brain, passing through the pia mater.
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Figure 1.1: Anatomy of the brain shown in (A) mid-sagittal section, (B) coronal section, and (C)
sagittal section in region of corona radiata (images adapted with permission from [The Internet
Pathology Laboratory for Medical Education]).
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1.1.2 Neurons

Neurons are the primary functional cells of nervous tissue, serving to transmit and
process electrical signals via the movement of ions. Typical neurons consist of a soma (cell
body), an axon, and dendrites (Figure 1.2). Signals are transmitted from the axon terminals of
one neuron to the dendrites of another neuron via synapses. Most axons are surrounded by a
myelin sheath, which provides electrical insulation. Myelin is made up of mostly lipids (70-85%
of dry mass) as well as proteins (15-30% of dry mass) [Saher et al. 2005]. The nodegaf Ra
are gaps in the myelin sheath which contain voltage-gated ion channels. The myelin segments,
combined with the nodes of Ranvier, allow for action potentials to jump from node to node, thus
propagating the signal at faster speeds than an unmyelinated axon. Neurofilaments have a
diameter of 10 nm and are the primary constituent of the neuron cytoskeleton [Yuan et al. 2012].
They provide structural support to axons to maintain their shape and diameter. The size of
axons is highly variable, with the length ranging from less than 1 mm for interneurons, to greater
than 1 m in the peripheral nervous system [Debanne et al. 2011]. In mammals, the myelinated
axon diameter can range from about 1 pum up to 20 um, with larger diameter axons allowing for
faster signal conduction [Hursh 1939]. Unmyelinated axons are typically smaller, ranging from

about 0.1-1 pm [Wang et al. 2008].

1.1.3Glial cells

Most other cells in nervous tissue are categorized as glial cells, named for being the
‘glue’ of nervous tissue. In the brain, the three main types of glial cells are astrocytes, microglia,
and oligodendrocytes (Figure 1.2). Astrocytes are star-shaped cells that function aslchemica
regulators. They have processes that surround neuronal synapses, as well as processes that

connect with endothelial cells on blood vessels. Microglia respond to foreign bodies and



changes in extracellular ion concentrations, and they act as the primary immune defense of the
brain. Oligodendrocytes function to form the myelin. They contain processes that extend to
axons, surrounding the myelin sheath. Oligodendrocyte-axon connectivity may play a role in the
mechanical behavior of brain tissue. Axons with increased myelination have showed a greater
kinematic affinity to the glial matrix [Hao and Shreiber 2007]. Additionally, white matter tensile
stiffness is decreased by the disruption of myelination by oligodendrocytes, which is thought to

be due to the decreased oligodendrocyte-axon connectivity rather than the decreasknin my

1
<

f Oligodendrocyte
Neuron wraps myelin around
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/ ] ‘( Pres apti 'P}stndphc

Axon
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[Shreiber et al. 2009].

Blood vessel

Astrocyte end-feet
wrap around the
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Figure 1.2: Diagram showing the morphology and interconnectivity of neurons and glial cells.
Figure used with permission from [Allen and Barres 2009
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1.1.4 Extracellular Matrix

The extracellular space takes up about 17-20% of the brain volume [Cragg 1979]. The
extracellular constituents include dense networks of proteoglycans, hyaluronan, and link
proteins, the adhesive glycoproteins laminin and fibronectin, and small amounts of the fibrous
proteins collagen and elastin [Lau et al. 2013]. In white matter specifically, hyaluronan and
chondroitin sulphate proteoglycans are primary constituents found in the space between axons
and in the nodes of Ranvier, and chondroitin sulphate proteoglycans aid in myelination [Asher et
al. 1991, Lau et al. 2013]. While the extracellular matrix can aid in the myelinationtsand
hydrophilic nature can lead to increased hydration, it is not thought to provide structural support,

and has been largely ignored in studies of mechanics.

1.2 Computational M odeling

It is important to study the mechanical behavior of brain tissue to incorporate the results
into computational models. In turn, the models can be used for simulated neurosurgery, as well
as the study of traumatic brain injurie€xperiments in the current study are motivated by
computational models for simulated neurosurgery. Specifically, these models are useful for the
development of surgical procedures, surgeon training, operation planning, and image registration
to account for intraoperative brain shifts [Miller 2011, Ferrant et al.][20B4amples of surgical
procedures include craniotomies, tumor debulking, and needle injections for drug delivery [Chan
et al. 2013]. Computational models require accurate constitutive descriptions of the stress-strain
relationship to compute the finite deformations that occur during operations [Garcia et al. 2012]
as well as the force-feedback on the surgical tools [Chan 2013]. Due to the relatively low

loading rates, the majority of models utilize constitutive equations based on quasi-static



experiments. However, viscoelastic effects are still important at low strain rates, and viscoelastic
models have been recommended to improve the model predictions [Kyriacou et al. 2002].

The accuracy of computational models depends on the geometry, boundary conditions,
and material definitions. Computational models of the brain differ in how the materials are
defined. Grey matter and white matter are usually given different material properties, which
have included isotropic linear viscoelastic properties based on in vitro shear experiments [Post et
al. 2012, Zhang et al. 2001]. Other approaches have modeled the anisotropy of white matter and
defining the axonal orientation based on diffusion tensor imaging [Colgan et al. 2010, Wright
and Ramesh 2012]. Significant differences in predicted strains for some white matter regions
have been reported when comparing models with anisotropic and isotropic material definitions
[Colgan et al. 2010]. It has similarly been found that the orientation of axons affects the model

predictions [Wright and Ramesh 2012].

1.3 Brain Mechanics
It is of particular interest to develop constitutive models to describe the mechanical

behavior of brain tissue by fitting the models to experimental data.

1.3.1 In Vivo vs. in Vitro Experiments

It is generally desired for mechanical properties of biological tissues to be ohtained
vivo in order to test the tissue in its natural state, in which the tissue is intact, perfused with
blood, and temperature regulated. There are established techniguresivordetermination of
the mechanical behavior of the brain, but they do have some limitations. Ultrasound techniques
estimate the complex shear and elastic moduli by measuring the attenuation and spded of hig
frequency sound waves propagating through the tissue [Lippert et al. 2004]. However, the depth

of penetration is limited due to high attenuation through the skull, and the analysis is complicated
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by inhomogeneous tissues [Cheng et al. 2008]. Magnetic resonance elastography is a similar
technique in which mechanically-produced acoustic strain waves propagate through the tissue.

The waves are measured using magnetic resonance imaging and analyzed to compute the
complex shear modulus [Manduca et al. 2001]. This technique has the potential to measure
anisotropy and detect differences in inhomogeneous tissues. Likewise, it has been used to
compute the complex shear modulus of grey matter and white matter [Manduca et al. 2001,

Green et al. 2008]. However, measurements are limited for deep tissues due to attenuation
[Cheng et al. 2008]. Both ultrasound and magnetic resonance elastography are limited to

studying small strains, and they do not test all deformation modes (tension, compression, and
shear).

In vitro mechanical tests have the disadvantage of removing the tissue from its natural
state, which can result in errors due to sample preparation, tissue degradation, and loss of
perfusion. Howeveln vitro studies are more versatile and less complicateditharo studies
because they do not require live subjects. More sophisticated experimental setups can be used in
in vitro environments. Indentation stress-relaxation tests on porcine brains have been used to
directly comparen vivo, in situ (no perfusion), anth vitro (brain not constrained within skull)
setups [Gefen and Margulies 2004]. The only significant differenceifrafvoto in situ setups
was a decrease in the long term time constant. However, when removed from the skull, the
computed shear modulus was significantly decreased ifronivo andin situ setups tan vitro.

The altered boundary conditions that are requisitarfositro testing may affect the measured
mechanical properties, contributing to the high variability in published properties (for example,

shear modulus values range from about 100 Pa to 10,000 Pa) [Hrapko et al. 2008].



1.3.2 Challenges in Mechanically Testing Brain Tissue

Mechanically testing brain tissue presents many challenges. Brain tissue is very soft and
compliant. Very small forces are capable of causing damage. Therefore, care must be taken
when handling the tissue and performing dissection. Handling procedures must be developed
and followed to ensure the tissue remains undamaged at every step. The softness of the tissue
also creates challenges for gripping. Some common gripping techniques used for other
biological tissues, such as sutures and clamps, result in tears and do not effectively hold the
tissue. The solution to effective gripping depends on experimental setup and boundary
conditions (e.g. tension, compression, or shear). Some success has been found using adhesives
[Miller and Chinzei 2002, Rashiek al. 2014], although adhesives have the potential to seep into
the tissue, altering the mechanical behavior near the grip. In shear tests, specimens have been
held between rough sandpaper surfaces along with a compressive preload to prevent slipping
[Feng et al. 2013].

Another challenge in mechanically testing brain tissue is the rapid degradation of neural
tissue post-mortem. The structure can be altered as a result of freezing and thawing the tissue,
and even when fresh, the tissue begins to become stiffer after about six hours post-mortem [Garo
et al. 2007]. It may be possible to slow degradation and extend this window by storing the tissue
at low temperatures, but without freezing, between harvest and testing [Van Dommelen et al.
2010, Nicolle et al. 2004]. The short window of time limits the potential to test fresh human

tissue. Accordingly, the large majority of mechanical experiments have used animal tissue.

1.3.3 Shear
It has been postulated that shear strain could correlate with the probability of a brain

injury [Holbourn 1943]. Likewise, shear has been the most common form of mechanical tests on



brain tissue. Generally, blocks of tissue are dissected out and placed between two platens to be
deformed in shear. Many studies have performed oscillatory shear tests at a rarggeenties

to determine the linear viscoelastic properties (storage and loss modulus) at small strains
[Abrogast and Margulies 1999, Feng et al. 2013, Nicolle et al. 2004, Garo et al. 2007]. While
the reported moduli vary widely across these studies, they all show increasing storage and loss
moduli as frequency increases [Hrapko et al. 2008]. Other studies have extended this work to
large strains. Brain tissue has been deformed with shear strains up to 0.45 without damage being
observed [Hrapko et al. 2006]. Nonlinear constitutive models are used to describe the stress-
strain relationship at large strains [Prange and Margulies 2002, Ning et al. 2006], and many of
these shear experiments have also found anisotropic behavior in white matter [Feng et al. 2013,

Ning et al. 2006, Prange and Margulies 2002].

1.3.4 Compression and Indentation

Experiments investigating the compressive properties of brain tissue often utilize
unconfined compression to achieve more reliable results and simplify the analysis compared to
confined compression. The frictionless boundary condition is usually achieved using lubricants
on the loading plates, although at high strain rates, the friction is not negligible, even with a
lubricant [Rashid et al. 2012]. Studies that analyzed the stress-strain relationship consistently
found a nonlinear behavior, with the tissue stiffening as strain is increased [Laksari et al. 2012,
Miller and Chinzei 1997, Prevost et al. 2011, Rashid et al. 2012]. Viscoelastic properties are
also investigated via stress relaxation and varying strain rates. Brain tissue has been shown to be
consistently stiffer at higher strain rates [Miller and Chinzei 1997, Rashid et al. 2012].
However, there are contradictions on strain dependence, with some results showing quasi-linear

viscoelasticity to be valid [Laksari et al. 2012], and other resedtsiring nonlinear viscoelastic



models to better fit the data [Prevost et al. 2011]. Another approach used a poroviscoelastic
model and found that the tissue permeability affected the stress response [Cheng and Bilston
2007].

Indentation tests have the advantage of being able to localize the analysis to small
regions. Specifically, results have found that white matter has a greater stiffness than grey
matter, as well as greater variability in reported mechanical parameter data [Van Dommelen et
al. 2010]. Indentation is also relatively non-invasive, and has been used to mechanically test
brain tissuein vivo in animals by opening up the skull [Miller et al. 2000, Gefen et al. 2003,
Gefen and Margulies 2004]. Similar to compression results, the strasstelationship in
indentation is nonlinear, with the material stiffening at higher strains [Miller et al. 2000]. In
stress-relaxation experiments using multiple strain magnitudes, it was found that quasi-linear

viscoelasticity may be appropriate to model large strains in indentation [Elkin et al. 2011].

1.3.5 Tension

Relatively few studies have investigated the tensile properties of brain tissue. The studies
differ in specimen gripping methods (Figure 1.3), with one method using an adhesive to attach
each end of the specimen to a plate and pulling the plates in tension [Miller and Chinzei 2002,
Rashid et al. 2014]. In this setup, the specimen width was greater than its length, creating
inhomogeneous stresses and complicating the analysis. Another setup used long, thin specimens
that were clamped at either end, allowing for a more simplified analysis, although boundary
effects may arise due at the clamps [Velardi et al. 2006]. The shape of the stress-strain curve
varies in tension between studies. One study reports curves that are very close to linear [Velardi
et al. 2006], one reports a concave down shape which is especially pronounced at low strain rates

[Miller and Chinzei 2002], and one reported a concave up shape [Rashid et al. 2014]. Another

10



study that loaded specimens cyclically in tension and compression showed a concave down
behavior if loaded in tension first, but concave up if loaded in compression first (Figlire 1.4

[Franceshini et al. 2006]. The tensile stiffness increases as strain rate increases [Miller and
Chinzei 2002, Rashid et al. 2014], and when loaded to failure at a quasi-static strain rate,

mechanical damage was reported to occur at a mean stretch of 1.9 [Franceshini et al. 2006].

Figure 1.3: Tensile testing methods include using an adhesive to attach the specimen to two
loading surfaces (left, adapted with permission from [Rashid et al. 2014]), and clamping the
tissue at either end (right, used with permission from [Velardi et al. 2006]).

1.3.6 Stress-Strain Relationship

Many studies have attempted to determine the mechanical properties of brain tissue
experimentally. Brain tissue is a very soft, easily deformed material. The infinitesimal shear
modulus is a common measure reported in many methods of mechanical testing, and has been
found to range from 0.13 kPa to 14 kPa in the reviewed literature [Velardi et al. 2006, Manduca
et al. 2001]. Differences in the measured behavior may arise due to differences in preloads,
temperature, testing protocols, and tissue donors [Hrapko et al. 2008]. The form of the stress-
strain relationship depends on the mode of deformation. Compression exhibits a hyperelastic

behavior in which the stiffness increases at higher compressive strains, but in shear, the stiffness
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generally decreases as strain increases (Figure 1.5) [Prange and Margulies 2002eHahpko
2006]. However, in tension the shape of the stress-strain curve is inconsistent, but appears to

depend on loading history [Franceschini et al. 2006] as well as strain rate [Miller and Chinzei

2002].
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Figure 1.4: Brain tissue tested in compression and tension consistently shows a hyperelastic
strain-stiffening behavior in compression. However, in tension, the behavior depended on
whether the tissue was loaded in compression first (left) or tension first (right). Adapted with
permission from [Franceschini et al. 2006].
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Figure 1.5: The stress-strain relationship of brain tissue in shear shows a concave-down curve.
Figure created based on published data from [Hrapko et al. 2006].
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1.3.7 White Matter vs. Grey Matter

Regional differences in mechanical properties have also been investigated, especially
when comparing white matter and grey matter. Unfortunately, the results have been inconsistent.
Some results fronm vitro shear experiments found grey matter to be stiffer than white matter
[Nicolle et al. 2004, Prange and Margulies 2002], although in one study, they were aimila
small strains [Nicolle et al. 2004]. In one experiment in tension [Velardi et al. 2006] and one in
indentation [Van Dommelen et al. 2010], white matter was found to be stiffer. Inconsistencies
have even been found in twia vivo studies using the same technique. Using magnetic
resonance elastography, one group found the shear modulus of white matter (14.2 kPa) to be
significantly stiffer than grey matter (5.3 kPa) [Manduca et al. 2001], but another group found
the shear modulus of grey matter to be significantly greater than for white matter (3.1 kPa and
2.7 kPa, respectively) [Green et al. 2008]. One consistent finding is that grey matter exhibits
isotropic behavior [Prange and Margulies 2002, Shuck and Advani 1972, Feng et al. 2013],
whereas white matter tends to be anisotropic [Velardi et al. 2006, Prange and Margulies 2002,

Feng et al. 2013, Ning et al. 2006].

1.3.8 White Matter Anisotropy

Basic structural observations clearly show a directional alignment of axons in white
matter. Diffusion tensor magnetic resonance imaging has been used to map the axonal tracts in
white matter (Figure 1.6) and calculate measures of fractional anisotropy [Catani et al. 2002,
Wakana et al. 2004]. In addition to structural alignment, experiments have shown white matter
to exhibit mechanical anisotropy (Figure 1.7), but the degree of anisotropy is region dependent.
In shear, the corpus callosum and corona radiata were both shown to be anisotropic [Prange and

Margulies 2002]. As expected, the corpus callosum exhibited a greater stiffness in the axonal
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direction; however, corona radiata specimens were stiffer in the direction orthogonal to the

axons. Other studies reported the corona radiata to be isotropic [Shuck and Advani 1972] or
have very low anisotropy [Nicolle et al. 2004] in shear. In tension, corona radiata specimens
were stiffer in the axonal direction, although the results were not analyzed statisticéddiVe

et al. 2006]. The inconsistency in the anisotropy of the corona radiata may be related to its fan-
like structure in which there is a large spatial distribution of axonal orientation. Other studies in

shear found the corpus callosum [Feng et al. 2013] and the brainstem [Ning et al. 2006] to be

anisotropic with a greater stiffness in the axonal direction.

Figure 1.6: Axon tracts measured via diffusion tensor imaging are shown following outward
from the corpus callosum (cc) to the cortex. The axons are highly aligned in the corpus

callosum. The four views shown are (A) anterior view, (B) left lateral view, (C) superior view,

and (D) oblique view from right anterior. Adapted with permission from [Wakana et al. 2004].

The data describing the anisotropy of white matter are fairly limited, with most studies
only analyzing the shear behavior. The only tensile study analyzing anisotropy usetespe

from the corona radiata, which has otherwise been shown to be nearly isotropic. Also, all of
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these studies test the tissue in one direction at a time. However, uniaxial tests are insufficient to
uniquely characterize the material [Smith and Garcia 2013], and analyzing tissues in multi-axial
loading states can more fully characterize the anisotropic behavior [Sacks 2000]. Thenefore,

goal of this study is to investigate the anisotropy of white matter tissues in biaxial tension.
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Figure 1.7: The mechanical anisotropy of white matter is shown in tension for directions parallel
to and perpendicular to the axons (figure created based on published data from [Velardi et al.
2006]).

1.3.9 Preconditioning

It is typically preferred for mechanical tests on biological tissue to use a preconditioning
regimen by cyclically loading the specimen until the results are unchanging betwdes cy
(converged), and then the final loading cycle is analyzed. This process results in more reliable,
less variable data [Cheng et al. 2008]. For neural tissue, however, specimens are sometimes not
preconditioned due to the relatively compliant and delicate nature of the tissue [Velardi et al.
2006, Miller and Chinzei 2002, Rashid et al. 2014]. It could also be argued that it is better to
assess the mechanical behavior with no prior loading history in order to more closely resemble a

one-time loading event that would occur in neurosurgery. However, the brain is normally
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subjected to mechanical stresgesivo due to the fluctuating intracranial pressure [Steiner and
Andrews 2006], as well as mechanical loads induced by accelerations of the head. Various
preconditioning regimens can result in significant differences in measured material properties
[Cheng et al. 2009, Gefen et al. 2003]. Based on tensile tests of spinal cords with varying
preconditioning protocols, it has been recommended to precondition specimens to the highest
strains that will subsequently be used in testing in order to get more repeatable results within a
study and across studies [Cheng et al. 2009]. Some studies on brain tissue mechanics have
chosen to precondition the specimens, and then report both preconditioned (last cycle) and non-
preconditioned (first cycle) properties [Gefen et al. 2003, Gefen and Margulies 2004, Prevost et
al. 2011]. When using the results of these studies, one can decide whether preconditioned or

non-preconditioned properties are preferred for the specific application.

1.4 Constitutive Modeling

While many studies on brain mechanics have simplified the analysis by using the
complex shear modulus to model the linear viscoelastic behavior at small strains, some attempts
have been made to model the hyperelastic and nonlinear viscoelastic response of the tissue.
Additional modeling approaches for soft tissues have included structural parameters into the

models.

1.4.1 Hyperelasticity

Constitutive models describing hyperelasticity often take the form of strain energy
density functions, which can be defined in terms the deformation gradient tén)sdhe
stretches A), or a number of strain invariants. From the deformation gradient, the symmetric
right Cauchy-Green strain tensor can be calculatéi-ag'F, and the following stain invariants

can be subsequently calculated:
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I, = tr(C) (1.1)

I =[(tr ©)* — tr(C?)] (1.2)
I = det(C) = J? (1.3)
L=ay, C-a, (1.4)

Is = ay- C? - aq (1.5)

I1 is related to the hydrostatic component of the deformation gradient tensads,igmelated to
the deviatoric strainls represents the volume change, wheie the deformed to undeformed
volume ratio and equal to the determinant~of For an incompressible materiéd,andJ are
equal to unity.l4 is an anisotropic invariant representing the square of the stretch in the direction
defined by the vectaao. Is is a similar invariant which can be used to describe the anisotropic
shear. Defining constitutive models in terms of strain invariants offers a convenient form for
computational models because they are independent of the coordinate system.

An isotropic Ogden formulation has commonly been used to model brain tissue [Miller
and Chinzei 2002, Rashid et al. 2014, Franceschini et al. 2006]. The strain energy @énsity (

defined as:

W= 2§ + 2§ + 25 —3) (1.6)
The coefficientsp and a represent the infinitesimal shear modulus and the stiffening (or
nonlinearity), respectively. A transversely isotropic form of the Ogden model has utilized the

addition of an anisotropic term to account for the axonal alignment in white matter [Meaney

2003, Velardi et al. 2006]:

W= 22(¢+ 25 + 2§ —3) + 2F (172 + 21, - 3) (1.7)
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In this model, the coefficierk represents the axonal component in the direction defindd by
Another transversely isotropic model based on a neo-Hookean solid has been used for brain
tissue. A simple neo-Hookean model with an added anisotropic term was used to fit
experimental shear data from the brainstem, and the model was implemented into a finite

element analysis [Ning et al. 2006]. The model took the form:
W= Ciolli=3) +5-0 = D +56(, — D, (1.8)
whereCiyo is one half of the infinitesimal shear modulu)2fs the bulk modulus, and is a
coefficient representing the axonal stiffse
The coefficients for the models can be determined experimentally by fitting the

experimental Cauchy stress to the theoretical Cauchy stress of the model. The theoretical
Cauchy stresss] is derived from the strain energy density as:
o =2/7'F 2L FT (1.9)

The large majority of transversely isotropic brain models have only used ithariant
to model the stiffness due to the stretch in the axonal direction. Based on the anisotropic
behavior of white matter in shear, it has been recommended to include contributiondsof the
invariant [Feng et al. 2013], although the effect of an additilzriarm has not been explored for
brain tissue.

All of the models have been able to fit stress-strain data well; however, model assessment
should also assess their predictive power. One study used three different formulations (a Fung
model, a Gent model, and an Ogden model) to model tensile and compressive data separately,
and all three models fit the data equally well [Rashid et al. 2012, Rashid et al. 2014]. However,
because the model fits to tension and compression were done separately, the study did not assess

the robustness or predictive ability of the models when applied to independent data. However,
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an Ogden model fitted to shear data has been able to predict the compressive behavior in an
independent experiment [Prange and Margulies 2002].

Most of the brain constitutive models assume the tissue to be incompressible. A term
including Iz or J, as in equation (1.8), can be used to model the volume change for a
compressible material. By including the volume change in one model, compressible and
incompressible models of brain tissue have been found to be indistinguishable [Laksari et al.
2012], agreeing with previous work showing brain tissue to be nearly incompressible [Holbourn

1943].

1.4.2 Inclusion of structural parameters into models

Microstructural approaches have been used to describe the specific mechanics of axon
and matrix components. Similar to fiber crimp in collagenous tissues, axonal undulation has
been observed in the guinea pig optic nerve via neurofilament staining [Bain et al. 2003]. The
recruitment of the axons while stretching was modeled to describe the gradual coupling of the
axons to the glial cells. This study provided evidence for non-affine mechanics of the axons and
glial matrix at low stretches, transitioning to increased affinity at higher stretches. In affine
mechanics, the structural components (axons) and bulk material (matrix) are coupled and
experience the same deformations, but in non-affine mechanics, the structural components can
deform separately from the bulk material. A non-affine model has been incorporated into finite
element analyses that treat the axons and matrix as separate materials, reporting the relative
stresses in each material [Karami et al. 2009, Pan et al. 2011]. It was found that greater
undulation resulted in relatively higher matrix stresses and lower axonal stresses [Karami et al.
2009]. When comparing this structural constitutive model to phenomenological hyperelastic

models, it was found that the Ogden and Fung hyperelastic models could match the overall
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behavior of the structural model, but a Mooney-Rivlin model resulted in higher errors [Meaney
2003]. While the undulation microstructural model can be useful for modeling the specific
mechanical response of axons and the glial matrix, hyperelastic models are sufficient for
modeling the tissue-level response.

Another structural modeling approach involves the measurement of axon volume
fraction. One group used volume fraction measurements to determine the difference between
axon and matrix properties. They estimated the complex shear modulus for axons and matrix
separately via shear experiments on the optic nerve and brainstem [Abrogast and Margulies
1999]. The axonal moduli were estimated from the optic nerve because it contains a high
volume fraction of axons (>90%), and the brainstem was taken as an axon-matrix composite to
estimate the matrix moduli.The brainstem contains a structure of bundled axons, and the
volume fraction was measured via histology with stained white matter and unstained grey matter.
In the brainstem, the axons had a volume fraction of 0.53+0.07, and were about three times
stiffer than the matrix [Abrogast and Margulies 1999]. While this study estimated volume
fraction of axons from the area of stained white matter, similar measurements have been made
using transmission electron microscopy, giving the ability to visualize individual axons [Kim et
al. 1996]. An axon-matrix composite finite element approach found that increasing the volume
fraction of axons increased the resulting stresses, with a greater effect at higher strains [Karami
et al. 2009]. While this approach defined two separate materials to give the difference between
axons and matrix, a single constitutive model could be used to describe white matter as a whole,
and incorporate the axon volume fraction as a parameter in the axonal term of the model.

Fiber dispersion has been incorporated as a parameter in constitutive models of soft

tissues. A parameter defining the statistical distribution of collagen fiber orientation has been
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incorporated into a Holzapfel hyperelastic model of blood vessel walls [Gasser et al. 2006]. This
parameter affects the degree of anisotropy in the fiber response. However, the dispersion
parameter was estimated via model fits rather than empirically measured. A similar modeling
approach has been used, with the exception that the distribution was experimentally derived.
This model was able to fit biaxial tests of pericardium [Sacks 2003]. Measures of dispersion
have not been incorporated into brain constitutive models even though some regions of the brain

such as the corona radiata show a high spatial distribution of axons (Figure 1.8

Figure 1.8: Histology section of ovine corona radiata stained for myelin with Luxol Fast Blue,
with the spatial distribution of the axonal orientation marked with dashed lines.

One goal of the current study is to incorporate empirical measurements of axon volume
fraction and distribution into a constitutive model describing the results from white matter

mechanical testing.

1.4.3 Viscoelasticity
Like most soft tissues, brain tissue is a viscoelastic mat@edause surgical operations

are dynamic (although low-speed) events, it is important for surgical simulations to model the
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viscoelastic behavior of brain tissue [Kyriacou et al. 2002]. Viscoelastic models can be generally
be divided into three categories: linear, quasi-linear, and fully nonlinear viscoelastic
formulations.

Under the assumption of linear viscoelasticity, the constitutive model for the @tyess
can be given as:

o(t) = [ E(t — 1) 2 dr, (1.10)
whereE(t) is the relaxation modulusy?) is the strain, and 1 is a time variable of integration. If
equation (1.10) is applied to cyclic strains, the stress can then be given in terms of a complex
modulus:

o(t) = (E' +iE"e(t) (1.12)

where E and £’ are the storage and loss moduli, respectively. Many studies have done
frequency sweep experiments for oscillatory shear, covering high strain rates. They are often
done at low strains, assuming linear viscoelasticity [Hrapko et al. 2008], and the reported
complex moduli are commonly implemented in computational models [Post et al. 2012, Zhang et
al. 2001]. However, linear viscoelastic models of brain tissue are only valid at low strains (less
than 0.01) [Nicolle et al. 2004]. Since the surgical operations involve larger strains [Garcia et al.
2012], it is suggested that nonlinear viscoelastic models should be used to accordingly predict
the internal tissue mechanics.

The Fung model of quasi-linear viscoelasticity is commonly used to model soft tissues
[Fung 1993]. In this model, the stress is expressed as a function of stjedol (ime {), at an

instance of time, using a single hereditary integral:

(e)
o(t) = [*, G(t— )2 2D g, (1.12)
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o® is the instantaneous elastic response, and is typically approximated by the stress response at a
high loading rate. When applied to brain tensile stress-relaxation experiments, the elastic
response has taken the form of an Ogden hyperelastic model (equation 1.6) [Rashid et al. 2014].
The reduced relaxation functidg(t) is normalized such th&(0) = 1. This function is often
simplified to be represented by a Prony series:

G()=1-Y",Ci(1—et%) (1.13)
where 1 are relaxation time constants, a@g are the corresponding coefficients. In this
formulation, the elastic response can be nonlinear, but the relaxation function does not take into
account nonlinearities in the relaxation with respect to strain magnitude. A fully nonlinear
viscoelastic model can better represent the nonlinearities in both the stress-strain relationship and
in the relaxation behavior with respect to strain magnitude.

One approach to modeling nonlinear viscoelasticity, which has been applied to spinal
cord tension [Shetye et al. 2014], defines the relaxation modulus in equation (1.10) as a function
of time and strain, such that

E(t, &) = Ex(e) + X1, Ei(e)e ™V, (1.14)
where E.. represents the long term steady state modulus, and; tm@duli correspond to the
time constantsE(g) can be defined as a quadratic function with coeffici@atandC:
E(g) = Cye + Cye?. (1.15)
This model uses a ramp correction method to account for finite ramp times in stress-relaxation
experiments [Troyer et al. 2012a], and was able to represent the spinal cord ramp response
[Shetye et al. 2014]. The experimental cyclic response of the spinal cord could also be predicted.

The model has effectively been implemented into a finite element analysis [Troyer et a]. 2012b
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The viscoelastic models of brain tissue have rarely considered the anisotropy of white
matter, and those that do account for directionally-dependent behavior have exclusively used
linear viscoelasticity [Abrogast and Margulies 1999, Feng et al. 2013, Nicolle et al. 2004].
However, anisotropic nonlinear viscoelastic models have been formulated for other soft tissues
[Bischoff et al. 2004, Nguyen et al. 2008]. Anisotropic viscoelastic behavior can be modeled in
multi-dimensional loading states, such as biaxial stress, by modifying equation (1.12) [Fung
1993]. a(t), G(t), anda'®(/) are replaced with the tens@gt), Gij(t), andS«®X(E), respectively,
whereSis the 29 Piola-Kirchhoff stress ané is the Green-Lagrange strain tensor, resulting in:

35 E@] 0E(D)
0E at dr

Sii(t) = f_too Gijra(t — 1) (1.16)

In the case of biaxial tension with negligible shear, there are three independent relaxation
functions: G111, G2222, and G112 These relaxation functions have been used to analyze the
stress relaxation in longitudinal and circumferential directions in a urinary bladder biaxial test
[Nagatomi et al. 2004]. This approach allows for a determination of the anisotropy of the
relaxation behavior separately from the anisotropy of the elastic behavior, and could be applied

to model the anisotropic viscoelastic behavior of brain white matter in biaxial tension.

1.5 Probabilistic Analysis

In biomechanics, computational modeling is used to make predictions about a system
response, which can be the motion of a joint, localized stresses and strains, or some structural
failure. Models are often based on a single geometry with material properties taken from
experimental means. However, in biological system data there are high variability in material
properties and geometries. Probabilistic modeling approaches have taken the variability into
account to predict the probability distribution of a response based on the distributions of the
input parameters (material properties, geometries, etc.). For example, a finite element model was
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used to assess the effects of the variability of ligament stiffness, attachment point, andereferenc
strain on the kinematic constraint on the knee joint [Baldwin et al. 2009]. Importance factors
were calculated to determine the relative specificity of ligament properties on the joint constraint.
As another example, a femur finite element model utilized the variability in bone stiffness and
strength relative to predicted properties derived from computed tomography scans [Keller 1994].
The model predictions of fracture risk found that the 1-99% probability range of risk was greater
than 50% of the mean risk [Laz et al. 2007].

In the brain, a probabilistic modeling approach could be used to predict the probability
distribution of model stress and strain predictions. The stress and strain response in the model
would be influenced, in part, by the distribution of the material parameters. One goal of this
study is to report the distribution of constitutive model parameters fitted to biaxial experimental
data, and to use this distribution to predict the distribution of the stress response.

Probabilistic methods start with the distribution of input parameters, which can be
defined by a number of statistical distributions (normal, lognormal, etc.). Combinations of the
input parameters are then sampled based on their distributions, and a model is used to predict the
output response. With enough sampling, the full probability distribution of the response can be
calculated. The Monte Carlo method of sampling is the gold standard probabilistic method. It
uses random sampling of the input parameters according to their distribution. It is simple and
robust, but requires thousands of trials in order to guarantee accuracy. Other methods are able to
achieve similar accuracy while using far fewer trials, which is advantageous if computational
cost is a concern. One common method is the advanced mean-value method which, in short,
uses a mean-based response to determine the most probable point for the model performance for

a given probability level [NESSUS Theoretical Manual]. The number of trials needed depends
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on the number of input parameters and the number of desired probability levels. It is
recommended to validate the use of the advanced mean-value method (or any other
approximation method) against the Monte Carlo method for any new model [Laz and Browne
2010]. The advanced mean-value method has accurately matched the Monte Carlo method in
previous probabilistic models, while reducing the computational time up to 400 fold [Baldwin et
al. 2009, Laz et al. 2007].

In addition to giving the probability distribution of the model response, probabilistic
methods can provide information about the sensitivity of the model to the input parameters.
Correlations are a starting point to determine the relations between parameters. Probabilistic
methods allow the computing of absolute sensitivity factors, defined as the derivative of the
model response probability with respect to the mean and standard deviation of the input
parameters, normalized by the standard deviation and probability [NESSUS User Manuall.
Importance factors can also be calculated to provide the relative importance of the parameters to

the probability of the model response.

1.6 Summary

The overarching goal of this stueyes to improve the anisotropic mechanical behavior
descriptions of brain tissue in computational models used for simulated neurosurgery.

Finite element models of the brain require accurate material models. Brain tissue exhibits
hyperelastic and viscoelastic qualities, with white matter being anisotropic and grey matter being
isotropic. This behavior has been determined through experiments in compression, shear, and
tension, and described using continuum models. However, there is a lack of data describing the
effects of multi-axial loading, even thoughvivo brain tissue is in a constant multi-axial stress

state due to fluid pressure. Data from uniaxial experiments do not sufficiently describe
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simultaneously applied multi-axial stresses. Therefore, biaxial tensile experiments were
developed to more fully characterize the anisotropic behavior of white matter in quasi-static and
dynamic loading states, and elucidate any interaction effects arising from a biaxial state of stress.

Many studies derive material definitions from a mean behavior of tissues assumed to be
homogeneous. However, the properties of white matter have been shown to be regionally
dependent. Also, axonal orientation can be heterogeneous in certain regions of the brain, and the
resulting anisotropy can have substantial effects on brain finite element model predictions.
Moreover, there is a lack of information relating the mechanical behavior of a given specimen to
its specific structural properties. Linking the mechanical behavior of white matter to the
orientation, spatial distribution, and volume fraction of axons can provide important insight with
respect to the structure-function relationship of the tissue and allow for more accurate material
models and computational predictionthe mechanical data of brain tissue exhibit a high degree
of variability. Probabilistic analyses can be utilized to quantify the uncertainty in model
predictions arising from input parameter variability.

The purpose of this study was to use a combined experimental and computational
approach to describe the biaxial mechanics of brain white matter in both static and dynamic
loading scenarios, and to gain a deeper understanding of the relationship between brain tissue

structure and mechanical behavior.

1.7 Specific Aims

In order to achieve the aforementioned goals, we have proposed the following specific aims:

Specific Aim 1: Perform quasi-static biaxial experiments in order to describe the anisotropic

material behavior of brain white matter.
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A procedure was developed to test the biaxial mechanics of white matter under quasi-
static loading in order to establish an anisotropic hyperelastic model formulation. Experiments
were performed on fresh ovine brain white matter from two regions: the corona radiata and the
corpus callosum. The testing protocol utilized three biaxial displacement ratios as well as
uniaxial loading tests in both directions. An anisotropic Ogden constitutive model wascfitted t
the experimental data. The results were the first to characterize the biaxial mechanical behavior

of brain tissue, which can contribute to elevating the accuracy of computational models.

Specific Aim 2: Model the biaxial experiments using an anisotropic continuum model that

incorporates measured structural parameters.

The mechanical behavior of each specimen from the biaxial experiments were related to
structural parameters measured via imaging analyses. The following imaging analyses were
performed:

e Histology was performed to define axon orientation and distribution.
e Transmission electron microscopy was used to measure axon volume fraction.

In order to test a variety of structural properties, specimens were used from two anatomic
locations: the highly aligned corpus callosum and the more disperse corona radiata. The
measured structural parameters were incorporated into the anisotropic axonal term of the
constitutive model. The model was analyzed using a probabilistic (i.e. stochastic) approach to
guantify uncertainty in the stress predictions due to variability in the model parameters. It was
hypothesized that the inclusion of measured structural parameters into the model would decrease
the variability of the model predictiong.his would allow for greater certainty in the predictions

made from computational models.
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Specific Aim 3: Model the anisotropic nonlinear viscoelastic properties of white matter via

biaxial stress-relaxation and cyclic loading experiments.

Because brain tissue exhibits viscoelastic properties, characterizing the quasi-static
behavior does not provide enough information for accurate models. The developed biaxial test
was extended to characterize the anisotropic viscoelastic properties of white matter. The biaxial
testing setup developed in Specific Aim hswsed to perform biaxial stress-relaxation and
cyclic loading experiments. In order to determine the nonlinear (strain-dependent) viscoelastic
properties, the experiments utilized a variety of equibiaxial strain magnitddesbiaxial tests
also allowed for the anisotropy of the time-dependent behavior to be determined separately from
the elastic behavior. An anisotropic viscoelastic constitutive madsl fitted to the stress-
relaxation experiments, and the model was assessed via predictions of cyclic experiments.
Additionally, the distribution of the model parameters was determined and used to find the
probability distribution of model stress predictions and the sensitivity of the model to the

variance of the input parameters.
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2. AN ANISOTRPIC HYPERELASTIC CONSTITUTIVE MODEL OF BRAIN WHITE

MATTER IN BIAXIAL TENSION AND STRUCTURAL-MECHANICAL RELATIONSHIPS

2.1 Introduction

Accurate characterization of the mechanical behavior of brain tissue is required for
computational models used for simulated neurosurgery. These models are useful for surgeon
training, operation planning, and image registration to account for intraoperative brain shifts
[Ferrant et al. 2001, Miller 2011]Examples of surgical procedures include craniotomies, tumor
debulking, and injections for drug delivery [Chan et al. 2013, Garcia et al. 2012]. Computational
models require accurate constitutive descriptions of the stress-strain relationship to compute the
finite deformations that occur during exogenous loading and surgical procedures.

White matter is structurally anisotropic due to the alignment of axon tracts connecting
various regions of the brain. White matter has also been shown to be mechanically anisotropic
via in vitro experiments in uniaxial tension, shear, compression, and indenfiaéng et al.

2013, Ning et al. 2006Prange and Margulies 2002, Velardi et al. 2006]. This mechanical
behavior has been modeled using transversely isotropic hyperelastic continuum models that
contain an isotropic term to describe the glial matrix and an anisotropic term to describe the
axonal contribution [Feng et al. 2013, Ning et al. 2006, Velardi et al. 2006]. Each of these
experiments have demonstrated anisotropy by testing the tissue in directions parallel and
perpendicular to the axons, with the axonal direction being stiffer in tension and shear than the

transverse direction. However, the aforementioned mechanical characterization of white matter

1 This chapter is in press for publication as a Research Article in the Journal of the
Mechanical Behavior of Biomedical Materials (doi:10.1016/j.jmbbm.2016.05.003). The
text and figures have been adapted from Elsevier.
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was limited to testing in one direction at a time, and uniaxial testing is insufficient to uniquely
characterize the material [Smith and Garcia 2013]. Accordingly, there is no information on the
mechanical behavior during simultaneous multi-axial loading. The behavior in a multi-axial
loading state may differ due to structural interactions between the axons and interconnected glial
cells [Shreiber et al. 2009]. The multi-axial mechanics of the brain are relevant due to the
intracranial pressure and the complex loading that is typically experienced during surgical
procedures. Biaxial tensile tests can be used to better determine any multi-axial mechanical
interactions that are present and better simulate the inherently constrained loading to which the
brain is subjected tim vivo.

Computational models of the brain are typically based on a single geometry with material
properties derived from experimental cohorts. However, these models lack information on the
variability of the specimen population and usually adopt mean values. Probabilistic modeling
approaches take into account the variability of input parameters (geometry, material properties,
etc.) to predict the probability distribution of a model response instead of relying on the mean
response [Laz and Browne 2010]. In studies of the brain, this approach would be useful for
providing a measure of uncertainty in surgical simulations or for predicting the probability of an
event such as an injury [Bain and Meaney 2000]. It is therefore advantageous to provide
probability distributions in the derivation of material constitutive models and to use accurate
models to minimize uncertainty in their resultant predictions.

Many studies derive material definitions from a mean behavior of tissues assumed to be
homogeneous. However, the properties of white matter have been shown to be regionally
dependent [Prange and Margulies 2002, Velardi et al. 2006]. Axon orientation can be

heterogeneous in certain regions of the brain, and the resulting anisotropy can have substantial
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effects on brain finite element model predictions [Colgan et al. 2010, Wright and Ramesh 2012].
Some promising modeling approaches for biological tissues have incorporated a fiber dispersion
parameter into constitutive models [Gasser et al. 2006, Sacks 2003], while other research groups
have used axon volume fraction measurements in a composite modeling approach of brain tissue
[Abrogast and Margulies 1999, Karami et al. 2009]. However, there is a lack of information
relating the mechanical behavior of a given specimen of brain tissue to its specific structural
properties. Linking the mechanical behavior of white matter to the structural properties of axons
may provide important insight with respect to the structure-function relationship of the tissue and
allow for more accurate material models and computational predictions.

The purpose of this study was to develop a robust testing procedure to perform a biaxial
test of brain white matter and to model the mechanical behavior using an anisotropic hyperelastic
continuum model.In order to achieve this aim, we related the axon orientation, distribution, and
volume fraction to the mechanical behavior of white matter speciméifsese measured
properties were implemented into a structurally-based constitutive model, and a probabilistic
analysis was used to determine if the structural model decreases uncertainty in the model stress
predictions compared to a standard hyperelastic model.

2.2 Methods

Biaxial tensile experiments were performed on white matter from the corona radiata and
corpus callosum of ovine brains. Histology and transmission electron microscopy were used to
make image-based measurements of structural properties of the axons. Biaxial experiments were
fitted to anisotropic hyperelastic constitutive models with and without the implementation of

measured structural properties.
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2.2.1 Parametric series and pilot studies on biaxial geometry effects

A preliminary finite element study investigated the effects of specimen geometry on the
degree of homogeneity of the central region strain field for clamped specimens. Models were
created using ABAQUS (ver. 6.11, Simulia, Providence, RI) for four geometries: square,
cruciform, cruciform with rounded corners, and octagon. Since the purpose of the preliminary
study was to guide the selection of specimen geometry and not to investigate the effects of
material properties, a simple linear elastic model was used with an elastic modulus of 3200 Pa
and Poisson’s ratio of 0.499 [Miller et al. 2000]. Identical displacement boundary conditions
were applied to each model in a 1:1 displacement ratio. A 2 mm displacement applied in each
direction corresponded to an 8% global straBtrains were analyzed in a central 5mm square
region of interest by measuring the homogeneity of the strain field and the shear strain.

For all four model geometries, the longitudinal strain at the center node was consistent,
ranging from 6.18% to 6.43%. The cruciform geometry resulted in the most homogeneous strain
field within the region of interest, with a range of strains of only 0.29%. The cruciform also
demonstrated the lowest shear strain (0.86%) within the region of int&tgstugh the material
model was simplified, this preliminary study directly compared biaxial geometries. A more
extensive study similarly showed lower stress concentrations and improved load transfer to the
region of interest for a cruciform shape as compared to a perfectly square geomebry ¢iad.

2013]. This result was found to be the case for both isotropic and transversely isotropic models.

In a separate finite element study, the thickness of the model was varied to analyze the
effects, if any, of thepecimen’s aspect ratio. While it is ideal to have very thin specimens (high
aspect ratio) in order to satisfy the plane-stress assumption in a biaxial analysis, it is also

necessary to have a specimen thickness that allows for consistent dissection of the very soft
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tissue. In this study, the thickness was varied on the cruciform model to produce aspect ratios of
2:1, 3:1, 5:1, 10:1, and 50:1, and these model variants were compared to a two-dimensional
plane-stress model. The same 2 mm displacement loading conditions were applied, and the out-
of-plane and longitudinal stresses were measured at the center of each model.

It was found that the maximum out-of-plane stress and the percent difference in
longitudinal stress from the plane-stress model both decreased and approached zero with
increasing aspect ratio. An aspect ratio of 3:1 was determined to sufficiently satisfy the plane-
stress assumption because the percent difference in longitudinal stress was less than 1%.
Additionally, the out-of-plane stress was 3.9 Pa, compared to 200 Pa in the longitudinal
direction.

Based on the results of these pilot studies, the biaxial experiments were conducted using
a cruciform shaped specimen with an aspect ratio of 3:1. The cruciform shape demonstrated the
most homogeneous region of interest and lowest shear, and the 3:1 aspect ratio sufficiently
satisfied the plane-stress assumption.

2.2.2 Dissection

Ovine brain tissue specimens were dissected immediately (less than one hour) after
animals were euthanized for unrelated studies. Testing was performed on white matter
specimens from two regions of the brain: the corona radiata and the corpus callosum (n =9
samples for each region). Axons in the corona radiata extend radially outward from the globus
pallidus to the cerebral cortex in both hemispheres of the brain. Corona radiata specimens were
dissected by removing a slice from one brain hemisphere in the sagittal plane, halfway between
the mid-sagittal plane and the outer edge of the brain, using a custom drop slicer with two blades

spaced 2 mm apart (Figure 2.1). From this slice, a cruciform shape was punched such that the
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central square contained only white matter between the globus pallidus and the cerebral cortex.
The corpus callosum is a wide thin structure located centrally in the brain and connects the two
hemispheres. The corpus callosum was isolated from an intact brain, and slices were cut using a
scalpel to separate the corpus callosum from the adjacent grey matter. A cruciform shape was
punched from one lateral side such that the central square of the specimen did not include the
midline bifurcation, where the septum pellucidum meets the corpus callosum, in order to avoid

an inhomogeneous structure in the region of interest. Specimen shapes were punched such that
the dominant axonal direction was visually coincident with one of the loading directions. The
actual orientation was determined past hoaneasurements from histology sections.

After isolating slices, but prior to punching the cruciform shape, each slice was placed on
a plate and submerged in saline. The low friction environment allowed the slice of tissue to
return to a state of equilibrium stress, minimizing residual stresses that were induced by handling
of the tissue. While it has been reported that residual stresses can alter the in vivo mechanical
environment of the brain [Xu et al. 2009], we did not observe any gross deformations after
cutting the cruciform shape.

In order to perfornpost hoccalculations of the imposed stress, the cross sectional area of
specimens was determined. Specimen thickness was determined via electrical connectivity
measurements in which the specimen was placed on a conducting plate, which was connected to
one lead of a voltmeter. The other lead was attached to a fixed caliber and lowered to the top
surface of the specimen until contact was achieved, as detected by a change in voliage (Fig
2.1).

Thespecimen’s width and length were measured optically by imaging the specimen with

a ruled scale, and measuring the dimensions using ImageJ. The mean thickness was 1.9 mm, and
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the mean width was 7.0 mm. Pilot studies on larger specimens (12mm x 4mm) had resulted in
heterogeneous specimens that included some grey matter as well as a highly variable distribution
of axon orientation. Therefore, the specimen size was reduced by approximately 50% in each
dimension. Extreme care was taken throughout the dissection process so as not to stretch the
very soft, easily damaged tissue. Specimens were kept hydrated with periodic saline spray. All
testing was completed within six hours post-mortem in order to minimize any changes due to

tissue degradation [Garo et al. 2007].

L Q‘ Wz

Figure 2.1: (A) A custom slicer was used to cut specimens of uniform thickness. Red lines
indicate freedom of movement for manual slicing. (B) Thickness was measured via electrical
connectivity. Cruciform specimens were dissected from either (C) the corona radiata from slices
in the sagittal plane, or (D) the corpus callosum from slices in the transverse (horizontal) plane.

2.2.3 Testing Setup
In order to obtain a true state of biaxial tension and minimize shear, all four specimen

grips must be unrestricted for lateral movement while the specimen is being tensioned.
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biaxial test of biological tissue, this is usually accomplished by gripping the specimen with
sutures, and the wire is free to rotate around a pivoting point. However, brain tissue is too soft to
grip with sutures without tearing. Also, it was found that the weight of the brain specimen, when
suspended from wires, was sufficient to produce a pre-tension that is higher than desired. In
order to allow for free lateral movement without suspending the specimen, foam grips were
designed to float the specimen on the surface of a saline bath. Each specimen was attached to
four floating grips via a cyanoacrylate adhesive (Figure 2.2). Each grip was thencattatiiee

biaxial testing apparatus via a wire that was of sufficient length such that unrestricted rotations of
the wire about a pivoting point resulted in lateral movement of the grips. Two of the grips were
attached to linear actuators (T-LLS, Zaber Technologies Inc., Vancouver, BC, Canddhg a
remaining two grips were attached to 250 gram capacity load cells (Model 31, Honeywell
Sensotec, Columbus, OH). The saline bath ensured that the specimen remained hydrated

throughout the test.

2.2.4 Experiments

Specimens were initially loaded to a preload of 1.0 mN (mean stress of 71 Pa). This was
followed by an initial preconditioning regimen of five cycles at a 1:1 (axonal: transverse)
displacement ratio, which stretched the specimen to the highest stretch levels experienced
throughout testing in order to have a reproducible loading history [Cheng et al. 2009]. After 10
minutes of recovery time, the experiment consisted of three biaxial tests at 1:1, 1:0.5, and 0.5:1
displacement ratios, and two uniaxial tests, all in a randomized order. For the uniaxial tests, the
grip attachments (i.e. constraints) were removed in the non-tested direction. The maximum
displacement for each test was 3mm, which corresponded to a mean stretch of 1.15. Each test

was performed for five cycles at a rate of 0.05 mm/s in the direction of greater stretch (mean
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strain rate of 0.0025%, and the specimen was allowed to recover for 10 minutes between each

test.

—‘. "'. A { ‘ - \
g ol P— ] saline bath

Figure 2.2: (A) Biaxial testing setup showing specimen floating on saline bath and connected to
two load cells and two linear actuators. (B) The grip design is shown, along with the side view

(©).

In order to track the deformations, graphite powder was dusted on the top surface of the
specimens, and images were recorded throughout each test. Stretches were calculated via a
MATLAB-based digital image correlation program. The digital image correlation was used to
create strain maps of the entire specimen area, as well as calculate average stretchthialues in
region of interest, which was defined as a 15x15 mesh, creating a 2.4 mm square in the center of
the specimen. Image resolution was determinéd 8@ pm/pixel
2.2.5 Structural Analysis

Post hocstructural imaging analyses were performed on the specimens used for the

biaxial experiments. Histology was performed on planar sections in order to measure two
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structural parameters: mean axonal orientatis) &nd axonal distributionxf. Transmission
electron microscopy (TEM) was performed on cross-sectional cuts in order to obtain the
resolution necessary to image individual axons and measure the axonal volume fiatam (

et al. 1996]. In order to get planar sections for histology and cross-sections for electron
microscopy, each cruciform specimen was cut at the base of the two arms whicleextehd

axonal direction. For each of the two arms, electron microscopy sections were taken in the plane
of the cross-sectional cut. The remaining central square was processed for histology and

sectioned in the plane of testing.

2.2.6 Histology

Immediately after mechanical testing, cut specimens were stored in 10% buffered
formalin phosphate solution for at least two weeks. Specimens were dehydrated using a series of
ethanol washes, embedded in paraffin wax, and cut to 10 pm thick sections using a microtome.

All sections were cut in the plane of testing, and five slides were produced per specimen, with
sections taken throughout the thickness. Slides were deparaffinized and stained for myelin using
Luxol Fast Blue.

Transmitted light microscopy images were analyzed using a custom MATLAB program
that overlaid a 6x6 grid of lines onto the same central region of interest that was used for the
biaxial strain measurements. Each line was aligned with the local axonal orientation (Figure
2.3). The mean orientatio{) was calculated as the arithmetic average angle of the lines
relative to the axis of loading that had been visually aligned with the axons upon dissection.
Since the direction of the angle is irrelevant to the modelingyvas defined as the absolute

value of the mean angle.
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The axonal distribution parametes) (vas originally derived to describe the distribution

of collagen fibers in arterial walls [Gasser et al. 2006]. The parameter is defined as:
k= = p(8)sin®()do (2.1)
where § is a random variable defining the fiber angle, ap@ is a normalized fiber angle
density function of the form:
Jy p(8)sin(6)d6 = 2 (2.2)
K can range between 0 and 1/3, with x = O representing perfectly aligned axons and 1/3
representing randomly aligned axons resulting in an isotropic material. Equations (2.1) and (2.2)

were used to calculate k from the distribution of orientations of the grid points overlaid on the

specimen images. Means were calculated from the five sections per specimen.

Figure 2.3: Image of biaxial specimen showing the grid used for measuring mean axon
orientation and distribution. The lines overlaid on the right image were manipulated by the user
to be aligned with the local orientation of the axons. The angle of each line relative to the

specimen orientation was measured and used to caléwlatelx.

2.2.7 Transmission Electron Microscopy
Immediately after testing, the specimen arms in the axonal direction were fixed in a 2%

glutaraldehyde, 2% paraformaldehyde phosphate buffer solution overnight. After fixation, the
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specimens were washed with phosphate buffer and cut to six Imm blocks per specimen (three
blocks per arm). The blocks were stained with 2% osmium tetroxide for one hour, dehydrated
through a series of ethanol washes, and embedded in an epoxy resin. Blocks were sectioned to
90nm using an ultramicrotome, mounted to grids, and stained with uranyl acetate and lead
citrate. The sections were imaged at 15,000X magnification using a transmission electron
microscope (JEOL 140QEOL USA Inc., Peabody, MA). Three images were taken at random

locations from each of the six blocks to get 18 total images per specimen.

; k. N7 W ; /

Figure 2.4: Segmented TEM image of a corpus callosum specimen. The segmented axons are
shaded green, and the measurements were only taken within the dotted-line rectangle.

Axon volume fraction measurements were made by manually segmenting the axons in
the image using a custom MATLAB segmentation program and measuring the area fraction

(Figure 2.4). The volume fraction was taken as the mean measurement from the 18 images.
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Myelinated axons were abundant and could easily be distinguished by the dark layered rings of
myelin surrounding the axons. Unmyelinated axons were uncommon but could be distinguished
from glial cells by their round shape and the presence of microtubules. On the other hand,
oligodendrocytes were larger, irregularly shaped, and had a dark-stained nucleus and cytoplasm.

Astrocytes were also larger and irregularly shaped, but with a light colored cytoplasm.

2.2.8 Modeling

Two modeling approaches were used to represent the mechanical data. The first “basic”
model was an anisotropic form of an Ogden hyperelastic strain energy density function, and the
second “structural” model incorporated the measured structural parameters into the same
function. Both models were formulated as functions of the principal stretGheg/ith shear

strains assumed to be negligible, the three-dimensional deformation gradient Fertsor,be

simplified as:
A, 0 0
F=(0 4, 0 ] (2.3)
0 0 A

where A1 and A are the measured stretches in the two tested directions, and A3 is the stretch in the

out-ofplane direction. The tissue was assumed to be incompressible; therefore Az can be found

by:
Ay = A;z. (2.4)
In order to describe the anisotropy of the axons, the stretch invianaas used:
I, = ay-C-ay, (2.5)

whereap is a vector describing the axonal orientation, which was debigede measure€n for

both the basic and structural models, @vd F'F is the right Cauchy-Green strain tensor.
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The stress-stretch relationship for the basic model utilized a modified Ogden anisotropic
hyperelastic strain energy density functid¥) (wvhich has been shown to fit the stress-stretch
relationship of brain white matter in uniaxial tension [Velardi et al. 2006]:

W= 20 +28+2§-3) + 227 +2,7* - 3), (2.6)
where the three parametersa, andk represent the infinitesimal shear modulus, nonlinearity,
and anisotropy, respectively. This function has been shown to fit the stress-stretch relationship
of brain white matter in uniaxial tension [Velardi et al. 2006]. To determine the relationship
between the axonal structure and the mechanical behavior of the biaxial specimens, the measured
structural parameters andf, were correlated to each of the fitted basic model parameters
andk using a linear regression.

The formulation of the structural model was derived from the linear regression bé&tween
andfa. Thek parameter from the basic model was replaced Witfi ¢+ ko), wherek’ is the new
anisotropic model parameter, atgl is the intercept of the linear regression. The axonal
distribution parameterf acts to disperse the anisotropic alignment by replaaingthe strain
energy density function with the following term [Gasser et al. 2006]:

I, = (kl; + (1 —3k)1,) (2.7)
wherel, = trace() is the first strain invariant. When= 0, equationZ.7) reduces back th,
representing perfectly aligned axons. When= 1/3, equation (2.7) reduces to (143)
representing perfectly isotropic behavior. With bfatlandx incorporated, the structural model

takes the final form:
W= 2BAF + 2% + 25 = 3) + (K fu + ko) 25 [(ely + (1 = 31)1)%/% + 2(cly + (1 = 3K)1,) /% = 3].

(2.8)
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The structural paramete#, x, and & were defined for each specimen independently and
incorporated into equation (3.8
In order to fit the experimental dathg theoretical Cauchy stress (o) of each model was

calculated using the equation:

c=27'F-22

- FT, (2.9)
where J is the determinant oF and was set to unity in order to impose the condition of
incompressibility. The experimental Cauchy stress in each direction was calculated as
(P/A)Zi, whereP is the force and\ is the undeformed cross-sectional area. The models were
fitted to the experimental data from each test usingftm@con function in MATLAB to
minimize the percent error. Theparameter was constrained to be greater than zero, avhile
andk were unconstrained. One set of model parameters (per model) was determined for each
specimen by simultaneously fitting all five mechanical tests.

In order to test the robustness of the basic model and the value of using biaxial and
uniaxial tests, predictions of the mean experimental data were made using model fits. The
corpus callosum and corona radiata specimens were combined into a single data set, and
experimental means were determined for each stress-stretch curve. The model was fitted to only
the two uniaxial tests for each specimen individually, and the mean model parameters were used

to predict the stress for the three biaxial tests (not used in the fits). Separately, the model was

fitted to the three biaxial tests, and the mean model was used to predict the two uniaxial tests.

2.2.9 Probabilistic Analysis
A probabilistic analysis was performed to report the probability distribution of the fitted
basic and structural models and to probe the effectiveness of the structural modeling approach to

decrease the variability in the model (and thus improve the certainty of model predictions). The
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statistical distribution of the fitted model parameterso, k, andk’) was determined by fitting

17 candidate parametric distribution functions to the empirical probability distribution of the data
using theallfitdist function available in MATLAB and choosing the best fit distribution. The
allfitdist function ranks all candidate distributions according to multiple criteria, including the
negative of the log likelihood, Bayesian information criterion, and Alkaike information criterion
with a correction for finite sample sizes. The results were also checked visually for fits to the
probability distribution and the cumulative distribution.

The chosen distribution and natural parameters (e.g. mean and standard deviation) of the
model variables were used in the probabilistic analysis. NESSUS software (Southwest Research
Institute, San Antonio, TX) was used to determine the effects of the fitted model parameter
variability (i.e. scatter) on the resulting model stress predictions at given levels of stretch for
equibiaxial and uniaxial stretches. A Monte Carlo sampling method of 100,000 samples was
used to determine the cumulative probability function of the stress predictions at each given
stretch. Additionally, the global sensitivity of the input variables on the predicted stress was
determined using a variance decomposition method. The variance of the output is affected by
the variance of the input parameters. The sensitivities include first order (direct) effects of each
input parameter on the output variability, and higher order effects of the interaction between
input parameters on the output variability. Each sensitivity effect can range between zero and

one, and the sum of all sensitivities is equal to one.

2.2.10 Stress Correlation
Because of boundary effects and stress concentrations, the stress at the center of a
specimen in a biaxial test is not equal to the mean stress through the grips. In other words, the

stress in the region of interest is not equal to the force divided by the cross sectional area. The
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stress in the region of interest can be estimated by finding a correlation factor via finite element
modeling [Jacobs et al. 2013]. For an isotropic material in a cruciform geometry, this correlation
factor is 0.76; however, this factor is dependent on material behavior/parametersssuch a
anisotropy and Poisson ratio [Jacobs et al. 2013]. In order to calculate the stress in the biaxial
tests, an initial correlation factor of 0.76 was applied to the Cauchy stress calculation. For each
test of each specimen, the basic model was fitted to the new stress-stretch data, and the fitted
model was implemented into a specimen-specific finite element model. This model was used to
find the next iteration of the correlation factor in each direction for the mean stress in the region
of interest. The constitutive model was re-fitted, and this process was iterated until convergence
was achieved.

This should be regarded as an estimate derived from a finite element model prediction; it
is not an empirical measurement of the local stress. This correlation factor is dependent on many
variables, including the anisotropy and stretch in each direction, and any heterogeneity in the
specimen makes the accuracy of this method intractable to discern. Because this correlation
factor is not an established method, the basic model was also fitted to the data with no correlation

factor and the data were reported herein in order to provide availability to both data sets.

2.3 Results

2.3.1 Strain Measurements

Strain maps demonstrated a high degree of homogeneity of the strain field in the central
region of the specimens (Figure 2.5). Within the defined region of interest of each speamen, th
mean and standard deviation of strains were measured. The average of the standard deviations

within the region of interest was 18% of the mean strain (Tabje 2.1
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Figure 2.5: Typical strain maps from a 1:1 test showing strain (A) in the horizontal (axonal)
direction, (B) the vertical (transverse) direction, and (C) the shear strain. The squares in the
center represent the region of interest from which the mean stretches were measured.

Table 2.1: The mean strains measured within the region of interest. Standard deviations
represent the average of standard deviations within the region of interest for each test (a measure
of the homogeneity of the strain fields).

Axonal strain Transverse strain

Loading ratio (Mean £ S.D.) (Mean £ S.D.) Shear strain
1:1 0.151 £ 0.025 0.123 £ 0.024 0.023
1:05 0.160 + 0.033 0.058 + 0.017 0.019
05:1 0.083 £0.018 0.142 + 0.028 0.019
Uniaxial Axonal 0.172 £ 0.026 -0.055 £ 0.012 0.013
Uniaxial Transverse -0.053 +0.014 0.157 £ 0.026 0.009

The testing setup also effectively resulted in minimal shear, with a peak shear strain that
was on average 11% of the greater of the two longitudinal strains. To determine the sensitivity
of the longitudinal stress to the shear strain, the theoretical stress was calculated in each direction
based on the mean fitted coefficients. For the calculations, the strains were set at the mean
strains shown in Table 2.1 for each testing ratio. The shear strains were swept from 0 to 0.07
(the maximum shear strain measured in any single test). The percent difference from the zero-

shear state was determined for each longitudinal stress. The uniaxial stretch in the axonal
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direction was the loading case most sensitive to the shear stif@nmeasured shear strainglha
a mean impact of less than 1% on the resultant model stress; therefore, the assumption of

negligible shear was deemed appropriate.

2.3.2 Biaxial Experiments and Modelling

The experimental results demonstrated a typical nonlinear hyperelastic shamge to th
stress-stretch curves. With the basic model fitted simultaneously to all five tests of each
specimen, the mean percent error was 18%. The resulting parameters are reported both with and
without the correlation factor applied to the data (Table 2.2), and the data with the correlation
factor were used for the remainder of the analysis. The correlation factor was generally greater
in the axonal direction than the transverse direction. In the axonal direction, the means in the
1:1, 1:.0.5, 0.5:1, and uniaxial tests were 0.80, 0.86, 0.73, and 0.98, respectively. In the
transverse direction the means were 0.77, 0.74, 0.80, and 0.85, respectively. Because of the
greater stiffness in the axonal direction, there was a greater transfer of stress and steain to th
central region of interest, which was also reflected in greater experimental strain measurements
in the axonal direction (Figure 2.5, Table 2.1None of the parameters were significantly
different between the two regions (p = 0.89 fomp = 0.97 fora, and p = 0.22 fok, usinga
student’s t-tests). With the two regions combined, tkgparameter mean was significantly
greater than zero (p = 0.043, using student’s t-test), indicating that the average white matter
tissue was stiffer in the axonal direction than in the transverse direction. However, the results for
k were highly variable, and some specimens even had a negative value, indicating a stiffer
response in the transverse direction.

When the basic model was fitted to the uniaxial data and used to predict the mean stress

of the biaxial tests, andce versathese combined predictions had a mean percent error of 46%.
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Table 2.2: Fitted model parameters for data with and without the correlation factor applied (mean

+ standard deviation).

H (Pa) o Kk
Correlation Corona radiata 480 + 230 24 +6 0.14 +0.37
factor Corpus callosum 460 + 270 24+6 0.54 + .83
No correlation Corona radiata 610 + 290 23+6 0.09 +0.49
factor Corpus callosum 580 + 350 235 0.48 £0.74
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Figure 2.6: Model predictions of the mean experimental stress-stretch curves. The two separate
uniaxial tests are shown together on a single plot. Error bars show standard error of the mean.
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When the model was fitted to all 5 tests simultaneously, the predictions of the experimental data
demonstrated a reduced error (26%), however, in many cases, these predictions also fell outside
of one standard error envelope of the mean (Figure 2.6). Most notably, the model over-predicts

the stress in both uniaxial tests and under-predicts the stress in the transverse direction of the

1:0.5 test.

2.3.3 Structural Analyses

Histology measurements showed that the mean #@hglas significantly greater for ¢h
corona radiata specimens than for the corpus callosum specimens (p = 0.004, Wilcoxon rank sum
test); the mean + standard deviation was 7.9 + 6.8 degrees for the corona radiata and 1.4 + 0.9
degrees for the corpus callosum. This confirms that the axons were generally well oriented in
the direction of loading, especially for the corpus callosum specimens. The measured distribution
x was also significantly greater for the corona radiata specimens than for the corpus callosum
specimens (p < 0.001, Wilcoxon rank sum test). The mean + standard deviation was 0.066 +
0.034 for the corona radiata and 0.012 + 0.008 for the corpus callosum. The corpus callosum
measurements demonstrate thaapproximates zero, indicating that the axons in the corpus
callosum were highly aligned. Conversely, axonal orientations in the corona radiata were more
distributed, which corresponds with an observed fan-like pattern, in which the axons were
oriented radially. From TEM images, the measurdvas nearly identical for the two regions;
the mean + standard deviation was 0.31 + 0.06 for the corona radiata, and 0.32 £ 0.05 for the
corpus callosum.

Even though there were significant regional differences in the orientation and distribution
of axons, these differences were not manifested in the mechanical testing results. The fitted

model parameters showed no differences between regions. However, the mechanical and
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structural data were further analyzed on an individual specimen basis. Each measured structural
property was plotted against each model parameter, and a linear regression was performed to
determine if a correlation existed. Wh#lg andx showed no distinguishable correlations with

any of the model parametefsdid have a significant positive correlation with thparameter (p

< 0.001, Fisher’s Z transformation on the correlation coefficient) (Figure 2.7). The linear

regression gave the relationship= 9.0f, — 2.6, with a coefficient of determination i6f= 0.58.
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Figure 2.7: The measured axon volume fraction had a positive correlation with the anisotropic k
model parameter. One data point was removed as a result of an outlier analysis.

2.3.4 Probabilistic Modeling

The formulation of the structural model was derived from the correlation bekneaaoh
fa, andk from the basic model was replaced with/ — 2.6), matching the equation of the linear
regression. The parameters for the basic model and structural model were used to find the best-
fit statistical distributions, which were subsequently used to define the probabilistic analysis. For
the basic modelp exhibited a lognormal distribution with the mean ofulnEé 6.1 and the
standard deviation of Ipj = 0.53 (withp in Pa). Thea parameter exhibited a Weibull

distribution with the scale = 23 and the shape = 4.5. Kiparameter exhibited a generalized
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extreme value distribution with the shape = 0.18, scale = 0.44, and location = -0.071. For the
structural modelp exhibited a lognormal distribution with the mean ofunE 6.1 and the
standard deviation of Ipj = 0.54 (withp in Pa). Thea parameter exhibited a Weibull
distribution with the scale = 23 and the shape = 4.4. iThearameter exhibited a normal
distribution with the mean = 9.0 and standard deviation = 1.4.

The probabilistic analysis had a high variability in the stress predictions ¢RA@RE) A
measure of variability was found by taking the differences between the 5% cumulative
probability curve and the median (50% cumulative probability) curve, and between the 95%
curve and the median curve. In an equibiaxial prediction, the variability in the axonal stress
decreased by a mean of 13% from the basic model to the structural model, and the variability in
the transverse stress increased by 6.8%. For the uniaxial predictions, it decreased by 16% in the
axonal direction, and increased by 5.8% in the transverse direction.

Using the variance decomposition method, it was found that the basic model was much
more sensitive than the structural model toKlter £ ") parameter (Figure 2.9). The sensitivities
were dependent on the level of stretch. For both models at low stretch levels, the sengitivity to
was very high, and the sensitivity dovas close to zero. At higher stretches, the sensitivity to p
decreased, and the sensitivity to increased. This trend was expected becauses
representative of the infinitesimal modulus, and representative of the nonlinearity, therefore

its effect on the model increases as stretch increases.
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2.4 Discussion

2.4.1 Experiments and modeling

The current study was the first to investigate the biaxial tensile mechanics of brain white
matter. The experimental design allowed for reliable specimen preparation from fresh tissue,
and the testing setup successfully minimized shear strains and produced relatively homogeneous
strain in the region of interest. The minimal shear strains that were present were likely due to
imperfect symmetry in the testing setup, nonzero axon orientatig))of inhomogeneity in the
tissue itself. The chosen anisotropic Ogden model was able to fit the data reasonably well, with
a mean error of 18%. While this error may seem somewhat high for a model fit, it should be
noted that the model was fitted to ten curves simultaneously (two directions of stress for each of
five tests), and much of the error could be attributed to experimental variability between tests.
More complicated model formulations were used in an attempt to better fit the data but showed
little improvement in the fits and poorer predictions of the mean experimental data. A two-term

Yeoh model with an exponential anisotropic term took the form:
W = Cio(ly = 3) + Cpo(ly — 3)? + 2 (eleteD?) — 1), (2.10)
2

whereCyo is half the infinitesimal shear moduluS;o is a nonlinear isotropic parameter, dad
and ko are the linear and nonlinear anisotropic parameters, respectively. The fits were only
slightly better with this four-parameter model, at 16% error. The error of the predictions was
higher, at 39%, compared to 26% for the three-parameter Ogden model. The Ogden model was
therefore chosen as the simpler model that described the data well.

The first method of model predictions involved fitting the model to only some of the five
tests done on each specimen. The model fitted to the three biaxial tests was used to predict the

two uniaxial tests, and the model fitted to the uniaxial tests was used to predict the biaxial tests.
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In the second method, all five tests were fitted, and the mean parameters were used to predict the
mean experimental data of all tests. Since the data being predicted were used in the model fits in
the latter case, the error was expected to be lower. However, the high 46% error of the first
method of predictions suggests that uniaxial or biaxial tests alone are not sufficient for modeling
the tensile behavior of white matter.  The lower 26% error of the second method still
demonstrates that using both uniaxial and biaxial data in the model fits improves the robustness
of the model, or, its ability to predict multiple loading conditions.

The mean infinitesimal shear modulys, calculated in the current study (470 Pa) was
similar to previously reported values of 137 Pa for porcine corona radiata in uniaxial tension
[Velardi et al. 2006], and 500 Pa for lamb corpus callosum in shear and indentation [Feng et al.
2013]. However, values for the same measutewére greater in these studies than the current
study, ranging from 1.77 to 13. Other studies in shear reported the corona radiata to be isotropic
[Shuck and Advani 1972], have very low anisotropy [Nicolle et al. 2004], or even be stiffer in
the transverse direction, while corpus callosum was stiffer in the axonal direction [Prange and
Margulies 2002]. Differences in anisotropy may be attributed to the strain rate, the mode of
loading (e.g. tension or shear) or the region of the brain. In the currentlsiudg,greater for
the corpus callosum region than for the corona radiata region (0.54 and 0.14, respectively),
although the difference was not statistically significant. Although the valkevag found to be
negative for some individual specimens, the smakestlue was -0.36. The model is positive
definite for allk > -1, therefore, the range of model parameters found is vdllte negative
values ofk should be interpreted phenomenologically as representing a lower stiffness in the

axonal direction.k does not directly represent the mechanical contribution of the axons, as they
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would not contribute a negative stiffness. It is possible the transverse cellular interactions were
stiffer than the axons in these samples.

Previous mechanical studies on brain tissue have had a high variability in their results,
and surprisingly even in the shape of the stress-stretch curves. Different tensile tests have
reported stress-stretch curves that were concave-up, concave-down, or nearly linear [Franceshini
et al. 2006, Miller and Chinzei 2002, Rashid et al. 2014, Velardi et al. 2006]. The current results
showed a concave-up shape to the curves and a corresponding: wie24, whereas uniaxia
tests of white matter found= 2.38-6.84 and curves that were nearly linear [Velardi et al. 2006].
These differences may depend on loading history of the tissue as well as strain rate [Franceshini

et al. 2006, Miller and Chinzei 2002].

2.4.2 Structural analysis

The histology results showed that béthandx were both relatively low for the corpus
callosum. The low mean orientation indicates that the axons were well oriented in the testing
direction, which minimized shear strains while loading. The low distribution of axonal
orientation indicates that the specimens were more homogeneous. Althoagtix were both
greater in the corona radiata, = 7.9 degrees is still relatively well aligned, and 0.066 is
much closer to perfectly aligned €& 0) than to perfectly isotropiac (= 0.333). Despite the
differences between the two regions, neither structural property correlated with any differences
in mechanical testing results on either a regional or individual specimen basis.

The TEM analysis anth measurement had a few limitations. Measurements had to be
taken from outside of the central region of interest of the specimen because that central region
was being processed for histology. Also, the entire cross section of the specimen was not

measured. Rather, a randomized sample of 18 images was used to dstinihte estimation
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likely added a factor of variability to the dataThe TEM images showed axons with
microstructures that had a considerable amount of damage. Control specimens, which originated
from locations adjacent to the biaxially tested specimens and were fixed and processed at the
same time as the tested specimens, demonstrated the same damaged microstructures and were
visually indistinguishable from the tested specimens. It is likely that the observed damage was a
result of autolytic post-mortem changes not incurred during the mechanical testing [Sheleg et al.
2008]. It is possible for the chemical processing to cause tissue shrinking during dehydration or
embedding in resin [Bastacky et al. 1985, Kim et al. 1996], therefore, the absolute magnitude of
the measured, should be viewed within this context. However, since all specimens followed
the same fixation and processing procedure, the relative differences between specimens were not
affected.

The difference infa between specimens did correlate with the anisotropic model
parametek. This indicates that the mechanical anisotropy of white matter is functionally related
to the axonal volume fraction. Additionally, includifgin the structural model did have some
effect on the mean model parameters. While significantly different (p = 0.22), the basic
model’s k parameter was 0.5#r the corpus callosum, and 0.14 for the corona radiata. The
structural model’s mean &k’ parameter was much more similar for the two regions (9.0 and 9.1 for

the corpus callosum and corona radiata, respectively).

2.4.3 Probabilistic analysis

As seen through the probabilistic analysis, implementingf{heeasurement into the
structural model did decrease the variability of the model predictions in the axonal direction.
This is beneficial in improving the confidence of model predictions. The implementation of the

structural material model into a computational model would require knowledge of the axon
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volume fraction at different locations within the brain. Although obtaining this information is
feasible through TEM or similar imaging studies, the average 14% decrease in varrakiday

axonal stress prediction is a somewhat small differerdeo, the variability in the transverse
stress predictions increased slightly due to the inclusion, afhich causes the anisotropic
(axonal) term to contribute to the transverse stress. Therefore the variability in the anisotropic
term had a slight effect on the transverse stress as compared to the basic model, in which only
the isotropic term contributes to the transverse stress.

The statistical distribution of the model parameters and the cumulative probability
distribution of the model stress predictions can be beneficial to computational modeling studies
of the brain. It is often preferred for a computational model to predict the probability of an
outcome rather than the mean outcome. An example is in the assessment of sports or automobile
equipment in which it is necessary to predict the probability of suffering a traumatic brain injury
as a result of an impact [Takhounts et al. 2008]. Previous work has demonstrated the probability
of an axonal injury in a nerve relative to the level of strain [Bain and Meaney 2000]. However,
this information alone would be incomplete in a computational study, and all other factors of

variability should be used, including the variability of the constitutive material models.

2.4.4 Preconditioning

Mechanical tests on brain tissue are sometimes performed without preconditioning, due
to the relatively compliant and delicate nature of the tissue [Miller and Chinzei 2002, Rashid et
al. 2014, Velardi et al. 2006]. It could also be argued that preconditioning should not be
performed because brain tissue is not loaded to high straungo prior to a traumatic injury or
surgical procedure. However, the brain is normally subjected to mechanical stresgesiue

to fluctuating intracranial pressure [Steiner and Andrews 2006], as well as mechanical loads
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induced by non-injurious accelerations of the head. For the biaxial tests, it was best to
precondition the specimens prior to testing in order to obtain a repeatable response [Cheng et al.
2008], especially since the experiments included multiple tests of each specimen at different
displacement ratios.

Some studies on brain tissue mechanics have szpboth preconditioned (last cycle)
and non-preconditioned (first cycle) properties [Gefen et al. 2003, Gefen and Margulies 2004,
Prevost et al. 2011]. In order to determine the effects of preconditioning in the current study, the
1:1 test results from the experiment were compared to the results of the preconditioning regimen,
which was also a 1:1 test at the same global displacement levels. The results of the fitted basic
Ogden model were compared for a total of four groups: the first cycle of preconditioning (P1),
the last (fifth) cycle of preconditioning (P5), and the first and last cycles of the 1:1 test (T1 and
T5, respectively). The resulting parameters can be found in Table 2.3. The P1 cycle was the
only loading cycle with no previous loading history (no preconditioning), and this cycle had a
significantly largem parameter than all other loading cycles (p < 0.01, using a one-way ANOVA
on log-transformed data with a Bonferroni-correctedguititest). This result demonstrated that
the preconditioning regimen decreased the measured stiffness of the tissue, a commonly
observed phenomena in biological soft tissues. ofparameter was lower for P1 than the other
three cycles, indicating a more linear relationship between stress and stretch (p < 0.01, using a
one-way ANOVA with a Bonferroni-corrected paired t-test). Thearameter showed no
significant differences between groups (using a paired Wilcoxon rank sym test

Because one purpose of preconditioning is to improve data consistency, the final cycle of
the preconditioning regimen (P5) should ideally produce the same results as the final cycle of the

1:1 test (T5). The greatest difference between these two loading cycles was observed in the
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parameter, which was 14% lower for the T5 test than for the P5. However, none of the
parameters were significantly different (p = 0.9 fiprp = 0.2 fora, and p = 0.73 fok), and
considering the inherently high variability in the data, it is our position that the preconditioning

regimen was sufficient for producing consistent, reliable results.

Table 2.3: Fitted model parameters comparing the first (P1) and fifth (P5) cycles of the
preconditioning regimen and the first (T1) and fifth (T5) cycles of the 1:1 test (mean + standard
deviation). The correlation factor was not applied to these data.

u (Pa) a k
P1 1700 + 840 19+6 -0.15 £ 0.50
P5 750 % 380 277 0.40+1.34
T1 760 % 400 26+ 6 0.14 +0.97
T5 650 + 220 31+8 0.40+1.72

2.4.5 Using ovine tissue as a model for the human brain

Due to the fast degradation of brain tissue post-mortem, it is very challenging to test fresh
human tissue. Therefore, the large majority of mechanical experiments use animal brain
specimens. There are no mechanical studies systematically comparing ovine tissue to human
tissue. It has been reported that modeling of human tissue tested in tension, compression, and
shear produced an infinitesimal shear modulus of 900-1650 Pa [Moran et al. 2014], which may
be greater than the current study because the tissue was tested on average four days post mortem
[Jin et al. 2013]. One study obtained a limited sample of fresh human grey matter from
lobectomy procedures and tested it in shear [Prange and Margulies 2002]. The mean
infinitesimal shear modulus (300 Pa) was very similar to the previously reported experimental
mean of ovine grey matter in shear (290 Pa) [Feng et al. 2013]. Even though human and ovine

tissue testing data are limited and taken from separate studies, this degree of correspondence
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provides de factoevidence that ovine tissue is reasonably representative of human tissue.
Although smaller in size, the gross anatomy of the ovine brain is very similar to humans, with
both having large proportions of cerebral white matter [Duncan et al. 2002, Silbereis et al. 2010].
This is not true in rodents and other small animals. The basic cellular structure is similar
between sheep and humans, although humans have larger neurons on average, which is typical
for larger brain sizes [Herculano-Houzel 2014]. Additionally, sheep are commonly used as a
model for developmental brain disorders because the structure and the sequence of their brain

development is similar to that of humans [Back et al. 2012, Silbereis et al. 2010].

2.5 Conclusions

This study expands upon the many previous mechanical studies of brain tissue to include
biaxial tension, and the results demonstrated that including biaxial loading in addition to uniaxial
loading improved the accuracy of model predictionghe corona radiata and corpus callosum
demonstrated no conclusive differences in their mechanical behavior, despite differences in axon
orientation and distribution. The tested white matter exhibited a mean anisotropic behavior, but
the degree of anisotropy was relatively low compared to previous studies. The axon volume
fraction demonstrated a positive correlation with the mechanical anisotropy. However,
implementation of the axon volume fraction into the structural model only resulted in a small

decrease in the uncertainty of model predictions.
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3. VISCOELASTICITY OF BRAIN WHITE MATTER IN BIAXIAL TENSION

3.1 Introduction

Computational models of the brain are important for their use in the development and
simulation of neurosurgeries, operation planning, and registration of intraoperative brain shifts
[Ferrant et al. 2001, Garcia et al. 2012, Miller et al. 2010, Miller 2011]. These models rely on
accurate characterization of the brain tissue mechanical behavior. Due to the relatively low
loading rates in surgical simulations, many models utilize constitutive equations derived from
guasi-static experiments. However, viscoelastic effects are important, even at low strain rates,
and viscoelastic characterization has been recommended to improve model predictions [Kyriacou
et al. 2002].

Computational models of the brain often use linear viscoelastic material models [Post
2012, Zhang 2001]. However, these models are only valid at infinitesimal strains (less than 1%)
due to the nonlinear relationship between stress and strain at finite deformations [Nicolle et al.
2004], and finite deformations commonly occur during surgical procedures such as catheter
injections for convection enhanced delivery [Garcia et al. 2012]. Quasi-linear viscoelastic
(QLV) formulations have been frequently used to model brain and other soft tissues due to their
simplicity and ability to model nonlinear elastic behavior [Elkin et al. 2011, Laksari et al. 2012,
Rashid et al. 2014]However, QLV does not account for nonlinearities in the time-dependent
response with respect to strain, and many biological tissues exhibit such nonlinearities, and

accordingly, require fully nonlinear viscoelastic models [Shetye et al. 2014, Troyer and Pulttlitz

2 This chapter has been submitted for publication in the Journal of the Mechanics and Physics of
Solids.
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2011]. For modeling brain tissue, there is some evidence to suggest that QLV is sufficient in
shear [Nicolle et al. 2004] and indentation [Elkin et al. 2011], however fully nonlinear models
may result in improved fits to experimental data [Hrapko et al. 2006].

Due to the alignment of axons, white matter exhibits anisotropy in its relationship
between stress and strain [Feng et al. 2013, Labus and Puttlitz 2016, Velardi et al. 2006]. It is
possible for the time-dependent behavior to also be anisotropic. For example, the rate of
relaxation may be different in the axonal direction relative to orthogonal directions. Tensor
formulations of the reduced relaxation function in a QLV model have been used to investigate
anisotropy in biaxial stress relaxation tests of heart valves [Grashow et al. 2006] and urinary
bladders [Nagatomi et al. 2004]. However, the viscoelasticity of brain tissue has not been
studied in biaxial loading states. Viscoelastic studies of brain tissue have investigated the
anisotropy of the shear modulus in linear viscoelastic formulations [Abrogast and Margulies
1999, Feng et al. 2013, Ning et al. 2006], however, this approach does not provide the anisotropy
of the time-dependent behavior.

Computational models typically utilize material models derived from experimental mean
data and lack information on the inherent variability of the material properties. Probabilistic
modeling approaches consider the variability of these model inputs in order to provide a full
distribution of model predictions. Computational modeling studies of the brain can use
probabilistic analyses to quantify the probability of an outcome of interest in a surgical procedure
may better predict the anticipated local mechanics amongst the general population.

The purpose of this study was to characterize the viscoelastic behavior of brain white
matter using biaxial stress-relaxation experiments. Specifically, the experiments were designed

to determine if QLV is sufficient for modeling the viscoelasticity and to test the anisotropy of
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both the elastic and time-dependent components of brain tissue. A best fit model was determined
from the mean experimental data, and a probabilistic analysis was used to quantify the variance

in model parameters and predictions.
3.2 Methods

3.2.1 Experimental Setup

The tissue dissection and experimental setup followed a previously described
methodology (sections 2.2.1-2.2.3) [Labus and Puttlitz 2016]. In brief, a total of 12 ovine brain
tissue specimens were dissected immediately (less than one hour) after animals were euthanized
for unrelated studies. The corpus callosum was isolated from each intact brain, and slices were
cut using a scalpel to separate the corpus callosum from the adjacent grey matter. A cruciform
shape was punched from the resulting slice such that the dominant axonal direction was
coincident with one of the loading directions. The cross-sectional area was determined in order
to conductpost hoccalculations of the stress. The mean thickness was 1.7 mm, and the mean
width was 6.9 mm.

A foam grip was attached with a cyanoacrylate adhesive to each of the four arms of the
cruciform-shaped specimens in order to float the specimens on the surface of a saline bath,
ensuring hydration throughout the test. Wires were used to connect two of the grips to linear
actuators (T-LLS, Zaber Technologies Inc., Vancouver, BC, Canada), and the remaining two
grips were connected to 250 gram capacity load cells (Model 31, Honeywell Sensotec,
Columbus, OH). To track deformations, specimen surfaces were textured with graphite powder,
and images were recorded at 100 frames per second. A MATLAB-based digital image
correlation algorithm was used calculate the mean deformation gradient tensor in a 15x15 mesh

grid covering a 2.4 mm square in the center of the specimen. The experimental Cauchy stress in
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each direction was calculated @s= c(P/A)A;, whereP is the force,A is the undeformed
cross-sectional area, aadis the stretch (diagonal elements of the deformation gradient tensor).

A stress correlation factor was used to estimate the stress in the center of the specimen due to the
boundary effects on stress in a biaxial test [Jacobs et al. 2013]. The correlation factor wa
determined via finite element analysis, following the procedure outlined in section 2.2.10 [Labus

and Pulttlitz 2016].

3.2.2 Experiments

Considering the post-mortem changes in brain tissue mechanics [Garo et al. 2007],
experiments were limited to five stress relaxation tests and two cyclic tests, and the relaxation
time was set to 100 s so that the testing for each sample was completed in two hours, and all tests
were completed within six hours post-mortem. Specimens were initially loaded to a preload of
1.0 mN (mean stress of 85 Pa), followed by an initial preconditioning regimen of 20 cycles at
equibiaxial displacements of 3.0 mnin order to investigate the strain magnitude effects on the
viscoelastic response, the experiment consisted of five biaxial stress-relaxation tests at
equibiaxial displacements of 1.0, 1.5, 2.0, 2.5, and 3.0 mm. These displacements corresponded
to mean strains of 3.6%, 6.0%, 9.1%, 12.0%, and 15.0%, respectively, in the axon direction, and
5.4%, 8.3%, 11.8%, 14.9%, and 18.3%, respectively, in the transverse direction. A loading rate
of 6 mm/s (mean strain rate of 33%) svas used for the ramp, and the final displacement was
held for a relaxation time of 100 s. Additionally, two cyclic tests of 20 cycles each were
conducted at equibiaxial displacements of 1.5 and 2.5 mm. The cyclic tests used the same
loading rate of 6 mm/s. The order of the seven tests was randomized, and a recovery time of

1000s was used between each test [Duenwald et al. 2009, Shetye et al. 2014].
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3.2.3 Quasi-linear viscoelastic modeling

To check the QLV assumption of a linear time-dependent behavior, the stress during the
relaxation period of the experiments was plotted with logarithmic time and stress scales. The
resulting slope of the curves is the relaxation rateA relaxation rate that is dependent on the
magnitude of stretch would imply that fully nonlinear viscoelasticity is required to model the
behavior. However, for a constant relaxation rate, QLV would be valid. Begausg shown

not to depend on stretch (Figure 3.1), a QLV formulation was used for subsequent modeling.
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Figure 3.1: Left: The relaxation curves plotted on a log-log scale show a constant relaxation rate
(slope) that does not depend on strain magnitude. Right: The normalized relaxation rates for all
curves show no correlation relative to the measured stretch.

The QLV formulation for Cauchy stress;) in three dimensions can be written as:

t dofile (Tt
O'l'j(g,t) = f Gijkl(t_T)wdT-i_ Oy
0 t (3.1)

whereg,,; (7) is the applied strairt, is time,G;;,,(t) is the reduced relaxation tensef; is the

instantaneous elastic stregsis a time variable of integration, anglis the initial stress. To

simplify the numerical integration, equation (3.1) can be integrated by parts:
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O'ij(g, t) = Ekl(T)dT + G(t - T)Skl(t) - G(t - O)EH(O) + 0y

daii () B fthijkl(t —T)
agkl 0 dT
3.2)

The instantaneous elastic stress was derived from an anisotropic Ogden strain energy

density functioni/):
W= 208 +28 + 29 + 2217 + 2,7 - 3), (3.3)

where the three parametersa, andk represent the infinitesimal shear modulus, nonlinearity,
and anisotropy, respectively. With negligible shear, as demonstrated in previous quasi-static
experiments using the same experimental setup (section 2.3.1) [Labus and Puttlitz 2016], the
principal stretched; are the diagonal elements of the deformation gradient tensor, measured
through digital image correlation. With the axons aligned in the 1 direction, the anisotropic
invariant 14 is equal tol?. Following the assumption of incompressibility, the out-of-plane

stretchiz was found by:

1
Ay = . (3.4)

In the case of biaxial tension, the instantaneous Cauchy stress in the axonal disgctiand

the transverse directiony,) were:

2uU _ _
ofy = —[Af = (A)™ + k(2 = 27%)]
(3.5)
e __ 2’“ a —-a
022 = 7[/11 — (4 2)7]
(3.6)

andeg;; in equation (3.2) is equal iIp — 1.
In the two-dimensional case, with shear assumed to be negli@ijl€r) reduces to four

functions:Gy111(t), G1122(t), G211 (t), andG,,,,(t). Furthermore, the use of a strain energy
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function requires major symmetry, whetg,,(t) = G,,11(t). Each reduced relaxation function
was approximated by the Prony series:
G(t) = G+ XF,Gie /T (3.7)
such that:
Go + G+ G, +G3+ G, =1 (3.8)
Where G, is the long term relaxation coefficient, an@ are relaxation coefficients
corresponding to the time constants
The time constants were determined from the relaxation time distribution spectrum
obtained through an inverse Laplace transform performed in MATLAB. The spectrum was
mapped on the time scale ranging fronf 0(on tenth of the resolution of the data, collected at
1000 Hz) to 18's (ten times the relaxation time). A parametric study showed the results to be
insensitive to the boundary locations beyond this range. There were typically multiple peaks in
the relaxation time spectrum corresponding to events that reflect the relaxation behavior. Every
curve had a peak greater than the 100s relaxation time, which is accounted for Gy the
coefficient of the model. Time constantsvere defined at the local maximum of each peak that
occurred at less than 100s. This was done individually for each direction of stress and for each
stress-relaxation test. The majority (89%) of relaxation curves resulted in four peaks, while the
remainder resulted in five. The time constants from the curves with four peaks were averaged on
a logarithmic scale, and these averages were used for all modeln@:021,z> = 0.26,73 = 2.7,
and 742 = 21. No significant differences were observed in the values of the time constants
between the axonal and transverse directions, or between the different strain magnitudes (One-

Way ANOVA on logarithmic scale).
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3.2.4 Anisotropy of reduced relaxation tensor

The QLV model was initially fitted to the experimental data assuming an instantaneous
strain application. This assumption allows the model to be simplified so that equation (3.7) was
fitted to the relaxation period, normalized to the peak stress, t&f{ipdand equations (3.5) and
(3.6) were fitted to the ramping period. Because equation (3.7) is independent of strain, the
relaxation tensor was reduced to two functiahgt) andG(t) to describe the relaxation of the
stress in the axonal and transverse directions, respectively. For each specimen, all five tests were
fitted simultaneously using the fmincon function in MATLAB get a single set dba andGr
coefficients. Due to the disproportionally large number of datum points in the long-term
relaxation, the fitting algorithm minimized a weighted root-mean-squared (RMS) error that used
a weighting function:

e_tn/Tl + e—tn/TZ + e_tn/TS + e_tn/Ti

4 (3.9)

Wrelax (tn) =

wheret, is the time during the relaxation period such that the peak stress octursOat This
weighting function was first multiplied by the model error, and the root-mean-square of the
weighted error was calculated.

This fitting procedure resulted in very small differences betweenGheand Gr
coefficients, therefore, the model was simplified to assume the time-dependent behavior is
isotropic, and just one reduced relaxation function was requitedt) = G1111(t) = G1122(t) =
G,211(t) = G,y,,(t). The same fitting procedure assuming an instantaneous strain application

was repeated with this isotropic relaxation model, and all subsequent modelingyéed
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3.2.5 Full-integral model fitting

In stress relaxation tests, viscoelastic models that assume an instantaneous strain
application or a purely linear strain application during the ramping period have been shown to be
poor predictors when applied to an actual experimental strain history [Abramowitch and Woo
2004, Troyer et al. 2012a, Sheyte et al. 2014]. Therefore, equation (3.2) was used to model the
entire experimental stress-relaxation tests, using the measured strain history, including the
ramping period and the creep in strain that occurred during the relaxation period. The fitting
algorithm minimized a weighted error such that the ramping period and the relaxation period
were weighted equally [Abramowitch and Woo 2004]. Since the relaxation period had its own
weighting functionw,..;..(t,), the ramping period required a similar function to scale the
errors. Unlikew,.;4,(t,), this function applied the same weight to all datum points and was
defined asw,qm, = mean[wyqq.(t,)]. The final weighted error functioRMSE,,, that was
minimized was:
RMSE,, = 0.5 ¥ RMS[Wyamp (Orampm — Orampe)] + 0.5 * RMS[Wyeiay (£) * (Oretm — Orere)]

(3.10)

where RMS is the root-mean-squared operati@gmpm and orampe are the model and

experimental stresses in the ramping period, respectivelyr,ang ando, . are the model and
experimental stresses in the relaxation period, respectively.

In order to fit the peak stress of the curves such that an accurate reduced relaxation
function was obtained, it was necessary to fit equation (3.2) to each of the five tests individually.
From this, the mean parametéss, Gy, Gs, G4, and G, were calculated. Even though these
parameters were fairly consistent, subtle differences in the shape of the ramping period between

tests resulted in highly variable parameters for the Ogden model, espe@allly.. Therefore,
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the relaxation function parameters were fixed at their fitted means, and the model was fitted a
second time to all five tests simultaneously to determine, andk. To get a single set of
parameters to describe the mean behavior, this fitting procedure was conducted to fit the
averaged experimental stress-relaxation curves. The resulting average model was used to create

predictions of the averaged data from the two cyclic experiments.

3.2.6 Probabilistic analysis

The full-integral fitting procedure described above was also conducted for each
individual specimen. The statistical distribution of each fitted model coefficient was determined
using theallfitdist function in MATLAB to fit candidate parametric distribution functions to the
empirical probability distribution for that coefficient. Parametric distribution functions were
chosen according to rankings of the Alkaike information criterion with a correction for finite
sample sizes, as well as a visual inspection of fits to the probability distribution.

The resulting distributions and natural parameters (e.g. mean and standard deviation)
were used to define the inputs of a probabilistic analysis in NESSUS (Southwest Research
Institute, San Antonio, TX). The probabilistic analysis determined the effects of the input
variability on the model stress predictions for a stress-relaxation test at an equibiaxial stretch of
1.1. A Monte Carlo sampling method of 100,000 samples was used to estimate the predicted
stress at pre-determined cumulative probability levels of 5%, 10%, 25%, 50%, 75%, 90%, and
95%, at given times ranging from the time at peak stress (beginning of relaxation period) to 100s
of relaxation. The global sensitivity of the input parameters on the variability of the predicted

stress was determined using a variance decomposition method.
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3.3 Reaults

3.3.1 Strain-dependence of relaxation
As mentioned in the Methods section above, the QLV assumption of linear time-

dependent behavior was checked by measuring the relaxation rate of each relaxation curve. As
shown by the plotted stresses of an example specimen, the relaxation rate did not appear to
depend on the magnitude of strain (Figure 3.1). With all tests combined, the relaxation rate
showed no correlation with measured stretch, and there was no significant difference in the
relaxation rate between the 5 displacements tested (One-Way ANOVA, p = 0.64). The only
visible trend in the relaxation rate is the greater variability at lower stretch levels, which is likely

due to the lower signal to noise ratio in the measured stress at these lower stretch levels.

3.3.2 Anisotropy of reduced relaxation tensor

When fitted to the relaxation period of the curves assuming a Heaviside strain
application, the QLV model fit the data well at all five stretch levels (Figure 3.2). When two
reduced relaxation functions were used, the mean percent error was 5.6%, and the mean RMSE
was 72 Pa.G. was significantly lower for the axonal direction than the transverse direction, and
G2 was significantly greater for the axonal direction (Figure 3.3). Taken together, these results
indicate that the axonal stress experienced greater relaxation than the transverse stress, and this
difference primarily occurred near the time point of 0.26s. However, the numerical differences
between the mean parameters, although statistically significant for some, were small. The
maximum percent difference of 9.5% occurred@t When comparing the normalized
relaxation rates (Figure 3.1), the mean and standard deviation in the axonal and transverse
directions were 0.139 + 0.021 and 0.132 + 0.018, respectively (p < 0.01, paired t-test). Despite
the statistical significance, the numerical difference between means was again very small. When
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only one reduced relaxation functioBiso, was used, the model appeared to fit the relaxation
curves well in both directions of stress and at all five stretch levels (Figure 3.2). The errors in

the model fits remained low (mean percent error = 6.5%, mean RMSE = 76 Pa).
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Figure 3.2: Fits of the & QLV model to the experimental data, assuming an instantaneous
strain application. Fits are shown for the axonal direction (A,B) and the transverse direction
(C,D). Plots in (B) and (D) demonstrate the relaxation behavior in in the acute time frame (firs

5s) after loading.
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Figure 3.3: G(t) compared to &t) found from model fits assuming an instantaneous strain
application. p-values show results from paired t-tests.

3.3.3 QLV full-integral model fits and cyclic test predictions

The final fits of the full-integral QLV model (equation 3.2) to the entire stress-relaxation
curves, using the full strain history, showed very good agreement for both the ramping period
and the relaxation period (Figure 3.4). The QLV model was able to fit the experimental data at
all five displacement magnitudes, and the simplification of using a single isotropic reduced
relaxation function was satisfactory in fitting the relaxation in both directions of stress. The
model fits had a mean RMSE of 220 Pa, which corresponded to 8.9% of the mean peak stress.
When fitted to the averaged experimental data, the resulting coefficients represent a best-fit mean
model (Table 3.1). The reduced relaxation function coefficients demonstrated a relatively high
degree of relaxation that occurs at early time points, @itbeing the greatest, followed 63,
whereasGs, G4, andG., were all relatively small. The Ogden model coefficieptsa( andk)
represent the instantaneous elastic response, and the pksitedficient indicags anisotropy

with the axonal direction stiffer than the transverse direction.
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Figure 3.4: Fits of the full-integral QLV model with a single isotropic reduced relaxation
function to experimental stress-relaxation tests. Examples shown for the (A) 1.0 mm test with
an expanded view of the first 2s of the ramping and relaxation (B), and fits for the 2.5 mm tests

(C and D).

These model fits included the full strain history of the experimental data, including
during the relaxation period. Even though the global displacement was held constant during the
relaxation period of the experiments, there was some measured creep, or increase in strain, in the
central region of interest. In the axonal direction, the increase in strain from the beginning to the
end of the relaxation period was 0.76% + 0.54%, 0.91% * 0.44%, 1.1% + 0.65%, 1.3% + 0.79%,
and 1.4% + 0.54% (mean * standard deviation) for the 1.0mm, 1.5mm, 2.0mm, 2.5mm, and

3.0mm displacement tests, respectively. In the transverse direction, the increase in strain was
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0.72% + 0.72%, 1.0% + 0.49%, 1.3% * 0.68%, 1.7% * 0.45%, and 2.2% + 0.66% for the 1.0mm,

1.5mm, 2.0mm, 2.5mm, and 3.0mm displacement tests, respectively.

Table 3.1: Fitted model coefficients for the mean experimental data, and statistical distributions
of the coefficients fitted to individual specimens.

Full-integral model: mean Statistical
experimental data distribution Natural parameters
~ Mean = 0.64
G1 (11 = 0.021) 0.708 normal S.D. = 0.089
~ Mean = 0.21
G2 (12 = 0.26) 0.179 normal S.D. = 0.055
_ Mean(In(x)) = -3.2
Gs (13 = 2.7) 0.031 lognormal S.D.(In(x)) = 0.28
B Mean(In(x)) =-3.3
Ga (12 = 21) 0.032 lognormal S.D.(In(x)) = 0.33
Mean(In(x)) = -2.7
G. 0.050 lognormal S.D.(In(x)) = 0.37
Mean(In(x)) = 8.0
i (Pa) 3400 lognormal S.D.(In(x)) = 0.47
17 normal Mean = 17
o S.D.=26
3 19 lognormal Mean(In(x)) = 0.66

S.D.(In(x)) = 0.69

The model fitted to the averaged experimental stress-relaxation tests was then used to
predict the stress from the cyclic experiments. The model was able to accurately predict the
mean experimental stress in both directions for both the 1.5mm and 2.5mm displacement tests
(Figure 3.5). At the peak of each cycle, the predicted stress was within one standard error of the
mean of the experimental data. However, after the first cycle, the model slightly over-predicted
the stress in the early (initial ramping) phase of each cycle. These predictions had a mean RMSE
of 130 Pa, which corresponds to 6.6% of the mean peak stress. The predicted stress was less

than zero at the end of each cycle, however, the experimental apparatus was not designed to
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measure compressive loads. Therefore, any predictive negative stresses were constrained to be
equal to zero for the purpose of comparison to the experimental data.
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Figure 3.5: Model axonal and transverse stress predictions of the experimental cyclic tests,
showing cycles 1, 2, 3, and 20 for the 2.5 mm displacement tests (top) and 1.5 mm displacement
test (bottom). The experimental means and standard errors of the mean are shown.

3.3.4 Probabilistic analysis

In addition to fitting the full-integral QLV model to the averaged experimentasstre
relaxation tests, each specimen was fitted individually. The best-fit statistical distribution
function and natural parameters were determined for each parameter (Table 3.1). Many of the
parameters demonstrated correlations with each other. Pearson’s correlation coefficientr was
determined for each pair of model parameters (Table 3.2) and included as an input in the

probabilistic analysis if the 95% confidence interval on the correlation coefficient did not include
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zero (Fisher’s Z transformation on the correlation coefficient). The probability distribution of

the stress predictions showed high variability, with the 5-95% cumulative probability range of
stress about twice as high as the median stress (50% cumulative probability) in both directions,
throughout the test (Figure 3.6). From the time at peak stress to 100 s of relaxation, there was an
11% increase in the variability (calculated as the 5-95% range, divided by the median stress),
indicating that the large majority of the variability appears during the ramping period, and the
long-term time-dependent behavior adds very little contribution to this variability. The global
sensitivities of the model variance to the input parameter variance demonstrate that the model is
most sensitive to the instantaneous elastic parameters early in the relaxation period of the test
(Figure 3.7). As the relaxation time increases, the model becomes more sensitive to the
variability of the G and G parameters. The {5Gs, and G parameters had negligible

contributions to the model variance.

Table 3.2: Pearson’s correlation coefficient between each model parameter for use in the
probabilistic analysis.

G1 G2 Gs Ga G n o k

G1 1 X X X X X X X
G2 -0.93 1 X X X X X X
Gs 0 0 1 X X X X X
Ga -0.79  0.65 0 1 X X X X
Gw -0.86  0.62 0 0.83 1 X X X
1 0 0 0 0 0 1 X X
a 0 0 0 0 0 0 1 X
k 0 0 0 0 0 -0.8 0 1
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Figure 3.6: Probability distributions of the model stress predictions for an equibiaxial stress-
relaxation test with a peak stretch of 1.1. Stress predictions are shown for the axonal direction
(top) and transverse direction (bottom).
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3.4 Discussion

The viscoelastic properties of brain white matter were characterized by conducting
equibiaxial stress-relaxation experiments at five different displacement magnitudes and
determining the appropriate model formulation to fit the viscoelastic behavior. The results
demonstrated that the time-dependent behavior of the tissue was independent of strain
magnitude, therefore a QLV formulation was sufficient. QLV formulations have commonly
been used to study brain viscoelasticity [Elkin et al. 2011, Laksari et al. 2012, Nicolle et al. 2004,
Rashid et al. 2014, Tamura et al. 2007], however, systematic characterizations of the strain
magnitude dependence are limited. Experiments in shear [Nicolle et al. 2004] and indentation
[Elkin et al. 2011] provide evidence that relaxation behavior is independent of strain, supporting
the results of the current stud@ther soft tissues such as tendons [Troyer and Pulttlitz 2011] and
spinal cord [Shetye et al. 2014] have exhibited fully nonlinear viscoelastic behavior in tension.
However, these tissues contain collagen fiber components, including the pia mater attached to
the spinal cord, which may contribute to the nonlinearity of the relaxation behavior.

Previous viscoelastic studies of the brain have investigated the anisotropy of the elastic
behavior or of the linear relaxation modulus [Abrogast and Margulies 1999, Feng et al. 2013,
Nicolle el al. 2004, Ning et al. 2006]. However, the specific anisotropy of the time-dependent
response has not been determined separately from the elastic behavior. In the current study, the
hyperelastic component of mechanical response demonstrated strong anisotropy, With the
parameter ranging from 0.86 to 5.9 for the tested specimeétmvever, the time-dependent
behavior (relaxation) was nearly the same in the axonal and transverse directions. The
differences in the relaxation function parameters in the two directions were fairly small (less than

a 10% difference). Although some of the differences in parameters were statisticallyasignific
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they did not have a great enough effect on the model results to be meaningful. Whé®, a sing
isotropic reduced relaxation function was used, the model fits remained accurate. It was
therefore sufficient to use one single reduced relaxation function to define all terms of the
reduced relaxation tensor.

QLV model coefficients are sometimes determined by fitting the reduced relaxation
function to the relaxation period of the experiment only, assuming a Heaviside (instantaneous)
strain application, and approximating the instantaneous elastic stress by fitting to a high speed
ramp while assuming any relaxation that occurs during the ramp time is negligible [Rashid et al.
2014]. However, models determined by this method result in poor predictions of the
experimental data when the actual strain history is taken into account [Abramowitch and Woo
2004, Troyer et al. 2012a]. A Heaviside fitting method was used in the current study (the
resulting reduced relaxation function parameters are shown in Figure 3.3) and the parameters
describing the instantaneous elastic stress werel400 + 560 Pag = 19 £ 6.7, ankk = 2.3 £
1.6 (mean = standard deviation). Some of these parameters are substantially different than those
determined by the full-integral fitting method. NotaliB4,is much greateiG.. is much smaller,
andu is much greater for the full-integral fitting. Consequentially, the test predictions based on
the Heaviside fits were very inaccurate compared to the full-integral fits (Figure 3.8). The
discrepancy arises due to the distinctly different relaxation behaviors predicted by the two
models. By taking into account the actual strain history, the full-integral fits were able to
accurately predict both the ramping and relaxation periods of the stress-relaxation experiments

and the stresses in the cyclic experiments.
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Figure 3.8: Predictions of the experimental stress-relaxation in the axonal and transverse
directions based on fits using a Heaviside ramp assumption and fit full-integral fits taking into
account the actual measured strain history.

The instantaneous elastic stress determined by the full-integral model had an infinitesimal
shear modulusu(= 3400 Pa) that is similar to what has been previously reported for high speed
tensile stress relaxation tests of brain tissue [Rashid et al. 2014], which used strain rates of 30
90 s!, and reported means of 2780-5160 PaufoBased on this comparison, the instantaneous
shear modulus from the current study is a good approximation of the shear modulus at a strain
rate of 60 3. However, the model used by [Rashid et al. 2014] has a lewarameterd = 6)
and no anisotropic parameter. Also, the reduced relaxation function determined in the current
study may not give a reliable prediction of the relaxation that occurs in very short times at
greater strain rates. The modeled instantaneous elastic response was much stiffer than the
modeled hyperelastic behavior for previous quasi-static biaxial experiments using the same
experimental setupu(= 460 + 270 Pag = 24 £ 6, andk = 0.54 + 0.83) [Labus and Pulttlitz 2016].

The same hyperelastic Ogden model was fitted to the stress-stretch data at 100 s of relaxation for

the five tests to approximate the static material properties. The infinitesimal shear modulus was
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very similar to that found from the quasi-static experiments430 + 200), but a (18 + 3.6) and

k (2.0 £ 1.5) were more similar to the instantaneous elastic properties from the current study.
Differences in the anisotropy and nonlinearity may be due to the use of only equibiaxial tests in
the current study, whereas the quasi-static experiments used multiple biaxial displacement ratios.
In a model of uniaxial tension tests on white matter, a similar anisotropic paramkterlof7

was found [Velardi et al. 2006].

The distributions of the model parameters lead to a high variability in predicted stresses
in the probabilistic analysis. The model predictions were most sensitive to the varianée of
and G, (Figure 3.7), so the majority of the model uncertainty arises from uncertainty in the
elastic and early-time relaxation behavior. Conversely, the long-term relaxation behavior from
the experiments was extremely consistent, as demonstrated by the negligible contributions of the
long-term relaxation parameters to the model variance. The variability of the experimental data
can be important to consider in computational studies in order to predict the full range and
probability levels of model outcomes rather than only predicting the mean (Laz and Browne
2010). The reported distributions of the model parameters (Table 3.1) and their correlations
(Table 3.2) can be implemented into probabilistic analyses of computational models similar to
the probabilistic analysis conducted on the constitutive model.

The experimental stress was estimated by multiplying a correlation factor by the initial
stress calculation of force divided by cross sectional area. This correlation factor was
determined using specimen-specific finite element analyses, and it depends on the degree of
anisotropy, the direction, and the magnitude of strain. Each direction of stress for each specimen
had an independent correlation factor applied, with means of 0.78 in the axonal direction and

0.71 in the transverse direction. All modeling results reported above used the correlation factors,
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however, the fits to the mean experimental data were repeated without the correlation factors.
Because the correlation factors only affect the magnitude of the stress, and not the shape of the
curves, thex parameter and the reduced relaxation function parameters were all identical using
both methods. Without the correlation factgrancreased to 4800 Pa (from 3400 Pa), &nd
decreased to 1.6 (from 1.9).

In conclusion, an anisotropic, viscoelastic constitutive model was derived from biaxial
stress-relaxation tests on brain white matter. A QLV formulation was sufficient to model the
relaxation behavior, which was independent of strain magnitude. Although the instantaneous
elastic response was anisotropic, the time-dependent relaxation response was sufficiently
modeled by an isotropic reduced relaxation function. Model fits to stress relaxation tests were
able to accurately predict the stress in cyclic tests in both the axonal and transverse directions at
two different strain magnitudes. The high variability in model stress predictions was due almost
entirely to the variance of the elastic and the early-time relaxation parameters, whereas the long-
term relaxation behavior was very consistent. The resulting constitutive model can be used to

improve computational models of the brain used for surgical simulations.
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4. CONCLUSION

4.1 Summary of Findings

A biaxial test of brain white matter was developed in this study to improve the
constitutive models of brain tissue. Quasi-static experiments were conducted to determine the
hyperelastic behavior of the tissue. Structural parameters were measured using histology and
transmission electron microscopy imaging analyses. These parameters were incorporated into
the hyperelastic constitutive model, and a probabilistic analysis was used to determine the
improvements in the certainty of model predictions. Dynamic biaxial experiments were also
conducted to tests the viscoelasticity of white matter and to derive the appropriate form of a
viscoelastic model.

A novel experimental setup was developed to test brain tissue in biaxial tension, and this
setup successfully minimized shear and created a relatively homogeneous region of interest to
allow for an accurate analysis of white matter in a true state of biaxial tension. An anisotropic
Ogden-type hyperelastic model was used to fit the experimental data, and the results showed a
mean anisotropic behavior with the axonal direction stiffer than the transverse direction,
although the degree of anisotropy was relatively low compared to previous studies of white
matter. Model predictions showed improved accuracy when the model was fitted to all five
experimental tests, compared to fitting to only the three biaxial tests or two uniaxial tests,
indicating that using multiple strain ratios to derive the model parameters improves the
predictive power of the model.

The results from the quasi-static experiments showed no significant differences in the

mechanical model parameters between the corona radiata and corpus callosum regions. The
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axon area fraction, measured via by transmission electron microscopy, also showed no
significant differences between regions. However, results of the histology measurements
showed both the mean axon orientation relative to the testing direction and the distribution of the
axon orientation to be significantly greater in the corona radiata. From a regional perspective,
differences in structural properties showed no relationship with the mechanical properties of
white matter. However, when correlations were tested between mechanical model parameters
and structural parameters on an individual specimen basis, a significant correlation was observed
between the mechanical anisotropy and the axon area fraction. This correlation was accounted
for in the structural hyperelastic model, and the variability of the axonal stress predictions
decreased as a result. Because this correlation was seen only on an individual specimen basis,
and not a regional basis, the utility of this modelling approach is applicable to sagerfic

models. A more generally applicable model that is representative of the general population
mean/median still needs to be developed and warrants further investigation.

The biaxial stress-relaxation experiments conducted at multiple equibiaxiah strai
magnitudes showed the time-dependent relaxation behavior to be independent of strain
magnitude. Therefore, a QLV model was sufficient for modeling the experimental results. The
relaxation was also nearly identical in the axonal and transverse directions, and an isotropic
reduced relaxation tensor was able to accurately model both directions of stress in the biaxial
stress-relaxation tests. A QLV model with an isotropic reduced relaxation tensor and an
anisotropic instantaneous elastic stress was used to fit the stress relaxation tests and accurately
predict the stress from cyclic tests at two different strain magnitudes. In order to obtain an
accurate model, it was necessary to fit both the ramping and relaxation periods of the

experiments simultaneously while taking into account the actual strain history of the tests.
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4.2 FutureWork

The constitutive models derived from quasi-static and dynamic biaxial experiments can
be useful for computational modeling of surgical procedures, and the model selection may
depend on specific requirements for the modeling application. While this work improves on the
current models of brain tissue to describe multiaxial stress states, further investigations are
warranted. Multiaxial stresses should be further tested in shear and compression. The structural
modeling approach showed a limited ability to improve the certainty of model predictions. To
further assess this approach, more information may be needed on the axonal structure of the
brain, especially in comparing humans to animal models. In order to extend thitowaoklel
traumatic injuries, testing at higher strain rates would be required.

Tension, compression, and shear are all relevant in clinical applications of brain
computational models. Moreover, the current study demonstrated the importance of conducting
biaxial tensile tests in addition to uniaxial tests for deriving constitutive models with better
predictive capabilities. This work could be extended to also test brain tissue mechanics in other
multiaxial stress states that include compression and shear. Constitutive models could be further
improved by simultaneously fitting to multiple experimental tests that include tension,
compression, and shear in multiaxial stress states.

The axonal structural properties of the brain and their relation to mechanical behavior
could be further investigated. A correlation was found between axon volume fraction and
mechanical anisotropy on an individual specimen basis. While no significant differences were
observed between the two regions testes, previous studies have found differences in mechanical
behavior between regions of the brain. The relationship between axon volume fraction and

anisotropy could be further investigated beyond the two regions tested in the current study. This
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approach could also be used to study the differences in mechanical behavior between species,
especially between humans and the commonly used ovine and porcine animal models. A
systematic characterization of the axon structure of these species is warranted, alongside a
mechanical characterization. Differences in the axon structure may account for interspecies
differences in mechanical behavior. This approach would provide improved translation of the
many animal models of brain mechanics to the human condition.

The current experiments were designed to develop models of the brain for use in clinical
applications, such as surgical simulations. Therefore, relatively low strain rates were used. In
order to extend this work to study traumatic brain injuries, higher strain rates should be used to
characterize the viscoelastic behavior. However, mechanical tests at high loading rates have
associated errors due to inertial effects of the specimen and the testing apparatus. These errors
include out-of-plane stresses, inhomogeneous strains, and vibrations (Sanborn et al. 2012,
Abramowich and Woo 2004). It is therefore important to develop testing methods that can
minimize these errors. For modeling stress relaxation tests at high speeds, it remains important
to measure the actual strain history, as done in the current study, rather than making assumptions
about the loading profile. It is unclear if a quasi-linear viscoelastic model would still be
sufficient for modeling white matter at high strain rates, accordingly, a systematic investigation

of the strain magnitude dependence of the viscoelastic behavior should be conducted.
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