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Abstract

Unsupervised Binary Code Learning for Approximate Nearest Neighbor

Search in Large-scale Datasets

Nearest neighbor search is an important operation whose goal is to find items in the

dataset that are similar to a given query. It has a number of applications such as content

based image retrieval (CBIR), near duplicate image detection and recommender systems.

With the rapid development of the Internet and digital devices, it becomes easy to share and

collect data. Taking a modern social network as an example, Facebook was reported in 2012

to be collecting more than 500 terabytes of text, images and videos each day. Conventional

nearest neighbor search using linear scan becomes prohibitive when dealing with large-scale

datasets like this. This thesis proposed a new quantization-based binary code learning algo-

rithm, called Unit Query and Location Sensitive Hashing (UnitQLSH), to solve the problem

of approximate nearest neighbor search for large-scale, unsupervised and unit-length data.

UnitQLSH maps each high dimensional data sample to a binary code constrained to be resid-

ing on the unit-sphere. This constraint is very helpful in improving the retrieval performance.

Also, UnitQLSH takes advantage of the approximate linearity of local neighborhoods of data

to further improve performance. Moreover, given a query, a weight vector is computed based

on it, indicating the significance of different bits. The Hamming distances are weighed by

this vector to provide much more accurate retrievals than traditional approaches without

any weighting schemes. Compared to existing state-of-the-art approaches, the proposed

algorithm outperforms them significantly.
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CHAPTER 1

Introduction

With the rapid development of the Internet and digital devices, data are collected, ma-

nipulated and shared on a scale unimaginable 20 years ago. Taking a modern social network

as an example, Facebook was reported in 2012 to be collecting more than 500 terabytes of

text, images and videos each day [1]. The term “big data” became popular to describe this

explosion of data, characterizing datasets that are too large to be processed using traditional

techniques [2]. Nearest neighbor search is one of the operations affected by “big data”. Its

goal is to find items in the dataset that are similar to a given query. This is important since

there are many applications that relate to nearest neighbor search, such as content based

image retrieval (CBIR), duplicate detection and recommender systems. A conventional way

to do nearest neighbor search of a given query is to perform a linear scan through all items

in the dataset and retrieve the most similar ones. However, the computational complexity

of a linear scan has the same order as the number of data samples in the dataset. When it

comes to large-scale datasets which contain millions, billions or even more data samples, this

procedure is prohibitive because scanning all the items can be extremely time-consuming.

Therefore, more efficient methods are needed to handle this problem in practice. This chap-

ter contains a detailed description of the problem tackled in this thesis and a brief summary

of important solutions. The goals of this thesis are also presented in this chapter.

1.1. An Overview of Approximate Nearest Neighbor Search Problem

This section introduces the approximate nearest neighbor search problem. More specif-

ically, it first describes how to define the nearest neighbors of a data sample. Then it

introduces what approximate nearest neighbor search is and why it is important.
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1.1.1. The Definition of Nearest Neighbors. The data we use in this thesis are

called unsupervised data, i.e., data samples not associated with any additional metadata

(e.g., a label indicating its category). Given a query, its nearest neighbors are conventionally

defined as the closest data samples in terms of certain distance metrics. Euclidean distances

are the most widely used metric for high dimensional data. Other options are also available,

such as inner product and city-block distance. On the other hand, data are called supervised

if they are associated with metadata. However, collecting metadata is a time-consuming task.

It is very convenient and practical to collect unsupervised data. For example, people can

use their cell phones or digital cameras to take pictures very conveniently and then upload

them online. Most of the time, the pictures are not tagged or labeled. Because collection

does not require people to generate labels, unsupervised data now accounts for most of all the

existing data. As a result, searching unsupervised data is a much more practical and common

scenario. Due to the popularity and importance of unsupervised data , this thesis will solely

focus on unsupervised data and the nearest neighbors are also defined in an unsupervised

manner accordingly.

1.1.2. Definition of Approximate Nearest Neighbor Search and Its Impor-

tance. The goal of nearest neighbor search is to search a dataset for nearest neighbors of

a given query or multiple queries. The data samples and the queries are often represented

as a vector of numbers. This indicates that data often live in a high dimensional space. The

desired nearest neighbors of a query are considered to be similar to it. A conventional way

to find nearest neighbors of a query is to go through all data samples in the dataset and pick

the samples with minimal distances to the query.

Nearest neighbor search is very important because it is so widely used. One example

is Content Based Image Retrieval (CBIR) [3]. CBIR is needed when there is no metadata
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associated with a query image and one wants to find other images similar to it (e.g., product

search and art collection search). Another example is near duplicate image detection [4].

A large number of images online are duplicates or near duplicates of others. Detecting this

redundancy will greatly help to reduce storage and processing overheads. Other examples of

nearest neighbor applications are recommender systems, data compression and spell check-

ing.

Despite the simplicity of the conventional nearest neighbor search method, it has encoun-

tered an obstacle. The datasets that are searched in response to the query are usually very

large. Therefore, it is not practical to scan all items in the datasets in order to find similar

ones. A workaround for very large datasets is that, most of the time, it suffices to obtain

only approximately accurate solutions of nearest neighbors rather than the exact solution.

As a result, much faster and memory-efficient methods can be developed, e.g., [5–7]. This is

called approximate nearest neighbor (ANN) search. This problem and its solutions will be

the focus of the study in this thesis.

1.2. An Overview of Existing Approaches for ANN Search

To enable efficient ANN for large-scale datasets, two main issues need to be addressed.

One is excessive memory consumption. It is highly desirable that all the data samples can

be loaded into memory so that search can be performed without involving hard disks in

data exchange, which is much slower than accessing data from memory. However, it is

often impossible to directly load all of data samples into memory. Therefore, a compact

representation is needed for each data sample to resolve this issue. The other issue is that

search should not go through all data samples. In other words, a linear scan must be avoided

and the search complexity should be sublinear (e.g., log2(n) or a constant complexity, where

3



n is the number of all data samples). Therefore, finding a way to directly locate a small

subset of the data samples close to a given query is very important. This section presents

an overview of existing approaches for ANN search.

Due to the importance of ANN search, a number of methods have been proposed to

enable efficient search in large-scale datasets. Tree-based methods [8] construct a tree that

tries to partition data efficiently so that data samples in the same partition are similar to

each other. In theory, finding nearest neighbors of a new query is in logarithmic expected

time if the tree is approximately balanced. However, learning such trees can be very time-

consuming. Also, the nearest neighbor search for high dimensional data can degrade to

a linear scan when many data samples are close to the partitioning boundary. Clustering

based methods, related to product quantization [7, 9], partition data samples into multiple

orthogonal subspaces and then run clustering in each subspace. The resulting cluster centers

are treated as quantizers to represent all data samples. Learning these quantizers can take

a long time since clustering needs to be run in each subspace. Moreover, there can be large

memory overhead due to the storage of lookup tables that contain the distances between

the query and quantizers. Also, there can be computation overhead due to the generation

of nearest neighbor candidates from these lookup tables.

Besides the two aforementioned categories of methods, binary code learning approaches [10–

19] are the most popular and dominant. The general idea is to learn a binary representation

of each data sample and then compute the similarity of pairs of data samples using the

Hamming distance between their binary codes. The Hamming distances between pairs of

data samples are expected to approximate their true relative distances. In other words, sim-

ilar data samples should have similar binary codes and dissimilar samples dissimilar binary

codes.

4



Binary code learning techniques have two main advantages, offering a solution to both

the memory and retrieval efficiency issue mentioned above. One advantage is efficient data

storage, since a binary code consumes only a few bits of memory compared to a real-valued

vector representation of a data sample (Each real value takes 32 or 64 bits.). This makes it

feasible to load a whole dataset into memory to perform search. The other is efficient search

of the Hamming ball centered at the query. Given a query, usually its binary code is first

computed. Then items in the dataset are retrieved based on the ranking of their Hamming

distance to the query until enough items are retrieved. In practice, only data samples with

very similar binary codes to the query will be explored. For instance, one will only explore

binary codes whose Hamming distance to the query is within 3 and retrieve data samples in

those codes. This is important since most samples are never compared to the query, making

the search time independent of the size of datasets.

The upper half of Figure 1.1 shows an overview of the ANN search problem: Given a

query and a large-scale dataset, find the items in the dataset that are most similar to it. In

this figure, we set the range of similarity scores to be between 0 and 1, where larger values

denote a higher similarity. The values in red are similarity scores between the query and

the retrieved items. The lower half of Figure 1.1 shows how general binary code learning

techniques work. Both the query and the items in the dataset are mapped to binary codes

as shown below each item. Items with small Hamming distances to the query are retrieved

using hash tables whose keys are the binary codes. Ideally, the Hamming distances between

pairs of data samples should reflect their similarity. As a result, the ranking based on

Hamming distances should be the same as or close to the ranking based on the similarity

score to enable fast and accurate retrieval. Since ANN algorithms only provide approximate
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answers, Hamming distances cannot reflect the exact real similarities. So data samples with

the same Hamming distance to the query can have different real similarities.

Figure 1.1. An overview of the nearest neighbor search problem and how
general binary code learning techniques work

1.3. An Overview of the Proposed Approach

There exist some practical constraints of the binary code learning approaches. To make

the representation compact and the retrieval fast in practice, the number of bits in the

binary code representation cannot be large because the number of binary codes increase

exponentially as the number of bits increases. This will lead to a very small number of items

to retrieve when only a small set of binary codes close to query are explored since most

of the binary codes will associate with no data samples. However, current binary learning
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algorithms tend to have low retrieval performance when the number of bits is small. This

is one of the common weaknesses with algorithms in this category. The other weakness is

a coarse ranking of the binary codes. For example, given a specific 32-bit binary code of a

query, there exist
(

32
3

)

= 4960 binary codes with a Hamming distance of exactly 3 to the

query. There is no further way to distinguish these binary codes. Therefore, all these 4960

codes need to be treated equally. Otherwise, one needs to perform some post processing to

give them a finer ranking, which can lead to poor performance.

In this paper, we propose a method named Unit Query and Location Sensitive Hashing

(UnitQLSH) to perform fast retrieval of nearest neighbors in large-scale datasets. This

approach falls in the category of binary code learning methods. The proposed method is

designed to work on unit-length data. It learns a binary code for each data sample. The

binary codes are a concatenation of two parts. One part indicates the index of a cluster and

the other indicates a quantizer in that cluster. Details of this design will be presented later

in this paper. Given a new query, UnitQLSH is able to quickly and accurately compute a

finely-ranked set of binary codes to be explored. Data samples retrieved from these explored

binary codes are its approximate nearest neighbors.

UnitQLSH overcomes the two aforementioned issues. It takes full advantage of the ben-

efits brought by neighborhood localization (location sensitive) which decompose the whole

dataset into a modest number of local neighborhoods, also known as clusters. UnitQLSH also

intelligently computes a weight vector to compute a weighted Hamming distance in order

to more finely rank binary codes. Moreover, instead of making the binary code unit-length

after they are learned (as in [16]), we found that adding a unit-length constraint on the

binary codes during the learning process helps improve retrieval performance significantly.

Compared to other state-of-the-art methods on 3 large-scale datasets, each of which contains
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at least 1 million data samples, UnitQLSH outperforms them by a significant amount at a

various range of code lengths.

To give a general yet informative idea why UnitQLSH works much better than others,

we show in Figure 1.2 the 2-bit binary codes learned on 2-D unit-length data using three

algorithms: ITQ, AQBC and UnitQLSH. ITQ and AQBC are two well known hashing algo-

rithms for nearest neighbor search. UnitQLSH is the method this paper will propose. The

data points are marked as blue and the learned binary codes are marked as red. Each red

dot corresponds to a binary code. These red dots are also called quantizers since the binary

code of each data sample is computed as the binary code of the closest red dot.

We can see from the left plot that since ITQ is not designed specifically for unit-length

data, it still tries to find a cube whose vertices yield the least representation error. As a

result, two of the learned quantizers are far away from data samples and only the other two

quantizers are actually effective, leading to large quantization error. In the middle plot, we

see only three quantizers for AQBC since it uses the origin as a fixed quantizer and the

origin is never used to quantize unit-length data. That’s why the origin is not shown in

the plot. We observe that all of the three quantizers are not close the data, which means

that the quantization error is large. The right plot shows the binary codes learned by the

proposed UnitQLSH. The data are first partitioned to two local pieces, each of which can

be much more closely represented by a linear subspace. Then we learn a hyper-rectangle (in

this case, a 1-D rectangle or a line segment) in each of the local linear subspace. The binary

quantizers are guaranteed to be unit-length (i.e., residing on the unit hypersphere). We can

see that the learned quantizers using UnitQLSH approximate the data samples very well.

It should be noted that another major contribution of UnitQLSH, using a weight vector to

rank binary codes, is not presented in the plot since that is done during retrieval.
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Figure 1.2. Binary codes (red dots) learned using ITQ, AQBC (The origin
is the fourth binary code. It is omitted since it is never used to encode data.)
and UnitQLSH
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CHAPTER 2

Related Work

There has been a rapid development of large datasets nowadays thanks to cheap and

convenient data acquisition equipments. How to find approximate nearest neighbors effi-

ciently in large-scale datasets is very useful yet challenging. As a result, a large collection of

approximate nearest neighbor search algorithms for large-scale datasets have been proposed.

The work can be categorized based upon different criteria:

• Whether data are associated with category labels:

– unsupervised nearest neighbor search

– semi-supervised nearest neighbor search

– supervised nearest neighbor search

• How the learning is performed (optimization objectives):

– similarity based learning

– quantization based learning

• Types of hash/binary functions:

– linear hash functions

– nonlinear hash function (e.g., kernel-based learning)

To measure the performance of an ANN algorithm, there are two common protocols. One

is the recall@R curve. It reports the recall scores when varying the number of retrieved items.

Basically, it measures how often the retrieved items are true nearest neighbors. Recall@R

curves do not consider the number of binary codes that are retrieved in order to obtain the

desired number of R (retrieved items). This is an important factor since it is related to the

effort spent in retrieval. As a result, a second protocol is also common: recall/precision at a
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fixed Hamming radius. This protocol fixes the number of binary codes to retrieve and report

the corresponding retrieval performance. However, this protocol still fails to fully measure

the retrieval efforts. An important discussion will be presented later in this paper that shows

how to fully measure retrieval efforts.

Since this thesis focuses on unsupervised nearest neighbor search, several representative

algorithms in this category will be reviewed and summarized in this section. The algorithms

are divided based on whether the they are similarity based or quantization based learning.

Section 2.1 presents algorithms that learn binary codes based on similarity of pairs of data

samples. Section 2.2 presents algorithms seeking binary codes that can quantize/approximate

individual data samples. Concluding remarks of both the advantages and disadvantages of

these methods will be presented at the end of this section.

2.1. Similarity Based Binary Code Learning Algorithms

Multiple representative similarity based binary code learning methods are reviewed in this

section. Most binary code learning approaches reviewed here seek binary representations of

data such that their Hamming distance matrix well approximates a target distance matrix

containing distances between pairs of data samples. Note that a distance matrix can be

easily converted to a similarity matrix by negating each entry. For unsupervised scenarios,

the target distances between pairs of data samples are often defined as Euclidean distances,

inner product or Radial Basis Functions (RBF).

2.1.1. Locality Sensitive Hashing. Gionis et al. proposed Locality Sensitive Hash-

ing (LSH) [10] to perform approximate ANN search. Their goal is to ensure that close data

samples will have a higher collision (mapped to the same binary code) probability than data

samples that are far apart. The corresponding hash functions are called locality sensitive
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functions. These locality sensitive functions have a formal mathematical form. Denote H

a family of functions that map data samples in a set S to some universe U . H is called

(p1, p2, r1, r2) sensitive for a distance metric D(∗, ∗) if any x1, x2 ∈ S satisfies the following:

• if x1 ∈ B(x2, r1), then PrH[h(x1) = h(x2)] ≥ p1

• if x1 /∈ B(x2, r2), then PrH[h(x1) = h(x2)] ≤ p2

Here, B(x2, r) denotes all points in S that are within a distance r to x2 where the distance

function is defined by D(∗, ∗). PrH[h(x1) = h(x2)] denotes the probability of choosing a

hash function h() from H such that h(x1) = h(x2). The cases where x1 and x2 are mapped

to the same hash code (h(x1) = h(x2)) is called collision. To make these locality sensitive

functions useful, it is always required that p1 > p2 and r1 < r2.

Although LSH is classified as a similarity based learning method in this thesis, unlike

other similarity based methods introduced later, it does not aim to learn hash functions

that approximate predefined similarity scores between pairs of data samples. What LSH

does is to randomly select hash functions from a family of functions that yield high collision

probability for data samples that are close to each other.

In the case where D(∗, ∗) is defined as Euclidean distance, the hash functions are linear

functions and the parameters of these linear functions are drawn independently from a normal

distribution [20]. Therefore, these linear hash functions are independent of the size of the

dataset, so training is very fast. Unfortunately, long binary codes are necessary to achieve

reasonable search performance of LSH. Hundreds of bits are needed for LSH to achieve good

performance while other methods such as SH [11] only need 32 bits.

An obvious drawback of LSH is that the linear hash functions do not take into consider-

ation the distribution of data. In other words, the hash functions are data-independent or

there is no learning involved in it. If hash functions can be learned in a way that adapts to
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the distribution or structure of the data, more compact binary codes yielding better retrieval

performance may be learned.

2.1.2. Spectral Hashing. Weiss et al. proposed Spectral Hashing (SH) [11] to learn

binary codes such that Hamming distance strongly correlates to the similarity of pairs of

data samples. Specifically, they use a Radial Basis Function (RBF) to define the similarity

Wij of the i-th and j-th data sample:

(1) Wij = exp(−||xi − xj||2/σ2)

where xi and xj denote the i-th and j-th data sample and σ controls the threshold that

defines similar data samples. Denote yi as the binary code (a row vector) of i-th data

sample, the objective function they are trying to optimize may be written as follows:

(2)

minimize :
∑

i,j

Wij||yi − yj||2

subject to yi ∈ {−1, 1}k,
∑

i

yi = 0,

1

n

∑

i

yTi yi = Ik×k

where k is the number of bits in a binary code, n is the number of data samples and Ik×k is

an identity matrix of size k×k. This is a standard optimization function in spectral analysis

except for the constraints. To understand this equation, we can look at Wij as a weighted

penalty imposed on the Hamming distance ||yi − yj||2. If two data samples are very similar

to each other (large Wij), we would like their Hamming distance to be small. Therefore, a
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large penalty should be used to weight their Hamming distance. The constraint
∑

i yi = 0

means that the each bit will partition all data samples evenly (Each bit will “fire” 50% of the

time.). The intent is to maximize the information carried by each bit. The other constraint

1
n

∑

i y
T
i yi = Ik×k means that pairs of bits are uncorrelated to each other. This constraint is

to reduce redundancy among bits.

Equation 2 can be written more elegantly by using linear algebraic notations.
∑

i,j Wij||yi−

yj||2 is equal to trace(Y T (D−W )Y ), where Y is an n×k matrix whose i-th row is yi, D is an

n× n diagonal matrix whose i-th diagonal entry D(i, i) =
∑

j W (i, j). D is called a degree

matrix in graph theory. W can be treated as the adjacency matrix of a weighted graph. After

they relax the problem by removing the binary constraint of Y , the solutions can be easily

obtained via computing eigenvectors of the Laplacian matrix L = D −W corresponding to

minimal nonzero eigenvalues. These eigenvectors are also called the spectral embedding of

this weighted graph represented by W . The binary form of Y is simply obtained by taking

the signs of the eigenvectors.

The method described above can only be used to compute the binary codes of training

data. To compute the binary code of new data samples (also known as out-of-sample exten-

sion), the Nystrom method [21] is usually applied. However, it can be very computationally

expensive if the number of data samples is large, which is often the case for ANN problems.

To obtain efficient out-of-sample extensions, the authors assume that data are sampled from

separable multidimensional uniform distributions after data are rotated by PCA. Then they

choose from all analytical eigenfunctions learned in each single dimension to obtain ones

with the smallest eigenvalues. The chosen eigenfunctions are thresholded at zero to provide

binary codes of data.
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A major drawback of SH is its strong assumption that data come from a separable mul-

tidimensional uniform distribution. Although this assumption makes it efficient to compute

binary data of new data samples, it is often not true of real data. Therefore, retrieval per-

formance on real data can be poor. Another drawback is a highly dynamic choice of σ which

controls the radius in the RBF kernel. The authors mentioned in their released code that σ

has to change every time the number of bits changes. This requires a lot of additional efforts

to tune parameters and such changes are very expensive when datasets are large. A third

drawback is the relaxation of the problem by dropping the binary constraints. No work has

been done to show that this relaxation results in solutions approximate to the real solutions.

Therefore, whether it will provide good approximate solutions to Equation 2 is unknown.

2.1.3. Anchor Graph Hashing. In order to relax the strong assumption made in SH

that data have a separable multidimensional uniform distribution, Liu et al. [12] proposed

Anchor Graph Hashing (AGH) which can efficiently compute eigenvectors of a Laplacian

matrix and easily generate binary codes for new data samples.

AGH works by first running K-means [22] clustering on a small subset of training data

with a few iterations to quickly obtain a small number of cluster centers called anchors.

Each data sample xi is than represented as a new feature zi using these anchors. Denote

Z ∈ Rn×m as the new data matrix where each row is this new feature of a data sample. n is

the number of data samples and m is the number of anchors. The i-th row and j-th column

of Z is computed by the following equation.

Zij =











exp(−D2(xi,uj)/t)

Ni
∀uj close to xi

0 otherwise
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where uj is the j-th anchor. uj is considered to be close to xi if it is among the top s anchor

points that are closest to xi. D2(xi, uj) denotes the Euclidean distance between xi and uj.

Ni is a normalizer for the i-th row of Z such that the entries in the i-th row sum up to

1. Basically, this equation computes a new representation of each data sample using its

similarity to each of the anchor points. If an anchor uj is far from the data sample xi, the

similarity is 0. Otherwise, the similarity is computed as
exp(−D2(xi,uj)/t)

Ni
.

The purpose of Z is to approximate the adjacency matrix. Let Λ = diag(ZT1n×1) ∈

R
m×m where 1n×1 denotes an n × 1 matrix (vector) of all 1’s. Â = ZΛ−1ZT is an approx-

imation to the true adjacency matrix A [23]. More importantly, Â is a low rank matrix

(maximal rank is m) and each of its columns or rows sum up to 1. As a result, an n×n iden-

tity matrix In×n is its degree matrix. Therefore, the graph Laplacian can be approximated

as L = In×n − Â.

It is easy to prove that if v is an eigenvector of L and λ is the associated eigenvalue,

then v is also an eigenvector of Â with an eigenvalue of 1 − λ. Therefore, to get r graph

Laplacian eigenvectors, one only needs to solve for the eigenvectors of Â corresponding to

r largest eigenvalues (ignoring eigenvalue 1 since it corresponds to zero eigenvalues of L).

Furthermore, the low rank property of Â can be used to speed up the eigenvector computation

of L. Instead of solving eigenvectors of Â which is of size n × n, the authors solve for the

eigenvectors of an m×m matrix M = Λ−1/2ZTZΛ−1/2. Let the result be an m× r matrix V ,

each column of which is a chosen eigenvector. Also, let Σ ∈ R
r×r be a diagonal matrix where

the diagonal entries contain the corresponding eigenvalues. The final spectral embedding

matrix E of L can be computed as

(3) E =
√
nZΛ−1/2V Σ−1/2 = ZW
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where W =
√
nΛ−1/2V Σ−1/2. The final binary code associated with each data sample is

obtained by thresholding E at zero: sign(ZW ). As shown in Equation 3, the process of

computing the graph Laplacian eigenvectors E of L can be seen as first computing a new

representation Z of data samples using anchor points and then projecting the resulting

representation on W .

A very important contribution of this work is that the authors show that for a new data

sample, its binary code can also be computed by first computing its anchor representation

and then projecting it onW followed by thresholding at zero. In other words, the binary code

for new data samples can be computed as sign(ZtW ), where Zt is the anchor representation

of the new data samples. Therefore, the out-of-sample generalization is computed very

efficiently.

Another contribution of this work is that they propose a hierarchical hashing by assigning

2 bits for each eigenvector instead of using one eigenvector for each bit. It is because that not

all the chosen eigenvectors (bits) are equally important: The eigenvectors of L corresponding

to low eigenvalues are more important than others [24]. The authors show how 2 bits can be

associated with each eigenvector to alleviate this bias. The procedure is as follows. The first

bit is simply obtained by thresholding the eigenvector. However, some points close to each

other in the original space can be assigned with different bit values when the they are close

to the thresholding boundary. The second bit is used to mitigate this problem by assigning

these points the same bit values. Specifically, there are two thresholds corresponding to the

second bit. One threshold is for further thresholding positive values computed by the first

bit (before thresholding) and the other is for the negative values. These two thresholds are

still obtained by finding the spectral embedding of the approximate adjacency matrix Â.
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Their experiments on NUS-WIDE and MNIST show that AGH is fast in terms of com-

puting binary codes of test data. It also yields higher Mean Average Precision (MAP, which

will be described later in this thesis) compared to SH, LSH and so on. Moreover, the au-

thors show that AGH is capable of retrieving semantically similar items, which is possibly

an outcome of using their anchor representation.

AGH has three disadvantages. One is that the training time of AGH is long, which can

be a problem when applying this method to large-scale datasets. The second disadvantage

is that how well the anchor graph Â can approximate the true adjacency matrix is unknown.

The authors did not provide any experiments to measure the approximation error. The third

disadvantage is the relaxation that binary constraints are replaced by signed magnitude.

Similar to the issue of SH, although this relaxation makes the problem tractable, there is no

guarantee this relaxation will provide sufficiently good solutions.

2.1.4. Binary Reconstructive Embeddings. Kulis et al. [13] proposed Binary Re-

constructive Embeddings (BRE) to learn binary hash codes for ANN problems. The main

idea of BRE is to find hash functions such that Hamming distances between pairs of sam-

ples are as close to their Euclidean distances as possible. Denote the data samples as

x1, x2, . . . , xn, where n is the total number of data samples. Also denote b hash (binary)

functions as h1, h2, . . . , hb, where b is the number of bits. Note that each hash function hi

produces only one bit. The authors design the hash functions similar to the representation

of the classification boundary in a kernel Support Vector Machine (SVM) [25]. Specifically,

the p-th bit of a data sample x is designed as follows:

(4) hp(x) = sign(
s

∑

q=1

Wpqκ(xpq, x))
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where W is a b × n matrix, κ(∗, ∗) denotes a specific kernel function and xpq(q = 1, . . . , s)

are s data samples corresponding to hp. These s data samples can be related directly to the

support vectors of an SVM. Although the authors do not mention how the samples xpq are

chosen in their paper. In their released MATLAB code, xpq are chosen randomly and they set

s = 50. The binary representation of x is denoted as x̃ = [h1(x), h2(x), . . . , hb(x)]. To achieve

the goal that the Euclidean distances between pairs of data samples are well approximated

by their Hamming distances, the authors propose the following objective function:

(5) argmin
W

∑

(i,j)∈N

(

d(xi, xj)− d̃(xi, xj)
)2

where N is a selection of pairs of points, d(xi, xj) =
1
2
||xi−xj||2 and d̃(xi, xj) =

1
b
||x̃i− x̃j||2.

A detail about N is that, for each of the n training data samples, they choose k other

data samples to pair with it. Therefore the total size of N is nk. All data samples are

normalized to have length 1. It is clear that the goal of Equation 5 is to minimize the mean

approximation error.

The authors then propose a coordinate-descent method to find a locally optimal solution

to Equation 5. In each iteration, their method updates only one entry of W while fixing all

others. In the paper, it is proved at length that updating all hash functions can be computed

in O(nb(logn+ k)) , which is considered reasonable from the authors’ perspective.

The authors compare their method to LSH, SH and so forth on 6 datasets. They compute

the precision of the retrieval results when the Hamming distance is less then or equal to 3.

On four datasets, their approach yields the highest precision scores when varying the number

of bits. On the other two datasets, SH achieves the highest performance and BRE performs

very similarly to SH.
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In my opinion, the most desirable property of BRE is that it can use any kernels to

account for a nonlinear structure of real data. Although in the paper, a linear kernel is

adopted for computational efficiency. A major drawback of BRE is the computation time.

The authors have explicitly provided the time complexity of their training. Although BRE

may be feasible for small datasets (still a long time), it is too expensive to be applied to

large-scale datasets. Besides the need for long training times, the time used for computing

query data can also be inefficient since it involves kernel computation (an issue similar to

kernel SVM). Another disadvantage is that the data samples used in kernel computation (i.e.,

xpq) are chosen randomly. There should be a more principled way to select these points, e.g.,

K-means.

2.2. Quantization Based Binary Code Learning Algorithms

In this section, multiple representative quantization based methods for binary code learn-

ing are reviewed in detail. The goal of quantization based methods is to learn binary codes

such that the learned binary codes can approximate data samples well. A key difference

between these methods and similarity based methods is that they focus on individual data

samples rather than pairs of data samples. If the number of data samples is denoted as n,

they only need to optimize over O(n) data samples rather than O(n2) pairs. Therefore, these

methods are generally more efficient. However, since they are focused on approximating each

data sample, they are not as flexible when considering alternative distance metrics.

2.2.1. K-d Tree. K-d tree [8] is a classical and very well known method for nearest

neighbor search. A k-d tree can be seen as a quantization based method. Its basic idea is

to partition the space in a hierarchy way and the location of a query in the space can be
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found quickly by comparing it to the dividing point at each level. The partition of the space

is stored in a tree-based structure.

For k-dimensional data, the simplest construction of a k-d tree works as follows.

(1) Initialization: Set i = 1 and the current partition to the whole dataset.

(2) Select a data sample whose (i mod k)-th axis is the median of all data samples’

(i mod k)-th axis in the current partition. This naturally further partitions the

data samples in the current partition into 2 balanced parts.

(3) Set i = i+ 1, either go back to the Step 2 or return when certain criterion is met.

The term (i mod k) means that there is a cyclic order of all axis’s used for comparison and

one axis can also be used multiple times. For example, if the data are 3D with axis X,

Y and Z, then the order can be X, Y, Z,X, Y, Z,X, . . . . It should be noted that it is not

required to choose the median as a dividing point. Random dividing points can be used

if computation complexity is a major concern. However, this can lead to unbalanced trees

and can sometimes make search very inefficient. Picking the median in each partition yields

balanced trees, but the time complexity of computing the median is linear in terms of the

number of data samples. To circumvent this heavy computation, especially when the number

of data samples is large, usually a random subsample of data samples are selected and their

median is computed. This yields good balanced trees in practice. The leaves of a k-d tree

are called buckets.

For nearest neighbor search, it is possible that if a query is close to the partitioning

boundary, its nearest neighbors may lie on the other side of the boundary. These boundaries

can be found by looking for boundaries that intersect a hypersphere centered at the query

with a small radius. For each intersection (corresponding to a node in a k-d tree), a new
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search has to be performed to check if nearest neighbors exist. If a lot of such intersecting

boundaries exist, the search will be expensive.

Although the learning process is simple, the application of k-d tree is quite limited. The

time complexity of constructing a tree isO(nlogn), meaning that it is not feasible for building

k-d trees for large-scale datasets. More importantly, searching a k-d tree will degrade to a

linear exhaustive search when the dimension of data is high because there exist a large

number of those aforementioned intersecting boundaries that require a new search.

2.2.2. PCA Hashing. Wang et al. [14] proposed PCA Hashing (PCAH) for ANN search

on semi-supervised data. Although their method assumes data are semi-supervised (partly

labeled), it is more widely applied to unsupervised data. I will first present a detailed

description of how PCAH is conducted on semi-supervised data and then show how it can

be easily fit to unsupervised data.

The hash functions used in their work are linear functions. Specifically, hk(x) = sign(wT
k x−

bk) where hk(x) denotes the hash function of k-th bit for a data sample x and bk =

1
n

∑n
i=1 w

T
k xi, where n is the number of data samples. For zero-centered data, bk = 0 and

therefore hk(x) = sign(wT
k x). The labeled data are presented, using pair information, in a

matrix S of size l × l

Sij =



























1 (xi, xj) ∈ M

−1 (xi, xj) ∈ C

0 otherwise

where M is the set of pairs of similar data samples, C is the set of pairs of dissimilar data

samples and l is the number of data samples associated with at least one of the similar or

dissimilar pairs. Denote these data samples as Xl and the set of hash functions as W . Each

column of Xl is a data sample and each row of W is the coefficients of a hash function (i.e.,

22



w). The objective function J(W ) aims at assigning similar data samples similar binary codes

and vice versa:

max J(W ) =
∑

k

[
∑

(xi,xj)∈M

hk(xi)hk(xj)−
∑

(xi,xj)∈C

hk(xi)hk(xj)]

=
1

2
tr[sign(W TXl)Ssign(W

TXl)
T ](6)

To obtain an easier optimization function, the authors further relax J(W ) by dropping the

sign() function:

(7) J(W ) =
1

2
tr(W TXlSX

T
l W )

Solving J(W ) only addresses the labeled data. The vast majority of samples are neither

in M nor in C. The motivation of PCAH to handle these unlabeled data samples is to

maximize the information (entropy) carried by each bit. In other words, each hash function

should not only assign the same bit to similar data samples and different bits to dissimilar

data samples, but also partition the whole dataset evenly to maximize the information of

each bit:

(8) max entropy(hk(x))

It is easy to show that Equation 8 is the same as maximizing the variance of each bit:

(9) max entropy(hk(x)) ⇔ max var(hk(x))
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The maximal value is reached when the partition is balanced. Again, the sign() function is

dropped directly so that Equation 9 becomes

(10) max var(wT
k x)

This term, written in a matrix form, is added to J(W ) as a regularizer:

(11) J(W ) =
1

2
tr(W TXlSX

T
l W ) +

λ

2
tr(W TXXTW )

where X denotes the whole dataset (Each column is a data sample.).

Denoting M = XlSX
T
l + λXXT , Equation 11 can be rewritten in a cleaner form:

(12) argmax
W

tr(W TMW )

Also, to obtain approximately independent hash bits, each hash function is expected to be

orthogonal to each other, yielding W TW = I. Equation 12 now becomes a standard PCA

problem whose goal is to find linear projections that maximize data variance. The covariance

matrix in this PCA problem is M . The bits are obtained by taking the sign of the PCA

projected data.

It is easy to notice that projections found by PCA are not equally important in terms

of maximizing Equation 12. The projections with larger eigenvalues are more important

than the ones with smaller eigenvalues. This will lead to bits with different qualities. In

other words, some bits are more important in deciding whether two data samples are close

than other bits. To balance the importance of each bit, the authors propose to solve a
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nonorthogonal relaxation of Equation 12:

(13) argmax
W

tr(W TMW )− ρ

2
||W TW − I||2F

Equation 12 only requires the projections to be approximately orthogonal to each other.

Therefore, bits with balanced importance can be obtained. When ρ is chosen properly,

Equation 13 can be solved by setting its derivative to zero.

The solution described so far is for semi-supervised data. If data are unsupervised,

the same procedure can still be used to obtain hash functions. The only difference is that

M = XXT instead of XlSX
T
l + λXXT . In other words, simply setting S to zero will yield

the solution for unsupervised data.

Experiments are conducted on MNIST and GIST1M [7] datasets. The authors show

that the orthogonal version of the solution yields inferior retrieval performance while the

nonorthogonal version performs the best compared to other algorithms. In more detail, high

precision is observed when looking at the top K (e.g., K = 500) retrieved neighbors or

looking at binary codes within a small, fixed Hamming distance.

Although the proposed method is relatively efficient and yields better performance than

some other approaches. It still has a few drawbacks. The first one is that there is a trade-off

between orthogonality and balance of bits due to the nonorthogonality constraint. That is

to say, although the bits are relatively balanced, the correlation between them may be high.

In other words, there exists redundancy among the bits. The second drawback is the format

of the linear hash functions. The authors fix the bias term to zero when the data is zero

centered, which means the hash functions will always go through the origin. This is not an

optimal choice for linear hash functions. Moreover, if data have a low-dimensional nonlinear

structure, these linear functions do not have the ability to take advantage of it.
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2.2.3. Iterative Quantization and a Kernelized Version. Iterative Quantiza-

tion (ITQ) is an unsupervised hashing approach proposed recently by Gong et al. [15]. It is

motivated by the orthogonal version of PCA Hashing (PCAH) proposed by Wang et al [14].

Before I talk about ITQ, let me first describe how orthogonal PCAH works.

The orthogonal version of PCAH projects data to a b-dimensional linear subspace (b:

the number of bits in a binary code) using PCA and computes their binary codes using the

sign of the projected data. In more detail, represent training data as X ∈ R
n×d, where

n is the number of training samples and d is the number of dimensions of a data sample.

PCA is applied to training data to obtain b principal components corresponding to the b

largest eigen-values. They form a PCA projection matrix P ∈ R
d×b, where each column of

P is a principal component. The training data are projected to this b-dimensional linear

subspace: V = XP , where V is the projected data. The binary codes B are simply obtained

by B = sign(V ).

A novel way to look at PCAH is through the perspective of quantization. Quantiza-

tion is very help when one wants to replace/approximate many data samples with only a

small number of data points. A good example of quantization is to use an integer to re-

place/approximate a floating number by rounding it. In the case of PCAH, by computing

the binary codes using B = sign(V ), each data sample is replaced/approximated by its sign.

For example, a 2D data sample [0.8,−0.9] is approximated by [1,−1]. The code [1,−1] is

also called the quantizer of [0.8,−0.9]. It is easy to see that all possible b-bit binary codes

form the vertices of a b-dimensional hyper-cube. For example, in 2D, there are all four

possible 2-bit binary codes: [−1,−1], [1,−1], [−1, 1] and [1, 1], which are four vertices of a

2D square. If B is close to V , then the Hamming distance of data samples represented in

B is generally close to the Euclidean distance of data samples represented in V (as well as
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X since V preserves most of the data variances in X), which is the goal of unsupervised

hashing. Therefore, now the problem can be cast as finding a b-dimensional hyper-cube such

that the approximation error is minimized when each data samples is replaced/quantized by

the closest vertex on that hyper-cube.

Figure 2.1 further illustrates quantization in a 2D space. The left plot of Figure 2.1 shows

2D synthetic data and their binary codes (red dots). The data are already aligned/rotated

by PCA such that the first dimension is also the principal component corresponding to the

largest eigen value, etc. data samples in each quadrant is quantized by the red dot in the

same quadrant. Note that the 2D hyper-cube (square) is properly scaled to minimize the

quantization/approximation error, though the scale is actually not relevant in retrieval since

it does not change the rank of the distances between data samples. It can be seen that data

samples very close to the boundary (x axis) get assigned to different bits. Therefore, the

mean quantization error will be large for this example.
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Figure 2.1. A comparison of PCA Hashing and ITQ
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The key idea behind ITQ is to rotate the reduced data V such that the approximation

error is minimized when each data sample is replaced by the closest vertex on that hyper-

cube. As shown in the right plot of Figure 2.1, the same data are rotated and then converted

to binary codes by taking the sign at each axis. The binary codes (red dots, also scaled

properly) now better approximate data samples.

The procedure of ITQ for finding such binary codes is as follows. The first few steps are

the same as PCAH, where reduced data V are obtained by PCA projection: V = XP . To

find a rotation that yields binary codes with better quantization, the objective function is

written as follows:

(14) argmin
B,R

Q(B,R) = ||B − V R||2F ,

where R ∈ R
b×b is a rotation matrix and ||M ||F denotes the Frobenius norm of matrix M .

A greedy method is proposed to find B and V by updating one with the other one

fixed. When R is fixed, B is computed as B = sign(V R) so that each data sample is

quantized as its closest vertex on the hyper-cube. When B is fixed, finding R is equal to an

orthogonal Procrustes problem [26]. R is computed by first taking the SVD of BTV such

that BTV = S1ΣS
T
2 and setting R as R = S1S

T
2 .

A great advantage of ITQ is computational efficiency. Since PCA is computed by taking

the singular value decomposition (SVD) of the d × d data covariance matrix, it can be

very quickly computed if the dimensionality of data is not too large, even for a very large

number of data samples. Moreover, ITQ yields impressive retrieval performance compared

to multiple state-of-the-art methods such as Spectral Hashing [11] and PCA Hashing [14] on

CIFAR dataset [27] and a dataset containing 580,000 tiny images [28].
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Although this approach yields good performance, it assumes that the data live in a single

linear subspace. To deal with real-world scenarios where data exhibit a nonlinear structure,

Gong et al. [5] subsequently proposed a kernel version of ITQ (KITQ) where data samples are

transformed by Random Fourier Features (RFF) so that their dot product approximates an

RBF kernel. Unfortunately, RFF requires many dimensions for a reasonable approximation,

which increases the computational burden. More importantly, the performance gain of KITQ

over ITQ is very limited. In many cases, KITQ performs even worse than standard ITQ.

2.2.4. Angular Quantization-based Binary Codes. In many applications, data

samples are often represented as vectors of unit length whose l2 norm is 1. In other words,

they live on a unit hypersphere. For example, each entry of a vector representing a document

can be the frequency of a particular word and this vector is often normalized to have length

one. The similarity between pairs of such vectors is defined as their inner product, or

equivalently, the cosine of the angle between them. Note that Euclidean distances and inner

products are interchangeable for vectors of unit length. Traditional hashing methods can

readily be applied to such data. However, they generally cannot take advantage of the fact

that data reside on a unit hypersphere. Gong et al. [16] propose Angular Quantization-based

Binary Codes (AQBC) to conduct fast search in unit-length data.

The basic idea of AQBC is to approximate each point on the unit sphere using a vertex

of a unit hypercube such that the angle between the point and its approximation is minimal.

Figure 2.2 shows this basic idea in a 2D case. AQBC deals with only data with all positive

entries. The yellow curve is the positive orthant of the 2D unit (hyper-)sphere where data

reside. The 2D unit (hyper-)cube is also shown where the coordinate of each of its vertices

corresponds to a binary code naturally. The binary codes are denoted using red dots. Note
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that since “00” has zero length, it is not used for approximation. A data point x is ap-

proximated using the binary code “11” since their angle is the smallest (the angle between

the two dash lines). This is also equivalent to projecting each binary code to the 2D unit

(hyper-)sphere and finding the projected code with the smallest Euclidean distance. In this

case, the projections of “01” and “10” stay the same since they are already on the yellow

curve and the projection of “11” is denoted as the green dot x′. In other words, every point

on this yellow curve is quantized by three points on the same curve: “01”, x′, and “10”.

Figure 2.2. Basic idea of AQBC

Assuming that b is an arbitrary binary vector whose entries are either 0 or 1, then

||b||1 = m and b′ is another arbitrary binary vector with a Hamming distance of r from b. The

authors show that the cosine of the angles between b and b′ are bounded by
[√

m−r
m

,
√

m
m+r

]

.

Note that when r is fixed and m becomes large, the range of this bound,
√

m
m+r

−
√

m−r
m

,

is smaller. This means that if b has a lot of 1′s, b and its Hamming neighbors will be more

densely distributed on the unit hypersphere. The reason is as follows. The number of binary
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codes with a Hamming distance of r from b is fixed. When m is large, the range of the cosine

of the angles between these binary codes and b becomes smaller. Due to a smaller range but

a fixed number of binary codes in this range, the distribution of these codes is denser. Given

this observation, the authors aim to assign dense regions on the hypersphere using binary

codes with large l1 value (large m). The idea is to rotate data such that dense regions will

be close to binary codes with large m.

The objective function is:

(15) Q(B,R) = argmax
B,R

n
∑

i=1

bTi
||bi||2

RTxi

||RTxi||2
s.t. RTR = Ic×c

where bi ∈ {0, 1}c is the binary code of i-th data sample xi with d dimensions, c is the

number of bits and R ∈ d × c is a matrix that performs dimension reduction and rotation

at the same time. Ic×c is a c× c identity matrix. Equation 15 is quite straightforward. It

aims to maximize the sum of the cosine of the angle between every rotated data point and

its binary code.

To make Equation 15 easier to solve, the author remove the normalization of RTxi and

solve the following equation instead:

(16) Q(B,R) = argmax
B,R

n
∑

i=1

bTi
||bi||2

RTxi s.t. RTR = Ic×c

Similar to ITQ, a greedy method alternating between two steps is proposed to solve Equa-

tion 16. In one step, R is fixed and b′is are found one by one independently. In the other

step, b′is are fixed and R is solved via polar decomposition [29].

Compared to traditional hashing methods which do not assume unit-length data, AQBC

performs better on multiple datasets. Note that the similarity between a query and a training
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sample is measured as the cosine of the angle between their binary codes, which is less

computationally efficient. It is one of a few methods that explicitly consider the case where

data live on a unit hypersphere. However, there exist significant drawbacks of this method.

One obvious drawback is that AQBC can only handle data samples represented as non-

negative vectors since the binary codes all reside in one quadrant. There exist other feature

extraction methods (such as PCA with normalization) where the features are unit-length but

they contain negative values. The second is the relaxation from Equation 15 to Equation 16.

This relaxation is sort of abrupt and there are many cases where the approximate solution

can be far from the real one. No evaluation is conducted to show how this relaxation will

affect the search performance.

2.2.5. K-means Hashing. The effectiveness of quantization based hashing has been

demonstrated by ITQ. Since it is well-known that K-means can do data quantization very

well, it is promising that a binary code learning method can integrate K-means into the

learning process. He et al. propose K-means Hashing (KMH) [17] to learn binary codes

of data via a K-means like approach. A very straightforward method is to first cluster

training samples using K-means and then assign binary codes to each cluster center such that

the Euclidean distance between any two centers is approximated by the Hamming distance

between their binary codes. However, finding a good assignment of the binary codes to the

cluster centers is very expensive.

Moreover, the straightforward method mentioned above has two types of approximation

errors. One is from the K-means clustering and the other is from binary code assignment to

cluster centers. He et al. propose to combine the binary code assignment with the K-means

clustering as a single method with a single approximation error.
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Denote by x a data sample, ci the i-th cluster center and id(x) the index of the cluster x

belongs to. Note that the index i can be represented in a binary form. The total number of

cluster centers is K. Like K-means, the learning process also involves two alternating steps.

These two steps are:

• Fix ci and update id(x).

• Fix id(x) and update ci.

The first step is the same as K-means: Each data sample is assigned to the closest cluster

center. The second step considers two aspects. One is the quantization error which is the

same in K-means. The other aspect is the approximation error of the Euclidean distance

between any two centers and the Hamming distance between their indices. The optimization

function is as follows:

(17) ci = argmin
ci

(
∑

x;id(x)=i

||x− ci||2 + λ
∑

j;j 6=i

ninj

n2
(d(ci, cj)− dh(i, j))

2)

where ni, nj and n are the number of data samples in the i-th cluster, j-th cluster and the

whole dataset. d(ci, cj) denotes the Euclidean distance between ci and cj and dh(i, j) denotes

the square root of the Hamming distance (properly scaled) between their indices. This step

is repeated K times in order to update all centers. It should be noted that when updating

one center ci, other centers are fixed.

There are actually two greedy methods in the proposed approach. One is apparent, since

the two alternating steps are greedy. The other is a little subtle: In the second step, one

center ci is updated while other centers are fixed while it would be better to update all the

centers together. These two greedy methods may make the quality of the learned bits low.
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There is a very important practical issue with the proposed method. Since the number of

clusters K is equal to 2b, where b is the number of bits, the learning can be prohibitive if b is

large. As a result, the authors propose a method similar to Product Quantization [7] which

represents each data sample x as a concatenation of M subvectors: x = [x̂1, x̂2, . . . , x̂M ]. The

i-th subvector of all data samples form an independent subspace. KMH is conducted in each

subspace and the binary code of a data sample x is obtained by concatenating the binary

code of each of its subvectors. Let c = b/M . If 2c cluster centers are found in each subspace,

then the total number of different binary codes of a whole data sample is 2Mc = 2b. This

equation means that a data sample can still have a b bit code. However, since there are 2c

quantizers in each of the M subspaces, the total number of quantizers is M2c. Clearly, M2c

is much smaller than 2b and subdividing the problem in this way extends the size range of

the solvable problems.

Since the quantizers are found in each subspace independently, it would be desirable

to require that each subspace is independent. Also, since binary codes in each subspace

are concatenated to form a whole binary code, each subspace should have approximately

the same variance so that the learned binary codes are directly comparable and can be

directly concatenated. In other words, when the binary codes are scaled to approximate

the Euclidean distance in each subspace, the scale should be similar for each subspace. So

the authors conduct PCA rotation (without dimension reduction) to obtain uncorrelated

dimensions. Note that any rotation, translation or scale does not affect the learning of

binary codes. Moreover, they reorder the principal components such that the eigenvalues

associated with each subspace have a similar sum, which means that each subspace has a

similar variance.
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He et al. compare KMH with multiple state-of-the-art methods such as ITQ and SH on

SIFT1M dataset and also a GIST dataset they built on their own. KMH performs the best

on both datasets. However, they did not conduct any experiment on the standard GIST

1M dataset [7]. This thesis will show later that KMH is inferior compared to ITQ on the

standard GIST 1M dataset.

Learning binary codes via a K-means like method has the ability to fully explore how

quantization can be beneficial to binary code learning. However, as mentioned before, the

learning process may be too “greedy” to obtain good local optima. Also, another significant

disadvantage of KMH is that it is very computationally expensive when the number of data

samples is large. The authors advocate subsampling the data before running the algorithm,

but the performance can be worse if the subsampling cannot preserve the characteristics of

the data.

2.2.6. Ranking Binary Codes using Weighted Hamming Distance. When we

retrieve nearest neighbors of a given query, we will compute the binary code of the query

and then look up the hash table using the binary code as our key. The items stored in that

key are the retrieved nearest neighbors. However, this is an ideal case because the binary

code may not exist in the hash table. Often, we need to explore similar keys, i.e., keys with a

small Hamming distance to the key of the query. In other words, we need to do a Hamming

ball exploration centered at the key of the query. ANN search of a query is still fast using

this Hamming ball search with an increasing radius. However, there can be a number of

binary codes with the same Hamming radius to the query. Assuming the number of bits is

b, there exist
(

b
d

)

binary codes with a Hamming distance of d to the query. This number

can be very large even when d is small. For example, for a query with a 32-bit code, there

are
(

32
3

)

= 4960 binary codes with a Hamming distance of 3 to the query. Zhang et al. [18]
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propose to associate each bit with a weight when computing Hamming distances to further

distinguish the binary codes with the same Hamming distance to a query. Note that they

are not designing new hashing algorithms but computing weights given an existing hashing

algorithm.

Denoting a binary hash function of the k-th bit of a data sample x as hk(x), hk(x) =

sign(fk(x)−Tk) where Tk is a threshold giving the binary value. As we have seen so far, this

representation is very common for many hashing methods: computing a real value and then

thresholding it to get a bit value. Also, if a data sample p is one of the nearest neighbors of

another data sample q, they denote it as p ∈ N(q). There are two criteria considered in the

designing of the weight of each bit, listed in the following.

• Data sensitivity: Given a query q, the hash functions are not equally discrim-

inative. If the k-th bit is discriminative, then sk(p, q) = fk(p) − fk(q) would be

close to zero for ∀p ∈ N(q), and vice versa. (The authors use fk(p)− fk(q) instead

of hk(p) − hk(q) since useful information can be lost in the binarized form.) Data

sensitivity means the weights should have a positive correlation with the discrimi-

nativity of hash functions. As a result, the weight of the k-th bit, denoted as wk, is

a function of the distribution of sk.

• Query sensitivity: For a query q, let us assume that the k-th bit is highly dis-

criminative (small sk). By data sensitivity, a large weight wk should be assigned to

it. However, if q lies close to the decision boundary corresponding to this bit, it is

highly possible that a lot of its neighbors will have a different binary value in terms

of this bit. Therefore, assigning a large wk is not appropriate. This means that the

value of wk should also depend upon the query q.
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Given a query q and a data sample whose binary code is g, denote their desired weighted

Hamming distance as Dw
H(H(q), g) where H(q) is the binary code of q. Dw

H(H(q), g) encodes

similarity between q and this data sample g. In their paper, Zhang et al. relate Dw
H(H(q), g)

to the probability of H(q + n) = g, where n is a random noise. However, since in their

experiment, q+ n are chosen as all neighbors of q, n is not completely random. Therefore, I

relate Dw
H(H(q), g) to the probability that given H(q), how likely will its neighbor’s binary

code be g. I find this interpretation more helpful.

Since Dw
H(H(q), g) should be a non-increasing function of Pr(g|H(q)), the authors select

the information entropy function and compute Dw
H(H(q), g) as:

(18) Dw
H(H(q), g) = −logPr(g|H(q))

To compute Pr(g|H(q)), they assume that each hash bit is independent so that Pr(g|H(q))

can be computed as a multiplication of the probabilities of each bit.

(19) Pr(g|H(q)) = Πb
k=1Pr(gk|hk(q))

Pr(gk|hk(q)) can be further divided into two cases: gk = hk(q) and gk 6= hk(q). Therefore,

Pr(gk|hk(q)) can be written as Pr(∆hk(q) = 0) when gk = hk(q) and Pr(∆hk(q) 6= 0) when

gk 6= hk(q), where ∆hk(q) denotes the difference between gk and hk(q) .

Simply dividing Pr(g|H(q)) by a constant term results in the following:

(20) Dw
H(H(q), g) =

∑

k∈S

λk(q)
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where S is the set of hash bits in g that are different compared to H(q) and

(21) λk(q) = log
1− Pr(∆hk(q) 6= 0)

Pr(∆hk(q) 6= 0)

Now the only thing left is to compute Pr(∆hk(q) 6= 0), which is the probability of q’s

neighbor having a binary value different from q for the k-th bit. Figure 2.3 shows a clear

illustration of how to compute it. The real values of q and its neighbors are shown on the

horizontal line. The vertical line is the threshold used to binarize the data. The red dot

is the query q and all the blue dots are its neighbors. Other data samples which are not

the neighbors of q are not shown in the figure. The authors assume that the distribution of

neighbors follows a Gaussian model. Pr(∆hk(q) 6= 0) is computed as the number of data

samples on the left side of the threshold divided by the number of all the neighbors of q.

These two numbers are computed as the area under the probability density function (PDF)

curve of the distribution of q’s neighbors. Pr(∆hk(q) 6= 0) is closely related to the two types

of sensitively mentioned above since it is based upon the values of the blue and red dots

(data sensitivity) and the threshold (query sensitivity).

The final weight for the k-th bit given a query q is wk(q) = λk(q). For comparison, the

authors also provide a simple but straightforward weighting scheme: wk(q) = |Tk−f(q)/σk|,

where σk is the standard deviation of the aforementioned Gaussian model. This scheme

means that if q is far from the threshold and if its neighbors spread tightly, the weight would

be large.

Zhang et al.’s approach recomputes a set of weights each time a different query is given.

As a result, the Hamming ball search can be adapted to the given query. The weights reorder

the Hamming ball search. This reordering is not restricted only at the level of binary codes

with the same Hamming distance to the query but among all binary codes. For example, a
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binary code with (unweighted) a Hamming diatance of 2 may be searched earlier than some

binary codes with a Hamming distance of 1 to the query.

Their experimental results on multiple datasets show that the search performance of

PCAH, LSH, ITQ can be improved by this weighting scheme. However, the performance of

the proposed method is not significantly better than the straightforward weighting scheme

mentioned above (i.e., wk(q) = |Tk − f(q)/σk|). It seems that it may not be necessary to go

through such complicated processes to find a good weight for a bit.

There are two other drawbacks of this method. One is that the weights are only computed

based on the distribution of the neighbors of a query. This means that the weights are useful

when comparing the distance between a query and a gallery sample close to it. If the gallery

sample is far away from the query, the weights are not informative. The second drawback is

the computation cost. Since a set of weights have to be computed each time a new query is

given, the procedure can be slow when the number of queries is large.

Figure 2.3. An illustration of computing Pr(∆hk(q) 6= 0) given q

2.2.7. Sparse Embedding and Least Variance Encoding. Zhu and Zhang pro-

posed Sparse Embedding and Least Variance Encoding (SELVE) [19] to learn binary codes
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for large-scale datasets. The idea is to encode each transformed data sample using a dictio-

nary matrix, where each data sample can be approximated using a linear combination of the

columns in the dictionary. Each data sample is then represented as the coefficient vector.

The coefficient vectors are constrained to have low variance such that similar data samples

will have similar coefficient vectors. The weight vector is then thresholded using the mean

of all weight vectors to get a binary code.

SELVE first conducts clustering on the whole dataset and then represents each data

sample based on its distance to the few closest centers. This is the same as how Anchor

Graph Hashing (AGH) generates its Z matrix, which is described in Section 2.1.3. One minor

difference is that SELVE adopts a clustering method called linear spectral clustering [30]

while AGH uses K-means. Although whether this difference will influence the performance

is not discussed in the paper, I suspect that these two methods will perform equally well.

Denote the represented data samples as P ∈ Rk×n (P = ZT if the notation from AGH is

used), where k is the number of cluster centers and n is the number of data samples. Each

column in P is a data sample. The authors then propose to represent data samples using a

dictionary matrix Φ ∈ Rk×c where c is the number of dictionary atoms (Each column is called

an atom). Each atom/column in Φ has unit length. Every data sample is approximated as

a linear combination of the atoms in Φ. To write the dictionary representation in a matrix

form, we have

(22) argmin
Φ,Λ

||P − ΦΛ||2F

where Λ ∈ Rc×n contains the linear weights (also called coefficients) for each data sample in

P . The i-th column in Λ, denoted as αi, contains the coefficients corresponding to the i-th

data sample.
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Moreover, the authors aim to learn coefficients with small variance such that similar data

samples will have similar coefficients. Therefore, they add this constraint in the dictionary

learning process and propose the following optimization function:

(23) argmin
Φ,Λ

||P − ΦΛ||2F + λ

n
∑

i=1

||αi − µ||2

where µ = 1
n

∑n
i=1 αi. It is easy to see that

∑n
i=1 ||αi − µ||2 represents the variance of the

coefficients.

A greedy method that alternates between two steps is presented in the paper to solve

Equation 23. In one step, Φ is updated while Λ is fixed. In the other step, Λ is updated

while Φ is fixed. Multiple iterations are needed so that the solutions converge. µ is also used

as a threshold of αi to obtain the binary code of the i-th data sample: sign(αi − µ).

The authors also propose an enhanced version of their method: Between the step of

clustering and obtaining P , they add one more step which finds a linear orthogonal projection

W that“tightens” each cluster. In other words, after projection on W , data samples lying

in the same cluster are closer to the center. As a result, P will be more informative, since

each data sample is related to fewer cluster centers. Let X be the original data where each

column is a data sample. Denote Γj = Xj − Mj, where each column of Xj is an original

data sample in the j-th cluster, each column of Mj is the j-th cluster center (i.e., Mj simply

contains multiple copies of a single cluster center). Each cluster is “tightened” by minimizing

∑k
j=1 ||WΓj||2F . Also, it should be noted that the orthogonal projection W should minimally

distort the locality structure of the data. Otherwise, true nearest neighbors may become

far apart. Therefore, W should be able to approximately reconstruct X, which leads to

minimizing ||X − W TWX||2F . Here, WX is the projected values of X and W TWX is the

back projection of the projected values which is a reconstruction of X. The formal objective
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function is:

(24) argmin
W

||X −W TWX||2F + λ

k
∑

j=1

||WΓj||2F , s.t. WW T = I

This equation is solved using SVD.

Compared to other hashing methods such as SH, ITQ and AGH on four datasets, en-

hanced SELVE yields higher precision at the same recall and also higher precision if only

binary codes within a Hamming distance of 2 are retrieved. Moreover, the enhanced version

of SELVE performs consistently better than the regular version. It indicates that finding an

orthogonal linear projection that “tightens” data helps improve retrieval performance.

Although their experiments show good performance, there is a major disadvantage of

this approach. It is true that minimizing variance of the coefficients results in similar data

samples having a higher probability of being assigned the same binary code. However, since

the variance is minimized over the whole dataset, dissimilar data samples may also have

similar binary codes. Therefore, it is uncertain that the learned binary codes of dissimilar

data samples will have a larger Hamming distance than similar data samples. One possible

answer is that: In their enhanced version, they propose to find a linear projection to “tighten”

each cluster, which may somehow alleviate the aforementioned disadvantage.

2.2.8. Hashing with Binary Autoencoders. Carreira-Perpinan and Ramin Raziper-

chikolaei [31] propose to learn binary codes using binary auto-encoders. The basic concept

of auto-encoders is to learn both a encoder and a decoder given data samples, where the en-

coder maps original data samples to a lower dimensional space and the decoder tries to learn

a mapping that can reconstruct the original data samples from that space. Auto-encoders

can be useful in applications such as dimensional reduction, feature extraction, etc..
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In the case of learning binary codes, Carreira-Perpinan and Ramin Raziperchikolaei pro-

pose to learn a binary encoder that maps each original data sample to a vector of binary

bits and a decoder that reconstructs data using the binary vectors. More specifically, the

optimization function adopted in their paper is as follows:

(25) EQ(h, f, Z;µ) =
N
∑

n=1

(||xn − f(zn)||2 + µ||zn − h(xn)||2)

where N is the number of data samples, xn denotes the n-th data sample, zn ∈ {0, 1}b (b

being the number of bits) is the desired output of h(xn), h() is the encoder function and f()

is the decoder function.

To solve Equation 25, the authors iteratively alternate between two steps. One steps is

solving Z when fixing h and f . The other is solving h and f when fixing Z. Moreover,

they gradually increase the value of µ so that zn will be equal to h(xn) in the end. It is

worth mentioning that solving Z when f and h are fixed is NP-complete. For very small

code lengths, they use enumeration to find the global optima. For large code lengths, they

use alternating optimization and warm-start tricks to achieve a good solution. They apply

multiple tricks to accelerate their computation such as space pruning, parallel programming

and so on.

A merit of this paper is that, different from some other methods that transform data and

then simply binarize/threshold the output, their method well respects the binary constraints

of the problem when trying to learn auto-encoders. In other words, they take a lot of efforts

in searching the binary space for good binary codes.

There exist some drawbacks of this method. First of all, a lot of compromises and

relaxation have been made to make the optimization function solvable and computationally

feasible. There is little evidence in the paper to demonstrate that the found auto-encoders
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are close to optimal. Second, although all kinds of acceleration are conducted, the method

still can only handle a very small number of bits in the binary codes (up to 32 bits in

the paper). Third, the improvement of the performance compared to other state-of-the-art

algorithms is not very significant.

2.3. Conclusion

This section reviewed a number of important and representative binary code learning

approaches for approximate nearest neighbor search in large-scale datasets. They are cate-

gorized in two major groups. One is similarity based methods and the other is quantization

based methods. Similarity based methods are generally computationally expensive. If the

number of data samples is large, the size of the similarity matrix, which is the square of the

number of data samples, can be extremely large. Approximation is often needed to obtain a

similarity matrix (e.g., subsampling, low-rank approximation). Despite these disadvantages,

similarity based methods can be more versatile than quantization based methods since the

definition of similarity can be specialized to better suit specific problems. For example, in

stead of using (negative) Euclidean distance to indicate similarity, an RBF function can

be used. Also, if the similarity matrix is defined by supervised information, many of these

methods can be easily adapted to supervised data.

Quantization based methods are more efficient. They aim at minimizing the approxi-

mation/quantization error of data samples using binary codes. They are suitable for unsu-

pervised data where the groundtruth similarity is defined by an unsupervised metric such

as Euclidean distance or inner product since if each data sample is well approximated, dis-

tance between pairs of them is also well approximated in general. Experimental results have

shown that they can yield better retrieval performance compared to many similarity based
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methods. A disadvantage of quantization based methods is that they are harder to employ

in situations where standard measures of distance do not reflect well the goals of a specific

task.
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CHAPTER 3

The Proposed Approach: Unit Query and Location

Sensitive Hashing (UnitQLSH)

This section describes in detail my proposed approach. I will first describe a method

called Local Quantization Hashing (LQH) which extends ITQ to nonlinear data by local

neighborhood approximation. LQH is also invented by me and my colleagues. It performs

much better than ITQ on two large-scale, real datasets. Disadvantages of LQH will also

be presented. Solving these disadvantages leads to the invention of the primary algorithm

presented in this thesis, namely Unit Query and Location Sensitive Hashing (UnitQLSH).

Figure 3.1 shows the relationship between ITQ, LQH and UnitQLSH. The orange rec-

tangle is the new element added to them. LQH is proposed based on integrating ITQ with

nonlinear structure approximation via local neighborhoods. UnitQLSH is proposed based

on adding query sensitivity to LQH and also constraining the binary quantizers to be unit-

length. Each element solves significant disadvantages of the preceding algorithms.

Figure 3.1. Relations between ITQ, LQH and UnitQLSH
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3.1. Local Quantization Hashing

Despite the simplicity and impressive performance of ITQ, its hashing functions are

linear functions. Therefore, if data live in a nonlinear subspace, ITQ will not be able to

take advantage of this property. In fact, ITQ implicitly assumes that all the data samples

live in a single linear space because it performs PCA on them as a first step. This is a

weak assumption since it is common for real-world data to live in nonlinear subspaces that

occupy only a fraction of the full feature space. Exploring these low-dimensional nonlinear

subspaces can greatly benefit the learning of compact binary codes. As a result, multiple

approaches including Kernelized Locality Sensitive Hashing (KLSH) [6], Kernelized Iterative

Quantization (KITQ) [5] and Spectral Hashing (SH) [11] have been proposed to handle the

nonlinear structure of data. Most of these approaches apply kernels such as Radial Basis

Functions (RBFs) to model the similarity of pairs of data in nonlinear subspaces.

Unfortunately, choosing a good kernel function and the right kernel function parameters

for a specific dataset is difficult. Some methods even require a different parameter set for

a different number of bits, making learning more complicated. Also, there can be cases

where the structure of the data is too complicated to be approximated by any known kernel

function. Another disadvantage of using kernel to handle nonlinearity is that a kernel matrix

is often involved in the computation, which is an n × n matrix, where n is the number of

data samples. The resulting additional computation can be very expensive for large-scale

datasets.

I describe in detail here a method proposed by ourselves, called Local Quantization

Hashing (LQH). Instead of using kernels, it nicely tackles the nonlinear structure of data by

approximating it via multiple local linear neighborhoods. Section 3.1.1 presents an introduc-

tion of LQH. Section 3.1.2 and Section 3.1.3 presents the training process and the nearest
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neighbor search process of LQH, respectively. Section 3.1.5 presents concluding remarks of

LQH.

3.1.1. Introduction of LQH. LQH is built on the assumption that nonlinear data

have a smooth structure or can be decomposed to multiple smooth structures. LQH de-

composes a smooth structure into multiple local neighborhoods, each of which can be ap-

proximated using a linear subspace. These neighborhoods well approximate the nonlinear

structure of data. In each local neighborhood, the potential of ITQ can be truly realized

since the space is very close to a linear one. Therefore, we apply ITQ independently in each

local neighborhood to obtain a binary code for each data sample.

Figure 3.2 illustrates the differences between our method (LQH) and ITQ on nonlinear

data. In this example, the synthetic data live in a nonlinear subspace, and the goal is to

produce a 2-bit binary code. In the left subplot, the vertices of the hyper-cube found by

ITQ are shown as red dots. These vertices are the quantizers of the data samples. In the

right subplot, LQH divides the data into two clusters (shown in green and yellow), each of

which forms a local neighborhood that can be approximated as a 1D subspace. LQH then

applies ITQ to each cluster independently, creating a local 1-bit binary representation for

each data sample. As a result, each data sample is still represented by 2 bits, where one

bit indicates the index of the local neighborhood (i.e. cluster) and the other bit indicates

its binary representation. Each cluster is therefore quantized by 2 points as shown by the

red dots in the right subplot. The 2 points in each cluster form a 1D rectangle within each

cluster. The quantizers found by LQH therefore yield a closer approximation of the original

data due to the linear and low-dimensional structure of the local neighborhoods found by

clustering.

There are two advantages of LQH.
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Figure 3.2. An illustration of LQH on 2D synthetic data. Left: ITQ; Right: LQH

• These local neighborhoods satisfy the assumption of ITQ that data live in a linear

subspace. Therefore, the performance of ITQ over these neighborhoods is greatly

enhanced.

• The nearest neighbors of a query have a high probability of coming from the few

neighborhoods closest to the query. Therefore, the search space of its nearest neigh-

bors is much smaller and more accurate. This can also be seen as location sensitivity

since only a particular subset of all gallery data samples will be compared given a

query.

This method also enables us to circumvent the difficulty of finding a good kernel and a right

set of parameters of the kernel for a specific dataset.

3.1.2. LQH: Training. LQH is introduced to improve approximate nearest neighbor

search for nonlinear data. Unlike kernel-based methods, LQH assumes that nonlinear data

have a smooth structure or can be decomposed to multiple smooth structures. LQH therefore

exploits local linearity. More specifically, local neighborhoods of nonlinear data can be
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approximated well by linear subspaces. In this way, LQH avoids explicit kernels yet while

approximating nonlinear data better than kernel methods.

LQH builds on ITQ. ITQ assumes that data live in a single linear space, and fits a rotated

hyper-cube to quantize them. This overlooks the fact that real data generally reside in lower

dimensional nonlinear subspaces. LQH approximates nonlinear data using sets of local linear

subspaces. A local neighborhood is defined as a set of data points close to each other in

terms of Euclidean distance. K-means [32] clustering is a good algorithm for finding local

neighborhoods. Each K-means cluster forms a local neighborhood, and local neighborhoods

are approximated as linear PCA subspaces.

LQH then applies ITQ in each local neighborhood independently to learn binary codes

for each data sample. More specifically, assume that there are n data points {x1, x2, . . . , xn}

in one cluster, each of which is a d dimensional row vector. LQH centers the data within

the cluster by subtracting the mean (cluster center) m = Σn
i=1xi. The centered data are

represented as yi = xi −m, (i = 1, . . . , n). They form the rows of a data matrix Y ∈ R
n×d.

The mean vector m is stored for processing new query data.

For b bits, ITQ learns a set of b linear encoders {w1, w2, . . . , wb}, each of which is a

column vector. They form the columns of the encoding matrix W ∈ R
d×b. The binary

encoding for the jth bit for a data point yi is hj(yi) = sgn(yiwj), where sgn(v) = 1 if

v ≥ 0 and −1 otherwise. The encoding of all data points can be written in a matrix form:

B = sgn(YW ), where sgn performs a pointwise sign operation for the matrix. Each row of B

is a binarized data sample. To learn the b linear encoders, ITQ first reduces each data point

to b dimensions using Principal Component Analysis (PCA). Denoting the PCA projection

matrix as P ∈ R
d×b, the reduced data can be written as V = Y P . Then ITQ seeks to rotate
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the reduced data V to minimize the quantization loss when data are binarized:

(26) argmin
B,R

Q(B,R) = ||B − V R||2F ,

whereB is the binarized data, R ∈ R
b×b is a rotation matrix and ||M ||F denotes the Frobenius

norm of matrixM . After solving Equation 26 using the optimization process proposed in [15],

the b-bit binary representations of Y are computed as B = sgn(Y PR).

Note that the above learning process is independently applied to each cluster. As a result,

each cluster will be associated with a cluster center and a set of binary encoders W = PR

accustomed specifically to the cluster.

3.1.3. LQH: Approximate Nearest Neighbor Search. Given a query q, LQH

finds the closest cluster by measuring the distance to each cluster center. After locating the

closest cluster (denoted as k1), we compute q’s binary representation with respect to that

cluster using the associated binary encoders and cluster center. The distance between the

query and each data point within Cluster k1 is simply the Hamming distance. In most cases,

many nearest neighbors of the query should be in this cluster. If all the nearest neighbors

are in k1, then the search is done. However, the nearest neighbors may be distributed across

multiple clusters. Therefore, LQH locates the next closest cluster (denoted as k2) to q and

computes its binary representation with respect to that cluster. The distance between q and

data points in Cluster k2 is also approximated by their Hamming distance. However, the

Hamming distances within Cluster k1 and Cluster k2 are computed independently and they

are not directly comparable. Therefore, in order to compare the distance between q and a

data point in Cluster k1 and the distance between q and a data point in Cluster k2, we need

to take advantage of the geometric interpretation of ITQ.

51



ITQ rotates the data in order to minimize the quantization error after data are binarized.

This can be interpreted as finding a hyper-cube with minimal quantization error when data

are mapped to the nearest vertex on the hyper-cube. For standard ITQ, since there is only

one hyper-cube, the scale of the hyper-cube does not affect the ranking of Hamming distances

or the choice of quantizers. In fact, the hyper-cube yielding the minimal quantization error

has a unique real-value scale, denoted as s, that can be easily computed by Equation 27

after Equation 26 is solved.

(27) argmin
s

||V − sBRT ||2F ,

The scaled hyper-cube is the quantizer of the original data. As a result, the Hamming

distance between two data points should be scaled by s to approximate their Euclidean

distance. In LQH, multiple hyper-cubes are learned, one for each cluster. For direct com-

parisons across clusters, we scale each hyper-cube to become the actual quantizers of the

original data in the cluster. The resulting scaled Hamming distances from different clusters

can then be compared directly.

Figure 3.3 shows how to compute the scaled Hamming distance in each cluster given a

query on 2D synthetic data. Two local neighborhoods denoted by blue and green colors

are first located by K-means clustering. Then ITQ is applied to each neighborhood. The

red dots show the vertices of the hyper-cubes (squares in this case) found by ITQ, each

of which corresponds to a binary string. Note that, unlike standard ITQ, the cubes are

scaled such that they are the actual quantizers of the data in the same cluster. Denote the

centers, the binary encoders and the scales of the cubes/hyper-cubes in these two clusters

as cb,g,Wb,g and sb,g respectively, where b and g denote blue and green respectively. Given

a query in the form of a row vector q (shown as a black star in Figure 3.3), its closest
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cluster is the blue one. So LQH computes a binary representation with respect to the blue

cluster: binb = sgn((q− cb)Wb), which will assign q to the lower-right vertex of the cube (as

shown by the left black arrow). Denoting the Hamming distance between q and the ith data

sample in the blue cluster (denoted as xb,i) as d(q, xb,i), their scaled Hamming distance is

ds(q, xb,i) = sb × d(q, xb,i). ds(q, xb,i) is an approximation of their Euclidean distance.

The second closest cluster to the query q is the green cluster. The same procedure is

applied to compute a binary representation of q with respect to the green cluster (shown as

the right black arrow) and a scaled Hamming distance ds(q, xg,j) between q and the jth data

point in the green cluster (denoted as xg,j). ds(q, xb,i) and ds(q, xg,j) can then be compared

directly to indicate whether xb,i or xg,j is closer to q. It should be noted that since these

two clusters are quantized by cubes with different scales, a single bit difference between two

codes in the same clusters indicates different Euclidean distance for different clusters. Using

this method, we can determine the relative distance of the query between two data samples

from different neighborhoods.

Given a query q, it is important to point out that there is a trade-off between the number

of nearby clusters explored and the accuracy of the Euclidean distance approximation using

scaled Hamming distance. When LQH computes q’s binary representation, it quantizes q as

the closest vertex of the hyper-cube. However, it does not consider how far q is from its closest

vertex of the hyper-cube. In other words, q may be very far from the cluster but it will still

be assigned to one vertex of the hyper-cube before computing the scaled Hamming distance.

Therefore, the distance between q and its quantizer/vertex on the hyper-cube is not included

in the scaled Hamming distance to obtain q’s binary representation for fast hashing. However,

the above discussion indicates that it is not suitable for estimating distances between q and

data points in far away clusters.
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Since the goal is to find q’s nearest neighbors, and the nearest neighbors probably reside

in clusters close to q, we are comfortable restricting the search to nearby clusters. We

can further reduce the set of clusters searched based on the criterion that the next cluster

is explored only if its cluster center is as close as the current center to the query. This

significantly improves retrieval efficiency.

Figure 3.3. An illustration of computing scaled Hamming distances to enable
a direct comparison of distances from different clusters. The quantizers in each
cluster are scaled properly to minimize the approximation error in the cluster.
The magnitude of the sacle is indicated as the side length of the cube.

3.1.4. Parameters of LQH. One important parameter is the number of clusters used

in clustering procedure denoted as Nc. If Nc is too small, the local neighborhoods of the

data will be too large to be approximated by a linear subspace. If Nc is too large, the nearest

neighbors of a query may spread across a large number of clusters, which will increase search

error due to the trade-off discussed in Section 3.1.3.

Another parameter is the number of clusters explored per query. This number should

not be too small or too large. This is because, in general, a query’s nearest neighbors exist

in multiple clusters close to it. Therefore, multiple clusters should be searched for nearest
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neighbors, not just the single closest cluster. However, due to the trade-off, we should only

explore a few clusters in order to maintain a high search accuracy. In LQH, the number of

clusters explored is adaptive. A maximal number of clusters M to explore is set and fixed.

For a query q, the (i + 1)th closest cluster is only explored when ||q, c(i+1)||2
||q, c(i)||2

− 1 ≤ σ. Here

||q, c(i + 1)||2 is the Euclidean distance between the query and the center of the (i + 1)th

closest cluster and ||q, c(i)||2 is the Euclidean distance between the query and the center of

the ith closest cluster. σ is a small positive number. If this constraint is met, it means that

the (i + 1)th cluster is potentially as close to the query as the ith cluster and should be

explored. The total number of explored clusters will not exceed M .

3.1.5. Conclusion of LQH. A hashing method called Local Quantization Hashing

(LQH) is proposed for unsupervised approximate nearest neighbor search. LQH handles

nonlinear data by finding local, smooth neighborhoods that can be explicitly approximated

with linear subspaces. ITQ is then applied independently in each local neighborhood to

achieve a more accurate binary representation of data points. LQH gracefully circumvents

the problem of having to define a kernel function to approximate the nonlinear structure of

the data.

The experimental results are presented later in Section 4. Compared to other state-of-

the-art hashing methods, LQH performs better in most cases when varying the number of

bits. More importantly, it yields much better retrieval performance when the number of

retrieved items is small, which is highly desirable for a number of applications. We also

conducted experiments where we apply LQH on four synthetic datasets to shed light upon

why this simple method works so well.
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Although providing very promising retrieval results, LQH also has some disadvantages.

For a given query q, its true nearest neighbors will typically reside in multiple local neigh-

borhoods, which means that multiple neighborhoods close to q should be explored. It seems

that the when more neighborhoods are explored, the less chance a true nearest neighbor will

be missed. However, the trade-off we just described means that when more neighborhoods

(also farther from q) are considered, the distance estimated by Hamming distance becomes

less accurate. In the experiments of LQH, the number of explored neighborhoods is limited

to at most 2. There can be some true nearest neighbors of q that exist in other neighborhoods

that are never retrieved.

3.2. Unit Query and Location Sensitive Hashing

Although LQH performs very well on multiple large-scale datasets, its potential is lim-

ited by the aforementioned drawback that, given a query, only a very few clusters closest

to it can be explored. The query’s true nearest neighbors can exist in other distant clus-

ters. To address this disadvantage, we propose unit Query and Location Sensitive Hashing

(UnitQLSH).

In UnitQLSH, it is assumed that all data are expressed as unit length vectors so that

the similarity between pairs of data samples is defined as their inner product. Our method

can also be classified as a quantization based hashing technique. In other words, we seek

binary representations that can approximate original data samples. We formulate the ap-

proximation problem as a matrix factorization problem with binary components. Given a

query q, we show that the order of Hamming ball exploration can be easily computed with-

out knowing how to obtain the binary code of q. In more detail, we use q’s original data

representation directly to compute a real-valued vector whose length is the number of bits.
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It guides the order of Hamming ball exploration. Since this real-valued vector is different for

different queries, it is called query sensitivity. Further, we find that we can first locate local

neighborhoods as we have done in LQH and apply the aforementioned process independently

in each neighborhood. This is called location sensitivity.

A great benefit of UnitQLSH over LQH is that there is no need to compute the binary rep-

resentation of query data. It not only avoids this computational overhead, but also addresses

the issue of LQH nicely: Since original query data are used directly, there does not exist

any quantization error that makes the distance estimation worse for distant neighborhoods.

As a result, we are now able to explore as many neighborhoods as desired. Moreover, since

there is no quantization error of the query, the retrieval accuracy can be greatly improved.

I first describe how binary codes are learned on the training data, i.e., the key optimiza-

tion function and its solution in the following two sections. Then I present query sensitivity

of UnitQLSH in Section 3.2.3. After that, I will present how location sensitivity (as in

LQH) can be well integrated together with query sensitivity in Section 3.2.5, i.e., the whole

UnitQLSH method.

3.2.1. Binary Code Learning on Training Data. In this work, we aim to perform

nearest neighbor search in data with unit length. That is to say, denoting the i-th data

sample as xi, we always have ||xi||2 = 1. We also describe data with this property as data

living on a unit hypersphere. The similarity between two data points on a unit hypersphere

can be defined as their inner product, which is also the cosine of the angle between them.

Equivalently, we can define their distance as their Euclidean distance since for two data

samples xi and xj, ||xi − xj||22 = 2 − 2xix
T
j . In other words, their Euclidean distance has a

negative linear correlation with their inner product.

57



Inspired by quantization based hashing techniques, in this work, we propose to learn a

set of quantizers on the unit hypersphere that minimize the approximation error between

data points and their corresponding quantizers where the approximation error is defined as

the angle between them. Each different quantizer corresponds to a different binary code.

For hashing methods, it is often desirable to have independent bits so that information is

not redundant. This independence is often replaced by orthogonality. As a result, similar

to ITQ, we want these quantizers to be vertices of a hyper-rectangle. Note that ITQ finds a

hyper-cube to quantize data while this new approach seeks a more general hyper-rectangle.

Furthermore, ITQ finds a hyper-cube in the PCA space. It takes a part of the subspace

out of consideration due to PCA. In our method, we would like to find a hyper-rectangle

directly in the original data space, which may yield more accurate quantization. The initial

optimization function is as follows:

(28) argmin
B,C

||X − BC||2F , s.t. CCT = D2, ||B∀C||2 = 1

where X is the data matrix. B∀ stands for any arbitrary binary code which has the same

length as a row of B. C is the basis matrix satisfying CCT = D2, where D is a diagonal

matrix. D controls the length of each side of the hyper-rectangle. Each row of C is a basis

vector of the hyper-rectangle. ||B∀C|| represents any quantizer (also a vertex of the hyper-

rectangle). ||B∀C||2 = 1 means that all the quantizers should reside on the unit hypersphere.

Note that since the quantizers and data samples all have unit-length, the statement of the

optimization problem in Equation 28 is the same as minimizing the angle between data

samples and their quantizers. We will later compare this method to a simpler version where
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quantizers are not constrained to have unit length and show the practical value of Equation 28

and the unit length constraint on real problems.

It should be noted that the mean of this hyper-rectangle is the origin since each direction

Ci can only take a coefficient of either -1 or 1. Since data samples inX are not necessarily zero

centered, the hyper-rectangle does not need to be centered at origin either. Therefore, we

add a translation vector which is the center of the hyper-rectangle. Denoting this translation

vector as µ, we have

(29) B′ = [B, 1n×1] , and C ′ = [C;µ]

where n is the number of data samples. B′ is obtained by appending a column of all 1′s on

the right of B and C ′ is obtained by appending a row vector, µ, at the bottom of C. The

vertices of the translated hyper-rectangle can then be expressed as B′C ′. In more detail, the

i-th row of B′C ′, which is also equal to B′
iC

′, can be expressed as BiC + µ. Our objective

function from Equation 28 now becomes:

(30) argmin
B′,C′

||X − B′C ′||2F , s.t. CCT = D2, ||B′
∀C

′||2 = 1

where B′ = [B, 1n×1] and C ′ = [C;µ]. The geometric interpretation is as follows. We seek

a translated hyper-rectangle, whose vertices lie on a unit hypersphere, that minimizes the

mean angle between data points and its corresponding quantizers (closest vertices of the

hyper-rectangle).

Theorem 1: If ||B′
∀C

′||2 = 1, then CµT = 0.
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Proof: ||B′
∀C

′||2 = ||B∀C + µ||2 = B∀CCTBT
∀ + 2B∀CµT + µµT = tr(D2) + 2B∀CµT +

µµT = 1 So, B∀CµT = 1−µµT−tr(D2))
2

. For any hyper-rectangle that satisfies ||B′
∀C

′||2 = 1, we

know µµT and tr(D2) are two constants whose value does not change, no matter what B∀ is.

So, for any such hyper-rectangle, B∀CµT = const. Denoting v = CµT , v is a column vector.

If v 6= 0, without loss of generality, let us assume the first entry of v is not zero, i.e., v1 6= 0.

Then if B1 and B2 are two binary codes that only differ in the first entry: B1 = [1, . . .] and

B2 = [−1, . . . ], B1v = v1 + . . . and B2v = −v1 + . . . are different. It contradicts the fact

that B∀v = const. So v = CµT = 0. �

The geometric meaning of CµT = 0 is that the space spanned by these orthogonal bases

of this hyper-cube (disregarding the translation vector µ) is perpendicular to µ. Note that

the center of this hyper-cube is µ. This observation provides us with a nice way to solve

Equation 30. In the first step, µ is found by simply taking the mean of all data samples.

Next, locate a linear subspace S perpendicular/orthogonal to µ. The origin of S is µ. Each

data sample is then projected to S. Note that these projected data samples are on the unit

hyper-sphere as well. B, C and D (i.e., a hyper-rectangle without translation) are found in

S given the projected data samples.

Figure 3.4 presents a 3D example that illustrates our optimization process. Figure 3.4(a)

shows a 3D unit sphere. O is the origin. O′ is the mean of data samples (The data samples

are not shown in the figure for better display, except for x.). In other words, the vector from

O to O′ is µ. The linear subspace S perpendicular to µ is located, as shown in orange. The

origin of this subspace is O′. The intersection of S and the sphere is a circle. It follows that

O′ is the center of the circle since S and µ are orthogonal. x is one of the data samples on

the sphere. Since we want to find a hyper-rectangle (rectangle in this case) in S, we would
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like to project every data sample to S. The projected data sample should be as close to

the original data sample as possible. Moreover, to maintain the property that Euclidean

distances reflect inner products (or angle) of any two points, we constrain their projections

in S to have unit length as well. In this 3D example, we denote the desired projection of x

as x′. x′ can be found by first finding the orthogonal projection of x in S, denoted as xp and

then draw a line from O′ to xp until it intersects with the sphere (or equivalently, the circle

denoted by orange). The intersecting point is the desired projection x′.

�
O

O’

x

x'
xp

S

(a) Project a sample on the sphere to subspace S

O’
C1

C2

(b) Fit a rectangle in subspace S

Figure 3.4. A 3D example illustrating the optimization process.

It can be easily proven that x′ and x have the smallest angle between them com-

pared to all other projections on the orange circle (i.e., the subspace S): We know that

||x− x′||22 = ||x− xp||22 + ||xp − x′||22. ||x− xp||22 is a constant and ||xp − x′||22 is smallest when

O′, xp and x′ are on the same direction/line. Therefore, the found x′ minimizes ||x− x′||22 as

well as the angle between x and x′. �
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After we map each data sample in S, the remaining task is to find a rectangle in S,

centered at O′, that minimizes the quantization error. Figure 3.4(b) shows S when looking

at it from the direction of µ. The black dots on the circle are the projections of all data

samples. Note that since the vertices (yellow dots) of the rectangle are required to be on

the sphere, they will also on the circle. More will be said about how to find this (hyper-

)rectangle. For now, let us say that the dashed rectangle (centered at O′) is the one yielding

the smallest quantization error, i.e., the smallest mean Euclidean distance or angle between

each data sample and its quantizer. Then the C1 and C2 in this example constitute the bases

C of the rectangle: C = [C1;C2] and B = sign(X ′CT ) where X ′ are the projections of the

data samples.

3.2.2. Optimization. We have briefly described the optimization procedure in the ex-

ample given in Figure 3.4. In this section, we show how to solve B′ and C ′ in Equation 30.

To start, assume a set of n data samples {x1, x2, . . . , xn}, each of which has d dimensions.

These samples form the rows of a data matrix X ∈ R
n×d. Each data sample has unit length:

||xi||2 = 1, i = 1, 2, . . . , n. Further assume the number of bits we want to learn is b. Denote

the sample mean as µ =
∑n

i=1 xi. Now translate all data samples such that their mean

becomes the new origin: yi = xi − µ, i = 1, 2, . . . , n. Denote this new origin as O′. S is

a linear subspace that goes through O′ and is perpendicular to µ. The intersection of S

and the unit hypersphere is a truncated hypersphere with one less degree of freedom. An

orthogonal projection of a data sample yi onto S is found using:

(31) ypi = yi −
µ

||µ||2
yTi
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Observe the notation here is slightly different from the 3D example in Figure 3.4. In that

example, the origin does not change while here we make O′ the new origin so the resulting

equations are clearer. yp is simply equal to xp − µ in the 3D example. The projection of yi

in S is then obtained using:

(32) y′i = α
ypi

||ypi||2

where α =
√

1− ||µ||22, the radius of the truncated hypersphere (the orange circle in the 3D

example). Equation 32 defines y′i to be on the same line as O′ and yp, and also makes sure

that y′i is on both the truncated hypersphere and the original hypersphere.

Next, the task is to find a hyper-rectangle in S that yields the minimal quantization error.

The vertices of the hyper-rectangle are constrained to be on the truncated hypersphere so

that they are also on the original hypersphere. That is to say, we need to find B and C such

that:

(33) min||Y ′ − BC||2F , s.t. ||B∀C||2 = α, CCT = D2

where the i-th row of Y ′ is y′i, B is an n × b binary matrix, C ∈ R
b×d and D is a diagonal

matrix. Without loss of generality, constrain D to be positive. Since CCT = D2, we can

equivalently represent C as C = DR, where RRT = Ib×b and I is a b× b identity matrix.

The optimization function now may be written as:

argmin
B,D,R

Q(B,D,R) = ||Y ′ − BDR||2F

s.t. RRT = I, Rµ = 0, ||B∀DR||2 = α

(34)
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Similar to the solution method used with ITQ, we propose an iterative method which

updates one parameter at a time while keeping others fixed until a local optimum is reached.

The alternating steps are listed as follows:

(1) Fix D and R, update B: Compute B as B = sgn(Y ′(R)T ). D is ignored since it is

composed of all non-negative values.

(2) Fix R and B, update D: Geometrically speaking, D controls the scale and the

aspect ratio of the hyper-rectangle. D should be chosen such that all the vertices of

the hyper-rectangle land on the truncated hypersphere to ensure that they are also

on the original hypersphere. Since the center of the truncated hypersphere, O′, is

also the center of this hyper-rectangle (due to Theorem 1), we only need to make

sure that one of its vertices is on the hypersphere. When this condition is met,

then the other vertices are guaranteed to be on it as well. That is to say, we can

randomly choose one vertex, e.g., B0 = 11×b such that ||B0DR||2 = α. 11×b denotes

a 1× b matrix of all 1′s. This sub-problem then becomes

(35) argmin
D

||Y ′ − BDR||2F s.t. ||B0DR||2 = α

Using linear algebraic manipulations, Equation 35 becomes:

(36) argmin
D

n

b
∑

i=1

D2
ii − 2

b
∑

i=1

(BTY ′RT )iiDii, s.t.

b
∑

i=1

D2
ii = α2

where (BTY ′RT )ii denotes the i-th entry on the diagonal of BTY ′RT and Dii

denotes the i-th entry on the diagonal of D. The solution of Equation 36 is

D = α diag(BTY ′RT )
||diag(BTY ′RT )||2

, where diag(BTY ′RT ) is a vector composed of the diagonal

entries of BTY ′RT .
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(3) Fix D and B, update R: Since B and D are known, this optimization problem is

reduced to the classical Procrustes problem [26]. Take the SVD of Y ′TBD such that

Y ′TBD = UΣV T , and then R is computed as R = V UT .

R is initialized to be a random matrix R0 with orthonormal rows and one more constraint:

Each row of R0 should be orthogonal to µ so that Cµ = 0 is satisfied. The criterion

for convergence is that ||Y ′ − BDR||2F stops decreasing. In practice the proposed iterative

technique converges within 50 iterations. Upon convergence, the value of ||Y ′−BDR||2F does

not change much given different random initializations. This means that the convergence is

stable under different initializations.

3.2.3. Query Sensitivity. We have shown that a data matrix X can be approximated

as multiplication of a binary matrix B′ and a real-value matrix C ′, shown as follows (con-

straints omitted).

(37) argmin
B′,C′

||X − B′C ′||2F

Let us skip for now how B′ and C ′ are found and simply assume that we have found B′, C ′.

For data with unit-length, the similarity between pairs of samples is defined as their inner

product. Then the approximated similarity matrix M between a new query sample q and

all training data X can be calculated as:

(38) M = Xapproxq
T = B′C ′qT

Denoting w = C ′qT , we have M = B′w. Each row of B′ is the binary code of a training

data sample and w is a column vector that contains real valued weights for each bit of the

binary codes. We observe that the approximate similarity between a training data sample
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x and the query q is simply the inner product of B′
x and w, where B′

x is the binary code

of x. Therefore, this weight vector defines the order of the Hamming ball search. For

example, if w = [0.5;−0.8; 0.1], the 2-bit binary codes will be explored in the following

order: [1,−1, 1], [−1,−1, 1], [1, 1, 1], [−1, 1, 1] so that the inner products are ordered from

largest to smallest: [1.4, 0.4,−0.2,−1.2]. Note that the last entry in w, 0.1, is the weight of

the bit corresponding to the mean vector µ. That bit is always set to 1 for all data samples.

Therefore, as long as w is known, efficient Hamming ball search can be performed for large-

scale datasets. A major difference between our method and others is that other methods

often need to compute the binary code of the query before they can perform retrieval, while

our method uses the query directly to obtain a weight vector that guides the retrieval. As a

result, our method does not approximate the query using a binary code and the similarity

estimate is more accurate and more discriminating.

Two major advantages arise out of the weight vector formulation. One is that there is no

need to compute the binary code of a query, and this in turn reduces computation. The other

is that the approximation of similarity is more accurate since the query is not approximated.

Since a new weight vector for the bits has to be computed every time a different query is

given, we call this query sensitivity.

Query sensitivity can be related to a distance computation method in Product Quantiza-

tion (PQ) [7], another popular approach in ANN. In PQ, two options exist for computing the

distance of a query and any sample in a dataset. One is called symmetric distance. It maps

the query to a binary code and uses stored look-up tables to compute the distance. The other

is called asymmetric distance. It uses the original query data directly and generates a look-

up table online to compute the distance. The latter option is somewhat expensive in terms
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of computation, but it always yields better retrieval performance. UnitQLSH introduces a

way to compute asymmetric distances for hashing approaches.

Also different from traditional methods where the (coarse) order of binary codes to explore

is easily known by their Hamming distance to the binary code of the query, our method uses

the weight vector w to determine the (fine) order of binary codes to explore. In the next

section, we present an efficient tree-based algorithm to compute the binary codes that should

be explored when a query is given.

3.2.4. An Efficient Tree-based Algorithm to Compute Ranked Binary Codes.

We propose to use a weight vector to compute a weighted Hamming distance in order to

rank binary codes in a finer level. In this section, we give the algorithm to compute the

ranked binary codes given a weight vector computed from a query. Denoting a query as q,

the corresponding weight vector as w and the number of bits in the binary code as nb, w is of

length nb. To make the idea clear, we omit the last bit of the binary code since it is always

1 (corresponding to the mean of data). Given any binary code B of length nb, its similarity

to the query can be computed as their dot product: < B,w >. Without loss of generality,

we assume that all elements in w are positive.

The first step is to sort the elements in the weight vector in ascending order and record

the original indices of the sorted elements. It is apparent that the binary code with the

largest similarity is composed of all 1’s, yielding the largest dot product. So it is the first

binary code that will be retrieved. The next binary code to retrieve is also easy to know.

We can obtain it by assigning the first bit -1 and keeping the rest as 1’s since the first bit

corresponds to the smallest weight. This procedure can be seen as a tree expansion process

and this second binary code is a child of the first binary code with one more negative bit.

Note that the first binary code has nb children with one more negative bit but this second
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child is the one with the largest similarity among all its siblings. Therefore, we do not need

to expand all its children to get the next possible binary code as long as we have its ”largest”

child. In general, when we retrieve one binary code, we will expand its ”next sibling” and

its largest children since they are both possible to be picked next. By ”next sibling”, we

mean that the unexpanded sibling with the largest similarity. These two new binary codes

(or nodes in the tree) are added to a candidate set containing all expanded nodes and the

next retrieved node is chosen from this set by selecting the one with the largest similarity.

Figure 3.5 presents the first few steps of how the tree expansion works. The presorted

weight vector w is [1,3,6,8]. Given w, we will retrieve 4-bit binary codes in order. The root

of the tree is [1,1,1,1], which has the largest similarity, 18. The root is added to a candidate

set C initialized to be empty. In the first iteration, the root is picked and then removed from

C since it is the only node in C. Its largest child (child with largest similarity, 16), [-1,1,1,1]

is expanded and added to C. The root has no siblings since there is only one binary code

with 0 negative bits. In the second iteration, [-1,1,1,1] is picked and removed from C and its

next sibling [1,-1,1,1] with similarity 12 and its largest child [-1,-1,1,1] with similarity 10 are

expanded and added to C. In the third iteration, [1,-1,1,1] is picked and removed from C

since it has the largest similarity. Its next sibling [1,1,-1,1] with similarity 6 and its largest

child [1,-1,-1,1] with similarity 0 are expanded and added to C. C now contains [-1,-1,1,1],

[1,1,-1,1] and [1,-1,-1,1]. In the fourth step, [-1,-1,1,1] is picked and removed from C. Its

next sibling and largest child, [-1,1,-1,1] and [-1,-1,-1,1] are expanded and added to C. The

red number on the left of each node shows which iteration that node is expanded and added

to C. The first 4 retrieved nodes are [1,1,1,1], [-1,1,1,1], [1,-1,1,1] and [-1,-1,1,1]. The same

procedure can go on until a desired number of binary codes are retrieved. The correctness of
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this algorithm is guaranteed by the fact that the candidate set C always contains the nodes

with largest possible similarity at each level of the tree.

The computational complexity of this tree-based retrieval algorithm is composed of the

following. The first operation is to sort the weight vector in ascending order. This cost

is negligible since the number of bits is small. Second, in each iteration, one binary code

with the largest similarity is selected and removed, and generally two binary codes (the next

sibling and the largest child) will be inserted into C. A good data structure for C is a max

binary heap. The similarity the query associated with each node is that node’s value in the

heap. Note that the similarity of a node’s (denoted as A) sibling and child does not need

to be computed using a full dot product. Instead, it can be obtained by locating which bits

are flipped and making a particular adjustment to A’s similarity using the corresponding

weight values. So the computation of similarity is O(1). For max binary heap, insertion and

deletion are both log(n) where n is the number of nodes in the tree. As a result, to retrieve

the first n binary codes, the time complexity is O(nlog(n)); which is very fast.

This proposed tree-based algorithm bears some interesting resemblance to A* search [33],

a popular method in artificial intelligence that finds the best path from a starting node to

a goal node. These two methods both use a priority queue to guide the next move: In

each iteration, the node with the highest priority is picked, then its neighboring nodes

are added to the priority queue. For our tree-based method, the priority is the similarity

between the binary code and the weight vector, while in A* search, the priority is the

inverse path cost (called f(n)) if the path goes through the node. It is composed of two

parts: f(n) = g(n) + h(n). g(n) is the path cost from start node to the current node n, and

h(n) is the estimated path cost from current node n to goal node.
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There are some key differences between this tree-based method and A* search. First of

all, A* search usually requires users to define a function to estimate h(n), which is called

heuristics. Any heuristic would be valid as long as h(n) never overestimates the cost. There-

fore, the priority of each node in the priority queue of A* search is an estimate. However, in

our method, the similarity between the binary code and the weight vector is simply their dot

product, which is an accurate indication of the priority. The second difference is a result of

the first difference. Since the priority estimate in our method is accurate, we do not need to

update the priority value of existing nodes in the queue, leading to a simple implementation

using heaps. However, A* search usually updates the priority values and the implementation

of its priority queue is more complicated. The third difference is that, even if we assume A*

search uses an accurate heuristic, the structures of the problems suitable for each method

are different. A* search is to find the best path between a start node and a goal node. If

its heuristic is accurate, then all the nodes on the best path should have the same path cost

f(n), i.e., the same priority. On the other hand, in our method, we aim at ranking these

nodes by picking the next one with the highest similarity/priority. The nodes we pick often

have different priorities.

3.2.5. Location sensitivity + Query Sensitivity. As described in Section 3.1,

for LQH, there are two advantages of locating neighborhoods. One is that data in the

same neighborhood/cluster can be well approximated by a linear subspace where linear hash

functions perform well. The other is that, given a query, we can quickly locate its candidate

nearest neighbors by looking at the few neighborhoods that are closest to it, resulting in

better hashing performance as well as a significant efficiency improvement.

A disadvantage of LQH is that the number of explored clusters is limited due to the need

to assign a binary code for each query. Therefore, some of its groundtruth nearest neighbors
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Figure 3.5. An example of the first few steps of tree expansion

will never be found. If we can integrate query sensitivity with LQH, there is no need to

compute binary codes for queries since queries are used directly. Therefore, any number of

clusters can be explored. All the groundtruth nearest neighbors of a given query will always

be found as long as the number of explored clusters is large enough (no tradeoff).

In UnitQLSH, query sensitivity can be nicely integrated with neighborhood localization.

The procedure is as follows. First, local neighborhoods are found using a clustering method

such as K-means. In this paper, we are using a fully vectorized version of K-means [34]

which runs very fast. Assume that the number of clusters is K. Denote the k-th cluster as

Gk and the data samples in it as Xk where each row of Xk is a data sample in it. Then,

for each cluster Gk, we construct a binary matrix B′
k and a real valued matrix C ′

k such that

B′
kC

′
k approximates Xk.

Given a query q, we need to compute the rank of binary codes to retrieve. The algo-

rithm described in Section 3.2.4 can be slightly updated to fit this need. When multiple

clusters are explored, a weight vector wk = C ′
kq

T and a max binary heap is computed for
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each cluster. The dot product of a weight vector with binary codes in the same cluster

computes the similarity of the query and the quantized training data. It is possible that

binary codes learned in different clusters will have different quantization errors, yielding dif-

ferent approximations of the similarity. However, we found in our experiments that a direct

comparison of the similarity between query and data samples from different clusters achieves

great performance.

It is important to note that given a query, it is not necessary to compute a weight vector

in each cluster. This is because that most of the query’s true nearest neighbors only exist

in a few clusters closest to it. Therefore, we only compute a weight for only a few closest

clusters and build a max binary heap in each of them.

During retrieval, the next binary code to retrieve is the one with the largest similarity

among all roots of the max heaps. A little extra computation is to find the maximal value

after obtaining all the roots. Since the number of max heaps is often very small (usually

less than 5), the computation complexity can be ignored. After a binary code is retrieved,

it is deleted from the corresponding heap, then its next sibling and first child are added to

the same heap. This procedure is repeated multiple times until a desired number of data

samples or binary codes are retrieved.

This proposed algorithm is both query sensitive and location sensitive. It is query sensi-

tive because weight vectors wi are computed to weight the Hamming distance (or to guide

the search) and these weight vectors are different given different queries. It is location sen-

sitive because given a query, depending on its location, a few clusters closest to it will be

searched for nearest neighbors. These chosen clusters can be different given different queries.

Also, since the quantizers are constrained to reside on the unit hyper-sphere, this algorithm

is called Unit Query & Location Sensitive Hashing (UnitQLSH). It should be noted that the
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training of UnitQLSH is very fast: It takes about 15 minutes to train on 1 million samples

(each with 1000 dimensions).
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CHAPTER 4

Experimental Results

This section presents experimental results of the two proposed methods, namely LQH and

UnitQLSH. In more detail, common protocols used to evaluate the performance of hashing

techniques are introduced first in Section 4.1. Detailed experimental results of LQH are then

presented in Section 4.2, where LQH is compared with multiple state-of-the-art methods

on multiple large-scale datasets and synthetic datasets. Then a comparison between LQH

and UnitQLSH is conducted in Section 4.3. Finally, extensive experimental results of the

ultimate method on 3 large-scale datasets, UnitQLSH, are shown in Section 4.4.

4.1. Common Evaluation Protocols

To evaluate the performance of a binary code based hashing method, multiple evaluation

protocols can be applied. Common protocols include recall@R curves, precision-recall curves,

mean average precision (MAP), precision/recall within a fixed Hamming distance. This

section will describe these common protocols in detail.

4.1.1. Precision-recall curves. Precision-recall curves are widely used in the field

of document retrieval where the goal is to retrieve relevant documents/items given a query

document. This goal is very similar to nearest neighbor search. Therefore, hashing methods

can also be evaluated by recall and precision.

Given a query document, let us define the total number of retrieved documents as R and

the total number of documents in the gallery that are relevant to the query as M . Recall

and precision are defined as follows:

• Precision = number of relevant documents in the retrieved documents / R
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• Recall = number of relevant documents in the retrieved documents / M

Note that the numerator in precision and recall is the same. Precision measures the accuracy

of the retrieved documents being relevant, i.e., the fraction of relevant documents in the R

retrieved documents. Recall measures the fraction of retrieved, relevant documents in all M

relevant documents in the gallery. M is a fixed number given a gallery and a query. Ideally,

all these M documents should be retrieved since they are all relevant to the query. However,

usually only a fraction are retrieved given a limited budget, which is measured by recall.

Note that recall=100% can be achieved if all documents in the gallery are retrieved, but the

precision is very low. Therefore, recall should be combined with precision to indicate the

performance of algorithms.

The number of retrieved documents R can vary, each of which corresponds to a recall-

precision pair. As a result, a recall-precision curve can be plotted as a 2D curve by varying

R. Usually, the X axis represents recall and the Y axis represents precision. A perfect

algorithm should yield a horizontal line whose X axis range is [0, 1] and Y value is always 1.

Note that when there are multiple queries, a single precision-recall curve can be generated

by averaging the precision at the same recall value for each query.

4.1.2. Recall@R Curves. In recall-precision curves, varying R will lead to a change

of precision and recall. Instead of plotting precision at X axis, we can directly plot R at

X axis. The Y axis represents recall scores. Each point on the recall@R curve measures,

when R documents are retrieved, how many relevant documents they contain. Since we can

calculated number of relevant documents in the retrieved documents by M × recall, we can

calculate precision via M×recall
R

. Therefore, theoretically speaking, recall@R curves can be

converted to precision-recall curves, and vice versa.
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4.1.3. Mean Average Precision. It is sometimes helpful to quickly evaluate hashing

algorithms using a single score rather than generating curves. The most widely used score is

mean average precision (MAP). MAP is computed by taking the mean of average precision

(AP) of each query. So we need to know how to compute AP of a query. AP measures the

area under the precision-recall curve.

(39) AP =

∫ 1

0

precision(r)dr =
n

∑

k=1

precision(k)△ r(k)

where n is the number of retrieved documents and r is the recall value. In general, n should

be equal to the total number of documents in the gallery so that the range of integral is

[0, 1]. However, to speed up computation, a much smaller n can sometimes be used. In these

cases, the range of the integral in Equation 39 is cutoff accordingly.

4.1.4. Precision Values and Recall Values within a Fixed Hamming Dis-

tance. When retrieval is done by Hamming ball exploration centered on a query, it is

desirable that its nearest neighbors exist in the top binary codes closest to it. This is be-

cause that the Hamming ball exploration can be expensive if the Hamming distance is large.

For example, for a 32-bit code, the number of binary codes having a Hamming distance of 3

to a given query is
(

32
3

)

= 4960. As a result, if a true nearest neighbor is not very close to the

query, a large number of binary codes have to be explored before this neighbor is retrieved.

Precision values and recall values within a small fixed hamming distance takes this issue

into consideration. It measures the average precision and recall score within a very small

hamming distance such as 2. High recall scores indicate that many true nearest neighbors

are actually retrieved in the first few explorations. High precision scores mean that only a

few mistakes are made in these retrieved neighbors.

76



4.2. Experimental Results of LQH

This section presents two sets of experiments. The first compares Local Quantization

Hashing (LQH) to Iterative Quantization (ITQ) [15] and K-Means Hashing (KMH) [17] on

synthetic datasets with known distributions. Although the synthetic data are not realistic,

these experiments provide insights into the nature of the three algorithms. The second set of

experiments compare LQH to ITQ, KMH, Spectral Hashing (SH) [11] and Locality Sensitive

Hashing (LSH) [10] on two large-scale datasets, SIFT1M and GIST1M.

4.2.1. Experiments on Synthetic Datasets. We compare LQH to two state-of-the-

art hashing methods, Iterative Quantization (ITQ) and K-means Hashing (KMH) on four

synthetic datasets. The goal is to show for which kinds of data LQH works well, and for

what types of data other algorithms perform better. This may provide insights as to why

LQH works well for real datasets.

Each synthetic dataset contains 1 million training samples and 2000 query samples, and

every data sample has 128 dimensions. The datasets are generated as follows:

• Uniform: Each dimension of a data point is independently sampled from a uniform

distribution between 0 and 1.

• Gaussian: Each dimension of a data point is independently sampled from a Gauss-

ian distribution with a mean of 0 and a standard deviation randomly chosen from

[0, 1] for each dimension. The covariance matrix is therefore diagonal.

• Mixture of Gaussians: 40 cluster centers are randomly generated, and points are

generated for each cluster from a multivariate Gaussian distribution whose mean

is the cluster center. The covariance matrix of each Gaussian distribution is also

a random diagonal matrix. The average magnitude of the covariance matrix is
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designed to be less than the distances between any two cluster centers so that these

clusters can be easily separated.

• Nonlinear: For each data point, the first 64 dimensions are randomly sampled

from a normal Gaussian distribution. The 64 + ith dimension is a cosine function

of the ithe dimension, where i = 1, 2, . . . , 64. The format of the cosine function is

X64+i = cos(wXi + b). The parameter w of the cosine function is randomly chosen

from a Gaussian distribution with a mean of 0 and a standard deviation of 8. The

other parameter b is randomly chosen from a Gaussian distribution with a mean of

0 and a standard deviation of 3. The resulting 128 dimensional data points reside

in a nonlinear subspace of 64 dimensions.

The ground truth nearest neighbors for every query are defined as the closest 100 samples

in the training set, in terms of Euclidean distance. Figure 4.1 shows the recall@R curves for

each dataset using LQH, ITQ and KMH to generate 32 bit binary codes. The horizontal

axis shows the number of top ranked nearest neighbors and the vertical axis shows the recall

score. For LQH, we use K-means with 16 clusters. This means that log2(16) = 4 bits are

used to encode the index of the cluster and the remaining 28 bits are used to store the

learned binary representation. For each query, we explore at most 2 nearest clusters in LQH.

The phrase “at most” means that we will only explore the next closest cluster if the distance

between its center to the query is not much larger than the distance between the center of

the previous cluster to the query. For KMH, we set the number of bits per subspace as 4 in

all experiments.

For the comparison on uniform data shown in Figure 4.1(a), LQH and ITQ have very

similar performance at the lower range of R. LQH is worse than ITQ for large values of R

because it explores at most 2 nearest clusters for each query, and some true nearest neighbors
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can be missed. The result in Figure 4.1(a) tells us that for uniform data, clustering does

not improve the performance of ITQ. For the comparison on the Gaussian data shown in

Figure 4.1(b), ITQ performs consistently better than LQH. This could be because that a

Gaussian distribution is ideal for the PCA model in ITQ. Again, Figure 4.1(b) indicates that

clustering does not help improve ITQ when data come from a single Gaussian distribution.

A major reason why clustering fails to help for uniform and Gaussian data may be that the

whole data set already forms a single linear space and there is no need to subdivide it.

For the mixture of gaussians data in Figure 4.1(c), LQH yields much better performance

than either ITQ or KMH. LQH performs well for two reasons. One is that a mixture of

Gaussians can be divided into a set of smooth linear subspaces where ITQ performs well.

The other is that, for each query, almost all of its true nearest neighbors reside in the top

few closest clusters explored by LQH. The chance of missing true nearest neighbors is very

small. It is interesting to note that although KMH is in some sense similar to K-means

clustering, it does not perform well on this test. Figure 4.1(d) presents the comparison on

a dataset composed of data samples living in a low-dimensional nonlinear subspace. LQH

approximates local neighborhoods of its nonlinear structure using linear subspaces; ITQ and

KMH do not. The recall@R curves show that LQH is a better fit than ITQ and KMH for

this kind of data. We suggest that LQH outperforms other methods on real datasets because

many reside in nonlinear low-dimensional subspace, and/or have multiple clusters.

4.2.2. Comparison between LQH and Others on Real Datasets: SIFT1M

and GIST1M. This section presents a comparison of LQH between other multiple state-of-

the-art hashing algorithms on two large-scale datasets with real data. One is SIFT1M dataset

and the other is GIST1M dataset. A brief of each dataset is described and experimental

results are shown. The performance of each algorithm is evaluated by recall@R curves.
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(c) Mixture of Gaussians
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Figure 4.1. Comparison of hashing approaches on 4 synthetic datasets

In the SIFT1M dataset, both the training and query data samples are local SIFT fea-

tures [35] extracted from the INRIA Holidays images [36]. In this dataset, there are 1 million

training data samples and 10000 queries. Each sample is a 128-dimension vector. For each

query, the ground truth nearest neighbors are defined as the 100 closest training samples in

terms of Euclidean distance. For KMH, we use the recommended parameter settings. For

SH, the radius in its RBF function is set to one half of the mean distance in the training

set. We present the recall@R curves at different bit-lengths: 32, 64 and 128 in Figure 4.2.

Note that the performance of the kernel version of ITQ (KITQ) is worse than ITQ when the
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number of bits is small, therefore we do not include KITQ in the comparison. Considering

the factors of efficiency and accuracy, we set the parameters of LQH, namely Nc, M and σ

as 16, 2 and 0.1 respectively in all of the following experiments.
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Figure 4.2. Recall@R curves on SIFT1M using 32, 64 and 128 bits

It can be observed in Figure 4.2 that the recall score of LQH is much higher than other

methods when the number of bits is small, as shown in the left and middle subplots. When

the number of bit is equal to 128, we see an interesting intersection of the LQH curve and

other curves such as KMH or ITQ. LQH works best when the number of retrieved nearest

neighbors is low, for example when R < 2000. In contrast, KMH and ITQ outperform LQH

as R becomes large. This result is within our expectation since we only explore at most the

top 2 closest clusters given a query. It is possible that there are some true nearest neighbors

of a query that lie in other clusters that never get selected. Therefore, the maximal recall

score will not achieve 100% even when R is very large. However, for many applications

such as recommender systems, retrieving a large number of candidates for a query is neither
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practical nor efficient. A much more important property of a hashing method is that it can

return a lot of relevant items when the number of retrieved items is limited, i.e., high recall

when R is small. Our proposed LQH is attractive from this perspective. LQH also works

better than the other methods when the number of encoding bits is small.

For the other dataset GIST1M, there are 1 million training data samples and 1000 queries.

These samples are color GIST global descriptors [37] extracted from a subsample of the tiny

image dataset [38]. Each sample is a 960-dimension vector. For each query, the ground truth

nearest neighbors are also defined as the 100 closest training samples in terms of Euclidean

distance. We present the same set of results as shown in Figure 4.3.
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Figure 4.3. Recall@R curves on GIST1M using 32, 64 and 128 bits

In Figure 4.3, we can see that LQH achieves the best performance in all cases. Again,

in all three cases, the recall@R curve is very steep at the lower range of R, which is highly

desirable for approximate nearest neighbor search. For instance, for the 32-bit case, the
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recall score given by LQH almost doubles the recall scores of ITQ and KMH when R is

small.

4.3. Comparing UnitQLSH to LQH

This section shows experimental results of UnitQLSH compared to LQH and other state-

of-the-art methods. Figure 4.4 shows the recall@R curves of different algorithms on SIFT1M

data using binary codes of 32 and 64 bits. The data are normalized to be length 1 for all

algorithms. AQBC is proposed by Gong et al. in [16]. QLSH (NonUnit) is created specifically

to show the advantages of UnitQLSH. It is similar to the proposed UnitQLSH, except that

the quantizers are not constrained to be on the unit hypersphere.

In Figure 4.4, it can be seen that all UnitQLSH, QLSH and LQH greatly outperform

AQBC, a state-of-the-art hashing method designed for unit-length data. Comparing QLSH

to LQH, we can see that when the number of bits is 32, QLSH performs slightly better than

LQH. Since QLSH takes advantage of both query and location sensitivity while LQH only

considers location sensitivity, it shows that query sensitive is helpful in this case. However,

when the number of bits becomes larger, e.g., 64 bits, LQH shows superior performance.

This reveals a potential drawback of QLSH: Since the quantization of training data is not

constrained to be unit length, the dot product of a query q (unit length) and a quantized

training sample x̂ measures x̂’s projection on q rather than the cosine of their angle. This

projection may not be a good approximation of their true cosine similarity. As demonstrated

by the superior performance of UnitQLSH, when the quantization is constrained to be unit

length, the true similarity between query and training data is very well preserved. Moreover,

the performance increase of UnitQLSH is very significant compared to others in both small

and large code lengths.
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Figure 4.4. Recall@R curve: Comparing UnitQLSH to QLSH, LQH and
AQBC on SIFT1M using 32 and 64 bits.

Although we only show the comparison on SIFT1M in Figure 4.4, we have found that

UnitQLSH always outperforms LQH in all of the future experiments using different datasets.

Therefore, we will not include LQH in our following experiments where we compare UnitQLSH

to other state-of-the-art methods.

4.4. Experimental Results of UnitQLSH on 3 Datasets

In this section, a number of experiments are performed that compare the proposed

UnitQLSH to multiple state-of-the-art algorithms on three large-scale datasets. Besides

SIFT1M and GIST1M, we adopt another challenging large-scale dataset called ImageNet to

further explore the potential of UnitQLSH.

In ImageNet, there are 14,197,122 images in total. Among these images, 1,261,406 of them

are associated with SIFT features. Also, 1000-dimensional Bag of Words (BoW) features

are computed using these SIFT features and are available on ImageNet website. More
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importantly, these images are associated with category labels so we can easily know how good

a retrieval is by looking at the label of the retrieved items. There are in total 1000 category

labels. We use these 1.2 million images to conduct an image retrieval task. The features

we use for these images are their 1000-dimensional BoW features. It should be noted that

the label information is not used since all methods in this paper are unsupervised. Among

these 1,261,406 images, we randomly pick 2 images from each category to form 2000 query

images. The rest of the images are used as our training/gallery set. The BoW features are

normalized. For each query, its ground-truth neighbors are defined as the closest 100 gallery

samples in terms of Euclidean distance, or equivalently, cosine similarity.

Section 4.4.1 shows the recall@R curves of different algorithms. Section 4.4.2 shows their

recall and precision within a fixed Hamming radius. Section 4.5 shows that the clustering

algorithm can be vastly accelerated. It also presents experimental results where the number

of clusters is varied to show how this is affecting the retrieval performance. Section 4.6

presents a practical perspective towards efficient retrieval in large-scale datasets. Section 4.7

presents the method of how to integrate UnitQLSH with a distributed system to handle an

extremely large amount of data.

4.4.1. Recall@R curves on 3 datasets. Figure 4.5 shows the recall@R curves of

different algorithms using 32, 64 and 128 bits on ImageNet. R denotes the number of

retrieved items. Note that for the case of 128 bits, KMH is too time-consuming to be

included in the comparison because the number of clusters has to be 216 in order to make

KMH work.

In these three plots, we can easily observe that UnitQLSH performs the best. Moreover,

the performance improvement is very significant compared to other state-of-the-art methods.

Also, we note that the two variants of UnitQLSH, Q-ITQ and NonUnit-QLSH are performing
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Figure 4.5. Recall@R curve: Comparing UnitQLSH to ITQ, KMH, AQBC,
Q-ITQ and NonUnit-QLSH using 32, 64 and 128 bits on ImageNet.

better than other state-of-the-art methods as well. It demonstrates the effectiveness of each

part of the proposed approach. In particular, the result of Q-ITQ demonstrates that the

query sensitivity is very useful and the result of NonUnit-QLSH shows that the integrating

location sensitivity with query sensitivity helps improve the retrieval performance. AQBC

performs poorly on this dataset. This may be due to the over-relaxation of its optimization

function. SELVE yields the lowest result compared to others.

Figure 4.6 shows the recall@R curves of different algorithms using 32, 64 and 128 bits on

GIST1M. Note that the performance of AQBC cannot be measured on this dataset because

AQBC only works on positive data while GIST1M contains negative data. Again, we observe

that UnitQLSH outperforms all other methods with small, median and large code lengths.

On this dataset, we can see that NonUnit-QLSH performs worse than Q-ITQ in all cases

and it performs the worst of all when the number of bits is 64, while UnitQLSH stay the

best. This result also shows that the constraint that the binary code should reside on the
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unit hypersphere is very helpful for the retrieval of unit-length data. Also, we see again that

Q-ITQ is working very well, which means that query sensitivity is playing an important role

in improving retrieval performance.
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Figure 4.6. Recall@R curve: Comparing UnitQLSH to ITQ, KMH, Q-ITQ
and NonUnit-QLSH using 32, 64 and 128 bits on GIST1M.

The same set of experiments are also conducted on SIFT1M. Figure 4.7 shows the

recall@R curves of different algorithms using 32, 64 and 128 bits. We observe a result similar

to the ImageNet dataset. One exception is that the relative performance of NonUnit-QLSH

drops significantly when the number of bits becomes large.

Another interesting finding in these plots is that when the number of bits is small, we can

see that NonUnit-QLSH outperforms Q-ITQ on SIFT1M and ImageNet. When the number

of bits increases, Q-ITQ performs better. This reveals a potential drawback of NonUnit-

QLSH: Since the quantization of training data is not constrained to be unit length, the dot

product of a query q (unit length) and a quantized training sample x̂ measures x̂’s projection

on q rather than the cosine of their angle. This projection may not be a good approximation
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Figure 4.7. Recall@R curve: Comparing UnitQLSH to ITQ, KMH, AQBC,
Q-ITQ and NonUnit-QLSH using 32, 64 and 128 bits on SIFT1M.

of their true cosine similarity. As demonstrated by the superior performance of UnitQLSH in

all cases, when the quantization is constrained to be unit length, the true similarity between

query and training data is very well preserved.

4.4.2. Precision and Recall within Fixed Hamming Radius on 3 Datasets.

Another important evaluation protocol of hashing methods is the recall and precision of

different algorithms when the retrieval is done within a Hamming radius of 1 and 2. Note

that since UnitQLSH computes a weight vector to weigh the Hamming distance, the weighted

Hamming distance is in general a floating point number with a much finer range of values.

To perform a fair comparison, we calculate the number of binary codes within a Hamming

radius of 1 and 2 for unweighted cases and retrieve the same number of binary codes for

UnitQLSH. For example, for a 32-bit case, we will retrieve 33 binary codes if the Hamming

radius is 1 and 529 binary codes if the radius is 2. More importantly, due to the weight

vector, we are able to rank the binary codes in a much finer level. As a result, we are able
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to plot the precision and recall scores when varying the number of retrieved binary codes

smoothly. In contrast, other conventional hashing methods are not able to distinguish binary

codes with the same Hamming distance to the query. Therefore, the number of binary codes

they retrieve will vary rapidly when increasing the Hamming radius. If one wants to retrieve

the first 2000 binary codes with 32 bits, random sampling needs to be done among all the

binary codes with a Hamming radius of 3, which can lead to a drop of accuracy. Using the

proposed UnitQLSH, one can conveniently adjust the number of binary codes to retrieve

nearest neighbors with high accuracy.

Figure 4.8 shows the average precision and recall scores of different algorithms at Ham-

ming radius of 0, 1 and 2. SELVE and AQBC performed poorly so their result is not

presented in the figure. The number of bits is 32 since the recall scores within a low Ham-

ming radius will be extremely low when the number of bits increases, which is not feasible for

real applications. We also show the number of retrieved binary codes within each different

Hamming radius in the figure. For conventional algorithms, there are actually only 3 points,

each corresponding to a Hamming radius, since that is the finest level to rank the binary

codes. However, for UnitQLSH, the number of binary codes can be ranked smoothly. In

this plot, we take a increasing step of 20 binary codes and plot the corresponding recall and

precision. Each dot on the line is one step. For some dots (if too many, text will overlap),

we show the number of binary codes so readers can have an idea of how the number of

retrieved binary codes can affect the precision and recall scores. Readers can easily estimate

the position of 529 binary codes (radius of 2) and 33 binary codes (radius of 1) on the line

to compare directly to other algorithms.

Before we compare the results in Figure 4.8, there is one additional important factor in

retrieval using binary codes that we need to bring up: the number of items that are retrieved.
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This number is important because it relates to the actual time spent on data retrieval in

practice. For retrieval in large-scale datasets, original data are often too large to be stored

in memory. Therefore, data samples are usually stored on local disks. What is stored in the

memory is a hash map. A hash map a data structure that can map keys to values. In this

case, the keys are the binary codes and the values are generally some sort of identifiers of the

corresponding data samples. A key property of hash maps is that, given any key, mapping

it to the associated value is extremely fast. Usually, the complexity of this mapping is either

O(1) or O(logn), depending on the implementation details. The hash map is very small

comparing to all the original data samples.

Therefore, only the hash map is small enough to be loaded into memory. It is well known

that disk I/O is much slower than accessing memory. Therefore, if a large number of items

are to be retrieved, the actual retrieval time can be long due to the disk I/O. As a result,

one would like the number of retrieved items to be small. Also, to retrieve a reasonable

number of true nearest neighbors with a limited number of retrieved items, the precision

should be high. The background color of Figure 4.8 shows the average number of retrieved

items corresponding to each precision-recall pair. The color bar on the right side shows

the mapping from a color to the actual number. The formula to calculate this number is

100 · recall/precision, where 100 is the number of true nearest neighbors for each query. To

show detailed gradation of the color, we set an upperbound of the color bar. The actual

range of the color bar is from 0 (close to vertical axis) to infinity (close to the horizontal

axis). However, it is impossible to capture this range. This is why we set an upperbound of

the color bar manually.

Comparing UnitQLSH to KMH and ITQ in Figure 4.8, we can see that at Hamming

radius of 0, 1 and 2, UnitQLSH yields good recall scores and much higher precision scores
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than others. At the same recall, UnitQLSH has much better precision scores. Both the

precision and recall of UnitQLSH are higher than KMH at the same number of retrieved

binary codes. Although ITQ has a higher recall score, its precision is very low and it

retrieves a lot more items with the same number of binary codes and thus is not appealing

in practice. UnitQLSH retrieves a more limited number of items with high precision, which

is very desirable in practice. Also, since UnitQLSH can rank binary codes in a finer level, a

user of UnitQLSH is able to gradually vary the number of binary codes to better meet the

needs of specific applications.

Figure 4.8. Precision vs. Recall curve: Precision and Recall with different
Hamming radius / numbers of binary codes for 32 bits on ImageNet. The
setting of this experiment is explained in detail in this section: Section 4.4.2

Figure 4.9 shows the precision and recall scores when varying the number of retrieved

binary codes on GIST1M. We observe again that, compared to the other two algorithms,

UnitQLSH yields very high precision and good recall scores. It yields much higher precision

when comparing to others at the same recall. ITQ has very low precision and it still retrieves
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a very large number of items even within a short Hamming radius, making it infeasible for

real large-scale retrieval applications. Compared to ITQ, KMH also has higher precision and

retrieves a small number of items. The precision and recall of UnitQLSH are higher than

KMH when the Hamming radius is 1 and 2.

Figure 4.9. Precision vs. Recall curve: Precision and Recall with different
Hamming radius / numbers of binary codes for 32 bits on GIST1M.

Figure 4.10 shows the precision and recall scores of UnitQLSH, KMH and ITQ when

varying the number of retrieved binary codes on SIFT1M. UnitQLSH yields higher precision

and recall than KMH at Hamming radius of 1 and 2. UnitQLSH also has higher precision

at the same recall, except in the one case where KMH outperforms UnitQLSH when only

a single binary code is retrieved. ITQ still has relatively high recall rates, but very low

precision, indicating the algorithm retrieves more items.

The result that ITQ is retrieving more items than UnitQLSH and KMH within the same

Hamming radius is interesting. Therefore, we plot the distribution of all the non-empty
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Figure 4.10. Precision vs. Recall curve: Precision and Recall with different
Hamming radius / numbers of binary codes for 32 bits on SIFT1M.

32-bit binary codes (binary codes containing at least one item) learned on training data for

each algorithm in Figure 4.11. The top, middle and bottom subplot corresponds to ITQ,

KMH and UnitQLSH, respectively. The horizontal axis shows the indices of binary codes

and the vertical axis shows the number of items mapped to the same binary code. We set an

upper bound of the vertical axis to be 1000 so that readers can see the details of the lower

range of the distribution. There are actually some binary codes containing more than 1000

items. In the title of each subplot, we also report the total number of non-empty binary

codes, the number of binary codes with 1, 2 and more than 2 items. For instance, the title of

the top subplot (ITQ) says: ”Total-720355, 1-620392, 2-52116, ¿=3-47847”. It means that

among all the binary codes learned by ITQ, 720355 of them correspond at least one data

sample. Among these 720355 samples, 620392 binary codes correspond to 1 data sample,

52116 binary codes correspond to 2 data samples and 47847 binary codes correspond to the

rest (great than or equal to 3 data samples).
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It can be seen that UnitQLSH and ITQ have the largest and smallest number of non-zero

binary codes, respectively. A number of codes in ITQ contain a lot of items while UnitQLSH

is more evenly distributed. The distribution of the code of KMH has certain properties of

both ITQ and UnitQLSH: It is not as evenly distributed as UnitQLSH but is more even

than ITQ. The reason why ITQ retrieves a large number of items within a small Hamming

radius can be explained as follows. For each query, there probably exist a few number of

binary codes within the Hamming radius that contain many items. This happens less often

using UnitQLSH and KMH.

Figure 4.11. Distribution of non-empty 32-bit binary codes learned using
ITQ, KMH and UnitQLSH on ImageNet.
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4.5. The Influence of Clustering Step

The first step of learning binary codes using UnitQLSH is to cluster the data using K-

means. Clustering is a very important step since data in the same local neighborhood are

better quantized with binary codes (a hyper-rectangle) compared to conducting quantization

in all the data. Moreover, during query time, only a few local neighborhoods are selected

for exploration, yielding higher accuracy and efficiency. However, clustering can be compu-

tationally expensive when the number of data samples, the number of dimensions of data or

the number of desired clusters is very large. Tricks can be applied to accelerate K-means.

One can apply K-means only on a subset of the data or find a better initialization instead

of a random initialization.

It may surprise some that the K-means implementation in MATLAB has a lot of room

for improvement, even without applying any of the approximation tricks mentioned above.

Deng [34] has made available a fast version of K-means in MATLAB. The acceleration is

achieved via a full vectorization of data and an adoption of sparse matrices to store the

index of each data sample. As a result, the computation can be highly parallel without

using any explicit parallelism. The time saving is tremendous: it only took about 7 minutes

to cluster one million data samples (each with 960 dimensions) into 16 clusters. Note that

this acceleration does not sacrifice the retrieval performance of UnitQLSH.

The number of clusters, denoted as K, should not be too small or too large. The reasons

are as follows. K roughly controls the size of each local neighborhood approximated by a

linear subspace. It seems that the smaller these neighborhoods are, the better they will be

approximated by linear subspaces. However, this is only true for continuously distributed

data samples. For real world cases, it is often incorrect to assume that data are continuously

distributed. Also, since a subset of the bits in binary codes are used to indicate the index
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of the cluster, fewer bits will be assigned to each cluster if the number of clusters becomes

large. Moreover, if K is too large, clustering will become very computationally expensive.

Figure 4.12 shows the recall@R curves when varying the number of clusters in training

UnitQLSH. This experiment is conducted on both SIFT1M and GIST1M. The number of

clusters K is set to 1, 8, 16, and 32 on both datasets. K = 1 is a special case where no

clustering is performed in the training. In all other cases where K is greater than 1, we

explore the 3 closest clusters when searching for nearest neighbors of a query.

It can be seen from Figure 4.12 that K = 1 performs poorly compared to others, in-

dicating that clustering plays an important role in improving the retrieval performance of

UnitQLSH. When K increases, the recall score increases in general. However, the increase

is not very significant. Considering both the computational burden of K-means and the

slight performance increase brought by large K, we have chosen K to be 16 in all of our

experiments.
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Figure 4.12. Recall@R curves of UnitQLSH when varying the number of clusters.
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4.6. Looking at Data Retrieval from a Practical Perspective

The number of bits for a binary code cannot be large because the total number of binary

codes will increase exponentially with respect to the number of bits. In our experiments, we

found that when the number of bits is 64, there are so many binary codes in the hash map

with no content that few items can be retrieved within a reasonable search range since the

number of data samples is 1 million. As a result, we regard 32 bits as a reasonable choice.

Beyond that, it can be difficult to conduct quick retrieval in practice.

Let us assume that we have already learned a binary code for each gallery/training data

sample. Given a query, we will first compute its binary code and then search similar binary

codes to retrieve its nearest neighbors. The time complexity required to retrieve its nearest

neighbors is then composed of two parts. One is the hash map lookup using binary codes as

indices: given a particular binary code, provide the data items associated with that binary

code. The other part is to load data samples given the content (e.g., indices of images) in

that binary code. As a result, the total complexity of finding nearest neighbors without any

post-processing can be formulated as: O(C1Nbc + C2Nimg). In this equation, C1 represents

the time spent on performing a look-up using a binary code in the memory and C2 the time

spent on loading a data sample from disk into memory.

Imagine the following application. Given a large-scale image dataset, the goal is to

provide the user, in real time, with a limited number of similar images when he/she provides

a query image. Often the dataset is too large to be loaded to memory so each image is stored

on a local hard disk. Once the hash map with binary codes is learned and built, each image

is concisely represented by a binary code. Therefore, the whole hash map can be loaded to

memory and look-ups can be done very quickly. Also assume that for each query, there are a

large number of gallery images similar to it. Our experiments show that C2 : C1 = 17826 : 1
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in Python language and C2 : C1 = 1000 : 1 in MATLAB. Although the ratio of C1 and

C2 differs in different programming languages, we can see that as long as the number of

retrieved binary codes is not extremely different among algorithms, the cost of hash map

lookup can be ignored during comparison. As a result, to retrieve the same amount of

actually similar images, algorithms with higher precision win. This is because they retrieve

fewer total images, yielding higher efficiency. This is a big advantage of UnitQLSH. Note

that post-processing is needed to filter truly similar images from all the retrieved images.

Hashing algorithms with higher precisions also have low post-processing overhead.

Another great advantage of UnitQLSH is that it ranks each binary code. Other traditional

algorithms do not rank binary codes, making it impossible to distinguish binary codes with

the same Hamming distance to a query. In the case of traditional algorithms, the number

of binary codes to retrieve increases exponentially with respect to Hamming distance. For

UnitQLSH, we can know what is the next binary code to retrieve. As a result, we can

conveniently adjust the number of binary codes to satisfy different needs.

4.7. Future Work: Extending UnitQLSH on a Distributed System

For the experiments presented in this thesis, training of UnitQLSH is performed by first

loading the whole data matrix into the memory of a single workstation. However, when the

number of data samples becomes extremely large, it is impossible to load the whole matrix

into memory. This is a common question when handling large-scale data. The learning of

hashing methods should be able to handle this scalability issue when they are adopted for

large-scale applications. In this section, I present a method of learning UnitQLSH when the

dataset is too large to be loaded into the memory of a single workstation.

There exist two key components of UnitQLSH, listed as follows.
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• K-means clustering

– Compute mean of each cluster

– Compute index of each data sample

• Optimization procedure shown in Equation 34

– Fix D and R, update B: B = sgn(Y ′(R)T )

– Fix R and B, update D: D = α diag(BTY ′RT )
||diag(BTY ′RT )||2

– Fix D and B, update R: compute SVD of Y ′TBD = UΣV T , then R = V UT

Let us assume that the number of data samples is so large that one machine cannot store

all the data samples in memory. In order for UnitQLSH to scale, the key components should

be able to scale easily. Given a distribution system with multiple commodity computers, the

data samples can be randomly partitioned and each partition is put on a different machine.

To cluster the data, the K-means algorithm needs to be able to alternate between the

two aforementioned steps in the list. The map-reduce system [39] proposed by Google offers

a good solution. To compute the mean of each cluster, mappers will emit an index-data pair.

Then reducers will take all the data samples of the same index and compute the summation

and the count of them. The average is then computed by dividing the summation by the

count. To compute the index of each data sample, mappers can directly compute the index

of each data sample. Reducers are not needed since there is no need to ”reduce” the result

from the mapper.

To scale the optimization procedure, the three alternating steps should be scalable. Since

the optimization is applied to each of the clusters independently, we show how the optimiza-

tion in one cluster can be scaled. Denote the number of data samples in the cluster as n,

the dimension of each data sample as d and the number of bits as b. In general, n is very

large, but d and b are reasonably small. The sizes of the related matrices are:
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• Y ′ ∈ R
n×d: normalized data samples

• B ∈ R
b×b: binary codes of data

• R ∈ R
b×d: matrix with orthonormal rows

• D ∈ R
d×d: diagonal matrix

Let us also make the reasonable assumption that the data and the corresponding binary

codes will always live on the same machine. In other words, we can partition data onto

different machines, but we never partition a data sample and its binary code.

The computation of B = sgn(Y ′(R)T ) is relatively simple. Since R is small enough to

store in the memory of each machine, each machine is responsible for computing the binary

codes of its own data. Then B would be the union of all the binary codes in all machines.

To compute D, we need to compute diag(BTY ′RT ). Since R is small, we only need to

show how to compute BTY ′. Also, since BTY ′ ∈ R
b×d is small as well, we will only show

how to compute the i, j-th element in BTY ′. Denoting the result of BTY ′ as Z, we have

Zi,j =
∑n

k=1 B
T
i,kY

′
k,j =

∑n
k=1 Bk,iY

′
k,j. Resorting to map-reduce, we can have mappers that

emit, for each data sample, the multiplication of the i-th value of its binary code and the

j-th value of the data vector. This can be easily done since these two values corresponding

to a data sample live on the same machine. Reducers can then sum up the emitted values

of all data samples, which gives Zi,j. After Z is obtained, D can be computed.

To obtain R, we need to obtain Y ′TBD, which is equal to ZTD. Also, note that ZTD ∈

R
d×d and D are also a small matrices. Since Z is already obtained from the previous step,

ZTD is convenient to compute. Then SVD can be conducted on a single machine to get R.

This section has presented the key components of UnitQLSH, namely the K-means al-

gorithm and the optimization procedure shown in Equation 34. Then the nice scalability

of these key components has been shown to handle extremely large datasets using a cluster
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of machines. Therefore, UnitQLSH is very useful in practice to handle real-world data that

can be very large.
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CHAPTER 5

Conclusion

5.1. A Summary of This Thesis

This thesis first introduces an approximate nearest neighbor search problem, which is

very important for various applications such as image retrieval, duplicate detection and rec-

ommender systems. Important related works are then divided into two major categories:

similarity based learning and quantization based learning. These works are carefully re-

viewed and critiqued. Then a novel approach proposed by us, Local Quantization Hashing,

is introduced. Its advantages and disadvantages are evaluated and discussed. Then a novel

approach called Unit Query and Location Sensitive Hashing (UnitQLSH) is proposed to solve

unsupervised approximate neighbor search problems in large-scale datasets. It is greatly im-

proved from LQH. UnitQLSH solves the drawbacks of Local Quantization Hashing (LQH) by

integrating query sensitivity with location sensitivity in the hashing scheme and introducing

a unit-length constraint of the quantizers.

UnitQLSH assumes that all data samples reside on a unit hypersphere centered at the

origin, i.e., data are unit-length. It is true that the original data coming from different

application domains are not unit-length. However, these data samples can be processed to be

unit-length during the feature extraction step because a lot of feature extraction techniques

normalize data to be unit-length. The similarity between two unit-length data samples is

defined as their inner product. It is equivalent to say that the distance between these two

data samples is defined as their Euclidean distance. Multiple local neighborhoods are first

located via certain clustering methods such as K-means. These neighborhoods can be well

approximated as linear subspaces, which is highly beneficial for our binary code learning.
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Another advantage of finding local neighborhoods is that, during retrieval, the search can be

constrained in a small number of local neighborhoods closest to the query, which makes the

search more efficient and accurate. After local neighborhoods are located, a hyper-rectangle

is learned for each local neighborhood such that the approximation/quantization error is

minimized when data samples in the same neighborhood are replaced by the closest vertex

on the hyper-rectangle. A very important constraint of the hyper-rectangles is that all their

vertices (binary quantizers) should be on the hypersphere. It is equally important that

enforcing this constraint helps improve retrieval performance.

Given a query, a weight vector is computed based on the query in each neighborhood to

rank the binary codes to be retrieved. This not only helps finely rank all the candidate binary

codes, but also makes the computed similarity more accurate since the query is directly used

in the computation without any quantization. This is called query sensitivity. Moreover,

as aforementioned, a small number of neighborhoods closest to the query is located first

to conduct the exploration. This is called location sensitivity. These two sensitivities and

the unit-length constraint on the binary quantizers make the retrieval highly efficient and

accurate.

Evaluations of UnitQLSH are conducted on SIFT1M, GIST1M and ImageNet, 3 large-

scale and challenging datasets. Under different evaluation protocols such as recall@R curves

and recall/precision curves, UnitQLSH stands out by a significant amount when compared

to other state-of-the-art hashing algorithms. In these evaluations, the merits of location

sensitivity, query sensitivity and the unit-length constraint are also demonstrated. More

experiments are also performed on evaluating the influence of the parameters in UnitQLSH,

such as K - the number of clusters. It is shown that K does not need to be large. A small

value of K is already able to achieve good performance. To summarize these experiments,
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UnitQLSH yields the best retrieval performance. More importantly, the performance im-

provement of UnitQLSH is very significant. For example, on the SIFT1M data the recall for

UnitQLSH is about 0.5 when R = 500 with 32-bit binary code. The next best result is for

the KMH algorithm yielding only about 0.25.

5.2. Some Thoughts about the Future for ANN Algorithms and Binary

Codes

In this thesis, the future work is discussed, which is to extend UnitQLSH on a distributed

system. This is needed when one single machine cannot handle a large-scale dataset in

practice. It is described in the future work how UnitQLSH can be extended to multiple

machines by exploring the scalability of each key components in UnitQLSH algorithm: the

clustering process and the optimization procedure. A map-reduce system is the key to

conveniently handle the scalability of each component. Although this is only a thought

experiment, the application of UnitQLSH to real tasks is very promising given the great

performance seen in the experiments.

The following discussion is beyond the scope of this thesis but important. The UnitQLSH

algorithm proposed in this paper assumes that the data are provides as they are and there is

no need to generate new representations of the data. In other words, the Euclidean distance

between data samples represents their true similarity. This is reasonable if no additional

information is known about the data. However, in many practical cases, there are some

additional constraints people would like to meet. As a result, it is important to learn a new

feature representation of the data that can make problems easier. Feature representation

is regarded as one of the most fundamental and difficult problems in computer vision. For

unsupervised data, finding nearest neighbors can be a very important step in generating

104



feature representations. UnitQLSH is able to solve this step for large-scale datasets. That

is to say, UnitQLSH may be integrated into a more sophisticated system that alters data

representation to better match the needs of a particular problem.

Another thought is about datasets. Currently, there are only a small number of large-

scale datasets available for academic researchers. Many researchers are using datasets of less

than 100K data samples in their experiments while still claiming them to be large-scale. It

became clear to me during my research that there is a gap between industry and academia.

Big Internet companies like Google and Facebook will never be short of data. They have so

many users and these users are contributing data to them all the time without even realizing

it. Frankly speaking, their data should also be more fun to play with. These companies

also have their own laboratories to carry out new ideas and new products. As a result, the

chances of connecting big companies with universities are sort of small. I personally would

like to see a much closer cooperation between academic researchers and big IT companies in

the future. It will provide academic researchers, especially PhD students, with a chance to

gain insights in real data and really enjoy the challenge.
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