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ABSTRACT 
 
 
 

THE EPIDEMIOLOGY AND ECOLOGY OF ANTIMICROBIAL USE AND RESISTANCE 

IN NORTH AMERICAN BEEF PRODUCTION SYSTEMS 

 
 
 

Antimicrobial resistance (AMR) is a critical public health issue (1), and analysis of 

historical Escherichia coli isolates reveals that AMR has been increasing steadily since the 

introduction of antimicrobial drugs (AMDs) (2). Meat production systems are thought to 

contribute to the problem by harboring a reservoir of AMR that interfaces with humans either 

through persistence in the food chain or dissemination of wastes into the environment (3–6). 

Antimicrobial use (AMU) in food producing animals is often cited as a driver of AMR in 

humans, but it is extremely challenging to design and execute studies that can be used to infer 

causality between the two.  As a result, producers and policy makers alike have relatively little 

high-quality evidence on which to base informed and rational decisions with regard to AMU and 

other production management practices.    

The four studies presented in this doctoral thesis attempt to overcome some of the 

obstacles that currently impede inferential analysis regarding AMU practices and AMR.  The 

first two studies stem from a project in which detailed AMU and AMR data were collected 

throughout the feeding period for over 5,000 individual cattle across 300 pens.  The 

unprecedented collection of prospective data from such a large number of uniquely identified 

commercial cattle enabled us to achieve a much more robust level of causal inference compared 

to many previous studies.  The last two studies employed shotgun metagenomics to interrogate 

the entire AMR potential (the “resistome”) of a given sample, enabling novel insight into the 
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longitudinal, microbe-level genetic ecology of AMR within beef production systems.  Because 

AMR develops and is maintained within the genetic context a microbial population, the 

resistome-microbiome approach contributes a critical and long-lacking piece to the overall 

puzzle of AMR within beef production.  Thus, while each study in this dissertation approaches 

the research question of AMR from a slightly different angle, all of them provide crucial and 

novel information to our scientific understanding of AMU and AMR in beef production.   

The 4 studies also complement one another through investigation of different aspects of 

AMU and AMR across nearly the entire beef production system.  The first study not only 

investigates AMU-AMR associations within Mannheimia haemolytica, but also examines how 

these associations affect respiratory-related morbidity and mortality outcomes in commercial 

cattle.  As such, this study is focused on the animal health and economic dimensions of AMU 

and AMR in a critically important respiratory pathogen.  The second study investigates within-

feedlot AMU-AMR associations in non-type-specific Escherichia coli, a widely used “indicator” 

species for AMR, and compares different analytical methods for analyzing the types of data 

collected as part of ongoing surveillance of AMR in livestock production.  Therefore, this study 

focuses on the public health and regulatory dimension of AMU-AMR in feedlot beef production. 

The third study tracks AMR in cattle production effluents such as feces, soil and water, thus 

encompassing the environmental dissemination routes that may play a role in the transmission of 

AMR from livestock to humans. And finally the fourth study tracks AMR in cattle and their 

environments from feedlot entry through slaughter and fabrication, thereby delving into the food 

supply dimension of beef production.   

Importantly, all 4 studies were conducted in commercial beef feedlot operations, and 

samples are collected from commercial cattle and their environments.  All 4 studies are strictly 
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observational; the participating operations did not alter their production practices and cattle were 

not managed differently for any of the studies.  While this approach may add complexity to the 

interpretation of study findings, it has the distinct advantage of enabling insight into AMU-AMR 

dynamics on operations that constitute an integral part of the fabric of our society.  The AMU 

and other production practices utilized on these operations were not contrived, and therefore the 

external validity of the study findings are more widely applicable than those gleaned from 

research animals and herds.  The findings of the 4 studies in this dissertation are therefore novel, 

complementary and highly relevant to the societal, political and scientific debate surrounding 

AMU and AMR in beef production.   

  



 
 

v 

ACKNOWLEDGEMENTS 

 
 

The projects in this dissertation were supported by grants from the Advancing Canadian 

Agriculture and Agri-Food Program; Canadian Integrated Program for Antimicrobial Resistance 

Surveillance; Canadian Cattlemen’s Association; Beef Cattle Research Council; Alberta Beef 

Producers; Boehringer Ingelheim Vetmedica, Inc; National Cattlemen’s Beef Association; and 

the Colorado State University Infectious Disease Research Center. 

Thanks to JBS USA, LLC, JBS Five Rivers Cattle Feeding, LLC (Greeley, CO) and 

Feedlot Health Management Services for facility access; Santiago Luzardo, Megan Webb, 

Shuang Hu, Katie Rose McCullough, Brandy Burgess, Xiang Yang, Chelsea Flaig and Shaun 

Cook for sampling; Trevor Alexander, Shaun Cook, Sherry Hunt, Lorna Selinger, Roberta 

Magnuson, Lyndsey Linke, Erin Petrilli, Katrina Dieter and Gao Bifeng for laboratory 

assistance; Sherry Hannon, Shaun Cook, Cheryl Waldner for data verification and analysis help; 

and Joe Strecker, Tyler Eike and Jamie Ruiz for software and server support. 

Thanks to the Colorado State University DVM/PhD program for funding my training and 

fostering a great community of scientists including Kathy Benedict who is a gracious and 

dependable predecessor; Justin Lee who inspired the metagenomics; and Ginny Forster for 

holding my hand on the roller-coaster. Deep thanks to my labmates for endless hours of support, 

both scientific and otherwise: Brandy Burgess, Kathy Benedict, Julia Labadie, Audrey Ruple-

Czerniak and Enrique Doster. I am profoundly thankful for the mentorship and friendship of my 

advisor, Paul Morley.  I couldn’t have stumbled upon a better advisor had I tried.  May the parlay 

continue.  And finally to my husband, mom and dad for their unquestioning and ongoing (and 

ongoing and ongoing) support of my educational and career aspirations. 



 
 

vi 

PREFACE 

 
 

Research in the life sciences is currently being transformed by the continued permeation 

of culture-independent approaches into diverse and disparate fields.  While PCR and other 

culture-independent laboratory methods have been used for decades, the ability to easily and 

cheaply access thousands of microbes and their DNA (the “metagenome”) from a single sample 

has only recently become available to the majority of life sciences researchers.  I feel incredibly 

lucky that, through sheer coincidence of timing, I was able to conduct my doctoral training in the 

middle of this exciting transformation.   

As a result, my doctoral dissertation is itself a very small microcosm of the much larger, 

inexorable change sweeping through life sciences research.  The dissertation begins with a 

longitudinal epidemiological study that utilized culture-based approaches to investigate 

associations between antimicrobial use (AMU) in nearly 6,000 feedlot cattle and patterns of 

antimicrobial resistance (AMR) in Mannheimia haemolytica and Escherichia coli (E. coli) 

isolated from those same cattle.  These culture-based studies in M. haemolytica and E. coli were 

the first to track AMU and AMR in a very large number of uniquely identified commercial beef 

feedlot cattle over the entire feeding period.  The dissertation then shifts to two studies that 

utilized a metagenomics approach to investigate patterns of AMR across the beef production 

system.  In these latter projects, the ability to sequence whole community DNA using next-

generation sequencing technology allowed us to interrogate the entire genetic potential for 

resistance within collected samples, i.e., the “resistome”. These culture-independent studies were 

the first to apply the metagenomics-based approach to beef production, and the first to describe 

the resistome of the beef production system.  Despite the differing microbiological approaches, 
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the findings from each of these studies added uniquely to our collective knowledge of the 

epidemiology and ecology of AMR within beef production.   

Beyond the subject-specific training and knowledge that I accrued in the process of 

developing this dissertation, I feel fortunate to have experienced “doing science” using a well-

rooted, stolid, traditional approach, as well as a fledgling, mercurial, “cutting-edge” approach.  

The opportunity to work on the same topic using methodologies at such different stages of 

scientific development was both challenging and rewarding.  As a result, I have deep respect for 

the former, and great optimism (plus a healthy dose of wariness) for the latter.  Perhaps most 

importantly, working within the metagenomics arena has fostered the development of a profound 

sense of awe at just how much combined scientific effort is needed to move a novel research 

approach from infancy to adulthood.  It has been a great privilege to be a very, very small part of 

this effort, and I am grateful to all of the amazing scientists who have helped me as I try to make 

my own, small contributions to the overall endeavor. 
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CHAPTER 1: LITERATURE REVIEW 

 

SOCIETAL CONTEXT OF AMU AND AMR IN LIVESTOCK PRODUCTION 

Antimicrobial resistance (AMR) is a critical public health issue (1), and analysis of 

historical Escherichia coli isolates shows that AMR has been increasing steadily since the 

introduction of antimicrobial drugs (AMDs) (2). Infections with resistant versus susceptible 

pathogens are currently estimated to cause an additional 8 million hospitalization days per year 

in the U.S. (7). Methicillin-resistant Staphylococcus aureus (MRSA) infections alone caused 

9,650 deaths in the US in 2011 (8). Meat production systems are thought to contribute to the 

problem by harboring a reservoir of AMR that interfaces with humans either through persistence 

in the food chain or dissemination of wastes into the environment (3–6). Antimicrobial use 

(AMU) in food producing animals is often cited as a driver of AMR in food production, but this 

blanket statement fails to recognize the extremely varied contexts in which such use occurs. 

ANTIMICROBIAL USE IN BEEF PRODUCTION 

Antimicrobial use in feedlots 

In beef cattle production, antimicrobials are used to treat, control or prevent illness in 

individual or groups of animals, as well as historically to increase growth efficiency, although 

this latter use is being phased out of U.S. livestock production (9).  Antimicrobials are 

administered either parenterally, or through the feed or drinking water of cattle.  Detailed AMU 

data for beef production in Canada and the United States are not systematically collected on a 

national or state scale, but the National Animal Health Monitoring System conducted a 

nationally representative survey of AMU practices in U.S. feedlots in 2011 (10). Amongst all 

responding feedlots, these data indicate that 13.4% of cattle were treated at least once with 
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injectable antibiotics for respiratory disease, 21.3% were treated metaphylactically, and 18.4% 

and 71.2% received in-feed chlortetracycline and tylosin at some point during the feeding period, 

respectively (11).  Cattle <700 lbs at feedlot placement were administered in-feed tylosin for an 

average of 168 days, while cattle >700 lbs at placement an average of 141 days (10).  Of feedlots 

administering tylosin to cattle <700 lbs at placement, 28.3% reported using it for “growth 

promotion”, compared to 32% of feedlots administering it to cattle >700 lbs at placement.  

Larger feedlots were more likely to use antimicrobials for all purposes, and cattle that were 

lighter-weight at feedlot placement were more likely to be administered antimicrobials than 

cattle that were heavier at placement.  By far the most commonly used class of AMD, both in-

feed and injectable, was macrolides (which include tylosin), followed by tetracyclines.  

Phenicols, betalactams, fluoroquinolones and sulfonamides were also used for treatment of 

respiratory disease and metaphylaxis, but less commonly (11).  Temporal patterns of AMU vary 

within the feeding period, with a large proportion of parenteral AMU occurring in the early 

feeding period when cattle are transitioning to the feedlot environment and respiratory disease 

rates are highest.  Overall, these data indicate that parenteral AMU is not uncommon in beef 

feedlots, in-feed AMU is very common, and macrolides and tetracyclines are the most widely 

used AMDs. 

Antimicrobial use in cow-calf production 

Patterns and rates of AMU on cow-calf operations differ greatly from those in feedlots.  

In the latest NAHMS study, 68% of operations reported using oral or injectable AMDs at least 

once, but only 7.2% of preweaned calves and 1.9% of cows were treated (12).  The most 

commonly used injectable and orals AMDs were tetracyclines, followed by betalactams.  Over 

80% of cow-calf operations did not use any in-feed AMDs or ionophores for any purpose.  These 
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data indicate that AMDs are used on the majority of cow-calf operations, but only a small 

percentage of animals on each operation are treated, primarily with tetracyclines and 

betalactams. 

ANTIMICROBIAL RESISTANCE IN BEEF PRODUCTION 

Antimicrobial resistance in beef feedlot cattle 

Given the AMU patterns in beef cattle production, and the fact that feedlots are the 

primary users of AMDs, feedlots are considered the primary beef-related source from which 

AMR disseminates into the human population.  However, very few countries and/or states 

undertake consistent and regular monitoring of resistance in healthy animals within livestock 

production facilities.  Exceptions include the Canadian Integrated Program for Antimicrobial 

Resistance Surveillance (13), the Danish Integrated Antimicrobial Resistance Monitoring and 

Research Program (14), and the Swedish Veterinary Antimicrobial Resistance Monitoring 

Program (15).  In addition, the U.S. National Animal Health Monitoring System (NAHMS) 

includes pathogen isolation and susceptibility testing as part of its commodity studies; in 2011, 

NAHMS conducted a feedlot study in which Salmonella spp. were isolated from the feces of a 

nationally representative sample of feedlot cattle and tested for resistance to a panel of drugs 

(16).  This study showed relatively low levels of resistance within Salmonella spp. (15.4%), with 

highest resistance to tetracycline (21.4%), sulfisoxazole (13.1%), chloramphenicol (8.8%) and 

streptomycin (8.6%) (16).  Aside from this study, there are no nationally representative estimates 

of AMR in US and Canadian feedlots. 

In the absence of comprehensive resistance data, researchers must rely either on samples 

submitted by producers or veterinarians (for instance, samples tested at state or local diagnostic 

labs), or they must collect their own samples, typically from a select number of operations.  Both 
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of these populations lack external validity and generally cannot be used to generate 

representative estimates of in-feedlot AMR prevalence.  However, several consistent findings 

can be drawn from the collective body of scientific literature on AMR in beef feedlot cattle 

within North America.  First, pan-susceptibility levels tend to vary widely even between studies 

conducted in large North American feedlots, i.e., 15.6% to 93% in generic E. coli (17–23), 0% to 

95% in Salmonella (16,20,24,25)  and 11% - 62% in Campylobacter spp. (20,26).  Potential 

reasons for these discrepancies are numerous and include disparate sampling strategies, different 

study populations, and different susceptibility testing methods between studies. Resistance 

prevalence tends to be highest for tetracycline and streptomycin, and this holds true across 

varying geographic regions (20,27), feedlot management practices (21), and time points within 

the feeding period (22,23).  This pattern also remains fairly consistent across commonly studied 

bacterial taxa, although Salmonella spp. isolates tend to exhibit higher prevalence of resistance to 

chloramphenicol and ampicillin than generic E. coli (24).  Additionally, the few studies that have 

characterized AMR in cow-calf operations have reported lower prevalence of resistance overall 

compared to feedlot operations (17–19,28); given the multitude of differences between cow-calf 

and feedlot operations (including cattle genetics, cattle population characteristics, feed source, 

management practices, density of cattle stocking, and AMU patterns), it is difficult to tease apart 

what may be driving these differences.  Taken as a whole, the literature also suggests that 

prevalence of resistance to most AMDs increases in the early stages of the feeding period, and 

then either levels off or declines (20–23,28).  Some evidence suggests that this pattern is 

accompanied by a significant expansion of AMR gene diversity early in the feeding period, 

followed by a contraction as certain bacterial strains and/or plasmids gain a fitness advantage 

within the population (29).   
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Antimicrobial resistance in the food chain 

The food chain has long been considered a primary route for transmission of resistant 

bacteria from livestock to humans, although attempts to quantify the amount of resistance being 

disseminated via this pathway are rarely described, especially for beef (for exceptions see 30–

32).  Due to regulatory, financial and public health concerns about the potential danger posed by 

contaminated food items, however, there are several well-established national programs that 

undertake regular sampling and susceptibility testing of in-plant and retail meat and poultry, 

including the National Antimicrobial Resistance Monitoring System in the U.S.  Naturally, these 

programs focus sampling efforts on enteric foodborne pathogens of public health importance, 

including E. coli (33), Salmonella enterica (34,35) and Campylobacter (36).  Outside of these 

national programs, resistance in other microbial species and groups have been described, 

including Staphylococcus aureus (37), extra-intestinal pathogenic E. coli (38) and 

Enterobacteriaceae (39).   

Given the paramount importance to public health and national security of maintaining a 

safe food supply, the beef industry has instituted highly effective antibacterial interventions 

during the slaughter and fabrication process, including steam vacuuming, carcass washing, 

application of organic acid rinses and thermal pasteurization (40).  These interventions have been 

shown to reduce bacterial loads by >5 log CFU/100cm2 total plate count when comparing 

carcasses post-hide removal and at the end of the fabrication process (41).  Despite the 

widespread use of these highly effective multiple-hurdle interventions in large beef harvest and 

fabrication facilities in the U.S. and Canada, susceptible and resistant foodborne and other 

pathogens continue to be isolated from both the harvest facilities themselves, as well as from 

retail beef products.  Notably, however, prevalence of these recovered organisms from beef is 



 
 

6 

typically lower than for other livestock commodity products, including swine and poultry 

(33,36). Campylobacter prevalence is typically below 0.1% (36), and most large-scale studies of 

retail ground beef fail to recover a single Salmonella isolate (34,42–45).  The U.S. Food Safety 

Inspection Service estimated the 2005-2007 prevalence of Salmonella in domestic beef 

manufacturing trimmings to be between 0.29% and 1.27% (46).  However, when Salmonella and 

Campylobacter are recovered, typically >50% of the isolates exhibit phenotypic resistance, most 

frequently to multiple antimicrobials (35,45).  Resistant Salmonella spp. isolates are also 

commonly resistant to tetracycline (35) while Campylobacter isolates exhibit relatively high 

prevalence of resistance to quinolones, nalidixic acid and ciprofloxacin, followed by tetracycline 

(45).  Generic E. coli are more commonly recovered from both beef processing facilities and 

retail products than Salmonella spp. and Campylobacter, typically at >50% prevalence (33,47).  

However, only a minority of recovered isolates exhibit resistance (33), with highest prevalence 

for tetracycline, streptomycin, ampicillin and sulfamethoxazole-sulfisoxazole antimicrobials 

(33,45,47,48). 

Antimicrobial resistance in the waste of beef production operations 

In addition to being transmitted through food, resistant bacteria and resistance genes can 

potentially be transferred to humans through several livestock operation effluents that interface 

with aquatic, terrestrial and atmospheric ecosystems.   Potential conduits include uncontained 

wastewater runoff, lagoon seepage, manure soil amendments, and airborne particulate matter 

(49–54).  Historically, regulations concerning livestock production manure and wastewater 

focused on ensuring acceptable levels of organic nutrients, e.g., phosphorous and nitrogen, 

within ground and surface waters and amended soils.  However, there is increasing concern that 

livestock production effluents may contribute to AMR within the human population via 
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transmittance of both AMD residues and AMR genes to surface and ground waters as well as to 

crops produced for human consumption (55).  Some of this concern is likely fueled by recent 

evidence that foodborne illnesses associated with vegetables may originate from animal manure 

(56–59). 

Concerns about these environmental routes of AMR dissemination are relatively new, 

and no formal, representative monitoring programs exist to document AMR prevalence and 

patterns.  Furthermore, little is known about the normal or baseline AMR profile of soils and 

water not impacted by agricultural wastes (60).  Recent studies suggest that even pristine 

environmental samples contain high levels of both phenotypic and genotypic AMR, even to 

synthetic AMDs (61–66).  The resistance potential of soil is especially high, and an extremely 

high proportion of soil bacteria are multi-drug resistant (61,67).  Phenotypic resistance has been 

shown to be uncorrelated with anthropogenic impacts on soils, likely due to the presence of 

multi-purpose efflux mechanisms within environmental bacteria (61,68).  On the other hand, 

culture-independent studies suggest that the abundance of AMR genes in soil and feces is 

correlated with level of anthropogenic activity (69), but this evidence is still tenuous due to a 

reliance on incomplete databases of known resistance genes (60,68,69).  A recent study reports 

higher levels of resistance in active versus ancient layers of permafrost, although bacteria from 

the ancient layers exhibited resistance to semi-synthetic AMDs (66).  In addition, while high 

levels of phenotypic and genetic resistance have been reported in so-called pristine 

environments, other studies suggest that many of these ecosystems may in fact be substantially 

impacted by human activity (70).   
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Given the abundance and diversity of resistance across almost all environmental 

landscapes sampled to-date, it is extremely challenging to establish an accurate estimate of the 

prevalence of agriculture-related resistance in terrestrial and aquatic ecosystems. 

ASSOCIATIONS BETWEEN ANTIMICROBIAL USE AND ANTIMICROBIAL 

RESISTANCE 

Associations between antimicrobial use in livestock and antimicrobial resistance in livestock 

If the food chain and feedlot environmental effluents are considered the primary conduits 

of AMR originating in beef production, then the cattle in the feedlot are considered the primary 

generators.  Under this hypothesis, cattle are exposed to AMDs and then either excrete a 

resistance-enriched population of microbes into the environment, or carry it into the food chain. 

While this seems like a fairly straightforward hypothesis to test, the realities of beef production 

render it extremely challenging to establish causal inference, especially if the goal is to 

understand AMU-AMR associations within “real-world” commercial feedlot operations. 

Challenges include uniquely identifying and tracking animals over time, maintaining and 

accessing detailed health records for individual animals, and obtaining biological samples 

longitudinally from a sufficient number of these uniquely identified animals. 

Due to these challenges, there are no identified randomized, controlled trials of AMU-

AMR associations in the reviewed literature that follow commercial cattle from placement 

through shipment and/or slaughter.  Case-control studies are also extremely uncommon due to 

the challenge of retroactively collecting AMU data on individual animals.  Cohort studies are 

also not reported in the literature, likely due to the fact that cattle enter feedlots already colonized 

with AMR bacteria; in other words, it is difficult to identify “outcome-free” populations.  For 

purposes of establishing causality, we are therefore left with longitudinal studies of commercial 
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beef cattle, of which there are two identified in the literature (20,21).  Both of these studies found 

statistically significant differences in prevalence of resistance to tetracycline, sulfamethoxazole 

and streptomycin based on AMD exposures.  In one study, pens with no antimicrobial exposures 

were significantly less likely to harbor generic E. coli with resistance to tetracycline, 

sulfamethoxazole and streptomycin than pens with low or high exposures (20).  In the other 

study, pens with no in-feed AMD exposures were significantly less likely to harbor generic E. 

coli with resistance to tetracycline, sulfamethoxazole, streptomycin and chloramphenicol, 

compared to pens with in-feed AMD exposures (21).  In the former study, all three resistance 

phenotypes were significantly associated with exposure specifically to in-feed and injectable 

tetracycline AMDs.  The latter study did not identify any significant associations between AMD 

exposures and AMR, but the study feedlots did not use tetracycline AMDs, and therefore this 

relationship could not be examined. 

There are also several longitudinal studies that describe AMU-AMR relationships in 

large groups of beef cattle raised in research herds.  In general, these studies find that parenteral 

and in-feed AMD exposures for purposes of prophylaxis do not significantly influence resistance 

prevalence in generic E. coli from fecal samples collected immediately prior to slaughter (22,23).  

However, in-feed AMD exposures for purposes of growth promotion, and specifically 

chlortetracycline, were associated with a much higher likelihood of recovering tetracycline, 

sulfamethoxazole, chloramphenicol and ampicillin resistant generic E. coli as well as tetracycline 

and erythromycin resistant Campylobacter spp. in feces of pre-slaughter cattle, compared to 

cattle without this exposure or with exposure to other in-feed antimicrobials (71–73). This effect 

was not observed for feed supplemented with tylosin (72), however in-feed tylosin both alone 
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and with monensin and copper has been reported to significantly increase prevalence of 

macrolide-resistant fecal enterococci (74,75). 

Another set of studies investigated shorter-term AMU-AMR dynamics for specific AMD-

AMR combinations within small groups of cattle purchased and managed specifically for 

research purposes.  These studies report a significant but transient increase in extended-spectrum 

betalactam (ESBL) and tetracycline resistance subsequent to single-dose ceftiofur exposures 

(76–78), however persistently high levels of ESBL resistance can be maintained if ceftiofur is 

given in combination with in-feed tetracycline exposures (79).  In-feed (tylosin) and injectable 

(tulathromycin) macrolides have been associated with greatly increased levels of erythromycin 

resistance in Enterococci spp. in the short term (80).  In-feed tetracycline with and without 

sulfamethazine has been shown to increase levels of tetracycline, sulfamethoxazole, 

chloramphenicol and ampicillin resistant E. coli (29,81), although some of these associations are 

strictly transient (82).     

In contrast to the dairy literature, there are very few studies that compare resistance in the 

feces of organically- and conventionally- raised cattle.  Those that do are cross-sectional and do 

not account for the myriad of potential confounders that exist when comparing organic and 

conventional production.  These studies document the presence of multi-drug resistant E. coli 

and tetracycline resistance genes in the feces of both conventionally and organically/non-

intensively raised beef cattle, but find significantly higher levels in the conventional operations 

(28,83).   

In addition to animal- and herd-level studies, several studies describe positive 

associations between AMU and AMR in livestock at the national level (84).  However, these 

studies are ecological in nature and do not contribute significantly to establishing causality.  
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Taken as a whole, the literature on associations between use and resistance in beef cattle is best 

described as patchy and ambiguous.  Most of the studies have been conducted in non-

commercial settings, and this limits the external validity of the findings.  Several studies 

document associations between in-feed tetracycline and macrolide exposures and increased 

tetracycline and macrolide resistance, respectively, in generic E. coli (20,21,29,71–

73,80,82,85,86).  Additionally, exposure to injectable ceftiofur consistently produces increased 

resistance to several classes of drugs, but these increases are short-lived unless in-feed drugs are 

also administered to exposed cattle (77–79).  The extent to which such associations significantly 

impact public health is not known, although quantitative risk assessments suggest that the 

negative consequences of macrolide use are extremely low (30,31).     

Associations between antimicrobial use in livestock and antimicrobial resistance in the food 

chain 

There are currently no published studies that report tracking AMD exposures and 

resistance outcomes in individual or pens of cattle from feedlot entry through slaughter and retail 

distribution.  Therefore, it is impossible to draw conclusions about causal associations between 

AMU within the feedlot setting, and AMR in the beef supply chain.  However, several studies 

have undertaken descriptive analysis of resistance patterns on carcasses and retail products from 

conventionally versus organically raised cattle. Carcasses of conventionally raised cattle have 

been found to harbor a significantly higher proportion of E. coli resistant to ampicillin, 

ciprofloxacin, doxycycline, gentamycin and sulfisoxazole, although this finding was not 

reflected within isolates of Listeria monocytogenes (43).  However, a similar study of E. coli 

O157:H7 isolated from carcasses found that the MIC’s of isolates from organically raised cattle 

were significantly higher than those for conventionally raised cattle for cefoxitin, ceftriaxone, 
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nalidixic acid, rifampin and tetracycline, and lower for gentamycin, neomycin and streptomycin 

(87).   

Within the retail environment, results are also mixed. One study of conventionally versus 

organically labeled beef products identified significant increases in prevalence of E. coli resistant 

to ceftiofur and chloramphenicol among conventionally labeled beef products (88).  Another 

study that found that generic E. coli isolated from beef purchased at natural-foods stores had 

significantly lower likelihood of testing resistant than E. coli from beef purchased from other 

grocery stores (89).  

Associations between AMU in livestock and AMR in the environment 

Given our nascent understanding of resistance within the soil and water microbiome, it is 

difficult to establish causal links between AMU practices in beef production and AMR that may 

be found in ecosystems that interface with beef production operations.  However, there seems to 

be mounting evidence to suggest that the combination of AMU within feedlots, resultant AMD 

residues in lagoons and manures, and poor waste management systems together produce 

especially high levels of resistance in surrounding locations (90). 

The presence of intact AMD residues within feces and wastewater (91,92) is an 

additional consideration when investigating the potential for AMR transmittance via 

environmental routes.  While AMD residues are strictly controlled and monitored in the beef 

supply chain, most regulations pertaining to management of livestock wastes were not 

formulated to control AMR residues in waters and soils.  Recent studies have documented a 

synergistic relationship between AMD residues and AMR gene abundance within contaminated 

water, composting manure and amended soils (91,93–97).  Evidence also suggests that some 

AMD-AMR dynamics within these systems can be significantly altered by compounds such as 
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organic acids and ammonia (98,99), which are readily available in beef production settings.  

However, the ability of AMDs to remain chemically active within different matrices and in the 

presence of different organic and inorganic compounds varies considerably by AMD 

(92,97,100), and therefore further research is needed.    

Most studies of associations between AMU practices and AMR levels in manure, soils 

and wastewater have been conducted in swine production, primarily in China (101).  As a body 

of work, these studies indicate that AMU practices significantly impact levels of AMR within 

waste effluents, although the applicability of these findings to beef production in the U.S. is not 

clear, especially given substantial differences in both AMU practices and waste management 

systems between North America and China, as well as between swine and beef production.  

Among studies conducted in North American cattle production settings, one found significantly 

higher levels of 6 tetracycline resistance genes in the lagoons of conventional versus organic 

feedlots (102).  Another study that investigated AMR in composting feces from cattle 

administered in-feed tetracycline and/or tylosin versus unexposed cattle documented increased 

abundance of tetracycline, sulfonamide and erythromycin resistance genes in the treated versus 

the control cattle feces, but overall AMR levels in nearly all groups returned to baseline levels by 

the end of the study (85). AMD residues and/or exposures are not necessary for significant ARD 

increases in soils after cattle manure application (103), and some studies show that ARD 

increases in manure-amended soil only occur when application rates are high or manure storage 

is not properly managed (90).    

The potential public health impact of AMU-engendered AMR in soils and wastewater is 

unknown.  At a very broad level, soil bacteria and human pathogens have been shown to 

exchange resistance genes (104), but other evidence suggests that such exchange is rare (105), 
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and whether livestock AMU influences this exchange is not known.  Interrogation of resistance 

levels in meticulously archived historical soils since the 1940s shows increasing levels of many 

resistance classes, but especially tetracyclines since the 1970s (106), which could be explained 

by increasing use of tetracyclines in agriculture beginning in the 1970s, although many other 

factors could also explain this finding. Resistant E. coli isolated from field lettuce was found to 

most closely resemble resistant E. coli recovered from cattle, but similarly the influence of AMU 

practices on the presence of the resistant E. coli was not explored (59). 

Associations between antimicrobial use in livestock and antimicrobial resistance in the general 

population 

Evidence that livestock AMU may increase levels of AMR in food or the environment is 

not necessarily evidence that AMU in livestock is a significant risk to public health.  To make 

this claim, the chain of causality needs to be extended from food, water systems and/or soils to 

the places that people live, work and eat, and ultimately to healthcare centers where people with 

AMR infections are diagnosed and treated (107).  Following AMR prospectively through this 

part of the transmittance chain is nearly impossible.  MRSA, for example, is diagnosed at an 

incidence rate of 24/100,000 U.S. inhabitants per year (108).  Cohort, longitudinal and controlled 

studies of such rare outcomes are cost-prohibitive, leaving aside the logistical difficulties.  A 

case-control approach would enable more targeted enrollment of people with AMR infections, 

but it is then impossible to retroactively obtain AMD exposure data for the specific meat and 

poultry products that each study participant consumed, even if participants could recall with 

specificity what they ate in the past.  Therefore, we are left with “natural experiments” and cross-

sectional studies.   
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Natural experiments include instances in which AMR data for a large population are 

available before and after livestock production AMU practices undergo a drastic change, whether 

through regulatory changes or introduction of a new AMD onto the market.  The widespread 

adoption and subsequent ban of avoparcin in livestock production in Europe is one example of 

the former, and many studies documented a substantial decrease in vancomycin-resistant 

Enterococci (VRE) in both animals and humans after the ban went into effect (109,110).  Much 

of the reporting out of Denmark also utilizes this type of correlative analysis, with reports of 

decreases in various types of AMR infections in humans after widespread livestock AMU 

restrictions went into effect (14).  However, these studies fail to account for numerous other 

factors that could potentially explain differences between AMR levels before and after alteration 

of AMU practices, including coinciding changes to livestock management practices, population 

demographics, and human medical AMU prescribing practices.  Therefore, while temporality can 

be established, causality cannot. 

Cross-sectional studies do not establish temporality between exposures and outcomes and 

therefore also do not support causal interpretations, even when confounders can be taken into 

account.  Despite this, much of the literature cited as evidence of causal associations between 

livestock AMU and AMR in humans is, in fact, cross-sectional.  This includes studies that 

identify sequence similarity between bacterial isolates from AMR outbreaks in humans and 

isolates recovered from food animals.  For instance, researchers have described substantial 

genetic similarities between retail beef and outbreak strains of extraintestinal E. coli from 

humans, although beef samples were less likely to exhibit these similarities than poultry or swine 

(111,112).  However, more comprehensive studies have shown that genetically similar outbreak 

strains can arise within animal and human populations separately (113). Furthermore, evidence 
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of AMR transmission from livestock to humans is not in itself evidence that AMU practices 

created the AMR; organic livestock operations and so-called pristine environments harbor a 

diverse resistance profile, indicating that AMU is not the only determinant of AMR presence.   

The inability to definitively support or dispute links between livestock AMU and AMR in 

humans is not for lack of trying.  Given the nature of livestock production and its integral role in 

numerous complex human ecosystems (i.e., food, water, air and soil), it is simply impossible to 

conduct sufficiently evidentiary studies to infer causality between AMU in livestock and AMR 

in humans.  Therefore, instead of attempting to apply traditional epidemiological study design 

methods to this seemingly intractable problem, it may be more fruitful to frame the problem in 

terms of systems and ecosystems, while keeping issues such as bias and validity at the forefront 

of study design and interpretation.  For instance, one potential approach would be to undertake a 

comprehensive risk analysis that applies risk probabilities around key components of the 

livestock production ecosystem and then models the system to quantify the overall risk to human 

and public health.  This approach allows not only quantification of risk, but comparison of 

different production practices and interventions and their effects on the overall risk.   This is not 

a new approach even within beef production (30,31), however it has yet to be applied to 

transmission routes other than the beef supply chain or to organisms other than major foodborne 

pathogens.  Given recent evidence that livestock effluents may carry significant amounts of 

AMR determinants and bacteria, it is critical to include these transmission routes in a 

comprehensive risk analysis.  Furthermore, such an analysis will not be comprehensive unless 

the entire AMR potential of a given microbial population is included in the assessment, as non-

pathogenic and pathogenic bacteria can exchange ARDs and various management practices can 

co-select for ARDs of unrelated antibiotic classes in a networked fashion (79,104,114).  Studies 
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have shown that bacteria increase rates of horizontal gene transfer of ARDs under stress 

conditions, including antibiotic exposure, and these dynamics must be included in the assessment 

of risk under different management practices (115,116).   

Until recently, this type of analysis was not feasible given the limitations of culture- and 

PCR-based methods.  However, with the advent of next-generation sequencers and subsequent 

dramatic decline in cost, it is now possible to sequence the DNA of an entire sample (the 

“metagenome”), and therefore interrogate all its genetic resistance potential, i.e. the “resistome”.  

This has been done in several large-scale studies in humans (117,118).  Only two such studies 

have been conducted in cattle, both in feces, one of which analyzed 5 samples from 4 cows and 

the other 1 sample composited from 6 cows (119,120).  Significant variability within the human 

fecal resistome has been documented, and it is highly unlikely that these studies provide a 

representative description of the cattle fecal resistome.  Diet, AMU, co-location, and other 

factors have all been shown to significantly influence resistome composition, and further 

descriptive studies in cattle are needed to document how these and other management factors 

change the resistome of beef cattle production.  This baseline knowledge will constitute an 

integral and previously lacking component of a comprehensive risk analysis of AMU in livestock 

production.  

CONCLUSION 

Research involving AMU and AMR in the context of livestock production has been, and 

will continue to be, extremely challenging.  The challenges stem not only from practical, 

logistical and financial considerations, but also political, societal, and economic ones.  Increasing 

societal pressure is creating incentive for both politicians and industry leaders to address this 

topic.  The scientific community now has new tools to respond in kind.  However, with any new 
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technology comes peril and promise.  The promise of a shotgun metagenomics approach to 

AMU-AMR research is both readily apparent and continually evolving.  The ability to describe, 

quantify and modulate the resistome holds immense potential for ensuring that livestock 

production practices are optimized towards the goal of protecting both the efficacy of AMDs and 

the public health.  However, this potential can only be realized if the metagenomics approach is 

executed in the context of sound science.  The peril of the metagenomics approach is that the 

shininess of the new technology will blind us to its limitations and caveats, and that we will fail 

to utilize the technology in the pursuit of actionable, applied scientific results.  Ultimately, a 

combination of sound epidemiological study design, ecosystems thinking, detailed metagenomic 

data, and phenotypic susceptibility testing will likely work in concert to significantly advance 

our understanding of AMU and AMR in food production. 
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CHAPTER 2: MANNHEIMIA HAEMOLYTICA IN FEEDLOT CATTLE: PREVALENCE OF 
RECOVERY AND ASSOCIATIONS WITH ANTIMICROBIAL USE, RESISTANCE AND 

HEALTH OUTCOMES. 

 

SUMMARY 

Background 

Mannheimia haemolytica is an important etiological agent in bovine respiratory disease.   

Objectives 

Explore risk factors for recovery of susceptible and resistant M. haemolytica in feedlot 

cattle and explore associations with health outcomes.   

Animals 

Cattle (n=5,498) from 4 feedlots were sampled at arrival and later in the feeding period.   

Methods 

Susceptibility of M. haemolytica isolates was tested for 21 antimicrobials.  Records of 

antimicrobial use (AMU) and health events were analyzed using multivariable regression.   

Results 

M. haemolytica was recovered from 29% of cattle (1,596/5,498), 13.1% at arrival (95% 

CI, 12.3% - 14.1%) and 19.8% at second sampling (95% CI, 18.7% - 20.9%). Nearly half of 

study cattle received antimicrobial drugs (AMDs) parenterally, mostly as metaphylactic therapy 

at arrival. Individual parenteral AMD exposures were associated with decreased recovery of M. 

haemolytica (OR, 0.2; 95% CI, 0.02 – 1.2), whereas exposure in penmates was associated with 

increased recovery (OR, 1.5; 95% CI, 1.05 – 2.2). Most isolates were pan-susceptible (87.8%; 

95% CI, 87.0%–89.4%).  AMD exposures were not associated with resistance to any single drug. 

Multiply-resistant isolates were rare (5.9%; 95% CI, 5.1% - 6.9%), but AMD exposures in pen 
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mates were associated with increased odds of recovering multiply-resistant M. haemolytica (OR, 

23.9; 95% CI, 8.4 – 68.3).  Cattle positive for M. haemolytica on arrival were more likely to 

become ill within 10 days (OR, 1.7; 95% CI, 1.1 – 2.4).   

Conclusions 

Resistance generally was rare in M. haemolytica. Antimicrobial drug exposures in 

penmates increased the risk of isolating susceptible and multiply-resistant M. haemolytica, a 

finding that could be explained by contagious spread.    

INTRODUCTION 

Bovine respiratory disease (BRD) is a major economic burden to feedlot operators.  It is 

estimated that BRD-associated morbidity and mortality result in annual loss of one billion USD 

for North American feedlots (121). BRD-related costs can account for 7% of total production 

costs, and per-calf revenue losses associated with treatment of BRD are estimated at up to $292 

USD for animals requiring 3 antimicrobial treatments (122,123). 

Although the etiology of BRD is multifactorial, M. haemolytica is arguably the most 

important associated bacterial pathogen, primarily because of virulence factors that induce severe 

morbidity.  M. haemolytica is typically the most common agent isolated from post-mortem 

samples of cattle with BRD (124,125). 

Treatment of BRD in large commercial feedlots is focused on antimicrobial therapy in 

clinically ill animals and antimicrobial metaphylactic treatment of high-risk animals.  Sick 

animals that fail to respond to initial treatment typically are re-treated with a different 

antimicrobial (personal communication: Calvin Booker). Recently, BRD treatment strategies 

have come under scrutiny because of a perception of antimicrobial resistance (AMR) in 

M. haemolytica isolates recovered from feedlot cattle, including multiply-resistant isolates (126). 
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Despite the putative importance of BRD and M. haemolytica for feedlot economics and animal 

health, ambiguity persists regarding colonization dynamics of M. haemolytica and associations 

with clinical disease.   

Primary objectives of this study were to describe the prevalence of M. haemolytica in 

isolates obtained from commercial feedlot beef cattle, to describe resistance prevalence and 

patterns in isolates, and to investigate associations between antimicrobial use (AMU) and 

resistant isolates.  A secondary objective was to investigate associations between M. haemolytica 

isolation and morbidity and mortality outcomes.   

MATERIALS AND METHODS 

Study Overview 

Isolates evaluated in this study were collected as part of a project to develop and evaluate 

surveillance methods of AMR in feedlots (127). The study population, sampling methods and 

laboratory procedures, and interpretive criteria for antimicrobial susceptibility have been 

described (127). Briefly, 5,968 individual cattle were enrolled using a 2-stage random sampling 

as they entered 4 feedlots in Alberta, Canada.  Morbidity, mortality and antimicrobial treatment 

events were tracked throughout the study.  Deep nasopharyngeal swabs were collected at arrival 

to the feedlot (“arrival sample”) and again later in the feeding period (“second sample”) and 

cultured for M. haemolytica. Isolates with morphologic characteristics of M. haemolytica were 

confirmed using biochemical tests and PCR (127,128).  Confirmed isolates were evaluated for 

resistance to antimicrobial drugs (AMDs; Table 2.1) using broth microdilution (Supplemental 

Table 2.1), disk diffusion (Supplemental Table 2.2) or both. Prevalence of and risk factors for 

isolation of M. haemolytica were described, and multivariable logistic regression was used to 
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investigate associations between AMU and AMR in M. haemolytica isolates and between 

M. haemolytica isolation and health outcomes.   

Study Population 

Four feedlots in Alberta, Canada with one-time holding capacities of between 15,000 and 

20,000 cattle were purposively selected based on their ability to track AMU and other health data 

as well as their willingness to participate.  Production conditions were typical for North 

American commercial cattle feedlots, and veterinary care was managed by Feedlot Health 

Management Services (FHMS).  Cattle handling and sampling procedures were approved by the 

Animal Care Committee of the University of Calgary (Protocol Number M07031). 

Cattle were sourced from across Canada through auction markets, and entered the 

feedlots at a range of weights (225 – 400 kg), ages, frame sizes and sexes.  Based upon these 

factors and historical patterns of illness in similar cattle, arriving groups were assigned an ordinal 

category of perceived risk for developing BRD (low risk to very high risk), which was used to 

employ prevention and treatment protocols.  All cattle received a growth implant, vaccines 

against selected pathogens, and topical anthelmintic upon arrival.  Very high risk cattle received 

M. haemolytica anti-leukotoxin vaccine, and high risk cattle received AMDs as metaphylaxis for 

respiratory disease, whereas lower risk, non-clinical cattle did not (Table 2.1). Cattle in higher-

risk categories received drugs shown to have greater efficacy for prevention and treatment of 

respiratory disease (129).  Cattle were fed a diet that met or exceeded the National Research 

Council requirements for beef cattle until reaching a body weight of 550-650 kg, at which time 

they were sent to slaughter, typically 120-250 days after arrival in the feedlot (130).  

Trained feedlot personnel evaluated cattle for signs of illness at arrival and daily 

thereafter.  Animals exhibiting systemic illness (e.g., dyspnea, lack of response to stimulation, 



 
 

23 

reluctance to move, abnormal carriage or posture of the head, or some combination of these 

signs) were assigned a diagnosis of “undifferentiated systemic illness” with or without fever 

based on a body temperature of higher or lower than 40.5°C, respectively, and treated using 

antimicrobial protocols formulated specifically for their diagnosis and risk status.  All cattle that 

died underwent necropsy by a FHMS veterinarian, who used clinical history and physical 

findings to classify the cause of death as either BRD, bovine viral diarrhea-associated disease, 

disease caused by Histophilus somni, diseases of the appendicular skeleton, metabolic disease, 

and miscellaneous heath events (e.g., trauma).  

Animal and Pen Record Management 

A computerized data collection systema was used to track the date each animal arrived at 

the feedlot, the number of cattle in the pen, the BRD risk status of each animal, and all health 

events, including treatments (date, drug administered, dose, and route of administration) and 

clinical and necropsy diagnoses.  Only in-feedlot AMD exposures were included in this study 

due to a lack of information on management of cattle prior to arrival in the feedlot.  Most cattle’s 

pen assignments did not change after arrival, exceptions being pens that were split or mixed for 

the purposes of marketing homogenous groups of cattle; such pens were excluded from analysis 

due to an inability to accurately characterize AMU for penmates. Nasopharyngeal sample 

collection dates, culture results, M. haemolytica isolate identification numbers, and resistance 

testing results were compiled and linked using the unique animal identification assigned to each 

animal upon arrival. 

Data Analysis 

Descriptive analyses and data distributions were explored graphically and through 

numerical summaries.  Adjusted CI for binomial proportions (adding 2 successes and 2 failures) 
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were estimated (131).  Crude prevalence of susceptible and resistant M. haemolytica at arrival 

and second sampling was calculated and compared.  When drugs were tested by both broth 

microdilution and disk diffusion (e.g., ampicillin, ceftiofur), isolates were classified as resistant 

if either test result indicated resistance. “Pan-susceptibility” was defined as phenotypic 

susceptibility to all drugs tested.  “Multiple resistance” was defined as phenotypic resistance to 

≥2 antimicrobials, regardless of drug class and whether results were obtained from broth 

microdilution or disk diffusion, because the drugs included in these panels differed.  McNemar’s 

test was used to detect significant differences in isolation of M. haemolytica within individual 

cattle between the 2 sampling points.  Least-square means estimates from generalized estimating 

equations (GEE) were used to determine significant changes in the overall prevalence of 

M. haemolytica between the 2 sampling points, with cattle ID specified as a repeated measure. 

Inferential analyses were performed with commercial softwareb using logistic regression 

with GEE to control for clustering within pens, specifying an exchangeable correlation structure.  

Feedlot was included in all models as a fixed effect.  The distributions of AMU were strongly 

right-skewed and zero-inflated, and therefore were modeled dichotomously (i.e., no exposure vs. 

any exposure).  Each antimicrobial class (tetracycline, macrolide, beta-lactam, phenicol, 

sulfonamide and quinolone) and route of exposure (in-feed vs. parenteral) was modeled 

separately. Parenteral drugs were grouped into a single variable if exposures were too sparse for 

model convergence. 

The primary study outcome was isolation of M. haemolytica (yes or no) in the second 

sample.  Primary exposure variables of interest were previous exposure to parenteral 

antimicrobials of any type, and in-feed macrolides and tetracyclines.  Exposures were classified 

as direct (i.e., administered directly to the enrolled individual) or indirect (i.e., administered to 
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penmates of the enrolled individual).  Furthermore, exposures were dichotomized as occurring 

>7 or ≤ 7 days from sample collection. Arrival sample M. haemolytica status (positive or 

negative) and cattle risk level also were risk factors of interest.  Pen size was added as a potential 

confounder.   

Secondary outcomes were resistance in second sample M. haemolytica isolates, both to 

each of the 21 drugs tested in the 2 panels, as well as to ≥2 drugs, that is multiply-resistant (i.e., 

multiply-resistant vs. singly-resistant or susceptible). Isolates tested by broth microdilution and 

disk diffusion were considered multiply-resistant if either method showed multiple resistance.  

Primary exposure variables included individual and penmate parenteral exposure to betalactams, 

sulfonamides, phenicols, quinolones, macrolides, and tetracyclines and in-feed macrolides and 

tetracyclines at any point before sample collection.  For the outcome of multiply-resistant M. 

haemolytica, all parenterally administered drugs were grouped together into a single exposure 

variable.  M. haemolytica status of cattle at arrival was the primary risk factor of interest for 

resistance outcomes.  Secondary risk factors included the season of feedlot arrival and sample 

collection (Jan-March, Apr-June, July-Sept, Oct-Dec), the risk status assigned to each animal 

(low, medium, high, or very high), and the number of cattle in the pen (<100, 101-200, 201-300, 

301-400, or >400).  The number of days cattle had been in the feedlot at sample collection was 

forced into all models as a potential confounder.  To account for repeated measures on samples 

from testing of multiple isolates, we specified “sample” as a subcluster with a “1-(nested log 

odds ratio)” structure using GEE with alternating logistic regression (ALR) (132).  Some isolates 

were tested by both broth microdilution and disk diffusion, and therefore “test type” was added 

as a fixed effect. 
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To model isolation of susceptible and resistant M. haemolytica, each AMU variable was 

first modeled individually.  Variables exhibiting a P value of ≤ 0.20 were included in 

multivariable modeling, which proceeded in a backwards stepwise fashion with a critical alpha 

for retention of 0.05. Variables with a relatively large effect size and biological relevance also 

were retained in the final model.  Confounding (defined as parameter estimate change of ≥20%) 

was assessed for all excluded variables.  Collinearity was evaluated using the variance inflation 

factor (VIF) and Chi-square test for continuous and categorical variables, respectively (133).  

A third set of outcomes included BRD-associated mortality and morbidity (diagnosis of 

systemic illness with fever at arrival, at any time during the study period, and within 10 days 

after sample collection).  For these 4 outcomes, the primary risk factor of interest was arrival 

sample M. haemolytica status.  Secondary a priori risk factors included in all models were BRD 

risk status, number of cattle in the pen, and the season of arrival. 

 RESULTS 

Samples 

A total of 5,968 cattle from 288 pens housing 56,080 cattle were enrolled in the study.  

During the study period, 71 cattle died and were not sampled a second time.  Approximately 

7.9% (470/5,968) of arrival samples and 15.6% (918/5,897) of second samples were excluded 

from analysis, resulting in 10,477 samples available for analyses (5,498 arrival samples and 

4,979 second samples). The majority of exclusions occurred as a result of split/mixed pens, but 

1.4% (20/1,388) were excluded because of missing sample numbers and laboratory results.  

Second samples were collected throughout the feeding period: 14.5% (721/4,979) were 

obtained between 30 and 60 DOF; 49.0% (2,441/4,979) between 61 and 90 DOF; 10.1% 
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(502/4,979) between 91 and 120 DOF; 17.5% (873/4,979) between 121 and 150 DOF; 6.0% 

(300/4,979) between 151 and 180 DOF; and 2.9% (142/4,979) at >180 DOF. 

Study Population 

The 5,498 cattle represented a diversity of BRD risk categories (Table 2.2). Most cattle 

were housed with 101 - 300 animals (59.4%, 3,267/5,498), and entered the feedlot in the summer 

and fall (68.6%, 3,771/5,498). 

Prevalence of Mannheimia haemolytica Recovery 

A total of 10,477 nasopharyngeal samples were obtained, and M. haemolytica was 

isolated from 16.6% (1,744/10,477; 95% CI, 15.9% - 17.4%).  Overall, 29% of cattle 

(1,596/5,498) were culture-positive for M. haemolytica at least once, and there was significant 

discordance in recovery likelihood between arrival and second samples (McNemar’s P<0.001), 

that is, a majority of positive cattle (90.7%; 1,448/1,596) were culture-positive only once.  There 

was a significant increase (P < 0.001) in the likelihood of recovery from arrival to second sample 

(13.1%; 95% CI, 12.3% - 14.1% and 19.8%; 95% CI, 18.7% - 20.9, respectively).   

Antimicrobial Use 

All enrolled cattle that were sampled twice received tetracycline and 9.6% (477/4,979) 

received macrolides in-feed for liver abscess control before second sampling (Table 2.3). 

Parenteral drugs were given to 47.5% (2,611/5,498) of all enrolled cattle for which treatment 

records were available, most commonly during initial processing as metaphylaxis for respiratory 

disease.  Tetracyclines and macrolides were the most common parenterally administered 

antimicrobials, with 31% (1,563/4,979) and 23% (1,158/4,979) of enrolled cattle exposed during 
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the study, respectively. Other parenterally administered AMDs were each given to <2% of study 

cattle.   

Risk Factors for Recovery of of M. haemolytica 

Odds of isolating M. haemolytica in second samples from cattle that received any 

parenterally administered drug ≤ 7 days preceding sample collection were about 5 times lower 

than for cattle that did not receive parenterally administered drugs in this same timeframe (OR, 

0.2; 95% CI, 0.02 – 1.2; P=0.006; Table 2.4).  Non-treated enrolled cattle housed in a pen with 

cattle that received injections >7 days before sample collection were about 1.5-times more likely 

to be colonized with M. haemolytica than study cattle that did not have treated penmates (OR, 

1.5; 95% CI, 1.05 – 2.2; P=0.02; Table 2.4). Arrival sample M. haemolytica status was not 

significantly associated with second sample M. haemolytica status. BRD risk status was collinear 

with AMD exposure and could not be modeled.  

Antimicrobial Resistance 

Susceptibility testing was performed on 2,989 isolates taken from 1,744 culture-positive 

nasopharyngeal samples.  A total of 1,200 isolates were tested with only broth microdilution, 215 

with only disk diffusion, and 1,574 with both methods. Over eighty-seven percent of isolates 

(2,623/2,989; 95% CI, 87.0% – 89.4%) were pan-susceptible. Most single-drug phenotypes 

exhibited crude prevalence ≤2.0%, with insufficient occurrence to support logistic regression 

modeling (Table 2.5).  The relatively low prevalence of resistance across all drugs is also 

reflected in the distributions of minimum inhibitory concentration (MIC) and zone diameter data 

(Supplementary Tables 2.3 and 2.4).  Spectinomycin, which was included only on the disk 

diffusion testing panel, exhibited the highest resistance prevalence at 4.5% (81/1,789), followed 

by tetracycline (which was tested for on both disk diffusion and broth microdilution panels) 
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(4.4%, 204/4,622), streptomycin (4.3%, 119/2,833), and kanamycin (3.8%, 108/2,833; Table 

2.5), both of which were included only on broth microdilution panels.  No AMD exposures were 

significantly associated with resistance to any of these 4 drugs. 

A subset of the 2,989 isolates tested for susceptibility (8.6%, 415/2,989) was excluded 

from inferential analyses of resistant M. haemolytica because of missing AMD exposure 

information when pens were split or mixed before sampling. A small proportion of remaining 

isolates was multiply-resistant (5.9%;152/2,574; 95% CI, 5.1% - 6.9%), comprising 3.8% of 

arrival isolates (47/1,225; 95% CI, 2.9% - 5.1%) and 7.8% of second sample isolates (105/1,348; 

95% CI, 6.5% - 9.4%).  Combined kanamycin and streptomycin resistance was the most 

common multiple-resistant phenotype among all susceptibility test results at 47.1% (80/170; 95% 

CI, 39.7% - 54.5%; Table 2.6).  Although multiple resistance was rare, odds of recovery was 

much more likely when penmates of sampled individuals received parenterally administered 

AMDs (OR, 23.9; 95% CI, 8.4 – 68.3; P<0.001; Table 2.7).  The wide CI for this estimate 

indicates a predictable lack of precision given the relatively rare occurrence of multiple 

resistance. Parenteral AMU in sampled cattle also was associated with increased odds of 

recovering multiply-resistant M. haemolytica from second samples, but was collinear with 

parenteral exposure in penmates; individual exposures were removed from the model because of 

a weaker magnitude of effect on recovery of multiply-resistant M. haemolytica.  Multiple-

resistance status was not associated with BRD risk status, pen size, or diagnosis of systemic 

illness or fever. 

Morbidity and Mortality 

Among cattle for which treatment records were available, 7% (401/5,498) were 

diagnosed with systemic illness requiring treatment, 19% of which were febrile at arrival 
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(75/401), 50% of which became systemically ill and febrile while in the feedlot (200/401), and 

31% of which were identified as ill at some point during the feeding period but were not febrile 

(126/401).  Of the 401 sick cattle, 41% (164/401) were diagnosed as ill <10 days after sample 

collection, the majority (95.7%; 157/164) <10 days after arrival sampling. 

Among cattle for which treatment records were available, approximately 1.3% died 

during the study (71/5,498), with 21% (15/71) attributed to metabolic disease, 21% (15/71) to 

Histophilus somni, 13% (9/71) to lameness, 11% (8/71) to BRD, and 3% (2/71) to mucosal 

disease caused by bovine viral diarrhea virus.  The remaining 31% (22/71) succumbed to 

miscellaneous causes. 

M. haemolytica Isolation as a Risk Factor for Respiratory Morbidity and Mortality 

Isolation of M. haemolytica at arrival was not a significant predictor of mortality, arrival 

diagnosis with systemic illness and fever, or diagnosis of systemic illness and fever later in the 

feeding period (Table 2.8). However, cattle that were culture-positive for M. haemolytica on 

arrival had almost twice the likelihood of being identified as systemically ill and febrile <10 days 

after arrival as compared to culture-negative cattle (OR, 1.7; 95% CI, 1.1 – 2.4; P=0.07). 

DISCUSSION 

M. haemolytica prevalence in this study was similar to that of previous reports (123,134), 

but recovery was significantly lower at arrival than later in the feeding period.  Almost 90% of 

isolates were susceptible to all AMDs evaluated (21 AMDs from 9 different drug classes), and 

only approximately 6% were multiply-resistant.  The likelihood of recovery was decreased in 

cattle that received AMDs parenterally, but increased in untreated cattle whose penmates 

received antimicrobials parenterally, which may be an indicator of contagious transmission 
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within pens.  Additionally, parenteral AMD exposures in penmates greatly increased the odds of 

recovering multiply-resistant M. haemolytica in study subjects. 

These findings are especially relevant to producers and their veterinarians because they 

stem from a longitudinal study conducted in commercial cattle under typical feedlot conditions. 

Deep nasopharyngeal sampling was done on live feedlot cattle regardless of clinical signs, as 

opposed to sampling post-mortem lung tissues, and therefore provides a potentially more 

relevant picture of M. haemolytica transmission dynamics. Although live animal sampling is 

unique, it must be noted that cattle were sampled only twice and outcomes therefore represent 

only a snapshot of M. haemolytica feedlot dynamics. 

All cattle were exposed to in-feed AMDs and 50% to parenterally administered AMDs, 

primarily for BRD metaphylaxis.   Most AMDs used in this population were macrolides and 

tetracyclines, while other classes were relatively infrequently used, including antimicrobials 

germane to AMR in M. haemolytica (e.g., ceftiofur).  Although these AMD use patterns reflect 

real world practices, they can also hamper analytic analysis because of sparse data distributions 

for AMD exposure measures, as well as rare resistance outcomes. Given low parenteral AMU 

rates, randomized controlled trials may be necessary to evaluate specific hypotheses regarding 

the impact of use on M. haemolytica recovery and AMR, particularly for specific resistances that 

pose substantial human, animal or economic health risk.  However, we believe that the 

observational nature of this study better reflects real world ecological impact of AMU on M. 

haemolytica recovery and AMR.  

A striking finding of this study is that parenteral AMU in penmates not only modestly 

increased the odds of isolating any M. haemolytica, but also dramatically increased the 

likelihood of recovering rare multiply-resistant isolates (Table 2.4 and 2.7).  Parenteral treatment 
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is a marker of disease occurrence under the management strategy used in this population, and 

therefore this finding could suggest that contagious spread is predicted by disease occurrence in 

penmates.  If this is true, the use of arrival metaphylaxis in high-risk populations may be 

effective in controlling disease in clinically ill cattle, as well as preventing colonization of 

healthy penmates (129,135,136).  However, it might also suggest that treatment selects for more 

resistant bacterial populations, which spread among penmates.  Indeed, this theory is supported 

by the large effect of parenteral treatment on increasing the likelihood of isolating multiply-

resistant M. haemolytica.  Together, these findings suggest that metaphylaxis treatment protocols 

may be striking a delicate balance between the competing interests of animal health and 

antimicrobial resistance.  This ecological impact warrants further investigation given the 

importance of M. haemolytica in feedlot cattle. 

We also found that feedlot-of-origin exhibited a strong and consistent association with 

the 4 single-resistance outcomes that could be modeled (i.e., spectinomycin, tetracycline, 

kanamycin and streptomycin).  If M. haemolytica undergoes contagious spread, we would expect 

resistance patterns to be strongly associated with geographic location (i.e., feedlot).  Indeed, the 

contagious nature of M. haemolytica previously has been suggested based on evidence of BRD 

clustering within transport trucks and pens (137).  

This finding also suggests that M. haemolytica subpopulations may undergo clonal 

expansion, and that resistant strains are maintained at low levels within a feedlot.  Previous 

studies have shown a link between resistance patterns and M. haemolytica subtype (138). 

Furthermore, the significant increase in prevalence of M. haemolytica from arrival to second 

samples (13% to 20%) could suggest that phenotypic characteristics (e.g., virulence) of 

M. haemolytica might influence treatment decisions and thus transmission dynamics.  For 
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example, arriving cattle with clinical signs might be colonized with a particularly virulent strain 

of M. haemolytica.  Treatment of these cattle could then increase the likelihood that persistent M. 

haemolytica is resistant, and this resistant strain could then spread to untreated penmates, who 

subsequently exhibit a higher likelihood of colonization even in the absence of clinical illness. 

M. haemolytica serotypes have been shown to differ in virulence, and cattle exhibiting clinical 

BRD signs are more likely to be colonized with more virulent serotypes (139).  Future studies 

should include isolate typing to gain a clearer understanding of transmission dynamics. 

Published rates of multiply-resistant M. haemolytica range from 0% to 50%, but it is 

difficult to compare the prevalence found in this study, because the only identified studies used 

small numbers of young animals in non-commercial settings (sample sizes ranging from 4 to 27) 

(140–143).  One recent, larger study examined samples from over 350 cattle and found an 

increase in multiply-resistant M. haemolytica from 5% to 35% between 2009 and 2011, but 

evaluated only isolates from cattle with terminal respiratory disease (126). As stated above, 

information regarding M. haemolytica susceptibility obtained from our study is particularly 

relevant to veterinarians and producers because isolates were obtained from randomly selected 

live cattle without considering treatment history or disease status.  

Several lines of evidence indicate that isolates obtained in this study were representative 

of a highly susceptible bacterial population. The large majority of M. haemolytica isolates (88%) 

were pan-susceptible, there was low resistance prevalence to all drugs, and distributions of 

susceptibility information (MICs and zones of inhibition) were highly suggestive of a largely 

susceptible population.  The prevalence of multiply-resistant M. haemolytica isolates also was 

much lower than indicated by other recent research (126). 
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In addition to a largely susceptible bacterial population, it should be noted that no 

associations were found between AMD exposures among enrolled cattle or their penmates, and 

resistance to single drugs. Furthermore, the most prevalent resistance phenotypes observed were 

for AMDs not used in the study population (e.g., kanamycin, streptomycin and spectinomycin).  

This finding is consistent with a recent study that showed no correlation between antemortem 

treatment regimens and resistance patterns in M. haemolytica recovered from necropsy lung 

samples (144). Together, these findings highlight the complexity of AMR and suggest that AMU 

practices do not necessarily impact development of AMR in a predictable manner. Furthermore, 

these results support the contention that decreased efficacy of BRD treatment stems from chronic 

and repeatedly treated BRD cases, rather than from AMU practices.  The association between 

treatment with parenterally administered antimicrobials and recovery of multiply-resistant 

M. haemolytica deserves closer study to determine whether this relationship affects BRD control 

or treatment efficacy in feedlot populations. 

Recovery of M. haemolytica from 20% of cattle after arrival was higher than expected, as 

was the significant increase in prevalence over time.  However, recovery of M. haemolytica in 

the second sample was not associated with increased morbidity or mortality, suggesting that 

post-arrival colonization is more likely to be subclinical and may not be as great a concern for 

feedlot operators.  In contrast, isolation of M. haemolytica on arrival was associated with a short-

term, significant increase in risk of clinical illness.   Thus, although prevalence of 

M. haemolytica was lower at arrival, the clinical and economic relevance of such colonization 

was greater. Additionally, our results showed that cattle receiving parenterally administered 

drugs were at decreased risk of M. haemolytica colonization in the short-term, a finding that 

supports AMU in high-risk individuals during a defined period of stress, such as arrival in the 
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feedlot.  These findings highlights the complexity of colonization, treatment and clinical illness, 

and support the belief that aggravating factors such as transport and handling stress are critical 

for causing cattle to develop overt disease. 
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ENDNOTE 

a
iFHMS, FHMS, Okotoks, AB 

bSAS 9.3 (SAS Institute Inc., Cary, NC). 
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Table 2.1. Antimicrobial Drugs used in this study population. 
 
 
 

Antimicrobial Drug and Dosage Primary Reason for Use Class 

   

Parenteral   

Ceftiofur sodium 1 mg/kg BW BRD Treatment Beta lactam 

Ceftiofur crystalline free acid 6.6 mg/kg 

BW 
BRD Treatment Beta lactam 

Ceftiofur hydrochloride 1.1 mg/kg BW BRD Treatment  Beta lactam 

Enrofloxacin 7.7 mg/kg BW Relapse BRD Treatment Quinolone 

Florfenicol 40 mg/kg BW BRD Treatment Phenicol 

Florfenicol 40 mg/kg BW & Flunixin 

meglumine 2.2 mg/kg BW 
BRD Treatment Phenicol 

Oxytetracycline    
       10 mg/kg BW BRD Prevention/Treatment Tetracycline 

       20 mg/kg BW BRD Prevention/Treatment Tetracycline 

       30 mg/kg BW BRD Prevention/Treatment Tetracycline 

Tilmicosin 10 mg/kg BW BRD Prevention/Treatment Macrolide 

Trimethoprim and sulfadoxine 16 mg/kg 

BW 
BRD Treatment Sulfonamide 

Tulathromycin 2.5 mg/kg BW BRD Prevention/Treatment Macrolide 

Tylosin tartrate 29 mg Implant Site Abscess Prevention Macrolide 

   

In-Feed   

Chlortetracycline @   
35 mg/kg diet dry matter  Liver Abscess Prevention Tetracycline  

       1 g/head/day Histophilosis Prevention/Treatment Tetracycline 

       3 g/head/day Histophilosis Prevention/Treatment Tetracycline 

       6 g/head/day Histophilosis Prevention/Treatment Tetracycline 

Tylosin phosphate @ 11 mg/kg diet dry 

matter 
Liver Abscess Prevention Macrolide 
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Table 2.2. Demographics of study population. 
 
 
 

 
 
 
 
 
 
 
  

 

 
  

   

 No. of cattle % of cattle
 

   

Risk status of cattle   
Low risk 2,420 44.0 

Medium risk 832 15.1 

High risk 1,356 24.7 

Very high risk 890 16.2 

Arrival season of cattle   
Winter (Jan-Mar) 876 15.9 

Spring (Apr-June) 851 15.5 

Summer (July-Sept) 1,623 29.5 

Fall (Oct-Dec) 2,148 39.1 

Pen Size   
<101 459 8.4 

101-200 1,858 33.8 

201-300 1,409 25.6 

301-400 1,173 21.3 

>400 599 10.9 
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Table 2.3. Drug use before the time of second sampling, by class. 
 

 
a
ADD=Animal Daily Dose, defined as the number of days that a single treatment remains  

in the target tissue(s) at therapeutic concentrations. 

  

 

 
 

 
 

 

     

Drug Class Total ADD’s An % of ADD’s No. of Cattle Exposed % of Cattle Exposed 
     

Parenteral Betalactam 211 0.4 73 1.5 

Parenteral Quinolone 57 0.1 19 0.4 

Parenteral Phenicol 81 0.2 27 0.5 

Parenteral Macrolide 3,166 5.7 1,158 23.3 

Parenteral Sulfonamide 51 0.1 17 0.3 

Parenteral Tetracycline 4,540 8.2 1,563 31.4 

In-feed Tetracycline 47,178 85.2 4,979 100.0 

In-feed Macrolide 63 0.1 477 9.6 

Total 55,346    
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Table 2.4. Risk factors associated with the isolation of M. haemolytica in second samples. 
 
 

 
 

 

 

 
    

Predictor Level Odds Ratio 95% Confidence 
Interval p-value 

Parenteral drugs given to sampled 
individual within 7 days of sample 
collection 

any exposure 0.16 (0.02 – 1.23) 0.006 

no exposure Reference Reference Reference 

 
  

  

Parenteral drugs given to penmates 

of sampled individual at least 7 
days prior to sample collection 

any exposure 1.52 (1.05 – 2.19) 0.023 

no exposure Reference Reference Reference 
   

  

Pen Size confounded confounded confounded confounded 
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Table 2.5. Crude prevalence of resistance of M. haemolytica isolates (n=2,989).a 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

aIsolates can be listed more than once if they were multiply resistant; 1,574 isolates were tested 
by both broth microdilution and disk diffusion, 1,200 isolates were tested by only broth 
microdilution, and 215 isolates tested only by disk diffusion, for a total of 2,833 test results from 
broth microdilution and 1,789 from disk diffusion (4,622 total test results). 
bTested by broth microdilution only. 
cTested by both broth microdilution and disk diffusion. 
dTested by disk diffusion only. 
dAdjusted CI for binomial proportions (adding 2 successes and 2 failures) were estimated as 
previously described (131)  
  

 
 

 
 

   

Resistance Phenotype No. of isolates  %  (95%CI)
d 

   

Pan-Susceptible 2,623 87.8 (87.0-89.4) 

Amikacinb 3 0.1 (0.0 – 0.3) 

Amoxicillin-clavulanatec 34 0.7 (0.5 – 1.0) 

Ampicillinc 70 1.5 (1.2 – 1.9) 

Cefoxitinb 5 0.2 (0.1 – 0.4) 

Ceftiofurc 2 0.0 (0.0 – 0.2) 

Ceftriaxoneb 1 0.0 (0.0 – 0.2) 

Chloramphenicolb 0 0.0 (0.0 – 0.1) 

Ciprofloxacinb 0 0.0 (0.0 – 0.2) 

Enrofloxacind 1 0.0 (0.0 – 0.3) 

Florfenicold 2 0.1 (0.0 – 0.4) 

Gentamicinc 0 0.0 (0.0 – 0.1) 

Kanamycinb 108 3.8 (3.2 – 4.6) 

Nalidix acidb 4 0.1 (0.0 – 0.3) 

Streptomycinb 119 4.2 (3.5 – 5.0) 

Sulfonamideb 12 0.4 (0.2 – 0.8) 

Spectinomycind 81 4.5 (3.7 – 5.6) 

Danofloxacind 35 2.0 (1.4 – 2.7) 

Tilmicosind 5 0.3 (0.1 – 0.7) 

Tulathromycind 2 0.1 (0.0 – 0.4) 

Tetracyclinec 204 4.4 (3.9 – 5.1) 

Trimethoprim-sulfadiazinec 9 0.2 (0.1 – 0.4) 
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Table 2.6. Most common phenotypes among multiply-resistant isolates (n=152). 
 
 

 
 
 
 
 
 
 

 

 

 

aFrom a total of 32 multiply-resistance phenotypes; the phenotypes listed had a frequency of 
>2% among  
multiply-resistant M. haemolytica isolates. 
bAdjusted CI for binomial proportions (adding 2 successes and 2 failures) were estimated as 
previously described.9 

  

 

 

 
 

   

Frequency of 
Resistance Phenotypea 

%  (95% CI)
b 

Phenotype 

   

80 47.1 (39.7 – 54.5) Kanamycin, Streptomycin 

11 6.5 (3.6 – 11.4) Ampicillin, Amoxicillin-Clavulanate 
8 4.7 (2.3 – 9.2) Kanamycin, Streptomycin, Tetracycline 

8 4.7 (2.3 – 9.2) Ampicillin-Clavulanate, Tetracycline 

7 4.1 (1.9 – 8.5) Spectinomycin, Danofloxacin 

7 4.1 (1.9 – 8.5) Spectinomycin, Danofloxacin, Tetracycline 

6 3.5 (1.5 – 7.7) Kanamycin, Streptomycin, Ampicillin-Clavulanate 
25 16.4 (10.5 – 22.4) 25 other multiply-resistant phenotypes 
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Table 2.7. Final multivariable model for risk factors associated with recovery of multiply-
resistant M. haemolytica in second sample (multiply-resistant vs. singly-resistant or susceptible). 
 

 
  

 
 

    

Predictor Level Odds Ratio 95% Confidence 
Interval p-value 

Parenteral drugs given to penmates 
of sampled individual at any time 

prior to sample collection 

any exposure 23.9 (8.4 – 68.3) 
<0.0001 

no exposure Reference Reference 

 
  

  

Arrival Season 

    

Fall (Oct-Dec) 1.2 (0.5 – 3.1) 

0.07 
Summer (July-Sept) 0.6 (0.2 – 1.9) 

Spring (Apr-June) 0.2 (0.1 – 1.0) 

Winter Reference Reference 
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 Table 2.8. Odds ratio, 95% confidence interval
a
, and p-value for a priori risk factors of respiratory morbidity and mortality.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

a
95% CI represent likelihood ratio-based confidence interval 

b
Systemic illness with fever (bovine respiratory disease) 

  

 

 
 

 
 

 
 

   

Risk Factor 

Outcome 

Mortality at any time 

during the feeding period 

Diagnosis of fever
b
 on 

arrival 

Diagnosis of fever
b
 after 

arrival, at any time in 

feeding period 

Diagnosis of fever
b
 after 

arrival, within 10 days after 

sample collection 
         

M. haemolytica status of 

arrival sample 
        

Negative Reference  Reference  Reference  Reference  

Positive 1.1 (0.3 – 2.9) 0.93 1.4 (0.7 – 1.7) 0.38 1.2 (1.0 – 1.6) 0.24 1.7 (1.1 – 2.4) 0.07 
         

Risk status of cattle         

Low risk Reference 0.03 Reference 0.008 Reference <0.001 Reference <0.001 

Medium risk 3.5 (0.4 – 90.2)  2.9 (2.1 – 7.0)  1.7 (1.7 – 3.2)  2.1 (1.5 – 4.0)  

High risk 13.7 (2.2 – 285.7)  2.7 (1.4 – 4.3)  5.6 (4.1 – 7.8)  2.5 (1.5 – 4.1)  

Very high risk 3.8 (0.4 – 111.7)  0.5 (0.2 – 0.9)  2.7 (1.8 – 3.8)  0.3 (0.1 – 0.6)  

Arrival season of cattle         

Winter (Jan-Mar) Reference 0.21 Reference 0.09 Reference 0.002 Reference 0.002 

Spring (Apr-June) 0.3 (0.01 – 2.7)  5.2 (2.2 – 11.4)  1.3 (0.6 – 1.7)  1.2 (0.5 – 2.5)  

Summer (July-Sept) 0.3 (0.03 – 2.0)  2.3 (0.9 – 4.7)  2.5 (1.4 – 3.0)  1.2 (0.5 – 1.0)  

Fall (Oct-Dec) 1.3 (0.3 – 5.2)  2.7 (1.1 – 5.2)  3.9 (2.5 – 5.1)  3.1 (1.6 – 5.1)  

Pen Size         

<101 Reference 0.23 Reference 0.38 Reference 0.24 Reference 0.97 

101-200 3.1 (0.54– 56.6)  1.2 (0.6 – 2.7)  1.7 (1.2 – 2.8)  1.0 (0.5 – 2.0)  

201-300 1.6 (0.1 – 37.0)  0.4 (0.1 – 1.5)  1.6 (1.0 – 2.8)  1.0 (0.5 – 2.4)  

301-400 0.4 (0.02 – 15.4)  1.8 (0.9 – 6.1)  1.6 (1.0 – 2.9)  0.8 (0.4 – 2.2)  

>400 1.6 (0.2 – 92.6)  0.6 (0.3 – 2.5)  2.8 (1.6 – 5.2)  0.9 (0.3 – 2.7)  
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Supplemental Table 2.1. Interpretive criteria (minimum inhibitory concentrations [ug/ml]) for Mannheimia haemolytica susceptibility 

testing using broth microdilution  

Antimicrobial Susceptible Intermediate Resistant Reference 

     

Amikacin ≤16 32 ≥64 *CLSI M100-S22, 2012 

Ampicillin ≤0.5 - - CLSI M45-A2, 2010  

Amoxicillin-Clavulanic acid ≤0.5/0.25 - - CLSI M45-A2, 2010  

Cefoxitin ≤8 16 ≥32 *CLSI M100-S22, 2012 

Ceftiofur ≤2 4 ≥8 CSLI M31-A4, 2013 

Ceftriaxone ≤1 2 ≥4 *CLSI M100-S22, 2012 

Chloramphenicol ≤8 16 ≥32 *CLSI M100-S22, 2012 

Ciprofloxacin ≤1 2 ≥4 *CLSI M100-S21, 2011 

Gentamicin ≤4 8 ≥16 *CLSI M100-S22, 2012 

Kanamycin ≤16 32 ≥64 *CLSI M100-S22, 2012 

Nalidixic Acid ≤16 - ≥32 *CLSI M100-S22, 2012 

Streptomycin ≤32 - ≥64 NARMS Executive Report 2009 

Sulfisoxazole ≤256 - ≥512 *CLSI M100-S22, 2012 

Tetracycline ≤2 4 ≥8 CLSI M31-A4, 2013 

Trimethoprim-Sulfamethoxazole ≤0.5/9.5 - - CLSI M45-A2, 2010  

     

 

* Interpretive criteria for E. coli used in lieu of M. haemolytica since CLSI does not define breakpoints for M. haemolytica and these 

antimicrobial drugs.  CLSI = Clinical and Laboratory Standards Institute.  
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Supplemental Table 2.2. Interpretive criteria (inhibition zone diameters [mm]) for Mannheimia haemolytica susceptibility 

testing using disk diffusion 

Antimicrobial [Disk] (µg) Susceptible Intermediate Resistant Reference 

      

Ampicillin 10 ≥27 - - CLSI M45-A2, 2010 

Amoxicillin-Clavulanic acid 20/10 ≥27 - - CLSI M45-A2, 2010 

Ceftiofur 30 ≥21 18-20 ≤17 CLSI M31-A3, 2008 

Danofloxacin 5 ≥22 - - CLSI M31-A3, 2008 

Enrofloxacin 5 ≥21 17-20 ≤16 CLSI M31-A4, 2013 

Florfenicol 30 ≥19 15-18 ≤14 CLSI M31-A4, 2013 

Gentamicin 10 ≥15 - ≤12 Catry et al., 2007 

Spectinomycin 100 ≥14 11-13 ≤10 CLSI M31-A3, 2008 

Sulfisoxazole 300 ≥17 13-16 ≤12 CLSI M31-A3, 2008 

Tetracycline 30 ≥23 - - CLSI M45-A2, 2010 

Tilmicosin 15 ≥14 11-13 ≤10 CLSI M31-A4, 2013 

Trimethoprim-Sulfamethoxazole 1.25/23.75 ≥24 - - CLSI M45-A2, 2010 

Tulathromycin 30 ≥18 15-17 ≤14 CLSI M31-A4, 2013 

      

 

CLSI = Clinical and Laboratory Standards Institute.  
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Supplemental Table 2.3. Minimum inhibitory concentrations for Mannheimia haemolytica isolates recovered from deep nasopharyngeal swabs 

obtained from feedlot cattle (n=2,833 isolates) 
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0.016               2804 (99.0%)               

0.031               23 (0.8%)               

0.063               3 (0.1%)               

0.125         2781 (98.2%)     0 (0%)             

2820 

(99.5%) 

0.25         21 (0.7%) 2805 (99.0%)   2 (0.1%) 30 (1.1%)           

1 

(0.04%) 

0.5 30 (1.1%)     2493 (88%) 11 (0.4%) 16 (0.6%)   1 (0.04%) 6 (0.2%)   

105 

(3.7%)       

4 

(0.1%) 

1 2 (0.1%) 2824 (99.7%) 2800 (98.8%) 318 (11.2%) 8 (0.3%) 9 (0.3%)   0 (0%) 216 (7.6%)   

1600 

(56.5%)       

3 

(0.1%) 

2 5 (0.2%) 6 (0.2%) 6 (0.2%) 7 (0.2%) 6 (0.2%) 2 (0.1%) 2823 (99.6%)   2449 (86.4%)   

1113 

(39.3%)       0 (0%) 

4 32 (1.1%) 0 (0%) 1 (0.04%) 9 (0.3%) 4 (0.1%) 0 (0%) 9 (0.3%)   132 (4.7%)   

10 

(0.4%)     

2755 

(97.2%) 

5 

(0.2%) 

8 1753 (61.9%) 0 (0%) 3 (0.1%) 1 (0.04%) 1 (0.04%) 0 (0%) 1 (0.04%)   0 (0%) 

2535 

(89.5%) 0 (0%)     16 (0.6%) 0 (0%) 

16 995 (35.1%) 0 (0%) 5 (0.2%) 0 (0%) 1 (0.04%) 0 (0%) 0 (0%)     

189 

(6.7%) 1 (0%)   

1771 

(62.5%) 13 (0.5%)   

32 13 (0.5%) 0 (0%) 13 (0.5%) 3 (0.1%)   0 (0%)       1 (0.04%) 1 (0%) 

2714 

(95.8%) 

451 

(15.9%) 47 (1.7%)   

64 3 (0.1%) 3 (0.1%) 5 (0.2%) 2 (0.1%)   1 (0.04%)       

108 

(3.8%) 3 (0.1%) 12 (0.4%) 

423 

(14.9%) 2 (0.1%)   

128 0 (0%)         0 (0%)           107 (3.8%) 88 (3.1%)     

256                         88 (3.1%)     

512                         12 (0.4%)     
 a 

Minimum inhibitory concentration obtained from broth microdilution assays; smaller values represent greater susceptibility. Lowest MIC values 

represent the lowest concentration tested and actual MIC values could be at or below (≤) this value.  Highest MIC values represent MIC results 

that were > than the 2
nd

 highest value, and actual MIC values could be any value greater than the 2
nd

 highest value.  
b 
Values for amoxicillin–clavulanate refer to amoxicillin concentrations (clavulanate was included in wells at half of the amoxicillin 

concentration).  
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c 
Values for trimethoprim–sulfamethoxazole represent trimethoprim concentrations (sulfamethoxazole was included in wells at 19 times the 

concentration of trimethoprim).  
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 Supplemental Table 2.4. Results of disk diffusion susceptibility testing of Mannheimia haemolytica isolates recovered from deep nasopharyngeal 

swabs obtained from feedlot cattle (n=1,789 isolates) 
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50 to 55
 

0 (0%) 0 (0%) 5 (0.3%) 0 (0%) 1 (0.1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

45 to 50 3 (0.2%) 0 (0%) 44 (2.5%) 4 (0.2%) 6 (0.3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

40 to 45 67 (3.7%) 40 (2.2%) 366 (20.5%) 48 (2.7%) 52 (2.9%) 3 (0.2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 26 (1.5%) 0 (0%) 

35 to 40 
524 

(29.3%) 

552 

(30.9%) 
777 (43.4%) 275 (15.4%) 351 (19.6%) 80 (4.5%) 0 (0%) 8 (0.4%) 0 (0%) 0 (0%) 

520 

(29.1%) 
1 (0.1%) 

30 to 35 
897 

(50.1%) 

903 

(50.5%) 
568 (31.7%) 775 (43.3%) 907 (50.7%) 557 (31.1%) 0 (0%) 

311 

(17.4%) 
35 (2%) 2 (0.1%) 

1016 

(56.8%) 

66 

(3.7%) 

25 to 30 
285 

(15.9%) 

292 

(16.3%) 
28 (1.6%) 292 (16.3%) 469 (26.2%) 1022 (57.1%) 

150 

(8.4%) 

1301 

(72.7%) 

663 

(37.1%) 
32 (1.8%) 

218 

(12.2%) 

881 

(49.2%) 

20 to 25 1 (0.1%) 2 (0.1%) 1 (0.1%) 88 (4.9%) 2 (0.1%) 125 (7%) 
1407 

(78.6%) 
29 (1.6%) 

944 

(52.8%) 

1100 

(61.5%) 
6 (0.3%) 

830 

(46.4%) 

15 to 20 2 (0.1%) 0 (0%) 0 (0%) 104 (5.8%) 0 (0%) 0 (0%) 
232 

(13%) 
22 (1.2%) 

32 

(1.8%) 

641 

(35.8%) 
1 (0.1%) 9 (0.5%) 

10 to 15 5 (0.3%) 0 (0%) 0 (0%) 135 (7.5%) 0 (0%) 0 (0%) 0 (0%) 64 (3.6%) 
29 

(1.6%) 
10 (0.6%) 1 (0.1%) 2 (0.1%) 

6 to 10
b
 5 (0.3%) 0 (0%) 0 (0%) 68 (3.8%) 1 (0.1%) 2 (0.1%) 0 (0%) 54 (3%) 

86 

(4.8%) 
4 (0.2%) 1 (0.1%) 0 (0%) 

a 
Diameters of zones of inhibition for susceptibility measured with disk diffusion assays; larger values represent greater susceptibility.   

b
 Disks impregnated with antimicrobial drugs were 6 mm in diameter, which is therefore the minimum possible size of inhibition 
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CHAPTER 3: MODELING CONSIDERATIONS IN THE ANALYSIS OF ASSOCIATIONS 

BETWEEN ANTIMICROBIAL USE AND RESISTANCE IN BEEF FEEDLOT CATTLE 

 

SUMMARY 

A number of sophisticated modeling approaches are available to investigate potential 

associations between antimicrobial use (AMU) and resistance (AMR) in animal health settings.   

All have their advantages and disadvantages, making it unclear as to which model is most 

appropriate.   We used advanced regression modeling to investigate AMU-AMR associations in 

faecal generic Escherichia coli (NTSEC) isolates recovered from 275 pens of feedlot cattle.   Ten 

modeling strategies were employed to investigate AMU associations with resistance to 

chloramphenicol, ampicillin, sulfisoxazole, tetracycline and streptomycin.   Goodness-of-fit 

statistics did not show a consistent advantage for any one model type.  Three AMU-AMR 

associations were significant in all models.   Recent parenteral tetracycline use increased the 

odds of finding tetracycline-resistant NTSEC (odds ratios [OR] ranged from 1.1 to 3.2); recent 

parenteral sulfonamide use increased the odds of finding sulfisoxazole-resistant NTSEC (ORs 

ranged from 1.4 to 2.5); and recent parenteral macrolide use decreased the odds of recovering 

ampicillin-resistant NTSEC (ORs ranged from 0.03 to 0.2).   Other results varied dramatically 

depending on the modeling approach, emphasizing the importance of exploring and reporting 

multiple modeling methods based on a balanced consideration of important factors such as study 

design, mathematical appropriateness, research question and target audience. 

INTRODUCTION 

Antimicrobial resistance (AMR) is a leading public health concern, causing significant 

morbidity and mortality, and increased healthcare-related costs (145).   Antimicrobial use 

(AMU) in food animals has been posited as a driver of AMR by national and international 
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governing agencies (146), however studies in this area have produced ambiguous results (18–

22).   The significance of AMU in animals on AMR outcomes in humans is difficult to quantify 

(30–32,147,148).   Despite best efforts to address this knowledge gap, substantial logistical 

challenges remain with respect to designing and conducting commercial field studies to quantify 

associations between AMU and AMR in food animals.   Such challenges include uniquely 

identifying and tracking animals over time, maintaining and accessing detailed health records for 

individual animals, and obtaining biological samples longitudinally from a sufficient number of 

these uniquely identified animals. 

Even studies that have overcome these challenges have produced inconsistent results 

(18,19,22), including differences in detecting associations between tetracycline use and 

resistance in beef cattle feedlots (20,21), and differences in the association between tetracycline 

resistance and use of chlortetracycline and oxytetracycline in swine (149).   One reason for such 

differential results may stem from differences in laboratory and analytical methods.   Potential 

bench-side differences include the use of multiple resistance testing methods that may produce 

different results (e.g., disk diffusion vs.  broth microdilution) (150), a lack of host- and agent-

specific breakpoints for interpretation of resistance results, and debate as to which indicator 

bacterial species best represent resistance dynamics in food animals.   Analytically, the datasets 

resulting from large representative studies of AMU-AMR in commercial settings present several 

challenges including accounting for multiple levels of non-independence (i.e., clustering), 

accounting for time of sampling, validating quantification of antimicrobial drug (AMD) 

exposures, and classifying resistance outcomes when there are many isolates within a sample, 

and one can use multiple testing methods for resistance characterization. 
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This report is part of a larger study that aimed to overcome many of these obstacles with 

the goal of developing a longitudinal AMR surveillance system for use in beef feedlot cattle 

(127).   The purpose of this investigation was to estimate resistance prevalence in isolates of non-

type-specific E.  coli  (NTSEC) recovered from faeces of beef feedlot cattle, to model 

associations between AMU and AMR in these isolates using various modeling strategies, and to 

compare these strategies in order to understand how they may differentially impact measures of 

association between AMU and AMR. 

MATERIALS AND METHODS 

Study Overview 

Pens of cattle (N=300) in four feedlots in Alberta, Canada were enrolled in the study and 

composite pen-floor faecal samples were collected at the beginning of the feeding period, and at 

least once again during the remainder of the feeding period.   Samples were cultured for NTSEC 

and isolates were susceptibility tested using broth microdilution (BM) and disk diffusion (DD).  

Antimicrobial exposures for all cattle in enrolled pens were tracked throughout the study period.   

The prevalence of recovery of AMR NTSEC was estimated, various methods of multivariable 

logistic regression were used to investigate associations between AMU and AMR in NTSEC 

isolates, and model results were compared. 

Sample Collection 

Bacterial isolates were collected as part of a project intended to develop and evaluate 

methods for surveillance of AMR in beef feedlot cattle, the details of which have been reported 

elsewhere (127).   Sample collection ran from September 2007 to January 2010, during which time 

feedlot collaborators enrolled 30% of all arriving pens using a randomization table.   Pens were 

sampled when filled to capacity, and at least once again later during the feeding period.   Twenty 
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fresh tablespoon-size faecal samples from each pen floor were collected in a standard spatial 

pattern and then mixed together for 1 minute, and 10 g was removed for further processing.   All 

cattle handling and sampling procedures were approved by the Animal Care Committee of 

Feedlot Health Management Services Ltd.  (FHMS) and the Institutional Animal Care and Use 

Committee of Colorado State University.   

Susceptibility Testing 

Faecal samples were cultured for NTSEC, and up to five isolates from each sample were 

selected for susceptibility testing, which was performed using both automated DD (BioMIC
®

) 

and BM (Sensititre
®

 panel type: CMV1AGNF).  The antimicrobial panels differed between the 

two test methods, as they were selected independently for surveillance purposes.   An automated 

visual imaging system recorded zone diameter from DD tests, while laboratory personnel 

recorded the minimum inhibitory concentration (MIC) from BM tests.   All susceptibility testing 

was conducted in accordance with standards established by the Clinical Laboratory Standards 

Institute (151–155).   Details about quality control assessments and interpretive criteria have 

been previously described in detail (127). 

Antimicrobial Use Data 

Feedlot personnel used a chute-side, customized health information system
 
(iFHMS© 

software) to record all parenteral and in-feed AMD treatments for all cattle in enrolled pens from 

the day of arrival until the day that the last sample was collected [Table 3.1].  Records were 

subsequently exported for analyses, and included individual animal and pen identification, AMD 

type, dosage, and route and date(s) of administration.   For analysis, antimicrobial doses were 

converted to units of animal defined daily dose (ADD), a metric that defines the number of days 

that a single dose remains in the recipient’s target tissue(s) at therapeutic concentrations (156).   
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This standardization enables comparison of AMD exposures across varying sizes of cattle with 

varying antimicrobial dosages.   To aggregate AMD exposures at the group (pen) level, each 

treatment was converted to ADDs, multiplied by both the number of animals exposed and the 

duration of treatment (in days), and then summed by AMD class (betalactams, phenicols, 

quinolones, sulfonamides, tetracyclines and macrolides).   The AMD categories were further 

subdivided into the route of administration as being in-feed or parenteral. 

Multivariable modeling to estimate adjusted prevalence of resistance 

Adjusted prevalence of resistance among individual isolates was estimated from least-

square means obtained from Poisson regression modeling.   Estimates were stratified by the 

number of days that cattle had been in the feedlot when faecal samples were collected: 0-3 days-

on-feed (DOF), 4-70, 71-120, 121-180, and >180 DOF.   This enabled us to adjust resistance 

prevalence relative to DOF, and to determine if DOF was a statistically significant predictor of 

AMR levels.   Cut-offs for DOF categorization were chosen based on the likelihood of disease 

occurrence and therefore AMU at different phases of the feeding period, as well as the 

distribution of collected samples.   Generalized estimating equations (GEE) with an 

exchangeable correlation structure were used to control for clustering of isolates within samples.   

For isolates that were susceptibility tested using both BM and DD (repeated measures), we 

included only BM results in order to meet the assumption of independence between observations.   

Pen size and feedlot could potentially confound resistance prevalence, and thus were included as 

fixed effects. 

Multivariable modeling to test for associations between use and resistance 

A variety of multivariable modeling techniques were used to analyze potential 

associations between AMU and AMR in NTSEC isolates.   The primary outcome of interest in 
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all models was the antimicrobial susceptibility status of NTSEC isolates, defined dichotomously 

as either resistant or non-resistant, the latter of which included intermediate and susceptible 

classifications.   In order to maintain temporal logic for associations between AMU and AMR, 

only AMDs given prior to sample collection were included in these analyses, and therefore only 

isolates recovered from non-arrival samples were interrogated.   Resistance status for each of the 

19 AMDs included on the test panels was evaluated in parallel in separate models. 

The primary independent variables of interest were exposures to AMDs, which were 

categorized and summed as described above.  Despite the inherently continuous nature of pen-

level AMD data, class-specific distributions for AMDs were strongly right-skewed and zero-

inflated.   We attempted to assess linearity using quadratic terms for AMD exposures, as well as 

by modeling deciles and quintiles of AMD exposures in order to compare parameter estimates 

with the logit of the resistance outcome.   However, these models either would not converge or 

the Hessian matrix was not positive definite, and linearity could not be formally assessed.   

Therefore, AMD exposures were modeled as both continuous and categorical variables and 

model results were compared [Table 3.3]. 

.   For categorization, parenteral AMD exposures were dichotomized (“no exposure” vs.  

“any exposure”), while in-feed exposures were categorized into four levels: no exposure, low 

exposure (<25
th

 percentile), medium exposure (25
th

-89
th

 percentile) and high exposure (≥90
th

 

percentile).  To investigate the impact of temporality on the association between AMD exposures 

and AMR, we grouped AMD exposures based on the time of sample collection as either recent 

or non-recent, i.e., AMDs administered ≤6 d prior to sample collection and those administered 

≥7 d prior to sample collection. 
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Two variables were included in all models as potential confounders: number of animals 

housed in the pen from which the composite faecal sample was obtained (“pen size”) and DOF.  

Pen size was modeled as a 5-level ordinal variable due to non-linearity with the logit of the 

outcome (<101, 101-200, 201-300, 301-400, and >400 animals).   The DOF variable exhibited a 

linear relationship with the logit of the outcome and was modeled as both a continuous and an 

ordinal variable (0-3, 4-70, 71-120, 121-180, and >180 DOF) for comparison purposes.   

Population and study design factors created numerous issues related to data hierarchy, 

clustering and repeated measures.   Resistance outcomes could be clustered within feedlot (n=4 

feedlots), within pens (n=275 pens), and within samples, as multiple isolates were collected from 

each sample (n=564 samples).   In addition, repeated measures were present at two levels: first, 

pens were sampled multiple times throughout the feeding period; and second, a subset of NTSEC 

isolates were tested by two different resistance testing methods. 

Because there are a number of equally valid modeling approaches to analyze such data, 

we used and compared a variety of methods.   In all model types, feedlot was included as a 

categorical fixed effect due to the small number of feedlots and the fact that none of the model 

predictors were considered to be feedlot-level effects.  GEE with alternating logistic regression 

(ALR) was used to account for clustering of isolates within samples as well as repeat 

susceptibility testing on some isolates (132).  For these models, sample identification number 

was specified as the repeated subject with an exchangeable correlation structure and 

susceptibility testing method was specified as the subcluster with a 1-nested log odds ratio 

structure.   When data sparseness did not support GEE with ALR modeling (i.e., the correlation 

matrix was not positive definite or parameter estimates were unrealistically large), GEE without 

ALR was used (157), and only BM results were analyzed to avoid issues of non-independence.   
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Finally, generalized linear mixed modeling (GLMM) with random effects and Laplace 

estimation (158) was used to control for multiple levels of clustering.   When model convergence 

was achieved, isolates, samples and pens were specified as random effects.   When convergence 

could not be attained on all three levels of clustering, only susceptibility results from BM were 

used in the analysis and separate models specifying pens and samples as random effects were 

compared.   To facilitate comparison of model results, subject-specific (SS) parameter estimates 

from GLMM models were converted to population-averaged (PA) parameter estimates using the 

equation (157):  

 

!!" ≈
!!!

1+ 0.346!
!

!
 

     

The modeling decisions made at the outset of this analysis, combined with the limitations 

imposed by model convergence and stability, yielded 10 permutations of modeling methods 

(models A-J) [Table 3.3]. 

These included various combinations of model type (GEE with ALR vs.  GEE vs.  

GLMM), clustering specification, and methods for quantification of DOF and AMD exposures 

(continuous vs.  categorical). 

The same approach to model development was used for all 10 modeling methods (A-J).   

First, univariable screening models were used to analyze associations between each class of 

AMD exposure (n=8) and every resistance outcome (n=19 AMDs for models using both BM and 

DD, and n=15 AMDs for models using only BM results).  The AMD exposures were split into 

recent and non-recent exposures as described above.  Each screening model included fixed effect 

variables for feedlot, DOF, and pen size.  The AMD exposure variables with a P-value ≤0.20 for 
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either recent or non-recent exposures were included in the initial candidate multivariable model.   

Backward elimination was used to refine multivariable models using a critical alpha for retention 

of 0.05 with recent and non-recent AMD exposures considered independently.   Variables 

exhibiting confounding upon stepwise removal (defined as >20% change in any parameter 

estimate) were added back to the model.   Once all variables met the critical alpha value, 

confounding was reassessed and variables were removed if confounding was no longer present. 

Models for each resistance outcome were assessed independently using each of the 

modeling methods (A-J), resulting in development of 139 different multivariable models [Table 

3.3 and Table 3.4]. 

.   Model fit was evaluated using Akaike’s Information Criterion (AIC) for GLMM 

models, and quasi-information criterion (QIC) for GEE models.   

RESULTS 

A total of 300 pens were sampled at least once.  Twenty-five pens were excluded from 

analysis due to missing exposure or resistance information, resulting in 275 pens for use in 

multivariable analyses that ranged in size from 27 to 555 head (median =168).   Of these 275 

pens, 23% (64/275) were sampled once during the feeding period, 48% (132/275) twice, and 

29% (79/275) three times, resulting in collection of 564 composite faecal samples, from which a 

total of 2,911 NTSEC isolates were cultured.   Almost all isolates were tested using BM 

(2,903/2,911), while 41% (1,192/2,911) were tested by DD, for a total of 4,095 susceptibility test 

results for analysis.   Of the 564 composite faecal samples, 40% (226/564) were collected 

between zero and three DOF, another 39% (214/564) between four and 120 DOF, and 22% 

(124/564) later in the feeding period (median = 152 DOF, range 121 – 244 DOF). 
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Prevalence of resistance to most AMDs was too low for valid estimation of least-square 

means for adjusted prevalence estimates [Table 3.4].   Only six of the 19 resistances tested 

attained crude prevalence >2%, namely ampicillin, chloramphenicol, streptomycin, 

sulfisoxazole, tetracycline and florfenciol [Figure 3.1].   DOF was significantly associated with 

resistance levels for all modeled AMDs except ampicillin [Figure 3.1]. 

Antimicrobial Drug Use 

The most commonly used AMD was in-feed tetracycline, which was administered to all 

pens of cattle in this study population; however, because some of the pens were only sampled at 

arrival, and not again later in the feeding period, only 83% of pens were exposed prior to 

collection of the “last” sample [Table 3.2].   Pen-level prevalence of exposure to many 

parenterally administered AMD classes was below 50% [Table 3.2], and even among exposed 

pens, distribution of AMD exposures had a strong right skew because most pens contained only 

one or two exposed animals, while a handful of pens received pen-wide metaphylactic treatment.   

Over 96% of all AMD exposures occurred ≥7 d prior to sample collection and were classified as 

“non-recent”.   This was consistent across all AMD classes with the exception of in-feed 

macrolides, of which 31.3% of ADDs were classified as “recent”, i.e., administered ≤6 d with 

respect to sample collection.   This disparity stems from the AMD protocols utilized in the 4 

study feedlots.    

Results of Multivariable Modeling 

For AMDs with resistance prevalence sufficient to support multivariable modeling [Table 

3.5] we found several statistically significant associations between AMU and AMR.   However, 

most of these associations were not consistent between different model specifications.   Details 

of comparisons are given below.    
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Effect of Quantifying AMD Exposures as Continuous vs. Categorical Variables 

The quantification of AMD exposures as continuous or categorical variables exerted the 

strongest influence over model results, best illustrated in the results for chloramphenicol 

resistance [Table 3.6].   When AMD exposures were quantified as continuous variables (models 

A, B and I), only non-recent parenteral macrolide exposures were significantly associated with 

an increase in the odds of isolating chloramphenicol-resistant NTSEC.   However, this 

association was not seen when modeling the AMD exposures as categorical variables (models F 

and G), and instead there was a positive association with non-recent in-feed tetracycline and 

parenteral quinolone exposures, as well as a negative association with recent parenteral 

quinolone exposures.   Quantification of AMD exposures produced a similar effect when 

modeling streptomycin resistance, as models in which exposures were treated continuously 

contained a different significant association than models in which exposures were treated 

categorically [Table 3.7, models B, D and I versus E, F and G, respectively]. 

Effects of Different Modeling Strategies 

While GEE, GEE/ALR and GLMM are all valid methods for regression modeling of 

clustered data, our results show that choice of modeling strategy can result in substantial 

differences with respect to which subset of AMD exposures exhibit significant association with 

resistance outcomes, as seen in the case of ampicillin resistance [Table 3.8].  Models A and B 

indicate that recent parenteral exposures to macrolides, recent in-feed exposures to tetracyclines 

and recent in-feed exposures to macrolides were associated with decreased odds of recovering 

ampicillin-resistant NTSEC, while non-recent exposures to in-feed tetracycline were associated 

with increased odds.   However, model I suggests that only the association between recent 

parenteral macrolide exposures and ampicillin resistance was statistically significant.   The only 
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difference between these models was that models A and B used GEE for clustered data, while 

model I used GLMM. 

 Effects of clustering 

In a few instances, the hierarchical level of non-independence accounted for in model 

specifications exerted a strong influence on model results, for example in the results of models F 

and G for sulfisoxazole resistance [Table 3.9].   These models were identical except that model F 

included a random effect at the pen level and model G at the sample level.   This change resulted 

in vastly different final multivariable models, with model G showing only one significant 

association between AMD exposure and sulfisoxazole resistance, and model F showing four 

significant associations. 

Effect of Modeling DOF as a Categorical vs.  Continuous Variable 

It is often considered best practice to model inherently continuous data as continuous.   

However, this may not be possible due to violation of the assumption of linearity, or 

categorization may be preferred in order to interpret model results in context of real-world 

practices.   We modeled DOF as both a continuous and categorical variable and found that this 

difference, while less impactful than other modeling decisions, can substantially change model 

results [Table 3.10]. 

Models A and B for tetracycline resistance are specified identically except DOF is 

categorical in model A and continuous in model B.   Model A identified only one statistically 

significant association between AMD exposures and resistance, while model B identified four 

[Table 3.10].   
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Model Comparisons 

Despite large variability in models results, three AMU-AMR relationships were detected 

in all models.   Recent exposures to parenteral tetracycline and sulfonamide were positively 

associated with odds of isolating NTSEC resistant to tetracycline and sulfisoxazole, respectively 

[Table 3.9 and 3.10], while recent parenteral macrolide exposures were associated with 

decreased odds of ampicillin-resistant NTSEC [Table 3.8]. 

The point estimates for ORs for tetracycline resistance with respect to the median 

increase of recent parenteral tetracycline exposures ranged from 1.12 to 1.19 for models in which 

exposures were modeled as continuous variables, and from to 3.12 to 3.23 for models in which 

exposures were categorized [Table 3.10].  Different model types (GEE/ALR, GEE, or GLMM) 

produced very similar odds ratios if the method for quantifying AMD exposures was the same 

(models A – D and J, respectively), despite the fact that only BM test results were used in GEE 

models and BM and DD susceptibility test results were used in GEE/ALR and GLMM models.   

Similar patterns emerged from model results for the association between recent parenteral 

sulfonamide exposure and resistance to sulfisoxazole [Table 3.9]. 

Results differ somewhat for the association between recent parenteral macrolide exposure 

and ampicillin resistance [Table 3.8].  Across all models, recent parenteral macrolide 

administration demonstrated a negative association with ampicillin resistance, with the 

magnitude of this effect strongest in GEE models in which macrolide exposures were quantified 

as a continuous variable (models A, B and I). 

Model fit statistics were not useful in identifying an optimal modeling strategy across all 

resistance outcomes, as no single model type consistently exhibited better goodness-of-fit [Table 

3.11].  Among GEE models, model E – in which AMD exposures were categorized – had the 
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lowest QIC for three of five resistances analyzed, suggesting that categorization improved model 

fit.   However, among GLMM models, treatment of AMD exposures as a continuous variable 

(i.e., model I) resulted in the lowest AIC for three of five resistances analyzed.   Interestingly, 

model G consistently exhibited lower AIC than model F, suggesting that all else being equal, 

sample-level clustering resulted in better model fit than pen-level clustering.   Surprisingly, 

models H and J had a higher AIC than models F, G and I; the former models specified random 

effects at the pen, sample and isolate levels, while the latter models specified random effects at 

only one level.   This finding could stem from decreased model parsimony due to inclusion of 

additional random effects, as marginal AIC statistics do not account for random effects and 

therefore their inclusion can decrease goodness-of-fit (159). 

DISCUSSION 

These results highlight the inherent complexity in modeling AMU-AMR associations 

from real-world data.   Despite this complexity, we have uncovered several important 

relationships between AMU and AMR outcomes in faecal NTSEC.   The direction and 

magnitude of these relationships remained consistent despite changes in modeling technique, 

suggesting that they are likely true drivers of NTSEC resistance in this study population.   

Specifically, use of parenteral tetracyclines and sulfonamides increased the odds of recovering 

NTSEC resistant to tetracyclines and sulfisoxazoles, respectively, while use of parenteral 

macrolides decreased the odds of recovering ampicillin-resistant NTSEC.   Importantly, these 

three relationships apply only to AMD given within one week prior to sample collection, 

suggesting that shifts in the most predominant resistance phenotypes are short-lived (i.e., reverts 

back to a susceptible populations), or that other changes to the microbiota eventually “crowd 

out” these resistant populations.   In addition, the shortest withdrawal times for injectable 
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tetracyclines, sulfonamides and macrolides are currently 18, 5 and 18 days, respectively.   Given 

these withdrawal times and the short-lived relationship between exposures to these AMDs and 

AMR, it is questionable whether or not such use plays a significant role in dissemination of 

resistance through the food chain. 

The three associations described above are consistent and easily interpretable; the rest of 

our results, however, highlight the crucial role that modeling decisions play in model results, the 

most obvious example being quantification of AMD exposures.   In some instances, 

categorization of exposures produced models with wholly different subsets of significant 

predictors when compared to models in which exposures were not categorized.   Given the 

highly skewed distribution of AMD exposures across pens, we believe that categorization is the 

more legitimate method for modeling AMU data.   We attempted to evaluate linearity both by 

adding the quadratic term for AMD exposures and by modeling AMD exposures as quintiles and 

graphing resulting parameter estimates against the logit of the outcome.   Unfortunately, these 

models either would not convergence or lacked of a positive definite Hessian matrix, and 

therefore we were unable to formally evaluate linearity.   Ideally, goodness-of-fit statistics would 

provide generalizable guidelines for model selection.   However, our results show that the “best 

fit” model depends greatly on the resistance outcome being modeled [Table 3.]. 

The issue of quantification applied to confounders as well as variables of primary 

interest.   Our analysis accounted for DOF as a known confounder of the AMU-AMR 

relationship (21).   The question is how to best account for DOF, i.e., as a categorical or 

continuous variable, and does this make a difference?  Our results uncovered instances in which 

even this seemingly minor decision produced differential model results with respect to the set of 

significant predictors in the final model [Table 3.10, models A and B].   
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Clustering of subjects and samples occurs frequently in agriculture production settings 

(160) and modelers can choose from several techniques to account for this.  Ideally, these 

techniques would result in similar model results; however, we have shown this is not always the 

case.   GLMM may produce a final model with a wholly different subset of significant predictors 

than GEE, as seen in the final model results for tetracycline resistance in which AMDs were 

categorized [Table 3.10].  While this is not surprising, it is an important finding given that often 

times model selection is based on necessity rather than choice, for instance when data are sparse 

and mixed models do not converge.   Furthermore, choice of modeling technique can be based on 

haphazard criteria such as researcher preference. 

The role of timing of AMD exposures in driving or mitigating resistance is made clear in 

these results, and in some cases, there is a strong dichotomy in this regard.   Recent parenteral 

quinolone exposures decrease the odds of recovering chloramphenicol-resistant NTSEC, while 

non-recent parenteral quinolone exposures strongly increase these odds [Table 3.6].   Multiple 

factors could be driving this finding, including co-selection of resistance genes on plasmids as 

well as microbial population dynamics in which the short-term, dramatic alteration of the 

microbiome caused by exposure to quinolone creates a long-term niche for chloramphenicol-

resistant NTSEC bacterial subpopulations, perhaps due to the presence of unrelated traits.   Other 

studies have found similar interactions between timing of antimicrobial exposure and 

development of resistance (78), and together these results highlight the importance of accounting 

for timing in models of AMU/AMR.   We divided AMD exposures at 7 days relative to 

sampling; however, other schemes may be just as legitimate and should be based on treatment 

protocols employed in the study and/or target population. 
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The veterinary community has long recognized the difficulties of researching 

AMU/AMR in production settings.   The analysis presented here is founded on a unique database 

in which many of these difficulties were overcome, including linkage of individual AMD 

exposures with susceptibility test results.   The enrollment of 300 pens provided sufficient power 

to uncover associations that may have remained hidden in smaller studies and the longitudinal 

sampling design allowed exploration of resistance changes over time.   Despite these 

advancements, the complex nature of AMU and AMR renders interpretation of results 

challenging.    

The findings presented here add another layer of complexity by demonstrating that 

modeling decisions greatly impact model results, especially with respect to the set of significant 

predictors in the final model.   Which results are we to believe? For example, some AMU-AMR 

associations were seen across all model types, while others were present in less than 25% of 

models assessed.   Does this mean that the latter associations have less real-world applicability?  

Hill’s criteria of causation state that consistency of results across different studies, times, 

circumstances and populations strengthens the evidence for a causal relationship (161), 

suggesting that those AMU-AMR associations identified in all models are likely causally linked.   

In addition, Hill’s criterion of plausibility is readily apparent in the associations between 

sulfonamide exposures and sulfisoxazole resistance and tetracycline use and tetracycline 

resistance, lending more weight to the causal nature of these relationships.   The negative 

association between macrolide use and ampicillin resistance is less directly understood, and 

further research is needed to understand microbiome-wide population genetic dynamics that may 

be influencing this relationship. 



 

 

67 

Importantly, however, most model results were not consistent, and the question then 

becomes how to determine which inconsistently identified AMU-AMR associations to consider 

valid.   From a technical perspective, the most valid model is that which most appropriately 

handles the data structure and provides best data fit.   However, there is often a gap between 

theory and application, and choice of modeling technique is not always dictated solely by 

mathematical appropriateness.   Often, factors such as study design, the ability of the model to 

converge given sparse data, the need for a population-averaged estimate, and even researcher 

preference will weigh heavily in the decision (133).   Therefore, while perhaps unsurprising, the 

finding that modeling technique can substantially change the set of significant predictors in the 

final model is disconcerting, particularly when the results have potential ramifications for public 

health and policy decisions, such as the case with AMU and AMR in livestock production.   It is 

therefore our opinion that stakeholders in the AMU-AMR debate deserve to see results of all 

legitimate models, and that decisions about which model results to act on should be based on a 

careful assessment of the relative risk, the consistency and the plausibility of each AMU-AMR 

relationship being analyzed. 
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Table 3.1.  Antimicrobial drugs used in this population. 

 

ADD = Animal Defined Daily Dose; BW = body weight; BRD = Bovine Respiratory Disease 
a 
Assuming 9 kg of dry matter intake per individual animal per day 

 
 

 

 

  

AMD and Dosage Primary Reason for Use Class ADD 

    

Parenteral    

Ceftiofur sodium 1 mg/kg BW BRD Treatment Beta lactam 1 

Ceftiofur crystalline free acid 6.6 mg/kg BW BRD Treatment Beta lactam 3 

Ceftiofur hydrochloride 1.1 mg/kg BW BRD Treatment  Beta lactam 1 

Enrofloxacin 7.7 mg/kg BW Relapse BRD Treatment Quinolone 3 

Florfenicol 40 mg/kg BW BRD Treatment Phenicol 3 

Florfenicol 40 mg/kg BW & Flunixin 

meglumine 2.2 mg/kg BW 
BRD Treatment Phenicol 3 

Oxytetracycline     

       10 mg/kg BW BRD Prevention/Treatment Tetracycline 1 

       20 mg/kg BW BRD Prevention/Treatment Tetracycline 2 

       30 mg/kg BW BRD Prevention/Treatment Tetracycline 3 

Tilmicosin 10 mg/kg BW BRD Prevention/Treatment Macrolide 3 

Trimethoprim and sulfadoxine 16 mg/kg BW BRD Treatment Sulfonamide 1 

Tulathromycin 2.5 mg/kg BW BRD Prevention/Treatment Macrolide 3 

Tylosin tartrate 29 mg Implant Site Abscess Prevention Macrolide 1/275 

    

In-Feed    

Chlortetracycline @    

35 mg/kg diet dry matter  Liver Abscess Prevention Tetracycline  1/18
a 

       1 g/head/day Histophilosis Prevention/Treatment Tetracycline 1/6 

       3 g/head/day Histophilosis Prevention/Treatment Tetracycline 1/2 

       6 g/head/day Histophilosis Prevention/Treatment Tetracycline 1 

Tylosin phosphate @ 11 mg/kg diet dry matter Liver Abscess Prevention Macrolide 1/80
a 
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Table 3.2.  Pen-level exposure to AMDs, by class. 
 

 

 

 

 

 

 

 

 

 

 
 

 

a
Among pens receiving at least 1 ADD of AMD prior to collection of last composite faecal 

sample 
 

 

 

 

 

 

 

  

   

AMD Class 

No.  (%) of pens exposed 

prior to collection of last 

composite faecal sample 

Median (interquartile range) 

ADD’s per pen upon collection 

of last composite faecal sample
a 

Parenteral Betalactam 164 (60%) 9 (4-17) 

Parenteral Quinolone 77 (28%) 6 (3-12) 

Parenteral Phenicol 55 (20%) 3 (3-12) 

Parenteral Macrolide 141 (51%) 21 (6-57) 

Parenteral Sulfonamide 116 (62%) 4 (3-9) 

Parenteral Tetracycline 153 (56%) 46 (8-418) 

In-Feed Tetracycline 229 (83%) 1,002 (615-2,042) 

In-Feed Macrolide 96 (35%) 17 (9-32) 
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Table 3.3.  Model specifications for all 10 models used to analyze associations between AMU 

and AMR in NTSEC isolates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GEE = Generalized estimating equations 

GEE/ALR = Generalized estimating equations with Alternating Logistic Regression 

GLMM = Generalized linear mixed modeling 

BM = broth microdilution 

DD = disk diffusion 
 

  

 

 
      

Model 

Modeling 

Technique
a 

Test Results 

Included in 

Analysis 

Clusters Accounted for in 

Analysis 

Quantification 

of Days-on-

Feed 

Quantification 

of AMD 

Exposures 

      

A GEE BM Multiple isolates per sample categorical continuous 

      

B GEE BM Multiple isolates per sample continuous continuous 

      

C GEE/ALR BM & DD 
Multiple tests per isolate 

Multiple isolates per sample 
categorical continuous 

      

D GEE/ALR BM & DD 
Multiple tests per isolate 

Multiple isolates per sample 
continuous continuous 

      

E GEE BM Multiple isolates per sample continuous categorical 

      

F GLMM BM Multiple samples per pen continuous categorical 

      

G GLMM BM Multiple isolates per sample continuous categorical 

      

H GLMM BM & DD 

Multiple tests per isolate 

Multiple isolates per sample 

Multiple samples per pen 

continuous categorical 

      

I GLMM BM Multiple isolates per sample continuous continuous 

J GLMM BM & DD 

Multiple tests per isolate 

Multiple isolates per sample 

Multiple samples per pen 

continuous continuous 
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Table 3.4.  Crude prevalence of antimicrobial resistance in NTSEC isolates (for antimicrobials 

with prevalence that would not support multivariable modeling of adjusted prevalence of 

estimates)
e
. 

 

   

Resistance Phenotype 

No.  of Resistant 

Isolates % (95% CI)
d 

Amikacin
a 0 0.0 (0.0 – 0.0) 

Amoxicillin-clavulanate
b 10 0.3 (0.1 – 0.5) 

Cefoxitin
a 4 0.2 (0.0 – 0.4) 

Ceftazidime
c 1 0.3 (0.0 – 0.5) 

Ceftiofur
a 9 0.3 (0.1 – 0.4) 

Ceftriaxone
a 3 0.1 (0.0 – 0.3) 

Ciprofloxacin
a 0 0.0 (0.0 – 0.0) 

Enrofloxacin
c 2 0.3 (0.0 – 0.7) 

Gentamicin
b 5 0.2 (0.1 – 0.4) 

Kanamycin
a 31 1.1 (0.8 – 1.5) 

Nalidixic acid
a 41 1.5 (1.0 – 1.9) 

Neomycin
c 7 0.8 (0.3 – 1.2) 

Trimethoprim-sulfadioxine
b 73 1.8 (1.4 – 2.2) 

   a
Tested by broth microdilution only (n=2,903) 

b
Tested by broth microdilution and disk diffusion (n=1,192) 

c
Tested by disk diffusion only (N=4,095) 

d
 Adjusted CI for binomial proportions (adding 2 successes and 2 failures) were estimated as 

previously described (131). 
e
Adjusted prevalence of resistance for other drugs can be found in Figure 3.1. 

  



 

 

72 

Table 3.5.  Results of modeling process for all antimicrobial resistance outcomes. 
 Model 

Resistance 

Outcome 
A B C D E F G H I J 

Amikacin -- -- n/n
b
 n/n

b
 -- -- -- n/n

b
 -- n/n

b
 

Ampicillin ✔ ✔ -- -- ✔ ✔ ✔ -- ✔ -- 

Amoxicillin-

Clavulanate 
-- -- -- -- -- -- -- -- -- -- 

Cefoxitin -- -- n/n
b
 n/n

b
 -- -- -- n/n

b
 -- n/n

b
 

Ceftazidine -- -- n/n
b
 n/n

b
 -- -- -- n/n

b
 -- n/n

b
 

Ceftiofur -- -- -- -- -- -- -- -- -- -- 

Ceftriaxone -- -- n/n
b
 n/n

b
 -- -- -- n/n

b
 -- n/n

b
 

Chloramphenicol ✔ ✔ n/n
b 

n/n
b ✔ ✔ ✔ n/n

b ✔ n/n
b
 

Ciprofloxacin -- -- n/n
b
 n/n

b
 -- -- -- n/n

b
 -- n/n

b
 

Enrofloxacin -- -- n/n
b
 n/n

b
 -- -- -- n/n

b
 -- n/n

b
 

Florfenicol -- -- n/n
b
 n/n

b
 -- -- -- n/n

b
 -- n/n

b
 

Gentamicin -- -- n/n
b
 n/n

b
 -- -- -- n/n

b
 -- n/n

b
 

Kanamycin -- -- n/n
b
 n/n

b
 -- -- -- n/n

b
 -- n/n

b
 

Nalidixic Acid -- -- n/n
b
 n/n

b
 -- -- -- n/n

b
 -- n/n

b
 

Neomycin -- -- n/n
b
 n/n

b
 -- -- -- n/n

b
 -- n/n

b
 

Streptomycin  ✔* ✔ ✔* ✔ ✔ ✔ ✔ -- ✔ -- 

Sulfisoxazole ✔ ✔ ✔ ✔ ✔ ✔ ✔ -- ✔ -- 

Tetracycline ✔ ✔ ✔ ✔ ✔ n/n
a 

n/n
a ✔ n/n

a ✔ 

Trimethoprim-

Sulfamethoxazole 
-- -- -- -- -- -- -- -- -- -- 

✔ model converged and results are presented 

✔*model converged, but no results are presented because no AMD exposures were statistically 

significant in final model 

-- model would not converge 

n/n
a
: model not needed because models with random effects at all levels did converge  

n/n
b
: model not needed because resistance was only tested with one susceptibility test (i.e., no 

repeated measures on isolates). 
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Figure 3.1.  Adjusted

a
 prevalence of resistance in NTSEC isolates for six AMDs. 

a
Adjusted for days-on-feed at sample collection, as well as pen size and feedlot.   Clustering of 

isolates within samples was controlled for using multivariable GEE with a Poisson distribution.   

*indicates AMDs for which there were statistically significant (p<0.05) differences in resistance 

prevalence by DOF.
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Table 3.6.  Comparison of multivariable model results (population-averaged odds ratio and 95% confidence interval) for the outcome 

of chloramphenicol resistance.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
OR and 95% CI represent the change in odds of resistance for a median increase in ADD’s for the pertinent exposure. 

b
OR and 95% CI have been converted from a subject-specific to a population-averaged estimate. 

c
Recent exposures are those that occurred ≤ 6 days prior to sample collection. 

d
Nonrecent exposures are those than occurred ≥7 days prior to sample collection. 

e
Variable was not significant in the final multivariable model, and therefore results are not shown. 

REF = reference category 

 

 
   

 
  

 

 
Models in which AMD exposures were 

treated as continuous variables 

 Models in which AMD 

exposures were treated as 

categorical variables 

 

Variable Model A
a 

Model B
a 

Model I 
Exposure 

Category 
Model F

b 
Model G

b  

Recent
c
 parenteral 

quinolone exposure 
e e e

 
 

   

    Unexposed REF REF  

    Exposed 
0.16 

(0.02 – 0.52) 

0.22 

(0.00 – 0.79) 

 

Nonrecent
d
 parenteral 

quinolone exposure 
e e e

 
 

  
 

    Unexposed REF REF  

    Exposed 
2.34 

(1.49 – 6.18) 

1.97 

(1.17 – 10.46) 

 

Nonrecent
d
 parenteral 

macrolide  exposure 

1.04
 

(1.02 – 1.06) 

1.03
 

(1.01 – 1.06) 

1.07 

(1.04 – 1.09)
 

 
e e  

        

Nonrecent
d
 in-feed 

tetracycline exposure 
e e e

 
 

  
 

    Unexposed REF REF  

    Low 
1.18 

(0.69 – 2.67) 

1.29  

(0.53 – 4.87) 

 

    Medium 
2.03 

(1.36 – 9.92) 

2.48 

(1.04 – 27.3) 

 

    High 
3.80 

(2.71 – 50.51) 

6.66 

(2.95 – 366) 
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Table 3.7.  Comparison of multivariable model results (population-averaged odds ratio and 95% confidence interval) for the outcome 

of streptomycin resistance. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aOR and 95% CI represent the change in odds of resistance for a median increase in ADD’s for the pertinent exposure. 

b
OR and 95% CI have been converted from a subject-specific to a population-averaged estimate. 

c
Recent exposures are those that occurred ≤ 6 days prior to sample collection. 

d
Nonrecent exposures are those than occurred ≥7 days prior to sample collection. 

e
Predictor was not significant in the final multivariable model, and therefore results are not shown. 

REF = reference category 
  

    

 
Models in which AMD exposures were treated as 

continuous variables 

 Models in which AMD exposures were treated as 

categorical variables 

Variable           Model B
a 

Model D
a 

Model I
a,b Exposure 

Category 
Model E

 
Model F

b 
Model G

b
 

Recent
c
 in-feed  

tetracycline  exposure 

1.04
 

(1.02 – 1.07) 

1.03
 

(1.02 – 1.07) 

1.05 

(1.00 – 1.09) 
 e e e 

        

Nonrecent
d
 in-feed  

tetracycline exposure 
e e e 

 
e 

 
e 

    Unexposed  REF  

   
 

 
Low 

 

 

1.48 

(1.09 – 2.14) 
 

     Medium  
1.85 

(1.20 – 3.12) 
 

    High  
2.46 

(1.26 – 5.45) 
 

Nonrecent
d
 in-feed 

macrolide exposure 
e e e  

   

    Unexposed REF REF REF 

    Low 
1.55 

(0.88 – 2.72) 

1.59 

(0.99 – 2.71) 

1.47 

(0.80 – 2.87) 

    Medium 
0.66 

(0.43 – 1.02) 

0.70 

(0.43 – 1.07) 

0.57 

(0.32 – 0.93) 

    High 
2.37 

(1.06 – 5.32) 

2.29 

(1.12 – 5.27) 

2.17 

(0.83 – 6.30) 
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Table 3.8.  Comparison of multivariable model results (population-averaged odds ratio and 95% confidence interval) for the outcome 

of ampicillin resistance.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
OR and 95% CI represent the change in odds of resistance for a median increase in ADD’s for the pertinent exposure. 

b
OR and 95% CI have been converted from a subject-specific to a population-averaged estimate. 

c
Recent exposures are those that occurred ≤ 6 days prior to sample collection. 

d
Nonrecent exposures are those than occurred ≥7 days prior to sample collection. 

e
Predictor was not significant in the final multivariable model, and therefore results are not shown. 

REF = reference category 
 

  

 

 
Models in which AMD exposures were 

treated as continuous variables 

Models in which AMD exposures were treated as 

categorical variables 

Predictor Model A
a 

Model B
a 

Model I
a,b Exposure 

Category 
Model E

 
Model F

b 
Model G

b
 

Recent
c
 parenteral  

macrolide exposures 

0.05
 

(0.00 – 0.70) 

0.06
 

(0.00 – 0.74) 

0.03 

(0.00 – 1.15) 

 
 

  

  
   

Unexposed REF REF REF 

 
   

Exposed 
0.12 

(0.03 – 0.48) 

0.18 

(0.05 – 0.65) 

0.11 

(0.02 – 0.72) 

 
  

     

Recent
c
 in-feed 

tetracycline exposures 

0.53 

(0.29 – 0.94) 

0.75 

(0.54 – 1.04) 
e 

 
e e e 

   
     

Non-recent
d
 in-feed 

tetracycline exposures 

1.30 

(1.09 – 1.55) 

1.30 

(1.09 – 1.42) 
e  e e e 

        

Recent
c
 in-feed 

macrolide exposures 

0.40 

(0.21 – 0.75) 

0.59 

(0.36 – 0.97) 
e 

 
e e e 
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Table 3.9.  Comparison of multivariable model results (population-averaged odds ratio and 95% confidence interval) for the outcome 

of sulfisoxazole resistance.   

 Models in which AMD exposures were treated as continuous variables  
Models in which AMD exposures were 

treated as categorical variables 

Predictor Model A
a 

Model B
a 

Model C
a 

Model D
a 

Model I
a,b Exposure 

Category 
Model E

b
 Model F

b 
Model G

b 

Recent
c
 parenteral 

sulfonamide exposures 

1.45
 

(1.19 – 1.76) 

1.50
 

(1.21 – 1.85) 

1.38 

(0.59 – 0.88) 

1.44 

(1.20 – 1.73) 

1.52 

(1.03 – 2.26) 

 
 

  

 
     

Unexposed REF REF REF 

 
     

Exposed 
2.54 

(1.53 – 4.20) 

2.36 

(1.18 – 4.71) 

2.31 

(1.0 – 8.3) 

Recent
c
 parenteral 

quinolone exposures 
e e e e 1.37 

(1.05 – 1.78) 
 e e e 

   
       

Non-recent
d
 parenteral 

quinolone exposures 

0.90 

(0.81 – 1.01) 
e e e e  e e e 

          

Recent
c
 in-feed 

tetracycline exposures 
e e e e e 

 
e  e 

 
     

Unexposed REF REF  

 
     

Low 
0.61 

(0.41 – 0.90) 

0.54 

(0.38 – 0.77) 

 

 

 
     

Medium 
0.59 

(0.37 – 0.94) 

0.56 

(0.36 – 0.86) 

 

 

 
     

High 
0.75 

(0.37 – 1.51) 

0.78 

(0.40 – 1.51) 

 

 

Recent
c
 in-feed 

macrolide exposures 
e e e e e 

 
e  e 

 
     

Unexposed  REF  

 
     

Low  
1.14 

(0.61 – 2.13) 

 

 

 
     

Medium  
0.49 

(0.26 – 0.90) 

 

 

 
     

High  
0.26 

(0.07 – 0.91) 

 

 

Non-recent
d
 in-feed 

macrolide exposures 
e e e e e  

 
 e 

 
     

Unexposed REF REF 
 

 
     

Low 
1.63 

(0.79 – 3.37) 

1.86 

(0.95 – 3.65) 
 

 
     

Medium 
1.04 

(0.58 – 1.87) 

1.13 

(0.68 – 1.88) 
 

 
     

High 
3.79 

(1.02 – 14.02) 

3.61 

(1.32 – 9.83) 
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a
OR and 95% CI represent the change in odds of resistance for a median increase in ADD’s for the pertinent exposure. 

b
OR and 95% CI have been converted from a subject-specific to a population-averaged estimate. 

c
Recent exposures are those that occurred ≤ 6 days prior to sample collection. 

d
Nonrecent exposures are those than occurred ≥7 days prior to sample collection. 

e
Predictor was not significant in the final multivariable model, and therefore results are not shown.  
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Table 3.10.  Comparison of multivariable model results (population-averaged odds ratio and 95% confidence interval) for the outcome 

of tetracycline resistance. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

  

 

 Models in which AMD exposures were treated as continuous variables  

Models in which AMD 

exposures were treated as 

categorical variables 

Predictor Model A
a 

Model B
a 

Model C
a 

Model D
a 

Model J
a,b Exposures 

Categories 
Model E

b
 Model H

b 

Recent
c 
parenteral 

tetracycline exposures 

1.14
 

(1.01 – 1.29) 

1.19
 

(1.06 – 1.35) 

1.12 

(1.02 – 1.24) 

1.16 

(1.05 – 1.29) 

1.14 

(1.02 – 1.27) 

 
 

 

 
     

Unexposed REF REF 

 
     

Exposed 
3.12 

(1.94 – 5.02) 

3.23 

(1.99 – 5.25) 

Non-recent
d
 parenteral 

tetracycline exposures 
e 1.03 

(1.00 – 1.07) 
e 1.03 

(1.00 – 1.07) 

1.04 

(1.00 – 1.07) 

 
e e 

   
      

Non-recent
d
 parenteral 

sulfonamide exposures 
e e e e e 

 
e 

 

  
    

Unexposed 
 

REF 

  
    

Exposed 
 1.53 

(1.12 – 2.12) 

Non-recent
d
 parenteral 

quinolone exposures 
e 0.86 

(0.75 – 0.99) 

0.87 

(0.76 – 1.00) 

0.85 

(0.74 – 0.98) 

0.83 

(0.71 – 0.97) 

 
e e 

 
  

  
 

  
 

Recent
c
 parenteral 

phenicol exposures 
e e 2.99 

(1.34 – 6.65) 

3.55 

(1.50 – 8.38) 
e  

 
e 

 
     

Unexposed REF  

 
     

Exposed 
2.78 

(1.20 – 6.41) 

 

 

Non-recent
d
 parenteral 

phenicol exposures 
e 1.13 

(1.00 – 1.28) 
e e 1.13 

(1.00 – 1.27) 

 
e e 

 
     

  
 

Non-recent in-feed 

tetracycline exposures 
e e e e e  

 
e 

 
     

Unexposed REF  

 
     

Low 
1.85 

(1.20 – 2.85) 
 

 
     

Medium 
1.81 

(1.01 – 3.25) 
 

 
     

High 
1.48 

(0.56 – 3.91) 
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a
OR and 95% CI represent the change in odds of resistance for a median increase in ADD’s for the pertinent exposure. 

b
OR and 95% CI have been converted from a subject-specific to a population-averaged estimate. 

c
Recent exposures are those that occurred ≤ 6 days prior to sample collection. 

d
Nonrecent exposures are those than occurred ≥7 days prior to sample collection. 

e
Predictor was not significant in the final multivariable model, and therefore results are not shown. 

REF = reference level 
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Table 3.11.  Comparison of final multivariable model goodness-of-fit statistics. 
 

 

 

 

 

 

 

 

 

 

 

 

 

a
QIC = Quasi-Akaike’s Information Criterion; AIC = Akaike’s Information Criterion. 

b
Final multivariable model results not available due to lack of model convergence. 

 

 

 

 

 

  

 

 

Model 

Goodness-

of-Fit 

Statistic
a 

Modeling 

Technique 
Tetra-

cycline 

Strepto-

mycin
 Sulfisoxazole Ampicillin

 Chloram-

phenicol
 

A QIC GEE 3323 
b 

2960 1318 1217 

B QIC GEE 3334 2951 2975 1313 1221 

C QIC GEE/ALR 4794 4261 4214 
b b 

D QIC GEE/ALR 4781 
b 

4215 
b b 

E QIC GEE 3298 2941 2970 1329 1203 

F AIC GLMM 
b 

2889 2896 1277 1118 

G AIC GLMM 
b 

2840 2801 1227 1055 

H AIC GLMM 4145 
b b b b 

I AIC GLMM 
b 

2846 2798 1222 1054 

J AIC GLMM 4160 
b b b b 
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CHAPTER 4: CHARACTERIZATION OF THE RESISTOME IN MANURE, SOIL AND 

WASTEWATER FROM DAIRY AND BEEF PRODUCTION SYSTEMS 

 

INTRODUCTION 

Livestock production effluent may be implicated in the transmission of antimicrobial 

resistant bacteria into aquatic, terrestrial and atmospheric ecosystems through uncontained 

wastewater runoff, lagoon seepage, land-applied manure, and airborne particulate matter (49,51–

54,162).  Current regulations regarding livestock manure and wastewater management practices 

were designed to achieve acceptable levels of organic nutrients and coliform bacteria within 

ground and surface waters and manured soils.  Increasing evidence suggests that current 

management practices may not adequately consider the risk of transfer of both antimicrobial 

resistant bacteria and genetic determinants (ARDs) from livestock production systems to 

humans, particularly if there are antimicrobial drug (AMD) residues within these systems 

(95,96,98,99,163,164). However, AMD exposures may not be necessary for significant increases 

in ARD levels to be detected in soils after manure application (103,165), and some studies show 

that ARD increases in manure-amended soil only occur when application rates are high or 

manure is not properly stored (90).  Furthermore, non-manured or “pristine” soil contains a 

diverse repertoire of ARDs, making it difficult to distinguish between “native” and 

anthropogenically impacted ARD content (166). 

In North American cattle production systems, AMDs are used to treat, prevent and 

control disease, which also results in lower amount of food required per kilogram of weight gain.  

AMD use in extensive management settings (i.e., cow-calf production settings on pasture) is 

relatively low, with only 1.9% of U.S. and 2.7% of Canadian beef cows reportedly treated with 

AMDs (12,167).  The primary reason for AMD use in beef cows is primarily to treat active 
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disease, such as foot infections or metritis (12,167).  In contrast, >20% of cattle in U.S. feedlots 

receive AMDs for prevention of respiratory disease, >13% receive AMDs to treat active 

respiratory disease, and >70% are administered in-feed AMDs for purposes of liver abscess 

prevention and to optimize health and weight gain (11).  Among AMDs classified as medically 

important (i.e., excluding ionophores) (9,168), macrolides are the most commonly administered 

in U.S. feedlots, both in-feed and injectable.  In North American dairy production, >94% of 

operations administer AMDs to prevent development of mastitis during the dry period, with 

>97% of this use attributed to betalactam AMDs, including first- and third-generation 

cephalosporins (169).  Pre-weaned dairy calves are most commonly treated for respiratory 

disease and diarrhea, with phenicols, cephalosporins, macrolides, sulfonamides, tetracyclines and 

aminoglycosides all being used in approximately the same proportions (169). 

Given these AMD use practices and evidence that AMD residues in livestock effluent can 

select for elevated AMR levels, it is important to improve our understanding of how current 

management systems for cattle and their environment may impact AMR transmission to the 

public. Culture-independent methods provide an ideal method for developing this understanding, 

as the genetic processes that give rise to and maintain AMR in a bacterial population function 

within a complex microbial community and often affect multiple resistance classes in a 

networked fashion (170–172).  Antimicrobial resistance determinants (ARDs) can be exchanged 

between non-pathogenic and pathogenic and distantly-related bacteria (104,173–175), and 

bacteria increase rates of horizontal gene transfer (HGT) of ARDs under conditions that induce 

the stress response, including antibiotic exposure (115,116). Therefore, studies that investigate 1 

or 2 culturable organisms, taxa or resistance mechanisms may produce a myopic view of the 

AMR ecology within livestock waste management systems.  In order to more fully understand 
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dynamics of AMR in this complex setting, a pan-microbial approach is needed to interrogate the 

entire microbial population (the microbiome) in order to characterize all aspects of antimicrobial 

resistance (the resistome) in livestock production waste management systems. Such an analysis 

would enable quantification of the risk of AMR transmittance posed by different livestock 

practices, and could provide a foundation for development of practical mitigation strategies for 

minimizing risk of ARD transfer from livestock production to aquatic, terrestrial and 

atmospheric ecosystems. 

Despite the unique insight that can be gained from such a culture-independent approach, 

very little is known about the livestock production resistome, especially for dairy and beef 

production.  The few studies that have been published are largely descriptive in nature and are 

restricted to rectal grab fecal samples that have been obtained from <5 individual research cattle 

(119,120).  One reason for the dearth of larger, inferential studies is that basic information is not 

available to guide complex investigative efforts.  For instance, estimating necessary sample size 

to detect differences between operations that utilize disparate AMD strategies is impossible 

without knowledge of normal variability of the resistome among different cattle, or in cattle 

raised in different settings.  In addition, many factors may confound the relationship between 

AMD use and differences in the resistome, but to-date these potential factors have not been 

identified for cattle production.  This makes it difficult to design well-controlled field studies to 

investigate strategies for modulating the livestock production resistome in desirable and public 

health-protecting ways. 

Therefore, the goal of this study was to begin to fill this knowledge gap by providing a 

description of the dairy and beef production resistome in raw feces, soil and wastewater, as well 

as to identify factors that may commonly influence this resistome.  Dairy and beef systems were 
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chosen in order to understand potential resistome differences between livestock production 

systems while precluding confounding by commodity host species (e.g., poultry and swine).  In 

addition, a conventional and an organic dairy were chosen to investigate the potential impact of 

AMD use practices on the resistome.  A U.S. and a Canadian feedlot were chosen to explore 

whether differences in diet impact the resistome of cattle production, as U.S. feedlots typically 

feed corn-based diets, while Canadian feedlots commonly feed barley-based diets.  And finally, a 

cow-calf ranch was selected in order to compare resistome differences between an intensive (i.e., 

feedlot) and extensive (i.e., pastured) cattle production system.   

MATERIALS AND METHODS 

Study Overview 

Fecal, soil and water samples were collected from each of the operations described 

above.  Total DNA was extracted, sequenced and aligned to a custom database of ARD 

sequences.  Alignments within each sample were summed by resistance gene, mechanism and 

class.  Resistome composition, diversity, richness and abundance were compared between matrix 

type (feces, soil or water), production system (beef vs. dairy), cattle age (preweaned vs. adult), 

AMD use practices (organic vs. conventional), diet type (barley-based vs. corn-based) and 

management system (extensive vs. intensive).    

Study population and sampling sites 

The conventional and organic dairies as well as the US feedlot were located in 

northeastern Colorado, while the Canadian feedlot and ranch were located in southern Alberta.  

The conventional dairy milked 990 cows on one location at the time of sampling.  Cows and 

calves were treated with a variety of AMDs for clinical illness and dry-off.  The organic dairy 

milked ~16,500 mature cows daily and managed ~23,000 animals across five locations at the 
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time of sampling.  No AMDs were used on the organic dairy.  The US feedlot had a one-time 

holding capacity of ~90,000 head and fed cattle a steam-flaked corn-based diet.  The Canadian 

feedlot, located in Alberta, had a one-time holding capacity of 17,000 cattle and fed a barley-

based diet.  Both the U.S. and Canadian feedlots administered in-feed macrolides and ionophores 

to all cattle.  The cow-calf ranch was located at an Agriculture Canada research station in 

Onefour, Alberta and grazed approximately 600 cattle across several grazing locations.  Pastured 

cattle only received AMDs for treatment of clinical illness, which was a relatively rare event. 

Sample collection and processing 

Feces 

At each of the 5 operations described above, 2 composite fecal samples were collected 

from adult cattle, for a total of 10 adult fecal samples.  Additionally, 2 composite fecal samples 

were collected at the 2 dairies (conventional and organic) from preweaned calves, resulting in 4 

calf fecal samples and 14 total fecal samples for the entire study.  At the cow-calf ranch, the 2 

composite fecal samples were collected from adult cattle in an area where animals congregated at 

the time of sampling.  Composite fecal samples were collected at the feedlots and dairies from 2 

purposively selected pens. Feedlot pens were chosen based on slaughter schedule such that 

samples represented cattle that were nearly ready for slaughter (cattle had been in the feedlot for 

>165 days).  At dairies, cattle were grouped by level of production, and the pens with the highest 

production were chosen for sampling.  To collect composite samples, personnel walked through 

the selected pens or pasture area in a prescribed pattern, collecting approximately 1-2 g of feces 

from 20 locations. These 20 individual samples were placed in a sterile bag and thoroughly 

mixed by hand for 1 min, after which enough fecal material was removed to fill a sterile 50mL 

Falcon tube.  Dairy calves were housed in individual hutches, and therefore 20 tablespoon-sized 
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fecal samples were collected from the ground of 20 randomly selected individual hutches and 

mixed together as described above.  

Soil 

The same feedlot and dairy pens that were sampled for feces were also sampled for soil, 

using the same methods as described for compositing of feces.  Composite soil samples were 

collected at the cow-calf ranch from the same area in which fecal samples were collected, using 

the same methods.  Soil was not collected from dairy calf hutches, and therefore a total of 10 

composite soil samples were collected (2 at each operation). 

Wastewater 

At each operation, 2 wastewater samples were collected, for a total of 10 wastewater 

samples.  In the feedlots and dairies, wastewater samples were collected from the holding lagoon 

that was closest to the pens that were sampled during fecal collection.  If lagoons were separated 

into “high-solids” and “low-solids” holding systems, then a single sample was collected from 

each.  At each lagoon, samples were collected near the bank from opposite sides.  However, 

winter weather conditions at the US feedlot prevented access to the entire lagoon, and therefore 

both samples were collected from the same side.  At the cow-calf ranch, samples were taken 

from opposite sides of a dugout that was used to collect free-flowing water in order to maintain a 

constant supply of water for cattle. 

Sample processing and sequencing 

Samples were placed on ice for transport from the field back to the laboratory. Fecal and 

soil samples were stored at  -80°C until processed.  Water samples were stored at 4°C for a 

maximum of 24 h, and then centrifuged at 15,000 x g for 20 min.  The resulting supernatant was 

decanted and each pellet was stored in a 15mL Falcon tube at -80C° until processed. 
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After thawing, DNA extraction from the fecal (10g) and soil samples (10g) was 

performed using the Mo Bio PowerMax Soil DNA Isolation Kit, while DNA extraction from 

water samples (250mg) was performed using the Mo Bio PowerFecal DNA Isolation Kit (Mo 

Bio Laboratories, Solana Beach, CA, USA) according to manufacturer’s instructions. Extracted 

and purified DNA for fecal and soil samples was eluted in 400µl and 200µl of the kit elution 

buffer, respectively, while wastewater samples were eluted in 50µl of the kit elution buffer. After 

extraction, DNA concentration was measured at 260 nm using a NanoDrop
TM

 spectrophotometer 

(Thermo Fisher Scientific).  Samples that were not sufficiently concentrated (defined as <20 

ng/μl) were subjected to ethanol precipitation.  To the final DNA sample, 1/10 volume of 3M 

sodium acetate, pH 5.2, was added. Two volumes of cold 100% molecular grade ethanol was 

added and the sample was mixed several times by inversion before incubating at -20°C for 1 

hour. Samples were centrifuged at 11,000 x g for 20 minutes at 4°C. Supernatants were carefully 

discarded and 150 µL 70% cold ethanol was added and mixed by inversion. Samples were 

centrifuged a final time at 11,000 x g for 10 minutes at 4°C. Supernatants were again discarded 

and the DNA pellets allowed to air dry before resuspending in ¼ the original DNA volume with 

Solution C6 included in the Mo Bio DNA extraction kits. 

After DNA extraction, 100 µl DNA of each fecal and soil sample and 30 µl DNA of each 

wastewater sample was delivered for single-end sequencing on the Ion Proton
TM

 platform using 

the P1 chip (Thermo Fisher Scientific).  Sequencing libraries were prepared according to the 

manufacturer’s protocol. 

Bioinformatics 

Reads were trimmed and filtered for quality using Trimmomatic (176) in the following 

manner: first, the leading 3 and trailing 3 nucleotides were removed from each read, then a 
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sliding window of 4 nucleotides was used to remove nucleotides from the 3’ end until the 

average Phred score across the window was at least 15.  Trimmomatic’s “ILLUMINACLIP” 

command was used to remove adapters supplied in the TruSeq3 adapter sequence file.  A 

maximum of 2 mismatches were allowed in the initial seed, and adapter clipping occurred if a 

match score of 30 was reached.  In addition, we specified that both reads be retained upon 

clipping, despite probable complete sequence redundancy, to supply more reads for downstream 

applications.  Reads classified as host (i.e., bovine) were removed from further analysis by 

alignment to the UMD 3.1 Bos taurus genome with BWA  (177).  Non-host reads were then 

aligned to a custom non-redundant database of 3,111 unique ARD sequences compiled using 

CD-HIT (178) from ARG-ANNOT, Resfinder and CARD, all of which are actively-curated, 

AMR-dedicated databases (179–181).  ARDs with >80% gene fraction (i.e., >80% of the 

nucleotides in the ARD sequence were covered by at least one read) were considered to be 

positively identified in a sample.  Alignments to each positively identified ARD were then 

summed within each sample, and ARDs were further classified into a mechanism and class of 

resistance.  

Data Analysis  

Samples without any identified ARDs (n=4) were removed from further analysis due to 

an inability to normalize and ordinate such samples.  For all remaining samples, the number of 

alignments to each positively identified ARD within each sample were summed and normalized 

to the total number of aligned reads within each sample using a data-driven approach based on 

shifts in count distributions (182,183). Because conventions for identifying unique ARDs vary 

between resistance classes, normalized counts were aggregated to the mechanism and class level 

to allow for less biased comparisons among samples. 
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Primary comparisons of interest included resistome differences between beef and dairy 

systems; conventional and organic dairy samples; calves and adult cattle; pasture and 

intensively-management operations; and between the Canadian (barley-based diet) and U.S. 

(corn-based diet) feedlots.  In addition, we investigated differences in sample matrix (e.g., feces 

vs. soil vs. wastewater) as potential confounders of these primary comparisons. 

To assess differences in ARD abundance at the mechanism and class levels while taking 

into account the potential for shallow sequencing depth, zero-inflated Gaussian mixture models 

were used to account for distinct processes for zero-count data (i.e., true absence vs. incomplete 

sequencing depth) (182).  When possible, sample matrix was added to the model as a potential 

confounder.  Pairwise comparisons of log-fold change in abundance between groups were 

conducted using limma, while adjusting for multiple comparisons using the Benjamini-Hochberg 

procedure and using a critical α of 0.05 (184). 

Non-metric multidimensional scaling (NMDS) using Euclidean distances between 

Hellinger-transformation normalized counts of resistance genes, mechanisms and classes was 

used to ordinate samples based on resistome composition (185).  Significant dissimilarity of 

ordination between groups was assessed using the Analysis of Similarities statistic (186). 

To compare Shannon’s diversity and richness across groups, Kruskal-Wallis test statistic 

with Nemenyi post-hoc comparisons adjusted for rank ties was used.  Comparisons were made at 

the gene, mechanism and class levels, and differences between system (beef vs. dairy), sample 

matrix (feces vs. soil vs. water), dairy production type (organic vs. conventional) and feedlot diet 

type (corn vs. barley) were assessed separately. 
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RESULTS 

Overall resistome composition is dominated by tetracycline resistance ARDs 

Sequencing produced over 1.05 billion sequencing reads across all samples, at an average 

of 30.8 million reads per sample (range 14.9 – 48.9M).  Trimming low-quality sequences 

resulted in removal of 20.9% of all reads (range 15% - 29%) and filtering of Bos taurus removed 

a further 0.41% (range 0.007% - 5.4%). 

Across all samples, we identified 214,196 reads that aligned to 248 ARDs in the master 

non-redundant database, comprising 35 resistance mechanisms within 16 classes of resistance.  

The majority of these reads aligned to ARDs that confer resistance to tetracyclines (69.3%), and 

within this class, 98% of reads aligned to ribosomal protection proteins with the largest 

representation for TetQ and TetW (45.6% and 23.2% of all reads aligning to tetracycline 

ribosomal protection proteins, respectively).  TetQ and TetW were also the most widely 

distributed ARD groups across all samples.  Of the 30 samples containing ARDs, 27 contained 

TetQ and 22 contained TetW.  Interestingly, these ARD groups were also the most prevalent in 

fecal samples collected from over 1,000 humans as part of two large metagenomic studies 

(Forslund et al., 2013; Hu et al., 2013), suggesting that they may be common in both agricultural 

and human populations.  Studies across diverse agricultural ecosystems also document the 

ubiquity of tetracycline resistance genes (187,188).  

Reads aligning to the macrolide-lincosamide-streptogramin (MLS) class of antimicrobials 

comprised 11.1% of all ARD-aligned reads.  Among MLS-aligned reads, 60.0% aligned to 

macrolide efflux pumps, 21.7% to Erm 23s rRNA methyltransferases, and 16.4% aligned to 

lincosamide nucleotidyltransferases. The mefA efflux pump was the most frequently identified 
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mechanism within the macrolide class, with 96.8% of all reads aligning to macrolide efflux 

pumps. 

Few ARDs were identified in samples collected from the cow-calf ranch   

No ARDs were identified in the soil and wastewater samples collected from the cow-calf 

ranch (n=4).  This finding is unexpected given previous reports of a diverse and abundant 

resistome in soils and water not impacted by human activity (61,189).  However, these studies 

utilized functional metagenomics and/or PCR to detect ARDs.  Such assays may be more 

sensitive than shotgun metagenomics, and indeed it is likely that deeper sequencing would have 

revealed the presence of ARDs in the pasture soil and water samples.  However, sequencing 

depth was relatively even across samples, and therefore the difference in ARD identification 

between the pasture and feedlot/dairy water and soil samples suggests that extensive rearing 

methods (including less confined rearing environments, lower stocking density, and much lower 

AMD use) may result in lower ARD levels compared to more intensive rearing methods.  

Alternatively, soil and wastewater ARDs on ranches may not be as geographically concentrated 

and therefore more samples may be needed to gain a representative portrait of the ranch 

environmental resistome.  However, soil samples were collected from areas where cattle 

commonly congregated, and water was collected from a dugout, and therefore these samples 

should represent the resistome of locations where ARDs were likely to be most concentrated.  In 

addition, the two fecal samples collected from the pasture contained 16 ARDs total, compared to 

24, 35, 34 and 90 in the conventional dairy, organic dairy, US feedlot and Canadian feedlot, 

respectively, again suggesting that extensive rearing promotes presence of fewer ARDs overall.  

Previous studies have documented a significantly lower level of integrons (which commonly 

carry ARDs) in grass-fed compared to lot-fed cattle, although the content of the integrons did not 
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differ substantially between the two groups (190).  Culture-based studies also document lower 

levels of resistance in generic Escherichia coli isolated from beef cows on pasture compared to 

feedlot cattle (17–19,28).  However, there are many other differences between these populations, 

including genetics, sex and age of the cattle, and therefore more controlled studies are needed to 

determine whether differences in both phenotypic and genotypic resistance levels are due to 

AMD use practices or other factors. 

Resistome composition and diversity differ between calves and adult cattle 

The resistome of fecal samples collected from preweaned dairy calves was different from 

the fecal resistome of mature cattle of all types (Stress < 0.10 and ANOSIM P < 0.05, Figure 

4.1A).  Shannon’s diversity and richness at the gene, mechanism and class levels were all lower 

in adult cattle feces compared to calf feces (Kruskal-Wallis P = 0.02, 0.02 and 0.04 for richness 

and P = 0.02, 0.09 and 0.07 for Shannon’s diversity, respectively).  While low sample numbers 

precluded making formal statistical comparisons of the resistome characteristics of feces 

collected from dairy calves and adult dairy cows, descriptive analysis suggests that this overall 

pattern of resistome diversity was not impacted by the potentially confounding effects of 

production system (i.e., beef versus dairy), as the calf feces, both organic and conventional, 

contained many more resistance mechanisms than feces from adult dairy cattle (Figure 4.2).  

Previous studies in calves have documented significant changes in fecal microbial diversity and 

composition during the pre-weaning period of calf development (191,192), and these changes 

could be driving resistome composition.  However, a comparison of the microbiome of mature 

versus pre-weaned cattle has yet to be conducted, and furthermore it is unknown whether 

patterns of change in resistome diversity parallel those of the microbiome.  While some studies 

have documented tight correlation between resistome and microbiome composition, others have 
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reported a decoupling of the two (104,105).  Interestingly, the dairy calves that were reared 

according to certified organic practices (including absence of antimicrobial treatments) exhibited 

an abundant and diverse resistome, suggesting that factors other than AMD use are at play.  

Similar findings have been reported in 6-month old infants that were unexposed to AMDs (193). 

Trimethoprim ARDs and aminoglycoside acetyltransferase ARDs were identified in calf 

feces, but not in mature cattle feces.  This finding could stem from use practices on the 

conventional dairy in this study, which administered trimethoprim-sulfadiazine and 

sulfamethazine to calves for treatment of scours, but did not administer any AMDs of these 

classes to adult dairy cattle.  In addition, aminoglycoside adenyltransferases and 

phosphotransferases were found in higher abundance in calf than adult feces (Figure 4.1B).  

These findings concur with culture-based results in generic E. coli, which found higher 

prevalence of resistance to trimethoprim-sulfamethoxazole and the aminoglycosides 

streptomycin, kanamycin and gentamycin in beef calves compared to their corresponding dam 

(18).  However, aminoglycosides were not used in either dairy operation in this study, and 

therefore AMD use practices do not directly explain these findings.  We did not identify any 

tetracycline major facilitator superfamily (MFS) ARDs in calf feces, but we did in adult cattle 

feces, and macrolide efflux pumps and lincosamide nucleotidyltransferases were significantly 

more abundant in adult compared to calf feces.  Interestingly, lincosamides were utilized to treat 

mastitis on the conventional dairy farm in this study, which could account for the increased 

lincosamide resistance in relation to the preweaned calves. 

Comparison of the resistomes of conventionally- and organically-reared calves may shed 

light on the role of AMD use practices in driving resistome differences.  In this study population, 

organically raised calves did not receive any AMDs, while the conventional dairy operation 
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utilized betalactams (including cephalosporins), florfenicols, tetracyclines, macrolides and 

quinolones for the treatment of calf respiratory disease, trimethoprim-sulfadiazine and 

sulfamethazine for the treatment of scours, and macrolides for prophylaxis against respiratory 

disease.    Low sample number precluded a formal comparison of the resistomes of organic and 

conventional calf fecal samples, but descriptive results show that the two fecal samples collected 

from conventionally raised dairy calves contained slightly more unique ARD mechanisms 

(29/30) than those from organically raised dairy calves (25/30, Figure 4.2).  Among the 29 ARD 

mechanisms identified in feces from conventionally raised calves, 20 were identified in both 

samples, while 7 of the 25 identified in feces from organically raised calves were identified in 

both samples.  These findings suggest that the resistome of organically raised calves may contain 

fewer unique ARDs and at lower frequency than the resistome of conventionally raised calves; 

however, it is important to note that the resistome of organically raised calves contained a 

diverse set of ARDs, despite the naiveté of these calves to AMDs.  Culture-based studies of 

generic E. coli isolated from preweaned calf feces support the difference in AMR in 

conventional and calf feces, but larger sample numbers are needed to confirm this finding across 

the entire microbiome (194–197).  Due to the stark difference in calf feces versus mature cattle 

feces, including presence of many unique resistance mechanisms and classes, calf samples were 

removed from further analyses to enable a direct comparison of adult cattle feces. 

The beef feedlot resistome differs from the dairy resistome 

The resistome compositions from samples collected in beef vs. dairy management 

settings were significantly different when compared across all sample matrices (ANOSIM P < 

0.05, Figure 4.5A). However, Shannon’s diversity and richness indices were not significantly 

different between beef and dairy.  In order to understand system differences in isolation from 
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potential effects of sample matrix, we attempted to ordinate samples separately for feces, soil and 

wastewater.  Within fecal samples, ordination showed clear separation of beef (feedlot and 

pasture) and dairy resistomes (Figure 4.5B); analysis of soil and wastewater resistomes could not 

be compared between systems due to data sparseness. 

Of the 10 classes of ARDs identified among soil, wastewater and fecal samples collected 

from adult cattle, 8 differed in abundance when compared between dairy and beef samples.  Of 

these, 6 were more abundant in beef samples versus dairy, while 2 were more abundant in dairy 

samples.  Due to low overall abundance of some of these classes, however, estimates of 

differences in abundance may not be reliable and therefore we will restrict this discussion to 

ARD classes present in at least 10 of the 30 soil, wastewater and adult fecal samples; this list 

comprised resistance to AMD classes tetracyclines, MLS, aminoglycosides, betalactams, and 

general-purpose mechanisms.   Tetracycline ARDs (the most abundant class overall) were more 

abundant in feedlots than in dairies.  Aminoglycoside acetyltransferases and 

phosphotransferases, which were also relatively abundant, were significantly more abundant in 

dairy samples.  These differences could reflect differential AMD use practices in feedlots and 

dairies.  Although the American Association of Bovine Practitioners strongly discourages dairy 

and beef veterinarians from administering aminoglycosides to cattle, nationwide surveys suggest 

that they are still being used with some frequency in dairies (169), but not beef feedlots (11).  In 

addition, tetracyclines are reportedly used more frequently by U.S. feedlots than U.S. dairies, 

both in-feed and parenterally (11,169).  However, there are many other factors that could account 

for these differences, including frequency of pen cleaning (which could influence levels of 

mixing between soil and feces), lagoon construction and management (which could impact the 

lagoon resistome), and feed composition (which could affect the fecal resistome).  In addition, 
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betalactam ARDs were more abundant in feedlot samples, even though these AMDs are reported 

to be much more widely used in dairy production (11,198).  These findings highlight the 

complexity of dynamics between AMD use and AMR, and suggest that AMD use practices do 

not solely or directly influence AMR patterns in livestock production. 

Overall, MLS ARDs were not differentially abundant between beef and dairy saples, 

although lincosamide nucleotidyltransferases were significantly more abundant in beef samples 

while Erm 23S rRNA methyltransferases were significantly more abundant in dairy samples.  

These contrasting differences may therefore have offset each other, reducing the ability to detect 

an overall difference at the class level. 

The resistomes of feces, soil and wastewater are distinct 

The resistome composition of feces, soil and wastewater were significantly different 

(NMDS ordination stress < 0.10, ANOSIM P < 0.05).  Shannon’s diversity and richness were 

significantly higher in soil versus wastewater and feces at the gene level, and in soil versus 

wastewater at the mechanism level (Figure 4.3).  The differentiation of soil from feces is 

especially interesting given that pen floors in dairies and feedlots are often a mixture of dried, 

compacted feces and underlying soil, rather than undisturbed soil matrix.  In this context, the 

differentiation of “soil” (i.e., compacted feces) from fresh feces could stem from simple mixing 

of the two components, or from changes that occur within feces over time and under varying 

environmental exposures.  Alexander et al. reported significant changes in the levels of 

ampicillin and tetracycline resistant generic E. coli isolated from feces subjected to ambient field 

conditions for 175 days, and this finding could be representative of the entire microbiome and 

resistome (73). 
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Ordination biplot results indicated that aminoglycoside, spectinomycin, phenicol and 

tetracycline resistance ARDs strongly influenced separation of soil samples from wastewater and 

feces (Figure 4.4). Phenicol and spectinomycin ARDs were not identified in any adult cattle fecal 

samples, and aminoglycoside ARDs of all types were less abundant in adult cattle fecal samples 

compared to soil samples (log-fold change = -4.6, adjusted P < 0.0001).  Tetracycline ARDs, 

which were highly abundant in all samples, were more abundant in adult feces than in soil (log-

fold change = 1.50, adjusted P = 0.006), and this change was driven overwhelmingly by the 

abundance of ribosomal protection proteins, as major facilitator superfamily (MFS) efflux pumps 

were less abundant in feces compared to soil (log-fold change = -2.1, adjusted P  = 0.02).  

Interestingly, the discrimination of feces from soil samples based on the relative abundance of 

tetracycline ribosomal protection proteins versus tetracycline MFS efflux pumps has been 

previously described for human gut samples and agricultural soils (Gibson et al., 2015).  

Betalactam ARDs were also significantly more abundant in fecal samples than in soil, which in 

turn contained significantly more than wastewater samples.  Differences in betalactam ARD 

abundance were driven primarily by class C betalactamases.  However, betalactam AMDs have 

been shown to degrade relatively quickly in ambient conditions, and this could account for 

significantly lower levels in soil and wastewater if AMD residues are responsible for a 

significant portion of ARDs found in these environments (199). 

Unfortunately, the confounding effect of sample type (i.e., feces vs. soil vs. wastewater) 

may have obscured associations between resistome composition and other external factors such 

as antimicrobial use practices and diet formulations, as sample numbers did not permit formal 

analysis of these associations within sample type.  However, this finding can guide future 

sampling efforts, and indeed may provide a logical rubric on which to base future study designs.  
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Fortuitously, wastewater, manure and soils are often managed separately in large livestock 

production systems, and therefore research efforts can focus within one matrix without forfeiting 

real-world applicability. 

Antimicrobial exposures on dairies did not significantly impact resistome composition 

The resistomes of conventional and organic dairy samples (excluding calf fecal samples) 

were not significantly different upon ordination, and there were no significant differences in 

Shannon’s diversity or richness.  Abundance of ARD classes and mechanisms did not differ 

significantly between organic and conventional dairy samples, with the exception of macrolide 

resistance efflux pumps, which were more abundant in the samples collected from the 

conventional dairy (log-fold change = 9.4, adjusted P  < 0.0001).  The lack of major differences 

between these samples may, however, be due to insufficient study power to detect true 

differences, as descriptive analysis suggests major structural differences.  One stark descriptive 

finding was the near absence of any identified ARDs in the lagoon samples collected from the 

organic dairy.  Indeed, across both lagoon samples collected at this location, only 3 unique ARDs 

were identified: a lincosamide resistance gene (a LnuC with 18 reads aligning) and two 

tetracycline resistance genes (a TetQ and a TetW with 133 and 52 reads aligning, respectively).  

These samples clearly differed from the wastewater samples collected from the conventional 

dairy, which contained 32 unique ARDs across 12 mechanisms of resistance.  Previous studies 

have described significantly higher concentrations of TetO, TetW and Sul1 in lagoons at 

conventional dairies compared to organic dairies (91), as well as higher absolute and relative 

levels of TetO, TetQ, TetW and TetM in feedlot lagoons that drained pens that were exposed to 

moderate and high levels of antimicrobials compared to lagoons that drained pens in which 

antimicrobials were not used (200).  Taken together, these findings suggest that AMD use 
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practices may substantially impact the resistome of stored wastewater, and therefore regulations 

regarding lagoon construction and management as well as wastewater use/disposal should be 

tailored to specific livestock operations (201). 

Of the 24 mechanisms identified within non-calf dairy samples, 14 were identified in 

samples taken from the conventional operation, while 19 were identified in samples taken from 

the organic operation.  ARDs aligning to chloramphenicol active extrusion genes, passive efflux 

proteins, and efflux pumps, as well as class D betalactamases (bla-OXA), the TetX inactivation 

enzyme and glycopeptide resistance Van operons were all identified in conventional but not 

organic samples.  Conversely, organic samples contained several general-purpose resistance 

mechanisms not found in conventional samples (e.g., MATE, MFS efflux pumps and RND 

efflux pumps, porin modification genes, and regulators of resistance mechanisms).  The presence 

of resistance mechanisms with broad substrate specificity has been reported on organically-

grown vegetables, and our own research suggests that these types of “general purpose” resistance 

mechanisms may be more abundant in cattle populations when AMD use pressures are absent 

(202).  Under this theory, general purpose resistance mechanisms are favored in the absence of 

AMD selective pressure as a means for bacteria to defend against numerous and varied 

detrimental compounds, while resistance mechanisms with a more targeted purpose are favored 

in the presence of AMD.  Further studies with larger sample sizes are needed to test this 

hypothesis.    

Resistome composition did not differ between U.S. and Canadian feedlot samples 

There were no significant differences identified when comparing the resistomes of 

samples collected at the U.S. and Canadian feedlots, which may indicate that diet type (i.e., 

primary carbohydrate source being corn or barley) did not have a major impact (ANOSIM P = 
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0.13, 0.32, 0.24 for NMDS ordination at the gene, mechanism, and class levels, respectively).  

Diversity and richness were also not significantly different between samples collected at the two 

feedlots.   However, descriptive results seem to indicate that perhaps this lack of statistical 

difference stems from low study power, as the soil and fecal samples collected at the Canadian 

feedlot appeared to be much different than those collected at the US feedlot (Figure 4.6).  

Samples collected at the Canadian feedlot (which feed a barley-based diet) contained ARDs that 

confer resistance to 8 different classes of antimicrobials via 32 mechanisms.  In comparison, 

ARDs aligning to 5 classes and 10 mechanisms of resistance were identified in samples collected 

at the U.S. feedlot.  In general, this analysis provides strong support that larger sample sizes are 

needed to differentiate resistomes based on factors that may impact resistance in more subtle 

ways. Previous studies suggest that diet significantly impacts the cattle fecal microbiome 

(203,204).  Alternatively, AMD exposures in these cattle could effectively decouple the 

microbiome and resistome, rendering the resistome impervious to dietary differences, while 

maintaining microbiome sensitivity. 

Among mechanisms of resistance that were present in samples from both feedlots, only 

the MLS mechanisms differed significantly in abundance.  Specifically, reads aligning to 

lincosamide nucleotidyltransferases were more abundant in Canadian samples, while reads 

aligning to Erm 23s rRNA methyltransferases and macrolide resistance efflux pumps were more 

abundant in US samples.  Overall, reads aligning to MLS resistance-associated ARDs were less 

abundant in samples collected from the Canadian feedlot (log-fold change = -1.01, adjusted P = 

0.04).  This difference could reflect differential use practices regarding in-feed antimicrobials, as 

U.S. feedlots tend to use in-feed macrolides more frequently than Canadian feedlots (Calvin 

Booker, Feedlot Health Management Services, Okotoks, Alberta, personal communication). 
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Utility of resistome analysis and implications for future studies 

This study is the first published comparison of the fecal, soil and wastewater resistomes 

of beef and dairy production systems.  Using a shotgun metagenomics approach, we reveal the 

diversity of the beef and dairy resistome through identification of 248 unique ARDs within 16 

classes of resistance.  Results indicate that resistome composition is likely influenced by sample 

matrix, stage of animal development (i.e., age), and production system.  These findings suggest 

that future research, regulations and decisions regarding livestock waste management systems 

should be tailored to each effluent as well as to different production systems.  Furthermore, 

antimicrobial use practices on dairies and diet formulation in feedlots were not identified as 

statistically significant drivers of resistome composition.  However, this finding must be 

interpreted in the context of relatively low sample number (only 2 biological replicates per 

sample matrix per production system) and perhaps insufficient power to uncover true 

differences.  Importantly, the findings in this study highlight the utility of resistome analysis in 

producing actionable guidance on complex AMR issues, but also reveal the nascent state of 

resistome research in agriculture and the need for larger, hypothesis-driven studies. 
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Figure 4.1. A comparison of fecal samples collected from calves and adult cattle.  A) NMDS 

ordination of Euclidean distances between Hellinger-transformed normalized counts of ARDs in 

fecal samples collected from calves vs. adults.  B) Proportion of all aligned reads that aligned to 

ARDs within different classes of resistance, in adult cattle feces versus calf feces.  
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Figure 4.2. The calf fecal resistome is significantly more diverse and rich than the adult fecal 

resistome.  Number of fecal samples containing ARDs within each mechanism and class of 

resistance, separated by calves vs. adults, and conventionally raised vs. organically raised calves. 
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Figure 4.3. Soil samples are significantly more diverse and rich than wastewater.  Dotplots 

showing Shannon’s diversity and richness at the gene, mechanism and class levels, separated by 

system (beef vs. dairy) and colored by sample matrix, i.e., feces (black), soil (red) and 

wastewater (blue).  Bolded text within each panel indicates which matrices different based on 

Nemenyi post-hoc pairwise comparisons (WW = wastewater).  Diversity and richness were not 

significant different between beef and dairy at any level.  
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Figure 4.4. Specific resistance classes drive separation of soil from fecal and lagoon resistomes.  

NMDS ordination depicting Hellinger-transformed Euclidean distances between samples from 

feces (black), soil (red) and lagoon water (green) based on normalized counts of ARDs 

aggregated at the resistance class level.  Biplot coordinates of resistance classes are labeled with 

the class name, and show that aminoglycoside, phenicol and spectinomycin resistances 

differentiate the soil from the fecal and lagoon resistomes. 

0.0 0.5 1.0

0
.4

0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

NMDS1

N
M
D
S
2

Phenicol

Elfamycin

MLS

Aminoglycoside

Spectinomycin
Tetracycline

Betalactam
Aminocoumarin

MDR

Feces

Soil

Water

PolymyxinB



 

 

107 

 

Figure 4.5. Beef and dairy systems have different resistomes.  NMDS ordination at the ARD 

level of A) (adult) fecal, soil and lagoon samples and B) only adult fecal samples were both 

significantly different based on system, e.g., beef vs. dairy (ANOSIM P < 0.05).   
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Figure 4.6. Binary heatmap of resistance mechanisms and classes identified in fecal, soil and 

lagoon wastewater samples collected from a U.S. and a Canadian feedlot.  Black = absent, red = 

present. 
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CHAPTER 5: RESISTOME ABUNDANCE AND DIVERSITY DECREASE DURING BEEF 

PRODUCTION IN CATTLE, THE ENVIRONMENT AND BEEF PRODUCTS 

 

SUMMARY 

Antimicrobial-resistant bacteria can be transmitted to humans through the food chain via 

beef and other meat products.  However, no study to date has traced antimicrobial resistance 

genes (collectively known as the resistome) through the beef production process.  We followed 

1,741 commercially reared beef cattle from the time they entered 4 feedlots to the point at which 

the resulting beef products were market-ready.  We collected antimicrobial drug exposures and 

utilized shotgun metagenomics to interrogate the resistome at critical points in the beef supply 

chain.  We identified more than 300 unique antimicrobial-resistance genes, 74% of which coded 

for resistance to tetracyclines.  We also found that resistome diversity, but not microbiome 

diversity, decreased while cattle were in the feedlot, indicating selective pressure from 

antimicrobial drugs, which in beef production are used primarily in feedlots.  We did not identify 

resistance genes in market-ready beef products, and also observed a significant reduction in the 

microbial population during slaughter and processing, suggesting that interventions currently 

utilized for pathogen reduction can also reduce the risk of resistance genes being transmitted to 

beef consumers via market-ready beef.  Finally, we identified genes coding for resistance to 

critically important antimicrobials, including carbapenems, which are not used in beef 

production and therefore likely arose from co-selection or environmental introduction from 

external sources.  Our findings highlight the complexity of microbial ecology, including 

antimicrobial resistance, in beef production and demonstrate that current practices appear to 

minimize microbial abundance, which essentially eliminates the resistome.  
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MAIN TEXT 

The production of food products, including beef, is an important potential source of 

antimicrobial resistant (AMR) infections in humans.  Beef is a widely consumed protein 

commodity, and production and consumption of beef is expected to increase (205).  Several 

critically important antimicrobial drugs (AMDs) such as third-generation cephalosporins are 

used in beef production, while others are not, e.g., carbapenems (168).  Use of these AMDs is 

thought to increase the risk of AMR being transmitted to humans both through environmental 

exposures (i.e., air, water and soil), as well as through consumption of beef products (206).  

While surveillance for foodborne AMR pathogens has been part of food safety systems for 

decades (207), we have yet to fully understand and quantify the public health risk posed by 

transmission of non-pathogenic bacteria that carry antimicrobial resistance determinants (ARDs).  

These ARDs, while not present in disease-causing agents, could pose a risk to human health if 

the bacteria carrying them become established within the microbiome of the human host, 

subsequently enabling horizontal gene transfer of these ARDs to pathogens (104,208).  

Establishment within an individual’s microbiome could occur either through ingestion of 

contaminated beef products or through environmental exposures disseminated from beef 

production settings such as feedlots (206).  The rate at which this occurs is unknown, largely 

due to an historical reliance on culture and isolation of pathogens and an inability to access the 

microbial community and its complete repertoire of ARDs (i.e., the resistome). 

Several steps in the beef production system could play crucial roles in the transmission of 

antimicrobial resistance (AMR) from beef production to humans via environmental interfaces 

(e.g., air, soil and water) and beef products.  Feedlots utilize AMDs more frequently than any 

other phase of beef production (19,20), a fact that has raised concern that these operations may 
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represent the main step in beef production at which AMR is acquired or maintained.  

Furthermore, feedlots are intricately linked to environmental exposure pathways such as air, 

manure, soil and water, enabling indirect human exposure to feedlot effluents (162).  

Slaughterhouses are a potential control point in AMR transmission, as they employ multiple 

sequential antimicrobial interventions to reduce pathogen contamination in beef products; routine 

verification and validation testing of these interventions has demonstrated that they are effective 

in reducing not only pathogen, but also total bacterial contamination (41).  We hypothesized that 

the antimicrobial measures used in feedlots and slaughterhouses would exert a measurable effect 

on the presence, abundance and composition of ARDs in the bacterial populations of cattle, the 

feedlot environment and market-ready beef products.  Furthermore, we hypothesized that use of 

a metagenomics approach would enable us to quantify these changes at an ecological level and 

therefore better understand the risk to public health, compared to use of a culture-based 

approach. 

In order to understand how feedlots and slaughterhouses affect ARD transmission, it is 

imperative to track cattle through the beef production system, documenting AMD use and 

antimicrobial interventions and describing resistome changes over time.  However, research in 

this area has been constrained by the challenges of tracking beef products and environmental 

effluents from individual or pens of cattle and collecting detailed records of AMD exposure for 

the cattle being studied.  Specific challenges include lack of unique animal identification, use of 

non-computerized or otherwise hard-to-access AMD treatment records, uncontrolled effluents 

that are difficult to follow (e.g., air and runoff water), disassembly of the slaughtered carcass into 

hundreds of non-linked parts, and the sheer difficulty of handling and sampling feedlot steers, 

which weigh over 1,000 pounds.  Because of these complexities, to our knowledge no studies 
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have specifically tracked antimicrobial use in livestock with antimicrobial resistance in retail 

products or consumers.  Studies in this area are either descriptive (209) or ecological in scale 

(84).  This dearth of evidence greatly complicates efforts to develop effective policies related to 

antimicrobial use in livestock with the goal of protecting public health (210), both through the 

food chain and through indirect environmental exposures such as dust, run-off and manure.  The 

objective of this study was to perform a prospective longitudinal analysis of antimicrobial use 

and resistance in beef production and to exploit shotgun metagenomics to characterize resistome 

dynamics in the environment and the products of cohort cattle from feedlot through to the 

finished product. 

In North America, cattle raised for beef production are typically born on variably sized 

ranches and are sold and shipped to feedlot operators and aggregated in the feedlot into pens.  In 

this study, the size of pens ranged from 150 to 281 cattle, while the total feedlot capacity was 

~100,00 cattle at each feedlot.  In the feedlot, cattle are fed a high-energy diet until they reach a 

weight of ~1200 pounds, typically after 3-6 months depending on the weight and age at which 

they enter the feedlot.  Cattle in this study were in the feedlot between 93 and 185 days. At this 

point, they are shipped to an abattoir and held for <12 hours in a pen with access to water before 

going through the slaughter process, which involves euthanasia and then disassembly of the 

carcass into beef products that are then packaged and marketed for human consumption. 

A convenience sample of beef feedlots in Texas (n=2) and Colorado (n=2) was selected 

for study participation, and 2 pens of cattle were randomly enrolled from each feedlot, with a 

total of 1,741 cattle from 8 pens.  Antimicrobial exposures in these pens were recorded 

throughout the feeding period, i.e., the total time that animals are housed in the feedlot (Table 

S5.1).  In order to assess the resistome throughout the feedlot and slaughter processes, we 
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collected pooled, ecological-level samples from pens of cattle and their environment as they 

moved through the beef production system (Figure 5.1).  Pooled fecal, soil and drinking water 

samples from each pen were collected soon after arrival of the cattle at the feedlots (“arrival 

samples”, n=24, one per pen per sample type), as well as just before the same pens of cattle were 

shipped for slaughter (“exit samples”, n=24, one per pen per sample type). Cattle were then 

transported (<8 h transport time) by truck to 2 slaughter plants and the walls, floors and ceilings 

of the trucks were swabbed (“truck samples”, n=8, one per pen) immediately after the cattle were 

unloaded at the slaughterhouses.  Cattle were placed in holding pens outside the slaughterhouses, 

where pooled fecal and drinking water samples were collected after cattle had been moved into 

the slaughterhouse (“holding pen samples”, n=16, one per pen per sample type).  Cattle were 

then euthanized and the carasses were disassembled into beef products (Figure 5.1).  At the end 

of this process, pooled swab samples were taken from the conveyor used to transport and 

disassemble carcass parts (n=8, one per pen).  In addition, beef trimmings were collected and 

rinsed to obtain a pooled sample of the highest-risk part of the carcass (n=8, one per pen).  The 

table and trimming samples represent the microbiome and resistome after all antimicrobial 

interventions have been applied to the carcass, and just before the beef products are packaged for 

retail distribution (“market-ready samples”) (211). 

Total DNA was extracted from 88 samples and sequenced on an Illumina HiSeq 2000, 

resulting in 407.7 Gb of sequence data (average 46.3 M reads per sample, range 12.0 M – 93.4 

M).  One sample (a drinking water sample) did not contain enough DNA (i.e., <1ng) to be 

sufficiently sequenced.  Reads were trimmed and filtered for quality, and reads classified as host 

genome (Bos taurus) were removed from further analysis (Table S5.2) (211).  Non-host reads 

were then aligned to a custom non-redundant database of ARD sequences compiled from 
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publicly available sources (211).  ARDs with a gene fraction of >80% across all alignments 

were considered to be positively identified in a sample (211).  We identified 319 unique ARDs 

across all 87 samples (Table S5.3).  The majority of ARDs were present in low numbers (Figure 

S1), and the median number of unique ARDs identified per sample was 33 (range: 0 to 136; 

Figure S5.2).  The 319 ARDs identified represent 42 antimicrobial resistance mechanisms within 

17 classes of resistance (Table S5.4).  Reads aligning to genes that encode resistance to 

tetrayclines and the macrolide-lincosamide-streptogramin class of antimicrobials were most 

abundant. 

To assess systematic changes in resistome composition during the feeding period (i.e., 

from arrival to exit, truck and holding samples), non-metric multidimensional scaling (NMDS) 

ordination using Hellinger transformation and Euclidean distances was performed at the ARD 

level (212).  Samples with only one ARD (n = 2) were removed for clustering purposes.  The 

pre-slaughter samples clustered by sample matrix (i.e., feces, soil, water and sponges, the latter 

of which comprised all truck samples) based on ARD composition (Adonis P = 0.001, Figure 

5.2A).  Therefore, to avoid confounding, we performed resistome ordination separately on fecal, 

soil and water samples (the truck resistome could not be compared owing to complete 

confounding between sampling location and matrix type), all of which exhibited a significant 

shift from arrival to exit or holding (Figure 5.2B-D).  While this shift could result from AMD 

exposures, culture-based studies of phenotypic resistance have reported mixed results when 

looking for associations between feedlot AMD use and AMR (20,21).  In addition to AMD 

exposures, cattle undergo numerous changes during the feeding period, including maturation and 

a gradual shift from forage-based to high-energy rations, all of which have been shown to affect 

the fecal microbiome in swine, although little is known about these factors in beef cattle (213–
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215).  Therefore, changes in the resistome could also be driven by changes in bacterial 

community composition, a phenomenon recently reported for a set of functionally confirmed 

metagenomic soil samples (105).  The procrustes analysis of NMDS ordination results 

confirmed the correlation between the resistome (ARD level) and the microbiome (species level) 

in arrival and exit samples (Figure 5.4B-C).  However, there was tighter correlation on arrival 

than on exit, hinting that additional factors such as AMD exposures may have influenced 

resistome changes independently of the microbiome.  In addition, Shannon’s diversity at the 

ARD level decreased while cattle were in the feedlot, while diversity of microbial species did 

not, suggesting a decoupling of the resistome from the microbiome. 

Interestingly, the decrease in ARD diversity was driven primarily by a reduction in ARD 

richness (Figure 5.3).  Richness, in turn, occurred primarily through the loss of general-purpose 

(i.e., multiclass) resistance mechanisms, as well as loss of resistance to classes of drugs that were 

not used on cattle in this study population or in the feeding systems in which they were raised 

(e.g., phenicols, aminocoumarins, elfamycins, rifampin, bacitracin and polymyxin B).  In 

contrast, resistance to macrolides and tetracyclines remained prevalent in exit and holding pen 

samples, and these were the two most commonly used classes of antimicrobials (Table S5.1).  

Indeed, all cattle received in-feed tylosin (a macrolide) throughout the entire feeding period to 

prevent liver abscesses.  Use of other antimicrobial agents was sparse on the individual animal 

level, but pen-level exposure was higher and all 8 pens contained at least one animal that was 

treated with injectable macrolides and tetracyclines (Table S5.1).  Five of the 8 pens contained 

cattle that received fluoroquinolones, and 3 of the 8 contained cattle that received β-lactam 

AMDs.  One hypothesis for these findings is that antimicrobial exposure during the feeding 

period created pressure on the microbial population such that the fitness costs of maintaining a 
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diverse resistome (i.e., the resistome detected in arrival samples) were outweighed by the need to 

respond to specific stimuli; i.e., pen-level exposure to macrolides and tetracyclines.  A result of 

this shift is decreased ARD richness due to the loss of general-purpose and unnecessary 

resistance mechanisms. 

Interestingly, the aminoglycoside class was an exception to this pattern, as 

aminoglycoside resistance remained prevalent throughout the feeding period despite absence of 

these drugs in this study population and in beef production in general; spectinomycin and 

sulfonamides, which were also identified post-arrival, can be used in beef cattle, but were not 

used in this study population.  In addition, we identified several ARDs that have been associated 

with phenotypic resistance to critically important antimicrobial drugs in humans when expressed 

in disease-causing agents (Table S5.5); however, these AMDs were not used in this study 

population and most are not labeled for use in cattle at all. A soil sample collected at feedlot 

arrival contained the carbapenemase (bla)OXA-235 (216)as well as vgaD and vatG ARDs, 

which together confer resistance to quinupristin-dalfopristin (217). Another soil sample 

collected at arrival and a water sample from a holding pen contained the carbapenemase ARD 

(bla)OXA-347, which has only been shown to confer resistance to ampicillin but is classified as 

a carbapenemase based on 53% amino acid identity (218).  Of the 7 analyzed water samples 

collected from the holding pens, 3 contained reads aligning to the strict carbapenemase class 

bla(cphA).  Additionally, the 4 truck samples collected in Texas all contained a CfrA 23S rRNA 

methyltransferase, which confers resistance to phenicols, lincosamides, oxazolidinones 

(linezolid), pleuromutilins, and streptogramin A (PhLOPSA). Despite the presence of these 

ARDs, study cattle were not exposed to aminoglycosides, carbapenems, streprogramins, 

phenicols, lincosamides, linezolid, or pleuromutilins while in the feedlot (Table S5.1). In 
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addition, carbapenems, streptogramins, pleuromutilins and linezolid are not approved for use in 

cattle production.  Therefore, antimicrobial use practices in these study cattle or in other cattle 

populations cannot directly explain the presence of these important ARDs.  It is important to note 

that these ARDs were present in extremely low relative abundance; fewer than a dozen of the 

1.2M ARD-assigned reads aligned to each of these critically important ARDs.  While high 

sequence homology and the resistance-conferring functional residues were intact (Table S5.6), 

we cannot infer phenotypic expression from these data. Furthermore, while this is the first 

published report of these ARDs in the feedlot setting, it is also the first study to utilize a shotgun 

metagenomics approach on feedlot samples; therefore, we cannot contextualize these findings 

with respect to previous research and we cannot determine whether presence of these ARDs in 

feedlot samples is a novel or long-standing phenomenon.  Identifying these ARDs in 

metagenomic data may provide important insight above and beyond a culture- or PCR-based 

approach, but additional work is needed to understand the biological, ecological and public 

health consequences of these findings.  For instance, the presence of these ARDs in the feedlot 

setting, even in the absence of corresponding AMD exposures, could be explained by transfer 

into the feedlot environment through either cattle or fomites (e.g., feedlot workers, feedlot 

working dogs and horses, or environmental exposures such as air or water).  Alternatively, or in 

combination, use of other AMD classes could co-select for these ARDs within the cattle 

population.  In either case, these findings highlight the complexity of the AMU-AMR 

relationship, as well as the fact that food production in general (and beef production specifically) 

is intrinsically linked to other ecosystems via diffuse environmental contacts.  Given these 

complexities, we believe an ecological and metagenomic approach is necessary to aggressively 

research this important public and human health issue. 
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We also identified bla(TEM)-116, an extended-spectrum β-lactamase (ESBL), in 1 water 

holding pen sample.  Third-generation cephalosporins (a class of β-lactams) are used in cattle 

production, although use is limited, as reflected in the use data collected in this study (Table 

S5.1).  We did not identify ARDs from the bla(NDM), bla(SHV) or bla(CTX-M) or bla(CMY) 

classes of ESBLs, or the carbapenemases bla(SME), bla(IMI), bla(NMC), bla(GES) or bla(KPC) 

(Table S5.5). 

Interestingly, ARD composition did not differ significantly between pens of cattle (n=8) 

or feedlots (n=4) when ordinated using NMDS.  This was somewhat surprising given the 

geographic separation of the 4 feedlots and the fact that pens of cattle within feedlots do not have 

contact with one another.  However, common management and AMD use practices between all 4 

feedlots could explain this lack of difference.  In addition, water runoff, windborne dust and 

fomites within feedlots could contribute to a mixing of pen resistomes, despite differential AMD 

exposures and cattle populations between pens.  Furthermore, resistome composition at the ARD 

level, but not the mechanism and class levels, did differ significantly by geography (e.g., 

Colorado versus Texas feedlot, truck and holding pen samples, ANOSIM P < 0.05).  These 

findings support the idea of environmental connectivity within feedlots and even within regions, 

but suggests that the “connected environment” is limited at larger geographic spans.  The fact 

that the resistome differed by state at the ARD level, but not the mechanism and class level, 

suggests that while individual gene content differs between distant feedlots, the overall resistance 

potential (and by extension functionality) of the microbial population is similar; this, in turn, may 

be reflective of management and AMD use practices that are common among most North 

American feedlots.  In effect, the bacterial populations in the Texas and Colorado feedlots may 

have taken a different evolutionary path to respond to these common threats, but the general 
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mechanisms by which they respond, as well as the classes of AMDs to which they respond, are 

consistent. 

When examining the 16 post-slaughter samples obtained from the belts, tables and meat 

trimmings, no ARDs were identified in any of these market-ready samples (n = 8 pooled 

belt/table samples and n=8 trimming rinses).   These samples yielded large amounts of DNA, but 

>99% of the reads aligned to the bovine genome (Table S5.2); therefore, the lack of detection of 

ARDs could be attributable to low sequencing coverage of bacterial DNA.  However, there are 

also plausible biological explanations for the lack of bacterial DNA (and thus ARDs) in these 

samples.  The bacterial contamination of beef during slaughter occurs primarily during removal 

of the hide and gastrointestinal tract (GIT), at which point the surfaces of carcasses can routinely 

be contaminated with aerobic bacterial counts of 6.1 – 9.1 log CFU/100 cm
2 
(41).  To decrease 

this contamination, it is standard in North America for carcasses to undergo several highly 

effective antibacterial interventions after hide and GIT removal, including steam vacuuming, 

carcass washing, the application of organic acid rinses and thermal pasteurization (41).  All 

carcasses in this study underwent each of these interventions sequentially, a process that has 

been shown to reduce bacterial loads by >5 log CFU/100 cm
2
 total plate count (219). 

To differentiate between incomplete sequencing and true reduction of the microbial 

population, we conducted a microbiome analysis of samples pre- and post-slaughter, the former 

comprising all arrival, exit, truck and holding pen samples.  Reads that did not align to the 

bovine genome were classified into a phylogenetic clade using exact-match k-mer alignment to 

the NCBI RefSeq database of complete microbial genomes (211,220).  Exact matches were 

summed at the species and genus levels within each sample, and totals were normalized to the 

number of mapped reads within each sample using a data-driven approach based on shifts in 
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count distributions (221).  We found that microbiome (i.e., total microbial community) diversity 

was significantly reduced in the post-slaughter samples compared to the pre-slaughter samples, 

suggesting a dramatic alteration in the composition of the microbial community, which could 

reflect the impact of antibacterial interventions during slaughter (Figure 5.1A).  However, low 

diversity could also be the result of low-coverage sequencing of microbial DNA in the post-

slaughter samples (222).  Therefore, we conducted a closer analysis of differential microbial 

abundance between pre- and post-slaughter samples using zero-inflated Gaussian mixture models 

to account for distinct processes for zero-count data (i.e., true absence vs.  incomplete 

sequencing depth) (182).  Pairwise comparisons between pre- and post-slaughter samples were 

performed using limma’s makeContrasts function (223), and pen ID was added to all models as 

a covariable to account for repeated measurements.  We identified 416 (of 763) differentially 

abundant genera and 840 (of 1,821) differentially abundant species, the vast majority of which 

were more abundant in the pre-slaughter samples (Figure 5.1B).  Of the 19 genera and 68 species 

that were more abundant in post-slaughter samples, many are known to be heat-tolerant and/or 

environmentally hardy; e.g., Staphylothermus, Pyrococcus, Pseudomonas and Pleurocapsa, 

suggesting that they were able to withstand the high heat and other harsh conditions utilized as 

part of the multiple antimicrobial interventions that occur during slaughter and processing of 

beef carcasses.  This is the first report of survival of these bacteria during slaughter, as many are 

difficult to culture.  Furthermore, the lack of ARDs in the post-slaughter samples suggests that 

there is no (or very low) resistance in these bacteria, but the incomplete sequencing cannot be 

fully discounted.  Interestingly, culture-based resistance surveillance in beef trimmings (207) 

reported >30% prevalence of resistance amongst Salmonella isolates (207).  However, 

Salmonella was recovered from <1% of these trimming samples (22 of 1,791 samples collected 
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in 2011), suggesting that recovery of resistant Salmonella is a very rare event; in this respect, the 

results of these culture-based efforts concur with our findings.  Furthermore, samples taken as 

part of this surveillance program were enriched prior to isolation, likely resulting in increased 

sensitivity compared to the shotgun metagenomics approach. 

To our knowledge, this is the first metagenomic investigation of AMR that followed 

specific pens of cattle from feedlot entry through slaughter to market-ready product in a 

longitudinal fashion.  The use of shotgun metagenomics provided a novel view of resistance 

dynamics within the beef production system.  These results are largely generalizable to North 

American beef production, particularly within geographic regions, as resistome composition did 

not vary between feedlots or pens.  While our results suggest that slaughter-based intervention 

systems minimize the likelihood of intact ARDs being passed through the food chain, our results 

highlight the potential risk posed by indirect environmental exposures to the pre-slaughter 

resistome.  This concern is especially salient given evidence in this study that ARDs may be 

“shared” between pens of cattle and between feedlots within a geographic region, indicating 

environmental connectivity that could also extend to human habitats through wastewater run-off, 

manure application on cropland, and windborne particulate matter. The pattern of resistome 

change during the feeding period suggests that AMD use practices may be the driving force 

behind the feedlot resistome, but more research is warranted.  Furthermore, the scientific 

community urgently needs to develop a better understanding of the risk of different resistomes 

(224), which would inform an assessment of the risk of the “exit” versus the “arrival” resistome.  

Finally, this study highlights the utility of an ecological, metagenomics and systems approach to 

investigating AMR in food production, and provides a glimpse of the unique insights that can be 

gained in order to better inform public health-related policy 
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Figure 5.1.  (A) Boxplot of Shannon’s diversity at the species level, pre- vs.  post-slaughter 

samples.  Shannon’s diversity was significantly lower in post-slaughter samples when tested 

using generalized linear modeling (P<0.0001).  (B) Volcano plot of log-fold change in 

abundance of genus from pre- to post-slaughter.  Red dots with red labels have a log-fold change 

>2 and an adjusted P-value <0.05, whereas gray dots do not.  Dot size is proportional to the 

average abundance of the genus across all samples. 
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Figure 5.2.  Non-metric multidimensional scaling (NMDS) ordination plots of pre-slaughter 

sample ARD composition, depicting significant sample separation by (A) matrix (P = 0.001), 

and location within (B) feces (P = 0.03), (C) soil (P = 0.004) and (D) water (P = 0.002). 
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Figure 5.3.  Proportion of arrival (n=24), exit (n=24) and holding (n=15) samples that contained 

at least one ARD in each resistance mechanism (n=33), grouped by resistance class.   
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Figure 5.4. Procrustes analysis of ARD content (filled circles) and species composition (open 

circles) at arrival (A) and exit (B) using Hellinger transformation and NMDS ordination (212).  

Soil (red), water (blue) and fecal (black) samples clustered significantly in the microbiome and 

resistome data.  Procrustes configurations were significantly correlated in the arrival and exit 

samples, but less so in the exit samples (M
2 
= 0.29 and 0.18, respectively, P<0.001). 
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MATERIALS AND METHODS 

Antimicrobial use data 

AMU data were aggregated and analyzed at the pen level because samples were collected 

as composites and an ecological perspective on the resistome was desired.  In order to 

standardize drug exposures across cattle and across differing dosages, AMD treatments were 

reported in units of “Animal Defined Dose” (ADD), or the number of days that a given AMD is 

expected to persist at therapeutic concentrations in the target tissue (156). 

Sample collection and processing 

All fecal, soil, sponge and trimming samples were collected using sterile gloves sprayed 

with alcohol and placed into sterilized Whirl-Pak bags (Nasco).  Water samples were collected 

into bottles and centrifuge tubes that had been submerged in bleach for 5 min, rinsed with sterile 

water and then autoclaved.  Pooled fecal samples representing all the cattle in a single pen were 

collected from feedlot pen and holding pen floors; pooled soil samples representing all the cattle 

in a single pen were also collected from feedlot pen floors, but not holding pen floors, which 

were concrete.  Investigators walked through pens on diagonal lines, collecting ~30 g of feces or 

soil from 12 approximately equally spaced locations.  The 12 soil and 12 fecal samples from 

each pen were then placed in one Whirl-Pak bag each (Nasco) and mixed thoroughly to combine.  

The contents of the water trough in each pen were thoroughly mixed, and drinking water samples 

(1 L each) were collected and placed into sterile containers.  Truck samples were collected using 

an EZ Reach
TM

 polyurethane sponge pre-hydrated with 10 mL Dey/Engle neutralizing broth 

(World Bioproducts LLC).  Sponges were used to swab the internal walls of each truck (sides, 

door and floor); each surface was swabbed 20 times on the front and back of the sponge.  For 

each pen of cattle, 3 of 5 trucks were randomly selected for sampling, and 1 sponge was used for 
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each truck. After slaughter, carcasses in each pen were grouped and processed by USDA quality 

grade.  Post-slaughter samples were obtained when the USDA grading group with the greatest 

number of carcasses was being disassembled and processed.  In the slaughter room, EZ Reach
TM

 

polyurethane sponges pre-hydrated with 10 mL Dey/Engle neutralizing broth were used to 

collect swab samples at the end of the conveyor belts used to process the chuck and round primal 

cuts, as well as the trimmings.  The end of these belts represents the last stage in the slaughter 

and disassembly process, immediately prior to beef being packaged for retail distribution.  To 

obtain belt samples, sponges were held on each running belt for one minute per side.  Beef 

trimming samples were collected from the trim conveyor belt immediately prior to the spraying 

of the last antimicrobial solution in the slaughter process. 

All samples were transferred on ice to the Center for Meat Safety & Quality at Colorado 

State University.  Samples collected in Colorado arrived within one hour of collection, and 

samples collected in Texas arrived within 48 hours.  Upon arrival, fecal, soil, sponge and 

trimming samples were immediately frozen at -80°C.   Water samples were centrifuged at 

15,000xg for 20 min at 4°C, and 5 mL of the pellet was collected for DNA extraction. 

Sample Processing 

All samples were thawed prior to DNA extraction.  Four hundred grams of thawed meat 

from each trimming sample were rinsed in 90 mL of buffered peptone water (BPW) and then 

placed at 4°C to separate and harden the lipid content.  After hardening, the liquid portion of the 

sample was removed and centrifuged at 4280xg at 4°C for 20 minutes, after which the 

supernatant was discarded and the pellet re-suspended in 5 mL of cold, sterile saline.  The cold 

saline wash was repeated, and after the final centrifugation, 250 mg of the resulting pellet was 

utilized for extraction.  Sponge samples were squeezed with a Brayer squeegee to remove the 
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broth liquid.  The sponges were then rinsed in 10 mL of BPW and squeegeed again.  The rinsate 

from both rounds of squeezing were then centrifuged at 4300xg at 4°C for 20 minutes, the 

supernatant was removed, and the pellets were re-suspended in phosphate buffered saline (PBS), 

at which point the pellets from samples collected from the same pen were combined, resulting in 

1 pooled truck sample and 1 pooled belt sample per pen.  The combined samples were then 

centrifuged again at 4280xg at 4C for 20 minutes, and 250 mg of the resulting pellet was 

weighed and set aside for DNA extraction. 

The Mo Bio PowerSoil DNA Isolation Kit was used to extract DNA from 250 mg/sample 

of water, sponge and trimming pellets, whereas the Mo Bio PowerMax Soil DNA Isolation Kit 

was used to extract DNA from 10 g/sample of pooled feces and soil (Mo Bio Laboratories, Inc.).  

Different kits were used to accommodate different sample volumes (as recommended by the 

manufacturer); however, they utilize identical reagents and chemistries.  A sedimentation step 

was used to process the feces and soil prior to DNA extraction, allowing for the simultaneous 

sedimentation of heavier soil/fecal debris and the release of bacterial cells into the upper 

supernatant.  This step made it possible to process a greater volume of sample matrix (up to 10 g) 

while removing additional PCR inhibitors known to be present in soil and feces (225), resulting 

in a more complete representation of bacterial DNA presence.  Briefly, 30 mL of BPW was 

added to 10 g soil or feces in a 50 mL conical tube, and the samples were shaken vigorously to 

mix well before being allowed to sediment on the bench for 10 min.  Supernatants, including 

limited soil/fecal debris, were transferred to a new 50 mL conical tube and centrifuged for 10 

min at 4,300xg.  The BPW was removed, and the resulting sample pellet was rinsed with 5 mL 

of molecular grade sterile PBS and centrifuged again at 4,300xg for 10 min.  The supernatant 

was removed, and the resulting pellet was re-suspended in 15 mL of PowerBead solution before 
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being transferred to the PowerMax Bead Solution Tube provided in the kit and proceeding with 

the DNA extraction protocol. 

DNA extraction was performed using the MoBio PowerMax Soil DNA Isolation Kit or 

Mo Bio PowerSoil DNA Isolation Kit (Mo Bio Laboratories, Inc.) according to the 

manufacturer’s protocol.  DNA for fecal and soil samples was eluted in 5 mL of the kit elution 

buffer, and water, sponge and trimming rinsate samples were eluted in 50 µl of the kit elution 

buffer to maximize DNA concentration.  After extraction, DNA concentration was measured at 

260 nm using a NanoDrop™ spectrophotometer (Thermo Fisher Scientific, Inc.).  Samples that 

did not have a concentration of at least 20 ng/µl (1 µg total in 50 µl) were precipitated using a 

traditional ethanol precipitation procedure.  To the final DNA sample, 1/10 volume of 3M 

sodium acetate, pH 5.2, was added. Two volumes of cold 100% molecular grade ethanol was 

added and the sample was mixed several times by inversion before incubating at -20°C for 1 

hour. Samples were centrifuged at 11,000 x g for 20 minutes at 4°C. Supernatants were carefully 

discarded and 150 µL 70% cold ethanol was added and mixed by inversion. Samples were 

centrifuged a final time at 11,000 x g for 10 minutes at 4°C. Supernatants were again discarded 

and the DNA pellets allowed to air dry before resuspending in ¼ the original DNA volume with 

Solution C6 included in the Mo Bio DNA extraction kits. 

After DNA extraction or concentration, 100 µl of each fecal and soil DNA and 30 µl of 

each water, sponge and trimming rinsate DNA were delivered on ice to the Genomics and 

Microarray Core at the University of Colorado Denver.  Libraries were constructed using the 

Illumina TruSeq® DNA Library Kit (Illumina, Inc.) for samples that contained at least 1 µg of 

DNA and using the NuGEN Ultra Low DNA Library Preparation (NuGEN Technologies Inc.) 

for samples that contained less than 1 µg of DNA, following the manufacturer’s protocols.  
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Paired-end sequencing was performed on the Illumina HiSeq 2000 (Illumina, Inc., San Diego, 

CA). 

Creation of master, non-redundant ARD database 

Resfinder (180), ARG-ANNOT (179) and CARD (181) databases were chosen for the 

foundation of the master database because they are specific to antimicrobial resistance genes, and 

the databases are actively curated and frequently updated.  Redundant sequences between ARG-

ANNOT and Resfinder were identified using CD-HIT-EST-2D (178) with local alignment (-G 

0) and the following parameters: -c 1.0 -AS 0 -AL 0 -aL 1.0 -aS 1.0.  A single representative 

sequence was selected from each resulting doubleton cluster (n=1,427), and these sequences 

were appended to the list of unique gene sequences in ARG-ANNOT (n=261) and Resfinder 

(n=715).  This process was then repeated for the CARD database using the combined ARG-

ANNOT/Resfinder non-redundant database.  Seven hundred and eight sequences were unique to 

CARD, resulting in a final non-redundant database containing 3,111 unique ARD sequences. 

Each ARD sequence identified in the metagenomic sample data was assigned to a class and 

mechanism of resistance (Table S5.4). 

Bioinformatics pipeline used to identify ARDs 

Raw sequence data were obtained from the Genomics and Microarray Core at the 

University of Colorado Denver.  Reads were filtered for quality using Trimmomatic (176) in the 

following manner: first, the leading 3 and trailing 3 nucleotides were removed from each read, 

then a sliding window of 4 nucleotides was used to remove nucleotides from the 3’ end until the 

average Phred score across the window was at least 15.  Trimmomatic’s “ILLUMINACLIP” 

command was used to remove adapters supplied in the TruSeq3 adapter sequence file.  A 

maximum of 2 mismatches were allowed in the initial seed, and adapter clipping occurred if a 
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match score of 30 was reached.  In addition, we specified that both reads be retained upon 

clipping, despite probable complete sequence redundancy, to supply more reads for downstream 

applications. 

After clipping and trimming, reads were matched to the Bos taurus reference genome 

(UMD_3.1) using Kraken (220) in “quick operation” mode; reads with <5 13-mers matching to 

the Bos taurus genome (“non-host” reads) were extracted for further analysis.  Non-host reads 

were then aligned to the master, non-redundant ARD database using BWA with default settings 

(177).  A custom-developed Java-based script was used to parse the resulting SAM file such that 

the gene fraction was calculated for each ARD identified in each sample.  Gene fraction is 

defined as the proportion of nucleotides in the ARD that aligned with at least one read.  ARDs 

with gene fraction of >80% were defined as present in the sample and were included in further 

analyses.  For each such gene in each sample, the total number of aligned reads was summed to 

create a count matrix with samples in columns and genes in rows.  This count matrix was used to 

analyze changes in the log-fold abundance of resistance mechanisms and classes as well as for 

ordination and heatmap generation. 

Analysis of log-fold change in abundance 

Raw count data at the gene level were normalized using cumulative-sum scaling, a 

method that has been shown to introduce less bias than total-sum scaling or rarefying to the 

smallest library size (221).  Due to the sparseness of count data, a default percentile of 0.5 was 

chosen for normalization, based on published recommendations (182).  Normalized counts were 

then aggregated to the mechanism and class level using the “aggTax” function in 

metagenomeSeq.  Multivariate, zero-inflated Gaussian mixture models were fit to mechanism- 

and class-level normalized counts using metagenomeSeq’s “fitZig” function, with 
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“useCSSoffset” set to “FALSE” as aggregation was performed with normalized counts.  All 

models included a pen identification number as a covariable to account for the potential 

clustering of response variable within pens.  Models that compared arrival and exit samples also 

included matrix type (soil, feces and water) as a covariable to account for potential confounding.  

The output of fitZig was then transferred into limma’s “makeContrasts” and “eBayes” functions 

to conduct pairwise comparisons of log-fold change in abundance between sample groups (223), 

adjusting for multiple comparisons using the Benjamini-Hochberg procedure and using a critical 

α of 0.05. 

Ordination 

All ordinations were conducted with “vegan” (226), using the Hellinger transformation 

of normalized counts of aligned reads per gene within each sample (212).  Euclidean distances 

were calculated, and vegan’s “metaMDS” function was used to perform non-metric dimensional 

scaling, enabling the discovery of a stable ordination solution using many random starts.  

Ordination results were tested for statistical significance using the analysis of similarities 

(“anosim”) as implemented in vegan. 

Richness and diversity comparisons 

Richness was defined for all analyses as the number of unique features (genes, 

mechanisms, classes, species or genuses) in a sample.  Diversity was calculated using Shannon’s 

diversity index, and therefore incorporated a relative evenness of features within samples.  The 

comparisons of richness and diversity between sample groups were conducted using paired 

Wilcoxon signed rank test due to the non-parametric nature of the data and the presence of 

repeated measures when comparing different sampling locations (e.g., arrival vs. exit). 
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Microbiome classification 

Kraken was used to classify reads phylogenetically, and output was converted into MPA 

format for further analysis using Kraken’s “Kraken-mpa-report” program (220).  The number of 

matches to each taxon was normalized within samples, and normalized counts were aggregated 

to the species and genus levels using the “aggTax” function in the R package “metagenomeSeq” 

(182).  The analysis of changes in abundance was conducted as described in the “Analysis of 

log-fold change in abundance” section above. 
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Table S5.1.  Antimicrobial drug usage in the study population. 

Drug (dosage) Drug Class 

Primary 

Reason 

for Use 

Number of 

Animals 

treated (%) ADD
a 

Total 

ADDs 

ADD/ 

Animal
b 

Tylosin phosphate 

(11 mg/kg diet dry matter)
c Macrolide 

Liver 

abscess 

prevention 

1,741 (100%) 1/80 2,780 1.62 

Tulathromycin 

(2.5 mg/kg BW
d
) 

Macrolide 
BRD

e
 

Treatment 
81 (4.7%) 3 243 0.14 

Oxytetracycline 

(9 mg/lb BW) 
Tetracycline 

BRD 

Treatment 
85 (4.8%) 1 85 0.06 

Oxytetracycline and Flunixin 

meglumine 

(30 mg/kg BW and 2 mg/kg BW) 

Tetracycline 

BRD 

Treatment 1 (0.06%) 5 5 0.02 

Danofloxacin mesylate 

(8 mg/kg BW) 
Fluoroquinolone 

BRD 

Treatment 
18 (1.03%) 3 36 0.03 

Enrofloxacin 

(7.7 mg/kg BW) 
Fluoroquinolone 

BRD 

Treatment 
2 (0.11%) 3 6 0.02 

Ceftiofur sodium 

(1 mg/kg BW) 
β-lactam 

BRD 

Treatment 
2 (0.11%) 1 2 0.01 

Ceftiofur crystalline free acid 

(6.6 mg/kg BW) 
β-lactam 

BRD 

Treatment 
5 (0.29%) 3 15 0.03 

a
ADD = Animal defined daily dose, or the number of days that a single treatment of drug 

remains at therapeutic concentrations in the target tissue (156) 
b
This is the ADD per animal calculated as the total ADDs administered to animals within the pen 

divided by the total number of animals in the pen 
c
Assuming average daily intake of 9 kg of dry matter per day 

d
BW = body weight 

e
BRD = bovine respiratory disease
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Table S5.2.  Percentage of reads classified as Bos taurus, by sample type  
  

 

    

 

 

 

 

  

Sample Type Average (min – max) (%) 

Feces 1.54 (0.32 – 4.10) 

Soil 2.54 (0.10 – 15.5) 

Water 9.72 (0.04 – 57.9) 

Truck sponges 1.34 (0.16 – 6.90) 

Belt/table sponges 99.3 (97.7 – 99.8) 

Carcass trimmings 99.6 (99.5 – 99.7) 
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Table S5.3: List of 319 ARDs identified across all 87 samples. 

ARD$ID$ Resistance$Class$ Resistance$Mechanism$
Originating$

Database$

(AGly)Aac)4IVa:X01385:24441029:7869 Aminoglycoside9 Aminoglycoside9acetyltransferases9 ARG4ANNOT9

(AGly)AadA14pm:JQ690540:796848798:8319 Aminoglycoside9
Aminoglycoside9

nucleotidyltransferases9
ARG4ANNOT9

(AGly)AadA1:M95287:332044111:7929 Aminoglycoside9
Aminoglycoside9

nucleotidyltransferases9
ARG4ANNOT9

(AGly)AadA11:AJ567827:14792:7929 Aminoglycoside9
Aminoglycoside9

nucleotidyltransferases9
ARG4ANNOT9

(AGly)AadA24:HQ123586:884768:7819 Aminoglycoside9
Aminoglycoside9

nucleotidyltransferases9
ARG4ANNOT9

(AGly)AadA5:AF137361:644852:7899 Aminoglycoside9
Aminoglycoside9

nucleotidyltransferases9
ARG4ANNOT9

(AGly)AadA7:AF224733:324829:7989 Aminoglycoside9 Aminoglycoside9adenyltransferases9 ARG4ANNOT9

(AGly)AadA9:AJ420072:26773427609:8379 Aminoglycoside9
Aminoglycoside9

nucleotidyltransferases9
ARG4ANNOT9

(AGly)AadD:AF181950:317643946:7719 Aminoglycoside9
Aminoglycoside9

nucleotidyltransferases9
ARG4ANNOT9

(AGly)Ant64Ia:AF330699:224930:9099 Aminoglycoside9
Aminoglycoside9

nucleotidyltransferases9
ARG4ANNOT9

(AGly)Ant64Ib:FN594949:27482428339:8589 Aminoglycoside9
Aminoglycoside9

nucleotidyltransferases9
ARG4ANNOT9

(AGly)Aph34Ia:HQ840942:235694

24384:8169
Aminoglycoside9 Aminoglycoside9phosphotransferases9 ARG4ANNOT9

(AGly)Aph34III:V01547:53541329:7959 Aminoglycoside9 Aminoglycoside9phosphotransferases9 ARG4ANNOT9

(AGly)Aph3Ia:FJ172370:38668439483:8169 Aminoglycoside9 Aminoglycoside9phosphotransferases9 ARG4ANNOT9

(AGly)Aph44Ia:V01499:23141256:10269 Aminoglycoside9 Aminoglycoside9phosphotransferases9 ARG4ANNOT9

(AGly)Sat42A:X51546:51841042:5259 Aminoglycoside9 Aminoglycoside9acetyltransferases9 ARG4ANNOT9

(AGly)Sat4A:X92945:38870439412:5439 Aminoglycoside9 Aminoglycoside9acetyltransferases9 ARG4ANNOT9

(AGly)Spc:X02588:33141113:7839 Spectinomycin9 Spectinomycin9adenyltrasnferase9 ARG4ANNOT9

(AGly)Str:X92946:18908418060:8499 Aminoglycoside9 Aminoglycoside9adenyltransferases9 ARG4ANNOT9

(AGly)StrA:AB366441:22458423261:8049 Aminoglycoside9 Aminoglycoside9phosphotransferases9 ARG4ANNOT9

(AGly)StrB:FJ474091:26441100:8379 Aminoglycoside9 Aminoglycoside9phosphotransferases9 ARG4ANNOT9

(Bla)ACI41:AJ007350:24041094:8559 β4lactam9 Class9A9β4lactamases9 ARG4ANNOT9

(Bla)AmpC1_Ecoli:FN649414:27650514

2766355:13029
β4lactam9 Class9C9β4lactamases9 ARG4ANNOT9

(Bla)AmpC2_Ecoli:CP002970:3327564

333889:11349
β4lactam9 Class9C9β4lactamases9 ARG4ANNOT9

(Bla)AMPH_Ecoli:AP012030:3955544

396711:11589
β4lactam9 Class9C9β4lactamases9 ARG4ANNOT9

(Bla)CARB410:EU850412:227043166:8979 β4lactam9 Class9A9β4lactamases9 ARG4ANNOT9

(Bla)CARB44:AY913772:160042466:8679 β4lactam9 Class9A9β4lactamases9 ARG4ANNOT9

(Bla)CARB45:AF135373:124908:8979 β4lactam9 Class9A9β4lactamases9 ARG4ANNOT9

(Bla)cfxA:U38243:15041115:9669 β4lactam9 Class9A9β4lactamases9 ARG4ANNOT9

(Bla)cfxA4:AY769933:14966:9669 β4lactam9 Class9A9β4lactamases9 ARG4ANNOT9

(Bla)cfxA5:AY769934:284993:9669 β4lactam9 Class9A9β4lactamases9 ARG4ANNOT9

(Bla)cfxA6:GQ342996:79841793:9669 β4lactam9 Class9A9β4lactamases9 ARG4ANNOT9

(Bla)cphA5:AY227051:14765:7659 β4lactam9 Class9B9(metallo4)β4lactamases9 ARG4ANNOT9

(Bla)OXA4235:JQ820240:59141421:8319 β4lactam9 Class9D9β4lactamases9 ARG4ANNOT9

(Bla)OXA4347:JN086160:158342407:8259 β4lactam9 Class9D9β4lactamases9 ARG4ANNOT9
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(Bla)Penicillin_Binding_Protein_Ecoli:CP002

291:6644394666340:19029
β4lactam9 Genes9modulating9β4lactam9resistance9 ARG4ANNOT9

(Bla)ROB41:AF022114:30341220:9189 β4lactam9 Class9A9β4lactamases9 ARG4ANNOT9

(Bla)TEM4116:AY425988:64866:8619 β4lactam9 Class9A9β4lactamases9 ARG4ANNOT9

(Gly)VanA4G:AY271782:1574606:4509 Glycopeptide9 Van9 ARG4ANNOT9

(MLS)CfrA:AM408573:10028411077:10509 MLS9 Cfr923S9rRNA9methyltransferase9 ARG4ANNOT9

(MLS)Erm33:AJ313523:1634894:7329 MLS9 Erm923S9rRNA9methyltransferases9 ARG4ANNOT9

(MLS)Erm35:AF319779:334833:8019 MLS9 Erm923S9rRNA9methyltransferases9 ARG4ANNOT9

(MLS)Erm42:FR734406:14906:9069 MLS9 Erm923S9rRNA9methyltransferases9 ARG4ANNOT9

(MLS)ErmA:X03216:455145282:7329 MLS9 Erm923S9rRNA9methyltransferases9 ARG4ANNOT9

(MLS)ErmB:M11180:71441451:7389 MLS9 Erm923S9rRNA9methyltransferases9 ARG4ANNOT9

(MLS)ErmC:M19652:98841722:7359 MLS9 Erm923S9rRNA9methyltransferases9 ARG4ANNOT9

(MLS)ErmF:M14730:24141041:8019 MLS9 Erm923S9rRNA9methyltransferases9 ARG4ANNOT9

(MLS)ErmG:M15332:67241406:7359 MLS9 Erm923S9rRNA9methyltransferases9 ARG4ANNOT9

(MLS)ErmQ:L22689:26241035:7749 MLS9 Erm923S9rRNA9methyltransferases9 ARG4ANNOT9

(MLS)ErmT:M64090:1684902:7359 MLS9 Erm923S9rRNA9methyltransferases9 ARG4ANNOT9

(MLS)ErmX:M36726:29641150:8559 MLS9 Erm923S9rRNA9methyltransferases9 ARG4ANNOT9

(MLS)ErmY:AB014481:55641290:7359 MLS9 Erm923S9rRNA9methyltransferases9 ARG4ANNOT9

(MLS)LnuB:AJ238249:1274930:8049 MLS9
Lincosamide9nucleotidyltransferase9

(Lin)9
ARG4ANNOT9

(MLS)LnuC:AY928180:115041644:4959 MLS9
Lincosamide9nucleotidyltransferase9

(Lin)9
ARG4ANNOT9

(MLS)LsaB:AJ579365:415045628:14799 MLS9
Streptogramin9resistance9ATP4binding9

cassette9(ABC)9efflux9pumps9
ARG4ANNOT9

(MLS)MefA:U70055:31441531:12189 MLS9 Macrolide9resistance9efflux9pumps9 ARG4ANNOT9

(MLS)MefB:FJ196385:11084412313:12309 MLS9 Macrolide9resistance9efflux9pumps9 ARG4ANNOT9

(MLS)MphB:D85892:115942067:9099 MLS9 Macrolide9phosphotransferases9(MPH)9 ARG4ANNOT9

(MLS)MphE:JF769133:877749661:8859 MLS9 Macrolide9phosphotransferases9(MPH)9 ARG4ANNOT9

(MLS)MsrD:AF274302:246243925:14649 MLS9 Macrolide9resistance9efflux9pumps9 ARG4ANNOT9

(MLS)MsrE:JF769133:724648721:14769 MLS9 Macrolide9resistance9efflux9pumps9 ARG4ANNOT9

(MLS)VgaD:GQ205627:139442971:15789

Efflux9pumps9

conferring9antibiotic9

resistance9

ABC9antibiotic9efflux9pump9 ARG4ANNOT9

(Phe)CatB10:AJ878850:119741829:6339 Phenicol9
Chloramphenicol9acetyltransferase9

(CAT)9
ARG4ANNOT9

(Phe)CatQ:M5562045941118:6609 Phenicol9
Chloramphenicol9acetyltransferase9

(CAT)9
ARG4ANNOT9

(Phe)Cmr:U85507:351844693:11729 Phenicol9 Chloramphenicol9active9extrusion9 ARG4ANNOT9

(Phe)FexA:JQ041372:14024415451:14289 Phenicol9
Florfenicol9and9chloramphenicol9

resistance9efflux9pump9
ARG4ANNOT9

(Phe)FloR:AKLJ01000508:38341597:12159 Phenicol9
Florfenicol9and9chloramphenicol9

resistance9efflux9pump9
ARG4ANNOT9

(Sul)SulII:EU360945:161742432:8169 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
ARG4ANNOT9

(Tet)Tet431:AJ250203:165142883:12339 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

ARG4ANNOT9

(Tet)Tet432:DQ647324:18142100:19209 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
ARG4ANNOT9

(Tet)Tet433:AJ420072:22940424163:12249 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

ARG4ANNOT9
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(Tet)Tet436:AJ514254:253444456:19239 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
ARG4ANNOT9

(Tet)Tet439:AY743590:74941936:11889 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

ARG4ANNOT9

(Tet)Tet440:AM419751:14211415431:12219 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
ARG4ANNOT9

(Tet)Tet444:FN594949:25245427167:19239 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
ARG4ANNOT9

(Tet)TetA4P:L20800:9 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

ARG4ANNOT9

(Tet)TetA:JX424423:94438495712:12759 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

ARG4ANNOT9

(Tet)TetB4P:L20800:230944267:19599 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
ARG4ANNOT9

(Tet)TetC:EU751612:141191:11919 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

ARG4ANNOT9

(Tet)TetE:DQ366299:3641253:12189 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

ARG4ANNOT9

(Tet)TetL:FN435329:141377:13779 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

ARG4ANNOT9

(Tet)TetM:U08812:198143900:19209 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
ARG4ANNOT9

(Tet)TetO:M18896:20742126:19209 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
ARG4ANNOT9

(Tet)TetQ:Z21523:36242287:19269 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
ARG4ANNOT9

(Tet)TetR:HF545434:53576454226:6519 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
ARG4ANNOT9

(Tet)TetS:L09756:44742372:19269 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
ARG4ANNOT9

(Tet)TetT:L42544:47842433:19569 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
ARG4ANNOT9

(Tet)TetW:AJ222769:368745606:19209 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
ARG4ANNOT9

(Tet)TetX:M37699:58641752:11679 Tetracycline9 Tetracycline9inactivation9enzyme9TetX9 ARG4ANNOT9

(Tet)TetY:AF070999:168042855:11769 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

ARG4ANNOT9

(Tet)TetZ:AF121000:11880413034:11559 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

ARG4ANNOT9

(Tmt)DfrA3:J03306:1034591:4899 Trimethoprim9 dihydrofolate9reductase9 ARG4ANNOT9

aadA1_1_X023409 Aminoglycoside9 Aminoglycoside9adenyltransferases9 Resfinder9

aadA1_2_JN8150789 Aminoglycoside9 Aminoglycoside9adenyltransferases9 Resfinder9

aadA1_3_JQ4140419 Aminoglycoside9 Aminoglycoside9adenyltransferases9 Resfinder9

aadA1_5_JQ4801569 Aminoglycoside9 Aminoglycoside9adenyltransferases9 Resfinder9

aadA1_5_JX1851329 Aminoglycoside9 Aminoglycoside9adenyltransferases9 Resfinder9

aadA11_1_AY1445909 Aminoglycoside9 Aminoglycoside9adenyltransferases9 Resfinder9

AB104852.1.gene49 Aminoglycoside9 Aminoglycoside9adenyltransferases9 CARD9

AF024666.2.gene339 Phenicol9 Chloramphenicol9efflux9 CARD9

AF047479.2.gene129 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
CARD9

AF118107.1.gene19 Phenicol9
Florfenicol9and9chloramphenicol9

resistance9efflux9pump9
CARD9
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AF118110.1.gene19 β4lactam9 Class9A9β4lactamases9 CARD9

AF205943.1.gene159 Aminoglycoside9 Aminoglycoside9adenyltransferases9 CARD9

AF231986.2.gene29 Phenicol9
Florfenicol9and9chloramphenicol9

resistance9efflux9pump9
CARD9

AF252855.1.gene19 Phenicol9
Florfenicol9and9chloramphenicol9

resistance9efflux9pump9
CARD9

AF313472.2.gene159 Aminoglycoside9 Aminoglycoside9phosphotransferases9 CARD9

AF313472.2.gene169 Aminoglycoside9 Aminoglycoside9phosphotransferases9 CARD9

AF332662.1.gene19 Phenicol9
Florfenicol9and9chloramphenicol9

resistance9efflux9pump9
CARD9

AJ223604.1.gene99

Efflux9pumps9

conferring9antibiotic9

resistance9

Small9multidrug9resistance9(SMR)9

antibiotic9efflux9pump9
CARD9

AJ295238.gene9 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
CARD9

AJ518835.1.gene69 Phenicol9
Florfenicol9and9chloramphenicol9

resistance9efflux9pump9
CARD9

AJ549214.1.gene29 Phenicol9
Florfenicol9and9chloramphenicol9

resistance9efflux9pump9
CARD9

AM180355.1.gene6369 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
CARD9

AM296480.1.gene19 Phenicol9
Florfenicol9and9chloramphenicol9

resistance9efflux9pump9
CARD9

AM399080.1.gene29 MLS9
Lincosamide9nucleotidyltransferase9

(Lin)9
CARD9

AP009048.1.gene11019

Efflux9pumps9

conferring9antibiotic9

resistance9

MFS9antibiotic9efflux9pump9 CARD9

AP009048.1.gene11139

Efflux9pumps9

conferring9antibiotic9

resistance9

MFS9antibiotic9efflux9pump9 CARD9

AP009048.1.gene11789
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9

AP009048.1.gene11799
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9

AP009048.1.gene12959
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9

AP009048.1.gene15879
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9

AP009048.1.gene17219

Efflux9pumps9

conferring9antibiotic9

resistance9

Multidrug9and9toxic9compound9

extrusion9(MATE)9transporter9
CARD9

AP009048.1.gene21329

Efflux9pumps9

conferring9antibiotic9

resistance9

Resistance4nodulation4cell9division9

(RND)9efflux9pump9
CARD9

AP009048.1.gene21339

Efflux9pumps9

conferring9antibiotic9

resistance9

Resistance4nodulation4cell9division9

(RND)9efflux9pump9
CARD9

AP009048.1.gene21349

Efflux9pumps9

conferring9antibiotic9

resistance9

Resistance4nodulation4cell9division9

(RND)9efflux9pump9
CARD9

AP009048.1.gene21359

Efflux9pumps9

conferring9antibiotic9

resistance9

MFS9antibiotic9efflux9pump9 CARD9

AP009048.1.gene21369
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9

AP009048.1.gene21379
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9

AP009048.1.gene22879 Fluoroquinolone9
Fluoroquinolone4resistant9DNA9

topoisomerases9
CARD9

AP009048.1.gene23129 Polymyxin9B9
bifunctional9polymyxin9resistance9

protein9
CARD9

AP009048.1.gene24279

Efflux9pumps9

conferring9antibiotic9

resistance9

MFS9antibiotic9efflux9pump9 CARD9
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AP009048.1.gene24309
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9

AP009048.1.gene25209

Efflux9pumps9

conferring9antibiotic9

resistance9

Resistance4nodulation4cell9division9

(RND)9efflux9pump9
CARD9

AP009048.1.gene27349

Efflux9pumps9

conferring9antibiotic9

resistance9

MFS9antibiotic9efflux9pump9 CARD9

AP009048.1.gene27359

Efflux9pumps9

conferring9antibiotic9

resistance9

MFS9antibiotic9efflux9pump9 CARD9

AP009048.1.gene30669 Fluoroquinolone9
Fluoroquinolone4resistant9DNA9

topoisomerases9
CARD9

AP009048.1.gene30779 Aminocoumarins9
Aminocoumarin4resistant9DNA9

topoisomerases9
CARD9

AP009048.1.gene31039 Bacitracin9 phosphatase9 CARD9

AP009048.1.gene32229 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
CARD9

AP009048.1.gene33079
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9

AP009048.1.gene33089

Efflux9pumps9

conferring9antibiotic9

resistance9

Resistance4nodulation4cell9division9

(RND)9efflux9pump9
CARD9

AP009048.1.gene33099

Efflux9pumps9

conferring9antibiotic9

resistance9

Resistance4nodulation4cell9division9

(RND)9efflux9pump9
CARD9

AP009048.1.gene33419 Rifampin9
Rifampin4resistant9beta4subunit9of9

RNA9polymerase9(RpoB)9
CARD9

AP009048.1.gene34149
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9

AP009048.1.gene34159
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9

AP009048.1.gene36169

Efflux9pumps9

conferring9antibiotic9

resistance9

MFS9antibiotic9efflux9pump9 CARD9

AP009048.1.gene38199
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9

AP009048.1.gene38229

Efflux9pumps9

conferring9antibiotic9

resistance9

Resistance4nodulation4cell9division9

(RND)9efflux9pump9
CARD9

AP009048.1.gene38239

Efflux9pumps9

conferring9antibiotic9

resistance9

Resistance4nodulation4cell9division9

(RND)9efflux9pump9
CARD9

AP009048.1.gene39299

Genes9reducing9

permeability9to9

antibiotics9

Porin9modification9 CARD9

AP009048.1.gene39759
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9

AP009048.1.gene5969

Efflux9pumps9

conferring9antibiotic9

resistance9

Small9multidrug9resistance9(SMR)9

antibiotic9efflux9pump9
CARD9

aph(3)4Ia_1_V003599 Aminoglycoside9 Aminoglycoside9phosphotransferases9 Resfinder9

AY034138.1.gene109 Phenicol9
Florfenicol9and9chloramphenicol9

resistance9efflux9pump9
CARD9

AY115475.1.gene39 Aminoglycoside9 Aminoglycoside9adenyltransferases9 CARD9

AY171578.gene9 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

CARD9

AY216678.1.gene19 Aminoglycoside9 Aminoglycoside9acetyltransferases9 CARD9

AY339625.2.gene59 Aminoglycoside9 Aminoglycoside9phosphotransferases9 CARD9

AY712687.1.gene19 Aminoglycoside9 Aminoglycoside9adenyltransferases9 CARD9

AY758206.1.gene79 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
CARD9
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blaCARB48_1_AY1789939 β4lactam9 Class9A9β4lactamases9 Resfinder9

blaROB41_1_DQ8405179 β4lactam9 Class9A9β4lactamases9 Resfinder9

blaTEM41A_4_HM7499669 β4lactam9 Class9A9β4lactamases9 Resfinder9

cat_2_M351909 Phenicol9
Chloramphenicol9acetyltransferase9

(CAT)9
Resfinder9

cfxA3_1_AF4726229 β4lactam9 Class9A9β4lactamases9 Resfinder9

CP000034.1.gene21869
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9

CP000034.1.gene21989

Genes9reducing9

permeability9to9

antibiotics9

Unknown9 CARD9

CP000034.1.gene23289 β4lactam9
Mutant9porin9proteins9conferring9

antibiotic9resistance9
CARD9

CP000034.1.gene28799

Efflux9pumps9

conferring9antibiotic9

resistance9

MFS9antibiotic9efflux9pump9 CARD9

CP000034.1.gene32109 Aminocoumarins9
Aminocoumarin4resistant9DNA9

topoisomerases9
CARD9

CP000034.1.gene37419 Rifampin9
Rifampin4resistant9beta4subunit9of9

RNA9polymerase9(RpoB)9
CARD9

CP000034.1.gene38349
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9

CP000647.1.gene37619 Elfamycins9 EF4Tu9inhibition9 CARD9

CP000647.1.gene43949 Elfamycins9 EF4Tu9inhibition9 CARD9

cphA1_4_AY2613769 β4lactam9 Class9B9(metallo4)β4lactamases9 Resfinder9

D78168.1.gene19

Efflux9pumps9

conferring9antibiotic9

resistance9

MFS9antibiotic9efflux9pump9 CARD9

D78168.1.gene29

Efflux9pumps9

conferring9antibiotic9

resistance9

MFS9antibiotic9efflux9pump9 CARD9

DQ464881.1.gene49 Aminoglycoside9 Aminoglycoside9phosphotransferases9 CARD9

DQ516954.1.gene19

Efflux9pumps9

conferring9antibiotic9

resistance9

ABC9antibiotic9efflux9pump9 CARD9

DQ516970.1.gene19

Efflux9pumps9

conferring9antibiotic9

resistance9

ABC9antibiotic9efflux9pump9 CARD9

DQ677333.1.gene19 Aminoglycoside9 Aminoglycoside9adenyltransferases9 CARD9

EF118171.1.gene79 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
CARD9

erm(42)_2_AB6018909 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(A)_3_EU3487589 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(B)_1_JN8995859 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(B)_12_U189319 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(B)_16_X828199 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(B)_17_X646959 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(B)_18_X664689 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(B)_7_AF3683029 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(B)_9_AF2992929 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(C)_1_V012789 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(C)_12_Y090039 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(C)_13_M137619 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(C)_15_U826079 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9
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erm(F)_3_M178089 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(F)_4_M624879 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(G)_2_L428179 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(T)_2_AY8941389 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(T)_3_AF3109749 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(X)_2_X514729 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(X)_3_U213009 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

erm(X)_4_NC_0052069 MLS9 Erm923S9rRNA9methyltransferases9 Resfinder9

EU434751.1.gene29 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
CARD9

fexA_1_AJ5492149 Phenicol9
Florfenicol9and9chloramphenicol9

resistance9efflux9pump9
Resfinder9

FJ768952.1.gene19

Efflux9pumps9

conferring9antibiotic9

resistance9

Resistance4nodulation4cell9division9

(RND)9efflux9pump9
CARD9

floR_1_AF0715559 Phenicol9
Florfenicol9and9chloramphenicol9

resistance9efflux9pump9
Resfinder9

floR_2_AF1181079 Phenicol9
Florfenicol9and9chloramphenicol9

resistance9efflux9pump9
Resfinder9

FQ312006.1.gene7069 Aminoglycoside9 Aminoglycoside9phosphotransferases9 CARD9

GQ149347.1.gene39 Glycopeptide9 BRP9 CARD9

GQ205627.2.gene39 MLS9 Streptogramin9Vat9acetyltransferase9 CARD9

GQ465831.1.gene29

Genes9reducing9

permeability9to9

antibiotics9

Porin9modification9 CARD9

GU060319.1.gene39 Aminoglycoside9 Aminoglycoside9adenyltransferases9 CARD9

GU371926.1.gene949 β4lactam9 Class9A9β4lactamases9 CARD9

JQ364968.1.gene69 β4lactam9 Class9A9β4lactamases9 CARD9

JQ394987.1.gene19

Efflux9pumps9

conferring9antibiotic9

resistance9

MFS9antibiotic9efflux9pump9 CARD9

JQ740052.1.gene29 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
CARD9

JQ861959.1.gene119 MLS9
Lincosamide9nucleotidyltransferase9

(Lin)9
CARD9

JX560992.1.gene109 Spectinomycin9 Spectinomycin9adenyltrasnferase9 CARD9

JX560992.1.gene89 Aminoglycoside9 Aminoglycoside9adenyltransferases9 CARD9

L22689.1.gene19 MLS9 Erm923S9rRNA9methyltransferases9 CARD9

M12730.1.gene39 MLS9 Erm923S9rRNA9methyltransferases9 CARD9

M58408.gene9 Fluoroquinolone9
Fluoroquinolone4resistant9DNA9

topoisomerases9
CARD9

M62487.1.gene19 MLS9 Erm923S9rRNA9methyltransferases9 CARD9

M86701.1.gene19 Aminoglycoside9 Aminoglycoside9phosphotransferases9 CARD9

M86913.1.gene39 Aminoglycoside9 Aminoglycoside9adenyltransferases9 CARD9

mph(E)_3_EU2942289 MLS9 Macrolide9phosphotransferases9(MPH)9 Resfinder9

msr(D)_3_AF2275209 MLS9 Macrolide9resistance9efflux9pumps9 Resfinder9

NC_002695.1.9149839
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9

NC_002695.1.9150419
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9

NC_002695.1.9156519
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9
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NC_002695.1.9160169
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9

NC_002695.1.9161039 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
CARD9

NC_002695.1.9162349 Bacitracin9 phosphatase9 CARD9

NC_002695.1.9162749 Fluoroquinolone9
Fluoroquinolone4resistant9DNA9

topoisomerases9
CARD9

NC_002695.1.9173399
Genes9modulating9

antibiotic9efflux9
Regulatory9system9 CARD9

NC_004973.1.14496259 Aminoglycoside9 Aminoglycoside9phosphotransferases9 CARD9

NC_004973.1.14496269 Aminoglycoside9 Aminoglycoside9phosphotransferases9 CARD9

NC_011595.70722429 Elfamycins9 EF4Tu9inhibition9 CARD9

NC_023287.1.181564949 MLS9 Macrolide9resistance9efflux9pumps9 CARD9

str_2_FN4353309 Aminoglycoside9 Aminoglycoside9adenyltransferases9 Resfinder9

strA_2_M288299 Aminoglycoside9 Aminoglycoside9phosphotransferases9 Resfinder9

strA_3_AF0246029 Aminoglycoside9 Aminoglycoside9phosphotransferases9 Resfinder9

strA_4_NC_0033849 Aminoglycoside9 Aminoglycoside9phosphotransferases9 Resfinder9

strA_5_AF3215509 Aminoglycoside9 Aminoglycoside9phosphotransferases9 Resfinder9

strB_3_AF0246029 Aminoglycoside9 Aminoglycoside9phosphotransferases9 Resfinder9

sul1_2_CP0021519 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
Resfinder9

sul1_9_AY9638039 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
Resfinder9

sul2_1_AF5420619 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
Resfinder9

sul2_10_AM1832259 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
Resfinder9

sul2_11_AY2326709 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
Resfinder9

sul2_12_AF4979709 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
Resfinder9

sul2_13_AJ2891359 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
Resfinder9

sul2_14_AJ5148349 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
Resfinder9

sul2_15_FJ9681609 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
Resfinder9

sul2_17_U576479 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
Resfinder9

sul2_18_AJ8307149 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
Resfinder9

sul2_19_AJ3198229 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
Resfinder9

sul2_20_AJ8307109 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
Resfinder9

sul2_3_HQ8409429 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
Resfinder9

sul2_6_FN9954569 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
Resfinder9

sul2_7_HM4869079 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
Resfinder9

sul2_8_AJ8770419 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
Resfinder9

sul2_9_FJ1978189 Sulfonamide9
Sulfonamide4resistant9

dihydropteroate9synthases9
Resfinder9

tet(31)_1_GQ2839089 Tetracycline9 Unknown9 Resfinder9

tet(32)_1_EU7223339 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(33)_1_DQ0774879 Tetracycline9 Tetracycline9resistance9major9 Resfinder9
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facilitator9superfamily9(MFS)9efflux9

pumps9

tet(33)_3_DQ3904589 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tet(39)_2_EU4959919 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tet(40)_1_FJ1580029 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(40)_2_FJ1580029 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(44)_1_NZ_ABDU010000819 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(A)_2_X000069 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tet(A)_3_AY1966959 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(A)_4_AJ5177909 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(A)_5_AJ4191719 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tet(A)_6_AJ3133329 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tet(B)_3_AP0003429 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tet(C)_1_NC_0021099 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tet(C)_2_NC_0031239 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tet(C)_6_Y191149 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tet(C)_9_AY0462769 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tet(G)_2_AF1331399 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tet(H)_1_Y161039 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tet(H)_2_AJ2459479 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tet(H)_3_Y155109 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tet(H)_4_U007929 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tet(L)_1_HM2359489 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tet(L)_4_M110369 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tet(L)_5_D000069 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tet(M)_1_X929479 Tetracycline9 Tetracycline9resistance9ribosomal9 Resfinder9
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protection9proteins9

tet(M)_11_JN8466969 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(M)_12_FR6714189 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(M)_13_AM9909929 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(M)_2_X909399 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(M)_4_X750739 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(M)_5_U589859 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(M)_6_M211369 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(M)_7_FN4335969 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(M)_8_X043889 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(M)_9_X563539 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(O)_2_M209259 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(O)_3_Y077809 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(Q)_1_L336969 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(Q)_2_X587179 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(Q)_3_U734979 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(S)_1_DQ3773409 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(S)_3_X929469 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(T)_2_AY6605309 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(W)_1_DQ0601469 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(W)_2_AY0499839 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(W)_5_AJ4274219 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(W)_6_FN3963649 Tetracycline9
Tetracycline9resistance9ribosomal9

protection9proteins9
Resfinder9

tet(X)_1_GU0145359 Tetracycline9 Tetracycline9inactivation9enzyme9TetX9 Resfinder9

tet(X)_3_AB0979429 Tetracycline9 Tetracycline9inactivation9enzyme9TetX9 Resfinder9

tetA(P)_1_AB0549809 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

tetA(P)_4_AB0010769 Tetracycline9

Tetracycline9resistance9major9

facilitator9superfamily9(MFS)9efflux9

pumps9

Resfinder9

U01945.1.gene19 Aminoglycoside9 Aminoglycoside9acetyltransferases9 CARD9
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Table S5.4: Resistance classification by class and mechanism.   

Classes$of$Resistance$88$

Specific$
Mechanisms$of$Resistance$

Aminocoumarins9 Aminocoumarin4resistant9DNA9topoisomerases9

Aminoglycosides9

Aminoglycoside9acetyltransferases9

Aminoglycoside9adenyltransferases9

Aminoglycoside9phosphotransferases9

Bacitracin9 Bacitracin9phosphatase9

Elfamycins9 EF4Tu9inhibition9

Fluoroquinolones9 Fluoroquinolone4resistant9DNA9topoisomerases9

Glycopeptides9
Bleomycin9resistance9protein9

Vancomycin9resistance9proteins9

Macrolide4Lincosamide4

Streptogramin9

Macrolide9phosphotransferases9

Macrolide9resistance9efflux9pumps9

Erm923S9rRNA9methyltransferases9

Cfr923S9rRNA9methyltransferase9

Lincosamide9nucleotidyltransferase9

Streptogramin9resistance9ATP4binding9cassette9efflux9pump9

Streptogramin9acetyltransferase9

Phenicol9

Florfenicol9and9chloramphenicol9resistance9efflux9pump9

Chloramphenicol9acetyltransferase9

Chloramphenicol9active9extrusion9

Chloramphenicol9efflux9

Polymyxin9B9 Bifunctional9polymyxin9resistance9protein9

Rifampin9 Rifampin4resistant9beta4subunit9of9RNA9polymerase9

Spectinomycin9 Spectinomycin9adenyltrasnferase9

Sulfonamide9 Sulfonamide4resistant9dihydropteroate9synthases9

Tetracycline9

Tetracycline9inactivation9enzyme9(TetX)9

Tetracycline9major9facilitator9superfamily9efflux9pumps9

Tetracycline9ribosomal9protection9proteins9

Unknown9(Tet31)9

Trimethoprim9 Trimethoprim9dihydrofolate9reductase9

β4Lactam9

Class9A9β4lactamases9

Class9B9β4lactamases9

Class9C9β4lactamases9

Class9D9β4lactamases9

Genes9modulating9β4lactam9resistance9

Mutant9porin9proteins9conferring9antibiotic9resistance9

Classes$of$Resistance$88$

General9
Mechanism$

Genes9modulating9antibiotic9

efflux9
Regulatory9system9

Genes9reducing9permeability9to9

antibiotics9

Porin9modification9

Unknown9

Efflux9pumps9conferring9

antibiotic9resistance9

Major9facilitator9superfamily9antibiotic9efflux9pump9

Multidrug9and9toxic9compound9extrusion9transporter9

Resistance4nodulation4cell9division9efflux9pump9

Small9multidrug9resistance9antibiotic9efflux9pump9

ATP4binding9cassette9antibiotic9efflux9pump9
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Table S5.5: List of classes of resistance determinants to critically important antimicrobials 

searched for across all 87 samples. 

Classification Group Result 

Carbapenemases bla(OXA) identified 

bla(SME) not identified 

bla(IMI) not identified 

bla(NMD) not identified 

bla(GES) not identified 

bla(KPC) not identified 

bla(cphA)a identified 

Extended-spectrum β-lactamases bla(TEM) identified 

bla(SHV) not identified 

bla(CTX-M) not identified 

bla(CMY) not identified 

bla(NDM) not identified 

Quinupristin-dalfopristin resistance vga/vat identified 

Linezolid resistance cfr identified 
a
bla(cphA) is a strict carbapenemase  
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Table S5.6: Critically important ARDs identified in the metagenomic data.   

Gene ID (database) Resistance Type Sample 

Type, 

Location 

Characteristics 

(Bla)TEM-116:AY425988:6-

866:861 

(ARG-ANNOT) 

ESBL (TEM) 1 x water, 

holding 

100% nucleotide homology with 

reference across at least 80% gene 

fraction (minimum 1x coverage) 

(Bla)OXA-

347:JN086160:1583-

2407:825 

(ARG-ANNOT) 

Carbapenemase 

(OXA)
a
 
 

1 x water, 

holding 

1 x soil, 

arrival 

100% nucleotide homology with 

reference across at least 80% gene 

fraction (minimum 1x coverage) 

(Bla)OXA-

235:JQ820240:591-

1421:831 

(ARG-ANNOT) 

Carbapenemase 

(OXA) 

1 x soil, 

arrival 

100% nucleotide homology to KSG, 

FGN and STFK motifs 

cphA1_2_AYAY261377 

(Resfinder) 

Strict 

carbapenemase 

(cphA) 

3 x water, 

holding  

100% amino acid homology to 

reference (4 silent substitutions) 

GQ205627.2.gene3 (CARD)  

 

AND 

 

(MLS)VgaD:GQ205627:1394

-2971:1578 

Quinuspristin-

dalfopristin 

resistance  

(vatG and VgaD) 

1 x soil, 

arrival 

100% nucleotide homology to Walker A 

and B motifs; silent substitution in 

RSGG motif 

100% nucleotide homology to LβH 

hexapeptide repeat domain 

(MLS)CfrA:AM408573:10028

-11077:1050 

(ARG-ANNOT)!

Multi-drug resistance 

to PhLOPSA 

(phenicol, 

lincosamide, 

oxazolidinones 

(linezolid), 

pleuromutilins, and 

streptogramin A) 

4 x sponge, 

truck (all in 

Texas) 

100% nucleotide homology with 

reference across at least 95% gene 

fraction (minimum 1x coverage) 

a
Note that phenotypic resistance to carbapenems has not been confirmed for this ARD 
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Figure S5.1.  Heatmap of the 319 ARDs (rows) identified in 87 samples (columns) collected 

from the beef production system.  Samples are grouped by sampling location.  Normalized ARD 

counts are clustered using Euclidean distances with complete linkage.   
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Figure S5.2.  Histogram of unique ARDs identified per sample (N=87). 
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CONCLUSIONS 

 

The overall goal of this dissertation was to advance our collective understanding of the 

epidemiology and ecology of AMR within beef production, and in particular to better understand 

how AMU practices influence AMR dynamics in the context of beef production as an integrated, 

multi-level system.  Unfortunately, it is this crucial phrase – “as an integrated, multi-level 

system” – that makes this area of research so challenging.  Understanding, reproducing and even 

predicting AMU-AMR associations in vitro or in tightly controlled populations is a tractable 

endeavor.  The insights gained from such research, however, rarely extend to commercial or 

community settings.  As a result, observational studies and field trials are necessary to generate 

externally valid findings with respect to AMU and AMR.  The 4 projects that comprise this 

dissertation were conducted in large commercial beef production operations.  The findings are 

representative of AMU-AMR dynamics under standard management conditions within the 

operations in the studies, which in general are representative of conditions in many large North 

American feedlots and fabrication plants. 

The primary goal of chapter 1 was to understand how AMU and AMR interact within a 

pathogen of major economic and animal health impact, Mannheimia haemolytica.  We found 

relatively low prevalence of AMR M. haemolytica overall, and no associations between AMU 

and AMR to any single drug.  However, parenteral AMU greatly increased the odds of isolating 

MDR M. haemolytica, which comprised over half of all resistant isolates.  Interestingly, 

parenteral AMU in both the sampled cattle themselves and in their pen mates increased these 

odds, suggesting that the shared pen environment and/or animal-to-animal contact play a major 

role in the epidemiology of AMR M. haemolytica within feedlots.  This points to the inherently 



 

 

152 

multi-level nature of AMR, which necessitates a research strategy that can assess interaction 

between hosts and their environment, as well as between hosts within a shared environment.   

In chapter 2, our goal was to characterize associations between AMU and AMR in a 

widely used “indicator” organism, non-type specific Escherichia coli.  We found relatively high 

prevalence of resistance, particularly to tetracycline, across all sampling time points including 

arrival in the feedlot.  In the short term, use of parenteral tetracycline and sulfonamides increased 

the odds of recovering tetracycline and sulfisoxazole resistant NTSEC, respectively, while use of 

parenteral macrolides decreased the odds of recovering ampicillin resistant NTSEC.  These 

results demonstrate the non-intuitive nature of AMU and AMR, and indicate the need for a better 

understanding of how different AMD selection pressures modify resistance profiles under real-

world feedlot conditions.  This, in turn, necessitates a deeper understanding of the microbial 

population genetics of AMR in the context of real-world AMU and other management practices.  

In addition, the 3 AMU-AMR associations identified in chapter 2 only applied to AMDs 

administered within 7 days prior to sampling, highlighting the temporal nature of AMU and 

AMR.  In order to understand the course of AMR during beef production, we need to investigate 

AMR in the context of production as a longitudinally integrated system that employs multiple, 

successional interventions that can substantially alter the microbial community and AMR 

through intensive antimicrobial pressures on the microbial population and its collective genetics. 

When interpreted as a whole, the results of chapters 1 and 2 also demonstrate the 

potential danger of extrapolating AMR-related findings from one bacterial species or group to 

the entire system.  Importantly, the same cattle and pens were sampled for chapters 1 and 2, and 

they were sampled for M. haemolytica and NTSEC at the same time.  In this context, it becomes 

readily apparent that different organisms exhibit different AMR patterns, even within the same 
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host and under the same external conditions.  For instance, 88% of M. haemolytica isolates were 

pan-susceptible, compared to <19% of NTSEC isolates.  This casts serious doubt on the 

representativeness of any single bacterial species or group as an “indicator” for AMR dynamics 

within the larger microbial community, or for AMR within pathogens or other organisms of 

interest.  Culture-based methods are appropriate for the purposes of quantifying, monitoring or 

tracking AMR within specific pathogens in beef production; however, they are inadequate if we 

need to understand the total risk posed by different beef production management practices on the 

transmittance of AMR bacteria and genetic determinants to humans. 

Chapter 4 was designed to describe the genetic AMR potential (the “resistome”) of beef 

production waste and its variability across management systems and effluents.  We found that 

the resistome of feedlot wastes differed significantly from that of dairy and cow-calf wastes, and 

that the AMR profile of fecal and water wastes were significantly different from one another.  

AMU practices on dairies and ration composition in feedlots did not significantly impact 

resistome composition, although samples sizes were likely too small to provide sufficient power.  

This suggests that production system and microbial environment may exert a larger influence 

over AMR dynamics than any single management practice, and highlights the necessity of 

investigating AMU-AMR associations in commercial production units operating under standard 

management protocols. 

The goal of chapter 5 was to provide a description of the resistome of pens of cattle and 

their environment as the cattle moved through the beef production process.  We found that the 

resistome is fundamentally altered during the feeding period, during transport from the feedlot to 

slaughter, and during the slaughter and fabrication process.  The diversity of the resistome, but 

not the microbiome, decreased significantly during the feeding period, indicating selective 
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pressure specifically on the genetic AMR potential of the microbial population.  Resistome 

diversity then increased in the transport truck and holding pens prior to slaughter, likely 

reflecting the mixing of cattle from diverse sources in these confined areas.  And finally, we 

demonstrated that the multi-hurdle interventions utilized in the slaughter and fabrication process 

drastically reduced the number of unique microbial species and AMR genetic determinants 

within beef products destined for retail.  Overall, this project highlighted the utility and promise 

of investigating AMR in the context of entire microbial communities, and also emphasized the 

importance of framing AMR dynamics within the longitudinal and systems-based nature of beef 

production. 

Together, chapters 4 and 5 also provide a general comparison of the risk posed by the two 

AMR transmission routes historically considered of primary importance, i.e., the food supply and 

environmental contamination with wastes.  Presently, a much larger proportion of governmental 

regulation and surveillance is dedicated to the food supply as compared to environmental 

dissemination.  This makes sense given foodborne pathogen concerns, the structure of our food 

industry and the widespread distribution of many food items.  However, the results of chapters 4 

and 5 suggest that wastewater or agricultural soil contamination with livestock production wastes 

may also represent sources of risk of AMR transmission. This interpretation also makes sense 

from the perspective of beef production as an integrated system with intensive microbial 

interventions applied during slaughter and fabrication, but comparatively few interventions 

applied to wastewater and manure. 

Chapters 4 and 5 also highlight the infancy of the metagenomics approach to 

investigating AMR within complex, multi-level systems.  One major knowledge gap pertains to 

evaluating the resistome in relation to its overall risk to human health.  What constitutes a 
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“risky” resistome versus a “non-risky” one (224)?  A resistome with more resistance genes is 

probably riskier than one with fewer, but what about the composition of the AMR profile?  

Certainly some AMR genes are more of a human health concern than others, but how do you 

assign a number to this?  Furthermore, how can we differentiate AMR genes that are part of the 

“baseline” resistome, and those that arise and persist due to anthropogenic activities (227)?  

Finally, and most importantly, how do we measure the success or failure of a management 

intervention in terms of its impact on the AMR composition in a given environment, host or 

sample?  The microbiome field is also grappling with such questions, and there is a growing 

consensus that there is no single “healthy” microbiome, but rather multiple “community types” 

that can be associated with different life histories (228,229).  This can make it difficult to discern 

the microbiome’s role in disease processes in individuals.  Resistome researchers in the 

agricultural field will have an even more difficult time trying to define the “unhealthy” resistome 

because of all of the traditional epidemiological challenges of linking agricultural production 

practices with disease in humans.  And this leads to an important, closing remark: the ability to 

access the resistome does not obviate the need to conduct epidemiologically sound studies; 

rather, it adds a crucial and long-missing piece to the overall puzzle of AMU-AMR associations 

in livestock production.  The challenge now is to integrate this newfound knowledge with what 

we already know, and to design scientifically sound studies that incorporate this novel approach. 
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