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ABSTRACT

REGRESSION OF NETWORK DATA: DEALING WITH DEPENDENCE

Network data, which consist of measured relations between pairs of actors, characterize some of

the most pressing problems of our time, from environmental treaty legislation to human migra-

tion flows. A canonical problem in analyzing network data is to estimate the effects of exogenous

covariates on a response that forms a network. Unlike typical regression scenarios, network data

often naturally engender excess statistical dependence – beyond that represented by covariates –

due to relations that share an actor. For analyzing bipartite network data observed over time, we

propose a new model that accounts for excess network dependence directly, as this dependence is

of scientific interest. In an example of international state interactions, we are able to infer the net-

works of influence among the states, such as which states’ military actions are likely to incite other

states’ military actions. In the remainder of the dissertation, we focus on situations where inference

on effects of exogenous covariates on the network is the primary goal of the analysis, and thus, the

excess network dependence is a nuisance effect. In this setting, we leverage an exchangeability

assumption to propose novel parsimonious estimators of regression coefficients for both binary

and continuous network data, and new estimators for coefficient standard errors for continuous

network data. The exchangeability assumption we rely upon is pervasive in network and array

models in the statistics literature, but not previously considered when adjusting for dependence in

a regression of network data.Although the estimators we propose are aligned with many network

models in the literature, our estimators are derived from the assumption of exchangeability rather

than proposing a particular parametric model for representing excess network dependence in the

data.
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Chapter 1

Introduction

1.1 Network data

The most pressing problems of our time, from environmental treaty legislation (Campbell et al.,

2019) to human migration flows (Aleskerov et al., 2017), may be characterized by network data.

Yet, the study of network data is not new. Analysis of network data dates back to sociometry studies

relating social structures and sociological well-being (Moreno, 1934). Up until recently, only

small and simple networks were available for analysis. With the advent of modern data-gathering

techniques, the demand for network analysis tools that can answer more complex questions and

be used on larger and larger networks has exploded. As evidence, numerous journals are now

dedicated to the analysis of network data, such as Network Science and The Journal of Complex

Networks.

Network data consist of measurements of relations between pairs of actors. A classic example

of a network is a binary social network, where each relation is a binary indicator of whether two

actors share a friendship. Figure 1.1 shows an example binary social network from Zachary (1977),

where actors are depicted as points and lines connect pairs of actors if the two actors participated

in activities together outside of a karate club, that is, a line between two actors indicates a relation

between them. We may represent the Zachary karate club network of n actors as an n×n symmetric

binary matrix {yij ∈ {0, 1} : i, j ∈ {1, ..., n}}, which we abbreviate {yij}ij , where the relation yij

is ‘1’ if actors i and j participated in activities together outside of the karate club, and ‘0’ otherwise.

The diagonal of the matrix {yij}ij is undefined, as an actor does not participate in activities outside

the karate club with him/herself.

We note that the karate club network is undirected, meaning that relations are symmetric be-

tween actors, and thus, the matrix {yij}ij is symmetric. We call networks where the relations are

asymmetric directed, such as a network {yij}ij where yij ∈ {0, 1} indicates whether actor i named
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Zachary karate club Davis southern women

Figure 1.1: Examples of binary networks, where a line between points indicate edges that are ‘1’, and edges

that are ‘0’ suppressed. An edge is ‘1’ between individuals in the Zachary karate club (left, from Zachary

(1977)) if both individuals shared activities outside of karate. The Davis southern women network (right,

from Davis et al. (1941)) is an example of a bipartite network. Edges indicate that women attended particular

events (note that edges only exist between women and events).

actor j as a close friend in a survey. We note that actor i may name actor j a close friend when

actor j does not name i, and thus, yij 6= yji in general in a directed network. An example of a

directed network where the relations are continuous valued is a network where relations quantify

the value of economic goods transported from one nation to another in a given year. Naturally, the

value of goods that the US sends to China may not be equal to the value of goods that China sends

to the US in a given year. We analyze both directed and undirected network data, and continuous

valued and binary valued network data in this dissertation, and some of these network data consist

of multiple observations over time. We do not consider networks wherein an actor has a relation

with him/herself; for example, the US does not trade with the US.

A canonical problem in analyzing network data is to estimate the effects of exogenous covari-

ates on a response that forms a network. In the karate club example, for instance, researchers

might have interest in inferring whether pairs of actors with the same gender are more likely to

interact outside the karate club than those with disparate gender. In this example, the covariate
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xij is an indicator of whether actors i and j are the same gender. Unlike typical regression sce-

narios, network data naturally engender excess statistical dependence – beyond that represented

by covariates – since every relation shares an actor with many other relations. For instance, club

member Jason may have a higher likelihood of associating with Andrew than that explained by

Jason’s and Andrew’s shared gender, simply due to Andrew’s gregariousness. Regression models

that are accurate in prediction and estimation of regression coefficients should explicitly recognize

this excess network dependence. This dissertation is focused on developing methods to capture the

excess dependence in regression models of network data.

A generalization of the matrix {yij}ij which we consider in this dissertation is one where the

rows and columns of the matrix refer to different actor sets. An example of a network with two

different actor sets is an academic citation network, where a relation exists between a researcher

and a given paper whenever the researcher was listed as an author on the paper. We call these

networks with two actor types bipartite networks. Figure 1.1 depicts another example of a bipar-

tite network, where squares denote southern women and points denote events, and lines connect

women that attended particular events (Davis et al., 1941). We may mathematically represent the

bipartite network with a binary m× n matrix, {yij ∈ {0, 1} : i ∈ {1, ...,m}, j ∈ {1, ..., n}}, such

that yij is ‘1’ if woman i attended event j, and ‘0’ otherwise. In this Introduction, we summarize

the proposed methods for accounting for excess network dependence – beyond that represented by

covariates – in bipartite network data in Section 1.2.

With the advent of social networking sites, such as Facebook, and other modern sources of big

network data sets, methods are needed for analyzing larger and larger networks. Such networks

consist of hundreds or even thousands of actors. Note that networks of hundreds of nodes contains

tens of thousands of pairwise relation observations. In this dissertation, we present novel parsimo-

nious methods for accounting for excess network dependence in regression models for continuous

and binary valued, unipartite network data, which we introduce in Section 1.3. These methods are

based on an assumption of joint exchangeability, common to many random network models, which

we introduce in more detail in Section 1.3.1.

3



1.2 Influence networks in longitudinal bipartite network data

Longitudinal bipartite relational data characterize the evolution of relations between pairs of

actors of disparate types, and can be represented as a sequence of networks, one for each time point.

A common goal is to understand the temporal dependencies in these data, specifically which actor

relations incite later actor relations. For example, consider a longitudinal bipartite network data

set of countries ratifying environmental treaties (Campbell et al., 2019). A proxy for influence of

country i on country j is the ratification of a given treaty by country j the year after the same treaty

is ratified by country i. Similarly, one environmental treaty may be likely to be ratified in the year

after another treaty is ratified by the same country. Further, these dependencies may not be able

to be fully explained by covariates about the countries or treaties, such that a standard regression

model is insufficient. The year-over-year dependence between countries that ratify the same treaty

and between treaties that are ratified by the same country are the excess network dependencies

which we seek to model explicitly, and upon which we wish to make inference.

There are two primary existing approaches to modeling excess dependence in longitudinal

bipartite network data. The first projects the bipartite data in each time period to a unipartite

network and then uses methods for uniparite networks to analyze the projected networks (Newman,

2001; Barabási et al., 2002; Wu et al., 2014). Unfortunately, information is lost in calculating

the projection and generative models for networks obtained through this process are scarce. The

second approach explicitly models the excess network dependence using two unipartite influence

networks, corresponding to the two actor types. In the example of countries ratifying treaties, this

approach infers a network of influence among the countries and a network of influence among

the treaties. The existing regression model that takes this approach is bilinear in the influence

networks, creating challenges in computation and interpretation (Hoff, 2015).

In Chapter 2, we propose the Bipartite Longitudinal Influence Network (BLIN) model that

permits estimation of continuous valued, directed influence networks and does not suffer from

the shortcomings of the existing model. The proposed model is linear in the influence networks,

permitting inference using off-the-shelf software tools. We prove our estimators of the influence

4



networks are consistent under cases of model misspecification and nearly asymptotically equivalent

to the existing estimators in the existing bilinear model. We demonstrate the performance of the

proposed model and estimators in simulation studies and an analysis of weekly international state

interactions.

1.3 Regression models for network data

A primary task in many data analyses is estimation of generalized linear regression models,

and this fact remains true when the data form a network. The main challenge in estimating gener-

alized linear models when the outcomes form a network is accounting for the network dependence,

beyond that ccounted for by covariates, without undue computational burden.

We focus on continuous valued network data in Chapter 3. We propose and evaluate a new

class of standard error estimators for coefficients in linear regression models where the outcomes

form a network. Existing estimators of parameter standard errors that recognize network depen-

dence rely on estimating extremely complex, heterogeneous structure across actors (Fafchamps

and Gubert, 2007; Aronow et al., 2015). Leveraging an exchangeability assumption on the model

errors, we derive parsimonious standard error estimators for the regression coefficients that pool

information across actors and are substantially more accurate than existing estimators in a variety

of settings. This exchangeability assumption is pervasive in network and array models in the statis-

tics literature, but not previously considered when adjusting for dependence in a regression setting

with relational data. We briefly introduce exchangeability in Section 1.3.1. We show that our

estimator outperforms the current state-of-the-art estimator in mean-square error and demonstrate

improvements in inference through simulation and a data set involving international trade.

After addressing continuous valued network data, we turn to regression models for binary val-

ued network data in Chapter 4. The binary setting is more complicated, as the mean and variance

of the network generative process are no longer separable. Additionally, as binary data can be

viewed as thresholded continuous data, there is inherently less information in binary network data

than in continuous network data. As in the continuous case, the challenge with estimating network
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regression models for binary network data is accounting for network dependence – beyond that ac-

counted for by covariates – due to relations that share the same actor. The literature has developed

a host of latent variable models to account for the inherent dependence of network data (Hoff et al.,

2002; Hoff, 2008), however, estimation of these latent variable models is computationally onerous,

and which model produces the best predictions or estimations may not be clear. We propose the

Probit Exchangeable (PX) model for network data based on a key exchangeability assumption.

The PX model can represent the second moments of any exchangeable network model, yet is spec-

ifies no particular parametric model. We propose an approximate maximum likelihood estimator

for the PX model that allows for rapid estimation. Using simulation studies, we demonstrate the

improvement in estimation of regression coefficients of the proposed model over existing latent

variable models. In an analysis of purchases of politically-aligned books, we demonstrate that the

proposed model significantly reduces runtime relative to latent variable models while maintaining

predictive performance, and demonstrate political polarization in the network of book purchases.

1.3.1 Joint exchangeability of network models

The contributions of Chapters 3 and 4 rely heavily on joint exchangeability, a property that

many network models share. A network model that is jointly exchangeable is one where the node

labelling is uninformative to the distribution of the relational data, or equivalently, the distribution

of matrix {yij}ij is invariant under simultaneous permutations of its rows and columns (Hoover,

1979; Aldous, 1981; Lovász and Szegedy, 2006). For instance, consider a binary undirected net-

work. In the case of joint exchangeability, the probability of observing any “shape” of network

is the same, regardless of the node labelling. In Figure 1.2, we depict two binary undirected net-

works of four actors, each of which forms a line. If a network model is jointly exchangeable, the

probability of observing these networks is the same, even though the node labellings of the two

networks are different.

A key result of our work is that relations in jointly exchangeable network models all have co-

variance matrices of the same form, which is due to the symmetries resulting from the assumption
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Figure 1.2: Examples of two four actor networks of the same shape, a line, but different node labelling.

Under a jointly exchangeable network model, the probability of observing either network is the same.

of joint exchangeability. If the jointly exchangeable network model is undirected, then the co-

variance matrix has at most three unique terms, and if the network model is directed, then the

covariance matrix has at most six unique terms. We use these covariance matrices to account for

the excess dependence in network data, whether the network data are continuous or binary valued,

and directed or undirected.

1.4 Outline

This dissertation is organized as follows. First, we discuss a novel model for longitudinal bi-

partite relational data, the BLIN model, in Chapter 2. Then, we introduce a parsimonious standard

error estimator for regression of continuous network data in Chapter 3. In Chapter 4, we provide an

approximate maximum likelihood estimator of the proposed PX regression model for binary net-

work data. Finally, we summarize and provide other potential directions for research in Chapter 5.
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Chapter 2

Inferring influence networks from longitudinal

bipartite relational data

2.1 Introduction

Longitudinal bipartite relational data are being collected at unprecedented rates to study com-

plex phenomena in both the social and biological sciences. These data characterize the evolution of

relations between pairs of actors, where each actor is one of two distinct types, and relations exist

only between disparate actor types. Studies involving such data have focused on, e.g., films (Watts

and Strogatz, 1998), international relations (Boulet et al., 2016; Campbell et al., 2019), metabolic

interactions (Jeong et al., 2000), recommender systems (Linden et al., 2003), or transportation sys-

tems (Zhang et al., 2006). For example, in international affairs, researchers might study countries’

financial contributions to international organizations over the past few decades. Here, the coun-

tries and international organizations are the actors and the relations of interest are yearly financial

contributions.

In many studies of longitudinal bipartite relational data, the relevant scientific questions sur-

round relations among actors of a single type; the set of which can be represented in a unipartite

network. For example, researchers may be interested in the (unobserved) relationships among

countries that affect the amount of financial contributions to different international organizations.

The financial contribution of China to the UN, for instance, may be influenced by the US’s recent

announcement to cut its budget obligations for the next years. The degree of change in China’s con-

tribution based on the US could be viewed as a measure of US influence on China. Such influences

may exist between international organizations as well: the contribution of the US to the United

Nations (UN) can be related to its financial obligations to the Worl Trade Organization (WTO).

In the examples given, the influences are occurring over time and are allowed to be asymmetric
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such that, for example, China may be influenced by the US to a high degree while the US is not

influenced by China. A goal then in studying longitudinal bipartite data is to infer the relation-

ships among actors of each type. We term these sets of unipartite relations influence networks. For

example, in the US-China illustration, the country influence network is denoted A = {aij}Si,j=1,

where S is the number of countries and aij represents the amount of influence country i has on

country j. Similarly, the organization influence network is denoted B = {bij}Li,j=1, where L is the

number of international organizations and bij represents the influence of organization i on orga-

nization j. Inferring these latent influences are of substantive interest in many studies and, in the

case of the states and their contributions to international organizations, have the potential to inform

international policy-making in effective and previously unknown ways.

The idea of summarizing bipartite data in terms of unipartite influence networks is not new.

Newman (2001) analyzes the relationships among academic authors by estimating the unipartite

author-author network from data on academics and the papers they authored over five years. New-

man (2001) ignores the temporal component of the data and defines the relationship aij between

author i and author j as the the number of papers i and j co-authored during the five-year pe-

riod. The resulting influence network is often referred to as a (one-mode) projection. If the bi-

nary data matrix of authorship is denoted by a rectangular matrix Y = {yik}, where yik is an

indicator of whether academic i authored paper k, then the author influence network can be ex-

pressed as A = YYT . Notice that A is symmetric by construction and represents behavioral

co-occurrence (in this case, co-authorship), rather than influences over time as described earlier.

Investigating temporal patterns in publications, Barabási et al. (2002) estimated yearly influence

networks among academic authors using one-mode projections and analyzed the evolution of sum-

mary statistics of the yearly projections. Extensions of one-mode projections exist for longitudinal

bipartite networks (Wu et al., 2014), weighted bipartite networks (Newman, 2004; Liu et al., 2009),

and for creating directed influence networks (Zhou et al., 2007). These various extensions involve

different weightings of the original bipartite relations (e.g., weight each paper by the number of

co-authors).
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Due to the plethora of tools available for unipartite networks, bipartite data are often cast into

one-mode projections that can be subsequently analyzed using standard network modeling tech-

niques (Zhou et al., 2007). Although various weighting schemes have been investigated for one-

mode projections (Wu et al., 2014), a key disadvantage of this approach is that information in

the original bipartite data is inherently lost in the projection, regardless of the selected weighting

scheme. In addition, since the data naturally arise in a bipartite format, specifying a generative

model for the projection on which to base inference is fundamentally challenging.

There exists some previous work that directly models the observed bipartite network as well.

Skvoretz and Faust (1999) and Wang et al. (2009), for example, propose generative Exponential

Random Graph Models (ERGMs) for bipartite networks, however this work aims to infer the effect

of certain network motifs (such as triangles) on the strength of relations rather than infer the latent

influence networks. Another thread of research seeks to explain network formation of heteroge-

neous information networks, those that consist of disparate node types and links, of which bipartite

networks are a subset (Sun et al., 2011; Sun and Han, 2012; Shi et al., 2017a). A particularly simi-

lar line of work to ours explains network formation as a function of influence networks among node

types, although these models have no temporal component and thus model simultaneous influence

rather than the particular sequential influence we consider (Liu et al., 2010, 2012).

In this chapter, we propose a novel bipartite longitudinal influence network (BLIN) model,

which permits inference on the influence networks for each set of actors. This work builds upon

recent developments on statistical models for longitudinal unipartite relational data (Banks and

Carley, 1996; Snijders, 2005; Krackhardt and Handcock, 2007; Sewell and Chen, 2015; Carnegie

et al., 2015). Specifically, Almquist and Butts (2013, 2014) propose an autoregressive model for

unipartite networks that may be expressed as a generalized linear model. In a similar vein, we

propose an autoregressive, generalized linear model for bipartite networks, wherein the influence

networks are autoregressive parameters. Although the proposed model is conceptually similar

to an existing diffusion model (Desmarais et al., 2015) and a bilinear regression model (Hoff,

10



2015), our model has key advantages over these existing methods with regard to estimability and

interpretability.

The rest of the article is organized as follows. We introduce the BLIN model in Section 2.2.

We discuss approaches to modeling longitudinal bipartite data and then explore various extensions

to our model. We describe maximum likelihood estimation procedures for the BLIN model in

Section 2.3 and give properties of the resulting estimators in Section 2.4, including performance

under misspecification. In Section 2.5, we compare the performance of our model to existing

approaches in simulation studies. In Section 2.6, we demonstrate our methodology using a data set

of material and verbal interactions between international states, where the disparate actor types are

the source countries and the target countries of these actions (e.g. humanitarian aid, boycotting, or

intent to negotiate). Finally, we discuss future work in Section 2.7.

2.2 BLIN model

Let the matrix Yt = {ytij} ∈ RS×L denote the tth observation of the bipartite relations among S

actors of one type (e.g., countries) and L actors of a second type (e.g., international organizations),

where the time index t ∈ {1, 2, . . . , T}. For example, in the illustration introduced above, the (i, j)

entry in Yt, y
t
ij , is the financial contribution by country i to international organization j in year t.

The BLIN model expresses the relations at time t, Yt, as a function of the p previous relations

{Yk : k ∈ {t− 1, t− 2, . . . , t− p}}, and the influence matrices A and B:

Yt = AT

pA∑

k=1

Yt−k +

pB∑

k=1

Yt−kB+ Et, (2.1)

where Et is an S × L matrix of mean zero, independent and identically distributed errors and

p = max(pA, pB). The constants pA and pB represent the number of previous time periods which

influence Yt through the networks A and B, respectively.
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The BLIN model can alternatively be expressed as:

ytij =
S∑

s=1

asi

(
pA∑

k=1

yt−k
sj

)
+

L∑

ℓ=1

bℓj

(
pB∑

k=1

yt−k
iℓ

)
+ etij. (2.2)

From this representation, it is more easily seen that ytij is exclusively a function of those yt−k
kℓ when

either k = i or ℓ = j, or both. Consider pA = pB = 1. In the context of the international af-

fairs example, this means that China’s financial contribution to the UN in 2015 depends on the

contributions of all other countries to the UN in 2014 through entries in A, and on China’s finan-

cial contributions to all other international organizations in 2014 through the entries in B. The

interpretation of the individual A and B parameters follow from the linearity of the BLIN model.

For example, asi is the expected increase in financial contributions of country i to a given interna-

tional institution when country s has raised its contribution by one unit to the same organization

in the previous year. Similarly, the coefficient bℓj is the expected increase in budget obligations

to international organization j by a given country when international organization ℓ has received

one unit of financial contributions from the same country in the previous year. Figure 2.1 depicts

these influences using the international affairs example. A positive value of aUS,CHI in A, corre-

sponding to the influence of the US on China, means that if the US increased its contributions to

the UN in 2014, then China is expected to increase its expenditure to the UN in 2015. Similarly, a

positive value of bUN,WTO in B, corresponding to influence of financial obligations to the UN on

contributions to the WTO, implies that if the US spent more money on the UN in 2014, then it is

expected to increase its WTO expenditure in 2015. Since the influence matrices are time invariant,

the entries in A and B represent the average influence over all time periods under consideration.

Figure 2.1 depicts types of direct influence patterns the BLIN model captures (i.e. those be-

tween ytij and yt−1
kℓ where i = k and/or j = ℓ). Note, however, that secondary influences (such as

that between ytij and yt−s
kℓ where i 6= k, and j 6= ℓ) may propagate through the BLIN model over

multiple time periods, i.e. for s > 1. For example, although US contributions to the UN in 2014

may not affect China’s contribution to the WTO in 2015, it may do so in 2016. This may occur if,
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say, US financial transfers to the UN in 2014 affect China’s UN expenditure in 2015 via a nonzero

value of aUS, CHI . Then, China’s contribution to the UN in 2015 impact its own contribution to the

WTO in 2016 through a nonzero value bUN, WTO. In this way, the BLIN model allows both direct

and secondary influences through different mechanisms.

Dependence t− 1 t

Direct country (aUS,CHI)

Direct organization (bUN,WTO)

Secondary

Figure 2.1: Influence types in longitudinal bipartite relational data in the parlance of the coun-

try/international organization example for two countries and two institutions when lag = 1. Dark red

nodes represent countries (US and China) and light blue nodes represent international organizations (UN

and WTO).

A key flexibility of the BLIN model is that it allows for pA 6= pB; that is, A and B may

represent influences over differing time scales. This is natural. For example, in the international

affairs example, country contributions may be influenced only by other countries’ contributions in

the past year (pA = 1). However, the US may have long-standing pattern of contributions to the

UN and WTO such that the dependence through B is much longer, say pB = 5.

A key property of the BLIN model is that it may be written as a linear model. Letting yt and et

denote the column-wise vectorization of matrices Yt and Et, respectively, the model in (2.2) can

alternatively be expressed
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yt =

(
pA∑

k=1

YT
t−k ⊗ IS

)
vec(AT ) +

(
IL ⊗

pB∑

k=1

Yt−k

)
vec(B) + et, (2.3)

:= X
(t)
B θ + et, (2.4)

where ‘⊗’ is the Kronecker product and vec(B) denotes the column-wise vectorization of matrix

B. In the second line, X
(t)
B is the SL× (S2 + L2) matrix [

∑pA
k=1 Y

T
t−k ⊗ IS, IL ⊗

∑pB
k=1 Yt−k] and

θT = [vec(AT )T , vec(B)T ] is the vector of parameters. Since the BLIN model may be written as

a linear model, numerous off-the-shelf tools exist for estimation (including regularization) of the

BLIN model, making inference on the influence networks straightforward. In what follows, we

focus on the model without covariates, although we may easily incorporate covariate information

by adding the term Wtβ to the right hand side of (2.3), for β ∈ Rp and Wt ∈ RSL×p. Thus,

we assume throughout the chapter that Yt is mean zero for all t ∈ {1, 2, . . . , T} without loss of

generality.

Another useful representation of the BLIN model is as a vector autoregressive (VAR) model,

a generalization of the univariate autoregressive model (Sims, 1980). Letting Θ1 = IL ⊗ AT +

BT ⊗ IS and Θ2 = ✶[pA>pB ]

(
IL ⊗AT

)
+ ✶[pB>pA]

(
BT ⊗ IS

)
, the BLIN model in (2.1) may be

rewritten

yt = Θ1

(
q∑

k=1

yt−k

)
+Θ2

(
p∑

k=q+1

yt−k

)
+ et, (2.5)

where q = min(pA, pB). We note that, when pA = pB = p = 1, the VAR representation of the

BLIN model reduces to yt = Θ1yt−1+ et, the standard lag-1 VAR model. An unstructured coeffi-

cient matrix Θ1 has S2L2 unknown parameters, while the BLIN Θ1 has only S2 + L2 unknowns.

In this light, the BLIN model may be viewed as reducing the number of unknown parameters in

the coefficient matrix Θ1 by imposing interpretable bipartite structure on Θ1.

The BLIN model in (2.1) is not fully identifiable such that for any c ∈ R, the transformation

{A,B} → {A + cIS, B − cIL} results in the exact same model for the data Yt. This non-

identifiability means that we are unable to determine aii and bjj separately, but that the sum aii+bjj
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is identifiable. Specifically, we may estimate the effect of yt−1
ij on ytij , but we cannot decompose

this effect into the contribution of country i and organization j. Nevertheless, we may compare the

marginal country effect among countries and among international organizations, respectively. For

example, although the absolute values of aUS,US and aCHI,CHI are not identifiable, their difference

aUS,US − aCHI,CHI is identifiable. If this difference is positive, we may conclude, for example,

that a US increase in financial contributions given a unit expenditure in the previous year is higher

than China’s increase in contributions.

2.2.1 Comparison to existing approaches

Diffusion models (e.g., Berry and Berry, 1990) are popular for studying the interdependencies

of institutions in political science (Desmarais et al., 2015). In these models, an outside institution

puts transmission pressure on for a particular policy on the focal institution, making the latter

more likely to adopt that policy. The network of these transmissions forms a directed tree, where

there is at most one path from one institution to another. The diffusion model is distinct from

the approach we propose in several ways. In the parlance of the international affairs example, the

former supposes that each country’s financial contribution to a specific international organization is

influenced by at most a single other country. In addition, a binary network is inferred, rather than a

weighted network which can encode both positive and negative influences. Furthermore, methods

for quantifying uncertainty in the estimated network and incorporating covariates are unavailable.

Hoff (2015) proposes a generative model for bipartite longitudinal data termed the bilinear

model, which can be expressed

Yt = AT

p∑

k=1

Yt−kB+ Et. (2.6)

Hoff (2015) presents an estimator that proceeds by alternating estimates of A and B, however

this estimator is guaranteed to converge only to a local optimum. Thus, global optimality of the

existing estimator is not guaranteed. We illustrate this issue in simulation studies (Section 2.5).
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Also, unlike the BLIN model, since the bilinear model is nonlinear, many standard off-the-shelf

tools for regularization and uncertainty quantification are not applicable.

The matrices A and B in the bilinear model, as in the BLIN model, measure actor influences.

However, the bilinear model combines the direct and secondary dependencies in Figure 2.1 into

the same mechanism. This results in a different interpretation of the parameters. To illustrate the

interpretation, we rewrite the bilinear model in (2.6) as

ytij =
S∑

s=1

L∑

ℓ=1

asibℓj

(
p∑

k=1

yt−k
sℓ

)
+ etij. (2.7)

Here we see Yt depends on every entry in Yt−1, as ytij may be affected by both yt−1
sj (direct) and

yt−1
sℓ (secondary) through asi. A consequence of the multiplicative nature of the model is that the

influence parameters must be interpreted in conjunction with one another. For example, aUS, CHI

represents the expected increase in Chinese contributions to international institution k for each bjk

unit of expenditure of the US to organization j in the previous year. Thus, the interpretations of the

country influences in A and the international-organization influences in B are intertwined. While

there may be instances where ytsℓ is influenced by yt−1
kj , we argue that secondary dependencies

are often likely of a smaller magnitude than the direct dependencies. In these cases, it would

be undesirable to use, for example, a single parameter aik to simultaneously capture direct and

secondary influences. The BLIN model assumes secondary dependencies are zero and focuses

estimation on the direct dependencies.

The influence matrices A and B in the bilinear model are identifiable up to a multiplicative

constant. For any c ∈ R, the transformation {A,B} → {cA,B/c} leaves the model for Yt

invariant. This implies that the relative scales of the networks represented by A and B and the

signs of the elements are not estimable. However, the ratio of elements within each influence

network is identifiable, e.g. aUS,CHN/aUS,UK .
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2.2.2 Extensions of the BLIN model

In this section, we discuss various extensions of the BLIN model. First, in the definition of

the BLIN model in (2.1), the first observation of the bipartite relations Yt is a function of the

p past observations {Yt−k}pk=1. For simplicity, each past observations affects the current obser-

vation equally. Obviously, more complex dependence functions may be considered, such as an

exponentially decaying influence of the past time periods on the current time period. In general,

∑pA
k=1 Yt−k and

∑pB
k=1 Yt−k in (2.1) may be replaced by any S × L matrix function of the past

observations, f(Yt−), where Yt− := {Yt−k}pk=1 and again p = max(pA, pB). The selection and

estimation of such functions is a current area of research: see Krackhardt and Handcock (2007);

Krivitsky (2009); Hanneke et al. (2010); Almquist and Butts (2014) for a discussion of general

unipartite temporal network models and autoregressive models for unipartite temporal networks.

The linear nature of the BLIN model simplifies its extension to other types of outcomes, e.g.

binary or count observations. Let ytij be a general measure of the relation between actors i and j at

time t. Then, a general BLIN model may be expressed

g(E[Yt|Yt−]) = AT

pA∑

k=1

Yt−k +

pB∑

k=1

Yt−kB, (2.8)

where g(.) is an appropriate link function based on the form of Yt (McCullagh and Nelder, 1989).

Off-the-shelf tools are again available for estimation of the model in (2.8) if g is a standard link

function. When g is the canonical link function for logistic regression, for example, the BLIN

model in (2.8) may be viewed as a conditional logistic discrete choice model (McFadden, 1973);

models of this type have recently been employed in network representations (Overgoor et al.,

2018).

2.3 Estimation of the BLIN model

In the following, we discuss several estimation procedures for the BLIN model. First, we

propose an estimator that results from minimizing a least squares criterion. We then consider more
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parsimonious estimators using sparsity-inducing penalties and reduced-rank approaches. For ease

of notation, we define the regressor matrices in (2.1) as Xt :=
∑pA

k=1 Yt−k and Zt :=
∑pB

k=1 Yt−k,

such that the BLIN model can be expressed

Yt = ATXt + ZtB+ Et. (2.9)

In the theory that follows in this section and the next, we treat Xt and Zt generally as, in principle,

they may be any sequence of matrices of appropriate size.

2.3.1 Least squares estimator

Based on the vector representation of the BLIN model in (2.3), we propose minimizing the

following least squares criterion to construct an estimator for the A and B matrices:

θ̂ = argmin
θ

(y − XBθ)
T (y − XBθ), (2.10)

= argmin
{A,B}

∑

t

||Yt −ATXt − ZtB||2F (2.11)

where yT := [yT
1 ,y

T
2 , . . . ,y

T
T ] such that y ∈ RSLT and XB ∈ RSLT×(S2+L2) is the column-wise

stacking of the design matrices {X(t)
B }Tt=1 in the vector representation of the BLIN model in (2.4).

The explicit solution to (2.10) is




vec
(
ÂT
)

vec
(
B̂
)


 =




(∑T
t=1XtX

T
t

)
⊗ IS

∑T
t=1Xt ⊗ Zt

∑T
t=1X

T
t ⊗ ZT

t IL ⊗
(∑T

t=1 Z
T
t Zt

)




− 


vec
(∑T

t=1YtX
T
t

)

vec
(∑T

t=1 Z
T
t Yt

)


 , (2.12)

where H− denotes the generalized inverse of square matrix H.

Computing the solution in (2.12) requires inversion of a matrix of dimension S2 + L2. Using

an iterative algorithm to solve (2.10), this computation can be replaced by repeated inversions of

square matrices of dimensions S and L. Specifically, Algorithm 1 details a block coordinate de-

scent procedure, which alternates between solving for A and B. Particularly, the iteration scheme

reduces memory demand and reduces the complexity of computation from O((S2+L2)3) in (2.12)
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to O(T · max(S, L)3). In the data analysis in Section 2.6 (with S = L = 25 and T = 543), we

find the iteration scheme advantageous over building the design matrix XB. The estimator in Al-

gorithm 1 converges to a unique minimum when
(∑

t Z
T
t Zt

)
and

(∑
t XtX

T
t

)
are full rank.

Algorithm 1 Block coordinate descent estimation of BLIN model

0. Set threshold for convergence η. Set number of iterations ν = 1. Initialize Â(0) = IS ,

B̂(0) = IL and Q0 =
∑

t ||Yt||2F .

1. Compute B̂(ν) =
(∑

t Z
T
t Zt

)−1
(∑

t Z
T
t Ỹ

(A)
t

)
, where Ỹ

(A)
t := Yt − (Â(ν−1))TXt for all t.

2. Compute (Â(ν))T =
(∑

t(Ỹ
(B)
t )TXt

) (∑
t XtX

T
t

)−1
, where Ỹ

(B)
t := Yt − ZtB̂

(ν) for all

t.

3. Compute the least squares criterion Qν =
∑

t ||Yt−(Â(ν))TXt−ZtB̂
(ν)||2F . If |Qν−Qν−1| >

η, increment ν and return to 1.

2.3.2 Sparse coefficients

Although influence may be multifactorial, it is easy to imagine scenarios where many entries

in A and B are small or zero. In the international affairs example, democracies may only influence

other democracies, or organizations dealing with issues at a global level may only be influenced by

other global institutions. To leverage this fact in parameter estimation, we propose augmenting the

least-squares criterion of the of the BLIN model in (2.10) with a sparsity-inducing penalty. Here,

we consider the Lasso penalty (Tibshirani, 1996), which uses an L1 norm on θ to simultaneously

perform variable selection and regularization. We term this model the sparse BLIN model as

elements of θ̂ are forced to the zero. The estimation objective function is

θ̂ = argmin
θ

(y − XBθ)
T (y − XBθ) + λ||θ||1, (2.13)
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where λ is a tuning parameter, and larger values of λ correspond to more regularization. Since the

BLIN model is linear, the vector of parameters θ may be regularized with any of a host of existing

penalty terms (Hoerl and Kennard, 1970; Friedman et al., 2001).

We note that, as presented in (2.13), the sparse BLIN estimator in loses some of the scalability

of the full BLIN estimator presented in Algorithm 1. However, it may be possible to implement an

estimator of the sparse BLIN model in the spirit of Algorithm 1, that is, with alternating updates of

A and B. As we find no issue estimating (2.13) in the data analysis in Section 2.6 with S = L = 25

and T = 543, we leave this implementation for future work.

2.3.3 Reduced-rank coefficients

Thus far we discussed sparsity-inducing penalties for the vector of regression model coeffi-

cients θ. However, several other penalties on the singular value decomposition (SVD) of coef-

ficient matrices A and B have been proposed. These penalties result in coefficient estimates of

A and B with reduced-rank, or approximately reduced-rank. Yuan et al. (2007) propose a nu-

clear norm penalty, which is an L1 penalty of the singular values of A. Similarly, Bunea et al.

(2011) recommend a rank selection criteria penalty that is proportional to the rank of A, i.e. a L0

penalty on the singular values A. This second approach provides simultaneous shrinkage on A

and consistent estimation of its (reduced) rank.

Here we consider estimation of reduced-rank A and B, i.e., rank(A) = k < S and rank(B) =

m < L. This assumption may be appropriate when there is lower-dimensional structure inherent in

A and B: for example, the influences among countries may be grouped by region. This approach

is employed in reduced-rank regression, first developed by Anderson (1951), and has connections

to principal component analysis, as shown in Izenman (1975). For any ranks k < S and m < L

of A and B, respectively, we may define a reduced-rank BLIN model by writing AT = UVT for

U,V ∈ RS×k and B = RST for R,S ∈ RL×m. These decompositions are not identifiable up

to a full-rank transformation of the decompositions, e.g. {U,V} and {UG,G−1V} result in the
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same influence matrix A for any invertible matrix G. However, the estimands A and B remain

identifiable up to an additive constant along the diagonal, as discussed in Section 2.2.

We estimate a reduced-rank BLIN model by minimizing the least-squares criteria in (2.11) with

A replaced by UVT , B replaced by RST , and minimizing over {U,V,R,S}. This optimization

problem is easily solved using a block coordinate descent algorithm similar to Algorithm 1 for the

full BLIN model and with similar computational complexity (see Appendix A.1 for details). In

what follows, we refer to the BLIN model with no constraints on the parameters A and B as the

full BLIN model, in order to distinguish it from the sparse and reduced-rank versions.

2.4 Estimator properties

This section examines properties of the least squares estimators of the full and reduced-rank

BLIN models (all proofs are provided in Appendix A.2). We show that the least squares estimators

are unique for a relatively small number of observations T and give some sufficient conditions

for their asymptotic normality and efficiency. We then examine the properties of the least squares

estimators under misspecification, providing sufficient conditions for their consistency. As in the

previous section, we use the representation of the BLIN model in (2.9).

2.4.1 Uniqueness and efficiency of least squares estimators

When Xt and Zt in (2.9) represent past observations of Yt, the BLIN model is a VAR model

as discussed following (2.5). For the estimators in Section 2.2.2 to be consistent, stationarity

of the time series is required (Brockwell et al., 1991). When p = 1, a sufficient condition for

stationarity is that the eigenvalues of Θ1 in (2.5) all have modulus less than one. To define a

sufficient condition for stationarity in the general case of p > 1 and pA 6= pB, we rewrite the VAR

version of the BLIN model in (2.5) in its companion form (Zivot and Wang, 2006) by augmenting

the vector of observations at t with the p previous observations, ξTt = [yT
t ,y

T
t−1, . . . ,y

T
y−p], and

augmenting the error vector at time t with an appropriate number of zeros, vT
t = [eTt ,0

T , . . . ,0T ].

Then, the BLIN model can be expressed
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ξt = Fξt−1 + vt, F :=



1T
q ⊗Θ1 ; 1T

p−q ⊗Θ2

ISL(p−1) ; 0


 , (2.14)

where q = min(pA, pB) and 1n is the vector of n ones. Then, a sufficient condition for stationarity

of the BLIN model is that moduli of the eigenvalues of the companion matrix F are all less than

one (Zivot and Wang, 2006).

The optimization problem described in (2.10) is convex, and under stationarity, by the Gauss-

Markov theorem, it has a unique solution whenever XB is full rank (see, e.g., Graybill, 1976). Due

to the non-identifiability of the diagonal entries of A and B, XB is never full rank. However, the

projection of y onto the column space of XB, i.e., ŷ = XBθ̂, is always unique. Thus, when the

column space of XB spans the space of possible A and B matrices up to their non-identifiability,

the BLIN estimator in (2.12) is unique (up to the non-identifiability properties). This is true when

the rank of XB is maximized, that is one less than the number of columns: rank(XB) = S2+L2−1.

The ‘−1’ results from the fact that if a single diagonal entry in {aii}Si=1 or {bjj}Lj=1 is known, then

the rest of the diagonal entries are identifiable. We now provide a proposition that states conditions

under which XB is maximal rank; these conditions are satisfied with probability one when, e.g.,

{Xt}Tt=1 and {Zt}Tt=1 are distributed array normal.

Proposition 1. Without loss of generality, take S ≤ L. Assume that the TS × L matrices formed

by the column-wise concatenation [X1;X2; . . . ;Xt] and [Z1;Z2; . . . ;Zt] are full rank. Then, the

design matrix has rank(XB) = min(TSL, S2 + L2 − 1).

A consequence of Prop. 1 is that the full BLIN model has a unique solution when TSL ≥

S2 + L2 − 1. A key implication of this is that a unique solution exists for relatively small T . For

instance, if S = L, then the BLIN model has a unique solution (modulo the non-identifiability)

when T = 2. Figure 2.2 plots values of S, L, and T for which the full BLIN model has a unique

solution. As T grows, the space of values for which the BLIN model has a unique solution rapidly

spans all values of S and L, except when their values are extremely disparate.
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Figure 2.2: Dimensions of square matrices A and B, S and L respectively, when the BLIN model has a

unique solution. Shaded areas denote unique solutions.

Under the BLIN model in (2.1) when Xt is independent Et and the true coefficients have com-

panion matrix F in (2.14) with eigenvalues in the unit circle, the Gauss-Markov theorem (Graybill,

1976) states that the BLIN estimator uT θ̂, where θ̂ is any solution to (2.10) and uTθ defines any

identifiable linear combination of θ, is the best linear unbiased estimator (BLUE) of uTθ. Addi-

tionally, these estimates are asymptotically normal at rate
√
T . Finally, we note that the estimator

in (2.10) is the maximum likelihood estimator when y is normally distributed with homogeneous

variance. Thus, under regularity conditions (Lehmann and Casella, 2006), the limiting normal

random variable for uT θ̂, has minimum asymptotic variance.

Recall that the least squares estimates of the reduced-rank BLIN model can be obtained using

an iterative block-coordinate descent algorithm (see Appendix A.1 for details). When every matrix

inverse in the update equations is unique, the estimates Â and B̂ from this algorithm converge to a

local minimum, which is unique up to non-identifiabilities in A and B provided that rank(XB) =

S2 + L2 − 1. The reduced-rank estimators are the maximum likelihood estimators for A and

B with ranks k and m, respectively, under the assumptions of normally distributed independent

errors Et with homogeneous variance. Therefore, under these conditions, Â and B̂ resulting from

the iterative block-coordinate descent algorithm are consistent and asymptotically normal with

minimum asymptotic variance.
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2.4.2 Least squares estimator properties under misspecification

Thus far, we have discussed the attractive properties of the least squares estimators of the BLIN

model, Â and B̂, under the assumption that the model is correctly specified. It is useful to deter-

mine the limiting values of the estimators when the model is misspecified. The limiting values of

Â and B̂, which we denote Ã and B̃, respectively, are referred to as pseudo-true parameters in the

model misspecification literature, first investigated by Huber (1967). The pseudo-true parameters,

by definition, are

{Ã, B̃} = argmin
{A,B}

E

[
T∑

t=1

||µ(Xt,Zt)−ATXt − ZtB||2F

]
, (2.15)

where Yt has expectation E[Yt|Xt,Zt] = µ(Xt,Zt), some general function of Xt and Zt, and

the expectation in (2.15) is over Xt and Zt. Note that this expression holds regardless of the

distribution of Yt, Xt, and Zt and the form of µ(Xt,Zt). We note that the limiting values Ã and

B̃ minimize the Kullback-Leibler divergence from the true distribution of Yt to the distribution of

Yt under the BLIN model with Gaussian errors.

In this section, we assume that the variance-covariance matrices of xt := vec(Xt) and zt :=

vec(Zt) are Kronecker-structured, that is E[xtx
T
t ] = ΩX⊗ΨX and E[ztz

T
t ] = ΩZ⊗ΨZ for Xt and

Zt mean zero. This is the case if, for example, Xt and Zt are distributed matrix normal (Gupta and

Nagar, 2000). This assumption is consistent with the theoretical treatment of the bilinear model in

Hoff (2015). We also assume that the errors are additive. Below, we formalize the conditions for

the theory to follow.

Conditions 1.

1. Each {Xt}Tt=1 is identically distributed with mean zero and E[xtx
T
t ] = ΩX ⊗ΨX , and each

{Zt}Tt=1 is identically distributed with mean zero and E[ztz
T
t ] = ΩZ ⊗ ΨZ , for positive-

definite matrices ΩX ,ΩZ ∈ RL×L and ΨX ,ΨZ ∈ RS×S with finite entries.
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2. For all t ∈ {1, 2, . . . , T}, Yt = µ(Xt,Zt)+Et, where µ(Xt,Zt) is a general function of Xt

and Zt, and every entry in Et is independent and identically distributed with homogeneous,

finite variance.

3. The sequence of {Yt}Tt=1 is weakly stationary.

In the remainder of this section, we examine some properties of the pseudo-true parameters

(all proofs are provided in Appendix A.2). The (i, j) entry in Ã, denoted ãij , estimates the linear

relationship between row i of Xt and row j of Yt across all time. Similarly, the (i, j) entry in B̃,

denoted b̃ij , estimates the linear relationship between column i of Zt and column j of Yt across all

time. The first proposition states that when there is no linear relationship, the appropriate pseudo-

true parameter is zero. We denote row i of Xt as xi·t and column j of Xt as x·jt, and do the same

for Yt and Zt.

Proposition 2. Under Conditions 1, if ΩX is diagonal and E[yT
j·txi·t] = 0 for all t, then ãij = 0.

Alternatively, if ΨZ is diagonal and E[zT·ity·jt] = 0 for all t, then b̃ij = 0.

In the setting of the international policy example, Proposition 2 states that if country i’s expen-

diture is uncorrelated with country j’s contribution to the same organization in the following year,

then the least squares estimator of aij in the BLIN model will converge to ãij = 0. The following

proposition provides alternative conditions under which the pseudo-true parameters are equal to

zero. It allows for more general covariance structure at the cost of assuming that the conditional

mean of yt is linear in xt.

Proposition 3. Assume that there exists a linear relationship E
[
yt|xt, zt

]
= ΘXxt+ΘZzt for all

t and Conditions 1 hold. If all entries in ΘX relating row i in Xt to row j of Yt are zero and i 6= j,

then ãij = 0. If all entries in ΘZ relating column i in Zt to column j of Yt are zero and i 6= j, then

b̃ij = 0.
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2.4.3 Comparison of BLIN and bilinear least squares estimators

We now compare least squares estimates of the BLIN model to those of the bilinear model.

As the bilinear model accommodates only a single lag for A and B, in all that follows we fix

pA = pB = p so that Zt = Xt, ΩX = ΩZ = Ω, and ΨX = ΨZ = Ψ. Both the BLIN and

bilinear models aim to quantify the influences of the rows (columns) of Xt on the rows (columns)

of Yt, but with different emphasis on the type of influence quantified (recall the discussion in the

Introduction and Section 2.2.1). We provide a theorem and proposition stating that, when data are

generated from the bilinear model, the least squares BLIN estimators of the off-diagonal entries in

A and B converge to the corresponding A and B values used in the bilinear generative model, up

to numerical constants. The analogous result holds when switching the roles of the bilinear and

BLIN models. See Appendix A.2 for proofs.

Theorem 4. Under Conditions 1,

1. If {Yt}Tt=1 are generated from the bilinear model in (2.6), then for all i 6= j and k 6= ℓ

ãij =
tr(ΩB)

tr(Ω)
aij, and b̃kℓ =

tr(ΨA)

tr(Ψ)
bkℓ.

2. If {Yt}Tt=1 are generated from the BLIN model in (2.1), then for all i 6= j and k 6= ℓ

āij =
tr(ΩB̄)

tr(ΩB̄B̄T )
aij and b̄kℓ =

tr(ΨĀ)

tr(ΨĀĀT )
bkℓ,

where Ā = {āij} and B̄ = {b̄kℓ} are the pseudo-true parameters of least-squares estimation

of the bilinear model.

We now address the diagonals of the A and B matrices. We provide conditions under which the

diagonals (up to their non-identifiabilities) are asymptotically equivalent. To be clear, we compare

the estimated influence of xt
ij on ytij from the two models. Under the BLIN model, this influence

is aii + bjj , whereas under the bilinear model the influence is aiibjj .
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Proposition 5. Suppose the true A and B matrices are constant along the diagonal with nonzero

values α and β, respectively, and α + β 6= 0. Then, under Conditions 1,

1. If {Yt}Tt=1 are generated from the bilinear model in (2.6), then the pseudo-true parameter

ãii + b̃jj of least-squares estimation of the BLIN model is equal to the true diagonal specifi-

cation αβ, and

2. If {Yt}Tt=1 are generated from the BLIN model in (2.1), then the pseudo-true parameter

āiib̄jj of least-squares estimation of the bilinear model does not equal the true diagonal

specification α + β in general.

The conditions for equivalence of the diagonals are more restrictive than those for the equiv-

alence of the off-diagonal elements of A and B. Furthermore, we see the BLIN model diagonals

are consistent in misspecification situations when the bilinear diagonals are not consistent. In Ap-

pendix A.3.3, we evaluate the convergence of the bilinear and full BLIN estimators in support of

Theorem 4 and Proposition 5.

Although much of this section describes the similarities between the BLIN and bilinear mod-

els, we emphasize that these similarities lie in estimation of the coefficient matrices A and B. The

estimated mean function of the BLIN and bilinear models are very different (even asymptotically),

which has implications for model fit and prediction. To illustrate the difference in mean func-

tions between the BLIN and bilinear models, we show that equivalence of A and B between the

BLIN and bilinear models implies equivalence in the estimated mean Ŷt only when A and B are

diagonal.

Proposition 6. Let the estimators from the BLIN and bilinear models have diagonals that are equal

up to a constant, as in Theorem 4. Additionally, let the estimators of the diagonals be constant as

in Proposition 5, part 1. Then, under the conditions of Proposition 5 with Ω and Ψ diagonal,

equivalence of Ŷt for both models implies that the BLIN and bilinear estimators, {Ã, B̃} and

{Ā, B̄}, respectively, are all diagonal.
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2.5 Simulation study

As discussed in the previous section, although the BLIN and bilinear estimators of A and B

are asymptotically equivalent under certain conditions, their mean functions are only equivalent

under strict conditions (see Proposition 6). Thus, the ability of these models to represent the

variation in a bipartite relational data set will heavily depend on whether the true mean is of BLIN

or bilinear form. To compare the ability of each model to represent mean structure under model

misspecification, we conducted a simulation study.

We generated from a lag-1 vector-autoregressive model

yt = Θyt−1 + et, t ∈ {1, 2, . . . , T}, (2.16)

where yt = vec(Yt) is the columnwise vectorization of the 10 × 10 matrix of bipartite relations

Yt, et consists of i.i.d. standard normal entries, and the number of time periods T ∈ {10, 20, 50}.

Recall that both the BLIN and bilinear models may be cast as VAR models of the form of (2.16),

where Θ = AT ⊗IL+IS⊗BT for the BLIN model and Θ = BT ⊗AT for the bilinear model. We

created weighted, directed A and B matrices and used these to generate data from both models.

The process for specifying A and B was motivated by a desire to construct matrices with

network structure that we might expect in an influence network. Initially, A and B were randomly

generated as matrices of rank 1, which may be viewed as latent factor models of rank 1 (Hoff,

2008; Li et al., 2011). The diagonal entries and smallest q = 0.9 fraction of off-diagonal entries

were set to zero, such that the matrices were approximately low rank and sparse. Finally, we scaled

the Θ matrix of each generating model to control the signal-to-noise ratio, such that the true model

had an R2 of approximately 0.75 for T approaching infinity. For further details on the simulation

study, including investigation of q = 0.5 and q = 0.0, please see Appendix A.3.

We generated 100 data sets from both the BLIN and bilinear model for T = 50, and evaluated

the out-of-sample predictions from the models in a 10-fold cross validation study. To compare per-

formance of the estimators on data sets containing varying amounts of time periods, we evaluated
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performance on the complete data sets with T = 50, as well as the performance when the data

were trimmed to include only the last 10 time periods and only the last 20 time periods. In each

of these three scenarios, i.e. T ∈ {10, 20, 50}, we performed a 10-fold cross validation. The time

periods were randomly partitioned into 10 sets (the partitions were the same for all data sets of

a given size T for the sake of equal comparison). Models were fit to the data in nine of the ten

sets, and then predictions for the values in the left-out time period set were obtained. This fitting

procedure was repeated 10 times: once for each of the partitions. Models were evaluated based

on the R2 value between the ten sets of predicted values and the true values, for each data set and

each T . R2 is a natural measure of model fit as the data are normally distributed and hence high

R2 values corresponds to large likelihood values. For each of the two generative models (BLIN

and bilinear) and each of the three data set sizes (T ∈ {10, 20, 50}), we compare the performance

of four models: the bilinear model and the full, reduced rank (with rank set to 1), and sparse BLIN

models.

We plot the resulting R2 values in Figure 2.3 for sparsity of the generating coefficients q = 0.9.

A dotted horizontal line is drawn at R2 = 0, which denotes the expected performance of fitting no

model at all, that is, predicting Ŷt = 0 for all t. An additional dotted horizontal line is drawn at

R2 = 0.75, the expected large-sample R2 value when the true model is known. When generating

from the BLIN model (left panel of Figure 2.3), the estimated full and sparse BLIN models perform

well for all values of T ∈ {10, 20, 50}. This is as expected, since the true matrices A and B are

sparse. The reduced rank BLIN model is not able to represent this sparse structure, and thus its out-

of-sample performance falls short of the full and sparse BLIN models. When generating from the

BLIN model, the bilinear model results in extremely poor predictions when T = 10 and marginal

performance when T = 20, yet it is on par with the BLIN models for T = 50.

When generating from the bilinear model (right panel of Figure 2.3), as expected, the bilinear

model performs best for the largest number of replications T = 50. Surprisingly, only for this

value does the bilinear model consistently outperform predicting simply Ŷt = 0, even though

the data are generated from the bilinear model. Overall, the BLIN models perform poorly when
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Figure 2.3: Out-of-sample R2 values for each estimation procedure applied to 100 data realizations gen-

erated from the BLIN model (left panel) and generated from the bilinear model (right panel). The centers

of the boxplots represent the median R2 value, the boxes represent the middle 80% of R2 values, and the

whiskers correspond to the maximum and minimum R2 values across 100 simulated data sets. Plots are

truncated such that R2 values less than −1 are not shown.

generating from the bilinear model. However, we note that the sparse BLIN model guards against

poor performance (the typical R2 is always about 0), whereas the full and reduced rank BLIN

models do not.

We investigated the source of errors when the data were generated from the bilinear model by

examining the likelihood surface of the bilinear model near the estimated and true values of the

influence matrices (Appendix A.3). These investigations showed that, when T ∈ {10, 20}, the

likelihood surface of the BLIN model is multimodal and that the highest mode may be “far” from

the mode that is nearest the true parameter values. This means that estimating the model on one

portion of data may not generalize well to other portions of the data, which is exactly what we

observe in the negative R2 values of the bilinear estimator when the data are generated from the

bilinear model for T ∈ {10, 20} (Figure 2.3). A similar analysis for the BLIN model confirmed

the unimodality implied by Propostion 1. The results of the simulation study suggest that the

bilinear model may be difficult to estimate unless a large number of replications T are observed.

In addition, although the coefficients estimated by the BLIN and bilinear models may be similar
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for large T (as suggested by theory and confirmed by simulation in Appendix A.3), neither model

may be a good predictive substitute for the other in small samples.

2.6 Temporal state interaction data analysis

Power, defined as the ability of an actor to influence another to do something they may not

otherwise do, is perhaps the most essential concept in the study of politics broadly, and interstate

relations specifically (Morgenthau, 1978; Dahl, 1957; Waltz, 1979; Lukes, 2004). Thus, both net-

work researchers and political scientists are frequently interested in inferring patterns of influence

in interactions between states (Minhas et al., 2017). Examining country behaviors, we may use the

proposed approach to directly infer the most powerful and influential actors in modern international

relations and also gain insights that may yield valuable predictions of international policy changes,

such as ratification of environmental treaties (Campbell et al., 2019). Inferring these influences

resolves a significant shortcoming in the international relations literature, which has been forced

to measure power in terms of the relative military or economic strength because of the empirical

difficulties associated with measuring power as influence (Singer et al., 1972; Hart, 1976; Johnson,

2017).

To infer country influences, we analyzed country interactions at weekly intervals from 2004 to

mid-2014, giving T = 543 weeks of data. The relations were obtained from the Integrated Cri-

sis Early Warnings System (ICEWS) (Boschee et al., 2015), previously analyzed in Hoff (2015),

which automatically identifies and encodes interaction intensities (between -10 and 10) from news

stories. Each relation is one of four interaction types from a source state to a target state: material

negative actions (mn), material positive actions (mp), verbal negative actions (vn), and verbal posi-

tive actions (vp). We analyzed only the 25 most active states. An example of each interaction type

is boycotting for leadership change (mn), providing humanitarian aid (mp), denying accusations

by a target country (i.e. charges of genocide or other human rights violations) (vn), and expressing

intent to negotiate (vp).
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We denote the intensity of relation in week t as ytijk, where i is the source state, j is the target

state, k is the relation type, and t is the week of the observation. Each time series {ytijk}Tt=1 is

centered and standardized. Here we analyze the change in relations using the differences dtijk :=

ytijk − yt−1
ijk . The BLIN model defined in Section 2.2 is for longitudinal bipartite data, however

the ICEWS data set contains tripartite data, such that observations are indexed by (source, target,

type) triples. For this reason, here we introduce an extension of the BLIN model for tripartite

data, which we abbreviate the TLIN (tripartite longitudinal influence network) model, and point

interested readers to Appendix A.4 for details on an extension of the BLIN model specification

for arbitrary multipartite data. In the TLIN model, the change in relation intensity in each week t,

dtijk, depends on the previous actions of states that influence source state i through source influence

matrix A, the previous actions of states that influence target state j through target influence matrix

B, and interaction types that influence interaction type k through the interaction type influence

matrix C. For the ICEWS data the TLIN model can be expressed

dtijk =
25∑

s=1

asi

(
pA∑

r=1

dt−r
sjk

)
+

25∑

ℓ=1

bℓj

(
pB∑

r=1

dt−r
iℓk

)
+

4∑

u=1

cuk

(
pC∑

r=1

dt−r
iju

)
+ etijk, (2.17)

where each etijk is an independent, mean zero random error. The TLIN model in (2.17) states that,

if there is a positive source influence from the Russia to France in A, then an observed increase

in, say, boycott intensity from Russia to China implies that we should expect France to increase

its boycotting of China in the following weeks. For B, the model states that if there exists a

negative target influence from Lebanon to Pakistan, then an increase in US humanitarian aid sent

to Lebanon would indicate a decrease in aid sent from US to Pakistan in the following weeks.

Finally, a positive influence of vn on mn in C suggests that verbal negative interactions precede

material negative interactions; that is, if the US threatens to increase boycotts on North Korea,

then we might expect the US to increase tariffs on North Korea in the following weeks. Finally, we

contend that imposing a boycott is fundamentally different than having a boycott imposed upon
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one’s state, and thus, although the country sets of sources and targets are the same, we treat these

nodes as separate types and infer separate influence networks among source and target countries.

To choose the lag values {pA, pB, pC}, corresponding to influences among source countries,

target countries, and interaction types, respectively, we fit a sparse TLIN model to the ICEWS data

for a range of lags using an ℓ1 penalty on the entries in the influence networks. We then chose

the lags that gave the best balance of model fit and model parsimony based on a comparison of

likelihood values of the estimated models, penalized by twice the number of nonzero estimated

parameters, in the vein of Akaike’s Information Criteria (Akaike, 1998). This procedure resulted

in lag values {pA = 5, pB = 3, pC = 1}. We note that the choice to difference the responses is a

departure from the analysis in Hoff (2015). For more details of the data analysis, see Appendix A.5.

The estimated source country (A), target country (B), and interaction type (C) influence net-

works are depicted in Figure 2.4, where we focus on the entries that constitute the largest 5% of

magnitudes across all networks (see Figure A.6 in Appendix A.5). Across all networks, there are

generally larger and more positive entries than negative entries (Figure 2.4). This fact suggests that

positive influence is more consequential than negative influence: e.g., increases in aid generally

lead to other increases in aid, rather than decreases. For example, in the target influence network

B, there is a positive influence from North Korea (PRK) to China (CHN) and a smaller, negative

influence from North Korea to Afghanistan (AFG). This suggests that an increase in boycotts by

Great Britain on North Korea leads one to expect an increase in boycotts by Great Britain on China

in the following three weeks, and a smaller decrease in boycotts by Great Britain on Afghanistan.

One of the largest positive influences in the A network is that of the US on Germany (DEU).

This means that if the US increases humanitarian aid sent to Syria, for example, then we expect

Germany to increase the amount of humanitarian aid it sends to Syria in the following pA = 5

weeks. This result matches conventional wisdom as the US and Germany have been among the

closest North Atlantic Treaty Organization (NATO) allies following the Cold War, also sharing

many common geopolitical interests outside this particular alliance. Within A, we note that the

US and Russia have the strongest ties with other countries and the most ties across continents.
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Figure 2.4: The largest 5% of edges (in magnitude) are shown in color; the smaller relations are shown in

grayscale proportional to their magnitude. The source country network is in the bottom-left panel (A), the

target country network is in the bottom-right panel (B), and the interaction type network is in the top-center

panel (C). Nodes are sized proportional to the sum of the magnitudes of outgoing relations (comparable

across networks) and nodes in A and B are colored according to continent. Edges are sized proportional

to absolute edge weight (comparable across networks) and colored according to the originating node. Solid

lines denote positive relations and dotted lines denote negative relations.

This also may have been expected since great powers should possess the most influence rela-

tionships and the most substantively important influence relationships (Morgenthau, 1978; Waltz,

1979; Mearsheimer, 2001).

In the target country B influence network, we observe that the most influential country is

Germany (DEU), suggesting again that Germany is very central in the international community.

We see that the B network has many more large negative entries than A and C. This fact is

natural, as, for some relations, target states are competing for resources and hence, influences
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may be limited. The material positive and material negative interactions are zero-sum, that is, a

dollar sent to Sudan cannot also be sent to Afghanistan. For example, there is a large negative

influence in B from the Sudan (SDN) to Afghanistan (AFG). This influence indicates that, when

Sudan receives an increase in, say, humanitarian aid from the US, Afghanistan is expected to have

reduced aid from the US in the coming weeks. Hence, these countries are essentially competing for

the resources of source countries, of which resources there are finite amounts. We do not observe

this phenomenon in the A network as the Germany following the US in aiding Sudan employs

both the resources of the German and US people.

From C we glean understanding of the relationships between interaction types. For exam-

ple, we observe positive relations between material negative and verbal negative interaction types,

which means, for example, that increases (or decreases) in verbal negative interactions from the US

to China may signal increases (decreases) in material negative interactions from the US to China.

We also observe large positive influences from vp to the other relation types. This fact indicates

that changes in verbal positive interactions are often followed by changes in other interaction types,

but that a change in verbal positive relations is relatively uninformative to what type of interaction

may change afterwards. Finally, since C is entirely positive, this indicates positive feedback loops

among the interaction types and a lack of negative feedback loops.

With the development of the BLIN model and multipartite extensions, international relations

scholars no longer must rely upon the widely used proxy measures of power and influence, such

as national capabilities or economic development. Instead, they are now permitted to measure

power directly, as the influence exercised by one state over another. This approach has already

been adopted and shown to be powerful in modeling the influence that countries exercise over one

another in the ratification of environmental treaties (Campbell et al., 2019).

2.7 Discussion

In this chapter, we present the Bipartite Longitudinal Influence Network model, a novel gen-

erative model for the evolution of bipartite relational data over time. The BLIN model allows for
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the estimation of the weighted and directed influence networks among each of the two actor types

in bipartite data, each with their own separate time scale of influence. The BLIN model can be

expressed as a generalized linear model, lending itself to use with a litany of off-the-shelf tools for

estimation and to straightforward parameter interpretation.

In the BLIN model, the entries in the influence networks A and B may be interpreted as

“average” influences over the entire data set. There are scenarios where the influences among

countries may evolve over time. For example, major international trade agreements or wars might

change the structures of the influence networks. To determine whether A and B evolve over time,

we might consider testing for changepoints in the influence networks. Of course, this requires the

development of a more flexible model with time-varying influence networks, such as modeling A

and B as linear functions of known covariates as in Minhas et al. (2017).
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Chapter 3

Regression of relational data with exchangeable

errors

3.1 Introduction

Relational arrays have recently become extremely common in the social and biological sci-

ences. Entries in relational arrays quantify pairwise interactions between actors that may be of

multiple types or may be observed over time. Examples include annual flows of migrants between

countries (Aleskerov et al. (2017)) and interactions among students over the course of a semester

(Han et al. (2016)). In economics, relational arrays can be used to describe monetary transfers

between individuals as part of informal insurance markets (see, for example, Bardham (1984);

Fafchamps (2006); Foster and Rosenzweig (2001); Attanasio et al. (2012); Banerjee et al. (2013)).

Other examples of data that are naturally represented as relational arrays include gene expres-

sion data (Zhang and Horvath (2005)) and international relations among countries (Fagiolo et al.

(2008)).

A common task in analyzing relational arrays is to infer the effects of exogenous covariates on

the values in the relational array. Taking again informal insurance markets, Fafchamps and Gubert

(2007) examine how covariates such as geographical proximity and kinship relate to risk sharing

relations after economic shocks. Recent extensions of this work (e.g. Aker (2010); Blumenstock

et al. (2011); Jack and Suri (2014)) explore the strength of the association between physical prox-

imity and financial transactions among individuals with access to mobile phones. Thus, our mo-

tivation is analyses where the primary goal is inference for the effects of exogenous covariates on

the values in the relational array.

A relational array Y =
{
y
(r)
ij : i, j ∈ {1, ..., n}, i 6= j, r ∈ {1, ..., R}

}
is composed of a series

of R
(
n×n

)
matrices, each of which describes the directed pairwise relationships among n actors
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of type r, e.g. time period r or relation context r. The diagonal elements of each matrix {y(r)ii : i ∈

{1, ..., n}} are assumed to be undefined, as we do not consider actor relations with his/herself. For

much of this chapter, we focus on data sets represented as a single matrix of relations, i.e. R = 1,

where the array Y is often simply referred to as a weighted network.

We consider regression models that express the entries in a relational array as a linear function

of observable covariates:

y
(r)
ij = βTx

(r)
ij + ξ

(r)
ij , i, j ∈ {1, ..., n}, i 6= j, r ∈ {1, ..., R}, (3.1)

where inference for β is the primary goal. In (3.1), y
(r)
ij is a (continuous) directed measure of the

rth relation from actor i to actor j and x
(r)
ij is a

(
p × 1

)
vector of covariates, which are unrelated

(i.e. exogenous) to the mean-zero error ξ
(r)
ij . The data sets we consider are in contrast to those

where the response is a vector of actors which are connected in a possibly unknown network, for

example, see Zhou and Song (2016). In a study on international trade, y
(r)
ij may denote the value of

trade exported from country i to country j in year r and the covariates may include country-specific

attributes such as GDP and population, as well as country pair characteristics such as geographic

distance. Throughout the chapter, we assume that relations are directed such that the relationship

from actor i to actor j may differ than that from j to i, however, the methods we propose extend

to the undirected/symmetric relation case in a straightforward manner. We discuss the extension to

undirected arrays in Appendix B.1.

A core statistical challenge in modeling relational arrays arises from the innate dependencies

among relations involving the same actor. For example, dependence often exists between trade

relations involving the same country and between economic transfers originating from the same

individual. This dependence may arise, for example, from differences in production levels between

nations or, in the informal insurance markets, individual differences in risk aversion. Substantial

dependence in the errors precludes the use of standard regression techniques, as these techniques

may lead to faulty inference. While unbiased estimation for the β coefficients in (3.1) is possible
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via ordinary least squares (OLS), accurate uncertainty quantification for β, i.e. standard errors,

requires consideration and estimation of any auxiliary dependence. Approaches for addressing

this challenge have appeared in the statistics, biostatistics, and econometrics literatures and can be

characterized into two broad classes.

The first set of approaches impose a parametric model on the errors. Specifically, they either

use latent variables to model the array measurements as conditionally independent given the latent

structure (e.g. see Holland et al. (1983); Wang and Wong (1987); Hoff et al. (2002); Li and Loken

(2002); Hoff (2005)) or model the error covariance structure directly subject to a set of simplifying

assumptions (e.g. see Hoff (2011); Fosdick and Hoff (2014); Hoff (2015)). While these methods

provide parsimonious representations of the underlying error structure, the accuracy of inference

on β depends on the extent to which the true error structure is consistent with the specified para-

metric model. In addition, many of these models are estimated in a Bayesian paradigm using

Markov chain Monte Carlo approaches so they are expensive to estimate for networks of even a

few hundred nodes.

The second approach to accounting for error dependence relies heavily on empirical estimates

of the error structure based on the residuals in an estimating equation/moment condition frame-

work, first proposed by Fafchamps and Gubert (2007) and based on the spatial dependence work

of Conley (1999). In contrast to the first approach, this framework makes as few assumptions as

possible about the data generating process and utilizes a sandwich covariance estimator for the

standard errors of the regression coefficients. Sandwich estimators employ the regression residuals

to “adjust” the standard error estimate in case the moment conditions are misspecified or there is

dependence structure within the errors. As a result, the sandwich estimator is commonly known as

a robust estimator of the standard error. The quality of this correction depends on the accuracy of

the error covariance estimate based on the residuals. In finite samples, current error covariance esti-

mators for relational regression are hindered by the need to estimate a large number of covariance

parameters with limited observations. These practical limitations have been recognized in other

contexts (see King and Roberts (2015) for a discussion) and is the reason why Wakefield (2013)
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suggests such estimators be labeled “empirical” rather than “robust.” We examine this estimator

in more detail in the following section. Other empirical approaches to the problem of account-

ing for error dependence in relational data bear mentioning, such as permutation testing Dekker

et al. (2007) and developing work in bootstrapping Menzel (2017); Green and Shalizi (2017). Al-

though we do not address these methods further, the vast majority are based on the exchangeability

assumption examined in this chapter.

In this chapter, we extend the estimating equation/moment condition framework by incorpo-

rating an exchangeability assumption. This assumption is implicit in many of the model-based

approaches discussed previously and is a hallmark of Bayesian hierarchical models, including

models for data outside the relational context (Orbanz and Roy (2015)). Let Y (r) denote the rth

(
n × n

)
matrix slice in the array containing all relations of type r. We propose leveraging the

assumption of exchangeability assumption within, and potentially across, each matrix Y (r) to de-

rive a parsimonious estimator of the relational dependence. Our approach produces a dramatically

simplified estimator that results in superior performance in inference, which we demonstrate both

theoretically and empirically in simulation studies. The two key features of our approach are that

it is model agnostic, not assuming any specific underlying parametric model, and is significantly

easier to compute compared to existing Bayesian model-based approaches.

this chapter is organized as follows. The remainder of this section provides background on

the estimating equation framework in the context of relational data. Section 3.2 describes current

inference approaches arising from the network econometrics literature and literature on moment

condition estimators with cross-sectional dependence, focusing specifically on data sets where

R = 1 (e.g. Conley (1999); Hansen (2015)). We discuss what it means for relational data to be

exchangeable in Section 3.3 and present our proposed covariance matrix estimator based on an

exchangeability assumption. Section 3.4 describes the improvements in mean-square error of our

proposed method compared to the current state of practice, as supported by extensive theoretical

results and simulation evidence. We discuss extensions of our method for use with arrays with
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R > 1 in Section 3.5 and demonstrate our methodology using a data set of international trade flow

in Section 3.6. We conclude with a discussion in Section 3.7.

3.1.1 Accounting for correlated errors in relational regression

A key statistical challenge in relational regression is accounting for the correlation structure

present in the n× n× R array of error terms Ξ =
{
ξ
(r)
ij : i, j ∈ {1, ..., n}, i 6= j, r ∈ {1, ..., R}

}
.

First, consider a single matrix of relations Y (r) =
{
y
(r)
ij : i, j ∈ {1, ..., n}, i 6= j

}
and error matrix

Ξ(r) corresponding to relation type r. There are two primary types of correlation we might expect

among the errors. The first type is between relations within the same row or within the same

column of the matrix Ξ(r). Revisiting the international trade example, this dependence corresponds

to correlation among a country’s exports (i.e. within a rows of Ξ(r)) and correlation among a

country’s imports (i.e. within a column of Ξ(r)). These dependence patterns are often seen in array

data in general, even when each dimension of the array is distinct Hoff (2011); Fosdick and Hoff

(2014). The second type of correlation we expect, which is specific to relational data, stems from

the fact that the row and column index sets represent the same entities. Again, in the context of

the trade data, we might expect France’s exports to Germany to depend upon the amount Spain

exports to France. This corresponds to dependence between errors, say, ξ
(r)
ij and ξ

(r)
ki .

We use an estimating equations/moment conditions framework to perform inference on β

(Wakefield, 2013; Hansen, 2015). In relational regression, estimating equations g are defined such

that for all (i, j, r), E
[
g(y

(r)
ij ,β)

]
= 0p, where 0p is the p-dimensional vector of zeros. The esti-

mator β̂ is then defined as that which satisfies

G(Y, β̂) :=
∑

i,j,r

g(y
(r)
ij , β̂) = 0p. (3.2)

The estimating equations g characterize specific features of the population distribution (e.g. the

first moment), but critically, this approach does not fully specify the population distribution.

Consider the relational regression model as defined in (3.1). There are many g functions one

could specify which would provide reasonable β estimates. One common specification is (see, for
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example, Chapter 11 in Hansen (2015) or Chapter 5 in Wakefield (2013))

g(y
(r)
ij ,β) = x

(r)
ij

(
y
(r)
ij − βTx

(r)
ij

)
. (3.3)

This corresponds to the score function of the multivariate normal likelihood assuming homoskedas-

tic, independent errors and gives rise to the familiar ordinary least squares estimate of β: β̂ =

(XTX)−1XTYv, where X is an
(
n(n − 1)R × p

)
matrix of covariate vectors {x(r)

ij } and Yv is a

vectorized representation of Y . Under regularity conditions Van der Vaart (2000); Cameron et al.

(2011), the estimator satisfying (3.2) is consistent (β̂ →p β) and moreover asymptotically normal:

√
n
(
β̂ − β

)
→d N

(
0p, A

−1B(AT )−1
)
, (3.4)

where A = E

[
∂

∂βT G(Y,β)
]

and B = E

[
G(Y,β)G(Y,β)T

]
, such that G(Y,β) is as defined in

(3.2). Estimating the asymptotic variance of β̂ then amounts to estimating A and B. Asymptotic

covariance estimators of the form Â−1B̂(ÂT )−1 are commonly referred to as “sandwich” estima-

tors Huber (1967); White (1980). Assuming independence across observations, the elements of

the covariance can be estimated as

Â =
1

n(n− 1)R

∑

i,j,r

∂

∂βT
g
(
y
(r)
ij , β̂

)
and B̂ =

1

n(n− 1)R

∑

i,j,r

g
(
y
(r)
ij , β̂

)
g
(
y
(r)
ij , β̂

)T
.

When g is defined as in (3.3) for relational data, A = XTX and B = XTΩX , where Ω = V[Yv|X]

is the covariance matrix of the relations, equivalently the errors. Ω appears in the form of the

variance for most g functions commonly used to estimate β. When observations are independent

and homoskedastic, Ω is proportional to the identity matrix and the form of the variance simplifies

to that from standard linear regression. However, independence among the errors is often violated

in relational data as we expect relations involving the same actor(s) will be dependent. More

complex covariance structures have been considered that assume only subsets of the observations

be independent. These independent subsets are often specified based on distance metrics derived
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from observable features of the data White and Domowitz (1984); Liang and Zeger (1986); Conley

(1999). In the next section, we discuss in detail the estimators proposed for relational data.

3.2 Dyadic clustering estimator

To facilitate presentation, we first describe the current state-of-the-art sandwich covariance

estimation framework with a single relation Y (1), then move to arrays with R > 1. For notational

simplicity, we presently drop the superscript (1) indexing the relation type and reintroduce it in

Section 3.5 when needed. Thus, yij = y
(1)
ij , xij = x

(1)
ij , Yv is an

(
n(n− 1)× 1

)
vector of relational

observations in Y (1), and X is the
(
n(n− 1)× p

)
matrix of covariates for these relations.

Consider a ordered pair (i, j) and define Θij as the set consisting of all ordered pairs that contain

an overlapping member with the pair (i, j). In other words, Θij =
{
(k, l) : {i, j} ∩ {k, l} 6= ∅

}
.

Generalizing the standard estimating equation framework, Fafchamps and Gubert (2007), Cameron

et al. (2011), Aronow et al. (2015), and Tabord-Meehan (2018) propose and describe the properties

of a flexible standard error estimator for relational regression which makes the sole assumption

that two relations (i, j) and (k, l) are independent if (i, j) and (k, l) do not share an actor (i.e.

(k, l) 6∈ Θij). This implies that Cov(yij, ykl|X) = Cov(ξij, ξkl) = 0 for non-overlapping pairs,

but places no restrictions on the covariance elements for pairs that involve the same actor. Let

ΩDC denote the covariance matrix V[Yv|X] subject to this non-overlapping pair independence

assumption. Fafchamps and Gubert (2007) propose estimating each nonzero entry of ΩDC with a

product of residuals, e.g. Ĉov(ξij, ξik) = eijeik. This may be expressed in matrix form as

Ω̂DC = eeT ◦ 1[{i,j}∩{k,l}6=∅], (3.5)

where e is the vector of residuals {eij = yij − β̂Txij} for all relations, 1[{i,j}∩{k,l}6=∅] is an
(
n(n−

1) × n(n − 1)
)

matrix of indicators denoting which relation pairs share an actor, and ‘◦’ denotes

the matrix Hadamard (entry-wise) product. The estimator Ω̂DC can be seen as that which takes

the empirical covariance of the residuals defined by eeT and systematically introduces zeros to
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enforce the non-overlapping pair independence assumption. We refer to the covariance estimator

Ω̂DC as the dyadic clustering (DC) covariance estimator as it owes its derivation to the extensive

literature on “cluster-robust” standard error estimates. Restricting the covariances in Ω̂DC between

non-overlapping relations to be zero makes this estimator similar to that resulting from a two-way

clustering approach which clusters on each relation sender (i.e. the rows of Ξ) and also clusters on

each relation receiver (i.e. the columns of Ξ).

When the β estimator is that based on ordinary least squares (i.e. that associated with (3.3)),

Fafchamps and Gubert (2007) propose a sandwich variance estimator for V[β̂] based on the DC

covariance estimator, which is equal to

V̂DC = (XTX)−1XT Ω̂DCX(XTX)−1. (3.6)

We will refer to this as the DC estimator of V[β̂]. Aronow et al. (2015) show that V̂DC is consistent

by showing that as the number of actors n grows, the number independent pairs of actors grows

with n4 whereas the number of dependent pairs grows with n3. Tabord-Meehan (2018) gives

a general theoretical treatment of V̂DC under the exchangeability assumption examined in this

chapter.

The DC estimator of the variance in (3.6) is widely used and has the attractive properties that

it is asymptotically consistent and theoretically robust to a wide range of error dependence struc-

tures (making minimal assumptions). However, we contend its utility is limited in practice for

several reasons. First, the DC approach estimates each of the O(n3) nonzero covariance elements

separately with a unique residual product: e.g. Ĉov(ξij, ξik) = eijeik. Thus, V̂DC is inherently

more variable than more parsimonious estimators, such as the one proposed in this chapter. Sec-

ondly, only when there is extreme heterogeneity in the true covariance structure is the DC method

ideal, and this method will suffer a loss of efficiency otherwise. Lastly, methods are not currently

available to adjust estimates of β using Ω̂DC as in, for example, feasible generalized least squares.
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3.3 Standard errors under exchangeability

In this section, we propose a novel estimator for V[β̂] that leverages an exchangeability as-

sumption in the estimation of Ω. In short, this assumption induces structure among portions of

the covariance matrix Ω corresponding to subsets of the relations with a similar arrangement, and

pools information within these subsets. For this section, we continue discussion in terms of data

sets containing a single relation Y = Y (1), and discuss extensions of our proposed methodology to

arrays in Section 3.5.

3.3.1 Exchangeability in relational models

A common modeling assumption for relational and array structured errors is exchangeability.

Defined by de Finetti for a univariate sequence of random variables, exchangeability was gen-

eralized to array data and relational data by Hoover (1979) and Aldous (1981). The errors in a

relational data model are jointly exchangeable if the probability distribution of the error array, Ξ,

is invariant under any permutation of the rows and columns. Mathematically, this means

P(Ξ) = P(Π(Ξ)),

where Π(Ξ) = {ξπ(i)π(j)} is the error array with its rows and columns reordered according to

permutation operator π. Intuitively, exchangeability in the context of linear regression on an array

simply means the observed covariates are sufficiently informative such that the ordering of the row

and column labeling in the error array is uninformative. Each of the conditionally independent

parametric network models discussed in the introduction have this joint exchangeability property

(see Hoff (2008) and Bickel and Chen (2009) for further discussion).

3.3.2 Impact of exchangeability on covariance structure

Under exchangeability, the covariance matrix Ω has at most six unique elements. To see this

result intuitively, note that any relation has five distinguishable types of covariance configurations

involving another relation, plus one variance term associated with the relation itself. Figure 3.1
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Figure 3.1: Five distinguishable configurations of relation pairs involving the bold orange relation in an

exchangeable relational model: (a) reciprocal relations; (b) relations share common sender; (c) relations

share common receiver; (d) shared actor is the sender of one relation and receiver of the other; (e) no shared

actors among the two relations.

shows the five distinguishable configurations of relation pairs that comprise the covariance struc-

ture. If a probability model for Ξ is jointly exchangeable, then all entries ξij are marginally iden-

tically distributed under the model. This implies that each of the covariances corresponding to a

particular configuration in Figure 3.1 (plus the variance term) should have the same value across

all possible actor labels. Li and Loken (2002) noted three specific random effects models have this

covariance structure, however, we formalize and extend this observation showing that this result

holds for any jointly exchangeable distribution over Ξ.

Proposition 7. If a probability model for a directed relational matrix Ξ is jointly exchangeable

and has finite second moments, then the covariance matrix of Ξ contains at most six unique values.

Proof: Consider a probability model for a directed relational matrix Ξ that satisfies the joint ex-

changeability and second moment criteria defined above. For any four, possibly non-unique, actors

{i, j, k, l}, observe that the covariance between the errors ξij and ξkl takes one of the following six

values, depending on the relationships between the actor indices:

• Var(ξij) if i = k and j = l;

• Cov(ξij, ξji) if i = l and j = k;

• Cov(ξij, ξil) if i = k and j 6= l;

• Cov(ξij, ξkj) if i 6= k and j = l;

• Cov(ξij, ξki) if i = l and j 6= k;

• Cov(ξij, ξkl) if i 6= k and j 6= l.
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Now consider an arbitrary permutation operation π(·) of the entire actor set {1, ..., n}. Note

that exchangeability implies the bivariate distribution of the pair (ξij, ξkl) must be the same as

distribution of (ξπ(i)π(j), ξπ(k)π(l)). Thus, the covariance of ξπ(i)π(j) and ξπ(k)π(l) must equal that of

the original pair:

Cov(ξij, ξkl) = Cov(ξπ(i)π(j), ξπ(k)π(l)) for any i, j, k, l.

By exchangeability this is true for all permutations π(·), establishing the result.

To illustrate the correspondence between joint exchangeability and the covariance entries, con-

sider the bilinear mixed effects network regression model proposed in Hoff (2005). This model

uses an inner product measure to model the error structure in relations and can be expressed as

follows:

yij = βTxij + ξij; ξij = ai + bj + zTi zj + γ(ij) + ǫij; (3.7)

(ai, bi) ∼ N2(0,Σab); Σab =




σ2
a ρabσaσb

ρabσaσb σ2
b


 ;

zi, zj ∼ Nd(0,σ
2
zId); γ(ij) = γ(ji) ∼ N(0, σ2

γ); ǫij ∼ N(0, σ2
ǫ ).

where ai, bj , zi, zj , and ǫij are independent. Note that E[ξij] = 0.

As presented in Hoff (2005), the elements of V[Ξv] = V[Yv|X] are

• Var(ξij) = σ2
a + σ2

b + dσ4
z + σ2

γ + σ2
ǫ ,

• Cov(ξij , ξji) = 2ρabσaσb + dσ4
z + σ2

γ ,

• Cov(ξij , ξil) = σ2
a,

• Cov(ξij , ξkj) = σ2
b ,

• Cov(ξij , ξki) = Cov(ξij , ξjk) = ρabσaσb,

• Cov(ξij , ξkl) = 0.
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Note that there are six unique terms, corresponding to the five relation pair configurations shown in Figure

3.1 and a variance term. Moreover, these terms depend only on the population-level parameters of the data

generating process and not on individual-level latent variables.

Like the results in Hoff (2005), our work draws on a much deeper, general literature on variance decom-

positions for structured and symmetric models. In regard to symmetry, a related notion to exchangeabil-

ity, Dawid (1988) states that “the specification of the relevant symmetry represents a pre-modelling phase

from which many important consequences flow." Our work leverages these symmetries, assuming only,

again quoting Dawid (1988), that there is “no reason to consider the observations in any one order rather

than any other." Work by Li and Loken (2002), Li et al. (2002), and Li (2006) generalize the social rela-

tions model (SRM) of Warner et al. (1979) to describe the family of symmetric probability distributions for

dyadic data. Though these approaches confirm our findings on the gains of assuming exchangeability, their

approach to modeling the covariance structure is quite different. These approaches draw inspiration from

the variance decomposition literature in statistics. This motivation leads to developing hypothesis tests that

explore restrictions on the symmetries (i.e. invariance to transformations) as a null hypothesis, but impose a

parametric form on the error terms (e.g. involving sender, receiver, and pairwise effects in the Warner et al.

(1979) social relations model) and in some cases assume a Gaussian likelihood. In contrast, our motivation

comes from econometric methods for nonparametric standard error estimation. As a result, we leverage the

exchangeability assumption only to simplify the existing estimating equation uncertainty estimates, rather

than attempt to fully specify a probability distribution for the data.

3.3.3 Covariance matrices of exchangeable relational arrays

Proposition 7 implies that at most six parameters are required to describe the dependence structure

arising from jointly exchangeable relational models. Thus, we introduce a new class of covariance matrices

ΩE which contain five unique nonzero entries: one variance parameter σ2 along the diagonal of ΩE and four

covariance parameters {φa, φb, φc, φd} associated with (a-d) in Figure 3.1. Similar to the DC covariance

model, we assume non-overlapping directed pairs of relations are independent, such that Cov(ξij , ξkl) = 0,

corresponding to (e) in Figure 3.1 and implying φe = 0. Though there may be association between non-

overlapping pairs of relations, we expect this dependence to be small compared to dependence between pairs
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Figure 3.2: Consider a matrix Y containing the relations among four actors {A,B,C,D} shown on the left.

Since the relation between an actor and itself is undefined, the diagonal entries (blacked out in the picture)

are not regarded as part of Y . Assuming joint exchangeability of the actors and that relations involving

non-overlapping sets of actors are independent, the covariance matrix ΩE contains five unique values.

of relations that share a member such that our assumption is reasonable. Figure 3.2 shows the structure of

ΩE for a relational matrix with four actors {A,B,C,D}. We formally define the class ΩE below.

Definition 8. An exchangeable covariance matrix is defined as ΩE = E[ΞvΞ
T
v ] arising from mean-zero

random vector Ξv = vec(Ξ), where Ξ is a jointly exchangeable random matrix with ξij independent ξkl

whenever {i, j} ∩ {k, l} 6= ∅. ΩE has five unique terms consisting of a variance and four covariances:

{σ2, φa, φb, φc, φd}.

We now present a theorem that states that, for a linear model with error covariance matrix in the class

of ΩE , the OLS estimate of the coefficients β is asymptotically normal. This theorem is similar to that in

Tabord-Meehan (2018), although under different conditions. Our asymptotic regime is the addition of actors

to the relational data set, leading to asymptotics in n, where we treat the matrix X as a random variable. To

examine the asymptotic behavior of β̂, we must make some assumptions about the distribution of X . As

each covariate pertains to entries in a relational array, it is natural to assume that there may be dependence

among the rows in X . In the context of trade between countries, for example, if scalar x
(1)
jk measures the

difference in GDP between France (j) and Germany (k), we expect the difference in GDP between Spain

(l) and France, x
(1)
lj , to be correlated with the former x

(1)
jk . Thus, we assume the rows of the matrix X are

jointly exchangeable, meaning that, any permutation π(.) of the rows {xjk}nj,k=1 to {xπ(j)π(k)}nj,k=1 leaves
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the distribution of matrix X invariant. As with the dependence in the errors, we assume that two rows of X

that correspond to relations which do not share an actor are independent, that is row xT
ij is independent row

xT
kl whenever {i, j} ∩ {k, l} 6= ∅. This dependence in the rows of matrix X (along with some assumptions

on the finiteness of its moments) implies the following:

∑

(jk,lm)∈Θi

xjkx
T
lm

|Θi|
PX−−→ Mi, i ∈ {0, a, b, c, d}, (3.8)

where Θi is the set of pairs of relations (jk, lm) that share a member in the ith manner and ‘0’ refers to

self-relation (i.e. variance).

Theorem 9. Define the following data generating process:

(A1) The true data generating model is Yv = Xβ + Ξv, where the errors Ξv are mean-zero with ex-

changeable covariance matrix as defined in Definition 8.

(A2) At least one of {φb, φc, φd} is nonzero.

In addition, consider the following regularity conditions:

(B1) The covariate matrix X has rows that are jointly exchangeable with at least one of {Mi}i∈{b,c,d} in

(3.8) nonzero, and where row xT
ij is independent row xT

kl whenever {i, j} ∩ {k, l} 6= ∅.

(B2) The fourth moments of each the errors and the covariates are bounded: E[|ξjk|4] < C < ∞ and

maxl∈{1,2,...,p} E[|x(l)jk |4] < C ′ < ∞ where xjk = [x
(1)
jk , . . . , x

(p)
jk ]

T .

(B3) The errors Ξ and covariates X are independent.

(B4) X is full rank.

Given (A1)− (A2) and (B1)− (B4), the ordinary least squares estimate β̂ is asymptotically normal:

√
n(β̂ − β) →d N(0,M−1

0

(
φbMb + φcMc + 2φdMd

)
M−1

0

)
,

where {Mi}i∈{0,b,c,d} are as in (3.8) and ‘→d’ denotes element-wise convergence in distribution.
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The proof of Theorem 9 is given in Appendix B.2. Note that only the covariances {φb, φc, φd} appear

in asymptotic variance of β̂. This results from the fact that there are an order of magnitude more of terms

{φb, φc, φd} in the covariance matrix ΩE than there are of the terms {φa, σ
2}. In particular, in ΩE there

are n(n − 1)(n − 2) pairs of relations (ξij , ξkl) of each of type (b) and type (c), 2n(n − 1)(n − 2) pairs

of type (d), and n(n − 1) pairs of each of type (a) and σ2. We make the assumption that at least one

of the covariances {φb, φc, φd} is nonzero. Should the assumption be violated, then all
(
n
2

)
dyadic pairs

of the form (ξij , ξji) are independent of one another, and the asymptotic normality of β̂ follows from the

usual independent data arguments. In this case, the asymptotic normality of β̂ is of rate n with asymptotic

variance M−1
0

(
σ2M0 + φaMa

)
M−1

0 . The canonical case of independent and identically distributed errors

is recovered when φa = φb = φc = φd = 0. In the canonical case, β̂ has asymptotic variance σ2M−1
0

occurring at rate n. Note that both of these final cases are rate n (and not
√
n) since there are n(n − 1)

entries in Yv.

3.3.4 Exchangeable covariance estimator

As emphasized above, the DC estimators in (3.5) and (3.6) estimate each nonzero element in ΩDC using

a single product of residuals. Here we introduce novel estimators inspired by the covariance structure ΩE

associated with relations are jointly exchangeable. Specifically we consider estimates of Ω in the class of ex-

changeable covariance matrices, as in Definition 8. Our new exchangeable (EXCH) covariance estimator

Ω̂E , and corresponding estimator of V[β̂] can be written, respectively, as

Ω̂E = σ̂2In(n−1) +

d∑

s=a

φ̂sSs, and V̂E = (XTX)−1XT Ω̂EX(XTX)−1, (3.9)

where Ss denotes the (n(n− 1)× n(n− 1)) binary matrix with 1s in the entries corresponding to relation

pairs of type s ∈ {a, b, c, d} as defined in Figure 3.1.

We propose estimating the five parameters in ΩE by averaging the residual products across pairs having

the same index configurations corresponding to (a)-(d) in Figure 3.1. These empirical mean estimates can

be expressed

• σ̂2 = V̂ar(ξij) =
1

n(n−1)

∑
i

∑
j 6=i

e2ij ,

• φ̂a = Ĉov(ξij , ξji) =
1

n(n−1)

∑
i

∑
j 6=i

eijeji,
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• φ̂b = Ĉov(ξij , ξkj) =
1

n(n−1)(n−2)

∑
i

∑
j 6=i

eij

( ∑
k 6=j

ekj − eij

)
,

• φ̂c = Ĉov(ξij , ξik) =
1

n(n−1)(n−2)

∑
i

∑
j 6=i

eij

( ∑
k 6=i

eik − eij

)
,

• φ̂d = Ĉov(ξij , ξki) = Ĉov(ξij , ξjl) =
1

2n(n−1)(n−2)

∑
i

∑
j 6=i

eij

( ∑
k 6=i

eki +
∑
k 6=j

ejk − 2eji

)
.

We implement the above estimator, along with many methods to follow in this chapter, in the R software

package netregR Marrs et al. (2018).

Even if the underlying data generating model is not jointly exchangeable, the proposed estimator will

work well if the variability in the covariances among relations of the same type (i.e. (a)-(d) in Figure 3.1) is

small. In this case, it is likely that the reduction in estimation variance that arises from pooling will outweigh

the small bias introduced in the estimation of each covariance entry.

3.4 Evaluating the exchangeable estimator

In this section, we theoretically and empirically evaluate the properties of our estimators in (3.9) for data

with a single matrix of relations (i.e. R = 1). We first prove that our variance estimator V̂E is consistent for

the true variance of β̂ when the data generating process is jointly exchangeable. Then, in the spirit of, for

example, Kauermann and Carroll (2001), we show that the mean-square error (MSE) of V̂E is lower than

that of V̂DC with high probability. We then present simulation evidence of improved inference for β̂ by

simulating data from both exchangeable and non-exchangeable generative models.

3.4.1 Consistency of the exchangeable estimator

We begin theoretical justification of the exchangeable estimator V̂E by stating that exchangeable covari-

ance estimator is consistent for the true variance of the coefficients, as the number of actors increases.

Theorem 10. Under the conditions of Theorem 9, the exchangeable covariance estimator is consistent in

the sense that

nV̂E − nV[β̂] →p 0 as n → ∞, (3.10)

where ‘→p’ denotes element-wise convergence in probability.

The proof of Theorem 10 is given in Appendix B.3.
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3.4.2 MSE of DC and exchangeable estimators

We continue our theoretical justification of the exchangeable estimator V̂E by showing that the MSE of

the exchangeable covariance estimator VE is lower than that of the dyadic clustering covariance estimator

VDC with high probability. We evaluate the MSE conditional on X , and then evaluate the probability that

the difference is positive for random X . We show that the probability that the MSE of the exchangeable

estimator is less than that of the dyadic clustering estimator tends to 1 as n tends to infinity.

Theorem 11. Under the assumptions of Theorem 9 and for covariate matrix X with bounded eighth mo-

ments, that is maxl∈{1,2,...,p} E
(
|x(l)jk |8

)
< C ′ < ∞, the MSE of the exchangeable estimator is less than

that of the dyadic clustering estimator with probability approaching 1, that is

PX

(
MSEξ

(
V̂DC |X

)
≥ MSEξ

(
V̂E |X

))
→ 1.

The proof of Theorem 11 is provided in Appendix B.4.

3.4.3 Simulation evidence

We performed a simulation study to compare the performance of our estimator to the DC estimator

under various scenarios. We consider three different data generating models for the errors Ξ = {ξij}: (i)

independent and identically distributed errors, (ii) errors generated from the (exchangeable) bilinear mixed

effects model of Hoff (2005) shown in (3.7) and (iii) errors generated from a non-exchangeable model. We

note that the exchangeable error model is a generalization of the “additive common shocks” error structure

used in simulation studies to justify the DC estimator (Cameron and Miller (2014); Aronow et al. (2015);

Tabord-Meehan (2018)).

The non-exchangeable model included systematic noise in the upper-left quadrant of the relational error

matrix Ξ. Since noise was added to actor relations in the same position in Ξ in each simulation run, the

distribution of the relations was not exchangeable: the distribution of the errors would be different for a

reordering of the rows and columns. Note that the non-exchangeable model violates the assumption of both

exchangeable and DC estimators that ξjk is independent of ξlm when {i, j} ∩ {k, l} 6= ∅.
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For each simulation setting, we employed the following three-covariate regression model:

yij = β1 + β21x2i∈C1x2j∈C + β3|x3i − x3j |+ β4x4ij + ξij . (3.11)

In this model, β1 is an intercept; β2 is a coefficient on a binary indicator of whether individuals i and j

both belong to a pre-specified class C; β3 is a coefficient on the absolute difference of a continuous, actor-

specific covariate x3i; and β4 is that for a pair-specific continuous covariate x4ij . We note here that the

matrix X satisfies the jointly exchangeable assumption (B1) in Theorem 9. For the entirety of the study,

we fixed β at a single set of values. Since the variance of β̂ explicitly depends on X , we generated 500

random design matrices X for each sample size of actors, and for each design matrix simulated 1,000 error

matrices under each of the three models to assess the variability of the standard error estimates and accuracy

of the subsequent confidence intervals for β. For additional details on the simulation study procedure,

see Appendix B.5.

Figures 3.3 - 3.5 display the coverage probabilities for 95% confidence intervals for each β for the three

error settings. Along with the dyadic clustering (DC) and exchangeable (EXCH) estimators, we also include

the standard heteroskedasticity consistent (HC) estimator as a baseline, as in Aronow et al. (2015).
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Figure 3.3: (IID Errors) Probability β is in 95% confidence interval across 500 random X draws when the

errors are independent and identically distributed. Lines in the boxplots denote the median coverage, the

box denotes the middle 80% of coverages, and the whiskers denote the middle 95% of coverages across the

set of design matrices.
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Figure 3.4: (Exchangeable Errors) Probability β is in 95% confidence interval across 500s random X draws

when the errors are generated according to the exchangeable bilinear effects model. Lines in the boxplots

denote the median coverage, the box denotes the middle 80% of coverages, and the whiskers denote the

middle 95% of coverages across the set of design matrices.
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Figure 3.5: (Non-exchangeable Errors) Probability β is in 95% confidence interval across 500 random X
draws when the errors are generated from a non-exchangeable network model. Lines in the boxplots denote

the median coverage, the box denotes the middle 80% of coverages, and the whiskers denote the middle

95% of coverages across the set of design matrices.

We draw two key conclusions from our simulations. First, our proposed approach performs extremely

well compared to the DC and HC alternatives, even when the assumption of exchangeability of the errors

is violated. Specifically, we see that the EXCH estimator produces confidence intervals with nominal, or

near nominal, coverage for a variety of data generating processes. In addition, we see the variability in

coverage across different X realizations for the EXCH estimator is substantially smaller than that for the

other estimators. Intuitively the observed reduction in variability is a result of the averaging inherent in the
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EXCH estimator. In particular, the EXCH estimator replaces DC’s O(n3) unique residual products with five

averages over subsets of these products. In Appendix B.5.1, we plot the standard deviation of the EXCH

and DC standard error estimates, where we clearly see the reduction in variability of the EXCH estimator

relative to the DC estimator. We also plot the expected error (given X) of the DC and EXCH standard

error estimates relative to the true standard errors. We find that both estimators generally underestimate the

true standard errors (and thus confidence interval width), although the EXCH estimator underestimates to a

significantly lesser degree. Thus, the price of the robustness of the DC estimator is a loss of efficiency that

results in anti-conservative confidence intervals, i.e. undercoverage.

Returning to the coverage plots, it is interesting that even when the exchangeable assumption is in-

correct, as in Figure 3.5, we see better performance from the EXCH estimator than the others. This is

despite the fact that, in this heterogeneous case, we expect the empirical DC estimator to perform best. The

performance of the EXCH estimator under non-exchangeable errors suggests that the reduction in the vari-

ability of the covariance entry estimates in the exchangeable estimator can outweigh the covariance model

misspecification.

The second key observation we glean from the study is that the type of covariate (e.g. continuous

actor-level characteristic versus product of binary indicators) affects the performance of all standard error

estimators. For example, Figures 3.4 and 3.5 show that when there is structure in the errors, the variability

in the confidence interval coverage across design matrices is far greater for the binary covariate than for

either of the continuous covariates. Focusing specifically on the boxes representing the middle 80% of cov-

erage levels across the 500 simulations associated with the binary coefficient (left-most plots in Figures 3.3

through 3.5), we see the EXCH estimator coverage varies from about 93-98%, whereas the DC estimator

varies between 50-95% with no improvement as the sample size n increases.

3.5 Regressions involving relational arrays

In this section we extend our discussion of exchangeable estimators to the case when R > 1. We intro-

duce three notions of exchangeability for relational array data and discuss models consistent with these as-

sumptions. We separately consider the cases when the underlying model for the error array is exchangeable

along the third dimension and that when it is not. Figure 3.6 illustrates the former case and two variations
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of the latter. Before dissecting the spectrum of possible exchangeability assumptions, we first revisit the

treatment of error arrays with R > 1 by Aronow et al. (2015).

3.5.1 Dyadic clustering

Aronow et al. (2015) examine relational regression standard errors when the third dimension, indexed by

r in Y =
{
y
(r)
ij

}
, denotes time. Data consistent with this structure is, for example, country to country trade

over time. Aronow et al. (2015)’s treatment is a direct extension of dyadic clustering in two dimensions:

two errors ξ
(r)
ij and ξ

(s)
kℓ are assumed to be independent if the associated dyads do not share a member (i.e.

{i, j} ∩ {k, ℓ} = ∅), regardless of the third dimension indices r and s. As in the R = 1 case, each nonzero

covariance entry is estimated by the corresponding residual product, i.e. Ĉov
(
ξ
(r)
ij , ξ

(s)
kℓ

)
= e

(r)
ij e

(s)
kℓ . Note

that this specification makes no assumptions about the dependence structure along the third dimension.

3.5.2 Exchangeability in the third dimension

Here we consider relational data that are fully exchangeable in the third dimension. Intuitively, the

numbering of the row, column, and depth indices of an array with this property are uninformative. For

example, consider the case where the relational array Y represents the quantity of trade between pairs of

countries, decomposed by various categories of goods traded (e.g. intangible vs. tangible). Without reason

to believe some pairs of good types are more dependent than others, we might be willing to assume the

dependence structure along the third dimension is exchangeable.

Define a permutation of the third dimension indices ν(.) in addition to the row and column permutation

π(.) defined previously. An array probability model that is jointly exchangeable, as well as exchangeable in

the third dimension, has the property that

Cov
(
ξ
(r)
ij , ξ

(s)
kℓ

)
= Cov

(
ξ
(ν(r))
π(i)π(j), ξ

(ν(s))
π(k)π(ℓ)

)
. (3.12)

It follows that the covariance matrix, denoted ΩEa = V [Ξv], consists of 10 distinct nonzero parameters,

corresponding to two submatrices Ω1 and Ω2, which each have exchangeable structure as in Definition 8.

Along the diagonal of ΩEa there are R instances of the n(n−1)×n(n−1) matrix Ω1 represents covariance

between observations that share the same third index, i.e. r = s. The off-diagonal blocks of ΩEa are
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populated with a second n(n − 1) × n(n − 1) exchangeable error matrix Ω2 for errors that do not share

the same third index, i.e. r 6= s. This structure is depicted in Figure 3.6(a). As previously, we propose

estimating each of the 10 unique values with the average of the corresponding residual products.

Jointly exchangeable models that model the slices of the error array
{
Ξ(1),Ξ(2), ...,Ξ(R)

}
as indepen-

dent constitute a subclass of the models with full exchangeability. Specifically, they make the additional

assumption that Cov
(
ξ
(r)
ij , ξ

(s)
kℓ

)
= 0 for r 6= s. In Figure 3.6(a), an assumption of independence along the

third dimension corresponds to Ω2 = 0.

Figure 3.6: Covariance matrices Ω = V[Ξv] for exchangeable arrays with depth R = 4 where

ΞT
v =

(
(Ξ

(1)
v )T , (Ξ

(2)
v )T , (Ξ

(3)
v )T , (Ξ

(4)
v )T

)
. All matrices are symmetric, where the (i, j) block denotes

Cov(Ξ
(i)
v ,Ξ

(j)
v ). Subfigure (a) corresponds to full exchangeability yielding two unique blocks, (b) corre-

sponds to no exchangeability in the third dimension with stationarity assumption yielding R = 4 unique

blocks, and (c) corresponds to no exchangeability in the third dimension yielding
(
R
2

)
+ R = 10 unique

blocks. Each block contains five unique nonzero terms as in ΩE in Figure 3.2.

3.5.3 Partial exchangeability or no exchangeability in the third dimension

The assumption of exchangeability along the third dimension can be unnatural and inappropriate for

certain data sets, so here we consider relaxing the fully exchangeable assumption introduced Section 3.5.2.

Consider again the quantity of trade between countries i and j as the relational response, except where trade

decomposed by time period rather than by good type. We would expect the temporal index in the third

dimension to be non-exchangeable, as we might expect errors associated with nearby time periods will be

more dependent than those far apart.

Here we consider arrays which are jointly exchangeable along the rows and columns only, such that the

ordering of the array in the third (depth) dimension must remain the same for the probability distribution
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to remain invariant. Intuitively, this property corresponds to one where the labeling of rows and columns is

inconsequential, but the labeling of the third dimension is material. This exchangeability assumption implies

Cov
(
ξ
(r)
ij , ξ

(s)
kℓ

)
= Cov

(
ξ
(r)
π(i)π(j), ξ

(s)
π(k)π(ℓ)

)
. (3.13)

The full covariance matrix, denoted ΩEc = V[Ξv], contains a separate n(n−1)×n(n−1) exchangeable

covariance matrix for each of the
(
R
2

)
unique third index pairings and each of the R diagonal variance

matrices (see Figure 3.6(c)). Covariance matrices of this form contain 5
((

R
2

)
+R

)
unique parameters.

This type of exchangeability assumption is extremely unrestrictive. Specifically, it places no constraints

on the evolution of the dependence along the third dimension. However, a more restrictive assumption

specifying the relationships among the covariances in the third dimension may be appropriate when we

expect the behavior in this dimension to vary in a particular manner. For example, if the third dimension

corresponds to different time periods, it may be reasonable to assume stationarity along the third dimension,

whereby the covariance across time periods only depends on the absolute difference in the time indices. In

this case, there are five unique nonzero covariances for each difference in time |r − s|, yielding 5R unique

nonzero values in the covariance matrix. We denote a covariance matrix with this structure by ΩEb (see

Figure 3.6(b)).

3.6 Patterns in international trade

In this section we demonstrate our exchangeable standard error estimator using data on international

trade flow over multiple decades. We fit the model using Generalized Estimating Equations (GEE), which

weights the estimating equations, g, in (3.3) by an estimate of the inverse of the “working" covariance

matrix of the observations (see, for example, Chapter 8 in Wakefield (2013) for a review of GEE). When the

assumed covariance structure is correct, this approach yields an estimator β̂ which has improved efficiency

over that based on unweighted equations in (3.3). In the remainder of this section, we outline how the

exchangeable estimator can be used in a method of moments (weighted least squares) approach to estimation

and present results from the international trade data.
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3.6.1 Inference via GEE

Inference via GEE proceeds by first specifying a “working” covariance matrix for the errors, which

serves as a weight for estimating equations. The choice of the working covariance matrix represents a

trade-off between robustness and efficiency. If the working matrix resembles the true underlying covariance

structure, then the efficiency of β̂ improves over that resulting from the estimating equations in (3.3). Even

if the working covariance is misspecified, the standard error estimates for β̂ can be ‘corrected’ using the

sandwich standard error estimators with an appropriate estimator Ω̂. However, these standard error estimates

can be unstable if the assumed working structure differs greatly from the truth, which, of course, is unknown

in practice (see discussion in Chapter 8 of Wakefield (2013), for example).

The GEE algorithm proceeds as follows. Let W−1 be the working covariance matrix, then the estimate

of β is the solution to the GEE estimating equation

XW (Yv − βTX) = 0,

and the corresponding variance estimator of the coefficients is

V [β̂] = (XTWX)−1XTWΩWX(XTWX)−1.

Our estimation algorithm is composed of a two-step iteration procedure. Given initial estimates β̂(0)

and corresponding residuals Ξ̂(0), we iterate between two steps, such that for iteration τ + 1:

1. Solving the estimating equations XŴ (τ)
(
Yv −Xβ̂(τ+1)

)
= 0, set

β̂(τ+1) =
(
XT Ŵ (τ)X

)−1
XT Ŵ (τ)Yv.

2. Use β̂(τ+1) to calculate Ξ̂(τ+1), and obtain estimates Ω̂(τ+1) and Ŵ (τ+1).

These steps are repeated until convergence.

3.6.2 International trade models

We demonstrate the implications of using our exchangeable standard error estimator in a study of inter-

national trade between 58 countries. These data were previously analyzed and made available by Westveld
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and Hoff (2011)1. For each pair of countries, we observe yearly total volume of trade between the two coun-

tries for a period from 1981-2000. Following Westveld and Hoff (2011) and Tinbergen (1962), we model

(log) trade in a given year using a modified gravity mean model. The gravity model, proposed by Tinber-

gen (1962), posits that the total trade between countries is proportional to overall economic activity of the

countries weighted by the inverse of the distance between them (raised to a power). Following Ward and

Hoff (2007) we also add an indicator for whether the nations’ militaries cooperated in the given year and a

measure of democracy, i.e. polity, which ranges from 0 (highly authoritarian) to 20 (highly democratic).

The complete model has the form:

lnTradeijt = β0t + β1t lnGDPit + β2t lnGDPjt + β3t lnDijt

+β4t Polit + β5t Poljt + β6t CCijt + β7t (Polit × Poljt) + ǫijt,

where lnTradeijt is the (log) volume of trade between countries i and j at time t; lnGDPit and lnGDPjt are

the (log) Gross Domestic Product of nations i and j, respectively; lnDijt is the (log) geographic distance

between nations; CCijt is the measure of cooperation in conflict (coded as +1 if nations were on the same

side of a dispute and -1 if they were on opposing sides); and Polit and Poljt are the polity measures for i and

j, respectively.

We fit the regression model above using the GEE approach, where both the working covariance matrix

W−1 and the population covariance matrix Ω have the covariance structure ΩEa, as in panel (a) of Figure 3.6.

The estimator of β is then based the assumption that the error covariance structure is fully exchangeable.

We place no further restrictions on the covariance structure beyond this exchangeability.

The exchangeability assumption underlying our approach differs substantially from assumptions fre-

quently made in analyses of temporal relational data. For example, Westveld and Hoff (2011) propose a

model – which we refer to as the hierarchical, longitudinal mixed effects model (HLMEM) – which explic-

itly decomposes the error term ǫijt for each time period and pair of actors into time-dependent sender and

receiver effects. The error structure in Figure 3.6(a), in contrast, imposes a temporal structure that implies

the covariance is the same between overlapping dyads in different time points.

1See https://doi.org/10.1214/10-AOAS403SUPP for data.
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We compare our results to those from Westveld and Hoff (2011), as well as to the DC estimator of

Aronow et al. (2015) described in Section 3.5.1. Although the DC estimator makes even fewer assumptions

about the structure of the error dependence than our method, it cannot be directly used for GEE because

the covariance matrix estimator Ω̂DC is always singular. Of course, this is by design, as the DC method is

aimed at estimating V [β̂] rather than Ω̂DC and is inherently post-hoc. Thus, in the following comparison

we use ordinary least squares to estimate β as in (3.3) and estimate confidence intervals using V̂DC . In

the Appendix B.6, we provide a proof that Ω̂DC is always singular and in Appendix B.7, we provide a

method for efficiently inverting Ω̂E .

3.6.3 International trade results

The estimated coefficients and corresponding 95% confidence intervals and posterior credible intervals

are shown in Figure 3.7. Coefficient estimates for the HLMEM are posterior medians and 95% credible

intervals based on Bayesian Markov chain Monte Carlo. Interpreting Figure 3.7 requires care as (i) there is

no ground truth and (ii) we are comparing three different inference paradigms. Nonetheless, focusing on two

aspects of Figure 3.7 reveals important insights for practitioners determining which paradigm to use. First,

consider the overall trends in estimated β̂ across time for the three methods. Fitting using GEE produces

coefficients much closer to those estimated for the HLMEM than OLS. In particular, the intercept estimated

via OLS is approximately three times larger in magnitude than either the HLMEM or our GEE estimates.

We see a similar result with the other coefficient that is relatively constant over time, log GDP of exporter.

Both the GEE and the OLS estimates roughly match the temporal trends of the HLMEM estimates, with the

exception of the cooperation in conflict variable. For this case, the HLMEM and GEE estimators are both

nearly zero from 1990 onward. The OLS estimator, however, demonstrates substantial fluctuations that are

not present in the other methods.

The second aspect to notice is confidence interval width. The widths of the confidence intervals for the

exchangeable GEE approach are generally comparable to those corresponding to the HLMEM, while the

DC interval widths are noticeably larger. The exchangeable GEE approach incorporates information about

the covariance structure of the errors when estimating the regression coefficients. The OLS estimate of β,

however, is identical to a GEE estimate when the working covariance W−1 = I . If the working covariance

estimate is close to the (unknown) true covariance we expect efficiency gains in the GEE estimate of β over
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Figure 3.7: Estimated coefficients for at time periods using three different estimation techniques.
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Table 3.1: MSPE at T = 11 and T = 20 of the estimating procedures.

MSPE

Estimator T = 11 T = 20
Exchangeable GEE 9.85 9.51

HLMEM 12.78 9.77

OLS 18.2 12.85

the OLS estimate. The widths of the HLMEM and GEE intervals also tend to be more consistent across

time periods than those from OLS/DC. For the cooperation in conflict variable, for example, the OLS/DC

confidence intervals become markedly wider during the upward spikes, one of which, in the late 1980s, is

only present in OLS/DC estimate.

The proposed exchangeable GEE approach required significantly less computational resources than

those required to estimate the HLMEM. The GEE procedure completed in less than ten minutes, while

the Markov chain Monte Carlo proposed by Westveld and Hoff (2011) to estimate HLMEM required almost

two days (both procedures were run on a dedicated compute node at 2.50GHz and with 4GB RAM). The

procedure for HLMEM generated 55,000 iterations from the Markov chain, resulting in 2,250 samples after

burn-in and thinning.

To ensure that the underlying model of the exchangeable GEE procedure is a reasonable representation

of the data, we compared the GEE and HLMEM models in a brief out-of-sample performance study. In this

study, we estimated both models on the first 10 and 19 years of trade data and used the estimates to predict

the trade values in the the 11th and 20th years, respectively. As a baseline, we did the same with ordinary

least squares. Table 3.1 provides the mean-square prediction error (MSPE) for the three procedures and

two time points. There is a large reduction in MSPE from that based on the OLS estimates to the HLMEM

results, and further reduction in MSPE for the proposed exchangeable GEE approach. This suggests the

exchangeable model proposed here represents the data at least as well as the HLMEM and significantly

better than one which assumes all errors are independent. Further details about the prediction study are

provided in Appendix B.9.
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3.7 Discussion

This chapter develops a new set of uncertainty estimators for regression models on relational arrays.

The proposed estimators strike a balance between making additional assumptions to decrease variability

and remaining robust to dependence heterogeneity and model misspecification. We show that the proposed

estimators are consistent and, when the error structure is exchangeable, that the mean-square error is less

than that of the state of the art estimator with probability approaching one. In simulation studies, our

proposed estimators achieve better coverage than currently available methods, even when the underlying

generative model violates the assumptions. Lastly, we demonstrate that our covariance matrix estimator can

be used to weight coefficient estimates in GEE in an analysis of data on international trade flows.

The proposed estimator is not appropriate when the dependence among relations, i.e. the covariance

structure, is extremely heterogeneous. This can happen in two ways: (i) heterogeneity in the covariance

structure is endogenous with an observed covariate that is not included in the regression (a variant of omitted

variable bias) and (ii) there is heterogeneity in the error variances even after accounting for all observables

in the “true” generating model. In both cases, we could consider an extension of our approach that would

further compromise between the unstructured covariance structure of the DC estimator and our exchangeable

covariance structure. One could, for example, use a two-stage approach that first estimates actor clusters

using the residuals, then assumes exchangeability within but not across clusters. While these methods are in

development, practitioners should consider using the exchangeable working covariance in GEE procedures

and possibly “correcting” the population covariance using the DC estimator Ω̂DC . When the standard errors

resulting from the population covariance estimators Ω̂DC and Ω̂E differ, a conservative approach of selecting

the maximum standard error estimate may be appropriate, as recommended by Angrist and Pischke (2008).

Many relational data sets contain binary or count measures, such as the presence or absence of relations

between actors or number of interactions. Estimating equation and GEE procedures are often used with

non-continuous data whereby the g equations in (3.2) involve a link function connecting the observed re-

lation to the covariates, mirroring generalized linear regression procedures. While it is possible to impose

an exchangeability assumption on the covariance matrix of the observations with non-continuous data, it

is unclear how the assumption translates to an assumption about the data generating process. For exam-

ple, consider the logit and probit regression models for binary data. Both models possess latent variable

constructions which involve thresholding a latent continuous outcome composed of the linear regression
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function plus a random error. Exchangeability of these errors does not imply the relations themselves are

exchangeable (conditional on the covariates) as the covariates impact the dependence structure among the re-

lational measures. For this reason, the methods proposed here cannot be trivially applied to non-continuous

relational data. We address regression of binary network data in the following chapter.
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Chapter 4

Regression of binary network data with

exchangeable latent errors

4.1 Introduction

Undirected binary network data measure the presence or absence of a relationship between pairs of

actors and have recently become extremely common in the social and biological sciences. Some examples of

data that are naturally represented as undirected binary networks are international relations among countries

(Fagiolo et al., 2008), gene co-expression (Zhang and Horvath, 2005), and interactions among students over

the course of a semester (Han et al., 2016). We focus on an example of politically-aligned books, where a

relation exists between two books if they were frequently purchased by the same person on Amazon.com.

Our motivations are estimation of the effects of exogenous covariates, such as the alignment of political

ideologies of pairs of books, on the the propensity for books to be purchased by the same consumer, and

the related problem of predicting unobserved relations using book ideological information. For example,

predictions of relations between new books and old books could be used to recommend new books to

potential purchasers.

A binary, undirected network {yij ∈ {0, 1} : i, j ∈ {1, ..., n}, i < j}, which we abbreviate {yij}ij , may

be represented as an n × n symmetric adjacency matrix which describes the presence or absence of rela-

tionships between unordered pairs of n actors. The diagonal elements of the matrix {yii : i ∈ {1, ..., n}}

are assumed to be undefined, as we do not consider actor relations with him/herself. We use y to refer to

the
(
n
2

)
vector of network relations formed by a columnwise vectorization of the upper triangle of the matrix

corresponding to {yij}ij .

A regression model for the probability of observing a binary outcome is the probit model, which can be

expressed

P(yij = 1) = P
(
xT
ijβ + ǫij > 0

)
, (4.1)
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where ǫij is a mean-zero normal random error, xij is a fixed vector of covariates corresponding to relation

ij, and β is a vector of coefficients to be estimated. When the error network {ǫij}ij are independent, esti-

mation of the probit regression model in (4.1) is straightforward and proceeds via standard gradient methods

for maximum likelihood estimation of generalized linear models (Greene, 2003). The assumption of inde-

pendence of {ǫij}ij may be appropriate when the mean {xT
ijβ}ij represents nearly all of the dependence

in the network {yij}ij . However, network data naturally contain excess dependence beyond the mean: the

errors ǫij and ǫik both concern actor i (see Faust and Wasserman (1994), e.g., for further discussion of de-

pendencies in network data).In the context of the political books data set, the propensity of “Who’s Looking

Out For You?” by Bill O’Reilly to be purchased by the same reader as “Deliver Us from Evil” by Sean

Hannity may be similar to the propensity of “Who’s Looking Out For You?” and “My Life” by Bill Clinton

to be co-purchased simply because “Who’s Looking Out For You?” is a popular book. Or, in a student

friendship network, the friendship that Julie makes with Steven may be related to the friendship that Julie

makes with Asa due to Julie’s gregariousness. Ignoring the excess dependence in {ǫij}ij will often result

in poor estimation of β and poor out-of-sample predictive performance; we observe this in the simulation

studies and analysis of the political books network (see Sections 4.7 and 4.8, respectively). Thus, estimators

of β and P(yij = 1) in (4.1) for the network {yij}ij would ideally account for the excess dependence of

network data. A host of regression models exist in the literature that do just this; we briefly review these

here.

A method used to account for excess dependence in regression of binary network data is the estimation

of generalized linear mixed models, which were first introduced for repeated measures studies (Stiratelli

et al., 1984; Breslow and Clayton, 1993). In these models, a random effect, i.e. latent variable, is estimated

for each individual in the study, to account for possible individual variation. Warner et al. (1979) used latent

variables to account for excess network dependence when analyzing data with continuous measurements

of relationships between actors, and Holland and Leinhardt (1981) extended their approach to networks

consisting of binary observations. Hoff et al. (2002) further extended this approach to include nonlinear

functions of latent variables, and since then, many variations have been proposed (Handcock et al., 2007;

Hoff, 2008; Sewell and Chen, 2015). We refer to parametric network models wherein the observations are

independent conditional on random latent variables as “latent variable network models,” which we discuss

in detail in Section 4.2. Separate latent variable approaches may lead to vastly different estimates of β,
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and it may not be clear which model’s estimate of β or prediction to choose. Goodness-of-fit checks are

the primary method of assessing latent variable network model fit (Hunter et al., 2008a), however, select-

ing informative statistics is a well known challenge. Finally, latent variable network models are typically

computationally burdensome to estimate, often relying on Markov chain Monte Carlo methods.

Another approach to estimating covariate effects on network outcomes is the estimation of exponential

random graph models, known as ERGMs. ERGMs represent the probability of relation formation P(yij = 1)

as a function of exogenous covariates and statistics of the network itself, such as counts of the number of

observed triangles or the number of “2-stars” – pairs of indicated relations that share an actor. ERGMs

were developed by Frank and Strauss (1986) and Snijders et al. (2006), and are typically estimated using

Markov chain Monte Carlo (MCMC) approximations to posterior distributions (Snijders, 2002; Handcock

et al., 2019; Hunter et al., 2008b). ERGMs have been shown to be prone to place unrealistic quantities

of probability mass on networks consisting of all ‘1’s or all ‘0’s (Handcock et al., 2003; Schweinberger,

2011), and the estimation procedures may be slow to complete (Caimo and Friel, 2011). Further, parameter

estimates typically cannot be generalized to populations outside the observed network (Shalizi and Rinaldo,

2013).

A final approach to account for excess network dependence is to explicitly model the correlation

among network observations . This is the approach we take this chapter. In this approach, an unob-

served normal random variable, zij , is proposed to underlie each data point, such that yij = ✶[zij > 0]

for z ∼ N(Xβ,Ω(θ)). In this formulation, excess dependence is accounted for in Ω. The parameters β

and θ of the distribution of the unobserved normal random variables {zij}ij may be estimated using likeli-

hood methods. For example, Ashford and Sowden (1970) propose likelihood ratio hypothesis tests and Ochi

and Prentice (1984) give closed-form parameter estimators for studies of repeated observations on the same

individual, such that Ω(θ) is block diagonal. In more general scenarios, such as unrestricted correlation

structures, methods such as semi-parametrics (Connolly and Liang, 1988), pseudo-likelihoods (Le Cessie

and Van Houwelingen, 1994), and MCMC approximations to EM algorithms (Chib and Greenberg, 1998;

Li and Schafer, 2008) are employed for estimation.

In this chapter, we propose the Probit Exchangeable (PX) Model, a parsimonious regression model

for undirected binary network data based on an assumption of exchangeability of the unobserved normal

random variables {zij}ij . The assumption of exchangeability is pervasive in random network models and,
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in fact, underlies many of the latent variable network models (see Section 4.3 for a detailed discussion of

exchangeability)2. We show that, under exchangeability, the excess network dependence in {zij}ij may

be quantified using a single parameter ρ such that Ω(θ) = Ω(ρ). This fact remains regardless of the

particular exchangeable generating model, and thus, our approach can be seen as subsuming exchangeable

latent network variable models, at least up to the second moment of their latent distributions. The proposed

model may be rapidly estimated using a block coordinate descent to attain a numerical approximation to

the maximum likelihood estimator. The estimation scheme we employ is similar to those used to estimate

generalized linear mixed models in the literature (Littell et al., 2006; Gelman and Hill, 2006).

This chapter is organized as follows. As latent variable network models are strongly related to our work,

we review them in detail in Section 4.2. We provide supporting theory for exchangeable random network

models and their connections to latent variable network models in Section 4.3. In Section 4.4, we define

the PX model and then the estimation thereof in Section 4.5. We provide simulation studies demonstrating

consistency of the proposed estimation algorithm, and demonstrating the improvement with the proposed

model over latent variable network models in estimating β in Section 4.7. We analyze a network of political

books in Section 4.8, demonstrating the reduction in runtime when using the PX model, and compare its

out-of-sample performance to existing latent variable network models. A discussion with an eye toward

future work is provided in Section 4.9.

4.2 Latent variable network models

In this section, we briefly summarize a number of latent variable network models in the literature that are

used to capture excess dependence in network observations. All latent variable network models we consider

here may be written in the common form

P(yij = 1) = P (µij + fθ(vi,vj) + ξij > 0) , (4.2)

vi
iid∼ (0,Σv), ξij

iid∼ N(0, σ2),

2We consider infinite exchangeability such that the exchangeable generating process is valid for arbitrarily large

numbers of actors n, as in Hoover (1979) and Aldous (1981).
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where vi ∈ RK and µij is fixed. We set the total variance of the latent variable representation to be

1 = σ2+var[fθ(vi,vj)], since it is not identifiable. The function of the latent variables fθ : RK×RK → R,

parametrized by θ, serves to distinguish the latent variable network models discussed below. Regression

latent variable network models are formed when the latent mean is represented as a linear function of exoge-

nous covariates xij ∈ Rp, such that µij = xT
ijβ. The latent nodal random vectors {vi}ni=1 represent excess

network dependence – beyond the mean µij . Since relations yij and yik share latent vector vi corresponding

to shared actor i, and thus, yij and yik have similar distributions through latent function fθ(vi,vj). Many

popular models for network data may be represented as in (4.2), such as the social relations model, the latent

position model, and the latent eigenmodel.

4.2.1 Social relations model

The social relations model was first developed for continuous, directed network data (Warner et al.,

1979; Wong, 1982; Snijders and Kenny, 1999). In the social relations model for binary network data (Hoff,

2005), fθ(vi,vj) = vi + vj and vi = ai ∈ R for each actor i, such that

P(yij = 1) = P
(
xT
ijβ + ai + aj + ξij > 0

)
, (4.3)

ai
iid∼ (0, σ2

a), ξij
iid∼ N(0, σ2).

Each actor’s latent variable {ai}ni=1 may be thought of as the actor’s sociability: large values of ai correspond

to actors with a higher propensity to form relations in the network. The random {ai}ni=1 in (4.3) also

account for the excess correlation in network data; any two relations that share an actor, e.g. yij and yik are

marginally correlated.

4.2.2 Latent position model

A more complex model for representing excess dependence in social network data is the latent position

model (Hoff et al., 2002). The latent position model extends the idea of the social relations model by giving

each actor i a latent position ui in a Euclidean latent space, for example RK . Then, actors whose latent

positions are closer together in Euclidean distance are more likely to share a relation:
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P(yij = 1) = P
(
xT
ijβ + ai + aj − ||ui − uj ||2 + ξij > 0

)
, (4.4)

ai
iid∼ (0, σ2

a), ui
iid∼ (0,Σu), ξij

iid∼ N(0, σ2).

In the form of (4.2), the latent position model contains latent random vector vi = [ai,ui]
T ∈ RK+1, and

fθ(vi,vj) = ai + aj − ||ui − uj ||2. Hoff et al. (2002) shows that the latent position model is capable of

representing transitivity, that is, when yij = 1 and yjk = 1, it is more likely that yik = 1. Models that are

transitive often display a pattern observed in social network data: a friend of my friend is also my friend

(Wasserman and Faust, 1994).

4.2.3 Latent eigenmodel

The latent eigenmodel also associates each actor with a latent position ui in a latent Euclidean space,

however the inner product between latent positions (weighted by symmetric parameter matrix Λ) measures

the propensity of actors i and j to form a relation, rather than the distance between positions (Hoff, 2008):

P(yij = 1) = P
(
xT
ijβ + ai + aj + uT

i Λuj + ξij > 0
)
, (4.5)

ai
iid∼ (0, σ2

a), ui
iid∼ (0,Σu), ξij

iid∼ N(0, σ2).

In the context of (4.2), the function fθ(vi,vj) = ai + aj + uT
i Λuj for the latent eigenmodel, where the

parameters θ are the entries in Λ and vi = [ai,ui]
T ∈ RK+1. Hoff (2008) shows that the latent eigenmodel

is capable of representing transitivity, and that the latent eigenmodel generalizes the latent position model

given sufficiently large dimension of the latent vectors K.

In addition to transitivity, a second phenomenon observed in social networks is structural equivalence,

wherein different groups of actors in the network form relations in a similar manner to others in their group.

One form of structural equivalence is clustering, where the social network may be divided into groups of

nodes that share many relations within group, but relatively few relations across groups. Such behavior

is common when cliques are formed in high school social networks, or around subgroups in online social

networks. A form of structural equivalence is when actors in a given group are more likely to form relations

with actors in other groups than with actors in their own group, for example, in networks of high-functioning

brain regions when performing cognitively demanding tasks (Betzel et al., 2018). Two models that are aimed
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at identifying subgroups of nodes that are structurally equivalent are the latent class model of Nowicki and

Snijders (2001) and the mixed membership stochastic blockmodel (Airoldi et al., 2008). Hoff (2008) shows

that the latent eigenmodel is capable of representing stochastic equivalence in addition to transitivity, and

that the latent eigenmodel generalizes latent class models given sufficiently large dimension of the latent

vectors K. For this reason, we focus on the latent eigenmodel, and the simpler social relations model, as

reference models in this chapter.

4.2.4 Drawbacks

The latent variable network models discussed in this section were developed based on the types of pat-

terns often seen in real world social networks. Latent variable network models contain different terms to

represent the social phenomena underlying these patterns, and thus, different models may lead to substan-

tially different estimates of β. It may not be clear which model’s estimate of β, or which model’s prediction

of {yij}ij , is best. Generally, latent variable network models are evaluated using goodness-of-fit checks

(Hunter et al., 2008a), rather than rigorous tests, and it is well-known that selecting informative statistics

for the goodness-of-fit checks is challenging. Finally, the latent variable network models described in this

section are typically estimated using a Bayesian Markov chain Monte Carlo (MCMC) approach, which may

be slow, especially for large data sets.

4.3 Exchangeable network models

To motivate the formulation of the proposed model, we briefly discuss the theory of exchangeable ran-

dom network models and their relationship to latent variable network models. A random network model for

{ǫij}ij is exchangeable if the distribution of {ǫij}ij is invariant to permutations of the actor labels, that is, if

P ({ǫij}ij) = P
(
{ǫπ(i)π(j)}ij

)
, (4.6)

for any permutation π(.). There is a rich theory of exchangeable network models, dating back to random

matrices by Hoover (1979) and Aldous (1981), which we draw upon in this section.

All the latent variable network models discussed in Section 4.2 have latent error networks {ǫij}ij that

are exchangeable, where we define ǫij = fθ(vi,vj) + ξij from (4.2), the random portion of a general latent
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variable network model. Further, under constant mean µij = µ, all the latent variable network models for

the observed network {yij}ij in Section 4.2 are exchangeable. In fact, any exchangeable network model

may be represented by a latent variable network model. Specifically, the theory of exchangeable network

models states that every exchangeable random network model may be represented in the following form

(see, for example, Lovász and Szegedy (2006); Kallenberg (2006)):

P(yij = 1) = P (µ+ h(ui, uj) + ξij > 0) , (4.7)

ui
iid∼ Uniform(0, 1), ξij

iid∼ N(0, σ2),

where the function h : [0, 1] × [0, 1] → R has finite integral
∫
[0,1]×[0,1] h(u, v)dudv < ∞ and serves to

distinguish the various exchangeable network models. It can be shown that (4.7) is equivalent to the graphon

representation of exchangeable random network models, where the graphon is the canonical probabilistic

object of exchangeable random network models and the ξij are traditionally uniformly distributed (Lovász

and Szegedy, 2006; Borgs et al., 2014). Noting that we may always map the random scalar ui to some

random vector vi, the expression in (4.7) shows that every exchangeable random network model may be

represented by a latent variable network model in the sense of Section 4.2.

4.3.1 Covariance matrices of exchangeable network models

The expression in (4.7) shows that any exchangeable network model for binary network data must

correspond to a latent random network {ǫij}ij that is continuous and exchangeable. Marrs et al. (2017)

shows that directed exchangeable network models with continuous values all have covariance matrices of

the same form with at most five unique nonzero terms. Similarly, the covariance matrix of any undirected

exchangeable network model has the same form and contains at most two unique nonzero values. This fact

can be seen by simply considering the ways that any pair of relations can share an actor. In addition to a

variance, the remaining covariances are between relations that do and do not share an actor:

var[ǫij ] = σ2
ǫ , cov[ǫij , ǫik] := ρ, cov[ǫij , ǫkl] = 0, (4.8)

where the indices i, j, k, and l are unique. It is easy to see the second equality holds for any pair of relations

that share an actor by the exchangeability property, i.e. by permuting the actor labels. The third equality
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results from the fact that the only random elements in (4.7) are the actor random variables ui, uj , and the

random error ξij . When the random variables corresponding to two relations ǫij and ǫkl share no actor, the

pair of relations are independent by the generating process. Finally, we note that exchangeable network

models have relations that are marginally identically distributed, and thus relations therein have the same

expectation and variance, E[yij ] = Φ(µ) and var[yij ] = Φ(µ)(1−Φ(µ)) for all relations ij, where Φ(a) is

the standard normal cumulative distribution function evaluated at a That said, in the linear regression case,

the means µij = xT
ijβ are non-constant and thus the observations {yij}ij are not exchangeable; only the

latent network {ǫij}ij remains exchangeable in the linear regression case. In the proposed model, rather

than put forth a particular parametric model for the latent network {ǫij}ij , we simply model the covariance

structure outlined in (4.8).

4.4 The Probit Exchangeable (PX) model

In this section, we propose the probit exchangeable network regression model, which we abbreviate the

“PX” model. In the PX model, the vectorized mean of the network is characterized by a linear combination

of covariates, Xβ, where β is a p-length vector of coefficients that are the subject of inference and X is a

(
n
2

)
× p matrix of covariates. The excess network dependence beyond that captured in Xβ is represented

by an unobservable mean zero error vector ǫ, a vectorization of {ǫij}ij , that is exchangeable in the sense of

Section 4.3. The PX model is

P(yij = 1) = P
(
xT
ijβ + ǫij > 0

)
, (4.9)

ǫ ∼ N(0,Ω),

where we note that the variance of ǫij is not identifiable, and thus we choose var[ǫij ] = 1 without loss of

generality. We focus on normally-distributed unobserved errors ǫ in this chapter, however, other common

distributions, such as the logistic distribution, could be used. We note that the normal distribution assumption

implies that (4.9) is a probit regression model with correlation among the observations.

As discussed in Section 4.3, under the exchangeability assumption, the covariance matrix of the latent

error network var[ǫ] = Ω has at most two unique nonzero parameters. Taking var[ǫij ] = 1, the covariance

matrix of ǫ has a single parameter ρ = cov[ǫij , ǫik]. We may thus write
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Ω(ρ) = S1 + ρS2, (4.10)

where we define the binary matrices {Si}3i=1 indicating unique entries in Ω. The matrix S1 is a diagonal

matrix indicating the locations of the variance in Ω, and S2 and S3 indicate the locations in Ω corresponding

to the covariances cov[ǫij , ǫik], and cov[ǫij , ǫkl], respectively, where the indices i, j, k, and l are unique.

The PX model unifies many of the latent variable network models discussed in Sections 4.2 and 4.3.

Similar to (4.7), the PX model may be seen representing the covariance structure of the latent variables

{fθ(vi,vj)+ξij}ij with {ǫij}ij , the unobservable error network of the PX model in (4.9). As both networks

{fθ(vi,vj) + ξij}ij and {ǫij}ij are exchangeable, they have covariance matrices of the same form (see

discussion in Section 4.3). As every exchangeable random network model may be represented by a latent

variable network model, the PX model may represent the latent correlation structure of any exchangeable

network model, yet without specifying a particular exchangeable model. Further, we now show that the PX

model is equivalent to the social relations model under certain conditions.

Proposition 12. Suppose that the random effects {ai}ni=1 for the social relations model in (4.3) are normally

distributed. Then, there exists ρ ≥ 0 such that {yij}ij in the PX model in (4.9) is equal in distribution to

{yij}ij as specified by the social relations model in (4.3).

Proof. As the PX and social relations models are probit regression models with the same mean structure,

given by Xβ, it is sufficient to show that their latent covariance matrices are equivalent, that is, that var[{ai+

aj+ξij}ij ] = var[{ǫij}ij ]. By exchangeability, the latent covariance matrices of the PX and social relations

models have the same form and by assumption have variance 1. It is easy to see that, given σ2
a ≤ 1 (a

necessary condition for var[ǫij ] = 1), we may take ρ = σ2
a/2 for the PX model, which establishes equality

in the model distributions.

Proposition 12 states that the PX model and social relations model are equivalent under normality of

their latent error networks. In principle, the social relations model is simply a generalized linear mixed

model, however, existing software packages, such as lme4 in R (Bates et al., 2015), do not appear to

accommodate the random effects specification of the social relations model in (4.3) since the indices i and

j pertain to random effects ai and aj from the same set (as opposed to ai and bj in a random crossed

design). Nevertheless, the estimation scheme proposed in Section 4.5 employs the same strategies as those
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commonly used to estimate generalized linear mixed models (Littell et al., 2006; Gelman and Hill, 2006). In

the estimation algorithm in lme4, the marginal likelihood of the data is approximated and then maximized

using numerical approximations with respect to β and random effects variance, for example σ2
a in the social

relations model. Rather than an approximate likelihood, we propose maximizing the true likelihood with

respect to β and ρ, yet also use numerical approximations to accomplish this maximization.

It is important to note that, although the latent errors {ǫij}ij in the PX model form an exchangeable

random network, the random network yij represented by the PX model is almost certainly not exchangeable.

For example, each yij may have a different marginal expectation Φ(xT
ijβ). Then, the relations in the network

are not marginally identically distributed, which is a necessary condition for exchangeability. Further, the

covariances between pairs of relations, say yij and yik, depend on the marginal expectations:

cov[yij , yik] = E [yijyik]− E [yij ]E [yik] =

∫ ∞

−xT
ijβ

∫ ∞

−xT
ik
β

dFρ − Φ(xT
ijβ)Φ(x

T
ikβ). (4.11)

Here, dFρ is the bivariate standard normal distribution with correlation ρ. Since the covariance cov[yij , yik]

depends on the latent means xT
ijβ and xT

ikβ, cov[yij , yik] is only equal to cov[yab, yac] when the latent means

are equal. As a result, although the covariance matrix of the unobserved errors Ω is of a simple form with

entries {1, ρ, 0}, the covariances between elements of the vector of observed relations y are heterogeneous

(in general) and depend on ρ in a generally more complicated way.

4.5 Estimation

In this section, we propose an estimator of {β, ρ} in the PX model that approximates the maximum

likelihood estimator (MLE). The algorithm we propose is a block coordinate descent with steps based on

expectation-maximization (EM) algorithms (Dempster et al., 1977). Generally, the MLE of the parame-

ters in a correlated probit regression model may be written only for particular covariance structures of the

unobserved errors. Although the covariance matrix for the PX model is highly structured, as in (4.10), a

closed-form expression for the MLE does not appear available.

The proposed estimation algorithm consists of alternating maximization of the data log-likelihood, ℓy,

with respect to β and ρ, respectively. For each β and ρ maximization, we use an EM algorithm to maxi-

mize ℓy with respect to each parameter by writing the likelihood as a function of latent relation ij values
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zij = xT
ijβ + ǫij , such that yij = ✶[zij > 0]. Since the proposed algorithm is an embedding of EM

algorithms within a block coordinate descent, we term it the BC-EM algorithm. To improve algorithm ef-

ficiency, we initialize β at the ordinary probit regression estimator, assuming independence, and initialize

ρ with a mixture estimator based on possible values of ρ such that Ω is positive definite, as detailed in Ap-

pendix C.1.1. The complete BC-EM algorithm is presented in Algorithm 2. In what follows, we detail the

BC-EM algorithm, beginning with maximization with respect to β, and then proceeding to maximization

with respect to ρ.

Algorithm 2 BC-EM estimation of the PX model

0. Initialization:

Initialize β̂(0) using probit regression assuming independence and initialize ρ̂(0) as described

in Appendix C.1.1. Set positive convergence thresholds τ , τβ , τρ, and set iteration ν = 0.

1. β block:

Set s = 0 and β̂(ν, s) = β̂(ν).

1.1. Expectation: Given ρ̂(ν) and β̂(ν, s), compute E[ǫ |y, ρ̂(ν), β̂(ν,s)] using the procedure

described in Appendix C.1.2.

1.2. Maximization: Compute the updated estimate

β̂(ν, s+1) = β̂(ν, s) + (XTΩ−1X)−1XTΩ−1E[ǫ |y, ρ̂(ν), β̂(ν,s)].

1.3. If ||β̂(ν, s+1) − β̂(ν, s)||1 < τβ , then set β̂(ν+1) = β̂(ν, s+1). Otherwise, increment s by 1

and return to step 1.1.

2. ρ block:

Set s = 0 and ρ̂(ν, s) = ρ̂(ν).

2.1. Subsample: Randomly sample 10n(n − 1) pairs of relations that share an actor, and

define this sample A(s) ⊂ Θ2.

2.2. Expectation: Given ρ̂(ν, s) and β̂(ν+1), approximate {γi}3i=1 as described in Ap-

pendix C.1.3.

2.3. Maximization: Given ρ̂(ν, s), β̂(ν+1), and {γi}3i=1, compute ρ̂(ν, s+1) by alternating

(4.15) and (4.16) until ρ changes by less than τρ. The final value of ρ is ρ̂(ν, s+1).

2.4. If |ρ̂(ν, s+1) − ρ̂(ν, s)| < τρ, then set ρ̂(ν+1) = ρ̂(ν, s+1). Otherwise, increment s by 1 and

return to step 2.1.

3. If max{||β̂(ν+1) − β̂(ν)||1, |ρ̂(ν+1) − ρ̂(ν)|} > τ , then increment ν by 1 and return to Step 1.

Otherwise, end.
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4.5.1 Maximization with respect to β

To maximize the data log-likelihood, ℓy, with respect to β, we utilize an EM algorithm. We begin by

discussing expectation of the likelihood ℓz with respect to z (E-step), follow by discussing maximization

of the resulting expression as a function of β (M-step), and then discuss approximations to make the

estimation computationally feasible.

E-step:

Consider the log-likelihood, ℓz, of the latent continuous random vector z. Taking the expectation of ℓz

conditional on y, the expectation step for a given iteration ν of the EM algorithm is

E[ℓz |y, ρ = ρ̂(ν),β = β̂(ν)] = (4.12)

− 1

2
log2π|Ω| − 1

2
E
[
(z−Xβ)TΩ−1(z−Xβ) |y, ρ = ρ̂(ν),β = β̂(ν)

]
,

where ρ̂(ν) and β̂(ν) are the estimators of ρ and β at iteration ν. In discussing the M-step for β, we will

show that that the β update depends on the data only through the expectation E[ǫ |y, ρ̂(ν), β̂(ν)].

M-step:

Setting the derivative of (4.12) with respect to β equal to zero, the maximization step for β is

β̂(ν+1) = β̂(ν) +
(
XTΩ−1X

)−1
XTΩ−1E[ǫ |y, ρ̂(ν), β̂(ν)], (4.13)

where we use the identity ǫ = z−Xβ. Noting that (4.13) only requires the expectation E[ǫ |y, ρ̂(ν), β̂(ν)],

an EM algorithm to maximize ℓy with respect to β consists of alternating computation of E[ǫ |y, ρ̂(ν), β̂(ν)]

in the E-step with computing the next β estimate given by (4.13) in the M-step.

Approximations:

The computation of E[ǫ |y, ρ̂(ν), β̂(ν)] in (4.13) is nontrivial, as it is a
(
n
2

)
-dimensional truncated multi-

variate normal integral. We exploit the structure of Ω to compute E[ǫ |y, ρ̂(ν), β̂(ν)] using the law of total

expectation. A Newton-Raphson algorithm, along with an approximate matrix inverse, are employed to
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compute an approximation of of E[ǫ |y, ρ̂(ν), β̂(ν)]. Details of the implementation of the EM algorithm for

β are given in Appendix C.1.2.

4.5.2 Maximization with respect to ρ

To maximize ℓy with respect to ρ, we again utilize an EM algorithm. We begin by discussing

expectation of the likelihood ℓz with respect to z (E-step), follow by discussing maximization of the

resulting expression as a function of ρ (M-step), and then discuss approximations to make the estimation

computationally feasible.

E-step:

The expectation step is the same as in (4.12), although evaluated at β = β̂(ν+1). In discussing

the M-step for ρ, we will show that that the ρ update depends on the data through the expectations

E[ǫTSiǫ |y, ρ̂(ν), β̂(ν+1)] for i ∈ {1, 2, 3}.

M-step:

To derive the maximization step for ρ, we use the method of Lagrange multipliers, since differentiating

(4.12) directly with respect to ρ gives complex nonlinear equations that are not easily solvable. We first

define the set of parameters {φi}3i=1, representing the variance and two possible covariances in Ω,

var[ǫij ] = φ1, cov[ǫij , ǫik] = φ2 = ρ, cov[ǫij , ǫkl] = φ3, (4.14)

where the indices i, j, k, and l are distinct. In addition, we let p = [p1, p2, p3] parametrize the precision

matrix Ω−1 =
∑3

i=1 piSi, which has the same form as the covariance matrix Ω (see Marrs et al. (2017) for a

similar result when {ǫij}ij forms a directed network). The objective function, incorporating the restrictions

that φ1 = 1 and φ3 = 0, is

Qy(φ) := E[ℓz |y] +
1

2
λ1(φ1 − 1) +

1

2
λ3φ3,

where φ = [φ1, φ2, φ3] and the ‘12 ’ factors are included to simplify algebra. Then, differentiating Qy with

respect to p, λ1, and λ3, the estimators for ρ, {λ1, λ3} are
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ρ̂ = γ2 −
1

|Θ2|

[
∂φ1

∂p2
∂φ3

∂p2

]T


λ1

λ3


 (4.15)



λ̂1

λ̂3


 =




∂φ1

∂p1
∂φ3

∂p1

∂φ1

∂p3
∂φ3

∂p3




−1 

|Θ1| 0

0 |Θ3|






γ1 − 1

γ3


 , (4.16)

where γi := E[ǫTSiǫ |y, ρ̂(ν), β̂(ν+1)]/|Θi| and Θi is the set of pairs of relations (jk, lm) that share an

actor in the ith manner, for i ∈ {1, 2, 3}. For instance, Θ2 consists of pairs of relations of the form (jk, jl),

where j, k, and l are distinct indices. In (4.15) and (4.16), the partial derivatives
{

∂φi

∂pj

}
are available in

closed form and are easily computable in O(1) time using the forms of Ω and Ω−1. See Appendix C.2 for

details.

Alternation of the estimators for ρ and {λ1, λ3} in (4.15) and (4.16) constitutes a block coordinate

descent for ρ = φ2 subject to the constraints φ1 = 1 and φ3 = 0. This block coordinate descent makes up

the M-step of the EM algorithm for ρ. The M-step depends on the data through {γi}3i=1, the computation

of which constitutes the E-step of the EM algorithm. We describe the approximation to the E-step, that is,

computation of approximate values of {γi}3i=1 below.

Approximations:

The expectations {γi}3i=1 require the computation of
(
n
2

)
-dimensional truncated multivariate normal in-

tegrals, which are onerous for even small networks. Thus, we make three approximations to {γi}3i=1

to reduce runtime of the BC-EM algorithm. First, we compute the expectations conditioning only on

the entries in y that correspond to the entries in ǫ being integrated, for example, instead of computing

E[ǫjkǫlm |y, ρ̂(ν), β̂(ν+1)], we compute E[ǫjkǫlm | yjk, ylm, ρ̂(ν), β̂(ν+1)]. Second, we find empirically that

γ2 = E[ǫTS2ǫ |y, ρ̂(ν), β̂(ν+1)]/|Θ2| is approximately linear in ρ, and thus, we compute γ2 for ρ = 0 and

ρ = 1, and use a line connecting these two values to compute γ2 for arbitrary values of ρ (see evidence of lin-

earity of γ2 for the political books network in Appendix C.4). Third, it can be shown that γ2 = ρ+op(n
−1/2),

yet, γ2 is an average of O(n3) terms. We take a random subset of O(n2) of these terms at each iteration

to reduce the computational burden (note that γ1 and γ3 may be computed with O(n2) operations given
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the pairwise approximation that E[ǫjkǫlm |y, ρ̂(ν), β̂(ν+1)] ≈ E[ǫjkǫlm | yjk, ylm, ρ̂(ν), β̂(ν+1)]). Additional

details of the approximations to {γi}3i=1 are given in Appendix C.1.3.

4.6 Prediction

In this section, we describe how to use the PX model to make predictions for an unobserved network

relation. The predicted value we seek is the probability of observing yjk = 1 given all the other values y−jk,

where y−jk is the vector of observations y excluding the single relation for pair jk. This probability is again

equal to a
(
n
2

)
-dimensional multivariate truncated normal integral, which is computationally burdensome.

Thus, we approximate the desired prediction probability

P(yjk = 1 |y−jk) = E
[
E
[
✶[ǫjk > −xT

jkβ] | ǫ−jk

]
|y−jk

]
, (4.17)

≈ Φ

(
E[ǫjk |y] + xT

jkβ

σn

)
.

The approximation in (4.17) is based on the fact that [ǫjk | ǫ−jk] is normally distributed:

ǫjk | ǫ−jk ∼ N(µjk, σ
2
n), (4.18)

µjk = −σ2
n1

T
jk (p2S2 + p3S3) ǫ̃−jk, σ2

n =
1

p1
,

where 1jk is the vector of all zeros with a one in the position corresponding to relation jk and, for notational

simplicity, we define ǫ̃−jk is the vector ǫ with a zero in the entry corresponding to relation jk. We note

that the diagonal of the matrix p2S2 + p3S3 consists of all zeros so that µjk is free of ǫjk. Then, the inner

expectation in (4.17) is

E
[
✶[ǫjk > −xT

jkβ] | ǫ−jk

]
= Φ

(
µjk + xT

jkβ

σn

)
. (4.19)

Of course, µjk depends on ǫ−jk which is unknown, and thus, we replace µjk with its conditional expectation

E[µjk |y−jk] = E[ǫjk |y−jk].

Computing E[ǫjk |y−jk] is extremely difficult, however computing E[ǫjk |y] proves feasible if we ex-

ploit the structure of Ω. Thus, we approximate the desired expectation by imputing yjk with the mode of
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the observed data:

E [ǫjk |y−jk] ≈ E [ǫjk |y−jk, yjk = y∗] = E [ǫjk |y] , (4.20)

where y∗ is the mode of y−jk. The error due to this approximation is small and shrinks as n grows.

Substituting (4.20) for µjk in (4.19) gives the final expression in (4.17).

4.7 Simulation studies

In this section, we describe two simulation studies. The first verifies that the performance of the BC-EM

estimator in Algorithm 2 is not substantially worse than the MLE. The second simulation study verifies con-

sistency of the BC-EM estimators of β, and compares the performance of these estimators to the estimators

of β from the social relations model and the latent eigenmodel.

4.7.1 Evaluation of approximations in Algorithm 2

To evaluate the efficacy of the approximations described in the estimation procedure in Algorithm 2,

we conducted a simulation study comparing BC-EM, and MLE estimators of β. We estimated β in the

standard probit model assuming independence between observations (which we abbreviate “std. probit”) as

a baseline. We fixed X for the study to contain a single covariate (column) of Bernoulli(p = 0.25) random

variables. We simulated 100 networks from the PX model in (4.9) using this X, for each combination of

parameters β = 1 and ρ ∈ {0.1, 0.2, 0.3, 0.4}. For each realization, we estimated β in the PX model using

BC-EM in Algorithm 2. To estimate β in the standard probit model, we used the the function glm in R.

We numerically optimized the data log-likelihood using the optim function in R to compute the MLE.

Since this numerical optimization is computationally onerous, we simulated networks of size n = 10 for

this study.

In the left panel of Figure 4.1, we evaluate the performance of the BC-EM estimator by comparing the

mean square error (MSE) between its coefficient estimate, β̂BC−EM , and MLE obtained by the optimiza-

tion procedure β̂MLE . As a baseline, we compute the MSE between β̂MLE and the true value β. If the

approximations in the BC-EM algorithm are small, we expect the MSE between β̂BC−EM and β̂MLE to be

much smaller than the MSE between β̂MLE and β. Generally, the MSE between β̂BC−EM and β̂MLE is
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Figure 4.1: The left panel depicts performance in estimating β: MSE between the BC-EM estimator and

the MLE (MSE(β̂MLE − β̂BC−EM )), between the MLE and the truth (MSE(β̂MLE − β)), and between the

MLE and the standard probit estimator (MSE(β̂MLE − β̂Std.probit)). The right panel depicts performance

in estimating ρ: MSE between the MLE and the BC-EM estimator (MSE(ρ̂MLE − ρ̂BC−EM )) and between

the MLE and the truth (MSE(ρ̂MLE − ρ). The MSEs are plotted as a function of the true values of ρ, and

solid vertical lines denote Monte Carlo error bars.

smaller than the MSE between β̂MLE and β, however, the discrepancy between the two MSEs decreases as

the true ρ grows. As a reference, the MSE between β̂Std. probit and β̂MLE is also shown in the left panel of

Figure 4.1. For true ρ > 0.2, the BC-EM estimator is substantially closer to β̂MLE than the standard probit

estimator is to β̂MLE . Raw MSE values between the estimators and the truth, shown in Appendix C.3.1,

confirm that the BC-EM algorithm does perform better than standard probit in MSE with respect to esti-

mation of β. The results of this simulation study suggest that the BC-EM algorithm improves estimation

of β over the standard probit estimator for ρ > 0, and that the BC-EM estimator is relatively close to the

MLE, signifying the approximations in the BC-EM algorithm are not unreasonable. It is worth noting that

the approximations used in the BC-EM algorithm are best for large n so we would expect better and better

results as n increases.

In the right panel Figure 4.1, we see that the the BC-EM estimator of ρ is substantially closer to the

MLE, ρ̂MLE , than the MLE is close to the true value of ρ. This suggests that the approximation error in

estimating ρ in the BC-EM algorithm is small. Further, the raw MSE values shown in Appendix C.3.1 show

that ρ̂BC−EM is actually closer to the true ρ than is ρ̂MLE . The difference in the MSE between ρ̂MLE and

ρ̂BC−EM and the MSE between ρ̂MLE and ρ again decreases as the true value of ρ grows. This trend and

the similar trend in the left panel of Figure 4.1 suggest that the approximations in the BC-EM algorithm

degrade as the true value of ρ grows, at least for n = 10.
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4.7.2 Performance in estimation of β

To evaluate the performance of the PX estimator in estimating linear coefficients β, we compared es-

timates of β by the BC-EM algorithm to estimators of the social relations and latent eigenmodels on data

generated from the PX model and data generated from the latent eigenmodel. We used the amen package

in R to estimate the social relations model and latent eigenmodel (Hoff et al., 2017). We again compared

these estimators to the standard probit regression model assuming independence as a baseline, which we

estimated using the function glm in R.

To conduct the desired simulation study, we generated data with mean consisting of three covariates and

an intercept:

yij = ✶

[
β0 + β1✶[x1i ∈ C]✶[x1j ∈ C] + β2|x2i − x2j |+ β3x3ij + ǫij > 0

]
. (4.21)

In the model in (4.21), β0 is an intercept; β1 is a coefficient on a binary indicator of whether individuals i

and j both belong to a pre-specified class C; β2 is a coefficient on the absolute difference of a continuous,

actor-specific covariate x2i; and β3 is that for a pair-specific continuous covariate x3ij . We fixed β =

[β0, β1, β2, β3]
T at a single set of values. Since the accuracy of estimators of β may depend on X, we

generated 20 random design matrices X for each sample size of n ∈ {20, 40, 80} actors. For each design

matrix we simulated 100 error realizations of {ǫij}ij , with distribution that depended on the generating

model. When generating from the PX model, half of the total variance in ǫij was due to correlation ρ = 1/4

(the remaining half was due to noise ξij). When generating from the latent eigenmodel in (4.5), one third

the variance in ǫij was due to each term ai + aj , u
T
i Λuj , and ξij , respectively. For additional details of the

simulation study procedures, see Appendix C.3.2.

In Figure 4.2, we see that the BC-EM estimator for the PX model has a downward trend in MSE with n,

and a reducing spread of the MSE with n, for both the PX and latent eigenmodel generating models. These

facts suggest that the PX estimator is consistent for β for both the PX and latent eigenmodel generating

models. Further, the BC-EM estimator has the lowest median MSE of any of the estimators for all entries

in β, where the MSE is evaluated for each X realization (across the error realizations) and the median is

computed across the 20 X realizations. We observe similar patterns for the correlation parameter ρ; see

Appendix C.3.2. Interestingly, the superiority of the PX estimator holds whether we generate from the PX
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or latent eigenmodel, which suggests that any benefit in correctly specifying the latent eigenmodel is lost in

the estimating routine. The larger MSEs of the amen estimator of the social relations and latent eigenmodels

are a result of bias; see Appendix C.3.2 for bias-variance decomposition of the MSEs.

4.8 Analysis of a network of political books

We live in a time of political polarization. We investigate this phenomenon by analyzing a network of

n = 105 books on American politics published around the time of the 2004 presidential election3. These

data were compiled by Dr. Valdis Krebs using the “customers who bought this book also bought these

books” list on Amazon.com. At the time, when browsing a particular book, Amazon listed the books that

were bought by individuals who also bought the book in question. Thus, a relation between two books in the

network indicates that they were frequently purchased by the same buyer on Amazon. Political books on the

best-seller list of The New York Times were used as actors in the network. Finally, the books were labelled

as conservative, liberal, or neutral based on each book’s description (Figure 4.3). Work by Dr. Krebs on a

similar network was described in a 2004 New York Times article (Eakin, 2004), where it was shown that there

were many relations between books with similar ideologies yet relatively few across ideologies. The work

by Dr. Krebs has inspired similar analyses of book purchasing networks in the fields of nanotechnology

(Schummer, 2005) and climate science (Shi et al., 2017b).

To confirm previous work by Dr. Krebs, we develop a model that assigns a different probability of edge

formation between books i and j depending on whether the books are ideologically aligned. By examining

the network in Figure 4.3, we observe that neutral books appear to have fewer ties to other books than books

that are labelled conservative or liberal. Thus, we add a nodal effect indicating whether either book in a

relation is labelled neutral. The regression model specified is

P(yij = 1) = P (β0 + β1✶[c(i) = c(j)] + β2✶ [{c(i) = neutral} ∪ {c(j) = neutral}] + ǫij > 0) , (4.22)

ǫ ∼ (0,Σ),

3These unpublished data were compiled by Dr. Valdis Krebs for his website http://www.orgnet.com/ and are

hosted, with permission, by Dr. Mark Newman at http://www-personal.umich.edu/~mejn/netdata/polbooks.zip
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Figure 4.2: MSE of estimators of β1 for a given X when generating from the PX model (top row) and the latent eigenmodel (LE; bottom row).

Variability captured by the boxplots reflects variation in MSE with X. Note that the intercept, β0, has MSEs on different scales than the remaining

coefficients.
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Figure 4.3: Krebs’ political books network (left) and out-of-sample performance in 10-fold cross validation,

as measured by area under the precision-recall curve (PRAUC, right), plotted against mean runtime in the

cross validation. The estimators are standard probit assuming independnet observations (Std. probit), the

PX model as estimated by the BC-EM algorithm (PX), the social relations model estimator (SRM), and the

latent eigenmodel estimator (LE).

where c(i) represents the class of book i (neutral, conservative, or liberal) and the distribution and covariance

matrix of ǫ are determined by the particular model being estimated. In this section, we estimate the the PX

model (PX), the equivalent social relations model (SRM), the latent eigenmodel (LE), and, as a baseline, the

standard probit regression model assuming independence of observations (which we label “std. probit”).

We used a 10-fold cross validation to compare the out-of-sample predictive performance of the estima-

tors and the runtimes of the algorithms for the models in question. We used the proposed BC-EM algorithm

to estimate the PX model, the amen package in R to estimate the social relations model and latent eigen-

model (Hoff et al., 2017), and the glm(.) command in the R package stats to estimate the standard

probit model. We randomly divided the
(
105
2

)
relations into 10 disjoint sets, termed “folds”, of roughly the

same size. Then, for each fold, we estimated the models on the remaining nine folds and made predictions

for the data in the fold that was not used for estimation (for details of estimation of the PX model with

missing data, see Appendix C.1.4). Repeating this operation for each fold gave a complete data set of out-

of-sample predictions for each estimating model. The procedure to make marginal predictions from the PX

model is described in Section 4.6. To compare with the PX model, we make marginal predictions from the

social relations model and the latent eigenmodel, that is, by integrating over the random effect space. The
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predictions from the social relations model and the latent eigenmodel are automatically output from amen

in the presence of missing data. The predictions from the standard probit model are marginal by default as

there is no correlation structure.

We use area under the precision recall curve (PRAUC) to measure performance of the predictions rel-

ative to the observed data, although using area under the receiver operating characteristic (ROC) yields the

same conclusions (see Appendix C.4). In Figure 4.3, the proposed BC-EM estimator produces an improve-

ment in PRAUC over standard probit prediction that is roughly equivalent to the improvement of the social

relations model over standard probit, yet with an average runtime that is 50 times faster (about a minute

compared with an hour). The latent eigenmodel produces an improvement in PRAUC over the proposed

BC-EM algorithm and the social relations model, however, at the expense of significant increase in average

runtime, that of about 3,600 times slower than BC-EM and taking almost three days to complete. Note that

we selected the number of MCMC iterations for the social relations and latent eigenmodels that resulted

in a set of samples from the posterior distribution (after burn-in) that has an effective sample size equal to

roughly 100 independent samples of the β parameters. Increasing the number of iterations, which may be

desirable, would result in even longer runtimes for the estimators of the social relations and latent eigenmod-

els. Taken together, the results of the cross validation study suggest that the PX model accounts for a large

portion of the correlation in network data with estimation runtime that, depending upon stopping criterion,

may be orders of magnitude faster the runtime than existing approaches.

To estimate the complete data set under the mean model in (4.22), we used the BC-EM algorithm for the

PX model and the amen package for the social relations model (SRM) and latent eigenmodel (LE), which

we ran for 1 × 106 iterations after a burn in of 5 × 104 iterations (with runtimes of roughly two hours for

SRM and 17 hours for LE). The coefficient estimates in Table 4.1 suggest that books that share the same

ideology are more likely to be frequently purchased together, as all β̂1 > 0. This positive coefficient estimate

demonstrates political polarization in the network: conservative books are more likely to be purchased

with other conservative books rather than with liberal books. The second coefficient estimate, β̂2 > 0,

suggests that, relative to a random pair of ideologically misaligned books, pairs of books where at least one

of the books is neutral are more likely to be purchased together. Neutral books are thus generally more

likely to be purchased with books of disparate ideologies, and have a unifying effect in the book network.
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Returning briefly to Table 4.1, the runtimes highlight that BC-EM reduces computational burden by order(s)

of magnitude over existing approaches.

Table 4.1: Results of fitting the Krebs political books data using the BC-EM estimator for the PX model

and the amen estimator for the social relations and latent eigenmodels (SRM and LE, respectively). Point

estimates for the coefficients are given to the left of the vertical bar, and runtimes (in seconds) and minimum

effective sample sizes across the coefficient estimates are given to the right.

β̂0 β̂1 β̂2 runtime (s) min(ESS)
PX: BC-EM -1.61 0.93 0.97 54 –

SRM: amen -2.70 1.55 0.98 7984 195

LE: amen -3.90 2.06 1.63 62565 26

4.9 Discussion

In this chapter we present the PX model, a probit regression model for binary, undirected networks.

The PX model adds a single parameter – latent correlation ρ – to the ordinary probit regression model that

assumes independence of observations. Our focus in this chapter is estimation of the effects of exogenous

covariates on the observed network, β, and prediction of unobserved network relations. Thus, we do not

present uncertainty estimators for β̂ or ρ̂. However, practitioners estimating the PX model may require

uncertainty estimators to perform inference. Development and evaluation of estimators of the uncertainty

in network data estimators is non-trivial, indeed, entire papers are dedicated to this task (see, for example,

Aronow et al. (2015); Marrs et al. (2017)). Thus, we leave the development of uncertainty estimators for the

PX model to future work.

A popular notion in the analysis of network data is the presence of higher-order dependencies, meaning

beyond second order (Hoff, 2005). The representation of triadic closure, a form of transitivity – the friend of

my friend is likely to also be my friend – is one motivation for the latent eigenmodel (Hoff, 2008). The PX

model does represent triadic closure to a degree. One can show that, given two edges of a triangle relation

exist, yij = yjk = 1, the probability that the third edge exists, P(yik = 1), is increased. However, the

increase in probability describing triadic closure under the PX model is fixed based on the estimated value

of ρ, which is informed only by the first two moments of the data when using the BC-EM estimator. It

is desirable to develop a test for whether the PX model sufficiently represents the level of triadic closure
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as suggested by the data. One such test might compute the empirical probability that P(yik = 1 | yij =

yjk = 1) and compare this statistic to its distribution under the null that the PX model is the true model

with correlation parameter ρ = ρ̂. Future work consists in theoretical development of the distributions of

the test statistic(s) of choice under the null. Statistics of interest will likely be related to various clustering

coefficients in the networks literature (Wasserman and Faust, 1994; Watts and Strogatz, 1998).

We focus on the probit model in this chapter. However, we find that this choice may limit the degree of

covariance in the observed network {yij}ij that the PX model can represent. For constant mean xT
ijβ = µ,

the maximum covariance the PX model can represent is bounded by

cov[yij , yik] ≤ lim
ρ→1/2

∫ ∞

−µ

∫ ∞

−µ
dFρ − Φ(µ)2, (4.23)

where dFρ is the bivariate standard normal distribution with correlation ρ. The use of different latent dis-

tributions for ǫ other than normal may allow a model analogous to the PX model to represent a larger

range of observed covariances cov[yij , yik]. Future work may consider a logistic distribution for ǫ, as some

researchers prefer to make inference with logistic regression models for binary data due to the ease of

interpretation.
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Chapter 5

Conclusion

In this dissertation, we have presented methods for accounting for excess dependence, beyond that rep-

resented by the covariates, in regression of network data. In the analysis of a bipartite network (Chapter 2),

we explicitly modeled and inferred the excess network dependence. In contrast, in Chapter 3, we presented

a parsimonious estimator for making inference on regression coefficient estimators when the response forms

a continuous valued network, avoiding the need to explicitly model the form of the excess dependence. We

presented similar methods for accounting for excess network dependence in regression of binary network

data in Chapter 4. At the end of each of Chapters 2-4, we discussed potential extensions of the work therein.

We now discuss additional possible research directions for modeling of bipartite network data and estimat-

ing regressions of continuous and binary network data in Sections 5.1 through 5.3. We conclude with a

perspective on the broader impacts of this dissertation in Section 5.4.

5.1 Modeling of bipartite network data

A shortcoming of the Bipartite Longitudinal Influence Network (BLIN) model in Chapter 2 is that it

represents a dependence structure that is strictly for discrete, equally-spaced event data. However, many

phenomena – including international relations – occur in time regimes that are continuous and irregular. For

example, in an analysis of a longitudinal bipartite network of environmental treaties, Campbell et al. (2019)

observe ratifications of environmental treaties at the resolution of days, yet, the authors analyze the data at

the resolution of years. Recall that, in the BLIN model, the influence of one ratifictation on the potential

of future ratifications to occur is constant for a set time interval, such as three days. Thus, the BLIN model

is ill-suited to the higher resolution at the level of days, since it is unlikely that these ratifications occur on

consecutive days, and it is likely that the dependence in the data is non-constant in time. Instead, it may be

best to estimate a level of influence of one ratification on the potential for another to occur that is a function

of the time t between them, such that ratifications that are closer together in time are more highly correlated

than those that are farther apart in time. One possible function to control the magnitude of influence is

one which decays exponentially over time, for example, f(t) = exp(−κt), where κ is a single additional
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parameter to be estimated that controls the rate of decay of all influences (we note that f(t) = 1 in the BLIN

model proposed in Chapter 2). An approach that estimates κ as well as A and B matrices should verify

that estimating a κ 6= 0 provides an improvement in model performance over κ = 0, that is, that there is

evidence in the data that such a decay model is warranted.

The BLIN model in Chapter 2 may be written as a vector autoregressive model with coefficient matrix

Θ. As we discuss in Chapter 2, the BLIN model may be seen as one way to impose a particular structure

on Θ such that Θ is estimable. Further, we employ shrinkage in the form of lasso regression to estimate

nonzero elements in Θ. When the true Θ is outside the space of coefficient matrices spanned by those of the

BLIN model, this regression will fail (even under lasso regularization). Instead, it may be desirable to shrink

the fully populated Θ matrix while still encouraging the BLIN structure. Griffin and Hoff (2019) develop

shrinkage methods for regression coefficients in generalized linear models that simultaneously encourage

sparsity and structure, for example, when regression coefficients are vectorized matrices. It may be possible

to build off this approach to shrink Θ while simultaneously encouraging the structure of the BLIN model.

5.2 Testing assumptions of regression of network data

The methods in both Chapters 3 and 4 rely on assumptions of joint exchangeability. This assumption is

common in the network literature and is natural whenever the covariates contain all the heterogeneity in the

probability distribution of the network. However, it is reasonable to suspect that in some cases, there may

be omitted covariates that render the residual structure heterogeneous. Thus, it is desirable to test whether

the assumption of joint exchangeability is appropriate for a particular data set.

One form of heterogeneity in the residual structure is heteroskedasticity. Indeed, homogeneity of vari-

ances of the errors is a requirement for the joint exchangeability assumed in Chapters 3 and 4. Thus,

existing tests for heteroskedasticity may be sufficient to reject the null hypothesis of joint exchangeability

of the errors (Breusch and Pagan, 1979; Jarque and Bera, 1980; White, 1980). However, we must consider

that the existing tests are developed for vector regression problems, and thus, may be underpowered for

the network regression problems considered in this dissertation, as the networks have corresponding matrix

representations. Thus, one direction for research is to develop tests for joint exchangeability that build upon

existing tests. Following White (1980), a test statistic that compares estimators of V [β̂] that require joint ex-

changeability for consistency against those estimators of V [β̂] that are consistent under heteroskedasticity,
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respectively, may be a statistic that could be used to test for joint exchangeability. It remains to inves-

tigate the consistency of such a test statistic and demonstrate its power under possible non-exchangeable

alternative distributions for the errors.

5.3 Nonparametric models for network data

We have shown in Section 3.3 that all exchangeable network models have a covariance matrix of the

same form. This powerful result suggests a representation theorem may exist for jointly exchangeable net-

work models that is made up of a covariance matrix and a marginal distribution of the unobserved errors.

Development of theory in support of such a representation would be a contribution. Further, if any jointly

exchangeable random network model may be represented by a covariance matrix and a marginal distribution

of the unobserved errors, then this representation provides a setting for new estimators of these models. It

may be efficacious, for example, to estimate the covariance parameter ρ for the undirected binary data in

Chapter 4 while simultaneously estimating a non-parametric distribution of the unobserved errors (and pos-

sibly also estimating the effects of exogenous covariates). This approach is likely similar to non-parametric

estimators of jointly exchangeable network models, see Bickel and Chen (2009) for example, however the

Bickel and Chen (2009) approach is not directly applicable to regression problems.

As an example, consider Chapter 4, where we select a normal marginal distribution for the unobserved

(jointly exchangeable) errors in the PX model. This assumption of normality may be unrealistic and/or

inconvenient; for example, see Section 4.9 where we discuss logistic regression as an alternative to the

proposed probit regression. The distribution of the errors may be modeled by any marginal distribution.

Thus, estimating ρ and allowing the data to inform the marginal distribution of the errors may improve

estimation of β and prediction of {yij}ij beyond that of the BC-EM estimator of the PX model presented in

Chapter 4.

5.4 Broader impacts

In this dissertation, we have presented methods for accounting for the excess dependence – beyond the

dependence captured by covariates – that may be expected when regressing network data. However, network

data are only one form of discrete data; the methods and approaches proposed in this dissertation may be
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applicable to other types of data structures. Other discrete data types with similar dependence are time series

and spatially resolved data. The methods in Chapter 4 may be useful in analyzing binary time series, a cur-

rent area of research (Fokianos and Moysiadis, 2017; Gao et al., 2018). Analysis of spatially resolved data,

in ecological data e.g. (Ver Hoef et al., 2018), often use autoregressive models to capture dependence; the

regression techniques in Chapter 3 may be useful for modelling dependence in the field of spatial statistics as

well. Finally, spatial-temporal regression models must represent dependence in both space and time, which

can be difficult using available covariates, as in applications in ecology and epidemiology (de Espindolaa

et al., 2011; Noth et al., 2011). The bipartite methods in Chapter 2 are well-suited to modelling discrete

dependence in two dimensions.
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Appendix A

Influence networks for longitudinal bipartite

network data

A.1 Least squares estimation of reduced-rank BLIN model

In this section, we provide a procedure for obtaining the maximum likelihood estimator of the BLIN

model assuming reduced rank coefficient matrices A and B, where the respective ranks are known. The

log-likelihood of the data {Yt}Tt=1 is simply the sum of the log-likelihood at each time period since we

assume the errors Et are independent of each other. The log-likelihood, in terms of the unknown matrices

{U,V,R,S}, is proportional to

ℓ ∝ −1

2

T∑

t=1

||Yt −UVTXt − ZtRST ||2F , (A.1)

where UVT is a rank k decomposition of A, and RST is a rank m decomposition of B.

We introduce a block coordinate descent algorithm in Algorithm 3 to obtain the maximum likelihood es-

timator of the unknown matrices {U,V,R,S}. Algorithm 3 estimates each unknown matrix {U,V,R,S}

in turn until convergence, in an analogous procedure to the estimation of the full BLIN model in Algo-

rithm 1. The update equation for each unknown matrix is derived by differentiating (A.1) with respect to the

unknown matrix, e.g. U, setting this derivative to zero, and solving for the unknown matrix.
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Algorithm 3 Block coordinate descent LS estimation of reduced-rank BLIN model

0. Set threshold for convergence η. Set number of iterations ν = 1. Initialize

{Û(0), V̂(0), R̂(0), Ŝ(0)} with independent standard normal entries and Q0 =
∑

t ||Yt||2F .

1. Compute

(Û(ν))T =

(
(V̂(ν−1))T

T∑

t=1

(
XtX

T
t

)
V̂(ν−1)

)−1

(V̂(ν−1))T

(
T∑

t=1

XtY
T
t −

T∑

t=1

XtŜ
(ν−1)(R̂(ν−1))TZT

t

)

2. Compute

V̂(ν) =

(
T∑

t=1

XtX
T
t

)−1(
T∑

t=1

XtY
T
t −

T∑

t=1

XtS
(ν−1)(R(ν−1))TZT

t

)
Û(ν)

(
(Û(ν))T Û(ν)

)−1

3. Compute

R̂(ν) =

(
T∑

t=1

ZT
t Zt

)−1 [
T∑

t=1

ZT
t Yt −

T∑

t=1

ZT
t U

(ν)(V(ν))TXt

]
S
(
STS

)−1

4. Compute

(Ŝ(ν))T =

(
(R(ν))T

(
T∑

t=1

ZT
t Zt

)
R(ν)

)−1

(R(ν))T

[
T∑

t=1

ZT
t Yt −

T∑

t=1

ZT
t U

(ν)(V(ν))TXt

]

5. Compute the least squares criterion

Qν =
∑

t

||Yt −U(ν)(V(ν))TXt − ZtR
(ν)(S(ν))T ||2F .

If |Qν −Qν−1| > η, increment ν and return to 1.
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A.2 Proofs of theoretical results

We begin with the proof of Proposition 1. We then prove Theorem 4, as expressions in this proof

support the proofs of the remaining Propositions 2, 3, 5, and 6. We take Xt and Yt mean zero without loss

of generality.

Proof of Proposition 1. Noting that XB is of dimension TSL×S2+L2−1, it is sufficient to show that XB

is full rank under the assumptions. We treat two cases: (1) TSL ≤ S2+L2−1 and (2) TSL > S2+L2−1.

Case (1):

We first show that TSL ≤ (S2 + L2 − 1) implies TS ≤ L. Assume towards a contradiction that TS > L

and let S = αL for α ∈ (0, 1]. Then,

TSL ≤ S2 + L2 − 1,

TαL2 ≤ (1 + α2)L2 − 1,

T ≤ 1/α+ α− 1/L2. (A.2)

If TS > L, then T > 1/α. As there is no integer T that satisfies (A.2) and T > 1/α, we have that TS ≤ L.

Now, as TSL ≤ S2 + L2 − 1, we have that rank(XB) ≤ TSL. Assume towards a contradiction that

rank(XB) < TSL. Then, for some nonzero u ∈ RTSL, the assumption implies that uTXB = 0. Consider

the columns S2 + 1 through S2 + 1 + L of XB . The assumption implies that, for some nonzero v ∈ RTS ,

that vT [Z1;Z2; . . . ;Zt]. For TS ≤ L, this is a contradiction of the assumption that [Z1;Z2; . . . ;Zt] is full

rank. Thus, we have that XB is full rank in case (1).

Case (2):

Now we take TSL > S2 + L2 − 1, such that rank(XB) ≤ S2 + L2 − 1. Assume towards a contradiction

that rank(XB) < S2 + L2 − 1. Then, there exists some u1 ∈ RS2
and u2 ∈ RL2

such that XBu = 0, for

uT = [u1, u2], nonzero and not utilizing the nonidentifiability exclusively. By the single nonidentifiability

of the BLIN model, for XBu = 0, either u utilizes the nonidentifiability or both u1 and u2 are in the null

spaces of [XT
1 ⊗ IL;X

T
2 ⊗ IL; . . . ;X

T
t ⊗ IL] and [IS ⊗ Z1; IS ⊗ Z2; . . . ; IS ⊗ Zt], respectively. However,

by the discussion under case (1), we have that TS ≥ L such that, by assumption, [X1;X2; . . . ;Xt] and

[Z1;Z2; . . . ;Zt] are of rank L. This also implies that the TL × S matrix [XT
1 ;X

T
2 ; . . . ;X

T
t ] is full rank,
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which is rank S as TL ≥ S. Then, again using the discussion in case (1), the two matrices [IS ⊗ Z1; IS ⊗

Z2; . . . ; IS ⊗ Zt] and [XT
1 ⊗ IL;X

T
2 ⊗ IL; . . . ;X

T
t ⊗ IL] are full rank, which are S2 and L2, respectively.

So, the only way that XBu = 0 and u is nonzero is utilizing the nonidentifiability. This is a contradiction,

as this implies that rank(XB) = S2 + L2 − 1, and XB is full rank under case (2).

Proof of Theorem 4. Recall that we work in the setting of p = pA = pB , as the bilinear model cannot ac-

commodate different lags for the different influence types. Thus, we have Zt = Xt for all t ∈ {1, 2, . . . , T}

and the covariance matrices ΩX = ΩZ = Ω and ΨX = ΨZ = Ψ.

For either generative model, we may write the useful form

E[yt|xt] = Θxt, (A.3)

such that Θ = [IL ⊗ A;BT ⊗ IS ] for the BLIN model and Θ = BT ⊗ A for the bilinear model. We

examine the impacts of specifying either the BLIN or bilinear model as the generating model in the proof.

First, however, we write the pseudo-true parameters for least squares estimators of the BLIN and bilinear

models, respectively, under the general generative structure in (A.3).

For least squares estimation of the BLIN model, we may write the pseudo-true parameters for A as

ÃT = E
[
YtX

T
t −XtB̃XT

t

]
E
[
XtX

T
t

]−1
, (A.4)

= E




L∑

j=1

E[y·jt | xt]x
T
·jt −

L∑

i=1

L∑

j=1

b̃ijx·itx
T
·jt


E

[
XtX

T
t

]−1
, (A.5)

where we obtain (A.4) by maximizing the expression for the BLIN pseudo-true parameters in (2.15) with

respect to A. Then, we may exploit the assumption that E[y·jt | xt] is a linear function of xt. Letting Ckℓ

be the S × S partition of Θ relating column ℓ of Xt to column k of Yt, substituting into (A.5), we obtain

ÃT =

(
L∑

k=1

L∑

ℓ=1

Ckℓωkℓ − tr(ΩB̃)IS

)/
tr(Ω), (A.6)

where and ωkℓ is the (k, ℓ) entry in Ω (and we use the symmetric property of Ω) and the terms concerning

Ψ cancel. We note that the BLIN pseudo-true parameters Ã exist by applying Conditions 1 to the explicit

113



expression for Â in (2.12), using the law of large numbers. Hoff (2015) writes the pseudo-true parameters

for the bilinear estimator of A, which we denote Ā, under least squares estimation as:

ĀT = E
[
YtB̄Xt

]
E
[
XtB̄B̄TXT

t

]−1
, (A.7)

= tr(ΩB̄B̄T )−1
L∑

j=1

L∑

k=1

(
L∑

ℓ=1

Ωkℓb̄jℓ

)
Cjk, (A.8)

where b̄jℓ is the (j, ℓ) entry in B̄, the pseudo-true parameters for the bilinear estimator of B. The bilinear

pseudo-true parameters Ā exist as Conditions 1 satisfy those given in Hoff (2015).

We have derived the pseudo-true parameters for the least squares estimators of the BLIN and bilinear

models in (A.6) and (A.8), respectively, whenever E[yt|xt] = Θxt. Now, we address the specific BLIN

and bilinear generating models. That is, we specify the S × S matrices {Ckℓ}k,ℓ that partition Θ under each

generating model and examine the resulting pseudo-true parameters.

When the data {Yt}Tt=1 are generated by the BLIN model, the matrix Cjk = AT + bjkIs when k = ℓ

and Cjk is diagonal otherwise. Substituting into (A.8), we see:

ĀT = tr(ΩB̄B̄T )−1
L∑

j=1

(
L∑

ℓ=1

ωjℓb̄jℓ

)
AT + c1Is, (A.9)

=
tr(ΩB̄)

tr(ΩB̄B̄T )
AT +

tr(ΩB̄BT )

tr(ΩB̄B̄T )
Is. (A.10)

Thus, the off-diagonal pseudo-true parameters Ā are equal to the off-diagonal entries in A, up to a multi-

plicative constant, when the data are generated by the BLIN model.

When the data {Yt}Tt=1 are generated by the bilinear model, the matrix Cjk = bjkA
T for all (j, k).

Substituting into (A.6), we see

ÃT =

(
L∑

k=1

L∑

ℓ=1

bkℓωℓkA
T − tr(ΩB̃)IS

)/
tr(Ω), (A.11)

=
tr(ΩB)

tr(Ω)
AT − tr(ΩB̃)

tr(Ω)
Is, (A.12)
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and tr(Ω) 6= 0 by assumption of Ω positive definite. Thus, the off-diagonal pseudo-true parameters for Ã

are equal to the off-diagonal entries in A, up to a multiplicative constant, when the data are generated by the

bilinear model.

These results hold for the off-diagonal pseudo-true parameters as estimated for the BLIN and bilinear

models, B̃ and B̄, respectively. This fact can be seen by transposing the BLIN and bilinear models and

swapping the roles B for A in the above proof, i.e. writing the BLIN model as E[YT
t |Xt] = BTXT

t +XT
t A

and applying the above arguments for A to BT .

Proof of Proposition 2. The pseudo-true parameter under least squares estimation of the BLIN model, Ã,

is given in (A.4). Under the assumptions in Proposition 2, the matrix E
[
XtX

T
t

]−1
is diagonal with entries

1/E[xT
i·txi·t]. Then, the off-diagonal (i, j) entry of Ã is

ãij =
E[xT

i·tyj·t]− tr(E[xi·tz
T
j·t]B̃

T )

E[xT
i·txi·t]

, i 6= j. (A.13)

By the assumptions given in Proposition 2, both terms in the numerator are zero as is the coefficient.

The result for b̃ij when i 6= j follows from considering the transpose of the BLIN model as in the proof

of Theorem 4, that is, swapping the roles of A and B and the roles of Xt and Zt in (A.13).

Proof of Proposition 3. Refer to the expression for the pseudo-true parameter under least squares estimation

of the BLIN model, Ã, in (A.6). The entries relating row i of Xt to row j of Yt are the (j, i) entries in Ckℓ

for all (k, ℓ). These are zero by assumption when i 6= j. Thus, the assumptions imply ãij = 0 when i 6= j.

There is no issue when Zt 6= Xt, as this change only enters (A.6) through Ω, which value is immaterial to

the argument.

Again, the result for b̃ij when i 6= j follows from considering the transpose of the BLIN model as in the

proof of Theorem 4.

Proof of Proposition 5. As in the proof of Theorem 4, we work in the setting of p = pA = pB , Thus, we

have Zt = Xt for all t ∈ {1, 2, . . . , T} and the covariance matrices ΩX = ΩZ = Ω and ΨX = ΨZ = Ψ.
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Under least squares estimation of the BLIN model, using (A.12), we may write the pseudo-true diagonal

specification as

ãii + b̃jj =
tr(B)

L
aii +

tr(A)

S
bjj −

tr(A)tr(B)

SL
, (A.14)

where we use the condition of matrices Ω and Ψ proportional to the identities of appropriate size. Then, the

traces of A and B are simply αS and βL, respectively. Substituting, we find

ãii + b̃jj = αβ + αβ − SLαβ

SL
= αβ ∀ i, j, (A.15)

which is the specification of the diagonal entries under the bilinear model, αβ = aiibjj ∀ i, j.

We now turn to least squares estimation of the bilinear model. It is sufficient to provide a counterexample

to prove the claim. Set A = αIS+A0, where A0 has diagonal of all zeros, and the same for B = βIL+B0,

for some α + β 6= 0. Using the expression for the bilinear pseudo-true parameters in (A.10), we may write

pseudo-true diagonal specification under least squares estimation of the bilinear model as

āiib̄jj =
tr(Ā)tr(B̄)

tr(ĀT Ā)tr(B̄T B̄)

(
α+ β +

tr(ĀAT
0 )

tr(Ā)

)(
α+ β +

tr(B̄BT
0 )

tr(B̄)

)
, (A.16)

for any pair (i, j). Again using the expression for the bilinear pseudo-true parameters in (A.10), we have

that

tr(Ā)

tr(ĀT Ā)

tr(B̄)

tr(B̄T B̄)
= α+ β +

tr(ĀAT
0 )

tr(Ā)
+

tr(B̄BT
0 )

tr(B̄)
. (A.17)

Substituting (A.17) into (A.16), we see that

āiib̄jj = α+ β +
cAcB

α+ β + cA + cB
, (A.18)

where cA : =
tr(ĀAT

0 )

tr(Ā)
,

cB : =
tr(B̄BT

0 )

tr(B̄)
.
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This expression is equal to the true diagonal specification α+ β if and only at least one of cA or cB is equal

zero. For example, take all entries in A0 and B0 to be zero except for a12 and b12. Then,

cAcB =
a212b

2
12

SL (α+ β + cA) (α+ β + cB)
6= 0. (A.19)

This case establishes a counterexample for āiib̄jj 6= α+ β.

Proof of Proposition 6. By assumption, the diagonals of the BLIN estimators {Ã, B̃} are constant; we let

these values be α and β, respectively. Thus, we have

Ã = αIS +A0, B̃ = βIL +B0, (A.20)

where A0 and B0 are matrices with zeros along the diagonal.

Now, the assumption of equivalences of the estimators states that the bilinear estimator, for example Ā,

has off-diagonal entries that are equivalent to A0 multiplied by the diagonal entry β, by Theorem 4. The

same is true for the off-diagonal entries of B̄, which are equivalent to αB0. The diagonal entries of the

bilinear estimators Ā and B̄ are not unique, but āii = sign(α + β)
√

|α+ β| and b̄jj =
√

|α+ β| satisfies

the equivalence relation āiib̄jj = ãii + b̃jj for all i ∈ {1, 2, . . . , S} and j ∈ {1, 2, . . . , L}. Thus, we have

the blinear estimators

Ā = sign(α+ β)
√
|α+ β|IS + βA0, B̄ =

√
|α+ β|IL + αB0, (A.21)

Now assume towards a contradiction that the estimated means of the BLIN and bilinear models are

equal, that is,

ÃTXt +XtB̃ = ĀTXtB̄, t ∈ {1, 2, . . . , T}, (A.22)

Then, substituting the matrices in (A.20) and (A.21), (A.22) implies the following:
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βA0
TXt + αXtB0 = βA0

TXt + αXtB0 +A0
TXtB0, (A.23)

0 = A0
TXtB0, t ∈ {1, 2, . . . , T}, (A.24)

which is true for general Xt with probability zero unless both A0 and B0 are zero.

A.3 Details of simulation studies

We provide details of the simulation studies performed to compare the bilinear and BLIN models. We

first detail the cross-validation study. We then discuss a convergence study verifying Theorem 4 and Propo-

sition 5.

A.3.1 Cross-validation study

We began by generating weighted networks of rank 1, that is,

A0 = uvT , B0 = rsT ,

with each vector u, v, r, and s of length 10 and consisting of independent and identically distributed standard

normal random variables. Then, to remove self-loops in the networks, we set the diagonal entries of A0 and

B0 to zero, thus arriving at true influence networks A and B. To generate values of A and B with fractions

of zeros q = 0.5 and q = 0.9, we simply set the absolute smallest 50% and 90% of entries in A and B to

zero, respectively.

To control the signal-to-noise ratio of the models, we set the large-sample R2 of each generative model

to be about 0.75. To do so, we scaled the true A and B by a multiplicative constant based on the generating

model and sparsity level. We now derive the formulas for these constants for the general lag 1 autoregressive

model in (2.16). By definition, the in-sample R2 of any estimator of the mean of yt, denoted here {ŷt}Tt=1,

is

R2 =
1
T

∑T
t=1 ||yt||22 − 1

T

∑T
t=1 ||ŷt − yt||22

1
T

∑T
t=1 ||yt||22

. (A.25)
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Now, we assume that Θ is known, such that ŷt = Θyt−1 for all t. Then, for large samples and independent

errors, the Law of Large Numbers implies that the sample averages in (A.25) converge (in probability) to

their expectations. Thus, we have that, for large samples,

R2 ≈ tr
(
ΘΘTE[yt−1y

T
t−1]

)

tr
(
ΘΘTE[yt−1y

T
t−1]

)
+ E[eTt et]

=
tr
(
ΘΘTE[yt−1y

T
t−1]

)

tr
(
ΘΘTE[yt−1y

T
t−1]

)
+ SL

, (A.26)

with S = L = 10 in this simulation. Further, it can be shown that for any stationary mean-zero VAR model

of the form of (2.16) that

vec
(
E[yt−1y

T
t−1]

)
= (IS2L2 −Θ⊗Θ)−1

vec (ISL) . (A.27)

For the BLIN model, we scaled both A and B by a constant kBLIN and defined Θk,q = kBLIN [IL ⊗

Aq;B
T
q ⊗IS ], where the subscript ‘k’ emphasizes that Θk,q depends on kBLIN and the subscript ‘q’ signifies

the Aq and Bq influence networks correspond to one of the sparsity levels q ∈ {0.0, 0.5, 0.9}. We then

defined

g(kBLIN , q) = tr
(
Θk,qΘ

T
k,qE[yt−1y

T
t−1]

)
= tr

(
Θk,qΘ

T
k,qE[yt−1y

T
t−1]

)
(A.28)

= vec
(
Θk,qΘ

T
k,q

)
(IS2L2 −Θk,q ⊗Θk,q)

−1
vec (ISL) . (A.29)

For each q ∈ {0.0, 0.5, 0.9}, we selected kBLIN such that 0.75 ≈ g(kBLIN , q)/(g(kBLIN , q)+SL), where

the ‘≈’ simply indicates that kBLIN was selected by discrete search. We repeated the same procedure to

select kbilinear, although the Θk,q in this case is Θk,q = k2bilinearB
T
q ⊗Aq. Every generating model selected

was stationary.

For each combination of q ∈ {0.0, 0.5, 0.9} and generating model, e.g. BLIN or bilinear, (3 × 2 =

6 total simulation settings), we generated 100 data realizations. To ensure stationarity was reached, we

simulated 100 time periods of each realization and used the final T observations, for T ∈ {10, 20, 50}, as

simulated data realizations. To compute out-of-sample R2 for each simulated data set, we estimated the

sparse, (reduced) rank 1, full BLIN models, and the bilinear model on each of 10 training data sets within a

10-fold cross-validation. This procedure is described in detail in Section 2.5. We focused on q = 0.9 in the

text in Section 2.5, however, the out-of-sample results for q ∈ {0.0, 0.5} are given in Figure A.1.
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Generating model

BLIN Bilinear
q
=

0
.5

q
=

0
.0

Figure A.1: Out-of-sample R2 values for each estimation procedure applied to 100 data realizations, with

true coefficient matrices of sparsity q ∈ {0.0, 0.5}. The left panel is results for data generated from the

BLIN model and the right panel shows that for data generated from the bilinear model. The centers of the

boxplots represent the median R2 value, the boxes represent the middle 80% of R2 values, and the whiskers

correspond to the maximum and minimum R2 values across 100 simulated data sets. Plots are truncated

such that R2 values less than −1 are not shown.

For completeness, we examined in-sample R2 values for the generated data as well. In this case, we

performed no cross-validation, but simply estimated each model on each complete data realization, i.e. for

a given generating model, q, and T . The in-sample R2 values are shown in Figure A.2.

A.3.2 Likelihood of bilinear model

In this section, we conduct an investigation into the source of poor performance of the bilinear estimator

when data is generated from this same model. To do so, we examine in-sample and out-of-sample R2 values

at various coefficient values. These coefficient values are weighted averages of true and estimated coeffi-

cients. Recall that, for normally-distributed data, large R2 values correspond to large likelihood values and

vice versa, so we use the terms, e.g., “high R2” and “large likelihood” interchangeably for this discussion.
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Generating model
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0
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Figure A.2: In-sample R2 values for each estimation procedure applied to 100 data realizations, with true

coefficient matrices of sparsity q ∈ {0.0, 0.5, 0.9}. The left panel is results for data generated from the

BLIN model and the right panel shows that for data generated from the bilinear model. The centers of the

boxplots represent the median R2 value, the boxes represent the middle 80% of R2 values, and the whiskers

correspond to the maximum and minimum R2 values across 100 simulated data sets.

Recall that the bilinear model was estimated in a 10-fold cross-validation (see Section 2.5), and thus, the

bilinear estimator was computed on a subset of the data containing approximately 90% of the full simulated

data set. For a particular subset of a particular simulated data set, we computed in-sample and out-of-sample

R2 values at a mixture of the true coefficients and the coefficients estimated on the particular subset. That
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is, we computed R2 as a function of θ, where θ is a vector of the entries in A and B matrices defined by the

mixture

θT = (1− ξ)[vec(A), vec(B)] + ξ[vec(Â), vec(B̂)], (A.30)

where {A,B} are the true coefficients and {Â, B̂} are the coefficients estimated on the 90% data subset.

Thus, we examined the likelihood surface along a line in the coefficient space connecting the true and

estimated coefficients. This likelihood surface may show multiple local optima, should they exist.

In Figure A.3, we show the R2 values when generating from the bilinear model and estimating the

bilinear model. We see that, when ξ = 1, the value of in-sample R2 is high, as it must be, since θ is the

MLE when ξ = 1. However, we also see that in-sample R2 is high near ξ = 0, i.e. near the true coefficients.

Between ξ = 0 and ξ = 1, the in-sample R2 drops substantially. This is evidence of multiple modes, or

multiple local optima, in the likelihood of the bilinear model. Of course, we observe that the out-of-sample

R2 near ξ = 0 is also high, that is, selecting coefficient values near the true coefficients generalize well in

prediction out-of-sample. However, near ξ = 1, even though the in-sample R2 mode is higher than the one

near ξ = 0, the out-of-sample R2 value is low. Thus, choosing the mode with highest in-sample R2, as is

done in maximum-likelihood estimation procedures, does not necessarily generalize well out-of-sample, as

shown in this case. This fact, taken with the poor representation of A by the Â matrix in Figure A.3 (we

observe similar issues for B and B̂), suggests that ξ = 1 is far from ξ = 0 in coefficient space. That is, the

likelihood of the bilinear model (at least for T = 10 and q = 0.50) has multiple modes that are not near

one another. Finding all of the modes is an extremely difficult – if not impossible – task, and selecting an

incorrect mode may result in poor estimator performance. We find similar patterns to those in Figure A.3

for T = 20 and q ∈ {0.0, 0.9} when generating from the bilinear model and estimating the bilinear model.

A similar analysis for the BLIN model confirms the unimodality implied by Proposition 1 (see Fig-

ure A.4). Since the in-sample R2 value does not dip between ξ = 0 and ξ = 1, the estimator (at ξ = 1)

resides in a mode that contains the true coefficient values. The fact that the out-of-sample R2 is flat between

ξ = 0 and ξ = 1 suggests that any value of ξ in this range will generalize well out-of-sample, that is, any of

these estimators will perform well. As Â looks remarkably similar to A in Figure A.4 (B̂ also looks similar
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to B), taken with the flat out-of-sample likelihood, we can be confident the estimator θ̂ and the true value θ

are close in the coefficient space.

Figure A.3: R2 values for a mixture of true coefficients and coefficients estimated for the bilinear model

(see (A.30)) when generating from the bilinear model with q = 0.9 and T = 10, for a single fold of the

cross-validation. The estimated A matrix (top right) is scaled by a constant c (and B by c−1) such that the

estimated A and B are as close as possible in L2 norm to the true A and B matrices. The pair of matrices

A and Â are normalized to lie in [−1, 1] for sake of plotting.

A.3.3 Convergence study

We conduct a simulation study (to larger dimension T up to 105) to examine the theoretical results

of Section 2.4.2. In line with Section 2.4.2, we generate from and estimated the bilinear and full BLIN

models, using the BLIN representation in (2.9) with Xt = Zt for all t ∈ {1, 2, . . . , T}. For simplicity,

we generate every element in Xt and Et with independent and identically distributed (iid) standard normal

random variables. We fix A and B throughout the study, with AT = UVT and B = RST , where {U,V}

are S × S matrices and {R,S} are L× L matrices, all with iid standard normal entries. Although these A

and B matrices resemble those in the reduced rank BLIN model, by construction, they are full rank. The
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Figure A.4: R2 values for a mixture of true coefficients and coefficients estimated for the BLIN model

(see (A.30)) when generating from the BLIN model with q = 0.9 and T = 10, for a single fold of the

cross-validation. The estimated A matrix (top right) is scaled by a constant c (and B by c−1) such that the

estimated A and B are as close as possible in L2 norm to the true A and B matrices. The pair of matrices

A and Â are normalized to lie in [−1, 1] for sake of plotting.

number of time periods T grows from 102 to 105 in 101/2 multiplicative increments. We choose S = 10,

L = 9, and repeat for 1,000 replications at each combination of T and generating model.

We compare the estimated coefficients to the truth by normalizing the off-diagonal entries such that,

if the off-diagonals of the estimate Â = cA for any c ∈ R from any estimation procedure, then we say

that the off-diagonal estimates of A have no error. To do this, we compute the mean squared error between

the off-diagonal entries in Â divided by their sum and the off-diagonal entries in A divided by their sum.

We do the same for B. Finally, we calculate the mean squared error of the autoregressive parameters as

appropriate for the generating and estimating model. For instance, when generating from the bilinear model

but estimating the BLIN model, the (i, j) contribution to the mean squared error is (âii+ b̂jj −aiibjj)
2, and

the mean square error of the diagonals is the sum over all i and j. Lastly, we estimate the convergence rate

of each estimator to the truth by fitting a simple linear regression model to log10(MSE) against log10(T )

for each coefficient and combination of generating and estimating models.
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Figure A.5: Mean square error between coefficient estimates and true coefficients used to generate data

from the bilinear model (top row) and BLIN model (bottom row). The estimators are the least squares

estimators of the BLIN and bilinear models.

In Figure A.5, both the BLIN and bilinear estimators of the off-diagonal estimator of A and B have

MSEs that tend to zero regardless of the generating model. This suggests that both estimators are consis-

tent under both generating models, confirming Theorem 4. In addition, we observe that neither diagonal

estimator appears to converge when the estimation is not of the true model, e.g. the BLIN diagonals do not

converge to the true bilinear diagonals. In this simulation, we have that Ψ ∝ IS and Ω ∝ IL, however, the

diagonals of A and B are non-constant, verifying that this latter condition is critical in Proposition 5.

In Table A.1, we observe
√
T convergence for all off-diagonal elements estimated by the BLIN model

(when data is generated from either the BLIN or bilinear models), which agrees with the discussion in

Section 2.4.2. Although the bilinear model attains the same
√
T convergence rate when correctly specified,

the convergence rate is significantly slower when the true generating model is the BLIN model. This suggests

that the least squares estimator of the BLIN model is more efficient when misspecified than that of the

bilinear model.
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Table A.1: Estimates of decrease in (base 10 logarithm of) mean squared error of least squares estimates

of BLIN and bilinear models, under simulated data from each model, when T increases by a factor of 10.

Bolded and starred slopes are those which are significantly not -1 (p < 0.05), where the p-value is computed

from a simple linear regression of log10MSE on log10 T .

Estimator Bilinear BLIN

BLIN A -1.13 -1.00

BLIN B -1.10 -1.00

BLIN diag. -0.05∗ -1.00

bilinear A -1.00 -0.71∗

bilinear B -1.01 -0.92∗

bilinear diag. -1.01 -0.04∗

A.4 Multipartite relational data

In this paper, we primarily discuss the setting where Yt is a matrix, equivalently a 2-mode array, with

replications over time, such that {Yt}Tt=1 may be considered a tensor, or a 3-mode array. The S × L × T

array Y may be constructed by concatenating the T matrices {Yt}Tt=1, each of dimension S × L. That is,

Y = [Y1;Y2; . . . ;YT ], where we let ‘;’ denote this concatenation operation. The BLIN model is easily

extendable to model K-mode arrays. A K-mode BLIN model is appropriate when there are more than

two actor types in the relational dataset, which may be termed multipartite as opposed to bipartite. In the

ICEWS data example, we consider interaction type, in addition to source country and target country, as the

third mode. In this example, each relation is one of four interaction types from a source state to a target

state. Then, each Yt is a 3-mode array with entries ytijk measuring relation intensity, where i is the source

state, j is the target state, k is the relation type, and t is the week of the observation. Please see Section 2.6

for more detail.

We are interested in making inference on influence networks {B1, ...,BK}, where each influence net-

work is associated with a specific mode of the array. For the ICEWS data example, our motivation is

inference on influence networks of source countries (B1), target countries (B2), and interaction types (B3).

As discussed in Section 2.2, the (i, j) component of Bk reflects the influence of the ith “slice” of Xt on the

jth slice of Yt, where the slice is along mode k. For example, the (i, j) entry of B3 estimates the influence

of x··i on y··j , when controlling for row and column dependencies between Yt and Xt. In the example

above, this entry characterizes the influence of interaction type i on interaction type j when controlling for

source country and target country influences.
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We lean on the Tucker product (Tucker (1964)) and related results to write the array BLIN model for

general K-mode arrays (see also De Lathauwer et al., 2000; Kolda and Bader, 2009; Hoff, 2011). First, we

rewrite the expectation of the BLIN model of (2.9) using the Tucker product notation as

E[Y |X,Z] = X× {AT , IL, IT }+ Z× {IS ,BT , IT }, (A.31)

where the S × L × T arrays X and Z are the results of concatenating {Xt}Tt=1 and {Zt}Tt=1, respectively,

as {Yt}Tt=1 is concatenated to form Y.

We now extend (A.31) to general K-mode arrays, allowing a different predictor for each mode (i.e. X

and Z for the 2-mode approach in (A.31)). Let Yt be an m1×. . .×mK array observed over t ∈ {1, 2, . . . , T}

time periods, with K corresponding predictor arrays {X(k)
t }Kk=1 each of dimension m1 × . . . × mK as

well. To form the full model, we concatenate the arrays, as above in (A.31), such that Y is of dimension

m1 ×m2 × . . .×mK × T , as is every one of the K predictor arrays {X(k)}Kk=1. Then, the expectation of

the multipartite extension of the BLIN model is as follows:

E
[
Y | {X(k)}Kk=1

]
=

K∑

k=1

X(k) × {Im1 , Im2 , . . . , Imk−1
,BT

k , Imk+1
, . . . , ImK

, IR} (A.32)

E
[
y | {x(k)}Kk=1

]
=

K∑

k=1

(
Imk+1mk+2...mKT ⊗Bk ⊗ Im1m2...mk−1

)
x(k), (A.33)

where each Bk is an mk ×mk matrix of coefficients and y and x(k) are the vectorizations of Y and X(k),

respectively. As the array form the BLIN model in (A.32) is of course linear, an appropriate design matrix

as in (2.4) may be constructed to estimate the sparse array BLIN model.

We now provide array manipulations such that a block coordinate descent, similar to that in Algorithm 1,

may be derived to iteratively estimate {Bk}Kk=1 in the array BLIN model. First, let M be any array of

dimensions m1 × m2 × m3. The mode-1 matricization of the array M(1) is defined as an m1 × m2m3

matrix and if M = X × {C1,C2,C3}, then M(1) = C1X(1)(C3 ⊗ C2)
T . The following mode-1 and

mode-2 matricizations of the expectation of the matrix BLIN model are then

E[Y(1) |X,Z] = ATX(1) + Z(1)

(
IT ⊗B

)
, (A.34)

E[Y(2) |X,Z] = X(2)

(
IT ⊗A

)
+BTZ(2). (A.35)
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The mode-i matricization of the expectation of the K-mode BLIN model in (A.32) may be written as

E
[
Y(i) | {X(k)}Kk=1

]
= BT

i X
(i)
(i) +

∑

k 6=i

X
(k)
(i)

(
Ink

1
⊗Bk ⊗ Ink

2

)
, (A.36)

where nk
1 = T

∏

j≥k+1
j 6=i

mj and nk
2 =

∏

j≤k−1
j 6=i

mj .

Representation the model in this form enables straightforward estimation of Bi given {Bk}k 6=i.

A.5 Details of data analysis

In this section, we provide supporting materials for performing the analysis of the ICEWS data set. In

the notation of Appendix A.4, the BLIN model for this analysis may be written:

Yt =

(
pA∑

k=1

Yt−k

)
× {AT , IS , IR}+

(
pB∑

k=1

Yt−k

)
× {IS ,BT , IR} (A.37)

+

(
pC∑

k=1

Yt−k

)
× {IS , IS ,CT }+Et,

where Yt is a 25 × 25 × 4 array representing senders, receivers, and interaction types. We also examined

replacing Yt with Dt := Yt − Yt−1, the week-over-week increase in interaction value. To evaluate the

performance of the model to represent the undifferenced and differenced data, we estimated the sparse BLIN

model on each of differenced and undifferenced data for all combinations of lags {pA, pB, pC} between 1

and 5 (inclusive).

We found that the BLIN model represented the differenced data significantly better, that is, with in-

sample R2 values above 0.30 for differenced data rather than those below 0.10 for undifferenced data. Thus,

we proceeded with the differenced data only. To select the model that best balanced model fit and model

parsimony, we used an analog of Akaike’s Information Criterion (Akaike, 1998):

ÂIC = 2
(
||Â||1 + ||B̂||1 + ||Ĉ||1

)
+ S2RT log

T∑

t=1

||D̂t −Dt||22, (A.38)

where ||H||1 is the number of nonzero entries in H, e.g., and D̂t is the estimated mean corresponding to

the estimated networks {Â, B̂, Ĉ}. In (A.38), the first term is a penalty for the number of parameters, i.e.
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model complexity, and the second term quantifies the goodness of fit. Smaller values of ÂIC are better; the

five smallest values are given in Table A.2.

Table A.2: The five smallest information criteria (ÂIC) for selected lags of sparse BLIN estimates of

differenced data.

pA pB pC ÂIC R2 Number of parameters

5 3 1 58307 0.308 563

3 5 1 58460 0.308 613

5 1 3 58738 0.307 628

1 5 3 58860 0.307 463

3 1 5 59074 0.307 617

To select the network entries to be highlighted in Figure 2.4, we plotted the ordered nonzero coefficients

(Figure A.6). Then, we visually cut off the coefficient values at natural breaks in the nonzero entries. The

visual cutoffs are near the 2.5% and 97.5% quantiles of the nonzero coefficient values.

Figure A.6: Estimated influence network values and cutoffs for relations highlighted in Figure 2.4.
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Appendix B

Regression of relational data with exchangeable

errors

B.1 Undirected arrays

This section specializes the results presented in the manuscript to undirected relational data. Consider

the case when R = 1 and suppose the relational data contains the relations among n actors. The covariance

of the errors Ω contains three unique elements

Cov(ξij , ξij) := θ, Cov(ξij , ξki) := φ, Cov(ξij , ξkl) := 0.

As in the directed case, we assume the last covariance, corresponding to two relations which share no

common member, is zero. We again estimate the two remaining terms using the residual matrix E =

{eij} ∈ Rn×n. Note that the residual matrix we consider is for the entire n× n matrix of relations and thus

contains duplicate off-diagonal entries corresponding to pairs {(i, j), (j, i)}. We set the diagonal of E to

zero as the relation between an actor and itself is undefined.

The estimate of θ is the empirical mean of each squared residual and can be expressed

θ̂ =
tr(EE)

n(n− 1)

where tr(·) denotes the matrix trace operator.

Similarly, the estimate of φ is

φ̂ =
1

2m

∑

i

∑

j 6=i

eij


∑

k 6=i

eik +
∑

k 6=j

ekj − 2eij




=
1

m
1T (EE)1− tr(EE) where m = n(n− 1)(n− 2).
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B.2 Proof of asymptotic normality of OLS

For this proof, and throughout Appendix B, we adopt slightly different notation to simplify the repre-

sentation of the exchangeable covariance estimator. Recall that the exchangeable covariance estimator for

the OLS estimating equations is

V̂E = (XTX)−1XT Ω̂EX(XTX)−1,

where Ω̂E is the exchangeable estimate of the error covariance matrix, consisting of five averages of residual

products. Here we express Ω̂E as

Ω̂E =
5∑

i=1

φ̂iSi, where φ̂i =

∑
(jk,ℓm)∈Θi

ejkeℓm

|Θi|
for i ∈ {1, 2, 3, 4, 5}. (B.1)

This amounts to mapping σ2 7→ φ1, φa 7→ φ2, ..., φd 7→ φ5, and re-indexing the S and M matrices accord-

ingly. Additionally, when we consider sequences of jointly exchangeable random variables {Wij}ni,j=1, it is

understood that the sequence arises from a relational array such that entries with i = j are undefined. Thus,

sums over the sequence are of n(n− 1) terms and we define
∑

ij Wij =
∑

i 6=j Wij .

We work in the asymptotic regime where actors are added incrementally to the relational data set, i.e. n

is continually increasing. To establish asymptotic normality of β̂, we wish to show

√
n(β̂ − β) →d N(0,M−1

1

(
φ3M3 + φ4M4 + 2φ5M5

)
M−1

1

)
, (B.2)

where {Mi}i∈{1,3,4,5} are as in (3.8) and ‘→d’ denotes element-wise convergence in distribution.

The motivation for the proof argument follows from the expression

√
n(β̂ − β) =

(∑
jk xjkx

T
jk

n(n− 1)

)−1 √
n
∑

jk xjkξjk

n(n− 1)
. (B.3)

We note that
(∑

jk xjkxjk

n(n−1)

)−1
converges in probability to M−1

1 and then show asymptotic normality of the

second multiplicative term in (B.3).

To analyze {xijξij}ni,j=1, we note that, by condition (B1), the joint exchangeability and independence

of non-overlapping pairs of the sequence {ξij}ni,j=1 extends to the component sequences in the vectors
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{xijξij}ni,j=1. Thus, to prove asymptotic normality of β̂, we first prove a theorem stating that the average of

a mean-zero sequence of jointly exchangeable random variables is asymptotically normal. Specifically, for

{Wij}ni,j=1 mean zero and jointly exchangeable, we show

kn

∑
ij Wij

σ
→d N(0, 1) (B.4)

for some normalizing constant σ and fixed sequence kn → 0 as n → ∞.

To prove (B.4), we rely on a result from Bolthausen (1982), as well as a supporting lemma which we

present here. Below we outline the significance of these results in the proof.

• Lemma 13 (Bolthausen (1982)): Provides a sufficient condition for asymptotic normality of a se-

quence of measures based on the standard normal characteristic function.

• Lemma 14: Provides a bound for a variance that surfaces in the proof of asymptotic normality in

(B.4).

From (B.4), we immediately have the marginal asymptotic normality of the sample mean of each of the

vector components in the sequence {xijξij}ni,j=1. To establish joint asymptotic normality, we employ the

Cramér-Wold device Cramér and Wold (1936), where asymptotic normality of {vTxijξij}ni,j=1, for all v ∈

Rp with ||v|| = 1, establishes joint normality. To achieve the asymptotic normality of this inner product, we

simply recognize that this inner product is itself the mean of an exchangeable sequence of random variables.

Joint asymptotic normality of the mean of the sequence of vectors {xijξij}ni,j=1 establishes joint asymptotic

normality of β̂ via (B.3).

B.2.1 Lemmas and theorem in support of Theorem 9

The following is Lemma 2 in Bolthausen (1982) and provides a sufficient condition for asymptotic

normality. We abuse notation slightly, letting i be the imaginary unit where appropriate.

Lemma 13 (Bolthausen (1982)). Let νn be a sequence of probability distributions over R which satisfies

1. supn
∫
x2dνn(x) < ∞, and

2. for all λ ∈ R, limn

∫
(iλ− x)eiλxdνn(x) = 0.
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Then, νn →d N(0, 1).

To provide intuition for Lemma 13, the integral in condition (2) is identically zero when νn is the standard

normal distribution.

The next lemma provides a sufficient condition on the dependence structure in {Wij}ni,j=1 necessary for

the proof of asymptotic normality in (B.4). Again we emphasize that terms in {Wij}ni,j=1 with i = j are

undefined.

Lemma 14. Let {Wij}ni,j=1 be a sequence of jointly exchangeable random variables as in Definition 8 with

||Wij ||4 < L < ∞, where ||Wij ||p := E [|Wij |p]1/p for p > 0. Then,

1

n6
V


∑

ij

∑

kl∈Θij

WijWkl


 <

CL4

n
→ 0 as n → ∞, (B.5)

for some C < ∞, where Θij is the set of ordered pairs (k, l) that share an index with (i, j).

Proof. By definition we write

1

n6
V


∑

ij

∑

kl∈Θij

WijWkl


 =

1

n6

∑

ij

∑

kl∈Θij

∑

rs

∑

tu∈Θrs

Cov(WijWkl,WrsWtu). (B.6)

Each covariance of (B.6) is bounded by L4. To bound the variance, we will show the number of nonzero

entries in the sum is O(n5). For Cov(WijWkl,WrsWtu) 6= 0, there must be overlap between the index sets

{i, j, k, l} and {r, s, t, u}. Further, the sum in (B.6) is taken over index sets that themselves contain overlap,

i.e. {i, j} ∩ {k, l} 6= ∅ and {r, s} ∩ {t, u} 6= ∅. For example, the index sets {i, j, i, l} and {i, s, i, u}

have nonzero covariance in (B.6). Since there are 5 unique indices in the union of the sets {i, j, i, l} and

{i, s, i, u}, there are O(n5) such index set pairs of this form in total. There are 96 pairs of index sets

that result in nonzero covariance Cov(WijWkl,WrsWtu). For example, another such pair of index sets is

{i, j, i, l} and {i, j, i, j}. Each of these 96 pairs of index sets is O(n5). Thus, the sum of covariances in

(B.6) is over O(n5) bounded elements.

It is worth noting that we repeat the counting argument in the proof of Lemma 14 in many of the

following proofs, including those in later sections. Now that we have Lemma 13 and 14, we prove that a

general sequence of mean-zero exchangeable random variables is asymptotically normal.
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Theorem 15. Let {Wij}ni,j=1 be a mean-zero sequence of jointly exchangeable random variables with at

least one of {φ3, φ4, φ5} nonzero. If ||Wij ||4 < L < ∞, then

√
n
∑

ij Wij

n(n− 1)
→d N(0, φ3 + φ4 + 2φ5) as n → ∞. (B.7)

Proof. We first show that φ3 + φ4 + 2φ5 is the correct limiting variance. Writing the variance of the

expression on the left hand side of (B.7) explicitly and recalling that entries such that i = j are undefined,

we see

V




√
n

n(n− 1)

∑

ij

Wij


 =

n

n2(n− 1)2

∑

ij

∑

kl∈Θij

Cov (Wij ,Wkl) (B.8)

=
n2(n− 1) (φ1 + φ2) + n2(n− 1)(n− 2) (φ3 + φ4 + 2φ5)

n2(n− 1)2

→ φ3 + φ4 + 2φ5 as n → ∞,

by the properties of joint exchangeability of {Wij}ni,j=1 as described in Section 3.3.3. This variance is finite

and nonzero by assumption. To prove (B.7), it is sufficient to show

S̄n :=

∑
ij Wij

n3/2
√
φ3 + φ4 + 2φ5

→d N(0, 1). (B.9)

Define the limiting variance as σ2
n = n3(φ3 + φ4 + 2φ5) and the sum Sn =

∑
ij Wij .

To establish (B.9), we employ Lemma 13, where νn is the probability measure corresponding to S̄n for

all n. The first condition of Lemma 13 is satisfied since

E[(S̄n)
2] =

V
[∑

ij Wij

]

n3(φ3 + φ4 + 2φ5)
< CL2 (B.10)

for C < ∞ and all n. Thus, to prove (B.9), it is sufficient to show the second condition of Lemma 13: for

all λ ∈ R,

E

[
(iλ− S̄n)e

iλS̄n

]
→ 0 as n → ∞. (B.11)

We decompose the term in the expectation as in Guyon (1995) and Lumley and Hamblett (2003):
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(iλ− S̄n)e
iλS̄n = A1 −A2 −A3, (B.12)

where A1 = iλeiλS̄n


1− 1

σ2
n

∑

ij

WijSij,n


 ,

A2 =
eiλS̄n

σn

∑

ij

Wij

(
1− iλS̄ij,n − e−iλS̄ij,n

)
,

A3 =
1

σn

∑

ij

Wije
iλ(S̄n−S̄ij,n),

Sij,n =
∑

kl∈Θij

Wkl, and S̄ij,n = Sij,n/σn.

To satisfy (B.11) it remains to be shown that limn→∞ E[Am] = 0 for each m ∈ {1, 2, 3}.

A1 : First notice that |eiλS̄n | ≤ 1. Using this fact and Lemma 14,

0 ≤ E[|A1|]2 ≤ E[|A2
1|] ≤ λ2E



∣∣∣∣∣∣
1− 1

σ2
n

∑

ij

WijSij,n

∣∣∣∣∣∣

2
 (B.13)

=
λ2

σ4
n

V


∑

ij

∑

kl∈Θij

WijWkl


+ λ2


1−

V
[∑

ij Wij

]

σ2
n




2

(B.14)

≤ λ2CL4

n
+ λ2

(
1− σ2

n +O(n−1)

σ2
n

)2

(B.15)

= λ2

(
CL4

n
+

O
(
n−2

)

σ2
n

)
→ 0 (B.16)

for all real λ. E[|A1|]2 limiting to zero implies E[|A1|] limits to zero, and hence E[A1] limits to zero.

A2 : By Taylor expansion of e−iλS̄ij,n , we can write

∣∣∣1− iλS̄ij,n − e−iλS̄ij,n

∣∣∣ ≤ cλ2
(
S̄ij,n

)2
, (B.17)

for some 0 < c < ∞ and all n, λ. Using this bound and the fact that |Θij | = 4n − 6, we evaluate E[|A2|]

directly below:
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E[|A2|] ≤
1

σn
E


∑

ij

|Wij |
∣∣∣1− iλS̄ij,n − e−iλS̄ij,n

∣∣∣


 , (B.18)

≤ cλ2

σ3
n

∑

ij

E

[
|Wij | (Sij,n)

2
]
, (B.19)

≤ cλ2

σ3
n

n(n− 1)(4n− 6)2L3 → 0, (B.20)

for all real λ. As E[|A2|] limits to zero, so does E[A2].

A3 : Note that Sij,n sums all terms in the sequence {Wij}ni,j=1 that depend upon Wij , including Wij itself.

Thus, Wij and S̄n − S̄ij,n are independent. It follows immediately that

E


 1

σn

∑

ij

Wije
iλ(S̄n−S̄ij,n)


 =

1

σn

∑

ij

E
[
Wij

]
E
[
eiλ(S̄n−S̄ij,n)

]
= 0, (B.21)

since E [Wij ] = 0 for all ordered pairs (i, j).

Hence, limn→∞ E[Am] = 0 for each m ∈ {1, 2, 3} and we have the convergence in (B.11), implying

S̄n →d N(0, 1) by Lemma 13, which gives the desired result in (B.7).

B.2.2 Proof of Theorem 9

We begin by writing

√
n(β̂ − β) =

(∑
jk xjkx

T
jk

n(n− 1)

)−1 √
n
∑

jk xjkξjk

n(n− 1)
, (B.22)

again emphasizing that entries in the sum with j = k are undefined and omitted. Addressing the first

multiplicative term in (B.22), we recall that the inverse map is continuous. Then, by (3.8) and the continuous

mapping theorem, we have

(∑
jk xjkx

T
jk

n(n− 1)

)−1

→p M
−1
1 . (B.23)

We now analyze the second multiplicative term in (B.22). Showing asymptotic normality of this second

multiplicative term is sufficient to show asymptotic normality of the expression on the left hand side of

(B.22). We wish to show that the sum of vectors
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Un :=

√
n

n(n− 1)

∑

jk

xjkξjk →d N(0,Σ), (B.24)

for some limiting variance Σ, where we recall the definition xT
jk = [x

(1)
jk , x

(2)
jk , . . . , x

(p)
jk ]. By the Cramér-

Wold device (Cramér and Wold (1936)), Un is asymptotically normal with asymptotic variance Σ if and

only if vTUn is asymptotically normal with asymptotic variance vTΣv for every vector v ∈ Rp such that

||v|| = 1. Clearly,

vTUn :=

√
n

n(n− 1)

∑

jk

x̃jkξjk, (B.25)

where we define x̃jk = vTxjk. We wish to apply Theorem 15 to the sequence {x̃jkξjk}nj,k=1. First, the

condition of finite moments in (B2) of Theorem 9 and ||v|| = 1 implies that ||x̃jkξjk||4 < L for some finite

L < ∞. Secondly, by the independence of X and Ξ in (B3) of Theorem 9, the sequence {x̃jkξjk}nj,k=1 is

a mean-zero exchangeable sequence of scalar random variables. Taking the variance directly, we have that

the variance V
[∑

jk x̃jkξjk

]
is

n3vT (φ1M1O(n−1) + φ2M2O(n−1) + φ3M3 + φ4M4 + 2φ5M5)v. (B.26)

Then, we apply Theorem 15 with σ2
n = V [

∑
jk x̃jkξjk] from (B.26), which gives that

vTUn →d N(0,vT (φ3M3 + φ4M4 + 2φ5M5)v). (B.27)

Thus, by the Cramér-Wold device, we get the desired joint asymptotic normality

√
n
∑

jk xjkξjk

n(n− 1)
→d N

(
0, φ3M3 + φ4M4 + 2φ5M5

)
. (B.28)

Combining the convergence in probability in (B.23) and the asymptotic normality of (B.28), we obtain the

desired result.
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B.3 Proof of consistency of the exchangeable estimator

For the proof of the consistency of the exchangeable estimator V̂E , we adopt the same change in notation

as in Appendix B.2, defined in (B.1). We deviate slightly in that we denote Θi to denote dyadic pairs (j, k)

and (l,m) that share a member in the ith manner. For example, for i = 3 we must have j = l and m 6= k.

We use the same assumptions as in Theorem 9.

This proof is outlined as follows. We initially prove that the exchangeable estimator V̂E is consistent if

the exchangeable parameter estimates {φ̂i : i = 1, . . . , 5} are consistent for the true parameters. We then

prove consistency of {φ̂i} in two steps: (a) we show parameter estimates {φ̃i} based on the unobserved true

errors Ξ are consistent and then (b) we show that the parameter estimates {φ̂i} are asymptotically equivalent

to {φ̃i}. We require the consistency of β̂ result (implied by Theorem 9) for this last step.

B.3.1 Proof of Theorem 10

We first note that from Theorem 9 the order of convergence of β̂ is
√
n. Thus, we choose the rate n as

our asymptotic regime for consistency of V̂E . We wish to show that

nV̂E − nV [β̂] →p 0. (B.29)

1. Sufficient to show consistency of {φ̂i}

Here we show that to prove consistency of V̂E , it is sufficient to prove the consistency of the parameter

estimates {φ̂i} for the true parameters. We begin by writing the difference of variances nV̂E − nV [β̂] in

(B.29), as

n(XTX)−1XT
(
Ω̂E − ΩE

)
X(XTX)−1

=
n

n2(n− 1)2

(
XTX

n(n− 1)

)−1


XT

∑5
i=1 |Θi|

(
φ̂i − φi

)
SiX

|Θi|



(

XTX

n(n− 1)

)−1

=

5∑

i=1

|Θi|
n(n− 1)2

(
φ̂i − φi

)( XTX

n(n− 1)

)−1
(∑

(jk,ℓm)∈Θi
xjkx

T
ℓm

|Θi|

)(
XTX

n(n− 1)

)−1

: =

5∑

i=1

ci,n

(
φ̂i − φi

)
hi,n (X) , (B.30)
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where ci,n = |Θi|/n(n− 1)2 and hi,n(X) contains the remaining terms which are functions of X . By the

counting argument used to show Lemma 14, each |Θi| is at most O(n3), so each ci,n → di for some finite

constant di, namely di = 0 for i ∈ {1, 2}, di = 1 when i ∈ {3, 4}, and di = 2 for i = 5. To obtain the result

in (B.29), it is sufficient then to show φ̂i − φi →p 0 and hi,n(X) converges in probability to some constant

for all i. The latter comes easily, that is, by assumption and Slutsky’s theorem,

hi,n(X) →p M
−1
1 MiM

−1
1 , i ∈ {1, . . . , 5}. (B.31)

The continuous mapping theorem allows us to take the probability limit of XTX
n(n−1) before inversion, as the

inversion map is continuous.

We now consider consistency of the parameter estimates φ̂i. First, define error averages {φ̃i : i =

1, 2, 3, 4, 5} analogous to the parameter estimates, such that for each i

φ̃i =
1

|Θi|
∑

(jk,ℓm)∈Θi

ξjkξℓm. (B.32)

We will show φ̃i − φi converges in probability to zero, and then do the same for φ̂i − φ̃i. This is sufficient

for showing φ̂i − φi →p 0 as φ̂i − φi = (φ̂i − φ̃i) + (φ̃i − φi).

2. Consistency of φ̃i for φi

To show convergence in probability of φ̃i − φi to zero, we use the argument that the bias and variance

both tend to zero. By assumption (A1), E[ξjkξℓm] = φi for every relation pair (jk, ℓm) ∈ Θi. Thus,

E[φ̃i − φi] = 0 for all n and i ∈ {1, . . . , 5}. We now turn to the variance:

V
[
φ̃i

]
=

1

|Θi|2
∑

(jk,ℓm)∈Θi

∑

(rs,tu)∈Θi

Cov
(
ξjkξℓm, ξrsξtu

)
. (B.33)

We again make a counting argument similar to that in Lemma (14). By condition (B2), each of the |Θi|2

covariances in the sum above are bounded. The covariance between ξjkξℓm and ξrsξtu is nonzero only if

there is overlap between their two index sets. This reduces the number of nonzero covariances from the

maximum possible |Θi|2 by a factor of at least n. Again, consider the case of i = 3 where |Θ3| = O(n3).
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Each pair of relations in Θ3 must be of the form (jk, jm), and thus the second set of indices must be of the

form (js, ju), for example, for the covariance to be nonzero. The set of indices {j, k, j,m, j, s, j, u} is of

order O(n5) = |Θ3|2n−1. There are other forms of relation pairs in the second sum that give rise to nonzero

covariance, such as (ks, ku) and so on. However, there are nine such forms, each of which is O(n5). Thus,

the number of nonzero covariances is O(n5), and hence, we have

V
[
φ̃i

]
=

|Θi|2O(n−1)

|Θi|2
→ 0. (B.34)

This same argument holds for all i, and thus, we have the desired consistency: φ̃i−φi →p 0 for i = 1, . . . , 5.

3. Asymptotic equivalence of φ̂i and φ̃i

We now show that φ̂i − φ̃i converges in probability to zero. We first write the expression in terms of the

estimated coefficients β̂:

φ̂i − φ̃i =

∑
(jk,ℓm)∈Θi

ejkeℓm − ξjkξℓm

|Θi|

=
1

|Θi|
∑

(jk,ℓm)∈Θi

(
(β − β̂)T (xjkx

T
ℓm)(β − β̂)− (β − β̂)T (ξjkxℓm + ξℓmxjk)

)
. (B.35)

By Theorem 9, β̂−β converges to zero in probability. By Slutsky’s theorem, if the terms in (B.35) involving

elements of X and Ξv converge in probability to any constant, then φ̂i− φ̃i converges in probability to zero.

By (B1) and (3.8) we have the convergence in probability of the term involving xjkx
T
ℓm. Furthermore, by

condition (B3), we have that E[ξjkxℓm] = E[ξℓmxjk] = 0. It remains to be shown that the variance of the

error-covariate averages tend to zero. Consider the variance of the first error-covariate averages:

V


 1

|Θi|
∑

(jk,ℓm)∈Θi

ξjkxℓm


 =

1

|Θi|2
∑

(jk,ℓm)∈Θi

∑

(rs,tu)∈Θi

Cov (ξjkxℓm, ξrsxtu) , (B.36)

=
1

|Θi|2
∑

(jk,ℓm)∈Θi

∑

(rs,tu)∈Θi

E
[
xℓmxT

tu

]
Cov (ξjk, ξrs) . (B.37)

In writing (B.37), we use condition (B3) and simplify by conditioning on X and using the law of total

variance. By the same counting arguments used to establish (B.34), there are |Θi|2O(n−1) nonzero bounded
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covariances in (B.37). Thus, we have

V


 1

|Θi|
∑

(jk,ℓm)∈Θi

ξjkxℓm


 =

|Θi|2O(n−1)

|Θi|2
→ 0. (B.38)

Since the expectation and variance both tend to zero, we have

1

|Θi|
∑

(jk,ℓm)∈Θi

ξjkxℓm →p 0. (B.39)

The same argument applies to the second error-covariate term in (B.35). Thus, we have shown that consis-

tency of β̂ implies

φ̂i − φ̃i →p 0. (B.40)

B.4 Proof of MSE result

In this section, we prove that the MSE of V̂ [β̂], conditional on X , is lower when using the exchangeable

estimator than that when using the dyadic clustering estimator with high probability in X , assuming that the

error structure is exchangeable. Before proving the theorem, we provide a lemma that states that the MSE

of the each estimator is asymptotically equivalent to the MSE of each estimator based on the true errors,

which vastly simplifies the proof of the MSE theorem. Even so, we must consider higher order moments of

ξ than the covariances Cov (ξjk, ξlm). So, we also provide a lemma in which we define the covariance of

any pair of product of error relations Cov (ξjkξlm, ξrsξtu) and define the limiting values of the covariance

of the error averages, nCov
(
φ̃v, φ̃w

)
, for every pair (v, w) ∈ {1, 2, . . . , 5} × {1, 2, . . . , 5}.

In this Section, we use the notation O(na) and Θ(na), for some a ∈ R, to denote the convergence

a sequence of numbers to a constant (possibly zero) and a nonzero constant, respectively, as n grows to

infinity. In other words, Xn = O(na) means that the sequence n−aXn converges to a constant that may be

zero. The notation Xn = Θ(na) means that the sequence n−aXn converges to a nonzero constant. Lastly,

it follows that Xn = O(na−ǫ) means that the sequence n−aXn converges to zero.

141



We use similar notation for convergence of sequences of random variables. The notation Xn = Op(n
a)

for some a ∈ R means that the sequence n−aXn converges in distribution to a random variable (possibly

a constant). The notation Xn = op(n
a) for some a ∈ R means that the sequence n−aXn converges in

probability to zero. Finally, we define Xn = Θp(n
a) to mean that n−aXn converges in distribution to a

random variable with distribution that is not a point mass at zero, and thus possibly a nonzero constant (as

will always be the case in this Section).

B.4.1 Lemmas in support of Theorem 11

The first lemma describes the covariances of parameter estimates based on the errors, which arise in the

proof of the MSE theorem. Of interest are the covariances Cov
(
φ̃v, φ̃w

)
for (v, w) ∈ {3, 4, 5} × {3, 4, 5},

as there are Θ(n) times as many of these covariances in V̂E [β̂] as those covariances where at least one of

v or w is in {1, 2}. However, we provide limiting values of all covariances for completeness. The proof of

this lemma follows from recognizing that φ̃v is a sample average and from defining all possible covariances

that make up Cov
(
φ̃v, φ̃w

)
and their multiplicities.

Lemma 16. If ξ is a mean zero random vector with positive definite covariance matrix in the exchange-

able class, Ω =
∑5

i=1 φiSi, and E[ξ4jk] < L < ∞, then the covariance nCov
(
φ̃v, φ̃w

)
for (v, w) ∈

{1, 2, . . . , 5} × {1, 2, . . . , 5} converges to

nCov
(
φ̃v, φ̃w

)
→





∑4
i=1 αiβvβwC (v, w)i (v, w) ∈ {3, 4, 5} × {3, 4, 5}

∑3
j=1 γjF (v, w)j (v, w) ∈ {1, 2} × {1, 2},

∑4
k=1 γkD(v, w)k o.w.,

(B.41)

where αi := 1 + ✶[i > 1] + ✶[i = 4], i ∈ {1, 2, 3, 4},

βi := 1 + ✶[i = 5], i ∈ {1, 2, 3, 4, 5},

γi := 1 + ✶[i > 2], i ∈ {1, 2, 3, 4},

and C (v, w)i, D (v, w)i, and F (v, w)i are unknown finite constants equal to Cov (ξjkξlm, ξrsξtu) for var-

ious configurations of the sets {j, k, l,m} and {r, s, t, u}.

Proof. By definition, the covariance nCov
(
φ̃v, φ̃w

)
is
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n|Θv|−1|Θw|−1
∑

(jk,lm)∈Θv

∑

(rs,tu)∈Θw

Cov (ξjkξlm, ξrsξtu) . (B.42)

The sum is over |Θv||Θw| terms. Whenever {j, k, l,m} ∩ {r, s, t, u} = ∅, the covariance is zero.

This removes a power of n from the sum in (B.42), such that the sum is over O(|Θv||Θw|n−1)

possibly nonzero covariances. The scaled sum in (B.42) converges – provided that the number of

values that Cov (ξjkξlm, ξrsξtu) can take is finite – as each covariance is finite by assumption and

the sequence of covariances is homogeneous as n grows by exchangeability. In the remainder of the

proof, we enumerate and define the covariances Cov (ξjkξlm, ξrsξtu) in (B.42) for particular pairs

(v, w) ∈ {1, 2, . . . , 5} × {1, 2, . . . , 5}, showing that the number of values that Cov (ξjkξlm, ξrsξtu) can

take is finite. This is sufficient to establish convergence.

Both v and w in {3, 4, 5}:

We begin by analyzing the case of interest, that is when both v and w are members of {3, 4, 5}. As an

example, we focus on v = 3 and w = 4, where the first product of error relations corresponds to the

same-sender covariance (b) in Figure 3.1 and the second corresponds to the same-receiver covariance (c) in

Figure 3.1. In this case, both |Θ3| = |Θ4| = Θ(n3). When v = 3 and w = 4, the covariance in (B.42)

becomes

nCov
(
φ̃3, φ̃4

)
=a n−5

∑

jk

∑

l /∈{j,k}

∑

rs

∑

t/∈{r,s}

Cov (ξjkξjl, ξsrξtr) , (B.43)

where ‘=a’ denotes equality in the limit as n grows to infinity.

Only pairs of relation products that share a single actor will remain in the limit, as there are an order

of n fewer covariances resulting from pairs of relation products that share two actors. One such pair of

relation products that share a single actor correspond to the case when s = j, i.e. Cov (ξjkξjl, ξjrξtr),

of which there are Θ(n5) in the sum in (B.43). There are Θ(n4) covariances corresponding to the case

when s = j and r = k, i.e. Cov (ξjkξjl, ξjkξtk). The values of all covariances in (B.43) are finite by

assumption and not equal in general. However, by exchangeability, covariances resulting from pairs of

relations that share an actor in the same way are equal. For example, the covariance corresponding to s = j
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is the same regardless of the node labeling, that is Cov (ξjkξjl, ξjrξtr) = Cov (ξabξac, ξadξed) for any set

{a, b, c, d, e} ⊂ {1, 2, . . . , n} with |{a, b, c, d, e}| = 5.

There are nine ways that we may have |{j, k, l} ∩ {r, s, t}| = 1 in (B.43), i.e. there are nine ways that

exactly one of {j, k, l} equals exactly one of {r, s, t}. However, these reduce into four unique covariance

values for each pair (v, w) ∈ {3, 4, 5}× {3, 4, 5}. As an example, when t = j the covariance is the same as

that when s = j, that is Cov (ξjkξjl, ξjrξtr) = Cov (ξjkξjl, ξsrξjr). Now we define these four covariance

values and their multiplicities out of the nine possible ways that exactly one of {j, k, l} equals exactly one

of {r, s, t}:

• When r = j, we define the covariance C(3, 4)1 := Cov (ξjkξjl, ξsjξtj), of which there is one out of

nine possible;

• When s = j, the covariance is the same as when t = j (multiplicity two), and we define this

covariance C(3, 4)2 := Cov (ξjkξjl, ξjrξtr);

• When r = k, the covariance is the same as when r = l (multiplicity two), and we define this

covariance C(3, 4)3 := Cov (ξjkξjl, ξskξtk);

• We define the covariance when s = k to be C(3, 4)4 := Cov (ξjkξjl, ξkrξtr), of which there are four,

the remaining terms of which correspond to t = k, s = l, and t = l.

Now, noting that there are n5 + Θ(n4) covariances in the sum (B.43) corresponding to each of the nine

possible ways that exactly one of {j, k, l} equals exactly one of {r, s, t}, we see that

nCov
(
φ̃3, φ̃4

)
→

→ Cov (ξjkξjl, ξsjξtj) + 2Cov (ξjkξjl, ξjrξtr)

+ 2Cov (ξjkξjl, ξskξtk) + 4Cov (ξjkξjl, ξkrξtr) , (B.44)

:= C(3, 4)1 + 2C(3, 4)2 + 2C(3, 4)3 + 4C(3, 4)4,

where ‘→’ denotes convergence in the limit as n goes to infinity. Under appropriate definition of C(v, w)i

for i ∈ {1, 2, 3, 4}, the same argument applies when both v and w are one of {3, 4}. When w = 5 (relation

products of the form {ξjkξkl} and {ξjkξlj}) and v = 3, however, we then must consider covariances
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Cov (ξjkξjl, ξrsξtr) and Cov (ξjkξjl, ξsrξrt) from w = 5, which doubles the coefficients in (B.44). This

accounts for βw = 2 when w = 5 and βw = 1 otherwise in (B.41). The same argument applies when v = 5.

Both v and w in {1, 2}:

We now analyze both v and w in {1, 2}, corresponding to variance and the reciprocal covariance (a) in

Figure 3.1. In this case, both |Θv| = |Θw| = n(n− 1). Taking v = 1 and w = 1 as an example, in the limit,

the covariance in (B.42) is

nCov
(
φ̃1, φ̃2

)
=a n−3

∑

jk

∑

rs

Cov
(
ξ2jk, ξ

2
rs

)
. (B.45)

Again, we only consider covariances corresponding to pairs of relation products that share a single actor as

only these covariances survive in the limit. There are four possible ways that {j, k} shares exactly one actor

with {r, s}. We define the three unique covariances and their multiplicities corresponding to the four ways

that {j, k} shares exactly one actor with {r, s} as follows:

• When r = j, we define the covariance F (1, 1)1 := Cov
(
ξ2jk, ξ

2
js

)
, of which there is one out of the

four possibilities;

• When s = k, we define the covariance F (1, 1)2 := Cov
(
ξ2jk, ξ

2
rk

)
, of which there is one;

• When s = j, we define the covariance F (1, 2)3 := Cov
(
ξ2jk, ξ

2
rj

)
, which is the same as when r = k,

accounting for the remaining two possibilities.

Now, the fact that there are n3 + Θ(n2) covariances in the sum (B.45) corresponding to each of the four

possible ways that {j, k} shares exactly one actor with {r, s} gives that

nCov
(
φ̃1, φ̃1

)
→ Cov

(
ξ2jk, ξ

2
js

)
+Cov

(
ξ2jk, ξ

2
rk

)
+ 2Cov

(
ξ2jk, ξ

2
rj

)
(B.46)

:= F (1, 1)1 + F (1, 1)2 + 2F (1, 1)3.

Of course, the same argument applies to any v and w both in {1, 2}. In the case where v = 1 and w = 2, by

symmetry, F (1, 2)1 = F (1, 2)2. Similarly, for v = w = 2, all F (2, 2)1 = F (2, 2)2 = F (2, 2)3.
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One of v and w in {1, 2} and the other in {3, 4, 5}:

Similar counting arguments to those in the previous paragraphs apply when one of v, w is in {3, 4, 5} and

the other is in {1, 2}. As an example, consider v = 1 and w = 3. Once again, only pairs of relations that

share a single actor will remain in the limit. Then, in the limit, the covariance in (B.42) becomes

nCov
(
φ̃2, φ̃3

)
=a n−4

∑

jk

∑

rs

∑

t/∈{r,s}

Cov
(
ξ2jk, ξrsξrt

)
. (B.47)

Now, there are six ways in which the first pair of relations share an actor with the second pair, i.e. all sets

with exactly one actor from {j, k} equal to exactly one other from {r, s, t}. We define the covariances

corresponding to the six possibilities below:

• When r = j, we define the covariance D(1, 3)1 := Cov
(
ξ2jk, ξjsξjt

)
, of which there is one out of

the six possibilities;

• When r = k, we define the covariance D(1, 3)2 := Cov
(
ξ2jk, ξksξkt

)
, of which there is one;

• The overlaps where s = j and t = j result in the same covariance (multiplicity two), which we define

D(1, 3)3 := Cov
(
ξ2jk, ξrjξrt

)
;

• The overlaps where s = k and t = k result in the same covariance (multiplicity two), which we

define D(1, 3)4 := Cov
(
ξ2jk, ξrkξrt

)
.

Then, noting that there are n4 + Θ(n3) covariances in the sum (B.47) corresponding to each of the six

possible ways that exactly one actor from {j, k} is equal to exactly one other from {r, s, t}, we have that

nCov
(
φ̃2, φ̃3

)
converges to

→ Cov
(
ξ2jk, ξjsξjt

)
+Cov

(
ξ2jk, ξksξkt

)
+ 2Cov

(
ξ2jk, ξrjξrt

)
+ 2Cov

(
ξ2jk, ξrkξrt

)
, (B.48)

:= D(1, 3)1 +D(1, 3)2 + 2D(1, 3)3 + 2D(1, 3)4.

When D(v, w)k for k ∈ {1, 2, 3, 4} is appropriately defined, the same argument applies for all set-

tings where one of v, w is in {3, 4} and the other is in {1, 2}. When w = 5 (relation products of the

form {ξjkξkl} and {ξjkξlj}), however, we then must consider covariances in (B.47) Cov
(
ξ2jk, ξrsξtr

)
and

Cov
(
ξ2jk, ξsrξrs

)
, which doubles the coefficients in (B.48). This accounts for βw = 2 when w = 5 and
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βw = 1 otherwise in (B.41). We note that when v = 2, for example, we have the simplification that

D(2, 3)1 = D(2, 3)2 and D(2, 3)3 = D(2, 3)4.

The expressions for the estimators based on the errors are simpler to analyze than those based on the

residuals. For example, when comparing the MSEs of the exchangeable and dyadic clustering estimators, it

is desirable to analyze MSEξ

(
ṼE |X

)
instead of MSEξ

(
V̂E |X

)
. The following lemma allows us to do

just this. This lemma states that MSEs of the estimators based on the errors are asymptotically equivalent to

the MSEs of those based on the residuals. The proof consists of first evaluating the MSE conditional on X .

We then show that n3MSEξ

(
ṼE |X

)
converges in X-probability to a nonzero constant in general and that

n3MSEξ

(
ṼE |X

)
− n3MSEξ

(
V̂E |X

)
converges in X-probability to zero, implying that the difference

between MSEξ

(
ṼE |X

)
and MSEξ

(
V̂E |X

)
is asymptotically negligible. We repeat the procedure for

MSEξ

(
ṼDC |X

)
and MSEξ

(
V̂DC |X

)
.

Lemma 17. Assuming E

(
|x(l)jk |8

)
< L8 < ∞ for all l ∈ {1, 2, . . . , p} and under the assumptions of

Theorem 9, the MSE for both the exchangeable and dyadic clustering estimators based on the residuals is

asymptotically equivalent to the MSE of each respective estimator based on the errors. That is,

n3MSEξ

(
V̂E |X

)
= n3MSEξ

(
ṼE |X

)
+Op(n

−1/2) = Op(1), (B.49)

and analogously for dyadic clustering.

Proof. We will focus on the exchangeable estimator first, and then the dyadic clustering estimator. Through-

out, we drop the conditioning on X in the MSE as it is understood, for example MSEξ

(
V̂E

)
:=

MSEξ

(
V̂E |X

)
.

Exchangeable estimator:

By definition, the MSE of the exchangeable estimator is

MSEξ

(
V̂E

)
= E

[(
V̂E − V ∗

)2 ∣∣∣∣ X
]
, (B.50)

= MSEξ

(
ṼE

)
+ E

[(
V̂E − ṼE

)2 ∣∣∣∣ X
]
+ 2E

[(
V̂E − ṼE

)(
ṼE − V ∗

) ∣∣ X
]
, (B.51)
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where V ∗ := V [β̂], the true variance of the OLS coefficient estimate. By the Cauchy-Schwarz inequality,

E

[(
V̂E − ṼE

)(
ṼE − V ∗

) ∣∣ X
]
≤
√
MSEξ

(
ṼE

)
E

[(
V̂E − ṼE

)2 ∣∣ X
]
. (B.52)

If we show that n3MSEξ

(
ṼE

)
converges in X-probability to a constant, i.e. MSEξ

(
ṼE

)
= Op(n

−3),

and that E

[(
V̂E − ṼE

)2 ∣∣ X
]
= Op(n

−4), then (B.52) implies that the third additive term of (B.51) is

Op(n
−7/2). This is sufficient to establish (B.49). We begin with showing n3MSEξ

(
ṼE

)
= Op(1). By

definition, the scaled MSE is n3MSEξ

(
ṼE

)
= n3E

[
tr
(
Ṽ 2
E

) ∣∣ X
]
, which is equal to

5∑

v=1

5∑

w=1

nCov
(
φ̃v, φ̃w

)
tr

(
A−1

n

(
XTSvX

n3

)
A−2

n

(
XTSwX

n3

)
A−1

n

)
, (B.53)

where An := XTX
n2 . By Lemma 16, nCov

(
φ̃v, φ̃w

)
converges to a finite constant for every (v, w) ∈

{1, 2, . . . , 5}×{1, 2, . . . , 5}. The convergence in probability of each multiplicative term in (B.53) containing

X is defined by assumption (B1); only those with both v and w in {3, 4, 5} survive in the limit as these have

|Θv| = Θ(n3) whereas |Θv| = Θ(n2) for v ∈ {1, 2}. Thus, we have that

n3MSEξ

(
ṼE

)
PX−−→

5∑

v=3

5∑

w=3

4∑

i=1

αiβvβwC(v, w)itr
(
M−1

1 MvM
−2
1 MwM

−1
1

)
, (B.54)

which is finite.

It remains to show that E

[(
V̂E − ṼE

)2 ∣∣ X
]
= Op(n

−4). To establish this fact, it is sufficient to show

that V̂E − ṼE = Op(n
−2), and then, by the continuous mapping theorem,

(
V̂E − ṼE

)2
= Op(n

−4), which

implies the desired result. Writing directly,

V̂E − ṼE =
1

n

5∑

v=1

(
φ̂v − φ̃v

)(XTX

n2

)−1(
XTSvX

n3

)(
XTX

n2

)−1

. (B.55)

By assumption (B1), the multiplicative terms involving X converge in probability to constants. To establish

V̂E − ṼE = Op(n
−2), it is sufficient show that φ̂v − φ̃v = Op(n

−1) for all v ∈ {1, 2, . . . , 5}. Writing this

expression directly, the difference φ̂v − φ̃v is
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−(β̂ − β)T


 ∑

(jk,lm)∈Θv

xjkξlm + xlmξjk
|Θv|


+ (β̂ − β)T


 ∑

(jk,lm)∈Θv

xjkx
T
lm

|Θv|


 (β̂ − β). (B.56)

By Theorem 9, β̂ − β = Op(n
−1/2). Also, by assumption (B1), the sum involving X in the second term

converges in probability to a constant; thus, the second additive term in (B.56) is Op(n
−1). Turning to the

first additive term, we notice its expectation is zero, that is E[xjkξlm] = 0 for all relations jk and lm. The

variance is

V


 ∑

(jk,lm)∈Θv

xjkξlm
|Θv|


 =

1

|Θv|2
∑

(jk,lm)∈Θv

∑

(rs,tu)∈Θv

E
[
xjkx

T
rsξlmξtu

]
= O(n−1), (B.57)

where we use the fact that E
[
xjkx

T
rsξlmξtu

]
is only nonzero when relation lm shares an actor with relation

tu since E [ξlmξtu] = 0 whenever {j, k}∩{l,m} = ∅ and X is independent ξ by assumption (B3). This fact

removes at least a factor of n from the sum. Thus, we have that
∑

(jk,lm)∈Θv

xjkξlm+xlmξjk
|Θv |

= Op(n
−1/2),

which gives that φ̂v − φ̃v = Op(n
−1) and

E

[(
V̂E − ṼE

)2 ∣∣ X
]
= Op(n

−4), (B.58)

which establishes (B.49) for the exchangeable estimator.

Dyadic clustering estimator:

The same argument following (B.51) applies to the dyadic clustering estimator. To establish (B.49) for the

dyadic clustering estimator, it is thus sufficient to show that n3MSEξ

(
ṼDC

)
converges in X-probability

to a constant and that E

[(
V̂DC − ṼDC

)2 ∣∣ X
]
= Op(n

−4). We begin with the former. By definition,

n3MSEξ

(
ṼDC

)
is

1

n5

∑

(jk,lm)∈Θ0

∑

(rs,tu)∈Θ0

Cov (ξjkξlm, ξrsξtu)× . . .

. . .× tr

((
XTX

n2

)−1

xjkx
T
lm

(
XTX

n2

)−2

xrsx
T
tu

(
XTX

n2

)−1
)
, (B.59)
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where Θ0 is the set of relation pairs that share an actor in any manner. Then, substituting the asymptotic

values for Cov (ξjkξlm, ξrsξtu) from Lemma 16 and separating the sum by the five ways that two relations

may share an actor,

n3MSEξ

(
ṼDC

)
=a

1

n5

5∑

v=3

5∑

w=3

4∑

i=1

∑

T (v,w)i

C(v, w)i x
T
lmM−2

1 xrsx
T
tuM

−2
1 xjk, (B.60)

where ‘=a’ denotes equality in the limit and T (v, w)i is the set of relations (jk, lm, rs, tu) such that

(jk, lm) ∈ Θv and (rs, tu) ∈ Θw and such that the pairs of relations (jk, lm) and (rs, tu) share a single

actor as appropriate for C(v, w)i in Lemma 16. In (B.60), we substitute the limit of
(
XTX
n2

)−2
from

assumption (B1). Also in (B.60), only terms with v and w both in {3, 4, 5} survive in the limit as the set

|T (v, w)i| = Θ(n5) (as detailed in Lemma 16), while the order is less for either v or w in {1, 2}, so these

terms vanish in the limit. Evaluating the vector products, the expression on the right hand side of (B.60)

equal to

5∑

v=3

5∑

w=3

4∑

i=1

p∑

a=1

p∑

b=1

p∑

c=1

p∑

d=1

C(v, w)i
(
m−2

1

)
ab

(
m−2

1

)
cd


 1

n5

∑

T (v,w)i

x
(a)
lmx(b)rs x

(c)
tu x

(d)
jk


 , (B.61)

where
(
m−2

1

)
ab

is the (a, b) entry in M−2
1 , e.g., and x

(a)
jk is the entry in X pertaining to column a and

relation jk. Further, the variance

V
[

1
n5

∑
T (v,w)i

x
(a)
lmx

(b)
rs x

(c)
tu x

(d)
jk

]
is

1

n10

∑

T (v,w)i

∑

U(v,w)i

Cov
(
x
(a)
lmx(b)rs x

(c)
tu x

(d)
jk , x

(a)
ef x

(b)
ghx

(c)
npx

(d)
yz

)
, (B.62)

=
Θ(n9)

n10
→ 0, (B.63)

where U(v, w)i = T (v, w)i and (lm, rs, tu, jk) indexes the first sum and (ef, gh, np, yz) indexes the sec-

ond sum. The convergence is the result of the independence portion of assumption in (B1) and the bounded

moment assumption on X . The variance in (B.62) converges to zero for every set of covariates {a, b, c, d},

every relation type v and w both in {3, 4, 5}, and every covariance type i ∈ {1, 2, 3, 4}. Thus, provided

that the expectation of n−5
∑

T (v,w)i
x
(a)
lmx

(b)
rs x

(c)
tu x

(d)
jk converges to a constant, this expression converges in

probability to that same constant. This expectation is
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E

[
x
(a)
lmx(b)rs x

(c)
tu x

(d)
jk

]
= Cov

(
x
(d)
jk x

(a)
lm , x(b)rs x

(c)
tu

)
+ (mv)ad (mw)bc , (B.64)

where (mv)ij is the (i, j) entry in Mv and we use the symmetry of Mv for all v ∈ {3, 4, 5}. Unlike ξ, for

a given i ∈ {1, 2, 3, 4}, the covariances in (B.64) may not be the same for two relation sets in T (v, w)i.

However, by assumption (B1) and taking i = 1, v = 3, and w = 4 for example, we still have that

Cov
(
x
(d)
jl x

(a)
sj , x

(b)
tj x

(c)
jk

)
= Cov

(
x
(d)
ef x

(a)
ge , x

(b)
he x

(c)
ep

)
, (B.65)

for |{j, k, l, s, t, e, f, g, h, p}| = 10. That is, covariances that share an actor in the same way are still equal.

So, for fixed i ∈ {1, 2, 3, 4} and pair of v and w both in {3, 4, 5}, we may collect the αi possible covariances

and average them to attain the convergent value. We thus define the limit

1

n5

∑

T (v,w)i

Cov
(
x
(d)
jk x

(a)
lm , x(b)rs x

(c)
tu

)
→ αiβvβw

1

αi

∑

W (v,w)i

Cov
(
x
(d)
jk x

(a)
lm , x(b)rs x

(c)
tu

)
, (B.66)

:= αiβvβwC
(d,a,b,c)
X (v, w)i, (B.67)

where W (v, w)i is the set of αi ways that (jk, lm, rs, tu) correspond to T (v, w)i. For example, when

i = 4, v = 3, and w = 4, W (v, w)i contains four index sets corresponding to the four multiplicities

of C(v, w)4 as defined in Lemma (3). The convergence of (B.66) results from (B.65). As the average

over is W (v, w)i is over a finite number of terms, i.e. each αi is bounded, there is no possibility of di-

vergence. We note that the covariances in (B.66) are finite by assumption (B2) and βvβw arises from

the asymptotic limit of n−5|T (v, w)i|. Taking (B.66) together with (B.64), we have the convergence of

the expectation of n−5
∑

T (v,w)i
x
(a)
lmx

(b)
rs x

(c)
tu x

(d)
jk . Along with (B.62), convergence of the expectation of

n−5
∑

T (v,w)i
x
(a)
lmx

(b)
rs x

(c)
tu x

(d)
jk establishes the convergence of n−5

∑
T (v,w)i

x
(a)
lmx

(b)
rs x

(c)
tu x

(d)
jk to the same

limit.

Now, for a particular v and w both in {3, 4, 5} and i ∈ {1, 2, 3, 4}, we collect the set of

{C(d,a,b,c)
X (v, w)i} for every a, b, c, and d in {1, 2, . . . , p} from (B.67) into a p2 × p2 matrix defined

DX(v, w)i. Substituting this definition into (B.61) while noting each {Mv}5v=1 is symmetric, the convergent

value for the dyadic clustering estimator is
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n3MSEξ

(
ṼDC

)
PX−−→

5∑

v=3

5∑

w=3

4∑

i=1

αiβvβwC(v, w)i × . . . (B.68)

. . .×
(
vec
(
M−2

1

)T
DX(v, w)ivec

(
M−2

1

)
+ tr

(
M−2

1 MvM
−2
1 Mw

))
.

Noting that the convergent value in (B.68) is a finite constant, it remains to show that

E

[(
V̂DC − ṼDC

)2 ∣∣ X
]
= Op(n

−4). As with the exchangeable estimator, it is sufficient to show that

V̂DC − ṼDC = Op(n
−2). Using the residual definition ejk = ξjk + xT

jk(β − β̂), the expression for

V̂DC − ṼDC is

1

n

5∑

v=1

∑

(jk,lm)∈Θv

(
XTX

n2

)−1(
xjkx

T
lm

n3
(ejkelm − ξjkξlm)

)(
XTX

n2

)−1

(B.69)

=a
1

n

5∑

v=1

∑

(jk,lm)∈Θv

M−1
1

(
xjkx

T
lm

n3

(
xT
jk

(
β̂ − β

)(
β̂ − β

)T
xlm

)
− 2xT

jk

(
β̂ − β

)
ξlm

)
M−1

1 ,

where we substitute the convergence of
(
XTX
n2

)−1
to M−1

1 and have used the exchangeability property to

get the factor of two on the second additive term in the center of (B.69). Analyzing the first additive term in

the center of (B.69),

5∑

v=1

∑

(jk,lm)∈Θv

xjkx
T
lm

n3

(
xT
jk

(
β̂ − β

)(
β̂ − β

)T
xlm

)

=
∑

jk

∑

lm∈Θjk

(
xjkx

T
jk

n2

)(
β̂ − β

)(
β̂ − β

)T (xlmxT
lm

n

)
, (B.70)

= Θp(1)Op(n
−1/2)Op(n

−1/2)Θp(1) = Op(n
−1), (B.71)

recalling the notation that Θjk is the set of all relations that share an actor with relation jk and that |Θjk| =

Θ(n). We attain the convergence rate by noting that the X-terms in (B.70) converge in probability to

constants by assumption (B1) and β̂ − β = Op(n
−1/2) by Theorem 9. The convergences in (B.70) are for

p× p matrices; these convergences are element-wise.

We now analyze the convergence rate of the second additive term in the center of (B.69),
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5∑

v=1

∑

(jk,lm)∈Θv

xjkx
T
lm

n3

(
xT
jk

(
β̂ − β

)
ξlm

)
=
∑

lm

∑

jk∈Θlm

(
xjkx

T
jk

n

)(
ξlmxT

lm

n2

)(
β̂ − β

)
, (B.72)

= Θp(1)Op(n
−1/2)Op(n

−1/2) = Op(n
−1). (B.73)

Again, the convergence of the first multiplicative term is a result of assumption (B1) and β̂−β = Op(n
−1/2)

by Theorem 9. The mean n−2
∑

lm xlmξlm is expectation zero and Op(n
−1/2) by previous arguments, for

example in (B.24). Thus, we have V̂DC − ṼDC = Op(n
−2), and the dyadic clustering estimator satisfies the

relation in (B.49).

B.4.2 Proof of Theorem 11

We now establish that the MSE of the exchangeable estimator is less than that of the dyadic clustering

estimator with high probability. To do so, we show that the value to which the difference in MSEs converges

is nonnegative. Throughout the proof, we drop the conditioning on X in the MSE as it is understood, for

example MSEξ

(
V̂E

)
:= MSEξ

(
V̂E |X

)
.

The asymptotic difference in MSEs is as follows, where we substitute the expressions for the estimators

based on the errors in (B.54) and (B.68), as justified by Lemma 17:

n3
(
MSEξ

(
V̂DC

)
−MSEξ

(
V̂E

))
PX−−→

PX−−→
5∑

v=3

5∑

w=3

4∑

i=1

αiβvβwC(v, w)ivec
(
M−2

1

)T
DX(v, w)ivec

(
M−2

1

)
. (B.74)

It remains to show that this is a nonnegative constant. To do so, we show that the matrix in the quadratic

form in (B.74) is the limit of a variance matrix, and thus positive semi-definite. We will show that the scaled

variance

1

n5
V




5∑

v=1

∑

jk,lm∈Θv

ξjkξlmvec
(
xjkx

T
lm

)



=
1

n5

5∑

v=1

5∑

w=1

∑

jk,lm∈Θv

∑

rs,tu∈Θw

Cov
(
ξjkξlmvec

(
xjkx

T
lm

)
, ξrsξtuvec

(
xrsx

T
tu

))
, (B.75)
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converges to the desired matrix. First, we note that the sum in (B.75) is Θ(n5) as the relations jk and lm

must share at least one actor with the relations rs and tu for the covariance to be nonzero. Then, by the

arguments in Lemma 16, only pairs of relations that share a single actor survive in the limit. Finally, by

assumption (B3), X is independent ξ and the variance in (B.75) is asymptotically equivalent to

1

n5

5∑

v=3

5∑

w=3

∑

jk,lm∈Θv

∑

rs,tu∈Θw

E [(ξjkξlm − φv) (ξrsξtu − φw)]× . . .

. . .× E

[(
vec
(
xjkx

T
lm

)
− vec (Mv)

) (
vec
(
xrsx

T
tu

)
− vec (Mw)

)T ]
, (B.76)

where only terms with both v and w in {3, 4, 5} survive in the limit. Then, by assumptions (A1) and (B1)

and applying Lemma 16, the variance converges to

1

n5
V




5∑

v=1

∑

jk,lm∈Θv

ξjkξlmvec
(
xjkx

T
lm

)

→

5∑

v=3

5∑

w=3

4∑

i=1

αiβvβwC(v, w)iDX(v, w)i, (B.77)

where we substitute the definition of DX(v, w)i following (B.67). Thus, the matrix in (B.77) is positive

semi-definite. Now, (B.74) becomes

n3
(
MSEξ

(
V̂DC

)
−MSEξ

(
V̂E

))
PX−−→

PX−−→ vec
(
M−2

1

)T
(

5∑

v=3

5∑

w=3

4∑

i=1

αiβvβwC(v, w)iDX(v, w)i

)
vec
(
M−2

1

)
≥ 0. (B.78)

B.5 Simulation study details

As noted in Section 3.4, 500 random realizations of covariates were generated for each sample size

of actors n ∈ {20, 40, 80, 160, 320}. For each covariate realization, 1,000 random error realizations were

generated for each of the three error settings: IID, exchangeable, and non-exchangeable. Using (3.11), a sim-

ulated data set was created from each covariate realization and error realization pair. The regression model

was fit using ordinary least squares to each data set, and standard errors were estimated using the exchange-

able, dyadic clustering, and heterskedasticity-consistent sandwich variance estimators. Confidence interval
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Table B.1: Approximate standard deviations for exchangeable error setting.

σǫ σa σb σγ σz

0.866 0.957 0.677 0.677 0.677

coverage was estimated for each covariate realization by counting the fraction of confidence intervals that

contain the true coefficient.

For all simulations, we fixed true coefficients β = [1, 1, 1, 1]T . We drew each x2i from a Bernoulli(1/2)

distribution independently. In the rare event that x2i = x2j for all (i, j) pairs, one realization x2k was

randomly flipped to a 1 or 0. All x3i and x4ij were drawn independently from a standard normal distribution.

Each error setting was specified to have the same total variance:

∑

ij

Var(ξij) = 3n(n− 1).

This variance was chosen so that the variance of the error would be similar to that of the regression mean

model βTxij . In the IID errors setting, ξij ∼iid N(0, 3) for all (i, j). To generate the non-exchangeable

errors, a mean-zero random effect was added to the upper left quadrant of V[Ξv]. The errors for the non-

exchangeable error setting may be written

ξij = τ1i≤⌊n/2⌋1j≤⌊n/2⌋ + ǫij , τ ∼ N

(
0,

9n

4 ⌊n/2⌋

)
, ǫij ∼iid N(0, 3/4).

Finally, the distribution of the exchangeable (bilinear mixed effects model) error setting is defined

in (3.7). We selected the dimension of the latent space to be d = 2, the correlation between sender and

receiver effects as ρab = 1/2, and the sender variance to be twice that of receiver variance: σ2
a = 2σ2

b . We

further specified σz = σγ = σb. Finally, we selected σ2
ǫ = 3/4. With the aforementioned choices, the

restriction
∑

ij Var(ξij) = 3n(n − 1) generated a quadratic equation in σb. The standard deviations that

resulted from solving this quadratic equation are shown in Table B.1.

B.5.1 Confidence interval widths

To examine the relative confidence interval widths between the exchangeable and dyadic clustering

sandwich variance estimators, it is sufficient to examine the values of the standard error estimates. In all
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Figure B.1: (IID Errors) The top row of plots are the average differences in standard errors across random

realizations of X , where the average is taken over 1, 000 error realizations. The bottom row of plots show

the standard deviations of the standard error estimates across random X . Lines in the boxplots denote the

median, the box denotes the middle 80% of values, and the whiskers denote the middle 95% of values.

simulations we generate 95% confidence intervals by using the typical normal approximation of plus or

minus 1.96 times the standard error. We plot the empirical expected standard error given X relative to the

true standard error given X in Figures B.1-B.3. We estimate the expectation by averaging the standard error

estimates across the 1,000 error realizations, for each X realization. We also compute the standard deviation

of the standard error estimates given X .

We observe that, for IID and exchangeable error structures in Figures B.1 and B.2, the standard errors

resulting from the exchangeable estimator are much closer to the true standard errors than those result-

ing from the dyadic clustering estimator. This fact suggests that the dyadic clustering estimator fails to

account for a portion of the dependency in the error structure. We note that both procedures generally

produce underestimates of the true standard errors, however, the dyadic clustering estimator trades some

efficiency for robustness. We observe that the standard deviation of the standard error estimates when us-
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ing the exchangeable estimator are typically lower than those when using dyadic clustering under IID and

exchangeable errors. Intuitively, the lower variability of the exchangeable estimator relative to the dyadic

clustering estimator the result of the averaging present in the exchangeable estimator. Finally, the trends

of larger expectation and smaller standard deviation are present for most of the realizations of X under

non-exchangeable errors (Figure B.3). This is true despite the fact that we might expect the dyadic cluster-

ing estimator to account for the heterogenous, non-exchangeable error structure more effectively than the

exchangeable estimator since the dyadic clustering estimator is claimed to be robust.
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Figure B.2: (Exchangeable Errors) The top row of plots are the average differences in standard errors

across random realizations of X , where the average is taken over 1, 000 error realizations. The bottom row

of plots show the standard deviations of the standard error estimates across random X . Lines in the boxplots

denote the median, the box denotes the middle 80% of values, and the whiskers denote the middle 95% of

values. The ordinate axis is truncated where appropriate to show the estimators of interest.
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Figure B.3: (Non-exchangeable Errors) The top row of plots are the average differences in standard errors

across random realizations of X , where the average is taken over 1, 000 error realizations. The bottom row

of plots show the standard deviations of the standard error estimates across random X . Lines in the boxplots

denote the median, the box denotes the middle 80% of values, and the whiskers denote the middle 95% of

values. The ordinate axis is truncated where appropriate to show the estimators of interest.

B.6 DC covariance matrix invertibility

Ideally, for a covariance matrix estimate Ω̂ to be of utmost utility, it must be invertible. For example, if

we wish to reweight the estimating equations, as in GEE, and solve iteratively for both the variance matrix

and regression coefficients simultaneously, the estimate of the the covariance matrix must be nonsingular.

However, in many cases the DC estimator is singular and hence cannot be used as a reweighting matrix.

In cases when the DC estimator is singular, it can still be used in the ‘meat’ (B matrix) in the coefficient

sandwich estimator covariance matrix.

Theorem 18. The dyadic clustering estimate of the error variance, Ω̂DC , is singular for directed data.

Proof. The DC estimator can be written as the Hadamard product between the outer product of the residuals

and a matrix of indicators of whether the dyad indices share a member.
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Ω̂DC = eeT ◦ 1[{i,j}∩{k,l}6=∅] (B.79)

The rank of the outer product of the residuals is one: rank(eeT ) = 1. The rank of the indicator matrix

is at most n(n − 1)/2, since the indices (i, j) share a member with an arbitrary pair (k, ℓ) if and only if

the indices (j, i) do as well. Thus, the column of 1[{i,j}∩{k,l}6=∅] corresponding to (i, j) is the same as that

corresponding to (j, i).

For any two square matrices of equal size A and B, rank(A ◦ B) ≤ rank(A)rank(B). Using the

representation of Ω̂DC in (B.79), we have that

rank(Ω̂DC) ≤ rank(eeT )rank(1[{i,j}∩{k,l}6=∅])

≤ n(n− 1)

2

Ω̂DC is therefore not full rank.

Remark 19. Theorem 18 does not hold for undirected data when R = 1. If the data are undirected, then

the bound does not guarantee singularity of Ω̂DC since the dimension of Ω̂DC is exactly n(n − 1)/2. In

practice, we find that Ω̂DC is full rank in this special case.

Remark 20. The result of Theorem 18 holds for both directed and undirected data when R > 1. In this

case, the column in the indicator matrix 1[{i,j}∩{k,l}6=∅] corresponding to the indices (i, j, s) is the same as

that column corresponding to (i, j, t) for all values of t ∈ {1, ..., R}. Thus, again Ω̂DC is not full rank.

B.7 Efficient inversion of the exchangeable covariance matrix

To perform the GEE procedure as described in Section 3.6, we must invert the exchangeable covariance

matrix ΩE as defined in Figure 3.2. For now, we work in the case where R = 1. Since ΩE is a real

symmetric matrix, its inverse is real and symmetric as well. However, we can say more about the patterns

in the inverse Ω−1
E . Recall that ΩE has at most six unique terms; call these parameters φ. We find that the

inverse Ω−1
E has at most six unique terms as well. If we define the parameters in Ω−1

E as p, we can write

ΩE(φ)Ω
−1
E (p) = I for φ,p ∈ R6 (B.80)
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where I is the n(n − 1) × n(n − 1) identity. Lastly, we make the conjecture that the parameter pattern in

Ω−1
E is exactly the same as that in ΩE ; we find this conjecture to be true in practice. One caveat is that the

locations in which we assume zeros in ΩE are not zero in Ω−1
E in general.

We can find the inverse parameters p from φ without inverting the entire matrix ΩE by instead solving

the following linear system

C(φ, n)p = [1, 0, 0, 0, 0, 0]T for C(φ, n) ∈ R6×6, (B.81)

where C(φ, n) is a set of six linear equations based on the parameters φ and the number of actors n and

is depicted in Figure B.4. Thus, we replace the need to invert the n(n − 1) × n(n − 1) matrix ΩE by the

inversion of the 6× 6 matrix C(φ, n). Using this procedure, the computational cost associated with finding

the inverse of ΩE is independent of the number of actors n.

Now consider the case of array data with R > 1. Inversion of the exchangeable covariance matrices Ω =

V[Ξv] in Figure 3.6 requires consideration of the patterns in the block matrices. Focusing on Figure 3.6(a),

note that ΩE is parametrized by twelve terms. We denote the first six parameters as φ(1) and the second

six φ(2), corresponding to Ω1 and Ω2 respectively. Again the inverse Ω−1 has the exact same block matrix

pattern as Ω. Thus, the inverse may be parametrized by p(1) and p(2), each with length six, defined by the

following linear equations.

C(φ(1), n)p(1) + (R− 1)C(φ(2), n)p(2) = [1, 0, 0, 0, 0, 0]T (B.82)

C(φ(2), n)p(1) + C(φ(1), n)p(2) + (R− 2)C(φ(2), n)p(2) = 06×1

This is twelve linear equations in p(1) and p(2). In this formulation we reduce a Rn(n − 1) × Rn(n − 1)

inversion to a 12× 12 inversion for calculation of Ω−1
E . Again, note that there is no dependence of the com-

plexity of the inversion on the array dimensions n and R. The inverses of the other possible exchangeable

covariance matrices in Figure 3.6, while more complex, can be calculated using a similar procedure that

again omits dependence on array dimension n.
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B.8 Eigenvalues of exchangeable covariance matrix

Since the entries in the exchangeable covariance matrix estimator Ω̂E are empirical averages, it is pos-

sible the estimate is not positive definite. Here we briefly investigate the constraints on the parameters

that guarantee the resulting covariance matrix is positive definite for R = 1. Note that for computing the

sandwich estimator variance of β̂ and making inference on β̂, positive definiteness of Ω̂E is not necessary.

However, if a GEE procedure is employed, the inverse of the covariance matrix estimator is required, and

hence positive definiteness of Ω̂E is desired.
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Figure B.4: Matrix C(φ, n).
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B.8.1 Undirected relational data

We focus first on the undirected case, where the exchangeable covariance matrix contains two distinct

nonzero entries: a variance σ2 and a parameter φ in the off-diagonal representing the correlation between any

pairs of relations that share an actor. Below we consider the correlation matrix, rather than the covariance

matrix, which contains only nonzero correlation value. We denote this value by a, and note that a = φ/σ2.

Based on a thorough empirical investigation, we conjecture that the exchangeable correlation matrix

corresponding to an undirected set of relations among n actors, which has nonzero value a in select off-

diagonal entries, has exactly three eigenvalues as given below.

Eigenvalue Multiplicity

1 + 2(n− 2)a 1

1− 2a 1
2n(n− 3)

1 + (n− 4)a n− 1

The correlation matrix is positive definite if and only if all eigenvalues are positive. Thus, if a ∈
(

−1
2(n−2) ,

1
2

)
, the correlation matrix is positive definite. Notice that the upper bound on a does not vary

with n. Using the relation between a and {σ2, φ}, this constraint can be re-expressed as a constraint on the

covariance parameters.

B.8.2 Directed relational data

We find empirically that the directed covariance matrix ΩE has five unique eigenvalues. Further, each

of the eigenvalues are contained within the set of six eigenvalues of the matrix C, defined in Figure B.4 and

used in computation of the inverse of the exchangeable covariance matrix. As C is a bilinear function of

ΩE , this observation does not appear implausible. We may construct C = ATΩEB for A,B ∈ Rn(n−1)×6

and ATB = I . One such pair is B taken to be the first column of S1 thought S6 and A taken to be all zeros

except for a single 1 in each column occupying rows {1, n, 2n, 2, n+ 1, n(n− 1)}, respectively.

In analyzing the eigenvalues of the directed covariance matrix ΩE , we again focus on the exchangeable

correlation matrix which contains four nonzero off-diagonal elements {a, b, c, d} corresponding, respec-

tively, in placement to {φa, φb, φc, φd} in the exchange covariance matrix ΩE . Note a = φa/σ
2, b = φb/σ

2,

and so on. Based on an eigenvalue analysis of C and various empirical studies, we conjecture the eigenval-
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ues for the exchangeable correlation matrix associated with a directed set of relations among n actors has

exactly five eigenvalues as given below.

Eigenvalue(s) Multiplicity

1 + a+ (n− 2)(b+ c) + 2(n− 2)d 1

1 + a− (b+ c+ 2d) (n− 1)(n− 2)/2− 1

1− (a+ b+ c) + 2d (n− 1)(n− 2)/2

((n− 3)(b+ c)− 2d+ 2)/2±
√

(α+ β)/2 n− 1

where α = (c2 + b2)(n2 − 2n + 1) + 4d2(n2 − 6n + 9) + 2bc(1 − n2 + 2n) and β = ad(8n − 24) +

(b + c)d(12 − 4n) + 4a(a − (b + c)). As in the undirected case, these constraints can be re-expressed as

constraints on the original five covariance parameters.

B.9 Trade data prediction study

To compare the ability of the proposed exchangeable GEE model and the model from Westveld and Hoff

(2011) – which we refer to as the hierarchical, longitudinal mixed effects model (HLMEM)– to represent

the trade data, we examined the out-of-sample predictive performance of the estimators. First, we establish

some notation for this section. Recall that the trade data set has covariate measures in X that vary by year.

Thus, we rewrite the linear model in (1.1) as

yt = Xtβt + ξt, t ∈ {1, 2, . . . , T}

where yt represents the n(n − 1) vector of relations among the n = 58 countries in year t, Xt is a matrix

eight covariates corresponding to year t, and ξt is a vector of errors for year t.

We estimated both models on the first 10 and 19 years of data, and then used these estimates to predict

the trade at T = 11 and T = 20. To generate predictions from each model, we computed the conditional

expectation E[yT | {yt}T−1
t=1 ] based on the assumption that yT and {yt}T−1

t=1 are jointly normal. The ex-

changeable GEE model and HLMEM correspond to different models of the variance-covariance matrices

of ξt and the covariances matrices between vectors ξt and ξt+h. As a baseline, we included ordinary least

squares (OLS), assuming independence of each year, i.e. ξt independent of ξt+h.
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We first discuss the OLS estimation and prediction procedure used for this study. We estimated the co-

efficients in the prediction time period, βT , with the coefficients from the previous time period and assumed

independent and identically distributed entries in all ξt. Thus, the OLS estimator of the trade in year T is

E[yT | {yt}T−1
t=1 ](OLS) = XT β̂T−1.

For the GEE procedure, we again set β̂T = β̂T−1. Based on the model underlying the GEE procedure

(Figure 6(a)), the variance V (yt) = Ω1 for all t ∈ {1, 2, . . . , T} and the covariance Cov(yt,yt+h) = Ω2

for all h. Further, it can be shown that the precision corresponding to the concatenated vector zTT−1 :=

[yT
1 ,y

T
2 , . . . ,y

T
T−1] is of the same pattern as the variance V (zT−1), which has Ω1 along the diagonal blocks

and Ω2 in the off-diagonal blocks (as in Figure 6(a)). We define the diagonal blocks of V (zT−1)
−1 as Ψ1

and the off-diagonal blocks Ψ2. Then, when the relations {yt}Tt=1 are jointly normally distributed, we define

the prediction from the GEE procedure is

E[yT | {yt}T−1
t=1 ](GEE) = XT β̂T−1 +Ω2(Ψ1 + (T − 2)Ψ2)

T−1∑

t=1

(
yt −Xtβ̂t

)
.

Finally, to detail predictions from the HLMEM, we first review some terms used in Westveld and Hoff

(2011). Their proposed model is

yij,t = xT
ij,tβt + si,t + rj,t + gij,t,

where si,t and rj,t are sender and receiver random effects, respectively, and gij,t is a reciprocal random

effect. These effects evolve according to autoregressive order one processes, such that



si,t

ri,t


 = Φsr



si,t−1

ri,t−1


+ ǫi,t, i ∈ {1, 2, . . . , n}, t ∈ {1, 2, . . . , T − 1},



gij,t

gji,t


 = Φg



gij,t−1

gji,t−1


+ eij,t, i, j ∈ {1, 2, . . . , n}, i 6= j, t ∈ {1, 2, . . . , T − 1},

where Φsr is a 2 × 2 autoregressive matrix and Φg is a symmetric autoregressive matrix. The error terms

ǫi,t and eij,t are mean-zero independent bivariate Gaussian random variables. Please see Westveld and Hoff
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(2011) for more details of the model. With the notation and model defined, and again setting β̂T = β̂T−1,

it is easy to see that the prediction from the HLMEM is

E[yij,T | {yt}T−1
t=1 ](WH) = xT

ij,T β̂T−1 +

[
1 0

]T
Φ̂sr



ŝi,T−1

r̂i,T−1




+

[
0 1

]T
Φ̂sr



ŝj,T−1

r̂j,T−1


+

[
1 0

]T
Φ̂g



ĝij,T−1

ĝji,T−1


 .

To estimate the HLMEM, Westveld and Hoff (2011) generated a Markov chain of length 55,000, of which

the first 10,000 were discarded and every 20th iteration saved, giving 2,250 samples to approximate the

posterior distributions of βT−1, Φsr, Φg, and the random effects at t = T − 1 in the above equations. The

mean of these 2,250 samples from the joint posterior distribution, for each pair i 6= j, was used to construct

E[yT | {yt}T−1
t=1 ](HLMEM).

We evaluate performance in the predicted year using the mean square prediction error, defined

MSPE =
1

n(n− 1)

∣∣∣
∣∣∣E[yT |{yt}T−1

t=1 ]− yT

∣∣∣
∣∣∣
2

2
,

where the expectation is replaced by one of the three prediction estimators.
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Appendix C

Regression of binary network data with

exchangeable latent errors

C.1 Details of estimation

In this section we supply details of estimation in support of Algorithm 2, beginning with the initialization

of ρ. We then provide details of the maximization of ℓy with respect to β, the approximations of maximizing

ℓy with respect to ρ, and the handling of missing data in the BC-EM algorithm.

C.1.1 Initialization of ρ estimator

An EM algorithm may take many iterations to converge, and selecting a starting point near the optima

may significantly reduce the number of iterations required. We present a method of initializing ρ̂(0) using

a mixture estimator. By examining the eigenvalues of Ω, it can be shown that ρ lies in the interval [0, 1/2)

when Ω is positive definite for arbitrary n (Marrs et al., 2017). Thus ρ̂ = 0.25 is a natural naive initialization

point as it is the midpoint of the range of possible values. However, we also allow the data to influence the

initialization point by taking a random subset A of Θ2 of size 2n2,and estimating ρ using the values of

A. Then, the final initialization point is defined as a mixture between the naive estimate ρ̂ = 0.25 and the

estimate based on the data. We weight the naive value as if it arose from 100n samples, such that the weights

are even at n = 50, and for increasing n, the data estimate dominates:

ρ̂(0) =
100n

4(100n+ |A|) +
|A|

(100n+ |A|)


 1

|A|
∑

jk,lm∈A

E[ǫjkǫlm | yjk, ylm]


 . (C.1)

We compute the average 1
|A|

∑
jk,lm∈AE[ǫjkǫlm | yjk, ylm] using the linearization approach described in

Section C.1.3.
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C.1.2 Implementation of β expectation step

Under general correlation structure, computation of the expectation E[ǫ |y] (step 1.1 in Algorithm 2,

where we drop conditioning on ρ(ν) and β(ν) to lighten notation) for even small networks is prohibitive,

since this expectation is an
(
n
2

)
-dimensional truncated multivariate normal integral. We exploit the structure

of Ω to compute E[ǫ |y] using the law of total expectation and a Newton-Raphson algorithm.

First, we take a single relation jk and use the law of total expectation to write

E[ǫjk |y] = E[E[ǫjk | ǫ−jk, yjk] |y], (C.2)

where ǫ−jk is the vector of all entries in ǫ except relation jk. Beginning with the innermost conditional

expectation, the distribution of ǫjk given ǫ−jk and yjk is truncated univariate normal, where the untruncated

normal random variable has the mean and variance of ǫjk given ǫ−jk. Based on the conditional multivarite

normal distribution and the form of the inverse covariance matrix Ω−1 =
∑3

i=1 piSi, we may write the

untruncated distribution directly as

ǫjk | ǫ−jk ∼ N(µjk, σ
2
n), (C.3)

µjk = −σ2
n1

T
jk (p2S2 + p3S3) ǫ̃−jk,

σ2
n =

1

p1
,

where 1jk is the vector of all zeros with a one in the position corresponding to relation jk and, for notational

purposes, we define ǫ̃−jk as the vector ǫ except with a zero in the location corresponding to relation jk. We

note that the diagonal of the matrix p2S2 + p3S3 consists of all zeros so that µjk is free of ǫjk.

We now condition on yjk. For general z ∼ N(µ, σ2) and y = ✶[z > −η] we have that

E[z | y] = µ+ σ
φ(η̃)

Φ(η̃)(1− Φ(η̃))
(y − Φ(η̃)), (C.4)

where η̃ := (η + µ)/σ. Now, taking z = (ǫjk | ǫ−jk) and defining µ̃jk := (µjk + xT
jkβ)/σn, we have that

E[ǫjk | ǫ−jk, yjk] = µjk + σn

(
φ(µ̃jk) (yjk − Φ(µ̃jk))

Φ(µ̃jk)(1− Φ(µ̃jk))

)
. (C.5)
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We now turn to the outermost conditional expectation in (C.2). Substituting the expression for µjk into

(C.5), we have that

E[ǫjk |y] = −σ2
n1

T
jk (p2S2 + p3S3)E[ǫ |y] + σnE

[
φ(µ̃jk) (yjk − Φ(µ̃jk))

Φ(µ̃jk)(1− Φ(µ̃jk))

∣∣∣y
]
. (C.6)

This last conditional expectation is difficult to compute in general. Thus, in place of µ̃lm, we substitute

its conditional expectation E[µ̃lm |y]. Letting wlm := E[ǫlm |y] and w be the vector of the expectations

{wlm}lm, we define the following nonlinear equation for w:

0 ≈ g(w) := (−I+B)w + σn

(
φ(w̃) (y − Φ(w̃))

Φ(w̃)(1− Φ(w̃))

)
, (C.7)

where we define B := −σ2
n (p2S2 + p3S3), w̃ := (Bw + Xβ)/σn, and the functions φ(.) and Φ(.) are

applied element-wise. The approximation in (C.7) refers to the approximation made when replacing µ̃jk

with its conditional expectation E[µ̃jk|y]. We use a Newton-Raphson algorithm to update w (Atkinson,

2008), initializing the algorithm using the expectation when ρ = 0,

w0 :=
φ(Xβ) (y − Φ(Xβ))

Φ(Xβ)(1− Φ(Xβ))
. (C.8)

The Newton-Raphson algorithm re-estimates w based on the estimate at iteration ν, ŵ(ν), until convergence:

ŵ(ν+1) = ŵ(ν) −
(

∂

∂wT
g(ŵ(ν))

)−1

g(ŵ(ν)). (C.9)

The inverse in (C.9) is of a matrix that is not of the form
∑3

i=1 aiSi. To reduce the computational

burden of the Netwon method updates, we numerically approximate the inverse in (C.9). First, we define

v(wjk) = σn
φ(wjk)(yjk−Φ(wjk))
Φ(wjk)(1−Φ(wjk))

, where we define the vector v(w) = {v(wjk)}jk, and write the derivative

∂

∂wT
g(w) = B− I+DB. (C.10)

where we define

D = diag

{−wjkφ(wjk)(y − Φ(wjk))− φ(wjk)
2 − φ(wjk)

2(y − Φ(wjk))(1− 2φ(wjk)Φ(wjk))

Φ(wjk)(1− Φ(wjk))

}

jk

.
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The term DB arises from differentiating v(w) with respect to w. Using the expression in (C.10), we are

then able to write the second term in (C.9) as

(
∂

∂wT
g(ŵ)

)−1

g(ŵ) = (B− I+DB)−1 ((B− I)w + v(w)) , (C.11)

= B−1
(
I+D−B−1

)−1
((B− I)w + v(w)) . (C.12)

We notice that the matrix I + D is diagonal, but not homogeneous (in which case we compute (C.12)

directly, with limited computational burden, by exploiting the exchangeable structure). Instead, defining

Q = (1 + δ)I−B−1 and M = D− δI, which is diagonal, we make the approximation that

(
I+D−B−1

)−1
= (Q+M)−1 ≈ Q−1 −Q−1MQ−1, (C.13)

which is based on a Neumann series of matrices and relies on the absolute eigenvalues of M being small

(Petersen et al., 2008). We choose δ to be the mean of the minimum and maximum value of D. This choice

of δ minimizes the maximum absolute eigenvalue of M, and thus limits the approximation error. Since the

inverse of Q may be computed using the exchangeable inversion formula discussed in Appendix C.2 (in

O(1) time), the following approximation represents an improvement in computation from O(n3) to O(n2)

time:

(
∂

∂wT
g(ŵ)

)−1

g(ŵ) ≈ B−1
(
Q−1 −Q−1MQ−1

)
((B− I)w + v(w)) . (C.14)

C.1.3 Approximation to ρ expectation step

The EM update for ρ in relies on the computation of γi = E[ǫTSiǫ |y]/|Θi|, for i ∈ {1, 2, 3} (step 2.2

in Algorithm 2). Under general correlation structure, computation of the expectation {γi}3i=1 for even small

networks is prohibitive. To practically compute {γi}3i=1, we make two approximations, which we detail in

the following subsections: (1) compute expectations conditioning only on the entries in y that correspond to

the entries in ǫ being integrated, and (2) approximating these pairwise expectations as linear functions of ρ.
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Pairwise expectation

Explicitly, the pairwise approximations to {γi}3i=1 we make are:

γ1 =
1

|Θ1|
∑

jk

E[ǫ2jk |y] ≈
1

|Θ1|
∑

jk

E[ǫ2jk | yjk], (C.15)

γ2 =
1

|Θ2|
∑

jk,lm∈Θ2

E[ǫjkǫlm |y] ≈ 1

|Θ2|
∑

jk,lm∈Θ2

E[ǫjkǫlm | yjk, ylm],

γ3 =
1

|Θ3|
∑

jk,lm∈Θ3

E[ǫjkǫlm |y] ≈ 1

|Θ3|
∑

jk,lm∈Θ3

E[ǫjkǫlm | yjk, ylm],

where Θi is the set of ordered pairs of relations (jk, lm) which correspond entries in Si that are 1, for

i ∈ {1, 2, 3}. These approximations are natural first-order approximations: recalling that yjk = ✶[ǫjk >

−xT
jkβ], the approximations in (C.15) are based on the notion that knowing the domains of ǫjk and ǫlm is

significantly more informative for E[ǫjkǫlm |y] than knowing the domain of, for example, ǫab.

The approximations in (C.15) are orders of magnitude faster to compute than the full expectations

E[ǫjkǫlm |y]. In particular, when i ∈ {1, 3}, the expectations are available in closed form:

E[ǫ2jk | yjk] = 1− ηjk
φ(ηjk)(yjk − Φ(ηjk))

Φ(ηjk)(1− Φ(ηjk))
, (C.16)

E[ǫjkǫlm | yjk, ylm] =
φ(ηjk)φ(ηlm)(yjk − Φ(ηjk))(ylm − Φ(ηlm))

Φ(ηjk)Φ(ηlm)(1− Φ(ηjk))(1− Φ(ηlm))
, |{j, k} ∩ {l,m}| = 0, (C.17)

where we define ηjk = xT
jkβ, Φ(.) is the standard normal cumulative distribution function, and φ(.) is the

standard normal probability distribution function. The approximation to the expectations for i = 2 in (C.15)

is

E[ǫjkǫlm | yjk, ylm] = ρ

(
1− η̄jkφ(ηjk)

Ljk,lm
Φ

(
η̄lm − ρ̄ η̄jk√

1− ρ2

)
− η̄lmφ(ηlm)

Ljk,lm
Φ

(
η̄jk − ρ̄ η̄lm√

1− ρ2

))
(C.18)

+
1

Ljk,lm

√
1− ρ2

2π
φ



√

η2jk + η2lm − 2ρ ηjkηlm

1− ρ2


 , |{j, k} ∩ {l,m}| = 1,

Ljk,lm = P ((2yjk − 1)ǫjk > −ηjk ∩ (2ylm − 1)ǫlm > −ηlm) ,

where η̄jk = (2yjk − 1)ηjk, e.g., and ρ̄ = (2yjk − 1)(2ylm − 1)ρ.
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Linearization

The computation of E[ǫjkǫlm | yjk, ylm] in (C.18) requires the computation of O(n3) bivariate trun-

cated normal integrals Ljk,lm, which are not generally available in closed form. We observe em-

pirically, however, that the pairwise approximation to γ2 described in Section C.1.3 above, γ2 ≈
1

|Θ2|

∑
jk,lm∈Θ2

E[ǫjkǫlm | yjk, ylm] is approximately linear in ρ. This linearity is somewhat intuitive, as

the expectation of 1
|Θ2|

∑
jk,lm∈Θ2

E[ǫjkǫlm | yjk, ylm] is equal to ρ, and is thus linear functions of ρ. As

1
|Θ2|

∑
jk,lm∈Θ2

E[ǫjkǫlm | yjk, ylm] is an average and concentrates around its expectation, it concentrates

around a linear function of ρ, and it is reasonable to approximate 1
|Θ2|

∑
jk,lm∈Θ2

E[ǫjkǫlm | yjk, ylm] as a

linear function of ρ. To do so, we compute the approximate values of γ2 if ρ = 0 and if ρ = 1. In particular,

γ2 ≈ a2 + b2ρ, (C.19)

a2 =
1

|Θ2|
∑

jk,lm∈Θ2

E[ǫjk | yjk]E[ǫlm | ylm],

=
1

|Θ2|
∑

jk,lm∈Θ2

φ(ηjk)φ(ηlm)(yjk − Φ(ηjk))(ylm − Φ(ηlm))

Φ(ηjk)Φ(ηlm)(1− Φ(ηjk))(1− Φ(ηlm))
,

c2 =
1

|Θ2|
∑

jk,lm∈Θ2

E[ǫjkǫlm | yjk, ylm]
∣∣∣
ρ=1

,

b2 = c2 − a2.

To compute c2, we must compute the value of E[ǫjkǫlm | yjk, ylm] when ρ = 1. Computing

E[ǫjkǫlm | yjk, ylm] is simple when the values yjk = ylm, as in this case E[ǫjkǫlm | yjk, ylm] = E[ǫ2jk | yjk =

ylm] since, when ρ = 1, ǫjk = ǫlm. Approximations must be made in the cases when yjk 6= ylm.

There are two such cases. In the first, there is overlap between the domains of ǫjk and ǫlm indicated by

yjk = ✶[ǫjk > −ηjk] and yjk = ✶[ǫlm > −ηlm], respectively. We define the domain for ǫjk indi-

cated by yjk as Ujk := {u ∈ R : u > (1 − 2yjk)ηjk}. As an example, there is overlap between Ujk

and Ulm when yjk = 1, ylm = 0 and ηlm < ηjk. Then, the dersired expectation may be approximated

E[ǫjkǫlm | yjk, ylm] ≈ E[ǫ2jk | ǫjk ∈ Ujk ∩ Ulm]. In the second case, when yjk 6= ylm and Ujk ∩ Ulm = ∅,

we make the approximation by integrating over the sets Ujk and Ulm. That is, by taking

E[ǫjkǫlm | yjk, ylm] ≈ E[ǫ2jk | ǫjk ∈ Ujk] P(ǫjk ∈ Ujk) + E[ǫ2lm | ǫlm ∈ Ulm] P(ǫlm ∈ Ulm). (C.20)
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To summarize, we compute c2 = E[ǫjkǫlm |y]
∣∣∣
ρ=1

in (C.19) by using the following approximation:





E[ǫ2jk | ǫjk > max(−ηjk,−ηlm)], yjk = 1 and ylm = 1,

E[ǫ2jk | ǫjk < min(−ηjk,−ηlm)], yjk = 0 and ylm = 0,

E[ǫ2jk | ǫjk ∈ Ujk ∩ Ulm], Ujk ∩ Ulm 6= ∅,

E[ǫ2jk | ǫjk ∈ Ujk] P(ǫjk ∈ Ujk) + E[ǫ2lm | ǫlm ∈ Ulm] P(ǫlm ∈ Ulm) Ujk ∩ Ulm = ∅.

C.1.4 Missing data

In this subsection, we describe estimation of the PX model in the presence of missing data. We present

the maximization of ℓy with respect to β first. Second, we discuss maximization of ℓy with respect to ρ.

Finally, we give a note on prediction from the PX model when data are missing.

Update β:

To maximize ℓy with respect to β (Step 1 of Algorithm 2) in the presence of missing data, we impute the

missing values of X and y. We make the decision to impute missing values since much of the speed of

estimation of the PX model relies on exploitation of the particular network structure, and, when data are

missing, this structure is more difficult to leverage. We impute entries in X with the mean value of the

covariates. For example, if x
(1)
jk is missing, we replace it with the sample mean 1

|Mc|

∑
lm∈Mc x

(1)
lm , where

the superscript (1) refers to the first entry in xjk and M is the set of relations for which data are missing.

If yjk is missing, we impute yjk with ✶[wjk > −η̄], where η̄ = 1
|Mc|

∑
lm∈Mc x

T
lmβ̂ and we compute

w = E[ǫ |y] using the procedure in Section C.1.2. We initialize this procedure at w(0), where any missing

entries jk ∈ M are initialized with w
(0)
jk = 0. Given the imputed X and y, the estimation routine may be

accomplished as described in Algorithm 2.

Update ρ:

To maximize ℓy with respect to ρ (Step 2 of Algorithm 2), we approximate {γi}3i=1 using only observed

values. Using the pairwise expressions in (C.15), the expressions for the expectation step under missing data
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are

γ1 ≈
1

|Mc|
∑

jk∈Mc

E[ǫ2jk | yjk], (C.21)

γ2 ≈
1

|A(s)|
∑

jk,lm∈A(s)

E[ǫjkǫlm | yjk, ylm].

γ3 ≈
1

|
∑

jk,lm∈Θ3
✶[jk ∈ Mc]✶[lm ∈ Mc]|

∑

jk,lm∈Θ3

E[ǫjk | yjk]E[ǫlm | ylm]✶[jk ∈ Mc]✶[lm ∈ Mc],

≈ 1

|Θ3|



(

|Θ1|
|Mc|

∑

jk∈Mc

E[ǫjk | yjk]




2

− |Θ1|
|Mc|

∑

jk∈Mc

E[ǫjk | yjk]2

− |Θ2|
|A(s)|

∑

jk,lm∈A(s)

E[ǫjk | yjk]E[ǫlm | ylm]

)
,

where we only subsample pairs of relations that are observed such that A(s) ⊂ Θ2 ∩Mc. Then, given the

values of {γi}3i=1 in (C.21), the maximization of ℓy with respect to ρ (Step 2 in Algorithm 2) may proceed

as usual.

Prediction:

Joint prediction in the presence of missing data is required for out-of-sample evaluation of the BC-EM

estimator, for example, for cross validation studies in Section 4.8. In this setting, model estimation is

accomplished by imputing values in X and y earlier in this section under the ‘Update β’ subheading. Then,

prediction may be performed by proceeding as described in Section 4.6 with the full observed X matrix and

imputing the missing values in y (again as described above in this section under the ‘Update β’ subheading).

C.2 Parameters of undirected exchangeable network covari-

ance matrices

In this section, we give a 3 × 3 matrix equation to invert Ω rapidly. This equation also gives a basis to

compute the partial derivatives
{

∂φi

∂pj

}
, which we require for the BC-EM algorithm.

We define an undirected exchangeable network covariance matrix as those square, positive definite

matrices of the form
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Ω(φ) =

3∑

i=1

φiSi. (C.22)

We find empirically that the inverse matrix of any undirected exchangeable network covariance matrix has

the same form, that is Ω−1 =
∑3

i=1 piSi. Using this fact and the particular forms of the binary matrices

{Si}3i=1, one can see that there are only three possible row-column inner products in the matrix multipli-

cation ΩΩ−1, those pertaining to row-column pairs of the form (ij, ij), (ij, ik), and (ij, kl) for distinct

indices i, j, k, and l. Examining the three products in terms of the parameters in φ and p, and the fact that

ΩΩ−1 = I, we get the following matrix equation for the parameters p given φ:

C(φ)p = [1, 0, 0]T , where (C.23)

C(φ) =




φ1 2(n− 2)φ2
1
2(n− 2)(n− 3)φ3

φ2 φ1 + (n− 2)φ2 + (n− 3)φ3 (n− 3)φ2 +
(
1
2(n− 2)(n− 3)− n+ 3

)
φ3

φ3 4φ2 + (2n− 8)φ3 φ1 + (2n− 8)φ2 +
(
1
2(n− 2)(n− 3)− 2n+ 7

)
φ3



.

We observe empirically that the eigenvalues of C(φ) are contained within those of Ω, and thus, we may

invert Ω with a 3× 3 inverse to find the parameters p of Ω−1.

The equation in (C.23) allows one to compute the partial derivatives
{

∂φi

∂pj

}
. First, based on (C.23),

we can write C(p)φ = [1, 0, 0]T . Then, we note that the matrix function C(φ) in (C.23) is linear in the

terms φ, and thus, we may write C(p) =
∑3

j=1 pjA
(n)
j for some matrices

{
A

(n)
j

}3

j=1
that depend on n.

Differentiating both sides of C(p)φ = [1, 0, 0]T with respect to pj and solving gives

∂φ

∂pj
= −C(p)−1A

(n)
j C(p)−1[1, 0, 0]T , (C.24)

which holds for all j ∈ {1, 2, 3}.

C.3 Simulation studies

In this section we present details pertaining to the two simulation studies in Section 4.7.

175



Figure C.1: The left panel depicts the MSE in estimating β using the BC-EM algorithm, MLE, and Ordinary

probit regression. The right panel depicts the same for ρ. The MSEs are plotted as a function of the true

values of ρ, and solid vertical lines denote Monte Carlo error bars.

C.3.1 Evaluation of BC-EM approximations

See Section 4.7.1 for a description of the simulation study to evaluate the BC-EM algorithm approxima-

tions. In Figure C.1, we note that the BC-EM estimator is an improvement over standard probit regression

assuming independent errors in estimating β. However, the BC-EM estimator does not attain MSEs quite as

low as the MLE for β. The opposite is true in estimating ρ: the BC-EM estimator has lower MSE than the

MLE.

C.3.2 Evaluation of estimation of β

See Section 4.7.2 for a description of the simulation study to evaluate performance in estimating β.

We provide further details in the rest of this paragraph. We generated each {x1i}ni=1 as iid Bernoulli(1/2)

random variables, such that the second covariate is an indicator of both x1i = x1j = 1. Each of {x2i}ni=1

and {x3ij}ij were generated from iid standard normal random variables. We fixed β = [β0, β1, β2, β3]
T =

[−1, 1, 1, 1]T /2 throughout the simulation study. When generating from the latent eigenmodel in (4.5), we

set Λ = I, σ2
a = 1/6, σ2

u = 1/
√
6, and σ2

ξ = 1/3.

To further investigate the source of poor performance of the amen estimators of the social relations

and latent eigenmodels, we computed the bias and the variance of estimators when generating from the PX

model and the latent eigenmodel in Figures C.2 and C.3, respectively. Figures C.2 and C.3 show that the

variances of the amen estimators of the social relations and latent eigenmodels are similar to the PX model,

however, that the bias of the amen estimators are substantially larger.
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Figure C.2: PX model: Bias and variance of estimators of β for a given X when generating from the PX

model. Variability captured by the boxplots reflects variation with X. Note that the intercept, β0, has biases

and variances on different scales than the remaining coefficients.
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Figure C.3: LE model: Bias and variance of estimators of β for a given X when generating from the

latent eigenmodel. Variability captured by the boxplots reflects variation with X. Note that the intercept,

β0, has biases and variances on different scales than the remaining coefficients.
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Figure C.4: MSE of the BC-EM estimator and amen estimator of the social relations model of ρ when

generating from the PX model. Variability captured by the boxplots reflects variation in MSE with X.

Both the BC-EM estimator of the PX model and amen estimator of the social relations model provide

estimates of ρ. We computed the MSE for each estimator, for each X realization, when generating from the

PX model. In Figure C.4, the MSE plot for ρ̂ shows that the MSE, and the spread of the MSE, decreases

with n for the BC-EM estimator, suggesting that the BC-EM estimator of ρ is consistent. As with the β

parameters, the amen estimator displays substantially larger MSE than the BC-EM estimator of ρ.

C.4 Analysis of political books network

In this section, we present additional predictive results and verify the efficacy of an approximation made

by the BC-EM algorithm when analyzing the political books network data set.

C.4.1 Prediction performance using ROC AUC

In Section 4.8, we use area under the precision-recall curve to evaluation predictive performance on the

political books network data set. Figure C.5 shows the results of the cross validation study, described in

Section 4.8, as measured by area under the receiver operating characteristic (ROC AUC). The conclusions

are the same as those given in Section 4.8: the PX model appears to account for the inherent correlation in

the data with estimation runtimes that are orders of magnitude faster than existing approaches.

C.4.2 Linear approximation in ρ in BC-EM algorithm

In Section 4.5.2, we discuss a series of approximations to the E-step of an EM algorithm to max-

imize ℓy with respect to ρ. One of these approximations is a linearization of the sample average
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Figure C.5: Out-of-sample performance in 10-fold cross validation, as measured by area under the

precision-recall curve (ROC AUC), plotted against mean runtime in the cross validation for Krebs’ po-

litical books network. The estimators are standard probit assuming independent observations (Std. probit),

the proposed PX estimator as estimated by BC-EM (PX: BC-EM), the social relations model as estimated

by amen (SRM: amen), and the latent eigenmodel as estimated by amen (LE: amen).

1
|Θ2|

∑
jk,lm∈Θ2

E[ǫjkǫlm | yjk, ylm] with respect to ρ. In Figure C.6, we confirm that this approximation

is reasonable for the political books network data set. Figure C.6 shows that the linear approximation to

1
|Θ2|

∑
jk,lm∈Θ2

E[ǫjkǫlm | yjk, ylm] (dashed blue line), as described in detail in Section C.1.3, agrees well

with the true average of the pairwise expectations (solid orange line).
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Figure C.6: The average of all pairwise expectations 1
|Θ2|

∑
jk,lm∈Θ2

E[ǫjkǫlm | yjk, ylm] is shown in or-

ange, and the linear approximation to this average, described in Section 4.5, is shown in dashed blue. In

addition, pairwise conditional expectations E[ǫjkǫlm | yjk, ylm] are shown in light gray, for a random subset

of 500 relation pairs (jk, lm) ∈ Θ2.
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