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ABSTRACT 
 
 
 

CONSTITUTIVE MODELING OF THE BIAXIAL MECHANICS OF BRAIN WHITE 
 

MATTER 
 
 
 

 It is important to characterize the mechanical behavior of brain tissue to aid in the 

computational models used for simulated neurosurgery.  Due to its anisotropy, it is of particular 

interest to develop constitutive models of white matter based on experimental data in order to 

define the material properties in computational models.  White matter has been shown to exhibit 

anisotropic, hyperelastic, and viscoelastic properties.  The majority of studies have focused on 

the shear or compressive properties, while few have tested the tensile properties of the brain.  

Brain tissue has not previously been tested in a multi-axial loading state, even though in vivo 

brain tissue is in a constant multi-axial stress state due to fluid pressure, and data from uniaxial 

experiments do not sufficiently describe multi-axial stresses. 

 The main objective of this project was to characterize the biaxial tensile behavior of brain 

white matter via experimentation and constitutive modeling.  A biaxial experiment was 

developed specifically for testing brain tissue.  Experiments were performed at a quasi-static 

loading rate, and an Ogden anisotropic hyperelastic model was derived to fit the data.  A 

structural analysis was performed on biaxially tested specimens to relate the structure to the 

mechanical behavior.  The axonal orientation and distribution were measured via histology, and 

the axon area fraction was measured via transmission electron microscopy.  The measured 

structural parameters were incorporated into the constitutive model.  A probabilistic analysis was 

performed to compare the uncertainty in the stress predictions between models with and without 
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structural parameters.  Finally, dynamic biaxial experiments were performed to characterize the 

anisotropic viscoelastic properties of white matter.  Biaxial stress-relaxation experiments were 

conducted to determine the appropriate form of a viscoelastic model.  It was found that the data 

were accurately modeled by a quasi-linear viscoelastic formulation with an isotropic reduced 

relaxation tensor and an instantaneous elastic stress defined by an anisotropic Ogden model.  

Model fits to the stress-relaxation experiments were able to accurately predict the results of 

dynamic cyclic experiments. 

 The resulting constitutive models from this project build upon previous models of brain 

white matter mechanics to include biaxial interactions and structural relations, thus improving 

computational model predictions. 
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1. BACKGROUND 
 
 
 
1.1 Brain Anatomy & Structure 

1.1.1 General Anatomy 

The neural tissue of the brain can be divided into two components: grey matter and white 

matter.  Grey matter consists of a large number of neuronal cell bodies and has a pink-grey hue 

due to the presence of capillaries.  Functionally, grey matter can be thought of as the signal 

processing tissue, while white matter provides the conduits for signal transmission.  White matter 

contains relatively few neuronal cell bodies, but a high density of myelinated axons.  Signals are 

sent through the axons of neurons between regions of the brain as well as between the brain and 

the peripheral nervous system.  White matter gets its white color from myelin surrounding the 

axons.  Figure 1.1 highlights many key regions of the brain discussed throughout this document.  

Axons in the corona radiata extend from the globus pallidus, radially outward to the grey matter 

of the cerebral cortex.  The corpus callosum connects the two hemispheres of the brain and 

contains highly aligned axons. 

The brain is surrounded and protected by the meninges, made up of three fibrous layers: 

the pia mater, the arachnoid mater, and the dura mater.  The pia mater is a very thin membrane 

attached to the surface of the brain, following its folds and contours.  The arachnoid mater is a 

web-like structure tethering the pia to the dura.  The dura mater is a thicker tough membrane that 

lies closest to the skull.  Cerebrospinal fluid, located in the subarachnoid space between the 

arachnoid mater and the pia mater, is a viscous fluid that mechanically cushions the brain.  A 

network of capillaries penetrates the brain, passing through the pia mater. 
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Figure 1.1: Anatomy of the brain shown in (A) mid-sagittal section, (B) coronal section, and (C) 
sagittal section in region of corona radiata (images adapted with permission from [The Internet 

Pathology Laboratory for Medical Education]). 
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1.1.2 Neurons 

 Neurons are the primary functional cells of nervous tissue, serving to transmit and 

process electrical signals via the movement of ions.  Typical neurons consist of a soma (cell 

body), an axon, and dendrites (Figure 1.2).  Signals are transmitted from the axon terminals of 

one neuron to the dendrites of another neuron via synapses.  Most axons are surrounded by a 

myelin sheath, which provides electrical insulation.  Myelin is made up of mostly lipids (70-85% 

of dry mass) as well as proteins (15-30% of dry mass) [Saher et al. 2005]. The nodes of Ranvier 

are gaps in the myelin sheath which contain voltage-gated ion channels.  The myelin segments, 

combined with the nodes of Ranvier, allow for action potentials to jump from node to node, thus 

propagating the signal at faster speeds than an unmyelinated axon.  Neurofilaments have a 

diameter of 10 nm and are the primary constituent of the neuron cytoskeleton [Yuan et al. 2012].  

They provide structural support to axons to maintain their shape and diameter.   The size of 

axons is highly variable, with the length ranging from less than 1 mm for interneurons, to greater 

than 1 m in the peripheral nervous system [Debanne et al. 2011].  In mammals, the myelinated 

axon diameter can range from about 1 µm up to 20 µm, with larger diameter axons allowing for 

faster signal conduction [Hursh 1939].  Unmyelinated axons are typically smaller, ranging from 

about 0.1-1 µm [Wang et al. 2008]. 

1.1.3Glial cells 

Most other cells in nervous tissue are categorized as glial cells, named for being the 

‘glue’ of nervous tissue.  In the brain, the three main types of glial cells are astrocytes, microglia, 

and oligodendrocytes (Figure 1.2).  Astrocytes are star-shaped cells that function as chemical 

regulators.  They have processes that surround neuronal synapses, as well as processes that 

connect with endothelial cells on blood vessels.  Microglia respond to foreign bodies and 
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changes in extracellular ion concentrations, and they act as the primary immune defense of the 

brain.  Oligodendrocytes function to form the myelin.  They contain processes that extend to 

axons, surrounding the myelin sheath.  Oligodendrocyte-axon connectivity may play a role in the 

mechanical behavior of brain tissue.  Axons with increased myelination have showed a greater 

kinematic affinity to the glial matrix [Hao and Shreiber 2007].  Additionally, white matter tensile 

stiffness is decreased by the disruption of myelination by oligodendrocytes, which is thought to 

be due to the decreased oligodendrocyte-axon connectivity rather than the decrease in myelin 

[Shreiber et al. 2009]. 

 

Figure 1.2: Diagram showing the morphology and interconnectivity of neurons and glial cells. 
Figure used with permission from [Allen and Barres 2009]. 
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1.1.4 Extracellular Matrix 

 The extracellular space takes up about 17-20% of the brain volume [Cragg 1979].  The 

extracellular constituents include dense networks of proteoglycans, hyaluronan, and link 

proteins, the adhesive glycoproteins laminin and fibronectin, and small amounts of the fibrous 

proteins collagen and elastin [Lau et al. 2013].  In white matter specifically, hyaluronan and 

chondroitin sulphate proteoglycans are primary constituents found in the space between axons 

and in the nodes of Ranvier, and chondroitin sulphate proteoglycans aid in myelination [Asher et 

al. 1991, Lau et al. 2013].  While the extracellular matrix can aid in the myelination, and its 

hydrophilic nature can lead to increased hydration, it is not thought to provide structural support, 

and has been largely ignored in studies of mechanics. 

1.2 Computational Modeling 

 It is important to study the mechanical behavior of brain tissue to incorporate the results 

into computational models.  In turn, the models can be used for simulated neurosurgery, as well 

as the study of traumatic brain injuries.  Experiments in the current study are motivated by 

computational models for simulated neurosurgery.  Specifically, these models are useful for the 

development of surgical procedures, surgeon training, operation planning, and image registration 

to account for intraoperative brain shifts [Miller 2011, Ferrant et al. 2001].  Examples of surgical 

procedures include craniotomies, tumor debulking, and needle injections for drug delivery [Chan 

et al. 2013].  Computational models require accurate constitutive descriptions of the stress-strain 

relationship to compute the finite deformations that occur during operations [Garcia et al. 2012] 

as well as the force-feedback on the surgical tools [Chan 2013].  Due to the relatively low 

loading rates, the majority of models utilize constitutive equations based on quasi-static 
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experiments.  However, viscoelastic effects are still important at low strain rates, and viscoelastic 

models have been recommended to improve the model predictions [Kyriacou et al. 2002]. 

 The accuracy of computational models depends on the geometry, boundary conditions, 

and material definitions.  Computational models of the brain differ in how the materials are 

defined.  Grey matter and white matter are usually given different material properties, which 

have included isotropic linear viscoelastic properties based on in vitro shear experiments [Post et 

al. 2012, Zhang et al. 2001].  Other approaches have modeled the anisotropy of white matter and 

defining the axonal orientation based on diffusion tensor imaging [Colgan et al. 2010, Wright 

and Ramesh 2012].  Significant differences in predicted strains for some white matter regions 

have been reported when comparing models with anisotropic and isotropic material definitions 

[Colgan et al. 2010].  It has similarly been found that the orientation of axons affects the model 

predictions [Wright and Ramesh 2012]. 

1.3 Brain Mechanics 

 It is of particular interest to develop constitutive models to describe the mechanical 

behavior of brain tissue by fitting the models to experimental data. 

1.3.1 In Vivo vs. in Vitro Experiments 

 It is generally desired for mechanical properties of biological tissues to be obtained in 

vivo in order to test the tissue in its natural state, in which the tissue is intact, perfused with 

blood, and temperature regulated.  There are established techniques for in vivo determination of 

the mechanical behavior of the brain, but they do have some limitations.  Ultrasound techniques 

estimate the complex shear and elastic moduli by measuring the attenuation and speed of high 

frequency sound waves propagating through the tissue [Lippert et al. 2004].  However, the depth 

of penetration is limited due to high attenuation through the skull, and the analysis is complicated 
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by inhomogeneous tissues [Cheng et al. 2008].  Magnetic resonance elastography is a similar 

technique in which mechanically-produced acoustic strain waves propagate through the tissue.  

The waves are measured using magnetic resonance imaging and analyzed to compute the 

complex shear modulus [Manduca et al. 2001].  This technique has the potential to measure 

anisotropy and detect differences in inhomogeneous tissues. Likewise, it has been used to 

compute the complex shear modulus of grey matter and white matter [Manduca et al. 2001, 

Green et al. 2008].  However, measurements are limited for deep tissues due to attenuation 

[Cheng et al. 2008].  Both ultrasound and magnetic resonance elastography are limited to 

studying small strains, and they do not test all deformation modes (tension, compression, and 

shear). 

 In vitro mechanical tests have the disadvantage of removing the tissue from its natural 

state, which can result in errors due to sample preparation, tissue degradation, and loss of 

perfusion.  However, in vitro studies are more versatile and less complicated than in vivo studies 

because they do not require live subjects.  More sophisticated experimental setups can be used in 

in vitro environments.  Indentation stress-relaxation tests on porcine brains have been used to 

directly compare in vivo, in situ (no perfusion), and in vitro (brain not constrained within skull) 

setups [Gefen and Margulies 2004].  The only significant difference from in vivo to in situ setups 

was a decrease in the long term time constant.  However, when removed from the skull, the 

computed shear modulus was significantly decreased from in vivo and in situ setups to in vitro.  

The altered boundary conditions that are requisite for in vitro testing may affect the measured 

mechanical properties, contributing to the high variability in published properties (for example, 

shear modulus values range from about 100 Pa to 10,000 Pa) [Hrapko et al. 2008]. 
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1.3.2 Challenges in Mechanically Testing Brain Tissue 

 Mechanically testing brain tissue presents many challenges.  Brain tissue is very soft and 

compliant.  Very small forces are capable of causing damage.  Therefore, care must be taken 

when handling the tissue and performing dissection.  Handling procedures must be developed 

and followed to ensure the tissue remains undamaged at every step.  The softness of the tissue 

also creates challenges for gripping.  Some common gripping techniques used for other 

biological tissues, such as sutures and clamps, result in tears and do not effectively hold the 

tissue.  The solution to effective gripping depends on experimental setup and boundary 

conditions (e.g. tension, compression, or shear).  Some success has been found using adhesives 

[Miller and Chinzei 2002, Rashid et al. 2014], although adhesives have the potential to seep into 

the tissue, altering the mechanical behavior near the grip.  In shear tests, specimens have been 

held between rough sandpaper surfaces along with a compressive preload to prevent slipping 

[Feng et al. 2013]. 

 Another challenge in mechanically testing brain tissue is the rapid degradation of neural 

tissue post-mortem.  The structure can be altered as a result of freezing and thawing the tissue, 

and even when fresh, the tissue begins to become stiffer after about six hours post-mortem [Garo 

et al. 2007].  It may be possible to slow degradation and extend this window by storing the tissue 

at low temperatures, but without freezing, between harvest and testing [Van Dommelen et al. 

2010, Nicolle et al. 2004].  The short window of time limits the potential to test fresh human 

tissue. Accordingly, the large majority of mechanical experiments have used animal tissue. 

1.3.3 Shear 

 It has been postulated that shear strain could correlate with the probability of a brain 

injury [Holbourn 1943].  Likewise, shear has been the most common form of mechanical tests on 
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brain tissue.  Generally, blocks of tissue are dissected out and placed between two platens to be 

deformed in shear.  Many studies have performed oscillatory shear tests at a range of frequencies 

to determine the linear viscoelastic properties (storage and loss modulus) at small strains 

[Abrogast and Margulies 1999, Feng et al. 2013, Nicolle et al. 2004, Garo et al. 2007].  While 

the reported moduli vary widely across these studies, they all show increasing storage and loss 

moduli as frequency increases [Hrapko et al. 2008].  Other studies have extended this work to 

large strains.  Brain tissue has been deformed with shear strains up to 0.45 without damage being 

observed [Hrapko et al. 2006].  Nonlinear constitutive models are used to describe the stress-

strain relationship at large strains [Prange and Margulies 2002, Ning et al. 2006], and many of 

these shear experiments have also found anisotropic behavior in white matter [Feng et al. 2013, 

Ning et al. 2006, Prange and Margulies 2002]. 

1.3.4 Compression and Indentation 

 Experiments investigating the compressive properties of brain tissue often utilize 

unconfined compression to achieve more reliable results and simplify the analysis compared to 

confined compression.  The frictionless boundary condition is usually achieved using lubricants 

on the loading plates, although at high strain rates, the friction is not negligible, even with a 

lubricant [Rashid et al. 2012].  Studies that analyzed the stress-strain relationship consistently 

found a nonlinear behavior, with the tissue stiffening as strain is increased [Laksari et al. 2012, 

Miller and Chinzei 1997, Prevost et al. 2011, Rashid et al. 2012].  Viscoelastic properties are 

also investigated via stress relaxation and varying strain rates.  Brain tissue has been shown to be 

consistently stiffer at higher strain rates [Miller and Chinzei 1997, Rashid et al. 2012].   

However, there are contradictions on strain dependence, with some results showing quasi-linear 

viscoelasticity to be valid [Laksari et al. 2012], and other results requiring nonlinear viscoelastic 
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models to better fit the data [Prevost et al. 2011].  Another approach used a poroviscoelastic 

model and found that the tissue permeability affected the stress response [Cheng and Bilston 

2007]. 

 Indentation tests have the advantage of being able to localize the analysis to small 

regions.  Specifically, results have found that white matter has a greater stiffness than grey 

matter, as well as greater variability in reported mechanical parameter data [Van Dommelen et 

al. 2010].  Indentation is also relatively non-invasive, and has been used to mechanically test 

brain tissue in vivo in animals by opening up the skull [Miller et al. 2000, Gefen et al. 2003, 

Gefen and Margulies 2004].  Similar to compression results, the stress-strain relationship in 

indentation is nonlinear, with the material stiffening at higher strains [Miller et al. 2000].  In 

stress-relaxation experiments using multiple strain magnitudes, it was found that quasi-linear 

viscoelasticity may be appropriate to model large strains in indentation [Elkin et al. 2011]. 

1.3.5 Tension 

 Relatively few studies have investigated the tensile properties of brain tissue.  The studies 

differ in specimen gripping methods (Figure 1.3), with one method using an adhesive to attach 

each end of the specimen to a plate and pulling the plates in tension [Miller and Chinzei 2002, 

Rashid et al. 2014].  In this setup, the specimen width was greater than its length, creating 

inhomogeneous stresses and complicating the analysis.  Another setup used long, thin specimens 

that were clamped at either end, allowing for a more simplified analysis, although boundary 

effects may arise due at the clamps [Velardi et al. 2006].  The shape of the stress-strain curve 

varies in tension between studies.  One study reports curves that are very close to linear [Velardi 

et al. 2006], one reports a concave down shape which is especially pronounced at low strain rates 

[Miller and Chinzei 2002], and one reported a concave up shape [Rashid et al. 2014].  Another 
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study that loaded specimens cyclically in tension and compression showed a concave down 

behavior if loaded in tension first, but concave up if loaded in compression first (Figure 1.4) 

[Franceshini et al. 2006].  The tensile stiffness increases as strain rate increases [Miller and 

Chinzei 2002, Rashid et al. 2014], and when loaded to failure at a quasi-static strain rate, 

mechanical damage was reported to occur at a mean stretch of 1.9 [Franceshini et al. 2006]. 

 

 
Figure 1.3: Tensile testing methods include using an adhesive to attach the specimen to two 
loading surfaces (left, adapted with permission from [Rashid et al. 2014]), and clamping the 

tissue at either end (right, used with permission from [Velardi et al. 2006]). 

 

1.3.6 Stress-Strain Relationship 

 Many studies have attempted to determine the mechanical properties of brain tissue 

experimentally.  Brain tissue is a very soft, easily deformed material.  The infinitesimal shear 

modulus is a common measure reported in many methods of mechanical testing, and has been 

found to range from 0.13 kPa to 14 kPa in the reviewed literature [Velardi et al. 2006, Manduca 

et al. 2001].  Differences in the measured behavior may arise due to differences in preloads, 

temperature, testing protocols, and tissue donors [Hrapko et al. 2008].  The form of the stress-

strain relationship depends on the mode of deformation.  Compression exhibits a hyperelastic 

behavior in which the stiffness increases at higher compressive strains, but in shear, the stiffness 
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generally decreases as strain increases (Figure 1.5) [Prange and Margulies 2002, Hrapko et al. 

2006].  However, in tension the shape of the stress-strain curve is inconsistent, but appears to 

depend on loading history [Franceschini et al. 2006] as well as strain rate [Miller and Chinzei 

2002]. 

 
Figure 1.4: Brain tissue tested in compression and tension consistently shows a hyperelastic 
strain-stiffening behavior in compression.  However, in tension, the behavior depended on 

whether the tissue was loaded in compression first (left) or tension first (right). Adapted with 
permission from [Franceschini et al. 2006]. 

 

 
Figure 1.5: The stress-strain relationship of brain tissue in shear shows a concave-down curve. 

Figure created based on published data from [Hrapko et al. 2006]. 
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1.3.7 White Matter vs. Grey Matter 

 Regional differences in mechanical properties have also been investigated, especially 

when comparing white matter and grey matter.  Unfortunately, the results have been inconsistent.  

Some results from in vitro shear experiments found grey matter to be stiffer than white matter 

[Nicolle et al. 2004, Prange and Margulies 2002], although in one study, they were similar at 

small strains [Nicolle et al. 2004].  In one experiment in tension [Velardi et al. 2006] and one in 

indentation [Van Dommelen et al. 2010], white matter was found to be stiffer.  Inconsistencies 

have even been found in two in vivo studies using the same technique.  Using magnetic 

resonance elastography, one group found the shear modulus of white matter (14.2 kPa) to be 

significantly stiffer than grey matter (5.3 kPa) [Manduca et al. 2001], but another group found 

the shear modulus of grey matter to be significantly greater than for white matter (3.1 kPa and 

2.7 kPa, respectively) [Green et al. 2008].  One consistent finding is that grey matter exhibits 

isotropic behavior [Prange and Margulies 2002, Shuck and Advani 1972, Feng et al. 2013], 

whereas white matter tends to be anisotropic [Velardi et al. 2006, Prange and Margulies 2002, 

Feng et al. 2013, Ning et al. 2006]. 

1.3.8 White Matter Anisotropy 

 Basic structural observations clearly show a directional alignment of axons in white 

matter.  Diffusion tensor magnetic resonance imaging has been used to map the axonal tracts in 

white matter (Figure 1.6) and calculate measures of fractional anisotropy [Catani et al. 2002, 

Wakana et al. 2004].  In addition to structural alignment, experiments have shown white matter 

to exhibit mechanical anisotropy (Figure 1.7), but the degree of anisotropy is region dependent.  

In shear, the corpus callosum and corona radiata were both shown to be anisotropic [Prange and 

Margulies 2002].  As expected, the corpus callosum exhibited a greater stiffness in the axonal 
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direction; however, corona radiata specimens were stiffer in the direction orthogonal to the 

axons.  Other studies reported the corona radiata to be isotropic [Shuck and Advani 1972] or 

have very low anisotropy [Nicolle et al. 2004] in shear.  In tension, corona radiata specimens 

were stiffer in the axonal direction, although the results were not analyzed statistically [Velardi 

et al. 2006].  The inconsistency in the anisotropy of the corona radiata may be related to its fan-

like structure in which there is a large spatial distribution of axonal orientation.  Other studies in 

shear found the corpus callosum [Feng et al. 2013] and the brainstem [Ning et al. 2006] to be 

anisotropic with a greater stiffness in the axonal direction. 

 
Figure 1.6: Axon tracts measured via diffusion tensor imaging are shown following outward 

from the corpus callosum (cc) to the cortex.  The axons are highly aligned in the corpus 
callosum.  The four views shown are (A) anterior view, (B) left lateral view, (C) superior view, 
and (D) oblique view from right anterior. Adapted with permission from [Wakana et al. 2004]. 

 

 The data describing the anisotropy of white matter are fairly limited, with most studies 

only analyzing the shear behavior.  The only tensile study analyzing anisotropy used specimens 

from the corona radiata, which has otherwise been shown to be nearly isotropic.  Also, all of 
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these studies test the tissue in one direction at a time.  However, uniaxial tests are insufficient to 

uniquely characterize the material [Smith and García 2013], and analyzing tissues in multi-axial 

loading states can more fully characterize the anisotropic behavior [Sacks 2000].  Therefore, one 

goal of this study is to investigate the anisotropy of white matter tissues in biaxial tension. 

 
Figure 1.7: The mechanical anisotropy of white matter is shown in tension for directions parallel 

to and perpendicular to the axons (figure created based on published data from [Velardi et al. 
2006]). 

 

1.3.9 Preconditioning 

 It is typically preferred for mechanical tests on biological tissue to use a preconditioning 

regimen by cyclically loading the specimen until the results are unchanging between cycles 

(converged), and then the final loading cycle is analyzed.  This process results in more reliable, 

less variable data [Cheng et al. 2008].  For neural tissue, however, specimens are sometimes not 

preconditioned due to the relatively compliant and delicate nature of the tissue [Velardi et al. 

2006, Miller and Chinzei 2002, Rashid et al. 2014].   It could also be argued that it is better to 

assess the mechanical behavior with no prior loading history in order to more closely resemble a 

one-time loading event that would occur in neurosurgery.  However, the brain is normally 
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subjected to mechanical stresses in vivo due to the fluctuating intracranial pressure [Steiner and 

Andrews 2006], as well as mechanical loads induced by accelerations of the head.  Various 

preconditioning regimens can result in significant differences in measured material properties 

[Cheng et al. 2009, Gefen et al. 2003].  Based on tensile tests of spinal cords with varying 

preconditioning protocols, it has been recommended to precondition specimens to the highest 

strains that will subsequently be used in testing in order to get more repeatable results within a 

study and across studies [Cheng et al. 2009].  Some studies on brain tissue mechanics have 

chosen to precondition the specimens, and then report both preconditioned (last cycle) and non-

preconditioned (first cycle) properties [Gefen et al. 2003, Gefen and Margulies 2004, Prevost et 

al. 2011].  When using the results of these studies, one can decide whether preconditioned or 

non-preconditioned properties are preferred for the specific application. 

1.4 Constitutive Modeling 

 While many studies on brain mechanics have simplified the analysis by using the 

complex shear modulus to model the linear viscoelastic behavior at small strains, some attempts 

have been made to model the hyperelastic and nonlinear viscoelastic response of the tissue.  

Additional modeling approaches for soft tissues have included structural parameters into the 

models. 

1.4.1 Hyperelasticity 

 Constitutive models describing hyperelasticity often take the form of strain energy 

density functions, which can be defined in terms the deformation gradient tensor (F), the 

stretches (Ȝi), or a number of strain invariants.  From the deformation gradient, the symmetric 

right Cauchy-Green strain tensor can be calculated as C = FTF, and the following stain invariants 

can be subsequently calculated: 
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ଵܫ  =  ሺ�ሻ (1.1)ݎݐ

ଶܫ  = భమ[ሺݎݐ �ሻଶ −  ሺ�ଶሻ] (1.2)ݎݐ

ଷܫ  = ሺ�ሻݐ݁݀ =  ଶ (1.3)ܬ

ସܫ  = �଴ · � · �଴ (1.4) 

ହܫ  = �଴ · �ଶ · �଴ (1.5) 

 

I1 is related to the hydrostatic component of the deformation gradient tensor, and I2 is related to 

the deviatoric strain. I3 represents the volume change, where J is the deformed to undeformed 

volume ratio and equal to the determinant of F.  For an incompressible material, I3 and J are 

equal to unity.  I4 is an anisotropic invariant representing the square of the stretch in the direction 

defined by the vector a0.  I5 is a similar invariant which can be used to describe the anisotropic 

shear.  Defining constitutive models in terms of strain invariants offers a convenient form for 

computational models because they are independent of the coordinate system.   

 An isotropic Ogden formulation has commonly been used to model brain tissue [Miller 

and Chinzei 2002, Rashid et al. 2014, Franceschini et al. 2006].  The strain energy density (W) is 

defined as: 

 � =  ଶµ�మ ሺߣଵ� + �ଶߣ + �ଷߣ − ͵ሻ (1.6) 

The coefficients µ and α represent the infinitesimal shear modulus and the stiffening (or 

nonlinearity), respectively.  A transversely isotropic form of the Ogden model has utilized the 

addition of an anisotropic term to account for the axonal alignment in white matter [Meaney 

2003, Velardi et al. 2006]: 

 � =  ଶµ�మ ሺߣଵ� + �ଶߣ + �ଷߣ − ͵ሻ + ଶ௞µ�మ ସ�/ଶܫ) + ସ−�/ସܫʹ − ͵) (1.7) 
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In this model, the coefficient k represents the axonal component in the direction defined by I4.  

Another transversely isotropic model based on a neo-Hookean solid has been used for brain 

tissue.  A simple neo-Hookean model with an added anisotropic term was used to fit 

experimental shear data from the brainstem, and the model was implemented into a finite 

element analysis [Ning et al. 2006].  The model took the form: 

 � =  �ଵ଴ሺܫଵ − ͵ሻ + ଵ஽భ ሺܬ − ͳሻଶ + ଵଶ �ሺܫସ − ͳሻଶ, (1.8) 

where C10 is one half of the infinitesimal shear modulus, 2/D1 is the bulk modulus, and ș is a 

coefficient representing the axonal stiffness. 

 The coefficients for the models can be determined experimentally by fitting the 

experimental Cauchy stress to the theoretical Cauchy stress of the model.  The theoretical 

Cauchy stress (ı) is derived from the strain energy density as: 

 � = ܨଵ−ܬʹ · ���஼ ·  (1.9) ்ܨ

 The large majority of transversely isotropic brain models have only used the I4 invariant 

to model the stiffness due to the stretch in the axonal direction.  Based on the anisotropic 

behavior of white matter in shear, it has been recommended to include contributions of the I5 

invariant [Feng et al. 2013], although the effect of an additional I5 term has not been explored for 

brain tissue. 

 All of the models have been able to fit stress-strain data well; however, model assessment 

should also assess their predictive power.  One study used three different formulations (a Fung 

model, a Gent model, and an Ogden model) to model tensile and compressive data separately, 

and all three models fit the data equally well [Rashid et al. 2012, Rashid et al. 2014].  However, 

because the model fits to tension and compression were done separately, the study did not assess 

the robustness or predictive ability of the models when applied to independent data.  However, 
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an Ogden model fitted to shear data has been able to predict the compressive behavior in an 

independent experiment [Prange and Margulies 2002]. 

 Most of the brain constitutive models assume the tissue to be incompressible.  A term 

including I3 or J, as in equation (1.8), can be used to model the volume change for a 

compressible material.  By including the volume change in one model, compressible and 

incompressible models of brain tissue have been found to be indistinguishable [Laksari et al. 

2012], agreeing with previous work showing brain tissue to be nearly incompressible [Holbourn 

1943]. 

1.4.2 Inclusion of structural parameters into models 

 Microstructural approaches have been used to describe the specific mechanics of axon 

and matrix components.  Similar to fiber crimp in collagenous tissues, axonal undulation has 

been observed in the guinea pig optic nerve via neurofilament staining [Bain et al. 2003].  The 

recruitment of the axons while stretching was modeled to describe the gradual coupling of the 

axons to the glial cells.  This study provided evidence for non-affine mechanics of the axons and 

glial matrix at low stretches, transitioning to increased affinity at higher stretches.  In affine 

mechanics, the structural components (axons) and bulk material (matrix) are coupled and 

experience the same deformations, but in non-affine mechanics, the structural components can 

deform separately from the bulk material.  A non-affine model has been incorporated into finite 

element analyses that treat the axons and matrix as separate materials, reporting the relative 

stresses in each material [Karami et al. 2009, Pan et al. 2011].  It was found that greater 

undulation resulted in relatively higher matrix stresses and lower axonal stresses [Karami et al. 

2009].  When comparing this structural constitutive model to phenomenological hyperelastic 

models, it was found that the Ogden and Fung hyperelastic models could match the overall 



20 
 

behavior of the structural model, but a Mooney-Rivlin model resulted in higher errors [Meaney 

2003].  While the undulation microstructural model can be useful for modeling the specific 

mechanical response of axons and the glial matrix, hyperelastic models are sufficient for 

modeling the tissue-level response. 

 Another structural modeling approach involves the measurement of axon volume 

fraction.  One group used volume fraction measurements to determine the difference between 

axon and matrix properties.  They estimated the complex shear modulus for axons and matrix 

separately via shear experiments on the optic nerve and brainstem [Abrogast and Margulies 

1999].  The axonal moduli were estimated from the optic nerve because it contains a high 

volume fraction of axons (>90%), and the brainstem was taken as an axon-matrix composite to 

estimate the matrix moduli.  The brainstem contains a structure of bundled axons, and the 

volume fraction was measured via histology with stained white matter and unstained grey matter.  

In the brainstem, the axons had a volume fraction of 0.53±0.07, and were about three times 

stiffer than the matrix [Abrogast and Margulies 1999].  While this study estimated volume 

fraction of axons from the area of stained white matter, similar measurements have been made 

using transmission electron microscopy, giving the ability to visualize individual axons [Kim et 

al. 1996].  An axon-matrix composite finite element approach found that increasing the volume 

fraction of axons increased the resulting stresses, with a greater effect at higher strains [Karami 

et al. 2009].  While this approach defined two separate materials to give the difference between 

axons and matrix, a single constitutive model could be used to describe white matter as a whole, 

and incorporate the axon volume fraction as a parameter in the axonal term of the model. 

 Fiber dispersion has been incorporated as a parameter in constitutive models of soft 

tissues.  A parameter defining the statistical distribution of collagen fiber orientation has been 
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incorporated into a Holzapfel hyperelastic model of blood vessel walls [Gasser et al. 2006].  This 

parameter affects the degree of anisotropy in the fiber response.  However, the dispersion 

parameter was estimated via model fits rather than empirically measured.  A similar modeling 

approach has been used, with the exception that the distribution was experimentally derived.  

This model was able to fit biaxial tests of pericardium [Sacks 2003].  Measures of dispersion 

have not been incorporated into brain constitutive models even though some regions of the brain 

such as the corona radiata show a high spatial distribution of axons (Figure 1.8). 

 
Figure 1.8: Histology section of ovine corona radiata stained for myelin with Luxol Fast Blue, 

with the spatial distribution of the axonal orientation marked with dashed lines. 

 

 One goal of the current study is to incorporate empirical measurements of axon volume 

fraction and distribution into a constitutive model describing the results from white matter 

mechanical testing. 

1.4.3 Viscoelasticity 

 Like most soft tissues, brain tissue is a viscoelastic material.  Because surgical operations 

are dynamic (although low-speed) events, it is important for surgical simulations to model the 
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viscoelastic behavior of brain tissue [Kyriacou et al. 2002].  Viscoelastic models can be generally 

be divided into three categories: linear, quasi-linear, and fully nonlinear viscoelastic 

formulations. 

 Under the assumption of linear viscoelasticity, the constitutive model for the stress (ı) 

can be given as: 

 �ሺݐሻ = ∫ ݐሺܧ − �ሻ ��ሺ�ሻ�� ݀�௧଴ , (1.10) 

where E(t) is the relaxation modulus, ε(t) is the strain, and Ĳ is a time variable of integration.  If 

equation (1.10) is applied to cyclic strains, the stress can then be given in terms of a complex 

modulus: 

 �ሺݐሻ = ሺܧ′ +  ሻ (1.11)ݐሻ�ሺ′′ܧ�

where E’ and E’’ are the storage and loss moduli, respectively.  Many studies have done 

frequency sweep experiments for oscillatory shear, covering high strain rates.  They are often 

done at low strains, assuming linear viscoelasticity [Hrapko et al. 2008], and the reported 

complex moduli are commonly implemented in computational models [Post et al. 2012, Zhang et 

al. 2001].  However, linear viscoelastic models of brain tissue are only valid at low strains (less 

than 0.01) [Nicolle et al. 2004].  Since the surgical operations involve larger strains [Garcia et al. 

2012], it is suggested that nonlinear viscoelastic models should be used to accordingly predict 

the internal tissue mechanics. 

 The Fung model of quasi-linear viscoelasticity is commonly used to model soft tissues 

[Fung 1993].  In this model, the stress is expressed as a function of stretch (Ȝ) and time (t), at an 

instance of time Ĳ, using a single hereditary integral: 

 �ሺݐሻ = ∫ ݐሺܩ − �ሻ ��ሺ�ሻ[ఒሺ�ሻ]�ఒ �ఒሺ�ሻ�� ݀�௧−∞  (1.12) 
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ı(e) is the instantaneous elastic response, and is typically approximated by the stress response at a 

high loading rate.  When applied to brain tensile stress-relaxation experiments, the elastic 

response has taken the form of an Ogden hyperelastic model (equation 1.6) [Rashid et al. 2014].  

The reduced relaxation function G(t) is normalized such that G(0) = 1.  This function is often 

simplified to be represented by a Prony series: 

ሻݐሺܩ  = ͳ − ∑ �௜ሺͳ − ݁−௧/��ሻ௡௜=ଵ   (1.13) 

where Ĳi are relaxation time constants, and Ci are the corresponding coefficients.  In this 

formulation, the elastic response can be nonlinear, but the relaxation function does not take into 

account nonlinearities in the relaxation with respect to strain magnitude.  A fully nonlinear 

viscoelastic model can better represent the nonlinearities in both the stress-strain relationship and 

in the relaxation behavior with respect to strain magnitude. 

 One approach to modeling nonlinear viscoelasticity, which has been applied to spinal 

cord tension [Shetye et al. 2014], defines the relaxation modulus in equation (1.10) as a function 

of time and strain, such that 

,ݐሺܧ   �ሻ = ሺ�ሻ∞ܧ + ∑ ௜ሺ�ሻ݁−௧/��ସ௜=ଵܧ  , (1.14) 

where E∞ represents the long term steady state modulus, and the Ei moduli correspond to the 

time constants.  E(ε) can be defined as a quadratic function with coefficients C1 and C2: 

ሺ�ሻܧ  = �ଵ� + �ଶ�ଶ. (1.15) 

This model uses a ramp correction method to account for finite ramp times in stress-relaxation 

experiments [Troyer et al. 2012a], and was able to represent the spinal cord ramp response 

[Shetye et al. 2014].  The experimental cyclic response of the spinal cord could also be predicted.  

The model has effectively been implemented into a finite element analysis [Troyer et al. 2012b]. 
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 The viscoelastic models of brain tissue have rarely considered the anisotropy of white 

matter, and those that do account for directionally-dependent behavior have exclusively used 

linear viscoelasticity [Abrogast and Margulies 1999, Feng et al. 2013, Nicolle et al. 2004].  

However, anisotropic nonlinear viscoelastic models have been formulated for other soft tissues 

[Bischoff et al. 2004, Nguyen et al. 2008].  Anisotropic viscoelastic behavior can be modeled in 

multi-dimensional loading states, such as biaxial stress, by modifying equation (1.12) [Fung 

1993].  ı(t), G(t), and ı(e)(Ȝ) are replaced with the tensors Sij(t), Gijkl(t), and Skl
(e)(E), respectively, 

where S is the 2nd Piola-Kirchhoff stress and E is the Green-Lagrange strain tensor, resulting in: 

 ௜ܵ௝ሺݐሻ = ∫ ݐ௜௝௞௟ሺܩ − �ሻ �ௌೖ೗ሺ�ሻ[ாሺ�ሻ]�ா �ாሺ�ሻ�� ݀�௧−∞  (1.16) 

In the case of biaxial tension with negligible shear, there are three independent relaxation 

functions: G1111, G2222, and G1122.  These relaxation functions have been used to analyze the 

stress relaxation in longitudinal and circumferential directions in a urinary bladder biaxial test 

[Nagatomi et al. 2004].  This approach allows for a determination of the anisotropy of the 

relaxation behavior separately from the anisotropy of the elastic behavior, and could be applied 

to model the anisotropic viscoelastic behavior of brain white matter in biaxial tension. 

1.5 Probabilistic Analysis 

 In biomechanics, computational modeling is used to make predictions about a system 

response, which can be the motion of a joint, localized stresses and strains, or some structural 

failure. Models are often based on a single geometry with material properties taken from 

experimental means.  However, in biological system data there are high variability in material 

properties and geometries.  Probabilistic modeling approaches have taken the variability into 

account to predict the probability distribution of a response based on the distributions of the 

input parameters (material properties, geometries, etc.).  For example, a finite element model was 
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used to assess the effects of the variability of ligament stiffness, attachment point, and reference 

strain on the kinematic constraint on the knee joint [Baldwin et al. 2009].  Importance factors 

were calculated to determine the relative specificity of ligament properties on the joint constraint.  

As another example, a femur finite element model utilized the variability in bone stiffness and 

strength relative to predicted properties derived from computed tomography scans [Keller 1994].  

The model predictions of fracture risk found that the 1-99% probability range of risk was greater 

than 50% of the mean risk [Laz et al. 2007]. 

 In the brain, a probabilistic modeling approach could be used to predict the probability 

distribution of model stress and strain predictions.  The stress and strain response in the model 

would be influenced, in part, by the distribution of the material parameters.  One goal of this 

study is to report the distribution of constitutive model parameters fitted to biaxial experimental 

data, and to use this distribution to predict the distribution of the stress response. 

 Probabilistic methods start with the distribution of input parameters, which can be 

defined by a number of statistical distributions (normal, lognormal, etc.).  Combinations of the 

input parameters are then sampled based on their distributions, and a model is used to predict the 

output response.  With enough sampling, the full probability distribution of the response can be 

calculated.  The Monte Carlo method of sampling is the gold standard probabilistic method.  It 

uses random sampling of the input parameters according to their distribution.  It is simple and 

robust, but requires thousands of trials in order to guarantee accuracy.  Other methods are able to 

achieve similar accuracy while using far fewer trials, which is advantageous if computational 

cost is a concern.  One common method is the advanced mean-value method which, in short, 

uses a mean-based response to determine the most probable point for the model performance for 

a given probability level [NESSUS Theoretical Manual].  The number of trials needed depends 
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on the number of input parameters and the number of desired probability levels.  It is 

recommended to validate the use of the advanced mean-value method (or any other 

approximation method) against the Monte Carlo method for any new model [Laz and Browne 

2010].  The advanced mean-value method has accurately matched the Monte Carlo method in 

previous probabilistic models, while reducing the computational time up to 400 fold [Baldwin et 

al. 2009, Laz et al. 2007]. 

 In addition to giving the probability distribution of the model response, probabilistic 

methods can provide information about the sensitivity of the model to the input parameters.  

Correlations are a starting point to determine the relations between parameters.  Probabilistic 

methods allow the computing of absolute sensitivity factors, defined as the derivative of the 

model response probability with respect to the mean and standard deviation of the input 

parameters, normalized by the standard deviation and probability [NESSUS User Manual].  

Importance factors can also be calculated to provide the relative importance of the parameters to 

the probability of the model response. 

1.6 Summary 

 The overarching goal of this study was to improve the anisotropic mechanical behavior 

descriptions of brain tissue in computational models used for simulated neurosurgery. 

Finite element models of the brain require accurate material models.  Brain tissue exhibits 

hyperelastic and viscoelastic qualities, with white matter being anisotropic and grey matter being 

isotropic.  This behavior has been determined through experiments in compression, shear, and 

tension, and described using continuum models.  However, there is a lack of data describing the 

effects of multi-axial loading, even though in vivo brain tissue is in a constant multi-axial stress 

state due to fluid pressure.  Data from uniaxial experiments do not sufficiently describe 
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simultaneously applied multi-axial stresses.  Therefore, biaxial tensile experiments were 

developed to more fully characterize the anisotropic behavior of white matter in quasi-static and 

dynamic loading states, and elucidate any interaction effects arising from a biaxial state of stress.  

Many studies derive material definitions from a mean behavior of tissues assumed to be 

homogeneous. However, the properties of white matter have been shown to be regionally 

dependent.  Also, axonal orientation can be heterogeneous in certain regions of the brain, and the 

resulting anisotropy can have substantial effects on brain finite element model predictions.  

Moreover, there is a lack of information relating the mechanical behavior of a given specimen to 

its specific structural properties.  Linking the mechanical behavior of white matter to the 

orientation, spatial distribution, and volume fraction of axons can provide important insight with 

respect to the structure-function relationship of the tissue and allow for more accurate material 

models and computational predictions.  The mechanical data of brain tissue exhibit a high degree 

of variability.  Probabilistic analyses can be utilized to quantify the uncertainty in model 

predictions arising from input parameter variability. 

The purpose of this study was to use a combined experimental and computational 

approach to describe the biaxial mechanics of brain white matter in both static and dynamic 

loading scenarios, and to gain a deeper understanding of the relationship between brain tissue 

structure and mechanical behavior. 

1.7 Specific Aims 

In order to achieve the aforementioned goals, we have proposed the following specific aims: 

 

Specific Aim 1:  Perform quasi-static biaxial experiments in order to describe the anisotropic 

material behavior of brain white matter. 
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A procedure was developed to test the biaxial mechanics of white matter under quasi-

static loading in order to establish an anisotropic hyperelastic model formulation.  Experiments 

were performed on fresh ovine brain white matter from two regions: the corona radiata and the 

corpus callosum.  The testing protocol utilized three biaxial displacement ratios as well as 

uniaxial loading tests in both directions.  An anisotropic Ogden constitutive model was fitted to 

the experimental data.  The results were the first to characterize the biaxial mechanical behavior 

of brain tissue, which can contribute to elevating the accuracy of computational models. 

 

Specific Aim 2:  Model the biaxial experiments using an anisotropic continuum model that 

incorporates measured structural parameters. 

The mechanical behavior of each specimen from the biaxial experiments were related to 

structural parameters measured via imaging analyses.  The following imaging analyses were 

performed: 

 Histology was performed to define axon orientation and distribution. 

 Transmission electron microscopy was used to measure axon volume fraction. 

 In order to test a variety of structural properties, specimens were used from two anatomic 

locations: the highly aligned corpus callosum and the more disperse corona radiata.  The 

measured structural parameters were incorporated into the anisotropic axonal term of the 

constitutive model.  The model was analyzed using a probabilistic (i.e. stochastic) approach to 

quantify uncertainty in the stress predictions due to variability in the model parameters.  It was 

hypothesized that the inclusion of measured structural parameters into the model would decrease 

the variability of the model predictions.  This would allow for greater certainty in the predictions 

made from computational models. 
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Specific Aim 3:  Model the anisotropic nonlinear viscoelastic properties of white matter via 

biaxial stress-relaxation and cyclic loading experiments. 

Because brain tissue exhibits viscoelastic properties, characterizing the quasi-static 

behavior does not provide enough information for accurate models.  The developed biaxial test 

was extended to characterize the anisotropic viscoelastic properties of white matter.  The biaxial 

testing setup developed in Specific Aim 1 was used to perform biaxial stress-relaxation and 

cyclic loading experiments.  In order to determine the nonlinear (strain-dependent) viscoelastic 

properties, the experiments utilized a variety of equibiaxial strain magnitudes.  The biaxial tests 

also allowed for the anisotropy of the time-dependent behavior to be determined separately from 

the elastic behavior.  An anisotropic viscoelastic constitutive model was fitted to the stress-

relaxation experiments, and the model was assessed via predictions of cyclic experiments.  

Additionally, the distribution of the model parameters was determined and used to find the 

probability distribution of model stress predictions and the sensitivity of the model to the 

variance of the input parameters. 
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2. AN ANISOTRPIC HYPERELASTIC CONSTITUTIVE MODEL OF BRAIN WHITE 
 

MATTER IN BIAXIAL TENSION AND STRUCTURAL-MECHANICAL RELATIONSHIPS1 
 
 
 
2.1 Introduction 

 Accurate characterization of the mechanical behavior of brain tissue is required for 

computational models used for simulated neurosurgery.  These models are useful for surgeon 

training, operation planning, and image registration to account for intraoperative brain shifts 

[Ferrant et al. 2001, Miller 2011].  Examples of surgical procedures include craniotomies, tumor 

debulking, and injections for drug delivery [Chan et al. 2013, García et al. 2012].  Computational 

models require accurate constitutive descriptions of the stress-strain relationship to compute the 

finite deformations that occur during exogenous loading and surgical procedures. 

 White matter is structurally anisotropic due to the alignment of axon tracts connecting 

various regions of the brain.  White matter has also been shown to be mechanically anisotropic 

via in vitro experiments in uniaxial tension, shear, compression, and indentation [Feng et al. 

2013, Ning et al. 2006, Prange and Margulies 2002, Velardi et al. 2006].  This mechanical 

behavior has been modeled using transversely isotropic hyperelastic continuum models that 

contain an isotropic term to describe the glial matrix and an anisotropic term to describe the 

axonal contribution [Feng et al. 2013, Ning et al. 2006, Velardi et al. 2006].  Each of these 

experiments have demonstrated anisotropy by testing the tissue in directions parallel and 

perpendicular to the axons, with the axonal direction being stiffer in tension and shear than the 

transverse direction.  However, the aforementioned mechanical characterization of white matter 

                                                 
1 This chapter is in press for publication as a Research Article in the Journal of the 
Mechanical Behavior of Biomedical Materials (doi:10.1016/j.jmbbm.2016.05.003). The 
text and figures have been adapted from Elsevier. 
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was limited to testing in one direction at a time, and uniaxial testing is insufficient to uniquely 

characterize the material [Smith and García 2013].  Accordingly, there is no information on the 

mechanical behavior during simultaneous multi-axial loading.  The behavior in a multi-axial 

loading state may differ due to structural interactions between the axons and interconnected glial 

cells [Shreiber et al. 2009].  The multi-axial mechanics of the brain are relevant due to the 

intracranial pressure and the complex loading that is typically experienced during surgical 

procedures. Biaxial tensile tests can be used to better determine any multi-axial mechanical 

interactions that are present and better simulate the inherently constrained loading to which the 

brain is subjected to in vivo. 

 Computational models of the brain are typically based on a single geometry with material 

properties derived from experimental cohorts.  However, these models lack information on the 

variability of the specimen population and usually adopt mean values.  Probabilistic modeling 

approaches take into account the variability of input parameters (geometry, material properties, 

etc.) to predict the probability distribution of a model response instead of relying on the mean 

response [Laz and Browne 2010].  In studies of the brain, this approach would be useful for 

providing a measure of uncertainty in surgical simulations or for predicting the probability of an 

event such as an injury [Bain and Meaney 2000].  It is therefore advantageous to provide 

probability distributions in the derivation of material constitutive models and to use accurate 

models to minimize uncertainty in their resultant predictions. 

Many studies derive material definitions from a mean behavior of tissues assumed to be 

homogeneous. However, the properties of white matter have been shown to be regionally 

dependent [Prange and Margulies 2002, Velardi et al. 2006].  Axon orientation can be 

heterogeneous in certain regions of the brain, and the resulting anisotropy can have substantial 
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effects on brain finite element model predictions [Colgan et al. 2010, Wright and Ramesh 2012].  

Some promising modeling approaches for biological tissues have incorporated a fiber dispersion 

parameter into constitutive models [Gasser et al. 2006, Sacks 2003], while other research groups 

have used axon volume fraction measurements in a composite modeling approach of brain tissue 

[Abrogast and Margulies 1999, Karami et al. 2009].  However, there is a lack of information 

relating the mechanical behavior of a given specimen of brain tissue to its specific structural 

properties.  Linking the mechanical behavior of white matter to the structural properties of axons 

may provide important insight with respect to the structure-function relationship of the tissue and 

allow for more accurate material models and computational predictions.   

The purpose of this study was to develop a robust testing procedure to perform a biaxial 

test of brain white matter and to model the mechanical behavior using an anisotropic hyperelastic 

continuum model.  In order to achieve this aim, we related the axon orientation, distribution, and 

volume fraction to the mechanical behavior of white matter specimens.  These measured 

properties were implemented into a structurally-based constitutive model, and a probabilistic 

analysis was used to determine if the structural model decreases uncertainty in the model stress 

predictions compared to a standard hyperelastic model. 

2.2 Methods 

 Biaxial tensile experiments were performed on white matter from the corona radiata and 

corpus callosum of ovine brains.  Histology and transmission electron microscopy were used to 

make image-based measurements of structural properties of the axons.  Biaxial experiments were 

fitted to anisotropic hyperelastic constitutive models with and without the implementation of 

measured structural properties. 
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2.2.1 Parametric series and pilot studies on biaxial geometry effects 

 A preliminary finite element study investigated the effects of specimen geometry on the 

degree of homogeneity of the central region strain field for clamped specimens.  Models were 

created using ABAQUS (ver. 6.11, Simulia, Providence, RI) for four geometries: square, 

cruciform, cruciform with rounded corners, and octagon.  Since the purpose of the preliminary 

study was to guide the selection of specimen geometry and not to investigate the effects of 

material properties, a simple linear elastic model was used with an elastic modulus of 3200 Pa, 

and Poisson’s ratio of 0.4λλ [Miller et al. 2000].  Identical displacement boundary conditions 

were applied to each model in a 1:1 displacement ratio.  A 2 mm displacement applied in each 

direction corresponded to an 8% global strain.  Strains were analyzed in a central 5mm square 

region of interest by measuring the homogeneity of the strain field and the shear strain. 

For all four model geometries, the longitudinal strain at the center node was consistent, 

ranging from 6.18% to 6.43%.  The cruciform geometry resulted in the most homogeneous strain 

field within the region of interest, with a range of strains of only 0.29%.  The cruciform also 

demonstrated the lowest shear strain (0.86%) within the region of interest.  Although the material 

model was simplified, this preliminary study directly compared biaxial geometries.  A more 

extensive study similarly showed lower stress concentrations and improved load transfer to the 

region of interest for a cruciform shape as compared to a perfectly square geometry [Jacobs et al. 

2013].  This result was found to be the case for both isotropic and transversely isotropic models. 

In a separate finite element study, the thickness of the model was varied to analyze the 

effects, if any, of the specimen’s aspect ratio.  While it is ideal to have very thin specimens (high 

aspect ratio) in order to satisfy the plane-stress assumption in a biaxial analysis, it is also 

necessary to have a specimen thickness that allows for consistent dissection of the very soft 
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tissue.  In this study, the thickness was varied on the cruciform model to produce aspect ratios of 

2:1, 3:1, 5:1, 10:1, and 50:1, and these model variants were compared to a two-dimensional 

plane-stress model.  The same 2 mm displacement loading conditions were applied, and the out-

of-plane and longitudinal stresses were measured at the center of each model. 

 It was found that the maximum out-of-plane stress and the percent difference in 

longitudinal stress from the plane-stress model both decreased and approached zero with 

increasing aspect ratio.  An aspect ratio of 3:1 was determined to sufficiently satisfy the plane-

stress assumption because the percent difference in longitudinal stress was less than 1%.  

Additionally, the out-of-plane stress was 3.9 Pa, compared to 200 Pa in the longitudinal 

direction. 

Based on the results of these pilot studies, the biaxial experiments were conducted using 

a cruciform shaped specimen with an aspect ratio of 3:1.  The cruciform shape demonstrated the 

most homogeneous region of interest and lowest shear, and the 3:1 aspect ratio sufficiently 

satisfied the plane-stress assumption. 

2.2.2 Dissection 

 Ovine brain tissue specimens were dissected immediately (less than one hour) after 

animals were euthanized for unrelated studies.  Testing was performed on white matter 

specimens from two regions of the brain: the corona radiata and the corpus callosum (n = 9 

samples for each region).  Axons in the corona radiata extend radially outward from the globus 

pallidus to the cerebral cortex in both hemispheres of the brain.  Corona radiata specimens were 

dissected by removing a slice from one brain hemisphere in the sagittal plane, halfway between 

the mid-sagittal plane and the outer edge of the brain, using a custom drop slicer with two blades 

spaced 2 mm apart (Figure 2.1).  From this slice, a cruciform shape was punched such that the 
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central square contained only white matter between the globus pallidus and the cerebral cortex.  

The corpus callosum is a wide thin structure located centrally in the brain and connects the two 

hemispheres.  The corpus callosum was isolated from an intact brain, and slices were cut using a 

scalpel to separate the corpus callosum from the adjacent grey matter.  A cruciform shape was 

punched from one lateral side such that the central square of the specimen did not include the 

midline bifurcation, where the septum pellucidum meets the corpus callosum, in order to avoid 

an inhomogeneous structure in the region of interest.  Specimen shapes were punched such that 

the dominant axonal direction was visually coincident with one of the loading directions.  The 

actual orientation was determined via post hoc measurements from histology sections. 

After isolating slices, but prior to punching the cruciform shape, each slice was placed on 

a plate and submerged in saline.  The low friction environment allowed the slice of tissue to 

return to a state of equilibrium stress, minimizing residual stresses that were induced by handling 

of the tissue.  While it has been reported that residual stresses can alter the in vivo mechanical 

environment of the brain [Xu et al. 2009], we did not observe any gross deformations after 

cutting the cruciform shape. 

In order to perform post hoc calculations of the imposed stress, the cross sectional area of 

specimens was determined.  Specimen thickness was determined via electrical connectivity 

measurements in which the specimen was placed on a conducting plate, which was connected to 

one lead of a voltmeter.  The other lead was attached to a fixed caliber and lowered to the top 

surface of the specimen until contact was achieved, as detected by a change in voltage (Figure 

2.1). 

The specimen’s width and length were measured optically by imaging the specimen with 

a ruled scale, and measuring the dimensions using ImageJ.  The mean thickness was 1.9 mm, and 
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the mean width was 7.0 mm.  Pilot studies on larger specimens (12mm x 4mm) had resulted in 

heterogeneous specimens that included some grey matter as well as a highly variable distribution 

of axon orientation.  Therefore, the specimen size was reduced by approximately 50% in each 

dimension.  Extreme care was taken throughout the dissection process so as not to stretch the 

very soft, easily damaged tissue.  Specimens were kept hydrated with periodic saline spray.  All 

testing was completed within six hours post-mortem in order to minimize any changes due to 

tissue degradation [Garo et al. 2007]. 

 
Figure 2.1: (A) A custom slicer was used to cut specimens of uniform thickness.  Red lines 

indicate freedom of movement for manual slicing.  (B) Thickness was measured via electrical 
connectivity.  Cruciform specimens were dissected from either (C) the corona radiata from slices 
in the sagittal plane, or (D) the corpus callosum from slices in the transverse (horizontal) plane. 

 

2.2.3 Testing Setup 

 In order to obtain a true state of biaxial tension and minimize shear, all four specimen 

grips must be unrestricted for lateral movement while the specimen is being tensioned.  In a 
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biaxial test of biological tissue, this is usually accomplished by gripping the specimen with 

sutures, and the wire is free to rotate around a pivoting point.  However, brain tissue is too soft to 

grip with sutures without tearing.  Also, it was found that the weight of the brain specimen, when 

suspended from wires, was sufficient to produce a pre-tension that is higher than desired.  In 

order to allow for free lateral movement without suspending the specimen, foam grips were 

designed to float the specimen on the surface of a saline bath.  Each specimen was attached to 

four floating grips via a cyanoacrylate adhesive (Figure 2.2).  Each grip was then attached to the 

biaxial testing apparatus via a wire that was of sufficient length such that unrestricted rotations of 

the wire about a pivoting point resulted in lateral movement of the grips.  Two of the grips were 

attached to linear actuators (T-LLS, Zaber Technologies Inc., Vancouver, BC, Canada), and the 

remaining two grips were attached to 250 gram capacity load cells (Model 31, Honeywell 

Sensotec, Columbus, OH).  The saline bath ensured that the specimen remained hydrated 

throughout the test. 

2.2.4 Experiments 

 Specimens were initially loaded to a preload of 1.0 mN (mean stress of 71 Pa).  This was 

followed by an initial preconditioning regimen of five cycles at a 1:1 (axonal: transverse) 

displacement ratio, which stretched the specimen to the highest stretch levels experienced 

throughout testing in order to have a reproducible loading history [Cheng et al. 2009].  After 10 

minutes of recovery time, the experiment consisted of three biaxial tests at 1:1, 1:0.5, and 0.5:1 

displacement ratios, and two uniaxial tests, all in a randomized order.  For the uniaxial tests, the 

grip attachments (i.e. constraints) were removed in the non-tested direction.  The maximum 

displacement for each test was 3mm, which corresponded to a mean stretch of 1.15.  Each test 

was performed for five cycles at a rate of 0.05 mm/s in the direction of greater stretch (mean 
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strain rate of 0.0025 s-1), and the specimen was allowed to recover for 10 minutes between each 

test. 

 

 
Figure 2.2: (A) Biaxial testing setup showing specimen floating on saline bath and connected to 
two load cells and two linear actuators.  (B) The grip design is shown, along with the side view 

(C). 

 

 In order to track the deformations, graphite powder was dusted on the top surface of the 

specimens, and images were recorded throughout each test.  Stretches were calculated via a 

MATLAB-based digital image correlation program.  The digital image correlation was used to 

create strain maps of the entire specimen area, as well as calculate average stretch values in the 

region of interest, which was defined as a 15x15 mesh, creating a 2.4 mm square in the center of 

the specimen.  Image resolution was determined to be 32 ȝm/pixel 

2.2.5 Structural Analysis 

 Post hoc structural imaging analyses were performed on the specimens used for the 

biaxial experiments.  Histology was performed on planar sections in order to measure two 
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structural parameters: mean axonal orientation (șm) and axonal distribution (ț).  Transmission 

electron microscopy (TEM) was performed on cross-sectional cuts in order to obtain the 

resolution necessary to image individual axons and measure the axonal volume fraction (fa) [Kim 

et al. 1996].  In order to get planar sections for histology and cross-sections for electron 

microscopy, each cruciform specimen was cut at the base of the two arms which extended in the 

axonal direction.  For each of the two arms, electron microscopy sections were taken in the plane 

of the cross-sectional cut.  The remaining central square was processed for histology and 

sectioned in the plane of testing. 

2.2.6 Histology 

Immediately after mechanical testing, cut specimens were stored in 10% buffered 

formalin phosphate solution for at least two weeks.  Specimens were dehydrated using a series of 

ethanol washes, embedded in paraffin wax, and cut to 10 ȝm thick sections using a microtome.  

All sections were cut in the plane of testing, and five slides were produced per specimen, with 

sections taken throughout the thickness.  Slides were deparaffinized and stained for myelin using 

Luxol Fast Blue. 

Transmitted light microscopy images were analyzed using a custom MATLAB program 

that overlaid a 6x6 grid of lines onto the same central region of interest that was used for the 

biaxial strain measurements.  Each line was aligned with the local axonal orientation (Figure 

2.3).  The mean orientation (șm) was calculated as the arithmetic average angle of the lines 

relative to the axis of loading that had been visually aligned with the axons upon dissection.  

Since the direction of the angle is irrelevant to the modeling, șm was defined as the absolute 

value of the mean angle. 
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The axonal distribution parameter (ț) was originally derived to describe the distribution 

of collagen fibers in arterial walls [Gasser et al. 2006].  The parameter is defined as: 

ߢ  =  ଵସ ∫ �ሺ�ሻݏ�݊ଷሺ�ሻ݀��଴  (2.1) 

where ș is a random variable defining the fiber angle, and ρ(ș) is a normalized fiber angle 

density function of the form: 

 ∫ �ሺ�ሻݏ�݊ሺ�ሻ݀� = ʹ�଴  (2.2) 

ț can range between 0 and 1/3, with ț = 0 representing perfectly aligned axons and ț = 1/3 

representing randomly aligned axons resulting in an isotropic material.  Equations (2.1) and (2.2) 

were used to calculate ț from the distribution of orientations of the grid points overlaid on the 

specimen images.  Means were calculated from the five sections per specimen. 

 
Figure 2.3: Image of biaxial specimen showing the grid used for measuring mean axon 

orientation and distribution.  The lines overlaid on the right image were manipulated by the user 
to be aligned with the local orientation of the axons.  The angle of each line relative to the 

specimen orientation was measured and used to calculate șm and ț. 

 

2.2.7 Transmission Electron Microscopy 

Immediately after testing, the specimen arms in the axonal direction were fixed in a 2% 

glutaraldehyde, 2% paraformaldehyde phosphate buffer solution overnight.  After fixation, the 
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specimens were washed with phosphate buffer and cut to six 1mm blocks per specimen (three 

blocks per arm).  The blocks were stained with 2% osmium tetroxide for one hour, dehydrated 

through a series of ethanol washes, and embedded in an epoxy resin.  Blocks were sectioned to 

90nm using an ultramicrotome, mounted to grids, and stained with uranyl acetate and lead 

citrate.  The sections were imaged at 15,000X magnification using a transmission electron 

microscope (JEOL 1400, JEOL USA Inc., Peabody, MA).  Three images were taken at random 

locations from each of the six blocks to get 18 total images per specimen. 

 
Figure 2.4: Segmented TEM image of a corpus callosum specimen.  The segmented axons are 

shaded green, and the measurements were only taken within the dotted-line rectangle. 

 

 Axon volume fraction measurements were made by manually segmenting the axons in 

the image using a custom MATLAB segmentation program and measuring the area fraction 

(Figure 2.4).  The volume fraction was taken as the mean measurement from the 18 images.  
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Myelinated axons were abundant and could easily be distinguished by the dark layered rings of 

myelin surrounding the axons.  Unmyelinated axons were uncommon but could be distinguished 

from glial cells by their round shape and the presence of microtubules.  On the other hand, 

oligodendrocytes were larger, irregularly shaped, and had a dark-stained nucleus and cytoplasm.  

Astrocytes were also larger and irregularly shaped, but with a light colored cytoplasm. 

2.2.8 Modeling 

Two modeling approaches were used to represent the mechanical data.  The first “basic” 

model was an anisotropic form of an Ogden hyperelastic strain energy density function, and the 

second “structural” model incorporated the measured structural parameters into the same 

function.  Both models were formulated as functions of the principal stretches, Ȝi.  With shear 

strains assumed to be negligible, the three-dimensional deformation gradient tensor, F, can be 

simplified as: 

ܨ  = ଵߣ]  Ͳ ͲͲ ଶߣ ͲͲ Ͳ  ଷ], (2.3)ߣ

where Ȝ1 and Ȝ2 are the measured stretches in the two tested directions, and Ȝ3 is the stretch in the 

out-of-plane direction.  The tissue was assumed to be incompressible; therefore Ȝ3 can be found 

by: 

ଷߣ  =  ଵఒభఒమ. (2.4) 

In order to describe the anisotropy of the axons, the stretch invariant I4 was used: 

ସܫ  =  �଴ ∙ � ∙ �଴, (2.5) 

where a0 is a vector describing the axonal orientation, which was defined by the measured șm for 

both the basic and structural models, and C = FTF is the right Cauchy-Green strain tensor. 
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The stress-stretch relationship for the basic model utilized a modified Ogden anisotropic 

hyperelastic strain energy density function (W) which has been shown to fit the stress-stretch 

relationship of brain white matter in uniaxial tension [Velardi et al. 2006]: 

 � =  ଶఓ�మ ሺߣଵ� + �ଶߣ + �ଷߣ − ͵ሻ + ଶ௞ఓ�మ ሺܫସ� ଶ⁄ + �−ସܫʹ ସ⁄ − ͵ሻ, (2.6) 

where the three parameters ȝ, α, and k represent the infinitesimal shear modulus, nonlinearity, 

and anisotropy, respectively.  This function has been shown to fit the stress-stretch relationship 

of brain white matter in uniaxial tension [Velardi et al. 2006].  To determine the relationship 

between the axonal structure and the mechanical behavior of the biaxial specimens, the measured 

structural parameters ț and fa were correlated to each of the fitted basic model parameters µ, α, 

and k using a linear regression. 

The formulation of the structural model was derived from the linear regression between k 

and fa.  The k parameter from the basic model was replaced with (k’ fa + k0), where k’ is the new 

anisotropic model parameter, and k0 is the intercept of the linear regression.  The axonal 

distribution parameter (ț) acts to disperse the anisotropic alignment by replacing I4 in the strain 

energy density function with the following term [Gasser et al. 2006]: 

ସܫ  ⇒ ሺܫߢଵ + ሺͳ −  ସሻ (2.7)ܫሻߢ͵

where I1 = trace(C) is the first strain invariant.  When ț = 0, equation (2.7) reduces back to I4, 

representing perfectly aligned axons.  When ț = 1/3, equation (2.7) reduces to (1/3)I1, 

representing perfectly isotropic behavior.  With both fa and ț incorporated, the structural model 

takes the final form: 

 � =  ଶఓ�మ ሺߣଵ� + �ଶߣ + �ଷߣ − ͵ሻ + ሺ�′ �݂ + �଴ሻ ଶఓ�మ [ሺܫߢଵ + ሺͳ − �ସሻܫሻߢ͵ ଶ⁄ + ʹሺܫߢଵ + ሺͳ − �−ସሻܫሻߢ͵ ସ⁄ − ͵]. 
  (2.8) 
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The structural parameters șm, ț, and fa were defined for each specimen independently and 

incorporated into equation (2.8). 

 In order to fit the experimental data, the theoretical Cauchy stress (ı) of each model was 

calculated using the equation: 

 � = ܨଵ−ܬʹ · ���஼ ·  (2.9) ,்ܨ

where J is the determinant of F and was set to unity in order to impose the condition of 

incompressibility.  The experimental Cauchy stress in each direction was calculated as ıi = 

(P/A)Ȝi, where P is the force and A is the undeformed cross-sectional area.  The models were 

fitted to the experimental data from each test using the fmincon function in MATLAB to 

minimize the percent error.  The µ parameter was constrained to be greater than zero, while α 

and k were unconstrained.  One set of model parameters (per model) was determined for each 

specimen by simultaneously fitting all five mechanical tests. 

In order to test the robustness of the basic model and the value of using biaxial and 

uniaxial tests, predictions of the mean experimental data were made using model fits.  The 

corpus callosum and corona radiata specimens were combined into a single data set, and 

experimental means were determined for each stress-stretch curve.  The model was fitted to only 

the two uniaxial tests for each specimen individually, and the mean model parameters were used 

to predict the stress for the three biaxial tests (not used in the fits).  Separately, the model was 

fitted to the three biaxial tests, and the mean model was used to predict the two uniaxial tests. 

2.2.9 Probabilistic Analysis 

A probabilistic analysis was performed to report the probability distribution of the fitted 

basic and structural models and to probe the effectiveness of the structural modeling approach to 

decrease the variability in the model (and thus improve the certainty of model predictions).  The 



45 
 

statistical distribution of the fitted model parameters (µ, α, k, and k’) was determined by fitting 

17 candidate parametric distribution functions to the empirical probability distribution of the data 

using the allfitdist function available in MATLAB and choosing the best fit distribution.  The 

allfitdist function ranks all candidate distributions according to multiple criteria, including the 

negative of the log likelihood, Bayesian information criterion, and Alkaike information criterion 

with a correction for finite sample sizes.  The results were also checked visually for fits to the 

probability distribution and the cumulative distribution. 

The chosen distribution and natural parameters (e.g. mean and standard deviation) of the 

model variables were used in the probabilistic analysis.  NESSUS software (Southwest Research 

Institute, San Antonio, TX) was used to determine the effects of the fitted model parameter 

variability (i.e. scatter) on the resulting model stress predictions at given levels of stretch for 

equibiaxial and uniaxial stretches.  A Monte Carlo sampling method of 100,000 samples was 

used to determine the cumulative probability function of the stress predictions at each given 

stretch.  Additionally, the global sensitivity of the input variables on the predicted stress was 

determined using a variance decomposition method.  The variance of the output is affected by 

the variance of the input parameters.  The sensitivities include first order (direct) effects of each 

input parameter on the output variability, and higher order effects of the interaction between 

input parameters on the output variability.  Each sensitivity effect can range between zero and 

one, and the sum of all sensitivities is equal to one.   

2.2.10 Stress Correlation 

 Because of boundary effects and stress concentrations, the stress at the center of a 

specimen in a biaxial test is not equal to the mean stress through the grips.  In other words, the 

stress in the region of interest is not equal to the force divided by the cross sectional area.  The 
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stress in the region of interest can be estimated by finding a correlation factor via finite element 

modeling [Jacobs et al. 2013].  For an isotropic material in a cruciform geometry, this correlation 

factor is 0.76; however, this factor is dependent on material behavior/parameters such as 

anisotropy and Poisson ratio [Jacobs et al. 2013].  In order to calculate the stress in the biaxial 

tests, an initial correlation factor of 0.76 was applied to the Cauchy stress calculation.  For each 

test of each specimen, the basic model was fitted to the new stress-stretch data, and the fitted 

model was implemented into a specimen-specific finite element model.  This model was used to 

find the next iteration of the correlation factor in each direction for the mean stress in the region 

of interest.  The constitutive model was re-fitted, and this process was iterated until convergence 

was achieved. 

 This should be regarded as an estimate derived from a finite element model prediction; it 

is not an empirical measurement of the local stress.  This correlation factor is dependent on many 

variables, including the anisotropy and stretch in each direction, and any heterogeneity in the 

specimen makes the accuracy of this method intractable to discern.  Because this correlation 

factor is not an established method, the basic model was also fitted to the data with no correlation 

factor and the data were reported herein in order to provide availability to both data sets. 

2.3 Results 

2.3.1 Strain Measurements 

 Strain maps demonstrated a high degree of homogeneity of the strain field in the central 

region of the specimens (Figure 2.5).  Within the defined region of interest of each specimen, the 

mean and standard deviation of strains were measured.  The average of the standard deviations 

within the region of interest was 18% of the mean strain (Table 2.1). 



47 
 

 
Figure 2.5: Typical strain maps from a 1:1 test showing strain (A) in the horizontal (axonal) 
direction, (B) the vertical (transverse) direction, and (C) the shear strain.  The squares in the 

center represent the region of interest from which the mean stretches were measured. 
 

 

Table 2.1: The mean strains measured within the region of interest.  Standard deviations 
represent the average of standard deviations within the region of interest for each test (a measure 
of the homogeneity of the strain fields). 

Loading ratio 
Axonal strain 
(Mean ± S.D.) 

Transverse strain 
(Mean ± S.D.) 

Shear strain 

1:1 0.151 ± 0.025 0.123 ± 0.024 0.023 
1:05 0.160 ± 0.033 0.058 ± 0.017 0.019 
05:1 0.083 ± 0.018 0.142 ± 0.028 0.019 
Uniaxial Axonal 0.172 ± 0.026 -0.055 ± 0.012 0.013 
Uniaxial Transverse -0.053 ± 0.014 0.157 ± 0.026 0.009 
 

The testing setup also effectively resulted in minimal shear, with a peak shear strain that 

was on average 11% of the greater of the two longitudinal strains.  To determine the sensitivity 

of the longitudinal stress to the shear strain, the theoretical stress was calculated in each direction 

based on the mean fitted coefficients.  For the calculations, the strains were set at the mean 

strains shown in Table 2.1 for each testing ratio.  The shear strains were swept from 0 to 0.07 

(the maximum shear strain measured in any single test).  The percent difference from the zero-

shear state was determined for each longitudinal stress.  The uniaxial stretch in the axonal 
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direction was the loading case most sensitive to the shear strain.  The measured shear strains had 

a mean impact of less than 1% on the resultant model stress; therefore, the assumption of 

negligible shear was deemed appropriate. 

2.3.2 Biaxial Experiments and Modelling 

 The experimental results demonstrated a typical nonlinear hyperelastic shape to the 

stress-stretch curves.  With the basic model fitted simultaneously to all five tests of each 

specimen, the mean percent error was 18%.  The resulting parameters are reported both with and 

without the correlation factor applied to the data (Table 2.2), and the data with the correlation 

factor were used for the remainder of the analysis.  The correlation factor was generally greater 

in the axonal direction than the transverse direction.  In the axonal direction, the means in the 

1:1, 1:0.5, 0.5:1, and uniaxial tests were 0.80, 0.86, 0.73, and 0.98, respectively.  In the 

transverse direction the means were 0.77, 0.74, 0.80, and 0.85, respectively. Because of the 

greater stiffness in the axonal direction, there was a greater transfer of stress and strain to the 

central region of interest, which was also reflected in greater experimental strain measurements 

in the axonal direction (Figure 2.5, Table 2.1).  None of the parameters were significantly 

different between the two regions (p = 0.89 for ȝ, p = 0.97 for α, and p = 0.22 for k, using a 

student’s t-tests).  With the two regions combined, the k parameter mean was significantly 

greater than zero (p = 0.043, using student’s t-test), indicating that the average white matter 

tissue was stiffer in the axonal direction than in the transverse direction.  However, the results for 

k were highly variable, and some specimens even had a negative value, indicating a stiffer 

response in the transverse direction. 

When the basic model was fitted to the uniaxial data and used to predict the mean stress 

of the biaxial tests, and vice versa, these combined predictions had a mean percent error of 46%.   
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Table 2.2: Fitted model parameters for data with and without the correlation factor applied (mean 
± standard deviation). 

  µ (Pa) α k 
Correlation 

factor 
Corona radiata 480 ± 230 24 ± 6 0.14 ± 0.37 
Corpus callosum 460 ± 270 24 ± 6 0.54 ± .83 

No correlation 
factor 

Corona radiata 610 ± 290 23 ± 6 0.09 ± 0.49 
Corpus callosum 580 ± 350 23 ± 5 0.48 ± 0.74 

 

 

 

 
Figure 2.6: Model predictions of the mean experimental stress-stretch curves.  The two separate 
uniaxial tests are shown together on a single plot.  Error bars show standard error of the mean. 
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When the model was fitted to all 5 tests simultaneously, the predictions of the experimental data 

demonstrated a reduced error (26%), however, in many cases, these predictions also fell outside 

of one standard error envelope of the mean (Figure 2.6).  Most notably, the model over-predicts 

the stress in both uniaxial tests and under-predicts the stress in the transverse direction of the 

1:0.5 test. 

2.3.3 Structural Analyses 

 Histology measurements showed that the mean angle ș was significantly greater for the 

corona radiata specimens than for the corpus callosum specimens (p = 0.004, Wilcoxon rank sum 

test); the mean ± standard deviation was 7.9 ± 6.8 degrees for the corona radiata and 1.4 ± 0.9 

degrees for the corpus callosum.  This confirms that the axons were generally well oriented in 

the direction of loading, especially for the corpus callosum specimens. The measured distribution 

ț was also significantly greater for the corona radiata specimens than for the corpus callosum 

specimens (p < 0.001, Wilcoxon rank sum test).  The mean ± standard deviation was 0.066 ± 

0.034 for the corona radiata and 0.012 ± 0.008 for the corpus callosum.  The corpus callosum 

measurements demonstrate that ț approximates zero, indicating that the axons in the corpus 

callosum were highly aligned.  Conversely, axonal orientations in the corona radiata were more 

distributed, which corresponds with an observed fan-like pattern, in which the axons were 

oriented radially.  From TEM images, the measured fa was nearly identical for the two regions; 

the mean ± standard deviation was 0.31 ± 0.06 for the corona radiata, and 0.32 ± 0.05 for the 

corpus callosum. 

Even though there were significant regional differences in the orientation and distribution 

of axons, these differences were not manifested in the mechanical testing results.  The fitted 

model parameters showed no differences between regions.  However, the mechanical and 
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structural data were further analyzed on an individual specimen basis.  Each measured structural 

property was plotted against each model parameter, and a linear regression was performed to 

determine if a correlation existed.  While șm and ț showed no distinguishable correlations with 

any of the model parameters, fa did have a significant positive correlation with the k parameter (p 

< 0.001, Fisher’s Z transformation on the correlation coefficient) (Figure 2.7).  The linear 

regression gave the relationship: k = 9.0 fa – 2.6, with a coefficient of determination of r2 = 0.58. 

 

 
Figure 2.7:  The measured axon volume fraction had a positive correlation with the anisotropic k 

model parameter.  One data point was removed as a result of an outlier analysis. 

 

2.3.4 Probabilistic Modeling 

 The formulation of the structural model was derived from the correlation between k and 

fa, and k from the basic model was replaced with (k’ fa – 2.6), matching the equation of the linear 

regression.  The parameters for the basic model and structural model were used to find the best-

fit statistical distributions, which were subsequently used to define the probabilistic analysis.  For 

the basic model, µ exhibited a lognormal distribution with the mean of ln(µ) = 6.1 and the 

standard deviation of ln(µ) = 0.53 (with µ in Pa).  The α parameter exhibited a Weibull 

distribution with the scale = 23 and the shape = 4.5.  The k parameter exhibited a generalized 
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extreme value distribution with the shape = 0.18, scale = 0.44, and location = -0.071.  For the 

structural model, µ exhibited a lognormal distribution with the mean of ln(µ) = 6.1 and the 

standard deviation of ln(µ) = 0.54 (with µ in Pa).  The α parameter exhibited a Weibull 

distribution with the scale = 23 and the shape = 4.4.  The k’ parameter exhibited a normal 

distribution with the mean = 9.0 and standard deviation = 1.4. 

The probabilistic analysis had a high variability in the stress predictions (Figure 2.8).  A 

measure of variability was found by taking the differences between the 5% cumulative 

probability curve and the median (50% cumulative probability) curve, and between the 95% 

curve and the median curve.  In an equibiaxial prediction, the variability in the axonal stress 

decreased by a mean of 13% from the basic model to the structural model, and the variability in 

the transverse stress increased by 6.8%.  For the uniaxial predictions, it decreased by 16% in the 

axonal direction, and increased by 5.8% in the transverse direction. 

Using the variance decomposition method, it was found that the basic model was much 

more sensitive than the structural model to the k (or k’) parameter (Figure 2.9).  The sensitivities 

were dependent on the level of stretch.  For both models at low stretch levels, the sensitivity to µ 

was very high, and the sensitivity to α was close to zero.  At higher stretches, the sensitivity to µ 

decreased, and the sensitivity to α increased.  This trend was expected because µ is 

representative of the infinitesimal modulus, and α is representative of the nonlinearity, therefore 

its effect on the model increases as stretch increases. 
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Figure 2.8: Stress predictions for an equibiaxial test at selected cumulative probability levels for 

the basic model (top) and the structural model (bottom). Uniaxial predictions showed very 
similar results. 

  

 
Figure 2.9:  Global sensitivities of the model parameters on the basic and structural model stress 

predictions for an equibiaxial tests.  These total sensitivities include direct effects and higher 
order interaction effects. 
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2.4 Discussion 

2.4.1 Experiments and modeling 

 The current study was the first to investigate the biaxial tensile mechanics of brain white 

matter.  The experimental design allowed for reliable specimen preparation from fresh tissue, 

and the testing setup successfully minimized shear strains and produced relatively homogeneous 

strain in the region of interest.  The minimal shear strains that were present were likely due to 

imperfect symmetry in the testing setup, nonzero axon orientations (șm), or inhomogeneity in the 

tissue itself.  The chosen anisotropic Ogden model was able to fit the data reasonably well, with 

a mean error of 18%.  While this error may seem somewhat high for a model fit, it should be 

noted that the model was fitted to ten curves simultaneously (two directions of stress for each of 

five tests), and much of the error could be attributed to experimental variability between tests.  

More complicated model formulations were used in an attempt to better fit the data but showed 

little improvement in the fits and poorer predictions of the mean experimental data.  A two-term 

Yeoh model with an exponential anisotropic term took the form:  

 � = �ଵ଴ሺܫଵ − ͵ሻ +  �ଶ଴ሺܫଵ − ͵ሻଶ +  ௞భ௞మ ሺ݁(௞మሺ�ర−ଵሻమ) − ͳሻ, (2.10) 

where C10 is half the infinitesimal shear modulus, C20 is a nonlinear isotropic parameter, and k1 

and k2 are the linear and nonlinear anisotropic parameters, respectively.  The fits were only 

slightly better with this four-parameter model, at 16% error.  The error of the predictions was 

higher, at 39%, compared to 26% for the three-parameter Ogden model.  The Ogden model was 

therefore chosen as the simpler model that described the data well. 

 The first method of model predictions involved fitting the model to only some of the five 

tests done on each specimen.  The model fitted to the three biaxial tests was used to predict the 

two uniaxial tests, and the model fitted to the uniaxial tests was used to predict the biaxial tests.  
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In the second method, all five tests were fitted, and the mean parameters were used to predict the 

mean experimental data of all tests.  Since the data being predicted were used in the model fits in 

the latter case, the error was expected to be lower.  However, the high 46% error of the first 

method of predictions suggests that uniaxial or biaxial tests alone are not sufficient for modeling 

the tensile behavior of white matter.   The lower 26% error of the second method still 

demonstrates that using both uniaxial and biaxial data in the model fits improves the robustness 

of the model, or, its ability to predict multiple loading conditions. 

 The mean infinitesimal shear modulus, µ, calculated in the current study (470 Pa) was 

similar to previously reported values of 137 Pa for porcine corona radiata in uniaxial tension 

[Velardi et al. 2006], and 500 Pa for lamb corpus callosum in shear and indentation [Feng et al. 

2013].  However, values for the same measure of k were greater in these studies than the current 

study, ranging from 1.77 to 13.  Other studies in shear reported the corona radiata to be isotropic 

[Shuck and Advani 1972], have very low anisotropy [Nicolle et al. 2004], or even be stiffer in 

the transverse direction, while corpus callosum was stiffer in the axonal direction [Prange and 

Margulies 2002].  Differences in anisotropy may be attributed to the strain rate, the mode of 

loading (e.g. tension or shear) or the region of the brain.  In the current study, k was greater for 

the corpus callosum region than for the corona radiata region (0.54 and 0.14, respectively), 

although the difference was not statistically significant.  Although the value of k was found to be 

negative for some individual specimens, the smallest k value was -0.36.  The model is positive 

definite for all k > -1, therefore, the range of model parameters found is valid.  The negative 

values of k should be interpreted phenomenologically as representing a lower stiffness in the 

axonal direction.  k does not directly represent the mechanical contribution of the axons, as they 
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would not contribute a negative stiffness.  It is possible the transverse cellular interactions were 

stiffer than the axons in these samples. 

Previous mechanical studies on brain tissue have had a high variability in their results, 

and surprisingly even in the shape of the stress-stretch curves.  Different tensile tests have 

reported stress-stretch curves that were concave-up, concave-down, or nearly linear [Franceshini 

et al. 2006, Miller and Chinzei 2002, Rashid et al. 2014, Velardi et al. 2006].  The current results 

showed a concave-up shape to the curves and a corresponding mean α of 24, whereas uniaxial 

tests of white matter found α = 2.38-6.84 and curves that were nearly linear [Velardi et al. 2006].  

These differences may depend on loading history of the tissue as well as strain rate [Franceshini 

et al. 2006, Miller and Chinzei 2002]. 

2.4.2 Structural analysis 

 The histology results showed that both șm and ț were both relatively low for the corpus 

callosum.  The low mean orientation indicates that the axons were well oriented in the testing 

direction, which minimized shear strains while loading.  The low distribution of axonal 

orientation indicates that the specimens were more homogeneous.  Although șm and ț were both 

greater in the corona radiata, șm = 7.9 degrees is still relatively well aligned, and ț = 0.066 is 

much closer to perfectly aligned (ț = 0) than to perfectly isotropic (ț = 0.333).  Despite the 

differences between the two regions, neither structural property correlated with any differences 

in mechanical testing results on either a regional or individual specimen basis. 

 The TEM analysis and fa measurement had a few limitations.  Measurements had to be 

taken from outside of the central region of interest of the specimen because that central region 

was being processed for histology.  Also, the entire cross section of the specimen was not 

measured.  Rather, a randomized sample of 18 images was used to estimate fa.  This estimation 
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likely added a factor of variability to the data.  The TEM images showed axons with 

microstructures that had a considerable amount of damage.  Control specimens, which originated 

from locations adjacent to the biaxially tested specimens and were fixed and processed at the 

same time as the tested specimens, demonstrated the same damaged microstructures and were 

visually indistinguishable from the tested specimens.  It is likely that the observed damage was a 

result of autolytic post-mortem changes not incurred during the mechanical testing [Sheleg et al. 

2008].  It is possible for the chemical processing to cause tissue shrinking during dehydration or 

embedding in resin [Bastacky et al. 1985, Kim et al. 1996], therefore, the absolute magnitude of 

the measured fa should be viewed within this context.  However, since all specimens followed 

the same fixation and processing procedure, the relative differences between specimens were not 

affected. 

The difference in fa between specimens did correlate with the anisotropic model 

parameter k.  This indicates that the mechanical anisotropy of white matter is functionally related 

to the axonal volume fraction.  Additionally, including fa in the structural model did have some 

effect on the mean model parameters.  While not significantly different (p = 0.22), the basic 

model’s k parameter was 0.54 for the corpus callosum, and 0.14 for the corona radiata.  The 

structural model’s mean k’ parameter was much more similar for the two regions (9.0 and 9.1 for 

the corpus callosum and corona radiata, respectively). 

2.4.3 Probabilistic analysis 

As seen through the probabilistic analysis, implementing the fa measurement into the 

structural model did decrease the variability of the model predictions in the axonal direction.  

This is beneficial in improving the confidence of model predictions.  The implementation of the 

structural material model into a computational model would require knowledge of the axon 
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volume fraction at different locations within the brain.  Although obtaining this information is 

feasible through TEM or similar imaging studies, the average 14% decrease in variability in the 

axonal stress prediction is a somewhat small difference.  Also, the variability in the transverse 

stress predictions increased slightly due to the inclusion of ț, which causes the anisotropic 

(axonal) term to contribute to the transverse stress.  Therefore the variability in the anisotropic 

term had a slight effect on the transverse stress as compared to the basic model, in which only 

the isotropic term contributes to the transverse stress. 

 The statistical distribution of the model parameters and the cumulative probability 

distribution of the model stress predictions can be beneficial to computational modeling studies 

of the brain.  It is often preferred for a computational model to predict the probability of an 

outcome rather than the mean outcome.  An example is in the assessment of sports or automobile 

equipment in which it is necessary to predict the probability of suffering a traumatic brain injury 

as a result of an impact [Takhounts et al. 2008].  Previous work has demonstrated the probability 

of an axonal injury in a nerve relative to the level of strain [Bain and Meaney 2000].  However, 

this information alone would be incomplete in a computational study, and all other factors of 

variability should be used, including the variability of the constitutive material models. 

2.4.4 Preconditioning 

   Mechanical tests on brain tissue are sometimes performed without preconditioning, due 

to the relatively compliant and delicate nature of the tissue [Miller and Chinzei 2002, Rashid et 

al. 2014, Velardi et al. 2006].   It could also be argued that preconditioning should not be 

performed because brain tissue is not loaded to high strains in vivo prior to a traumatic injury or 

surgical procedure.  However, the brain is normally subjected to mechanical stresses in vivo due 

to fluctuating intracranial pressure [Steiner and Andrews 2006], as well as mechanical loads 
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induced by non-injurious accelerations of the head.  For the biaxial tests, it was best to 

precondition the specimens prior to testing in order to obtain a repeatable response [Cheng et al. 

2008], especially since the experiments included multiple tests of each specimen at different 

displacement ratios. 

 Some studies on brain tissue mechanics have reported both preconditioned (last cycle) 

and non-preconditioned (first cycle) properties [Gefen et al. 2003, Gefen and Margulies 2004, 

Prevost et al. 2011].  In order to determine the effects of preconditioning in the current study, the 

1:1 test results from the experiment were compared to the results of the preconditioning regimen, 

which was also a 1:1 test at the same global displacement levels.  The results of the fitted basic 

Ogden model were compared for a total of four groups: the first cycle of preconditioning (P1), 

the last (fifth) cycle of preconditioning (P5), and the first and last cycles of the 1:1 test (T1 and 

T5, respectively).  The resulting parameters can be found in Table 2.3.  The P1 cycle was the 

only loading cycle with no previous loading history (no preconditioning), and this cycle had a 

significantly larger µ parameter than all other loading cycles (p < 0.01, using a one-way ANOVA 

on log-transformed data with a Bonferroni-corrected paired t-test).  This result demonstrated that 

the preconditioning regimen decreased the measured stiffness of the tissue, a commonly 

observed phenomena in biological soft tissues.  The α parameter was lower for P1 than the other 

three cycles, indicating a more linear relationship between stress and stretch (p < 0.01, using a 

one-way ANOVA with a Bonferroni-corrected paired t-test).  The k parameter showed no 

significant differences between groups (using a paired Wilcoxon rank sum test). 

 Because one purpose of preconditioning is to improve data consistency, the final cycle of 

the preconditioning regimen (P5) should ideally produce the same results as the final cycle of the 

1:1 test (T5).  The greatest difference between these two loading cycles was observed in the µ 
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parameter, which was 14% lower for the T5 test than for the P5.  However, none of the 

parameters were significantly different (p = 0.9 for µ, p = 0.2 for α, and p = 0.73 for k), and 

considering the inherently high variability in the data, it is our position that the preconditioning 

regimen was sufficient for producing consistent, reliable results. 

 

Table 2.3: Fitted model parameters comparing the first (P1) and fifth (P5) cycles of the 
preconditioning regimen and the first (T1) and fifth (T5) cycles of the 1:1 test (mean ± standard 
deviation).  The correlation factor was not applied to these data. 

 µ (Pa) α k 
P1 1700 ± 840 19 ± 6 -0.15 ± 0.50 
P5 750 ± 380 27 ± 7 0.40 ± 1.34 
T1 760 ± 400 26 ± 6 0.14 ± 0.97 
T5 650 ± 220 31 ± 8 0.40 ± 1.72 

 

2.4.5 Using ovine tissue as a model for the human brain 

Due to the fast degradation of brain tissue post-mortem, it is very challenging to test fresh 

human tissue.  Therefore, the large majority of mechanical experiments use animal brain 

specimens.  There are no mechanical studies systematically comparing ovine tissue to human 

tissue.  It has been reported that modeling of human tissue tested in tension, compression, and 

shear produced  an infinitesimal shear modulus of 900-1650 Pa [Moran et al. 2014], which may 

be greater than the current study because the tissue was tested on average four days post mortem 

[Jin et al. 2013].  One study obtained a limited sample of fresh human grey matter from 

lobectomy procedures and tested it in shear [Prange and Margulies 2002].  The mean 

infinitesimal shear modulus (300 Pa) was very similar to the previously reported experimental 

mean of ovine grey matter in shear (290 Pa) [Feng et al. 2013].  Even though human and ovine 

tissue testing data are limited and taken from separate studies, this degree of correspondence 
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provides de facto evidence that ovine tissue is reasonably representative of human tissue.  

Although smaller in size, the gross anatomy of the ovine brain is very similar to humans, with 

both having large proportions of cerebral white matter [Duncan et al. 2002, Silbereis et al. 2010].  

This is not true in rodents and other small animals.  The basic cellular structure is similar 

between sheep and humans, although humans have larger neurons on average, which is typical 

for larger brain sizes [Herculano-Houzel 2014].  Additionally, sheep are commonly used as a 

model for developmental brain disorders because the structure and the sequence of their brain 

development is similar to that of humans [Back et al. 2012, Silbereis et al. 2010]. 

2.5 Conclusions 

 This study expands upon the many previous mechanical studies of brain tissue to include 

biaxial tension, and the results demonstrated that including biaxial loading in addition to uniaxial 

loading improved the accuracy of model predictions.    The corona radiata and corpus callosum 

demonstrated no conclusive differences in their mechanical behavior, despite differences in axon 

orientation and distribution.  The tested white matter exhibited a mean anisotropic behavior, but 

the degree of anisotropy was relatively low compared to previous studies.  The axon volume 

fraction demonstrated a positive correlation with the mechanical anisotropy.  However, 

implementation of the axon volume fraction into the structural model only resulted in a small 

decrease in the uncertainty of model predictions.   
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3. VISCOELASTICITY OF BRAIN WHITE MATTER IN BIAXIAL TENSION2 
 
 
 
3.1 Introduction 

 Computational models of the brain are important for their use in the development and 

simulation of neurosurgeries, operation planning, and registration of intraoperative brain shifts 

[Ferrant et al. 2001, Garcia et al. 2012, Miller et al. 2010, Miller 2011].  These models rely on 

accurate characterization of the brain tissue mechanical behavior.  Due to the relatively low 

loading rates in surgical simulations, many models utilize constitutive equations derived from 

quasi-static experiments.  However, viscoelastic effects are important, even at low strain rates, 

and viscoelastic characterization has been recommended to improve model predictions [Kyriacou 

et al. 2002]. 

 Computational models of the brain often use linear viscoelastic material models [Post 

2012, Zhang 2001].  However, these models are only valid at infinitesimal strains (less than 1%) 

due to the nonlinear relationship between stress and strain at finite deformations [Nicolle et al. 

2004], and finite deformations commonly occur during surgical procedures such as catheter 

injections for convection enhanced delivery [Garcia et al. 2012].  Quasi-linear viscoelastic 

(QLV) formulations have been frequently used to model brain and other soft tissues due to their 

simplicity and ability to model nonlinear elastic behavior [Elkin et al. 2011, Laksari et al. 2012, 

Rashid et al. 2014].  However, QLV does not account for nonlinearities in the time-dependent 

response with respect to strain, and many biological tissues exhibit such nonlinearities, and 

accordingly, require fully nonlinear viscoelastic models [Shetye et al. 2014, Troyer and Puttlitz 

                                                 
2 This chapter has been submitted for publication in the Journal of the Mechanics and Physics of 

Solids. 
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2011].  For modeling brain tissue, there is some evidence to suggest that QLV is sufficient in 

shear [Nicolle et al. 2004] and indentation [Elkin et al. 2011], however fully nonlinear models 

may result in improved fits to experimental data [Hrapko et al. 2006]. 

 Due to the alignment of axons, white matter exhibits anisotropy in its relationship 

between stress and strain [Feng et al. 2013, Labus and Puttlitz 2016, Velardi et al. 2006]. It is 

possible for the time-dependent behavior to also be anisotropic.  For example, the rate of 

relaxation may be different in the axonal direction relative to orthogonal directions.  Tensor 

formulations of the reduced relaxation function in a QLV model have been used to investigate 

anisotropy in biaxial stress relaxation tests of heart valves [Grashow et al. 2006] and urinary 

bladders [Nagatomi et al. 2004].  However, the viscoelasticity of brain tissue has not been 

studied in biaxial loading states.  Viscoelastic studies of brain tissue have investigated the 

anisotropy of the shear modulus in linear viscoelastic formulations [Abrogast and Margulies 

1999, Feng et al. 2013, Ning et al. 2006], however, this approach does not provide the anisotropy 

of the time-dependent behavior. 

 Computational models typically utilize material models derived from experimental mean 

data and lack information on the inherent variability of the material properties.  Probabilistic 

modeling approaches consider the variability of these model inputs in order to provide a full 

distribution of model predictions.  Computational modeling studies of the brain can use 

probabilistic analyses to quantify the probability of an outcome of interest in a surgical procedure 

may better predict the anticipated local mechanics amongst the general population.   

The purpose of this study was to characterize the viscoelastic behavior of brain white 

matter using biaxial stress-relaxation experiments.  Specifically, the experiments were designed 

to determine if QLV is sufficient for modeling the viscoelasticity and to test the anisotropy of 
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both the elastic and time-dependent components of brain tissue.  A best fit model was determined 

from the mean experimental data, and a probabilistic analysis was used to quantify the variance 

in model parameters and predictions. 

3.2 Methods 

3.2.1 Experimental Setup 

The tissue dissection and experimental setup followed a previously described 

methodology (sections 2.2.1-2.2.3) [Labus and Puttlitz 2016].  In brief, a total of 12 ovine brain 

tissue specimens were dissected immediately (less than one hour) after animals were euthanized 

for unrelated studies.  The corpus callosum was isolated from each intact brain, and slices were 

cut using a scalpel to separate the corpus callosum from the adjacent grey matter.  A cruciform 

shape was punched from the resulting slice such that the dominant axonal direction was 

coincident with one of the loading directions.  The cross-sectional area was determined in order 

to conduct post hoc calculations of the stress.  The mean thickness was 1.7 mm, and the mean 

width was 6.9 mm.   

A foam grip was attached with a cyanoacrylate adhesive to each of the four arms of the 

cruciform-shaped specimens in order to float the specimens on the surface of a saline bath, 

ensuring hydration throughout the test.  Wires were used to connect two of the grips to linear 

actuators (T-LLS, Zaber Technologies Inc., Vancouver, BC, Canada), and the remaining two 

grips were connected to 250 gram capacity load cells (Model 31, Honeywell Sensotec, 

Columbus, OH).  To track deformations, specimen surfaces were textured with graphite powder, 

and images were recorded at 100 frames per second. A MATLAB-based digital image 

correlation algorithm was used calculate the mean deformation gradient tensor in a 15x15 mesh 

grid covering a 2.4 mm square in the center of the specimen.  The experimental Cauchy stress in 
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each direction was calculated as �௜௜ = ܿሺ� �⁄ ሻߣ௜ , where P is the force, A is the undeformed 

cross-sectional area, and ߣ௜ is the stretch (diagonal elements of the deformation gradient tensor).  

A stress correlation factor was used to estimate the stress in the center of the specimen due to the 

boundary effects on stress in a biaxial test [Jacobs et al. 2013].  The correlation factor was 

determined via finite element analysis, following the procedure outlined in section 2.2.10 [Labus 

and Puttlitz 2016]. 

3.2.2 Experiments 

 Considering the post-mortem changes in brain tissue mechanics [Garo et al. 2007], 

experiments were limited to five stress relaxation tests and two cyclic tests, and the relaxation 

time was set to 100 s so that the testing for each sample was completed in two hours, and all tests 

were completed within six hours post-mortem.  Specimens were initially loaded to a preload of 

1.0 mN (mean stress of 85 Pa), followed by an initial preconditioning regimen of 20 cycles at 

equibiaxial displacements of 3.0 mm.   In order to investigate the strain magnitude effects on the 

viscoelastic response, the experiment consisted of five biaxial stress-relaxation tests at 

equibiaxial displacements of 1.0, 1.5, 2.0, 2.5, and 3.0 mm.  These displacements corresponded 

to mean strains of 3.6%, 6.0%, 9.1%, 12.0%, and 15.0%, respectively, in the axon direction, and 

5.4%, 8.3%, 11.8%, 14.9%, and 18.3%, respectively, in the transverse direction.  A loading rate 

of 6 mm/s (mean strain rate of 33% s-1) was used for the ramp, and the final displacement was 

held for a relaxation time of 100 s.  Additionally, two cyclic tests of 20 cycles each were 

conducted at equibiaxial displacements of 1.5 and 2.5 mm. The cyclic tests used the same 

loading rate of 6 mm/s.  The order of the seven tests was randomized, and a recovery time of 

1000s was used between each test [Duenwald et al. 2009, Shetye et al. 2014]. 
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3.2.3 Quasi-linear viscoelastic modeling 

To check the QLV assumption of a linear time-dependent behavior, the stress during the 

relaxation period of the experiments was plotted with logarithmic time and stress scales.  The 

resulting slope of the curves is the relaxation rate, Ș.  A relaxation rate that is dependent on the 

magnitude of stretch would imply that fully nonlinear viscoelasticity is required to model the 

behavior.  However, for a constant relaxation rate, QLV would be valid.  Because Ș was shown 

not to depend on stretch (Figure 3.1), a QLV formulation was used for subsequent modeling. 

 
Figure 3.1: Left: The relaxation curves plotted on a log-log scale show a constant relaxation rate 
(slope) that does not depend on strain magnitude.  Right: The normalized relaxation rates for all 

curves show no correlation relative to the measured stretch. 

 
The QLV formulation for Cauchy stress (ıij) in three dimensions can be written as: 

  (3.1) 

where �௞௟ሺ�ሻ is the applied strain, t is time, ܩ௜௝௞௟ሺݐሻ is the reduced relaxation tensor, �௜௝�  is the 

instantaneous elastic stress, Ĳ is a time variable of integration, and �଴ is the initial stress.  To 

simplify the numerical integration, equation (3.1) can be integrated by parts: 

�௜௝ሺ�, ሻݐ =  ∫ ݐ௜௝௞௟ሺܩ − �ሻ ��௜௝� [�௞௟ሺ�ሻ]�� ݀�௧
଴ +  �଴ 
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  (3.2) 

 The instantaneous elastic stress was derived from an anisotropic Ogden strain energy 

density function (�): 

 � =  ଶఓ�మ ሺߣଵ� + �ଶߣ + ଷ�ሻߣ + ଶ௞ఓ�మ ሺܫସ� ଶ⁄ + �−ସܫʹ ସ⁄ − ͵ሻ, (3.3) 

where the three parameters ȝ, α, and k represent the infinitesimal shear modulus, nonlinearity, 

and anisotropy, respectively.  With negligible shear, as demonstrated in previous quasi-static 

experiments using the same experimental setup (section 2.3.1) [Labus and Puttlitz 2016], the 

principal stretches Ȝi are the diagonal elements of the deformation gradient tensor, measured 

through digital image correlation.  With the axons aligned in the 1 direction, the anisotropic 

invariant I4 is equal to ߣଵଶ .  Following the assumption of incompressibility, the out-of-plane 

stretch Ȝ3 was found by: 

ଷߣ  =  ଵఒభఒమ. (3.4) 

In the case of biaxial tension, the instantaneous Cauchy stress in the axonal direction (�ଵଵ� ) and 

the transverse direction (�ଶଶ� ) were: 

  (3.5) 

  (3.6) 

and �௜௜ in equation (3.2) is equal to ߣ௜ − ͳ. 

 In the two-dimensional case, with shear assumed to be negligible, ܩ௜௝௞௟ሺݐሻ reduces to four 

functions: ܩଵଵଵଵሺݐሻ, ܩଵଵଶଶሺݐሻ, ܩଶଶଵଵሺݐሻ, and ܩଶଶଶଶሺݐሻ.  Furthermore, the use of a strain energy 

�௜௝ሺ�, ሻݐ =  ��௜௝� ሺ�ሻ��௞௟ [− ∫ ݐ௜௝௞௟ሺܩ݀ − �ሻ݀� �௞௟ሺ�ሻ݀�௧
଴ + ݐሺܩ − �ሻ�௞௟ሺݐሻ − ݐሺܩ − Ͳሻ�௞௟ሺͲሻ] +  �଴ 

�ଵଵ� = �ߤʹ  �ଵߣ] − ሺߣଵߣଶሻ−�  + �ଵߣ)� − �−ଵߣ ଶ⁄ )] 
�ଶଶ� = �ߤʹ  �ଵߣ] − ሺߣଵߣଶሻ−� ] 
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function requires major symmetry, where ܩଵଵଶଶሺݐሻ = ܩଶଶଵଵሺݐሻ.  Each reduced relaxation function 

was approximated by the Prony series: 

ሻݐሺܩ   = ∞ܩ  + ∑ ௜݁−௧/��ସ௜=ଵܩ   (3.7) 

such that: 

∞ܩ  + ଵܩ + ଶܩ + ଷܩ + ସܩ = ͳ   (3.8) 

Where G∞ is the long term relaxation coefficient, and Gi are relaxation coefficients 

corresponding to the time constants Ĳi. 

 The time constants were determined from the relaxation time distribution spectrum 

obtained through an inverse Laplace transform performed in MATLAB.  The spectrum was 

mapped on the time scale ranging from 10-4 s (on tenth of the resolution of the data, collected at 

1000 Hz) to 103 s (ten times the relaxation time).  A parametric study showed the results to be 

insensitive to the boundary locations beyond this range.  There were typically multiple peaks in 

the relaxation time spectrum corresponding to events that reflect the relaxation behavior.  Every 

curve had a peak greater than the 100s relaxation time, which is accounted for by the G∞ 

coefficient of the model.  Time constants Ĳi were defined at the local maximum of each peak that 

occurred at less than 100s.  This was done individually for each direction of stress and for each 

stress-relaxation test.  The majority (89%) of relaxation curves resulted in four peaks, while the 

remainder resulted in five.  The time constants from the curves with four peaks were averaged on 

a logarithmic scale, and these averages were used for all modeling: Ĳ1 = 0.021, Ĳ2 = 0.26, Ĳ3 = 2.7, 

and Ĳ4 = 21.  No significant differences were observed in the values of the time constants 

between the axonal and transverse directions, or between the different strain magnitudes (One-

Way ANOVA on logarithmic scale). 
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3.2.4 Anisotropy of reduced relaxation tensor 

The QLV model was initially fitted to the experimental data assuming an instantaneous 

strain application.  This assumption allows the model to be simplified so that equation (3.7) was 

fitted to the relaxation period, normalized to the peak stress, to find G(t), and equations (3.5) and 

(3.6) were fitted to the ramping period.  Because equation (3.7) is independent of strain, the 

relaxation tensor was reduced to two functions: ܩ�ሺݐሻ and ்ܩሺݐሻ to describe the relaxation of the 

stress in the axonal and transverse directions, respectively.  For each specimen, all five tests were 

fitted simultaneously using the fmincon function in MATLAB to get a single set of GA and GT 

coefficients.  Due to the disproportionally large number of datum points in the long-term 

relaxation, the fitting algorithm minimized a weighted root-mean-squared (RMS) error that used 

a weighting function:  

  (3.9) 

where tn is the time during the relaxation period such that the peak stress occurs at tn = 0s.  This 

weighting function was first multiplied by the model error, and the root-mean-square of the 

weighted error was calculated. 

 This fitting procedure resulted in very small differences between the GA and GT 

coefficients, therefore, the model was simplified to assume the time-dependent behavior is 

isotropic, and just one reduced relaxation function was required: ܩ௜௦௢ሺݐሻ = ܩଵଵଵଵሺݐሻ = ܩଵଵଶଶሺݐሻ = ܩଶଶଵଵሺݐሻ = ܩଶଶଶଶሺݐሻ.  The same fitting procedure assuming an instantaneous strain application 

was repeated with this isotropic relaxation model, and all subsequent modeling used ܩ௜௦௢ሺݐሻ. 

 

 

�௥�௟�௫ሺݐ௡ሻ =  ݁−௧�/�భ + ݁−௧�/�మ + ݁−௧�/�య + ݁−௧�/�రͶ
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3.2.5 Full-integral model fitting 

 In stress relaxation tests, viscoelastic models that assume an instantaneous strain 

application or a purely linear strain application during the ramping period have been shown to be 

poor predictors when applied to an actual experimental strain history [Abramowitch and Woo 

2004, Troyer et al. 2012a, Sheyte et al. 2014].  Therefore, equation (3.2) was used to model the 

entire experimental stress-relaxation tests, using the measured strain history, including the 

ramping period and the creep in strain that occurred during the relaxation period.  The fitting 

algorithm minimized a weighted error such that the ramping period and the relaxation period 

were weighted equally [Abramowitch and Woo 2004].  Since the relaxation period had its own 

weighting function, �௥�௟�௫ሺݐ௡ሻ , the ramping period required a similar function to scale the 

errors.  Unlike �௥�௟�௫ሺݐ௡ሻ, this function applied the same weight to all datum points and was 

defined as: �௥�௠௣ = ݉݁�݊[�௥�௟�௫ሺݐ௡ሻ].  The final weighted error function, ܴ�ܵܧ௪, that was 

minimized was: 

௪ܧܵ�ܴ  = Ͳ.ͷ ∗ ܴ�ܵ[�௥�௠௣ሺ�௥�௠௣,௠ − �ra୫p,eሻ] + Ͳ.ͷ ∗ ܴ�ܵ[�௥�௟�௫ ሺݐ௡ሻ ∙ ሺ�௥�௟,௠ − �re୪,eሻ]  
  (3.10) 

where RMS is the root-mean-squared operation, �௥�௠௣,௠  and �ra୫p,e  are the model and 

experimental stresses in the ramping period, respectively, and �௥�௟,௠  and �re୪,e are the model and 

experimental stresses in the relaxation period, respectively. 

 In order to fit the peak stress of the curves such that an accurate reduced relaxation 

function was obtained, it was necessary to fit equation (3.2) to each of the five tests individually.  

From this, the mean parameters G1, G2, G3, G4, and G∞ were calculated.  Even though these 

parameters were fairly consistent, subtle differences in the shape of the ramping period between 

tests resulted in highly variable parameters for the Ogden model, especially ȝ and α.  Therefore, 
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the relaxation function parameters were fixed at their fitted means, and the model was fitted a 

second time to all five tests simultaneously to determine ȝ, α, and k.  To get a single set of 

parameters to describe the mean behavior, this fitting procedure was conducted to fit the 

averaged experimental stress-relaxation curves.  The resulting average model was used to create 

predictions of the averaged data from the two cyclic experiments. 

3.2.6 Probabilistic analysis 

The full-integral fitting procedure described above was also conducted for each 

individual specimen.  The statistical distribution of each fitted model coefficient was determined 

using the allfitdist function in MATLAB to fit candidate parametric distribution functions to the 

empirical probability distribution for that coefficient.  Parametric distribution functions were 

chosen according to rankings of the Alkaike information criterion with a correction for finite 

sample sizes, as well as a visual inspection of fits to the probability distribution. 

 The resulting distributions and natural parameters (e.g. mean and standard deviation) 

were used to define the inputs of a probabilistic analysis in NESSUS (Southwest Research 

Institute, San Antonio, TX).  The probabilistic analysis determined the effects of the input 

variability on the model stress predictions for a stress-relaxation test at an equibiaxial stretch of 

1.1.  A Monte Carlo sampling method of 100,000 samples was used to estimate the predicted 

stress at pre-determined cumulative probability levels of 5%, 10%, 25%, 50%, 75%, 90%, and 

95%, at given times ranging from the time at peak stress (beginning of relaxation period) to 100s 

of relaxation.  The global sensitivity of the input parameters on the variability of the predicted 

stress was determined using a variance decomposition method. 
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3.3 Results 

3.3.1 Strain-dependence of relaxation 

As mentioned in the Methods section above, the QLV assumption of linear time-

dependent behavior was checked by measuring the relaxation rate of each relaxation curve.  As 

shown by the plotted stresses of an example specimen, the relaxation rate did not appear to 

depend on the magnitude of strain (Figure 3.1).  With all tests combined, the relaxation rate 

showed no correlation with measured stretch, and there was no significant difference in the 

relaxation rate between the 5 displacements tested (One-Way ANOVA, p = 0.64).  The only 

visible trend in the relaxation rate is the greater variability at lower stretch levels, which is likely 

due to the lower signal to noise ratio in the measured stress at these lower stretch levels. 

3.3.2 Anisotropy of reduced relaxation tensor 

 When fitted to the relaxation period of the curves assuming a Heaviside strain 

application, the QLV model fit the data well at all five stretch levels (Figure 3.2).  When two 

reduced relaxation functions were used, the mean percent error was 5.6%, and the mean RMSE 

was 72 Pa.  G∞ was significantly lower for the axonal direction than the transverse direction, and 

G2 was significantly greater for the axonal direction (Figure 3.3). Taken together, these results 

indicate that the axonal stress experienced greater relaxation than the transverse stress, and this 

difference primarily occurred near the time point of 0.26s.  However, the numerical differences 

between the mean parameters, although statistically significant for some, were small.  The 

maximum percent difference of 9.5% occurred at G2.  When comparing the normalized 

relaxation rates (Figure 3.1), the mean and standard deviation in the axonal and transverse 

directions were 0.139 ± 0.021 and 0.132 ± 0.018, respectively (p < 0.01, paired t-test).  Despite 

the statistical significance, the numerical difference between means was again very small.  When 
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only one reduced relaxation function, Giso, was used, the model appeared to fit the relaxation 

curves well in both directions of stress and at all five stretch levels (Figure 3.2).  The errors in 

the model fits remained low (mean percent error = 6.5%, mean RMSE = 76 Pa). 

 

 
Figure 3.2: Fits of the Giso QLV model to the experimental data, assuming an instantaneous 
strain application.  Fits are shown for the axonal direction (A,B) and the transverse direction 

(C,D).  Plots in (B) and (D) demonstrate the relaxation behavior in in the acute time frame (first 
5s) after loading. 
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Figure 3.3: GA(t) compared to GT(t) found from model fits assuming an instantaneous strain 
application.  p-values show results from paired t-tests. 

 

3.3.3 QLV full-integral model fits and cyclic test predictions 

 The final fits of the full-integral QLV model (equation 3.2) to the entire stress-relaxation 

curves, using the full strain history, showed very good agreement for both the ramping period 

and the relaxation period (Figure 3.4).  The QLV model was able to fit the experimental data at 

all five displacement magnitudes, and the simplification of using a single isotropic reduced 

relaxation function was satisfactory in fitting the relaxation in both directions of stress.  The 

model fits had a mean RMSE of 220 Pa, which corresponded to 8.9% of the mean peak stress.  

When fitted to the averaged experimental data, the resulting coefficients represent a best-fit mean 

model (Table 3.1).  The reduced relaxation function coefficients demonstrated a relatively high 

degree of relaxation that occurs at early time points, with G1 being the greatest, followed by G2, 

whereas G3, G4, and G∞ were all relatively small.  The Ogden model coefficients (ȝ, α, and k) 

represent the instantaneous elastic response, and the positive k coefficient indicates anisotropy 

with the axonal direction stiffer than the transverse direction. 
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Figure 3.4: Fits of the full-integral QLV model with a single isotropic reduced relaxation 

function to experimental stress-relaxation tests.  Examples shown for the (A) 1.0 mm test  with 
an expanded view of the first 2s of the ramping and relaxation (B), and fits for the 2.5 mm tests 

(C and D). 

 
These model fits included the full strain history of the experimental data, including 

during the relaxation period.  Even though the global displacement was held constant during the 

relaxation period of the experiments, there was some measured creep, or increase in strain, in the 

central region of interest.  In the axonal direction, the increase in strain from the beginning to the 

end of the relaxation period was 0.76% ± 0.54%, 0.91% ± 0.44%, 1.1% ± 0.65%, 1.3% ± 0.79%, 

and 1.4% ± 0.54% (mean ± standard deviation) for the 1.0mm, 1.5mm, 2.0mm, 2.5mm, and 

3.0mm displacement tests, respectively. In the transverse direction, the increase in strain was 
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0.72% ± 0.72%, 1.0% ± 0.49%, 1.3% ± 0.68%, 1.7% ± 0.45%, and 2.2% ± 0.66% for the 1.0mm, 

1.5mm, 2.0mm, 2.5mm, and 3.0mm displacement tests, respectively. 

 

Table 3.1: Fitted model coefficients for the mean experimental data, and statistical distributions 
of the coefficients fitted to individual specimens. 

 

Full-integral model: mean 
experimental data 

Statistical 
distribution Natural parameters 

G1 (Ĳ1 = 0.021) 0.708 normal 
Mean = 0.64 
S.D. = 0.089 

G2 (Ĳ2 = 0.26) 0.179 normal 
Mean = 0.21 
S.D. = 0.055 

G3 (Ĳ3 = 2.7) 0.031 lognormal 
Mean(ln(x)) = -3.2 
S.D.(ln(x)) = 0.28 

G4 (Ĳ4 = 21) 0.032 lognormal 
Mean(ln(x)) = -3.3 
S.D.(ln(x)) = 0.33 

G∞ 0.050 lognormal 
Mean(ln(x)) = -2.7 
S.D.(ln(x)) = 0.37 

ȝ (Pa) 3400 lognormal 
Mean(ln(x)) = 8.0 
S.D.(ln(x)) = 0.47 

α 17 normal 
Mean = 17 
S.D. = 2.6 

k 1.9 lognormal 
Mean(ln(x)) = 0.66 
S.D.(ln(x)) = 0.69 

 

 The model fitted to the averaged experimental stress-relaxation tests was then used to 

predict the stress from the cyclic experiments.  The model was able to accurately predict the 

mean experimental stress in both directions for both the 1.5mm and 2.5mm displacement tests 

(Figure 3.5).  At the peak of each cycle, the predicted stress was within one standard error of the 

mean of the experimental data.  However, after the first cycle, the model slightly over-predicted 

the stress in the early (initial ramping) phase of each cycle.  These predictions had a mean RMSE 

of 130 Pa, which corresponds to 6.6% of the mean peak stress.  The predicted stress was less 

than zero at the end of each cycle, however, the experimental apparatus was not designed to 
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measure compressive loads.  Therefore, any predictive negative stresses were constrained to be 

equal to zero for the purpose of comparison to the experimental data. 

 
Figure 3.5:  Model axonal and transverse stress predictions of the experimental cyclic tests, 

showing cycles 1, 2, 3, and 20 for the 2.5 mm displacement tests (top) and 1.5 mm displacement 
test (bottom).  The experimental means and standard errors of the mean are shown. 

 

3.3.4 Probabilistic analysis 

 In addition to fitting the full-integral QLV model to the averaged experimental stress-

relaxation tests, each specimen was fitted individually.  The best-fit statistical distribution 

function and natural parameters were determined for each parameter (Table 3.1).  Many of the 

parameters demonstrated correlations with each other.  Pearson’s correlation coefficient (r) was 

determined for each pair of model parameters (Table 3.2) and included as an input in the 

probabilistic analysis if the 95% confidence interval on the correlation coefficient did not include 
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zero (Fisher’s Z transformation on the correlation coefficient).  The probability distribution of 

the stress predictions showed high variability, with the 5-95% cumulative probability range of 

stress about twice as high as the median stress (50% cumulative probability) in both directions, 

throughout the test (Figure 3.6).  From the time at peak stress to 100 s of relaxation, there was an 

11% increase in the variability (calculated as the 5-95% range, divided by the median stress), 

indicating that the large majority of the variability appears during the ramping period, and the 

long-term time-dependent behavior adds very little contribution to this variability.  The global 

sensitivities of the model variance to the input parameter variance demonstrate that the model is 

most sensitive to the instantaneous elastic parameters early in the relaxation period of the test 

(Figure 3.7).  As the relaxation time increases, the model becomes more sensitive to the 

variability of the G1 and G2 parameters.  The G3, G4, and G∞ parameters had negligible 

contributions to the model variance. 

 

Table 3.2μ Pearson’s correlation coefficient between each model parameter for use in the 
probabilistic analysis. 

 
G1 G2 G3 G4 G∞ μ α k 

G1 1 X X X X X X X 
G2 -0.93 1 X X X X X X 
G3 0 0 1 X X X X X 
G4 -0.79 0.65 0 1 X X X X 
G∞ -0.86 0.62 0 0.83 1 X X X 
μ 0 0 0 0 0 1 X X 
α 0 0 0 0 0 0 1 X 
k 0 0 0 0 0 -0.8 0 1 
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Figure 3.6: Probability distributions of the model stress predictions for an equibiaxial stress-

relaxation test with a peak stretch of 1.1.  Stress predictions are shown for the axonal direction 
(top) and transverse direction (bottom). 

 
Figure 3.7: Global sensitivities of the model axonal stress prediction to the variance of the model 

parameters during the relaxation period of an equibiaxial stress-relaxation test. 
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3.4 Discussion 

 The viscoelastic properties of brain white matter were characterized by conducting 

equibiaxial stress-relaxation experiments at five different displacement magnitudes and 

determining the appropriate model formulation to fit the viscoelastic behavior.  The results 

demonstrated that the time-dependent behavior of the tissue was independent of strain 

magnitude, therefore a QLV formulation was sufficient.  QLV formulations have commonly 

been used to study brain viscoelasticity [Elkin et al. 2011, Laksari et al. 2012, Nicolle et al. 2004, 

Rashid et al. 2014, Tamura et al. 2007], however, systematic characterizations of the strain 

magnitude dependence are limited.  Experiments in shear [Nicolle et al. 2004] and indentation 

[Elkin et al. 2011] provide evidence that relaxation behavior is independent of strain, supporting 

the results of the current study.  Other soft tissues such as tendons [Troyer and Puttlitz 2011] and 

spinal cord [Shetye et al. 2014] have exhibited fully nonlinear viscoelastic behavior in tension.  

However, these tissues contain collagen fiber components, including the pia mater attached to 

the spinal cord, which may contribute to the nonlinearity of the relaxation behavior. 

Previous viscoelastic studies of the brain have investigated the anisotropy of the elastic 

behavior or of the linear relaxation modulus [Abrogast and Margulies 1999, Feng et al. 2013, 

Nicolle el al. 2004, Ning et al. 2006].  However, the specific anisotropy of the time-dependent 

response has not been determined separately from the elastic behavior. In the current study, the 

hyperelastic component of mechanical response demonstrated strong anisotropy, with the k 

parameter ranging from 0.86 to 5.9 for the tested specimens.  However, the time-dependent 

behavior (relaxation) was nearly the same in the axonal and transverse directions.  The 

differences in the relaxation function parameters in the two directions were fairly small (less than 

a 10% difference).  Although some of the differences in parameters were statistically significant, 
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they did not have a great enough effect on the model results to be meaningful.  When a single, 

isotropic reduced relaxation function was used, the model fits remained accurate.  It was 

therefore sufficient to use one single reduced relaxation function to define all terms of the 

reduced relaxation tensor. 

QLV model coefficients are sometimes determined by fitting the reduced relaxation 

function to the relaxation period of the experiment only, assuming a Heaviside (instantaneous) 

strain application, and approximating the instantaneous elastic stress by fitting to a high speed 

ramp while assuming any relaxation that occurs during the ramp time is negligible [Rashid et al. 

2014].  However, models determined by this method result in poor predictions of the 

experimental data when the actual strain history is taken into account [Abramowitch and Woo 

2004, Troyer et al. 2012a].  A Heaviside fitting method was used in the current study (the 

resulting reduced relaxation function parameters are shown in Figure 3.3) and the parameters 

describing the instantaneous elastic stress were ȝ = 1400 ± 560 Pa, α = 19 ± 6.7, and k = 2.3 ± 

1.6 (mean ± standard deviation).  Some of these parameters are substantially different than those 

determined by the full-integral fitting method.  Notably, G1 is much greater, G∞ is much smaller, 

and ȝ is much greater for the full-integral fitting.  Consequentially, the test predictions based on 

the Heaviside fits were very inaccurate compared to the full-integral fits (Figure 3.8).  The 

discrepancy arises due to the distinctly different relaxation behaviors predicted by the two 

models.  By taking into account the actual strain history, the full-integral fits were able to 

accurately predict both the ramping and relaxation periods of the stress-relaxation experiments 

and the stresses in the cyclic experiments. 
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Figure 3.8: Predictions of the experimental stress-relaxation in the axonal and transverse 

directions based on fits using a Heaviside ramp assumption and fit full-integral fits taking into 
account the actual measured strain history. 

 
 The instantaneous elastic stress determined by the full-integral model had an infinitesimal 

shear modulus (ȝ = 3400 Pa) that is similar to what has been previously reported for high speed 

tensile stress relaxation tests of brain tissue [Rashid et al. 2014], which used strain rates of 30 – 

90 s-1, and reported means of 2780-5160 Pa for ȝ.  Based on this comparison, the instantaneous 

shear modulus from the current study is a good approximation of the shear modulus at a strain 

rate of 60 s-1. However, the model used by [Rashid et al. 2014] has a lower α parameter (α = 6) 

and no anisotropic parameter.  Also, the reduced relaxation function determined in the current 

study may not give a reliable prediction of the relaxation that occurs in very short times at 

greater strain rates.  The modeled instantaneous elastic response was much stiffer than the 

modeled hyperelastic behavior for previous quasi-static biaxial experiments using the same 

experimental setup (ȝ = 460 ± 270 Pa, α = 24 ± 6, and k = 0.54 ± 0.83) [Labus and Puttlitz 2016].  

The same hyperelastic Ogden model was fitted to the stress-stretch data at 100 s of relaxation for 

the five tests to approximate the static material properties.  The infinitesimal shear modulus was 
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very similar to that found from the quasi-static experiments (ȝ = 430 ± 200), but α (1κ ± 3.6) and 

k (2.0 ± 1.5) were more similar to the instantaneous elastic properties from the current study.  

Differences in the anisotropy and nonlinearity may be due to the use of only equibiaxial tests in 

the current study, whereas the quasi-static experiments used multiple biaxial displacement ratios.  

In a model of uniaxial tension tests on white matter, a similar anisotropic parameter of k = 1.77 

was found [Velardi et al. 2006]. 

 The distributions of the model parameters lead to a high variability in predicted stresses 

in the probabilistic analysis.  The model predictions were most sensitive to the variance of ȝ, k, 

and G1 (Figure 3.7), so the majority of the model uncertainty arises from uncertainty in the 

elastic and early-time relaxation behavior.  Conversely, the long-term relaxation behavior from 

the experiments was extremely consistent, as demonstrated by the negligible contributions of the 

long-term relaxation parameters to the model variance.  The variability of the experimental data 

can be important to consider in computational studies in order to predict the full range and 

probability levels of model outcomes rather than only predicting the mean (Laz and Browne 

2010).  The reported distributions of the model parameters (Table 3.1) and their correlations 

(Table 3.2) can be implemented into probabilistic analyses of computational models similar to 

the probabilistic analysis conducted on the constitutive model. 

 The experimental stress was estimated by multiplying a correlation factor by the initial 

stress calculation of force divided by cross sectional area.  This correlation factor was 

determined using specimen-specific finite element analyses, and it depends on the degree of 

anisotropy, the direction, and the magnitude of strain.  Each direction of stress for each specimen 

had an independent correlation factor applied, with means of 0.78 in the axonal direction and 

0.71 in the transverse direction.  All modeling results reported above used the correlation factors, 
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however, the fits to the mean experimental data were repeated without the correlation factors.  

Because the correlation factors only affect the magnitude of the stress, and not the shape of the 

curves, the α parameter and the reduced relaxation function parameters were all identical using 

both methods.  Without the correlation factors, ȝ increased to 4800 Pa (from 3400 Pa), and k 

decreased to 1.6 (from 1.9). 

 In conclusion, an anisotropic, viscoelastic constitutive model was derived from biaxial 

stress-relaxation tests on brain white matter.  A QLV formulation was sufficient to model the 

relaxation behavior, which was independent of strain magnitude.  Although the instantaneous 

elastic response was anisotropic, the time-dependent relaxation response was sufficiently 

modeled by an isotropic reduced relaxation function.  Model fits to stress relaxation tests were 

able to accurately predict the stress in cyclic tests in both the axonal and transverse directions at 

two different strain magnitudes.  The high variability in model stress predictions was due almost 

entirely to the variance of the elastic and the early-time relaxation parameters, whereas the long-

term relaxation behavior was very consistent.  The resulting constitutive model can be used to 

improve computational models of the brain used for surgical simulations. 
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4. CONCLUSION 
 
 
 

4.1 Summary of Findings  

A biaxial test of brain white matter was developed in this study to improve the 

constitutive models of brain tissue.  Quasi-static experiments were conducted to determine the 

hyperelastic behavior of the tissue.  Structural parameters were measured using histology and 

transmission electron microscopy imaging analyses.  These parameters were incorporated into 

the hyperelastic constitutive model, and a probabilistic analysis was used to determine the 

improvements in the certainty of model predictions.  Dynamic biaxial experiments were also 

conducted to tests the viscoelasticity of white matter and to derive the appropriate form of a 

viscoelastic model. 

A novel experimental setup was developed to test brain tissue in biaxial tension, and this 

setup successfully minimized shear and created a relatively homogeneous region of interest to 

allow for an accurate analysis of white matter in a true state of biaxial tension.  An anisotropic 

Ogden-type hyperelastic model was used to fit the experimental data, and the results showed a 

mean anisotropic behavior with the axonal direction stiffer than the transverse direction, 

although the degree of anisotropy was relatively low compared to previous studies of white 

matter.  Model predictions showed improved accuracy when the model was fitted to all five 

experimental tests, compared to fitting to only the three biaxial tests or two uniaxial tests, 

indicating that using multiple strain ratios to derive the model parameters improves the 

predictive power of the model. 

The results from the quasi-static experiments showed no significant differences in the 

mechanical model parameters between the corona radiata and corpus callosum regions.  The 
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axon area fraction, measured via by transmission electron microscopy, also showed no 

significant differences between regions.  However, results of the histology measurements 

showed both the mean axon orientation relative to the testing direction and the distribution of the 

axon orientation to be significantly greater in the corona radiata.  From a regional perspective, 

differences in structural properties showed no relationship with the mechanical properties of 

white matter.  However, when correlations were tested between mechanical model parameters 

and structural parameters on an individual specimen basis, a significant correlation was observed 

between the mechanical anisotropy and the axon area fraction.  This correlation was accounted 

for in the structural hyperelastic model, and the variability of the axonal stress predictions 

decreased as a result.  Because this correlation was seen only on an individual specimen basis, 

and not a regional basis, the utility of this modelling approach is applicable to patient-specific 

models.  A more generally applicable model that is representative of the general population 

mean/median still needs to be developed and warrants further investigation. 

The biaxial stress-relaxation experiments conducted at multiple equibiaxial strain 

magnitudes showed the time-dependent relaxation behavior to be independent of strain 

magnitude.  Therefore, a QLV model was sufficient for modeling the experimental results.  The 

relaxation was also nearly identical in the axonal and transverse directions, and an isotropic 

reduced relaxation tensor was able to accurately model both directions of stress in the biaxial 

stress-relaxation tests.  A QLV model with an isotropic reduced relaxation tensor and an 

anisotropic instantaneous elastic stress was used to fit the stress relaxation tests and accurately 

predict the stress from cyclic tests at two different strain magnitudes.  In order to obtain an 

accurate model, it was necessary to fit both the ramping and relaxation periods of the 

experiments simultaneously while taking into account the actual strain history of the tests. 
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4.2 Future Work 

The constitutive models derived from quasi-static and dynamic biaxial experiments can 

be useful for computational modeling of surgical procedures, and the model selection may 

depend on specific requirements for the modeling application.  While this work improves on the 

current models of brain tissue to describe multiaxial stress states, further investigations are 

warranted.  Multiaxial stresses should be further tested in shear and compression.  The structural 

modeling approach showed a limited ability to improve the certainty of model predictions.  To 

further assess this approach, more information may be needed on the axonal structure of the 

brain, especially in comparing humans to animal models.  In order to extend this work to model 

traumatic injuries, testing at higher strain rates would be required. 

Tension, compression, and shear are all relevant in clinical applications of brain 

computational models.  Moreover, the current study demonstrated the importance of conducting 

biaxial tensile tests in addition to uniaxial tests for deriving constitutive models with better 

predictive capabilities.  This work could be extended to also test brain tissue mechanics in other 

multiaxial stress states that include compression and shear.  Constitutive models could be further 

improved by simultaneously fitting to multiple experimental tests that include tension, 

compression, and shear in multiaxial stress states. 

The axonal structural properties of the brain and their relation to mechanical behavior 

could be further investigated.  A correlation was found between axon volume fraction and 

mechanical anisotropy on an individual specimen basis.  While no significant differences were 

observed between the two regions testes, previous studies have found differences in mechanical 

behavior between regions of the brain.  The relationship between axon volume fraction and 

anisotropy could be further investigated beyond the two regions tested in the current study.  This 
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approach could also be used to study the differences in mechanical behavior between species, 

especially between humans and the commonly used ovine and porcine animal models.  A 

systematic characterization of the axon structure of these species is warranted, alongside a 

mechanical characterization.  Differences in the axon structure may account for interspecies 

differences in mechanical behavior.  This approach would provide improved translation of the 

many animal models of brain mechanics to the human condition. 

The current experiments were designed to develop models of the brain for use in clinical 

applications, such as surgical simulations.  Therefore, relatively low strain rates were used.  In 

order to extend this work to study traumatic brain injuries, higher strain rates should be used to 

characterize the viscoelastic behavior.  However, mechanical tests at high loading rates have 

associated errors due to inertial effects of the specimen and the testing apparatus.  These errors 

include out-of-plane stresses, inhomogeneous strains, and vibrations (Sanborn et al. 2012, 

Abramowich and Woo 2004).  It is therefore important to develop testing methods that can 

minimize these errors.  For modeling stress relaxation tests at high speeds, it remains important 

to measure the actual strain history, as done in the current study, rather than making assumptions 

about the loading profile.  It is unclear if a quasi-linear viscoelastic model would still be 

sufficient for modeling white matter at high strain rates, accordingly, a systematic investigation 

of the strain magnitude dependence of the viscoelastic behavior should be conducted. 
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