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ABSTRACT

Three methods of analysis for prediction of infiltration and water
content profiles in a soil column are presented.

The first method is the more or less classical finite difference
approach except that the governing equations are those deduced from
two-phase flow theory. As a result the determination of the water
content at the soil surface before ponding is facilitated. Similarly
after ponding the calculation of the capacity infiltration rate is more
stable than with the usual finite difference approximations to Richards'
equation. The second method is purely analytical. It "speaks" as
results such as ponding time are obtained explicitly in terms of the
various parameters of the problem (hydraulic conductivity, effective
capillary drive, initial water content, etc.). Each solution applies
for a particular value of the exponent n 1in the power law form of the
relative permeability vs. normalized water content curve. Solutions
have been obtained for n = 1,2,3,4,6 and 8. Profiles look realistic.
Nevertheless, the results are approximate. A third method, a hybrid
method, tries to combine the advantages of the numerical and analytical
techniques by retaining the versatility of the numerical method and the
low cost of the analytical method. The hybrid method is illustrated in
depth for the case n = 1. The case n = 2 has been discussed previ-
ously in the literature (Morel-Seytoux, 1982). Results for the case

n= 4 are given without derivation. The case n = 4 has been implemented



operationally in a computer program SOILMOP. Tests (though limited)
indicate that accuracy with SOILMOP is comparable with existing differ-
ence code for the Richards' equation and is 25 times cheaper. The

hybrid technique appears to have a significant potential.
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RESEARCH OBJECTIVES

The overall objective of the research was the development of a
surface-subsurface hydrologic model that portrays accurately fluid
movement in the unsaturated zone and is so cost-effective that it can be
incorporated readily in complex models for prediction of the evolution
of water quality both in the unsaturated zone and in the underlying

aquifer.



ACHIEVEMENTS OF CONTRACT

It is not desirable to repeat in this completion report all the
results obtained over the past three years and the detailed procedures
by which they were obtained. These results and procedures can {or will)
be found in one thesis (Ross, 1982), one report (Ross and Morel-
Seytoux, 1982), and several papers in preparation.

Rather a brief review of the methods of attack and a sample of
results will be given. Generally speaking the thrust of the research
has been in the direction of development of new and imaginative methods
that will greatly reduce the cost of management studies of the quality
of water in the vadose zone and in the connected aquifer without signif-

icant reduction in accuracy. In this regard the project was successful.



GOVERNING EQUATIONS FOR SOIL MOISTURE EVOLUTION

The nomenclature used in this report follows the accepted practice
for the description of moisture evolution from the two-phase (water and
air) flow point of view (e.g. Morel-Seytoux, 1979). The basic governing

equations are the water volume conservation equation:

5t 55 = O (1)

with the usual notations (Morel-Seytoux, 1979, p. 17) and the v-integral

equation:
N u
K[hau - hab + HC(OU) + f fwdz]
v = b (2)
u
J prdz
b

where the subscripts u and b refer to prevailing conditions at the
top (upper boundary) and bottom of a soil column. In Eq. (2) Hc(eu) is
the effective capillary drive (Morel-Seytoux, 1979, p. 20). The depen-
dence of the effective capillary drive on the value of water content at
the bottom (lower boundary) is not shown explicitly in this notation for
the sake of brevity. The water velocity v, is given by the relation:

_ - _ a8
v = vo = vfw + Gw 55 (3)

with the usual notations (Morel-Seytoux, 1979, p. 24).
Given the expression of vy in Eq. (3) the conservation equation,

Eq. (1), becomes more explicitly:



90 9 . . 90, _
v + G - E 5-2-)_0 (4)

5t a7
(In later sections the subscript w in fw, Gw’ and Ew~will be dropped for
simplicity.) Egs. (2) and (4) provide two equations for the unknowns
0(z,t) and v(t). The solution of this system of 2 equations can be
obtained (approximately) by numerical techniques (e.g. finite difference

method) or analytically.



APPROXIMATE NUMERICAL FORMULATION

Discretization and Mean Water Content

An integral form of KEq. (1) is:

z
0 2 fdz] = vi - v

2

2
- (5)

QDIQD
e

where the indices 1 and 2 refer to two arbitrary levels in the soil
column. If Az represents the distance between these two levels, then

Eq. (5) can be rewritten in the form:

%E = (——KE*—E) (6)
where 6 is thegverage water content at a given time over the interval Az
in a mass balancesense. In the finite difference technique the flow
domain is discretized. Figure 1 illustrates the selected grid system.

Application of Eq. (6) to the cell j yields the finite difference

spatial approximation:

i

woi-h T Vw02 (7
where j is the cell index, Gj is the mean water content in cell j and
j-% (and similarly j + %) is an index that refers to the location
(level) of the boundary (interface) between cell j-1 and cell j. The

finite difference (simplest) temporal approximation of Eq. (7) is:

v g0 ] At
T B L L2 (®)

where 9; represents the (new) mean water content in cell j at the end of

the time step of duration At whereas 6? represents the (old) value at
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Figure 1. Typical Finite Difference Grid Geometry,
Notation and Indexing



the beginning of the time step. It is important to be fully aware that
Gj is not reaily a numerical approximation for the true value of 8 at
level Zj but more accurately an approximation for the mean water content
in cell j. The fundamental difference in physical meaning between 0.
and 6(zj) is illustrated on Figure 1. Tt is also clear from the figure

that 6, is not the value of & at depth z

2 The two values coincide only

2

if the water content profile is truly straight within a given cell.

Estimation of Water Fluxes (Velocities) at Cell {Block) Interfaces
(Boundaries)

It is (also) important to realize that Eq. (8) will naturally
conserve water in every cell even if the fluxes at the cell boundaries
are calculated erroneously. To complete the finite difference approxi-
mation it remains to select an expression for the fluxes at the cell
boundaries. From the water conservation meaning of Eq. (8) it is clear

that the best estimate for v

, should be a time average over the
» )72

interval At. Its exact estimation however would require the continuous
solution for © in time at such boundaries. 1In the finite difference

scheme values of 0 are calculated only as spatial averages for a cell

and only at discrete times. The value of ;w = (time average) of
yJ T2
. . . . 0
v, j-1 1s estimated as a weighted mean of the values at time t  and at
’ 2

time t°. The simplest finite difference form for v from Eq. (3) is at

any time:
v ., =vf. , +GC., -E. , 2(d 371 (9)

The functions f, G, and E evaluated at interface of index j-% can be

evaluated as mean values of the same functions at the grid points j-1



and j. Thus for example an approximation for fj_52 is fj-% = %[f(@i)
+ f(ej_l)]. Alternately one can calculate the mean value of 6 at grid

oints j and j-1 thus 0, = %(0. + 0, and next evaluate f(0. .
P J J J'% 2( J J‘l) ' ua ( J'%)

Actually the weights are not both % for variable grid size. For vari-

able grid size, with the first method of spatial averaging, then:

Az, £(6. ) + Az, (6.
S B E LS L (10)
j - Z . + Az, .

The values of Gj-% and Ej_1 are calculated similarly for the old values
2

of 6, 6°. Then v, -y is calculated for the new values of 0, 6Y. The

b
time average is then calculated as a weighted mean of the values of v,

at the old time and at the new time, with weights A® and Av, both posi-

tive and adding to 1. Denoting by vz j-3 the value of Ve i1 at the old

’ 2 ’ 2

time and similarly by v; b for the new time, Eq. (8) takes the form:

?
vV _ A0 N V v - at -
6, =6, + [A v, w.i-s " Ve J+,) N CAR ’J+%] (11)

J wW,]l-%

Finite Difference Approximation

Grouping terms involving unknown values, the new values, on the left

side of the equation, Eq. (11) takes the form:

A v At gV e AV At g0
w,j=% Az, J w,jts Az, J
J ]
[8] (o]
+ A (vw,j-% - J+l) (12)

The terms V: involve several unknown 0' at grid points j-1, j and j+1.

The dependence of v: j-1 as can be seen explicitly in Eq. (9) and im-

b

plicitly in Eq. (10) on 6} and 6;_1 is not linear. To linearize



Eq. (12) in the 8' the f, G, and E functions are evaluated at a previ-
. A% th . . v m
ously estimated value of 6, the m— iterate estimate of 8% denoted 0™,
Substitution of the expression for v. . , (and v . ,) from Eq. (9) into
WyJ1-% w,]t%s

Eq. (12) yields an equation for the unknowns 6V, namely:

8y - o7
AV VT T - D ,<—i———~ill;—-> at
- - -5\Az. + Az, Az .
6V v

v v .m _m m m jti J \lAt
+ 0, +{A f ; 2E

j Jte T Tith ith <Az t bz, )|Az

o of o o At
= + - o

A0 50 "w,j+’/2>Azj (1)

Ordering the unknowns in order of increasing index Eq. (13) takes the

final explicit form:

m m
20t E. E.
J-% v v At J=% its v
N R e 8z, Ot [1 AR .(Az Yz "R ¥ Az ) ]BJ
1 J j-1 J Jj*l
m
v At 2§+% Y
Az . (Az, + A§+1 ) i+l
0 0 0 0 At v m m m
=07+ A% (v s Vo) sz A [ (£ - )
m m At
" (9 Gj+%>]2x‘z_j 1

Eq. (14) applies at all the internal nodes of the system i.e. for j = 3,
N-2 and in this case each eduation involves 3 unknowns. The values of 0
at the upper boundary denoted Gu or 61 and at the lower boundary denoted
Bb or BN are given as boundary conditions. Eq. (14) applies also for

J = 2 but in this case there are only 2 unknowns (62 and 83). Similarly

for j = N-1 the 2 unknowns are GN_2 and eN-l'
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To simplify notations a little bit let us define some composite
variables, namely:

At 2E
m .,V

m
- N
i,j-1 A Azj(Az,

1
=%
(15)

+ Azj—l)

vf + G = vF | (16)

Eq. (14) takes the briefer form:
m v m m v m v
" Y+ [1 + (b. 4™ )}e. N )
Jj»j-1 j-1 Jyj-1 3,3%1/]73 J,itl jtl
. a0 o/ o _ .0 At v/im_m _ m_m At -
=0+ Ay i vw,j“f%)AZj PN, - Fj%)Azj an

With the choice of A® = 1, AY = 0 the system of Eqs. (17) is said to be

explicit. In that case there is only one unknown 8; per equation. With
. o _ v o_ S . .. 0 _ LV _ 4 .

the choice A7 = 0 and A" =1 it is fully implicit. For A" = A" = % it

is the Crank-Nicolson scheme. 1In the latter cases there are 3 unknown 6

per equation.
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UPPER BOUNDARY CONDITIONS

The natural hydrologic conditions at the upper boundary are: a
given rainfall rate (it rains), a condition of ponding (it has rained so
long that infiltration capacity has been exceeded and water accumulates
(ponds) over the soil surface), a condition of ponding (including zero
depth) but it no longer rains and evaporation takes place from a very
wet soil and finally a condition of limited evaporation when the soil
has dried up (evaporation continues but no longer at the potential
rate). More concisely these various boundary conditions (b.c.) will be
called: rainfall condition, ponded rainfall condition, and evaporation
condition.

The mathematical statements of these boundary conditions are
applicable for the numerical or the analytical approximations. To
discuss these boundary conditions it is best to visualize a typical
hydrologic sequence of events, starting with rain over a soil of arbi-
trary but given initial moisture state. After a while if the rainfall
rate is high enough, capacity will be exceeded. The time at which
infiltration capacity occurs is called the ponding time. It is not
known a priori. It must be calculated. Following ponding and as long
as ponding continues (rain or no rain) the boundary condition is no
longer that of a given (prescribed) flux but that of a given depth of
ponding and a given water content (natural saturation) at least until
air starts to escape and bubble out through the ponded depth of water.
The so called given ponded depth actually depends on the overland flow
process and on the prevailing evaporation rate from a free water sur-

face. With no more rain and no more ponding the boundary condition
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turns into one of a given evaporation rate, the evaporation potential.
As the soil driec up at the surface the soil reaches its evaporation
capacity. After that the soil evaporates at capacity. The time at
which the soil reaches its evaporation capacity has not received a
particular name. One could call it the "evaporation capacity time".
The ponding time is indeed the "infiltration capacity time".

The approach followed to impose any type of boundary condition is
to convert it to one of a given water content eu at the soil surface.
The natural (hydrologic) boundary condition is rarely one of a given
water content. Nevertheless the numerical and analytical schemes are
developed for a boundary condition which is always one of a prescribed
water content at the soil surface Gu(t). The trick is to reduce every

possible b.c. to one of a given Gu.

(Given) Rainfall Boundary Condition

With r denoting the rainfall rate (expressed as a velocity) the
boundary condition is simply that the water velocity at the soil surface

equals the rainfall rate (until ponding time is reached), explicitly:

56 _
vf(Bu) + G(Gu) - E(Gu) 5, =r (18)

0
u

If Eq. (18) can be solved for Bu the rainfall boundary condition is
converted to one of a given Gu. In the numerical scheme one expresses
v explicitly as a function of Bu as shown in Eq. (2) and one approxi-

th
mates gg in a finite difference form. In Eq. (2) for v at the m—
0

u

iterate level one maintains the dependence of HC on Bu but one evaluates
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the other terms using the mEE iterate estimate of the water content

profiles. For simplicity let us define:

u
m _ .m
{ fw dz = LG (19)
and
v m
g urdz = LR (20)

The letter L is used mnemonically because the integrals have dimensions
of length. The subscripts G and R refer respectively to grqvity and
viscous resistance to flow. The superscript indicates the iterative
level of the water content profile used to evaluate the integrals. With

these notations the expression for v at the m-tiB iterate level is:

~

m
- K[hau - hab * Hc(eu) * LG]

(21)
m
LR

Prior to ponding at the soil surface the air is in free contact with the
atmosphere and hau = hA where hA is atmospheric pressure. The value of

hab will depend on the lower boundary condition. Eq. (18) takes the

form:

m 20 -
m f ((9u)[hA - hab + HC (eu) + LG] + G (eu) - E(eu) 52 . = r (22)
R u

It remains to express 99

2z

in finite difference form. It is clear from

G)u 6, - 06

Figure 1 that the simple approximation ———E——E will not be very good
2

specially if z, is not very small. To account for the significant
curvature of the profile a higher order approximation which makes use of

3 points in the profile rather than the usual 2 points is used, namely:



N
N
N W
N
w

a0 - 2
oz

(23)

<D
N N
w

Note that for zy very large compared to z

expected to the simple approximation (62 - eu)/ZZ' This suggests that a

2 the expression reduces as

good ratio for 22/23 should be of the order of 1/3.

Substitution of Eq. (23) into Eq. (22) yields the equation:

= IW?

= B

[(hA B hab) * Hc(eu) ¥ Lg] f(eu) * G(eu)

E 6)1/z z z z
N, (2 2l - 2
3 2{\72 3 3 2

Defining the residue function p(Bu) =r - v, then explicitly the

expression for the residue function is:

-——RhA - hab> +H (6) + Lg] £(6,) - 6(8 )

E®) /23 2z 22 m %3 .m )
Tz T2 z. z. 6u \z. e3 Tz, e2 (25)
3 2 2 3 3 2

The value of Gu that makes p(eu) = 0 is the solution. Since all the

functions of Gu involved (such as f, G, E, and Hc) are known what is
required is the solution of an explicit nonlinear algebraic equation.
The solution is obtained by standard procedures (i.e. systematic trial
and error procedure based on successive values of the residue). There

is a little problem to start that solution, however. 1If one were to use
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th . . . .
as 0— iterate values of the profile, the profile values at the begin-
ning of the time step, i.e. at time to, the solution for Bu would be 83,
as it should. Thus an estimate for the new profile at time t’ must be

secured before calculation of Bu can start. One trick is to incorporate

the boundary condition Ve = r in the first finite difference equation
eu
for the system. Since in Eq. (8) for j = 2, v j-1 is known and equal
y 72
to r only the finite difference form for v Y is needed. As a
’

result in the case j = 2 one can replace the general Eq. (14) by the

simpler form:

2E™

[1+Avé_t__ 2.5 ]GV_AvAt a5 v

Az2 A22 + A23 | "2 A22 Az2 + Az3 3
S0, B o0 Bt _vomom At
'82+rAz2 Avw,Z.SAzz )\VFZ.SAZZ (26)

To start then one uses as 0EE estimate of the 6 the old profile values.
In that case all terms with superscript m have the same values as they
had at the end of the previous time step. By solving Eq. (26) and
Egqs. (14) for j = 3, N-1 one obtains the 15 iterate estimate of the new
profile. One can then solve for the 1EE estimate of Gu by finding the
root of p(eu). Typically as under a rainfall condition Gu increases
with time p(eﬁ) for the current profile (1EE iterate level) will be
positive. One then increases Bu progressively until p(6u) changes sign.
The first iterate value of eu, 63 has been obtained. One then proceeds
to solve again the system of Eqs. (14) for j = 3, ... N-2 and Eq. (26),
to obtain the 2Eé iterate level estimate of the profile. Once this is
done a new estimate for Bu, Bi can be calculated. The procedure is

- . m m-1
repeated until there is no significant difference between Gu and Bu
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It is important to note that in this approach the 6? for j = 2,3

N-1 are first calculated and then only afterward is Bz calculated.
One might refer to this procedure as the Bu-Zast iterative procedure.
This procedure is advantageous for the case of a given (known exactly)
flux at the upper boundary. An alternative which treats really eu as a
given (but unknown) boundary condition is to start with a value of 62"

calculate v" by the equation:

m m-1
m hA B hab * Hc(eu) * I‘G

v =K

m-1 (27)
LR

solve the system of Egs. (14) for j = 2,3 ...N-1 (or alternately but

less generally Eq. (26) and Egs. (14) for j = 3, ... N-1) to obtain the
8? and then proceed to obtain Bﬂ+1 by making the residue p(Gu) given by
Eq. (25) equal to zero. The procedure is then repeated until Gﬂ and

Gﬁ_l are (practically) the same. As a first estimate of 61 to start the
procedure one can use 83 if r has changed. If r has not changed one
uses a slightly larger value than 63. One may refer to this procedure

as the Gu-first iterative procedure.

(Ponded) Rainfall Condition

As long as Eq. (24) has a solution, that is as long as there is a
Gu such that p(eu) = 0 with Gu < 8, ponding (surface saturation) does
not occur. The indication that ponding dqes occur during a time step is
that p(6u) = 0 does not have a solution. In this case, and if during
the previous time interval there was no ponding, the solution for BZ is
(usually) 6. The ponding time is somewhere between t, and t'. As thé
time steps are (usually) reduced as ponding is approached, it is conve-

) \%

. . + t . . . .
nient to define tp = E——E-E— during that interval for which saturation
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first occurs. The time interval is broken down into 2 equal time inter-
vals (to, tp) and (tp, tv). During the first (half) interval the infil-
tration rate is sfill r. One obtains the profile at time t using the
general procedure except that the O—riE iterate and all mEE iterates of Bu
are set at the value of 8 (unless there is a situation of air counter-

flow prevailing). For the second (half) interval it is also known that
Bu = 8. The profile is obtained at time t' with the boundary condition
that BZ = 8. The profile is calculated with the general procedure

except again that all iterate estimates of GU are set equal to 6. At

the end of the iterative process v' is obtained. The mean infiltration

v
r+wv
2

The prior discussion applied to the first interval during which

rate during the time interval (tp, tV)

ponding occurred. In general going into a new time step given that
during the previous time interval a ponding condition prevailed, one
does not know whether a ponded condition will contigue to prevail. 1In

other words for each interval it 1is necessary to seek a solution for 6

that minimizes |p(0 )l It is important to note that a ponded condition

can exist without Gu = 8. The minimum of lp(Bu) is not necessarily

attained for Bu = 9.

For a ponded rainfall condition the value of hau is hA + H® + hC

where H° is the ponded depth of water over the soil surface at time

t°. Eq. (2) applies.

During the given interval the mean infiltration rate is:

w —
I= 5 z=0 (28)
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(v R ;v ; I are alternate notations for the infiltration
Wl w,1 W
z=0 0
u
~ v
rate). Note that Ve = v only if Bu = 0. The ponded depth at time t
z=0

is:

H = H® + (r - I)Aat - qAt (29)

where q is the overland flow velocity (a likely function of H).

Evaporation Condition

As soon as rain stops whether occurring with some ponded depth or
not, evaporation starts. However, if there is a sufficient ponded depth
there may be infiltration into the soil as well as evaporation from the
free surface. Thus if there is a depth H° at time t° in excess of epAt
where ep is the potential evaporation rate (velocity), the boundary

condition is one of ponded rainfall with a supply rate:
, =B (30)

If H° is less than epAt, the value of r is set to zero and the time
0

step is reduced to At = g~. Naturally at the end of this time interval
p

If at time t° there is no rain (or snowmelt) and no depth of
ponding (H° = 0) then the evaporation has to come from the soil. The
value of Gu is the solution of Eq. (24) with r replaced by —ep, or in
other words the solution of p(Gu) = 0 with r = -ep. As in the case of
rainfall (potential infiltration rate) the soil may not be able to
evaporate the potential evaporation rate. As infiltration capacity may
be reached, so can evaporation capacity be reached. If p(Gu) cannot

be made zero evaporation capacity is reached. The value of Bu is the
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one that minimizes ,p(eu)'. The solution to that minimization problem

will provide the maximum possible evaporation rate from the soil:

= v (6 (31)

compatible with the water content profile in the soil.

Iterative Scheme(s) for Determination of Profile

Two such schemes were presented on previous pages. One scheme
capitalizes on the fact that the flux at the boundary is (sometimes)
exactly known to avoid man balance error over the entire profile. The
other scheme is more general. Note that the first scheme can be gener-
alized to account for the fact that under some conditions the flux is

not known. In Eq. (26) it suffices to replace r by the mean infiltra-

. . = . th
tion rate I, or rather since I is not known to replace r by the m—
iterate estimate of I, . (In the case of evaporation I is negative

equal to -e.) One can choose for the first estimate of I its old value

0]

I
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CAPACITY INFILTRATION RATE

It is interesting to note that prior to ponding at any time Eq. (2)
provides the current (actual) value of v. If at that time the water
content Bu is raised instantaneously to the value 5, the water content
profile remaining the same, then Eq. (2) provides the capacity infiltra-
tion rate of the soil at that time given the previous history of the
soil. Explicitly the capacity infiltration rate at any time is:

A [hA e LG] (32)

c
LR

(There is an exception to that expression when v = 0 steadily, as when
the bottom boundary is impervious). At the beginning of a new time

step, at time t° then:

(33)

This information is very valuable because a comparison of 12 with the
current r provides some information regarding the imminence of pond-
ing. Let t_1 be the time at the beginning of the previous time inter-

o

val, t~ the time at the beginning of current time interval. A linear

estimate of the approximate ponding time is:

- At® (I0 - r)
0 C .
t =t + — 0 (34)
P 1" -1
C C

where I;l is IC at time thl, and At® is the previous time interval. Thus
based on current infiltration capacity and past infiltration capacity
one can select a new time interval so that ponding time occurs close to

the end of the time interval or close to its middle. In this latter
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case the assumption discussed previously that if ponding does occur
t o+t
during interval (to, tv) tp is conveniently selected as —> 5 , will be
a very good (convenient) assumption. The implication is that at the end
of one time step after rainfall has started one could closely approxi-
mate the forthcoming ponding time. Of course this is not the case

because IC is not a linear function of time. However as ponding time is

approached Eq. (34) becomes very informative.



22

TIME STEP AND GRID SIZE SELECTIONS

Generally speaking as a boundary condition changes and the more
radical the change, the smaller the time step should be for the sake of
accuracy. Generally as rain starts over a soil eu will change much
readily. The first time step should always be fairly small. If the
rainfall rate is less than K a practical value of the time step would be
1 or a few minutes. In the remaining discussion a value of 1 minute
will be selected. It will be referred to as the period for greater
generality. The boundary conditions are specified for intervals of one
period or a multiple integer of periods. As long as the rainfall rate
remains below K even if the rate changes the time step can be kept
constant equal to the period. As soon as the rainfall rate rises above
K there should be a sequence of 2 time steps of duration 1/10 of a
period. The next time step will be 8/10 of a period and thereafter as
long as the rainfall rate exceeds K the time step is one period. If
rainfall rate changes from an old value > K to a new value < ¥ (includ-
ing zero if rain stops) the two time steps of 1/10 period followed by a
time step of 8/10 of a period are recommended.

As rain proceeds and r > K Eq. (34) will sooner or later suggest
that ponding will occur during the next period. The next time step is
then selected as Z(Ep - t%. Tt will be the used time step provided
that the given rainfall rate continues during this calculated time step.
The next time step ends at the next period end. If rain stops before
the time t° + Z(EP - to) the time step ends when the current rainfall

rate ends.
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If ponding occurs during a given interval, as discussed previously
the interval is broken down into two time steps. As usual during infil-
tration taking place at capacity, capacity infiltration rate is calcu-
lated at the end of each time step, symbolically Vg,l for the next time

step. If r exceeds VS the next time step can be taken as a period.

,1
Otherwise there is a chance that desaturation will occur and it is wise
to reduce the time step in half.

There are other considerations to reduce time step besides those of
accuracy. The numerical approximations introduce errors. For example
it may happen that duringvinfiltration (before or after ponding) the

calculated value of 6; may exceed BX even though rain did not decrease.

This will happen if due to numerical errors the flux out of cell 2 is

underestimated. In the worst case the low estimate of vV is v° .
w,2.5 w,2.5
If the time step is selected by the formula:
Az, (eﬁ - eg)
At = S (35)
re vw,2.5

then under the worst condition of numerical errors 6; will be equal to
63 and a fortiori less than BX. This time step estimated from Eq. (35)
should be rounded to the nearest 1/10 fraction of a period. As ponding
is approached (usually slowly if the rain is steady) 93 and OZ are close

and 6; is close to GZ particularly for a small z The time step may

5
settle for a steady value of 1/10 of a period. In other words the

procedure guarantees that BZ < OZ but at the price of a large number of
time steps up to ponding time. Following ponding Eq. (35) can be used

in the modified form:

Az, (8° - 82)
At = 20 u . 2 (36)
1" - v
c w,2.5
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. v _ .0 \ _ .0
Under the worst conditions (IC = IC, Vw’z.5 = Vw,2.5) Eq. (36)

guarantees that 6; will be less than 63. As infiltration proceeds at
capacity 62 tends to Bu and Eq. (36) may lead to smaller and smaller
time steps. For cost efficiency it is desirable to use a large value of
z, (and consequently Az2 since A22 = 222). After ponding and when IC
approaches K it is desirable to use a coarser grid size to describe the

moisture profile.

Rule of Thumb for Grid Size and Period Selection

A simple rule to estimate cumulative infiltration depth up to

ponding, WP (Morel-Seytoux, 1982) is to estimate the ponding time, t

’

by the formula:

@® -8) Kl

1 i
p - k-1 T | T T i @

k A=1

AT taer) - (3D

=

=
i

—

where Gi is a mean initial water content over a soil depth susceptible

to be affected by infiltration at ponding time and £ is the prevailing

rainfall rate in the time interval (tk—l’ tk). The estimate of Wp is:
k-1
W= Ty (- )t rk(tp -ty (38)
=1

An estimate for z2 is:

(39)

This will guarantee that at ponding time an assumed piston-like wetting

front would have cleared cell 2 already and cell 3 if AZS = Azz. In
this case the higher order approximation for gg will still work as
0
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ponding is approached. For a value of HC = 10 cm (a reasonable value

W
for several soils), the estimate for 22 with a high ratio :Q— =6 is
Kt
) p
5 mm or A22 = 1 cm. It is recommended to use Az3 = Azz or z, = 322.

Certainly a minimum value for z, is 1 mm (except for studies of soil
seals and soil crusts). All depths should be rounded off to the nearest

mm (or cm) depending on the magnitude of 22.

Consider now Eq. (35) for this A22 = 1 cm. Consider a rainfall

rate of 12 cm/hour or 1 cm/5 minutes. Let us use 5 minutes as the

0
w,2.5

(periods) = % (63 - 63) = 63 - 6; will fall below one tenth of a minute

period. Even taking v = 0 the value of At, numerically At
only if eﬁ - 6‘2’ is less than 0.02.

The problem is more severe after ponding. As infiltration proceeds
for a long time at capacity gravity becomes the dominant drive. The
velocity of propagation of a given water content into a zone of mean
initial water content éi is in this case roughly:

dt K

6 - 8.
i

dz) _ =~ (1 - kri)
)y 55

To guarantee that the water content 6; < 8 does not move out of cell 2
within a given time step or just barely reach the interface with cell 3

one must be sure that:

~ )
At = (6 - 62)A22

o 0
2K[1 - krw(ﬁz)]

or in the limit as Gg tends to 0:
® - 6 )Az
At = —~—'“*£—2 (40)

2K n
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where n is the exponent in the power law of krw vs. 8. TFor K
= 2 cm/hour = %~cm/5 minutes, g - Br = 0.2, A22 = 1 cm, a sand i.e.
n =5 and from Eq. (40) the numerical value of At is:

At = ©.2)) _ 0.12 (period) = 0.6 minute
2 ()5
6
Clearly for permeable media as IC tends to K or less a small grid size
is no longer tenable. As soon as the rule for time step given by
Eq. (36) becomes too small (e.g. fall below say % of a period of 5
minutes) then a new and coarser grid size in the region near the soil
surface and deeper needs to be developed. The old profile needs to be
redefined in terms of the new grid points. Let Zj and Azj refer to the
new grid definition, z? and Azz referring to the old grid system. Let é
refer to the values of O in the old grid system at time t° (i.e. initial
profile) and Gj refer to the initial profile but in the new grid system.
Proceeding recursively, then:
12
Az, B, = 2

2 72 .
i

2 o . - [ AZZ ) 0 ]
zeiAzi * 010y (B T T (Brgy T AZy(yy) (41)

where 1(2) refers to the deeper old cell i whose lower boundary is still
above the lower boundary of the new cell 2. In the case of Figure 2,

I1(2) = 4. More generally:

(Az ). = [ 0 + 1 Az - (z + ffi:li]@
295 T [P1G-n+a T2 PPrg-nsa T Y ) 1(j-1)+1
1) Az Az
A e N (o i) ]
o2 60z, + 61(j)+1[<zj * '§i> <ZI(j) 3 ) (42)
i=I{j-1)+2

where I(j) is the index of the deepest old cell i whose lower boundary

still lies over the lower boundary of new cell j. Eq. (42) is perfectly
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Old Grid Numbering, i New Grid Numbering, j
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Figure 2. Change in grid size.
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general and applies for all j = 3,4 ... N-1 where N refers to the index
of the lower boundary in the new grid system. Eq. (42) reduces to

Eq. (41) for j = 2 because I(1) = 0, z° = 0, Azi =0,

= 0 and Az.
1 i

21
= 0.
For the case of Figure 2 for j = 3, I(3) = 6, I(2) = 4 and Eq. (42)

takes the form:

[ ) Azg AZZ ]A o o
(2565 = | (zg + 5= ) = (2, + 57)[6, + 6, Az
N Az Azo
3 o] 6
t o [(23 tp) (2t T)]

Given the old grid system characterized by the zg and Azi, and a new
system characterized by the zj and Azj, Egs. (38) allow the calculation
of a new initial profile for the new grid system. The calculations now
proceed as before. Eqs. (42) apply whether the new grid is coarser or
finer than the old one, or coarser in parts and finer in other parts.

The array I(j) is obtained by comparing the cumulative sum of the

)
Az’
Azg to the cumulative sum of the Azj recursively. If ZE + _§£ < z,
Az 6z%
+ —El»< 2.t then i is the value of I(j). Starting with j = 2

Az . Az°

one calculates the difference Zj + ~§i - (zz + —Ei) starting with i = 2,
then 3 etc. until the difference becomes negative for the first time.
Then I(j) = i-1. More generally having just determined I(j-1) one
calculates the same difference incrementing i but starting with i

= I(j-1) until the difference becomes negative for the first time. 1(3)

is the last i index value minus one.
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APPROXTMATE ANALYTICAL FORMULATION

It sliould be apparent from the section on time step and grid size
selection that for the numerical schemes to predict infiltration accu-
rately small time steps and grid sizes are required. The main value of
such computer programs is to serve as benchmark (when used with small
time stéps and grid sizes) for comparison with simpler and much cheaper
schemes. Such schemes have been described in the literature (Morel-
Seytoux, 1982) and will not be repeated as a whole. In the literature
only the case n = 2 was discussed thoroughly. In this section only the
case n = 1 will be discussed thoroughly to introduce the theory in the

simplest mathematical manner. Then results for the (more realistic)

case n = 4 will be provided without derivation in following sections.

Constant Rainfall Rate Case

It has been shown (Morel-Seytoux, 1982) that the normalized water

content of the soil surface, 6;, is the solution of the (approximate)

differential equation:

r 9 ei) ro- krw(eu)

= = ~ ris b (43)
6 - 6 bg 6 - 0.
u 1

where Hb is defined similarly to Hc except that fw is replaced by krw

and the subscript £ refers to the limiting value of water content at

the soil surface. If r < 1 the value of 0 is:

2
1
* kS n
= 44
6, = () (44)
and otherwise it is 1. Eq. (43) in the case n =1 can be integrated

without difficulty to yield:



s * r = 6'_1 b P 62 - 0.
(" - 0)) |zt —<eu o)t e ) )
ro- 8 J 6-0_ b2 J

) 1.

where 63_1 is the value of 6; at time tj-l' For a constant rainfall
rate case starting with a uniform initial water content of value

Oi = Br, Eq. (45) simplifies to:

—= (46)

The time of occurrence of a water content 6 at the soil surface is:

® -06) % % *
- r oot \_8_
T(6) = - B, == 2n<r_,_ > (47)

In particular the ponding time is:

8 - er) . r*
= Hyjr 2ol )= 1 (48)
For large c Eq. (48) has the asymptotic form:
B -90) %
¢ = r Hb 7.“r 5 (49)
P t 2(r - 1)

indicating a shorter ponding time than predicted by the Mein and Larson
formula.

The profile is obtained by integration of:

1.

* (ex - 6“) kS <
gg_ - 2H : [x - krw(e) ] (50)
b2
which in the case of Gi = Gr and n = 1 yields:
H x *
z = “ti 2n E:‘.:"—e—+ (51)
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Eq. (51) applies for a ponding or no ponding situation. The ponding
situation is of greater interest. Prior to ponding the total velocity
is given by the general Eq. (2) giving in this case:

t

N[ (eu . 40" }
R|H_(6,,6,) +H w & F

v = KR 0 r -9 (52)
3] %
u do

Hb { IJr

ot e
"~

r -6
In particular the infiltration capacity is given by Eq. (52) replacing
Hc(eu’eb) by its maximum value, Hc' Eq. (52) requires numerical inte-

gration. After ponding the infiltration rate is given by Eq. (52) with

*.

0 =06 and 8 = 1.
u u

After ponding Egqs. (50) and (51) no longer apply. The profile after

ponding is given by the expressions:

zg = zp(e) + r(t-tp) vF' (6) for Gf <0 <0 (53)
VF(Bf) - vF(Gi)
and zg = zp(e) + r(t-tp) ef - ei for Oi <0 < Gf (54)

where zp(e) is the location of 6 at ponding time and Gf is the water
content value at point of tangency of line drawn from point of coordi-

nates (Gi, vFi) to the vF curve.

Alternative Scheme

Prior to ponding all rainfall infiltrates. The area under the
profile must at all times be equal to rt. This requirement takes the

mathematical form:

rt = [ (8 - Bi)dz (55)
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In the case 6; = 0 and n = 1, this equation simplifies to:

u - H % - * “

rt = f 6 (6 - 8 ) E,Q —.gg—"r = (6 ~- 0 ) H‘i r £n 'TE—T - 0
r r rAY "

0 r -6 r - Gu

(56)
Eq. (56) can be used to eliminate Hbz/e£ from Eq. (51) to yield a more

explicit form of the profile before ponding at time t:

z S Tt % = - Yk (57)
6 -0 r .QII(T———_;_)' e
r Y “» u
r -0
u

The slope of the profile at time t prior to ponding is given by

Eq. (50) more explicitly after elimination of Hb2 in the form:

e
Iy

£ @ -0) -6, .
20" _ _ r : m(———* r > o (58)
r

w
oz rt P
u

In particular at the soil surface the slope has the value:

@-6) o .|, o\
o6 _ r * % x r W
52 = s (r Gu) r Lo % Gu (59)
z=0 r -8
u
This result is a very important one for later sections because it

provides the slope solely in terms of Bu.

Practical Prediction of Infiltration

It is clear that for prediction of infiltration such an analytical
scheme is far cheaper than with the finite difference scheme. Indeed it
suffices to calculate tp from Eq. (48), a very simple calculation.
Prior to tp’ I = r. 1If desired a profile of water contents can be
calculated at various times from Eq. (57). Exploitation of Eq. (57)

requires the prior determination of 6;. Due to the form of Eq. (46) it
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is easier to select a value of 6; (in the range 9. to 6;) and calculate

1

t from Eq. (46). (A refinement of the method is to replace the ratio

B 1

eQ/HbQ by ei/ﬂbu)' Once 6: and t have been determined the profile can
be obtained from Eq. (57).

Following ponding Egs. (53) and (54) provide the profiles if
wanted. The infiltration rate can be given by the generalized forms of
the Green and Ampt equations provided by Morel-Seytoux (1982, p. 229,

Eqs. 84 and 85).

Variable Rainfall Rate Case

In this case Eq. (43) applies for t in the interval (tj—l’ tj)

during which the rainfall rate remains constant at the value r.. How-

ever the term (8, - 6?)/H must be reinterpreted. Its original meaning
2 i be dh
is that of an average value of krw 56§ in the range of integration

N 1,
i<

e

(t. ., t.) in which BW starts at value 6. and ends at BN.. For r, < 1
j-1’ 73 u j-1 2] N
x % 1/1’1 S
the limiting value of sz is (rj) . For rj > 1 it is 1. For

variable rainfall rate Eq. (43) must be replaced by the expression:

e 1 e o e
2y 7

e’ r. (8. -6 r. - k_ (8
_u N ¢ 2] J‘l) J er u) (60)
¢ F . Y 6 -8
r u 1
where H . is defined as:
bj
hc(ej_l)
Hbj = f k., dh_ (61)
hc(eﬂj)

The integration of Eq. (60) yields for Oz an implicit relation of the

form:

.

o r.
(r, - 6.) ¢n —%“~~-n
J * r. - 6

u

0, . r —_—
11 0" -0. )= J £ NInE RS
u ) i

(62)
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Time of Appearance of a Water Content

It is given by the expression:

@ - 6 JH, . S r - eT_l . u
TO) = t. . + — J (r; - 6;) gn |4 —A22)_ 6" - 67 ) (63)
L@ -, el c -9 j-1
£3j =177 J

Eq. (63) only applies for the 6 for which T(8) falls in the interval
(tj—l’ tj). It is important to fully realize the nature (meaning) of
the symbols. In Eqs. (60), (62) and (63) Oi is the minimum value of
water content in the initial profile (ot necessarily uniform ). The
initial value of Bu say eui is not the same as Gi if the initial profile
is not uniform. If however Bi(O), initial water content at z = 0, is
< Br, then the initial value of Bu is Br. For the first time interval

Eq. (62) has the form:

. r -9 W r 6. -8

(r; -6 2|1 ). (6" -0 )= 1 e (6w
t r. -8 e T b1
1 u T
hc(eui)
with H, . = [ k_dh . Another notation for 6 . is 8 . For the
bl rw o C ui o}
hc(eﬂl)

second time interval Eq. (62) has the form:

r, - 0 r

. 8, -0 )
(r, - 0;) oal5—2 )- (6] - 0] ) = 2 (’”-H . (e-t)) (65)
r, - 6 6 -6 b2
2 u r ‘
hc(el)
with H, = I k dh_, etc...
hc(GRZ)
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Ponding Time
One first tries for ponding in the first time interval, solving

Eq. (62) for tp with BZ = 1, explicitly:

(6 - 6_)H S r -8
o= ——E BT gy g (2]l (1 - 6 (66)
P r, (1 - 6") 1 ! r. -1 °
1 o 1

If tp is less than tl, ponding does occur in first time interval and it
has been found. If tp is greater than tl’ ponding does not occur during
the first interval. One then performs the calculations for the next

interval and the next, etc. If it has been found that tp does not occur

in interval (O’tj—l) one then recalculates it from the relation:

@-0)H . . . Y. -0 .
t = t._l + __—I‘Tlll (r. - 91) 2n J—%__u - (1 - 6._1
P J r.{1 -06. ) J r. -1 J

3 j-1 J

N
<

) (67)

Note that if in any interval rj is < K there is no need to calculate a

ponding time. Note also that to exploit Eq. (67) B;_ must be known.

1

For example to proceed with second interval calculation one must know

61. That will require the implicit solution of nonlinear algebraic

Eq. (64) for unknown BI = 61 at time t = tl.

Water Content Profile

The general form of the equation for the slope of the water content

profile is:

HbJ

% o . -6
36 _ ( 2j Jfl} [ ko % ]
oz . r krw(6 ) (68)

Integration of Eq. (68) yields the profile at a given time t in the

interval (tj-l’ tj) for the case n = 1 for new water contents (i.e. for

o ot
w

0. < GW <8 if © 1increases or ©
j-1 - - u u

. ot o

<9 <0 if 6 decreases
~ - -1 u

<l

u

during the time interval) in the form:
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z = — 0 4n i = (69)

The position of the water contents already present in the soil prior to

time tj-l’ defines a new profile at time t given by the equation:
= + w
z Zj—l (e) z(Bj_l) (70)
where zj_l(B) is the location of (old) water content & at time t. . and

ot

z(Bj_l) is the position at time t of old water content at soil surface
obtained from Eq. (69). Exploitation of Egqs. (69) and (70) requires
that Bz(t) be calculated from Eq. (62). 1In practice one would calculate
the profiles at the discrete times tl’ t2, “e tj-l’ tj, ... etc.

It should be noted that the profiles may display peaks and troughs.
The same value of a given water content may appear at several different
depths. The label '"new" for a water content refers to the fact that

this value has appeared (maybe again) at the soil surface during the

current time interval. It is not necessarily new to the profile.

Alternate Form of Water Content Profile

Prior to ponding all rainfall infiltrates. The incremental change

in area during time interval t - tj—l is rj(t - t. ). Expressing

j-1
mathematically this material balance requirement yields the relation:

*

z(Bj_l)
s (t - tj_l) =(©0-0)J (6 - 6.)dz
[¢]
0.
=@®-0)5 (8 -6) % a0 (71)
o Loge
6
u

or using Eq. (68) more explicitly:



e. ot = e
Hy . Lo - 6,) do
_ i
ro(b-t )= @-0) 57— J (72)

6 . -8, r -0

2j -1
0
u

which after integration yields precisely Eq. (62). Thus mass balance is

satisfied.

e

One can use Eq. (62) to eliminate the ratio Hbj/(egj - ej—l) from

Eq. (69) with the result for the '"new" water contents:

ate ot
W

r., - 6
£n i %
r.(t - t, ) r, -
z = - L e (73)
8 -8, (r; - 6.)2n £y - %51} (o - 63-1)
r?j _ 87\‘
J u

The interesting aspect of Eq. (73) is that it will preserve water
balance regardless of the actual relationship between Gu and t . This
remark will be thoroughly utilized in later sections.

The slope of the profile at time t prior to ponding is given by

L N
w

Eq. (68) and more explicitly after elimination of Hbj/(GLj - 0 ) in

j-1
the form:
36* (6 - er) % K% r""“ - 67?-1 % e * ¥
Pl cerme ) ISR RI W ey ML T LIS
j i-1 r. - 6
j u
and in particular at the soil surface:

S (5 - 0 ) . - r’: - 67: _ o o KN K
L =TT oy gn| 7 (g - g (r -6)
dz r.(t—t._l) i i N u j-1 u

z=0 J 1 ] u

(75)
Again this result is important for later sections because it provides

the slope solely in terms of Gu.
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Practical Prediction of Infiltration

Typically one would check for ponding time in first time interval

(O,tl) using Eq. (67) for j = 1. If tp > t, one calculates the pre-

t

ponding water content profile at time t. by first calculating B; from

1
Eq. (62) for j = 1 then the profile from Egs. (73) and (70) for j = 1.
Then one checks for ponding in second interval, using Eq. (67) for
j = 2. If the calculated value exceeds t2 one calculates the profile at
time t, by calculating 6; from Eq. (62) for j = 2 then the profile from
Eqs. (73) and (70) for j = 2. Then one checks for ponding in next
interval, etc. Sooner or later tp will fall in an interval (tj-l’ tj).
When this happens one calculates the profile at ponding time from
Eqs. (73) and (70) with t = tp and Bz = 1. Naturally until ponding time
I =r.

Following ponding the procedures to determine profiles and capacity

infiltration rate are the same as for the case of constant rainfall

rate. The new profiles are:

= - ' <
Zg Zj-l (6) + rj(t tj-l) vF' (0) for Bf <8 <90 (76)
VF(Gf) - vF(Gi)
29 = 25.q (O) T eyt =ty 6, _ 0, for 6, <6 <6p  (77)

(0) represents the position of water content 6 at

where z.
j-1

time tj—l' The index (j-1) may also refer to ponding (p).
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HYBRID FORMULATION

Based on the remark that the profiles obtained analytically in the
previous section prior to ponding automatically satisfy mass balance
regardless of the actual relation between Gu and t, a new approach was
conceived. After all Eqs. (43) and (60) are only approximate. The
approximations were made to obtain explicit anmalytical solutions. The
satisfaction of the boundary condition of a given rainfall rate at the

soil surface previously given as Eq. (18) requires the knowledge not
only of eu but also of gg'at soil surface. By numerical techniques in

order to find Bu one must find the entire profile through the soil. Why
not replace in the boundary condition the slope by an analytical approx-
imate solution such as given by Eq. (75) and solve algebraically for the
only remaining unknown eu while using the correct soil functions £(6),
G(8) and E(8) which only appear approximately in the analytical solu-

tions as average values over a range of water contents?

Case n = 1

In this case the boundary condition for Bu takes the form:

(6 - er) w By S r‘: -0
r= (8 ) + 6(0) + E(B) — == (£ - 8 (r

r(L\

wla
O

b u
o - 0 i ) n T E
-t ) r -0
U

o

* 50 S
- (eu - eu ) (78)

o . .- . 0 .
where Gu is known water content at soil surface at old time t Bu is
. . v .
unknown value of water content at soil surface at new time t and r 1is
the current prevailing rainfall rate. Strictly speaking v is given by

Eq. (2) or for a semi-infinite case and using a Green-Ampt type approxi-

mation to estimate the gravity and resistance terms by the expression:
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W
~ [Hc(eu) + § - ei]
v = K W (79)
8 - o0,
i
Substitution of Eq. (79) in Eq. (78) yields:
~ [(6 - Bi) Hc(eu) * wy]
K £(0 ) + G(8 ) (80)
\'4 u u
W
E(Bu) (6 - er) % % k3 x r-“ - ezo <% 0
+ v O(r*ﬁu)(r-ﬁ.)QnT—;-(e-eu)=r
r(t’ - t%) * £ -0 v

Tt is interesting to compare Egqs. (80) and (24). 1In Eq. (24) old
(iterate) values of the profile are used whereas in Eq. (80) only the
unknown value of Gu at time t' appears. Thus solution of Eq. (80) is
more efficient since it does not require iteration. Otherwise the
equations have a very similar structure. As Eq. (23) provided a higher

approximation for the estimation of the slope at the soil surface than
0, - Bu Zy
the usual — (to which it reduces for large = ratio), Eq. (75)
2 2
provides an even higher approximation. It is also interesting to note

that Eq. (80) shows the influence of the time step (tV - to) explicitly

on the solution; Eq. (24) does not. The influence of the time step is

felt in Eq. (24) through the numerical calculations of Lg, L;, 62 and
m
83.

Whereas in Eq. (75) the assumption n = 1 for the exponent in the
power law for relative permeability was made, nevertheless in Eq. (80)
the true curves for f, G, and E can be used, curves based on the true
krw for which r is not 1. The numerical solution for Bz (t) provides a

better solution than use of Eq. (62). Once Eq. (80) has been solved
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for Gz profiles can be obtained from Eq. (73) at time tV for the new
water contents and by Eq. (70) for the old water contents.
Actually Eq. (79) forces ponding time on the solution because at
6 = 6, f =1, G and E are zero and one obtains:
~ v
- +
[(6 Gi)HC \ ]

v - = r (81)

R

A more accurate procedure is to use for v the more coherent

approximation, namely:

[K HC Bu + LG (eu)]

v = (82
L (8) (82)
R u
where LG(eu) is calculated as:
sk3 ,
u N
r(tv _ to) i fw . de _
o 6*0 r -6
LG(eu) = LG(eu) + u_ (83)
X *0
~ x * r -6 wx *o
(6 - er) (r - ei) ol ) (eu -9 )
r - 6
u
The integral in the numerator of Eq. (83) can be approximated as:
9:; * w0
® r -6
de _ l 1) kS u )
f fw = %3 [fw (eu ) + fw (eu)] n R (84)
%0 r -0 r -6
0
u

The integral in the denominator can be approximated similarly.
Successive substitutions finally lead to a better form of Eq. (80),

namely:
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i)
o : . Y -0
r(t’ - t%) % (6% + £ (8 ﬂ£n< 2
w u o "~
(o] ‘ r B eu
HC(BU) + LG(eu) + k3 *0
~ w N - eu ~ w0
2(8 - Br)[(r - 6)) Qn(T—T)- (6, - 0 ﬂ
N r - Gu
K % £,00)
v ) *o * u
r(t -t ) [}Jr(eu ) + Hr(eu):IQII(—;\:““j)
(o] r - ell
LR(eu) * * *0
~ x & ro- eu % w0
2(6 - Sr) (r - 61) Qn(T—T>— (eu - eu )
r -6
E(B )(6 _ 6 )(rw _ e:’:) B . S _ 67‘:0 N )
+6(0) + (G DT SR - (8, -8 =1
r(t’ - t) t o !

(85)

Case n = 4

The case n = 1 is not realistic. However for sands a value of
n = 4 is very realistic. For this reason similar equations were derived
in this case. The results can be found in two publications (Ross, 1982;
Ross and Morel-Seytoux, 1982). Figure 3 shows typical predicted pro-
files of water content using soil characteristic data measured in the
laboratory. In the laboratory experiments were performed to observe
ponding time under various rainfall conditions. The ponding times were
also calculated by the computer program SOILMOP (Ross and Morel-Seytoux,

1982) and the values were compared in Table 1. The agreement is quite

reasonable.
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Figure 3.

Water content profiles at selected times.
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Table 1. Comparison of Calculated Ponding Times and
Observed Values in Experiments (Hyre, 1981)

Initial Observed Calculated
Water Ponding Ponding
Rainfall Event Content Time (min) Time* (min)
rate end-of-period
(cm/min) time (min)
0.677 constant 0.126 5.2 4
1.160 constant 0.123 0.93 1
0.491 10
0.576 20 0.131 13 11
0.508 10
0.550 22 0.127 18 14
0.542 constant 0.123 21.5 16

*“Reported ponding times were rounded to the nearest minute greater
than or equal to the calculated ponding time.
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CONCLUSIONS

New techniques of solution for prediction of infiltration and water
content profiles were developed. Comparison of resulps of the hybrid
analytical-numerical techniques with laboratory measurements indicates
that the technique is sufficiently accurate. Comparison of the new
technique with an existing finite-difference program was difficult
because the finite difference program was not well documented and it did
not accept readily different analytical expressions for the soil charac-
teristics. In addition the finite difference model was expensive to
run. SOILMOP (Ross and Morel-Seytoux, 1982) was about 25 times cheaper
to run than the finite difference model. In order to pursue the compar-
isons further it was decided to develop a finite difference program that
could solve both the Richards equation and the governing equations
derived from the two-phase formulation. The finite difference equations
are presented in this report. The programs however are not yet fully

operational and documented, but are expected to be in late 1983.



46

REFERENCES

Hyre, J. H., 1981. "Experimental Investigation of Ponding Time and Soil
Water Content Evolution Formulas," M.S. Thesis, Dept. of Civil
Engineering, Colorado State University, Summer 1981, 105 pages.

Morel-Seytoux, H. J., 1979. '"Mass and Heat Flow Equations in Soils
under Non-Isothermal (including Freezing) Conditions," HYDROWAR
Program Report, Engineering Research Center, Colorado State
University, November 1979, 143 pages, CER79-80HIM24.

Morel-Seytoux, H. J., 1982. "Analytical Results for Prediction of
Variable Rainfall Infiltration," Jour. of Hydrology, Vol. 59,
November 1982, pp. 209-230.

Ross, D. L., 1982. "An Analytical Model to Predict Soil Water
Profiles," M.S. thesis, Dept. of Civil Engineering, Colorado State
University, Summer 1982, 82 pages.

Ross, D. L. and H. J. Morel-Seytoux, 1982. "User's Manual for SOILMOP:
a FORTRAN IV Program for Prediction of Infiltration and Water
Content Profiles under Variable Rainfall Conditions," HYDROWAR
Program Report, Colorado State University, January 1982, CER81~
82DLR-HJM45, 129 pages.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


