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ABSTRACT

SENSITIVITY ANALYSIS OF THE BASIC REPRODUCTION NUMBER AND OTHER
QUANTITIES FOR INFECTIOUS DISEASE MODELS

Performing forward sensitivity analysis has been an integral component of mathematical
modeling, yet its implementation becomes increasingly difficult with a model’s complexity.
For infectious disease models in particular, the sensitivity analysis of a parameter known
as the basic reproduction number, or Ry, has dominated the attention of ecology modelers.
While the biological definition of Ry is well established, its mathematical construction is
elusive. An index with a concrete mathematical definition that in many cases matches the
biological interpretation of Ry is presented. A software package called SENSAI that automat-
ically computes this index and its sensitivity analysis is also presented. Other “quantities
of interest” that provide similar information to Ry can also be implemented in SENSAI and
their sensitivities computed. Finally, some example models are presented and analyzed using

SENSAI
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Chapter 1

INTRODUCTION

Mathematical modeling has provided researchers with more knowledge about real world
systems. Mathematical models are used in many disciplines including physics, chemistry,
biology, engineering, economics, and computer science, among many others. Anything that
changes can be modeled mathematically. These models provide better understanding to the
physical components of the system and allow the researcher to make better predictions about
the system’s behavior.

Typically, deterministic models are performed in two ways. First, if the data are known
at a discrete set of times, the model is structured as a map, or discrete-time dynamical
system. Alternatively, if the data can be obtained or interpolated well over any time, the
model is given by differential equations, or continuous-time dynamical system. Chapter 2
will develop the notation and provide examples of both discrete and continuous models.

A mathematical model does not provide much information until it is analyzed. Two
popular methods of analysis are sensitivity and elasticity. Sensitivity analysis tells the re-
searcher which parameters in the model have the most influence over a quantity of interest.
Elasticity analysis is just a scaled version of this information based on the magnitudes of
the parameters. Chapter 3 will define sensitivity and elasticity analysis for discrete and
continuous systems.

For ecological models, another common analytical tool is the basic reproduction number,
or just Ry. If the model concerns the progression of an infectious disease, Ry is defined such
that if the value is above a certain threshold, the disease will persist in a population, but if
it is below that threshold, the disease will eventually be removed with no external manipu-

lations. Ry is defined as the number of secondary infections produced by a single infected



individual introduced in a wholly susceptible population. While this number has a well-
defined biological meaning, its mathematical definition is ambiguous. Chapter 4 introduces
Ry and some of its drawbacks.

A consistent method of defining R with a clear mathematical interpretation is presented
in Chapter 5 for differential equation models and Chapter 6 for map models. Even still, this
construction may not always represent the biological definition of Ry. This primary goal of
this dissertation is to explore an alternative to Ry that is equally informative, but unlike R,
has a consistent and straightforward mathematical definition. It is hypothesized that this
is achieved by using a software package called SENSAI, which computes the sensitivity and
elasticity analysis over the entire course of discrete or continuous models. The features of the
software are discussed in Chapter 7. Examples will be presented in Chapter 8 illustrating
the effectiveness of the new methods as compared to the analysis using Ry when Ry is well-
defined. Examples when Ry fails either mathematically or biologically are also presented
in Chapter 9. Finally, models with nice block structure will be examined under iterative

techniques and evaluated in SENSAI in Chapter 10.



Chapter 2

DYNAMICAL MODELS

2.1 Discrete-time Models

Suppose the system to be modeled is such that the data are collected at a discrete
set of times. A discrete-time dynamical model is appropriate for such a system. This is a
very common structure for an ecological model. For example, a species may only reproduce
a specific time of year, yielding a large growth in one season rather than steady growth
through the year. Or, another species may be migratory, making it difficult to collect data
when they are away. Yet another example is that a species may have different stages in their
growth. While an individual may grow continuously, the only pertinent information may be
whether or not that individual is considered a juvenile, young adult, adult, etc... In each of
these examples, a discrete-time model is appropriate.

The following notation will be used for discrete models. Let x be the vector of the
variables in consideration, p be the vector of parameters, and z be the initial conditions for
the model. The basic iterative process considered is the map

x(t+1,p) = h(x(t7 p), p) 21)

x(0) =2z

where the vector of variables x € RM, the vector of parameters p € R¥, and the vector of
initial conditions z € RM.
Many systems converge to an equilibrium solution. Define an equilibrium solution x*(p)

if the following is satisfied:

h(x*(p), p) = x*(p). (2.2)



That is, if the map h is applied to a state in equilibrium x*, no change occurs. Not all
models converge to an equilibrium. A system may grow asymptotically in time, it may

oscillate about two or more values, it may exhibit chaotic behavior, etc.

2.1.1 Hantavirus Model

Consider the following discrete model of hantavirus, a disease of wild rodents that is
communicable to humans [1]. The model assumes that rodent survival is not affected by
the infection, there is no vertical transmission of the infection, and that all rodents are
reproductive as there are an equal number of male and female rodents. This model is a type
of SI-model, where the S stands for susceptible and the I stands for infective. Both male
and female rodents are modeled, resulting in four state variables, Sy, I, Sf, and I;. The
model is established by by progressively combining birth, infection, and growth functions.

First, the harmonic mean birth function is defined as follows:

2N, N;

B(Np,, N¢) = N

(2.3)

where N,, = S,, + I, is the total number of males, Ny = Sy + I is the total number of
females, N = N, + Ny is the total number of rodents, and b > 0 is the average litter size.
The birth rate B varies with the population, an example of a common modeling procedure
known as density dependence. If a parameter describing a rate is fixed, that parameter is
density independent. Density dependence makes this model more realistic. The expected
number of births should increase as the ratio of males to females approaches 1:1. Define the

probability of infection via a Poisson probability distribution:

e—)\ k
(k) = (2.4

where k is the number of contacts that result in an infection and A is the average number of

contacts per susceptible in a time step. The probability that a rodent will become infectious



is 1 —p(0), as at least one contact must be made for a susceptible rodent to become infective.
From chemistry the law of mass action requires that the rate of change of the reaction is
proportional to the product of the reactants. If this is applied to the average number of
contacts by susceptible males to infected males or females, then AS,, = (Bnlm + Brlf)Sm,
where 3, and B are the infection rate constants of males and females, respectively. Then,

solving for A and using (2.4) with k& = 0 yields
p(0) = e Pmim=brls, (2.5)

The probability of remaining noninfectious also exhibits density dependence, as p(0) is
a function of I. The infection rate will change based on the density of the population. The
model assumes that 3,, > B¢ > 0 due to male aggressiveness. That is, contact from male
to male is much greater than contact from female to either male or female. For susceptible

females, the value of X is different, resulting in
p(0) = e Brlm=Bsly (2.6)

Now introduce logistic growth to model by

K

PO = N

(2.7)

Let each term be scaled by this logistic factor. Logistic growth is another form of density

dependence on survival. Now the model has density dependent birth, transmission, and



survival rates. The model equations are finally established as

‘B
Sm(t+1) ==+ e—ﬁmfm“)—ﬁff-f(ﬂsm(t)] D(N)

L 2
In(t+1) = [(1 = e PnIn®=BsI0YG (1) 4+ ]m(t)] D(N)

B (2.8)
Splt+1) = |5+ e*ﬁffm“)*ﬁf’f(t)Sf(t)] D(N)

Vs

[(t+1) = [(1 — e Prin®=BI 0y g, (1) + Jf(t)} D(N)

An example solution, using the initial conditions (5,,(0), 1,,(0), S¢(0), 1£(0)) =
(499, 1,500, 0) which correspond to introducing one infected male in the population of sus-
ceptible individuals, is given in Figure 2.1. The measure of the time step is approximately
the gestation period plus the time to sexual maturity, which is roughly two to three months.

The solution is carried out to 10 time steps ~ 2 years. The parameter values are given by
* *

Table 2.1. Notice that the equilibrium proportion of infected individuals is mN* L — 25%.
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Figure 2.1: Hantavirus Model with Infection Introduced. The plot was created by the
software package SENSAI, discussed in Chapter 7.

The model gives some insight to the course of the infection, but on its own, discloses
little information of how to counteract the infection. What is the best strategy to reduce
the infection in the population? Is there one that will eliminate the infection from the

population? The answer to these questions will be pursued in Chapters 3 and 4.



Table 2.1: Parameter Values for Hantavirus Model, units of 8y and 3, are T~!, where T is
the time of gestation plus the time until sexual maturity, units of K and b are population.

H Parameter H Numerical Value \ Interpretation H
K 1000 Carrying capacity
B 0.09 Infection rate for females
Bm 0.9 Infection rate for males
b 6 Average litter size

2.2 Continuous-time Models

Now consider continuous-time models in the form of ordinary differential equations

(ODEs). The notation used for such models is as follows:

x(t,p) =h(x(tp), p) (2.9)

where the dot above the x represents differentiation with respect to time, x € RM, p € R¥,
and the initial conditions z € RM.

Again, define an equilibrium solution x*(p) if

h(x*(p), p) = 0. (2.10)

That is, the rate of change of a state in equilibrium is 0. This is a different definition than
(2.2), but the principle that the solution is unchanging is the same. There are many other
possible solutions to continuous time systems besides equilibrium solutions, the forms of

which are well studied and can be found in any differential equations text.



2.2.1 Typhoid Model

Consider the following differential equations model of Typhoid fever [2]. This model has

nine classes as follows:

1 susceptibles

To incubating noninfectious
x3 incubating infectious
Ty sick infectious

s | = sick noninfectious

Te temporary carrier

Ty permanent carrier

s short resistance

Tg long resistance

where each x; is a population density. This model crudely follows the structure of an STR-
model, where S stands for susceptible individuals, I stands for infected individuals, and
R stands for recovered individuals. Here, there are several classes that can be deemed
“susceptible” and multiple others that are “infectious.” Define y = x5 + x4 + x¢ + 27 to
be the density of all infectious individuals. The dynamics are modeled by the following

equations.



)

71 = —(p12 + P13)T1Y + pa1Ts + P5175 + Pe1T6 + Pr1T8 + Po1Te — T +
Ty = p1oT1y — (P23 + pas + pas + 1) T2 + p3273

T3 = p1301Y — (P32 + pP3s + P35 + 1) T3 + pa3Ta

Ty = p2a2 + 3423 + P5as — (pa1 + pas + pas + pas + () T4

a5 = Pasa + P35ty + pasta — (P51 + Psa + pss + 11T (2.11)
T = pacTa — (Pe1 + por + pPes + 1) T6
T7 = Pe1e — PT7

Tg = pas®s + Psss + pese — (Ps1 + pso + [1)Ts

L9 = psoTs — (o1 + [1)Tg

9

The reader may wish to verify that sz = 1 to see that the total population stays

i=1
9

constant. Note that sz = 1 as the variables are population densities. The parameter
values and interpretatli?)ils are given by Table 2.2. Like most SI-models, the appearance of
a new infection occurs in proportion to a contact with an infected individual. In its simplest
form, a new infection will appear in the form +8S1I, where S is the infection rate, and
the product ST represents contact among a susceptible and an infected individual. In the
typhoid model, an example of this is the first term of the second equation: pisx1y. Here, the
parameter pio is an infection rate, and the product x,y is contact between the susceptible
individual and any of the infected classes. These new infections will appear in state o,
and come from the states in x;. Notice the corresponding term is subtracted from the first
equation. Once constructed, the modeler may solve the system and plot the course of the
infection in time. An example solution, using the initial conditions (0.99,0,0.01,0,0,0,0,0,0)

which correspond to introducing 1 incubating infectious individual in the population of total

size P = 100, is given in Figure 2.2. The measure of the time step is in days; equilibrium is



reached in approximately 100,000 days ~ 274 years. Notice that the equilibrium density of
infected individuals is y* = o4 + 2 + 2§ + 25 = 14.7%.

x(1)

- x(2) x(3) x(4)
prEu 0.01 ‘
205 g2 £0.005 £0.005
0 0 0 0
0o 5 10 o 5 10 o 5 10 o 5 10
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‘x 10° X(5) 4 X10 (6) 02 (7)
Cos g2 o1 &0.05
0 0 0 0
o 5 10 o 5 10 0o 5 10 o 5 10
' x10' ' x10' ' x10* ' x10"
X(9)
o5
0
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Figure 2.2: Typhoid Model with Infection Introduced. The plot was created by the software
package SENSAI, discussed in Chapter 7.

Again, the model gives some insight to the course of the infection, but does not clearly
describe how to control the infection.

10



Table 2.2: Parameter Values for Typhoid Model according to Bailey, all units are days™".

Note that each p;; is a transfer rate from state i to state j.

|

|

Parameter H Numerical Value \

Interpretation

8.43381 x 1073

P12 Infection rate

P13 8.51900 x 1075 Infection rate

P23 2.85720 x 10~3 | Transfer rate from state of incubation
P24 6.78585 x 1072 | Transfer rate from state of incubation
P25 7.14300 x 10~* | Transfer rate from state of incubation
P32 7.14300 x 10~* | Transfer rate from state of incubation
P34 6.42870 x 1072 | Transfer rate from state of incubation
P35 6.42870 x 10~ | Transfer rate from state of incubation
P41 3.46000 x 1073 Transfer rate from state of sickness
P45 3.46000 x 1073 Transfer rate from state of sickness
P16 3.46000 x 1073 Transfer rate from state of sickness
P48 2.40124 x 1072 Transfer rate from state of sickness
P51 3.46000 x 1073 Transfer rate from state of sickness
P54 6.92000 x 1073 Transfer rate from state of sickness
P58 2.40124 x 1072 Transfer rate from state of sickness
Pé1 1.11100 x 10=* | Transfer rate from temporary carrier
Per 3.33300 x 1073 | Transfer rate from temporary carrier
P68 6.66600 x 1073 | Transfer rate from temporary carrier
Ps1 2.74000 x 10~* Transfer rate from short resistance
089 2.46600 x 1073 Transfer rate from short resistance
Po1 2.74000 x 10~* Transfer rate from long resistance
w 5.48000 x 107° Overall birth and death rate

11
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Chapter 3

SENSITIVITY AND ELASTICITY ANALYSIS

3.1 Sensitivity Analysis

Sensitivity analysis is extremely important for mathematical models. Sensitivity anal-
ysis studies the variation of the outputs of a model caused by variations in the inputs. In
essence, sensitivity analysis determines which parameters and initial conditions (inputs) af-
fect the quantities of interest (outputs) of the model the most. The first reason why this
analysis is important is that it tells the researcher which parameters deserve the most nu-
merical attention. A highly sensitive parameter should be carefully estimated as a small
variation in that parameter will lead to large quantitative changes to the quantity of interest
and may even produce qualitatively different results. Qualitative changes to a quantity of
interest fall under the scope of bifurcation theory and will not be explored in great detail
here. An insensitive parameter, on the other hand, does not require as much effort to es-
timate as a small variation in that parameter will not produce large changes to a quantity
of interest. Many times in model analysis, the most sensitive parameters are also the most
well established in the sense that the values do not change much from one time period to the
next. If this is the case, the second reason for sensitivity analysis becomes more pronounced.
That is, sensitivity analysis highlights which parameters should be attacked in management
strategies. One goal of mathematical modeling is to determine what the current outcome of
a system may be, and if necessary, discover how to change any negative outcomes. Changing
the values of the most sensitive parameters will be the most effective strategy in changing the
results of the model. The modeler will then implement any applicable real-world scenarios
that will change the value of the most sensitive parameter to obtain the most control over

the outcome.

12



The sensitivity is computed by finding the derivatives of each variable with respect to

each parameter at any time ¢.

3.1.1 Sensitivity for Maps

First, write the model equations component-wise. For maps, the equivalent component-

wise form of (2.1) is

i=1,... M. (3.1)

Notice that the equation for state x; may depend on any state from x and not just z;.

Define the sensitivity of the i*" solution variable with respect to the k'™ parameter S; as

5’%
Sik = oo

)

(3.2)

The sensitivities of all variables with respect to all parameters is given by differentiating

(3.1) with respect to the k'™ parameter py,

o oh, 8azm oh,
(t+1) + t
3pk (Z 0T Opr > 8pk( )
81‘1'
apk

i=1,...M, k=1,...K.  (3.3)

(0) =0

Similarly, the sensitivity of the i*" solution variable x; with respect to the j** initial

condition z;, is given by by differentiating (3.1) with respect to z;,

(92] (1) (Z (9acm 5’,2] ) * 0z; Q
3xi
sz

i=1,...,M,j=1,...M.  (3.4)

(0) = 0y

where 0;; is the Kronecker delta: d;; = 1 if ¢ = j and 0 otherwise.

13



3.1.2 Sensitivity for ODEs

Sensitivities for ODE models is defined in a similar fashion. The equivalent component-

wise form of (2.9) is

L i=1,..., M. (3.5)

Then the sensitivities for ODEs can be obtained by differentiating (3.5) with respect to

the k' parameter p;, and then reversing the order of differentiation on the left-hand side.

i<$.i(t)) (Zah axm >+ahi(t) i=1,...,M, j=1,...M

Opx Oy, Opi, Opr
%(8]% ) (Zaxmapk >+3pk() i=1,....M, j=1,...M

Using the notation in (3.2), the sensitivity equations are then

ASispy _ (Z i g <t>> L Oy

dt M, k=1,...K (3.6)

The sensitivity equations for ODE models are ODEs themselves. Once solved, the

sensitivities can be known for all times ¢. Similarly, the sensitivity ODEs for initial conditions

is given by by differentiating (3.5) with respect to z;, and using the notation that Y; ; = %,
J

- axm 0z; i=1,...,M, j=1,...M. (3.7)
Y;

i(0) =4y

where 6;; is the Kronecker delta.

14



3.2 Elasticity Analysis

Another equally important analytical tool is elasticity analysis. This is just a scaled
version of sensitivity analysis. Elasticity analysis is useful when the sensitivity of a certain
parameter is extremal only due to the relative magnitude of that parameter to other param-
eters. For example, suppose a model has three parameters with values p; = 10, po = 7, and
p3 = 0.001. Also suppose an equilibrium solution of the model is x* = 222 = 70000. Then,

p3

4 (pp2y — _pp2 — 7 % 107. The

the sensitivity of the equilibrium with respect to ps3 is a5 5
3

sensitivity with respect to ps is di(w) = L — 104, a difference of four orders of magni-

P2 p3 p3

tude. The sensitivity of ps is extremely high compared to that of p; and ps simply because
of the scale of ps. A relative change in parameters will show the sensitivity analysis may
be misleading in this example. If p, is decreased by ten percent to 6.3, the new equilibrium
will be z* = 63000. But, if the seemingly more sensitive parameter p3 is increased by ten
percent to 0.0011, then the new equilibrium will be z* = 63636. Notice that the sensitivities
of z* to po and p3 are opposite in sign, so a reduction in one parameter should be compared
to an increase in the other parameter. While it is true that p3 proved to be more sensitive,
the magnitude of the sensitivity is misleading. Even though ps has a sensitivity that is 7000
times greater in magnitude than that of py, attacking p3 instead of py changed the equilib-
rium similarly. To reduce this effect, consider a scaling of S; ;, by the sizes of the parameters.
Let

Ap

Ag:& and Axk=—
T p

be the relative changes of x and p respectively. The relative sensitivity of x with respect to
p is defined by the limit of the relative change in x as the relative change in p approaches

zero, which is the derivative

0¢ _ . AL _p
— im — |

Axr p Ox
= == lim — = :
Ok As—0 Ak xAp>0Ap x Op

15



Define the elasticity of the i*" variable with respect to the k'™ parameter, E; ;. as

Eip(t) == (1), (3.8)

Elasticities with respect to initial conditions are defined in a similar fashion.

Recall the example of the three parameters and compute the elasticities. The elasticity
of the equilibrium solution with respect to ps is -1, and the elasticity of the equilibrium
solution with respect to p, is 1. This result is more intuitive as the equilibrium is simply a
quotient of the parameters. The negative sign indicates that an increase in this parameter

will produce a decrease in the value, as expected.

16



Chapter 4

THE BASIC REPRODUCTION NUMBER

This chapter discusses another analytical tool for ecological models known as Ry. This
number, called the basic reproduction number (or rate, or ratio), has been widely used in
infection models and is defined as the average number of secondary cases arising from a
single primary case in a very large population of susceptibles [3]. It is primarily used as a
threshold parameter: if Ry < 1, the disease will fade out of the population, but if Ry > 1,
the disease will persist and become endemic to the population. Furthermore, the larger the
magnitude of Ry, the faster the disease will spread, and presumably the more difficult it
will be to control. While Ry is a great concept of biology and has been widely used since
its first application in 1952 by George MacDonald [12], the mathematical definition of Ry is

problematic and in some cases ambiguous.

4.1 Methods of Calculating R,

There are several different methods in which Ry can be calculated. Some common
methods of constructing Ry are the survival function method, the Next Generation method,
existence of an endemic equilibrium, final size equation, constant term of the characteristic
polynomial, etc. Many of them yield different values of Ry for the same model, and many
methods produce different values of Ry based on what the modeler considers to be appropri-
ate. Each method derives its conditions from the threshold nature of Ry, yet many of these
methods produce a value that is not consistent with the biological definition.

It is important to understand that employing one of the methods at random does not
guarantee the calculation represents the number of secondary infections arising from a single

infected individual. Many methods produce different values for R, even in the same system.

17



How can two different values simultaneously represent the number of secondary infections
from a single infected individual? If more than the threshold capability of Ry is of concern,

careful consideration should be taken when using a method to calculate Ry.

4.2 The Next Generation Method

Perhaps the most common method of calculating Ry is the Next Generation method.
This approach places appropriate terms from the infected class equations into the vectors
F and V. Terms that describe appearances of new infections belong in F, and terms that
describe a transfer of existing infections belong in V and should be negated. The Jacobian
matrices obtained by differentiating F and V with respect to the relevant subset of variables
are computed and evaluated at a nontrivial disease-free equilibrium (DFE), resulting in the
matrices F' and V, respectively. The Next Generation Matriz for ODEs is defined as FV 1.
Finally, Ry = p(FV '), where p(-) is the spectral radius operator. The (i,j) entry of this
matrix is the expected number of new infections currently in state x; that originated from
state x; [15]. The Next Generation Matriz for maps is defined similarly as F/(I —T)~!, where
T = —V . This is quite suitable to the biological definition of Ry and works in many, but
not all, examples.

Because of its mathematical foundation, developed in Chapter 5 for ODEs and Chapter
6 for maps, this method of calculating Ry will be chosen for implementation into SENSAI (see
Chapter 7). While it has its drawbacks, it is perhaps the most common method for Ry, and
it has a definitive mathematical interpretation so that the user may know exactly what this

index represents.

4.3 Ry Failures

Most biologists will claim that there is only one value of Ry for any model. While that
may be true, there are many indices that exhibit the same threshold behavior. The Next

Generation method only guarantees that Ry, maintains the threshold nature, but does not

18



guarantee that it accurately describes the number of secondary infections. Suppose the Next
Generation Ry = 2. Because Ry > 1, it is guaranteed that infection will persist in the
population, but it is not guaranteed that one infected individual will produce two secondary
infections; it may be three, or 1000, or 1 + €. Similarly, if the index is Ry = 0.5, it is
guaranteed that the infection will die out, but it is not necessarily true that one infected
individual will produce an average of 0.5 secondary infections. Checking to see if the “Ry”
in question exhibits the threshold behavior is not a exhaustive assessment for determining
the validity of Ry. It is easy to construct a model with two indices that exhibit the same
threshold, one of which has nothing to do with the average number of secondary cases arising
from a single primary case. While both indices are endowed with a threshold nature, they can
not both simultaneously represent the number of secondary infections from a single infected
individual. This point is illustrated in Section 9.1 by two models that have the exact same
solution trajectories but different values of Ry. Each model’s Ry is a threshold for the other,
though each Ry is not epidemiologically correct for both models.

Furthering the difficulties of Ry, there is an entire class of models that is not compatible
with the Next Generation construction. Some examples of this model type where the Next
Generation Ry is not valid are presented in Section 9.2. The examples are current and
relevant research, and the assumptions made which invalidate the Next Generation R, are
appropriate.

Finally, an example is presented in Section 9.3 where the Next Generation R, seems
to fail the threshold criterion, even though it passes the conditions to the mathematical
theorems. If a finite amplitude disturbance is introduced in the population rather than a
single infected individual, Ry may be less than one with the persistence of the disease in
the population. The theorem on Rj only ensures the persistence of infection under small
disturbances of € > 0 and does not provide any information on finite amplitude disturbances,

even though an increase of one infected individual is itself a finite amplitude disturbance.
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It does not make biological sense to introduce € > 0 infected individuals to the population,

though this is actually what is proved for the Next Generation R.
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Chapter 5

MATHEMATICAL FOUNDATIONS FOR R, IN ODES

The goal of this chapter is to provide a mathematical foundation for the quantity R,.
A series of theorems will show that if a vector x* is a disease-free equilibrium, it is locally
asymptotically stable if Ry < 1 and unstable if Ry > 1, where Ry is the spectral radius of
the Next Generation Matrix, Ry = p(FV ') [15].

5.1 Definitions

The following definitions will be used in proving the main theorem for Rj.

Definition. The spectral radius of an n X n matrix A with eigenvalues \;, i = 1,...,n, is

the maximum modulus of any eigenvalue \;, p(A) = 1r£1a<x(|)\1])
<i<n
Definition. A matrix (or vector) A is nonnegative, written A > 0, if each element of A is

nonnegative. The notation A > 0 will be used if every element of A is strictly positive.

Definition. A nonnegative matrix A is irreducible if it is not the 1 x 1 zero matrix and it can

Ay A
not be expressed as PAP~! = , where Aq; and Asy are nontrivial square block

0 Ay

matrices and P is a permutation matrix.

Definition. If A is an m x n matrix such that a;; < 0 for all ¢ # j, then A has the

Z-sign pattern.

21



Definition. If A is an n X n matrix such that A = s — B where s > 0, [ is the n x n identity
matrix, B > 0 entry-wise, and s > p(B), then A is an M-matrix. Further, if s > p(B), then

A is a nonsingular M-matrix. If s = p(B), then A is a singular M-matrix.

Immediately, one will notice that the representation of A = sI — B with B > 0 is
the Z-sign pattern. The only added stipulations for being an M-matrix are that s > 0 and
s > p(B).

5.2 The Perron-Frobenius Theorem

The Perron-Frobenius Theorem will be used in the theorem defining Ry for both discrete
and continuous systems. This theorem is well known and can be found in many texts, such

as [4], [8], and [10].

Theorem 5.2.1. Perron-Frobenius Theorem. Let P be an irreducible, nonnegative matrix.

Then

(a) The spectral radius of P is positive and an algebraically simple eigenvalue of P with

corresponding unique left and right positive eigenvectors.

(b) The spectral radius of P is the unique eigenvalue with a (left and right) positive eigenvec-
tor. Furthermore, there are no other positive eigenvectors of P except the one associated

with the spectral radius.

(c) If any entry of P increases, the spectral radius also strictly increases. If any entry of P

decreases, the spectral radius also strictly decreases.

Proof of the theorem may be found in [8], Theorem 8.4.4.
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5.3 Equivalent Conditions for an M-matrix

There are several (over 50) equivalent definitions for an M-matrix. The following will
be useful for proving the stability condition of Ry. The first lemma is not an equivalent
condition, but will be used to prove Lemma 5.3.2 which is an equivalent condition for an

M-matrix. This can be found as Lemma 2.1 of [4].

Lemma 5.3.1. For a nonnegative matriz T, p(T) < 1 <= (I —T)™' exists and is

nonnegative.

Proof. The proof follows the arguments in [4].
(=) Let p(T) < 1.
Consider the telescoping series (I —T)(I + T +T?*+ ...+ TF) =1 —T*1. As k — o0,

im (I —T)I+T+T?*+ ...+ T = lim (I — ") (5.1)

k—o0 k—o0

Since p(T) < 1, T*** — 0 as k — oo, so the right-hand side of (5.1) is /. Then,

I-T)im(I+T+T*+..+TF =1 (5.2)

k—o0

By (5.2), the series ZTi inverts (I — T'). Since T is nonnegative, (I —T)~1 > 0.
i=0
(<) Suppose (I —T)~! exists and is nonnegative.

By Theorem 5.2.1, Tz = p(T)x for some x > 0. Then,

r—Tx=x—p(T)x

(I=T)e=(1-p(T)a
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That is, 1 — p(T) is an eigenvalue of I — T'. Since the eigenvalues of the inverse of a matrix

are the inverse of the eigenvalues,

1

(I-T)"'z= T

x (5.3)

Notice that p(T) # 1, as (I — T)~! exists, so (5.3) is well-defined. If p(T) > 1, then the

1
quantity T < 0. Since x > 0, the right hand side of (5.3) is negative. But, since the

p(T)
product of a nonnegative matrix (I —7)~! with a nonnegative vector x is always nonnegative,

the right hand side of (5.3) is nonnegative. This is a contradiction. Therefore, p(T') < 1.
[

The first equivalent condition presented is that nonsingular M-matrices are inverse pos-

itive. This may be found as Theorem 2.3 Nsg of [4].

Lemma 5.3.2. A is a nonsingular M-matriz <= A has the Z-sign pattern and A=1 > 0.

Proof. The proof follows the ideas in [4]. By Lemma 5.3.1,
p(T)<1 = (I-T)*'>0 (5.4)
Define T'= B/s with s > 0. Then (5.4) becomes

p(B/s) <1 <= (I —B/s)"'>0

p(B)<s <= (I-B/s)"'>0
Multiplying the right-hand side by s=! > 0 gives

p(B)<s <= (sI—B)"'>0
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Since A has the Z-sign pattern, define A = sI — B. Then

p(B) <s < A >0

That A = sI — B with p(B) < s is exactly the statement that A is a nonsingular M-matrix.
This proves the lemma.

|

The next condition states that nonsingular M-matrices are positive stable. This is the

key property in the proof of the main theorem on Ry, which concerns the stability of a

disease-free equilibrium. Furthermore, some references, such as [9], use this condition as the

definition of an M-matrix. The lemma is also found as Theorem 2.3 Gg of [4]. In the proof,

the notation Ay means A is an eigenvalue for the matrix X. The set {Ax} is the set of all

eigenvalues of X.

Lemma 5.3.3. A is a nonsingular M-matriz <= A has the Z-sign pattern and is positive

stable (that is, the real part of each eigenvalue of A is positive).

Proof. First, notice that for any matrices A and B, if A and B commute, {\ay5} C {4 +
Ap}.

Let aq, as, ..., a,, be eigenvalues of A and [, B, ..., B, be eigenvalues of B. If A and B
commute, they may be simultaneously upper-triangularized according to Theorem 2.3.3 of
8], that is, there is a unitary U such that U*AU = T and U*BU = R are both upper trian-
gular with diagonal entries ay, ..., o, and G;,, ..., B;, , respectively. Then U*(A+B)U =T+ R
has diagonal entries and therefore has eigenvalues ay + f3;,, ..., a, + ;. These must also be

the eigenvalues of A + B since A + B is similar to 7'+ R.
(=) Suppose A is a nonsingular M-matrix, A = sI — B.

The eigenvalues {\a} = {Asr—5} C {Asi+A_p} = {s—Ap} since I and —B commute. That

is, any eigenvalue of A can be written as Ay = s — Ag. Then,
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Re(Aa) = Re(s — \p)

=5 — Re(\p) since s > 0
> p(B) — Ap since s > p(B)
>0 since p(B) > Ap for any eigenvalue of B

Therefore, Re(A4) > 0.

(<) Let A have the Z-sign pattern and be positive stable.
Since A has the Z-sign pattern, A = s[ — B for B > 0 and s > 0. Let Ag be the an eigenvalue
of B. Then,

Bzr = A\gx
st — Bx = sx — \gx
(sI — B)xr = (s — Ap)x

Az = (s — A\p)x

This final equality states that s — A is an eigenvalue of A. Since A is positive stable,

Re(s — Ap) > 0. Then,

0 < Re(s — Ag) =s— Re(Ag) < s— p(B)

That is, s > p(B), which proves A is an M-matrix.
[

A similar condition may be established for any (singular or nonsingular) M-matrix. This

condition is Theorem 4.6 Ey; of [4].

Lemma 5.3.4. A is an M-matrizc <= A has the Z-sign pattern and the real part of every

nonzero eigenvalue of A is positive.
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Proof. The proof follows the same procedure as the proof of Lemma 5.3.3 with s > p(B)
instead of s > p(B) in the appropriate places.

[ |

The next equivalent condition is that nonsingular M-matrices are semi-positive. This

can be found as Theorem 2.3 I57 of [4] or Theorem 2.5.3.12 of [9]. Recall the notation > 0

means every entry of the x is strictly positive.

Lemma 5.3.5. A is a nonsingular M-matriz <= A has the Z-sign pattern and Jx > 0

such that Az > 0.

Proof. The proof follows the procedure in [9]. Since A has the Z-sign pattern, write A =
sl — B with s > 0, B > 0. First assume that B is irreducible. Then by Theorem 5.2.1(b),

x > 0 be the Perron-Frobenius right eigenvector of B. Then,

Az = sx — Bx = sz — p(B)r = (s — p(B))z (5.5)
Notice that since x > 0,
A is a nonsingular M-matrix <= s > p(B) by definition
< Ar=(s—p(B))xz >0 by (5.5)

This proves the lemma for the case that B is irreducible. If B is reducible, force it to be
irreducible by placing sufficiently small € > 0 in the zeros of B. Now, apply Theorem 5.2.1(b)
and let > 0 be the Perron-Frobenius right eigenvector of B. Following the above procedure,
Ais an M-matrix <= s> p(B) <= Az = (s — p(B))z > 0. Since Az is sufficiently close

to Az = (s — p(B))z > 0, Az > 0.
|
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5.4 Further M-matrix Properties

A common technique to establishing a condition when matrices are singular is to apply
a continuity argument, similar to the one in the proof of Lemma 5.3.5. First establish the
desired condition for a nonsingular matrix A. Then, replace the singular matrix A by the
nonsingular A + e/. Finally, use the continuity of a function in € to obtain the condition for
the singular matrix A. This outline and some examples are presented in [16]. The same idea
can be applied for M-matrices and will be useful later on. Consider the following continuity

condition for an M-matrix which is found in [4] as Lemma 4.1.

Lemma 5.4.1. Let A have the Z-sign pattern. Then A is an M-matrizc <= A+ €l is a

nonsingular M-matrix for all € > 0.

Proof. (=) Let A be an M-matrix. Then A = sI — B with s > 0, B >0, and s > p(B). For
any € > 0,

A+el=sI—B+el=(s+e) —B=5§—B (5.6)

Since § =s+¢€ > s > p(B), so A+ €l is a nonsingular M-matrix.
(<) Let A+ el be a nonsingular M-matrix.
Then from (5.6), A+e€el = (s+¢€)] — B with s+¢ > p(B). In the limit as e — 0, A = s — B
with s > p(B). That is, A is an M-matrix.
[ |

There are many other interesting properties of M-matrices that can be found in [4] and
[9], among other sources. Two more will be useful for defining Ry. The first property will
be used to prove the second, which in turn will be used directly in the main theorem. Many
of the equivalent conditions from Section 5.3 will be used in the proofs. Lemma 5.4.2 here

is found as Lemma 5 of [15].

Lemma 5.4.2. Let H be a nonsingular M-matriz and suppose B and BH ' have the Z-sign

pattern. Then B is a nonsingular M-matriz <= BH™! is a nonsingular M-matriz.
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Proof. (=) This problem is equivalent to one in a slightly different form. Using F = B~!
and G = H~!, the following will be established: If F' and G are nonsingular M-matrices and
F~1@G has the Z-sign pattern, then FG™! is a nonsingular M-matrix. This claim is exactly
the forward implication of the Lemma.

By the equivalent condition Lemma 5.3.5, since G is a nonsingular M-matrix, 4z > 0

such that Gz > 0. Consider F'~'Gz. Define y = Gx > 0 by the selection of .

F'Gx=F 'y wherey >0

By Lemma 5.3.2, since F is a nonsingular M-matrix, F~! > 0. Then,

F~ly>o.

The only way F~ly = 0 is if F~! has a row or column of zeros, as y > 0. But since F~!
is nonsingular, this can not happen. Therefore, F~'y > 0. That is, 3z > 0 such that
F~1Gx > 0. By Lemma 5.3.5, F~'G is a nonsingular M-matrix.
(<) This problem is also equivalent to one in a slightly different form. With P = BH!
and () = H, it will be shown that if P and () are nonsingular M-matrices and P() = B has
the Z-sign pattern, then P() = B is a nonsingular M-matrix.

By Lemma 5.3.2, P~! > 0 and Q! > 0. So the product @ 'P~! > 0. But this product
is exactly (PQ)™', so by Lemma 5.3.2 again, PQ = B is a nonsingular M-matrix.

[ |
The following lemma is used directly in the proof of the main theorem and is found as

Lemma 6 of [15].

Lemma 5.4.3. Let H be a nonsingular M-matriz and suppose K > 0. Then,
(a) (H — K) is a nonsingular M-matriv < (H — K)H ™' is a nonsingular M-matriz

(b) (H — K) is a singular M-matriz <= (H — K)H ™' is a singular M-matriz
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Proof. (a) Let B=H — K

Consider B; j fori # j. B;; = H; ; — K, j, H; j; < 0 since H is an M-matrix, and K;; > 0
by hypothesis, so H; ; — K;; < 0. That is, B has the Z sign pattern.

Similarly, (BH™'),; = (H - K)H');; = (I — KH™');;. By Lemma 5.3.2, H~! > 0.
By hypothesis, K > 0. So (I — KH™');; <0 for i # j. That is, BH ' have the Z sign
pattern.

Statement (a) is now a direct application of Lemma 5.4.2.

(b) By the contrapositive of (a), H — K is not a nonsingular M-matrix if and only if
(H — K)H™! is not a nonsingular M-matrix. It will be shown that if the M-matrix condition
of (a) is kept but the nonsingular condition of (a) is removed, the M-matrix condition still

remains true. Notice that

H — K is a singular M-matrix <= H — K + €l is a nonsingular M-matrix Ve > 0
<= (H — K +el)H " is a nonsingular M-matrix

<= (H — K)H ! is a singular M-matrix

The first and third statements are due to the continuity argument of Lemma 5.4.1, and

the second statement comes from (a). This finishes the proof.
|

5.5 Assumptions

Assume the following hypothesis on an ordinary differential equations model, as in [15].

Suppose the model has the form
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where V; = V;" — V. Let the first m components of x be the disease states. Define the
disease-free subspace as

Xs={x>0|z; =0,i=1,...,m}.

Then, if an equilibrium x* € X, x* is called a disease-free equilibrium (DFE). Alternatively,
if an equilibrium x* ¢ X, such that at least one of the first m components is nonzero, x* is
called an endemic equilibrium (EE). That is, the infection is endemic to the population.
First, assume each function is nonnegative:

If x >0, then F;(x), V;"(x), V; (x) >0fori=1,...M (A1)

1

Second, if a state is empty, no transfer of individuals can come from that state by death or

infection,

If z; =0, then V, (x) = 0. Moreover, if x € X, then V; (x) =0fori=1,...M. (A2)

Third, assume the incidence of infection for uninfected states is zero:

Fi(x)=0ifi>m (A3)

Fourth, if the population is free of the disease, it will remain free of the disease:

If x € X,, then F;j(x) =0and V}'(x) =0fori=1,...m (A4)

Finally, any disease-free equilibrium x* must be stable in the absence of new infection, so

If F(x*) =0, then all eigenvalues of Dh(x*) have negative real parts (A5)

Based on these assumptions, the linearized structure of (2.9) may be partitioned ac-

cording to the following lemma. This can be found as Lemma 1 of [15].
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Lemma 5.5.1. If & is a disease-free equilibrium and h;(x) satisfies (A1) through (A5), then

the derivatives DF (") and DV(x*) are partitioned as

where F' and V' are the m x m matrices defined by

F= [Wi(w*)} , V= [8‘4‘ (m*)] L<i,j<m

dxj Oz

Further, F' is nonnegative, V is a nonsingular M-matriz and all eigenvalues of Jy have

positive real part.

Proof. Let x* € Xg, that is

X =100, ...,0, Zpyr, ..o 2m)”

OF,

By (A3), Fi(x*) = 0 for i > m. This is true for any 27, so a—(x*) =0 for ¢ > m and any j.
L

In words, there is no incidence of infection into uninfected states. By (A4), F;(x*) = 0 for

1 < m. Since x* is defined such that the first m elements are 0, this implies that any change

in the final m + 1 to M elements will have no affect on new infections. The rate of change

from noninfectious states 7 =m +1,..., M to infective states 2 = 1,...,m is zero,
oF;, .
x)=0 1=1,...m j=m+1,..,.M
8%( ) j

In words, there is no appearance of infection from uninfected states. This proves the shape
of DF(x*).
By (A2), V'(x*) = 0 for i = 1,...,m and by (A4) V; (x*) =0 for i = 1,...,m. Any

change in the final j = m + 1 to M elements will still result in V;(x*) = V; (x*) — Y (x*) =

(2
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0i=1,...,m. In terms of a derivative,

aV;
3x]~

(x) =0

t=1,...m j=m+1,...,. M

In words, there is no transfer of infection from uninfected states. This proves the shape of

DY (x*).

Since x* € X, z; = 0fori = 1,....m and z; > 0 for i = m + 1,...,M. By (A4),

Fi(x*) =0fori=1,...,m. By (Al), Fi(x*) > 0if x; > 0 for i = 1,..., M. These two facts

imply that F;(x*) can only increase from x* for i,7 = 1,...,m. That is,

%(x*) > 0 for

8xj
1,7 = 1,...,m. This proves the nonnegativity of F.
To prove that V' is a nonsingular M-matrix, consider for ¢ = 1,...,m, ¢ # j,
8Vi( . . Vi(x* + hej) where e; is the standard basis vec-
= lim
O h=0 h tor for R™
— Vi(x* + he]) . N
= jm A since V;(x*) = 0 by (A2) and (A4)
iy Vi O+ hey) — V(X" 4 hej) by definition of Vi
h—0 h
since x* + he; = 0 for i =
1- _Vl—i_(x* + he]) i i
- h 1,....,m, 1% j, so
V. (x* + hej) = 0 by (A2)
since x* + he; > 0 so by (Al),
<0 Vi (x* + he;) > 0. fori =1,....m

and i # j

This is equivalent to V' having the Z-sign pattern. To see that all eigenvalues of V' have

positive real part, notice that by (A3) and (A4), F;(x*) = 0 for all i. Then by (A5), if

F(x*) = 0, all eigenvalues of Dh(x*) have negative real parts. Notice that



Dh(x*”]-'(x*):o = -DV(x)

-V 0
—J3 —J4

Since this is a triangular block matrix, the eigenvalues of Dh(x*) are the same as the eigen-
values of —V and —J;. Therefore, all eigenvalues of —V and —J; have negative real parts,
or equivalently, all eigenvalues of V' and J, have positive real parts.

Finally, since V' has the Z-sign pattern and is positive stable, by Lemma 5.3.3, V is a

nonsingular M-matrix.

5.6 The Main Theorem

The main theorem defining R, for ordinary differential equation models is now presented.
This is found as Theorem 2 of [15]. Before the theorem is presented, consider the following
argument, adapted from [15]. By definition, the i*® component of the vector F describes
new infections arising in state x;. Then the (7, j) component of the matrix F' is the rate that
new infections appear in state z; from state z;. Again by definition, the i™ component of
the vector V describes the transfer of existing infections into state x;. The (7, j) component
of the matrix V' is the rate of transfer of existing infections into state x; from state z;. To

determine the interpretation of V!, consider the fact that

m i=k
> ViV =
p= 0 itk

Then V};l represents the average time an individual in state x, spends in state z;. To
see this, consider a dimensional analysis argument. Since V;; has units of 1/(time) for an

individual in z; and Vj;l has the units of time for an individual in x,, then the sum over
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all j of the products of V;jVj;l should be 1 if i = k and 0 if ¢ # k. This assumes that the
population remains near the disease-free equilibrium and hence remains constant.

The (i, k) entry of the Next Generation matrix is the product over all states z; of the
rate new infections appear in state x; from state z; with the average time an individual
in state xj spends in state x;. This is the expected number of new infections in state x;

produced by an individual originally introduced in state x;. That is,

(FV e = Y FyVy,!
7j=1

m

= Z(New infections in x; from z;) - (Average time z;, spends in z;)
j=1

= New infections in x; produced by xj in all generations

Thus, the matrix FV ! is aptly defined as the Next Generation matrix. The basic

reproduction rate Ry will be defined as the spectral radius of this matrix.

Theorem 5.6.1. Consider the disease transmission model given by ©; = h;(x) = F;(x) —
Vi(z),i = 1,...,M with h(x) satisfying conditions (A1) through (A5). If " is a disease-free
equilibrium of the model, then x* is locally asymptotically stable if Ry < 1, but unstable is

Ry > 1, where Ry = p(FV1).

Proof. Recall the structure of the linearized ordinary differential equation system from

Lemma 5.5.1.
Dh(x;) = (DF(x*) — DV(x"))(x — x*)

F-V 0
= (x —x¥)
—J5  —J
The eigenvalues of the linearized ODE system Dh are the eigenvalues of the full system

h. Since the Jacobian is block triangular, the eigenvalues of of the linearized ODE system

are the eigenvalues of F' — V and —J;. By Lemma 5.5.1, the eigenvalues of —.J; have all
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negative real parts. If the eigenvalues of F' — V have negative real parts, then x* is locally
asymptotically stable equilibrium of h. The theorem will be proved using this stability
condition.

Let J; = F' =V, or alternatively, —J; = V — F. By Lemma 5.5.1, V has the Z-sign

pattern and F' nonnegative. Then, —J; has the Z-sign pattern by the illustration:

Or, consider any element of —(.J;);; = Vi; — F;; for i # j. But V;; <0 and F;; > 0, so
—(J1)iy; < 0.

Lemma 5.3.3 shows that since —.J; has the Z-sign pattern, it is a nonsingular M-matrix
if and only if every eigenvalue of —.J; has positive real part. This is equivalent to —J; is a
nonsingular M-matrix if and only if every eigenvalue of J; has negative real part. The fact
that every eigenvalue of J; = F' — V has negative real part is the condition required for the

local asymptotic stability of x*. Therefore,

x* is locally asymptotically stable <= —.J; is a nonsingular M-matrix (5.7)

Lemma 5.5.1 shows that F' is nonnegative. From Lemma 5.3.2, V' ~! is also nonnegative,
as V is a nonsingular M-matrix. Therefore, FV ! is nonnegative. Then, —J; V1 = (V —
F)V~! =T — FV~! has the Z-sign pattern by the same argument that —.J; has the Z-sign

pattern. Now, applying Lemma 5.4.2 with H =V and B=—-J;, =V — F,

—J) is a nonsingular M-matrix <= I — FV ! is a nonsingular M-matrix. (5.8)

Notice that since F'V ! is nonnegative, I — F'V~! has the Z-sign pattern A = s — B

with s = 1. Then by the definition of an M-matrix,
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I — FV ! is a nonsingular M-matrix <= p(FV ') <1 (5.9)

Combining equations (5.7), (5.8), and (5.9) proves

x* is locally asymptotically stable <= Ry <1 (5.10)

Similarly, since —J; has the Z-sign pattern, it is a singular M-matrix <= the real part
of every nonzero eigenvalue of —J; is positive and —.J; has a zero eigenvalue. This follows

from Lemma 5.3.3 and Lemma 5.3.4. Equivalently,

—.Jp is a singular M-matrix <= every nonzero eigenvalue of .J; has negative ( )
5.11

real part and J; has a zero eigenvalue.

Since V' is a nonsingular M-matrix and F' is nonnegative, one can apply Lemma 5.4.3(Db)

with H =V and K = F to obtain

—J; is a singular M-matrix <= I — FV ! is a singular M-matrix. (5.12)

Again by the definition of a singular M-matrix, since I — F'V~! has the Z-sign pattern and

FvV-1>o0,
I — FV~!is a singular M-matrix <= p(FV ') =1 (5.13)

Combining (5.11), (5.12), and (5.13) gives

every nonzero eigenvalue of J; has
(5.14)

negative real part and J; has a zero eigenvalue. <= p(FV 1) =1

Recall x* is unstable if and only if there exits an eigenvalue of J; has positive real part. It

follows from (5.14) and (5.10) that

x* is unstable <= Ry > 1 (5.15)
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This completes the theorem.
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Chapter 6

MATHEMATICAL FOUNDATIONS FOR R, IN MAPS

A similar Next Generation construction of Ry can be defined for discrete-time models.
Here, the Next Generation matrix is F(I —T)~!. The (i,j) entry of F is still the rate at
which new infections appear in state z; from state x;. To determine the interpretation of
(I —T)~!, consider that one assumption of the theorem is that p(T') < 1. Then, by Lemma
531, [=T) ' = I+T+T?+T3+.... The (k, j) entry of T is the rate of transfer of infected
individuals into x; from zj in one generation. Similarly, the (k, j) entry of 7™ is the rate of
transfer of infected individuals into z; from zj after n generations. Then, the (i, j) entry of
the Next Generation matrix F'(I—T)™' = F+FT+ FT?+ FT?+... represents the expected
number of new infections in state x; produced by an individual originally introduced in state

x; over all generations.
= Fy+ Y FuTy+ Y FuTh+. ..
k=1 k=1
= (New infections in z; from x;) +

(New infections in z; from z; after 1 generation) + ...

= New infections in x; produced by zj in all generations

6.1 The Main Theorem

Theorem 6.1.1. Let (2.1) be a discrete-time model such that the state vector x(t,p) is
structured with the first m components as infected and the remaining M —m components as

disease-free, and suppose the following conditions hold:

1. 31 DFE a* of (2.1)
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2. The linearization of (2.1) is

F+T 0
X(t+1,p) = X(t, p) (6.1)
A C
F+T 0
where the matrix is the Jacobian of h evaluated at x*, and 0 is an
A C

m X (M —m) matriz of zeros.
3. The submatrices F' and T are nonnegative
4. F +T is irreducible
5. p(C) <1 and p(T) < 1 where p(-) represents the spectral radius operator

Then the DFE x* is locally asymptotically stable if Ry = p(F(I—=T)™') < 1 and unstable

if Rg > 1, where I is the m x m identity matriz.

Proof. The eigenvalues of the linearized system in (6.1) are the eigenvalues of the full system.
Since the linearization is block triangular, the eigenvalues of (6.1) are the eigenvalues of F+T
and C. The disease-free equilibrium is stable if these eigenvalues are all less than 1, and

unstable if an eigenvalue is greater than one. Since p(C) < 1, it follows that

x* is locally asymptotically stable <= p(F +7T) < 1
(6.2)

and is unstable <= p(F +1T) > 1

Note that the theorem is now proved true if Ry is replaced by the index r = p(F' + T)).
The reason for defining Ry = p(F (I — T)™') instead of just using r = p(F + T) is to better
match the biological definition. The quantity r is not identified as the average number of
secondary infections produced from a single infected individual, but rather is identified as
the growth factor [10].

The theorem will be proved by proving the following:
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r<l < Ry<l1
(6.3)
andr >1 < Ry>1

This will be proved using the technique in [10]. Let r = p(F+T) and Ry = p(F(I-T)7")
and assume Ry # 0. Assuming Ry # 0 is the same as assuming Ry > 0 by the definition of

the spectral radius.

F
Claim: p( A + T) =1 and one of the following holds:
0

r=Ry=1, or 1<r<Ry, or 0<Ry<r<l1 (6.4)

By Theorem 5.2.1, 3 a positive left-eigenvector y of F'(I — T) corresponding to the
eigenvalue Ry = p(F (I —T)™'). Then,

yF(I -=T)" =yRo

Multiplying both sides by (I —T') gives

yF =yRy(I —T) =yRo — yReT

yF + yRoT = yRo

Now divide through by Ry # 0,

Yy +71) = (6.5)

F
Equation (6.5) implies that 1 is an eigenvalue of A +T. Since both F' and T are
0

F
nonnegative, dividing F' by Ry > 0 only scales the nonzero entries of — +7". Since F' + T
0

F
is irreducible, A + T must also be irreducible. Furthermore, A + T' is nonnegative by the
0 0

assumption that Ry > 0. Then by Theorem 5.2.1(b), since y is a positive eigenvector, it
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F
must be associated with the spectral radius. That is, p(ﬁ +T)=1.
0

Consider the following cases:

(i) Ry =1.
Then Ry =1=p(4 +T)=p(F+T) =r.

(i) Ro > 1.
Then by Theorem 5.2.1(c),
1=p(# +T)<p(F+T)=r<p(F+RT) = Ry.

The final equality is established by multiplying ,O(Rio + T) = 1 through by Ry.

(ili) 0 < Ry < 1.
Again by Theorem 5.2.1(c),

1=p(4 +T)>p(F+T)=r>p(F+ RT) = Ry.

Equation (6.3) is now established under the added assumption that Ry > 0. This
assumption can be relaxed by following the procedure in [10] with the added assumption
that £ # 0. Note that if F' =0, r = p(T) < 1, so the disease-free equilibrium will be stable,
and Ry = p([0]) = 0 is also less than 1. This fact can be used to justify the existence of Ry
for discrete background infection models with 8 = 0 (the continuous analog is presented in

Section 9.2), but if Ry = 0, the infection model is not worth studying.
|
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Chapter 7

SENSAI

SENSAI is a hybrid MATLAB/Maple software that simulates large-scale mathematical
models and computes sensitivities and elasticities of quantities of interest, including the
Next Generation Ry, with respect to parameters and initial conditions. A researcher may
construct the model in Maple, where symbolic manipulation is convenient, and simulate
the results numerically in MATLAB where numerical simulation and plotting are convenient.
SENSAI will automatically compute the solution trajectories of the model as well as the
sensitivity and elasticity analysis. Additionally, the user may select a subset of parameters
and/or states to compute sensitivity and elasticity information instead of including all of
them. Sometimes the quantity of greatest interest to the researcher can be a (possibly
nonlinear) function of the states and parameters rather than isolated states, such as the
proportion of infected individuals or the number of infected adults, etc. SENSAT allows the
user to specify any function of states or parameters as the quantity of interest (Qol). The
trajectories, sensitivities, and elasticities of the QQol will also be computed. Finally, if the
model is an infection model, the user may specify the equations which describe the infection
classes, and SENSAI will compute Ry via the Next Generation method, if valid, and its
sensitivities. The conditions from the theorems will be tested, and if one of the conditions is
not met, SENSAI will output a warning statement specifying the condition which is not met.
SENSATI uses the MATLAB solver ODE45 to numerically solve the differential equations. The

code is freely available from the website
http://www.math.colostate.edu/~tavener/FESCUE/SENSAI/sensai.shtml.

Some example models and Maple templates are available at this site.
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7.1 Sensitivities and Elasticities

For notational convenience in SENSAI, let the j* initial condition zj to be parameter

PK+j. Re-writing equation (3.4),

(t+1) + 1),
(S ) o

apKﬂ apK-H
8;1:1»
Opx + J

(0) = 0;j

Solving for both the variables and their sensitivities with respect to the parameters and
initial conditions requires solving equations (3.1), (3.3) and (7.1) simultaneously. This is a
system of size M - (1+ K+ M). SENSAI evaluates the Jacobian 0h;/0z;, i,7 =1,...,M and
all partial derivatives Oh;/0py, i = 1,...,M, k = 1,...,K symbolically using Maple, and
automatically writes the MATLAB routines necessary to evaluate these derivatives.

Once the sensitivities are evaluated, the elasticities are defined according to the scaling

from (3.8).

7.2 Quantities of Interest (Qol)

Many times the most valuable sensitivities are calculated from a function of states and
parameters. The notation in SENSATI is as follows. Let the QoI be a scalar valued function

of time, such that

Q(t) = Q(x(t,p), p). (7.2)

The sensitivities of the QQol can be computed using the chain rule,

20 oz, 20
+ E=1,. .. K+M 73
at (Z 32 O ) ane ") =

The suggested (ol for infection models is the proportion of infected individuals. Sup-

pose the model has a simple ST form, where 1 = S and x9 = I. The Qol will be defined as
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i) (t)

Q(t) = ——————. Then, the sensitivity of the QoI with respect to an arbitrary parameter
Dk 18
dQ 0Q 0w, 0Q O+ oQ
—(t) = t t) + t
dpk< ) Oz Opy, Oz Opy, 8]%( )
—5(t) )
= Se(t) + 7.4
(<x1<t> Fa()P) 74
+ —~ Sop(t) + == (t
(Il(t) +ao(t)  (my(t) + xQ(t))Q 2(1) 8pk< )
7.3 Ry

When the user builds up his or her model in Maple, there is an option of identifying
which equations describe the dynamics of the infected classes. If this input is nonzero, Ry
will be computed via the Next Generation method. SENSAI will construct the vectors F
and V under the following criteria. If a term in an equation describing an infected state
involves a noninfectious state or is a term of parameters only, that term belong in F as it is
assumed that term describes an incidence of a new infection. If a term in an infected equation
does not involve a noninfectious state but is more than just a product of parameters, that
term belongs in V as it is assumed that term describes the transfer of an existing infection.
(Section 9.2 will show that if a term in an equation describing an infected state is only a
product of parameters, the Next Generation Ry is not valid for the model.)

Consider the following traditional STR model as an example.

ds )

— = —BSI—4S

dt /8 )

dI

—p = BSI =~ =l =41, (7.5)
dR

—~ =~I —0R

dt ,y Y )

where (8 is the infection rate, ¢ is the natural death rate of the species, v is the recovery
rate, and p is the disease-specific death rate due. The user must specify equation 2 is the

only equation modeling infection classes. Because the noninfectious state S appears in the
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term BS1, SENSAI will place that term in . Since no other term has an occurrence of S or
R, but each of these terms are not parameters only, —yI — ul — 61 belong in V.

It has been argued that the generalization of F and V is to place the negative terms in
V and the positive terms in F [11]. However, this generalization fails to accurately identify
F and V), as illustrated by the following example.

Many times the incidence of infection will be modeled not by the probability of a new
infection occurring when contact is made with an infected individual, but instead by the
probability of remaining disease-free when a contact is made with an infected individual, or

the probability of a new infection not occurring. Consider the following edition to the STR

model 9
= — _(1=RB)ST —
= —(1=p)SI -,
dI ~
—r == B)SI =l —pul — 41, (7.6)
dR
AT —
I ¥ OR, )

where the infection rate is given by 1 — 3. Expanding the terms in equation 2 gives the terms
SI — BSI —~I — pul — §1. If all the negative terms are placed in V, —3SI will be in the
wrong place. The entire ST — ST describes an incidence of a new infection, so both belong
in F. SENSAI will identify this properly with the new generalization of F.

Another common procedure in model development is to scale each term by the total
population N = S + [ + R. In this case, S and R will be located in every term, presenting
a potential problem for SENS%\/I{’S construction of Ry. To avoid this problem, SENSAI will
always replace occurrences of Z x; with a new variable N. When SENSATI searches for terms

i=1
with a noninfectious state, N will hide the ones that are there simply for scaling purposes.

Consider the equation for infected males from the hantavirus model in (2.8):

K

Lot +1) = [(1 — e PrInO=BLONG (1) 4 T,(t) SO

(7.7)
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This equation has both characteristics described above: the incidence of a new infection
is modeled by the probability of an infection not occurring when contact is made, and the

entire equation is scaled by the total population N. Biologically, the term

(1 — e Fmlm®=BIr )G (1) % K
K + (b/2)N

€ F,

I, () K . : : .
while the term (t) N € V. This is exactly what the algorithm in SENSAI will deter-

K+ (b/2)

mine.

7.3.1 Possible Problems in SENSAI

There may be models which have a legitimate Next Generation construction of Ry that
SENSAI will fail to compute correctly. These problems arise from an incorrect identification
of which terms belong in F and which belong in V. Just as it is common to scale by the
total population N, it is also common to scale each term by a sub-population N;. Suppose
the model describes two or more interacting species. It may make biological sense to scale
the infected class of species 1 by the total population of species 1, and likewise scale the
class of species 2 by the total population of species 2. That is, for a model structured
with states (51, 1, R1, Se, I2, R2), it may be accurate to scale the first three equations by
N; = S1 + I1 + Ry rather than by the total population N = S| + I} + Ry + Sy + Is + Rs.
This is difficult to automate for models in general. For instance, while the example of two
sub-populations was just described, a model could just as easily have three or more sub-
populations and subsequent scalings. If this is occurring in the model, SENSAT will recognize
a noninfectious state in these terms and place them in /. This may or may not result in a
value of R that is sufficient for the theorem to hold, but will certainly not produce a value
that is consistent with the biological definition. In fact, if every term is scaled by some N;,

Y =0 and V! will not be defined.
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7.4 An Alternative to R

Sometimes the Next Generation Ry is not the best tool for the analysis of an infection
model. There can be many problems with the Next Generation Ry. Consider the following
possibilities.

First, the Next Generation method may not even be applicable. It is possible that in
order to accurately describe the dynamics of an infection, one or more of the conditions of
Theorem 5.6.1 or Theorem 6.1 will fail. Some examples of this problem will be presented in
Section 9.2.

Second, it may be difficult to accurately identify which terms of the infected equations
belong in F and which terms belong in V. A model may be constructed such that the
determining factor for a term belonging in F is not solely that it involves a noninfectious
state or is just a product of parameters. The mathematical definitions of F and V are
not completely generalizable and could present problems for the Next Generation Ry. It is
possible that a condition of Theorem 5.6.1 or Theorem 6.1 will fail because of an incorrect
F and V, but it is also possible that all conditions will still hold. If the latter is the case, the
value of Ry will be one that exhibits the threshold criterion, but may not accurately reflect
the biological definition of Ry. This problem illustrates that checking to see if the Next
Generation Ry has the threshold criterion may not be enough to ensure the value represents
the biological definition of Ry. An example of this problem will be presented in Section 9.1.

Third, the Next Generation Ry may not accurately predict whether the infection persists
in the population if a finite amplitude disturbance is introduced into the infected states,
rather than a perturbation. Theorems 5.6.1 and 6.1 only ensure the stability of the disease-
free equilibrium under small perturbations. While the disease-free equilibrium is stable if
and only if Ry < 1, there may be more than one stable equilibrium for the system. If the
initial conditions are in a stable endemic equilibrium’s basin of attraction, the infection may

persist in the population even though Ry < 1. This is not a failure of the mathematical
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theorems, but is a limitation of the Next Generation R,. An example of this problem will
be presented in Section 9.3.

One can easily see how the implementation of Ry is tenuous, especially for large-scale
models in which the biological interpretation of terms can become obscured by complexity.
Checking that the Next Generation R, passes the conditions of the theorems may not be
enough to ensure that it matches the biological definition or that it is even an appropriate
index for the analysis.

The most important aspect in the analysis of an infection model is to ascertain the
best way to control the infection. The solution trajectories will already indicate whether
or not the infection will persist in the population, thus making the threshold characteristic
of Ry obsolete. If the infected trajectories converge to zero in time, one can conclude that
Ry < 1 just by this observation. Similarly, if the infected trajectories converge to a nonzero
equilibrium, one can conclude that Ry > 1, or at least that it should be. The threshold
nature of Ry is rather unimportant when considering the automatic solving of the model
through SENSAL

If the model projects an endemic equilibrium, using a relevant quantity of interest
and calculating its sensitivities and elasticities with the solution trajectories is an ample

replacement. For instance, let the QQol be the proportion of infected individuals. That is,

Qol = (Z ;) / (Z ;). (7.8)

If the most sensitive (or elastic) parameters to this Qol are known, one can have a good
understanding of how to control the infection through SENSAI. A management strategy
developed from this analysis will focus on influencing the proportion of infected individuals
most. Some examples will be presented in the following chapter comparing the Ry analysis

to the analysis of the QQol with trajectories.
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Chapter 8

EXAMPLES

In this chapter, models will be presented that have a valid Next Generation Ry. The
analysis of the model using Ry and its elasticities will be performed, as well as the analysis
of the model using the quantity of interest as the proportion of infected individuals. Finally,

comparisons of the two analysis techniques will be made for each example model.

8.1 SIR Model with Logistic Growth

Consider the following continuous-time STR model that includes logistic growth.

ds N )

% = BSI —~I — pul — 61, (8.1)
dR

A —

dt " OR, ),

where N = S + [ + R is the total population at any time ¢, r is the per capita growth rate,
K is the carrying capacity, (3 is the infection rate, d is the natural death rate of the species,
v is the recovery rate, and p is the disease specific death rate. The parameter values are
given in Table 8.1.

The solution trajectories to the model using the initial conditions of adding one infected
individual from the disease-free equilibrium are given by Figure 8.1. The equilibrium using
the parameter values in Table 8.1 is (3,378, 37), truncated to whole individuals. The pro-
portion of infected individuals at equilibrium is 90.22% (calculated when the solution is not

truncated).
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Table 8.1: Parameter Values for SIR Model, dimensions of 3, §, 7y, and u are ¢!, dimensions

of r and K are population.

H Parameter H Numerical Value \

Interpretation H

r 0.5 Per capita growth rate
K 1000 Carrying capacity
I6] 0.1 Infection rate
4] 0.2 Natural death rate
v 0.02 Recovery rate
0 0.1 Disease-specific death rate
s |
600 600
400 400
X 200 i 200
0 0
0 50 100 0 50 100
t t
R
40
20
0
0 50 100

Figure 8.1: Solution of SIR model. The initial conditions are S(0) = 599, I(0) = 1, R(0) = 0.

8.1.1 Ry Analysis

This model has a straightforward construction of Ry. To find the DFE, assume there

s
are no infected or recovered individuals. Setting - 0 with I = R = 0 gives

S*

*1__ _ *:
rS*( K) 3S* =0

rS*
(e _ 8 = 8.2
S*(r §) =0 (8.2)

S* =0 or S*:r_(sK
”
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Then, Ry is given by the Next Generation method:

Ry = p(FV™)

=p([BS")ly +nu+0]7)

st (8.3)
Yt pu+6

_ BK(r—9)

Cr(y+p+9)

Clearly, Ry should be greater than one, as it is obvious from the solution trajectories in
Figure 8.1 that the infection persists in the population. Moreover, the proportion of infected
individuals at equilibrium is 90.22%, so a high value of Ry is expected. In fact, Ry = 187.5.
Ry is most elastic to py = 9, as indicated by Figure 8.2 and Table 8.2. Because the elasticity

RO

200
150
100

50

0

Elasticity of RO wrt p

pOI  p02 p03  po4  pos  poo
Figure 8.2: Ry Elasticities. Ry = 187.5

of Ry to ¢ is negative, a decrease in 0 will result in an increase in Ry. If the desired result is
to reduce Ry, the strategy must be to increase 6.

While the sensitivities and elasticities indicate the effects of an infinitesimal change
in parameters, a finite disturbance in parameters must be used in practice. One can not
change 0 by an infinitesimal amount and compute the new trajectories. For comparisons
to be made, a relative change of 10% will be made to each parameter. The equilibrium

resulting from increasing § by 10% is (3,343,31) as seen from Figure 8.3. The DFE under
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Figure 8.3: Solution after increasing 6 by 10%. Ry = 164.71 and Qol = 90.84%.

the change in parameters is (560, 0,0). The new Ry = 164.71, a relative change of over 12%.
This is exactly what one would expect as the elasticity of Ry to ¢ is slightly greater than 1
in magnitude. While Ry was reduced and the infection was reduced by 35 individuals, the
proportion of infected individuals actually increased to 90.84%. This is because increasing
0 is increasing the death rate. There are fewer secondary infections only because there is a
lower population.

Increasing 0 is not a very friendly management strategy, so the second most elastic
parameter should be analyzed. This can be either p, = K or p3 = 3, as they both have an
elasticity of 1. The effects of changing § will be discussed in the following section for the
Qol analysis, so K will be chosen. This time, since the elasticity is positive, a reduction in
K will result in a reduction of Ry. If K is decreased by 10%, Ry = 168.75, a reduction of
10% as well. This makes sense as the elasticity is exactly 1. The new DFE for the system is
(540,0,0). If one infected individual is introduced in the population, the endemic equilibrium
is (3,340, 34). The proportion of infected individuals does not change much 90.14%. The
solution trajectories in Figure 8.4 are almost identical in shape to the trajectories in Figure
8.1. Reducing the carrying capacity K will reduce the number of individuals in each class

proportionally. This is not an effective management strategy.
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Figure 8.4: Solution after reducing K by 10%. Ry = 168.75 and Qol = 90.14%.
8.1.2 (ol Analysis

Let the quantity of interest QQol be the proportion of infected individuals. The Qol
is extremely high for this model, 90.22%. Like Ry, the Qol is also elastic (2"¢ most) to
ps = 6, at equilibrium. Unlike Ry, each of the equilibrium elasticities are extremely small, as

indicated by Figure 8.5 or Table 8.2. Furthermore, the elasticity of the Qol to ¢ is positive.

Qol Elasticity of Qol wrtr  Elasticity of Qol wrt K  Elasticity of Qol wrt
1 0.04 0.04— 6
g g (O
5 0.02 3 0.02 54
05 S o S
Z o Z o g2
[ lD [
0 -0.02 -0.02 0
0 50 100 0 50 100 0 50 100 0 50 100
t t t t
Elasticity of Qol wrt 8 Elasticity of Qol wrty  Elasticity of Qol wrt
0.1 0 0
S [0} g
S g 2 -0.005
o 0 © -0.05 o
2 g 3 -001
[} [ O
-0.1 -0.1 -0.015
0 50 100 0 50 100 0 50 100

t t t

Figure 8.5: Elasticities of the Qol. The initial conditions are S(0) = 599, I(0) = 1, R(0) = 0.

If the proportion of infected individuals is to be decreased, the natural death rate ¢ should
be decreased. Even though it is the most elastic parameter, a ten percent change in ¢ should
not affect the proportion of infected individuals at equilibrium. This is observed in Figure

8.3, though ¢ is changed in the opposite direction. When ¢ is reduced by 10%, the new Qol
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is reduced to 89.41%. The new DFE is (640,0,0), and Ry is increased to 213.33. Again,
the Qol at equilibrium is not significantly changed. The endemic equilibrium is (3,412,45).
There is more infection in the population, but there are also more recovered individuals
in the population. This is because every individual lives longer, whether or not they are

infected. The solution after reducing ¢ is shown in Figure 8.6.

S |

600 600
__ 400 _ 400
- N
E$ £
200 200
0 0
0 50 100 0 50 100
t t
R
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40
e
*
20
O S — |
0 50 100

Figure 8.6: Solution after reducing ¢ by 10%. Ry = 213.33 and Qol = 89.41%.

More information than just the equilibrium elasticities is provided by the Qol analysis.
In transience, the QoI is most elastic to p3 = 3, and it is most elastic by a significant margin.
The maximum elasticities of the Qol of any time ¢, at equilibrium, and the elasticity of Ry

are summarized in Table 8.2.

Table 8.2: Elasticity Values for SIR Model.

H Parameter H Ry elasticity \ Qol elasticity at equilibrium \ Maximum Qol elasticity H

b 0.666667 1.059713 x 107 3.142138 x 1072
K 1 7.660186 x 1073 3.407802 x 1072
B 1 7.660186 x 103 4.025211

) —1.29167 7.851908 x 1072 7.851908 x 1072
v —0.06250 —9.108838 x 1072 —9.110706 x 1072
1 —0.31250 —5.688001 x 1073 —1.176657 x 1072

If 3 is decreased by 10%, as in Figure 8.7, the truncated equilibrium population remains

the same. The Qol at equilibrium only changed by fractions of individuals. This is predicted
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by the elasticities, as [ is only highly elastic in transience. Changing  had negligible effects
on the equilibrium solution, though Ry was reduced to 168.75 (note the elasticity of Ry to [
is 1). The DFE from changing 5 is still (600, 0,0).

600 600
400 400
- S
3 X
200 200
0 o
0 50 100 0 50 100
t t
R
40
o
T2
04.—
0 50 100

Figure 8.7: Solution after varying 8 by 10%. Ry = 168.75 and Qol = 90.14%.

The Qol is most elastic to v at equilibrium. The Qol is also elastic to this parameter
during transience (2"¢ most). When 7 is increased by 10%, the DFE remains (600, 0,0), Ry is
essentially the same value at 186.34, but the endemic equilibrium is now (3,376,41). This is
a direct transfer of individuals from the infected class to the recovered class, as expected by
the function of v. The equilibrium proportion of infected individuals is reduced to 89.40%.

This is still extremely high, but is better than any other strategy attempted yet.

8.1.3 Comparison of Methods

Both the analysis from Ry and the Qol matched intuition. Ry is extremely high for this
model, and if the largest elasticity is approximately 1.3 in magnitude, a relative change of
10% in that parameter will not eradicate the infection. Similarly, the QoI is extemely high
for this model. The largest elasticity is O(1072) in magnitude, which indicates that a small
relative change in that parameter will not significantly change the QQol. The trajectories

computed by SENSAI confirm the analyses.
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Figure 8.8: Solution after varying v by 10%. Ry = 186.34 and Qol = 89.40%.

8.2 Typhoid Model

Recall the Typhoid model given by (2.11). If the infected states are considered to
be y = x3 + x4 + x¢ + x7, as indicated by [2], then the model does not pass assumption
(A4) from Section 5.5. If a nonzero density is introduced in either x5 or x5, both considered
noninfectious, infection enters the solution. The states x5 and x5 are incubating noninfectious
and sick noninfectious, respectively. One will notice by the equations in (2.11) that the
individuals in the “noninfectious” x5 and x5 can transfer to an infective state without any
contact from an infected state. For example, if 5 > 0 but all infected classes y = 0, the
equation for 235 = po3xrs > 0. The only way to ensure a proper Next Generation calculation
of Ry is to assume that xy and x5 are infected states. This may be valid biologically, as an
incubating infection is essentially an infection waiting to develop, and a sick noninfectious
individual shows signs of an infection. It is peculiar that these states, particularly the state
labeled “sick noninfectious,” though considered noninfectious, can give rise to the infection

just by their presence.
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8.2.1 Ry Analysis

Whether or not xy and x5 are considered infective, if any nonzero population enters
any of classes two through seven, the trajectories converge to an equilibrium that contains
nonzero infected components. An Ry > 1 is expected for this model. If the assumption that
o and x5 are also infected classes is made, Ry = 5.031.

Since there are six infection classes, SENSAI must compute the inverse of a 6 x 6 matrix of
algebraic equations. Of course, a numerical 6 x 6 matrix should be easy to solve in MATLAB
or Maple, and in fact, SENSAI is capable of producing the numerical Ry quickly— in just three
seconds. But to determine the sensitivities of Ry, an analytical solution must be obtained.
Then, since each entry is in the matrix is algebraic, the analytical matrix inverse is a lengthy
expression. Since Ry is given by a long expression, the derivatives of Ry become extremely
involved. When R, and its sensitivities are solved from the 6 X 6 system, SENSAI required
105 minutes of runtime. Nonetheless, SENSATI is capable of computing R, for this model.

The most elastic parameter to Ry is p; = pi12, the infection rate from susceptible individ-
uals to incubating noninfectious (but soon to be infected) individuals. Ry analysis identified
six of the twenty-two parameters with an elasticity greater than 0.5 in magnitude and all
others 0.1 or less. These six parameters, along with a inelastic py; = pg; for comparison, are
plotted in Figure 8.9.

RO

Elasticity of RO wrt p

p01 pll1 pl2 pl7 pl8 p21 p22

Figure 8.9: Elasticity of Ry = 5.031 to parameters 1, 11, 12, 17, 18, 21, and 22.
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A relative change of p12 by 10% should not reduce Ry to be less than one. In fact, as the
elasticity ~ 1, a 10% change in p; reduces Ry by 10%, to 4.53. Reducing Ry to be less than
one requires a relative change in py5 of 81%. This can be seen by solving Ry - (1 —x) < 1 for
the relative reduction z. Whether or not this is feasible for this model, when p;5 is reduced
this much, Ry = 0.995.

The fact that the populations are modeled as densities may be a point of confusion in the
Ry analysis. As mentioned in Section 4.3, an infinitesimal change is biologically represented
as introducing one individual to the population. To find the density corresponding to this
change, the total population must be known. If the total population P is 100 individuals,
introducing 1 individual corresponds to introducing a density of 0.01 (as is done in Figure
2.2). If the P is 10,000 individuals, introducing 1 individual corresponds to introducing a
density of 0.0001. Notice in Figure 8.10 that the infection is removed from the population if
the total population is 100 individuals and p;2 is reduced by 81%. A final time of 10,000,000

was used to demonstrate convergence to the DFE.
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Figure 8.10: Solution to Typhoid model with Ry = 0.995 and P = 100. The trajectories
approach the DFE.
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No matter what the total population P is, the solution will always approach the disease-
free equilibrium. This is because the DFE is the only stable equilibrium of the system. This

is not guaranteed by Theorem 5.6.1, but is true for this particular model.

8.2.2 (ol Analysis

Again, let the Qol be the proportion of infected individuals. Note that for this model,
m
the Qol = Z x;, since the populations are modeled as densities.
The m;;(limum transient (Yol analysis also identified p;o as the most elastic parameter.
In fact, the maximum transient (Qol identified the exact same six most elastic parameters
as Ry did, and the equilibrium Qol included these six parameters in its top seven. Figure
8.11 and Table 8.3 show the elasticity results of these seven parameters. A final time of

200,000 was used to ensure the convergence of sensitivities to equilibrium, but the same

initial conditions were used as in Section 2.2.1.
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Figure 8.11: Elasticities of the QQol. Initial conditions the same as Figure 2.2.

8.2.3 Comparison of Methods

The Ry and Qol analysis are extremely comparable for this model. Six of the twenty-two
parameters were identified by the equilibrium QQol analysis with an elasticity over 0.5, with

all others less than 0.25 with only one parameter different. When the maximum transience
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is considered, the missing parameter is added. The only difference between the parameters
identified is that the equilibrium Qol was elastic to pg; the sixth most, but Ry was not elastic

to this parameter at all. Table 8.3 summarizes these results.

Table 8.3: Elasticity Values for Typhoid Model.

H Parameter H Ry elasticity \ Qol elasticity at equilibrium \ Maximum Qol elasticity H

P12 0.99039 0.24621 4.4153
P46 0.84689 0.92369 3.4093
P48 —0.71060 —0.85919 —3.7877
P67 0.65054 0.70833 2.3907
P68 —0.56677 —0.62541 —2.2921
Po1 0 0.59451 0.59451
1 —0.94104 —0.86178 —0.86178

If the Ry analysis were not available, one would consider varying the parameters most
elastic to the QQol at equilibrium and transiently, as done in the previous examples. The
parameters pio, psg, and p would be identified if the top two parameters to which the
maximum Qol is most elastic and the top two parameters to which the equilibrium Qol is
most elastic are chosen. This corresponds exactly to the top three parameters to which Ry
is most elastic. Furthermore, if the top three are considered for the QQol analyses, pss would
be added, which is the fourth parameter to which Ry is most elastic. If the top four are
considered, pg; would be added, which is the fifth parameter to which Ry is most elastic. If
the top five are considered pgg would be added, which is the sixth parameter to which Ry is
most elastic. The QQol analysis is quite comparable to the R, analysis for this model.

The benefit of the Ry analysis is that it exactly describes how much change is needed in a
single parameter to remove the infection from the population. On the other hand, a reduction
of 81% in this parameter was required to reduce Rg below 1, which could prove difficult in
application. This parameter would be reduced by some biologically feasible amount, and
then the second most elastic parameter would be evaluated. Once this is reduced by a
reasonable amount, the third most elastic parameter would be evaluated, and so on. If

this strategy is employed, the Ry analysis and the Qol analysis would provide the same
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strategy. In the Ry analysis, the effects of the reductions would be checked against the
value of Ry. If the reductions in parameters results in Ry < 1, the infection is successfully
eradicated. In the QQol analysis, the effects of the reductions would be checked against the
solution trajectories. If the solutions converged to a disease-free equilibrium, the infection

is successfully eradicated.

8.3 Hantavirus Model

Recall the Hantavirus model given by (2.8). This model passes all the hypotheses of
Theorem 6.1, so a valid Next Generation Ry can be produced, and this index is calculated

correctly within SENSAIL. The endemic equilibrium for the model is (375, 125, 375, 125).

8.3.1 Ry Analysis

Again, one can conclude that Ry > 1 just by observing the trajectories of the system
from Figure 2.1. Nevertheless, Ry is computed to be 151.65. Its elasticities are given by
Figure 8.12.
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Figure 8.12: Elasticity of Ry = 151.65 to parameters for the Hantavirus model.
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Ry is equally elastic to parameters p; = K, p3 = ,,, and p, = b. To reduce Ry, one
would reduce K and f3,, and increase b. These efforts will be made individually to show
which is really the most effective.

If py is reduced by 10%, Rq is reduced to 136.48, a relative change of 10%, as ex-
pected by the elasticities. However, since p; = K, the carrying capacity, reducing this
parameter just reduces the total population in every class. The new endemic equilibrium is
(337,112,337, 112) truncated to the whole individual. The proportion of infected individ-
uals is exactly the same when K is reduced. See Figure 8.13 for the solution trajectories.

While the elasticity of Ry to K is high, changing K seems to be ineffective in controlling the

infection.
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Figure 8.13: Solution of Hantavirus Model when p; = K is reduced by 10%. Ry, = 136.48.
Initial conditions are (449, 1,450, 0) as the new DFE is (450, 0, 450, 0).

If p3 = 5, is reduced by 10%, Ry is reduced to 136.85, a relative change of 9.76%. But,
the endemic equilibrium is exactly the same before it was reduced. The solution is seen in
Figure 8.14. While this reduces Ry, it also seems ineffective in the efforts to control the
infection.

Finally, if p, = b is increased by 10%, Ry is reduced to 137.86, a relative change of 9.09%.
A 10% increase means that the average litter size is 6.6. This is reasonable for an average and

does not need to be a whole number. The new endemic equilibrium is (383,116,383, 116),
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Figure 8.14: Solution of Hantavirus Model when p3 = 3,, is reduced by 10%. R, = 136.85.
Initial conditions are (499, 1,500,0) as the DFE is (500, 0, 500, 0).

truncated. This by no means eradicates the infection, but does provide a positive change,

as the proportion of infected individuals is reduced. The solution trajectories are given in

Figure 8.15.
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Figure 8.15: Solution of Hantavirus Model when py = b is increased by 10%. Rq = 137.86.
Initial conditions are (499, 1,500, 0) as the DFE is (500, 0, 500, 0)

Changing the three elastic parameters by 10% individually did little to remove the
infection. Now consider a combined effect. Changing K only seemed to scale the total
population. While this reduces the number of susceptibles and therefore reduces the amount

of contacts between infected and susceptibles, K will not be attacked heavily as it does not
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seem biologically favorable. Consider a reduction of K by 20%. Changing b seemed to have
the best effect on the trajectories, so it will be quadrupled. While (,,, did not seem to reduce
the endemic equilibrium, if Ry is reduced below 1, the disease will be eradicated. Consider
the effects of reducing f,, by 82%. When these changes are made, the new Ry is still greater

than 1, but the elasticities of Ry to parameters are quite different. See Figure 8.16.

RO

Elasticity of RO wrt p

p0O1 p02 p03 po4

Figure 8.16: Ry = 7.43 and its elasticities after significant changes in parameters.

The new DFE is (400, 0,400,0) and Ry = 7.43. The elasticities of Ry to p; = K and
ps = b are the same as before the changes in parameters, but the elasticity of Ry to ps = [
is now approximately equal to the elasticity of Ry to ps = [,,. This is simply because
Bm reduced it to 0.1620, which is now comparable to the value of 3y = 0.09. Recall the
assumption that 3; << f,,. In efforts to stay consistent with the model formulation, this
assumption should be maintained while attempting to reduce R, below 1. Staying consistent
with the assumption is actually staying true to the elasticities, as continuing the reduce 5,
will have less and less affect on Ry. Let 3 be reduced by 75%, and further reduce 3, by 90%
of its original value. Now [y = 0.0225 << 0.09 = 3, in some sense. The elasticity of R,
to b is still high and ecologically favorable, so it will be increased further to 50 (about 833%
of its original value). The carrying capacity will also be reduced by 50% to 500 individuals.
When these changes are made, Ry is below 1. The new DFE is (250, 0,250,0). Whether or

not these changes are realistic is unknown. Figure 8.17 shows the trajectories.
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Figure 8.17: Solution after singificant changes to all parameters. Ry = 0.9681 and the
infection is not sustained.
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8.3.2 (ol Analysis

Figure 8.18 depicts the elasticities of the QQol, proportion of infected individuals, to

parameters for the Hantavirus model.
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Figure 8.18: Elasticity of the QoI = 0.25 to parameters for the Hantavirus model. Initial
conditions are (499,1,500,0). Note the scale on the elasticity of K is 1073

The only parameter with a high elasticity at equilibrium is 0. This is consistent with
the results from the previous section, as changing K or 3, by 10% did not reduce the Qol
at all. The Qol is also inelastic to 8, and a change in 10% of f; results in no change to

the Qol. The only parameter that changes the QQol at equilibrium under a small relative
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change is b. A 10% increase to b reduces the QoI to 0.2326. This is not significant, but as
seen in the previous section, many changes need to be made to control the infection.

The Qol is also transiently elastic to (,,, with a maximum elasticity of 0.5368. A
control strategy of attacking parameters b and (,, is developed from the QQol analysis. If b
is increased to 24 as before, and (,, is reduced by 82%, the new Qol is 0.07689, a significant
reduction, but not eradication. The disease-free equilibrium is still (500,0,500,0). The
elasticities of the QoI also change with this first reduction. Figure 8.19 shows the elasticities

after these changes have been made.
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Figure 8.19: Elasticity of the Qol = 0.077 to parameters for the Hantavirus model. Initial
conditions are (499, 1, 500, 0).

Now the Qol is elastic to all four parameters, at least in transience. As before, the
assumption 8y << 3, should be maintained for the model, so 8¢ should be reduced as well.
This is consistent with the elasticities as the Qo/ is now elastic to 3y in transience. Let this
be reduced by 55% of its original so that §; = 0.0405 << 0.162 = f3,,. Notice that this is
a scaling of 4 times; the same scaling is used in the Ry analysis. The carrying capacity also
demonstrates transient elasticity when it essentially did not before. Furthering the control
strategy should follow the same procedure as in the R, analysis. The parameter that has the
highest elasticity should be changed to a biologically reasonable level, and then the next most

elastic parameter, and so on, while maintaining the model’s assumptions. The Qol analysis
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emphasizes increasing b as it is the only parameter with equilibrium elasticity. Assume
70 is the highest b can feasibly reach. Also reduce K by 25% to 750, while maintaining
Bm = 0.162 and Bf = 0.0405. The new DFE is (375,0,375,0), and the Qol is now 0.01631.

The elasticities are given by Figure 8.20.
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Figure 8.20: Elasticity of the Qol = 0.016 to parameters for the Hantavirus model. Initial
conditions are (374, 1,375,0).

Even though b is the most elastic, it is assumed it can not be increased further. The next
best strategy is to reduce K and f,,. If 3,, is reduced, 3; will be reduced correspondingly
to keep the ratio 4:1. The reduction of K by 50% to 500, 5, by 85% to 0.135, and §; by
62.5% to 0.03375, while maintianing b = 70 effectively removes the infection. The new DFE
is 250, 0,250, 0]. The final QoI is actually positive valued at 0.001339, implying some infec-
tion is in the population. However, the “endemic” equilibrium is (249.49,0.51,249.49,0.51).
Truncating to the whole individual results in a “disease-free equilibrium” of (249, 0,249, 0).
This is not really an equilibrium, nor is it actually disease-free. In fact, Ry = 1.0373 with

these parameter values.

8.3.3 Comparison of Methods

Both Ry and the Qol analysis methods led to very similar management strategies for

this model. In fact, under certain restrictions, the strategies could be exactly the same. The
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Figure 8.21: Solution after significant changes to all parameters. Qol = 0.0013, but the
infection is effectively removed from the population.

check for whether the infection persists in the population under the Ry analysis is too strict
when considering the management strategy from the Qol. If individuals are truncated to
the whole number, Ry may be slightly greater than 1 while the infection is removed from
the population. This is not a failure of Theorem 6.1 since the disease-free equilibrium is
still unstable. The population approached an endemic equilibrium, but that equilibrium is
so close to the disease-free equilibrium that the total number of infected individuals, while
strictly greater than 0, is also strictly less than 1. When truncated to whole numbers, it is
as if infection is removed from the population. If Ry = 1, the solution trajectories should be

computed to determine whether or not the infection actually persists in the population.
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Chapter 9

FAILURES OF R,

There are models that can be constructed in which a Next Generation Ry is not well-
defined. First, the Next Generation R, can fail mathematically as it may not be unique
(Section 9.1). Second, the Next Generation Ry can fail biologically as in models where
transmission does not occur only by contact (Section 9.2). Finally, the Next Generation Ry
can fail to predict persistence when a finite amplitude disturbance is introduced rather than

an infinitesimal perturbation (Section 9.3).

9.1 Mathematical Failures

Because of the way in which F and V are defined, there are models that arise that have
the same solution trajectories but different values of Ry. Mathematically speaking, these
models are equivalent, thus the concept of Ry is not mathematically unique. The ideas of
this section are an expanded from [11].

Consider the following SI model, where S represents the number of susceptible individ-

uals in a population, and I represents the number of infected individuals:

d

S 58I+ ul

dI ST I .
% = BS1 — p

The +pl term in the first equation is there only to ensure a constant population by

a(S+1)

forcing = 0; the number of new births should be equal to the number of deaths.

Under the Next Generation method, the matrices F' and V' are one-dimensional and equal

S*
to 3S and p, respectively. Then, the value of Ry is given by Ry1 = p(FV 1) = g

, where
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S* is the value of S at the disease-free equilibrium. This R exhibits the threshold criterion
such that if Ry, < 1, the DFE is stable, but if Ry; > 1, the DFE is unstable.
Notice that in this example, Ry depends on the disease-free equilibrium number of

susceptibles, S*. In this model, there are infinitely many disease-free equilibrium points,
as

since o = (=BSI + pl) = 0 for any value of 8, u or S. This implies that Ry
=0 =0
depends on the initial conditions for S, as that value will always provide a disease-free
S(0
equilibrium. Thus, the definition of Ry is refined to be Ry; = 6—() Figure 9.1 shows two

possible trajectories, one with Ry > 1 and one with Ry < 1. The difference of R, values
in the two solutions is only due to the initial number of susceptibles. This illustrates the
vaccination control strategy: if the number of susceptibles is reduced, the infection can be

removed.
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(a) S(0) =10 and Ry =0.5 (b) S(0) =100 and Ry =5

Figure 9.1: SI model trajectories for (9.1). Parameter values are p = 0.8, § = 0.04. Initial
condition 7(0) = 1 is used for both.

Now consider the same model with an algebraic manipulation.

s
2 = _BSI+ul
dl )

Clearly, this model will have the exact same trajectories for any matching initial con-
ditions and parameter values. Since it is mathematically the same model, the index Ry
is obviously a valid threshold for this model. However, depending on the biological mean-

ing of the —cl and +cI terms, a different Ry may be determined. Suppose the —cI term
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represents a disease specific death rate and the +c/ term represents an alternative mecha-
nism for a new infection that just happened to occur at the same rate c. It is appropriate
for the +c¢I term to belong in F while the (negated) —cI term belongs in V), yielding the

matrices F' = $S(0) + ¢ and V = pu + ¢. The value of Ry under these assumptions is then
S(0

Ros = p(FV™1) = Lﬁ If ¢ = 0.2, for example, the trajectories for (9.2) are exactly
w+c

the same as for (9.1), as seen by Figure 9.2, but this time the new Ry = 0.6 instead of 0.5

for Figure 9.2(a), and the new Ry = 4.2 instead of 5 for Figure 9.2(b).
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(a) S(0) =10 and Ry = 0.6 (b) S(0) =100 and Ry = 4.2

Figure 9.2: ST model trajectories for (9.2). Parameter values are p = 0.8, § = 0.04. Initial
condition 7(0) =1 is used for both.

Ry > also exhibits the threshold criterion such that if Rp» < 1, the DFE is stable, but if
Ry > 1, the DFE is unstable.

Proof. Suppose 0 < ¢ < o0.

Ros <1 < BS(0)+c<pu+c
— pS0) < p
— Rp1 <1

<= the DFE is stable

A similar argument can be shown for Ry, > 1. B
Clearly, Ro1 # Rz, yet both are constructed under the same method for two models
with the same trajectories. While both Ry ; and Ry 2 exhibit the threshold criterion necessary

for Ry, they cannot both satisfy the biological definition for a single model. How can the
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average number of secondary infections from one infected individual be both 5 and 4.2 at
the same time? It may be easy to determine which terms belong in F and )V for such a
small model, but if the model is constructed progressively as (2.8), it may become difficult
to determine the proper biological function of every term.

The difficulty of discovering the true Ry will certainly increase with the model’s complex-
ity. In models that are more than simple ST demonstrations, it should be examined whether
the efforts to calculate Ry are worth the expense when the Qol and solution trajectories can

be computed so easily in SENSAI.

9.2 Biological Failures

There is another common class of models where F and V are defined correctly according
to the epidemiology, but a Next Generation R fails to be well-defined. Consider models that
include a background infection rate. Transmission of the infection arises not from contact
with an infected individual, but by some alternative source related to the environment of
the population. The background transmission occurs as a probability that is independent of
the number of infected individuals. An example where background transmission occurs is
the model in [6] of White Pine Blister Rust (Cronartium ribicola), an infection prevalent in
the northwest United States that attacks five-needle, high elevation white pine trees (Pinus
albicaulis and P. exilis). The infection is not transmitted from tree-to-tree contact, but is
from an uniformly distributed cloud of spores from flowering plants among the genus Ribes.
Infection is stored in the Ribes, which permeate the forest ground, and transmitted to the
pines by a constant probability of infection [, independent of I. Another example comes
from Chronic Wasting Disease (CWD) in mule deer (Odocoileus hemionus). The model in
[14] proposes that the transmission of CWD is primarily through environmental sources and
not direct deer-to-deer contact.

For models like these, the Next Generation method of calculating Ry will never be

valid. Assumption (A4) for ODEs (or assumption #5 for maps) fails under all models with
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background infection. Because transmission occurs independent of the number of infected
individuals, the disease-free subspace is not invariant. That is, if the population is disease-
free, infection can still enter the population.

Consider a basic ST model that has a constant background infection rate. Let the
number of susceptibles change according to Logistic growth, and let the transmission of
infection be independent of the number of infected individuals. Then

ds N

dl

=Bl
dtﬁv

(9.3)

where N(t) = S(t) + I(t) is the total population, r is the per capita growth rate, K is the
carrying capacity, £ is the background transmission probability, and 7 is the recovery rate.
Notice that there is no nontrivial disease-free equilibrium in this model. This can be seen

dsS
by solving i 0 for I. The only solution is [* = é Even if 1(0) = 0, infection can still

~

occur if B # 0 as seen by Figure 9.3. The only biologically appropriate equilibrium for this

system is S* = K — é and [* = é There is another mathematically valid equilibrium for
8 g

the model where I* is the same and S* = _T, but negative populations are not biologically
realistic.

In fact, there are two problems with this example as far as the construction of the Next
Generation Ry is concerned. First, there is no invariant disease-free subspace; (A4) fails.
Second, there is no disease-free equilibrium provided g # 0. The Next Generation method
for Ry describes the stability of the DFE. If there is no DFE, the Next Generation Ry can
not be used.

Because there is no working Next Generation Ry for this model, the analysis will be done
using only the quantity of interest as the proportion of infected individuals. The elasticities
of the Qol at equilibrium to parameters p, = 3,p3 = v, and py = K are similar as indicated
by Figure 9.4. The only parameter to which Qol is essentially inelastic is p; = r. All other

parameters have an elasticity of 1 in magnitude at equilibrium. The differences between the
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Figure 9.3: Solution to the Background ST model. Parameter values are r = 0.5, § = 0.8,
v = 0.02, K = 1000. The initial condition is disease-free and at carrying capacity: S(0) =
1000, 1(0) = 0, but infection persists in the population.

elasticities of the Qol to 3, v, and K occur in transience. It is easy to see that [ is the
parameter to which QQol has an elasticity of 1 in the shortest time. In fact, the elasticity
of the QoI to 8 is 1 after a single time step. This is expected, as [ is the parameter that
determines the new infections. The (ol should be highly elastic to v at equilibrium, since
the equilibrium number of infected individuals is always g A change in v will produce a
proportional change in I, which will produce a change in the Qol. Similarly, the QoI should
be highly elastic to K at equilibrium since the equilibrium number of susceptible individuals
is always K — g A change in K will produce a change in S, which will produce a change in

the Qol.
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Figure 9.4: Qol and its elasticities for the background infection model. Note the scale on
the elasticity of Qol to p; =r and py = K is 1075,
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Suppose 5 = 0 for this model. Now assumption (A4) is satisfied and a disease-free
equilibrium exists, so a Next Generation R, is valid. The term ( belongs in F as it is
an isolated parameter. This is biologically accurate as 3 describes new infections from the
background transmission. The term /I belongs in V, as no noninfectious state occurs in this
term. This is also biologically accurate as recovery is a transfer of existing infections. Then
the matrix ' = 0 and V = ~, so that FV =1 =0, and Ry = p[0] = 0. This will always be the
case for models where the transmission occurs via a background rate.

The infection rate [ should be the most sensitive parameter, as any change of ¢ > 0
will produce a qualitative change in the solution. The disease-free equilibrium will cease to
exist, and the solution will converge to an endemic equilibrium instead. The elasticity of
any quantity of interest (including Ry) is 0 (or is undefined) with respect to 3, as 5 = 0 will
occur in the numerator of (3.8). Sensitivities will be considered instead of elasticities for this
example.

Because Ry is identically equal to 0, its sensitivities and elasticities will also equal 0. No
information can be gleaned from Ry. If disease-free initial conditions are used, the QQol will
also be 0. However, unlike Ry, the sensitivities of the QQol are not all 0. Figure 9.5 shows

that the Qol is sensitive only to po = (. This is intuitive, as a change in any parameter

Qol d(Qoly/dr d(Qol)/dp
1 1 0.06
g §0.04
o0 S0 g
g g 0.02
-1 -1 0
0 200 400 0 200 400 0 200 400
t t t
d(Qoly/dy d(Qol)/dK
1 1
D S
g 0 g 0
o o
o o
-1 -1
0 200 400 0 200 400

Figure 9.5: Qol and its sensitivities when § = 0. The only sensitive parameter is ps = 5.
Initial conditions are at the disease-free equilibrium.
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other than § will not change the number of infected individuals, but if § is changed, the
number of infected individuals will change.

If infection is introduced in the population, the Qol will not be initially 0. The rate at
which the infection decreases is dependent on all parameters, so the QQol will be sensitive to
every parameter in this case. In transience, the only parameters with significant sensitivities
are $ and -, which makes sense as [* = é As the infection is removed from the population,

Y
the only sensitive parameter is again 3. These results are illustrated in Figure 9.6.

-3 Qol -7 d(Ool)/dr d(Qol)/dp
L x10 X 10 (Qol). 0.06
=) §0.04
005 5 -0.5 <)
g g 0.02
0 -1 0
0 200 400 0 200 400 0 200 400
t t t
d(Qoly/dy «10°° d(Qoly/dK
0 0
D S
£ -0.01 € -05
o o
e} o ‘
-0.02 -1
0 200 400 0 200 400

Figure 9.6: QQol and its sensitivities when § = 0 and initial conditions have infection intro-
duced. S(0) = 999,1(0) = 1. Note the scale on p; = r is 107" and the scale on p; = K is
1075.

9.3 Finite Amplitude Disturbances

Finally, there are models where the Next Generation Ry fails in the sense that it may
not accurately predict the persistence of infection if more than one infected individual is
introduced to the population. This is not a mathematical failure of the theorems on Ry, nor
is it a biological failure of the definition of Ry. Instead, this is a limitation of the concept.
Ry can only be used as an indicator of infection persistence if a single case of infection is
originally introduced. If a large number of infected individuals is introduced to a population,

Ry can be misleading.
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Consider a model for Dengue fever given by [7]. The model is an SETR model, where E
stands for a class of exposed individuals who have made contact with an infected individual
but are still not infectious. Dengue is carried by a vector, mosquitoes, and the dynamics of

the vector and human populations are modeled. The equations are as follows:

dsS 3
d_f =y — AuSy — paSu
dFE
d_tH =AySy — (og + uu)En
dl
d_f =ouEy — (th + pu + 0u)lu
dR
dSy
— =1y — A\vSy — uyS
di Vv VoV — Hy oy
dE
d_tv = AvSy — (ov + pv)Ev
dl
d_: = oy By — (uv + ov) Iy )

where Ay = CNL;(WVEV + Iy/) is the human infection rate, Ay = CAI/{;; (nuEy + Iy) is the
vector infection rate, and Ny = Sy + Ey + Iy + Ry is the total human population. The
parameters for this model are described and valued in Table 9.1. It is assumed that infected
vectors do not recover, so there is no Ry class. This model has a disease-free equilibrium of
(g—g,o,o, 0, 3—5,0,0).

The solution trajectories in Figure 9.7 show that although Ry, < 1, it is possible for
infection to persist in the population. The Next Generation Ry is a valid technique as
all of the conditions of the theorem are met. But, the theorem only proves the stability
of the disease-free equilibrium. Since Ry < 1, the DFE is stable for this system. An
infinitesimal change from the DFE will not affect the long-term behavior. Biologically, the
way to represent an infinitesimal change is to introduce one infected individual, as introducing
0 < e < 1 individuals is not biologically realistic.

But, if a large enough disturbance is introduced to the population, the long-term be-

havior can be changed. This is because there is another stable equilibrium that is endemic.
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Table 9.1: Parameter Values for Dengue Model.

H Parameter H Numerical Value \ Interpretation H
5% 0.0195 1/py is average human lifespan
oH 0.5300 Rate of transfer of exposed to infected humans
11y 10 Human recruitment rate
oy 0.9900 Disease specific human death rate
Nu 0.9900 Infectiousness factor of exposed to infected humans
TH 0.2000 Human recovery rate
Ly 0.0140 1/py is average vector lifespan
oy 0.2000 Rate of transfer of exposed to infected vectors
Iy 30 Vector birth rate
Oy 0.0057 Disease specific vector death rate
nv 0.9800 Transmissibility factor of exposed to infectious vectors
Crv 0.038 Infection rate of mosquitoes

If the disturbance results in a state that is in the basin of attraction of the DFE, as in Figure
9.7(a), the infection will be removed; however, if the disturbance moves the conditions inside
the basin of attraction of the endemic equilibrium, as in Figure 9.7(b), the infection will
persist.

If the infection is introduced in the population as a single infected individual, consistent
with the definition of Ry, the infection will not be sustained. There is no failure in the
biological meaning of Ry or the mathematical definition of Ry. However, if a large number
of infected individuals are introduced in the population, Ry is not a good measure to predict
the persistence of the infection. This is a legitimate possibility. Inhabitants of foreign
countries have immunities to certain diseases while others do not. Suppose a large influx of
individuals who carry a certain disease but have no deleterious effects from that disease arrive
in a population of susceptible individuals. Ry is not a useful measure in such a situation. Ry
may be less than one, but because a large number of infective individuals are introduced,

rather than just one, the infection may persist.

79



H H H H
600, 10 5 40
g 400 g s g £20
200 0 0 o—
5000 0 5000 0 5000 0 5000
t t t t
SV EV IV
2150y 10 100
€ 2100 € s g s0
2050) 0 0
0 5000 0 5000 0 5000
t t t
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(b) Rp = 0.9032 but the infection persists

Figure 9.7: Dengue model trajectories. In (a), zg = (g—g, 0,0,0, 1:—“/’, 0,100) and the infection
is unsustainable. In (b), o = (S—g, 0,0,0, E—“/’, 0,200) and the infection persists.
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Chapter 10

MODELS WITH BLOCK STRUCTURE

Suppose a model is a coupled system of differential equations, such as the hantavirus
model in (2.8). There is a clear block structure that results from such a system: the equations
for the males is block 1, and the equations for the females is block 2. Can this structure be
exploited by separately solving the solutions and sensitivities of each block under an iterative
method? More interesting examples than (2.8) come from in-host disease dynamics, where
the population of the species is modeled along with the population of the infecting agent.
The dynamics of the host population usually occur on a much slower time scale that the
dynamics of the infecting agent. If the blocks are solved separately, time and storage space
may be saved by solving the slow blocks over a coarser time mesh than the fine mesh required
for the rapidly changing block. This chapter will discuss the advantages and disadvantages

of decoupling the system of ODEs and more importantly, that of their sensitivity analysis.

10.1 Block Solutions

Assume that the general form of a continuous model (2.9) is a fully coupled, block-
structured system. Now, introduce a new function r = r(x) that will decouple the system.
For simplicity, assume that the system can be split into just two blocks of equations. This
can be easily extended to multiple blocks, but the extension will not be discussed here. In the
two-block system, r may be thought of as a vector of two functions, where the first function
r1 = r1(x1) depends on the first block, and the second function ry = r3(x2) depends on the
second block. This requires the coupling of a model is involved in only one equation of each

block. This may seem strict, but many models exhibit such structure. The set of decoupled
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ODEs has the block form

X1 = hy (x1(p), r1(x2(P)). P) (10.1)

Xy = ha(x2(p), r2(x1(P)), P)

where the vector of variables of the first block x; € RM1, the vector of variables of the second
block x5 € RM2 and M; + M, = M. The vector of parameters p € R¥, as before.
10.1.1 Piecewise Constant Approximation

In order to explicitly write (10.1), r must be known at all times ¢. This can be done
through some iteration technique, and the method chosen is Gauss-Seidel. The following

algorithm describes the solution technique for a simple piecewise approximation.

Algorithm 1: Piecewise Constant Approximation

1. Approximate ri(x2) by assuming it is a piecewise constant function over subintervals

of the time domain [0, 7.
2. Solve the first block of differential equations

3. Approximate 73(x1) by assuming it is a piecewise constant function over subintervals

of the time domain [0, 7.
4. Solve the second block of differential equations
5. Repeat steps (1) - (4) until convergence

For the first iteration, the initial conditions of x5 are held constant on the entire interval
[0, 7] as the input to calculate 7 (x2). Now x;(t) can be solved on the entire time domain
[0,T]. Once the first block is solved, split up [0, 7] into subintervals [¢;,t;11] and calculate
ro(x1) by assuming x; is a piecewise constant function on the subintervals. This is the

piecewise linear constant approximation of the other block.
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Figure 10.1: Tllustration of Steps 1 through 3 of Algorithm 1

After the first step, x2(t) can be solved on [0,7]. 71(x2) is calculated by the piece-
wise constant approximation of the second block so that x;(¢) can be refined. The process
continues until convergence is achieved.

Note that the accuracy of the method described in Algorithm 1 depends on the choice
of the splitting of the time domain [0, 7]. In Figure 10.1, the rate of change of x; () between
t = t1 and t5 is high in magnitude. The mesh depicted for r5(x;) is too large and is a poor
approximation of x;. If a smaller mesh is chosen, the method will be more accurate.

Consider the following pair of differential equations.

(7 hl(yla ™ (yz))

Yo ha(y2, m2(y1))

y1(1 —y1) — Ty1 + 52

Y2(1 — y2) — Sy2 + T

yi(1 = 1) = Tys + 5

Y2(1 — y2) — By + Try

This is a simple model with a bounded solution. It is also easily expressed in block

form: the first equation, hq, is the first block, and the second equation, hs, is the second
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block. Using Algorithm 1, this model can be solved over the interval ¢t = [0, 7] using a mesh
of equally spaced time intervals of 0.1 and ode tolerance within MATLAB of 10~!°. The fully
coupled solution solved in the regular manner using the same ode solver tolerance will be
referred to as the exact solution. The norm of the residual of the the iterated solution from
exact solution was 5.25 x 1072, Gauss-Seidel iteration converged around step 15, within 10~°
of the previous step. Figure 10.2 depicts the convergence of the iteration. The dotted lines
are the iterated solutions and the solid lines are the exact solutions; and red corresponds to

y1 and green to ys.

Comparison of Methods after 1 Iteration Comparison of Methods after 5 Iterations
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Figure 10.2: Piecewise Linear Interpolation with mesh 0.1

Of course, decreasing the mesh size will provide a more accurate interpolation of r.
With a mesh of 0.01, the residual had a norm of 1.26 x 1072, and with a mesh of 0.001,
the residual norm was 3.92 x 103, While the solution became more accurate, the efficiency

suffered from the extra precision. As the mesh size is decreased, more steps of Gauss-Seidel
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iteration were required to reach convergence. While a mesh of 0.1 converged in 15 steps, a

mesh of 0.01 converged in 21, and a mesh of 0.001 converged in 26. This data are illustrated

in Figure 10.3.

Piecewise Linear Error

1.00E+02 —+— Mesh 0.001
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>
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E 1.00E-01 4
[=]
= \\-ﬁ
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1.00E-03 -

Iteration of Gauss-Seidel

Figure 10.3: Convergence of Gauss-Seidel as Mesh Decreases

The runtime with a mesh of 0.1 was 1 minute, with a mesh of 0.01 was 5 minutes, and
with a mesh of 0.001 was 51 minutes. It appears that as the mesh size decreases, the time

to convergence increases exponentially.

10.1.2 Spline Interpolation

To improve the accuracy (and efficiency) of the method, a spline interpolation of the

other block is used instead of assuming it is a piecewise linear constant. Algorithm 2 describes

this procedure.

Algorithm 2: Spline Approximation

1. Compute a spline function of x2 over [0, 7.

2. Approximate r1(x2) using the spline over subintervals of [0, 7).
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3. Solve the first block of differential equations

4. Compute a spline function of x; over [0, T].

5. Approximate ro(x1) by using the spline over subintervals of [0, 7.
6. Solve the second block of differential equations

7. Repeat steps (1) - (6) until convergence

Using the same example in Section 10.1.1 with Algorithm 2, the solutions with a mesh
0.1, 0.01, and 0.001 are given and compared in Figure 10.4. With a mesh of 0.1, the norm of
the residual was 9.52 x 10™*, converging in 25 steps. While this is more steps to convergence
than the piecewise linear approximation, because the mesh is still small, the runtime was
just 2 minutes. The extra time is worth the accuracy in this instance. Moreover, when the
mesh is 0.01, the norm of the residual was 7.38 x 1078, converging in 36 steps but requiring
only 26 minutes . When the mesh is 0.001, the norm of the residual was 1.85 x 107!,
converging in 43 steps and requiring 10 hours. Most importantly, with this mesh, the ode
tolerance of 10719 is finally achieved. The piecewise linear approximation may never achieve

this accuracy.

10.2 SIR Example

Now consider the following example, a simplified version from [13]. This model is an
SIR model of Meningitis that describes two interacting populations, Group A and Group B.
This example provides a natural block structure among the groups. Group A can contract
the disease from Group B, and vice versa; however, a Group A individual will never become
a Group B individual. Group A individuals may be thought as susceptible only to type A

virus, but the virus can mutate, allowing the infection to be transmitted from a Group B
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Figure 10.4: Convergence of Gauss-Seidel with Spline Method

individual. The differential equations are:

Sa
Iy
Ry
Sk
I

Ry

—BSa(la+ plp) +6(Ia + Ra)
BSala+plp) — (p+0)1a
pla —0R4
—BSp(Ip + pla) + 0(Ip + Rp)
BSp(Ip + pla) — (p+0)1p
ol — 6Rp

(10.2)

where £ is the transmission rate, p is the mutation rate of the pathogen (so that a Group A

individual can be affected by a type B virus), p is the recovery rate, and ¢ is the death rate.

For notational convenience, let x = (S4, 4, R4, Sp, Ip, Rg) and p = (5, i1, 0, p). Notice that

block 1 (x; through x3) depends on block 2 (x4 through x¢) and vice versa, but only through

one state of either block (z4 and x5 respectively). Introduce the function r to “remove” this
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coupling. If ri(x2) = x5 and r5(Xx1) = 3, the same system can be written as two blocks:

T —p121 (22 + par1) + p3(ze + 23)

Lo | = | prizi(z2+por1) — (pa+ ps)z2 (10.3)
T3 P4aZ2 — P33

Xy —p124(x5 + para) + p3(ws + x6)

Ts | = | prza(zs +pare) — (pa + p3)ws (10.4)
T PaT5 — P3Te

Using the initial conditions and parameters described in Table 10.1 and employing
Algorithm 2, the solution on the interval [0, 700] can be obtained. Define the exact solution
as the solution of the fully coupled system with no iteration. The accuracy of the block
solution can be compared using various mesh sizes as before. With the same ode tolerance
of 1071, the norm of the residual generally decreased with mesh size. Define the relative

error norm, e, by

Xezact — Xiterated

e =

(10.5)

Xexact 2

Table 10.1: Parameter Values for Meningitis Model, units of all parameters are days™.

H Parameter H Numerical Value ‘ Interpretation H
B 107° Transmission rate
0 107° Mutation rate of pathogen
) 10~ Death rate
p 1072 Recovery rate

With a mesh of 1.0, e = 2.38 x 107%. For the remainder of this chapter, the methods
will be compared based on the results from this mesh. The relative error results for various

mesh sizes is given in Figure 10.5.
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Figure 10.5: Relative Solution Errors for SIR Model

10.3 Sensitivity and Elasticity Analysis

Just as the block structure can be decoupled for the solutions, the same can be done
for the sensitivities. Suppose the model is of the form of (10.1). The sensitivity equations

have a different form than (3.6). Then by block, the sensitivities become

dS; « M /on; ory Oz, M./ ok 0x,,\  Ohy
o — —Llzm —1.....M
dt m:ZM;H (87“1 O Opi ) i Z O, Opy, " Ipr; ' o

m=1
dSir (ahi Ory axm) a (ahi axm) oh;
Dl L — =) 4 + =M +1,....M
dt mzl 0ry 0, Opy m:§1+1 0x,, Opy Op ! )
(10.6)

These equations can be iterated using the same algorithms as the solutions. SENSAT is
capable of computing the block sensitivities automatically. The sensitivities of the decoupled,
iterated (10.3) and (10.4) when compared to the sensitivities of the fully coupled (10.2) were
such that e = 4.57 x 1072, Figure 10.6 depicts the relative error results.

The elasticity information can be computed using (3.8) as before. The iterated elas-
ticities were such that e = 1.64 x 1073. This is comparable to the relative errors of the

sensitivity analysis. Figure 10.7 shows all of the relative elasticity results.
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Figure 10.7: Relative Elasticity Errors for SIR Model

10.4 Involving Two Time Scales

Now suppose the model of interest has a block structure such that the first block changes
on a fast time scale, but the second block changes on a slow time scale. Examples of this

occur widely in biological applications, particularly in-host disease dynamics, as mentioned
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previously. The population of infected individuals may change on a much slower scale than
the infecting agent itself.

Another interesting example comes from physics. Consider an example from Estep, et.
al, of a system of masses connected together by a wire [5]. Suppose two of the masses are
large and the rest are small. The interaction between the large and small masses is limited
to one equation involving the final large mass and the first small mass, so it is compatible
with the decoupling algorithms. Moreover, since the large masses move much slower than
the small masses, the system changes on two time scales. SENSAI can take advantage of this
feature by solving the fast scale on a finer mesh than the slow scale. While a high degree of
accuracy is needed to precisely solve the noisy fast scale, a coarse mesh can still be used for
the slow scale to save storage space and reduce time to convergence.

A solution (fully coupled) of the wire-mass system described above using 1000 equally
spaced mesh points is shown in Figure 10.8. Notice that the first ten equations (the positions
and velocities of the small masses) change on a fast scale while the last four equations
(positions and velocities of the large masses) change on a slow scale. A fine mesh is required
to solve the first block but is not necessary for the second block. As with any iterative
method, there is error associated with this. When the first block is solved over a mesh with
1000 time steps and the second block is solved over a mesh of 100 steps, the norm of the
error (compared to the fully coupled solution using 1000 steps) is O(1). But, when the entire
system is solved over a mesh with 1000 steps and still solved block-wise, the norm is O(1077).
This is at first startling, but can be explained. The exact solution requires a mesh of more
than 1000 steps to compute, so the solution to the fully coupled system which is called the
“exact solution” is flawed. The error is most apparent in the smaller mesh of 100. Analysis
using a finer mesh was not continued because the time to convergence with a mesh of 1000
steps is 67 hours. Given a proper mesh and enough patience, accuracy for this method may

be achieved; however, the inefficiency of decoupling the system is overwhelming.
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Figure 10.8: Solution to Masses on Wire
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Chapter 11

CONCLUSIONS

11.1 Ry

The main focus of this dissertation was to explore the analytical techniques for ecological
models, specifically Ry and sensitivity analysis. Ry has several advantages when analyzing
models. First, it is a single number which, when the conditions of Theorems 5.6.1 or 6.1
are met, has a relevant and clear interpretation. A researcher needs only to know a single
number to have a good idea of how hard or easy it will be to control the infection. Second,
because the threshold for Ry is one, the researcher will know exactly how much scaling to a
parameter is needed to reduce Ry to a value less than one by examining its elasticities (as in
the Typhoid model in Section 8.2). Finally, the Next Generation construction is automated
within SENSAI, and barring any special cases, can be computed with great ease.

Unfortunately, there are also many disadvantages of Ry. First, the Next Generation
Ry is not mathematically unique, as seen by Section 9.1. While the index is guaranteed to
be a threshold for the model if it is well-defined, it is not guaranteed the index accurately
represents the number of secondary infections from a single infected individual. Second, the
Next Generation construction may not be well-defined for the given model. This occurs in
models with a background infection rate as Section 9.2, but is not limited to these types
of models. Any model where one or more of the assumptions fail from Theorem 5.6.1 for
continuous models or from Theorem 6.1 for discrete models will not have a valid Next
Generation construction. Furthermore, Ry may not be an appropriate measure to predict
infection persistence if a finite amplitude disturbance is introduced to the population rather
than a single infected individual, as seen by Section 9.3. Ry, may be less than one, and

this threshold may be mathematically and epidemiologically correct, but if a large number
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of infected individuals enter the population at once, infection may still persist. Finally, R,
may be slightly greater than one with infection effectively removed from the population as
in Section 8.3. If the value of Ry = 1+ € for sufficiently small ¢, the trajectories will converge
to an endemic equilibrium where the number of infected individuals y is 0 < y < 1.

Neither the list of advantages nor the list of disadvantages for R, are intended to be

exhaustive lists.

11.2 SENSAI

Through SENSAI, a researcher can build up his or her model and specify whether or
not a Next Generation Ry is to be computed. The sensitivity and elasticity analysis will be
computed automatically within SENSAI for any quantity of interest, including Ry. If a Next
Generation Ry is not valid for the model, such as models with a background infection rate,
another quantity of interest should be analyzed. Because SENSAT allows for any quantity of
interest to be implemented, an alternative closed form R, calculated by a different method
than the Next Generation construction may be used. While a Next Generation Ry is the only
method automated in SENSAI, the program allows the user to compute Ry under any other
method outside of SENSAI so that the sensitivity and elasticity analysis can be computed
automatically within SENSAIL. If Ry is too difficult to obtain for the model, the quantity of
interest of the proportion of infected individuals may be used as a sufficient replacement.
This simple quantity will always be valid for an infection model and never has an ambiguous
definition or interpretation. Moreover, the information acquired from the sensitivity and

elasticity analysis is much the same as that of Ry.

11.3 Block Structure

If the system of equations has a natural block structure, SENSAI can be used to solve
the system and sensitivities (and elasticities) using the spline algorithm in Section 10.1.2.

Given a small enough splitting of the time domain, the solution and perhaps the sensitivity

94



analysis can be obtained in the same accuracy as when the system is solved fully coupled.
However, due to the enormity of the run time, this method is not cost effective; therefore,

the code for the block-wise solutions is not available from the website.
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Appendix A

A PRACTICAL GUIDE TO USING SENSAI GUI

1. Open MATLAB.

2. Within MATLAB, change the directory to the place where the sensai.m program exists

(we will call this the SENSAI directory). (e.g. C:/SENSAI/).
3. Open the SENSATI GUI by typing sensai in the MATLAB command window.

4. Using your computer’s file browser, find the folder with the Maple file that contains the
program and input field for the model (e.g. C:/SENSAI/Examples/ ODE_examples/SIR/,
C:/SENSAI/Examples/MAP _examples/SIR/Caswell08/, etc.).

(a) We will call this the WORKING directory.

(b) Copy the path of the WORKING directory into the box in the upper right hand
within the GUI (e.g. C:/SENSAI/Examples/ODE_examples/SIR/).

(c) Make sure the Maple file is located in the WORKING directory. Once the file is

complete, execute and save the Maple file.

5. Within MATLAB, in the GUI, select “Create MATLAB files using Maple” which creates
the files gvec.m, dgvec dxvec.m, dgvec dparam.m, qoi.m and dcp dparam.m within the
SENSALI directory. Note: The active directory within MATLAB must be the same one
that contains the sensai.m program, i.e. the SENSAI directory. Wait until a popup

box appears that says “MATLAB files successfully created” before continuing.

6. Within MATLAB, control of the program is through the files user_inputs.m and user_plotdata.m,

in the WORKING directory with the Maple file containing the program.
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(a) Via user_inputs.m you control parameter values, initial conditions, and the name

of the folder in which you wish to save your work (using “JOB”).

(b) Via user_plotdata.m you control which solutions (z-values) to output and plot (us-

ing “ilist”), and which parameters to have their sensitivities tested (using “klist”).
7. Within MATLAB in the GUI, select “Execute MATLAB file created by Maple”.

8. All of the plots of the solutions, sensitivities, and elasticities specified in the run of the
model, and a file with all of the outputs from the model (output.mat) will be saved in

the WORKING directory in a folder named by the variable string “JOB.”

(a) To get the solutions, sensitivity values, and elasticities into data files that can be

plotted, either work within MATLAB on the data in output.mat, or ...

(b) Use the exported information in the text files that can be imported into other
programs for plotting (e.g. R). The (large number of) files each contain the

solutions, sensitivities, and elasticities for the run specified above.

9. Before carrying out another run using the SENSAT GUI, within MATLAB, return to
the SENSAT directory and enter the commands to clear both plots and active memory
before moving on:

>> close all, clear all

(a) Results from a new run can be saved into another folder in the WORKING di-
rectory by changing the name of “JOB” in user_inputs.m
e (E.g. JOB = “run2”).
e This can also be done by changing this line in the Maple file. (But this is

overkill, since you must go back to step 4.c after this point.)

>> JOB_.NAME:= “run2”; # Sets the folder name for the output.
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(b) Modify values in user_inputs.m and user_plotdata.m in the WORKING directory

to explore other values.

(c) Back to step 5.
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Appendix B

HOW TO DEFINE R, IN SENSAI

SENSALI is capable of automatically defining the basic reproduction ratio, R, as defined
by the Next Generation method, for appropriate epidemiological models. However, SENSAI
is not limited to infection modeling, so specific syntax is required so that SENSAI recognizes
if a model is compatible to the definition of Ry. The following guide will instruct the user on

how to edit the Maple templates so that SENSAT will produce R and its sensitivity analysis.

1. Edit the Maple templates to define your model equations. These should be stored as

the vector g[i], the right-hand side of the equation for the variable x[i].

2. Define which equations from ¢ define the dynamics of infected classes. Store these

indices in the variable NeztGen.

(a) For example, if the model includes three states, S, I, and R, in that order,

NezxtGen := [2];.

(b) If the model has more than one equation describing an infected class, list them in
the order they appear. For example, if the model describes Sy, I1, Ry, Sa, I, Ry in

that order, NextGen := |2, 5];.

(¢) If you do not wish to calculate Ry for the model, define NextGen = 0, or let the

first state of NextGen be 0.

3. If the model has four or more infected classes, you may want to consider computing R,
without its sensitivities. Ry will be a very lengthy expression for such models, and the
derivatives will require a lot of time to compute. If this is the case, define “R0_only”

to be 1. If you wish to calculate the sensitivities anyway, define “R0_only” = 0.
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(a) While running the SENSAT GUI, you may encounter large delays in “Create MATLAB
files using Maple” if RO_only = 0. If your patience has run thin, you must ter-
minate the program through the task manager. The emergency stop in MATLAB
of CRTL+c in the command window will not work, as the computation of Ry is

done externally in a Maple procedure call.

4. If the analytical expression for Ry is already known, it may be faster to use this
expression for the quantity of interest (qoi) instead of re-deriving the expression during

the “Create MATLAB files using Maple” phase.

There are some examples in which the Next Generation construction of Ry is not valid, or
is not compatible with SENSAI. The following are possible problems the user might encounter

when trying to define Rj.

1. Problems with ODE models. Recall for ODEs, the Next Generation definition of

Ry = p(FV™1) where F = 2—2(35*) 1 < 4,5 < m describes new infections and
V= g}; (z*) 1 <1,7 < m describes transfer of existing infections, z* is the disease-
free equilibrium, the infected classes are 1,...,m, and p(-) denotes the spectral radius
operator.

(a) The fecundity matrix F' is not nonnegative. This is part of assumption (A1).

(b) The transition matrix V' is singular. This can occur if an equation is in the model
as a placeholder, but the right-hand side is identically 0. This state must be

removed from the system for Ry to be valid.

(¢) The disease-free subspace is not invariant. That is, infection can enter a disease-
free population through a nonzero component in a state that is identified as
disease-free. This can occur in models with background infection rates, or in

models where the infective classes are not identified properly. This is assumption

(A4).
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(d) The equilibrium is not asymptotically stable in the absence of disease. That is, if
F = 0, there is an eigenvalue of the Jacobian of the full system evaluated at x*

that has a positive real part. This is assumption (A5).

2. Problems with map models. Recall for maps, the Next Generation definition of Ry =
p(F(I —T)™Y), where I is the m x m identity and F and —7T are defined the same as

F and V for ODEs, respectively.

(a) The fecundity matrix F' is not nonnegative.
(b) The transition matrix 7" is not nonnegative.

(c) The transition matrix 7" is singular. This can occur if an equation is in the model
as a placeholder, but the right-hand side is identically 0. This state must be

removed from the system for Ry to be valid.
(d) The transition matrix 7" is not asymptotically stable. That is, p(T") > 1.

(e) The equilibrium is not asymptotically stable in the absence of disease. That is,
p(C) > 1 where C is the Jacobian of the right-hand side of the noninfectious

states.

Notice that assumptions (A2) and (A3) for ODE models are not automatically checked
by SENSAI. These assumptions must be verified by the user, but are usually true. For map
models, the assumption of a unique DFE is not checked by SENSAI, nor is the condition that
F + T is irreducible. These should also be checked by the user to ensure a valid Ry. It is
difficult to check both of these conditions, but again, for most models, F' + T is irreducible
based on the structure of 7" having a nonzero main diagonal and a sub-diagonal and the
structure of F' having a nonzero top row.

There are a number of reasons for any of the problems in lists 1 and 2 to occur. Perhaps
the model does not have a valid Next Generation construction of Ry. If this is the case, some

alternative means to calculate Ry should be sought, if desired. Alternatively, SENSAT may
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not be able to recognize which terms describe new infections and belong in F and which
terms describe transfer of existing infections and belong in V or 7. The following criteria are
used by SENSAI to determine the placement of each term. If the terms of the model will not
be placed in the biologically correct vectors, SENSAI fails to compute the Next Generation

Ry.

1. If the term X in an equation describing an infective class involves a state variable
from a noninfectious class, X € F, unless the occurrence of the noninfectious state
variable is part of a sum of all state variables (that is, the term is scaled by the total

population).

2. If the term X in an equation describing an infective class does not involve any state
variables and is only a parameter, product of parameters, or quotient of parameters,
X € F. If terms like these exist, the disease-free subspace will not be invariant, and

the model will not have a valid Next Generation R,.

3. Every other term X that does not satisfy the above will be placed in V for ODEs, or

T for maps.
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