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Problem and Motivation

Proteins are large, complex molecules which perform many important cellular func-
tions. These functions typically involve proteins binding together to form complexes.
Prediction of the interface between two bound proteins is an important research problem
with applications in genetic diseases and pharmacological research.

Figure: Two proteins in their bound formation (PDB ID 4M76).

We treat interface prediction as a binary classification problem that considers whether
or not a pair of amino acid residues from two proteins are part of the interface [3].

Figure: Protein binding, dark red and blue residues are part of the interface (positive class).

Proteins as Graphs

We model proteins as graphs, where nodes represent residues and edges represent rela-
tionships between residues. Features on the nodes and edges encode protein sequence
and structural information.

Figure: Graph representation of a local neighborhood of amino acid residues within a protein.

Learning Local Features from Graphs

Traditional Convolutional neural networks apply filters to receptive fields and generate
new representations for each pixel. For graphs, node representations can be generated
by applying convolutional filters to all nodes in a local receptive field.

Figure: Convolution on a grid vs a graph.

However, whereas pixels in two grid-based receptive fields can be brought into corre-
spondence, graph-based receptive fields have no obvious correspondence.

Figure: Receptive fields in a grid and graph context.

We can either impose an ordering on neighbors to give unique weights to each, or avoid
ordering neighbors and assign the same weights to each:
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Figure: Assigning weights to graph receptive fields by either ordering (left) or by treating all
neighbors identically.

We examine both unordered and ordered approaches, and also apply filters to edges.
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Data

Methods were evaluated using complexes from the Docking Benchmark Dataset[5].

Data Partition Complexes Positive examples Negative examples
Train 140 12,866 (9.1%) 128,660 (90.9%)
Validation 35 3,138 (0.2%) 1,874,322 (99.8%)
Test 55 4,871 (0.1%) 4,953,446 (99.9%)

Table: Training, validation, and testing data.

Pairwise Classification and Network Architecture

Examples are composed of pairs of residues from two proteins, i.e. we classify pairs of
nodes from two separate graphs.
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Figure: Pairwise network architecture.

Our graph convolutional layers can be stacked to learn hierarchical representations. Fea-
tures are then combined to form the representation of pairs of residues, which is passed
through a standard dense layer before classification.

Results

Method Convolutional Layers
1 2 3 4

No Convolution 0.812 (0.007) 0.810 (0.006) 0.808 (0.006) 0.796 (0.006)
Diffusion (DCNN) (2 hops) [1] 0.790 (0.014) – – –
Diffusion (DCNN) (5 hops) [1]) 0.828 (0.018) – – –
Single Weight Matrix (MFN [2]) 0.865 (0.007) 0.871 (0.013) 0.873 (0.017) 0.869 (0.017)
Node Average (Eq (1)) 0.864 (0.007) 0.882 (0.007) 0.891 (0.005) 0.889 (0.005)
Node and Edge Average (Eq (2)) 0.876 (0.005) 0.898 (0.005) 0.895 (0.006) 0.889 (0.007)
DTNN [4] 0.867 (0.007) 0.880 (0.007) 0.882 (0.008) 0.873 (0.012)
Order Dependent (Eq (3)) 0.854 (0.004) 0.873 (0.005) 0.891 (0.004) 0.889 (0.008)

Table: Median AUC across all complexes in the test set. Results shown are the average and
standard deviation over ten runs. The previous state-of-the-art SVM method, PAIRPred [3],
achieves a median AUC of 0.863.

Figure: Top Left: 3HI6, with true interface in yellow. Top Right: network output for each residue,
maxed over all possible neighbors, with brighter colors indicating higher scores. Bottom:
Activations for two convolution filters.
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