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ABSTRACT OF DISSERTATION 

CHARACTERIZATION OF THE SCALE DEPENDENCE AND SCALE 

INVARIANCE OF THE SPATIAL ORGANIZATION OF SNOW DEPTH FIELDS, 

AND THE CORRESPONDING TOPOGRAPHIC, METEOROLOGIC, AND CANOPY 

CONTROLS 

The spatial organization of snow cover properties (e.g., density, depth, snow water 

equivalent (SWE)) and its dependence on scale are determined by precipitation patterns 

and the interaction of the snow pack with topography, winds, vegetation and radiative 

fluxes, among many others factors. The overarching objectives of this research are to 

characterize the spatial scaling properties and spatial organization of snow depth fields in 

several environments at scales between 1 m and 1000 m, and to determine how these 

properties are related to topography, vegetation, and winds. These objectives are 

accomplished through (a) the analysis of LIDAR elevation returns (filtered to bare 

ground/snow, and filtered to top of vegetation), elevation contours, and snow depth 

contours, (b) the analysis of synthetically generated profiles and fields of snow depth 

obtained using Fourier filtering and spectral techniques, and (c) simulations performed 

using a new cellular automata model for redistribution of snow by wind, that accounts for 

the small-scale interactions between the snow cover and the underlying topography, 

vegetation and winds patterns. 

The analyses of the power spectral densities of snow depth show the existence of two 

distinct scaling regimes separated by a scale break located at scales of the order of meters 
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to tens of meters depending on the environment. The breaks separate a highly variable 

larger-scales interval from a highly correlated smaller-scales interval. Complementary 

analyses support the conclusion that the scaling behavior of snow depth is controlled by 

the scaling characteristics of the spatial distribution of vegetation height when snow 

redistribution by wind is minimal and canopy interception is dominant, and by the 

interaction of winds with features such as surface concavities and vegetation when snow 

redistribution by wind is dominant. Further analyses of the snow covers in two adjacent 

areas, one a sub-alpine forest and the other an alpine tundra, are used to show how and 

why differences in the controlling physical processes induced by variations in vegetation 

cover and wind patterns lead to the observed differences in the spatial organization 

between the snow depth fields of these environments. Using these observations together 

with synthetic snow depth profiles and fields generated with one- and two-dimensional 

spectral techniques, we show that the scale at which the break occurs increases with the 

separation distance between snow depth maxima. Finally, the cellular automata model 

developed here is used to show that the correlation structure of the snow depth fields 

becomes stronger as the amount of snow transported increases, while the probability 

distributions of the fields progress from a Gaussian distribution for small transport rates 

to positively skewed probabilities for high transport rates. The spatial patterns of the 

simulated fields, the anisotropy in the two-dimensional correlation structure, and the time 

progression of the snow cover resemble observations presented in previous studies. These 

simulation results are used to illustrate the controls that topography, vegetation, and 

winds have on the spatial organization of snow depth in wind-dominanted environments, 

and the progression of such properties throughout the accumulation period. 
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The results obtained in this research have important implications with respect to 

processes, measurement and model scales. The existence of a break in the scaling of 

snow depth at scales of the order of meters to tens of meters indicates a switch in the 

characteristics of the variability above and below the break. Within each scale interval, 

similar processes are controlling the variability. In forested environments, the location of 

the scale break is controlled by the separation between trees that induce local minima in 

the snow surface caused by canopy interception. In environments with significant wind 

redistribution of snow, the break is associated with the separation between snow drifts 

and depressions caused by the interactions of the blowing snow with topographic features 

(e.g., ridges and depressions) and vegetation. If the objective is to reveal small-scale 

processes such as vegetation interception by individual trees and wind interaction with 

small features such as surface concavities, trees and rocks, measurement and model 

scales should be selected within the high-frequency range. In this way, the details of the 

snow depth surface between the peaks can be revealed. If the objective is to represent the 

average effect of processes such as canopy interception of snowfall and snow 

redistribution due to wind, measurement and model scales should be selected within the 

low-frequency range. For practical purposes in hydrologic applications, accurate 

description of the small-scale interactions might not be necessary and the detailed 

information required to reproduce such processes might not be available. Model and 

measurement scales should be selected according to such objectives. Also, the simulation 

results show that the statistical properties of snow depth fields throughout the 

accumulation period in wind dominated environments depend on the transport volumes 

of snow, which are dependent on meteorological conditions (e.g., winds and 
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temperature). The inter-seasonal consistency of the spatial organization of snow covers in 

wind-dominated environments documented in several studies is conditioned to the 

consistency of wind patterns and wind transport potential. Years with differences in wind 

regimes and meteorological conditions (e.g., wind speeds and directions, temperatures) 

will exhibit differences in the spatial statistical properties of snow cover properties (e.g., 

depth and SWE). The magnitudes of the differences in the spatial statistical properties 

depend on the magnitudes of the differences in the meteorological conditions. 

Ernesto Trujillo-Gomez 

Department of Civil and Environmental Engineering 

Colorado State University 

Fort Collins, CO 80523 

Spring 2009 
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1 General Introduction 

Spatial heterogeneity is one of the main features of snow covers in several 

environments [e.g., Elder et ah, 1991; Bloschl and Kirnbauer, 1992; Luce et ah, 1998]. 

The spatial organization of snow cover properties is determined by precipitation patterns 

and the interaction of the snow cover with several different factors such as topography, 

winds, vegetation, and short and long wave radiation, among others. The spatial patterns 

in the snow cover developed through these interactions influence melting patterns, soil 

moisture and vegetation patterns caused by the spatial heterogeneity in water availability. 

Better understanding of these interactions allows for improvements in snowmelt 

modeling [e.g., Luce et al., 1998; Liston and Sturm, 1998; Liston, 1999; Greene et al., 

1999], interpolation of point measurements [e.g., Elder et al., 1998; Erxleben et al., 2002; 

Erickson et al., 2005], downscaling of remote sensing data and model results [e.g., 

McGinnis, 2004; Weitzenkamp et al., 2008], subgrid scale parameterizations [e.g., Luce et 

al., 1999; Liston, 2004], and design strategies for measuring and monitoring snow 

properties [e.g., Xuetal., 1993]. 

The spatial organization of snow covers has been studied through the analysis of 

ground measurements [e.g., Evans et al., 1989; Elder et al, 1991; Shook and Gray, 1996; 

1997; Kuchment and Gelfan, 2001; Erickson et al, 2005], remote sensing measurements 

[e.g., Frezzotti et al., 2002], and results from snow models [e.g., Liston and Sturm, 1998; 

Liston et al., 1999; Liston et al., 2008 ]. The analyses of such datasets are limited by the 

spacing, extent and time continuity of the measurements, and by the spatial resolution 
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and accuracy of the models. In recent years, airborne Light Detection and Ranging 

(LIDAR) started to be implemented for measuring the spatial structure of vegetation and 

snow given its capability for providing high-resolution measurements of these variables 

at spatial scales previously unavailable (~ 1 m). These high resolution measurements 

provide a unique opportunity to analyze the characteristics of the spatial heterogeneity of 

snow in environments with differences in the physiographic characteristics (e.g., 

topography and vegetation) and atmospheric conditions (e.g., winds, precipitation and 

temperatures). 

The overarching objectives of the research documented here are to characterize the 

spatial scaling properties and spatial organization of snow cover properties in several 

environments at scales between 1 m and 1000 m, and to determine how these scaling 

properties and the spatial patterns observed are related to environmental variables such as 

topography, winds, and vegetation. These objectives are accomplished through (a) the 

analysis of LIDAR elevation returns (filtered to bare ground/snow, and filtered to top of 

vegetation), elevation contours, and snow depth contours collected as part of the National 

Aeronautics and Space Administration's (NASA) Cold Land Processes Experiment 

(CLPX) in 2003, (b) the analysis of synthetically generated profiles and fields of snow 

depth obtained using Fourier filtering and spectral techniques, and (c) simulations 

performed using a cellular automata model for redistribution of snow by wind, that 

accounts for the small-scale interactions between the snow cover and the underlying 

topography, vegetation and winds patterns, specifically developed as part of this research. 
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The document is organized into three main chapters, each consisting of a self-

contained presentation in which specific components of the objectives presented above 

are addressed. The organization is as follows: 

Chapter 2 reports on the analysis of the power spectral densities of high-resolution 

LIDAR measurements (~ 1 m) distributed within five 1-km areas with significant 

differences in the characteristics of the spatial variability of the snow cover caused by 

differences in terrain, vegetation, and wind patterns. The results from the power spectral 

analysis are complemented by an analysis of maximum wind speeds and directions, and 

of the separation distance between peaks in the snow depth and vegetation height 

profiles. Also, the spectral characteristics (e.g., spectral exponents) are compared to wind 

patterns in search for a relationship between the two. Throughout the discussion section, 

the results and conclusions obtained in this study are compared to those obtained in the 

previous point data studies, emphasizing the new insights in the actual knowledge of the 

spatial variability of snow depth provided by the results presented that have not been 

previously discussed in the published literature. 

In Chapter 3, the differences in the spatial organization of snow depth between a sub-

alpine forest and an alpine tundra environment are described and explained based on the 

analysis of spatial distribution functions, correlation functions, and power spectral 

densities of high-resolution LIDAR measurements (~ 1 m) obtained within two adjacent 

500 m x 500 m study areas located in the Colorado Rocky Mountains. Both of the areas 

are located in the Alpine ISA of the CLPX and present similar topographic characteristics 

(e.g., slope and aspect), but different vegetation characteristics and wind patterns. The 

analysis is complemented by the application of spectral techniques for generating 
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synthetic one-dimensional profiles and two-dimensional fields that reproduce the scaling 

characteristics (i.e., spectral exponents and scale breaks) observed in the snow depth 

fields. 

In Chapter 4, a new cellular automata model is introduced for simulating the evolution 

of snow covers in wind dominated environments, with components that allow for the 

simulation of the interactions among the snow and topography, vegetation, and wind 

patterns. Several hypothetical scenarios are simulated to analyze the response of the 

system to variations in precipitation, topography, and winds. These simulations provide 

physically based evidence for the characteristics of the spatial organization of snow depth 

in such wind dominated environments. Also, through these simulations, it is possible to 

broaden the time frame examined, thus extending the analyses to other times in the 

season. The scales at which the model works are compatible with the available high 

resolution LIDAR measurements of snow depth analyzed in previous studies, facilitating 

the comparison of the model results with real observations. 

A summary with general remarks is presented in Chapter 5, highlighting the most 

relevant findings of this research. 
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2 Topographic, Meteorologic, and Canopy Controls on the Scaling 

Characteristics of the Spatial Distribution of Snow Depth Fields 

2.1 Abstract 

In this study, LIDAR snow depths, bare ground elevations (topography), and 

elevations filtered to the top of vegetation (topography + vegetation) in five 1 -km areas 

are used to determine whether the spatial distribution of snow depth exhibits scale 

invariance, and the control that vegetation, topography and winds exert on such behavior. 

The one-dimensional and mean two-dimensional power spectra of snow depth exhibit 

power law behavior in two frequency intervals separated by a scale break located 

between 7 m and 45 m. The spectral exponents for the low frequency range vary between 

0.1 and 1.2 for the one-dimensional spectra, and between 1.3 and 2.2 for the mean two-

dimensional power spectra. The spectral exponents for the high frequency range vary 

between 3.3 and 3.6 for the one-dimensional spectra, and between 4.0 and 4.5 for the 

mean two-dimensional spectra. Such spectral exponents indicate the existence of two 

distinct scaling regimes, with significantly larger variations occurring in the larger scales 

regime. Similar bilinear power law spectra were obtained for the fields of vegetation 

height, with crossover wavelengths between 7 m and 14 m. Further analysis of the snow 

depth and vegetation fields, together with wind data support the conclusion that the break 

in the scaling behavior of snow depth is controlled by the scaling characteristics of the 

spatial distribution of vegetation height when snow redistribution by wind is minimal and 
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canopy interception is dominant, and by the interaction of winds with features such as 

surface concavities and vegetation when snow redistribution by wind is dominant. 
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2.2 Introduction 

Spatial heterogeneity has been identified as one of the main features of snow covers in 

several environments [e.g., Elder et al, 1991; Bloschl and Kirnbauer, 1992; Luce et al., 

1998]. The spatial distribution of snow is controlled by precipitation patterns and the 

interaction of the snow with factors such as topography, slope, aspect, vegetation, 

shortwave and longwave radiation, and wind. These interactions result in a highly 

heterogeneous snow cover in space and in time. Accounting for this heterogeneity is of 

paramount importance for hydrologic modeling and for appropriately describing land 

surface-atmosphere interactions [e.g., Luce et al., 1997, 1998; Liston and Sturm, 1998; 

Liston, 1999; Liston et al, 1999; Greene et al, 1999]. 

Efforts to characterize this variability of snow properties have focused on exploring 

the statistical relationships between these properties and topographic variables that can be 

easily obtained by using digital elevation models (DEM's) and other computational tools. 

Elder et al [1991] attempted to accurately determine the distribution of snow water 

equivalent (SWE) over a small alpine basin by identifying and mapping zones of similar 

snow properties on the basis of topographic and radiation parameters that account for 

variations in both accumulation and ablation. In their study, slope, elevation and radiation 

were used to obtain regressions of SWE as the dependent variable. Radiation consistently 

showed higher correlation with SWE, although weak correlations were obtained for all of 

the variables. Bloschl and Kirnbauer [1992] also studied the relationship between snow 

cover patterns and terrain characteristics, i.e., elevation and slope, in a mountainous area 
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in the Austrian Alps. They noted an increase in snow covered area with increasing 

elevation and decreasing slope, although no unique relationship to terrain parameters was 

apparent. Similar examples of this type of study include Evans et al. [1989] and Hoasang 

and Dettwiler [1991]. Although these approaches provide insight on how snow cover 

properties relate to each of these influencing variables, regression type relationships are 

only able to explain a small percentage of the variability, and no unique relationship can 

be defined for different environments due to differences in the dominant processes for 

different locations. 

The applicability of such relationships has been explored in the development of 

methodologies to spatially extrapolate variables, such as snow depth and snow water 

equivalent, throughout an area based on information obtained from local and limited 

observations. Included in these efforts are the SWETREE model [Elder et al, 1995; 

Elder et al., 1998; Winstral et al., 2002], which uses binary decision trees to estimate 

SWE and snow depth based on redistribution indices, terrain features and radiation. Other 

approaches involve the application of sub-grid parameterizations of snow distribution, 

using depletion curves to relate snow covered area with normalized snow water 

equivalence [Luce at al., 1999, Luce and Tarboton, 2001, 2002], and the complex mean 

geostatistical methodology [Erickson et al, 2005], which uses a kriging scheme with a 

nonlinear trend model to interpolate snow depth measurements. Erxleben et al. [2002] 

compared several of these spatial interpolation methods for estimating snow distribution 

in the Colorado Rocky Mountains. Snow depths measured on three 1-km2 areas were 

interpolated by using inverse distance weighting, ordinary kriging, modified residual 

kriging and cokriging, and binary regression trees. Additionally, snow density samples 
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were interpolated by using linear regressions with elevation, slope, aspect, and net solar 

radiation, and SWE estimates were obtained by combining these two variables. They 

found binary regression trees to provide the most accurate estimates of snow depth; 

however, substantial portions of the variability were left unexplained by the models and 

none of them outperformed the others in all of the environments. These results illustrate 

the necessity for a better and more accurate characterization of the spatial and temporal 

organization of snowcover properties, focusing on the characteristics of the variability for 

different environments. Bloschl [1999] addresses several issues related to the accurate 

representation of snow cover properties, and the relationships between processes, 

measurement and model scales. Answers to questions about the nature of the spatial 

variability of snow properties across several scales, and about how this variability 

determines the scales at which snow measurements should be obtained still need to be 

addressed in order to improve our understanding of snow processes and to accurately 

represent snow cover properties in hydrologic applications. 

In recent years, the concepts of fractals and scale invariance have been introduced to 

analyze the spatial and temporal structure of variables such as rainfall [e.g., Lovejoy and 

Schertzer, 1985; Tessier et al., 1993; Over, 1995; Over and Gupta, 1996; Marsan et ah, 

1996; Kang and Ramirez, 2001], soil moisture [e.g., Rodriguez-Iturbe et al., 1995], 

topography [e.g., Mandelbrot, 1967, 1982; Brown, 1987; Turcotte, 1987, 1989; Huang 

and Turcotte, 1989], drainage network slopes [e.g., Tarboton et al., 1988; Rodriguez-

Iturbe and Rinaldo, 1996; Molndr and Ramirez, 1998], and steady-state and transient 

infiltration rates [e.g., Meng et al., 1996]. In the case of snow properties, these concepts 

have been applied in the analysis of snow-covered area [e.g., Shook et al., 1993; Shook 
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and Gray, 1997; Bloschl, 1999; Granger et al., 2002], snow depth [e.g., Shook and Gray, 

1994, 1996 and 1997; Kuchment and Gelfan, 2001; Deems et al, 2006] and SWE [e.g., 

Shook and Gray, 1997], indicating that such variables exhibit fractal characteristics 

within a finite range of spatial scales. 

Shook et al. [1993] analyzed the perimeter-area and area-frequency relationships of 

snow and soil patches of melting snowcovers in prairie and alpine environments for 

different stages during the melting season suggesting that snow and soil patches are 

fractals. They conclude that snow patches are not random and their size distribution is 

predictable and can be described by the use of simple power-law equations characterized 

by their fractal dimension. Granger et al. [2002] made use of these power-law 

relationships to describe snow and soil patches characteristics in the development of a 

methodology to determine the amount of energy removed by the snow patch surface as 

warmer air moves over it. Shook and Gray [1994, 1996] analyzed the fractal nature of 

snow depth in shallow snow covers by looking at the variation in the standard deviation 

of snow depth transects as a function of sample distance. Their results indicate a power-

law type increase in the standard deviation up to sampling distances of the order of 20 m, 

after which the relationship curves towards a horizontal slope in the log-log plot. They 

conclude that this segmented power-law shape relationship indicates that the spatial 

distribution of snow depth is fractal at small scales (<30 m) and random at scales larger 

than this threshold, and that the cutoff length is related to the macroscopic (>100 m) 

variability of topography. Based on these findings, Shook and Gray [1997] implemented 

a methodology for generating a synthetic snowcover that forms snow patches having 

fractal properties, based on a fractal sum of pulses technique. In their methodology, the 
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synthetic data generated with the fractal technique are adjusted to resemble the 

characteristics of natural snowcovers by adjusting the generated frequency distribution to 

that estimated from field measurements. The statistical properties of the generated snow 

covers agree well with those of the measured fields, supporting the application of fractal 

techniques for synthetic generation of snow cover properties. Kuchment and Gelfan 

[2001] extended the analysis of snow depth to straight-line courses from 100 m to several 

kilometers in length to represent the micro- and meso- scale variability in several types of 

landscapes and relief, obtaining power law relationships in the variograms concluding 

that the snow depth fields could be considered statistically self-similar. Similar results 

were obtained by Arnold and Rees [2002] from the analysis of semivariograms of snow 

depth courses in glacier surfaces, concluding that snow depth distributions on glacier 

environments also exhibit fractal properties at short spatial separations and become 

random as separation increases. 

In a recent publication, using data derived from Light Detection And Ranging 

(LIDAR) observations, Deems et al. [2006] analyze the variograms of snow depth, 

topography and vegetation topography of three 1 -km study areas with a strong influence 

of snow redistribution by wind. From the observed log-log linearity of the variograms, 

they infer fractal behavior in the elevation, vegetation topography (elevation + vegetation 

height) and snow depth datasets. Their analyses seem to indicate the existence of two 

distinct scale regions with fractal distributions for the snow depth and vegetation 

topography datasets, separated by a scale break that varies between 15m and 40 m for 

snow depth, and between 31m and 56 m for vegetation topography, similar to the results 

obtained by Shook and Gray [1994, 1996], Kuchment and Gelfan [2001] and Arnold and 
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Rees [2002]. The fractal dimensions obtained for snow depth are of the order of 2.5 for 

the shorter scale range and 2.9 for the longer scale range. From these values, Deems et al. 

[2006] infer that for the short range there is a balance between high- and low-frequency 

variations, while at larger distances the distribution of snow depth approaches a spatially 

random distribution. Regarding the location of the breaks, Deems et al. [2006] speculate 

that the length of the scale break might be related to the overall terrain relief, and that the 

process change revealed by the breaks in the variograms of the vegetation topography 

(topography + vegetation height) data potentially influences the scaling behavior of snow 

depth. From relatively small variations of the fractal dimensions for different directions 

of the order of 0.1 in the snow depth, Deems et al. [2006] conclude that such variations 

show a strong qualitative relationship to prevailing winds and large-scale topographic 

orientation. 

In this study, the spatial scaling characteristics of snow depth are explored based on 

the analysis of the power spectral densities of high-resolution LID AR measurements (~ 1 

m) distributed within five 1-km2 areas (two of them used in Deems et al. [2006]) with 

significant differences in the characteristics of the spatial variability of the snow cover 

caused by differences in terrain, vegetation, and wind patterns. Spectral analyses are 

performed on the 1-km2 raster fields of snow depth, topography, topography + vegetation 

height, and vegetation height. The dataset used in this study not only includes 

environments in which redistribution of snow by wind is dominant, but also includes 

environments in which snow redistribution is minimal and canopy interception of 

snowfall is dominant, allowing for the identification of differences in the spectral 

characteristics between these two types of environments. The results from the power 
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spectral analysis are complemented by an analysis of maximum wind speeds and 

directions, and of the separation distance between peaks in the snow depth and vegetation 

height profiles. Also, the spectral characteristics (e.g., spectral exponents) are compared 

to wind patterns in search for any relationship between the two. Throughout the 

discussion section, the results and conclusions obtained in this study are compared to 

those obtained in the previous point data studies, and in particular those presented in 

Deems et al. [2006], pointing out the new insights in the actual knowledge of the spatial 

variability of snow depth provided by the results presented here not pointed out in the 

published literature. A summary description of the scale invariance concepts applied in 

this study is included in the Appendix section. 

2.3 Field Description and Dataset 

The data used in this study were collected as part of the Cold Land Processes 

Experiment (CLPX) in 2003. The CLPX was a cooperative effort of NASA, NOAA and 

other government agencies and universities designed to advance the understanding of the 

terrestrial cryosphere, providing information to address questions on cold land processes, 

spatial and temporal variability of the snow cover, and uncertainty of remote sensing 

measurements and models [Cline et al, 2001]. The study area of the CLPX is conformed 

by a nested array of study areas at five different scale levels in the state of Colorado and a 

small portion of southern Wyoming (Figure 2.1). The two first levels correspond to one 

large and one small regional study areas of 3.5° x 4.5° and 1.5° x 2.5°, respectively. Three 

Meso-cell study areas (MSA) of 25-km x 25-km and nine 1 km x 1 km intensive study 

areas (ISA's) conform the third and fourth scale levels, respectively. The last scale level 
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corresponds to one local-scale observation site (LSOS) of 1 ha. This study focuses on 

five of the nine 1-km2 ISA's. The ISA's located in the North Park MSA were not 

included in this study because their snow-covered area is less than 35% in all cases, while 

the Alpine ISA located in the Fraser MSA is analyzed in a separate study to illustrate 

differences between snowpack characteristics in alpine and sub-alpine environments. The 

areas included here correspond to the Fool Creek (FF) and Saint Louis Creek (FS) ISA's 

located in the Fraser MSA, and the Buffalo Pass (RB), Spring Creek (RS) and Walton 

Creek (RW) ISA's located in the Rabbit Ears MSA. A summary of the major 

characteristics of these areas is presented in Table 2.1. 
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Figure 2.1. Location of the Meso-scale study areas of the CLPX within the state of 

Colorado (USA). 

Table 2.1. Major characteristics of the Intensive Study Areas (ISA's). Source: Cline et al. 

[2001]. 

Name Site Characteristics 

Fool Creek FF 

St. Louis Creek FS 

Buffalo Pass RB 

Spring Creek RS 

Walton Creek RW 

Moderately high-density coniferous (spruce-fir) forest, on wet 
north-facing slope. 
Moderate-density coniferous (lodgepole pine) forest, on a flat 
aspect with low relief. 
Dense coniferous forest interspersed with open meadows; low 
rolling topography with deep snow packs. 
Moderate density deciduous forest (aspen); moderate topography 
on west-facing slope, with moderate snow packs. 
Broad meadow interspersed with small, dense stands of coniferous 
forest; low rolling topography with deep snow packs. 
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The Fool Creek ISA is located in a forested area with a complex topography and 

variations in vegetation characteristics. Elevations range between 3014 m a.s.l. and 3284 

m a.s.l. The ISA is part of the area of the Fraser Experimental Forest where extensive 

research has been performed on the effect of forest management practices on runoff. 

These forest management practices have led to a pattern of plots of cut and leave strips 

that produced differences in coniferous vegetation height. The Saint Louis Creek ISA is 

located at the lower part of the Fraser Experimental Forest. Elevations range between 

2701 m a.s.l. and 2756 m a.s.l. The area presents mild slopes and a uniform coniferous 

forest cover, except for some small patches of open terrain. The Buffalo Pass ISA has an 

elevation range of 3053 m a.s.l. to 3233 m a.s.l. A stream that flows from east to west 

divides the area into a north-facing and a south-facing slopes. The Spring Creek ISA is an 

area with a more complex topography. The minimum and maximum elevations are 2668 

m a.s.l. and 2903 m a.s.l. Aspect variations are a major feature in this ISA, with several 

south- and north- facing slopes spread over the area. Vegetation cover consists of dense 

patches of deciduous vegetation, and only a few clusters of coniferous trees. The rest of 

the area is covered by short vegetation and grass. Finally, the Walton Creek ISA is 

characterized by mild slopes and open areas. Elevation ranges between 2915 m a.s.l. and 

2998 m a.s.l. A small percentage of the ISA is covered by coniferous vegetation, and the 

valleys are mostly covered by sage and willow shrubs. 

This study makes use of LIDAR topographic maps collected for each of the ISA's for 

snow-covered and snow-free conditions. The data set consists of LIDAR elevation 

returns (filtered to bare ground/snow, and filtered to top of vegetation), elevation 

contours (0.5 m), and snow depth contours (0.1 m) [Miller, 2003]. These data were 

18 



processed from the LIDAR elevation returns with an average horizontal spacing of 1.5 m 

and vertical tolerance of 0.05 m. The snow depth contours were obtained by subtracting 

the two topographic surfaces corresponding to snow-covered conditions close to 

maximum accumulation (8-9 of April, 2003) and no-snow conditions (18-19 of 

September, 2003). The contour covers were used to generate Triangulated Irregular 

Network (TIN) surfaces of the fields in ArcGIS, which then were converted to rasters of 

1024 by 1024 grid cells covering the entire 1-km areas with a grid spacing of 

approximately 1 m for snow depth, bare ground elevations (topography), and elevation to 

the top of vegetation (topography + vegetation). 

2.4 Methods of Analysis 

2.4.1 One-Dimensional Power Spectra 

One-dimensional power spectra were obtained separately for each of the west to east 

(x) rows and each of the north to south (y) columns of the fields on each of the ISA's by 

following the procedure described below. First, the complex coefficients of the discrete 

Fourier transform of the original series or signal were determined by using: 

X(k) = -^?lx(n)exp[- j(27t/N)nk] (2.1) 
N n=0 

where k is the wave number (from 0 to N/2), N is the total number of data points in the 

discrete signal x(n), and j is the square root of - 1 . The power spectrum was then 

estimated by obtaining the square of the absolute value of the complex coefficients of the 

discrete Fourier transform as 
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<l>(k) = \x(kf (2.2) 

where <j> (Jc) is the power spectrum of the function x(n). If the mean of the original 

signal is subtracted from the signal, the sum of the power spectrum over the entire range 

of frequencies equals the variance of the process. In this way, the power spectrum 

represents the absolute contribution of each frequency (or scale) to the total variance of 

the process. If the power spectrum is then divided by the variance, a power spectral 

density is obtained, where the value of the spectrum corresponds to the percentage of the 

total variance contributed by each frequency. The individual power spectral densities of 

the profiles in the x and y directions were then averaged over each direction, reducing the 

variability of the individual spectra and facilitating the fitting of power laws. 

2.4.2 Directional One-Dimensional Power Spectra 

In order to examine anisotropic behavior, that is, changes of the behavior of the power 

spectra of snow depth as a function of direction, this analysis makes use of the directional 

rasters for which the directions of the x and v coordinates of the lattice coincide with the 

directions for which the analysis is performed. For example, a rotation of the snow depth 

contours of 30° with respect to the west to east axis allows for the analysis of the power 

spectra for a 30°-210° (x-axis) direction, and for a 120°-300° (y-axis) direction. These 

lines correspond to two perpendicular directions, similar to rotating the east-west and 

north-south axes by an angle of 30°. These rasters were generated for even intervals of 

10° (i.e., 0°-180°, 10°-190°, 20°-200°, ..., 170°-350° with respect to the east axis; 

equivalent to E - W, N 80° E - S 80° W, N 70° E - S 70° W, ..., N 80° W - S 80° E). 

Because the power spectral analysis must be performed on a square grid, the rotations of 
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the contour maps cause a reduction of the available information to a grid of 512 x 512 

cells (next power down from 210) centered in the area. The one-dimensional power 

spectra for each direction were obtained by following the procedure described in Section 

2.4.1. 

2.4.3 Mean Two-Dimensional Power Spectra 

A similar procedure is followed for the two-dimensional spectral analysis. First, the 

two-dimensional discrete Fourier Transform is estimated by using 

(2.3) 
1 N-\ N-l 

X(k>l) = -^TT Z Z x(m> n)exP 
™ m=0 n=0 

- j ^ {km + In) 
N 

where k and / are the wave numbers in the x and y directions (from 0 to N/2), N is the 

total number of data points in both, the x and y directions, and x(m,n) is the original 

function. The two-dimensional power spectrum is then obtained by 

</)(k,i)=\x{k,i\2 (2.4) 

The power spectral densities of the fields were obtained by dividing the power spectra 

by the variance. These two-dimensional power spectral densities were used to obtain 

mean two-dimensional power spectral densities. An equivalent wave number is assigned 

to each <f>(k,l) following 

r-fr+pr (2-5) 

where L is the dimension of the side of the square area for which the analysis is being 

performed (1000 m in this case). The mean spectral density <f>j for each equivalent wave 

number r is given by 
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<t>j=-~Yl\X&>lf (2-6) 

where Nj is the number of values that satisfy the condition j/L < r < (j+l)/L, and the 

summation is carried out over all the coefficients located in this frequency range. 

2.5 Results 

2.5.1 Snow Depth 

2.5.1.1 One-Dimensional Power Spectra 

The log-log plots of the one-dimensional power spectral densities of snow depth are 

presented in Figure 2.2. None of the one-dimensional power spectra present log-log 

linearity throughout the entire range of frequencies, although they can be subdivided into 

two frequency intervals within which the spectra is well represented by a power law. The 

scale break in each of the sites splits the power spectrum in a low-frequencies (larger 

scales) interval with a mild slope, and a high-frequencies (smaller scales) interval with a 

steeper slope. These power spectra with segmented power law indicate that the 

characteristics of the spatial variability of snow depth can be classified in different 

frequency regions or scale intervals within which the self-affinity condition (2.A3) (see 

Appendix) is met. A summary of the average spectral exponents and scale breaks is 

presented in Table 2.2. The wavelengths that separate these two intervals vary between 8 

m and 35 m, with the smallest breaks at Fool Creek, Saint Louis Creek and Spring Creek. 

For these sites, little difference is observed in the crossover wavelengths in the x and y 

directions. On the contrary, the corresponding x and y crossover wavelengths for the 
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Buffalo Pass and Walton Creek fields differ 12 m and 13 m, respectively, indicating some 

degree of anisotropy on the variability of these snow depth fields. The spectral exponents 

obtained vary between 0.2 and 1.4 for the low-frequencies intervals, and between 3.1 and 

3.6 for the high-frequencies intervals. These large differences between the spectral 

exponents of the larger and smaller scales intervals indicate marked differences in the 

nature of the variability of the snow depth cover above and below the scale break. Such 

differences are addressed in the discussion section. 
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Figure 2.2. Average one-dimensional power spectral densities of snow depth in the east-

west (x-dir) and north-south (y-dir) directions, k is the wave number divided by the length 

of the profiles (1000 m). 
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Table 2.2. Average spectral exponents and scale breaks of snow depth from the one-

dimensional analysis of the non-rotated rasters (1024 x 1024). 

FF FS RB RS RW 

Low-fequencies/? L0 04 6~5 L3 6~4 
High-fequencies^ 3.5 3.4 3.5 3.3 3.3 
Scale break (m) 8 11 25 9 28 

2.5.1.2 Directional One-Dimensional Power Spectra 

The distributions of the spectral exponents and scale breaks of snow depth are 

summarized in Figure 2.3 and Table 2.3. The spectral exponents (Figure 2.3a) vary 

between 0.06 and 1.17 for the low-frequencies, and between 2.93 and 3.58 for the high-

frequencies. Little variations are observed in the high-frequency values with respect to 

those observed in the corresponding low-frequency exponents. Average values range 

between 0.4 and 1.1 for the low-frequencies, and between 3.1 and 3.4 for the high-

frequencies. The smallest and largest average exponents are found at Buffalo Pass and 

Spring Creek for the low-frequencies, and at Walton Creek and Saint Louis Creek for the 

high-frequencies, respectively. The crossover wavelengths (Figure 2.3b) are located at 

scales of the order of meters and tens of meters. The scale breaks at Fool Creek, Saint 

Louis Creek and Spring Creek present little variation around the mean, with average 

breaks between 9 m and 12 m. In contrast, the breaks at Buffalo Pass and Walton Creek 

exhibit larger variations and are located at larger scales that range between 19 m and 45 

m, with average values of 21 m and 34 m, respectively. These variations indicate a more 

significant heterogeneity and directionality in the snow covers of these two areas. 
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Figure 2.3. Distribution of the characteristics of the directional power spectral densities of 

snow depth in all possible directions, (a) Spectral exponents for the lower frequencies 

(smaller values) and higher frequencies (larger values) intervals, and (b) scale breaks. 

The external lines cover the entire range of the data, the lower and upper limits of the box 

mark the 0.25 and 0.75 percentiles, while the internal line marks the median. The dots 

correspond to the mean of the set. 
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Table 2.3. Average spectral exponents and scale breaks of snow depth from the 

directional one-dimensional analysis (512 x 512). 

FF FS RB RS RW 
Low-fequencies /? 
Mean 
Standard deviation 

High-fequencies /? 
Mean 
Standard deviation 

Scale break (m) 
Mean 
Standard deviation 

0.9 
0.11 

3.2 
0.10 

9 
0.9 

0.4 
0.12 

3.4 
0.09 

10 
0.6 

0.4 
0.23 

3.3 
0.11 

26 
4.1 

1.1 
0.09 

3.2 
0.12 

12 
0.8 

0.5 
0.23 

3.1 
0.11 

34 
6.2 

2.5.1.3 Mean Two-Dimensional Power Spectra 

The mean two-dimensional power spectral densities of snow depth are presented in 

Figure 2.4. Spectral exponents and scale breaks are summarized in Table 2.4. Consistent 

with the results of the one-dimensional spectra, the break in the scaling of snow depth is 

observed at wavelengths between 7 m and 22 m. At Fool Creek, Saint Louis Creek and 

Spring Creek, the breaks occur at wavelengths between 7 m and 9 m, while at Buffalo 

Pass and Walton Creek they occur at 18 m and 22 m, respectively. The spectral 

exponents vary between 1.3 and 2.2 for the low-frequencies, and between 4.0 and 4.5 for 

the high-frequencies. These spectral exponents for both intervals differ approximately by 

a unit with respect to the corresponding one-dimensional exponents. 
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Figure 2.4. Mean two-dimensional power spectral densities of snow depth for all of the 

study areas, r is the equivalent wave number as in (2.5). 

Table 2.4. Exponents and scale breaks for the mean two-dimensional power spectra of 

snow depth. 

FF FS RB RS RW 

Lo w-fequencies /? 1.9 
High-fequencies ft 4.3 
Scale break (m) 7 

1.3 
4.5 
8 

1.4 
4.4 
18 

2.2 
4.0 
9 

1.4 
4.2 
22 
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2.5.2 Topography and Topography + Vegetation Height 

2.5.2.1 One-Dimensional Power Spectra 

The power spectra of topography in all of the study areas behave like Ar for the entire 

range of frequencies. The spectral exponents vary between 1.99 and 2.02, with almost no 

variations from site to site. Similar scaling behavior has been observed in previous 

studies of topographic profiles and contour lines, illustrating the vertical self-affinity and 

horizontal self-similarity of topography [e.g., Mandelbrot, 1967, 1982; Brown, 1987; 

Turcotte, 1987, 1989; Huang and Turcotte, 1989]. In these studies, spectral exponents 

around 2.0 were found for one-dimensional topographic profiles. Complementarily, the 

spectra of topography + vegetation height exhibit a distortion of the power law 

relationship with frequency observed in the spectra of topography. This distortion is more 

evident at Fool Creek and Saint Louis Creek, which are characterized by taller and denser 

vegetation. Also, the distortion is sometimes more evident in one of the two directions 

due to differences in the relative contribution of vegetation to the variability/roughness of 

the profiles along each direction. When vegetation height is of a similar order of 

magnitude as the elevation range, the contribution of vegetation to the total variance of 

the profile increases, leading to a more noticeable distortion in the power spectrum at the 

smaller scales. On the contrary, when the elevation range is greater than vegetation 

height, the contribution of vegetation to the variability of the profile is reduced, and little 

distortion in the power spectrum is perceived. These differences are more evident at Fool 

Creek, Saint Louis Creek, and Walton Creek, where the elevation range is greater in one 

direction than in the other. None of the scale breaks in the power spectra of snow depth 
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can be observed in the power spectra of bare ground elevations, or in the spectra of 

topography + vegetation. Neither the power spectrum exponents nor the scale breaks of 

the snow depth fields can be explained based on the power spectrum of the underlying 

topography and topography + vegetation. If the scale break in the scaling characteristics 

of snow depth observed at the smaller scales is the product of a switch in the dominant 

process(es) driving the variability of the snow cover properties, this change is not, at least 

evidently, explained by the spectral characteristics of either the underlying topography or 

topography + vegetation. 

2.5.2.2 Directional One-Dimensional Power Spectra 

The power law exponents of the directional spectra of topography vary between 1.94 

and 2.1, with an average of 2.0. Little anisotropy is perceived in the characteristics of the 

directional spectra. The inclusion of vegetation height in the topographic profiles induces 

a distortion of the power law relationship in all directions. No scale breaks are observed 

in the directional spectra of topography or topography + vegetation. 

2.5.2.3 Mean Two-Dimensional Power Spectra 

Spectral exponents between 2.92 and 2.94 were obtained for the mean two-

dimensional power spectra of topography, which differ approximately by a unit with 

respect to the one-dimensional values. Such spectral exponents are consistent with similar 

analyses of the mean two-dimensional power spectra of topography [e.g., Huang and 

Turcotte, 1989], in which an average exponent of 2.82 was found for different types of 

topography. 
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2.5.3 Vegetation 

2.5.3.1 One-Dimensional Power Spectra 

The average one-dimensional power spectra of vegetation height are presented in 

Figure 2.5 and the spectral exponents and scale breaks are summarized in Table 2.5. 

Vegetation exhibits similar scaling characteristics as the corresponding snow depth 

covers. A low-frequencies interval with mild slopes and a high-frequencies interval with 

steeper slopes are separated by a scale break located at wavelengths between 7 m and 16 

m. The spectral exponents vary between 0.3 and 1.2 for the low-frequencies, and between 

1.9 and 3.4 for the high-frequencies. The breaks at the Fool Creek, Saint Louis Creek and 

Spring Creek differ from those in the snow depth scaling between 0 m and 3 m, while at 

Buffalo Pass and Walton Creek the differences vary between 9 m and 15 m, with breaks 

at larger scales for snow depth. There is a difference in the scaling behavior of the snow 

covers of these last two areas with respect to that of the corresponding vegetation covers. 
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Figure 2.5. Average one-dimensional power spectral densities of vegetation in the east-

west (x-dir) and north-south (y-dir) directions, k is the wave number divided by the length 

of the profiles (1000 m). 
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Table 2.5. Spectral exponents and scale breaks of vegetation from the one-dimensional 

spectral analysis. 

FF FS RB RS RW 

Low-fequencies/? 0~6 6~5 07 L2 OJ 
High-fequenciesy? 3.2 2.8 3.3 2.2 3.4 
Scale break (m) 8 9 13 11 14 

2.5.3.2 Mean Two-Dimensional Power Spectra 

The spectral exponents and scale breaks in the mean two-dimensional spectra of 

vegetation height are summarized in Table 2.6. The scale breaks are located between 7 m 

and 11m, and the slopes vary between 1.1 and 2.0 for the low-frequencies and between 

2.9 and 4.3 for the high-frequencies. The breaks at Buffalo Pass and Walton Creek differ 

from those in the mean two-dimensional spectra of snow depth by 7 m and 13 m, 

respectively. The spectral exponents of snow depths for each of the intervals do not 

correspond exactly to the exponents of vegetation heights due to the differences between 

the magnitudes of the variations of the snow depth cover and those of the corresponding 

vegetation cover at each scale. 

Table 2.6. Exponents and scale breaks for the mean two-dimensional power spectra of 

vegetation height. 

FF FS RB RS RW 

Low-fequencies j3 LI L4 L3 2~0 L7 
High-fequenciesy? 3.8 3.3 4.2 2.9 4.3 
Scale break (m) 7 7 11 9 9 
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2.6 Discussion 

Overall, the results from the spectral analyses of snow depth indicate the existence of 

two distinct scaling regimes within the interval between 1 m and 1 km, each 

characterized by a distinct spectral exponent. These two regimes are separated by a scale 

break located at scales of the order of meters to tens of meters. The existence of these 

scaling regimes is caused by differences in the characteristics of the variability above and 

below the break. Within each interval, the power spectrum follows a power law 

dependence on frequency indicating self-affinity in the snow depth covers within finite 

frequency/scale intervals. This type of scaling behavior with segmented power law 

spectrum, referred to as bilinear (two intervals) or multilinear (multiple intervals) 

[Veneziano and Iacobellis, 1999], has been observed in several other processes such as 

rain rate [Crane, 1990] and groundwater base flow [Zhang and Schilling, 2004; Zhang 

and Li, 2005]. For the case of rain rate, Crane [1990] associates the changes in the 

spectral exponents and the wave numbers at which these breaks occur with the 

characteristics of the two-dimensional turbulent processes that determine the spatial 

distribution of rainfall. Zhang and Schilling, [2004] and Zhang and Li [2005] obtained 

similar bilinear power spectra for estimated time series of base flow on five different 

rivers in the state of Iowa (USA). They conclude that the high-frequency variations of the 

base flow are related to individual rainfall events ranging from a few hours to a few days, 

while the low-frequency variations are the result of seasonal changes. 

For the case of snow depth, similar scale breaks have been observed in previous 

studies of point data. Shook and Gray [1994, 1996] analyzed the standard deviation of 

snow depth transects in prairie and artic environments as a function of sample size (~ 
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sample distance), covering distances up to 1200 m. Their results indicate a power-law 

type increase in the standard deviation up to sampling distances of the order of 20 m, 

after which the relationship curves towards a slope of 0.06 in the log-log plot. Shook and 

Gray [1996] defined a 'cut-off length as the point of intersection between the initial 

slope and a horizontal tangent to the end of the curve in the log-log plot of standard 

deviation versus sample distance. This definition is used to compare the scale at which 

the break occurs in different environments, extending the analysis to transects in two 

other areas with variations in elevation range. Cut-off lengths between 30 m and 500 m 

were obtained for the three environments. Arnold and Rees [2003] obtained similar 

results from the analysis of semivariograms of snow depth courses in glacier surfaces. 

Their results indicate an increase in the variance with separation under scales between 20 

m and 30 m in the summer, and between 35 m and 45 m in the spring, after which the 

semivariograms reach a reasonably flat sill. In a more recent study, Deems et al. [2006] 

analyzed the variograms of the LIDAR snow depths of the Buffalo Pass, Walton Creek 

and Alpine ISA's. Their results indicate a similar bilinear behavior with a break at scales 

between 15m and 40 m. However, Deems et al. do not present any conclusive evidence 

of the link between such bilinear behavior and the physical processes driving the 

variability of snow depth. Later in this discussion, the relationship between the observed 

bilinear behavior of the power spectrum of snow depth and controlling variables such as 

vegetation and wind patterns is determined based on additional analysis of the vegetation 

height fields and wind data in each of the study areas. 

The one-dimensional spectral exponents obtained for snow depth vary between 0.1 

and 1.4 for the low-frequencies intervals, and between 2.9 and 3.6 for the high-
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frequencies intervals. Such low-frequency exponents indicate that for points separated by 

distances larger than the corresponding scale break, the snow depth values are weakly 

correlated, although the correlation is not necessarily zero, and there is some weak long-

range persistence. In contrast, the high-frequencies exponents indicate that snow depth 

values for points separated by distances smaller than the corresponding scale break are 

highly correlated, and that the snow depth surface becomes smoother below the scale 

break. The variability is significantly different above and below the break. This spatial 

organization of snow depth within these two scale intervals is described differently in 

previous studies. Shook and Gray [1994, 1996] describe the distribution of snow depth as 

fractal below scales between 20 m and 100 m, and random above such scales, based on 

slope values in the log-log plots of snow depth versus sampling distance of 0.47 for the 

short range interval, and 0.06 for the long range interval. Similarly, Arnold and Rees 

[2002] conclude from the flattening of the log-log semivariograms of snow depth above 

separation distances between 10 m and 45 m that snow depth distributions show fractal 

properties at short separations, and become random as separation increases. Deems et al. 

[2006] also suggest, from fractal dimensions of around 2.5 for the short range and 2.95 

for the long range, that the snow depth distributions exhibit fractal properties at short 

spatial separations and become almost random above the corresponding scale breaks. The 

scale breaks found in this study are located within the same orders of magnitude as those 

found in the quoted studies, although the spectral exponents for the low-frequencies 

indicate that the distribution of snow depth at scales larger than the corresponding break 

is not completely random, if the term 'random' is used to refer to processes of the white 

noise type which exhibit horizontal power spectra {fi = 0), indicating equal contributions 
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from all frequencies to the total variance. The results obtained in this study indicate the 

existence of some organization at scales larger than the scale break such that the 

contribution of each frequency to the total variance can be described by a power-law, 

with an average spectral exponent (including all sites) of 0.65 for the one-dimensional 

case, and 1.64 for the two-dimensional case. Such exponents indicate a decaying 

contribution of each frequency to the total variance. This organization is site dependent, 

and although some of the sites present spectral exponents that are closer to zero, the range 

of exponents found indicates that the distribution of snow depths above a characteristic 

scale of the order of meters to tens of meters cannot be generalized as random or 

uncorrelated. 

As expected (see Appendix), the exponents of the mean two-dimensional spectra for 

the two frequency regions (i.e., the low- and high-frequencies) differ approximately by 

one with respect to the one-dimensional exponents. Such difference is consistent with the 

theoretical difference between the exponents of the one-dimensional and two-

dimensional power spectra for self-affine fields where all directions in the x-y plane are 

equivalent, i.e., no scaling anisotropy in the x-y plane [e.g., Appendix; Voss, 1985b]. 

When compared to the directional one-dimensional exponents, the exponents of the mean 

two-dimensional spectra for the low-frequencies differ between 0.6 and 1.3 for Buffalo 

Pass, and between 0.7 and 1.4 for Walton Creek. On the other hand, such differences vary 

between 0.8 and 1.1 at Fool Creek, between 0.7 and 1.1 for Saint Louis Creek, and 

between 1.0 and 1.3 for Spring Creek. The range of variation of the difference between 

the exponents of the mean two-dimensional spectra and one-dimensional spectra for the 

low frequencies is larger for the Buffalo Pass and Walton Creek areas, indicating a more 
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significant scaling anisotropy in such fields for the larger scales. On the contrary, no 

significant scaling anisotropy is observed in the high-frequencies exponents for all of the 

areas, with ranges of variation of the order of 0.3 in all of the five ISA's. 

In search for explanations for the observed segmented power law spectrum of snow 

depth, a similar scaling analysis was performed on the fields of topography, topography + 

vegetation and vegetation height. The topographic fields contain information about the 

variations in elevation, slope and surface roughness which affect precipitation patterns, 

wind dynamics, redistribution of snow by avalanches, and energy fluxes due to variations 

in slope and aspect, among others. The fields of vegetation height contain information 

about the small-scale characteristics of the vegetation cover such as the separation 

between individual trees, height and area covered by the foliage, as well as larger scale 

characteristics such as the location of tree clusters and their average characteristics. Such 

properties have a strong influence in the distribution of snow through processes such as 

canopy interception of snowfall and the interaction with wind. The topography + 

vegetation fields provide information about the combination of such controls. None of the 

breaks in the slope of the log-log spectra of snow depth are present in the power spectra 

of the corresponding fields of topography and topography + vegetation. Neither the 

power spectrum exponents nor the scale breaks can be explained based on the power 

spectrum of the underlying topography and topography + vegetation. On the other hand, 

vegetation height exhibits very similar scaling behavior as the snow depth fields with 

bilinear power spectrum and scale breaks at wavelengths between 7 m and 14 m, with 

mild slopes for the low-frequencies, and steeper slopes for the high-frequencies (Figure 

2.5). 
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The study areas can be separated into two groups according to the similarities or 

differences between the locations of the scale breaks in snow depth and the 

corresponding vegetation height. The snow covers of Fool Creek, Saint Louis Creek and 

Spring Creek exhibit scale breaks at similar scales as the corresponding vegetation fields, 

while at Buffalo Pass and Walton Creek the scale breaks of the snow depth occur at 

larger scales with respect to those of the corresponding vegetation height (see Tables 2-4 

for snow depth and 5-6 for vegetation height). However, there are also important 

differences in the nature of the variability of snow depth between these two groups. 

Examination of the snow depth rasters of the study areas (not shown) indicates that the 

snow covers of Fool Creek, Saint Louis Creek and Spring Creek are exposed to little or 

no wind redistribution, and small-scale variability consistent with the vegetation patterns 

is dominant. On the other hand, the snow covers of the Buffalo Pass and Walton Creek 

exhibit patterns of drifts and scour areas consistent with the location of obstacles such as 

vegetation and ridges with respect to the predominant wind directions. To illustrate the 

importance of wind-driven snow redistribution in the study areas, wind data at 1 m above 

maximum expected snow depth (lower sensor) and 10 m above the ground (upper sensor) 

for the period October/2002 - April/2003 were analyzed. This period is chosen to 

represent the meteorological characteristics between the first snowfalls and the time at 

which the LIDAR snow depths were obtained. These meteorological data were collected 

as part of the CLPX within each of the ISA's at towers located approximately in the 

center of each area. Given that snow redistribution due to wind is only likely to occur 

when the air temperature is below freezing, only maximum wind speeds for 10-minutes 

intervals with air temperature less than 0° C are analyzed. The empirical distribution 
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functions of the maximum wind speeds at the lower and upper sensors are shown in 

Figure 2.6. The average maximum wind speeds at the lower and upper sensors are 0.8 

m/s and 1.8 m/s at Fool Creek, 0.4 m/s (both levels) at Saint Louis Creek, 2.3 m/s and 2.6 

m/s at Spring Creek, while they are 3.5 m/s and 4.4 m/s at Buffalo Pass, and 3.8 m/s and 

4.4 m/s at Walton Creek, respectively. The empirical distributions indicate higher wind 

speed regimes at the last two areas, consistent with the observed patterns of snowdrifts 

and scour areas in the snow depth rasters. 

40 



(a) Lower sensor 

4 6 8 
Wind speed (m/s) 
(b) Upper sensor 

Wind speed (m/s) 

Figure 2.6. Empirical distribution functions of maximum wind speed every 10-minute 

intervals for the period October/2002 - April/2003 measured within each ISA at (a) 1 m 

above the maximum expected snow depth (lower sensor) and (b) 10m above the ground 

(upper sensor). Only data for intervals with air temperature lower than 0° C are included. 

Average values are included in the legends. 

With respect to the vegetation topography (topography + vegetation height) data, the 

variogram analysis of Deems et al. indicates the existence of a scale break at distances of 

the same order of magnitude as those observed in the snow depth variograms, though at a 

slightly longer absolute range. On the other hand, their variograms of vegetation height 

data (vegetation topography with bare earth terrain subtracted) do not display a scale 
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break. Deems et al. conclude that the similarity between the scale break separating the 

two regions in the terrain-vegetation distributions and that observed in the snow depth 

data indicates that the process change revealed in the vegetation-terrain data potentially 

influences the scaling behavior of snow depth patterns. These observations are contrary 

to what is observed in the power spectral analysis presented in this study. As mentioned 

above, no scale breaks are observed in the spectra of topography + vegetation. On the 

other hand, the spectral densities of vegetation height for all of the study sites exhibit a 

break at wavelengths between 7 m and 16 m. The locations of the scale breaks in the 

power spectra of vegetation height coincide with the breaks in the spectra of snow depth 

only in the areas in which little redistribution of snow by wind exists, and small-scale 

variability consistent with the vegetation patterns is dominant. On the other hand, the 

scale breaks in the snow depth spectra in the areas where snow redistribution by wind is 

dominant are located at larger spatial scales than those of the corresponding vegetation. 

In order to compare the characteristics of the variability of the snow depth cover 

between these two environments, two sample profiles of snow depth of the Saint Louis 

Creek and Walton Creek snow covers are presented in Figure 2.7. The differences in the 

variability of the profiles are evident. The Saint Louis Creek snow cover is characterized 

by small-scale variations and lower variance (compare the vertical scales), while the 

snow cover at Walton Creek exhibits larger scale variations and higher variance. In 

Figure 2.7, 'd' is defined as the separation distance between peaks (or local maxima) 

above a threshold equal to the mean snow depth of the profile. The Walton Creek profile 

exhibits larger separations as a sign of larger characteristic scales. Based on this 

definition, the empirical distribution functions of the separation distance 'd' were 
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obtained using all of the profiles in each of the snow depth fields in the JC and y directions 

(Figure 2.8). The distributions for the first group have very similar shapes with a marked 

mode located between 7 m and 10 m, while for the second group they are more uniform, 

with flatter peaks, and with modes located between 11 m and 16 m. The snow depth 

surfaces of Buffalo Pass and Walton Creek exhibit larger separations between peaks. 

These results are consistent with the spectral characteristics of the snow depth fields, for 

which the breaks in the slope of the log-log spectra occur at larger spatial scales at 

Buffalo Pass and Walton Creek. 

400 

400 

Figure 2.7. Sample profiles of snow depth at (a) St. Louis Creek and (b) Walton Creek. 

The circled points mark the location of the local maxima using a threshold equal to the 

average of the profile. The separation 'd' marks the distance between these peaks. 
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Figure 2.8. Empirical distribution functions of the separation distance between peaks in 

the snow depth profiles. 

The similarities between the power spectrum of snow depths and vegetation heights at 

Fool Creek, Saint Louis Creek and Spring Creek indicate similarities in the variability of 

the two corresponding fields. The empirical distribution functions of the separation 

distance in the vegetation height and snow depth fields of these study areas (Figure 2.9) 

have very similar characteristics, with gamma-type distributions and modes located 

within similar separation ranges (from 5 m to 8 m for vegetation height and from 7 m to 

10 m for snow depth). The separations between peaks in both of the fields exhibit similar 

44 



statistical characteristics, indicating similar characteristic scales. These similarities are a 

consequence of the effect of vegetation in the distribution of snow depth. Because of 

interception, the peaks (maxima) in vegetation height coincide with valleys (minima) in 

the snow depth surface, and the information that their corresponding separation distances 

provide about the scales of the variations is statistically equivalent in both fields. As wind 

redistribution is minimal in these areas, the characteristic scales of snow depths remain 

similar to those of the vegetation heights. 

(a) x-direction (vegetation) (b) y-direction (vegetation) 

10 20 30 40 50 
Distance (m) 

60 70 10 

(c) x-direction (snow depth) 

30 40 50 
Distance (m) 

(d) y-direction (snow depth) 

0 10 20 30 40 50 60 70 
Distance (m) 

10 20 30 40 50 60 70 
Distance (m) 

Figure 2.9. Empirical distribution functions of the separation distance between peaks in 

the vegetation height and snow depth profiles of the Fool Creek, St. Louis Creek and 

Spring Creek ISA's. 
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The directional analysis of the snow depth spectra (Figure 2.3) indicates higher 

directionality in the Buffalo Pass and Walton Creek snow depths, with the largest 

variations in the low-frequencies exponents and scale breaks with direction. These 

variables are compared to the distributions of wind direction for the period October/2002 

- April/2003 in Figure 2.10. The distributions represent the percentage of time that wind 

blows along a specific line (either direction). Both, the low-frequencies exponent and 

scale break, exhibit a strong relationship with the predominant wind directions. The 

lowest low-frequencies exponents occur along the predominant wind directions while the 

highest occur along the perpendicular to the predominant direction. This relationship 

implies that the snow depth profiles are more variable (rougher) along the predominant 

wind directions when looked at scales larger than the corresponding scale break. Lower 

spectral exponents imply a more horizontal slope in the log-log spectrum and higher 

contributions of the low-frequencies to the variance of the profiles. Along the 

predominant wind direction, most of the variations in snow depth caused by 

redistribution are a consequence of the vertical interaction of wind patterns with obstacles 

such as ridges, depressions, and clusters of vegetation. Along the perpendicular direction, 

a switch in the processes occurs and most of the variations in snow depth caused by 

redistribution are a consequence of horizontal interactions of wind patterns with obstacles 

such as trees and rocks. The characteristic scales of such processes depend mainly on the 

separation distance between obstacles, wind velocities (speed and direction) and surface 

conditions (e.g., cohesion and roughness). The differences between these processes 

translate in anisotropy and directionality of the snow depth surface. The results obtained 
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in this study are a consequence and evidence of such directional effect, and the gradual 

variation of the scaling properties of snow depth in wind-dominated environments 

(Figure 2.10) is a consequence of the combination of the vertical and horizontal 

interaction of wind patterns with obstacles along directions between the predominant and 

perpendicular directions. The results presented in Figure 2.3 also indicate little or no 

directionality in the spectral properties of snow covers with little or no redistribution. The 

spectral exponents and scale breaks for the snow covers of Fool Creek, Saint Louis Creek 

and Spring Creek exhibit little variations with direction. The characteristics of the 

variability of snow depth are relatively similar along any direction, as snow redistribution 

by wind does not cause extended patterns of snowdrifts and scour areas along any 

particular direction. 
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Figure 2.10. Spectral exponents for the low-frequencies intervals (left axis) and scale 

breaks (right axis (m)) as a function of direction for the (a) Buffalo Pass and (b) Walton 

Creek ISA's. The histograms correspond to wind directions during intervals with air 

temperatures below freezing. Similar histograms of wind direction are obtained for wind 

speeds above thresholds of 4 m/s and 5 m/s. 

For Buffalo Pass and Walton Creek, Deems et al. report that for distances shorter than 

the scale break, the snow depth fractal dimensions are larger in directions normal to the 

prevailing winds, while for longer scales, the largest dimensions occur parallel to the 

dominant wind direction. However, the variations in the fractal dimensions reported by 

Deems et al. without indicating their significance level are of the order of 0.1 or less for 
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the two scale regions, variations that might be easily induced by small changes in the 

number of data used for the regressions. In this study, consistent variations with direction 

at the Buffalo Pass and Walton Creek ISA's were only observed in the spectral exponents 

of larger-scales intervals and the locations of the scale breaks. Little variations were 

observed in the spectral exponent of the smaller-scales intervals (Figures 2.3 and 2.10). 

A hypothesis proposed first by Shook and Gray [1996], and adopted later by Deems et 

al. [2006], to explain the bilinear behavior of the spatial scaling of the distribution of 

snow depth relates the scale break distance to topographic relief. The results presented in 

this study reveal that relief does not play a significant role in the observed scaling 

behavior of the spatial distribution of snow depth, and instead, variables such as 

vegetation and winds are far more relevant when explaining such behavior within the 

range of scales analyzed. 

The differences between the two scaling regimes (i.e., low- and high- frequencies) in 

the snow depth fields have important consequences for the characterization of the snow 

cover. As discussed earlier, the scale break is a measure of the separation between peaks 

in the snow depth surface. When the snow depth surface is analyzed above such scales, 

the average effects of the controlling variables need to be accounted for. Such effects 

correspond to the average snowfall interception by vegetation in environments dominated 

by canopy interception of snowfall, and the average accumulation or scour induced by 

redistribution of snow in wind-dominated environments. When the snow cover is looked 

at scales smaller than the corresponding break, the detailed characteristics (variability 

between peaks) become evident, and the small-scale interactions become dominant (e.g., 

vegetation interception by individual trees and wind interaction with surface concavities, 
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trees and rocks). The scales at which snow models work should be selected according to 

such characteristic scales. Unless the available input data allows for an accurate 

representation of the small-scale interactions, model scales should be selected within the 

low-frequency (larger scales) range. The results presented here indicate that such scales 

should exceed 10 m in environments where snow redistribution is minimal, and between 

20 m and 40 m in environments where wind redistribution is dominant. These scales are 

expected to change according to the particular characteristics of each environment, so the 

values presented in this paper should be used only as reference scales. 

2.7 Conclusions 

LIDAR snow depths, bare ground elevations and elevations filtered to the top of 

vegetation obtained in April and September of 2003 were analyzed to characterize the 

spatial variability of snow depth. Based on the characteristics of the power spectral 

densities of these fields, the relationship of such variability to influencing factors such as 

topography and vegetation was defined. The power spectra of snow depth behave as k'^ 

within two distinct frequency intervals, each with different spectral exponent. The one-

dimensional spectral exponents obtained for snow depth vary between 0.1 and 1.4 for the 

low-frequencies intervals, and between 2.9 and 3.6 for the high-frequencies intervals, 

while the exponents of the mean two-dimensional power spectra vary between 1.3 and 

2.2 for the low-frequencies, and between 4.0 and 4.5 for the high-frequencies. Such 

values indicate that the snow depth surface is more variable (or rougher) when observed 

at scales larger than the corresponding scale break, while much smaller variations appear 

when looked at scales smaller than such break. The larger scales explain the majority of 
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the variability. The scales that separate these two intervals are located at wavelengths 

between 8 m and 45 m. None of the scale breaks in the snow depth power spectra were 

observed in the power spectra of bare ground elevation, or in the spectra of topography + 

vegetation. Neither the power spectrum exponents nor the scale breaks can be explained 

based on the power spectrum of the underlying topography and topography + vegetation. 

On the other hand, the spectrum of vegetation height exhibits very similar behavior as the 

snow depth spectrum, with a low-frequencies interval with mild slopes between 0.3 and 

1.2 for the one-dimensional spectra, and between 1.1 and 2.0 for the mean two-

dimensional spectra, and a high-frequencies interval with steeper slopes between 1.9 and 

3.4 for the one-dimensional spectra, and between 2.9 and 4.3 for the mean two-

dimensional spectra. These two intervals are separated by a scale break located between 7 

m and 16 m for the one-dimensional spectra, and between 7 m and 11 m for the mean 

two-dimensional spectra. 

When the spectra of snow depth are compared to the spectra of the corresponding 

vegetation height, two distinct scaling behaviors can be identified. In the areas in which 

snowfall interception is dominant and snow redistribution by wind is minimal, the scale 

breaks in the snow depth spectra occur at similar scales as those of the corresponding 

vegetation. On the other hand, in areas where snow redistribution by wind is dominant, 

the scale breaks in the snow depth spectra are displaced towards scales larger than those 

of the corresponding vegetation. Redistribution of snow by wind leads to the formation of 

snowdrifts and scour areas over larger scales, affecting the scaling characteristics of the 

snow depth surface after the snow is initially deposited. The scales at which the switch in 

the scaling properties of snow depth occurs are comparable to the separation distance 
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between peaks (local maxima above a threshold) in the snow depth profiles. These 

characteristics support the conclusion that the break in the scaling behavior of snow depth 

is controlled by the vegetation characteristics (e.g., height, area covered by the canopy, 

and separation between trees) when wind redistribution is minimal and canopy 

interception is dominant, and by the interaction of winds with features such as surface 

concavities and vegetation when wind redistribution is dominant. Such effect of wind 

redistribution is also evidenced in the directional spectra, with the lowest low-frequencies 

exponents and the largest scale breaks occurring along the predominant wind directions, 

as sign of scaling anisotropy and directionality in wind-dominated environments. Until 

this study, evidence of the links between these processes and the scaling behavior 

observed in the power spectrum of snow depth in these two type of environments had not 

been provided. 

The results obtained in this study have important implications with respect to 

processes, measurement and model scales. The existence of a break in the scaling of 

snow depth at scales of the order of meters to tens of meters indicates a switch in the 

characteristics of the variability above and below the break. Within each scale interval, 

similar processes are controlling the variability as indicated by the power law relationship 

that characterizes the spectrum within each range. If the objective is to reveal small-scale 

processes such as vegetation interception by individual trees and wind interaction with 

small features such as surface concavities, trees and rocks, measurement and model 

scales should be selected within the high-frequency range. In this way, the details of the 

snow depth surface between the peaks can be revealed. If the objective is to represent the 

average effect of processes such as canopy interception of snowfall and snow 
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redistribution due to wind, measurement and model scales should be selected within the 

low-frequency range. For practical purposes in hydrologic applications, accurate 

description of the small-scale interactions might not be necessary and the detailed 

information required to reproduce such processes might not be available. Model and 

measurement scales should be selected according to such objectives. Further analysis of 

spatially distributed data for different times in the season and larger spatial scales is 

required to expand the characterization of the variability of snow properties. 
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2.8 Appendix 

Scale invariant systems are systems whose (statistical) properties at different scales are 

related by a scale-changing operation involving only a scale ratio. Statistical scale 

invariance can be expressed as [e.g., Voss, 1985b] 

[V(t + bAt) - V(t)] = bH [V(t + At) - V(t)] (2.A1) 

d 

where b is a scale factor, H is the Hausdorff exponent, and = indicates that the two 

sides of the expression possess the same probability distribution function. Self-similarity 

corresponds to the particular case of //equal to 1, implying isotropic rescaling for the two 

coordinates, t and V. On the other hand, self-affinity corresponds to the case in which 

each coordinate is rescaled by a different scale ratio, i.e., //other than 1. These concepts 

can be extended to higher Euclidian dimensions by replacing t with a more general vector 

x = (xj, X2, ..., XE) in an E dimensional space, leading to the following expression [e.g., 

Voss, 1985a, 1985b]: 

[v(x + bAx) - V(x)]= bH [V(x + Ax) - V(x)] (2.A2) 

Equation (2.A2) implies scaling isotropy along the coordinates of the vector x as the 

exponent His constant along any component of x but allows for scaling anisotropy (i.e., 

self-affinity) with respect to V as H may be different from 1. Scaling anisotropy or self-

affinity may arise when the coordinates are not equivalent (e.g., V and x, or x and t), or 

when different processes affect the variability along different directions. Such anisotropy 

can be analyzed by looking at the scaling properties (e.g., spectral exponent) along each 
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coordinate independently or by analyzing the changes of such properties along different 

directions (e.g., different combinations of x and>>). 

For a self-affine function of one variable (e.g., t as in (2.A1)) the power spectral 

density P(k) follows a power law dependence on the wave number k as [e.g., Voss, 1985a, 

1985b] 

P(k) oc k~p (2.A3) 

Similarly, the two-dimensional power spectra of self-affine functions in the x-y plane 

where all directions in the x-y plane are equivalent also obey a power law as 

P(k) oc fa + klY'1 = {k)~P 

k = fe + eyf 

but with a spectral exponent that differs by 1 with respect to the corresponding one-

dimensional exponent [e.g., Voss, 1985b]. Also observe that now k stands for a general 

wave number. A more general form of (2.A4) allows also for scaling anisotropy along 

each of the components of the vector x as [e.g., De Michele and Bernardara, 2005] 

P(kx,kyy(a]k2
x +a2

yk
2
yy

/2 (2-A5) 

In the case of fractional Brownian motion, the one-dimensional spectral exponent and 

the Hausdorff exponent are related as [e.g., Voss, 1985a, 1985b] 

P = 2H + 1 (2.A6) 

The spectral exponent can be used as a measure of the persistence for all values of J3. 

Functions with low spectral exponents are highly variable and adjacent values are less 

correlated. As the exponent increases, the functions become smoother and adjacent 

values become more correlated. Low spectral exponents imply a more uniform 
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contribution of all frequencies to the variability of the series, leading to a 'rougher' pattern 

with high-frequency (short wavelengths) variations of similar orders of magnitude as the 

low-frequency variations (long wavelengths). As the exponent increases, the 

contributions of the low frequencies become increasingly dominant over the contributions 

of the short frequencies, and as a consequence the correlation between adjacent values of 

the series increases and the profile becomes smoother. Weak long-range persistence 

corresponds to 0 < /? < 1, whereas strong long-range persistence corresponds to /? > 1. 

The value of the spectral exponent also has important implications with respect to the 

convergence or divergence of the variance [e.g., Malamud and Turcotte, 1999]. The 

variance converges for (3 < 1, and diverges for ft > 1. Self-affine time series with /? < 1 

are stationary while series with j5 > 1 are nonstationary, and /? = 1 can be used as a 

crossover between weak and strong persistence in time series [Malamud and Turcotte, 

1999]. 

Spectral techniques are often preferred over other techniques, such as variogram 

analysis, for the study of the scaling properties of random fields. This is because, 

depending on the value of /?, different techniques are more or less accurate in estimating 

the scaling properties of fields. In the case of variogram analysis, the range of /?for which 

one can expect reasonably accurate results is 1.2 < p < 2.5, whereas spectral techniques 

are accurate for all values of ft [e.g., McSharry and Malamud, 2005]. Spectral techniques 

have been used to explore the scaling characteristics of highly variable processes such as 

rainfall rate [e.g., Crane, 1990; Veneziano et al., 1996], topography [e.g., Brown, 1987; 
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Turcotte, 1987, 1989; Huang and Turcotte, 1989], soil moisture [Kim andBarros, 2002], 

and groundwater base flow [e.g., Zhang and Schilling, 2004; Zhang and Li, 2005]. 
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3 Scaling Properties and Spatial Organization of Snow Depth Fields in Sub-alpine 

Forest and Alpine Tundra 

3.1 Abstract 

In this study, we analyze the spatial distribution functions, the correlation structures, 

and the power spectral densities of high-resolution LIDAR snow depths (~ 1 m) in two 

adjacent 500 m x 500 m areas in the Colorado Rocky Mountains, one a sub-alpine forest 

the other an alpine tundra. We show how and why differences in the controlling physical 

processes induced by variations in vegetation cover and wind patterns lead to the 

observed differences in spatial organization between the snow depth fields of these 

environments. In the sub-alpine forest area, the mean of snow depth increases with 

elevation, while its standard deviation remains uniform. In the tundra subarea, the mean 

of snow depth decreases with elevation, while its standard deviation varies over a wide 

range. The two-dimensional correlations of snow depth in the forested area indicate little 

spatial memory and isotropic conditions, while in the tundra they indicate a marked 

directional bias that is consistent with the predominant wind directions and the location 

of topographic ridges and depressions. The power spectral densities exhibit a power law 

behavior in two frequency intervals separated by a break located at a scale of around 12 

m in the forested subarea, and 65 m in the tundra subarea. The spectral exponents 

obtained indicate that the snow depth fields are highly variable over scales larger than the 

scale break, while highly correlated below. Based on the observations and on synthetic 
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snow depth fields generated with one- and two-dimensional spectral techniques, we show 

that the scale at which the break occurs increases with the separation distance between 

snow depth maxima. In addition, the breaks in the forested area coincide with those of the 

corresponding vegetation height field, while in the tundra subarea they are displaced 

towards larger scales than those observed in the corresponding vegetation height field. 
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3.2 Introduction 

Identifying and characterizing the spatial and temporal variations of snow cover 

properties (e.g., snow depth, snow density, and snow water equivalent (SWE)) and the 

relationships between such variability and environmental and hydro-meteorological 

variables is of importance in hydrology and other applications. Better understanding of 

these relationships allows for improvements in snowmelt modeling [e.g., Luce et al, 

1998; Liston and Sturm, 1998; Liston, 1999; Greene et al, 1999], interpolation of point 

measurements [e.g., Elder et al, 1998; Erxleben et al., 2002; Erickson et al, 2005], 

downscaling of remote sensing data and model results [e.g., McGinnis, 2004; 

Weitzenkamp et al., 2008], subgrid scale parameterizations [e.g., Luce et al., 1999; 

Liston, 2004], and design strategies for measuring and monitoring snow properties [e.g., 

Xuetal, 1993]. 

One of the most common approaches for such characterization has consisted of 

determining the statistical relationships between snow properties and topographic and 

meteorological variables such as elevation, slope, aspect, wind and radiation [e.g., Evans 

et al., 1989; Hosang and Dettwiler, 1991; Elder et al., 1991; Bloschl and Kirnbauer, 

1992; Elder et al, 1995; Elder et al, 1998; Erxleben et al, 2002; Winstral et al, 2002; 

Erickson et al, 2005]. More recently, increasing attention has been given to the 

characterization of the scale invariance of snow properties such as depth [e.g., Shook and 

Gray, 1994, 1996 and 1997; Kuchment and Gelfan, 2001; Arnold and Rees, 2003; Deems 

et al, 2006; Trujillo et al, 2007], SWE [e.g., Shook and Gray, 1997], and snow-covered 
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area (SCA) [e.g., Shook et al, 1993; Shook and Gray, 1997; Bloschl, 1999; Granger et 

al., 2002]. These studies have been based on the application of variogram and semi-

variogram analyses and spectral techniques previously applied to other variables such as 

rainfall [e.g., Lovejoy and Schertzer, 1985; Tessier et al., 1993; Over, 1995; Over and 

Gupta, 1996; Marsan et al., 1996; Kang and Ramirez, 2001], soil moisture [e.g., 

Rodriguez-Iturbe et al., 1995], topography [e.g., Mandelbrot, 1967, 1982; Brown, 1987; 

Turcotte, 1987, 1989; Huang and Turcotte, 1989], and steady-state and transient 

infiltration rates [e.g., Meng et al., 1996]. 

Among the snow cover properties, snow depth has received most of the attention 

because it is one of the most spatially variable, and also because it is one of the easiest to 

measure. Several different techniques have been used for the study of the scale invariance 

of snow depth, from the analysis of the dependence of the standard deviation of snow 

depth on sampling distance, to more complex techniques such as variogram and spectral 

analyses. The types of measurements used range from point data along linear transects 

obtained in winter field campaigns to high-resolution remote sensing measurements that 

provide snow depth information over areas of the order of 1-km2. The summary presented 

below presents the recent progression of the knowledge provided by these studies, from 

the first studies by Shook and Gray [1994, 1996], to the latest findings by Trujillo et al. 

[2007]. 

Shook and Gray [1994, 1996] analyzed the standard deviation of snow depth along 

linear transects in prairie and Arctic environments as a function of sample distance, 

covering distances of up to 1200 m. Their results indicate a power-law type increase of 

the standard deviation up to sampling distances of the order of 20 m, after which the 
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relationship is asymptotic to a slope of 0.06 in the log-log domain. Shook and Gray 

[1996] defined a 'cut-off length as the point of intersection between the initial slope and 

a horizontal tangent to the end of the curve in the log-log plot of standard deviation 

versus sample distance. This definition is used to compare the scale at which the break 

occurs in different environments, extending the analysis to transects in two other areas 

with variations in elevation range. Cut-off lengths between 30 m and 500 m were 

obtained for the three environments. Shook and Gray [1996] hypothesized that the 

autocorrelation structure of snow depth in one of their study areas used for agriculture 

(stubble) was due to the formation of dunes of snow (i.e., snow drifts), stating that the 

autocorrelation structure caused by a dune must terminate at scales greater than the length 

of a dune. They describe the cutoff length as an index of the upper limit of the fractal 

structure of the fields, and hypothesize that such cutoff length is established primarily by 

topography in the absence of major changes in vegetation. 

Shook and Gray [1996] also suggest that the magnitude of the cutoff length may be 

related to the degree of large-scale topographic relief, based on an observed increase in 

the cutoff length with relief for three snow depth transects in three different locations. 

Additionally, Shook and Gray [1996] tested the influence of large-scale trends in snow 

depth on the cutoff length by de-trending two snow depth transects of about 150 m and 

170 m in length. The de-trending consisted of subtracting a linear and a polynomial 

function of horizontal distance. Before subtracting these trends, the log-log plots of 

standard deviation of snow depth versus sampling distance demonstrated similar slopes 

with no breaks for both of the profiles. Once de-trended, the standard deviation of the 

profiles displayed cutoff lengths at approximately 30 m, with slopes similar to those 
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obtained for the original data below the cutoff length, and a flatter function above the 

cutoff length. From the decrease in the cutoff length produced by the de-trending of the 

profiles, Shook and Gray [1996] conclude that the autocorrelation of snow depth is due to 

both small-scale and large-scale surface features, and that the effect of large-scale 

features is to increase the cutoff length. On the basis of the similarities of the cutoff 

lengths obtained for the de-trended data of the fallow and stubble transects, they also 

suggest that the magnitude of the cutoff distance is relatively insensitive to land use, and 

that the cutoff length is a measure of the effects of topographic variability on snow 

accumulation. 

Recently, a high-definition (~ 1.5 m separation between observations) dataset of 

spatially distributed snow depths has become available as part of NASA's Cold Land 

Processes Experiment (CLPX). The dataset consists of airborne Light Detection And 

Ranging (LIDAR) measurements of snow depth, topography and elevation returns to the 

top of vegetation for nine 1-km intensive study areas (ISA's) located in the state of 

Colorado (USA) (see Section 3.3 for more details). These data have been used in two 

recent studies of the scaling characteristics of the spatial distribution of snow depth 

[Deems et al., 2006; Trujillo et ah, 2007] focusing on determining the control that 

vegetation, topography and winds exert on such scaling characteristics. 

Deems et al. [2006] analyzed the variograms of the LIDAR measurements of snow 

depth, topography and vegetation topography (i.e., elevation + vegetation height) of three 

of the nine 1-km study areas (i.e., Buffalo Pass, Walton Creek, and Alpine ISA's), in 

which the spatial distribution of snow depth is strongly influenced by wind redistribution 

of snow. From the observed log-log linearity of the variograms, they infer fractal 
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behavior in the elevation, vegetation topography and snow depth datasets. Their analyses 

seem to indicate the existence of two distinct scale regions with fractal distributions for 

the snow depth and vegetation topography datasets, separated by a scale break whose 

location varies between 15 m and 40 m for snow depth, and between 31m and 56 m for 

vegetation topography, similar to the results obtained by Shook and Gray [1994, 1996], 

Kuchment and Gelfan [2001] and Arnold and Rees [2003]. The fractal dimensions 

obtained for snow depth are of the order of 2.5 for the shorter scale range and 2.9 for the 

longer scale range. From these values, Deems et al. [2006] speculate that for the short 

range there is a balance between high- and low-frequency variations, while at larger 

distances the distribution of snow depth approaches a spatially random distribution. They 

also speculate that the scale breaks in the snow depth variograms indicate a switch from a 

pattern dominated by short-range vegetation variability to one predominately influenced 

by longer-range variations in terrain, based on similarities in the behavior of the 

variograms of vegetation topography. Deems et al. [2006] also suggest that the location 

of the scale break might be related to the overall terrain relief on the basis of an overall 

increase in the location of the scale break with relief for the three study areas, supporting 

the hypothesis first proposed by Shook and Gray [1996]. They also state that the process 

change revealed in the terrain-vegetation (topography + vegetation height) data 

potentially influences the scaling behavior of snow depth patterns, given that the scale 

break separating the two fractal regions in the terrain-vegetation distributions is of the 

same order of magnitude as the scale break observed in the snow depth data. Finally, 

from relatively small variations of the fractal dimensions for different directions of the 

order of 0.1 in the snow depth, Deems et al. [2006] conclude that such variations show a 
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strong qualitative relationship to prevailing winds and large-scale topographic 

orientation. 

Trujillo et al. [2007] used a similar dataset that includes data from five of the nine 1 -

km study areas of the CLPX, two of them included in the study by Deems et al. [2006], 

covering a wider range of environments with differences in topography, vegetation and 

meteorological characteristics. In their study, Trujillo et al. analyzed the power spectral 

densities of the 1 -km2 raster fields of snow depth, topography, topography + vegetation 

height, and vegetation height, comparing the results obtained for each of these fields and 

identifying all relationships between them. They complemented their study with an 

analysis of maximum wind speeds and directions, and of the separation distance between 

peaks in the snow depth and vegetation height profiles. Also, they compared the spectral 

characteristics (e.g., spectral exponents and scale breaks) to wind patterns in search for 

any relationship between the variables. Their analyses show that the spectral densities of 

snow depth and vegetation height exhibit a similar bilinear power-law behavior separated 

by scale breaks located at wavelengths of the order of meters to tens of meters. However, 

a comparison of the location of the scale breaks in the snow depth spectra and the 

corresponding vegetation height spectra reveals that the scale breaks in the snow depth 

scaling coincide with those of the vegetation height fields only in environments in which 

the spatial variability of snow depth is controlled by canopy interception of snowfall, 

while the break in the snow depth scaling is displaced towards larger scales than those of 

the corresponding vegetation height fields in environments with a strong influence of 

wind redistribution of snow. These results are in contrast to those of Deems et al. [2006]. 

Trujillo et al. [2007] give explanation to the relationship between the spectral properties 
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of snow depth and vegetation height in environments in which canopy interception of 

snow is dominant by comparing the empirical probability distributions of the separation 

distance between peaks in the snow depth and vegetation height profiles of the fields. 

This comparison shows that the separations between peaks in the profiles of both, 

vegetation height and snow depth, exhibit similar statistical characteristics as a sign of 

similar characteristic scales in both fields. They state that such similarities are a 

consequence of the effect of canopy interception of snow in the distribution of snow 

depth given that the location of the peaks (maxima) in the vegetation height fields 

(coincident with the location of trees) coincides with the location of low points (minima) 

in the snow depth fields in environments in which the distribution of snow depth is 

strongly influenced by canopy interception of snow. On the other hand, Trujillo et al. 

[2007] show the control that wind patterns exert on the spectral characteristics of snow 

depth in environments in which wind redistribution of snow is dominant by comparing 

the distributions of wind direction to the variation of the spectral exponents and scale 

breaks with direction. Such comparisons reveal a strong relationship between the spectral 

exponent of the low-frequencies and the location of the scale break with the predominant 

wind directions as a sign of the influence of wind patterns on the characteristics of the 

spatial variability of snow depth in such environments. The differences observed in the 

spectral characteristics (i.e., spectral exponents and scale break) of the snow depth fields 

between the different environments and the relationship of such characteristics to 

vegetation indicate that land use plays an important role in determining the scaling 

characteristics of the spatial distribution of snow depth, especially in environments in 

which canopy interception of snow depth is dominant, contrary to what was proposed by 
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Shook and Gray [1996]. Furthermore, Trujillo et al. [2007] demonstrated that the location 

of the scale break is a measure of the separation distance between high points or peaks in 

the snow depth surface, and that the characteristics of the variations in the snow depth 

fields change above and below such characteristic scales. These results corroborate Shook 

and Gray's [1996] suggestions that the change in the autocorrelation structure of snow 

depth in environments with the influence of wind redistribution is caused primarily by the 

formation of dunes (i.e., snowdrifts), and that the autocorrelation caused by a dune must 

terminate at scales greater than the length of the dune. Contrary to the suggestion by 

Deems et al. [2006] with respect to the influence of topographic relief on the location of 

the scale break, Trujillo et al. [2007] found no clear relationship between the two 

variables, as the location of the scale break was demonstrated to be related to other 

characteristics of the environments. 

In this study, differences in the spatial organization of snow depth between a sub-

alpine forest and an alpine tundra environment are described and explained based on the 

analysis of spatial distribution functions, correlation functions, and power spectral 

densities of high-resolution LIDAR measurements (~ 1 m) obtained within two adjacent 

500 m x 500 m study areas located in the Colorado Rocky Mountains. Both of the areas 

are located in the Alpine ISA of the CLPX and present similar topographic characteristics 

(e.g., slope and aspect), but different vegetation characteristics and wind patterns. The 

analysis is complemented by the application of spectral techniques for generating 

synthetic one-dimensional profiles and two-dimensional fields that reproduce the scaling 

characteristics (i.e., spectral exponents and scale breaks) observed in the snow depth 

fields. 
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3.3 Field Description and Dataset 

The data used in this study were collected as part of the Cold Land Processes 

Experiment (CLPX) in 2003 [Cline et al, 2001]. The CLPX was a cooperative effort of 

NASA, NOAA and other government agencies and universities designed to advance the 

understanding of the terrestrial cryosphere, providing information to address questions on 

cold land processes, spatial and temporal variability of the snow cover, and uncertainty of 

remote sensing measurements and models [Cline et al, 2001]. The study area of the 

CLPX is conformed by a nested array of study areas at five different scale levels in the 

state of Colorado and a small portion of southern Wyoming. The two first levels 

correspond to one large and one small regional study areas of 3.5° x 4.5° and 1.5° x 2.5°, 

respectively. Three Meso-cell study areas (MSA) of 25 km x 25 km and nine 1 km x 1 

km intensive study areas (ISA's) conform the third and fourth scale levels, respectively. 

The last scale level corresponds to one local-scale observation site (LSOS) of 1 ha. This 

study focuses on the Alpine ISA. Such focus is motivated by the existence of alpine 

tundra and sub-alpine forest environments within this ISA, each exhibiting different 

characteristics in the spatial organization of the snow cover. The hypothesis is that those 

differences result from differences in the controlling physical processes induced by 

variations in vegetation cover and, consequently, the control of wind patterns on the 

spatial organization of snow depth. 
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Figure 3.1. Location of the Alpine Intensive Study Area (ISA) of the CLPX in the state of 

Colorado. The detail shows the aerial photography of the ISA taken on April 8, 2003. 

Also, boundaries for the forested and the tundra subareas are included. The location of 

the meteorological tower above the tree-line is marked by the black dot. The topographic 

contours of the subareas are shown in the bottom panels. 
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The Alpine ISA is a high-altitude area located in the Fraser MSA in the Colorado 

Rocky Mountains (Figure 3.1). This ISA is located in the transition between the sub-

alpine and the alpine tundra environments, with elevations that range between 3364 m 

a.s.l. and 3676 m a.s.l.. The tree-line that separates the sub-alpine and the tundra 

environments is located at about 3565 m a.s.l., with the lower portion covered by a dense 

coniferous forest, and the higher portion covered by short tundra vegetation (Figure 3.1). 

Most of the area is on a northwest facing slope, with little aspect variation (Figure 3.2a). 

Slopes in the ISA are moderate, with 94 % of the area with slope angles of less than 30°, 

and an average slope angle of 15° (Figure 3.2b). Terrain features such as aspect and slope 

exhibit little variation within the ISA, and the main difference between the two 

environments is the vegetation cover. This difference translates in a difference in wind 

patterns due to the shielding effect that the trees offer. 

(b) 

10 20 30 40 50 60 
(cleg) 

Figure 3.2. Histograms of (a) aspect and (b) slope angle for the entire Alpine ISA. 

The dataset used for this study consists of LIDAR elevation returns (filtered to bare 

ground/snow, and filtered to top of vegetation), elevation contours (0.5 m), and snow 
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depth contours (0.1 m) [Miller, 2003; Cline et ah, 2008]. These data were processed from 

the LIDAR elevation returns with an average horizontal spacing of 1.5 m and vertical 

tolerance of 0.05 m. The snow depth contours were obtained by subtracting the two 

topographic surfaces corresponding to snow-covered conditions close to maximum 

accumulation (April 8, 2003) and no-snow conditions (September 18, 2003). The contour 

maps were used to generate Triangulated Irregular Network (TIN) surfaces of the fields 

in ArcGIS, which then were converted to rasters of 1024 by 1024 grid cells covering the 

entire 1 -km area with a grid spacing of approximately 1 m for snow depth, bare ground 

elevations (topography), and elevation to the top of vegetation (topography + vegetation). 

Two subareas of 500 m by 500 m were selected within the ISA (Figure 3.1), one being a 

forested environment the other an alpine tundra environment. The resulting snow depth 

fields for these study subareas are presented in Figure 3.3. 
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Figure 3.3. Snow depth fields derived from LIDAR for the forested (a) and the tundra (b) 

subareas. 

In addition, wind data collected as part of the CLPX at a meteorological tower located 

in the alpine portion of the ISA (Figure 3.1) are also used. The data correspond to wind 

speeds and directions at 1 m above maximum expected snow depth (lower sensor) and 10 

m above the ground (upper sensor) for the period October/2002 - April/2003, chosen to 

represent the meteorological characteristics between the first snowfalls and the time at 

which the LIDAR snow depths were obtained. The empirical distributions of maximum 

wind speed at the lower and upper sensors are shown in Figure 3.4, and the distributions 

of wind direction are shown in Figure 3.5. Given that snow redistribution due to wind is 

only likely to occur when the air temperature is below freezing, only maximum wind 

78 



speeds and directions for 10-minute intervals with air temperature less than 0° C were 

analyzed. Average maximum wind speeds are 7.2 m/s at the lower sensor, and 8.3 m/s at 

the upper sensor, and maximum wind speeds exceed a threshold of 5 m/s 70% of the time 

at the lower sensor, and 76% of the time at the upper sensor. Such values are evidence of 

strong wind regimes, with potential for significant redistribution of snow when the snow 

surface is exposed. Threshold wind speeds (at z = 10 m) for snow transport have been 

measured to range between 4 m/s and 11 m/s for dry snow conditions, and between 7 m/s 

and 14 m/s for wet snow conditions [Li and Pomeroy, 1997]. The predominant winds in 

the area flow from the northwest, similar to the predominant topographic aspect of the 

area (Figure 3.2a). 
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Figure 3.4. Empirical distribution functions of maximum wind speed every 10 minutes 

for the period October/2002 - April/2003 measured at 1 m above the maximum expected 

snow depth (lower sensor) and 10 m above the ground (upper sensor). Only data for 

intervals with air temperature lower than 0° C are included. Average speeds are 7.2 m/s at 

the lower sensor, and 8.3 m/s at the upper sensor. 
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Figure 3.5. Distributions of mean wind direction for 10-minute intervals for the period 

October/2002 - April/2003 measured at (a) 1 m above the maximum expected snow 

depth (lower sensor) and (b) 10 m above the ground (upper sensor). Only data for 

intervals with air temperature lower than 0° C. The radial scale corresponds to the relative 

frequency. The distributions shown were obtained for the dataset without a minimum 

threshold wind speed. Similar distributions are obtained for wind speeds above thresholds 

of 4 m/s and 5 m/s. 0° corresponds to the North direction. 

3.4 Spatial Analysis 

3.4.1 Spatial Distributions 

The histograms of snow depth for the forested and tundra subareas are shown in 

Figure 3.6, and summary statistics are presented in Table 3.1. The distribution of snow 

depth in the forested subarea is approximately Gaussian, with snow depths between 0 m 
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and 3.3 m, and a mean of 1.62 m. On the other hand, the distribution for the tundra 

subarea resembles a negatively skewed truncated distribution, with snow depths between 

0 m and 6.3 m, and a mean of 1.20 m. The standard deviation is greater in the tundra 

subarea, with a value of 0.65 m, compared to 0.33 m in the forested subarea. When mean 

and standard deviation are analyzed as a function of elevation (Figure 3.7), additional 

differences can be observed. In the forested portion, the mean snow depth increases at an 

average rate of 2.0 m per 1000 m elevation. The trend reverses in the tundra portion, 

where the mean snow depth decreases with elevation from about 1.8 m at 3555 m a.s.l. to 

almost zero at 3676 m a.s.l., although with large variations in the overall trend. The 

standard deviation also shows a clear change in the behavior above the tree-line. Below 

the tree-line, the standard deviation remains relatively constant with elevation, with 

values that range between 0.3 m and 0.4 m, while above the tree-line in the tundra 

subarea, there is an overall increase with values that are highly variable and with maxima 

close to 1.6 m, indicating larger variations around the mean in the tundra environment. 
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Figure 3.6. Histograms of snow depth for the forested (a) and tundra (b) subareas. A 

summary of the statistics for these distributions is presented in Table 3.1. 

Table 3.1. Snow depth statistics in the forested and tundra subareas. All values but the 

coefficient of variation (CV) are in meters. 

Mean Std. Dev. CV Min. Max. 
Forested 1.62 0.33 0.20 0.0 3.3 
Tundra 1.20 0.65 0.54 0.0 6.3 
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Figure 3.7. Mean and standard deviation of snow depth as a function of elevation 

obtained for the entire Alpine ISA. The figure illustrates the significant change in the 

characteristics of the snow cover above the tree-line, located at about 3565 m a.s.l.. 

The differences in the statistical characteristics of the two snow depth fields can be 

explained by the differences between the two environments. The effect of the strong 

winds on the spatial distribution of snow depth is conditioned by the vegetation 

characteristics, as confirmed by the patterns that can be observed in Figure 3.3. In the 

tundra environment above the tree line, the snow depth field is characterized by a pattern 

of snowdrifts and scour areas aligned with the location of ridges and depressions and 

perpendicular to the predominant wind direction, while the snow depth field in the 

forested subarea exhibits a pattern dominated by small-scale variability consistent with 
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the location of trees, with little or no sign of snow redistribution by wind due to the 

shielding effect of the forest. The relatively constant standard deviation with elevation 

below the tree-line is a sign of similar characteristics in the spatial variability of snow 

depth throughout the forested subarea due to the relatively uniform characteristics of the 

vegetation. On the other hand, the decreasing trend in the mean snow depth with 

elevation in the tundra subarea is evidence of the effect of snow redistribution by wind. 

Due to the predominant wind directions and the overall terrain aspect, the snow of the 

tundra subarea is transported uphill, not only leading to the formation of snowdrifts and 

eroded areas, but also blowing a significant portion of the snow out of the ISA to be 

deposited on the lee side of the mountain, located to the southeast of the ISA. Also, the 

redistribution of snow by wind induces losses associated with the sublimation of blowing 

snow, which have been measured to account for annual losses from 9 % to 47 % of the 

annual precipitation [Benson, 1982; Pomeroy and Gray, 1995; Liston and Sturm, 1998; 

Pomeroy et al., 1998; Essery et al., 1996]. These processes cause a decrease in the mean 

snow depth above the tree-line, which becomes more evident as elevation increases, as 

the distance from the tree-line increases (commonly referred to as fetch), and the eroding 

and transport potential of the wind also increases. Similarly, the overall increase in the 

standard deviation above the tree-line and the large variations of the mean and standard 

deviation with elevation are evidence of the pattern of snow drifts and scour areas 

throughout the tundra environment that are responsible for the large variations of the 

snow depth around the mean. 
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3.4.2 Two-dimensional Autocorrelation Functions 

The two-dimensional autocorrelation functions of snow depth are shown in Figure 3.8 

for lags up to ±100 m in the x and y directions. The correlation function of snow depth in 

the forested environment exhibits a rapid decay, reaching values of around 0.2 at lags of 

the order of 10 m. On the other hand, the correlation function of snow depth in the tundra 

environment shows a slower decay indicating a smoother surface with longer spatial 

memory. These results indicate that the variations in snow depth occur over much shorter 

scales in the forested subarea, which can also be observed in the snow depth fields shown 

in Figure 3.3. The two-dimensional correlation function also provides information about 

the directionality of the snow depth fields in the two environments. The correlation 

function in the forested environment shows little anisotropy, as the contour lines above a 

correlation value of 0.3 are concentric and relatively circular, while the correlation 

function for the tundra environment shows an anisotropic decay that follows a gradient in 

the north-western direction (equivalent to the south-eastern gradient). Such directionality 

in the tundra subarea is consistent with the predominant wind directions (Figure 3.5) and 

the overall topographic aspect (Figure 3.2a). The weakest correlation structure (fastest 

decay) of the snow depth field in the tundra environment occurs along a direction parallel 

to the predominant wind direction, while the strongest correlation structure occurs along 

the direction perpendicular to the predominant wind direction. 
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Figure 3.8. Contour maps of the two-dimensional correlograms of snow depth for (a) the 

forested subarea, and (b) the tundra subarea. 

3.4.3 One-Dimensional and Mean Two-Dimensional Power Spectra 

Spectral techniques have been used in the study of highly variable processes to 

determine scaling ranges, spectral slopes, fractal dimensions and Haussdorf exponents. 

Spectral techniques are applied in this study in two different ways. For the one-

dimensional case, one-dimensional power spectral densities were obtained separately for 

each of the west to east (x) rows and each of the north to south (y) columns of the fields, 

and then averaged over each direction for each of the square subareas. For the two-

dimensional case, the mean two-dimensional power spectral density was determined as 

the radial average of the two-dimensional spectral density, determined from the two-

dimensional Fourier transform of the fields. The methodologies followed for the one- and 

two-dimensional spectral analyses presented here are described in detail in Trujillo et al. 
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[2007]. This spectral analysis was applied to the fields of snow depth and vegetation 

height in order to compare the scaling behavior of the two fields. 
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Figure 3.9. One-dimensional and mean two-dimensional power spectral densities of snow 

depth for the forested and alpine tundra subareas. 

The log-log plots of the one- and two-dimensional power spectral densities of snow 

depth are shown in Figure 3.9. The power spectra of the snow depth fields behave like k'p 

within two scale intervals, each characterized by a different spectral exponent (k is the 

wave number divided by the length of the profiles, and it represents the spatial scale or 

wavelength under consideration, and ft is the spectral exponent and characterizes the 
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degree of variability). For the one-dimensional case, the spectral exponents in the 

forested subarea for the low-frequencies interval are 0.4 and 0.6 for the x and y directions, 

respectively, while they are 3.5 and 3.4 for the x and y directions, respectively, for the 

high-frequencies interval. The break that separates the two intervals is located at a spatial 

scale of about 12 m. For the tundra subarea, the low-frequency spectral exponents are 1.3 

and 1.0 for the x and y directions, respectively, while they are 2.5 and 2.4 for the high-

frequency interval for the x and y directions, respectively. The scale breaks are located at 

69 m and 59 m for the x and y directions, respectively. The one-dimensional spectral 

exponents obtained for the low-frequency intervals indicate that for points separated by 

distances larger than the scale of the break, the corresponding snow depths are weakly 

correlated. The snow depth profiles are highly variable over scales larger than the scale of 

the break. On the other hand, the high-frequency spectral exponents indicate that for 

points that are closer than the break, the corresponding snow depth values are highly 

correlated. The profiles become smoother below the corresponding break. The change in 

the characteristics of the variability occurs at scales of the order of 10 meters for the 

forested subarea of several tens of meters for the tundra subarea. 

For the two-dimensional case, the low- and high-frequency spectral exponents for the 

snow depth field of the forested subarea are 1.4 and 4.4, respectively, while they are 2.1 

and 3.4, respectively, for the tundra subarea. The breaks are located at 10 m for the 

forested subarea, and at 64 m for the tundra subarea. The magnitudes of the observed 

one- and two-dimensional spectral exponents differ approximately by one, as expected 

theoretically for isotropic fields [e.g., Voss, 1985]. 
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The breaks in the one- and two-dimensional spectra of the snow depth fields of the 

two subareas are located within the same range found in the studies of the spatial scale-

invariance of snow depth along linear transects [Shook and Gray, 1994, 1996 and 1997; 

Arnold and Rees, 2003] and snow depth fields [Deems et at, 2006; Trujillo et ah, 2007]. 

However, the scale breaks for the snow depth field of the tundra environment are located 

at larger spatial scales than those of the forested subarea, similar to what was found by 

Trujillo et al. [2007], indicating longer characteristic scales in the snow depth field of the 

tundra subarea. This observation is consistent with what is observed in the two-

dimensional correlation functions (Figure 3.8). 

The last of the spectral analyses explores the scaling properties of the vegetation 

height fields. This analysis indicates that the power spectra of the vegetation height fields 

also behave like k'^ within two frequency intervals, with a low-frequency interval 

characterized by slopes between 0.5 and 0.8 for the one-dimensional case, and between 

1.3 and 1.6 for the two-dimensional case, and a high-frequency interval with slopes 

between 2.9 and 3.4 for the one dimensional case, and between 3.7 and 4.0 for the two-

dimensional case (Table 3.2). The locations of the breaks in the forested subarea coincide 

with those of the snow depth field, while in the tundra subarea the breaks occur at scales 

larger than those observed for the corresponding snow depth field. Therefore, the spatial 

organization of vegetation height and snow depth are similar in the forested subarea, as 

the spectral exponents and scale breaks are within the same ranges. Trujillo et al. [2007] 

obtained similar results from the analysis of the power spectral densities of snow depth 

and vegetation height in five 1-km2 areas. They showed that the similarities in the 

spectral properties of the vegetation height and snow depth fields in forested 
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environments are a consequence of canopy interception because the location of the peaks 

(maxima) in the vegetation height fields (coincident with the location of trees) coincides 

with the location of low points (minima) in the snow depth fields. The results presented 

here further confirm the control that vegetation and wind redistribution of snow exert in 

the spatial scaling characteristics of snow depth. 

Table 3.2. Summary of the spectral characteristics for the vegetation height fields in the 

forested and tundra subareas. 

Forested 

Low-frequency /? 
High-frequency /? 
Scale break (m) 

Tundra 

Low-frequency fi 
High-frequency /? 
Scale break (m) 

X 

0.5 
3.3 
9 

X 

0.8 
2.9 
14 

y 
0.6 
3.4 
10 

y 
0.8 
2.9 
15 

2-D 

1.3 
4.0 
8 

2-D 
1.6 
3.7 
14 

3.4.4 Synthetic Snow Depth Profiles and Fields 

To help understand the implications of the observed one- and two-dimensional power 

spectra, synthetic snow depth profiles and snow depth fields with bilinear spectral 

densities, and with variations in the spectral exponents and the scale of the break were 

generated. The spectral generation techniques are presented in the Appendix. 

3.4.4.1 Snow Depth Profiles 

In Figure 3.10 the effect of the scale of the break is shown with a series of profiles 

with low-frequency spectral exponent (J3\) of 0.0 and a high-frequency spectral exponent 

91 



(fiz) of 3.5. These values allow for a separation of a larger-scale interval that is highly 

variable and uncorrelated from a smaller-scale interval with little variability and high 

correlation. Tbk is the wavelength at which the break occurs, and is inversely related to the 

wave number (hk). The effect of increasing Tbk (i.e., reducing kbk) is illustrated by 

identifying the peaks or maxima above a zero threshold (circle markers) in the profiles. 

As Tbk increases, the separations between the peaks increase and many of the features 

(i.e., maxima and minima) in the profiles become less significant. By reducing kbk, the 

number of low-frequency perturbations within the scale interval characterized by spectral 

exponent J3\ is reduced, and the scales affected by such perturbations are limited to the 

larger scales. The increase in the high-frequency interval also increases the range of 

scales characterized by spectral exponent /%, associated with a stronger correlation 

structure. The differences in the scale at which the break occurs observed in the one-

dimensional spectra of snow imply significantly larger characteristic scales in the alpine 

tundra subarea, which is also consistent with the slower decay displayed in the correlation 

function of the alpine tundra subarea (Figure 3.8b). 
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(c)Tbk=128 
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0 128 256 384 512 

Figure 3.10. Synthetic profiles with a low-frequencies spectral exponent (/?i) of 0.0 and a 

high-frequencies spectral exponent (/%) of 3.5. Tbk is the wavelength at which the scale 

break occurs, and is related to the wave number by Nlkbk-

Figure 3.1 la shows a series of profiles with /?i varying between 0.0 and 2.0, constant 

/% of 3.5, and constant Tbk = 32. The vertical lines in the figure are included as a reference 

and are spaced at a distance of Tbk- Overall, the increase in the low-frequencies spectral 

exponent affects the features of the larger scales, leading to a stronger persistence in the 

profiles at scales larger than Tbk- The heights of the profile for points separated by 

distances larger than Tbk become more correlated as J3\ increases. The increase in J3\ also 

affects the variability of the smaller scales although in a less significant way, because the 

contribution of perturbations in the high-frequency interval is reduced as the power 

93 



spectrum in the low-frequency interval becomes steeper. The low-frequency spectral 

exponents of snow depth obtained in both of the subareas indicate a weaker correlation 

structure for scales larger than the corresponding break in the forested subarea with 

respect to that in the tundra subarea. 

128 256 384 

\ 

(b) 

128 256 

128 256 

A = 3.5 

384 512 

384 512 

512 

Figure 3.11. Synthetic profiles with (a) low-frequencies spectral exponents (J3\) varying 

between 0.0 and 2.0, and a constant high-frequencies spectral exponent (/%) of 3.5, and 

(b) with a constant low-frequencies spectral exponent (J3\) of 0.0, and high-frequencies 

spectral exponents (/%) varying between 1.5 and 3.5. All of the profiles were generated 

with Tbk = 32. The grey vertical lines are included as a reference scale and are spaced at a 

distance of Tbk-
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Figure 3.11b shows a series of profiles with a constant low-frequency spectral 

exponent of 0.0, high-frequency spectral exponents varying between 1.5 and 3.5, and 

constant Tbk = 32. As observed, the variability of the profiles for scales smaller than Tbk 

decreases as /% increases, while the features at scales larger than Tbk are preserved in all 

of the profiles regardless of the value of fh- The high-frequency exponent controls the 

characteristics of the variations for the smaller scales as the exponent controls the 

contribution of the high-frequency perturbations to the variance. Increasing the exponent 

implies a faster decay in the contributions, and hence, a smoother profile at scales smaller 

than Tbk- According to these observations and the high-frequency exponent values of 

snow depth for both subareas, the snow depth profiles in the forested subarea show 

higher correlation structure for scales smaller than the corresponding breaks. 

3.4.4.2 Snow Depth Fields 

Four isotropic fields with mean two-dimensional spectral exponents of 1.0 and 4.5 for 

the low and high frequencies, respectively, and with breaks {Tbk) occurring at scales 

between 16 and 128 are presented in Figure 3.12. The spectral exponents of the fields 

were selected to differ by one with respect to the exponents used to generate the profiles 

shown in Figure 3.10. Therefore, a cross section of the fields would exhibit similar 

spectral characteristics as the profiles in Figure 3.10. In the figure, square boxes of side 

dimensions equal to the corresponding Tbk are shown below each field as reference. 

Similar to the one-dimensional case, the scale at which the break occurs influences the 

characteristic scales of the fields, with the main features separated by distances 

comparable to the corresponding Tbk, and a much smoother pattern of variation for the 
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small scales. The case presented is similar to what is observed in the forested 

environment (Figure 3.3a), where little anisotropy is observed and the spatial 

organization of the trees strongly influences the spatial characteristics of snow depth at 

scales of the order of meters to tens of meters. The location of individual trees and 

canopy characteristics affect the amount of snowfall intercepted, and in consequence, 

influence the size, depth and location of local minima (i.e., tree wells) in the snow cover. 

Such control explains the similarities between the scaling characteristics of the snow 

depth and the vegetation height fields in the forested environment. 
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(a)Tbk=16 

• 4.0 

(c)Tbk=64 

(b) Tbk^ 32 

3.9 • 
(d)Tbk=128 
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3.5 

128 

3.2 

256 

Figure 3.12. Synthetic fields with two-dimensional low- and high- frequency spectral 

exponents of 1.0 and 4.5, respectively, and Tbk between 16 and 128. Black square boxes 

of side Tbk are shown below each of the fields as a reference scale. 
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For the anisotropic case, we explore first the effect of directional dependence of the 

scale of the break, and second the effect of changes in the low-frequency spectral 

exponents and the scale of the break simultaneously. These two sub-cases are included to 

simulate the type of variations in the spectral properties of snow depth observed by 

Trujillo et al. [2007] in wind dominated environments, as well as in the alpine tundra 

subarea studied here. Our observations indicate that the scale of the break varies from 

high to low from the predominant wind direction to the perpendicular direction, while the 

low-frequency exponent varies from low to high from the predominant wind direction to 

the perpendicular direction. 

Figure 3.13 shows two fields of512x512 generated with variations in the scale of the 

break such that the longer scale break occurs in a predominant direction, and the shorter 

scale break in a perpendicular direction. The low-frequency and high-frequency one-

dimensional spectral exponents were maintained constant for all directions, with /3\ of 0.0 

and fii of 3.5. The scale break as a function of direction for each of the fields is indicated 

by the black ellipse shown at the bottom of each field as a reference scale. The 

predominant direction (longer scale break) of the fields was selected at 40° counter clock­

wise (CCW) from the east direction. The field in Figure 3.13a exhibits small-scale 

variability, with longer separation distances between peaks along the predominant 

direction {Tbk = 64). Along the perpendicular direction (Tbk = 16), the variability occurs 

over smaller scales. In Figure 3.13b, similar characteristics can be observed, however the 

scale breaks occur at significantly longer spatial scales, with Tbk = 128 along the 

predominant direction, and Tbk = 64 along the perpendicular direction. Also, because fi\ 
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and fri are maintained constant across all directions, the variability of the fields above and 

below the breaks is similar for all directions, with a weak correlation structure above 

separations longer than the break, and a strong correlation structure for shorter 

separations. 
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Figure 3.13. Synthetic anisotropic fields generated with uniform one-dimensional low-

and high-frequency spectral exponents of 0.0 and 3.5, respectively, for all directions. The 

directional variations of Tbk are included as a reference scale at the bottom of each field, 

represented by the black ellipse. 

Figure 3.14 shows two synthetic fields generated with directional variations not only 

in the scale of the break, but also in the low-frequency spectral exponents. The high-
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frequency spectral exponent was set constant at a value of 2.5 for all directions, similar to 

the values observed for the snow depth field of the tundra subarea. The field presented in 

Figure 3.14a was generated with directional variations in fi\ between 0.0 and 0.5, and 

with variation in 7^ between 64 for the predominant direction and 16 in the 

perpendicular direction. The predominant direction of both fields is oriented at 130° 

CCW from the east. The directional variations of the scale break are included as a 

reference scale at the bottom of Figure 3.14a, represented by the black ellipse. The field 

presented in Figure 3.14b was generated using the same directional variation in Ttk as the 

one used for the field in Figure 3.14a, but with a wider variation in f}\, with values 

between 0.0 for the predominant direction, and 1.5 and for the perpendicular direction. A 

summary of the directional variations of j3\ and Tbk used to generate the fields is 

presented in Table 3.3. Because of these variations, the larger scales exhibit a stronger 

correlation structure (stronger persistence) along the perpendicular direction (40°/220° 

CCW) with respect to that along the predominant direction (130°/310° CCW), as /?i goes 

from 0.5 (Figure 3.14a) or 1.5 (Figure 3.14b) for the perpendicular direction to 0.0 for the 

predominant direction. These differences imply that for profiles across the predominant 

direction, points that are separated by distances larger than the corresponding scale break 

exhibit little or no correlation (/? = 0), while for profiles along the secondary direction, 

points separated by distances larger than the corresponding break exhibit a degree of 

correlation than is related to the spectral exponent (0.5 or 1.5). The correlation structure 

of the larger scales along intermediate directions lies in between these two bounds. 
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(a)0.0$p1 $0.5,p2 = 2.5 (b)0.0^(31 ^ 1.5, p2 =2.5 

ZJ 
-4.5 3.8 

Figure 3.14. Synthetic anisotropic fields generated with directional variations in f3\ 

between (a) 0.0 and 0.5, and between (b) 0.0 and 1.5. /% was set constant at a value of 2.5 

for all directions. The directional variations of 7^ are included as a reference scale (black 

ellipse). A summary of the values of J3\, pi and Ttk used to generate the fields is presented 

in Table 3.3. 

Table 3.3. Summary of the spectral characteristics used to generate the anisotropic fields 

presented in Figure 3.14. The angle is measured with respect to the east in the CCW 

direction. The two columns for/?i refer to the corresponding field in the Figure. 

Angle (°) 

130 
175 
220 
265 

A (a) 
0.00 

0.25 

0.50 

0.25 

/?.(b) 

0.00 

0.75 

1.50 

0.75 

h 
2.5 
2.5 
2.5 
2.5 

Tbk 

64 
22 
16 
22 
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The fields in Figure 3.14a and Figure 3.14b were generated using the same parent 

processes (the original white noise processes of each of the lines are maintained the same 

for both of the fields), so the features of the fields are similar, although the magnitudes of 

the variations are different as the spectral exponents are different. Both fields exhibit 

similar bands of high values and low values, similar to the ones observed in the snow 

depth field of the alpine environment (Figure 3.3b), in which snow drifts and scour areas 

are formed along a direction that is perpendicular to the predominant wind directions, and 

with separations between the snow drifts that are dependent on the location of 

topographic ridges and depressions. However, higher variability can be observed across 

the perpendicular direction in the field shown in Figure 3.14a in comparison to the field 

in Figure 3.14b, caused by the smaller low-frequency spectral exponent (0.5 compared to 

1.5). 

3.5 Summary 

LIDAR snow depths obtained in April 2003 for two adjacent areas of 500 m by 500 m 

were analyzed to determine scaling characteristics and spatial organization of snow depth 

in a sub-alpine forest and an alpine tundra environment. Both of the areas present similar 

topographic characteristics (e.g., slope and aspect), limiting the differences to vegetation 

characteristics and the influence of wind. The distribution of snow depth in the forested 

subarea follows a Gaussian distribution, while for the tundra subarea it is negatively 

skewed. The mean of snow depth increases with elevation in the forest area, while it 

decreases in the alpine portion. The standard deviation of snow depth in the tundra 
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subarea is greater by a factor of two compared to that of the forested area. The standard 

deviation of snow depth is relatively constant with elevation below the tree-line, while 

above the tree-line in the tundra subarea, it shows an overall increase. The two-

dimensional correlations of snow depth indicate little spatial memory and quasi-isotropic 

conditions in the forested area, while they show a marked directional bias that is 

consistent with the predominant wind directions and the location of topographic ridges 

and depressions in the tundra subarea. The spectral density functions of the snow depth 

fields follow a bilinear behavior with two scale intervals, each characterized by a 

different spectral exponent. The locations of the scale breaks in the forested area coincide 

with those of the vegetation height field, while the breaks in the snow depth scaling are 

displaced towards larger scales in the tundra subarea with respect to those observed in the 

corresponding vegetation height field. 
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3.6 Appendix 

Spectral generation techniques are useful for the generation of synthetic profiles and 

fields that exhibit spectral characteristics that are statistically indistinguishable from those 

observed in the snow depth spectra. Here we introduce modifications of Fourier filtering 

techniques and of the turning bands method to reproduce the bilinear power-law behavior 

observed in the profiles and fields of snow depth of the study areas. 

3.6.1 Bilinear self-affine profiles 

In order to generate traces with bilinear spectral densities, we use a modified version 

of the standard Fourier filtering method as indicated below. The following nomenclature 

is used: 

k: wave number. 

kbk- wave number at which the scale break occurs. 

Tbk'- wave length at which the break occurs, and it is related to the wave number by 

Nlkbk, where N is the number of data points in the profile. 

The traces are generated as follows: 

i. A white noise process is generated as a series of uncorrelated Gaussian random 

values for the desired number of data points (N). 

ii. The complex coefficients of the Fourier transform of the series obtained in step (i) 

are determined, 

iii. The complex coefficients of the Fourier transform of the white noise process are 

multiplied by a factor of \/kPl12 for k = I,...,kbk, and by a factor of 
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kbk jkPl11 for k = kbk+1,.--, N/2. The complex coefficients for the negative 

wave numbers correspond to the complex conjugate of the coefficients for the 

positive wave numbers, 

iv. An inverse Fourier transform is performed using the coefficients obtained in (iii). 

The power spectrum of the resulting series will follow a bilinear power law 

relationship with a scale break at f̂it-

Minimum and maximum absolute errors for the low-frequency exponent of the 

profiles in Figures 3.10 and 3.11 are 0.01 and 0.22, respectively, while the mean absolute 

error for all the profiles is 0.05. For the high-frequency exponent, the minimum and 

maximum absolute errors are 0.00 and 0.10, respectively, while the mean absolute error 

is 0.05. 

3.6.2 Bilinear Self-affine fields 

3.6.2.1 Case One: Isotropic fields 

Similar to the methodology used for generating linear and bilinear profiles, the Fourier 

filtering technique can be extended in order to generate synthetic isotropic fields, i.e., 

fields in which all directions in the x-y plane are equivalent, with a bilinear power 

spectrum with two-dimensional exponents fi\ and /%. 

The fields can be generated as follows: 

i. A random white noise field ~N (jx, a) is generated for the desired number of data 

points (Nby N). 

105 



ii. The complex coefficients of the two-dimensional Fourier transform of the field 

obtained in (i) are determined, 

iii. The complex coefficients of the two-dimensional Fourier transform of the white 

noise field are multiplied by a factor of l/k^ ' 2 for k < kbk, and by a factor 

0fkjA-*»/kM2 fQrk > £M,with* = (kx
2 + ky

2f. 

iv. An inverse Fourier transform is performed using the coefficients obtained in (iii). 

The mean two-dimensional power spectrum of the resulting series will follow a 

bilinear power law relationship with a scale break at kbk-

Minimum and maximum absolute errors for the low-frequency exponent of the 

isotropic fields in Figure 3.12 are 0.07 and 0.13, respectively, while the mean absolute 

error is 0.10. For the high-frequency exponent, the minimum and maximum absolute 

errors are 0.00 and 0.03, respectively, while the mean absolute is 0.01. 

3.6.2.2 Case Two: Anisotropic fields 

Bilinear anisotropic fields were generated using a modification of the turning bands 

method (TBM) [Matheron, 1973; Mantoglou and Wilson, 1982]. In two dimensional 

space, the TBM transforms the simulation of a two-dimensional realization into the sum 

of a series of one-dimensional realizations. In the isotropic case, the generations of the 

one-dimensional (line) realizations are performed along several lines in the unit circle, 

using a unique one-dimensional covariance function (or power spectral density function) 

that corresponds to a given two-dimensional covariance function. Then, the value of the 

two-dimensional process is obtained as a weighted sum of the corresponding values of 

the line processes. For a particular point in the two-dimensional space, the corresponding 
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one-dimensional values are assigned by orthogonally projecting the points of the line 

realization, reason for which the method is named 'turning bands', as the projection of 

the line process appears as a series of bands that rotate according to the direction of each 

of the lines. Further details of the projection methodology are not included here as such 

methodology has been extensively described in several related publications [e.g., 

Mantoglou and Wilson, 1982; Mantoglou, 1987; Setas and Reborddo, 2000]. The method 

assumes that the field to be simulated is second-order stationary and isotropic, and that at 

each point the values are normally distributed and have zero mean. 

More recent applications of the methodology have been developed for anisotropic 

covariance functions [e.g., Mantoglou, 1987; Setas and Reborddo, 2000]. Anisotropy can 

be simulated by distributing the lines around the unit circle along directions sampled 

from a non-uniform probability density function. An alternative approach for simulating 

anisotropy consists of making the spectral density function (or covariance function) of the 

one-dimensional process dependent on direction. The latter approach is the one 

implemented in this study, varying the spectral exponents and scale of the breaks as a 

function of direction. The line processes are generated following the procedure described 

in section 3.6.1. The methodology is applied uniformly distributing the desired number of 

lines along the unit circle similar to Mantoglou and Wilson [1982] and Mantoglou [1987]. 

In this way, the anisotropy in the spectral characteristics can be provided as an input in 

which the location of the scale break and the spectral exponents can be specified for each 

of the lines. The method was applied using the center of the grid as the origin for the 

generation. To ensure the continuity of the line processes, and as collinear directions have 

equivalent spectral properties, the dimension of the line processes was selected to be two 
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times the side dimension of the square grid, and the origin was set to coincide with the 

midpoint of the line. For example, if the desired grid size is NxN, the dimensions of line 

processes is 2N and the origin is located at point N. These characteristics condition the 

lower bound for the spacing of the line processes to be V2/2 times the spacing of the 

grid. Such condition ensures that the length of the lines is greater or equal than the length 

of the diagonal of the grid. 

Given the conditions stated above, the methodology can be implemented as follows: 

i. Define the size of the grid (N x A ,̂ spacing of the grid (Ag), spacing of the line 

process (A/), angular separation between the lines (e.g., degrees), and spectral 

properties for each of the lines (fii, fa and 7^). Note that defining the angular 

separation is equivalent to defining the number of lines (L). 

ii. A line process is generated for each direction using the corresponding spectral 

characteristics provided as input. This step is performed using the procedure 

described in section 3.6.1. kbk can be determined by approximating the result from 

dividing the total length of the desired profile by Tbk to the closest integer, 

iii. The value corresponding to each of the points in the grid is obtained as 

[Mantoglou and Wilson, 1982] 

1 L 

z,(*J = -rrEz<(X"-,0 (3-A1) 

Where zs(xN) is the realization of the two-dimensional process for the position 

xN, zt(xN -ii,) is the corresponding realization of the one-dimensional process 

108 



for line /, and xN u, is the projection of the position vector xN onto the unit 

vector u, (directional vector for line f). The subscript s indicates 'synthetic'. 

Minimum and maximum absolute errors for the low-frequency exponent of the 

isotropic fields in Figures 3.13 and 3.14 are 0.03 and 0.23, respectively, while the mean 

absolute error is 0.09. For the high-frequency exponent, the minimum and maximum 

absolute errors are 0.01 and 0.17, respectively, while the mean absolute is 0.07. 
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4 Cellular Automata Model for Simulating Wind Transport of Snow and the 

Interaction with Topography and Alpine Vegetation 

4.1 Abstract 

A cellular automata model is developed for simulating the evolution of snow packs in 

areas in which wind transport of snow and its interactions with terrain and short alpine 

vegetation are dominant. The model simulates the horizontal transport and deposition of 

snow from a layered snowpack formed by accumulated weekly precipitation, a physically 

based densification process that accounts for the compaction of the snow layers, and the 

interaction between the blowing snow with small-scale topographic features and 

vegetation. Other features include simulation of time-variable transport trajectories, 

space- and time-variable precipitation, and time-variable initial density. The erosion and 

deposition of particles is determined according to a predefined set of probabilities 

dependent upon the location of the grid cells relative to aerodynamic obstacles and the 

vertical angles with such obstacles. The interaction with the vegetation is simulated using 

a set of probabilities that depend on the height of the vegetation, and a relationship that 

relates the exposed vegetation height to the capacity of the vegetation to reduce snow 

removal and enhance deposition. The model is applied to combinations of synthetic 

topographic fields, vegetation patterns, and atmospheric conditions. The results show that 

the statistical properties of snow depth fields throughout the accumulation period in wind 

dominated environments depend on the transport volumes of snow, which are dependent 

on meteorological conditions (e.g., winds and temperature). The inter-seasonal 

116 



consistency of the spatial organization of snow covers in wind-dominated environments 

documented in several studies is conditioned to the consistency of wind patterns and 

wind transport potential. Years with differences in wind regimes and meteorological 

conditions (e.g., wind speeds and directions, temperatures) will exhibit differences in the 

spatial statistical properties of snow cover properties (e.g., depth and SWE). The 

magnitudes of the differences in the spatial statistical properties depend on the 

magnitudes of the differences in the meteorological conditions. 
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4.2 Introduction 

The interactions between the snow cover, topography, vegetation, and winds greatly 

control the spatial organization of snow cover properties in wind dominated 

environments [Hiemstra et al, 2002; Trujillo et al, 2007; 2009]. Such interactions 

determine the size and location of scour and accumulation areas, volumes of snow 

transport, distances over which the snow is transported, and sublimation losses, among 

others. Better understanding of these interactions and their effect in the spatial 

organization and the time evolution of snow covers in wind dominated environments 

allows for improvements in snowmen" modeling [e.g., Luce et at, 1998; Greene et al, 

1999; Liston, 1999], interpolation of point measurements [e.g., Elder et al, 1998; 

Erxleben et al, 2002; Erickson et al, 2005], downscaling of remote sensing data and 

model results [e.g., McGinnis, 1997; Weitzenkamp et al, 2008], subgrid scale 

parameterizations [e.g., Luce et al, 1999; Liston, 2004], and design strategies for 

measuring and monitoring snow properties [e.g., Xu et al, 1993]. 

The spatial organization of snow covers has been studied through the analysis of 

ground measurements [e.g., Evans et al, 1989; Elder et al, 1991; Shook and Gray, 1996; 

1997; Kuchment and Gelfan, 2001; Erickson et al, 2005], remote sensing measurements 

[e.g., Frezzotti et al, 2002; Deems et al, 2006; Trujillo et al, 2007; 2009], and results 

from snow models [e.g., Liston and Sturm, 1998; Liston et al, 1999; Liston et al, 2008]. 

The analyses of such datasets are limited by the spacing, extent and time continuity of the 

measurements, and by the spatial resolution and accuracy of the models. Some of the 
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most recent studies have focused on the analysis of snow depths close to maximum 

accumulation for scales between 1 m and 1 km using high resolution Light Detection and 

Ranging (LIDAR) data from the Colorado Rocky Mountains [Deems et al, 2006; Trujillo 

et al, 2007; 2009]. Trujillo et al. [2007; 2009] demonstrated that in wind dominated 

environments, the interactions between snow, winds, topography, and vegetation control 

the scaling properties and the spatial organization of the snow depth fields. However, 

these analyses only provide information for one date in the season, and the time evolution 

of the snow cover and the time variations in the characteristics of the spatial organization 

still need to be resolved. In this study, we address this problem by introducing a cellular 

automata model for the representation of snow covers in wind dominated environments, 

with components that allow for the simulation of the interactions between snow and 

topography, vegetation and wind patterns. Several hypothetical scenarios are simulated to 

analyze the response of the system to variations in precipitation, topography, and winds, 

providing physically based evidence for the characteristics of the spatial organization of 

snow depth in such environments, and also extending the analyses to other times in the 

season. The scales at which the model works are compatible with the available high 

resolution LIDAR measurements of snow depth analyzed in previous studies, facilitating 

comparison of the model results with real observations. 

4.3 Model Description 

A cellular automata model is a discrete representation of a real system consisting of a 

regular lattice in which the behavior of the system is modeled by defining a set of 

simplified rules for the local interaction between one cell and its neighboring cells. In the 
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model, each cell is assigned a discrete state that represents a variable specific to the 

system (e.g., 0 or 1, a color, or a finite integer). Time is generally discrete, and the state 

of a cell at a time Msa function of the state of the current and neighboring cells at time t-

1. The location of each cell is specified by its Cartesian coordinates with respect to an 

arbitrary origin and set of axes. Cellular automata models have been developed for 

multiple applications in disciplines ranging from physics and biology to social sciences 

because of their capability of reproducing complex behavior based on a simple set of 

rules governing local interactions, which facilitates their computer implementation [e.g., 

Wolfram, 2002]. 

Cellular automata applications specific to snow sciences include the simulation of 

crystal growth [Gravner and Griffeath, 2006; Ning and Reiter, 2007], snow avalanches 

[Kronholm and Birkeland, 2005; Barpi et al, 2007], and snow transport by wind 

[Masselot and Chopard, 1998; Chopard and Masselot, 1999]. In the latter studies, snow 

transport is simulated using a lattice-gas model in which a module that reproduces the 

wind dynamics is coupled with a snow-particle transport module to reproduce the 

behavior of the system at the microscopic and macroscopic levels. In this representation, 

the Navier-Stokes equation is reproduced, allowing for a realistic physical representation 

of the transport process. However, this type of model requires massive parallel computing 

and is not suitable for the 1-m scales of interest here as the model works at the particle 

scale (i.e., snow grains). 

The cellular automata model introduced here is designed to work at spatial scales of 

the order of 1 m and over weekly time steps. The snow pack is represented as a field of 

slabs in a rectangular lattice with periodic boundary conditions. That is, the state of the 

120 



system^-) is such thatflx+X, y+Y) =fix, y), whereof and Fare the periods in the x and y 

directions, respectively. Therefore, a slab transported outside of the boundary is brought 

back into the domain in the corresponding position of the opposite boundary. A 

maximum angle of repose is enforced to simulate the natural stabilization of the slopes. 

The erosion and deposition of slabs is determined according to a predefined set of 

probabilities dependent upon the relative location of the grid cells to aerodynamic 

obstacles and the vertical angles with such obstacles. The interaction with the vegetation 

is simulated using a set of probabilities that depend on the height of the vegetation, and a 

relationship between the exposed vegetation height and the capacity of the vegetation to 

reduce snow removal and enhance deposition. The snowpack is formed by accumulating 

weekly layers of precipitation that are subjected to wind redistribution. Following the 

redistribution, a physically based densification scheme that accounts for the compaction 

of the snow layers is applied to each layer allowing the representation of the variations in 

snow density through time. Other features include the simulation of time-variable 

transport trajectories, space- and time-variable precipitation, and time-variable initial 

density. This model is an extension of the cellular automata model for sand transport 

originally presented by Werner [1995], developed to simulate the three-dimensional 

formation and evolution of sand dunes in environments in which wind redistribution is 

dominant. Each element of the model is described below. 

4.3.1 Simulation Domain 

The simulation domain consists of a rectangular lattice in which the snow surface is 

represented by a stack of slabs of vertical dimension h at each location <x, y>, and 
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isotropic spacing in the x- and y- directions of AL. The slabs lay on top of a non-erodible 

and spatially variable solid surface, therefore allowing for heterogeneous topography 

such that the interaction of the snow with different physiographic scenarios can be 

simulated. 

4.3.2 Slab Transport 

The processes of erosion, transport, and deposition of snow by wind are influenced by 

factors such as snow conditions (e.g., cohesion), wind speed and direction, and the 

interaction of winds and blowing particles with obstacles such as topographic ridges and 

vegetation. No transport occurs at low wind speeds, but when the speed exceeds a given 

threshold, some particles begin to be removed and transported in the downwind direction 

until the speed is reduced such that no further transport can be sustained [Kind, 1990]. 

Higher wind speeds are associated with higher transport volumes over longer distances. 

These processes are simulated here by using a series of probabilities of removal and 

deposition, and transport trajectories. The theoretical framework of this representation is 

described below and additional improvements to this representation are incorporated in 

Section 4.4. 

The transport process starts with the random selection of a location, < xini, yM >, in the 

grid as an erosion site, dependent upon the existence of snow slabs at such location. If at 

least one snow slab exists, the top slab is removed with a probability, per0sion, and 

transported in the downwind direction according to a transport trajectory vector, Ll, with 

1 Symbols in bold face represent vectors 
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components in the x and y directions. At the arrival site, <xinj + Lx, yini + Ly >, deposition 

is determined according to a probability, pdeposmon, that is dependent on the conditions of 

the arrival grid cell. If the slab is determined to be deposited, the slab count at the 

deposition grid-cell is increased by one. If the slab is not deposited, a new arrival grid-

cell is determined in a similar manner using the last location as the initial and a 

deposition evaluation is performed for the new arrival location. This process is repeated 

until the slab is deposited. Descriptions of how per0sion and pdeposmon are determined are 

presented throughout the document, with improvements in their physical representation 

in Section 4.4. 

The probabilities of erosion and deposition are dependent on three factors: the location 

of shadow zones, the presence of snow on top of the solid layer, and the height of the 

vegetation exposed above the snow pack. These factors are dynamic, as they are affected 

by the snow depth surrounding a given location. A shadow zone is the area downwind of 

an aerodynamic obstacle, such that the wind velocity is reduced enough to suppress any 

further transport or removal. A shadow zone is the area on the downwind side of the 

crests of the surface of topography + snow located underneath an angle of/? (the shadow 

zone angle) with a horizontal line starting at the crests (Figure 4.1). In such sheltered 

areas, peroswn takes a value of zero and pdeposmon takes a value of one, implying that no slab 

can be removed by wind from a shadow zone and any slab arriving to a cell in shadow 

zone will be deposited. The second factor is the existence of snow on top of the 

underlying solid layer, as the probability of deposition at a site with no slabs, pdeposition-™, 

is less than the probability of deposition at a site with at least one snow slab, pdepositions, 

following the argument that there is a greater likelihood for saltating grains to rebound 
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from a solid surface than from a softer surface. The effect of the vegetation on the erosion 

and deposition probabilities is described in the Section 4.3.3 below. 

' ' Snow 
^ ^ ^ ^ Topography 

Figure 4.1. Shadow zone determination using the relief formed by the integration of 

topography and snow. 

Sliding of slabs occurs whenever the angle of repose exceeds a maximum angle of 

repose a. For the erosion case, if a is exceeded after the slab is removed, a slab is 

transported downslope from the cell with the steepest slope. The process is repeated for 

the cell source of the transported slab until a cell is reached in which the maximum angle 

of repose is not exceeded. For the case of deposition, once the slab is determined to be 

deposited, if the maximum angle of repose is exceeded, the deposited slab is transported 

down the steepest slope until it reaches a stable position. This process is not conditioned 

by the wind direction, and depends solely on the direction of the gradient of the surface 

of topography + snow. 

4.3.3 Vegetation Representation 

In alpine tundra environments, the interactions between snow, vegetation, winds, and 

topography exhibit feedbacks that strongly influence the spatial distribution of the snow 
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and the location of several vegetation species. Alpine plant species have optimal ranges 

of snow depth that favor seeding and growth of each species [Komdrkovd, 1979; Burns 

and Tokin, 1982]. For example, Walker et al. [2001] present a plant association chart in 

which favorable locations for several alpine tundra species are identified on the basis of 

wind exposure, snow depth ranges and snow-free days, illustrating the complex 

interactions between all of these influencing factors. These vegetation patterns have 

feedbacks on the spatial organization of the snow surface because, until fully covered by 

the snow, vegetation enhances snow deposition and reduces snow removal from the areas 

in which such vegetation is located as a consequence of the reduction in wind speeds. 

However, the impact of these feedbacks is limited by the scarcity and low height of 

alpine plant species, which in turn limits the impacts to the beginning of the accumulation 

period before they get fully covered and the ablation period when they become exposed. 

The framework for the representation of these interactions is presented below. 

The effect of alpine tundra vegetation is simulated by defining a 'vegetation 

effectiveness' that affects the probabilities of erosion and deposition from locations in 

which vegetation is present. To do so, a two-dimensional 'vegetation effectiveness' field 

with values that can vary between 0 and 1, similar to a frontal area index, is defined 

according to the location and height of the vegetation. A vegetation effectiveness of 0 

corresponds to an erosion probability of 1, and has no effect on the deposition 

probabilities. A vegetation effectiveness of 1 corresponds to a deposition probability of 1 

and an erosion probability of zero. Intermediate values affect the probabilities of erosion 

and deposition linearly as: 
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Perosion effect 

Pdeposition ~ P + Veffect V P) 

where veffect stands for vegetation effectiveness, and p can take the values of p'depositions 

or Pdeposition-ns, such that the vegetation effectiveness can increase the probability of 

deposition from either of the starting values. The erosion-deposition effectiveness of the 

vegetation is not constant but increases (linearly in our model) with the exposed 

vegetation height so that the burial of the alpine vegetation can be simulated. The 

vegetation effectiveness at a particular time, t, is calculated for every source and arrival 

cells according to the following relationship: 

/ \ / 4 SD(x,y,t)\ 
v^(x>y>0=v^{x>y>tyl-—(-i\ for 

v vheight \?>y)J 

SD(x,y,t)<vheight{x,y) (4.2) 
height \*->y )J 

veffec,(x>y>t)=° for SD(*>y>t)>vhe,ghXx>y) 

where vhejght(x,y) is the vegetation height above the ground, SD(x,y,t) is the snow 

depth above the ground, and veffecl (x,y,0) is the initial vegetation effectiveness. 

A flow diagram of the transport of one slab accounting for all of the factors described 

above is presented in Figure 4.2. 
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Initial cell 
<x™, y«> 

is selected 

Decrease number of 
slabs at 

<Xini, y™* by one 

•Yes-H 
Run avalanche 
subroutine for 

<XM, y™> 

Destination cell 
<xti„, yr,„> = <x«, y,„/> + <LX, Ly> 

No 

Run avalanche 
subroutine for 

<x«„, ySn> 

Yes 

<x« , y™> = <%„, yBn> -No- -No-

Figure 4.2. Flow diagram of the slab transport routine. 
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4.3.4 Time Evolution and Winds 

In the model, a time step is defined in terms of the number of transported slabs. 

Simulated time intervals can be related to actual time intervals by selecting the horizontal 

and vertical dimensions of the slabs to correspond to a given volume of transport similar 

to real transport rates, and in the case of snow, to the snow available for transport, which 

in this case, will be related to the volume of fresh snow precipitated during each time 

interval. To implement this, the horizontal grid size (A£) is selected to be 1 m, while the 

vertical slab size (h) is selected to be 0.1 m. These dimensions would allow for a 

comparison of the characteristics of the spatial distribution and organization of the 

simulated fields with high-resolution (~1 m) spatial measurements analyzed in previous 

studies [e.g., Trujillo et al, 2007; 2008]. Realistic mass transport rates can be simulated 

by selecting an appropriate time interval, i.e., number of slabs to be transported. 

For the case of snow, we have chosen weekly time intervals during which new snow is 

precipitated into the system, and an interval of a week is defined in terms of the fraction 

of newly precipitated slabs to be transported. This fraction will be referred to as 

'precipitation step' hereinafter. By using weekly intervals, the snowpack can be 

simulated as a layered system in which a new input is incorporated at the beginning of 

every time step. Also, this time step definition allows the model to simulate different 

levels of transport by simply changing the percentage of fresh snow to be transported 

during each interval. For example, if a total of 100 slabs are deposited at the beginning of 

a weekly interval and the time step is chosen to be 50% of the new precipitation, 50 slabs 

will be transported during that interval following the algorithm described in Section 

4.3.2. The other consideration here is that only new snow is to be transported during each 
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interval as the top layer of fresh snow is more likely to be transported as a consequence 

of the higher exposure to atmospheric conditions and lower densities in comparison to 

those of older snow. Another advantage of this time step definition is that dynamic wind 

trajectories can be simulated by simply defining time-dependent vectors, such that the 

effect of variable trajectories on the organization of snow depth can be analyzed. 

4.3.5 Precipitation and Densification of Snow 

The snowpack is formed by the accumulation of several layers of snow that are 

deposited by precipitation at different times and that exhibit different snow characteristics 

(e.g., snow density). In the model, weekly, spatially-distributed precipitation fields 

covering the modeling domain are added at the beginning of each time step. Newly 

precipitated snow constitutes the topmost layer of the snowpack and modifies the number 

of slabs at each position in the lattice. For the spatially uniform case, a precipitation time 

series is provided as an input in terms of snow water equivalent (SWE), and is 

transformed to a depth of snow by using a density of new snow that can be either 

constant throughout the simulation, or time dependent to represent variations caused by 

changes in temperature and other factors. The snow depth values are transformed to the 

number of slabs using the desired value of h, and these amounts are assigned to the 

precipitation fields that correspond to the time steps. For the spatially variable case, the 

same procedure is followed, although the transformation from SWE to snow depth is 

performed for each of the grid-cells. However, in this case, the model assumes a spatially 

uniform density of fresh snow, so the spatial differences in the number of slabs added are 

only a consequence of the spatial differences in SWE. 
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Even in the absence of erosion and deposition, a key process in the evolution of the 

snowpack is densification. In wind-dominated environments, the density and other 

physical characteristics of new snow (i.e., snow flakes formed by intermingled snow 

crystals) is affected by the impacts between the suspended snow flakes and the snow 

surface, as reported from field observations and experimental wind tunnel studies. Izumi 

[1984] reported that daily new snow density tends to increase with wind speeds within 3 

m/s to 9 m/s, while Kajikawa [1989] reported that new snow density increased slightly 

with wind speeds of up to 5 m/s. Sato et al. [2008] adjudicate this dependence of the 

increase in new snow density on wind speed to the degree of snow flake fracture induced 

by the collisions enhanced by higher wind speeds, which in consequence, enhances the 

packing of snow crystals. Snow density is also affected by compaction and the 

rearranging of snow grains, and by metamorphism of snow crystals. Arnaud et al. [2000] 

state that the rearranging of unbounded grains dominates the densification of porous 

snow, while Kojima [1975] argues that the compression of a snow layer due to a snow 

load is the major cause of the natural densification of a snow pack. All of these processes 

play a role in the densification of snow in wind dominated environments, however, a 

comprehensive model for snow densification that accounts for all of them would require 

large amounts of input data, and its implementation in a cellular automata model as the 

one proposed here would be impractical. Consequently, densification of snow is 

simulated in the model using the representation proposed by Kojima [1957, 1967], who 

studied the process using a viscous compression theory. The advantage of this 

representation is that it requires input data that is available in our cellular automata 

model, and it allows for a physically based representation of the process of compaction of 
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the snow by its own weight, which has been identified as one of the main driving forces 

in the densification process, as illustrated in the quoted studies. 

In his studies, Kojima found an empirical relationship between a compactive viscosity 

factor, rj, and snow density, p, given by: 

Tj(p)= 77'exp(Kp) (4.3) 

where K was found to take a value of 21.0xl0"3 m /kg for dry compact snow layers 

and rf was found to be in a range between 6 kg d/m and 16 kg d/m [Kojima, 1957]. 

This relationship is then combined with the strain rate-stress relationship in (4.4): 

]_dp=w(t) ( 4 4 ) 

p dt r\ 

where W(t) is the overburden load exerted on a particular snow layer. Substituting 

(4.3) into (4.4), rearranging and integrating, the following expression is obtained: 

By solving the expression through substitution, we obtain: 

rj'lEX-Kp^-EX-Kp)]^ [W(t)dt (4.6) 

Where p0 is the initial density of the layer (i.e., at time of deposition), p is the 

density at time t after deposition, and £,(- Kp0) is the exponential integral, defined as: 

>exp(-/) 
EAx>£^lldt (4.7) 

For an alternative development, refer to Kojima [1967] and Motoyama [1990]. In 

Figure 4.3, plots of the time-integrated load versus snow density are used to illustrate the 
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sensitivity of (4.6) to 77' and p0. Figure 4.3a, b and c illustrate that the effect of the initial 

density on the relationship is lost for density values greater than about 250 kg/m3, 

regardless of the value of rf. On the other hand, for a given value of the time-integrated 

load, greater snow densities are obtained for lower rf values. These relationships are 

used in the model to determine the snow density corresponding to a particular layer at 

each time step and at each location. The procedure consists of calculating at all locations 

the time-integrated load for each layer at time t. The overburden load is obtained by 

summing the weight of the overburden layers plus half of the weight of the layer of 

interest. The corresponding snow density is obtained from (4.6) using the time-integrated 

load. Once the new snow density values are estimated, the redistributed SWE values for 

the layers are divided by the corresponding densities to obtain the snow depth of each 

layer at each location, and subsequently, the corresponding snow slabs field is obtained 

maintaining the original value of h. Consequently, throughout a simulation, the volume of 

a slab is maintained constant, but the weight and SWE contained in a slab is dynamic. 
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Figure 4.3. Sensitivity of the relationship between the time-integrated overburden load 

and snow density to rf and p0. (a), (b) and (c) illustrate the differences when using 

initial snow densities of 50 kg/m , 70 kg/m and 100 kg/m , but maintaining fixed rj' 

values, (d), (e) and (f) illustrate the differences when using rj' values of 6 m /kg, 10 

m /kg and 16 m /kg, but maintaining fixed initial density values. 
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4.4 Model Results and Discussion 

The following simulations have the objective of demonstrating the effect that the 

characteristics of the underlying topography, vegetation, and influencing meteorological 

factors such as precipitation and winds have in the spatial heterogeneity of snow cover 

properties (e.g., depth and densities). Several simulations are presented with variations in 

total transport volumes, synthetic topography and vegetation, time-variable wind 

trajectories (e.g., magnitude and direction), and time-variable precipitation and initial 

snow density, illustrating the response of the system to changes in these influencing 

factors. These results are also used to demonstrate the evolution of the snow cover 

throughout the accumulations season, broadening the time coverage of previous studies 

of the spatial heterogeneity of snow cover properties. In all of these simulations, the angle 

of repose, a, is chosen to be 40° as a representative maximum slope. The shadow zone 

angle, /?, is set to 15°, the probability of deposition when no snow slabs are present, 

PdeposMon-ns, is set to 0.4, while 0.6 when slabs are present (pdepositions), representing a lower 

likelihood for saltating grains to be deposited on a solid surface than on a softer surface. 

4.4.1 Sinusoidal Topography 

The first series of simulations uses a simple representation of topography following a 

sinusoidal shape with four cycles in a square domain of 64 m (Figure 4.4). This 

representation is equivalent to a one-dimensional case, as the transport vector, L, is set to 

have only one component in the x-direction, perpendicular to the crests of the sinusoidal 

topography. All of the models are run for a total simulation period of 16 weeks, 

representing a period between the first snow depositions on November, and March, when 

134 



redistribution of snow by wind generally starts decreasing due to increases in 

temperatures, solar radiation, new snow density, and cohesion. 

Figure 4.4. Sinusoidal topography and transport trajectory, L, used in the first set of 

simulations. 

Results from two model runs with weekly precipitation of 50 mm (5 slabs with p0 

=100 kg/m3) distributed uniformly within the model domain are presented in Figure 4.5. 

The profiles in Figure 4.5a and b were generated applying the densification methodology, 

while the profiles in Figure 4.5c and d were generated without densification, maintaining 

the initial density throughout the simulation. L was set to 2 m in the x direction, and the 

fraction of weekly precipitation transported in each iteration (precipitation step) is set to 

one. These simulations are used to illustrate the interaction between the snow and the 
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underlying topography, and the effect of the densification model in the results. The 

results in Figure 4.5a and b show high accumulation of snow on the lee side of the 

topography, with source areas on the upwind side. The evolution of the snow cover is 

determined by the interaction of the 'blowing' slabs and the integrated surface of 

topography + snow depth, which is constantly changing due to the redistribution of slabs 

and the densification of the snow. The snow depth profiles (Figure 4.5b) exhibit a similar 

sinusoidal shape, although displaced to the right by a distance close to 8 m, as the peaks 

in the snow profiles coincide with the depressions in the topography. Very different 

results are obtained when no densification is allowed (Figure 4.5c and d). At the end of 

the fourth week, a marked peak in the snow surface is formed behind every ridge. These 

peaks then lead to the formation of new pronounced peaks on the downwind side by the 

end of the subsequent four weeks. This process is repeated for the subsequent periods. 

The results can be interpreted as a displacement of the existing peaks in the downwind 

direction, accounting of course for the buildup of the newly deposited slabs, as indicated 

by the arrow in Figure 4.5c. When no densification is simulated, the behavior is very 

similar to the behavior of sand environments in which downwind migration of sand dunes 

occurs [e.g., Havholm and Kocurek, 1988; Momiji et al, 2000]. A similar migration of 

the peak is observed in Figure 4.5a, although the time and spatial scales over which the 

migration occurs are drastically different from the case with no densification. The 

representation of snow densification is paramount to appropriately simulate the evolution 

of the snow pack during the accumulation period in environments with significant wind 

redistribution. 
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Figure 4.5. Snow depth profiles simulated using a sinusoidal topography (in gray) for two 

scenarios: with densification ((a) and (b)) and without densification ((c) and (d)). Results 

for every four weeks are shown from the bottom up. The integrated profiles of 

topography + snow depth are shown in (a) and (c), and the profiles of snow depth only 

are shown in (b) and (d). 

Results obtained from the densification model are shown in Figure 4.6, in which four 

snow density profiles every four weeks are shown for a cross section in one of the 

maxima of the profiles in Figure 4.5b. The differences in the profiles illustrate the two 

features that the representation allows: time evolution of snow density and the vertical 

stratigraphy of the snowpack. At the end of week four, snow density varies between 100 

kg/m and 380 kg/m , while at the end of week 16, snow density varies between 100 

kg/m3 and 520 kg/m3. The change in the depth of the layers through time can also be 

observed, with a fast reduction in the depth of the new layers during the first weeks 

following deposition. Kojima [1967] compared similar snow density profiles obtained 
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using the model with observations in the month of January obtaining a close fit between 

the two. Motoyama [1990] tested the consistency of the model by estimating snow depths 

through time using the snow density model with the same set of parameters for several 

years, demonstrating that the same set can be used for different seasons at a given 

location with reasonable results. For illustrative purposes, a snow density profile 

measured in an environment in which wind redistribution has been shown by Trujillo et 

al. [2007] to be a dominant factor in the organization of the snow cover is shown in the 

upper right corner of Figure 4.6. The pit measurements were obtained on February 25, 

2003, at the Buffalo Pass study area (Colorado, U.S.A.) as part of NASA's Cold Land 

Processes Experiment (CLPX) [Cline et al, 2004; Elder et al, 2009b]. Such collection 

date would correspond to around week 14 in the model. The measured snow densities 

vary between 70 kg/m3 and 410 kg/m3, a range similar to the ranges in the topmost 3 m of 

the simulated profile for corresponding time steps (e.g., 100 kg/m -405 kg/m at week 

12). Also, the shape of the simulated density profiles resembles the vertical variation 

observed in natural snow packs. These results are indicative of the realistic snow 

densities that can be obtained with the densification model implemented here. 
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Figure 4.6. Snow density profiles every four weeks for a cross section in one of the 

deepest points in the snow profile shown in Figure 4.5(b). A profile of snow density 

measured in a wind dominated area in Colorado (U.S.A.) is shown in the smaller frame at 

the upper right corner for comparison. 

Figure 4.7 illustrates the sensitivity of the simulated longitudinal snowpack 

characteristics to the length of the transport trajectory. The two simulations were run 

using the same parameters used for the model shown in Figure 4.5a and b, although the 

139 



transport trajectory was set to 8 m and 16 m in the x direction. These two lengths coincide 

with a half cycle and a full cycle of the sinusoidal topography. The results obtained using 

4 = 8 m are very similar to the results from the model shown in Figure 4.5 a and b, with 

accumulation zones on the lee side of the topographic ridges and erosion on the upwind 

side. On the other hand, the results obtained using Lx= 16 m are significantly different, 

with flat snow depth profiles, conforming a surface that is roughly parallel to the 

topographic surface, as if no redistribution had occurred. The coincidence between the 

magnitude of the vector L and the wavelength of the topography causes the source and 

destination cells to be located at an equivalent position in consecutive ridges, which after 

numerous iterations leads to a relatively uniform distribution of the snow slabs. This 

behavior only occurs when the magnitude of L and the separation between the ridges 

coincide. Longer and shorter trajectories lead to results that are statistically equivalent to 

each other, showing little sensitivity to the magnitude of L, as tested with several other 

lengths (not shown). These results illustrate that the sensitivity of the model to the 

magnitude of L is dependent on the characteristics of the topography, i.e., separation 

between topographic ridges. 
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Figure 4.7. Snow depth profiles simulated with two different transport trajectories. 

Results for every four weeks are shown from the bottom up. The integrated profiles of 

topography + snow depth are presented in (a) and (c), and the profiles of snow depth only 

are presented in (b) and (d). 

4.4.2 Synthetic Topography with k~ Spectrum 

The next set of simulations is performed over synthetic topographic fields exhibiting 

the spectral properties of real topography documented in several studies [e.g., 

Mandelbrot, 1982; Brown, 1987; Turcotte, 1987; Huang and Turcotte, 1989; Turcotte, 

1989; Trujillo et al, 2007]. In these studies, the power spectral density of terrain 

elevation (i.e., topography) was found to follow a power law relationship with frequency, 

with one-dimensional spectral exponent values of around 2.0, which corresponds to 

Brownian motion. The fields were generated using a Fourier filtering technique in which 

the two-dimensional Fourier transform coefficients of a white noise field are adjusted 
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according to the desired power spectral exponent. The new field is generated by 

performing an inverse Fourier transform using the modified coefficients. Details on the 

implementation of the methodology can be found in Trujillo et al. [2009]. The fields were 

smoothed out to eliminate the small scale surface roughness by applying a moving 

average over a square window of side dimension of 32 m. 

4.4.2.1 Spatial Domain of 128 by 128 

The first simulation is performed with the objective of analyzing the effects of 

increasing transport volumes on the organization and statistical properties of the snow 

fields. For this scenario, a square topographic field of side dimension of 128 is used 

(Figure 4.8). The size of the field was chosen to reduce computational time but ensuring a 

size large enough to represent the topographic interactions observed in reality. The 

transport vector, L, was set to 4 m in the x direction. Weekly precipitation values were set 

to 50 mm (5 slabs with po=\00 kg/m ) distributed uniformly over the domain. All of the 

remaining parameters are the same as those used in the sinusoidal topography 

simulations. The volume of precipitation to transport (precipitation step) is set to 0.5, 1, 

3, and 5 times the volume of precipitation. In Figure 4.9, results from the simulations 

with precipitation steps of 1.0 and 5.0 are shown. In the figure, the fields of topography + 

snow depth (a and c) and snow depth (b and d) at the end of week 16 are shown for each 

of the simulations. Comparison of the topography in Figure 4.8 with the topography + 

snow depth fields (Figure 4.9a and c) illustrate how some of the depressions in the 

topography fill in and some high accumulation areas develop on the lee side of 

topographic ridges. The size of these accumulation and scour areas increases as the 
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volume of transport increases. The snow depth fields (Figure 4.9b and d) are significantly 

different, with deeper snow depths in the high accumulation areas for the higher transport 

case, while the variations in snow depth occur over shorter separations for the lower 

transport case. 

32 

mm 
64 

96 

128 

128 32 

Figure 4.8. Synthetic topographic surface used in the first set of simulations for the 

Brownian motion case. 
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Figure 4.9. Snow depth fields at the end of week 16 simulated using the topography 

shown in Figure 4.8 for precipitation steps of (a) 1.0 and (b) 5.0. 

A comparison of the frequency distributions of snow depth every four weeks for the 

different simulations with transport volumes between 0.5 and 5.0 is presented in Figure 
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4.10. As time progresses within each of the simulations, the frequency distributions of 

snow depth move to the right, that is, the mean snow depth increases and the range of 

snow depths gets wider, as expected (i.e., mass is conserved). The comparison also shows 

that the distributions progress from Gaussian distributions for the low transport volumes 

to distributions highly skewed to the right for the higher transport volumes. The 

distributions become flatter over a wider range as the volume of transport increases. 

These results are similar to what we have observed from LIDAR snow depth fields in 

alpine and wind dominated environments, for which positively skewed distributions have 

been obtained, with higher standard deviation values and wider snow depth ranges [e.g., 

Trujillo et al, 2009]. Also, the appearance of bare-ground patches can be observed in the 

snow depth distributions for the higher transport volumes (Figure 4.10c and d), with the 

frequencies that correspond to zero and low values increasing with the transport volume. 

To complement these observations, the relationships between the standard deviation of 

snow depth and the precipitation step every four weeks are shown in Figure 4.11. Results 

for a simulation with precipitation step of 10.0 were added to the figure. The standard 

deviation shows an increase with the volume of transport, with a steeper increase at low 

transport volumes, and a stabilization trend at high transport rates. These results indicate 

that in a given area, changes in wind regimes between seasons induce changes in the 

statistical properties of the snow depth fields from year to year, and that those differences 

are less significant between seasons with already high transport volumes. 
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Figure 4.10. Frequency distributions of snow depth every four weeks simulated using the 

topography shown in Figure 4.8, and for precipitation steps of (a) 0.5, (b) 1.0, (c) 3.0 and 

(d) 5.0. 
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Figure 4.11. Standard deviation of snow depth versus precipitation step every four weeks. 

The results from these simulations show that the statistical properties of snow depth 

fields throughout the accumulation period in wind dominated environments depend on 

the transport volumes of snow, which are dependent on meteorological conditions (e.g., 

winds and temperature). The inter-seasonal consistency of the spatial organization of 

snow covers in wind-dominated environments is conditioned to the consistency of wind 

transport potential. Years with differences in wind regimes and meteorological conditions 

(e.g., wind speeds and temperatures) will exhibit differences in the spatial statistical 

properties of snow cover properties (e.g., depth and SWE). 
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4.4.2.2 Spatial Domain of 128 by 128 with Meadow Vegetation 

The following simulation is performed using the topographic field in Figure 4.12 with 

the objective of illustrating the control exerted by meadow vegetation in the organization 

of snow depth fields under high wind conditions. The field was generated to have an 

undulating topography with slopes low enough not to create shadow zones on the 

downwind slope. Instead, the topographic surface is used to identify low elevation areas 

(depressions) in which meadow vegetation frequently exists due to the convergence of 

melting and precipitated water caused by the gravitational gradients induced by the 

topography. Subsequently, the vegetation pattern shown in Figure 4.12 was generated in 

the topographic depressions with vegetation height values following an uncorrelated log-

normal distribution with a mean of 1.0 and a standard deviation of 0.1. The field of 

vegetation effectiveness was generated following a linear relationship with height, 

reaching a maximum effectiveness of one at a height of 1.5 m. The simulations were 

performed using a lower weekly precipitation of 10 mm of SWE (1 slab with yOo=100 

kg/m3) to avoid the complete burial of the vegetation. A high precipitation step value of 5 

was chosen to allow for significant redistribution making the effect of the vegetation 

more noticeable. The vector L was again set to be 4 m in the x direction. All of the 

remaining parameters are the same as those used in the simulations above (i.e., Figure 

4.9). 
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Figure 4.12. Synthetic topography with meadow vegetation (black stems) used for the 

simulation in Figure 4.13. 

Results from the simulation are presented in Figure 4.13. The snow depth field 

obtained at the end of week 16 (Figure 4.13a) shows how the vegetation acts as a trap for 

the snow directly precipitated in the meadow and for the snow blown from the bare areas. 

Before the vegetation gets fully covered, more energy is required to remove the snow in 

the meadow than in the open, and the reduction in wind speeds on the vegetated area 
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causes more snow to be deposited. These processes are represented here by the increase 

in the probabilities of deposition and the reduction of the probabilities of removal by the 

vegetation. Also, within the meadow, higher accumulations are observed in the upwind 

side of the vegetated area because more snow is transported downwind from the bare 

areas neighboring the meadow than from within the meadow. A similar pattern is 

observed at other times throughout the simulation (not shown). The time variations in the 

statistical properties (i.e., mean and standard deviation) of snow depth in both the 

meadow and bare areas are shown in Figure 4.13b. The mean snow depth is, on average, 

0.20 m higher in the vegetated area, although the difference varies between 0.11 m at the 

beginning of the simulation period and 0.24 m towards the end of the simulation. On the 

other hand, the time variations in the standard deviation of snow depth exhibit a different 

behavior within both areas. In the bare areas, the standard deviation shows a monotonic 

increase through time from about 0.1 m at the beginning of the simulation to 0.2 m at the 

end. On the other hand, the standard deviation in the vegetated area shows little variations 

around a mean value of 0.17 m, although without any particular trend. These results 

indicate that for the conditions simulated, the variability within the vegetated area 

remains relatively uniform through time, while the variation around the mean continues 

increasing through time in the bare area. To the authors' knowledge, no evidence of this 

behavior has been presented in the existing literature. 
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Figure 4.13. Results obtained from the simulation with the synthetic topography and 

vegetation patterns shown in Figure 4.12. (a) Simulated snow depth field at the end of 

week 16, and (b) mean and standard deviation as a function of time for both, vegetated 

(meadow) and bare areas. 

4.4.2.3 Spatial Domain of 512 by 512 

The following simulation is performed over a domain of 512 by 512 to extend the 

spatial coverage of the model, providing information over spatial scales similar to the 

scales analyzed in previous studies of the spatial organization of snow fields in wind 

dominated environments [e.g., Trujillo et ah, 2007; 2009]. The simulation is performed 

using a new topographic field (Figure 4.14) generated using the Fourier filtering 

technique described above. Besides the increase in the domain extent, two significant 
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extensions of the model are introduced in the following simulations to improve the 

representation of the physics of the transport processes. To define these extensions, data 

from a meteorological station located in the Alpine Intensive Study Area (ISA) of the 

CLPX collected in the winter 2002/2003 [Elder and Goodbody, 2004; Elder et al, 2009a] 

are used to provide physical support to the model extensions. 

Figure 4.14. Synthetic topographic surface used in the second set of simulations for the 

case of topography with k'2 spectrum. 

First, the initial density of the freshly fallen snow is now variable through time to 

represent the variations in density as a result of changes in atmospheric conditions, in this 

case, as a response to variations in air temperature. Although the density of fresh snow is 

also dependent on several other factors such as shape and configuration of snow crystals, 
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wetness, and winds, temperature persistently shows significant correlation values with 

fresh snow density [e.g., Hedstrom and Pomeroy, 1998; Judson and Doesken, 2000]. 

Temperature has been used in several studies to define regression relationships with 

snowfall density using linear models [e.g., Diamond and Lowry, 1953] and exponential 

models [e.g., Hedstrom and Pomeroy, 1998], among others. Although these models do 

not explain the full range of variability of fresh snow density, they do capture the average 

behavior, making such approximations adequate for the simulations performed in this 

study. The following simulations are performed using the linear model in (4.8): 

Po(T)=po(0)+kT, T<0°C (4.8) 

where p0(T) is the fresh snow density at a temperature of T. The slope (k) was 

selected to be 0.005 kg/m3/°C to reproduce the average results from observations of fresh 

snow density in the Rabbit Ears area in the Colorado Rocky Mountains presented in 

Judson and Doesken [2000]. Weekly average temperatures were obtained from the 

meteorological station in the Alpine ISA for the period between November 2002 and 

March 2003 (Figure 4.15). These temperature values were then used to estimate the fresh 

snow density values for each week shown in Figure 4.15. Weekly precipitation totals for 

the concurrent period in 2002-2003 were also obtained from a nearby SNOTEL station 

(Rabbit Ears-CO06J09S) (Figure 4.15) to complement the model inputs. 
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Figure 4.15. Weekly temperatures and precipitation used in the simulation shown in 

Figure 4.17. The fresh snow density values (in kg/m3) corresponding to each temperature 

are shown next to each weekly marker. 

The second model extension concerns the representation of the probabilities of 

removal and transport trajectories, which are highly dependent on the predominant wind 

directions and the corresponding wind speeds. Wind transport of deposited snow is 

initiated when a particular threshold speed is exceeded [Kind, 1990]. Such threshold 

speed is highly variable in space and in time, and it is highly dependent on atmospheric 

conditions and snow characteristics [Li and Pomeroy, 1997]. Threshold wind speeds (atz 

= 10 m) for snow transport have been measured to range between 4 m/s and 11 m/s for 
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dry snow conditions, and between 7 m/s and 14 m/s for wet snow conditions [Li and 

Pomeroy, 1997]. Also, the transport trajectories (length and direction) depend on the 

predominant wind directions and the corresponding wind velocities. To represent these 

processes, the meteorological data from the Alpine ISA are analyzed to define the 

parameters of wind direction and transport trajectories based on observations. The 

distribution of wind direction for the period between November 2002 and March 2003 

(16 weeks) are shown in Figure 4.16a, while the distribution and mean of wind speed 

corresponding to each of the direction bins are shown in Figure 4.16b. This analysis 

illustrates that the predominant wind directions are also associated with higher wind 

speeds and are distributed over wider ranges, which translates to significantly larger 

transport rates over longer distances along the predominant wind directions. The 

distribution of wind direction was then combined with the proportion of wind speeds 

above a threshold value of 4 m/s to determine a conditional distribution of wind direction 

so that transport of snow will occur along each given direction according to the 

distributions in Table 4. The value of the threshold wind speed was chosen to be 

relatively low given that new snow in the Rabbit Ears area is generally dry and exhibits 

relatively low densities [Judson and Does ken, 2000], which facilitates the transport of 

newly deposited snow. No transport occurs along directions between 0° and 60° as the 

wind speeds along these directions do not exceed the threshold level required for snow 

removal (Table 4). Additionally, directional variations of the magnitude of the transport 

vector L are also introduced based on the observations, following a one to one linear 

increase in the magnitude of L with the conditional mean speeds, V (V\V>vlhreshold, 
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where V is the wind speed and V represents the mean) (Table 4). This representation 

allows for longer transport lengths along the predominant wind directions. 
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Figure 4.16. (a) Distribution of wind direction at the Alpine Intensive Study Area (ISA) 

in the Colorado Rocky Mountains, and (b) Distributions of wind speed for each of the 

wind directions. The whiskers cover the entire range of the data for each direction bin, 

the lower and upper limits of the box mark the 0.25 and 0.75 percentiles, and the internal 

line marks the median. The dots correspond to the mean of each set. Wind directions are 

measured clockwise with respect to the north. 
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Table 4. Fractions of wind speeds greater than a threshold speed of 4 m/s (p(v > 4 m/s)), 

and average wind speeds for the values above 4 m/s as a function of direction for the 

wind data analyzed in Figure 4.16. 

Direction 
(°) 
0 
30 
60 
90 
120 
150 
180 
210 
240 
270 
300 
330 

p(v > 4 m/s) 

0.00 
0.00 
0.00 
0.56 
0.58 
0.72 
0.43 
0.40 
0.51 
0.86 
0.79 
0.49 

Conditional 
frequency 

0.000 
0.000 
0.000 
0.004 
0.010 
0.024 
0.008 
0.007 
0.020 
0.353 
0.497 
0.077 

Mean wind speed 
above 4 m/s 

0.0 
0.0 
0.0 
6.0 
6.6 
8.0 
6.6 
6.0 
6.9 
8.4 
8.2 
5.6 

The simulated snow depth field at the end of week 16 is shown in Figure 4.17a. In the 

field, bands of low and high snow depths are aligned perpendicularly to the predominant 

wind directions, with deeper snow on the downwind side of topographic ridges, while 

shallow snow depths on the upwind slopes. The correlation structure of the field can be 

observed in Figure 4.17b, in which the two-dimensional correlation of snow depth at the 

end of week 16 is shown. The correlation function indicates a correlation structure that is 

consistent with the predominant wind directions, with an anisotropic behavior in which a 

stronger correlation structure exists along the perpendicular to the predominant wind 

directions. This structure is similar to the two-dimensional correlation structure of snow 
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depth observed in wind dominated environments, for which stronger correlations occur 

along directions perpendicular to the predominant wind directions [Trujillo et ah, 2009]. 

Another important feature is the existence of negative correlations of the order of -0.4 

aligned with the predominant wind directions, and at lags of the order of 25 m to 30 m, 

comparable with the separation distances between the deep and shallow snow depth 

bands observed in the field. The analysis of the progression of the two-dimensional 

correlation functions through time (not shown) indicates that the correlation structure 

becomes stronger as time progresses, as the deep and shallow areas in the snow surface 

become more pronounced. A plot of standard deviation versus mean snow depth 

throughout the simulation is shown in Figure 4.17c. The figure indicates a linear increase, 

which is remarkably similar to the observations presented in Egli and Jonas [2009], who 

analyzed the hysteretic behavior of the curve of standard deviation versus mean snow 

depth using daily time series from 77 snow depth stations in the Swiss Alps, of which 

about 75% were located above tree-line. In their analysis, Egli and Jonas [2009] obtained 

a quasi-linear increase of the standard deviation with the mean snow depth during the 

accumulation period until a maximum is reached at the peak of the winter season. After 

the peak is reached, the trajectory retreats along the same path until a distinct turning 

point is reached. The remaining of the trajectory during the ablation period follows a 

clearly different path illustrating the hysteretic behavior of the curve. Evidence of the 

relationship using observations at the scales at which the model works has not, to the 

authors' knowledge, been presented in the literature. Finally, the temporal variation of 

mean snow density is shown in Figure 4.17d, with a range between 50 kg/m and 325 

kg/m3, and with time variations that reflect the deposition of new snow. 
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Figure 4.17. (a) Simulated snow depth field at the end of week 16; (b) Two-dimensional 

correlation function for the simulated field at the end of week 16; (c) Standard deviation 

versus mean snow depth for the simulated fields (each point corresponds to a weekly 

pair); (d) Progression of the mean snow density throughout the simulation period. 
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A comparison of the simulated snow depth field at the end of week 16 with LIDAR 

snow depths obtained on April 8, 2003 in the Walton Creek ISA of the CLPX [Miller, 

2003] is shown in Figure 4.18. The Walton Creek ISA is located in the Rabbit Ears area 

in Colorado, and the spatial organization of snow depth has been shown to be controlled 

by wind redistribution, and the interactions of the winds with topography and vegetation 

[Trujillo et al, 2007]. Figure 4.18a shows a section of the LIDAR field in which the 

interaction between the blowing snow and the undulating topography has induced a 

pattern of snow distribution with eroded areas in the upwind slopes and deposition areas 

in the downwind slopes. This pattern of organization is remarkably similar to the pattern 

obtained from the simulation performed using the synthetic topography shown in Figure 

4.14. Both fields exhibit high and low accumulation areas separated by comparable 

distances, and with similar shapes and ranges of variation, illustrating the capabilities of 

the model to reproduce the characteristics of the spatial organization of snow depths in 

wind dominated environments. Further development of the model would allow for 

improvements in the representation of wind patterns, snow removal and deposition, and 

additions of other types of vegetation (e.g., ribbon forest). 
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Figure 4.18. Comparison of (a) high-resolution LIDAR snow depths at the Walton Creek 

ISA in April/2008 and (b) the simulated snow depths in Figure 4.17a. 

4.5 Summary and Conclusions 

A cellular automata model for simulating the evolution of snow packs in areas in 

which wind transport of snow and its interactions with terrain and short alpine vegetation 

are dominant is introduced. The model is designed to work at small spatial scales (~1 m) 

and over weekly time steps. The processes simulated include a layered snowpack formed 

by accumulating weekly precipitation, a physically based densification scheme that 
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accounts for the compaction of the snow layers, and the interaction between the blowing 

snow with small-scale topographic features and vegetation. Other features include the 

possibility of time-variable transport trajectories, space- and time-variable precipitation, 

and time-variable initial density. The erosion and deposition of particles is determined 

according to a predefined set of probabilities dependent upon the location of the grid cells 

relative to aerodynamic obstacles and the vertical angles with such obstacles. The 

interaction with the vegetation is simulated using a set of probabilities that depend on the 

height of the vegetation, and a relationship that relates the exposed vegetation height to 

the vegetation effectiveness. 

The simulations indicate that when no densification of snow is allowed, the behavior 

of the snow surface is very similar to the behavior of sand in environments in which wind 

transport is a dominant process and in which downwind migration of sand dunes occurs. 

The results also show that the representation of the process of densification is of 

paramount importance to appropriately simulate the evolution of the snow pack in wind 

dominated environments. The sensitivity to variations in the transport volumes shows that 

the size of accumulation and eroded areas increases with transport volumes. Also, the 

variability of the snow depth fields occurs over shorter distances in the low transport 

cases. Analysis of the time evolution of the statistical distribution functions of the 

simulated fields shows that as time increases the mean snow depth increases and the 

snow depth values have wider ranges. Also, the distributions progress from Gaussian 

distributions for low transport rates to distributions highly skewed to the right for the 

higher transport rates. These results are in accordance with previous observations of the 

distributions of snow depth in environments in which wind redistribution of snow is 
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dominant, for which highly skewed distribution functions have been observed. Analyses 

of the standard deviation of snow depth as a function of the transport volumes indicate a 

steep increase in the standard deviation at low transport values, while the rate of increase 

decreases for the higher transport volumes. However, the standard deviation did not reach 

a stabilization point within the transport volume ranges analyzed. These results indicate 

that in a given location, changes in wind regimes between seasons induce changes in the 

statistical properties of the snow depth fields, and that those differences are less 

significant between seasons with already high transport volumes. The simulation 

performed using synthetic topography with low relief and meadow vegetation shows that 

this type of vegetation acts, until fully buried, as a trap for snow directly precipitated in 

the meadow and for the snow blown from the upwind bare portions. Also, the snow depth 

field in the vegetated area exhibits higher means and a relatively uniform standard 

deviation, while in the bare areas the field shows an increase in the standard deviation 

with time, indicating increases in the variability through time. 

The results from the simulation performed over synthetic topographic domains of the 

order of 500 m and with time variations in precipitation, fresh snow density and wind 

characteristics (i.e., wind directions and transport distances) reproduce the time and space 

variations of snow cover properties previously observed in wind dominated environments 

in several locations. The spatial patterns of the simulated snow depth fields, the 

anisotropy in the two-dimensional correlation function, and the time progression of the 

snow cover (i.e., standard deviation as a function of the mean snow depth, and density 

changes throughout the season) resemble the observations presented in several studies, 

illustrating the potential of the model for studying the effect of changes in atmospheric 
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conditions (i.e., precipitation, temperature and winds) and physiographic conditions (i.e., 

topography and vegetation) on the spatial organization of snow cover properties (i.e., 

snow depth, snow density and SWE) during the accumulation period. 

Overall, the results presented here show that the statistical properties of snow depth 

fields throughout the accumulation period in wind dominated environments depend on 

the transport volumes of snow, which are dependent on meteorological conditions (e.g., 

winds and temperature). The inter-seasonal consistency of the spatial organization of 

snow covers in wind-dominated environments documented in several studies is 

conditioned to the consistency of wind patterns and wind transport potential. Years with 

differences in wind regimes and meteorological conditions (e.g., wind speeds and 

directions, temperatures) will exhibit differences in the spatial statistical properties of 

snow cover properties (e.g., depth and SWE). The magnitudes of the differences in the 

spatial statistical properties depend on the magnitudes of the differences in the 

meteorological conditions. 
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5 Summary and Final Remarks 

LIDAR snow depths, bare ground elevations and elevations filtered to the top of 

vegetation, together with the analysis of synthetically generated profiles and fields of 

snow depth obtained using Fourier filtering and spectral techniques, and simulations 

performed using a cellular automata model for redistribution of snow by wind, were used 

to characterize the spatial organization and scaling properties of snow depth in different 

environments. The analyses show that the power spectra of snow depth behave as k'^ 

within two distinct frequency intervals, each with different spectral exponent. The 

spectral exponents found for each of the intervals indicate that the snow depth surface is 

more variable (or rougher) when observed at scales larger than the corresponding scale 

break, while much smaller variations appear when looked at scales smaller than such 

break. The larger scales explain the majority of the variability. The scales that separate 

these two intervals are located at wavelengths of the order of meters to tens of meters. 

None of the scale breaks in the snow depth spectra were observed in the power spectra of 

bare ground elevation, or in the spectra of topography + vegetation. Neither the power 

spectrum exponents nor the scale breaks can be explained based on the power spectrum 

of the underlying topography and topography + vegetation. On the other hand, the 

spectrum of vegetation height exhibits very similar behavior as the snow depth spectrum, 

with a low-frequencies interval with mild slopes, and a high-frequencies interval with 

steeper slopes. These two intervals are separated by a scale break located at scales of the 

order of 10 m. 
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When the spectra of snow depth are compared to the spectra of the corresponding 

vegetation height, two distinct scaling behaviors can be identified. In the areas in which 

snowfall interception is dominant and snow redistribution by wind is minimal, the scale 

breaks in the snow depth spectra occur at similar scales as those of the corresponding 

vegetation. On the other hand, in areas where snow redistribution by wind is dominant, 

the scale breaks in the snow depth spectra are displaced towards scales larger than those 

of the corresponding vegetation. Redistribution of snow by wind leads to the formation of 

snowdrifts and scour areas over larger scales, affecting the scaling characteristics of the 

snow depth surface after the snow is initially deposited. The scales at which the switch in 

the scaling properties of snow depth occurs are comparable to the separation distance 

between peaks (local maxima above a threshold) in the snow depth profiles. These 

characteristics support the conclusion that the break in the scaling behavior of snow depth 

is controlled by the vegetation characteristics (e.g., height, area covered by the canopy, 

and separation between trees) when wind redistribution is minimal and canopy 

interception is dominant, and by the interaction of winds with features such as surface 

concavities and vegetation when wind redistribution is dominant. Such effect of wind 

redistribution is also evidenced in the directional spectra, with the lowest low-frequencies 

exponents and the largest scale breaks occurring along the predominant wind directions, 

as sign of scaling anisotropy and directionality in wind-dominated environments. Until 

this study, evidence of the links between these processes and the scaling behavior 

observed in the power spectrum of snow depth in these two types of environments had 

not been provided. 

171 



The detailed analysis of the snow depth fields in the sub-alpine forest and alpine 

tundra environments show how and why differences in the controlling physical processes 

induced by variations in vegetation cover and wind patterns lead to the observed 

differences in spatial organization between the snow depth fields of these environments. 

In the sub-alpine forest area, the mean of snow depth increases with elevation, while its 

standard deviation remains uniform. In the tundra subarea, the mean of snow depth 

decreases with elevation, while its standard deviation varies over a wide range. The two-

dimensional correlations of snow depth indicate little spatial memory and quasi-isotropic 

conditions in the forested area, while they show a marked directional bias that is 

consistent with the predominant wind directions and the location of topographic ridges 

and depressions in the tundra subarea. The spectral density functions of the snow depth 

fields follow a bilinear behavior with two scale intervals, each characterized by a 

different spectral exponent. The locations of the scale breaks in the forested area coincide 

with those of the vegetation height field, while the breaks in the snow depth scaling are 

displaced towards larger scales in the tundra subarea with respect to those observed in the 

corresponding vegetation height field. These observations and the synthetic snow depth 

fields generated with one- and two-dimensional spectral techniques show that the scale at 

which the break occurs increases with the separation distance between snow depth 

maxima, and that the correlation structure of the profiles and fields for the different scale 

intervals increases with the spectral exponent. 

The results obtained using the cellular automata model for simulating wind 

redistribution of snow illustrate the response of the system to the different processes 

represented in the model. Simulation results show that the correlation structure of the 
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snow depth fields becomes stronger as the amount of snow transported increases, while 

the probability distributions of the fields progress from a Gaussian distribution for small 

transport values to positively skewed probabilities for high transport values. The analysis 

of the standard deviation of snow depth as a function of the transport volumes indicates a 

steep increase in the standard deviation at low transport values, while the rate of increase 

decreases for the higher transport volumes. However, the standard deviation did not reach 

a stabilization point within the transport volume ranges analyzed. These results indicate 

that in a given location, changes in wind regimes between seasons induce changes in the 

statistical properties of the snow depth fields, and that those changes are less significant 

between seasons with already high transport volumes. The simulation performed using 

synthetic topography with low relief and meadow vegetation shows that this type of 

vegetation acts, until fully buried, as a trap for snow directly deposited in the meadow 

and the snow blown from the upwind bare portions. Also, the snow field in the vegetated 

area exhibits higher means and a relatively uniform standard deviation, while in the bare 

areas, the field shows an increase in the standard deviation with time, indicating increases 

in the variability through time. Additional snow fields simulated using synthetic 

topography generated to follow a power-law spectrum with slopes similar to the ones 

observed in the study areas in Colorado reproduce the time and space variations of snow 

cover properties previously observed in wind dominated environments in several 

locations. The spatial patterns of the simulated snow depth fields, the anisotropy in the 

two-dimensional correlation function, and the time progression of the snow cover (i.e., 

standard deviation as a function of the mean snow depth, and density changes throughout 

the season) resemble the observations presented in several studies, illustrating the 
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potential of the model for studying the effect of changes in atmospheric conditions (i.e., 

precipitation, temperature and winds) and physiographic conditions (i.e., topography and 

vegetation) on the spatial organization of snow cover properties (i.e., snow depth, snow 

density and SWE) during the accumulation period. 

The results obtained in this research have important implications with respect to 

processes, measurement and model scales. The existence of a break in the scaling of 

snow depth at scales of the order of meters to tens of meters indicates a switch in the 

characteristics of the variability above and below the break. Within each scale interval, 

similar processes are controlling the variability. In forested environments, the location of 

the scale break is controlled by the separation between trees that induce local minima in 

the snow surface caused by canopy interception. In environments with significant wind 

redistribution of snow, the break is associated with the separation between snow drifts 

and depressions caused by the interactions of the blowing snow with topographic features 

(e.g., ridges and depressions) and vegetation. If the objective is to reveal small-scale 

processes such as vegetation interception by individual trees and wind interaction with 

small features such as surface concavities, trees and rocks, measurement and model 

scales should be selected within the high-frequency range. In this way, the details of the 

snow depth surface between the peaks can be revealed. If the objective is to represent the 

average effect of processes such as canopy interception of snowfall and snow 

redistribution due to wind, measurement and model scales should be selected within the 

low-frequency range. For practical purposes in hydrologic applications, accurate 

description of the small-scale interactions might not be necessary and the detailed 

information required to reproduce such processes might not be available. Model and 
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measurement scales should be selected according to such objectives. Also, the simulation 

results show that the statistical properties of snow depth fields throughout the 

accumulation period in wind dominated environments depend on the transport volumes 

of snow, which are dependent on meteorological conditions (e.g., winds and 

temperature). The inter-seasonal consistency of the spatial organization of snow covers in 

wind-dominated environments documented in several studies is conditioned to the 

consistency of wind patterns and wind transport potential. Years with differences in wind 

regimes and meteorological conditions (e.g., wind speeds and directions, temperatures) 

will exhibit differences in the spatial statistical properties of snow cover properties (e.g., 

depth and SWE). The magnitudes of these differences depend on the magnitudes of the 

differences in the meteorological conditions. 

Finally, the research reported here opens future possibilities for the analysis of the 

variability of snow cover properties over scales between 1 m and 1000 m. This range of 

scales is of relevance for applications in snowmelt modeling, interpolation of point 

measurements, remote sensing, and design strategies for measuring and monitoring snow 

properties, among others. For example, analyses of the subgrid heterogeneity for different 

grid sizes can be performed using the spectral techniques used for the generations 

presented in here, given that these techniques allow for reproducing the spectral 

characteristics observed in the fields of snow depth. Other applications include: extending 

the processes simulated in the cellular automata model to other types of vegetation that 

also affect the distribution of snow through the horizontal obstruction of wind flow (e.g., 

conifer trees), and coupling the model with a snowmelt model to analyze melting 
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patterns, broadening the time frame beyond the accumulation period through the ablation 

period. 
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