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ABSTRACT

SENSITIVITY ANALYSIS OF THE BASIC REPRODUCTION NUMBER AND OTHER

QUANTITIES FOR INFECTIOUS DISEASE MODELS

Performing forward sensitivity analysis has been an integral component of mathematical

modeling, yet its implementation becomes increasingly difficult with a model’s complexity.

For infectious disease models in particular, the sensitivity analysis of a parameter known

as the basic reproduction number, or R0, has dominated the attention of ecology modelers.

While the biological definition of R0 is well established, its mathematical construction is

elusive. An index with a concrete mathematical definition that in many cases matches the

biological interpretation of R0 is presented. A software package called sensai that automat-

ically computes this index and its sensitivity analysis is also presented. Other “quantities

of interest” that provide similar information to R0 can also be implemented in sensai and

their sensitivities computed. Finally, some example models are presented and analyzed using

sensai.
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Chapter 1

INTRODUCTION

Mathematical modeling has provided researchers with more knowledge about real world

systems. Mathematical models are used in many disciplines including physics, chemistry,

biology, engineering, economics, and computer science, among many others. Anything that

changes can be modeled mathematically. These models provide better understanding to the

physical components of the system and allow the researcher to make better predictions about

the system’s behavior.

Typically, deterministic models are performed in two ways. First, if the data are known

at a discrete set of times, the model is structured as a map, or discrete-time dynamical

system. Alternatively, if the data can be obtained or interpolated well over any time, the

model is given by differential equations, or continuous-time dynamical system. Chapter 2

will develop the notation and provide examples of both discrete and continuous models.

A mathematical model does not provide much information until it is analyzed. Two

popular methods of analysis are sensitivity and elasticity. Sensitivity analysis tells the re-

searcher which parameters in the model have the most influence over a quantity of interest.

Elasticity analysis is just a scaled version of this information based on the magnitudes of

the parameters. Chapter 3 will define sensitivity and elasticity analysis for discrete and

continuous systems.

For ecological models, another common analytical tool is the basic reproduction number,

or just R0. If the model concerns the progression of an infectious disease, R0 is defined such

that if the value is above a certain threshold, the disease will persist in a population, but if

it is below that threshold, the disease will eventually be removed with no external manipu-

lations. R0 is defined as the number of secondary infections produced by a single infected

1



individual introduced in a wholly susceptible population. While this number has a well-

defined biological meaning, its mathematical definition is ambiguous. Chapter 4 introduces

R0 and some of its drawbacks.

A consistent method of defining R0 with a clear mathematical interpretation is presented

in Chapter 5 for differential equation models and Chapter 6 for map models. Even still, this

construction may not always represent the biological definition of R0. This primary goal of

this dissertation is to explore an alternative to R0 that is equally informative, but unlike R0,

has a consistent and straightforward mathematical definition. It is hypothesized that this

is achieved by using a software package called sensai, which computes the sensitivity and

elasticity analysis over the entire course of discrete or continuous models. The features of the

software are discussed in Chapter 7. Examples will be presented in Chapter 8 illustrating

the effectiveness of the new methods as compared to the analysis using R0 when R0 is well-

defined. Examples when R0 fails either mathematically or biologically are also presented

in Chapter 9. Finally, models with nice block structure will be examined under iterative

techniques and evaluated in sensai in Chapter 10.
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Chapter 2

DYNAMICAL MODELS

2.1 Discrete-time Models

Suppose the system to be modeled is such that the data are collected at a discrete

set of times. A discrete-time dynamical model is appropriate for such a system. This is a

very common structure for an ecological model. For example, a species may only reproduce

a specific time of year, yielding a large growth in one season rather than steady growth

through the year. Or, another species may be migratory, making it difficult to collect data

when they are away. Yet another example is that a species may have different stages in their

growth. While an individual may grow continuously, the only pertinent information may be

whether or not that individual is considered a juvenile, young adult, adult, etc... In each of

these examples, a discrete-time model is appropriate.

The following notation will be used for discrete models. Let x be the vector of the

variables in consideration, p be the vector of parameters, and z be the initial conditions for

the model. The basic iterative process considered is the map

x(t+ 1,p) = h
(
x(t,p), p

)
x(0) = z

 (2.1)

where the vector of variables x ∈ RM, the vector of parameters p ∈ RK, and the vector of

initial conditions z ∈ RM.

Many systems converge to an equilibrium solution. Define an equilibrium solution x?(p)

if the following is satisfied:

h
(
x?(p), p

)
= x?(p). (2.2)
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That is, if the map h is applied to a state in equilibrium x?, no change occurs. Not all

models converge to an equilibrium. A system may grow asymptotically in time, it may

oscillate about two or more values, it may exhibit chaotic behavior, etc.

2.1.1 Hantavirus Model

Consider the following discrete model of hantavirus, a disease of wild rodents that is

communicable to humans [1]. The model assumes that rodent survival is not affected by

the infection, there is no vertical transmission of the infection, and that all rodents are

reproductive as there are an equal number of male and female rodents. This model is a type

of SI-model, where the S stands for susceptible and the I stands for infective. Both male

and female rodents are modeled, resulting in four state variables, Sm, Im, Sf , and If . The

model is established by by progressively combining birth, infection, and growth functions.

First, the harmonic mean birth function is defined as follows:

B(Nm, Nf ) =
2bNmNf

N
(2.3)

where Nm = Sm + Im is the total number of males, Nf = Sf + If is the total number of

females, N = Nm + Nf is the total number of rodents, and b > 0 is the average litter size.

The birth rate B varies with the population, an example of a common modeling procedure

known as density dependence. If a parameter describing a rate is fixed, that parameter is

density independent. Density dependence makes this model more realistic. The expected

number of births should increase as the ratio of males to females approaches 1:1. Define the

probability of infection via a Poisson probability distribution:

p(k) =
e−λλk

k!
(2.4)

where k is the number of contacts that result in an infection and λ is the average number of

contacts per susceptible in a time step. The probability that a rodent will become infectious
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is 1−p(0), as at least one contact must be made for a susceptible rodent to become infective.

From chemistry the law of mass action requires that the rate of change of the reaction is

proportional to the product of the reactants. If this is applied to the average number of

contacts by susceptible males to infected males or females, then λSm = (βmIm + βfIf )Sm,

where βm and βf are the infection rate constants of males and females, respectively. Then,

solving for λ and using (2.4) with k = 0 yields

p(0) = e−βmIm−βf If . (2.5)

The probability of remaining noninfectious also exhibits density dependence, as p(0) is

a function of I. The infection rate will change based on the density of the population. The

model assumes that βm � βf > 0 due to male aggressiveness. That is, contact from male

to male is much greater than contact from female to either male or female. For susceptible

females, the value of λ is different, resulting in

p(0) = e−βf Im−βf If . (2.6)

Now introduce logistic growth to model by

D(N) =
K

K + (b/2)N
. (2.7)

Let each term be scaled by this logistic factor. Logistic growth is another form of density

dependence on survival. Now the model has density dependent birth, transmission, and
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survival rates. The model equations are finally established as

Sm(t+ 1) =
[B

2
+ e−βmIm(t)−βf If (t)Sm(t)

]
D(N)

Im(t+ 1) =
[
(1− e−βmIm(t)−βf If (t))Sm(t) + Im(t)

]
D(N)

Sf (t+ 1) =
[B

2
+ e−βf Im(t)−βf If (t)Sf (t)

]
D(N)

If (t+ 1) =
[
(1− e−βf Im(t)−βf If (t))Sf (t) + If (t)

]
D(N)


(2.8)

An example solution, using the initial conditions (Sm(0), Im(0), Sf (0), If (0)) =

(499, 1, 500, 0) which correspond to introducing one infected male in the population of sus-

ceptible individuals, is given in Figure 2.1. The measure of the time step is approximately

the gestation period plus the time to sexual maturity, which is roughly two to three months.

The solution is carried out to 10 time steps ≈ 2 years. The parameter values are given by

Table 2.1. Notice that the equilibrium proportion of infected individuals is
I?m + I?f
N?

= 25%.
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Figure 2.1: Hantavirus Model with Infection Introduced. The plot was created by the
software package sensai, discussed in Chapter 7.

The model gives some insight to the course of the infection, but on its own, discloses

little information of how to counteract the infection. What is the best strategy to reduce

the infection in the population? Is there one that will eliminate the infection from the

population? The answer to these questions will be pursued in Chapters 3 and 4.
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Table 2.1: Parameter Values for Hantavirus Model, units of βf and βm are T−1, where T is
the time of gestation plus the time until sexual maturity, units of K and b are population.

Parameter Numerical Value Interpretation

K 1000 Carrying capacity
βf 0.09 Infection rate for females
βm 0.9 Infection rate for males
b 6 Average litter size

2.2 Continuous-time Models

Now consider continuous-time models in the form of ordinary differential equations

(ODEs). The notation used for such models is as follows:

ẋ(t,p) = h
(
x(t,p), p

)
x(0) = z

 (2.9)

where the dot above the x represents differentiation with respect to time, x ∈ RM,p ∈ RK,

and the initial conditions z ∈ RM.

Again, define an equilibrium solution x?(p) if

h
(
x?(p), p

)
= 0. (2.10)

That is, the rate of change of a state in equilibrium is 0. This is a different definition than

(2.2), but the principle that the solution is unchanging is the same. There are many other

possible solutions to continuous time systems besides equilibrium solutions, the forms of

which are well studied and can be found in any differential equations text.
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2.2.1 Typhoid Model

Consider the following differential equations model of Typhoid fever [2]. This model has

nine classes as follows: 

x1

x2

x3

x4

x5

x6

x7

x8

x9



=



susceptibles

incubating noninfectious

incubating infectious

sick infectious

sick noninfectious

temporary carrier

permanent carrier

short resistance

long resistance


where each xi is a population density. This model crudely follows the structure of an SIR-

model, where S stands for susceptible individuals, I stands for infected individuals, and

R stands for recovered individuals. Here, there are several classes that can be deemed

“susceptible” and multiple others that are “infectious.” Define y = x3 + x4 + x6 + x7 to

be the density of all infectious individuals. The dynamics are modeled by the following

equations.
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ẋ1 = −(ρ12 + ρ13)x1y + ρ41x4 + ρ51x5 + ρ61x6 + ρ81x8 + ρ91x9 − µx1 + µ

ẋ2 = ρ12x1y − (ρ23 + ρ24 + ρ25 + µ)x2 + ρ32x3

ẋ3 = ρ13x1y − (ρ32 + ρ34 + ρ35 + µ)x3 + ρ23x2

ẋ4 = ρ24x2 + ρ34x3 + ρ54x5 − (ρ41 + ρ45 + ρ46 + ρ48 + µ)x4

ẋ5 = ρ25x2 + ρ35x3 + ρ45x4 − (ρ51 + ρ54 + ρ58 + µ)x5

ẋ6 = ρ46x4 − (ρ61 + ρ67 + ρ68 + µ)x6

ẋ7 = ρ67x6 − µx7

ẋ8 = ρ48x4 + ρ58x5 + ρ68x6 − (ρ81 + ρ89 + µ)x8

ẋ9 = ρ89x8 − (ρ91 + µ)x9



(2.11)

The reader may wish to verify that
9∑
i=1

ẋi = 1 to see that the total population stays

constant. Note that
9∑
i=1

xi = 1 as the variables are population densities. The parameter

values and interpretations are given by Table 2.2. Like most SI-models, the appearance of

a new infection occurs in proportion to a contact with an infected individual. In its simplest

form, a new infection will appear in the form +βSI, where β is the infection rate, and

the product SI represents contact among a susceptible and an infected individual. In the

typhoid model, an example of this is the first term of the second equation: ρ12x1y. Here, the

parameter ρ12 is an infection rate, and the product x1y is contact between the susceptible

individual and any of the infected classes. These new infections will appear in state x2,

and come from the states in x1. Notice the corresponding term is subtracted from the first

equation. Once constructed, the modeler may solve the system and plot the course of the

infection in time. An example solution, using the initial conditions (0.99, 0, 0.01, 0, 0, 0, 0, 0, 0)

which correspond to introducing 1 incubating infectious individual in the population of total

size P = 100, is given in Figure 2.2. The measure of the time step is in days; equilibrium is

9



reached in approximately 100,000 days ≈ 274 years. Notice that the equilibrium density of

infected individuals is y? = x?3 + x?4 + x?6 + x?7 = 14.7%.
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Figure 2.2: Typhoid Model with Infection Introduced. The plot was created by the software
package sensai, discussed in Chapter 7.

Again, the model gives some insight to the course of the infection, but does not clearly

describe how to control the infection.
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Table 2.2: Parameter Values for Typhoid Model according to Bailey, all units are days−1.
Note that each ρij is a transfer rate from state i to state j.

Parameter Numerical Value Interpretation

ρ12 8.43381× 10−3 Infection rate
ρ13 8.51900× 10−5 Infection rate
ρ23 2.85720× 10−3 Transfer rate from state of incubation
ρ24 6.78585× 10−2 Transfer rate from state of incubation
ρ25 7.14300× 10−4 Transfer rate from state of incubation
ρ32 7.14300× 10−4 Transfer rate from state of incubation
ρ34 6.42870× 10−2 Transfer rate from state of incubation
ρ35 6.42870× 10−3 Transfer rate from state of incubation
ρ41 3.46000× 10−3 Transfer rate from state of sickness
ρ45 3.46000× 10−3 Transfer rate from state of sickness
ρ46 3.46000× 10−3 Transfer rate from state of sickness
ρ48 2.40124× 10−2 Transfer rate from state of sickness
ρ51 3.46000× 10−3 Transfer rate from state of sickness
ρ54 6.92000× 10−3 Transfer rate from state of sickness
ρ58 2.40124× 10−2 Transfer rate from state of sickness
ρ61 1.11100× 10−3 Transfer rate from temporary carrier
ρ67 3.33300× 10−3 Transfer rate from temporary carrier
ρ68 6.66600× 10−3 Transfer rate from temporary carrier
ρ81 2.74000× 10−4 Transfer rate from short resistance
ρ89 2.46600× 10−3 Transfer rate from short resistance
ρ91 2.74000× 10−4 Transfer rate from long resistance
µ 5.48000× 10−5 Overall birth and death rate
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Chapter 3

SENSITIVITY AND ELASTICITY ANALYSIS

3.1 Sensitivity Analysis

Sensitivity analysis is extremely important for mathematical models. Sensitivity anal-

ysis studies the variation of the outputs of a model caused by variations in the inputs. In

essence, sensitivity analysis determines which parameters and initial conditions (inputs) af-

fect the quantities of interest (outputs) of the model the most. The first reason why this

analysis is important is that it tells the researcher which parameters deserve the most nu-

merical attention. A highly sensitive parameter should be carefully estimated as a small

variation in that parameter will lead to large quantitative changes to the quantity of interest

and may even produce qualitatively different results. Qualitative changes to a quantity of

interest fall under the scope of bifurcation theory and will not be explored in great detail

here. An insensitive parameter, on the other hand, does not require as much effort to es-

timate as a small variation in that parameter will not produce large changes to a quantity

of interest. Many times in model analysis, the most sensitive parameters are also the most

well established in the sense that the values do not change much from one time period to the

next. If this is the case, the second reason for sensitivity analysis becomes more pronounced.

That is, sensitivity analysis highlights which parameters should be attacked in management

strategies. One goal of mathematical modeling is to determine what the current outcome of

a system may be, and if necessary, discover how to change any negative outcomes. Changing

the values of the most sensitive parameters will be the most effective strategy in changing the

results of the model. The modeler will then implement any applicable real-world scenarios

that will change the value of the most sensitive parameter to obtain the most control over

the outcome.
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The sensitivity is computed by finding the derivatives of each variable with respect to

each parameter at any time t.

3.1.1 Sensitivity for Maps

First, write the model equations component-wise. For maps, the equivalent component-

wise form of (2.1) is

xi(t+ 1,p) = hi(x(t,p),p)

xi(0) = zi

 , i = 1, . . . ,M. (3.1)

Notice that the equation for state xi may depend on any state from x and not just xi.

Define the sensitivity of the ith solution variable with respect to the kth parameter Si,k as

Si,k =
∂xi
∂pk

. (3.2)

The sensitivities of all variables with respect to all parameters is given by differentiating

(3.1) with respect to the kth parameter pk,

∂xi
∂pk

(t+ 1) =

(
M∑
m=1

∂hi
∂xm

∂xm
∂pk

(t)

)
+
∂hi
∂pk

(t)

∂xi
∂pk

(0) = 0

 i = 1, . . .M, k = 1, . . .K. (3.3)

Similarly, the sensitivity of the ith solution variable xi with respect to the jth initial

condition zj, is given by by differentiating (3.1) with respect to zj,

∂xi
∂zj

(t+ 1) =

(
M∑
m=1

∂hi
∂xm

∂xm
∂zj

(t)

)
+
∂hi
∂zj

(t)

∂xi
∂zj

(0) = δij

 i = 1, . . . ,M, j = 1, . . .M. (3.4)

where δij is the Kronecker delta: δij = 1 if i = j and 0 otherwise.
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3.1.2 Sensitivity for ODEs

Sensitivities for ODE models is defined in a similar fashion. The equivalent component-

wise form of (2.9) is

ẋi(t,p) = hi(x(t,p),p)

xi(0) = zi

 , i = 1, . . . ,M. (3.5)

Then the sensitivities for ODEs can be obtained by differentiating (3.5) with respect to

the kth parameter pk, and then reversing the order of differentiation on the left-hand side.

∂

∂pk
(ẋi(t)) =

(
M∑
m=1

∂hi
∂xm

∂xm
∂pk

(t)

)
+
∂hi
∂pk

(t) i = 1, . . . ,M, j = 1, . . .M

d

dt

(
∂xi
∂pk

(t)

)
=

(
M∑
m=1

∂hi
∂xm

∂xm
∂pk

(t)

)
+
∂hi
∂pk

(t) i = 1, . . . ,M, j = 1, . . .M

.

Using the notation in (3.2), the sensitivity equations are then

dSi,k
dt

(t) =

(
M∑
m=1

∂hi
∂xm

Sm,k(t)

)
+
∂hi
∂pk

(t)

Si,k(0) = 0

 i = 1, . . .M, k = 1, . . .K (3.6)

The sensitivity equations for ODE models are ODEs themselves. Once solved, the

sensitivities can be known for all times t. Similarly, the sensitivity ODEs for initial conditions

is given by by differentiating (3.5) with respect to zj, and using the notation that Yi,j = ∂xi
∂zj

,

dYi,j
dt

(t) =

(
M∑
m=1

∂hi
∂xm

Ym,j(t)

)
+
∂hi
∂zj

(t)

Yi,j(0) = δij

 i = 1, . . . ,M, j = 1, . . .M. (3.7)

where δij is the Kronecker delta.
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3.2 Elasticity Analysis

Another equally important analytical tool is elasticity analysis. This is just a scaled

version of sensitivity analysis. Elasticity analysis is useful when the sensitivity of a certain

parameter is extremal only due to the relative magnitude of that parameter to other param-

eters. For example, suppose a model has three parameters with values p1 = 10, p2 = 7, and

p3 = 0.001. Also suppose an equilibrium solution of the model is x? = p1p2
p3

= 70000. Then,

the sensitivity of the equilibrium with respect to p3 is d
dp3

(p1p2
p3

) = −p1p2
p23

= −7 × 107. The

sensitivity with respect to p2 is d
dp2

(p1p2
p3

) = p1
p3

= 104, a difference of four orders of magni-

tude. The sensitivity of p3 is extremely high compared to that of p1 and p2 simply because

of the scale of p3. A relative change in parameters will show the sensitivity analysis may

be misleading in this example. If p2 is decreased by ten percent to 6.3, the new equilibrium

will be x? = 63000. But, if the seemingly more sensitive parameter p3 is increased by ten

percent to 0.0011, then the new equilibrium will be x? = 63636. Notice that the sensitivities

of x? to p2 and p3 are opposite in sign, so a reduction in one parameter should be compared

to an increase in the other parameter. While it is true that p3 proved to be more sensitive,

the magnitude of the sensitivity is misleading. Even though p3 has a sensitivity that is 7000

times greater in magnitude than that of p2, attacking p3 instead of p2 changed the equilib-

rium similarly. To reduce this effect, consider a scaling of Si,k by the sizes of the parameters.

Let

∆ξ =
∆x

x
and ∆κ =

∆p

p

be the relative changes of x and p respectively. The relative sensitivity of x with respect to

p is defined by the limit of the relative change in x as the relative change in p approaches

zero, which is the derivative

∂ξ

∂κ
= lim

∆κ→0

∆ξ

∆κ
=
p

x
lim

∆p→0

∆x

∆p
=
p

x

∂x

∂p
.

15



Define the elasticity of the ith variable with respect to the kth parameter, Ei,k as

Ei,k(t) =
pk(t)

xi(t)

∂xi
∂pk

(t). (3.8)

Elasticities with respect to initial conditions are defined in a similar fashion.

Recall the example of the three parameters and compute the elasticities. The elasticity

of the equilibrium solution with respect to p3 is -1, and the elasticity of the equilibrium

solution with respect to p2 is 1. This result is more intuitive as the equilibrium is simply a

quotient of the parameters. The negative sign indicates that an increase in this parameter

will produce a decrease in the value, as expected.
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Chapter 4

THE BASIC REPRODUCTION NUMBER

This chapter discusses another analytical tool for ecological models known as R0. This

number, called the basic reproduction number (or rate, or ratio), has been widely used in

infection models and is defined as the average number of secondary cases arising from a

single primary case in a very large population of susceptibles [3]. It is primarily used as a

threshold parameter: if R0 < 1, the disease will fade out of the population, but if R0 > 1,

the disease will persist and become endemic to the population. Furthermore, the larger the

magnitude of R0, the faster the disease will spread, and presumably the more difficult it

will be to control. While R0 is a great concept of biology and has been widely used since

its first application in 1952 by George MacDonald [12], the mathematical definition of R0 is

problematic and in some cases ambiguous.

4.1 Methods of Calculating R0

There are several different methods in which R0 can be calculated. Some common

methods of constructing R0 are the survival function method, the Next Generation method,

existence of an endemic equilibrium, final size equation, constant term of the characteristic

polynomial, etc. Many of them yield different values of R0 for the same model, and many

methods produce different values of R0 based on what the modeler considers to be appropri-

ate. Each method derives its conditions from the threshold nature of R0, yet many of these

methods produce a value that is not consistent with the biological definition.

It is important to understand that employing one of the methods at random does not

guarantee the calculation represents the number of secondary infections arising from a single

infected individual. Many methods produce different values for R0 even in the same system.
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How can two different values simultaneously represent the number of secondary infections

from a single infected individual? If more than the threshold capability of R0 is of concern,

careful consideration should be taken when using a method to calculate R0.

4.2 The Next Generation Method

Perhaps the most common method of calculating R0 is the Next Generation method.

This approach places appropriate terms from the infected class equations into the vectors

F and V . Terms that describe appearances of new infections belong in F , and terms that

describe a transfer of existing infections belong in V and should be negated. The Jacobian

matrices obtained by differentiating F and V with respect to the relevant subset of variables

are computed and evaluated at a nontrivial disease-free equilibrium (DFE), resulting in the

matrices F and V , respectively. The Next Generation Matrix for ODEs is defined as FV −1.

Finally, R0 = ρ(FV −1), where ρ(·) is the spectral radius operator. The (i, j) entry of this

matrix is the expected number of new infections currently in state xi that originated from

state xj [15]. The Next Generation Matrix for maps is defined similarly as F (I−T )−1, where

T = −V . This is quite suitable to the biological definition of R0 and works in many, but

not all, examples.

Because of its mathematical foundation, developed in Chapter 5 for ODEs and Chapter

6 for maps, this method of calculating R0 will be chosen for implementation into sensai (see

Chapter 7). While it has its drawbacks, it is perhaps the most common method for R0, and

it has a definitive mathematical interpretation so that the user may know exactly what this

index represents.

4.3 R0 Failures

Most biologists will claim that there is only one value of R0 for any model. While that

may be true, there are many indices that exhibit the same threshold behavior. The Next

Generation method only guarantees that R0 maintains the threshold nature, but does not

18



guarantee that it accurately describes the number of secondary infections. Suppose the Next

Generation R0 = 2. Because R0 > 1, it is guaranteed that infection will persist in the

population, but it is not guaranteed that one infected individual will produce two secondary

infections; it may be three, or 1000, or 1 + ε. Similarly, if the index is R0 = 0.5, it is

guaranteed that the infection will die out, but it is not necessarily true that one infected

individual will produce an average of 0.5 secondary infections. Checking to see if the “R0”

in question exhibits the threshold behavior is not a exhaustive assessment for determining

the validity of R0. It is easy to construct a model with two indices that exhibit the same

threshold, one of which has nothing to do with the average number of secondary cases arising

from a single primary case. While both indices are endowed with a threshold nature, they can

not both simultaneously represent the number of secondary infections from a single infected

individual. This point is illustrated in Section 9.1 by two models that have the exact same

solution trajectories but different values of R0. Each model’s R0 is a threshold for the other,

though each R0 is not epidemiologically correct for both models.

Furthering the difficulties of R0, there is an entire class of models that is not compatible

with the Next Generation construction. Some examples of this model type where the Next

Generation R0 is not valid are presented in Section 9.2. The examples are current and

relevant research, and the assumptions made which invalidate the Next Generation R0 are

appropriate.

Finally, an example is presented in Section 9.3 where the Next Generation R0 seems

to fail the threshold criterion, even though it passes the conditions to the mathematical

theorems. If a finite amplitude disturbance is introduced in the population rather than a

single infected individual, R0 may be less than one with the persistence of the disease in

the population. The theorem on R0 only ensures the persistence of infection under small

disturbances of ε > 0 and does not provide any information on finite amplitude disturbances,

even though an increase of one infected individual is itself a finite amplitude disturbance.

19



It does not make biological sense to introduce ε > 0 infected individuals to the population,

though this is actually what is proved for the Next Generation R0.
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Chapter 5

MATHEMATICAL FOUNDATIONS FOR R0 IN ODES

The goal of this chapter is to provide a mathematical foundation for the quantity R0.

A series of theorems will show that if a vector x? is a disease-free equilibrium, it is locally

asymptotically stable if R0 < 1 and unstable if R0 > 1, where R0 is the spectral radius of

the Next Generation Matrix, R0 = ρ(FV −1) [15].

5.1 Definitions

The following definitions will be used in proving the main theorem for R0.

Definition. The spectral radius of an n × n matrix A with eigenvalues λi, i = 1, . . . , n, is

the maximum modulus of any eigenvalue λi, ρ(A) = max
1≤i≤n

(|λi|).

Definition. A matrix (or vector) A is nonnegative, written A ≥ 0, if each element of A is

nonnegative. The notation A > 0 will be used if every element of A is strictly positive.

Definition. A nonnegative matrix A is irreducible if it is not the 1×1 zero matrix and it can

not be expressed as PAP−1 =

A11 A12

0 A22

, where A11 and A22 are nontrivial square block

matrices and P is a permutation matrix.

Definition. If A is an n × n matrix such that aij ≤ 0 for all i 6= j, then A has the

Z-sign pattern.
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Definition. If A is an n×n matrix such that A = sI−B where s > 0, I is the n×n identity

matrix, B ≥ 0 entry-wise, and s ≥ ρ(B), then A is an M-matrix. Further, if s > ρ(B), then

A is a nonsingular M-matrix. If s = ρ(B), then A is a singular M-matrix.

Immediately, one will notice that the representation of A = sI − B with B ≥ 0 is

the Z-sign pattern. The only added stipulations for being an M-matrix are that s > 0 and

s ≥ ρ(B).

5.2 The Perron-Frobenius Theorem

The Perron-Frobenius Theorem will be used in the theorem defining R0 for both discrete

and continuous systems. This theorem is well known and can be found in many texts, such

as [4], [8], and [10].

Theorem 5.2.1. Perron-Frobenius Theorem. Let P be an irreducible, nonnegative matrix.

Then

(a) The spectral radius of P is positive and an algebraically simple eigenvalue of P with

corresponding unique left and right positive eigenvectors.

(b) The spectral radius of P is the unique eigenvalue with a (left and right) positive eigenvec-

tor. Furthermore, there are no other positive eigenvectors of P except the one associated

with the spectral radius.

(c) If any entry of P increases, the spectral radius also strictly increases. If any entry of P

decreases, the spectral radius also strictly decreases.

Proof of the theorem may be found in [8], Theorem 8.4.4.
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5.3 Equivalent Conditions for an M-matrix

There are several (over 50) equivalent definitions for an M-matrix. The following will

be useful for proving the stability condition of R0. The first lemma is not an equivalent

condition, but will be used to prove Lemma 5.3.2 which is an equivalent condition for an

M-matrix. This can be found as Lemma 2.1 of [4].

Lemma 5.3.1. For a nonnegative matrix T , ρ(T ) < 1 ⇐⇒ (I − T )−1 exists and is

nonnegative.

Proof. The proof follows the arguments in [4].

(⇒) Let ρ(T ) < 1.

Consider the telescoping series (I − T )(I + T + T 2 + ...+ T k) = I − T k+1. As k →∞,

lim
k→∞

(I − T )(I + T + T 2 + ...+ T k) = lim
k→∞

(I − T k+1) (5.1)

Since ρ(T ) < 1, T k+1 → 0 as k →∞, so the right-hand side of (5.1) is I. Then,

(I − T ) lim
k→∞

(I + T + T 2 + ...+ T k) = I. (5.2)

By (5.2), the series
∞∑
i=0

T i inverts (I − T ). Since T is nonnegative, (I − T )−1 ≥ 0.

(⇐) Suppose (I − T )−1 exists and is nonnegative.

By Theorem 5.2.1, Tx = ρ(T )x for some x > 0. Then,

x− Tx = x− ρ(T )x

(I − T )x = (1− ρ(T ))x
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That is, 1− ρ(T ) is an eigenvalue of I − T . Since the eigenvalues of the inverse of a matrix

are the inverse of the eigenvalues,

(I − T )−1x =
1

1− ρ(T )
x (5.3)

Notice that ρ(T ) 6= 1, as (I − T )−1 exists, so (5.3) is well-defined. If ρ(T ) > 1, then the

quantity
1

1− ρ(T )
< 0. Since x > 0, the right hand side of (5.3) is negative. But, since the

product of a nonnegative matrix (I−T )−1 with a nonnegative vector x is always nonnegative,

the right hand side of (5.3) is nonnegative. This is a contradiction. Therefore, ρ(T ) < 1.

�

The first equivalent condition presented is that nonsingular M-matrices are inverse pos-

itive. This may be found as Theorem 2.3 N38 of [4].

Lemma 5.3.2. A is a nonsingular M-matrix ⇐⇒ A has the Z-sign pattern and A−1 ≥ 0.

Proof. The proof follows the ideas in [4]. By Lemma 5.3.1,

ρ(T ) < 1 ⇐⇒ (I − T )−1 ≥ 0 (5.4)

Define T = B/s with s > 0. Then (5.4) becomes

ρ(B/s) < 1 ⇐⇒ (I −B/s)−1 ≥ 0

ρ(B) < s ⇐⇒ (I −B/s)−1 ≥ 0

Multiplying the right-hand side by s−1 > 0 gives

ρ(B) < s ⇐⇒ (sI −B)−1 ≥ 0
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Since A has the Z-sign pattern, define A = sI −B. Then

ρ(B) < s ⇐⇒ A−1 ≥ 0

That A = sI −B with ρ(B) < s is exactly the statement that A is a nonsingular M-matrix.

This proves the lemma.

�

The next condition states that nonsingular M-matrices are positive stable. This is the

key property in the proof of the main theorem on R0, which concerns the stability of a

disease-free equilibrium. Furthermore, some references, such as [9], use this condition as the

definition of an M-matrix. The lemma is also found as Theorem 2.3 G20 of [4]. In the proof,

the notation λX means λ is an eigenvalue for the matrix X. The set {λX} is the set of all

eigenvalues of X.

Lemma 5.3.3. A is a nonsingular M-matrix ⇐⇒ A has the Z-sign pattern and is positive

stable (that is, the real part of each eigenvalue of A is positive).

Proof. First, notice that for any matrices A and B, if A and B commute, {λA+B} ⊆ {λA +

λB}.

Let α1, α2, ..., αn be eigenvalues of A and β1, β2, ..., βn be eigenvalues of B. If A and B

commute, they may be simultaneously upper-triangularized according to Theorem 2.3.3 of

[8], that is, there is a unitary U such that U∗AU = T and U∗BU = R are both upper trian-

gular with diagonal entries α1, ..., αn and βi1 , ..., βin , respectively. Then U∗(A+B)U = T +R

has diagonal entries and therefore has eigenvalues α1 + βi1 , ..., αn + βin . These must also be

the eigenvalues of A+B since A+B is similar to T +R.

(⇒) Suppose A is a nonsingular M-matrix, A = sI −B.

The eigenvalues {λA} = {λsI−B} ⊆ {λsI +λ−B} = {s−λB} since I and −B commute. That

is, any eigenvalue of A can be written as λA = s− λB. Then,
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Re(λA) = Re(s− λB)

= s−Re(λB) since s > 0

> ρ(B)− λB since s > ρ(B)

≥ 0 since ρ(B) ≥ λB for any eigenvalue of B

Therefore, Re(λA) > 0.

(⇐) Let A have the Z-sign pattern and be positive stable.

Since A has the Z-sign pattern, A = sI−B for B ≥ 0 and s > 0. Let λB be the an eigenvalue

of B. Then,

Bx = λBx

sx−Bx = sx− λBx

(sI −B)x = (s− λB)x

Ax = (s− λB)x

This final equality states that s − λB is an eigenvalue of A. Since A is positive stable,

Re(s− λB) > 0. Then,

0 < Re(s− λB) = s−Re(λB) ≤ s− ρ(B)

That is, s > ρ(B), which proves A is an M-matrix.

�

A similar condition may be established for any (singular or nonsingular) M-matrix. This

condition is Theorem 4.6 E11 of [4].

Lemma 5.3.4. A is an M-matrix ⇐⇒ A has the Z-sign pattern and the real part of every

nonzero eigenvalue of A is positive.
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Proof. The proof follows the same procedure as the proof of Lemma 5.3.3 with s ≥ ρ(B)

instead of s > ρ(B) in the appropriate places.

�

The next equivalent condition is that nonsingular M-matrices are semi-positive. This

can be found as Theorem 2.3 I27 of [4] or Theorem 2.5.3.12 of [9]. Recall the notation x > 0

means every entry of the x is strictly positive.

Lemma 5.3.5. A is a nonsingular M-matrix ⇐⇒ A has the Z-sign pattern and ∃x > 0

such that Ax > 0.

Proof. The proof follows the procedure in [9]. Since A has the Z-sign pattern, write A =

sI − B with s > 0, B ≥ 0. First assume that B is irreducible. Then by Theorem 5.2.1(b),

x > 0 be the Perron-Frobenius right eigenvector of B. Then,

Ax = sx−Bx = sx− ρ(B)x = (s− ρ(B))x (5.5)

Notice that since x > 0,

A is a nonsingular M-matrix ⇐⇒ s > ρ(B) by definition

⇐⇒ Ax = (s− ρ(B))x > 0 by (5.5)

This proves the lemma for the case that B is irreducible. If B is reducible, force it to be

irreducible by placing sufficiently small ε > 0 in the zeros of B. Now, apply Theorem 5.2.1(b)

and let x > 0 be the Perron-Frobenius right eigenvector of B̃. Following the above procedure,

Ã is an M-matrix ⇐⇒ s > ρ(B) ⇐⇒ Ãx = (s− ρ(B̃))x > 0. Since Ax is sufficiently close

to Ãx = (s− ρ(B))x > 0, Ax > 0.

�
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5.4 Further M-matrix Properties

A common technique to establishing a condition when matrices are singular is to apply

a continuity argument, similar to the one in the proof of Lemma 5.3.5. First establish the

desired condition for a nonsingular matrix A. Then, replace the singular matrix A by the

nonsingular A+ εI. Finally, use the continuity of a function in ε to obtain the condition for

the singular matrix A. This outline and some examples are presented in [16]. The same idea

can be applied for M-matrices and will be useful later on. Consider the following continuity

condition for an M-matrix which is found in [4] as Lemma 4.1.

Lemma 5.4.1. Let A have the Z-sign pattern. Then A is an M-matrix ⇐⇒ A + εI is a

nonsingular M-matrix for all ε > 0.

Proof. (⇒) Let A be an M-matrix. Then A = sI −B with s > 0, B ≥ 0, and s ≥ ρ(B). For

any ε > 0,

A+ εI = sI −B + εI = (s+ ε)I −B = s̃I −B (5.6)

Since s̃ = s+ ε > s > ρ(B), so A+ εI is a nonsingular M-matrix.

(⇐) Let A+ εI be a nonsingular M-matrix.

Then from (5.6), A+ εI = (s+ ε)I−B with s+ ε > ρ(B). In the limit as ε→ 0, A = sI−B

with s ≥ ρ(B). That is, A is an M-matrix.

�

There are many other interesting properties of M-matrices that can be found in [4] and

[9], among other sources. Two more will be useful for defining R0. The first property will

be used to prove the second, which in turn will be used directly in the main theorem. Many

of the equivalent conditions from Section 5.3 will be used in the proofs. Lemma 5.4.2 here

is found as Lemma 5 of [15].

Lemma 5.4.2. Let H be a nonsingular M-matrix and suppose B and BH−1 have the Z-sign

pattern. Then B is a nonsingular M-matrix ⇐⇒ BH−1 is a nonsingular M-matrix.
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Proof. (⇒) This problem is equivalent to one in a slightly different form. Using F = B−1

and G = H−1, the following will be established: If F and G are nonsingular M-matrices and

F−1G has the Z-sign pattern, then FG−1 is a nonsingular M-matrix. This claim is exactly

the forward implication of the Lemma.

By the equivalent condition Lemma 5.3.5, since G is a nonsingular M-matrix, ∃x > 0

such that Gx > 0. Consider F−1Gx. Define y = Gx > 0 by the selection of x.

F−1Gx = F−1y where y > 0

By Lemma 5.3.2, since F is a nonsingular M-matrix, F−1 ≥ 0. Then,

F−1y ≥ 0.

The only way F−1y = 0 is if F−1 has a row or column of zeros, as y > 0. But since F−1

is nonsingular, this can not happen. Therefore, F−1y > 0. That is, ∃x > 0 such that

F−1Gx > 0. By Lemma 5.3.5, F−1G is a nonsingular M-matrix.

(⇐) This problem is also equivalent to one in a slightly different form. With P = BH−1

and Q = H, it will be shown that if P and Q are nonsingular M-matrices and PQ = B has

the Z-sign pattern, then PQ = B is a nonsingular M-matrix.

By Lemma 5.3.2, P−1 ≥ 0 and Q−1 ≥ 0. So the product Q−1P−1 ≥ 0. But this product

is exactly (PQ)−1, so by Lemma 5.3.2 again, PQ = B is a nonsingular M-matrix.

�

The following lemma is used directly in the proof of the main theorem and is found as

Lemma 6 of [15].

Lemma 5.4.3. Let H be a nonsingular M-matrix and suppose K ≥ 0. Then,

(a) (H −K) is a nonsingular M-matrix ⇐⇒ (H −K)H−1 is a nonsingular M-matrix

(b) (H −K) is a singular M-matrix ⇐⇒ (H −K)H−1 is a singular M-matrix
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Proof. (a) Let B = H −K

Consider Bi,j for i 6= j. Bi,j = Hi,j−Ki,j, Hi,j ≤ 0 since H is an M-matrix, and Ki,j ≥ 0

by hypothesis, so Hi,j −Ki,j ≤ 0. That is, B has the Z sign pattern.

Similarly, (BH−1)i,j = ((H −K)H−1)i,j = (I −KH−1)i,j. By Lemma 5.3.2, H−1 ≥ 0.

By hypothesis, K ≥ 0. So (I − KH−1)i,j ≤ 0 for i 6= j. That is, BH−1 have the Z sign

pattern.

Statement (a) is now a direct application of Lemma 5.4.2.

(b) By the contrapositive of (a), H − K is not a nonsingular M-matrix if and only if

(H−K)H−1 is not a nonsingular M-matrix. It will be shown that if the M-matrix condition

of (a) is kept but the nonsingular condition of (a) is removed, the M-matrix condition still

remains true. Notice that

H −K is a singular M-matrix ⇐⇒ H −K + εI is a nonsingular M-matrix ∀ε > 0

⇐⇒ (H −K + εI)H−1 is a nonsingular M-matrix

⇐⇒ (H −K)H−1 is a singular M-matrix

The first and third statements are due to the continuity argument of Lemma 5.4.1, and

the second statement comes from (a). This finishes the proof.

�

5.5 Assumptions

Assume the following hypothesis on an ordinary differential equations model, as in [15].

Suppose the model has the form

ẋi = hi(x) = Fi(x)− Vi(x), i = 1, ...,M
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where Vi = V+
i − V−i . Let the first m components of x be the disease states. Define the

disease-free subspace as

Xs = {x ≥ 0|xi = 0, i = 1, ...,m}.

Then, if an equilibrium x? ∈ Xs, x? is called a disease-free equilibrium (DFE). Alternatively,

if an equilibrium x? /∈ Xs, such that at least one of the first m components is nonzero, x? is

called an endemic equilibrium (EE). That is, the infection is endemic to the population.

First, assume each function is nonnegative:

If x ≥ 0, then Fi(x), V+
i (x), V−i (x) ≥ 0 for i = 1, ...,M (A1)

Second, if a state is empty, no transfer of individuals can come from that state by death or

infection,

If xi = 0, then V−i (x) = 0. Moreover, if x ∈ Xs, then V−i (x) = 0 for i = 1, ...,M. (A2)

Third, assume the incidence of infection for uninfected states is zero:

Fi(x) = 0 if i > m (A3)

Fourth, if the population is free of the disease, it will remain free of the disease:

If x ∈ Xs, then Fi(x) = 0 and V+
i (x) = 0 for i = 1, ...,m (A4)

Finally, any disease-free equilibrium x? must be stable in the absence of new infection, so

If F(x?) = 0, then all eigenvalues of Dh(x?) have negative real parts (A5)

Based on these assumptions, the linearized structure of (2.9) may be partitioned ac-

cording to the following lemma. This can be found as Lemma 1 of [15].
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Lemma 5.5.1. If x? is a disease-free equilibrium and hi(x) satisfies (A1) through (A5), then

the derivatives DF(x?) and DV(x?) are partitioned as

DF(x?) =

F 0

0 0

 , DV(x?) =

V 0

J3 J4


where F and V are the m×m matrices defined by

F =

[
∂Fi

∂xj
(x?)

]
, V =

[
∂Vi
∂xj

(x?)

]
1 ≤ i, j ≤ m

Further, F is nonnegative, V is a nonsingular M-matrix and all eigenvalues of J4 have

positive real part.

Proof. Let x? ∈ XS, that is

x? = [0, . . . , 0, xm+1, . . . , xM]T

By (A3), Fi(x?) = 0 for i > m. This is true for any x?j , so
∂Fi
∂xj

(x?) = 0 for i > m and any j.

In words, there is no incidence of infection into uninfected states. By (A4), Fi(x?) = 0 for

i ≤ m. Since x? is defined such that the first m elements are 0, this implies that any change

in the final m + 1 to M elements will have no affect on new infections. The rate of change

from noninfectious states j = m+ 1, . . . ,M to infective states i = 1, . . . ,m is zero,

∂Fi
∂xj

(x?) = 0 i = 1, ...,m j = m+ 1, ...,M

In words, there is no appearance of infection from uninfected states. This proves the shape

of DF(x?).

By (A2), V+
i (x?) = 0 for i = 1, ...,m and by (A4) V−i (x?) = 0 for i = 1, ...,m. Any

change in the final j = m+ 1 to M elements will still result in Vi(x?) = V−i (x?)− V+
i (x?) =
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0 i = 1, . . . ,m. In terms of a derivative,

∂Vi
∂xj

(x?) = 0 i = 1, ...,m j = m+ 1, ...,M

In words, there is no transfer of infection from uninfected states. This proves the shape of

DV(x?).

Since x? ∈ Xs, xi = 0 for i = 1, ...,m and xi ≥ 0 for i = m + 1, ...,M. By (A4),

Fi(x?) = 0 for i = 1, ...,m. By (A1), Fi(x?) ≥ 0 if xi ≥ 0 for i = 1, ...,M. These two facts

imply that Fi(x?) can only increase from x? for i, j = 1, . . . ,m. That is,
∂Fi
∂xj

(x?) ≥ 0 for

i, j = 1, ...,m. This proves the nonnegativity of F .

To prove that V is a nonsingular M-matrix, consider for i = 1, . . . ,m, i 6= j,

∂Vi
∂xj

(x?) = lim
h→0

Vi(x? + hej)− Vi(x?)
h

where ej is the standard basis vec-

tor for Rn

= lim
h→0

Vi(x? + hej)

h
since Vi(x?) = 0 by (A2) and (A4)

= lim
h→0

V−i (x? + hej)− V+
i (x? + hej)

h
by definition of Vi

= lim
h→0

−V+
i (x? + hej)

h

since x? + hej = 0 for i =

1, . . . ,m, i 6= j, so

V−i (x? + hej) = 0 by (A2)

≤ 0

since x? + hej ≥ 0 so by (A1),

V+
i (x? + hej) ≥ 0. for i = 1, ...,m

and i 6= j

This is equivalent to V having the Z-sign pattern. To see that all eigenvalues of V have

positive real part, notice that by (A3) and (A4), Fi(x?) = 0 for all i. Then by (A5), if

F(x?) = 0, all eigenvalues of Dh(x?) have negative real parts. Notice that
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Dh(x?)|F(x?)=0 = −DV(x?)

=

−V 0

−J3 −J4


Since this is a triangular block matrix, the eigenvalues of Dh(x?) are the same as the eigen-

values of −V and −J4. Therefore, all eigenvalues of −V and −J4 have negative real parts,

or equivalently, all eigenvalues of V and J4 have positive real parts.

Finally, since V has the Z-sign pattern and is positive stable, by Lemma 5.3.3, V is a

nonsingular M-matrix.

�

5.6 The Main Theorem

The main theorem definingR0 for ordinary differential equation models is now presented.

This is found as Theorem 2 of [15]. Before the theorem is presented, consider the following

argument, adapted from [15]. By definition, the ith component of the vector F describes

new infections arising in state xi. Then the (i, j) component of the matrix F is the rate that

new infections appear in state xi from state xj. Again by definition, the ith component of

the vector V describes the transfer of existing infections into state xi. The (i, j) component

of the matrix V is the rate of transfer of existing infections into state xi from state xj. To

determine the interpretation of V −1, consider the fact that

m∑
j=1

VijV
−1
jk =


1 i = k

0 i 6= k

Then V −1
jk represents the average time an individual in state xk spends in state xj. To

see this, consider a dimensional analysis argument. Since Vij has units of 1/(time) for an

individual in xi and V −1
jk has the units of time for an individual in xk, then the sum over
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all j of the products of VijV
−1
jk should be 1 if i = k and 0 if i 6= k. This assumes that the

population remains near the disease-free equilibrium and hence remains constant.

The (i, k) entry of the Next Generation matrix is the product over all states xj of the

rate new infections appear in state xi from state xj with the average time an individual

in state xk spends in state xj. This is the expected number of new infections in state xi

produced by an individual originally introduced in state xk. That is,

(FV −1)ik =
m∑
j=1

FijV
−1
jk

=
m∑
j=1

(New infections in xi from xj) · (Average time xk spends in xj)

= New infections in xi produced by xk in all generations

Thus, the matrix FV −1 is aptly defined as the Next Generation matrix. The basic

reproduction rate R0 will be defined as the spectral radius of this matrix.

Theorem 5.6.1. Consider the disease transmission model given by ẋi = hi(x) = Fi(x) −

Vi(x), i = 1, ...,M with h(x) satisfying conditions (A1) through (A5). If x? is a disease-free

equilibrium of the model, then x? is locally asymptotically stable if R0 < 1, but unstable is

R0 > 1, where R0 = ρ(FV −1).

Proof. Recall the structure of the linearized ordinary differential equation system from

Lemma 5.5.1.

Dh(xi) = (DF(x?)−DV(x?))(x− x?)

=

F − V 0

−J3 −J4

 (x− x?)

The eigenvalues of the linearized ODE system Dh are the eigenvalues of the full system

h. Since the Jacobian is block triangular, the eigenvalues of of the linearized ODE system

are the eigenvalues of F − V and −J4. By Lemma 5.5.1, the eigenvalues of −J4 have all
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negative real parts. If the eigenvalues of F − V have negative real parts, then x? is locally

asymptotically stable equilibrium of h. The theorem will be proved using this stability

condition.

Let J1 = F − V , or alternatively, −J1 = V − F . By Lemma 5.5.1, V has the Z-sign

pattern and F nonnegative. Then, −J1 has the Z-sign pattern by the illustration:


x ≤ 0

. . .

≤ 0 x

−
 ≥ 0

 =


x ≤ 0

. . .

≤ 0 x


Or, consider any element of −(J1)i,j = Vi,j − Fi,j for i 6= j. But Vi,j ≤ 0 and Fi,j ≥ 0, so

−(J1)i,j ≤ 0.

Lemma 5.3.3 shows that since −J1 has the Z-sign pattern, it is a nonsingular M-matrix

if and only if every eigenvalue of −J1 has positive real part. This is equivalent to −J1 is a

nonsingular M-matrix if and only if every eigenvalue of J1 has negative real part. The fact

that every eigenvalue of J1 = F − V has negative real part is the condition required for the

local asymptotic stability of x?. Therefore,

x? is locally asymptotically stable ⇐⇒ −J1 is a nonsingular M-matrix (5.7)

Lemma 5.5.1 shows that F is nonnegative. From Lemma 5.3.2, V −1 is also nonnegative,

as V is a nonsingular M-matrix. Therefore, FV −1 is nonnegative. Then, −J1V
−1 = (V −

F )V −1 = I − FV −1 has the Z-sign pattern by the same argument that −J1 has the Z-sign

pattern. Now, applying Lemma 5.4.2 with H = V and B = −J1 = V − F ,

−J1 is a nonsingular M-matrix ⇐⇒ I − FV −1 is a nonsingular M-matrix. (5.8)

Notice that since FV −1 is nonnegative, I − FV −1 has the Z-sign pattern A = sI − B

with s = 1. Then by the definition of an M-matrix,
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I − FV −1 is a nonsingular M-matrix ⇐⇒ ρ(FV −1) < 1 (5.9)

Combining equations (5.7), (5.8), and (5.9) proves

x? is locally asymptotically stable ⇐⇒ R0 < 1 (5.10)

Similarly, since −J1 has the Z-sign pattern, it is a singular M-matrix ⇐⇒ the real part

of every nonzero eigenvalue of −J1 is positive and −J1 has a zero eigenvalue. This follows

from Lemma 5.3.3 and Lemma 5.3.4. Equivalently,

−J1 is a singular M-matrix ⇐⇒ every nonzero eigenvalue of J1 has negative

real part and J1 has a zero eigenvalue.

(5.11)

Since V is a nonsingular M-matrix and F is nonnegative, one can apply Lemma 5.4.3(b)

with H = V and K = F to obtain

−J1 is a singular M-matrix ⇐⇒ I − FV −1 is a singular M-matrix. (5.12)

Again by the definition of a singular M-matrix, since I − FV −1 has the Z-sign pattern and

FV −1 ≥ 0,

I − FV −1 is a singular M-matrix ⇐⇒ ρ(FV −1) = 1 (5.13)

Combining (5.11), (5.12), and (5.13) gives

every nonzero eigenvalue of J1 has

negative real part and J1 has a zero eigenvalue. ⇐⇒ ρ(FV −1) = 1

(5.14)

Recall x? is unstable if and only if there exits an eigenvalue of J1 has positive real part. It

follows from (5.14) and (5.10) that

x? is unstable ⇐⇒ R0 > 1 (5.15)
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This completes the theorem.

�
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Chapter 6

MATHEMATICAL FOUNDATIONS FOR R0 IN MAPS

A similar Next Generation construction of R0 can be defined for discrete-time models.

Here, the Next Generation matrix is F (I − T )−1. The (i, j) entry of F is still the rate at

which new infections appear in state xi from state xj. To determine the interpretation of

(I − T )−1, consider that one assumption of the theorem is that ρ(T ) < 1. Then, by Lemma

5.3.1, (I−T )−1 = I+T+T 2+T 3+. . . . The (k, j) entry of T is the rate of transfer of infected

individuals into xj from xk in one generation. Similarly, the (k, j) entry of T n is the rate of

transfer of infected individuals into xj from xk after n generations. Then, the (i, j) entry of

the Next Generation matrix F (I−T )−1 = F+FT+FT 2 +FT 3 +. . . represents the expected

number of new infections in state xi produced by an individual originally introduced in state

xj over all generations.

(F (I − T )−1)ij = Fij + (FT )ij + FT 2
ij + . . .

= Fij +
m∑
k=1

FikTkj +
m∑
k=1

FikT
2
kj + . . .

= (New infections in xi from xj) +

(New infections in xi from xj after 1 generation) + . . .

= New infections in xi produced by xk in all generations

6.1 The Main Theorem

Theorem 6.1.1. Let (2.1) be a discrete-time model such that the state vector x(t,p) is

structured with the first m components as infected and the remaining M−m components as

disease-free, and suppose the following conditions hold:

1. ∃! DFE x? of (2.1)
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2. The linearization of (2.1) is

X(t+ 1,p) =

F + T 0

A C

X(t,p) (6.1)

where the matrix

F + T 0

A C

 is the Jacobian of h evaluated at x?, and 0 is an

m× (M−m) matrix of zeros.

3. The submatrices F and T are nonnegative

4. F + T is irreducible

5. ρ(C) < 1 and ρ(T ) < 1 where ρ(·) represents the spectral radius operator

Then the DFE x? is locally asymptotically stable if R0 = ρ(F (I−T )−1) < 1 and unstable

if R0 > 1, where I is the m×m identity matrix.

Proof. The eigenvalues of the linearized system in (6.1) are the eigenvalues of the full system.

Since the linearization is block triangular, the eigenvalues of (6.1) are the eigenvalues of F+T

and C. The disease-free equilibrium is stable if these eigenvalues are all less than 1, and

unstable if an eigenvalue is greater than one. Since ρ(C) < 1, it follows that

x? is locally asymptotically stable ⇐⇒ ρ(F + T ) < 1

and is unstable ⇐⇒ ρ(F + T ) > 1

(6.2)

Note that the theorem is now proved true if R0 is replaced by the index r = ρ(F + T ).

The reason for defining R0 = ρ(F (I − T )−1) instead of just using r = ρ(F + T ) is to better

match the biological definition. The quantity r is not identified as the average number of

secondary infections produced from a single infected individual, but rather is identified as

the growth factor [10].

The theorem will be proved by proving the following:
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r < 1 ⇐⇒ R0 < 1

and r > 1 ⇐⇒ R0 > 1

(6.3)

This will be proved using the technique in [10]. Let r = ρ(F+T ) and R0 = ρ(F (I−T )−1)

and assume R0 6= 0. Assuming R0 6= 0 is the same as assuming R0 > 0 by the definition of

the spectral radius.

Claim: ρ(
F

R0

+ T ) = 1 and one of the following holds:

r = R0 = 1, or 1 < r < R0, or 0 < R0 < r < 1 (6.4)

By Theorem 5.2.1, ∃ a positive left-eigenvector y of F (I − T )−1corresponding to the

eigenvalue R0 = ρ(F (I − T )−1). Then,

yF (I − T )−1 = yR0

Multiplying both sides by (I − T ) gives

yF = yR0(I − T ) = yR0 − yR0T

yF + yR0T = yR0

Now divide through by R0 6= 0,

yF

R0

+ yT = y

y(
F

R0

+ T ) = y (6.5)

Equation (6.5) implies that 1 is an eigenvalue of
F

R0

+ T . Since both F and T are

nonnegative, dividing F by R0 > 0 only scales the nonzero entries of
F

R0

+ T . Since F + T

is irreducible,
F

R0

+ T must also be irreducible. Furthermore,
F

R0

+ T is nonnegative by the

assumption that R0 > 0. Then by Theorem 5.2.1(b), since y is a positive eigenvector, it
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must be associated with the spectral radius. That is, ρ(
F

R0

+ T ) = 1.

Consider the following cases:

(i) R0 = 1.

Then R0 = 1 = ρ( F
R0

+ T ) = ρ(F + T ) = r.

(ii) R0 > 1.

Then by Theorem 5.2.1(c),

1 = ρ( F
R0

+ T ) < ρ(F + T ) = r < ρ(F +R0T ) = R0.

The final equality is established by multiplying ρ( F
R0

+ T ) = 1 through by R0.

(iii) 0 < R0 < 1.

Again by Theorem 5.2.1(c),

1 = ρ( F
R0

+ T ) > ρ(F + T ) = r > ρ(F +R0T ) = R0.

Equation (6.3) is now established under the added assumption that R0 > 0. This

assumption can be relaxed by following the procedure in [10] with the added assumption

that F 6= 0. Note that if F = 0, r = ρ(T ) < 1, so the disease-free equilibrium will be stable,

and R0 = ρ([0]) = 0 is also less than 1. This fact can be used to justify the existence of R0

for discrete background infection models with β = 0 (the continuous analog is presented in

Section 9.2), but if R0 = 0, the infection model is not worth studying.

�
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Chapter 7

SENSAI

sensai is a hybrid Matlab/Maple software that simulates large-scale mathematical

models and computes sensitivities and elasticities of quantities of interest, including the

Next Generation R0, with respect to parameters and initial conditions. A researcher may

construct the model in Maple, where symbolic manipulation is convenient, and simulate

the results numerically in Matlab where numerical simulation and plotting are convenient.

sensai will automatically compute the solution trajectories of the model as well as the

sensitivity and elasticity analysis. Additionally, the user may select a subset of parameters

and/or states to compute sensitivity and elasticity information instead of including all of

them. Sometimes the quantity of greatest interest to the researcher can be a (possibly

nonlinear) function of the states and parameters rather than isolated states, such as the

proportion of infected individuals or the number of infected adults, etc. sensai allows the

user to specify any function of states or parameters as the quantity of interest (QoI). The

trajectories, sensitivities, and elasticities of the QoI will also be computed. Finally, if the

model is an infection model, the user may specify the equations which describe the infection

classes, and sensai will compute R0 via the Next Generation method, if valid, and its

sensitivities. The conditions from the theorems will be tested, and if one of the conditions is

not met, sensai will output a warning statement specifying the condition which is not met.

sensai uses the Matlab solver ode45 to numerically solve the differential equations. The

code is freely available from the website

http://www.math.colostate.edu/∼tavener/FEScUE/SENSAI/sensai.shtml.

Some example models and Maple templates are available at this site.
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7.1 Sensitivities and Elasticities

For notational convenience in sensai, let the jth initial condition zj to be parameter

pK+j. Re-writing equation (3.4),

∂xi
∂pK+j

(t+ 1) =

(
M∑
m=1

∂hi
∂xm

∂xm
∂pK+j

(t)

)
+

∂hi
∂pK+j

(t),

∂xi
∂pK+j

(0) = δij

 i = 1, . . . ,M, j = 1, . . .M. (7.1)

Solving for both the variables and their sensitivities with respect to the parameters and

initial conditions requires solving equations (3.1), (3.3) and (7.1) simultaneously. This is a

system of size M · (1 + K + M). sensai evaluates the Jacobian ∂hi/∂xj, i, j = 1, . . . ,M and

all partial derivatives ∂hi/∂pk, i = 1, . . . ,M, k = 1, . . . ,K symbolically using Maple, and

automatically writes the Matlab routines necessary to evaluate these derivatives.

Once the sensitivities are evaluated, the elasticities are defined according to the scaling

from (3.8).

7.2 Quantities of Interest (QoI)

Many times the most valuable sensitivities are calculated from a function of states and

parameters. The notation in sensai is as follows. Let the QoI be a scalar valued function

of time, such that

Q(t) = Q(x(t,p),p). (7.2)

The sensitivities of the QoI can be computed using the chain rule,

dQ

dpk
(t) =

(
M∑
m=1

∂Q

∂xm

∂xm
∂pk

(t)

)
+
∂Q

∂pk
(t) , k = 1, . . . ,K + M. (7.3)

The suggested QoI for infection models is the proportion of infected individuals. Sup-

pose the model has a simple SI form, where x1 = S and x2 = I. The QoI will be defined as
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Q(t) =
x2(t)

x1(t) + x2(t)
. Then, the sensitivity of the QoI with respect to an arbitrary parameter

pk is
dQ

dpk
(t) =

∂Q

∂x1

∂x1

∂pk
(t) +

∂Q

∂x2

∂x2

∂pk
(t) +

∂Q

∂pk
(t)

=

(
−x2(t)

(x1(t) + x2(t))2

)
S1,k(t) +

+

(
1

x1(t) + x2(t)
− x2(t)

(x1(t) + x2(t))2

)
S2,k(t) +

∂Q

∂pk
(t)

(7.4)

7.3 R0

When the user builds up his or her model in Maple, there is an option of identifying

which equations describe the dynamics of the infected classes. If this input is nonzero, R0

will be computed via the Next Generation method. sensai will construct the vectors F

and V under the following criteria. If a term in an equation describing an infected state

involves a noninfectious state or is a term of parameters only, that term belong in F as it is

assumed that term describes an incidence of a new infection. If a term in an infected equation

does not involve a noninfectious state but is more than just a product of parameters, that

term belongs in V as it is assumed that term describes the transfer of an existing infection.

(Section 9.2 will show that if a term in an equation describing an infected state is only a

product of parameters, the Next Generation R0 is not valid for the model.)

Consider the following traditional SIR model as an example.

dS

dt
= −βSI − δS,

dI

dt
= βSI − γI − µI − δI,

dR

dt
= γI − δR,


(7.5)

where β is the infection rate, δ is the natural death rate of the species, γ is the recovery

rate, and µ is the disease-specific death rate due. The user must specify equation 2 is the

only equation modeling infection classes. Because the noninfectious state S appears in the
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term βSI, sensai will place that term in F . Since no other term has an occurrence of S or

R, but each of these terms are not parameters only, −γI − µI − δI belong in V .

It has been argued that the generalization of F and V is to place the negative terms in

V and the positive terms in F [11]. However, this generalization fails to accurately identify

F and V , as illustrated by the following example.

Many times the incidence of infection will be modeled not by the probability of a new

infection occurring when contact is made with an infected individual, but instead by the

probability of remaining disease-free when a contact is made with an infected individual, or

the probability of a new infection not occurring. Consider the following edition to the SIR

model
dS

dt
= −(1− β̄)SI − δS,

dI

dt
= (1− β̄)SI − γI − µI − δI,

dR

dt
= γI − δR,


(7.6)

where the infection rate is given by 1− β̄. Expanding the terms in equation 2 gives the terms

SI − β̄SI − γI − µI − δI. If all the negative terms are placed in V , −β̄SI will be in the

wrong place. The entire SI − β̄SI describes an incidence of a new infection, so both belong

in F . sensai will identify this properly with the new generalization of F .

Another common procedure in model development is to scale each term by the total

population N = S + I + R. In this case, S and R will be located in every term, presenting

a potential problem for sensai’s construction of R0. To avoid this problem, sensai will

always replace occurrences of
M∑
i=1

xi with a new variable N . When sensai searches for terms

with a noninfectious state, N will hide the ones that are there simply for scaling purposes.

Consider the equation for infected males from the hantavirus model in (2.8):

Im(t+ 1) =
[
(1− e−βmIm(t)−βIf (t))Sm(t) + Im(t)

] K

K + (b/2)N
(7.7)
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This equation has both characteristics described above: the incidence of a new infection

is modeled by the probability of an infection not occurring when contact is made, and the

entire equation is scaled by the total population N . Biologically, the term

(1− e−βmIm(t)−βIf (t))Sm(t) ∗K
K + (b/2)N

∈ F ,

while the term
Im(t)K

K + (b/2)N
∈ V . This is exactly what the algorithm in sensai will deter-

mine.

7.3.1 Possible Problems in SENSAI

There may be models which have a legitimate Next Generation construction of R0 that

sensai will fail to compute correctly. These problems arise from an incorrect identification

of which terms belong in F and which belong in V . Just as it is common to scale by the

total population N , it is also common to scale each term by a sub-population Ni. Suppose

the model describes two or more interacting species. It may make biological sense to scale

the infected class of species 1 by the total population of species 1, and likewise scale the

class of species 2 by the total population of species 2. That is, for a model structured

with states (S1, I1, R1, S2, I2, R2), it may be accurate to scale the first three equations by

N1 = S1 + I1 + R1 rather than by the total population N = S1 + I1 + R1 + S2 + I2 + R2.

This is difficult to automate for models in general. For instance, while the example of two

sub-populations was just described, a model could just as easily have three or more sub-

populations and subsequent scalings. If this is occurring in the model, sensai will recognize

a noninfectious state in these terms and place them in F . This may or may not result in a

value of R0 that is sufficient for the theorem to hold, but will certainly not produce a value

that is consistent with the biological definition. In fact, if every term is scaled by some Ni,

V = 0 and V −1 will not be defined.
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7.4 An Alternative to R0

Sometimes the Next Generation R0 is not the best tool for the analysis of an infection

model. There can be many problems with the Next Generation R0. Consider the following

possibilities.

First, the Next Generation method may not even be applicable. It is possible that in

order to accurately describe the dynamics of an infection, one or more of the conditions of

Theorem 5.6.1 or Theorem 6.1 will fail. Some examples of this problem will be presented in

Section 9.2.

Second, it may be difficult to accurately identify which terms of the infected equations

belong in F and which terms belong in V . A model may be constructed such that the

determining factor for a term belonging in F is not solely that it involves a noninfectious

state or is just a product of parameters. The mathematical definitions of F and V are

not completely generalizable and could present problems for the Next Generation R0. It is

possible that a condition of Theorem 5.6.1 or Theorem 6.1 will fail because of an incorrect

F and V , but it is also possible that all conditions will still hold. If the latter is the case, the

value of R0 will be one that exhibits the threshold criterion, but may not accurately reflect

the biological definition of R0. This problem illustrates that checking to see if the Next

Generation R0 has the threshold criterion may not be enough to ensure the value represents

the biological definition of R0. An example of this problem will be presented in Section 9.1.

Third, the Next Generation R0 may not accurately predict whether the infection persists

in the population if a finite amplitude disturbance is introduced into the infected states,

rather than a perturbation. Theorems 5.6.1 and 6.1 only ensure the stability of the disease-

free equilibrium under small perturbations. While the disease-free equilibrium is stable if

and only if R0 < 1, there may be more than one stable equilibrium for the system. If the

initial conditions are in a stable endemic equilibrium’s basin of attraction, the infection may

persist in the population even though R0 < 1. This is not a failure of the mathematical
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theorems, but is a limitation of the Next Generation R0. An example of this problem will

be presented in Section 9.3.

One can easily see how the implementation of R0 is tenuous, especially for large-scale

models in which the biological interpretation of terms can become obscured by complexity.

Checking that the Next Generation R0 passes the conditions of the theorems may not be

enough to ensure that it matches the biological definition or that it is even an appropriate

index for the analysis.

The most important aspect in the analysis of an infection model is to ascertain the

best way to control the infection. The solution trajectories will already indicate whether

or not the infection will persist in the population, thus making the threshold characteristic

of R0 obsolete. If the infected trajectories converge to zero in time, one can conclude that

R0 < 1 just by this observation. Similarly, if the infected trajectories converge to a nonzero

equilibrium, one can conclude that R0 > 1, or at least that it should be. The threshold

nature of R0 is rather unimportant when considering the automatic solving of the model

through sensai.

If the model projects an endemic equilibrium, using a relevant quantity of interest

and calculating its sensitivities and elasticities with the solution trajectories is an ample

replacement. For instance, let the QoI be the proportion of infected individuals. That is,

QoI = (
m∑
i=1

xi)

/
(

M∑
i=1

xi). (7.8)

If the most sensitive (or elastic) parameters to this QoI are known, one can have a good

understanding of how to control the infection through sensai. A management strategy

developed from this analysis will focus on influencing the proportion of infected individuals

most. Some examples will be presented in the following chapter comparing the R0 analysis

to the analysis of the QoI with trajectories.
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Chapter 8

EXAMPLES

In this chapter, models will be presented that have a valid Next Generation R0. The

analysis of the model using R0 and its elasticities will be performed, as well as the analysis

of the model using the quantity of interest as the proportion of infected individuals. Finally,

comparisons of the two analysis techniques will be made for each example model.

8.1 SIR Model with Logistic Growth

Consider the following continuous-time SIR model that includes logistic growth.

dS

dt
= rN

(
1− N

K

)
− βSI − δS,

dI

dt
= βSI − γI − µI − δI,

dR

dt
= γI − δR,


(8.1)

where N = S + I +R is the total population at any time t, r is the per capita growth rate,

K is the carrying capacity, β is the infection rate, δ is the natural death rate of the species,

γ is the recovery rate, and µ is the disease specific death rate. The parameter values are

given in Table 8.1.

The solution trajectories to the model using the initial conditions of adding one infected

individual from the disease-free equilibrium are given by Figure 8.1. The equilibrium using

the parameter values in Table 8.1 is (3, 378, 37), truncated to whole individuals. The pro-

portion of infected individuals at equilibrium is 90.22% (calculated when the solution is not

truncated).
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Table 8.1: Parameter Values for SIR Model, dimensions of β, δ, γ, and µ are t−1, dimensions
of r and K are population.

Parameter Numerical Value Interpretation

r 0.5 Per capita growth rate
K 1000 Carrying capacity
β 0.1 Infection rate
δ 0.2 Natural death rate
γ 0.02 Recovery rate
µ 0.1 Disease-specific death rate
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Figure 8.1: Solution of SIR model. The initial conditions are S(0) = 599, I(0) = 1, R(0) = 0.

8.1.1 R0 Analysis

This model has a straightforward construction of R0. To find the DFE, assume there

are no infected or recovered individuals. Setting
dS

dt
= 0 with I = R = 0 gives

rS?(1− S?

K
)− δS? = 0

S?(r − rS?

K
− δ) = 0

S? = 0 or S? =
r − δ
r

K

(8.2)
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Then, R0 is given by the Next Generation method:

R0 = ρ(FV −1)

= ρ
(
[βS?][γ + µ+ δ]−1

)
=

βS?

γ + µ+ δ

=
βK(r − δ)
r(γ + µ+ δ)

(8.3)

Clearly, R0 should be greater than one, as it is obvious from the solution trajectories in

Figure 8.1 that the infection persists in the population. Moreover, the proportion of infected

individuals at equilibrium is 90.22%, so a high value of R0 is expected. In fact, R0 = 187.5.

R0 is most elastic to p4 = δ, as indicated by Figure 8.2 and Table 8.2. Because the elasticity
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Figure 8.2: R0 Elasticities. R0 = 187.5

of R0 to δ is negative, a decrease in δ will result in an increase in R0. If the desired result is

to reduce R0, the strategy must be to increase δ.

While the sensitivities and elasticities indicate the effects of an infinitesimal change

in parameters, a finite disturbance in parameters must be used in practice. One can not

change δ by an infinitesimal amount and compute the new trajectories. For comparisons

to be made, a relative change of 10% will be made to each parameter. The equilibrium

resulting from increasing δ by 10% is (3, 343, 31) as seen from Figure 8.3. The DFE under
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Figure 8.3: Solution after increasing δ by 10%. R0 = 164.71 and QoI = 90.84%.

the change in parameters is (560, 0, 0). The new R0 = 164.71, a relative change of over 12%.

This is exactly what one would expect as the elasticity of R0 to δ is slightly greater than 1

in magnitude. While R0 was reduced and the infection was reduced by 35 individuals, the

proportion of infected individuals actually increased to 90.84%. This is because increasing

δ is increasing the death rate. There are fewer secondary infections only because there is a

lower population.

Increasing δ is not a very friendly management strategy, so the second most elastic

parameter should be analyzed. This can be either p2 = K or p3 = β, as they both have an

elasticity of 1. The effects of changing β will be discussed in the following section for the

QoI analysis, so K will be chosen. This time, since the elasticity is positive, a reduction in

K will result in a reduction of R0. If K is decreased by 10%, R0 = 168.75, a reduction of

10% as well. This makes sense as the elasticity is exactly 1. The new DFE for the system is

(540, 0, 0). If one infected individual is introduced in the population, the endemic equilibrium

is (3, 340, 34). The proportion of infected individuals does not change much 90.14%. The

solution trajectories in Figure 8.4 are almost identical in shape to the trajectories in Figure

8.1. Reducing the carrying capacity K will reduce the number of individuals in each class

proportionally. This is not an effective management strategy.
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Figure 8.4: Solution after reducing K by 10%. R0 = 168.75 and QoI = 90.14%.

8.1.2 QoI Analysis

Let the quantity of interest QoI be the proportion of infected individuals. The QoI

is extremely high for this model, 90.22%. Like R0, the QoI is also elastic (2nd most) to

p4 = δ, at equilibrium. Unlike R0, each of the equilibrium elasticities are extremely small, as

indicated by Figure 8.5 or Table 8.2. Furthermore, the elasticity of the QoI to δ is positive.
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Figure 8.5: Elasticities of the QoI. The initial conditions are S(0) = 599, I(0) = 1, R(0) = 0.

If the proportion of infected individuals is to be decreased, the natural death rate δ should

be decreased. Even though it is the most elastic parameter, a ten percent change in δ should

not affect the proportion of infected individuals at equilibrium. This is observed in Figure

8.3, though δ is changed in the opposite direction. When δ is reduced by 10%, the new QoI
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is reduced to 89.41%. The new DFE is (640, 0, 0), and R0 is increased to 213.33. Again,

the QoI at equilibrium is not significantly changed. The endemic equilibrium is (3, 412, 45).

There is more infection in the population, but there are also more recovered individuals

in the population. This is because every individual lives longer, whether or not they are

infected. The solution after reducing δ is shown in Figure 8.6.
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Figure 8.6: Solution after reducing δ by 10%. R0 = 213.33 and QoI = 89.41%.

More information than just the equilibrium elasticities is provided by the QoI analysis.

In transience, the QoI is most elastic to p3 = β, and it is most elastic by a significant margin.

The maximum elasticities of the QoI of any time t, at equilibrium, and the elasticity of R0

are summarized in Table 8.2.

Table 8.2: Elasticity Values for SIR Model.

Parameter R0 elasticity QoI elasticity at equilibrium Maximum QoI elasticity

b 0.666667 1.059713× 10−2 3.142138× 10−2

K 1 7.660186× 10−3 3.407802× 10−2

β 1 7.660186× 10−3 4.025211
δ −1.29167 7.851908× 10−2 7.851908× 10−2

γ −0.06250 −9.108838× 10−2 −9.110706× 10−2

µ −0.31250 −5.688001× 10−3 −1.176657× 10−2

If β is decreased by 10%, as in Figure 8.7, the truncated equilibrium population remains

the same. The QoI at equilibrium only changed by fractions of individuals. This is predicted
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by the elasticities, as β is only highly elastic in transience. Changing β had negligible effects

on the equilibrium solution, though R0 was reduced to 168.75 (note the elasticity of R0 to β

is 1). The DFE from changing β is still (600, 0, 0).
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Figure 8.7: Solution after varying β by 10%. R0 = 168.75 and QoI = 90.14%.

The QoI is most elastic to γ at equilibrium. The QoI is also elastic to this parameter

during transience (2nd most). When γ is increased by 10%, the DFE remains (600, 0, 0), R0 is

essentially the same value at 186.34, but the endemic equilibrium is now (3, 376, 41). This is

a direct transfer of individuals from the infected class to the recovered class, as expected by

the function of γ. The equilibrium proportion of infected individuals is reduced to 89.40%.

This is still extremely high, but is better than any other strategy attempted yet.

8.1.3 Comparison of Methods

Both the analysis from R0 and the QoI matched intuition. R0 is extremely high for this

model, and if the largest elasticity is approximately 1.3 in magnitude, a relative change of

10% in that parameter will not eradicate the infection. Similarly, the QoI is extemely high

for this model. The largest elasticity is O(10−2) in magnitude, which indicates that a small

relative change in that parameter will not significantly change the QoI. The trajectories

computed by sensai confirm the analyses.

56



0 50 100
0

200

400

600
S

t

x(
1)

0 50 100
0

200

400

600
I

t

x(
2)

0 50 100
0

20

40

60
R

t

x(
3)

Figure 8.8: Solution after varying γ by 10%. R0 = 186.34 and QoI = 89.40%.

8.2 Typhoid Model

Recall the Typhoid model given by (2.11). If the infected states are considered to

be y = x3 + x4 + x6 + x7, as indicated by [2], then the model does not pass assumption

(A4) from Section 5.5. If a nonzero density is introduced in either x2 or x5, both considered

noninfectious, infection enters the solution. The states x2 and x5 are incubating noninfectious

and sick noninfectious, respectively. One will notice by the equations in (2.11) that the

individuals in the “noninfectious” x2 and x5 can transfer to an infective state without any

contact from an infected state. For example, if x2 > 0 but all infected classes y = 0, the

equation for ẋ3 = ρ23x2 > 0. The only way to ensure a proper Next Generation calculation

of R0 is to assume that x2 and x5 are infected states. This may be valid biologically, as an

incubating infection is essentially an infection waiting to develop, and a sick noninfectious

individual shows signs of an infection. It is peculiar that these states, particularly the state

labeled “sick noninfectious,” though considered noninfectious, can give rise to the infection

just by their presence.
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8.2.1 R0 Analysis

Whether or not x2 and x5 are considered infective, if any nonzero population enters

any of classes two through seven, the trajectories converge to an equilibrium that contains

nonzero infected components. An R0 > 1 is expected for this model. If the assumption that

x2 and x5 are also infected classes is made, R0 = 5.031.

Since there are six infection classes, sensai must compute the inverse of a 6×6 matrix of

algebraic equations. Of course, a numerical 6× 6 matrix should be easy to solve in Matlab

or Maple, and in fact, sensai is capable of producing the numerical R0 quickly– in just three

seconds. But to determine the sensitivities of R0, an analytical solution must be obtained.

Then, since each entry is in the matrix is algebraic, the analytical matrix inverse is a lengthy

expression. Since R0 is given by a long expression, the derivatives of R0 become extremely

involved. When R0 and its sensitivities are solved from the 6 × 6 system, sensai required

105 minutes of runtime. Nonetheless, sensai is capable of computing R0 for this model.

The most elastic parameter to R0 is p1 = ρ12, the infection rate from susceptible individ-

uals to incubating noninfectious (but soon to be infected) individuals. R0 analysis identified

six of the twenty-two parameters with an elasticity greater than 0.5 in magnitude and all

others 0.1 or less. These six parameters, along with a inelastic p21 = ρ91 for comparison, are

plotted in Figure 8.9.
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Figure 8.9: Elasticity of R0 = 5.031 to parameters 1, 11, 12, 17, 18, 21, and 22.
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A relative change of ρ12 by 10% should not reduce R0 to be less than one. In fact, as the

elasticity ≈ 1, a 10% change in p1 reduces R0 by 10%, to 4.53. Reducing R0 to be less than

one requires a relative change in ρ12 of 81%. This can be seen by solving R0 · (1− x) < 1 for

the relative reduction x. Whether or not this is feasible for this model, when ρ12 is reduced

this much, R0 = 0.995.

The fact that the populations are modeled as densities may be a point of confusion in the

R0 analysis. As mentioned in Section 4.3, an infinitesimal change is biologically represented

as introducing one individual to the population. To find the density corresponding to this

change, the total population must be known. If the total population P is 100 individuals,

introducing 1 individual corresponds to introducing a density of 0.01 (as is done in Figure

2.2). If the P is 10,000 individuals, introducing 1 individual corresponds to introducing a

density of 0.0001. Notice in Figure 8.10 that the infection is removed from the population if

the total population is 100 individuals and ρ12 is reduced by 81%. A final time of 10,000,000

was used to demonstrate convergence to the DFE.
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Figure 8.10: Solution to Typhoid model with R0 = 0.995 and P = 100. The trajectories
approach the DFE.
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No matter what the total population P is, the solution will always approach the disease-

free equilibrium. This is because the DFE is the only stable equilibrium of the system. This

is not guaranteed by Theorem 5.6.1, but is true for this particular model.

8.2.2 QoI Analysis

Again, let the QoI be the proportion of infected individuals. Note that for this model,

the QoI =
m∑
i=1

xi, since the populations are modeled as densities.

The maximum transient QoI analysis also identified ρ12 as the most elastic parameter.

In fact, the maximum transient QoI identified the exact same six most elastic parameters

as R0 did, and the equilibrium QoI included these six parameters in its top seven. Figure

8.11 and Table 8.3 show the elasticity results of these seven parameters. A final time of

200,000 was used to ensure the convergence of sensitivities to equilibrium, but the same

initial conditions were used as in Section 2.2.1.
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Figure 8.11: Elasticities of the QoI. Initial conditions the same as Figure 2.2.

8.2.3 Comparison of Methods

The R0 and QoI analysis are extremely comparable for this model. Six of the twenty-two

parameters were identified by the equilibrium QoI analysis with an elasticity over 0.5, with

all others less than 0.25 with only one parameter different. When the maximum transience
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is considered, the missing parameter is added. The only difference between the parameters

identified is that the equilibrium QoI was elastic to ρ91 the sixth most, but R0 was not elastic

to this parameter at all. Table 8.3 summarizes these results.

Table 8.3: Elasticity Values for Typhoid Model.

Parameter R0 elasticity QoI elasticity at equilibrium Maximum QoI elasticity

ρ12 0.99039 0.24621 4.4153
ρ46 0.84689 0.92369 3.4093
ρ48 −0.71060 −0.85919 −3.7877
ρ67 0.65054 0.70833 2.3907
ρ68 −0.56677 −0.62541 −2.2921
ρ91 0 0.59451 0.59451
µ −0.94104 −0.86178 −0.86178

If the R0 analysis were not available, one would consider varying the parameters most

elastic to the QoI at equilibrium and transiently, as done in the previous examples. The

parameters ρ12, ρ48, and µ would be identified if the top two parameters to which the

maximum QoI is most elastic and the top two parameters to which the equilibrium QoI is

most elastic are chosen. This corresponds exactly to the top three parameters to which R0

is most elastic. Furthermore, if the top three are considered for the QoI analyses, ρ46 would

be added, which is the fourth parameter to which R0 is most elastic. If the top four are

considered, ρ67 would be added, which is the fifth parameter to which R0 is most elastic. If

the top five are considered ρ68 would be added, which is the sixth parameter to which R0 is

most elastic. The QoI analysis is quite comparable to the R0 analysis for this model.

The benefit of the R0 analysis is that it exactly describes how much change is needed in a

single parameter to remove the infection from the population. On the other hand, a reduction

of 81% in this parameter was required to reduce R0 below 1, which could prove difficult in

application. This parameter would be reduced by some biologically feasible amount, and

then the second most elastic parameter would be evaluated. Once this is reduced by a

reasonable amount, the third most elastic parameter would be evaluated, and so on. If

this strategy is employed, the R0 analysis and the QoI analysis would provide the same
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strategy. In the R0 analysis, the effects of the reductions would be checked against the

value of R0. If the reductions in parameters results in R0 < 1, the infection is successfully

eradicated. In the QoI analysis, the effects of the reductions would be checked against the

solution trajectories. If the solutions converged to a disease-free equilibrium, the infection

is successfully eradicated.

8.3 Hantavirus Model

Recall the Hantavirus model given by (2.8). This model passes all the hypotheses of

Theorem 6.1, so a valid Next Generation R0 can be produced, and this index is calculated

correctly within sensai. The endemic equilibrium for the model is (375, 125, 375, 125).

8.3.1 R0 Analysis

Again, one can conclude that R0 > 1 just by observing the trajectories of the system

from Figure 2.1. Nevertheless, R0 is computed to be 151.65. Its elasticities are given by

Figure 8.12.
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Figure 8.12: Elasticity of R0 = 151.65 to parameters for the Hantavirus model.
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R0 is equally elastic to parameters p1 = K, p3 = βm, and p4 = b. To reduce R0, one

would reduce K and βm and increase b. These efforts will be made individually to show

which is really the most effective.

If p1 is reduced by 10%, R0 is reduced to 136.48, a relative change of 10%, as ex-

pected by the elasticities. However, since p1 = K, the carrying capacity, reducing this

parameter just reduces the total population in every class. The new endemic equilibrium is

(337, 112, 337, 112) truncated to the whole individual. The proportion of infected individ-

uals is exactly the same when K is reduced. See Figure 8.13 for the solution trajectories.

While the elasticity of R0 to K is high, changing K seems to be ineffective in controlling the

infection.
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Figure 8.13: Solution of Hantavirus Model when p1 = K is reduced by 10%. R0 = 136.48.
Initial conditions are (449, 1, 450, 0) as the new DFE is (450, 0, 450, 0).

If p3 = βm is reduced by 10%, R0 is reduced to 136.85, a relative change of 9.76%. But,

the endemic equilibrium is exactly the same before it was reduced. The solution is seen in

Figure 8.14. While this reduces R0, it also seems ineffective in the efforts to control the

infection.

Finally, if p4 = b is increased by 10%, R0 is reduced to 137.86, a relative change of 9.09%.

A 10% increase means that the average litter size is 6.6. This is reasonable for an average and

does not need to be a whole number. The new endemic equilibrium is (383, 116, 383, 116),
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Figure 8.14: Solution of Hantavirus Model when p3 = βm is reduced by 10%. R0 = 136.85.
Initial conditions are (499, 1, 500, 0) as the DFE is (500, 0, 500, 0).

truncated. This by no means eradicates the infection, but does provide a positive change,

as the proportion of infected individuals is reduced. The solution trajectories are given in

Figure 8.15.

0 5 10
350

400

450

500

S
m

t

x(
1)

0 5 10
0

50

100

150

I
m

t

x(
2)

0 5 10
350

400

450

500

S
f

t

x(
3)

0 5 10
0

50

100

150

I
f

t

x(
4)

Figure 8.15: Solution of Hantavirus Model when p4 = b is increased by 10%. R0 = 137.86.
Initial conditions are (499, 1, 500, 0) as the DFE is (500, 0, 500, 0)

Changing the three elastic parameters by 10% individually did little to remove the

infection. Now consider a combined effect. Changing K only seemed to scale the total

population. While this reduces the number of susceptibles and therefore reduces the amount

of contacts between infected and susceptibles, K will not be attacked heavily as it does not
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seem biologically favorable. Consider a reduction of K by 20%. Changing b seemed to have

the best effect on the trajectories, so it will be quadrupled. While βm did not seem to reduce

the endemic equilibrium, if R0 is reduced below 1, the disease will be eradicated. Consider

the effects of reducing βm by 82%. When these changes are made, the new R0 is still greater

than 1, but the elasticities of R0 to parameters are quite different. See Figure 8.16.
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Figure 8.16: R0 = 7.43 and its elasticities after significant changes in parameters.

The new DFE is (400, 0, 400, 0) and R0 = 7.43. The elasticities of R0 to p1 = K and

p4 = b are the same as before the changes in parameters, but the elasticity of R0 to p2 = βf

is now approximately equal to the elasticity of R0 to p3 = βm. This is simply because

βm reduced it to 0.1620, which is now comparable to the value of βf = 0.09. Recall the

assumption that βf << βm. In efforts to stay consistent with the model formulation, this

assumption should be maintained while attempting to reduce R0 below 1. Staying consistent

with the assumption is actually staying true to the elasticities, as continuing the reduce βm

will have less and less affect on R0. Let βf be reduced by 75%, and further reduce βm by 90%

of its original value. Now βf = 0.0225 << 0.09 = βm in some sense. The elasticity of R0

to b is still high and ecologically favorable, so it will be increased further to 50 (about 833%

of its original value). The carrying capacity will also be reduced by 50% to 500 individuals.

When these changes are made, R0 is below 1. The new DFE is (250, 0, 250, 0). Whether or

not these changes are realistic is unknown. Figure 8.17 shows the trajectories.
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Figure 8.17: Solution after singificant changes to all parameters. R0 = 0.9681 and the
infection is not sustained.

8.3.2 QoI Analysis

Figure 8.18 depicts the elasticities of the QoI, proportion of infected individuals, to

parameters for the Hantavirus model.
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Figure 8.18: Elasticity of the QoI = 0.25 to parameters for the Hantavirus model. Initial
conditions are (499, 1, 500, 0). Note the scale on the elasticity of K is 10−3

The only parameter with a high elasticity at equilibrium is b. This is consistent with

the results from the previous section, as changing K or βm by 10% did not reduce the QoI

at all. The QoI is also inelastic to βf , and a change in 10% of βf results in no change to

the QoI. The only parameter that changes the QoI at equilibrium under a small relative
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change is b. A 10% increase to b reduces the QoI to 0.2326. This is not significant, but as

seen in the previous section, many changes need to be made to control the infection.

The QoI is also transiently elastic to βm, with a maximum elasticity of 0.5368. A

control strategy of attacking parameters b and βm is developed from the QoI analysis. If b

is increased to 24 as before, and βm is reduced by 82%, the new QoI is 0.07689, a significant

reduction, but not eradication. The disease-free equilibrium is still (500, 0, 500, 0). The

elasticities of the QoI also change with this first reduction. Figure 8.19 shows the elasticities

after these changes have been made.
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Figure 8.19: Elasticity of the QoI = 0.077 to parameters for the Hantavirus model. Initial
conditions are (499, 1, 500, 0).

Now the QoI is elastic to all four parameters, at least in transience. As before, the

assumption βf << βm should be maintained for the model, so βf should be reduced as well.

This is consistent with the elasticities as the QoI is now elastic to βf in transience. Let this

be reduced by 55% of its original so that βf = 0.0405 << 0.162 = βm. Notice that this is

a scaling of 4 times; the same scaling is used in the R0 analysis. The carrying capacity also

demonstrates transient elasticity when it essentially did not before. Furthering the control

strategy should follow the same procedure as in the R0 analysis. The parameter that has the

highest elasticity should be changed to a biologically reasonable level, and then the next most

elastic parameter, and so on, while maintaining the model’s assumptions. The QoI analysis
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emphasizes increasing b as it is the only parameter with equilibrium elasticity. Assume

70 is the highest b can feasibly reach. Also reduce K by 25% to 750, while maintaining

βm = 0.162 and βf = 0.0405. The new DFE is (375, 0, 375, 0), and the QoI is now 0.01631.

The elasticities are given by Figure 8.20.
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Figure 8.20: Elasticity of the QoI = 0.016 to parameters for the Hantavirus model. Initial
conditions are (374, 1, 375, 0).

Even though b is the most elastic, it is assumed it can not be increased further. The next

best strategy is to reduce K and βm. If βm is reduced, βf will be reduced correspondingly

to keep the ratio 4:1. The reduction of K by 50% to 500, βm by 85% to 0.135, and βf by

62.5% to 0.03375, while maintianing b = 70 effectively removes the infection. The new DFE

is 250, 0, 250, 0]. The final QoI is actually positive valued at 0.001339, implying some infec-

tion is in the population. However, the “endemic” equilibrium is (249.49, 0.51, 249.49, 0.51).

Truncating to the whole individual results in a “disease-free equilibrium” of (249, 0, 249, 0).

This is not really an equilibrium, nor is it actually disease-free. In fact, R0 = 1.0373 with

these parameter values.

8.3.3 Comparison of Methods

Both R0 and the QoI analysis methods led to very similar management strategies for

this model. In fact, under certain restrictions, the strategies could be exactly the same. The
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Figure 8.21: Solution after significant changes to all parameters. QoI = 0.0013, but the
infection is effectively removed from the population.

check for whether the infection persists in the population under the R0 analysis is too strict

when considering the management strategy from the QoI. If individuals are truncated to

the whole number, R0 may be slightly greater than 1 while the infection is removed from

the population. This is not a failure of Theorem 6.1 since the disease-free equilibrium is

still unstable. The population approached an endemic equilibrium, but that equilibrium is

so close to the disease-free equilibrium that the total number of infected individuals, while

strictly greater than 0, is also strictly less than 1. When truncated to whole numbers, it is

as if infection is removed from the population. If R0 ≈ 1, the solution trajectories should be

computed to determine whether or not the infection actually persists in the population.

69



Chapter 9

FAILURES OF R0

There are models that can be constructed in which a Next Generation R0 is not well-

defined. First, the Next Generation R0 can fail mathematically as it may not be unique

(Section 9.1). Second, the Next Generation R0 can fail biologically as in models where

transmission does not occur only by contact (Section 9.2). Finally, the Next Generation R0

can fail to predict persistence when a finite amplitude disturbance is introduced rather than

an infinitesimal perturbation (Section 9.3).

9.1 Mathematical Failures

Because of the way in which F and V are defined, there are models that arise that have

the same solution trajectories but different values of R0. Mathematically speaking, these

models are equivalent, thus the concept of R0 is not mathematically unique. The ideas of

this section are an expanded from [11].

Consider the following SI model, where S represents the number of susceptible individ-

uals in a population, and I represents the number of infected individuals:

dS

dt
= −βSI + µI

dI

dt
= βSI − µI

 (9.1)

The +µI term in the first equation is there only to ensure a constant population by

forcing
d(S + I)

dt
= 0; the number of new births should be equal to the number of deaths.

Under the Next Generation method, the matrices F and V are one-dimensional and equal

to βS and µ, respectively. Then, the value of R0 is given by R0,1 = ρ(FV −1) =
βS?

µ
, where

70



S? is the value of S at the disease-free equilibrium. This R0 exhibits the threshold criterion

such that if R0,1 < 1, the DFE is stable, but if R0,1 > 1, the DFE is unstable.

Notice that in this example, R0 depends on the disease-free equilibrium number of

susceptibles, S?. In this model, there are infinitely many disease-free equilibrium points,

since
dS

dt

∣∣∣∣
I=0

= (−βSI + µI)
∣∣∣
I=0

= 0 for any value of β, µ or S. This implies that R0

depends on the initial conditions for S, as that value will always provide a disease-free

equilibrium. Thus, the definition of R0 is refined to be R0,1 =
βS(0)

µ
. Figure 9.1 shows two

possible trajectories, one with R0 > 1 and one with R0 < 1. The difference of R0 values

in the two solutions is only due to the initial number of susceptibles. This illustrates the

vaccination control strategy: if the number of susceptibles is reduced, the infection can be

removed.
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(a) S(0) = 10 and R0 = 0.5
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(b) S(0) = 100 and R0 = 5

Figure 9.1: SI model trajectories for (9.1). Parameter values are µ = 0.8, β = 0.04. Initial
condition I(0) = 1 is used for both.

Now consider the same model with an algebraic manipulation.

dS

dt
= −βSI + µI

dI

dt
= βSI − µI − cI + cI

 (9.2)

Clearly, this model will have the exact same trajectories for any matching initial con-

ditions and parameter values. Since it is mathematically the same model, the index R0,1

is obviously a valid threshold for this model. However, depending on the biological mean-

ing of the −cI and +cI terms, a different R0 may be determined. Suppose the −cI term
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represents a disease specific death rate and the +cI term represents an alternative mecha-

nism for a new infection that just happened to occur at the same rate c. It is appropriate

for the +cI term to belong in F while the (negated) −cI term belongs in V , yielding the

matrices F = βS(0) + c and V = µ + c. The value of R0 under these assumptions is then

R0,2 = ρ(FV −1) =
βS(0) + c

µ+ c
. If c = 0.2, for example, the trajectories for (9.2) are exactly

the same as for (9.1), as seen by Figure 9.2, but this time the new R0 = 0.6 instead of 0.5

for Figure 9.2(a), and the new R0 = 4.2 instead of 5 for Figure 9.2(b).
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(a) S(0) = 10 and R0 = 0.6
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(b) S(0) = 100 and R0 = 4.2

Figure 9.2: SI model trajectories for (9.2). Parameter values are µ = 0.8, β = 0.04. Initial
condition I(0) = 1 is used for both.

R0,2 also exhibits the threshold criterion such that if R0,2 < 1, the DFE is stable, but if

R0,2 > 1, the DFE is unstable.

Proof. Suppose 0 < c <∞.

R0,2 < 1 ⇐⇒ βS(0) + c < µ+ c

⇐⇒ βS(0) < µ

⇐⇒ R0,1 < 1

⇐⇒ the DFE is stable

A similar argument can be shown for R0,2 > 1. �

Clearly, R0,1 6= R0,2, yet both are constructed under the same method for two models

with the same trajectories. While both R0,1 and R0,2 exhibit the threshold criterion necessary

for R0, they cannot both satisfy the biological definition for a single model. How can the

72



average number of secondary infections from one infected individual be both 5 and 4.2 at

the same time? It may be easy to determine which terms belong in F and V for such a

small model, but if the model is constructed progressively as (2.8), it may become difficult

to determine the proper biological function of every term.

The difficulty of discovering the true R0 will certainly increase with the model’s complex-

ity. In models that are more than simple SI demonstrations, it should be examined whether

the efforts to calculate R0 are worth the expense when the QoI and solution trajectories can

be computed so easily in sensai.

9.2 Biological Failures

There is another common class of models where F and V are defined correctly according

to the epidemiology, but a Next Generation R0 fails to be well-defined. Consider models that

include a background infection rate. Transmission of the infection arises not from contact

with an infected individual, but by some alternative source related to the environment of

the population. The background transmission occurs as a probability that is independent of

the number of infected individuals. An example where background transmission occurs is

the model in [6] of White Pine Blister Rust (Cronartium ribicola), an infection prevalent in

the northwest United States that attacks five-needle, high elevation white pine trees (Pinus

albicaulis and P. exilis). The infection is not transmitted from tree-to-tree contact, but is

from an uniformly distributed cloud of spores from flowering plants among the genus Ribes.

Infection is stored in the Ribes, which permeate the forest ground, and transmitted to the

pines by a constant probability of infection β, independent of I. Another example comes

from Chronic Wasting Disease (CWD) in mule deer (Odocoileus hemionus). The model in

[14] proposes that the transmission of CWD is primarily through environmental sources and

not direct deer-to-deer contact.

For models like these, the Next Generation method of calculating R0 will never be

valid. Assumption (A4) for ODEs (or assumption #5 for maps) fails under all models with
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background infection. Because transmission occurs independent of the number of infected

individuals, the disease-free subspace is not invariant. That is, if the population is disease-

free, infection can still enter the population.

Consider a basic SI model that has a constant background infection rate. Let the

number of susceptibles change according to Logistic growth, and let the transmission of

infection be independent of the number of infected individuals. Then

dS

dt
= rN

(
1− N

K

)
dI

dt
= β − γI

 (9.3)

where N(t) = S(t) + I(t) is the total population, r is the per capita growth rate, K is the

carrying capacity, β is the background transmission probability, and γ is the recovery rate.

Notice that there is no nontrivial disease-free equilibrium in this model. This can be seen

by solving
dS

dt
= 0 for I. The only solution is I? =

β

γ
. Even if I(0) = 0, infection can still

occur if β 6= 0 as seen by Figure 9.3. The only biologically appropriate equilibrium for this

system is S? = K − β

γ
and I? =

β

γ
. There is another mathematically valid equilibrium for

the model where I? is the same and S? =
−β
γ

, but negative populations are not biologically

realistic.

In fact, there are two problems with this example as far as the construction of the Next

Generation R0 is concerned. First, there is no invariant disease-free subspace; (A4) fails.

Second, there is no disease-free equilibrium provided β 6= 0. The Next Generation method

for R0 describes the stability of the DFE. If there is no DFE, the Next Generation R0 can

not be used.

Because there is no working Next Generation R0 for this model, the analysis will be done

using only the quantity of interest as the proportion of infected individuals. The elasticities

of the QoI at equilibrium to parameters p2 = β, p3 = γ, and p4 = K are similar as indicated

by Figure 9.4. The only parameter to which QoI is essentially inelastic is p1 = r. All other

parameters have an elasticity of 1 in magnitude at equilibrium. The differences between the
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Figure 9.3: Solution to the Background SI model. Parameter values are r = 0.5, β = 0.8,
γ = 0.02, K = 1000. The initial condition is disease-free and at carrying capacity: S(0) =
1000, I(0) = 0, but infection persists in the population.

elasticities of the QoI to β, γ, and K occur in transience. It is easy to see that β is the

parameter to which QoI has an elasticity of 1 in the shortest time. In fact, the elasticity

of the QoI to β is 1 after a single time step. This is expected, as β is the parameter that

determines the new infections. The QoI should be highly elastic to γ at equilibrium, since

the equilibrium number of infected individuals is always
β

γ
. A change in γ will produce a

proportional change in I, which will produce a change in the QoI. Similarly, the QoI should

be highly elastic to K at equilibrium since the equilibrium number of susceptible individuals

is always K − β

γ
. A change in K will produce a change in S, which will produce a change in

the QoI.
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Figure 9.4: QoI and its elasticities for the background infection model. Note the scale on
the elasticity of QoI to p1 = r and p4 = K is 10−5.
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Suppose β = 0 for this model. Now assumption (A4) is satisfied and a disease-free

equilibrium exists, so a Next Generation R0 is valid. The term β belongs in F as it is

an isolated parameter. This is biologically accurate as β describes new infections from the

background transmission. The term γI belongs in V , as no noninfectious state occurs in this

term. This is also biologically accurate as recovery is a transfer of existing infections. Then

the matrix F = 0 and V = γ, so that FV −1 = 0, and R0 = ρ[0] = 0. This will always be the

case for models where the transmission occurs via a background rate.

The infection rate β should be the most sensitive parameter, as any change of ε > 0

will produce a qualitative change in the solution. The disease-free equilibrium will cease to

exist, and the solution will converge to an endemic equilibrium instead. The elasticity of

any quantity of interest (including R0) is 0 (or is undefined) with respect to β, as β = 0 will

occur in the numerator of (3.8). Sensitivities will be considered instead of elasticities for this

example.

Because R0 is identically equal to 0, its sensitivities and elasticities will also equal 0. No

information can be gleaned from R0. If disease-free initial conditions are used, the QoI will

also be 0. However, unlike R0, the sensitivities of the QoI are not all 0. Figure 9.5 shows

that the QoI is sensitive only to p2 = β. This is intuitive, as a change in any parameter
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Figure 9.5: QoI and its sensitivities when β = 0. The only sensitive parameter is p2 = β.
Initial conditions are at the disease-free equilibrium.
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other than β will not change the number of infected individuals, but if β is changed, the

number of infected individuals will change.

If infection is introduced in the population, the QoI will not be initially 0. The rate at

which the infection decreases is dependent on all parameters, so the QoI will be sensitive to

every parameter in this case. In transience, the only parameters with significant sensitivities

are β and γ, which makes sense as I? =
β

γ
. As the infection is removed from the population,

the only sensitive parameter is again β. These results are illustrated in Figure 9.6.
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Figure 9.6: QoI and its sensitivities when β = 0 and initial conditions have infection intro-
duced. S(0) = 999, I(0) = 1. Note the scale on p1 = r is 10−7 and the scale on p4 = K is
10−6.

9.3 Finite Amplitude Disturbances

Finally, there are models where the Next Generation R0 fails in the sense that it may

not accurately predict the persistence of infection if more than one infected individual is

introduced to the population. This is not a mathematical failure of the theorems on R0, nor

is it a biological failure of the definition of R0. Instead, this is a limitation of the concept.

R0 can only be used as an indicator of infection persistence if a single case of infection is

originally introduced. If a large number of infected individuals is introduced to a population,

R0 can be misleading.
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Consider a model for Dengue fever given by [7]. The model is an SEIR model, where E

stands for a class of exposed individuals who have made contact with an infected individual

but are still not infectious. Dengue is carried by a vector, mosquitoes, and the dynamics of

the vector and human populations are modeled. The equations are as follows:

dSH
dt

= ΠH − λHSH − µHSH
dEH
dt

= λHSH − (σH + µH)EH

dIH
dt

= σHEH − (τH + µH + δH)IH

dRH

dt
= τHIH − µHRH

dSV
dt

= ΠV − λV SV − µV SV
dEV
dt

= λV SV − (σV + µV )EV

dIV
dt

= σVEV − (µV + δV )IV



(9.4)

where λH = CHV

NH
(ηVEV + IV ) is the human infection rate, λV = CHV

NH
(ηHEH + IH) is the

vector infection rate, and NH = SH + EH + IH + RH is the total human population. The

parameters for this model are described and valued in Table 9.1. It is assumed that infected

vectors do not recover, so there is no RV class. This model has a disease-free equilibrium of

(ΠH

µH
, 0, 0, 0, ΠV

µV
, 0, 0).

The solution trajectories in Figure 9.7 show that although R0 < 1, it is possible for

infection to persist in the population. The Next Generation R0 is a valid technique as

all of the conditions of the theorem are met. But, the theorem only proves the stability

of the disease-free equilibrium. Since R0 < 1, the DFE is stable for this system. An

infinitesimal change from the DFE will not affect the long-term behavior. Biologically, the

way to represent an infinitesimal change is to introduce one infected individual, as introducing

0 < ε < 1 individuals is not biologically realistic.

But, if a large enough disturbance is introduced to the population, the long-term be-

havior can be changed. This is because there is another stable equilibrium that is endemic.
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Table 9.1: Parameter Values for Dengue Model.

Parameter Numerical Value Interpretation

µH 0.0195 1/µH is average human lifespan
σH 0.5300 Rate of transfer of exposed to infected humans
ΠH 10 Human recruitment rate
δH 0.9900 Disease specific human death rate
ηH 0.9900 Infectiousness factor of exposed to infected humans
τH 0.2000 Human recovery rate
µV 0.0140 1/µV is average vector lifespan
σV 0.2000 Rate of transfer of exposed to infected vectors
ΠV 30 Vector birth rate
δV 0.0057 Disease specific vector death rate
ηV 0.9800 Transmissibility factor of exposed to infectious vectors
CHV 0.038 Infection rate of mosquitoes

If the disturbance results in a state that is in the basin of attraction of the DFE, as in Figure

9.7(a), the infection will be removed; however, if the disturbance moves the conditions inside

the basin of attraction of the endemic equilibrium, as in Figure 9.7(b), the infection will

persist.

If the infection is introduced in the population as a single infected individual, consistent

with the definition of R0, the infection will not be sustained. There is no failure in the

biological meaning of R0 or the mathematical definition of R0. However, if a large number

of infected individuals are introduced in the population, R0 is not a good measure to predict

the persistence of the infection. This is a legitimate possibility. Inhabitants of foreign

countries have immunities to certain diseases while others do not. Suppose a large influx of

individuals who carry a certain disease but have no deleterious effects from that disease arrive

in a population of susceptible individuals. R0 is not a useful measure in such a situation. R0

may be less than one, but because a large number of infective individuals are introduced,

rather than just one, the infection may persist.
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(a) R0 = 0.9032 and the infection is removed
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(b) R0 = 0.9032 but the infection persists

Figure 9.7: Dengue model trajectories. In (a), x0 = (ΠH

µH
, 0, 0, 0, ΠV

µV
, 0, 100) and the infection

is unsustainable. In (b), x0 = (ΠH

µH
, 0, 0, 0, ΠV

µV
, 0, 200) and the infection persists.
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Chapter 10

MODELS WITH BLOCK STRUCTURE

Suppose a model is a coupled system of differential equations, such as the hantavirus

model in (2.8). There is a clear block structure that results from such a system: the equations

for the males is block 1, and the equations for the females is block 2. Can this structure be

exploited by separately solving the solutions and sensitivities of each block under an iterative

method? More interesting examples than (2.8) come from in-host disease dynamics, where

the population of the species is modeled along with the population of the infecting agent.

The dynamics of the host population usually occur on a much slower time scale that the

dynamics of the infecting agent. If the blocks are solved separately, time and storage space

may be saved by solving the slow blocks over a coarser time mesh than the fine mesh required

for the rapidly changing block. This chapter will discuss the advantages and disadvantages

of decoupling the system of ODEs and more importantly, that of their sensitivity analysis.

10.1 Block Solutions

Assume that the general form of a continuous model (2.9) is a fully coupled, block-

structured system. Now, introduce a new function r = r(x) that will decouple the system.

For simplicity, assume that the system can be split into just two blocks of equations. This

can be easily extended to multiple blocks, but the extension will not be discussed here. In the

two-block system, r may be thought of as a vector of two functions, where the first function

r1 = r1(x1) depends on the first block, and the second function r2 = r2(x2) depends on the

second block. This requires the coupling of a model is involved in only one equation of each

block. This may seem strict, but many models exhibit such structure. The set of decoupled
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ODEs has the block form

ẋ1 = h1(x1(p), r1(x2(p)),p)

ẋ2 = h2(x2(p), r2(x1(p)),p)

 (10.1)

where the vector of variables of the first block x1 ∈ RM1 , the vector of variables of the second

block x2 ∈ RM2 , and M1 + M2 = M. The vector of parameters p ∈ RK, as before.

10.1.1 Piecewise Constant Approximation

In order to explicitly write (10.1), r must be known at all times t. This can be done

through some iteration technique, and the method chosen is Gauss-Seidel. The following

algorithm describes the solution technique for a simple piecewise approximation.

Algorithm 1: Piecewise Constant Approximation

1. Approximate r1(x2) by assuming it is a piecewise constant function over subintervals

of the time domain [0, T ].

2. Solve the first block of differential equations

3. Approximate r2(x1) by assuming it is a piecewise constant function over subintervals

of the time domain [0, T ].

4. Solve the second block of differential equations

5. Repeat steps (1) - (4) until convergence

For the first iteration, the initial conditions of x2 are held constant on the entire interval

[0, T ] as the input to calculate r1(x2). Now x1(t) can be solved on the entire time domain

[0, T ]. Once the first block is solved, split up [0, T ] into subintervals [ti, ti+1] and calculate

r2(x1) by assuming x1 is a piecewise constant function on the subintervals. This is the

piecewise linear constant approximation of the other block.
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Figure 10.1: Illustration of Steps 1 through 3 of Algorithm 1

After the first step, x2(t) can be solved on [0, T ]. r1(x2) is calculated by the piece-

wise constant approximation of the second block so that x1(t) can be refined. The process

continues until convergence is achieved.

Note that the accuracy of the method described in Algorithm 1 depends on the choice

of the splitting of the time domain [0, T ]. In Figure 10.1, the rate of change of x1(t) between

t = t1 and t2 is high in magnitude. The mesh depicted for r2(x1) is too large and is a poor

approximation of x1. If a smaller mesh is chosen, the method will be more accurate.

Consider the following pair of differential equations.

ẏ1

ẏ2

 =

h1(y1, r1(y2))

h2(y2, r2(y1))


=

y1(1− y1)− 7y1 + 5y2

y2(1− y2)− 5y2 + 7y1


=

y1(1− y1)− 7y1 + 5r1

y2(1− y2)− 5y2 + 7r2


This is a simple model with a bounded solution. It is also easily expressed in block

form: the first equation, h1, is the first block, and the second equation, h2, is the second
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block. Using Algorithm 1, this model can be solved over the interval t = [0, 7] using a mesh

of equally spaced time intervals of 0.1 and ode tolerance within Matlab of 10−10. The fully

coupled solution solved in the regular manner using the same ode solver tolerance will be

referred to as the exact solution. The norm of the residual of the the iterated solution from

exact solution was 5.25×10−2. Gauss-Seidel iteration converged around step 15, within 10−5

of the previous step. Figure 10.2 depicts the convergence of the iteration. The dotted lines

are the iterated solutions and the solid lines are the exact solutions; and red corresponds to

y1 and green to y2.
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Figure 10.2: Piecewise Linear Interpolation with mesh 0.1

Of course, decreasing the mesh size will provide a more accurate interpolation of r.

With a mesh of 0.01, the residual had a norm of 1.26 × 10−2, and with a mesh of 0.001,

the residual norm was 3.92× 10−3. While the solution became more accurate, the efficiency

suffered from the extra precision. As the mesh size is decreased, more steps of Gauss-Seidel
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iteration were required to reach convergence. While a mesh of 0.1 converged in 15 steps, a

mesh of 0.01 converged in 21, and a mesh of 0.001 converged in 26. This data are illustrated

in Figure 10.3.

Figure 10.3: Convergence of Gauss-Seidel as Mesh Decreases

The runtime with a mesh of 0.1 was 1 minute, with a mesh of 0.01 was 5 minutes, and

with a mesh of 0.001 was 51 minutes. It appears that as the mesh size decreases, the time

to convergence increases exponentially.

10.1.2 Spline Interpolation

To improve the accuracy (and efficiency) of the method, a spline interpolation of the

other block is used instead of assuming it is a piecewise linear constant. Algorithm 2 describes

this procedure.

Algorithm 2: Spline Approximation

1. Compute a spline function of x2 over [0, T ].

2. Approximate r1(x2) using the spline over subintervals of [0, T ].
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3. Solve the first block of differential equations

4. Compute a spline function of x1 over [0, T ].

5. Approximate r2(x1) by using the spline over subintervals of [0, T ].

6. Solve the second block of differential equations

7. Repeat steps (1) - (6) until convergence

Using the same example in Section 10.1.1 with Algorithm 2, the solutions with a mesh

0.1, 0.01, and 0.001 are given and compared in Figure 10.4. With a mesh of 0.1, the norm of

the residual was 9.52×10−4, converging in 25 steps. While this is more steps to convergence

than the piecewise linear approximation, because the mesh is still small, the runtime was

just 2 minutes. The extra time is worth the accuracy in this instance. Moreover, when the

mesh is 0.01, the norm of the residual was 7.38× 10−8, converging in 36 steps but requiring

only 26 minutes . When the mesh is 0.001, the norm of the residual was 1.85 × 10−11,

converging in 43 steps and requiring 10 hours. Most importantly, with this mesh, the ode

tolerance of 10−10 is finally achieved. The piecewise linear approximation may never achieve

this accuracy.

10.2 SIR Example

Now consider the following example, a simplified version from [13]. This model is an

SIR model of Meningitis that describes two interacting populations, Group A and Group B.

This example provides a natural block structure among the groups. Group A can contract

the disease from Group B, and vice versa; however, a Group A individual will never become

a Group B individual. Group A individuals may be thought as susceptible only to type A

virus, but the virus can mutate, allowing the infection to be transmitted from a Group B
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Figure 10.4: Convergence of Gauss-Seidel with Spline Method

individual. The differential equations are:



ṠA

İA

ṘA

ṠB

˙IB

ṘB


=



−βSA(IA + µIB) + δ(IA +RA)

βSA(IA + µIB)− (ρ+ δ)IA

ρIA − δRA

−βSB(IB + µIA) + δ(IB +RB)

βSB(IB + µIA)− (ρ+ δ)IB

ρIB − δRB


(10.2)

where β is the transmission rate, µ is the mutation rate of the pathogen (so that a Group A

individual can be affected by a type B virus), ρ is the recovery rate, and δ is the death rate.

For notational convenience, let x = (SA, IA, RA, SB, IB, RB) and p = (β, µ, δ, ρ). Notice that

block 1 (x1 through x3) depends on block 2 (x4 through x6) and vice versa, but only through

one state of either block (x4 and x2 respectively). Introduce the function r to “remove” this
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coupling. If r1(x2) = x5 and r2(x1) = x2, the same system can be written as two blocks:


ẋ1

ẋ2

ẋ3

 =


−p1x1(x2 + p2r1) + p3(x2 + x3)

p1x1(x2 + p2r1)− (p4 + p3)x2

p4x2 − p3x3

 (10.3)


ẋ4

ẋ5

ẋ6

 =


−p1x4(x5 + p2r2) + p3(x5 + x6)

p1x4(x5 + p2r2)− (p4 + p3)x5

p4x5 − p3x6

 (10.4)

Using the initial conditions and parameters described in Table 10.1 and employing

Algorithm 2, the solution on the interval [0, 700] can be obtained. Define the exact solution

as the solution of the fully coupled system with no iteration. The accuracy of the block

solution can be compared using various mesh sizes as before. With the same ode tolerance

of 10−10, the norm of the residual generally decreased with mesh size. Define the relative

error norm, e, by

e =

∥∥∥∥xexact − xiterated
xexact

∥∥∥∥
2

(10.5)

Table 10.1: Parameter Values for Meningitis Model, units of all parameters are days−1.

Parameter Numerical Value Interpretation

β 10−5 Transmission rate
µ 10−5 Mutation rate of pathogen
δ 10−4 Death rate
ρ 10−2 Recovery rate

With a mesh of 1.0, e = 2.38 × 10−6. For the remainder of this chapter, the methods

will be compared based on the results from this mesh. The relative error results for various

mesh sizes is given in Figure 10.5.
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Figure 10.5: Relative Solution Errors for SIR Model

10.3 Sensitivity and Elasticity Analysis

Just as the block structure can be decoupled for the solutions, the same can be done

for the sensitivities. Suppose the model is of the form of (10.1). The sensitivity equations

have a different form than (3.6). Then by block, the sensitivities become

dSi,k
dt

=
M∑

m=M1+1

(
∂hi
∂r1

∂r1

∂xm

∂xm
∂pk

)
+

M1∑
m=1

(
∂hi
∂xm

∂xm
∂pk

)
+
∂hi
∂pk

i = 1, . . . ,M1

dSi,k
dt

=

M1∑
m=1

(
∂hi
∂r2

∂r2

∂xm

∂xm
∂pk

)
+

M∑
m=M1+1

(
∂hi
∂xm

∂xm
∂pk

)
+
∂hi
∂pk

i = M1 + 1, . . . ,M


(10.6)

These equations can be iterated using the same algorithms as the solutions. sensai is

capable of computing the block sensitivities automatically. The sensitivities of the decoupled,

iterated (10.3) and (10.4) when compared to the sensitivities of the fully coupled (10.2) were

such that e = 4.57× 10−2. Figure 10.6 depicts the relative error results.

The elasticity information can be computed using (3.8) as before. The iterated elas-

ticities were such that e = 1.64 × 10−3. This is comparable to the relative errors of the

sensitivity analysis. Figure 10.7 shows all of the relative elasticity results.
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Figure 10.6: Relative Sensitivity Errors for SIR Model

Figure 10.7: Relative Elasticity Errors for SIR Model

10.4 Involving Two Time Scales

Now suppose the model of interest has a block structure such that the first block changes

on a fast time scale, but the second block changes on a slow time scale. Examples of this

occur widely in biological applications, particularly in-host disease dynamics, as mentioned
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previously. The population of infected individuals may change on a much slower scale than

the infecting agent itself.

Another interesting example comes from physics. Consider an example from Estep, et.

al, of a system of masses connected together by a wire [5]. Suppose two of the masses are

large and the rest are small. The interaction between the large and small masses is limited

to one equation involving the final large mass and the first small mass, so it is compatible

with the decoupling algorithms. Moreover, since the large masses move much slower than

the small masses, the system changes on two time scales. sensai can take advantage of this

feature by solving the fast scale on a finer mesh than the slow scale. While a high degree of

accuracy is needed to precisely solve the noisy fast scale, a coarse mesh can still be used for

the slow scale to save storage space and reduce time to convergence.

A solution (fully coupled) of the wire-mass system described above using 1000 equally

spaced mesh points is shown in Figure 10.8. Notice that the first ten equations (the positions

and velocities of the small masses) change on a fast scale while the last four equations

(positions and velocities of the large masses) change on a slow scale. A fine mesh is required

to solve the first block but is not necessary for the second block. As with any iterative

method, there is error associated with this. When the first block is solved over a mesh with

1000 time steps and the second block is solved over a mesh of 100 steps, the norm of the

error (compared to the fully coupled solution using 1000 steps) is O(1). But, when the entire

system is solved over a mesh with 1000 steps and still solved block-wise, the norm is O(10−7).

This is at first startling, but can be explained. The exact solution requires a mesh of more

than 1000 steps to compute, so the solution to the fully coupled system which is called the

“exact solution” is flawed. The error is most apparent in the smaller mesh of 100. Analysis

using a finer mesh was not continued because the time to convergence with a mesh of 1000

steps is 67 hours. Given a proper mesh and enough patience, accuracy for this method may

be achieved; however, the inefficiency of decoupling the system is overwhelming.
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Figure 10.8: Solution to Masses on Wire
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Chapter 11

CONCLUSIONS

11.1 R0

The main focus of this dissertation was to explore the analytical techniques for ecological

models, specifically R0 and sensitivity analysis. R0 has several advantages when analyzing

models. First, it is a single number which, when the conditions of Theorems 5.6.1 or 6.1

are met, has a relevant and clear interpretation. A researcher needs only to know a single

number to have a good idea of how hard or easy it will be to control the infection. Second,

because the threshold for R0 is one, the researcher will know exactly how much scaling to a

parameter is needed to reduce R0 to a value less than one by examining its elasticities (as in

the Typhoid model in Section 8.2). Finally, the Next Generation construction is automated

within sensai, and barring any special cases, can be computed with great ease.

Unfortunately, there are also many disadvantages of R0. First, the Next Generation

R0 is not mathematically unique, as seen by Section 9.1. While the index is guaranteed to

be a threshold for the model if it is well-defined, it is not guaranteed the index accurately

represents the number of secondary infections from a single infected individual. Second, the

Next Generation construction may not be well-defined for the given model. This occurs in

models with a background infection rate as Section 9.2, but is not limited to these types

of models. Any model where one or more of the assumptions fail from Theorem 5.6.1 for

continuous models or from Theorem 6.1 for discrete models will not have a valid Next

Generation construction. Furthermore, R0 may not be an appropriate measure to predict

infection persistence if a finite amplitude disturbance is introduced to the population rather

than a single infected individual, as seen by Section 9.3. R0 may be less than one, and

this threshold may be mathematically and epidemiologically correct, but if a large number
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of infected individuals enter the population at once, infection may still persist. Finally, R0

may be slightly greater than one with infection effectively removed from the population as

in Section 8.3. If the value of R0 = 1+ ε for sufficiently small ε, the trajectories will converge

to an endemic equilibrium where the number of infected individuals y is 0 < y < 1.

Neither the list of advantages nor the list of disadvantages for R0 are intended to be

exhaustive lists.

11.2 SENSAI

Through sensai, a researcher can build up his or her model and specify whether or

not a Next Generation R0 is to be computed. The sensitivity and elasticity analysis will be

computed automatically within sensai for any quantity of interest, including R0. If a Next

Generation R0 is not valid for the model, such as models with a background infection rate,

another quantity of interest should be analyzed. Because sensai allows for any quantity of

interest to be implemented, an alternative closed form R0 calculated by a different method

than the Next Generation construction may be used. While a Next Generation R0 is the only

method automated in sensai, the program allows the user to compute R0 under any other

method outside of sensai so that the sensitivity and elasticity analysis can be computed

automatically within sensai. If R0 is too difficult to obtain for the model, the quantity of

interest of the proportion of infected individuals may be used as a sufficient replacement.

This simple quantity will always be valid for an infection model and never has an ambiguous

definition or interpretation. Moreover, the information acquired from the sensitivity and

elasticity analysis is much the same as that of R0.

11.3 Block Structure

If the system of equations has a natural block structure, sensai can be used to solve

the system and sensitivities (and elasticities) using the spline algorithm in Section 10.1.2.

Given a small enough splitting of the time domain, the solution and perhaps the sensitivity
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analysis can be obtained in the same accuracy as when the system is solved fully coupled.

However, due to the enormity of the run time, this method is not cost effective; therefore,

the code for the block-wise solutions is not available from the website.
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Appendix A

A PRACTICAL GUIDE TO USING SENSAI GUI

1. Open Matlab.

2. Within Matlab, change the directory to the place where the sensai.m program exists

(we will call this the SENSAI directory). (e.g. C:/SENSAI/).

3. Open the sensai GUI by typing sensai in the Matlab command window.

4. Using your computer’s file browser, find the folder with the Maple file that contains the

program and input field for the model (e.g. C:/SENSAI/Examples/ ODE examples/SIR/,

C:/SENSAI/Examples/MAP examples/SIR/Caswell08/, etc.).

(a) We will call this the WORKING directory.

(b) Copy the path of the WORKING directory into the box in the upper right hand

within the GUI (e.g. C:/SENSAI/Examples/ODE examples/SIR/).

(c) Make sure the Maple file is located in the WORKING directory. Once the file is

complete, execute and save the Maple file.

5. Within Matlab, in the GUI, select “Create MATLAB files using Maple” which creates

the files gvec.m, dgvec dxvec.m, dgvec dparam.m, qoi.m and dcp dparam.m within the

SENSAI directory. Note: The active directory within Matlab must be the same one

that contains the sensai.m program, i.e. the SENSAI directory. Wait until a popup

box appears that says “Matlab files successfully created” before continuing.

6. Within Matlab, control of the program is through the files user inputs.m and user plotdata.m,

in the WORKING directory with the Maple file containing the program.
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(a) Via user inputs.m you control parameter values, initial conditions, and the name

of the folder in which you wish to save your work (using “JOB”).

(b) Via user plotdata.m you control which solutions (x-values) to output and plot (us-

ing “ilist”), and which parameters to have their sensitivities tested (using “klist”).

7. Within Matlab in the GUI, select “Execute Matlab file created by Maple”.

8. All of the plots of the solutions, sensitivities, and elasticities specified in the run of the

model, and a file with all of the outputs from the model (output.mat) will be saved in

the WORKING directory in a folder named by the variable string “JOB.”

(a) To get the solutions, sensitivity values, and elasticities into data files that can be

plotted, either work within Matlab on the data in output.mat, or . . .

(b) Use the exported information in the text files that can be imported into other

programs for plotting (e.g. R). The (large number of) files each contain the

solutions, sensitivities, and elasticities for the run specified above.

9. Before carrying out another run using the sensai GUI, within Matlab, return to

the sensai directory and enter the commands to clear both plots and active memory

before moving on:

>> close all, clear all

(a) Results from a new run can be saved into another folder in the WORKING di-

rectory by changing the name of “JOB” in user inputs.m

• (E.g. JOB = “run2”).

• This can also be done by changing this line in the Maple file. (But this is

overkill, since you must go back to step 4.c after this point.)

>> JOB NAME:= “run2”; # Sets the folder name for the output.

99



(b) Modify values in user inputs.m and user plotdata.m in the WORKING directory

to explore other values.

(c) Back to step 5.
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Appendix B

HOW TO DEFINE R0 IN SENSAI

sensai is capable of automatically defining the basic reproduction ratio, R0, as defined

by the Next Generation method, for appropriate epidemiological models. However, sensai

is not limited to infection modeling, so specific syntax is required so that sensai recognizes

if a model is compatible to the definition of R0. The following guide will instruct the user on

how to edit the Maple templates so that sensai will produce R0 and its sensitivity analysis.

1. Edit the Maple templates to define your model equations. These should be stored as

the vector g[i], the right-hand side of the equation for the variable x[i].

2. Define which equations from g define the dynamics of infected classes. Store these

indices in the variable NextGen.

(a) For example, if the model includes three states, S, I, and R, in that order,

NextGen := [2];.

(b) If the model has more than one equation describing an infected class, list them in

the order they appear. For example, if the model describes S1, I1, R1, S2, I2, R2 in

that order, NextGen := [2, 5];.

(c) If you do not wish to calculate R0 for the model, define NextGen = 0, or let the

first state of NextGen be 0.

3. If the model has four or more infected classes, you may want to consider computing R0

without its sensitivities. R0 will be a very lengthy expression for such models, and the

derivatives will require a lot of time to compute. If this is the case, define “R0 only”

to be 1. If you wish to calculate the sensitivities anyway, define “R0 only” = 0.
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(a) While running the sensai GUI, you may encounter large delays in “Create Matlab

files using Maple” if R0 only = 0. If your patience has run thin, you must ter-

minate the program through the task manager. The emergency stop in Matlab

of CRTL+c in the command window will not work, as the computation of R0 is

done externally in a Maple procedure call.

4. If the analytical expression for R0 is already known, it may be faster to use this

expression for the quantity of interest (qoi) instead of re-deriving the expression during

the “Create Matlab files using Maple” phase.

There are some examples in which the Next Generation construction of R0 is not valid, or

is not compatible with sensai. The following are possible problems the user might encounter

when trying to define R0.

1. Problems with ODE models. Recall for ODEs, the Next Generation definition of

R0 = ρ(FV −1) where F =
∂F〉
∂xj

(x?) 1 ≤ i, j ≤ m describes new infections and

V =
∂Vi
∂xj

(x?) 1 ≤ i, j ≤ m describes transfer of existing infections, x? is the disease-

free equilibrium, the infected classes are 1, . . . ,m, and ρ(·) denotes the spectral radius

operator.

(a) The fecundity matrix F is not nonnegative. This is part of assumption (A1).

(b) The transition matrix V is singular. This can occur if an equation is in the model

as a placeholder, but the right-hand side is identically 0. This state must be

removed from the system for R0 to be valid.

(c) The disease-free subspace is not invariant. That is, infection can enter a disease-

free population through a nonzero component in a state that is identified as

disease-free. This can occur in models with background infection rates, or in

models where the infective classes are not identified properly. This is assumption

(A4).
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(d) The equilibrium is not asymptotically stable in the absence of disease. That is, if

F = 0, there is an eigenvalue of the Jacobian of the full system evaluated at x?

that has a positive real part. This is assumption (A5).

2. Problems with map models. Recall for maps, the Next Generation definition of R0 =

ρ(F (I − T )−1), where I is the m×m identity and F and −T are defined the same as

F and V for ODEs, respectively.

(a) The fecundity matrix F is not nonnegative.

(b) The transition matrix T is not nonnegative.

(c) The transition matrix T is singular. This can occur if an equation is in the model

as a placeholder, but the right-hand side is identically 0. This state must be

removed from the system for R0 to be valid.

(d) The transition matrix T is not asymptotically stable. That is, ρ(T ) ≥ 1.

(e) The equilibrium is not asymptotically stable in the absence of disease. That is,

ρ(C) ≥ 1 where C is the Jacobian of the right-hand side of the noninfectious

states.

Notice that assumptions (A2) and (A3) for ODE models are not automatically checked

by sensai. These assumptions must be verified by the user, but are usually true. For map

models, the assumption of a unique DFE is not checked by sensai, nor is the condition that

F + T is irreducible. These should also be checked by the user to ensure a valid R0. It is

difficult to check both of these conditions, but again, for most models, F + T is irreducible

based on the structure of T having a nonzero main diagonal and a sub-diagonal and the

structure of F having a nonzero top row.

There are a number of reasons for any of the problems in lists 1 and 2 to occur. Perhaps

the model does not have a valid Next Generation construction of R0. If this is the case, some

alternative means to calculate R0 should be sought, if desired. Alternatively, sensai may
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not be able to recognize which terms describe new infections and belong in F and which

terms describe transfer of existing infections and belong in V or T . The following criteria are

used by sensai to determine the placement of each term. If the terms of the model will not

be placed in the biologically correct vectors, sensai fails to compute the Next Generation

R0.

1. If the term X in an equation describing an infective class involves a state variable

from a noninfectious class, X ∈ F , unless the occurrence of the noninfectious state

variable is part of a sum of all state variables (that is, the term is scaled by the total

population).

2. If the term X in an equation describing an infective class does not involve any state

variables and is only a parameter, product of parameters, or quotient of parameters,

X ∈ F . If terms like these exist, the disease-free subspace will not be invariant, and

the model will not have a valid Next Generation R0.

3. Every other term X that does not satisfy the above will be placed in V for ODEs, or

T for maps.
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