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ABSTRACT 
 
 
 

CHARACTERIZING DISTRIBUTIONS AND DRIVERS OF EMERGENT AQUATIC 

VEGETATION IN MINNESOTA 

 
 
 

The emergent aquatic vegetation (EAV) communities across the lakes of Minnesota serve critical 

functions within ecosystems by providing habitat and forage for native waterfowl and fish species, 

moderating water chemistry, and serving as a cultural and economic resource. Communities of EAV are 

changing dramatically in response to alterations in hydrologic flow regimes, nutrient availability, biological 

homogenization, and near-shore development. To address the conservation of these communities at a spatial 

scale relevant for landscape management, the changes need to be evaluated at local and regional scales. 

Previous efforts to map and monitor EAV have utilized field surveys, aerial imagery, multispectral imagery, 

and synthetic aperture radar (SAR). However, it is difficult to apply the findings of previous studies to 

broader spatial scales because they lack field surveys, clear or repeatable methodologies, rigorous validation, 

and/or applying methods to broad spatial extents, all of which are all necessary for providing direct 

implications for landscape level management. The first chapter of this thesis aimed to overcome these 

challenges and create statewide maps of EAV in Minnesota at a spatial resolution relevant to landscape 

management at both broad and local scales. We paired detailed field surveys of EAV communities with 

Sentinel-1 SAR and Sentinel-2 Multispectral Imager to create annual maps of EAV across the lakes of 

Minnesota at a 10 m spatial resolution in 2017 and 2018. We created two random forest models, a species 

model predicting general classes of EAV and a water model identifying open water regions across hydrologic 

features in Minnesota. We validated both classification models using withheld field sample locations to 

measure overall accuracy as well as individual class user’s and producer’s accuracies. The species and water 

map predictions were combined into a final map representing water and EAV classes each year. We also 

evaluated each map by the area-based percentage of overlap between model predictions and field surveys 
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which ranged from 54.5 to 90.1% agreement. The 2017 map was further evaluated using an area-based 

weighted probability with an overall accuracy of 89.9% (±0.7%). The methods and promising results 

highlighted by this study set the stage for subsequent analyses at broader spatial scales to quantify temporal 

shifts or trends in EAV communities. The combination of these diverse and detailed datasets provides 

methods for generating annual maps of EAV distribution across Minnesota, and ultimately provide a tool to 

support landscape-scale conservation efforts of EAV communities in Minnesota. 

 The second chapter investigated the influence of systemic drivers related to the decline of northern 

wild rice (Zizania palustris L.) over the last century. Wild rice is an environmental indicator species that is 

sensitive to hydrologic changes and disturbances and serves an essential role in ecological, cultural, and 

economic systems in Minnesota. Due to the previous lack of comprehensive information regarding its extent 

and distribution, previous efforts to study its decline have been limited to small regions or small samples of 

lakes across the state. We utilized 2018 presence maps of wild rice from the first chapter and summarized 

wild rice cover across 366 lakes. Then, we employed a suite of spatial, hydrological, ecological, and 

environmental variables summarized at a variety of spatial scales within a three-step modeling framework to 

select the most significant drivers of wild rice cover, explore interactions between drivers, and account for 

inherent spatial autocorrelation in the datasets. A final spatial lag model revealed that dispersal and population 

connectivity had the strongest relationships with wild rice cover on each lake. While further exploration may 

better quantify this relationship, land managers should consider the degree of connectivity between wild rice 

lakes and their spatial configuration on the landscape during conservation planning to maximize population 

resilience. Our results suggest that it may be more suitable to approach populations as connected habitat 

regions, in contrast to the more widely accepted notion that wild rice lakes are self-contained or independent 

populations. 
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CHAPTER 1: MAPPING EMERGENT AQUATIC VEGETATION IN MINNESOTA 
 
 
 

Introduction 
 
 
 
Background 

Emergent aquatic vegetation (EAV) communities are prevalent within shallow water and banks 

across the expansive lakes in Minnesota and they represent a group of functionally critical species within 

aquatic ecosystems (Radomski & Goeman, 2001; Wilcox & Meeker, 1992). EAV are essential to the diets and 

habitats of native fish, waterfowl, and other species, and also have direct influences on water chemistry 

(Joniak, Kuczyńska-Kippen, & Nagengast, 2007; Radomski & Goeman, 2001). Within the last century, habitat 

loss, environmental degradation, invasive species, and changing climate have notably contributed to shifts in 

species richness and community composition of EAV on many lakes (Alahuhta, 2014; Pillsbury & McGuire, 

2009; Hansel-Welch et al., 2003). The spatial patterns in species richness and composition of aquatic 

vegetation communities have been explained by local and regional scale characteristics, most notably water 

quality and climatic variables; specifically, alkalinity, concentration of phosphorus, and temperature, varying 

with latitude throughout Minnesota (Alahuhta, 2014; Moyle, 1956). The large overarching trends in EAV 

populations and communities have not been explained solely by local factors, which highlights the critical 

need to consider conservation and management at appropriate spatial scales that are broad enough to capture 

potential regional abiotic gradient drivers (Alahuhta, 2014). Recent studies in ecology and conservation have 

emphasized the necessity of evaluating changes in populations and communities at multiple scales (i.e. 

evaluating a collection of ecosystems) due to their interconnectedness and spatial dependence on surrounding 

features (Forman & Gutzwiller, 2002). Conservation and monitoring efforts traditionally utilize field surveys 

as a primary information source; however, current approaches are constrained by the lack of comprehensive 

information available about the distribution and temporal trends of EAV communities at a spatial extent 

relevant to these communities and species in particular (Reinke & Jones, 2006; Forman & Gutzwiller, 2002). 

Outlining strategic and refined methods for comprehensively mapping EAV distributions on an annual basis 
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is a necessary first step toward ensuring the preservation of EAV communities across the lakes of Minnesota 

by improving the information available for proactive land management decisions and conservation efforts.  

Species Composition 

Most EAV species are perennial plants growing in shallow water or along the banks of water bodies. 

Common species in the region include cattails (Typha spp), water lilies (Nymphaeaceae spp), bulrush 

(Schoenoplectus spp), wild rice (Zizania palustris L.), watershield (Brasenia spp), and sedges (Carex spp) 

(Muthukrishnan & Larkin, 2020). Their abundance and community composition are related to characteristics 

such as hydrologic flows, lake morphology, sediment composition, nutrient availability, water clarity, and 

upstream land cover, many of which are affected by urbanization and land use changes (Kissoon et al., 2013; 

Joniak, Kuczyńska-Kippen, & Nagengast, 2007).  

Cattails are one of the most common perennial species found within marshes and along shallow 

banks of water bodies. There are several cattail species like broad-leaved cattail, narrow-leaved cattail, and a 

hybrid between these two species found throughout Minnesota (Larkin et al., 2011; Dubbe, Garver, & Pratt, 

1988). They are capable of dominating over sedges and other wetland grass under the appropriate conditions, 

and encroachment has been attributed to changes in hydrologic flows and water levels (Wilcox et al., 2008). 

Cattail growth typically begins between April and May and tapers out by October, although this varies by 

region (Dubbe, Garver, & Pratt, 1988; Apfelbaum, 1985). Cattails experience more rapid growth during their 

second year, after they have established, and the majority of this happens between July and September 

(Dubbe, Garver, & Pratt, 1988). Sedges and bulrush are also found growing within shallow waters, and the 

primary species include hard-stem and soft-stem bulrush which are perennials growing up to 3 m in height 

(Price, 2012). 

 Northern wild rice (Zizania palustris L.), or wild rice, is found growing along the edges of water bodies 

concentrated in the northern half of Minnesota at depths less than 1.5 m (Price, 2012). It is considered an 

indicator species due to its highly sensitive and responsive nature to changes in water quality, the 

environment, and other disturbances, making wild rice key for identifying environmental changes (Biesober, 

2019). It has been disappearing from its native range during the last century (Pillsbury & McGuire, 2009), and 
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is a top priority species within conservation due to its keystone role in wetland ecosystems. The disappearance 

of historical stands of wild rice from individual lakes has been associated with major shifts in EAV 

community composition (Pillsbury & McGuire, 2009). As an annual rooted macrophyte, wild rice begins 

growing from submerged seeds early in the season and transitions to the floating leaf stage where it is visible 

on the water’s surface between mid May and mid June. It then emerges from the water in tall vertical and 

leafy structures that grow rapidly between mid June and July and continues to grow above the water. When 

wild rice reaches its peak between August or early September, the seeds disperse via wind or water and wild 

rice stands senesce until the following year (Price, 2012). Water lilies are another family of rooted 

macrophytes commonly found growing alongside wild rice at similar water depths (Myrbo et al., 2017(a); 

Pillsbury & McGuire, 2009). Found floating on the surface of many lakes across Minnesota, water lilies are 

represented by several native as well as invasive species. 

Threats, Drivers, & Trends 

Long term monitoring in Minnesota has identified significant reductions in EAV cover through the 

last 30 years across many lakes (Radomski, 2006). These losses have been attributed to a number of factors 

including anthropogenic land-use change, water quality, water clarity, alterations in hydrologic flow regimes, 

climate change, and invasive species. Shoreline development has negatively impacted floating leaf and EAV 

abundance with lower impacts on submersed vegetation (Pillsbury & McGuire, 2009; Radomski & Goeman, 

2001). Anthropogenic land-use change through urbanization and agriculture have resulted in habitat loss and 

impacted water quality (Hansel-Welch et al., 2003); these are key factors that have caused increased sediment 

loads which reduce water clarity, and increased runoff with high concentrations of nitrogen and phosphorus, 

where the negative impacts accumulate downstream (Blann et al., 2009). Human impacts have been attributed 

as a causal factor of elevated pore water sulfide concentrations which is toxic to wild rice and serves as one 

imperative component responsible for unprecedented changes in community dynamics (Myrbo et al., 2017(a); 

Pillsbury & McGuire, 2009). Alterations in hydrologic regimes have resulted in significant changes to annual 

flow rates, channelization of streams, and countless consequences for riparian and aquatic biodiversity (Blann 

et al., 2009). Climate change has impacted temperature and precipitation regimes, altering suitable habitat for 
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species and creating conditions that favor the influx of invasive species (Rahel & Olden, 2008). Biotic 

homogenization is noted to be correlated with increased abundance of invasive species presence in studies 

conducted across more than 1,000 shallow lakes in Minnesota, and the impacts have repercussions for EAV 

communities (Muthukrishnan & Larkin, 2020). These changes may dramatically alter and limit the future 

abundance of EAV, increasing the need for information regarding current species and community 

distributions at relevant spatial scales to inform proactive management and preserve the essential roles EAV 

play in ecosystem function.  

Previous Monitoring Efforts 

The earliest efforts to monitor EAV and wetlands primarily utilized field surveys and aerial imagery 

across multiple decades, yet these methods have proven to be challenging as well as time and resource 

intensive to collect (Wilcox et al., 2008; Rundquist, Narumalani, & Narayanan, 2001). Studies have 

demonstrated that it is infeasible to comprehensively collect field surveys across large regions and dense 

vegetation, necessitating the incorporation of aerial imagery (Randomski, 2006). Through advancements in 

temporal, spatial, and radiometric resolution of satellites, previous literature has investigated methods for 

classifying aquatic vegetation using multispectral imagery (Villa et al., 2018; Price, 2012; Sawaya et al., 2003; 

Rundquist, Narumalani, & Narayanan, 2001). In particular, the Landsat archive represents a long running 

temporal record of spectral imagery at resolutions that may be relevant for characterizing vegetation patterns. 

However, Landsat imagery alone has proven limited in its effectiveness for monitoring EAV, likely due to 

difficulties penetrating cloud cover, capturing below canopy vegetation, and differentiating between 

vegetation species at fine scales (Mansaray et al., 2017). Therefore, previous studies have explored 

supplementary spectral imagery and data sources to improve mapping efforts for EAV communities of 

conservation interest (Villa et al., 2018; Mansaray et al., 2017; Price, 2012).  

Synthetic aperture radar (SAR) is an active remote sensing technique emitting microwave signals that 

reflect off the landscape surface and return to the sensor known as backscatter (Dabboor & Brisco, 2019). 

The backscatter contains information about structure of land surface features, stored using single and dual 

polarizations that capture vertical and horizontal surface structure (Silva et al., 2007). SAR is an exceptionally 
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powerful tool for wetland classification and monitoring emergent vegetation because it captures the height, 

density, and spatial patterns of wetland and EAV canopies (Dabboor & Brisco, 2019; Brisco et al., 2013; Silva 

et al., 2007). Studies have incorporated SAR values (or alternatively, applied thresholds to SAR values) to 

isolate key characteristics of EAV, wetlands, and water and paired this information with multispectral satellite 

imagery to achieve substantial improvements in classification accuracy (Mansaray et al., 2017; Brisco et al., 

2013; Bourgeau-Chavez et al., 2009). Dennis & LaRoe et al. (in review) combined Landat 8 OLI imagery with 

SAR at two time periods in the growing season to predict wild rice distribution within lakes residing in a 

single Landsat scene with replicable methods. They found that the range of the Vertical-Vertical (VV) 

polarization across the growing season provided the greatest predictive power, which is also suggested by 

Gallant et al. (2014). Dennis & LaRoe et al. (in review) also suggested that the Vertical-Horizontal (VH) 

polarization may have improved misclassification between species. While many studies have demonstrated the 

efficacy of utilizing multispectral imagery and SAR for classifying wetlands or EAV, current classification 

detail, spatial resolutions, and study extents may be limited in their utility for regional management planning. 

Many of the previous studies have lacked at least one key element to create EAV maps relevant to land 

management including field survey data, rigorous validation, clear methods for replicability, applicability 

through time, or testing methods at a regional scale. 

Objectives 

The objective of this study was to improve the accuracy of mapping EAV by expanding on remote 

sensing methods tested by Dennis & LaRoe et al. (in review); their study focused on mapping wild rice at a 30 

m resolution using Landsat imagery and synthetic aperture radar at two key intra-annual time periods at the 

extent of a single Landsat scene. Within this study, we incorporate multiple EAV classes for mapping species 

at a statewide extent using remotely sensed imagery at finer spatial resolutions (10 m), through the delineation 

of four phenologically significant time periods for greater distinction between classes. We pair imagery 

captured by Sentinel-1 C-band SAR and Sentinel-2 Multispectral Imager (MSI) with detailed field surveys to 

generate random forest models to predict five EAV classes as well as open water regions across Minnesota in 

2017 and 2018. We highlight the importance of using multiple phenologically significant time periods as well 
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as the benefits of employing high capacity platforms for analyzing satellite imagery across broad spatial 

extents across multiple years. The methods outlined in this study provide a robust potential framework for 

creating annual statewide maps of EAV. 

Methods 
 
 
 
Study Area  

Minnesota is located in the northern portion of the central US, spans over 225,000 km² and contains 

over 11,000 lakes, thousands of streams and rivers, with surface water representing 8% of all land cover. It is 

home to the headwaters of the Mississippi River, which provides a variety of ecosystem services to people 

within 10 states in the US. Natural lakes were glacially formed, and the paleoecological history of the region 

has molded currently observed trends in water quality and ecosystem processes, such as spatial patterns of 

pore water sulfide concentrations (Myrbo et al., 2017(a)). Minnesota’s diverse landscape covers a number of 

ecological, geological, and physical gradients from lakes, peatlands, and wetlands, to densely populated cities. 

Annual precipitation between 1981 and 2019 across the state was 69.5 cm and average temperature ranged 

from -0.5ºC to 10.8ºC (MNDR, n.d.). The focal time period of this study covers 2017 and 2018, and the 

cumulative precipitation in each year was 69.1 cm and 72.2 cm respectively (MNDR, n.d.). Mean annual 

temperature in 2017 ranged from 0.3ºC to 12.4ºC, and 2018 mean annual temperature ranged from -0.8ºC to 

10.4ºC (MNDR, n.d.). This study was constrained to the hydrologic features across Minnesota (Figure 1.1).  
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Field Survey Data 

Detailed annual aquatic vegetation field survey data was collected on a subset of lakes by the 

Minnesota Department of Natural Resources (MN DNR). These surveys included six categories of taxa with 

six additional categories of mixed EAV stands classified by the dominant species (Radomski et al., 2011). The 

survey polygons also contain information regarding any secondary taxon and additional taxa present in a 

stand of EAV. The primary categories surveyed included cattails, rushes, wild rice, water lilies, submerged 

vegetation, other emergent vegetation, and other floating vegetation (Table 1.1) and the spatial accuracy of 

surveys were determined to be between 2 and 3 m (Radomski et al., 2011). Surveys are collected across a 

Figure 1.1. Hydrologic features delineating the study area across Minnesota. 
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variety of lakes, using different lakes each year to cover a greater total number of lakes in Minnesota through 

time. These detailed and robust surveys are not possible to complete across exceptionally dense vegetation 

(Radomski et al., 2011). The sheer number and size of lakes in Minnesota further contributes to the 

impracticality of surveying all lakes with EAV, and consequently, annual surveys represent a small percentage 

of the lakes with EAV across Minnesota.  

Table 1.1. The survey class definitions for field polygons and the new classification scheme utilized for modeling. The 
primary taxon is a dominant taxon in a stand of EAV, and a secondary taxon is listed if there is an additional class that 
covers > 30% of the total stand area. Associated taxa refer to other species present in a stand of EAV, taking up < 30% 
of the total stand area. Dominant stands (i.e. “Cattails”) represent a single dominant taxon, no secondary taxon, and 
potentially include associated taxa. Heterogeneous stands (i.e. “Cattails and Others”) represent a dominant taxon, a 
secondary taxon, and potentially include associated taxa. Additional details can be found in Radomski et al. (2011). 

MN DNR Survey Class MN DNR EAV Survey Definition Modeling Class 

Cattails 
Cattails are the dominant taxon in a more homogeneous stand, and 
associated taxa may be present. 

Cattails 

Other Emergent 
Other Emergent species are the dominant taxon in a more 
homogeneous stand, and associated taxa may be present. 

Other EAV 

Other Floating 
Other Floating species are the dominant taxon in a more 
homogeneous stand, and associated taxa may be present. 

Other EAV 

Rushes 
Rushes are the dominant taxon in a more homogeneous stand, and 
associated taxa may be present. 

Rushes 

Submerged 
Submerged vegetation is the dominant taxon in a more 
homogeneous stand, and associated taxa may be present. 

omitted 

Waterlilies 
Water lilies are the dominant taxon in a more homogeneous stand, 
and associated taxa may be present. 

Water lilies 

Wild Rice 
Wild rice is the dominant taxon in a more homogeneous stand, and 
associated taxa may be present. 

Wild rice 

Cattails and Others 
Cattails are the dominant taxon in a more heterogeneous stand, a 
secondary taxon is present, and associated taxa may be present. 

omitted 

Rushes and Others 
Rushes are the dominant taxon in a more heterogeneous stand, a 
secondary taxon is present, and associated taxa may be present. 

omitted 

Waterlilies and Others 
Water lilies are the dominant taxon in a more heterogeneous stand, a 
secondary taxon is present, and associated taxa may be present. 

omitted 

Wild Rice and Others 
Wild rice is the dominant taxon in a more heterogeneous stand, a 
secondary taxon is present, and associated taxa may be present. 

omitted 

 

However, these field surveys provide essential data that can be utilized for modeling the distribution 

of EAV classes across multiple years. While the surveys were not collected with the intention of modeling 

EAV distributions using remotely sensed data, they can be modified for this purpose (Figure 1.2). Challenges 

with inflated false positive error rates have been identified within models that incorporated presence points in 
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which wild rice was not the dominant taxon, or in other terms, using highly heterogeneous EAV stands to 

represent the presence of a single EAV class (Dennis & LaRoe et al., in review). To account for this, we only 

included the six classes with a single dominant taxon and no secondary taxon present (only associated taxa) to 

generate presence points, merging other floating and other emergent into a single “other” class (Table 1.1).  

We converted survey polygons to 1 m rasters and snapped to Sentinel-2 10 m imagery (Figure 1.2), 

and used the aggregate sum to count the number of 1 m pixels inside each 10 m pixel to approximate the 

percent cover of a polygon within a Sentinel pixel. To avoid confusion between mixed classes within the 

models and retain great enough variance in the density of vegetation cover, we selected pixels with aggregate 

values ≥ 60 and converted them to training points (Figure 1.2). In other words, a polygon must share 60% 

overlap with a 10 m Sentinel pixel in order to be considered as a potential training sample. Training samples 

were selected using a random stratified sample design to balance the number of EAV points included from 

each class and include nearly equal numbers of training samples from each year (Appendix 1A). 

 

Figure 1.2. Methods for converting field polygons to training and validation samples. The field survey polygons 
representing more heterogeneous EAV stands were omitted prior to creating and selecting training samples, to refine the 
training samples to homogeneous EAV stands and provide spectral values more representative of each individual class. 
The final random stratified sample was split 75/25 for training and validation samples. 

 

The MN DNR field surveys have not traditionally been collected for remote sensing purposes and 

therefore do not contain information about surrounding or adjacent land cover, and in this case, water was 

not explicitly included within surveys. To accurately classify EAV and prevent confusion of these classes with 
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adjacent land cover types, it was critical for us to identify areas containing open water. Open water regions 

were ocularly sampled using 2017 data from the National Agriculture Imagery Program (NAIP) at a 1 m 

spatial resolution in Google Earth Engine (Gorelick et al., 2017), which was collected between early July 

through mid October across the state. To create the ocular samples, we aimed to balance points across the 

full range spectral range of open water, provide even geographic distribution across the study region, and 

capture the variation between rivers and lakes of different sizes. Statewide images were displayed in color-

infrared to improve visual distinction between water and shoreline vegetation or low-density EAV (10% 

cover or less). Survey polygons from 2017 were displayed overtop of high-resolution imagery to prevent 

overlap between vegetation and water training samples. We sampled points using a 20 m grid from median 

composites of Sentinel-2 imagery overlaid on NAIP to prevent multiple points from being placed within a 

single pixel. Additionally, the 20 m grid allowed for points to be accurately placed on pixels near lake 

shorelines containing ≤ 10% cover of vegetation (Figure 1.3). At random, anthropogenic structures like docks 

and boats were also included in the sampling process to prevent these regions from being misclassified as 

vegetation. NAIP imagery is typically collected every other year across states, and there was not imagery 

collected across Minnesota in 2018. For this reason, we did not ocularly sample points from this year. In total, 

we placed 14,230 points across open water regions in 2017.  

 
Figure 1.3. Ocular sampling methods utilized to place open water points referencing a Sentinel grid. 
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Sentinel-1 and Sentinel-2 Preprocessing 

We acquired Sentinel-2 MSI imagery using the Google Earth Engine platform (Gorelick et al., 2017) 

and resampled all spectral bands to a 10 m spatial resolution, closest to the resolution of field surveys (Table 

1.2). All Sentinel-2 images collected in 2017 and 2018 at the four time periods of interest (Table 1.3) were 

cloud-masked and used to create a median image composite at each time period (four composites per year, a 

total of eight composites). We derived spectral indices related to water and vegetation from median 

composite images at each time period (Appendix 1B). We selected these four key time periods based on some 

of the suggestions made by Gallant et al. (2014) as well as a synthesis of relevant literature to isolate key 

phenological changes, and the specific date ranges for each sensor are shown in Table 1.3. The first time 

period (T1) captures perennial structures and early season growth between mid-March and the end of May, 

while the second time period (T2) references the bulk of seasonal growth between June and the end of July. 

Peak growth and partial senescence is captured in the third time period (T3) between August and late 

September, and the bulk of senescence occurs between late September and mid November which is the 

fourth time period (T4). 

Table 1.2. Sentinel 2 spectral bands and resolutions retrieved from https://www.satimagingcorp.com/satellite-
sensors/other-satellite-sensors/sentinel-2a/ 

Spectral Predictor Sensor Native Spatial Resolution Central Radiometric Resolution (μm) 

B1 Coastal Sentinel-2 60 meters 0.443 

B2 Blue Sentinel-2 10 meters 0.49 

B3 Green Sentinel-2 10 meters 0.56 

B4 Red Sentinel-2 10 meters 0.665 

B5 Red Edge #1 Sentinel-2 20 meters 0.705 

B6 Red Edge #2 Sentinel-2 20 meters 0.74 

B7 Red Edge #3 Sentinel-2 20 meters 0.783 

B8 Near Infrared Sentinel-2 10 meters 0.842 

B8A Red Edge #4 Sentinel-2 20 meters 0.865 

B9 Water Vapor Sentinel-2 60 meters 0.945 

B11 Shortwave Infrared 1 Sentinel-2 20 meters 1.61 

B12 Shortwave Infrared 2 Sentinel-2 20 meters 2.19 
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Table 1.3. Phenological time periods and the associated date ranges of satellite imagery selected for each sensor and 
year. The dates of Sentinel-1 and Sentinel-2 imagery differ slightly; the Sentinel-1 time periods are shorter to isolate key 
phenological changes since SAR is not affected by cloud cover. Whereas Sentinel-2 is affected by cloud cover, so 
multispectral image time periods are longer in order to capture enough cloud-free pixels to generate a statewide 
composite image. 

Years Sensor Time 1 (T1) Time 2 (T2) Time 3 (T3) Time 4 (T4) 

2017 + 2018 Sentinel-1 SAR 4/10 – 5/20 6/10 – 7/15 8/5 – 9/20 9/25 – 11/10 

2017 + 2018 Sentinel-2 MSI 3/15 – 5/31 6/1 – 7/31 8/1 – 9/20 9/21 – 11/15 

 

Additionally, we acquired Sentinel-1 C-band SAR at a 10 m resolution in GEE. We generated median 

SAR composites for 2017 and 2018 at each of the same four time steps as the multispectral imagery (Table 

1.3). Appendix 1B provides the calculations used for the range of the median VV and VH values. These 

calculations were applied between all six possible combinations of the four time steps, for a total of 12 

composites depicting the median range of VV and VH values for each year. Additional spectral variables 

highly correlated with the presence of EAV classes (coastal, blue, and water vapor bands) were also 

differenced using all possible combinations of the four time periods and included as predictors for model 

selection. There were more than 120 predictor variables considered within the species model. We extracted all 

predictor values from both Sentinel-1 and Sentinel-2 at each EAV training data sample for the species model. 

The same Sentinel-1 and Sentinel-2 predictors utilized for the species model were parsed down to only 

include the 21 variables solely from the third time period (T3, Table 1.3), which align with the temporal 

resolution of 2017 NAIP imagery used for ocular sampling. Only the 2017 EAV sampling points utilized in 

the species model were merged into a single class representing vegetation presence, and they were merged 

with the ocularly sampled open water points (Figure 1.4). All EAV points and open water points from 2017 

were brought into GEE, and the values of T3 predictors from 2017 were extracted for each point.  
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Figure 1.4. Overview of methods workflow for creating and combining the species and water models across Minnesota 
for 2017 and 2018. Note that ocularly sampled water points were only included in the water model. 

 

Random Forest Models 

Species occurrence and open water occurrence datasets were split 75%/25% for training and 

validation. We employed the rfUtilities package (Version 2.1-2, Evans et al., 2011) in R (Version 3.6.3; R Core 

Team, 2020) to rank variables by their importance and selected a final set from the top 55 variables. We 

considered variables based on their degree of explanatory power as well as their ecological significance 

(relationships with EAV classes) to harmonize human input with the automation algorithmic variable 

selection (Young et al., 2020). For example, all VV range and VH range variables were included in the species 

model due to the detailed level of seasonal variance captured by SAR which has proven to be effective for 

distinguishing emergent aquatic vegetation (Dennis & LaRoe et al., in review; Gallant et al., 2014; Brisco et al., 

2013). We removed all variables that had a Pearson’s correlation coefficient > |0.75|, as well as 60 m 

resolution variables beyond the top six to concentrate the bulk of the model’s explanatory power within 

variability distinguished at a finer spatial resolution (≤ 20 m). To account for interannual variability in the 

region, we included data from 2017 and 2018 in the species dataset to train a random forest model (package 
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version 4.6-12) in R (Breiman, 2001). These methods extended to the water model which only included 

training samples from 2017, since 2018 NAIP imagery was not available for Minnesota to ocularly sample 

open water.  

Post Processing & Validation

We applied the top species model across imagery from each year using GEE to generate a statewide 

map of the five EAV classes for 2017 and 2018 at a 10 m resolution (Figure 1.4). We applied the water model 

trained on 2017 samples to imagery from 2017 and 2018 to create an open water mask for each year. The 

hydrologic feature boundary dataset provided by the MN DNR, was used to mask the terrestrial matrix for 

each of the four output maps. The binary water/vegetation maps from each year were then applied as a mask 

to each of the species maps for each year. We implemented a two-step validation using an approach similar to 

Dennis & LaRoe et al. (in review), including both point and polygon overlap metrics (Figure 1.4). First, the top 

model was applied across validation points that were withheld (Appendix 1B). Secondly, the tabulate area 

function in ArcGIS (Version 10.4.1) was used to quantify the total area of overlap between the rasterized 

versions of the original survey polygons (Table 1.1) and model predictions. We also calculated map accuracy 

confidence intervals based on weighted proportions of area mapped for each class (Olofsson et al., 2014) for 

the final 2017 map (using 2017 validation data).  

Results 

Model Results: 2017 and 2018 

The accuracy of the species and water models when applied to their respective sets of withheld 

validation points are shown in Table 1.4. Prior to combining the predictions from the species and water 

models, their overall accuracies were 89.5 and 95.8 percent correctly classified, respectively. Wild rice had the 

highest producer’s and user’s accuracy in the species model (94.9% and 93.3%), while water lilies had the 

lowest producer’s and user’s accuracy (81.5% and 84.6%). Water lilies were most commonly confused with 

cattails, and all other EAV classes were most commonly confused with water lilies. We found trade-offs 
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between producer’s and user’s accuracy of the water and vegetation classes in the water model. It was 

essential to note each model’s performance before combining the species and water model predictions 

because their individual accuracies were factors that influenced the final maps. 

Table 1.4. Confusion matrices for the species model (left) and water model (right) including producer’s and user’s 
accuracies for each class. The species model was applied to the 8,781 samples (from 2017 and 2018) withheld for 
validation and had 89.5% overall accuracy. The water model was applied to 5,203 samples withheld (from 2017 only) and 
had 95.8% overall accuracy. Yellow represents points that were accurately classified, dark green represents user’s and 
producer’s accuracies > 90%, and light green represents user’s and producer’s accuracies > 80%. 

After combining the species and water models’ predictions from each year, we found the area of 

overlap between model predictions and field surveys to be a powerful validation tool for capturing the full 

scope of model performance, instead solely relying on a small sample of points (Appendix 1B; Table 1.5, 

Dennis & LaRoe et al., in review). Overall, the final maps had decent performance, with some variations in 

performance between classes and years (Table 1.5). Both maps had similar overlap with cattails, but differed 

dramatically in their agreement with other EAV. The polygon area utilized for validation excluded any areas 

that fell beyond the boundaries of hydrologic features, and these areas were often delineated as cattail 

dominant stands in the field surveys. Prior to masking these areas, the model predictions had high user’s and 

producer’s accuracy with the cattails class (Table 1.4). In general, the 2017 final map had greater rates of 

overlap, and the highest rate of overlap with other EAV (90.1%), rushes (84.1%), and wild rice (90.4%). The 

2018 final map had greater overlap with cattails (76.4%) and water lilies (83.9%).  
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Table 1.5. Percentage of overlap between 2017 and 2018 final maps and rasterized field survey polygons from more 
homogeneous EAV stands (covering ≥ 60% of a 10 m Sentinel pixel). 

EAV Class 

2017 2018 

Polygon Area (m²) % Overlap Polygon Area (m²) % Overlap 

Cattails 720,400 72.8 591,300 76.4 

Other EAV 861,400 90.1 637,500 54.5 

Rushes 1,173,800 84.1 4,991,200 75.5 

Water lilies 2,197,500 75.7 3,059,200 83.9 

Wild rice 295,900 90.4 659,100 81.7 

Map Validation 2017 

The 2017 final map (species and water model outputs combined) was validated using weighted 

proportional area of each class and 2017 validation points from both models (Table 1.6), and this map most 

accurately captured the wild rice, other EAV, and water classes (Table 1.6). Rushes, other EAV, and wild rice 

were most commonly misclassified as open water, and open water was most frequently misclassified as rushes 

(Table 1.6). Water lilies were most frequently misclassified as cattails or wild rice, and cattails were still most 

frequently misclassified as water lilies and rushes. 

Table 1.6. Confusion matrix for final 2017 map (combining species and water models) including mapped area and 
weights utilizing the framework provided by Olofsson et al. (2014). 

We applied proportional, area-based weights to derive confidence intervals that more finely 

delineated class accuracies which are represented in Table 1.7 (Olofsson et al., 2014). The overall accuracy of 

the final map was 89.9% ± 0.7% and producer’s accuracies for all classes ranged between 75.8% and 95.3%, 

indicating that the model predictions effectively detected EAV classes and open water once they were 
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combined. Open water was predicted to be the dominant cover class across lakes and had the highest 

producer’s and user’s accuracy. Although the application of the water mask to the species maps increased 

some of the errors within EAV classes, we observed improvements in visual map assessments compared to 

those prior to the water masking step. While the producer’s accuracy of the rushes class was high (90.3% ± 

2%), the user’s accuracy was less than half this rate (0.4504 ± 0.0354), which indicates that the results from 

this class are likely the least reliable due to its frequent misclassification with open water. The metrics for all 

other classes fell between 98.3% - 45% and demonstrated trade-offs between user’s and producer’s accuracy. 

Producer’s accuracy for each EAV class remained relatively high, similar to their respective overlap with the 

original survey polygons (Table 1.4; Table 1.7). 

Table 1.7. Confusion matrix for the final 2017 map (species and water models combined) where the accuracy is 
weighted by proportion of mapped area within each class (Table 1.6). Confidence intervals (95%) are also provided for 
the overall accuracy, as well as the user’s and producer’s accuracy for each class based on the framework provided by 
Olofsson et al., (2014).

The 2018 final map was not validated using these methods since NAIP imagery was not available for 

Minnesota in 2018, and therefore we did not collect water points in 2018. Additionally, previous literature has 

highlighted the annual spatial variability of wild rice stands (Rickman et al., 2017) as well as other annual 

stands of EAV. Therefore, incorporating the water validation samples from the previous year is not 

appropriate and falls beyond the scope of the 2018 final map. Further validation will be necessary in order to 

precisely determine the accuracy of open water predictions within the 2018 final map and explore the scope 

of model applicability through time. 

Visual quality assessments provided supplemental details about model performance in specific 

regions that were difficult to glean from the validation metrics alone (Figure 1.5; Figure 1.6). In general, 

models were most accurate across more homogenous stands similar to the training data utilized which is well 
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represented by Big Birch and Little Birch Lakes in 2017 (Figure 1.5) as well as Itasca Lake in 2018 (Figure 

1.6). Model misclassification can be visualized within some of the highly mixed EAV stands (particularly the 

“water lilies and others” class), where the dominant cover type surveyed may be represented in the model 

predictions, but not predicted as the dominant cover type. These misclassifications are shown across Buffalo 

Lake in 2017 (Figure 1.5) and Eighth Crow Wing Lake in 2018 (Figure 1.6).  
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Figure 1.5. Comparison between 2017 survey polygons and 2017 model predictions across Big Birch, Little Birch, and 
Buffalo Lakes in Minnesota. Note that all classes containing “and Others” contain more heterogeneous EAV stands 
with greater variation in taxa present; reference Table 1.1 for survey polygon definitions. Additionally, model predictions 
were constrained to lake boundary polygons; reference Field Survey Data for post processing details and constraints. 
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Figure 1.6. Comparison between 2018 survey polygons and 2018 model predictions across Itasca and Eighth Crow 
Wing Lakes in Minnesota. 
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Predictors 

The random forest species model showed that the normalized difference vegetation index (NDVI) 

from T2 (June – late July) had the greatest explanatory power for classifying EAV species groups out of 22 

variables included in the model, corresponding to seasonal near peak vegetation growth (Table 1.8). The 

coastal band at various time periods ranked as the next three most important variables. SAR predictors from 

Sentinel-1 represented 12 out of 22 variables included in the model, and the other 10 variables were derived 

from Sentinel-2 MSI. Additional predictors utilized in the species model include the normalized difference 

water index (NDWI), red edge #4 NDVI, red edge #3, and the water vapor band. In total, 10 of these 

predictors utilized information from T1 (March – late May) and T2, nine predictors utilized information from 

T3 (August – late September), and only five predictors utilized information from T4 (late September – mid 

November). The majority of explanatory power was captured from March through late September. 

Table 1.8. The final predictors included in the species model with their associated time period and importance ranking in 
the random forest. 

Importance Rank Mean Decrease Accuracy Predictor T1 T2 T3 T4 

1 138.168 NDVI X 

2 131.925 B1 Coastal X 

3 124.072 B1 Coastal X X 

4 123.982 B1 Coastal X 

5 118.163 NDWI X 

6 111.03 B1 Coastal X 

7 106.594 B9 Water Vapor X X 

8 103.527 B8A Red Edge #4 NDVI X 

9 100.402 B9 Water Vapor X X 

10 95.521 VV range X X 

11 95.449 VV range X X 

12 95.288 VV median X 

13 90.946 B7 Red Edge #3 X 

14 89.463 VV range X X 

15 87.706 VV median X 

16 85.104 VV range X X 

17 82.877 VV range X X 

18 78.872 VH range X X 

19 77.137 VV median X 

20 72.627 VH range X X 

21 69.059 VH range X X 

22 66.898 VH range X X 



22 

The water model was created utilizing predictors only from T3 to match the timing of the NAIP 

imagery used to identify reference points. The five predictors selected in order of rank were VV median, 

NDVI, the blue band, NDVI red edge #4, and the water vapor band (Appendix 1D). VV median provides a 

relatively constant backscatter value for open water, and was useful for identifying EAV canopies in the 

species model. Similarly, NDVI was the top predictor in the species model and is useful for identifying 

vegetation. VV median may have helped with separating EAV and water specifically, and reduce potential 

sources of error; the use of NDVI alone would likely cause submersed vegetation or algal blooms to be 

identified as EAV. Figure 1.7 shows the change in VV range values for each class of EAV between sequential 

time periods throughout the growing season. Cattails tend to retain a relatively constant median value in each 

instance based on their perennial structures, and their signature was most distinct utilizing VV range T1-T2 or 

other T1 variables (Appendix 1C). Rushes were most distinguishable from all classes of EAV based on their 

distribution of values at NDVI T2, but they tended to have more similar values with at least one other EAV 

class across other predictors (Appendix 1C). Water lilies and wild rice were a common source of 

misclassification (Table 1.5; Table 1.6). In Figure 1.7, water lilies and wild rice were only more distinguishable 

utilizing VV range T2-T3, but they tend to have a relatively similar distribution of spectral and SAR values 

across many of the predictors considered (Appendix 1C). 

Figure 1.7. Distribution of VV range variable values by EAV class (Brown = cattails, purple = other emergent, pink = 
other floating, red = rushes, yellow = water lilies, green = wild rice across the growing season (Left: T1 – T2, Middle: T2 
– T3, Right: T3 – T4).
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Discussion 

The methods and promising results outlined in this study indicate a strong potential for creating 

annual EAV maps across Minnesota to support conservation and proactive management. By employing 

robust field survey data in conjunction with remote sensing techniques that were specifically refined to 

capture species phenology, we achieved high rates of overlap between model predictions and the field survey 

polygons. The results demonstrate that it is feasible to accurately separate classes of EAV at a spatial 

resolution relevant for land management at broad spatial extents. Our classification accuracies were 

comparable to previous studies despite having a greater number of distinctive EAV classes (Sawaya et al., 

2003; Price, 2012; Dennis & LaRoe et al.., in review). The cumulative importance of all VV range variables 

included in the species model were not directly compared with the results of Dennis & LaRoe et al. (in review) 

due to the differing target classes of EAV. However, our model predictions yielded higher overlap with wild 

rice survey polygons, which may suggest that the additional phenological time periods utilized and/or 

methods for selecting training samples from more homogeneous EAV stands improved wild rice detection 

(Table 1.4; Figure 1.6).  

Previous literature has demonstrated the capacity for NDVI to improve vegetation classification 

accuracies (Sawaya et al., 2003; Peñuelas et al., 1993) and that the Coastal band from Sentinel-2 is useful for 

mapping marine habitats and bathymetry (Immordino et al., 2019; Poursanidis et al., 2019). NDVI may have 

captured the bulk of individual vegetation class characteristics, and the repeated significance of the Coastal 

band at various time periods (Table 1.8) may suggest that water level variability as well as water quality are 

two environmental factors contributing to the variance explained in the model. There was a nearly even split 

between predictors utilized from both Sentinel-1 SAR and Sentinel-2 MSI, which may indicate that EAV 

classification improvements stemmed from the combination of spectral and SAR variables. The final 

predictors in the species model utilized information that spanned almost evenly across the first three time 

periods, and of these 17 predictors, nine of them utilized the range of values between two different time 

periods (Table 1.8). Only five out of 22 predictors utilized information from the fourth time period (T4, late 
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September to mid-November), and four of these predictors were based on the range of values between 

another time period and T4 (Table 1.8). Our results suggest that the novel use of four phenologically distinct 

time periods during seasonal EAV growth captured a finer level of detail within each EAV class through time 

which may have improved spectral separability between the classes (Appendix 1C). 

There were several challenges we faced while generating statewide maps of EAV based on the 

computational and data processing requirements. Due to limitations within GEE, it was not possible to 

incorporate more than approximately 23,000 training points (total) within the random forest model. Creating 

two separate models, one to better distinguish between species and one to separate water, maximized the 

number of training samples utilized within each class to provide more robust predictions covering the full 

extent of Minnesota. While producer’s and user’s accuracy of each EAV class was lower after applying the 

water mask to the species model (Table 1.4; Table 1.7), this approach still provided higher accuracy rates for 

individual classes compared to utilizing a single predictive model.  

While our models showed promising results for most EAV classes, water lilies were most commonly 

confused with other species in the model It is possible that the SAR variables struggled to capture backscatter 

signals from water lilies that were distinct from open water. In mixed heterogeneous EAV stands, water lilies 

were often confused with wild rice (Figure 1.6) and there are potential explanations for this observation aside 

from the frequent co-occurrence of the two. Between May and June (end of T1 and start of T2), wild rice 

enters the floating leaf stage where it tends to have more similar spectral and backscatter responses to those 

of water lilies floating on the water’s surface (Appendix 1C). During emergence in mid June through July, 

wild rice has tall vertical structures that would provide a canopy overhead of nearby water lilies. At peak 

growth, wild rice may obstruct or alter the reflectance and backscatter values of water lilies.  

Additionally, the confusion between open water and rushes in both years may have resulted from the 

considerably low NDVI values of rushes. At NDVI T2, the mean value of the rushes class is approximately 

zero, even though the distribution of these values is large (Appendix 1C). The species of EAV, total area, and 

location of the field surveys for the other EAV class (originally surveyed as other floating and other 

emergent) differed dramatically between 2017 and 2018 (Table 1.4) which may account for the large 
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differences in their overlap with EAV survey polygons (90% and 54%). Additionally, a greater number of 

training samples were included from 2017 based on a small sample size of other EAV in 2018. There were 

few remaining validation points for the cattails class within the hydrologic boundaries (Table 1.4) considering 

that they comprised 21% of the total predicted area (Table 1.6). Further independent validation would help 

clarify the discrepancies between their user’s and producer’s accuracy for the final 2017 map. In future efforts 

to map cattails utilizing remotely sensed data, it may be necessary to incorporate additional samples (field 

surveys or ocular samples) representative of forests or other wetland vegetation in order to distinguish 

between these species.  

While the water model performed well when applied to 2018, it was only trained using samples from 

2017 which may have resulted in the lower overlap agreements in 2018 (Table 1.4). Ocular samples or field 

surveys containing open water locations each year would likely provide the greatest improvement. These 

results may suggest that a model based on a single year of data cannot retain the same degree of accuracy 

when applied through time without adding training samples from the year of interest. Moreover, this also 

indicates that it is critical for detailed annual field survey data to be continuously collected and utilized for 

finely tuning annual EAV distribution models, although mapping resources may aid in strategic field sampling 

efforts and a targeted stratified sampling design based off of the previous year predictions. Alternatively, there 

may be a threshold at which a single model may be applicable once several years of field surveys are 

incorporated; however, the results of this study do not provide any indication of this threshold or the number 

of survey data years required to create a single model with high temporal accuracy due to our limited 2-year 

study time period. 

In light of these results, the presented statewide EAV maps have strong implications for local and 

landscape management and conservation efforts due to their fine spatial resolution and continuous coverage 

across Minnesota water bodies. The detailed methods outlined and predictor variables that we utilized can be 

used to generate additional maps by incorporating Sentinel-1 and Sentinel-2 imagery with EAV species 

locations and open water samples from the year of interest. The broad spatial extent of these maps can 

provide supplemental years of data for lakes since it is not feasible to survey every lake each year. Since it is 
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not possible to sample exceptionally dense wild rice stands that cover some of the major harvesting lakes in 

Minnesota, annual EAV maps have the potential to estimate cover in these instances. They may also provide 

new information about lakes and rivers that have not been previously surveyed based on their locations or 

challenging terrain that may not be safe to navigate. Furthermore, these maps may have utility for identifying 

additional lakes with unique EAV community compositions that are of high conservation interest, in addition 

to previously established sentinel lakes and other prioritized areas. They may also reveal the tradeoffs between 

different conservation management and restoration techniques and help with prioritizing efforts. The spatial 

predictions of EAV may also be important for assessing landscape drivers of their communities from a 

holistic point of view. 

If statewide EAV maps are created for additional years, they could potentially be used to evaluate 

temporal dynamics in EAV communities and quantify changes in percent cover. Maps could be useful for 

identifying lakes that are changing more rapidly than others, or highlight areas of potential concern where it 

may be important to conduct field surveys the following year. Furthermore, this information would 

significantly benefit invasive species management efforts, as maps spanning a broader period of time could 

provide opportunities to recognize the onset of cattail encroachment and target management efforts within a 

shorter time frame. They may also reveal locations vulnerable to invasion where the loss of wild rice or other 

native species may be rapidly shifting community composition, supporting more efficient and proactive 

management measures to address changes. 

Conclusion 

The combination of detailed field surveys paired with Sentinel-1 SAR and Sentinel-2 MSI at four 

phenologically significant time periods provided EAV class predictions across Minnesota with reasonable 

accuracy in 2017 and 2018. All maps were generated at a spatial resolution relevant to land management, and 

this study has potential to bring forth landscape level trends not previously recognized. These methods set 

the stage for subsequent analyses at broader spatial scales to quantify temporal shifts or trends in EAV 
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communities, as well as evaluate potential landscape and environmental drivers of species distributions. The 

combination of these diverse and detailed datasets provides promising methods for generating statewide, 

annual maps of EAV distribution and ultimately provide the first step toward approaching landscape-scale 

conservation of EAV communities in Minnesota. 
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CHAPTER 2: RELATIVE INFLUENCE OF SYSTEMIC DRIVERS AND THEIR 
RELATIONSHIPS WITH NORTHERN WILD RICE 
 
 
 

Introduction 
 
 
 

Significance of Wild Rice  

Northern wild rice (Zizania palustris L.), or wild rice, is an indicator species found growing annually 

within shallow water in Minnesota, and its populations have started to disappear throughout the last century 

(Pillsbury & McGuire, 2009). It is an essential, multifaceted resource serving many ecological, cultural, and 

economic roles, making it a high conservation priority (Chapter 1, section 1.2; Biesober, 2019). Wild rice 

provides food and habitat to many species of fish and waterfowl (McAtee, 1917), many of which are 

prioritized for conservation (DNR, 2008). Traditionally known as manoomin, wild rice is an important cultural 

resource to indigenous peoples of Minnesota who have harvested this grain for over two millennia (Biesober, 

2019). Cultivated stands of wild rice also serve as an important agricultural and economic resource in 

Minnesota (Kennard et al., 1999), and it is known as a crop wild relative that has the potential to improve 

crop resistance to pests, drought, and other threats (Khoury et al., 2013).  

Previous studies have identified fundamental drivers of wild rice, including hydrologic flow regimes 

(Blann et al., 2009; DNR, 2008), water biogeochemistry, water transparency (Myrbo et al., 2017(a); Myrbo et 

al., 2017(b); Pastor et al., 2017; Pollman et al., 2017), temperature, and anthropogenic land-use change or 

other disturbance (Muthukrishnan & Larkin, 2020; Pillsbury & McGuire, 2009; DNR, 2008). The myriad of 

influences on wild rice make it challenging to untangle the relationships between systemic drivers and 

quantify the importance of each component, such as biological processes of dispersal and habitat preferences. 

Previous studies have not examined systematic drivers alongside continuous wild rice cover across HUC08 

watershed or broader regions because the distribution of wild rice on many lakes and rivers is unknown 

(DNR, 2008). In this study, we utilized recent advances in the mapping of wild rice across Minnesota 

(Chapter 1) to investigate the directional relationships between wild rice and key environmental influences to 
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identify significant drivers with potential management and conservation implications for the preservation of 

native wild rice stands. 

Drivers and Scale  

Previous studies have recognized that the scales selected for observing and investigating ecological 

questions affect the observed patterns, and thus, the inferences drawn (Levin, 1992). Observed ecological 

patterns are often the result of top-down (e.g. climate and surrounding land cover/land use) and bottom-up 

drivers (e.g. biological controls such as dispersal mechanisms) with potential interactions between these 

scales. These principles extend to wild rice ecology, where drivers of observed distribution patterns may not 

be evident without examining relationships across continuous landscapes and by incorporating a variety of 

spatial scales. 

Wild rice is influenced by a variety of top-down drivers and regional patterns that affect its annual 

distribution. Considering the full geographic extent of suitable habitat, wild rice grows across lakes that serve 

as patches connected via hydrologic flows which are nestled in the terrestrial matrix. These patches (lakes) 

containing wild rice are influenced by pollution, sediments, and nutrient inputs from the surrounding 

terrestrial matrix, and the impacts accumulate and drive observed system dynamics downstream (Blann et al., 

2009). Many of the inputs from terrestrial systems into aquatic ecosystems are also influenced by top-down 

drivers; these include factors related to climate such as precipitation, temperature, and the frequency and 

duration of extremes (Fischer & Knutti, 2015). Additionally, hydrologic flows are manipulated through dams, 

diversions, and ditches that alter flow rates, flow volumes, and water transparency which negatively impact 

wild rice (Blann et al., 2009; DNR, 2008). In the floating leaf stage, wild rice is particularly sensitive to 

changes in hydrologic flows and dramatic changes in water level (Pillsbury & McGuire, 2009; DNR, 2008). 

These changes include frequency and intensity of heavy rainfall and flooding events, as well as effects from 

dams (Pillsbury & McGuire, 2009; DNR, 2008). Dams can cause channelization and increased abundance of 

sediment accumulation which can bury natural seed banks of wild rice; or in contrast, dams can eliminate 

variability in flow allowing for the encroachment of shoreline or perennial species (DNR, 2008). However, 

previous studies have suggested that wild rice thrives with brief, low magnitude, and infrequent natural 
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disturbances in hydrologic flows that prevent water lilies from outcompeting wild rice, benefiting it long term 

(Meeker & Tillison, 2018; Myrbo et al., 2017(a); Pillsbury & McGuire, 2009).  

In ecosystems with minimal anthropogenic disturbances or nearby agriculture, previous studies 

identified intraspecific competition and nutrient limitations as factors primarily influencing the abundance of 

wild rice (Pillsbury & McGuire, 2009; Lee, 2002). In altered ecosystems, surface water sulfate is added 

primarily by anthropogenic disturbances through mining and agricultural runoff and poses a serious threat to 

freshwater ecosystems and wetlands (Lamers et al., 2002). Structural equation modeling of wild rice drivers 

through a random stratified sample of lakes and mesocosm experiments, identified pore water sulfide toxicity 

and surface water sulfate as top-down drivers of wild rice abundance and persistence (Figure 2.1; Myrbo et al., 

2017(a); Pollman et al., 2017). Furthermore, wild rice habitat has been threatened by dams, urbanization or 

shoreline development (which also degrades water quality), and invasive species (Meeker & Tillison, 2018; 

Pillsbury & McGuire, 2009; DNR, 2008). 

 

Figure 2.1. Conceptual diagram of drivers and their influences on wild rice. This diagram expands upon structural 
equation modeling of the primary controls that sulfate/sulfide concentrations have on wild rice (Pollman et al., 2017). 
Literature synthesis revealed many additional systematic drivers also influencing abundance and distribution of wild rice, 
and the direction of each influence is represented by a blue arrow. Stars represent drivers considered within this study by 
either direct or indirect metrics. Note: not all potential arrows are included for the sake of clarity. (N = nitrogen, P = 
phosphorus, Fe = Iron, S2- =sulfide, SO4 

2- = sulfate)8 
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In contrast, the biological traits and mechanisms unique to wild rice may influence its distribution, or 

act as bottom-up drivers (Gripenberg & Roslin, 2007). Wild rice is found within shallow waters less than 1.5 

m in depth, and it primarily relies on wind pollination and sexual reproduction (Myrbo et al., 2017(a); Kahler 

et al., 2014). Neutral water pH is associated with higher density wild rice stands, and water transparency is 

crucial for wild rice seed germination which requires sunlight to penetrate the water (Myrbo et al., 2017(a); 

Pillsbury & McGuire, 2009; Scheffer, 1998). Wild rice is also limited by nutrient availability and winter 

freezing temperatures, and requires nearly three months of consistent freezing temperatures to break seed 

dormancy and successfully germinate at a high rate the following year (Myrbo et al., 2017(a); Kahler et al., 

2014; Lee, 2002; Kovach & Bradford, 1992).  

Although seed dispersal is also thought to be a limiting factor in the distribution or spread of wild 

rice (DNR, 2008), to our knowledge, no previous studies have explicitly examined dispersal mechanisms or 

limitations of natural wild rice in the context of its comprehensive distribution. Natural wild rice seeds are 

dispersed through mechanisms unique to cereal crops known as “shattering” (Kennard, Phillips, & Porter, 

2002) where mature seeds will shatter and disperse quickly during thunderstorms or during stronger winds 

(Kahler et al., 2014). Shattering is a trait that has been selected against when cultivating commercial wild rice 

to improve crop yields, and non-shattering varieties have been adapted (Kahler et al., 2014). However, even in 

non-shattering cultivars, a case study found that the introduction of the natural varieties of wild rice (with 

shattering traits) caused the shattering gene to rapidly proliferate throughout the cultivar over time (Kahler et 

al., 2014). This demonstrates that shattering is a trait selected for in natural wild rice stands, and leads to 

greater reproductive success within its natural environment (Vittori et al., 2019). This allows for seeds to be 

more widely dispersed by waterfowl, wind, and hydrologic flows (Delouche & Bugros, 2007) which suggests 

that waterfowl, wind, and hydrologic flows are likely key mechanisms driving dispersal. A previous study 

found that wetland vegetation species dispersing primarily through water were not capable of dispersing as far 

as species relying on wind (Soomers et al., 2012), and this may imply that wind throughout the short two-

week wild rice harvest time period may be more strongly related to dispersal, and ultimately, distributions.  
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The Framework 

To account for the complex suite of potential bottom-up and top-down factors that may influence 

species distributions, Robledo-Arnuncio et al. (2014) suggests utilizing a mosaic of modeling methods to 

identify key drivers including: 1) correlational relationship exploration of landscape level drivers and their 

variance across space, and 2) selecting the key environmental predictors based on the specific habitat niches, 

morphological traits, and ecology of a species and identifying interactions between these predictors. However, 

most of these environmental and ecological datasets utilized in this context contain inherent spatial 

autocorrelation. Methods for dealing with spatial autocorrelation have existed for many years to reduce 

impacts on parameter coefficients and inferences drawn from models (Miller, Franklin, & Aspinall, 2007; 

Dormann, 2007; Cressie, 1993). Environmental gradients, competition, and dispersal are primary sources of 

spatial autocorrelation within species distribution data, with the degree of spatial autocorrelation varying 

across spatial scales (Dormann, 2007). Spatial autocorrelation is often related to the selected response variable 

in a model, and it has been found more frequently when summarizing species data across patches on the 

landscape (Dormann, 2007). Therefore, methods to address spatial autocorrelation are important to consider 

within a modeling framework to examine drivers of a species’ spatial distribution. 

Objectives of Research 

Within this study, we investigate systematic drivers of wild rice abundance across individual lakes and 

their relative influences at varying spatial scales, utilizing predicted wild rice maps from 2018 (Chapter 1). 

Drivers considered in this study (Figure 2.1) are assessed through a variety of spatial, ecological, hydrological, 

and environmental variables that may directly or indirectly impact wild rice cover, and these variables were 

summarized at catchment, lake and HUC08 watershed scales. We develop and test a three-stage modeling 

approach: 1) assess variable correlations with wild rice cover, select variables, and investigate preliminary 

models using random forest; 2) test for and identify significant interactions between selected variables 

through multiple linear regressions; and 3) test for spatial autocorrelation and utilize the final selected set of 

variables and interactions to fit a spatial lag model to account for spatial autocorrelation. The objectives of 

this study are to test our 3-stage modeling approach for the simultaneous investigation of potential bottom-
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up and top-down drivers of wild rice, quantify the directionality of their relationships, and provide initial 

interpretations of the potential management and conservation implications of our results.  

Methods 
 
 
 
Study Area 

 Our study area consisted of nine HUC08 watersheds located in North-central Minnesota (Figure 2.2) 

within the headwaters of the larger Upper Mississippi River watershed (HUC02). These adjacent watersheds 

captured wide gradients of elevation, temperature, land cover, and biodiversity. Between 1981 and 2019, the 

mean annual precipitation across these watersheds was approximately 67.5 cm, while our study year, 2018, 

had approximately 62 cm of cumulative precipitation, which was 5.5 cm less than the mean annual (MNDR, 

n.d.). There were 590 lakes within this region that had associated bathymetric data necessary for our analyses; 

366 of these lakes contained predicted wild rice presence in 2018 and were selected as the sample lakes for 

our study. Among our selected study lakes are some that host a variety of long term conservation and 

management efforts (sentinel lakes). 
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Data Preparation 

 We employed maps of wild rice presence in 2018 at a 10 m spatial resolution (Chapter 1) as the 

primary data source depicting comprehensive abundance, distribution, and extent across the state. Wild rice 

presence from this map was isolated to nine HUC08 watersheds. As noted in Chapter 1, the predictive 

models may have over predicted wild rice in some locations that contained highly heterogeneous stands of 

emergent aquatic vegetation. To improve the confidence from the model predictions, we utilized a minimum 

mapping unit of 11 adjacent pixels as a threshold for wild rice presence to reduce potential noise or errors 

Figure 2.2. The study region is delineated by nine HUC08 watersheds and 366 sample lakes utilized in the analysis. 
Samples were restricted to lakes that had available bathymetry data as well as predicted wild rice presence in 2018. The 
watersheds reside within the larger Upper Mississippi River watershed (HUC02) which includes the major headwaters. 
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(Fournier et al., 2007). We standardized wild rice cover on each lake using the proportional values of wild rice 

cover within areas designated as suitable habitat (water depths less than 1.5 m or 4.9 ft; Price, 2012) using 

lakes with available bathymetric maps (Minnesota Department of Natural Resources, 2014). It was important 

to note that water levels and their boundaries may vary across years because the bathymetric contours and 

lake boundary features were generated from data collected more than a decade prior to the study time period. 

Considering that cumulative precipitation in 2018 was lower than the mean annual precipitation (1981-2019), 

and with the restriction of 5 ft intervals for the bathymetric maps, all lake regions with a depth of 3.05 m or 

less (10 ft) were considered as “potential” suitable habitat (Equation 1). 

 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑅𝑅𝑊𝑊𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑅𝑅𝑊𝑊𝑅𝑅𝐴𝐴 𝑚𝑚²𝐿𝐿𝐴𝐴𝐿𝐿𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 <3.05𝑚𝑚 𝑊𝑊𝐴𝐴𝑑𝑑𝑑𝑑ℎ 𝑚𝑚²

    Equation 1 

Initial evaluations of the proportional cover of wild rice revealed a heavily right-skewed distribution, 

warranting a log transformation to normalize its distribution (Figure 2.3). Log transformed wild rice cover 

served as the response variable for all subsequent modeling.  
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Figure 2.3. Distribution and normality of the proportion cover of wild rice before (top left & right) and after (bottom 
left & right) log transformation. 9 

Predictor Variables 

We utilized a suite of existing spatial datasets to assess wild rice cover as it relates to bathymetry, land 

cover, topography, and watershed characteristics. Bathymetric data was utilized to derive the average and 

maximum depth of each lake (Appendix A). These variables may help indicate how susceptible a given lake is 

to eutrophication at a degree that has significant impacts on water clarity, as well as potentially indicating how 

susceptible a lake is to dramatic temperature fluctuations, or reaching freezing temperatures long enough to 
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break seed dormancy of wild rice. The National Agricultural Statistics Service land cover dataset from 2018 

was acquired for the study region at a 30 m spatial resolution and reclassified into 11 classes (Appendix A). A 

single, condensed class represented crops, and all original developed land cover classes were included as 

potential predictors to provide information about the intensity of urbanization. Each land cover class was 

summarized by its proportion of cover, and this was done within each catchment and HUC12 watershed, as 

well as 500, 1,000, and 2,000 m buffers around each lake. Preliminary investigations demonstrated that 

relationships between land cover and wild rice abundance were strongest when land cover was summarized 

by catchment regions, which was the scale utilized to investigate land cover in all subsequent analyses. 

Topographic gradients often correspond with spatial positions of features within a watershed; 

therefore, we measured elevation within each lake (Appendix A) using a 30 m digital terrain model 

constructed from LiDAR and NED 10 m data (Minnesota Department of Transportation, 2017). Catchment, 

flowline, and lake attributes were extracted from the NHDPlus dataset version 2.1 (U.S. Geological Survey, 

2019). Variables included information about water quality (reciprocal hydrologic area load), flow rate, flow 

volume, total distance of stream paths to the top of the watershed (arbolate sum), distance to terminal 

flowlines, and length of each flowline (Appendix A). We retrieved detailed watershed health assessment 

metrics from the Watershed Health Assessment Framework (WHAF) provided by the Minnesota 

Department of Natural Resources. WHAF captures a variety of metrics summarized by HUC08 watersheds, 

and many of these metrics were also summarized at the catchment level (Watershed Health Assessment 

Framework, n.d.). Watershed health assessment scores were ranked from 0 to 100 and incorporated a large 

suite of datasets related to biology, connectivity, geomorphology, hydrology, and water quality.  

We also derived metrics to capture land surface temperature (LST) and the spatial configuration of 

wild rice lakes. LST was extracted from MODIS Terra daily global emissivity and land surface temperature 

(MOD11A1 V6) at 1 km spatial resolution using Google Earth Engine to serve as a proxy for water 

temperature. We created image composites between December 20th - February 20th in 2017 and also June 

15th - August 15th 2018 to capture the maximum summer temperature, minimum winter temperature, mean 

maximum summer temperature, and mean minimum winter temperature (Appendix A). 
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 Dispersal is an important biological mechanism that influences observed patterns of species 

abundance and distribution, particularly the capacity of hydrologic dispersal for wetland and emergent aquatic 

vegetation species (Soomers et al., 2012). To account for dispersal influences within our analyses, various 

metrics were calculated to capture patterns of clustering in wild rice distribution using all lakes with predicted 

wild rice presence (including all lakes without available bathymetry data). We calculated the euclidean distance 

of the minimum, average, and maximum distance of the nearest neighbor lake containing wild rice (out of the 

10 nearest neighbors) for each sample lake. Through initial spatial explorations of wild rice cover, it tended to 

be highly clustered which was evident through visual inspection and supported statistically (Moran’s I = 0.29, 

α < 0.05, p-value < 0.0001). A variable to capture the significance of these hot spots was created to provide 

more detailed spatial information about the dispersal mechanisms of wild rice. There were 17 lakes that 

contained over 100 acres of wild rice, and these lakes were classified as the key dispersal hot spots. The 

euclidean distance to the nearest hot spot lake was also calculated for each of the 366 lakes included in our 

final analyses. We extracted all predictor values for each sample lake to incorporate into the subsequent 

modeling workflow. 

Modeling Framework Step 1) Variable Selection 

Random forest and variable selection algorithms served as tools for preliminary investigation to 

identify the most important variables, explore correlations between variables, and determine how well the 

individual predictors described wild rice cover (Figure 2.4). We selected model variables utilizing a balance 

between algorithmic and human input (Young et al., 2020). This includes ranking variables based on their 

correlation and explanatory power, while also considering ecological significance from previous literature 

within variable reduction procedures. A total of 165 variables were distributed into four classes relating to 

land cover, dispersal, variables measured at the lake or catchment scale, and variables measured at the HUC08 

watershed scale. We ranked each class of variables using the rfUtilities package (version 2.1-5; Evans et al., 

2011) in R (version 3.6.3; R Core Team, 2020), and incorporated the top four uncorrelated variables 

(Pearson’s correlation coefficient < 0.7) from each class of predictors in the final dataset. We then ranked the 
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refined dataset consisting of 16 predictors (four variables from each of the four classes) through a final 

iteration of rfUtilities, and removed any additional variables with a Pearson’s correlation coefficient > 0.7. 

The remaining 10 predictor variables were incorporated into a random forest model to explore their relative 

predictive power (randomForest package, version 4.6-14) in R, and to incorporate them into the subsequent 

stages of the modeling framework.  

 

Figure 2.4. The three-step modeling framework utilized in this study which includes: 1) Variable Selection; 2) 
Interactions; and 3) Spatial Model. Predictors from the random forest model were incorporated into a multiple linear 
regression to test for statistically significant interactions, and the variables and selected interaction terms were utilized to 
fit a spatial lag model and account for spatial autocorrelation. 10 
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Modeling Framework Step 2) Interactions 

Our next objective was to specifically investigate the potential interactions between the predictor 

variables as well as their directional relationships with one another, to overcome some of the challenges with 

interpreting interactions within random forest models (Denisko & Hoffman, 2018). We utilized the top 

variables selected through the random forest model exploration in a multiple linear regression in R to 

investigate potential interactions between related environmental processes (Figure 2.4; Miller, Franklin, & 

Aspinall, 2007). We applied a logarithmic transformation to all variables that did not meet the appropriate 

linear assumptions of normality. Specific interactions were evaluated between related and interdependent 

environmental variables. For example, we initially tested for relationships between average lake depth and 

maximum surface temperature since larger and deeper lakes may experience smaller diurnal ranges in 

temperature (although a significant interaction did not exist). A one-way ANOVA was used to evaluate the 

inclusion of interaction terms in the multiple linear regression (interaction model) to determine statistical 

significance in model performance. Our final criteria for the inclusion of an interaction term was a clear 

ecological relationship between the two interacting variables.  

Modeling Framework step 3) Spatial Model 

 We tested the residuals from the interaction model for spatial autocorrelation using Moran’s I (Figure 

2.4). The residuals were indicative of spatial autocorrelation and had statistically significant p-values for 

Moran’s I, warranting a spatial modeling framework. Wild rice cover within suitable habitat also demonstrated 

spatial autocorrelation with a statistically significant Moran’s I (0.29, p-value < 0.0001). A spatial lag model 

was considered for the best interaction model since spatial lag models are known to best capture dispersal, 

disturbance, or other fine scale spatial dependencies between environmental variables (Miller, Franklin, & 

Aspinall, 2007; Lichstein et al., 2002). We compared the interaction and spatial lag models based on their 

Akaike’s Criterion Score (AIC) score, where the model with the lowest AIC indicated the best fit. All spatial 

modeling was completed using the spdep (version 1.1-3; Bivand & Wong, 2018) and spatialreg (version 1.1-5; 

Bivand, Hauke, & Kossowski, 2013) packages in R. 
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Results 
 
 
 
Random Forest Variable Selection 

Our preliminary investigation within the first step of our 3-step modeling framework revealed 10 

important environmental variables which explained approximately 36% of the variance within the exploratory 

random forest model (Figure 2.5). The most important variable was the distance of a given wild rice lake to 

the nearest wild rice hot spot lake, and this variable alone explained more than 20% of the variance within the 

model (Table 2.1; Figure 2.5). The water quality local pollution index measured within catchments also 

contributed substantial explanatory power (Figure 2.5). Geomorphological susceptibility to pollution, average 

depth of lakes, and flow variability contributed nearly even degrees of explanatory power. These variables 

were also closely followed by the maximum summer surface temperature, the minimum nearest neighboring 

wild rice lake, and the percent cover of wetlands in the catchment. The arbolate sum contributed minimally to 

the model’s explanatory power, and the reciprocal area hydraulic load contributed the least to the model.  

 

Figure 2.5. Random forest model predicted and observed values (left) with an RMSE of 1.82 and R² of 0.359. Ranked 

variable importance as given by the increase in mean square error (right). 11 
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Table 2.1. The final variables selected through the first step within the three-step modeling framework (Figure 2.4). 7 

Variable 
Abbreviation 

Variable Name Definition Scale/Units 

dist2hs 
Distance to Hot 

Spot 
The euclidean distance of a lake to a wild rice hot spot lake, one of 17 
lakes in the study region containing 100+ acres of wild rice in 2018. 

Lakes, euclidean 
distance in m 

wips 
Water Quality Local 

Pollution Index 

Local known pollution sources (superfund sites, potential 
contaminants, feedlots, open mine pits, and wastewater discharge 
permits). Index values span 0 to 100, high values represent healthy 
regions without known pollution sources. Calculated based on the 
watershed mean value (Watershed Health Assessment Framework, n.d.) 
https://www.dnr.state.mn.us/whaf/about/scores/water_quality/point.html 

Catchment mean 
score; index 

avg_dep Average Depth Absolute value of the average depth of a lake  Lake, ft 

hmfvmdx 
Flow Variability 

Index 

Hydrologic flow variability referencing the annual duration and 
magnitude of extremes. Lower values indicate more severe alteration to 
flow or dramatic variability of extremes (Watershed Health Assessment 
Framework, n.d.). 
https://www.dnr.state.mn.us/whaf/about/scores/hydrology/flowvariability.html  

HUC08 score 

gipsn 
Geomorphological 
Pollution Sensitivity 

Index 

Groundwater susceptibility to pollution based on geomorphic setting 
and the nearest surface materials. It is calculated based on mean 
watershed values. Lower values indicate greater susceptibility. 
(Watershed Health Assessment Framework, n.d.) 
https://www.dnr.state.mn.us/whaf/about/scores/geomorphology/g_i_psnsm.html 

Catchment mean 
score; index 

nWR 
Minimum Nearest 

Neighbor 
The minimum distance of the nearest wild rice lake  

Lakes, euclidean 
distance in m 

wtlnds 
Percent Cover of 

Wetlands 
The percent cover of wetlands within the catchment region (wetlands 
area / catchment area) 

Catchment,  
% cover 

maxLST 
Maximum Summer 

Temperature 
The maximum summer land surface temperature between June 15th 
and August 15th of 2018  

Lakes, median ºC  

arb Arbolate Sum 
Cumulative distance of all upstream paths (U.S. Geological Survey, 
2019). 

Distance, m 

Rarea 
Reciprocal Area 
Hydraulic Load 

“Hydraulic metric of time required to displace one unit volume of 
water”, (see Schmadel et al., 2018). 

Catchment mean 
values; ft/day 

Multiple Linear Regression & Interactions 

 All the important variables identified through the random forest exploration were incorporated into a 

multiple linear interaction model. A significant interaction was identified between the water quality local 

pollution index and the geomorphological pollution sensitivity index. There was also a significant interaction 

between the reciprocal area hydraulic load (Schmadel et al., 2018) and the arbolate sum (U.S. Geological 

Survey, 2019). The linear interaction model had an adjusted R² of 0.362, a significant p-value (< 0.0001), and 

all variables were statistically significant as well (Table 2.2). 
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Table 2.2. Estimated parameters for all variables included in the interaction model. Note that only covariates that did 
not meet the assumptions of a linear regression were log transformed, and parameter estimates were not back log 
transformed to preserve the directional relationships of the main effects with wild rice cover. Red indicates an estimate 
that is not log transformed and green indicates an estimate that has been log transformed. (p-value < 0.05 = * | p-value 
<0.01 = ** | p-value < 0.001 = *** | p-value <0.0001 = **** ) 

Coefficients Estimate P value  Log Transform 

Intercept -1.79 **** n/a 

Distance to Hotspot -2.703 **** False 

Maximum Surface Temperature 0.3278 **** False 

Average Depth -0.2146 * True 

Percent Cover of Wetlands 1.591 * False 

Reciprocal Area Hydraulic Load 0.2007 ** True 

Arbolate Sum 0.1812 *** True 

Water Quality Local Pollution Index  0.06928 **** False 

Geomorphological Pollution Sensitivity Index 0.09366 *** False 

Flow Variability Index 0.16 ** True 

Minimum Nearest Neighbor -0.0005463 **** False 

Arbolate Sum * Reciprocal Area Hydraulic Load -0.1032 ***** True 

Water Quality Local Pollution Index * 
Geomorphological Pollution Sensitivity Index 

-0.001132 *** False 

 

Spatial Lag Model 

We found statistically significant spatial autocorrelation within the residuals of the interaction model 

using Moran’s I (0.106, p-value =0.009), and therefore continued with fitting a spatial lag model using the 

same variables and interaction terms. The spatial lag model had an AIC score of 1,266.4 and improved upon 

the interaction model which had an AIC score of 1,272.7. It adequately addressed spatial autocorrelation 

within the residuals from the interaction model (Figure 2.6; Figure 2.7), and the residuals of the spatial lag 

model had a Moran’s I value of 0.006 with a statistically insignificant p-value (0.391). The spatial 

autoregressive parameter for the model was 0.21 and the likelihood ratio of this model was significant (8.3, p-

value = 0.004). The distance to the nearest hot spot remained the strongest predictor within this model, 

however, the spatial lag model revealed a lower parameter estimate than the interaction model, and this 

occurred with many of the other variables as well (Table 2.2; Table 2.3). This suggests that spatial 

autocorrelation within the interaction model had an effect on the coefficient estimates.  
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Figure 2.6. Plotted residuals from the spatial lag model. The lack of trend within the residuals exemplifies the mitigation 
of spatial autocorrelation through the fitting of a spatial lag model.12 

Figure 2.7. Map of residuals from the spatial lag model, where the lack of spatial pattern in residuals further affirms that 
spatial autocorrelation was adequately addressed by fitting a spatial lag model.  
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Table 2.3. Estimated parameters for all variables included in the spatial lag model. Red indicates an estimate that is not 
log transformed and green indicates an estimate that has been log transformed. (p-value < 0.05 = * | p-value <0.01 = ** 
| p-value < 0.001 = *** | p-value <0.0001 = **** ). 8 

Coefficients Estimate p-value  Log Transform 

Intercept -15.881 **** n/a 

Distance to Hotspot -2.1271 **** False 

Maximum Surface Temperature 0.30097 *** False 

Average Depth -0.20753 ** True 

Percent Cover of Wetlands 1.8075 ** False 

Reciprocal Area Hydraulic Load 0.20477 *** True 

Arbolate Sum 0.185 *** True 

Water Quality Local Pollution Index 0.061072 **** False 

Geomorphological Pollution Sensitivity Index 0.08087 ** False 

Flow Variability Index 0.13753 * True 

Minimum Nearest Neighbor -0.00052123 *** False 

Arbolate Sum * Reciprocal Area Hydraulic Load -0.10371 ***** True 

Water Quality Local Pollution Index * 
Geomorphological Pollution Sensitivity Index 

-0.00097651 *** False 

 

Within the spatial lag model (Table 2.3), the distance to the nearest hot spot exhibited a negative 

relationship with wild rice cover, demonstrating that wild rice cover decreases with increasing distance to the 

nearest hotspot, and the minimum nearest neighboring wild rice lake also exhibited this relationship. This 

relationship was expected, since wild rice cover was highly clustered and had a significant Moran’s I value. 

Increased wild rice cover was associated with higher cover of wetlands in the surrounding landscape and 

more shallow (average) lake depths, and also exhibited a slightly positive relationship with higher maximum 

surface temperatures. Wild rice was negatively related to the interaction between the water quality local 

pollution and geomorphological sensitivity indices, as well as the interaction between reciprocal area hydraulic 

load and arbolate sum.  

 

Discussion 
 
 
 

Through the development of our three-step modeling approach, we identified directional 

relationships of 10 significant systemic drivers and two interaction terms in relation to wild rice cover and 
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adequately addressed spatial autocorrelation within our data. The significant drivers generally included lake-

specific metrics, characteristics of catchments, characteristics of the HUC08 watersheds, and regional patterns 

of surface temperature. Dependence between interrelated processes was better captured when key 

interactions were established, and when metrics represented a multitude of spatial scales, unique to the scale 

at which a specific process occurs.  

The best spatial lag model was achieved through a balance of algorithmic predictor selection and 

moderation via human input with the lowest AIC value of 1,266.4. The spatial lag model selected through 

algorithmic input alone (using the top ranking 10 uncorrelated variables) yielded a higher AIC value (1292.5) 

and worse metrics throughout all exploratory models (Appendix B). These results support organizing variable 

categories using human input based on ecological knowledge of the system during the algorithmic variable 

selection process (first stage of the modeling framework) to identify the most important drivers (Young et al., 

2020) and create a better fitting model. The relationships we explored were based on the proportion of wild 

rice in suitable habitat, and suitable habitat may have been overestimated by using bathymetric contour lines 

<10 ft depth (section 2.2) to compensate for uncertainty within hydrologic and bathymetric boundaries. It 

should be considered that the minimum mapping unit of 11 adjacent pixels predicted as wild rice was utilized 

to reduce noise from remotely sensed predictions of presence. This may have misrepresented small or 

disconnected patches of wild rice, and the significant variables identified may be more strongly correlated 

with larger, connected patches of wild rice (Fournier et al., 2007). 

The key drivers identified within our analyses were generally consistent with previous literature 

describing environmental influences on wild rice. The distance to the nearest wild rice hotspot was a 

significant variable that demonstrated wild rice lakes followed patterns of clustering as we had expected 

(based on the significant Moran’s I value). Previous studies have not considered dispersal of wild rice alone, 

but dispersal was suggested to have an influence on its distribution (DNR, 2008). The strong correlation 

between wild rice cover and the distance of lakes to the nearest hotspot location may support this 

observation, and is further supported by the significance of the distance to the nearest neighboring lake 

containing wild rice. Dispersal is one of the most important mechanisms driving aquatic macrophyte 
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assemblages and the results may suggest that dispersal limitations may serve as a top down control on the 

abundance and distribution of wild rice, which would align with results of similar studies conducted for other 

vegetation species (Robledo-Arnuncio et al., 2014; Mikulyuk et al., 2011; Flinn et al., 2010). The distance to 

the nearest hot spot metric may also reflect a lake’s degree of isolation, population fitness, or cross wind 

pollination. For instance, Lu, Waller, & David (2005) found that higher connectivity between wild rice 

populations may improve their resilience. The importance of connectivity between wild rice populations 

supports cooperative management efforts at a broader scale than monitoring individual lakes; thus, land 

managers should consider the degree of connectivity between lakes and their spatial configuration on the 

landscape during conservation planning for the species. It may be more appropriate to view populations as 

connected habitat regions, in contrast to the more widely accepted notion that wild rice lakes are simply 

independent and self-contained populations. 

Previous studies have recognized that wild rice seeds require multiple consecutive months of freezing 

temperatures to germinate the following year (Myrbo et al., 2017(a); Kahler et al., 2014; Lee, 2002; Kovach & 

Bradford, 1992). We found that the maximum summer surface temperature was positively correlated with 

wild rice cover within our study, which may suggest that wild rice is tolerant of warmer summer temperatures 

within shallow lakes, and that these shallower lakes would be more likely to reach an appropriate duration of 

winter freezing temperatures that break seed dormancy. However, MODIS LST had a coarser spatial 

resolution (1 km) than many of the other important drivers we identified, and land surface temperature was 

not examined on lakes completely void of wild rice cover; thus these findings should be interpreted with 

caution as further investigation is needed to untangle the full relationship between wild rice and surface 

temperature.  

Within our study, higher wild rice cover was negatively associated with average lake depth. Similarly, 

Pillsbury & McGuire (2009) found that lower density wild rice stands tended to occur in deeper water and 

considered that deeper sites may be prone to more disturbance or additional stress; Meeker (2000) drew 

similar inferences attributing deeper water with increased disturbance. While additional exploration is needed, 

another possible explanation is that shallow lakes with a lower average depth may provide larger patches of 
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suitable habitat that have greater connectivity and more even bathymetric slopes which may allow for greater 

rates of cross pollination between stands. Deeper lakes with higher average depths may contain steeper 

bathymetric gradients, smaller patches of suitable habitat, and lower abundance of wild rice; these conditions 

may be less favorable for wild rice because if the water level rises it may quickly become unsuitable habitat, 

eliminating smaller, disconnected, and less stable populations. Future research should consider investigating 

connectivity between patches of suitable habitat, abundance, and connectivity between patches of wild rice to 

assess stability of populations. Since wild rice is found to prefer lower average lake depths, it is imperative to 

manage these lakes more carefully for water clarity and quality due to the sensitivity of shallow lakes (Gulati et 

al., 2007). 

Wild rice is favored by brief, low magnitude, and infrequent natural disturbances in hydrologic flows 

which allow it to outcompete waterlilies (Meeker & Tillison, 2018; Myrbo et al., 2017(a); Pillsbury & McGuire, 

2009). However, high magnitude, frequent, and persistent natural disturbances in hydrologic flows can 

introduce sediment loads that interfere with wild rice seed germination. Alternatively, disturbances during the 

vulnerable floating leaf stage can negatively impact wild rice (May to mid June; Myrbo et al., 2017(a); DNR, 

2008). Anthropogenic manipulation of hydrologic systems alters flow rates and leads to sporadic, poorly 

timed, extreme variation in flows, and larger sediment loads that tend to negatively impact wild rice (DNR, 

2008). Therefore, we expected that wild rice would be found nearest to headwaters based on cumulative 

effects of sediment and nutrient loads downstream, and thus wild rice cover would exhibit a negative 

relationship with arbolate sum. We also hypothesized that wild rice cover would follow a Gaussian 

distribution in response to reciprocal area hydraulic load; implying that wild rice would have a positive 

relationship with reciprocal area hydraulic load up until a certain flow rate threshold, and would have a 

negative relationship with reciprocal area hydraulic load when water is transferred faster than a certain rate. 

Less extreme flow variability, or unaltered flows, were represented by higher values in the flow variability 

index, and we thought this index would be positively associated with wild rice cover. In support of our initial 

expectations, the flow variability index was positively correlated with wild rice cover since dams, ditches, and 

other manipulations of hydrologic flows negatively impact wild rice. Additionally, the interaction between 
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daily water displacement (reciprocal area hydraulic load) and cumulative stream path distance from 

headwaters (arbolate sum) had a statistically significant negative effect on wild rice cover and supported our 

initial expectations. The significant negative interaction effect may demonstrate that the true relationship with 

wild rice cover stem from the interdependence between these two related factors. It is possible that the 

accumulation of negative impacts downstream are not captured by the individual metrics. These metrics all 

demonstrate that wild rice is negatively impacted by altered hydrologic flows, and the impacts have greater 

negative effects downstream. This may be an important relationship to consider in the larger scheme of 

hydrologic management. A connected and holistic management plan across the landscape may optimize 

efforts to preserve flow rates that benefit wild rice, with consideration of its distribution and habitat 

preferences.  

We found two significant interaction terms (water quality local pollution and the geomorphologic 

pollution sensitivity indices; arbolate sum and reciprocal area hydraulic load) that may also suggest that there 

is not only one specific pollution type or topographical predisposition that influences the presence and 

abundance of wild rice on a given lake. This indicates that wild rice is more likely dependent on multiple 

interrelated factors, and their specific degrees of negative or positive influence corresponds to more than a 

single hydrologic or geomorphic metric (Myrbo et al., 2017(a); DNR, 2008). It further reinforces that it is 

imperative to address the intimate relationships between anthropogenic influences and the innate complexity 

of environmental drivers from a holistic perspective that considers the interactions between landscape drivers 

as well as the relative importance of space and scale. 

Previous studies have recognized that dispersal plays a critical role predicting the adaptation of 

vegetation to changing climate (Robledo-Arnuncio et al., 2014; Mikulyuk et al., 2011). Considering that 

dispersal or population connectivity had the strongest relationship with wild rice cover, it may be worth 

further investigating these traits further to understand how wild rice may be impacted by changing climate. 

Wild rice is constrained by its shattering traits and primarily dispersed by waterfowl, wind (with variable 

direction), or hydrologic flows generally flowing toward the south; these mechanisms may present challenges 

for populations to migrate northward and remain with suitable climate envelopes (Loarie et al., 2009). Wild 
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rice positioned at the headwaters may also face challenges migrating into Northbound watersheds due to less 

suitable water quality at the terminal ends of the watershed. Essentially, it is unclear how wind and waterfowl 

will disperse wild rice, but within the study region, hydrologic flows will primarily distribute wild rice south 

(and slightly east) of the current hotspots, presenting potential migration barriers. Future studies should 

explore the relative influences of wind and waterfowl on wild rice dispersal and the implications of 

adaptability or dispersal in response to changing climates. 

Conclusion 

This study employed a three-step modeling framework to select the most influential drivers, identify 

interactions between drivers, and account for spatial patterns in relation to wild rice cover across lakes in 

Minnesota. We found that wild rice abundance and distribution is primarily a result of fine-scale systematic 

drivers like dispersal or population connectivity, and coarse-scale drivers of temperature, flow regimes, and 

other anthropogenic influences play significant, but less important roles. It may be essential for landscape 

managers to consider wild rice lakes from a matrix perspective of connected habitats and populations in 

contrast to managing and monitoring individual lakes as if they are independent of one another. The 

mechanisms and patterns of dispersal may be crucial for predicting future distributions of wild rice in 

response to changes in climate or identifying suitable habitat suitable under future conditions. Factors 

influencing dispersal limitations should be investigated in greater detail to identify potential mechanisms or 

patterns that were not captured by the datasets utilized in this study. This may include the effects of wind 

pollination, size of suitable habitat patches and specifically, the connectivity between patches in relation to 

abundance patterns through time, as larger populations tend to exhibit greater trait diversity and resilience 

(Lu, Waller, & David, 2005). Furthermore, future studies should consider expanding these analyses to broader 

regional extents to examine the influences of systemic drivers to determine the scales at which each is most 

relevant, or perhaps if patterns of additional regional top-down drivers were not identified at the spatial 

extent we utilized. Multiyear studies analyzing the impacts of changes in annual precipitation, as well as 
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surface temperature extremes and durations may reveal how wild rice will respond to changing climate to 

establish proactive conservation measures. In addition to the known relationship between wild rice and pore 

water sulfide/surface water sulfate, subsequent investigations have the potential to more explicitly quantify 

the influence of other primary controls on wild rice abundance relevant to conservation and restoration 

planning. 
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APPENDICES 

Appendix 1A. The number of training samples generated for each EAV class from 2017 and 2018, and the 
total number of EAV training samples randomly selected for training and validation of the species model.  

Class 
2017 Samples 

(≥60 m2) 
2018 Samples 

(≥ 60 m2) 
Total Number of 

Samples (≥ 60 m2) 
# of Training 

Samples 
# of Validation 

Samples 

Cattails 22,504 16,845 39,349 4,247 1,753 

Other EAV 8,468 6,386 14,854 4,241 1,759 

Rushes 11,479 50,191 61,670 4,245 1,755 

Water lilies 21,894 32,283 54,117 4,245 1,755 

Wild rice 2,982 6,555 9,537 4,241 1,759 

Total 67,327 112,200 179,527 21,219 8,781 

Appendix 1B. Multispectral and SAR indices derived from Sentinel-1 SAR and Sentinel-2 MSI satellite 
imagery and associated calculations.  

Spectral Predictor Sensor Spatial Resolution Calculation 

NDVI - Normalized Difference 
Vegetation Index 

Sentinel-2 10 meters (NIR - Red) / (NIR + Red) 

Red Edge #1 NDVI - Normalized 
Difference Vegetation Index 

Sentinel-2 20 meters (NIR -B5) / (NIR + B5) 

Red Edge #2 NDVI - Normalized 
Difference Vegetation Index 

Sentinel-2 20 meters (NIR -B6) / (NIR + B6) 

Red Edge #3 NDVI - Normalized 
Difference Vegetation Index 

Sentinel-2 20 meters (NIR -B7) / (NIR + B7) 

Red Edge #4 NDVI - Normalized 
Difference Vegetation Index 

Sentinel-2 20 meters (NIR -B8A) / (NIR + B8A) 

NDWI - Normalized Difference 
Water Index 

Sentinel-2 20 meters (Green - SWIR 1) / (Green + SWIR 1) 

MNDWI - Modified Normalized 
Difference Water Index 

Sentinel-2 20 meters (Green - NIR) / (Green + NIR) 

B1 Coastal T1 - T2 Sentinel-2 60 meters B1 median T1 - B1 median T2 

B1 Coastal T1 - T3 Sentinel-2 60 meters B1 median T1 - B1 median T3 

B1 Coastal T1 - T4 Sentinel-2 60 meters B1 median T1 - B1 median T4 

B1 Coastal T2 - T3 Sentinel-2 60 meters B1 median T2 - B1 median T3 

B1 Coastal T2 - T4 Sentinel-2 60 meters B1 median T2 - B1 median T4 
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B1 Coastal T3 - T4 Sentinel-2 60 meters B1 median T3 - B1 median T4 

B2 Blue T1 - T2 Sentinel-2 10 meters B2 median T1 - B2 median T2 

B2 Blue T1 - T3 Sentinel-2 10 meters B2 median T1 - B2 median T3 

B2 Blue T1 - T4 Sentinel-2 10 meters B2 median T1 - B2 median T4 

B2 Blue T2 - T3 Sentinel-2 10 meters B2 median T2 - B2 median T3 

B2 Blue T2 - T4 Sentinel-2 10 meters B2 median T2 - B2 median T4 

B2 Blue T3 - T4 Sentinel-2 10 meters B2 median T3 - B2 median T4 

B9 Water Vapor T1 - T2 Sentinel-2 60 meters B9 median T1 - B9 median T2 

B9 Water Vapor T1 - T3 Sentinel-2 60 meters B9 median T1 - B9 median T3 

B9 Water Vapor T1 - T4 Sentinel-2 60 meters B9 median T1 - B9 median T4 

B9 Water Vapor T2 - T3 Sentinel-2 60 meters B9 median T2 - B9 median T3 

B9 Water Vapor T2 - T4 Sentinel-2 60 meters B9 median T2 - B9 median T4 

B9 Water Vapor T3 - T4 Sentinel-2 60 meters B9 median T3 - B9 median T4 

VV median Sentinel-1 10 meters median 

VH median Sentinel-1 10 meters median 

VV range T1 - T2 Sentinel-1 10 meters VV median T1 - VV median T2 

VV range T1 - T3 Sentinel-1 10 meters VV median T1 - VV median T3 

VV range T1 - T4 Sentinel-1 10 meters VV median T1 - VV median T4 

VV range T2 - T3 Sentinel-1 10 meters VV median T2 - VV median T3 

VV range T2 - T4 Sentinel-1 10 meters VV median T2 - VV median T4 

VV range T3 - T4 Sentinel-1 10 meters VV median T3 - VV median T4 

VH range T1 - T2 Sentinel-1 10 meters VH median T1 - VH median T2 

VH range T1 - T3 Sentinel-1 10 meters VH median T1 - VH median T3 

VH range T1 - T4 Sentinel-1 10 meters VH median T1 - VH median T4 

VH range T2 - T3 Sentinel-1 10 meters VH median T2 - VH median T3 

VH range T2 - T4 Sentinel-1 10 meters VH median T2 - VH median T4 

VH range T3 - T4 Sentinel-1 10 meters VH median T3 - VH median T4 
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Appendix 1C. The distribution of predictor values of each class of EAV for VH median (top row), VV 
median (middle row), and NDVI (bottom row) at T1 (left column), T2 (middle column), and T3 (right 
column). (Brown = cattails | purple = other emergent; pink = other floating | red = rushes | yellow = water 
lilies | green = wild rice). 
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Appendix 1D. The top predictors (T3 only) utilized for the water model ranked by their mean decrease 
accuracy. 

Importance Rank Mean Decrease Accuracy Predictor T1 T2 T3 T4 

1 602.285 VV median X 

2 246.197 NDVI X 

3 166.623 Blue X 

4 130.510 NDVI RE #4 X 

5 119.027 Water Vapor X 

Appendix 2A. All potential predictor variables considered for describing the proportion of cover of wild rice 
cover within suitable habitat on a given lake in 2018 

Predictor Original Data Source Description Scale 

Average Depth Bathymetry Average lake depth Lake 

Maximum Depth Bathymetry Maximum lake depth Lake 

Number of 
Bathymetry Lines 

Bathymetry The total number of bathymetry lines to highlight the 
variance in lake depth. 

Lake 

Number of Flowlines Bathymetry The number flowline points entering a lake to highlight 
the potential number of pollution sources, variation or 
magnitude of annual flow rates, etc. 

Lake 

Minimum LST MODIS Terra 1 km 
emissivity & LST 

The minimum winter land surface temperature. Lake 

Maximum LST MODIS Terra 1 km 
emissivity & LST 

The maximum winter land surface temperature. Lake 

Mean Minimum LST MODIS Terra 1 km 
emissivity & LST 

The mean minimum winter land surface temperature. Lake 

Mean Maximum LST MODIS Terra 1 km 
emissivity & LST 

The mean maximum winter land surface temperature. Lake 

Mean Elevation Digital Terrain Model - Pits 
Removed 30 m 

Mean elevation of the lake Lake 

Water (% cover) National Agricultural 
Statistics Service (NASS) 30m 

Area / catchment area catchment 

Fallow Fields (% 
cover) 

National Agricultural 
Statistics Service (NASS) 30m 

Area / catchment area catchment 

Crops (% cover) National Agricultural 
Statistics Service (NASS) 30m 

Area / catchment area catchment 

Barren (% cover) National Agricultural 
Statistics Service (NASS) 30m 

Area / catchment area catchment 

Open Developed (% 
cover) 

National Agricultural 
Statistics Service (NASS) 30m 

Area / catchment area catchment 
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Low Intensity 
Developed (% cover) 

National Agricultural 
Statistics Service (NASS) 30m 

Area / catchment area catchment 

Medium Intensity 
Developed (% cover) 

National Agricultural 
Statistics Service (NASS) 30m 

Area / catchment area catchment 

High Intensity 
Developed (% cover) 

National Agricultural 
Statistics Service (NASS) 30m 

Area / catchment area catchment 

Grassland/Pasture (% 
cover) 

National Agricultural 
Statistics Service (NASS) 30m 

Area / catchment area catchment 

Shrubland (% cover) National Agricultural 
Statistics Service (NASS) 30m 

Area / catchment area catchment 

Wetlands (% cover) National Agricultural 
Statistics Service (NASS) 30m 

Area / catchment area catchment 

Forest (% cover) National Agricultural 
Statistics Service (NASS) 30m 

Area / catchment area catchment 

Majority Land Cover 
Type 

National Agricultural 
Statistics Service (NASS) 30m 

The land cover class making up the largest area from 
2018. 

HUC12 

Perennial Cover 
Index 

Watershed Health 
Assessment Framework 

Score for perennial vegetation cover in 2001, 2006, and 
2011, ranked 0 to 100 

catchment, 
HUC08 

Impervious Surface 
Cover Index 

Watershed Health 
Assessment Framework 

Score for impervious surface cover in 2001, 2006, and 
2011, ranked 0 to 100 

catchment, 
HUC08 

Hydrologic Storage 
Loss Indices 

Watershed Health 
Assessment Framework 

Ratio of the area of unaltered water/streams to the area of 
altered water/streams; permitted volume of water 
withdrawal to available runoff/surface water; wetland loss; 
ratio of average altered water area to wetland loss index 
value. All indices ranked 0 to 100. 

catchment, 
HUC08 

Soil Erosion 
Susceptibility Index 

Watershed Health 
Assessment Framework 

Sediment erosion from environmental processes based on 
upland areas, channel sediment, and stream banks. 

catchment, 
HUC08 

Geomorphological 
Pollution Sensitivity 
Index 

Watershed Health 
Assessment Framework 

Groundwater susceptibility to pollution based on 
geomorphic setting and the nearest surface materials. It is 
calculated based on mean watershed values. Lower values 
indicate greater susceptibility. 

catchment, 
HUC08 

Terrestrial Habitat 
Quality Index 

Watershed Health 
Assessment Framework 

The biological integrity and biodiversity of surrounding 
terrestrial species (avian, vegetation, etc.) as well as habitat 
size and shape. 

catchment, 
HUC08 

Aquatic Species 
Quality Index 

Watershed Health 
Assessment Framework 

The biodiversity and total number of aquatic species (fish, 
macroinvertebrates, mussels, etc.) 

catchment, 
HUC08 

Riparian Connectivity 
Index 

Watershed Health 
Assessment Framework 

The connectivity, size, and integrity of riparian habitats, 
corridor sizes and area of undeveloped land. 

catchment, 
HUC08 

Aquatic Connectivity 
Index 

Watershed Health 
Assessment Framework 

The connectivity of aquatic habitats, which are negatively 
impacted by dams, culverts, and bridges which alter 
sediment inputs and change hydrologic flows. 

catchment, 
HUC08 

Water Quality Local 
Pollution Sources 
Index 

Watershed Health 
Assessment Framework 

Local known pollution sources (superfund sites, potential 
contaminants, feedlots, open mine pits, and wastewater 
discharge permits). Index values span 0 to 100, high values 
represent healthy regions without known pollution 
sources. Calculated based on the watershed mean value.  

catchment, 
HUC08 

Hydrologic Flow 
Variability Index 

Watershed Health 
Assessment Framework 

There were 5 indexes within this category, each measuring 
one of the following: magnitude by month, change 

HUC08 
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rate/frequency, magnitude and duration of annual 
extremes, timing of annual extremes, and the frequency 
and duration of high and low pulses. All indices ranked 0 
to 100. 

Climate Water 
Balance Index 

Watershed Health 
Assessment Framework 

Geomorphological index based on precipitation and 
evapotranspiration means over 30 years. Index ranked 0 to 
100. 

HUC08 

Distance to 
Headwaters 

Near Analysis; ArcGIS Euclidean distance to Itasca Lake, the headwaters. Full ROI 

Direction to 
Headwaters 

Near Analysis; ArcGIS Direction to Itasca Lake, the headwaters. Full ROI 

Distance to Hot Spot Near Analysis; ArcGIS Euclidean distance to the nearest of 17 wild rice hot spot 
lakes with 100+ acres of predicted wild rice in 2018 

Full ROI 

Direction to Hot Spot Near Analysis; ArcGIS Direction to the nearest of 17 wild rice hot spot lakes with 
100+ acres of predicted wild rice in 2018 

Full ROI 

Minimum Nearest 
Neighbor 

Near Analysis; ArcGIS The minimum euclidean distance of the nearest wild rice 
neighboring lake (out of the 10 nearest neighbors). 

Full ROI 

Average Nearest 
Neighbor 

Near Analysis; ArcGIS The average euclidean distance of the nearest wild rice 
neighboring lake (out of the 10 nearest neighbors). 

Full ROI 

Maximum Nearest 
Neighbor 

Near Analysis; ArcGIS The maximum euclidean distance of the nearest wild rice 
neighboring lake (out of the 10 nearest neighbors). 

Full ROI 

Connected Presence 
Lakes 

Select by Location; ArcGIS The number of lakes containing wild rice presence that are 
connected by immediate flowlines. 

Full ROI 

Reciprocal Area 
Hydraulic Load 

NHDPlus “Hydraulic metric of time required to displace one unit 
volume of water”, (see Schmadel et al., 2018). 

Lake 

Arbolate Sum NHDPlus Cumulative distance of all upstream paths (U.S. 
Geological Survey, 2019). 

Full ROI 

Stream Order NHDPlus Strahler stream order Full ROI 

Path Length NHDPlus Distance to terminal flowline along the main path Full ROI 

Appendix 2B. Comparison between the top models from all three steps of the modeling framework using an 
iterative process in rfUtilities with human input (middle column) and the top models from the three-step 
modeling framework relying solely on algorithmic variable selection (right column). 

Statistical Metric 
Model generated via human input and 
algorithmic selection of predictors 

Algorithmic selection of predictors 

Random Forest R² = 0.359    RMSE = 1.82 R² = 0.332    RMSE = 1.90 

Linear Interaction Model Adjusted R² = 0.362    AIC =1272.7 Adjusted R² = 0.31    AIC = 1303 

Spatial Lag Model AIC = 1266.4 AIC = 1292.5 
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