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ABSTRACT 
 
 
 

CHARACTERIZATION OF PULMONARY HYPERTENSION STATUS AND 

UTILIZATION OF MULTI-OMICS ANALYSES TO DISCOVER VARIANTS THAT MAY 

INFORM SELECTION AGAINST HIGH MEAN PULMONARY ARTERIAL PRESSURE IN 

ANGUS CATTLE 

 
 
 This multi-part research characterizes pulmonary hypertension (PH) from a physiologic 

and genetic point of view using the indicator trait mean pulmonary arterial pressure (PAP). Three 

aims were designed to address the research objective of investigating the genetics underlying 

PAP for the purposes of variant discovery.  

 The first aim sought to identify different PAP phenotypes based on altitude and diet 

during the stocker and finishing phases of production. This longitudinal study evaluated steers 

with a moderate PAP (41-48 mmHg) from yearling age until harvest, collecting PAP and blood 

gas parameters throughout the study and carcass data at the conclusion. Through this 

experimental approach, the role of different finishing systems was able to be evaluated and cattle 

with increased sensitivity to hypoxic conditions were identified. Results from this study 

indicated that regardless of finishing system, animals exhibited signs of respiratory alkalosis with 

renal compensation because of hypoxic conditions. The PAP data from this population 

corroborated that all steers were hypoxic. However, the only carcass quality differences observed 

were those between cattle that were grain finished compared to those that were grass finished, 

regardless of altitude.  
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 Aim two was to perform next-generation whole genome sequencing for 30 Angus bulls 

and steers to compare those with high PAP (HPAP) to those with low PAP (LPAP) measures. 

All cattle sequenced originated from elevations >1,500m and were selected based on their 

pedigree information, as well as PAP observations. The sequence data from these 30 animals 

were then compared such that sequence from HPAP cattle was compared to that of LPAP cattle. 

There were 5,543 variants unique to HPAP cattle and 1,690 variants unique to LPAP cattle. Loci 

across all 30 chromosomes exhibited variation for PAP phenotype. Evaluation of these variants 

and validation will be necessary to sift through variants that are in linkage or may be less 

informative.  

 A multi-omics approach was used to perform variant discovery based on the PAP 

phenotype in aim three. Through combination of RNA sequence with DNA sequence, the list of 

variants relevant to PAP phenotype was filtered from millions of variants to hundreds of 

variants. Transcriptome data was compared for each of six tissues between HPAP and LPAP 

cattle. These variants were then compared to one another to determine which variants were 

detected in each PAP category across all six tissue types. Those variants were then compared to 

the DNA sequence from aim two to elucidate concordant variants for HPAP and LPAP cattle 

respectively. There were three variants that were unique to LPAP cattle and were concordant 

between DNA and RNA sequence. However, none of these variants were within 1,000bp of a 

gene recognized in the ARS-UCD1.2 bovine genome assembly and were therefore considered 

less informative. There were 523 variants unique to HPAP cattle. Within that population there 

was a subset that was either near or within a gene. There were six genes that were considered 

informative for further investigation. Three of those genes were uncharacterized genes on 

chromosome 16. The other three (U6, SIMC1, CDH23), while not well documented in cattle, had 
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functions in humans that would indicate their function could affect PAP phenotype expression. 

These genes and the variants within them could be useful for selection if validated in a larger 

population.
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CHAPTER 1 

INTRODUCTION 

High mountain disease (HMD) occurs in susceptible cattle grazing at elevations greater 

than 1,500 m (Pauling et al., 2018; Thomas et al., 2018). The condition results from pulmonary 

hypertension (PH) progressing into vascular remodeling that often culminates in congestive heart 

failure of susceptible cattle (Holt and Callan, 2007; Neary et al., 2015). Diagnosis of PH in cattle 

is conducted via a mean pulmonary arterial pressure (PAP) measurement, which is an indicator 

trait that assesses an animal’s risk of developing HMD. It is well documented that PAP is 

moderately heritable and polygenic in nature, meaning that genetic improvement for PAP is 

possible (Schimmel, 1981; Schimmel, 1983; Enns et al., 1992; Shirley et al., 2008; Zeng, 2016; 

Crawford, 2016).  

Studies to date have relied on SNP chip genotyping panels or gene-targeted approaches to 

detect variation within the genome related to PAP (Newman et al., 2011; Newman et al., 2015; 

Heaton et al., 2016; Zeng et al., 2016; Crawford et al., 2019; Heaton et al., 2020). However, 

these approaches can result in misrepresentation due to the difference in coverage of the genome 

(Hickey, 2013). With increased affordability of sequencing, variant detection approaches have 

been rapidly changing, including multi-omic bioinformatic strategies to combine different 

sequence types such as genomic (DNA) or transcriptomic (RNA) sequence to make inferences 

about biological systems as a whole (Heather and Chain, 2015; Muir et al., 2016; Cánovas et al., 

2014; Nguyen et al., 2018). These next-generation approaches to variant discovery could enable 

for better understanding of PH from a molecular biology systems perspective through 

identification and validation of genes and variants related to PAP. Further, variants related to 

PAP may be utilized to enhance accuracies of genetic predictions through marker assisted 
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selection techniques, thus aiding ranchers of high altitude production systems (Glover and 

Newsom, 1915; Hecht et al., 1962; Northcutt, 2010; Garrick, 2011; Rolf et al., 2014; Neary et 

al., 2014; Zeng, 2016). Therefore, the objective of this research was to detect variants associated 

with PAP risk category using RNA and DNA sequence. 
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CHAPTER 2  

A REVIEW OF PULMONARY HYPERTENSION AND ITS IMPACT ON THE BEEF 

INDUSTRY  

Section 1: Introduction 

 Pulmonary hypertension (PH) has impacted cattle in the mountainous regions of the 

western United States. Since its discovery in 1913, the condition has been referred to as dropsy 

of high altitude, brisket disease, or high mountain disease (HMD), among other names. The 

pathophysiology of HMD is characterized as hypoxia-induced pulmonary hypertension, which 

can culminate in congestive heart failure of susceptible cattle. Despite years of research 

characterizing and working to reduce the incidence of this condition, HMD still impacts cattle 

today and results in death loss for ranchers across the mountainous western states (Holt and 

Callan, 2007). This chapter is an overview of the pathophysiology and genetics of HMD. In 

addition, this chapter provides insight into a lesser-known and understood manifestation of 

pulmonary hypertension known as feedlot heart disease and discusses improvements in genetic 

technologies that may aid in alleviating the impact of pulmonary hypertension on cattle 

production. 

Section 2: Pulmonary Hypertension 

Pulmonary hypertension (PH) is commonly recognized as high blood pressure. More 

specifically, PH affects the cardiopulmonary system and results in death if not properly managed 

(Mayo Clinic, 2017). While there are many causes for the development of PH, the disease is 

broadly characterized by cellular changes in the pulmonary system that result in stiffening of 

vessel walls and subsequent vascular remodeling. As these circulatory changes occur within the 
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vasculature of the lungs, greater strain is placed on the heart to maintain efficient blood flow. If 

vascular remodeling continues to progress in severity, the cardiac strain may become so severe 

that the patient succumbs to heart failure (HF). Some cases of PH are irreversible, while other 

incidents of PH may respond to treatment. The World Health Organization (WHO) has 

established five categories of PH based on etiology of the condition (Ryan et al., 2012; World 

Health Organization, 2013; Pulmonary Hypertension Association, 2019). 

2.1 WHO Categories of PH 

2.1.1 Category 1  

The WHO has established that patients with Category 1 PH are experiencing pulmonary 

arterial hypertension (PAH). This condition is often diagnosed via elimination of Categories 2-5 

of PH rather than a positive diagnosis of Category 1 PH. This type of PH includes idiopathic PH, 

familial PH, and PH associated with medical conditions (Ryan et al., 2012). Idiopathic derived 

PAH has no clear origin or cause of onset of the condition. Familial PAH is inherited 

(Pulmonary Hypertension Association, 2019). PAH may develop alongside other medical 

conditions such as liver cirrhosis, human immunodeficiency virus (HIV), and lupus. Further, 

PAH may develop due to past or present drug use or exposure to toxins (Mayo Clinic, 2017). 

Category 1 PH has a few treatments to alleviate the symptoms, but not cure, PAH (Pulmonary 

Hypertension Association, 2019). 

2.1.2 Category 2 

Category 2 PH derives from left-sided heart disease. This could develop from systolic or 

diastolic dysfunction of the left atrium and ventricle. Further, this condition can develop from 

valvular diseases that result in stenotic valves or leaky valves that impact the ability of the heart 

to pump blood without backflow. Ultimately, this type of PH is characterized as the inability to 
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maintain flow of oxygenated blood entering the left heart, resulting in increased pressure in the 

vasculature of the lungs. This form of PH is the most common in humans (Pulmonary 

Hypertension Association, 2019).  

In addition to humans, manifestations of Category 2 PH have been observed in cattle. The 

condition, referred to as feedlot heart disease (FHD), is characterized as heart failure occurring in 

cattle in the latter stages of finishing (Jensen et al., 1976; Neary et al., 2015a; Neary et al., 

2015b; Krafsur et al., 2019; Moxley et al., 2019). During the finishing phase of production, cattle 

are administered high energy diets to increase the rate of weight gain prior to harvest. Krafsur et 

al. (2019) concluded that cardiac and pulmonary tissues of late-fed cattle undergoing heart 

failure exhibited histopathologic features of remodeling similar to that of obesity-associated PH 

in humans. However, Neary et al. (2015b) described pathophysiology of FHD in steers as right-

sided heart failure, which could indicate that FHD should be classified as Category 3 PH. Further 

research characterizing the pathophysiology FHD and comparing it to that of cattle experiencing 

hypoxia-induced PH through chronic high-altitude exposure is necessary to elucidate whether 

FHD should be classified as Category 2 PH. 

2.1.3 Category 3 

Chronic lung diseases, hypoxia, or a combination of both contribute to Category 3 PH 

(Mayo Clinic, 2017; Pulmonary Hypertension Association, 2019). The overall etiology of 

Category 3 PH results from lung restriction or narrowing of the airways that increase the 

difficulty of respiration. The cardiopulmonary system compensates for the decreased oxygen 

intake by reducing blood flow to regions of the lung that are not active in gas exchange. This 

increases pulmonary blood pressure (Pulmonary Hypertension Association, 2019). 
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Chronic lung diseases such as COPD or emphysema can result in Category 3 PH through 

restricting the ability of the lung to expand and contract during respiration. Sleep apnea and 

chronic exposure to high altitude also result in Category 3 PH (Mayo Clinic, 2017; Pulmonary 

Hypertension Association, 2019). Therefore, high mountain disease (HMD) in cattle is classified 

as Category 3 PH. High mountain disease is observed in cattle at elevations greater than 1,500m 

(Pauling et al., 2018). In extreme cases, HMD can result in vascular remodeling, heart failure, 

and death of susceptible cattle (Holt and Callan, 2007). 

2.1.4 Category 4 

Category 4 PH is caused by the development of pulmonary emboli (Mayo Clinic, 2017; 

Pulmonary Hypertension Association, 2019). The inability of the body to dissolve blood clots 

occludes pulmonary blood flow in the clotted regions of the lung. However, after a clot has 

resolved, scar tissue may remain that can occlude pulmonary blood flow permanently, resulting 

in strain on the right side of the heart due to vascular resistance in the lungs. Remedies exist for 

Category 4 PH, including surgical removal of clots and administration of drugs to resolve 

pulmonary clots (Pulmonary Hypertension Association, 2019). 

2.1.5 Category 5 

Category 5 PH encompasses incidences of PH not well understood (Mayo Clinic, 2017; 

Pulmonary Hypertension Association, 2019). More specifically, this category consists of cases of 

PH that are secondary to other diseases or conditions but have yet to be characterized well 

enough to be classified within WHO Categories 1-4 (Pulmonary Hypertension Association, 

2019). Common conditions that are classified as Category 4 PH are blood disorders, metabolic 

disorders, cancer, and multi-system diseases (Mayo Clinic, 2017). 
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2.2 Physiology of vascular remodeling in response to chronic PH 

The physiological response to chronic hypoxia resulting in PH is vascular remodeling. 

Small arteries (diameter < 500 μm) are the site of the cellular changes recognized in remodeling 

and can manifest as a decreased number of small arteries to transport blood, a loss of luminal 

space in arterial branches, or a combination of both. These changes result in an elevated PAP due 

to increased resistance in the branches narrowing off the pulmonary artery leading to the lungs 

(Rounds and Klinger, 2004; Shimoda and Laurie, 2013). A normal small artery that is part of the 

pulmonary vascular branches is comprised of numerous tissue substances including fibronectin, 

collagen, elastin, smooth muscle, and endothelial cells, which provide a rigid structure while 

allowing for adequate compliance to achieve blood flow to the lungs (Figure 2.1).  
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Figure 2.1 Comparison of the vascular structure of a normal and remodeled vessel. A.) Normal 
structure of a vascular branch off the pulmonary artery with the tissue composition of each major 
segment labeled. B.) Animals experiencing vascular remodeling from PH can exhibit a 
combination of thickening of the vessel layers, resulting in decreased luminal space. (Image 
created by the author). 

 
Vascular remodeling of the pulmonary arterial circulation results in narrowing of the small 

vessels in the pulmonary branches. This reduction of luminal space derives from both 

hypertrophy and hyperplasia of cellular components in all layers of the vessel (Anderson et al., 

1973; Chazova et al., 1995; Rounds and Klinger, 2004; Stenmark et al., 2009). Hypertrophy in 
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layers such as the tunica adventitia that contain cellular components such as fibrin and collagen 

can result in decreased compliance or increased rigidity of the outer portion of the vessel 

(Rounds and Klinger, 2004). 

Stiffening of pulmonary vasculature due to remodeling leads to increased resistance, which 

puts increased strain on the right side of the heart as it works harder to eject blood through the 

pulmonary artery to the lungs. This increased pulmonary vascular resistance increases blood 

pressure and decreases overall blood flow due to reduced compliance of the vasculature. The 

heart compensates by increasing afterload, resulting in the heart working harder to eject blood. 

Over time, increased pumping efforts of the cardiac tissues will result in right ventricular 

hypertrophy, and loss of fluid in the extravascular spaces resulting from increased hydrostatic 

pressure (Louis and Fernandes, 2002). This loss of fluid is visible in cattle as edema in various 

regions of the body. Under prolonged duress, the right heart muscles will enlarge and, in extreme 

cases, will fail, resulting in death (Voelkel et al., 2006). 

2.3 Factors influencing PH in cattle 

2.3.1 Sex 

Gender may impact the susceptibility or onset of PH through differences in cardiac 

performance and general pathology. Chu et al. (2005) observed that a survival advantage existed 

for females as compared to males when attempting to induce cardiac hypertrophy and heart 

failure. Further, induction of cardiac hypertrophy and subsequent progression to HF took longer 

in females than males (Chu et al., 2005). These results demonstrate that physiological changes 

associated with PH and subsequent HF are often more severe and have an earlier onset in males 

than females. 
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Quantitative genetic measures of cattle performance across genders have also been 

evaluated utilizing mean pulmonary arterial pressure (PAP) as an indicator of risk of developing 

high mountain disease (HMD) because of PH. In 2008, Shirley et al. evaluated fluctuations in 

PAP over time for males and females. Females exhibited an increased PAP of 0.022 + 0.008 

mmHg per day for each day of age. Conversely, males exhibited a decrease of 0.004 + 0.01 

mmHg per day for each day of age (Shirley et al., 2008). Cockrum et al. (2014) calculated 

different heritabilities for each of three gender categories (heifers, bulls, and steers) in yearling 

Angus cattle. The heritability measured for heifers was 0.21 + 0.04, while the heritabilities for 

steers and bulls were 0.20 + 0.15 and 0.38 + 0.08 respectively (Cockrum et al., 2014). Zeng 

(2016) also estimated the heritability of PAP in yearling Angus heifers, bulls, and steers. The 

calculated heritabilities were 0.19 + 0.03, 0.33 + 0.06, and 0.37 + 0.07 for heifers, steers, and 

bulls respectively (Zeng, 2016). These results suggest that sex could be a valuable source of 

variation when assessing PAP in cattle. Further, these differences could not only be attributed to 

gender itself but also to the fact that management strategies will differ between the three gender 

categories. Heifers, steers, and bulls have different breeding objectives or production endpoints 

to be met, which are achieved through different management strategies. For example, castration 

results in reduced testosterone levels, which increases fat deposition in steers (Owens et al., 

1993). Conversely, heifers and bulls are maintained as breeding stock, and managed for their 

reproductive success. All three categories will have different nutrient requirements (National 

Research Council, 2016). 

2.3.2 Age 

The risk of developing HMD because of PH decreases with age. Majority of death loss 

due to progression of chronic PH. Cattle from birth to two years of age account for 
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approximately 75% of cattle succumbing to HMD (Pierson and Jensen, 1956; Blake, 1968). This 

was confirmed by literature released by a Utah Agriculture Experiment Station, who reported 

that of 397 cases of HMD in cattle, 269 confirmed cases were observed in cattle less than two 

years of age (Blake, 1968). Once cattle reach 2 to 5 years of age, incidence of HMD decreases 

from 75% to 3% (Blake, 1968). These studies did not report an explanation for such a drastic 

decrease in prevalence as age increases. However, this drastic decrease could be attributed to the 

fact that cattle either succumb to HMD or are culled for poor performance within the first two 

years of life.  

The majority of data collected in cattle to infer PH status is recorded when cattle are 

weanling or yearling age. Measures recorded on cattle under one year of age may not be reliable 

as PAP measurements have greater variability in calves. As cattle age, the accuracy of their PAP 

measurement increases. Holt and Callan (2007) report that cattle that are at least 16 months of 

age will have more consistent and accurate PAP observations, which would be better to utilize in 

making management decisions if PAP is within a producer’s breeding objective. However, some 

ranchers may wish to make culling decisions earlier than 12 to 16 months of age to reduce the 

amount of time, money, and resources being utilized on cattle that will not remain in the herd. 

Studies that evaluate PAP over time are limited as most producers take a single 

measurement and utilize that value to determine whether the animal should remain in the herd. 

Neary et al. (2015a) evaluated a population of cattle over time and found that systolic PAP and 

pulmonary arterial pulse pressure increased uniformly with age. Zeng (2016) evaluated the 

correlation between weaning PAP and yearling PAP to determine if weaning PAP may be a good 

indicator of yearling PAP. The calculated correlation was 0.67 + 0.18, coinciding with Holt and 

Callan (2007) who reported greater variability in PAP measurements recorded prior to 12 to 16 
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months of age. While the correlation reported by Zeng et al. (2015) depicts a moderate 

relationship between weaning and yearling PAP measurements, there remains a vast amount of 

variability between the two time points such that producers would be ill-advised to select based 

on weaning PAP. Enns et al. (1992) regressed PAP on age, concluding that for every day of age 

increase, PAP increased by 0.0387 mmHg. A similar study by Crawford (2015) regressed PAP 

on yearling age, reporting that for each day increased beyond weaning age, PAP increased by 

0.03 mmHg. While these studies provide insight into the patterns of increased PAP over time, 

studies with repeated measures over the duration of an animal’s life are limited.  

2.3.3 Adaptation to hypoxic environments 

Duration of exposure to environments with reduced atmospheric oxygen availability is 

one of many factors that can cause hypoxia, impact cardiopulmonary performance, and result in 

PH. However, not all cattle are equally impacted by changes in altitude. Cattle born at high 

elevations have reduced incidence of PH as compared to cattle relocated to high altitude later in 

life (Will and Alexander, 1970; Weir et al., 1974; Holt and Callan, 2007). Further, Tucker and 

Rhodes (2001) concluded that an acclimation period prior to assessment of PH results in the 

most accurate estimates. This acclimation period allows for cattle to overcome the acute hypoxia 

associated with increased altitude and instead evaluate the long-term implications of high altitude 

on an animal’s health status (Tucker and Rhodes, 2001; Neary et al., 2015a).  

The physiology underlying hypoxia-induced PH in cattle at high altitudes is 

predominantly characterized by alveolar hypoxia resulting in pulmonary vascular remodeling. 

Specifically, the reduced oxygen availability at the expense of an increased barometric pressure 

induces hypobaric hypoxia, a condition that also increases the risk of developing alveolar 

hypoxia (Neary et al., 2016a). In an effort to maintain alveolar sufficiency of oxygen ventilation 
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and perfusion, the pulmonary vasculature constricts, increasing pulmonary vascular resistance 

(Kuriyama and Wagner, 1981; Neary et al., 2016a). These changes are observed as an elevated 

PAP (Holt and Callan, 2007; Neary et al., 2016a).  

Regarding cardiac response to vascular remodeling, Kuriyama and Wagner (1981) 

proposed that cattle with greater vascular tone or thicker arteries would have a more rapid and 

intense response to chronic hypoxia than their contemporaries with less vascular tone. This was 

confirmed by Tucker et al. (1975), who calculated a positive correlation between medial 

thickness of the vascular wall, the degree of PH, and right ventricular hypertrophy. Calves 

exhibited increased medial tone within the pulmonary vasculature in response to high altitude 

exposure (Naeye, 1965; Tucker et al., 1975). These findings by Naeye (1965) and Tucker et al. 

(1975) coincide with findings regarding the incidence of PH in calves as compared to cattle of 

yearling age or older.  

Physiologic response to hypoxia induced by high altitude and therapies to lessen the 

impact of such responses from cattle have been evaluated. One of the most commonly 

recommended therapies in human medicine for acute hypoxia is the supplementation of oxygen 

to account for reduced oxygen availability (West et al., 2013). However, despite serving as a 

valuable therapy in humans, oxygen supplementation is not a viable therapy for calves suffering 

from PH (Neary et al., 2013). Neary et al. (2013) administered supplemental oxygen to calves 

unsuccessfully, finding the oxygen diffusion capacity to be low. This suggests that the issue 

results from a ventilation-perfusion mismatch. A 2016 study observed that calves responded to 

the physiological strain induced by high altitude by increasing the rate of alveolar ventilation. 

Increased rate of alveolar ventilation, more commonly called hyperventilation, can be detected 



14 
 

by not only measuring respiration rate, but also evaluating the partial pressure of carbon dioxide 

in arterial blood, which would decrease during hyperventilation (Gulick et al., 2016). 

2.3.4 Health status and medical history 

The medical history of a patient poses a great impact on their risk of developing PH. For 

example, humans with COPD, emphysema, liver disease, lupus, sleep apnea, blood disorders, or 

metabolic disorders have a greater risk of developing at least one form of PH (Mayo Clinic, 

2017). Similarly, cattle with a history of respiratory disease or metabolic disease may be at a 

greater risk of developing PH (Holt and Callan, 2007; Neary et al., 2016a). Diagnosis of cattle 

with PH may be further complicated by the presence of a prior condition such as respiratory 

disease that can result in diagnosis of a recurring condition rather than development of PH in the 

animal (Neary et al., 2016a). This not only provides limited assistance in mitigating a condition 

with few therapeutic remedies but can also result in a gross underestimation of the number of 

cattle developing PH in the United States annually.  

2.3.5 Genetics 

The development of PH far exceeds environmental exposure that induces hypoxia. 

Research to date has demonstrated that genetics may infer tolerance to PH for some organisms, 

while negatively impacting the performance of others. This was demonstrated by Pauling (2017), 

who discovered that a re-ranking of cattle occurred based on mean pulmonary arterial pressure 

(PAP) measurements as cattle moved between high and low altitudes, suggestive of a genotype 

by environment interaction. The trait of interest when evaluating PH in cattle is PAP, which is an 

indicator trait that is utilized to make inferences about an animal’s risk of developing high 

mountain disease (HMD) as a result of PH induced by high altitude (>1,500 m) exposure (Holt 

and Callan, 2007). Heritabilities for PAP have been estimated to be moderate (0.26 to 0.34) in 
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nature, which means that genetic improvement through selection is possible (Shirley et al., 2008; 

Crawford et al., 2016). However, due to a minute proportion of the population that succumbs to 

heart failure annually from progression of PH and HMD, it is difficult to cultivate selection tools 

such as expected progeny differences (EPDs). The establishment of EPDs for PAP is further 

complicated by the limited number of observations that are recorded in comparison to the 

number of animals within the record keeping system of a breed association.  

2.4 Measures of cardiopulmonary performance 

2.4.1 Pulmonary vascular Resistance 

One of the principle assessments of cardiopulmonary health is pulmonary vascular 

resistance. Pulmonary vascular resistance (PVR) is measured by dividing the differential of mean 

pulmonary arterial pressure from mean pulmonary venous pressure and dividing it by the cardiac 

output (Equation 2.1). The units of measure for PVR are mmHg/L/min. Measuring PVR can 

elucidate vascular complications within the cardiopulmonary system compromising the overall 

health of the animal. An elevated PVR would be indicative of occlusion of blood flow. This 

occlusion is commonly classified as either reduction, obstruction, or restriction of flow (Griffin 

et al., 2008). 

Equation 2.1. The calculation of pulmonary vascular resistance (PVR) is obtained by subtracting 
the mean pulmonary venous pressure, measured as the mean left atrial pressure (PLA) from the  
mean pulmonary arterial pressure (PLA). This differential is then divided by the cardiac output 
(Q). 

PVR=
PPA̅̅ ̅̅ ̅-PLA̅̅ ̅̅ ̅

Q   

When measuring PVR in patients experiencing hypoxia, the most likely cause of an 

elevated PVR would be restriction. Restriction can be classified as either anatomic or 

vasoconstrictive in nature. These physiological responses are meant to maintain a normal 
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ventilation-perfusion ratio given reduced oxygen tension in the blood. The presentation of 

restriction will depend on whether the hypoxic state of the animal is considered to be acute or 

chronic in nature. Acute hypoxia will result in vasoconstriction. Vasoconstriction or constriction 

of the arteries within the pulmonary system serves as a temporary change to combat the hypoxic 

state of the animal. However, if an animal is in a long-term or chronic hypoxic state, they 

undergo anatomical changes that result in restriction of blood flow. This anatomical change is 

recognized as vascular remodeling, which is a change in the vascular tone and overall structure 

of the pulmonary vascular trunks to combat the chronic hypoxic state that an animal is facing.  

2.4.2 Systemic oxygen extraction fraction 

Systemic oxygen extraction fraction (sOEF) provides insight into tissue utilization of 

oxygen in the blood. More specifically, sOEF is the proportion of oxygen in arterial blood that is 

taken up by the peripheral tissues and organs of the body. Systemic oxygen extraction fraction is 

measured utilizing arterial oxyhemoglobin saturation, venous oxyhemoglobin saturation, 

hemoglobin concentration, partial pressure of oxygen in arterial blood, and partial pressure of 

oxygen in mixed venous blood (Equation 2.2).  

Equation 2.2. The equation for systemic oxygen extraction fraction where saHbO2 is arterial 
oxyhemoglobin saturation (%), smvHbO2 is mixed venous oxyhemoglobin saturation (%), Hb is 
hemoglobin concentration (g/L), paO2 is the arterial partial pressure of oxygen (mmHg), and 
pmvO2 is the mixed venous partial pressure of oxygen (mmHg). 

sOEF= 
((saHbO2 × Hb × 1.39) + ( 0.003 × PaO2)) - ((smvHbO2 × Hb×1.39) + (0.003 × PmvO2)((saHbO2 × Hb × 1.39) + (0.003 × PaO2))  

 A normal sOEF is approximately 0.2, meaning that only about 1/5 of the oxygen in 

arterial blood is being taken up throughout the systemic circulation to support peripheral tissues 

and basic physiological functions (Dellinger, 2002; Leach and Treacher, 2002; McLellan and 

Walsh, 2004). However, not all tissues have the same oxygen requirements. For example, cardiac 
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muscle has an oxygen extraction fraction (OEF) of about 68%, while skeletal muscle has an OEF 

of about 25% when at rest (Binak et al., 1967). The sOEF must fluctuate to accommodate an 

increased demand for oxygen by peripheral tissues as well as when delivery of oxygen decreases. 

This fluctuation is important as it serves to increase the systemic OEF as a means to maintain 

aerobic metabolic processes (Olkowski et al., 2005; Rady et al., 1994). 

2.4.3 Pulmonary arterial pressure 

An overview of PAP 
Mean pulmonary arterial pressure (PAP) is a veterinary procedure consisting of threading 

a catheter containing a transducer through the jugular vein into the heart. The catheter is threaded 

through the right side of the heart into the pulmonary artery where a pressure measurement is 

taken. The calculation of PAP is a function of systolic pulmonary arterial pressure (sPAP) and 

diastolic pulmonary arterial pressure (dPAP). The calculation for PAP is not an arithmetic mean, 

meaning it is not a direct average of sPAP and dPAP (Equation 2.3). Modifications have been 

made to the original PAP equation in order to improve the accuracy of estimation (Equation 2.4) 

(Razminia et al., 2004). 

Equation 2.3 The traditional PAP measurement used prior to modifications by Razminia et al. 
(2004). 

PAP = 
1
3 sPAP + 

2
3 dPAP 

Equation 2.4 The updated PAP calculation derived by Razminia et al. (2004)  that includes heart 
rate (HR) in order to increase the accuracy of PAP estimation. 

PAP = dPAP+ [1
3  + (HR × 0.0012)]  × (sPAP - dPAP) 

In livestock, PAP measurements are measured in high altitude production systems, where 

hypoxia-induced pulmonary hypertension (WHO category 3 PH) could be a concern for 

producers. Through measuring PAP, the degree to which cattle are experiencing PH can be 
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elucidated. Further, inferences can be made about an animal’s risk of succumbing to heart failure 

(HF) due to the progression of PH (Table 2.1) (Holt and Callan, 2007).  
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Table 2.1 Interpretations of mean pulmonary arterial pressure (PAP) scores in cattle. (Holt and 
Callan, 2007). 

PAP Interpretation 

30-35 mmHg This score is considered excellent and highly 
reliable. 
 

36-39 mmHg This score is considered excellent for any animal 
over the age of 12 months. If the animal is less 
than 12 months of age, the score is still fairly 
reliable, but retesting before breeding is 
suggested. 
 

<41 mmHg Scores less than 41 mmHg are reliable 
measurements in all animals more than 12 months 
of age. It is recommended that yearling cattle have 
a PAP measurement less than 41 mmHg 
(depending on altitude of the test). The variation 
in scores 41 mmHg and above is inconsistent and 
difficult to predict in some cattle as they age. Any 
animal measuring 41 mmHg and greater should 
always be retested before use. 
 

41-45 mmHg This range is acceptable for older animals (ie, 
more than 16 months of age). Animals less than 
16 months scoring in this range should be retested 
to predict the future PAP of the animal accurately. 
 

45-48 mmHg This range is acceptable only for older animals 
that have been in high elevations for an extended 
period of time. Animals with this score are more 
susceptible to environmental stresses leading to 
HMD and should be considered at some risk. 
Elevation of test site and where the animal lives 
must be evaluated closely for those in this PAP 
score range. 
 

>49 mmHg Animals that score in this range must always be 
considered high-risk candidates for developing 
HMD, not only for themselves but also their 
offspring. Many animals that have scored in this 
range have died of HMD. An option for these 
animals is to move them to a lower elevation for 
use there. It is also recommended that offspring of 
these animals never return to high altitude. 
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2.5 Clinical assessment of cardiopulmonary health 

2.5.1 Clinical blood panels in cattle  

Ahola et al. (2006) evaluated the efficacy of utilizing arterial blood parameter 

measurements in lieu of recording PAP measurements of cattle in an effort to find an alternative 

to the pricey and invasive procedure. This was evaluated by calculating correlations between 

arterial blood parameters (blood gases, blood electrolytes, and blood cellular components) and 

PAP. These parameters were measured utilizing three current technologies: hemogram, pulse 

oximetry, and portable clinical analyzer. The only parameters that were correlated with PAP 

were the hemogram measurements of packed cell volume, hemoglobin concentration, and red 

blood cell distribution width. None of the metrics recorded via pulse oximetry or portable 

clinical analyzer were correlated with PAP despite overlap between the three technologies, 

which all measured packed cell volume and hemoglobin (Ahola et al., 2006). 

2.5.2 Clinical blood parameters and PH 

The body has several physiologic responses to both acute and chronic hypoxia. These 

physiologic responses serve to maintain oxygen delivery to peripheral tissues in order to supply 

the mitochondria with oxygen to maintain functions at the cellular, tissue, and systemic levels. In 

addition to the changes within the cardiopulmonary tissues themselves, the blood chemistry of an 

animal will also alter in an effort to preserve oxygen levels in the blood (Cueva, 1967; Weir et 

al., 1974; Ahola et al., 2006; West et al., 2013).  

Response of red blood cells and plasma volume to high altitude 
Reduced atmospheric oxygen availability poses a challenge to animals as the body must 

compensate for respiratory insufficiencies. One of the best-known adaptations to this reduction 

in available oxygen is the increase of red blood cells (RBC) per unit of blood (Bert 1878; West et 

al., 2013). This increase in RBC results in an increased oxygen carrying capacity within the 
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blood due to a greater volume of hemoglobin to bind and carry oxygen throughout the body (Bert 

1878; Viault, 1891; West, 1981; High altitude medicine and physiology 5th edition). However, 

despite the increase associated with hypoxia induced by high altitude, the benefits of an 

increased RBC count have been demonstrated to provide limited assistance to hypoxic humans in 

some instances (Winslow et al., 1985; Winslow and Monge, 1987; Calbet et al., 2002; West et 

al., 2013). 

Plasma volume is also impacted by duration at high altitude. In the early stages of high-

altitude exposure, plasma volume decreases. As duration at high altitude progressed, it was found 

that plasma volume increased but never reached the volume measured prior to altitude exposure 

(West et al., 2103). Sanchez et al. (1970) compared a high-altitude dwelling population to a sea-

level dwelling population in Peru in order to estimate differences in blood volume as compared 

to plasma volume. After compensating for weight differences, Sanchez et al. (1970) concluded 

that people from high altitude had a reduced plasma volume and increased overall blood volume 

compared to the people at low altitude. This observed increase in blood volume in conjunction 

with a reduced plasma volume could be due to a compensatory increase in red blood cells. 

Individuals that experienced acute hypoxia due to high altitude exposure exhibited plasma 

volume measures greater than or equal to initial measures after 1-3 days back at sea-level 

(Robach et al., 2000). 

Erythropoietin 

Erythropoiesis is the process of forming red blood cells (West et al., 2013). In the 

absence of hemorrhage, anemia, bone marow disorders, iron deficiencies or other conditions that 

impact hemoglobin, erythropoiesis is regulated by levels of erythropoietin. Erythropoietin is a 

hormone produced by the liver and kidneys (Eckardt, 1996). Levels of erythropoietin increase in 
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the presence of tissue hypoxia with the common causes of elevated erythropoietin being blood 

loss and hypoxia. In the presence of tissue hypoxia, oxygen-sensing cells within the inner cortex 

and outer medulla of the kidney respond by increasing erythropoietin secretion, thus, inducing 

erythropoiesis (Eckardt, 1996; Semenza, 2009).  

Hypoxic ventilatory response 

Erythropoiesis in response to tissue hypoxia increases the red blood cells in the 

circulatory system. However, in cases of acute hypoxia, erythropoiesis does not occur at a rate 

conducive to alleviating the stress of hypoxia immediately. In addition to elevated erythropoietin 

to stimulate red blood cell formation, the carotid body mediates a hypoxic ventilatory response 

(Fisher and Langston, 1967). Unlike the liver and kidneys, the carotid body responds to the 

partial pressure of oxygen in the arterial blood. When the arterial pressure of oxygen decreases, 

the carotid body detects the change and induces increased ventilation as a means to increase 

oxygen intake (Eckardt et al., 1989). Hypoxic ventilator response occurs within seconds. 

However, full erythropoietin responses take multiple days (Eckardt et al., 1989; Semenza, 2009).  

Maintenance of blood pH 

Blood pH is important due to its relationship with oxygen affinity and, subsequently, 

oxygen transport (West et al., 2013). When a lowland acclimated individual relocates to high 

altitude, peripheral chemoreceptors induce hyperventilation, resulting in decreased arterial 

carbon dioxide in the circulation which increases blood pH. High altitude natives have arterial 

pH values of 7.4. Based on comparable arterial pH values between lowland and highland 

dwellers, it is speculated that highland dwellers have a fully compensated respiratory alkalosis 

(Winslow and Monge, 1987). Conversely, lowland dwellers have an increased pH when exposed 
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to high altitudes. However, when given time to acclimate to the increased elevation, the pH 

declines towards the normal value of 7.4 (Dill et al., 1937).  

Oxygen dissociation curve 

The oxygen dissociation curve (ODC) provides insight into how well oxygen has been 

bound to red blood cells and delivered to tissues. The ODC characterizes oxygen’s affinity to 

bind to the hemoglobin within the red blood cells and is dependent upon pH, partial pressure of 

carbon dioxide, and 2,3-diphosphoglycerate in the blood. A shift to the left on the ODC is 

indicative of alkalosis (pH > 7.5) due to increased abundance of oxygen that is more tightly 

bound to hemoglobin. Conversely, a shift to the right on the ODC indicates acidosis (pH < 7.3). 

In the case of acidosis, partial pressure of carbon dioxide in the blood is elevated, resulting in a 

decreased affinity of oxygen to remain bound to hemoglobin. This decreased oxygen binding 

affinity results in easier release of oxygen to the tissues (T.N. Holt, personal communication).  

In addition to blood pH and partial pressure of carbon dioxide, 2, 3-diphosphoglycerate 

concentrations also impact the ODC. Concentrations of 2, 3-diphosphoglycerate are dependent 

on red blood cell metabolism. When red blood cell metabolism increases, the concentration of 2, 

3-diphosphoglycerate also increases as it is an end-product of this metabolic process. This 

increase is indicative of chronic hypoxia and results in an ODC shift to the right for easier 

oxygen release. Reduction of 2, 3-diphosphoglycerate means that red blood cells are more 

abundant in the blood, so the ODC will shift to the left and oxygen binding affinity to 

hemoglobin would increase (T.N. Holt, personal communication).  

Blood gas tensions and electrolyte measures 

Blood gas tensions are measured as a metric of blood acid-base chemistry. Measuring 

both venous and arterial blood gases provides insight into gas exchange processes and systemic 
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blood gas utilization. However, measurement of venous blood gases and references for venous 

blood gas metrics in humans, cattle, and other species are scarcely reported. Arterial blood gases 

are commonly reported when focusing on acid-base chemistry and provide insight into a number 

of physiological changes indicative of poor or declining health (West et al., 2013). While control 

measures for bovine diagnostics are limited, veterinarians that perform these tests on cattle have 

compiled their own control parameters of these blood panels that are not published (Table 2.2; 

Table 2.3). 

Table 2.2 Normal ranges of blood gas measures impacting acid-base chemistry of arterial and 
venous blood samples in cattle.  

Acid-base 

chemistry 

parameter 
Units 

Normal 

bovine 

range 

(arterial) 

Normal 

bovine 

range 

(venous) 

Citations 

PO2 mmHg 
80-100 
70-80i   

35-40 (T.N. Holt, personal communication) 

PCO2 mmHg 35-45 35-44 
(J. Kaneko et al., 2008; T.N. Holt, 

personal communication) 

HCO3 mEq/L 22-26 
17-29 
25-35 

(J. Kaneko et al., 2008) 
(T.N. Holt, personal communication) 

pH -- 7.35-7.45 7.31-7.53 
(J. Kaneko et al., 2008; T.N. Holt, 

personal communication) 

TCO2 mEq/L -- 21-32 (J. Kaneko et al., 2008) 
i Arterial PO2 is 70-80 mmHg for cattle at > 1,500 m elevation. 
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Table 2.3 Normal ranges for blood electrolytes and components of blood chemistry in arterial 
and venous blood samples of cattle. 

Blood 
electrolytes 
and blood 
chemistry 

parameters 

Units 

Normal 
bovine 
range 

(arterial) 

Normal 
bovine 
range 

(venous) 
Citations 

Sodium mEq/L -- 136-147 (T.N. Holt, personal communication) 
Potassium mEq/L -- 4.0-5.0 (T.N. Holt, personal communication) 
Chloride mEq/L -- 96-107 (T.N. Holt, personal communication) 
Calcium mg/dL -- 7.6-10.2 (T.N. Holt, personal communication) 
Phosphorus mg/dL -- 4.0-8.6 (T.N. Holt, personal communication) 
Magnesium mg/dL -- 1.6-3.6 (T.N. Holt, personal communication) 
Anion gap mEq/L -- 14-26 (T.N. Holt, personal communication) 

 

In cattle exposed to high altitudes, blood gas measurements are valuable because they can 

provide insight into an animal’s cardiopulmonary health and hypoxic status prior to exhibiting 

physical symptoms indicative of HMD or FHD. For example, reduced arterial partial pressure of 

carbon dioxide accompanied by elevated serum bicarbonate and an elevated base excess is 

indicative of compensatory hyperventilation induced by hypoxia. Elevated serum lactate 

measures may be indicative of enhanced glycolysis, which may be induced by hypoxia. 

Evaluation of oxygen saturation in both arterial and venous blood is utilized to calculate the 

arterial-venous oxygen saturation of hemoglobin (A-V difference). An A-V difference of 30% or 

greater can also be indicative of hypoxia. All of these parameters would indicate that further 

evaluation of an animal’s cardiopulmonary health may need to be evaluated, or if HMD or FHD 

is suspected, relocation to a lower altitude or feeding a different ration may be a viable option to 

alleviate signs of hypoxia (G.M. Krafsur, personal communication).  
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2.5.3 Sources of variation in clinical blood panels 

 Clinical assessment of blood samples, while informative in diagnosing patients and 

formulating a treatment plan, can be complicated by a number of factors that enhance the 

variation of the measures taken. Differences in laboratory as well as laboratory technician may 

increase variability of blood panel estimates. These can range from differences in standard 

laboratory handling procedures to variations in units of measurement, which can confound 

comparisons across laboratories if not detected. Blood panel results will also vary depending on 

age, sex, species, breed, and status within the respective livestock production setting. It is 

therefore of the utmost importance that such phenotypic data is available in order to determine 

which normal parameters are most feasible to utilize in making diagnoses. 

 Once samples are collected and analyzed, the interpretation of the results generated adds 

an additional level of complexity. Data should be compared to normal values generated from 

animals of similar age, sex, species, breed, and stage of production as the patient being 

evaluated. Further, the normal values utilized for diagnostic purposes should be validated either 

through the clinic or laboratory performing the blood panels, from reputable textbooks, or 

through peer reviewed journal publications. Lack of validation of the normal parameters being 

utilized to assess patient health, may result in discrepancies in the results as well as misdiagnoses 

in extreme cases.   

2.5.4 Limitations of clinical blood panels in cattle 

One of the primary challenges of utilization of modern technologies to measure blood 

gases and electrolytes is the lack of reference measures for comparative studies and diagnostic 

purposes. Research has demonstrated that metrics of cardiopulmonary health such as mean 

pulmonary arterial pressure (PAP) vary in cattle. More specifically, measurements may differ 
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based on breed, sex, age, production stage, etc. (Greatorex, 1957; Claxton and Ortiz, 1996). 

Therefore, a single reference value for each blood gas or blood electrolyte metric may present 

inaccurate conclusions and diagnoses when evaluating cattle. The Merck Veterinary Manual 

presents a single set of reference values for cattle, which is nondescript, not indicating age, 

breed, sex, or production stage (Fielder). While still a valuable resource for diagnostic purposes, 

as researchers work towards characterizing manifestations of PH in cattle, these gaps in 

knowledge are important to fill in order to make sure that the most accurate information possible 

is being implemented into future research efforts.  

2.6 Signs and symptoms of PH in cattle 

A number of complications exist in diagnosing PH in cattle. Symptoms commonly 

present in the latter stages of PH. Due to the late-stage diagnosis of PH, little can be done to save 

the animal (Holt and Callan, 2007). After signs have been recognized, cattle often die within 12 

weeks, with the majority of cattle succumbing to HF within one month (Glover and Newsom, 

1917; Pierson and Jensen, 1956). Crawford (2015) summarized ante-mortem and post-mortem 

signs and symptoms of PH in cattle (Table 2.4). However, further signs and symptoms are being 

evaluated to better detect incidences of PH. One of the new signs being used to evaluate 

pulmonary vascular remodeling and impending HF in cattle is post-mortem cardiac score. 
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Table 2.4 Ante-mortem and post-mortem signs and symptoms of HMD in cattle. (Crawford, 
2015) 

Ante-mortem Post-mortem 

Lethargy Increased hepatic enzymes 

Tachypnea (rapid breathing) Enlarged, hard liver 

Drooped ears Enlarged, dilated heart 

Rough hair coat Lesions 

Ataxia (lack of muscle control) 
 

Jugular vein distension 
 

Brisket edema 
 

Exophthalmia (protrusion of eyeballs) 
 

Ascites (fluid in abdomen) 
 

Generalized edema (intermandibular, 
ventral abdominal, limb) 

 

Decreased appetite 
 

Recumbent (lying down, inactive) 
 

Unable to rise 
 

Elevated heart and respiratory rates 
 

Muffled heart sounds 
 

Diarrhea 
 

Moist sporadic cough 
 

Gradual emaciation 
 

Inflammation 
 

 

2.6.1 Post-mortem cardiac scores  

The diagnosis of HMD often does not occur until cattle have displayed visible symptoms 

or have succumbed to HF secondary to PH (Holt and Callan, 2007). Some cattle undergo 

vascular and cellular remodeling at a slower rate than those that have exhibited symptoms of 

HMD. These cattle may have survived through the finishing phase of production to be harvested 

and, as a result, are not classified as hypertensive or experiencing HMD. Therefore, a post-



29 
 

mortem cardiac scoring system has been designed by Colorado State University and the United 

States Department of Agriculture Meat Animal Research Center (USDA-MARC) (T. N. Holt, 

personal communication). This system has been designed in order to not only further validate 

PAP as an indicator trait of susceptibility to PH and development of HMD, but to distinguish 

cattle that have never been PAP tested and may be undergoing vascular remodeling and other 

cardiopulmonary changes indicative of PH (T. N. Holt, personal communication). 

 The cardiac scoring system consists of looking at the heart and assigning a numeric score 

from 1 to 5, with 1 indicating a normal heart and 5 indicating a severely remodeled heart upon 

gross evaluation (Table 2.5) (Figure 2.2).  
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Table 2.5 Descriptions of the gross characteristics assessed to distinguish cardiac scores.  

Cardiac 

Score 

Description 

1 

Normal Heart 
• Normal conical shape 
• Normal left ventricle apex that is easily distinguished 
• Right ventricle is smaller than the left ventricle and ventricles are in normal proportions 
• Normal atrial anatomy such that the right atrium is smaller than the left atrium 
• No clinical evidence of infarction or aneurysm pending 
• No thinning of vessel walls 
• Normal pulmonary artery size 

2 

Mild Change 
• Normal conical shape 
• Blunting of left ventricle apex such that the apex is still distinguishable but losing some pointed shape 
• Right ventricle becoming larger than the left ventricle 
• Right ventricle is more pronounced 
• Right atrium beginning to enlarge to same sizer or slightly larger than the left atrium 
• No clinical evidence of infarction or aneurysm pending 
• Pulmonary artery beginning to exhibit mild enlargement 
• Upon palpation, cardiac muscle is stiff, suggestive of hypertrophy and loss of luminal space (may be bi-

ventricular) 

3 

Moderate Change 
• Beginning to lose conical shape 
• Blunting of left ventricular apex such that apical shape is still visible but deviating and beginning to take 

the shape of a reversed or backwards letter “D” 
• Right ventricle is larger than the left ventricle 
• Right ventricle is more pronounced 
• Right atrium is larger than the left atrium 
• Can present with clinical evidence of infarction or aneurysm pending 
• Pulmonary artery enlarged 
• Upon palpation, cardiac muscle is stiff, suggestive of hypertrophy and loss of luminal space (may be bi-

ventricular) 

4 

Severe Changes 
• Loss of conical shape 
• Loss of left ventricle apex 
• Right ventricle is larger than the left ventricle with the right ventricle becoming more pronounced and 

taking on a rounded shape 
• Reverse “D” shape of heart is apparent 
• Right atrium larger than the left atrium and is congested 
• Can present with clinical evidence of infarction or aneurysm pending 
• Pulmonary artery greatly enlarged 
• Upon palpation, cardiac muscle is becoming soft and without shape but still has some muscle tone 

5 

Severe Changes and Flaccid Heart 
• Severe loss of conical shape 
• Loss of left ventricular apex due to right ventricular rounding 
• Apparent reverse “D” shape of the heart 
• Right ventricle more pronounced and rounded 
• Right atrium larger than the left atrium and congested 
• Can present with clinical evidence of infarction or aneurysm pending 
• Pulmonary artery greatly enlarged 
• Upon palpation, cardiac muscle is soft, without shape, and without muscle tone (heart will lay flat) 
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Figure 2.2 Images depicting each cardiac score. (A) This is cardiac score of 1. Notice the conical 
shape of the heart and the proportions of the chambers of the heart. This heart appears normal. 
(B) This is a cardiac score of 2. The heart is losing shape in the right ventricle (oriented on the 
reader’s left side). However, the pulmonary artery appears normal and the overall conical shape 
of the heart is easily distinguished. (C) This is a cardiac score of 3. The right ventricle is 
beginning to bow outwards. The conical shape of the heart is becoming less prominent and more 
rounded. With the left ventricular blunting, the heart is beginning to take the shape of a 
backwards “D.” The pulmonary artery appears enlarged. (D) This is a cardiac score of 4. The left 
ventricle apex has nearly disappeared, the right side of the heart is larger than the left side, and 
the pulmonary artery is enlarged. The overall reverse “D” shape of the heart is easily observed. 
(E) This is a cardiac score of 5. The overall conical shape of the heart has disappeared, the 
reverse “D” shape is still evident, the pulmonary artery is enlarged, and the heart has taken an 
overall rounded shape. Upon palpation of the cardiac muscle depicted, a loss of tone would be 
evident. Further, the heart would feel floppy and lay flat on a table (Figure designed by author). 

2.7 PAP as an indicator trait for PH 

2.7.1 Genetics of PAP 

Mean pulmonary arterial pressure (PAP) measures PH and is also utilized to assess the 

risk of developing High Mountain Disease (HMD) resulting from the progression of PH (Holt 

and Callan, 2007). Through assessing PAP measurements, it has been concluded that genetic 

improvement to reduce incidence is possible due to the moderate heritability estimates that have 

been reported (Schimmel, 1981; Schimmel and Brinks, 1983; Enns et al., 1992; Shirley et al., 

2008; Zeng, 2016; Crawford et al., 2016). Further, PAP is polygenic, meaning that multiple loci 

on multiple chromosomes affect the expression of the PAP phenotype (Cánovas et al., 2016). 

Studies have elucidated various genes that may affect PAP in cattle, humans, or mice (Table 

2.6). However, this list is not exhaustive as most research has been conducted in mice or humans 
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rather than cattle. Research in cattle has used SNP chip genotype data which does not include 

every nucleotide within the bovine genome.  

Table 2.6 A brief summary of genes related to high altitude exposure in humans, cattle, or other 
laboratory animals. 

Gene 

Abbreviation 

Gene Name Function Citations 

EGLN1 EGL nine homolog 1 Post-translational formation of 
hydroxyproline in hypoxia-
inducible factor (HIF) alpha 
proteins 
  

Simonson et al., 2010; Buroker et al., 
2012; Ge et al., 2012; Xiang et al., 2013; 
Zeng, 2016  

EPAS1 Endothelial PAS 
domain protein 1 

 Induction of genes regulated by 
oxygen 

Scortegagna, et al., 2003; Buroker et al., 
2012; Xiang et al., 2013; Yang et al., 
2013; Newman et al., 2015; Crawford et 
al., 2016; Zeng, 2016  

PPAR-𝛼 Peroxisome 
proliferator-activated 
receptor alpha 

Expression of target genes involved 
in cell proliferation, cell 
differentiation and in immune and 
inflammation responses 
  

Törüner et al., 2004; Simonson et al., 
2010; Zeng, 2016; Heaton et al., 2016  

PPAR-𝛾 Peroxisome 
proliferator-activated 
receptor gamma 
 

Regulates adipocyte differentiation Törüner et al., 2004; Oka et al., 2006; 
Simonson et al., 2010; Mahon et al., 2016; 
Zeng, 2016 
 

ACE 

 

Angiotensin-
converting enzyme 
encoding 
 

Regulates blood pressure, salt 
concentrations, and fluid 
concentrations as part of the renin-
angiotensin system 
 

Buroker et al., 2010; Srivastava et al., 
2011; Luo et al., 2014; Zeng, 2016 
 

ASIC2 Acid sensing ion 
channel subunit 2 

Membrane ion channel; Activator 
of the calcineurin/NFAT signaling 
pathways  

Grifoni et al., 2008; Lu et al., 2009; 
Abboud and Benson, 2015; Zhou et al., 
2017; Crawford, 2019  

EDN1 Endothelin 1 Vasoconstrictor  Schiffrin, 2005; Murphy and Eisner, 2006; 
Castro et al., 2007; Deacon et al., 2010; 
Calabro et al., 2012; Bkaily et al., 2015; 
Crawford, 2019 
 
  

FBN1 Fibrillin 1 Extracellular matrix glycoprotein Powell et al., 1997; Shen et al., 2011; 
Jeppesen et al., 2012; Chen et al., 2014; 
Crawford, 2019 
  

KCNMA1 Potassium calcium-
activated channel 
subfamily M alpha 1 

Large conductance ion channel Tomas et al., 2008; Barnes et al., 2016; D. 
Brown (results unpublished); Crawford, 
2019 
  

NOX4 NADPH oxidase 4 Catalytic subunit the NADPH 
oxidase complex; Acts as an 
oxygen sensor 

Mittal et al., 2007; Li et al., 2008; Chen et 
al., 2012; Zhao et al., 2015; He et al., 
2017; Crawford, 2019 
  

P2RY6 Pyrimidinergic 
receptor P2Y6 

G-protein coupled receptor; 
Mediates inflammatory responses 

Hou et al., 1999; Nishida et al., 2008; 
Tovell et al., 2008; Nishimura et al., 2016; 
Sunggip et al., 2017; Crawford, 2019 
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PLA2G4A Phospholipase A2 
group IVA 

Catalyzes the hydrolysis of 
membrane phospholipids to release 
arachidonic acid 

Osanai et al., 1998; Handlogten et al., 
2001; Magne et al., 2001; Ait-Mamar et 
al., 2005; Crawford, 2019 
  

RCAN1 Regulator of 
calcineurin 1 

Calcium/calmodulin-dependent 
phosphatase 

Bush et al., 2004; van Rooij et al., 2004; 
Canaider et al., 2006; Grammer et al., 
2006; Crawford, 2019 
  

RGS4 Regulator G protein 
signaling 4 

Regulator/inhibitor of G-protein 
signaling 

Owen et al., 2001; Mittmann et al., 2002; 
Cho et al., 2003; Gu et al., 2010; Opel et 
al., 2015; Crawford, 2019 
  

THBS4 Thrombospondin 4 Adhesive glycoproteins that 
mediate cell-to-cell and cell-to-
matrix interactions 

Stenina et al., 2005; Gabrielsen et al., 
2007; Mustonen et al., 2012; Crawford, 
2019 

NFIA Nuclear Factor I A  Heaton et al., 2020 

ARRDC3 Arrestin domain 
containing 3 

 Oka, 2006; Zeng, 2016; Heaton et al., 
2020 
 

ROCK2 Rho associated coiled-
coil containing protein 
kinase 2 

serine/threonine kinase regulating 
cytokinesis, smooth muscle 
contraction, the formation of actin 
stress fibers and focal adhesions 

Zeng, 2016  
 

2.8 Physiological conditions in cattle resulting from PH 

2.8.1 High Mountain Disease (HMD) 

Introduction to HMD 
Certain cattle respond especially negatively to the hypoxic conditions of high altitude. As 

a result, these cattle develop PH that further progresses into a condition recognized as High 

mountain disease. This condition is one of the leading causes of morbidity and mortality for 

cattle at elevations of 1,500 m or greater (Holt and Callan, 2007). Annual incidence of HMD in 

cattle native to high altitudes is 3% to 5% (Holt and Callan, 2007). However, for non-native 

cattle relocated to high altitude, incidence of HMD increases to 10% to 40% of cattle (Grover et 

al., 1963; Will et al., 1970).  

Economics of HMD 
The economic impact of HMD on high altitude beef production systems has not been 

extensively characterized, but there are studies that have attempted to quantify the annual losses 

resulting from this condition. Holt and Callan (2007) estimated the economic losses due to HMD 
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to be about $60 million annually. However, since 2007, the economic losses may have increased 

due to our ability to better detect and diagnose HMD in cattle. Beef producers managing cattle at 

high altitudes are acknowledging HMD and its resulting economic implications due to cattle 

death loss. As a result, producers are not only investing in PAP testing their cattle, but 

considering PAP when making selection decisions or purchasing cattle (Holt and Callan, 2007; 

Kessler, 2013). Based on data from  Colorado State University Beef Improvement Center’s 

annual bull sale, bull buyers place emphasis on PAP in addition to traits such as weaning weight, 

frame score, yearling weight, calving ease, and stayability when choosing a herd bull. More 

specifically, bull buyers were willing to pay premiums for bulls with PAP scores of 46 mmHg or 

less (Kessler, 2013). The premiums for a low PAP bull often range from $2,000 to $5,000 per 

bull, offsetting some of the financial losses accrued due to cattle that succumb to HMD (Holt and 

Callan, 2007). 

PAP as an indicator of risk of HMD 

All types of PH will result in an elevated PAP, regardless of whether the manifestation of 

PH is acute or chronic. Due to this relationship, PAP has been incorporated into cattle production 

and is utilized as an indicator trait for genetic selection at high altitudes. More specifically, PAP 

is utilized to measure PH and assess an animal’s risk of developing HMD as a result (Holt and 

Callan, 2007). However, not all cattle that have an elevated PAP will develop HMD. It is 

important to recognize that PAP is a phenotype recorded in cattle in an effort to make selection 

decisions. A phenotype is dependent upon the genetics of the animal as well as the environment 

it is exposed to (Bourdon, 2000). Therefore, to fully understand PAP and its role in combatting 

HMD, the genetics underlying how the animal responds to the adversity of high altitude should 

be characterized. 
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Inheritance of HMD  

Differences in incidence of HMD have been reported between native and non-native 

cattle (Grover et al., 1963; Will et al., 1970; Holt and Callan, 2007). These findings are 

indicative of an adaptation to high altitude or a genetic propensity for cattle to survive in a 

hypoxic environment with PH. Similar conclusions have been drawn from studies in humans as 

well, further supporting the premise that differences in adaptability across different 

demographics and populations could derive from genetic differences (Maclnnis et al., 2010). 

Genes that may impact response to HMD continue to be studied in both humans and animals.  

2.8.2 Feedlot Heart Disease 

Another manifestation of PH in cattle occurs in feedlot settings. This condition, known as 

feedlot heart disease (FHD), has been observed in cattle that have never been exposed to high 

altitudes (Jensen et al., 1976; Pringle et al., 1991; Malherbe et al., 2012). The symptoms of FHD 

resemble those of HMD, leading many to wonder if the cardiopulmonary changes as a result of 

PH are the same. Research the epidemiology and physiology of FHD is scarce. In 1976, HF 

resulting from FHD was reported to impact 2.85 out of every 10,000 cattle (Jensen et al., 1976). 

Further, Neary et al. (2016) reported an increase in incidence of FHD from year 2000 to 2012, 

when adjusting for period of feedlot placement, risk category, sex, age, feedlot, and death loss 

due to other conditions such as digestive disorders. In contrast to the incidence of FHD reported 

by Jensen et al. in 1976, Neary et al. (2016) reported that incidence of FHD in 2012 increased to 

1.08 per 1,000 cattle. Upon further investigation, it was concluded that feedlot cattle treated for 

bovine respiratory disease (BRD) were three times more likely to succumb to HF in the feedlot. 

While death loss due to FHD is not as prevalent as digestive disorders or respiratory disease, the 
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increased prevalence of HF resulting from the condition is costly for the beef industry as half of 

the deaths reported occurred after 19 weeks in the feedlot (Neary et al., 2016).  

Despite quantifying the increased incidence of FHD, management strategies to detect cattle 

experiencing the condition and administer treatment for the condition have yet to be 

characterized. It is speculated that, like HMD, PAP would be the best indicator of risk of 

developing FHD since both derive from PH in susceptible cattle. However, in a feedlot setting, 

PAP testing cattle is not only costly but labor-intensive due to the immense volume of cattle in 

feedlots (T.N. Holt, personal communication). Further research needs to be conducted to 

determine how similar HMD and FHD are to one another and how to efficiently identify cattle 

experiencing FHD. Similar to HMD, genetics may play a role in susceptible cattle, which could 

be a less-invasive tool to determine how cattle will perform during the late-stages of finishing. 

Section 3: Sequencing Methodologies and Technologies  

3.1 Early sequencing 

Since Watson and Crick established the three-dimensional structure of DNA in 1953, the 

field of genetics has changed tremendously. However, many of the molecular breakthroughs that 

have resulted in the technologies and methodologies of next-generation sequencing, occurred 

decades after the structure of DNA had been published (Hutchison, 2007; Heather and Chain, 

2015). Despite the discovery of DNA prior to the establishment of first-generation sequencing 

technologies, it was not the first hereditary component to be sequenced. Instead, scientists 

focused the earliest sequencing efforts on RNA of small bacteria or other microorganisms. The 

small genome size accompanied with the single-stranded nature of RNA provided a less 

complicated template to cultivate the earliest sequencing strategies, which were adapted in order 

to also sequence DNA. 
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Many strategies of sequencing were developed throughout the first-generation 

sequencing era, but none were as widely adapted as Sanger’s chain-termination sequencing 

methodology, more commonly known as Sanger sequencing (Heather and Chain, 2015; Sanger 

et al., 1977a). Di-deoxy chain termination sequencing was an improvement from “plus and 

minus” sequencing as this methodology was quite inefficient and error-prone, and Maxam-

Gilbert sequencing, another methodology at the time, was laborious compared to Sanger 

sequencing (Sanger and Coulson, 1975; Sanger et al. 1977a; Sanger et al., 1977b).  

The basis of Sanger sequencing was to incorporate triphosphate analogs for each of the 

four nucleotide bases, which would each be placed in their own vesicle with a DNA template. 

The triphosphate analog corresponding to one of the four nucleotide bases terminates the DNA 

chain where that nucleotide appears in the DNA sequence. This is performed for all four 

nucleotides individually, and then the results are assessed by running the four samples in parallel 

via gel electrophoresis. After gel electrophoresis is complete, researchers would read the gel, 

assessing the distribution of bands across the four lanes to assemble the sequence (Atkinson et 

al., 1969; Sanger et al., 1977a).  

Sanger sequencing continued to be modified in the years that followed to streamline the 

procedures. Changes made to the initial protocol included altering the method of radio-labeling 

specific nucleotides in order to combine the triphosphate analogs from all four bases into a single 

tube of DNA template, thus reducing the labor leading up to gel electrophoresis. In addition to 

modifying the laboratory procedure itself, further cultivation of Sanger sequencing ultimately 

resulted in development of the first automated sequencing technology, which enabled researchers 

to sequence more complex genomes than had been possible to date (Smith et al., 1985; Heather 

and Chain, 2015).  
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The earliest automated sequencing machines, still part of the first-generation wave of 

sequencing, generated less than one kilobase of sequence from a run. However, strategies of 

shotgun sequencing allowed for contiguous reads to be aligned to one another to create longer 

read fragments for downstream applications (Anderson, 1981; Heather and Chain, 2015). The 

earliest sequencing technologies were further streamlined through the development of 

polymerase chain reaction (PCR) and other wet-laboratory techniques that more efficiently 

allowed for preparation of a purified sample prepared for sequencing. Further technological 

advances made way to automated sequencers able to sequence multiple samples in parallel. The 

ability to run many samples simultaneously allowed for researchers to begin characterizing larger 

genomes through large-scale collaborations such as the Human Genome Project (Heather and 

Chain, 2015). 

3.2 Next-generation sequencing 

The first-generation of sequencing technologies inspired the development of new 

sequencing methodologies from companies such as 454 and Solexa (Heather and Chain, 2015). 

Sequencing companies were becoming more prevalent and cultivating their own sequencers. 

Competition amongst these companies resulted in rapid improvements in technology to reduce 

sequencing costs per sample. Further, some companies succumbed to the vast competition, 

liquidating their assets or being absorbed by one of the more successful companies.  In the end, 

Illumina was most successful in meeting the demands of the scientific community throughout 

this time and continues to develop the most popular sequencing technologies available to date 

(Heather and Chain, 2015). 
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3.2.1 Sequencing by synthesis 

The most popular next-generation sequencing methodology utilizes a technology known 

as sequencing by synthesis (SBS). Sequencing by synthesis accounts for approximately 90% of 

the next-generation sequence data generated and comes in three forms of sequencing chemistry: 

pyrosequencing, sequencing by reversible termination, and sequencing by detection of hydrogen 

ions (Illumina; Ambardar et al., 2016). The SBS chemistry is designed to perform sequencing 

projects in parallel. Illumina’s newest sequencers utilize reversible termination sequencing, a 

technology that not only allows for greater throughput or sequencing capacity, but also reduces 

bias present in many prior methodologies through equal availability of reagents for all four 

nucleotides throughout the sequencing process (Ambardar et al., 2016). The overall SBS 

sequencing procedure outlined by Illumina consists of four major steps: sample or library 

preparation, cluster generation, sequencing, and data analysis. 

Library preparation 
The library preparation step can be performed utilizing a kit that contains all necessary 

reagents. The basic steps of a library preparation protocol consist of purification and 

fragmentation of the DNA template (M.D. Stenglein, J.S. Lee, and D.B. Sloan; personal 

communication) (Figure 2.3). Then one must add adapters specific to the Illumina instrument to 

be used, and through reduced cycle amplification, the sequencing binding site, sample index, and 

sequence regions complementary to the oligos on the Illumina flow cell for binding (Figure 2.4). 

This is performed for each library then they are pooled, diluted, and denatured before being 

loaded into a sequencing cartridge that contains all necessary reagents for the sequencing run. 

The cartridge and flow cell are then loaded into the sequencer. 
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Figure 2.3 An overview of the library preparation and pre-sequencing steps for an Illumina 
sequencing run. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.4 An example of a DNA fragment with ligated adapter components and illustration of 
how each read is generated for a paired-end sequencing run. The DNA template or DNA insert is 
the sequence region of interest. The DNA template is flanked on either side by ligated adapters 
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added via reduced cycle amplification. Within the adapter region is the sequencer binding site 
(P5 or P7) that is compatible with one of the two oligos within the lanes of the Illumina flow cell. 
Next to the binding site is the specific index that is unique to one of the animals being 
sequenced. I7 and I5 correspond to Illumina’s index 1 and index 2 information, respectively. 
Samples can be dual indexed like is pictured above (I7 and I5 indexes) or single indexed (just I7 
is present). Next to the index within the adapter region is the sequence primer binding region 
(SP). The sequencing primer binding region is where the polymerase binds to generate each of 
the reads. Each of the arrows denote a different read generated for each template strand through a 
paired-end sequencing run. Read 2 and read 4 allow for the index information in the adapter 
sequences to be read such that samples may be segregated from the pooled sequence data after 
the run is complete. Read 1 and read 3 are the paired-end reads of the DNA template, which are 
ideal for a complex sequencing project because the mid-read overlap allows for increased 
accuracy of called base pairs in the middle of the DNA template. 

 

Cluster generation 
The second phase of the Illumina sequencing pipeline is known as cluster generation. 

Cluster generation is the process in which each DNA fragment is isothermally amplified. During 

this process, one of the two varieties of oligos present within a lane of the glass flow cell will 

bind to the complement sequence that was added to the DNA fragment via reduced cycle 

amplification. A polymerase will then bind at the sequencing binding site to create a complement 

of the hybridized fragment. The sample is then denatured, and the original fragment that was 

bound to the flow cell is washed off. Bridge amplification then occurs using the newly formed 

read, which will bind to the complement oligo within the lane creating a bridge-like shape. The 

polymerase then copies the strand, creating a double-stranded bridge. The two reads are then 

denatured, becoming two unique reads that will be used as templates the next cycle of bridge 

amplification. This is repeated for millions of sequencing clusters for clonal amplification of all 

DNA fragments. Next, all reverse strands generated are washed off of the flow cell and an 

inhibitor is bound to the 3’ end of each read to prevent unwanted priming of the remaining 

forward reads. 
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Sequencing 
 Upon completion of cluster generation, the actual sequencing process begins. All reverse 

reads are removed and the 3’ ends of the forward reads are bound by an inhibitor to avoid 

unwanted priming. The sequencing process begins with the addition of the first primer 

corresponding to the complement of the nucleotide present on the strand starting with the 

sequencing binding site. This process consists of fluorescently tagged nucleotides being added to 

the growing chain one at a time based on the sequence of the template. At the end of each cycle, 

a fluorescent light is emitted and imaged to collect the sequence data. The number of cycles is 

used to determine the read length generated. During the sequencing process, hundreds of 

millions of clusters are sequenced in parallel. 

After sequencing the first read, the read product is washed off of the flow cell so that a 

new read may be generated from the template. The index 1 read primer is hybridized to the same 

read template. This read is generated from the index 1 primer region to the oligo on the flow cell 

and then washed off. Currently, the 3’ end of the read is de-protected to re-enable binding to the 

flow cell. The read will form a bridge again by binding the 3’ end of the template to the 

complement oligo on the flow cell. At this point the index 2 read is generated and extends to the 

opposite oligo forming another double-stranded bridge. These strands are denatured to form 

individual linear strands. The original forward read is washed off the flow cell and the 3’ end of 

the remaining reverse read is blocked to prevent unwanted primer binding. This entire process is 

then repeated for the reverse read. Sequencing of the forward and reverse strands of multiple 

DNA template strands is repeated hundreds of millions of times to generate multiple reads that 

correspond to all fragments in the prepared pooled library of DNA templates. 
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Data analysis 
Upon completion of sequencing, reads can be demultiplexed using the unique index 

identifiers that were added in the library preparation steps. The demultiplexing process consists 

of taking pooled reads that were in the pooled library and sorting them into individual libraries 

again through the unique index information that was ligated to the fragments of each unique 

DNA library during the reduced cycle amplification step. Each sample can then be trimmed and 

assembled based on the overlap of reads to form contiguous reads (contigs) and scaffolds. These 

contigs and scaffolds can then be aligned to a reference genome or utilized to form a de novo 

assembly for further downstream analysis (Figure 2.5). 

 

Figure 2.5 The basic steps of sequence data analysis. 

 

3.2.3 SNP discovery 

The process of determining where variants or polymorphisms exist within a genome is 

known as SNP discovery. During this process, sequence samples are compared to a reference 

genome in order to detect base pair differences (Nielsen et al., 2018). Due to the immense size of 

mammalian genomes such as the bovine genome, which is 2.7 gigabases in size, robust software 

and computer programs are utilized to compare sequences and call variants. Many of these SNP 
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discovery tools such as CLC Genomics Workbench (Qiagen Bioinformatics) or Genome 

Analysis Toolkit (GATK) (McKenna et al., 2010) allow for case-control comparisons in order to 

detect SNP between two separate populations in a study. 

After SNP have been identified through comparisons of sequences, SNP must be 

investigated further in order to determine which genes contain SNP and what the functional 

consequences of each SNP may be. Tools such as the Ensembl Variant Effect Predictor (VEP) 

searches across the Ensembl database to determine functional consequences of a variant. The 

VEP indicates if a variant is an insertion, deletion, copy number variant, or structural variant. 

Further, the VEP will provide information about the genes and transcripts affected by a variant, 

the variant location, and the consequences of a variant on protein structure. The data provided 

about each variant provides insight into the physiological impact that a SNP may have on a gene 

and the overall function of an organism (Yates et al., 2020). 

The final step of SNP discovery is validation of SNP. This is conducted by comparing 

genotypes at each discovered SNP to a trait of interest in a population of thousands of animals. 

The SNP that are concordant across a particular phenotype for the desired trait are considered to 

be valid and can proceed to be utilized for selection purposes. Conversely, SNP that are not 

concordant across animals with a particular phenotype would be eliminated from the pool of 

discovered SNP (Kumar et al., 2012).  

Within livestock industries, SNP discovery is important for genomic selection. More 

specifically, SNP related to phenotypes of interest can be included on a SNP genotyping panel 

for genomic selection. Performing SNP discovery allows for relevant SNP to be incorporated 

into genetic evaluations and considered in breeding decisions.  



45 
 

3.2.4 Multi-omics analyses 

Some traits within the beef industry are difficult to select for or against due to their 

polygenic nature (Moser et al., 2015). Further, genetic markers or polymorphisms associated 

with a complex trait often impact other traits, often resulting in pleiotropy. The overlap of loci 

that regulate multiple phenotypes can result in indirect selection for undesirable traits (Saatchi et 

al., 2014). It is difficult to parse loci related to multiple phenotypes in order to understand gene 

regulation and interactions for a single phenotype. However, through incorporation of multiple -

omics technologies, a biological or physiological systems approach may be implemented to 

better understand genetic mechanisms underlying phenotypic expression for a given trait and 

create gene network models that depict how different genes and transcripts interact with one 

another to express a particular phenotype (Cánovas et al., 2014; Nguyen et al., 2018).  

Multi-omics analyses benefit animal breeding in several ways. First, through combining -

omics data, genes that may contain SNP valuable for genotyping may be easily identified and 

implemented in breeding programs. In addition, compilation of differential expression data and 

DNA sequence differences may be utilized to construct networks depicting how involved and 

interactive different loci are in phenotypic expression. In conjunction, pleiotropic effects may be 

closely evaluated in order to make genetic improvement for one trait while reducing the impact 

of selection against a separate economically relevant trait that shares an inverse relationship 

(Cánovas et al., 2014; Nguyen et al., 2018).  

3.2.5 Genomics in livestock management 

Commercial SNP genotyping has been widely adapted in the dairy and beef industries. 

Many breed associations are utilizing SNP panels to gather genomic information to enhance the 

accuracy of EPDs for genetic improvement. The resulting estimates of animal performance 
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incorporating SNP information is recognized as a genomic-enhanced EPD (GEPD). These 

measures are calculated by summing all marker effects across the genome that are associated 

with the phenotype of interest to form a direct genomic breeding value (DGV). These DGV are 

then combined with the phenotypic and pedigree information commonly utilized to calculate a 

standard EPD (Gray et al., 2012; Saatchi et al., 2012; Rolf et al., 2014). 

Addition of genomic information into genetic evaluations enhances the amount of 

information included in calculations. This addition of genomic information results in increased 

accuracy of selection as it aids in measuring the “true” relationships between individuals. This 

resulting increase in accuracy will be more beneficial for traits that are expensive to measure or 

for young animals with no phenotypic observations yet (Garrick, 2011). In addition, selection 

intensity can be increased through incorporation of genomic information. Evaluation of livestock 

based on GEPDs will have an increased accuracy, meaning that producers can select fewer 

replacements with greater confidence (Weller, 2016). Increasing selection intensity also 

increases the rate of genetic change, resulting in faster genetic improvement (Bourdon, 2000). 

Alongside increasing selection intensity, incorporation of genomic information also reduces the 

generation interval, increasing the rate of genetic change (Weller, 2016; Bourdon, 2000). 

Overall, incorporation of genomic information into genetic evaluations increases accuracy and 

efficiency of selection. 

There are multiple methods to calculate DGV for incorporation into genetic evaluations 

of livestock: (1) inclusion DGV estimations as a correlated trait; (2) inclusion of DGV as 

separate EPD measures; and (3) incorporating GEPD estimates into a selection index (Rolf et al., 

2014). All of these methodologies are two-step methods. However, direct or single-step methods 

have also been developed for estimation of GEPD. Direct calculations of GEPD utilize a 
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genomic relationship matrix rather than calculating marker effects first. A genomic relationship 

matrix takes into consideration identity by descent, identity by state, and pedigree relationships. 

This genomic relationship matrix is included in a best linear unbiased prediction (BLUP) 

analysis to calculate GEPD (Misztal et al., 2009).  

Section 4: 1000 Bulls Genome Project 

The cost of next-generation sequencing has decreased substantially over the past decade. 

However, it is still thousands of dollars to sequence a population of cattle to a depth that would 

allow for detection of novel variants. Therefore, consortia are being established for a number of 

species. Through these consortia, researchers can submit sequence data from their research to 

obtain membership and gain access an expansive database of sequence data. One such 

consortium is the 1000 Bulls Genome Project, which consists of sequence data from modern 

dairy and beef cattle breeds (Hayes and Daetwyler, 2019). 

The 1000 Bulls Genome Project aims to build a database of sequence variant genotypes 

from modern cattle breeds for genome-wide association studies (GWAS) and genomic prediction 

and enable the use of this data to identify mutations that may compromise cattle health, welfare, 

or productivity. Membership into this consortium is obtained through submission of a sequence 

data that satisfies the requirements indicated by the steering committee. Once membership has 

been obtained, members can download sequence data for utilization in future research endeavors. 

The data contained within this consortium has mutations or variants already identified, which can 

reduce the amount of work needed to perform GWAS or SNP discovery analyses (Hayes and 

Daetwyler, 2019).  
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Section 5: Conclusions 

 Pulmonary hypertension is increasing in prevalence within the beef industry, impacting 

not only high-altitude beef systems but also finishing cattle in the feedlots. With the recent 

cultivation of a PAP EPD, selection decisions can be made to combat PH in cattle. However, 

many challenges still exist as the beef industry work towards reducing incidence of PH. The first 

challenge to overcome is to determine if HMD and FHD are similar conditions that can be 

selected for in the same manner. In addition, the PAP EPD needs to continue to be enhanced in 

order to improve accuracy due the limited amount of PAP observations recorded annually. 

Through discovering SNP associated with PAP, a GEPD may be calculated that increases the 

accuracy of estimates of animal merit for genetic improvement across ranches at high altitudes.  
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CHAPTER 3 

SUMMARY OF STUDY ANIMALS AND EXPERIMENTAL DESIGN 

3.1 Introduction  

This chapter describes the steers utilized in studies described in chapters 4 through 6.  

3.2 Animal selection 

Animals utilized in chapters 4 to 6 of this dissertation were cared for according to the 

guidelines of the Colorado State University Animal Care and Use Committee (16-6397A & 19-

8429A).  

Steers from the 2016 calf crop at the Colorado State University Beef Improvement Center 

(BIC; John E. Rouse Angus) underwent initial pulmonary arterial pressure (PAP) testing at 10-12 

months of age. Bulls and steers within the 2016 CSU BIC calf crop had an average PAP of 40.32 

+ 1.22 mmHg. In order to be included in this study, steers had to have an initial PAP 

measurement within one standard deviation of the population mean (41.38 + 0.46 mmHg; low 

risk of developing high mountain disease).  

Forty steers were allocated to one of four treatment groups (n=10/group). The four groups 

were high altitude stockered and grain-finished (Grain_HA), high altitude stockered and grass-

finished (Grass_HA), high altitude stockered and moderate altitude grain-finished 

(Ext_Mod_Stocker), moderate altitude stockered and grain-finished (Norm_Mod_Stocker). 

Stratification of the forty steers into finishing systems was performed based on their PAP, 

weight, and age such that the four groups were similar (Table 3.1). 
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Table 3.1 Mean PAP, age, and weight did not differ amongst the four treatment groups. 

Finishing System 
Mean PAP 
(mmHg) 

Mean Age 
(Days) 

Mean Weight  
(kg) 

Grass_HA 
(n=10) 

41.40 + 0.96A 313.00 + 5.62A 253.56 + 5.67A 

Grain_HA 
(n=10) 

41.20 + 0.96A 314.00 + 5.62A 270.90 + 5.67A 

Ext_Mod_Stocker 
(n=10) 

41.90 + 0.96A 309.00 + 5.62A 258.55 + 5.67A 

Norm_Mod_Stocker 
(n=10) 

41.00 + 0.96A 304.00 + 5.62A 262.18 + 5.67A 

A Within each column, different superscripts represent statistically significant differences of the 
means between management groups for the specified trait (P<0.05). 

3.3 Experimental design 

The stockering phase of this study commenced in April of 2017. All groups that were 

stockered at high altitude (Grain_HA, Grass_HA, Ext_Mod_Stocker) were maintained at BIC at 

an elevation of 2,150 m. Groups that were stockered at moderate altitude (Norm_Mod_Stocker) 

were managed at the Eastern Colorado Research Center (ECRC) at an elevation of 1,420 m. 

Steers stockered at the BIC were grazed in pastures comprised of timothy and bromegrass, while 

steers stockered at the ECRC were grazed in pastures consisting of western wheat, sand 

bluestem, blue grama and prairie sandreed grasses.  

In August 2017, steers were administered a finishing ration, which consisted of 13.35% 

crude protein and 1.47% net energy. Ext_Mod_Stocker steers were relocated from the BIC to 

ECRC in early August for finishing. Grain_HA and Grass_HA steers were finished at the BIC on 

the same ration as the Norm_Mod_Stocker and Ext_Mod_Stocker management groups. 

Finishing rations were administered from August 2017 until steers were harvested (Figure 3.1). 
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Figure 3.1 Summary of experimental design from allocation to treatment in February 2017 until 
harvest of each finishing system.  

Pulmonary arterial pressure was recorded on each steer every six to eight weeks per the 

procedure described by Holt and Callan (2007) with the final measurement occurring within two 

weeks of harvest. Body weights were also recorded at these times. Once the average body weight 

for steers in a finishing system reached approximately 544 kg, steers were harvested within 30 

days. Steers assigned to the Ext_Mod_Stocker and Norm_Mod_Stocker management groups 

were harvested in December of 2017. The Grain_HA steers were harvested in March 2018, and 

the Grass_HA steers were harvested in October 2018. After harvest, hot carcass weight (HCW), 

backfat thickness, yield grade (YG), ribeye area (REA), kidney, pelvis, and heart fat (KPH), 

marbling score (MARB), and quality grade (QG) were recorded. 

3.4 Carcass quality grades 

Quality grades were recorded on all steers after harvest according to the United States 

Department of Agriculture grading scale (Figure 3.2). The Norm_Mod_Stocker group had the 

highest quality grades of all finishing systems with 33.3% of the steers in that finishing system 
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graded prime-, 44.4%graded choice, and 22.2% graded choice-. Conversely, Grass_HA steers 

exhibited the lowest carcass quality grades with 20% graded choice-, 20% graded select+, 40% 

graded select-, and 20% graded standard+. All Ext_Mod_Stocker and Grain_HA steers were 

graded within the categories of choice and select.  

 

Figure 3.2 Comparison of quality grade across finishing systems. 
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CHAPTER 4 

DIFFERENTIATING THE ROLE OF ALTITUDE AND FINISHING STRATEGY ON 

PULMONARY ARTERIAL PRESSURE THROUGHOUT THE STOCKER AND FINISHING 

PHASES OF BEEF PRODUCTION 

4.1 Introduction 

High mountain disease (HMD) has challenged high altitude beef production systems for 

decades with reported herd death losses ranging from 2% to 25%. High mountain disease is 

characterized as remodeling of the cardiopulmonary system induced by pulmonary hypertension 

resulting from high altitude (>1,500 m) exposure (Jensen et al., 1976; Holt and Callan, 2007). 

This tissue remodeling results in increased cardiac strain and often culminates in right-sided 

heart failure (Jensen et al., 1976; Thomas et al., 2018). However, HMD is not the only 

pulmonary hypertension (PH) related disease that impacts the beef industry. 

A similar condition known as feedlot heart disease (FHD) has been a concern for cattle 

from all altitudes since being discovered in the 1970’s (Jensen et al., 1976). Research to date has 

suggested that while both HMD and FHD arise from vascular remodeling as a result of PH, they 

are separate conditions (Neary et al., 2015; Krafsur et al., 2017; Krafsur et al., 2019). Rapid 

weight gain that occurs in the latter stages of finishing cattle can result in late-term feedlot death 

(Neary et al., 2015; Neary et al., 2016; Krafsur et al., 2017; Krafsur et al., 2019). 

 The best indication of an animal’s risk of HMD or FHD is a mean pulmonary arterial 

pressure measurement (PAP), which provides insight regarding the pulmonary health status (i.e. 

pulmonary hypertension) of an animal. A PAP of 49 mmHg or greater indicates that the animal 

is hypertensive and has a high risk of developing heart failure (Holt and Callan, 2007). Research 

to date has characterized HMD and FHD, but there is still much to learn about these conditions 
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(Neary et al., 2015; Thomas et al., 2018; Krafsur et al., 2019). Little is known about the impact 

of both altitude and finishing strategy on PAP simultaneously during stocker and finishing 

phases of cattle production. Therefore, the objective of this study was to evaluate the impact of 

finishing strategy and altitude on PAP throughout the stocker and finishing phases of beef 

production. 

4.2 Materials and methods 

Steers in the study population were selected, allocated, and managed according to the 

experimental design outlined in chapter three of this Dissertation. 

Upon completion of data collection, automated model selection was performed using the 

dredge command from the multi-model inference (MuMIN) package in R (Bartoń, 2013; R core 

team, 2013). Effects considered in model selection predicting PAP were finishing strategy, 

period, and finishing strategy*period where period represents the time between the start of the 

study and the PAP measurement. This approach accounted for different sampling dates given 

steers were at multiple locations (Figure 4.1). Further, some finishing systems took longer to 

reach the average weight suitable for harvest, so coding the variable as Period allowed for 

comparisons of those pre-harvest time points. Period 1 corresponded to the initial PAP measure 

that was recorded prior to steers being assigned to a finishing system, and Period 5 corresponded 

to the final PAP measurement recorded within two weeks of harvest. A random effect of ID 

nested within finishing system was also fit for this model in order to account for variation across 

steers within the same finishing system. The best model for the analysis was selected based on 

the lowest corrected Akaike information criterion estimate (AICc). The final model included 

finishing system and Period as fixed effects.  
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Figure 4.1 An outline of the experimental design that depicts how sampling time points were 
grouped into periods for comparisons across management groups. 
 
 The final model was fit using the linear mixed-effects (lmer) function from the linear 

mixed-effects using Eigen and S4 (lme4) package in R (Bates et al., 2015). Multiple covariance 

structures were evaluated with the model in order to determine the best covariance structure for 

the data. The first model was fit with a compound symmetry covariance structure, the second 

model was fit with unstructured covariances, and the third model was fit with an autoregressive 

covariance structure. The best covariance structure was determined based on which of the three 

models had the lowest AICc. Based on this criterion, covariances were fit as unstructured. 

Pairwise estimated marginal means (emmeans) analyses were performed to compare PAP across 

periods and to compare PAP across finishing strategies for each period (Searle et al., 1980). 

Statistical significance was accepted when probability greater than F was < 0.05. 
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4.3 Results 

PAP did not differ between finishing systems at any Period within this study (Figure 4.2). 

Further, PAP did not differ across Periods 1 through 4 of the study. However, Period 5 PAP 

measurements differed from Periods 1 through 4 regardless of finishing strategy. 

 

Figure 4.2 The fluctuations of PAP over time by finishing system, where A and B denote 
differences in the least square means between Periods. 

4.4 Discussion 

 Mean pulmonary arterial pressures were similar among finishing systems at each period 

of this study. The Ext_Mod_Stocker steers that were moved from high altitude to moderate 

altitude mid-study for finishing still exhibited increased PAP as the study progressed. These 

results parallel the findings of Neary et al. (2015) that moved Angus steers from high altitude to 

moderate altitude for finishing, which exhibited an increased PAP over time regardless of 

altitude. Based on these results, neither finishing ration nor altitude appeared to be the primary 

cause of elevated PAP during the stocker and finishing phases of production. It appeared that 

both altitude and finishing ration contributed to the development of PH.  
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 Over the duration of this study, PAP increased. However, PAP measurements recorded in 

periods 1 to 4 did not differ from one another and suggested these steers were at moderate risk of 

developing heart failure. Periods 1 to 3 occurred during the stockering phase of production in 

which all steers were consuming pasture or hay. Therefore, during periods 1 to 3 altitude was the 

only management challenge imposed on the steers. During this time, the groups at high altitude 

exhibited slight increases in PAP, but they were not different from the Norm_Mod_Stocker 

steers that were at moderate altitude throughout the study. These results are congruent with those 

of Neary et al. (2015). At younger stages of production, cattle did not exhibit steep fluctuations 

in PAP. 

Period 4 was when PAP was recorded from steers consuming energy dense finishing 

ration. The HA_Grass steers were the only group that was not fed the finishing ration, yet they 

had PAP measurements similar to the steers on study during Period 4. It is hypothesized that, 

when Period 4 PAP measurements were recorded, steers had not yet gained enough weight to 

elevate PAP in contrast to those PAP measures recorded in Period 5. Neary et al. (2015) 

demonstrated that PAP increased regardless of altitude as steers progressed through the finishing 

phase. Krafsur et al. (2019) observed obesity-induced onset of PH progressing to heart failure, 

that paralleled the change from the stocker to finishing stages of production. However, the PAP 

measurements recorded in Period 4 did not agree with the findings of Neary et al. (2015) and 

Krafsur et al. (2019). This could be due to Period 4 measurements being recorded early enough 

in the finishing phase to not capture the increases of PAP at the expense of increased rate of gain. 

However, these increases in PAP during the finishing stage were observed in the Period 5 PAP 

measurements.  
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 Mean pulmonary arterial pressure measurements recorded in Period 5 (pre-harvest) were 

greater than those recorded in Periods 1 to 4 regardless of finishing system. Based on Holt and 

Callan (2007), these steers were at high risk of developing heart failure. All steers had high PAP 

measurements pre-harvest regardless of finishing strategy or altitude. Ext_Mod_Stocker steers 

had a Period 5 PAP that was elevated compared to all other periods, which coincides with the 

conclusion of Neary et al. (2015) that alveolar hypoxia continued once steers were relocated to a 

moderate altitude for finishing. Therefore, altitude was not the only factor impacting PAP. This 

was also demonstrated through the changes from PAP in the Norm_Mod_Stocker group. Moving 

steers to moderate altitude and still observing elevated PAP measures ruled out hypobaric 

hypoxia as the only contributing factor of elevated PAP. Jensen et al. (1976) hypothesized that 

hypoventilation contributed to increased PAP. Hypoventilation may result from increased fat 

deposition or rumen size that compresses the lungs and results in rapid shallow breathing (Jensen 

et al., 1976, Krafsur et al., 2019). 

 In conclusion, steers exhibited elevated PAP over the finishing phase of production 

regardless of finishing strategy or altitude. These findings suggested that, while management and 

environment contributed to the development of PH, they were not the only cause of increased 

PAP and increased risk of developing heart failure.  
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CHAPTER 5 

CHARACTERIZING THE IMPACT OF ALTITUDE AND FINISHING SYSTEM ON MEAN 

PULMONARY ARTERIAL PRESSURE AND CARCASS CHARACTERISTICS IN ANGUS 

CATTLE 

5.1 Introduction 

 High mountain disease (HMD) is a cardiopulmonary condition observed in cattle grazing 

at elevations greater than 1,500 m (Holt and Callan, 2007; Crawford et al., 2017; Pauling et al., 

2018). The condition is caused by pulmonary hypertension (PH) resulting from chronic exposure 

to environmental hypoxia (Hecht et al., 1962). Cattle intolerant of hypoxic conditions often 

undergo pulmonary vascular remodeling, cardiopulmonary insufficiencies, right heart failure, 

and death. High mountain disease impacts three to five percent of cattle at high altitude on 

average, but some ranchers have reported death losses as great as twenty-five percent (Holt and 

Callan, 2007; Neary et al., 2013ab; Bruns et al., 2015). 

 Once cattle start showing clinical signs of PH, there are limited therapeutic remedies. The 

best indicator of risk of HMD is mean pulmonary arterial pressure (PAP) measured in cattle 

managed at high altitudes. Mean pulmonary arterial pressure is a veterinary procedure measured 

by threading a catheter containing a transducer through the jugular vein and right side of the 

heart in order to measure pressure in the pulmonary artery. This measurement indicates the 

animal’s risk of developing HMD. Low-risk cattle have PAP measurements less than or equal to 

41 mmHg, moderate-risk cattle will have a PAP ranging from 42 to 48 mmHg, and high-risk 

cattle have a PAP of 49 mmHg or greater (Holt and Callan, 2007). However, PAP is influenced 

by many factors such as age, breed, and altitude (Enns et al., 1992; Holt and Callan, 2007; Neary 

et al., 2015a, b; Crawford et al., 2017). 
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 Symptoms similar to HMD have been observed in a portion of feedlot cattle never 

exposed to high altitude. The phenomenon of pulmonary hypertension occurring in feedlot cattle 

is described as feedlot heart disease (FHD). This disease can cause late-term feedlot death 

(Jensen et al., 1976; Neary et al., 2015ab). Common symptoms of HMD and FHD include, but 

are not limited to, lethargy, jugular vein distension, submandibular edema, and ascites (Holt and 

Callan, 2007; Krafsur et al., 2019). However, it is speculated that the conditions reflect distinct 

etiologies owing to the differing management practices that exist between ranches and feedlots. 

Krafsur et al. (2019) reported that the physiology of FHD is characterized as significant 

pathophysiologic remodeling of the left ventricle and pulmonary venous circulation 

accompanying right heart and pulmonary arterial remodeling. Whereas, HMD has been 

described as pulmonary hypertension and right ventricular dysfunction (Rhodes, 2005).  

Similarities and differences between HMD and FHD are still being investigated. Therefore, the 

objective of this study was to evaluate the influence of altitude and finishing ration on mean 

pulmonary arterial pressure and carcass characteristics.  

5.2 Materials and methods 

 The steers utilized in this study were selected, managed, and allocated to treatments 

according to the procedures outlined in chapter 3. Steers were assigned to one of four groups: 

high altitude stockered and grain-finished (HA_Grain), high altitude stockered and grass-finished 

(HA_Grass), high altitude stockered and moderate altitude grain-finished (Ext_Mod_Stocker), 

moderate altitude stockered and grain-finished (Norm_Mod_Stocker).   

The traits of interest for this study were pre-harvest PAP (PAP recorded within two 

weeks of harvest), hot carcass weight (HCW), backfat thickness (BF), kidney, pelvis, and heart 

fat (KPH), ribeye area (REA), yield grade (YG), marbling score (MARB), and quality grade 
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(QG). The carcass metrics were recorded by employees at the harvest facilities. Prior to analysis, 

MARB was converted from a categorical variable to a numerical marbling score utilizing the 

guidelines outlined by the Centralized Ultrasound Processing Laboratory (2007). 

Upon completion of data collection, automated model selection was performed using the 

dredge command from the multi-model inference (MuMIN) package in R (R core team, 2013) 

with statistical significance being accepted when probability greater than F was <0.05. Random 

effects considered in model selection predicting pre-harvest PAP were initial PAP and age, and 

finishing system was included as a fixed effect. Random effects included for selecting the most 

appropriate model for HCW, backfat, KPH, REA, YG, and MARB were harvest age, initial PAP, 

pre-harvest PAP. Finishing system was included as a fixed effect for the model selection of the 

aforementioned carcass characteristics. The resulting models for dependent variables pre-harvest 

PAP, HCW, backfat, KPH, REA, MARB and YG (Table 5.1) were fitted. The estimated 

marginal means were utilized to compare means across finishing systems for pre- harvest PAP 

and carcass characteristics.  

 

 

 

 

 

Table 5.1. Final model selected for each trait of interest utilizing the multi-model inference 
function in R, where an X signifies inclusion in the model for the dependent variable in that row. 

Dependent 
Variable 

Initial PAP 
(mmHg) 

Age 
(days) 

Finishing 
System 

Harvest 
Age 

(days) 

Pre-harvest 
PAP 

(mmHg) 

Adjusted 
R2 

Pre-harvest 
PAP 

X  X   0.012 
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HCW   X   0.670 
Backfat   X X  0.552 

KPH X  X   0.939 
REA    X  0.188 
YG   X X X 0.544 

MARB   X X  0.487 

5.3 Results 

 Finishing system influenced pre-harvest PAP as HA_Grass steers had a PAP that was 

greater than Ext_Mod_Stocker steers (P=0.006) as well as Norm_Mod_Stocker steers 

(P=0.024). Steers in the HA_Grain finishing system were similar to the other three finishing 

systems when comparing pre-harvest PAP measures (Table 5.2). 

 Hot carcass weights (HCW) varied across finishing strategies (P<0.05). Specifically, 

steers stockered and grass finished at high altitude (HA_Grass) exhibited the lowest mean HCW 

compared to all other finishing systems (P<0.001) Steers of the Ext_Mod_Stocker treatment 

exhibited the second lowest HCW (P<0.001). Conversely, HA_Grain steers had the greatest 

HCW of the finishing systems (P<0.001) with Norm_Mod_Stocker steers exhibiting the second 

largest HCW (P<0.001) (Table 5.2). 

 Steers stockered and grain finished at high altitude (HA_Grain) exhibited an average 

carcass backfat thickness greater than Ext_Mod_Stocker (P= 0.002) and Norm_Mod_Stocker 

(P=0.03) steers. Backfat did not differ between HA_Grass steers and all other finishing systems. 

Furthermore, Ext_Mod_Stocker and Norm_Mod_Stocker steers did not exhibit differences in 

backfat (Table 5.2). 

 Yield grades differed such that HA_Grain steers exhibited a greater average yield grade 

than Ext_Mod_Stocker (P=0.001) and Norm_Mod_Stocker (P=0.021) steers, but not HA_Grass 

steers. Differences in yield grade were not significant when comparing HA_Grass, 

Ext_Mod_Stocker, and Norm_Mod_Stocker steers to one another (Table 5.2). 
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Steers in the HA_Grain finishing system had the greatest KPH (P>0.001). However, no 

differences in KPH were observed between the HA_Grass, Ext_Mod_Stocker, and 

Norm_Mod_Stocker finishing systems (Table 5.2).  

 Ribeye area differed across finishing systems such that Ext_Mod_Stocker steers had an 

average ribeye area that was larger than that of HA_Grain (P<0.001) and HA_Grass (P<0.001) 

steers, but not Norm_Mod_Stocker steers. The steers that were stockered and grass finished at 

high altitude (HA_Grass) had the smallest ribeye area (P<0.001; Table 5.2). 
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Table 5.2 Mean pre-harvest PAP measurement, hot carcass weight (HCW), backfat, yield grade (YG), ribeye area (REA), kidney, 
pelvic, and heart fat (KPH),  and number of days on study for each finishing system. 

Finishing System 

Mean  
Pre-harvest 

PAP  
(mmHg) 

Mean HCW 
(kg) 

Mean 
Backfat (cm) 

Mean YG  
Mean REA 

(cm2) 
Mean KPH 

(%) 
Mean MARB 

Days 
on 

study 

HA_Grass 
(n=10) 

54.80 + 1.54A 322.50 + 3.08A 0.89 + 0.23AB 2.85 + 0.24AB 27.69 + 0.41A 1.26 + 0.16A 7.46 + 1.84AB 605 

HA_Grain 
(n=10) 

52.60 + 1.80AB 421.84 + 3.58B 1.42 + 0.05A 3.45 + 0.04A 29.97 + 0.48B 2.99 + 0.03B 6.27 + 0.30AB 407 

Ext_Mod_Stocker 
(n=10) 

46.60 + 1.93B 339.74 + 3.83C 0.76 + 0.18B 2.79 + 0.18B 32.77 + 0.51C 1.73 + 0.12A 4.01 + 1.10A 307 

Norm_Mod_Stocker 
(n=10) 

47.60 + 1.95B 382.38 + 3.86D 0.91 + 0.18B 2.94 + 0.18B 31.24 + 0.51BC 1.72 + 0.13A 5.41 + 1.10B 307 

ABCD Within each column, different superscripts represent differences between finishing system means for the specified trait (P<0.05) 
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Ext_Mod_Stocker carcasses had lower marbling scores than Norm_Mod_Stocker 

carcasses (P<0.05), but not HA_Grass or HA_Grain carcasses (Table 3). However, 

Ext_Mod_Stocker carcasses had better quality grades than those of the Grass_HA group (Figure 

1). Norm_Mod_Stocker carcasses had the best quality grades, with all carcasses being graded 

prime-, choice, or choice-. Conversely, Grass_HA carcasses had the poorest quality grades of all 

finishing systems. Collectively, the majority of carcasses, regardless of finishing ration, were 

graded within the range of choice+ to choice- (Figure 5.1).  

 

Figure 5.1 Comparison of quality grade across finishing systems. 

5.4 Discussion 

 All finishing strategies within this study exhibited PAP measurements that would classify 

the steers as either moderate or high risk of developing pulmonary hypertension (Holt and 

Callan, 2007). However, the HA_Grass steers exhibited a higher average PAP than either 

Ext_Mod_Stocker or Norm_Mod_Stocker steers. HA_Grain steers were intermediate between 
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HA_Grass steers and the steers finished at moderate altitude when comparing pre-harvest PAP 

measures. The groups finished at moderate altitude had an average PAP consistent with a 

moderate risk of developing pulmonary hypertension, while the steers residing at high altitude 

for the duration of the study had an average PAP consistent with a high risk of developing 

pulmonary hypertension (Holt and Callan, 2007). Based on these results, it would appear that 

duration of exposure to altitude may pose a greater impact than finishing ration since the steers at 

high altitude took longer to reach finishing weights and were exposed to hypoxic conditions for 

the entire study.  

It is important to note that within the HA_Grass finishing group, there was a single steer 

that had a pre-harvest PAP of 115 mmHg, which increased the average PAP of that group of 

steers. The HA_Grain finishing group had a steer with a pre-harvest PAP of 87 mmHg, which 

increased the average PAP of that group, but not to the same extent as the data point in the 

HA_Grass population. However, these data were included in the analysis due to their biological 

importance in addressing how steers respond to finishing strategies and altitude. Further, the 

percentage of the overall population that had “extreme” PAP measures was 2 out of 40 or 5% of 

the study population which is consistent with the percentage of cattle impacted by HMD in beef 

operations according to Holt and Callan (2007). Overall, it appears that duration of exposure to 

altitude may influence PAP more than finishing ration. Additional studies with larger numbers of 

cattle representing ranches across the western United States and Great Plains region may 

elucidate whether altitude is truly more impactful on PAP than finishing diet. 

HCW differed across all finishing systems. HA_Grain steers had the heaviest carcasses, 

and HA_Grass steers had the lightest carcasses. These results agree with previous studies that 

concluded that when the amount of forage in the diet increases during the backgrounding and 
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finishing phases, HCW decreases (Cox et al., 2006; Pordomingo et al., 2012). Furthermore, 

Pordomingo et al. (2012) report that these changes are likely due to reduced average daily gain 

related to consumption of a predominantly forage-based diet. However, this was one of the first 

studies to evaluate carcass characteristics of Angus steers managed at moderate and high 

altitudes. Based on these results, it appears that finishing diet poses a greater impact on HCW 

than finishing altitude.  

 HA_Grain steers had greater backfat than steers finished at moderate elevation and 

HA_Grass steers. HA_Grass steers had similar backfat thicknesses to those finished at moderate 

elevation. Results for backfat thickness disagree with findings by Prodomingo et al., who 

concluded that as hay or forage content increased in the diet, backfat thickness decreased (2012). 

The elevated backfat thickness on HA_Grain carcasses may be attributed to scheduling conflicts 

with the abattoir that harvested the steers. If these steers were harvested two weeks sooner, we 

speculate that the backfat thickness recorded for HA_Grain steers would be comparable to that of 

the other finishing systems. 

HA_Grain steers had greater YG than either group of steers grain finished at moderate 

elevation, but not HA_Grass steers. Contrary to the results from this study, Bennet et al. (1995), 

Camfield et al. (1999), and Cox et al. (2006) reported that pasture-fed steers exhibited lower YG 

than grain fed steers. A study by Garmyn et al. (2010) reported that grain finished heifers have 

greater YG than grass finished heifers. However, Bennett et al. (1995) reported no differences in 

yield grade between grass finished and grain finished steers. The finding that HA_Grass steers 

did not have lower YG than all grain finished groups on this study does not agree with results 

from previous studies and could indicate that high altitude impacts carcass quality. While little 

research has been conducted to evaluate the impact of altitude on carcass characteristics, a study 
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by Panjono et al. (2008) reported that altitude impacted meat color in Hanwoo cattle but saw no 

difference in YG between lowland and highland raised cattle. 

 HA_Grain steers had greater KPH than all other finishing systems.  Cox et al. (2006) 

reported similar KPH between grass and grain finished steers. However, Garmyn et al. (2010) 

found that heifers finished on a concentrate grain-based diet had greater KPH than heifers 

finished on pasture. The fundamental difference between the studies by Cox et al. (2006) and 

Garmyn et al. (2010) was the gender within each study. This is relevant because research has 

established that there were differences in fat deposition between steers and heifers (Berg et al., 

1979). Due to the two-week delay in harvesting HA_Grain steers, it is likely that KPH was 

increased during this time. Further studies should be conducted to validate whether HA_Grain 

steers would have increased KPH if harvested sooner. However, based on these results, it does 

not appear that altitude affected KPH. 

 HA_Grass steers had smaller REA than HA_Grain and Ext_Mod_Stocker, but not 

Norm_Mod_Stocker steers. These results agree with the report from Pordomingo et al. (2012), 

who suggested that grass finished cattle had smaller REA than steers finished on grain. However, 

Pordomingo et al. (2012) did not evaluate changes in altitude in addition to comparison of 

finishing strategies. Panjono et al. (2008) reported no difference in REA between lowland and 

highland finished cattle, but this study was conducted with Hanwoo cattle, whereas this 

dissertation only involved Angus cattle. 

Ext_Mod_Stocker steers had lower MARB than Norm_Mod_Stocker steers, but not 

steers finished at high altitude. While HA_Grain steers produced the heaviest carcasses with the 

greatest amount of backfat, they did not differ from the other finishing systems when comparing 

MARB. Muir (1998) reported inconsistencies across multiple experiments evaluating HCW, 
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backfat, and MARB in multiple breeds of cattle. Results compiled suggested that the differences 

in marbling following grain finishing may be attributed to how cattle deposit fat and put on 

weight more than feed type. Therefore, factors such as breed, genetics, and how these measures 

were recorded could account for variability in MARB records. Further, Muir (1998) 

recommended using caution when comparing meat quality traits associated with fatness due 

inconsistent relationships between marbling and other fatness traits in experiments.  

 Results from this study were concordant with previous literature, which reported that 

quality grade was greater in grain finished beef than pasture raised beef (Bennet et al., 1995; 

Camfield et al., 1999; Cox et al., 2006). HA_Grass steers had the poorest quality grades of all 

finishing systems, while Norm_Mod_Stocker steers had the best quality grades. 

Ext_Mod_Stocker steers had poorer quality grades than HA_Grain steers, indicating that altitude 

did not impact quality grade. This coincides with findings from Panjono et al. (2008) which 

concluded that differences did not exist between lowland and highland finished Hanwoo cattle. 

However, little research has been conducted to evaluate the impact of altitude on quality grade in 

Angus cattle.  

In summary, increased PAP was observed at ranches at both high and moderate altitudes, 

impacting PAP as well as carcass quality.   
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CHAPTER 6 

EXAMINATOIN OF ARTERIAL AND VENOUS BLOOD PARAMETERS ACROSS 

ALTITUDES AND FINISHING STRATEGIES THROUGHOUT THE STOCKER AND 

FINISHING PHASES OF PRODUCTION 

6.1 Introduction 

 Cattle managed at altitudes greater than 1,500 m are exposed to reduced barometric 

pressures and reduced oxygen availability, resulting in pulmonary hypertension (PH). Select 

cattle that have been maintained at high altitude undergo pulmonary vascular remodeling as a 

result of PH and develop a condition known as High Mountain Disease (HMD). High Mountain 

Disease impacts 3% to 5% of cattle native to high altitude regions (Holt and Callan, 2007). 

However, incidence in cattle from altitudes less than 1,500 m that are relocated to high altitude 

production settings can be as great as 10% to 40% (Grover et al., 1963; Will et al., 1970). The 

best indicator of an animal’s risk of developing HMD is measuring mean pulmonary arterial 

pressure (PAP) at 1 year of age, which has become a common practice for many ranchers with 

cattle at high altitudes (Holt and Callan, 2007). 

 A condition similar to HMD has been discovered in cattle in feedlots. These cattle were 

never exposed to high altitude production settings, indicating that PH may have a greater impact 

on the beef industry than previously estimated. This condition, known as Feedlot Heart Disease 

(FHD), while similar to HMD when evaluating symptoms, is a separate manifestation of PH 

(Jensen et al., 1976; Pringle et al., 1991; Malherbe et al., 2012; Neary et al., 2016; Krafsur et al., 

2017; Krafsur et al., 2019). The rapid weight gain associated with finishing results in the 

development of PH in cattle that have been in feedlots for 19 weeks or more (Neary et al., 2016). 

This condition, like HMD, can result in congestive heart failure prior to harvest. The annual 
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death losses due to FHD are estimated to impact 1.08 out of 1,000 cattle as of 2012, following a 

trend of increased incidence since 1976 (Jensen et al., 1976; Neary et al., 2016). Despite 

quantifying the increased incidence of FHD, management strategies to detect cattle experiencing 

the condition and administer treatment for the condition have yet to be characterized. It is 

speculated that, like HMD, PAP would be a strong indicator of risk of developing FHD since 

both derive from PH in susceptible cattle. However, in a feedlot system, PAP testing cattle is not 

only costly but labor-intensive due to the immense concentration of cattle (T.N. Holt, personal 

communication).  

 In addition to PAP, blood parameters such as blood gases and electrolytes have been 

utilized in human medicine for diagnostic purposes (Singh et al., 2013). However, these 

parameters have not been tested widely in cattle exposed to hypoxic conditions that may result in 

development of HMD or FHD in susceptible cattle. A study in 2013 reported arterial blood gas 

data in calves up to six months of age as well as cows 24 to 27 months of age (Neary et al., 

2013). Results from that study indicated that cattle were developing respiratory alkalosis. Despite 

these findings, PAP remains the best indicator of an animal’s risk of developing either HMD or 

FHD. Additional research evaluating blood gas parameters and their utilization in distinguishing 

cattle at the greatest risk of developing HMD or FHD needs to be conducted in order to 

determine if these parameters can enhance the way veterinarians approach these two conditions.  

 In addition to understanding blood parameters to enhance risk assessment of cattle 

exposed to hypoxic conditions that may challenge their cardiopulmonary health, it is unknown 

whether altitude, rapid weight gain, or a combination of both pose a greater impact on 

susceptible cattle. Therefore, the objective of this study was to evaluate the impact of altitude 
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and finishing system on arterial and venous blood parameters throughout the stocker and 

finishing phases of beef production.   

6.2 Materials and Methods 

6.2.1 Experimental Design 

 Steers in the study population were selected, allocated, and managed according to the 

experimental design outlined in chapter III of this Dissertation. At each sampling period, arterial 

and venous blood samples were collected in a 2mL syringe. Arterial blood samples were 

collected from an auricular artery in the right ear. Venous blood samples were collected from the 

pulmonary artery. Arterial and venous blood gases and electrolytes were measured chute-side 

immediately using the Abaxis i-Stat 1 (Abaxis Inc., Union City, CA) blood gas analyzer for 

veterinary diagnostics. Arterial blood gases were measured using CG8+ cartridges, and venous 

blood gases were measured using CG4+ cartridges for the i-Stat 1 analyzer. These two cartridge 

varieties measured 21 blood chemistry, gases, and electrolytes (Table 6.1).  

Table 6.1 Blood parameters measured from arterial and venous blood samples for each steer 
presented as an abbreviation and corresponding definition.  

Arterial blood parameters 

(CG8+ cartridge) 

Venous blood parameters 

(CG4+ cartridge) 

PaCO2- arterial partial pressure of CO2 PvCO2- venous partial pressure of CO2 

pH pH 

TaCO2- total CO2 in arterial blood TvCO2- total CO2 in venous blood 

saO2- arterial oxyhemoglobin saturation svO2- venous oxyhemoglobin saturation 

PaO2- arterial partial pressure of O2 PvO2- venous partial pressure of O2 

HCO3- blood bicarbonate HCO3- blood bicarbonate 

BE- base excess BE- base excess 

Hct- hematocrit Lac- blood L-lactate 

Hgb- hemoglobin 
 

Na- sodium concentration 
 

iCa- ionized calcium concentration 
 

K- potassium concentration  
 

Glu- arterial blood glucose concentration 
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In addition to the arterial blood gas parameters above, partial pressure of oxygen in the 

alveoli was calculated (Equation 6.1). Then the alveolar-arterial oxygen pressure gradient was 

calculated (Equation 6.2) in order to determine if a ventilation-perfusion mismatch reduced 

concentrations of oxygen in arterial blood (Neary et al., 2013; T.N. Holt, personal 

communication). 

Equation 6.5 Partial pressure of oxygen in the alveoli (mmHg), where FiO2 is the fraction of 
inspired air (0.21),  BP is barometric pressure (mmHg),  pH2O is the water vapor pressure at 
body temperature (52.4 mmHg at 39C), PaCO2 (mmHg), and RQ is the respiratory quotient 
(0.9) (Tim Holt, personal communication).  

PAO2 = FiO2 (BP – pH2O) – (PaCO2/RQ) 
 

Equation 6.6 Alveolar-arterial oxygen pressure gradient (mmHg), which is the differential 
between the partial pressure of oxygen in the alveoli (PAO2; mmHg) and the partial pressure of 
oxygen in the arterial blood (PaO2; mmHg)  

A-a O2 pressure gradient = PAO2 – PaO2 

6.2.2 Statistical Analysis 

Arterial Samples 

Model selection was performed using the dredge command multi-model inference 

(MuMIN) package in R statistical software (Bartoń, 2013; R core team, 2013). This function fit 

all possible models, including sampling period (Period), finishing system, and the interaction 

between finishing system and period as possible fixed effects. Period corresponded to the time 

that blood gas measurements were collected for each finishing system and resulted from the 

recoding of the number of days the steers were on study prior to harvest. This recoding from 

days on study to Period accounted for different dates of sampling for the same time point since 

steers were at multiple locations (Figure 6.1). Further, some finishing systems took longer to 

reach the average weight suitable for harvest, so coding the variable as Period allowed for 
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comparisons of those pre-harvest time points. Period 0 was the initial time point in which steers 

were selected for the study based on their PAP measurements, but no blood parameters were 

collected on this date. Period 1 corresponded to the first sampling recorded after steers were 

assigned to a finishing system, and Period 4 corresponded to the final sampling within two weeks 

of harvest. A random effect of ID nested within finishing system was also fit for this model to 

account for variation across steers within the same finishing system, but it was not detected as 

significant during model selection. The best model for the analysis was selected based on the 

lowest corrected Akaike information criterion estimate (AICc). The final model included 

finishing system and Period as fixed effects. 

 

Figure 6.1 An overview of the experimental design including sampling dates. Note that Period 3 
was the first sampling timepoint after the finishing phase had commenced. 
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 Not all steers were sampled at every time point. Some steers had poor sample quality on 

the day of collection, which resulted in missing or unusable data. Further, one steer died between 

sampling periods 3 and 4. The number of steers sampled and included for analysis for each 

sampling period has been summarized in Table 6.2. 

Table 6.2 A summary of the number of animals included in analysis for each finishing system by 
sampling period, where nT represents the total number of steers prior to that sampling period, and 
ne represents the number of steers excluded for a given sampling period for each finishing 
system. The “Reason” column for each period lists why a steer was excluded from the analysis 
for that time point. 

 Period 1 Period 2 Period 3 Period 4 

Finishing System nT ne Reason nT ne Reason nT ne Reason nT ne Reason 

Grass_HA 10 0 -- 10 1 
Poor 

sample 
quality 

10 0 -- 10 0 -- 

Grain_HA 10 0 -- 10 0 -- 10 0 -- 10 0 -- 

Ext_Mod_Stocker 10 0 -- 10 0 -- 10 1 
Poor 

sample 
quality 

10 0 -- 

Norm_Mod_Stocker 10 0 -- 10 0 -- 10 0 -- 10 1 Died* 

* The steer death was unrelated to this study according to the results of a necropsy performed by a board-certified 
pathologist. 

 
The final model for each blood parameter was fit using the linear mixed effects (lme) 

function from the linear mixed effects using Eigen and S4 (lme4) package in R (Bates et al., 

2015). Multiple covariance structures were evaluated for each model in order to determine the 

best covariance structure for the data. The first model was fit with a compound symmetry 

covariance structure, the second model was fit with unstructured covariances, and the third 

model was fit with an autoregressive covariance structure. The best covariance structure was 

determined based on which of the three models had the lowest AICc. Based on this criterion, 



94 
 

covariances were fit as unstructured. Pairwise estimated marginal means (emmeans) analyses 

were performed to compare each blood parameter across Periods, between finishing systems, or 

across finishing system for each Period, depending on the variables included in the most suitable 

model for each dependent variable (Searle et al., 1980). Statistical significance was accepted 

when probability greater than F was < 0.05. 

Venous Samples 

The statistical methods for the venous blood parameters were the same as those used for 

the arterial blood gases. However, the periods for which data was analyzed differed. Venous 

blood parameter data was lost for periods 1 and 3 due to a software update of the iStat1 

equipment. However, since periods 2 and 4 accounted for the end of the stocker and finishing 

phases respectively, the data was still informative in addressing the objectives of this research. 

Therefore, the same statistical methods as the arterial blood parameter analysis were followed for 

periods 2 and 4 of the venous data.  

6.3 Results 

6.3.1 Arterial Blood Parameters 

 Automated model selection revealed that the most relevant models to describe each blood 

parameter (Table 6.3). The interaction of finishing system and period was included in the model 

equations for Hb, Hct, HCO3, tCO2, pO2, BE, Na, iCa, and Glu. Finishing system and period 

were both included in the model for sO2, but not the interaction between the two fixed effects. 

Finishing system was the only effect included in the models for pH and pCO2. However, period 

but not finishing system was informative when estimating K.  
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Table 6.3 The most appropriate models for each arterial blood parameter based on the lowest 
corrected AIC value. 

Blood Parameter 
(y) 

Finishing System 
(x) 

Period 
(x) 

Finishing System*Period 
(x) 

pH X 
  

Hb X X X 

Hct X X X 

HCO3 X X X 

TaCO2 X X X 

PaCO2 X 
  

PaO2 X X X 

saO2 X X 
 

BE X X X 

Na X X X 

iCa X X X 

K 
 

X 
 

Glu X X X 

  
The Ext_Mod_Stocker steers had a greater (P=0.0041) arterial pH than the 

Norm_Mod_Stocker steers, but not Grass_HA or Grain_HA steers (Table 6.4). Grass_HA and 

Grain_HA steers had arterial pH measurements that were intermediate to the 

Norm_Mod_Stocker and Ext_Mod_Stocker finishing systems, having similar pH measurements 

to both groups that were finished at moderate altitude.  

 

 

 
 
 
 



96 
 

Table 6.4 Arterial pH changes by finishing system regardless of sampling period expressed as 
mean + standard error. 

Finishing System Arterial pH 

Grass_HA 7.531 + 0.009AB 

Grain_HA 7.541 + 0.009AB 

Ext_Mod_Stocker 7.555 + 0.010A 

Norm_Mod_Stocker 7.521 + 0.009B 

  

Arterial hemoglobin measures fluctuated throughout the four sampling periods (Table 

6.5). Norm_Mod_Stocker steers had a lower (P<0.0239) arterial hemoglobin in period 1 than all 

other finishing systems at this time point. However, all steers, regardless of finishing strategy, 

had similar hemoglobin levels for sampling period 2. Ext_Mod_Stocker steers had lower 

(P<0.0185) hemoglobin levels in period 3 than Grass_HA and Grain_HA steers but not 

Norm_Mod_Stocker steers, which were intermediate between the high-altitude finishing systems 

and the Ext_Mod_Stocker steers. Ext_Mod_Stocker steers had lower (P<0.0205) arterial 

hemoglobin measures in period 4 than all other finishing systems. Norm_Mod_Stocker steers 

had arterial hemoglobin levels that were greater (P=0.0205) than the Ext_Mod_Stocker steers 

and similar to the Grass_HA steers in period 4. Grain_HA steers had greater (P<0.0063) period 4 

arterial Hb levels than Ext_Mod_Stocker steers and Norm_Mod_Stocker steers. Arterial Hb in 

Grass_HA steers for period 4 was similar to that of Norm_Mod_Stocker and Grain_HA steers, 

but greater (P=0.0003) than Ext_Mod_Stocker steers. 
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Table 6.5 Change in arterial hemoglobin over time by finishing system expressed as mean + 
standard error.  

 Arterial Hb  

(g/L) 

Finishing System Period 1 Period 2 Period 3 Period 4 

Grass_HA 9.210 + 0.305A 9.440 + 0.322A 9.530 + 0.305A 10.980 + 0.305AB 

Grain_HA 9.970 + 0.305A 9.750 + 0.305A 9.750 + 0.305A 11.960 + 0.305A 

Ext_Mod_Stocker 9.920 + 0.305A 9.620 + 0.322A 8.250 + 0.305B 9.190 + 0.305C 

Norm_Mod_Stocker 7.970 + 0.305B 9.550 + 0.305A 8.800 + 0.305AB 10.490 + 0.322B 

 
 In period 1, Norm_Mod_Stocker steers had a lower (P< 0.014) Hct than all other 

finishing systems on study (Table 6.6). All finishing systems had similar Hct measurements in 

period 2. Grain_HA and Grass_HA steers had similar Hct measures in period 3 that were larger 

(P<0.022) than those of Ext_Mod_Stocker steers, but not Norm_Mod_Stocker steers. 

Norm_Mod_Stocker steers had similar Hct measures to all other finishing systems in period 3. 

Ext_Mod_Stocker steers had the lowest (P<0.018) period 4 Hct of all finishing systems. 

Norm_Mod_Stocker steers had a larger (P=0.018) Hct than Ext_Mod_Stocker steers, but a 

smaller (P=0.007) Hct than Grain_HA steers. Grass_HA steers had a period 4 Hct greater 

(P=0.0003) than the Ext_Mod_Stocker steers, but similar to the Grain_HA and 

Norm_Mod_Stocker steers.  
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Table 6.6 Change in arterial hematocrit over time by finishing system expressed as mean + 
standard error. 

 Arterial Hct 

(%) 

Finishing System Period 1 Period 2 Period 3 Period 4 

Grass_HA 27.400 + 0.902A 27.800 + 0.951A 28.000 + 0.902A 32.300 + 0.902AB 

Grain_HA 29.300 + 0.902A 28.700 + 0.902A 28.700 + 0.902A 35.200 + 0.902A 

Ext_Mod_Stocker 29.200 + 0.902A 28.300 + 0.951A 24.300 + 0.902B 27.000 + 0.902C 

Norm_Mod_Stocker 23.500 + 0.902B 28.100 + 0.902A 25.900 + 0.902AB 30.900 + 0.951B 

 
Arterial HCO3 levels differed between finishing systems over time (Table 6.7). In periods 

1and 2, Norm_Mod_Stocker steers had lower arterial HCO3 levels than all other steers on study 

(P<0.0006). Grass_HA, Grain_HA, and Ext_Mod_Stocker steers had similar arterial HCO3 

levels for periods 1 and 2. All steers had similar bicarbonate measures in periods 3 and 4.  

Table 6.7 Change in arterial bicarbonate over time by finishing system expressed as mean + 
standard error. 

 Arterial HCO3 

(meq/L) 

Finishing System Period 1 Period 2 Period 3 Period 4 

Grass_HA 27.400 + 0.949A 32.300 + 1.000A 27.300 + 0.949A 28.800 + 0.949A 

Grain_HA 28.900 + 0.949A 32.900 + 0.949A 28.100 + 0.949A 27.600 + 0.949A 

Ext_Mod_Stocker 29.400 + 0.949A 33.100 + 1.000A 27.500 + 0.949A 25.700 + 0.949A 

Norm_Mod_Stocker 23.500 + 0.949B 25.100 + 0.949B 26.400 + 0.949A 26.500 + 1.000A 

 
Total arterial CO2 differed between finishing systems over time (Table 6.8). 

Norm_Mod_Stocker steers had a reduced TaCO2 compared to all other finishing systems 

(P<0.0253) in periods 1 and 2, which had similar TaCO2 measurements to one another. 

Grain_HA steers had a greater period 3 TaCO2 than Norm_Mod_Stocker steers (P=0.038) but not 

Grass_HA or Ext_Mod_Stocker finishing systems. Further, Grass_HA and Ext_Mod_Stocker 
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steers had TaCO2 levels similar to the Norm_Mod_Stocker steers in period 3. Grass_HA steers 

had a greater (P=0.046) TaCO2 than Ext_Mod_Stocker steers for period 4. Grain_HA and 

Norm_Mod_Stocker had TaCO2 levels similar to both Grass_HA and Ext_Mod_Stocker steers.  

Table 6.8 Changes in total carbon dioxide in arterial blood by finishing system over time 
expressed as mean + standard error.  

 TaCO2  

(mmHg) 

Finishing System Period 1 Period 2 Period 3 Period 4 

Grass_HA 28.400 + 0.966A 33.300 + 1.018A 29.200 + 0.966AB 30.000 + 0.966A 

Grain_HA 29.000 + 0.966A 33.700 + 0.966A 31.000 + 0.966A 28.800 + 0.966AB 

Ext_Mod_Stocker 30.400 + 0.966A 33.900 + 1.018A 28.500 + 0.966AB 26.400 + 0.966B 

Norm_Mod_Stocker 24.500 + 0.966B 26.100 + 0.966B 27.300 + 0.966B 27.600 + 1.018AB 

 
Arterial PCO2 differed between finishing systems at high altitude and finishing systems at 

moderate altitude (Table 6.9). Grass_HA and Grain_HA steers had similar PaCO2 measurements. 

Ext_Mod_Stocker and Norm_Mod_Stocker also had similar PaCO2, regardless of sampling 

period. The high-altitude finishing groups had greater PaCO2 than those finished at moderate 

altitudes (P<0.015). 

Table 6.9 Changes in partial pressure of carbon dioxide of arterial blood by finishing system 
expressed as mean + standard error. 

Finishing System 
PaCO2 

(mmHg) 

Grass_HA 34.700 + 0.514A 

Grain_HA 34.600 + 0.508A 

Ext_Mod_Stocker 32.500 + 0.514B 

Norm_Mod_Stocker 30.900 + 0.514B 
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 Grass_HA and Grain_HA steers had lower (P<0.0197) PaO2 measurements in period 1 

than Norm_Mod_Stocker steers (Table 6.10). Grain_HA steers had PaO2 measures in period 2 

less (P=0.0114) than Norm_Mod_Stocker steers. Ext_Mod_Stocker steers had a PaO2 

measurement that was intermediate between the aforementioned groups in periods 1 and 2. In 

period 3, Ext_Mod_Stocker steers had greater PaO2 than either Grass_HA or Grain_HA finishing 

groups (P<0.0059). Norm_Mod_Stocker steers had greater PaO2 than Grass_HA steers in period 

3 (P=0.0047), but not Grain_HA or Ext_Mod_Stocker steers. Grain_HA and Grass_HA steers 

had similar PaO2 in period 4 as did Ext_Mod_Stocker and Norm_Mod_Stocker steers. However, 

Ext_Mod_Stocker and Norm_Mod_Stocker steers had greater PaO2 in period 4 than Grass_HA 

and Grain_HA steers (P<0.0018). 

Table 6.10 Changes in arterial partial pressure of O2 over time by finishing system expressed as 
mean + standard error. 

 PaCO2 

(mmHg) 

Finishing System Period 1 Period 2 Period 3 Period 4 

Grass_HA 50.10 + 3.05A 56.90 + 3.22AB 50.10 + 3.05A 54.50 + 3.05A 

Grain_HA 43.60 + 3.05A 53.50 + 3.05A 55.60 + 3.05AB 56.00 + 3.05A 

Ext_Mod_Stocker 54.40 + 3.05AB 55.60 + 3.22AB 70.00 + 3.05C 71.90 + 3.05B 

Norm_Mod_Stocker 62.80 + 3.05B 67.00 + 3.05B 64.80 + 3.05BC 78.10 + 3.22B 

 
 Arterial sO2 differed between finishing systems (Table 6.11). Grass_HA and Grain_HA 

steers had similar saO2 levels for periods 1 through 4. Ext_Mod_Stocker and 

Norm_Mod_Stocker steers had similar saO2 levels for all four periods. However, 

Ext_Mod_Stocker and Norm_Mod_Stocker steers had greater saO2 than Grass_HA and 

Grain_HA steers for periods 1 through 4 (P<0.004). 
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Table 6.11 Changes in Arterial saturated oxygen over time by finishing system expressed as 
mean + standard error. 

 SaO2 

(mmHg) 

Finishing System Period 1 Period 2 Period 3 Period 4 

Grass_HA 84.80 + 1.39A 90.50 + 1.43A 89.10 + 1.39A 90.70 + 1.40A 

Grain_HA 84.60 + 1.39A 90.30 + 1.40A 88.90 + 1.39A 90.50 + 1.39A 

Ext_Mod_Stocker 90.00 + 1.39B 95.70 + 1.43B 94.30 + 1.39B 95.90 + 1.40B 

Norm_Mod_Stocker 90.50 + 1.39B 96.10 + 1.40B 94.70 + 1.39B 96.40 + 1.42B 

 
 Mean alveolar-arterial oxygen pressure gradient differed by period (Table 6.12). The 

period 4 oxygen pressure gradient measurements were less (P<0.0398) than those of periods 1 

and 2. The mean alveolar-arterial oxygen pressure gradient in period 3 was similar to the 

measurements from all other sampling periods. 

Table 6.12 Mean alveolar-arterial oxygen pressure gradient by period expressed as mean + 
standard error. 

Period 
A-a O2 Pressure Gradient 

(mmHg) 

1 24.10 + 1.37A 

2 20.60 + 1.41A 

3 19.80 + 1.37AB 

4 15.30 + 1.39B 

 
 Arterial BE changed over time for each finishing system (Table 6.13). 

Norm_Mod_Stocker steers had a lower (P<0.0001) BE than Grass_HA, Grain_HA, and 

Ext_Mod_Stocker steers for periods 1 and 2. In periods 3 and 4, all finishing systems had similar 

BE measurements.  
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Table 6.13 Changes in arterial base excess over time for each finishing system expressed as 
mean + standard error.  

 Arterial BE 

(meq/L) 

Finishing System Period 1 Period 2 Period 3 Period 4 

Grass_HA 4.20 + 1.09A 10.44 + 1.15A 4.40 + 1.09A 6.10 + 1.09A 

Grain_HA 6.20 + 1.09A 11.10 + 1.09A 6.10 + 1.09A 4.40 + 1.09A 

Ext_Mod_Stocker 6.80 + 1.09A 11.44 + 1.15A 5.20 + 1.09A 3.10 + 1.09A 

Norm_Mod_Stocker 0.30 + 1.09B 2.30 + 1.09B 3.80 + 1.09A 3.67 + 1.15A 

 
 Norm_Mod_Stocker steers had greater (P<0.0239) arterial Na levels than all other 

finishing systems for periods 1 and 2 (Table 6.14). Norm_Mod_Stocker and Ext_Mod_Stocker 

steers had similar period 3 Na levels. Norm_Mod_Stocker, Grass_HA, and Grain_HA steers had 

similar period 3 Na levels. However, Ext_Mod_Stocker steers had greater (P<0.0172) arterial Na 

than Grass_HA and Grain_HA steers. In period 4, Grass_HA steers had the largest (P<0.0001) 

Na measure of all finishing systems. Grain_HA steers had a period 4 Na measure that was less 

(P<0.0001) than the Grass_HA steers, but greater (P<0.0002) than the Ext_Mod_Stocker and 

Norm_Mod_Stocker finishing systems. 

Table 6.14 Change in arterial sodium over time by finishing system expressed as mean + 
standard error. 

 Arterial Na 

(mmol/L) 

Finishing System Period 1 Period 2 Period 3 Period 4 

Grass_HA 137 + 0.615A 138 + 0.648A 137 + 0.615A 152 + 0.615A 

Grain_HA 138 + 0.615A 139 + 0.615A 138 + 0.615A 141 + 0.615B 

Ext_Mod_Stocker 137 + 0.615A 138 + 0.648A 141 + 0.615B 136 + 0.615C 

Norm_Mod_Stocker 143 + 0.615B 141 + 0.615B 139 + 0.615AB 137 + 0.648C 
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 Arterial ionic calcium measures were similar among finishing systems for periods 1 

through 3 (Table 6.15). In period 4, Ext_Mod_Stocker steers had an iCa level that was less than 

that of the Grain_HA steers (P=0.0083), but not Grass_HA or Norm_Mod_Stocker steers. 

Grain_HA steers had an iCa level in period 4 that was similar to that of the Grass_HA and 

Norm_Mod_Stocker finishing systems. Similarly, the Norm_Mod_Stocker and Grass_HA 

finishing systems had similar iCa measures in period 4.  

Table 6.15 Changes in arterial ionic calcium over time by finishing system expressed as mean + 
standard error. 

 Arterial iCa 

(mmol/L) 

Finishing System Period 1 Period 2 Period 3 Period 4 

Grass_HA 1.081 + 0.030A 1.057 + 0.031A 1.086 + 0.030A 1.125 + 0.030AB 

Grain_HA 1.107 + 0.030A 0.986 + 0.030A 1.024 + 0.030A 1.155 + 0.030AC 

Ext_Mod_Stocker 1.125 + 0.030A 1.022 + 0.031A 1.030 + 0.030A 1.020 + 0.030B 

Norm_Mod_Stocker 1.033 + 0.030A 1.032 + 0.030A 1.011 + 0.030A 1.114 + 0.031ABC 

 

 Arterial Glu differed between finishing systems over the four sampling periods (Table 

6.16). Glucose levels in period 1 differed such that Norm_Mod_Stocker steers had greater 

(P=0.0194) Glu levels than Grass_HA steers, but not Grain_HA or Ext_Mod_Stocker steers, 

which were intermediate between the two groups. All finishing systems had similar Glu 

measures for period 2. Ext_Mod_Stocker steers had a greater (P<0.0451)  Glu level than 

Grass_HA and Norm_Mod_Stocker steers in period 3. Grain_HA steers were similar to all other 

finishing systems when comparing Glu in period 3. In period 4, Grain_HA, Ext_Mod_Stocker, 

and Norm_Mod_Stocker steers had similar Glu levels, which were larger (P<0.0001) than the 

Glu measure recorded for the Grass_HA finishing system. 
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Table 6.16 Changes in arterial glucose over time by finishing system expressed as mean + 
standard error. 

 Arterial Glu 

(mmol/L) 

Finishing System Period 1 Period 2 Period 3 Period 4 

Grass_HA 79.40 + 2.44A 75.90 + 2.57A 77.90 + 2.44A 70.90 + 2.44A 

Grain_HA 85.10 + 2.44AB 74.50 + 2.44A 81.20 + 2.44AB 94.90 + 2.44B 

Ext_Mod_Stocker 82.00 + 2.44AB 74.30 + 2.57A 90.00 + 2.44B 89.50 + 2.44B 

Norm_Mod_Stocker 89.60 + 2.44B 80.80 + 2.44A 80.90 + 2.44A 91.10 + 2.57B 

  
 Arterial potassium levels were similar across finishing systems, but differed by period 

(Table 6.17). In periods 1, 3, and 4 steers had similar potassium levels. However, in period 2, 

steers had lower (P<0.0019) potassium levels than in periods 1, 3, and 4.  

Table 6.17 Changes in arterial potassium by period expressed as mean + standard error. 

Period Mean Arterial K 

1 3.530 + 0.064A 

2 3.190 + 0.066B 

3 3.620 + 0.064A 

4 3.660 + 0.065A 

6.3.2 Venous Blood Parameters 

Automated model selection revealed the most relevant models to describe each venous 

blood parameter (Table 6.18). The interaction of finishing system and period was included in the 

model equations for pH, HCO3, TvCO2, BE, and Lac. Period was informative in estimated PvO2, 

but not other effects that were tested in automated model selection. Further, PvCO2 and svO2 had 

no significant effects in the best model according to corrected AIC. Despite no significant 

effects, a model was fit including period as the only fixed effect in order to depict that there were 

no differences between periods.  
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Table 6.18 The most relevant models to predict each venous blood parameter based on corrected 
AIC values. 

Blood Parameter 
(y) 

Finishing System 
(x) 

Period 
(x) 

Finishing System*Period 
(x) 

pH X X X 

HCO3 X X X 

TVCO2 X X X 

PVCO2 

   

PVO2 
 

X 
 

svO2 

   

BE X X X 

Lac X X X 

 

 Venous pH differed across sampling periods and finishing systems (Table 6.19). 

Norm_Mod_Stocker steers had a lower (P=0.0022) pH than all other steers in period 2. 

However, in period 4, all steers had similar pH measurements. 

Table 6.19 Mean venous pH by finishing system and sampling period. All values have been 
expressed as the mean + standard error. 

 Mean Venous pH 

Finishing System Period 2  Period 4  

Grass_HA 7.545 + 0.013A 7.471 + 0.013A 

Grain_HA 7.548 + 0.013A 7.487 + 0.013A 

Ext_Mod_Stocker 7.528 + 0.013A 7.463 + 0.013A 

Norm_Mod_Stocker 7.456 + 0.014B 7.475 + 0.013A 

 

Bicarbonate levels in the venous blood differed between finishing systems for periods 2 

and 4 (Table 6.20). Norm_Mod_Stocker steers had lower (P<0.0001) venous HCO3 than all 

other steers in period 2. In period 4, Norm_Mod_Stocker and Ext_Mod_Stocker steers had 

similar HCO3 concentrations that were lower (P< 0.03) than those of Grain_HA steers but not 



106 
 

Grass_HA steers. Grass_HA steers had HCO3 concentrations that were comparable to all other 

finishing systems.  

Table 6.20 Venous bicarbonate by finishing system over time expressed as mean + standard 
error. 

 Venous HCO3 
(meq/L) 

Finishing System Period 2 Period 4 

Grass_HA 14.10 + 0.71A 7.20 + 0.71AB 

Grain_HA 13.10 + 0.71A 9.20 + 0.71B 

Ext_Mod_Stocker 12.78 + 0.74A 5.67 + 0.74A 

Norm_Mod_Stocker 4.33 + 0.74B 6.33 + 0.74A 

 
 Total venous CO2 differed between finishing systems for each sampling period (Table 

6.21). Levels of TvCO2 mirrored the results for venous HCO3 such that Norm_Mod_Stocker 

steers had lower (P<0.0001) TvCO2 than all other steers in period 2. In period 4, 

Norm_Mod_Stocker and Ext_Mod_Stocker steers had TvCO2 levels similar to one another and to  

Grass_HA steers, but less (P<0.0311) than Grain_HA steers. Further, Grass_HA steers and 

Grain_HA steers had TvCO2 measurements that were similar to one another.  

Table 6.21 Total CO2 in venous blood for each finishing system by period. Measures have been 
expressed as mean + standard error. 

 TvCO2 
(mmHg) 

Finishing System Period 2 Period 4 

Grass_HA 37.9 + 0.65A 32.1 + 0.65AB 

Grain_HA 36.8 + 0.65A 33.9 + 0.65B 

Ext_Mod_Stocker 37.0 + 0.69A 30.7 + 0.69A 

Norm_Mod_Stocker 29.6 + 0.69B 31.2 + 0.69A 
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 Partial pressure of CO2 in the venous blood did not differ between finishing systems or 

sampling periods (Table 6.22). All PvCO2 measures were similar to one another. 

Table 6.22 Venous partial pressure of CO2 over the two sampling periods expressed as mean + 
standard error. 

Sampling Period 
PVCO2 

(mmHg) 

Period 2 41.7 + 0.69A 

Period 4 42.0 + 0.69A 

 
 Partial pressures of O2 in the venous blood differed between sampling periods but not 

finishing systems (Table 6.23). There was a greater (P=0.0387) mean PvO2 recorded for steers in 

period 4 than in period 2. 

Table 6.23 Partial pressure of O2 in the venous blood by sampling period expressed as mean + 
standard error. 

Sampling Period 
PVO2 

(mmHg) 

Period 2 29.9 + 0.51A 

Period 4 31.5 + 0.51B 

  
Oxyhemoglobin saturation in the venous blood did not differ by finishing system or 

sampling period (Table 6.24). The svO2 levels remained constant for periods 2 and 4. 

Table 6.24 Oxyhemoglobin saturation in venous blood samples over the two sampling periods 
expressed as mean + standard error. 

Sampling Period 
svO2 

(mmHg) 

Period 2 63.9 + 1.39A 

Period 4 63.9 + 1.39A 
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 Base excess measures in the venous blood differed between finishing systems for the two 

sampling periods (Table 6.25). In period 2, Norm_Mod_Stocker steers had a BE measure less 

(P<0.0001) than that of all other finishing systems. Ext_Mod_Stocker and Norm_Mod_Stocker 

steers had similar period 4 BE levels to each other as well as to steers in the Grass_HA finishing 

system. Grain_HA steers had a greater (P<0.0332) BE than Norm_Mod_Stocker and 

Ext_Mod_Stocker steers, but not Grass_HA steers.  

Table 6.25 Venous base excess for each finishing system over time expressed as mean + standard 
error. 

 
Venous Base Excess 

(meq/L) 

Finishing System Period 2  Period 4 

Grass_HA 14.10 + 0.71A 7.20 + 0.71AB 

Grain_HA 13.10 + 0.71A 9.20 + 0.71B 

Ext_Mod_Stocker 12.78 + 0.74A 5.67 + 0.74A 

Norm_Mod_Stocker 4.33 + 0.74B 6.33 + 0.74A 

  
L-lactate concentrations in venous blood samples differed between finishing systems by 

period (Table 6.26). All finishing systems had comparable lactate concentrations in period 2. 

However, in period 4, Grain_HA steers had a greater (P=0.0371) venous lactate concentration 

than Grass_HA steers but not Norm_Mod_Stocker or Ext_Mod_Stocker steers. 

Norm_Mod_Stocker and Ext_Mod_Stocker steers had similar period 4 Lac levels to one another 

and were similar to both the Grass_HA and Grain_HA finishing systems. 

 

 

Table 6.26 Venous L-lactate concentrations for each finishing system over the two sampling 
periods expressed as mean + standard error. 

 Venous Lac 
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(mmol/L) 

Finishing System Period 2  Period 4  

Grass_HA 1.02 + 0.49A 1.59 + 0.49A 

Grain_HA 1.29 + 0.49A 3.49 + 0.49B 

Ext_Mod_Stocker 2.44 + 0.52A 2.51 + 0.52AB 

Norm_Mod_Stocker 2.67 + 0.52A 2.11 + 0.52AB 

 

6.4 Discussion 

6.4.1 Arterial Hematology 

pH 
Arterial pH was affected by finishing system, but not sampling period. A normal adult 

bovine arterial pH should be between 7.35 and 7.45. Cattle with arterial pH measures less than 

7.35 are considered acidotic. Conversely, cattle with an arterial pH greater than 7.45 are 

considered alkalotic (Smith et al., 2014; T.N. Holt, personal communication). Based on these 

parameters, all finishing groups were experiencing alkalosis. In order to determine the likely 

cause of alkalosis, arterial levels of PCO2 and HCO3 should be evaluated in conjunction with the 

pH estimates (T.N. Holt, personal communication). Arterial PCO2 levels for all finishing systems 

were less than 35 mmHg, indicative of respiratory alkalosis. Based on the fluctuation of HCO3 

levels throughout the four sampling periods, it appears that some steers might have been 

experiencing partially compensated respiratory alkalosis. This was evident by the slight decrease 

in HCO3 over time in an effort to decrease pH in the presence of low PCO2 levels (Prasse and 

Sexton, 1972; Patel et al., 2019; C.W. Miller, personal communication; T.N. Holt, personal 

communication). An alternative cause of alkalosis is metabolic alkalosis, but based on the low 

levels of PCO2 measured in each finishing system, it was determined that respiratory alkalosis 

was the likely cause of alkalosis in these steers (T.N. Holt, personal communication). The arterial 
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pH estimates for steers on this study were similar to those by Neary et al. (2016), who reported 

an average pH of 7.47 + 0.13 in cows 24 to 27 months of age at high altitude and concluded that 

cows were experiencing respiratory alkalosis. 

Hemoglobin 

Hemoglobin levels in arterial blood changed over time according to finishing system. 

However, despite the high-altitude exposure of the Grass_HA, Grain_HA, and Ext_Mod_Stocker 

finishing systems, hemoglobin levels were still within the normal range of 8-15 g/dL for cattle 

(Fielder, 2015a). In period 1, Norm_Mod_Stocker steers had a lower hemoglobin level than all 

other steers on study, and these steers were the only ones at moderate altitude at this time. The 

larger period 1 hemoglobin concentrations for the three finishing systems that were at the BIC 

were likely a physiologic response to increase arterial oxygen carrying capacity in the presence 

of reduced atmospheric oxygen at high altitude. However, this increase in hemoglobin also 

results in an increased binding affinity of oxygen to hemoglobin, which results in reduced 

oxygen uptake by systemic tissues (Storz, 2016; Patel et al., 2019; T.N. Holt, personal 

communication).   

In period 2, there were no differences in hemoglobin concentrations across the four 

finishing systems. Further, all finishing systems had hemoglobin measures within normal range. 

Despite being at moderate elevation, the Norm_Mod_Stocker steers exhibited an increase in 

arterial hemoglobin from period 1 to period 2. This difference in hemoglobin concentration may 

be due to season. Warmer summer months results in heat stress for most cattle, and the most 

common response to heat stress in cattle is increased respiration rate or hyperventilation 

(Kadokawa et al., 2012; Das et al., 2016). This increase in arterial hemoglobin likely resulted 

from heat stress-induced hyperventilation. 
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Period 3 was the first period in which Ext_Mod_Stocker steers were relocated to ECRC 

for finishing along with the Norm_Mod_Stocker steers. The Ext_Mod_Stocker Steers had the 

lowest hemoglobin level. Norm_Mod_Stocker steers had a hemoglobin level intermediate 

between the Ext_Mod_Stocker and Grass_HA and Grain_HA steers, which remained at high 

altitude. Like in period 1, steers at high altitude had an elevated hemoglobin level compared to 

those at moderate altitude attributable to differences in atmospheric oxygen availability (Storz, 

2016). However, all finishing systems had hemoglobin levels within the normal range. 

Ext_Mod_Stocker steers had the lowest hemoglobin level of all finishing systems in 

period 4. Grain_HA steers had hemoglobin levels greater than both finishing systems at 

moderate altitude, but not Grass_HA steers which had a hemoglobin level comparable to 

Grain_HA and Norm_Mod_Stocker steers. The period 4 hemoglobin estimates for all finishing 

systems were within the normal range for cattle. However, the differences between 

Ext_Mod_Stocker and all other finishing systems indicates that more than altitude, the resulting 

barometric pressure, and atmospheric oxygen availability impacted hemoglobin levels in these 

cattle. If the altitude of management was the sole contributor to arterial hemoglobin 

concentrations, then Ext_Mod_Stocker and Norm_Mod_Stocker steers would have had similar 

average hemoglobin levels in period 4. These findings affirm that finishing diet and rapid weight 

gain also contribute to the hypoxic state of steers and can result in PH (Jensen et al., 1976; 

Pringle et al., 1991; Malherbe et al., 2012; Neary et al., 2016; Krafsur et al., 2017; Krafsur et al., 

2019). The Norm_Mod_Stocker steers in this case exhibited signs of PH that may progress to 

FHD.    
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Hematocrit 

Results for arterial hematocrit recapitulated the findings for arterial hemoglobin 

concentration. Since hemoglobin and hematocrit relate to one another, this was a logical finding. 

Hematocrit estimates the proportion of red blood cells to total blood volume, and hemoglobin is 

contained within red blood cells. Therefore, the measures of these parameters are dependent 

upon one another. Hematocrit and hemoglobin may vary based on hydration status which alters 

plasma volume (Billett, 1990). Further, in chronic hypoxic conditions, cattle undergo 

erythrocytosis in order to increase oxygen carrying capacity as was discussed with arterial 

hemoglobin levels (Storz, 2016). This increase in red blood cells and hemoglobin also increased 

hematocrit. 

Base Excess 

 Base excess differed between finishing systems for each sampling period. In periods 1 

and 2, Norm_Mod_Stocker steers had a lower BE than all other finishing systems. Further, the 

Norm_Mod_Stocker steers were the only finishing system in periods 1 and 2 that had BE values 

that were within the normal range of -2 to 2 (Taussig and Landau, 2008). No BE differences 

between finishing systems were observed for periods 3 and 4. All finishing systems had BE 

estimates that were above the normal range in periods 3 and 4. Overall, base excess indicates 

acid-base imbalances in blood that result from illness or changes in diet (Constable, 2002). 

Further, it can account for metabolic causes of fluctuations in blood pH and is an indicator of 

serum lactate levels (Chomsky-Higgins and Harken, 2017). Considering this information 

alongside pH observations indicative of alkalosis, these steers were impacted by either altitude, 

diet, or a combination of both, which resulted in acid-base fluctuations that elevated BE as well 

as pH, HCO3, and PCO2. While BE data supports the findings of respiratory alkalosis in this 
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research, it has not been reported in any similar studies comparing finishing altitude and diet of 

cattle during the stocker and finishing phases of production.  

6.4.2 Arterial Blood Gases 

Partial Pressure of Carbon Dioxide 

 Partial pressure of carbon dioxide differed between finishing systems but not sampling 

periods. Ext_Mod_Stocker and Norm_Mod_Stocker steers had PCO2 concentrations that were 

similar to one another, but less than those of Grass_HA and Grain_HA steers, which also had 

similar concentrations to one another. The arterial PCO2 concentrations observed in Grass_HA 

and Grain_HA steers were close to, but still slightly lower, than the normal range (Fielder et al., 

2015b). The Ext_Mod_Stocker and Norm_Mod_Stocker finishing systems had PCO2 

concentrations that were further below the normal range than those steers finished at high 

altitude (Fielder et al., 2015b). Decreased PCO2 is indicative of alkalosis, as was mentioned 

when evaluating arterial pH. As a result, altered blood bicarbonate levels have been known to 

change in an effort to lower pH back within the normal range for cattle (Prasse and Sexton, 1972; 

Patel et al., 2019; C.W. Miller, personal communication; T.N. Holt, personal communication). 

These results were concordant with findings by Neary et al. (2013), who evaluated arterial PCO2 

in calves up to six months of age and cows 24 to 27 months of age at high altitude and found that 

cattle were experiencing respiratory alkalosis. 

Total Carbon Dioxide 

 Total carbon dioxide differed between finishing systems across sampling periods. In 

periods 1 and 2, Norm_Mod_Stocker steers had lower TCO2 than all other finishing systems, 

which had similar measures to one another. Grain_HA steers had greater TCO2 than 

Norm_Mod_Stocker steers, but not Grass_HA or Ext_Mod_Stocker steers, which were 
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intermediate and had TCO2 measures that were similar to both finishing systems. Grass_HA 

steers had greater arterial TCO2 than Ext_Mod_Steers, but not Norm_Mod_Stocker and 

Grain_HA steers, which had measures similar to both finishing systems. Despite these reported 

differences, all measurements were within normal ranges for bovine arterial blood (Fisher et al., 

1980; Blood Gases, 2019). No prior research has been conducted to evaluate TCO2 at varying 

altitudes with different finishing strategies. However, previous studies evaluated arterial 

bicarbonate, and total carbon dioxide has been established as an alternate way to estimate 

bicarbonate (Neary et al., 2013; Blood Gases, 2019).  

Partial Pressure of Oxygen 

Arterial PO2 concentrations accepted as normal for cattle range from 80 to 100 mmHg 

(Fisher et al., 1980; Fields, 2015b). However, at altitudes greater than 1,500 m arterial PO2 

values have been observed to decline below the normal range to 70 to 80 mmHg (T.N. Holt, 

personal communication). All finishing systems were below the normal ranges for arterial PO2 

according to their altitudes at each sampling period. Neary et al. (2013) also reported low arterial 

PO2 concentrations in calves and cows born and raised at high altitudes. Alveolar-arterial oxygen 

pressure gradient values were calculated in order to elucidate whether a ventilation and perfusion 

mismatch may be resulting in lower arterial PO2 (Neary et al., 2013; T.N. Holt, personal 

communication; Hantzidiamantis and Amaro, 2019).  

Oxyhemoglobin Saturation 

Oxyhemoglobin saturation was below normal ranges (Nagy et al., 2003; Neary et al., 

2013). This depressed percentage of oxyhemoglobin saturated can be attributed to the low 

arterial PO2 levels noted for all finishing systems across all sampling periods. The oxygen 

dissociation curve (ODC), a sigmoidal curve that describes the relationship between oxygen and 
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its affinity to bind to hemoglobin for delivery to tissues (C.W. Miller, personal communication; 

T.N. Holt, personal communication; Neary et al., 2013). As described by Neary et al. (2013), the 

sigmoidal shape of the ODC results in a steep decline in binding of oxygen to hemoglobin as 

arterial PO2 reaches 60 mmHg and below. Similar results have been reported in calves and cows 

born and managed at high altitude. As indicated by Neary et al. (2013), oxygen extraction 

fraction would be the best measure to elucidate issues with oxygen delivery.  

Alveolar-Arterial Oxygen Pressure Gradient 

 Mean alveolar-arterial oxygen pressure gradient differed by sampling period but not by 

finishing system. Despite differences between periods, all steers had pressure gradient values 

greater than 10 mmHg. Elevated alveolar-arterial oxygen pressure gradient values reflect 

impaired oxygen transport from alveoli to the arterial blood, which is also recognized as a 

ventilation-perfusion mismatch (Lekeux et al., 1984; Nagy et al., 2003; Neary et al., 2013; T.N. 

Holt, personal communication). Neary et al. (2013) reported elevated mean alveolar-arterial 

oxygen pressure gradient in cows 24 to 27 months of age. Based on these data, impaired 

perfusion of oxygen across the alveolar membrane to the arterial blood has reduced arterial 

partial pressure of oxygen measurements. 

6.4.3 Arterial Electrolytes and Chemistry 

Bicarbonate 

 Bicarbonate differed across finishing systems and periods. In periods 1 and 2 

Norm_Mod_Stocker steers had arterial bicarbonate concentrations that were less than all other 

finishing systems, which had similar concentrations to one another. However, in period 2, 

Grass_HA, Grain_HA, and Ext_Mod_Stocker finishing systems had elevated bicarbonate levels 

that reflected possible alkalosis (Smith et al., 2014; Fielder, 2015a). The results from period 2 
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indicated alkalosis, which when combined with arterial pH and base excess data supports the 

finding of respiratory alkalosis in steers. In periods 3 and 4, all steers had similar bicarbonate 

concentrations that were within normal range. These fluctuations in bicarbonate over time served 

to reduce pH when steers exhibited alkalotic acid-base parameters (Prasse and Sexton, 1972; 

Patel et al., 2019; C.W. Miller, personal communication; T.N. Holt, personal communication). 

Sodium 

 Serum sodium levels in the arterial blood differed between finishing systems over the 

four sampling periods. In periods 1 and 2, Norm_Mod_Stocker steers had serum sodium levels 

greater than those of the Grass_HA, Grain_HA, and Ext_Mod_Stocker finishing systems. In 

period 3, Ext_Mod_Stocker steers had greater serum sodium concentrations than either 

Grass_HA or Grain_HA steers, but not those in the Norm_Mod_Stocker steers, which had a 

concentration similar to all three finishing systems. Grass_HA steers had a period 4 serum 

concentration greater than all other finishing systems. Grain_HA steers had a serum 

concentration for period 4 that was less than Grass_HA, but greater than the Ext_Mod_Stocker 

and Norm_Mod_Stocker finishing systems, which had similar serum sodium concentrations to 

one another. Despite the differences reported between finishing systems for each sampling 

period, all serum sodium levels were within normal range (Smith et al., 2014). 

Fluctuations in serum sodium have been utilized to interpret hydration status of cattle. As 

an animal loses fluid, the sodium levels in the serum will increase due to an increased proportion 

of sodium ions to plasma volume (Smith et al., 2014). Sodium levels have also been recognized 

to be indicative of developing left heart failure in humans, which is an obesity-related model 

late-term finishing cattle have been compared to in literature (Lee and Packer, 1986; 

Gheorghiade et al., 2007; Forfia et al., 2008). Further, a study in 2008 linked hyponatremia to 
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human patients with pulmonary hypertension, concluding that decreases in sodium are related to 

right heart failure in patients with pulmonary hypertension (Forfia et al., 2008). However, no 

research has evaluated these findings in cattle experiencing pulmonary hypertension induced by 

either altitude or obesity, and based on the results from this study, there was no evidence of 

sodium levels that corroborated the results reported in humans.  

Potassium 

 Arterial serum potassium differed by sampling period but not by finishing system. Period 

2 serum potassium levels were less than those of all other periods. The decreased serum 

potassium in period 2 was at a level that may be indicative of moderate hypokalemia, resulting in 

reduced gut motility and increased recumbency in affected cattle (Constable, 2014). However, no 

increase in recumbent behavior was noted by ranch managers at either location. Period 2 was in 

the middle of the summer season, so steers may have been experiencing heat stress. Beede et al. 

(1983) reported that dairy cows in heat stress conditions exhibited reduced feed intake, thus, 

decreased potassium intake. Further, cows were losing additional potassium through sweating. 

Given that potassium levels returned to normal in period 3, after the summer season, steers may 

have been responding adversely to the summer heat, resulting in a slight decrease in serum 

potassium levels. Overall, serum potassium levels appeared normal. 

Ionized Calcium 

 Ionized calcium did not differ between finishing systems for periods 1 through 3. In 

period 4, Grain_HA steers had greater ionized calcium levels than Ext_Mod_Stocker steers, but 

not Norm_Mod_Stocker or Grass_HA steers, which had measurements that were similar to both 

finishing systems as well as each other. All finishing systems were within the normal range for 

ionized calcium for their given age range (Lincoln and Lane, 1990; Agnes et al., 1993; Neary et 
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al., 2013). Overall, ionized calcium levels have remained consistent in the body despite increases 

in total calcium, which have been affected by increased protein-bound calcium or complexed 

calcium. In the presence of acid-base disturbances such as alkalosis, reductions in ionized 

calcium may be observed (Smith et al., 2014). However, despite observed alkalosis based on 

arterial pH, hemoglobin, hematocrit, and base excess, it does not appear that the alkalotic state of 

steers reduced ionized calcium levels. If the differences in acid-base chemistry were not large 

enough, ionized calcium may have been able remain within normal ranges despite an alkalotic 

state.  

Glucose 

 Arterial glucose differed by finishing system over time. In period 1, Norm_Mod_Stocker 

steers had a greater glucose level than Grass_HA steers, but not Ext_Mod_Stocker or Grain_HA 

steers, which had glucose measurements intermediate between the two groups. However, in 

period 2, all steers had similar glucose measurements. During periods 1 and 2 all finishing 

systems were being stockered at their respective location and were, therefore, not being 

administered any sort of supplemental feed other than normal mineral supplementation. Instead, 

all 40 steers were on forage. These roughage-dense phases of feeding likely account for the 

similarities between finishing systems in period 2. This has been demonstrated through multiple 

studies that reported differences in plasma glucose levels between high-forage and low-forage 

diets fed to sheep or dairy cows such that high-forage diets reduced plasma glucose 

concentrations (Bickerstaffe et al., 1974; Evans and Buchanan-Smith, 1975; Evans et al., 1975). 

Further, as roughage was replaced with a concentrate or finishing ration, the rate of glucose 

metabolism increased, likely due to increased digestible energy in the diet (Ulyatt et al., 1974; 

Evans et al., 1975). However, the differences in period 1 do not reflect the reports comparable to 
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glucose levels on forage. The Grass_HA, Grain_HA, and Ext_Mod_Stocker steers were 

managed at the same high-altitude location during period 1 and were on the same forage. 

Norm_Mod_Stocker steers were at the moderate altitude location, where the pastures contain 

different forage types than the high-altitude location. Differences in forage types between the 

Norm_Mod_Stocker steers and the other 3 finishing systems, likely accounted for some of the 

differences noted between finishing systems in period 1.  

 Ext_Mod_Stocker steers had greater glucose levels than Grass_HA and 

Norm_Mod_Stocker steers, but not Grain_HA steers in period 3. Further, Grass_HA, 

Norm_Mod_Stocker, and Grain_HA steers had similar glucose levels at this sampling period. 

Period 3 was the first sampling period after commencement of the finishing phase of the study. 

All steers were fed a concentrate diet except for those in the Grass_HA finishing system. 

However, Ext_Mod_Stocker steers had greater plasma glucose than Norm_Mod_Stocker steers 

despite having the same diet, altitude, and management. This could indicate that some sort of 

compensatory change occurred as a result of relocation of the Ext_Mod_Stocker steers from high 

to moderate altitude as well as the change in climate from summer to fall. It has been well-

documented in literature that various forms of stress, such as heat and altitude, can result in 

reduced grazing or feed consumption (Bianca, 1965; Pereira et a., 2007). Not only were 

Ext_Mod_Stocker steers relocated to a lower altitude between periods 2 and 3, but they also 

endured a season change from summer to fall, which reduced the temperature. As a result, 

Ext_Mod_Stocker steers may have exhibited increased intake compared to period 2. Further, 

these steers were transitioned from a forage-based diet to a finishing ration, which was more 

nutrient dense. These changes likely contributed to an elevated plasma glucose level in 

Ext_Mod_Stocker steers compared to Norm_Mod_Stocker steers in period 3.  
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 All steers administered a finishing ration exhibited glucose levels that were similar to one 

another and greater than Grass_HA steers in period 4. Previous research reported that as cattle 

were placed on increased amounts of concentrates or finishing ration versus forage, plasma 

glucose levels also increased, likely due to increased digestible energy that promotes 

gluconeogenesis (Ulyatt et al., 1974; Evans et al., 1975). Further the differences in high forage 

and low or no forage diets has been recognized to result in differences in glucose levels such that 

greater forage in the diet resulted in reduced plasma glucose (Bickerstaffe et al., 1974; Evans and 

Buchanan-Smith, 1975; Evans et al., 1975). Overall, plasma glucose increased during finishing 

due to the nutrient dense ration that was administered to all steers except those in the Grass_HA 

finishing system.   

6.4.4 Venous Hematology 

pH 

 In period 2, Grass_HA and Grain_HA had venous pH levels slightly above the normal 

range (Smith et al., 2014). Norm_Mod_Stocker and Ext_Mod_Stocker steers had pH measures in 

period 2 that were within normal range. However, in period 4, all finishing systems had pH 

levels within normal range (Smith et al., 2014). No studies to date have reported venous blood 

gases in steers exposed to various altitudes during the stocker and finishing phases of production. 

However, based on the mean arterial pH parameters reported for each of the finishing systems, it 

would appear that blood pH has been maintained throughout the circulation.  

The renal system has been noted as a vital organ system in the maintenance of blood pH 

through its excretion of H+ ions, absorption of HCO3, and creation of more HCO3 in order to 

maintain blood pH around the range of 7.31-7.53 (Smith et al., 2014; Hamm et al., 2015). 

Therefore, urinalysis and other metrics of renal function may be useful in estimating the efficacy 
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of the renal system in its maintenance of blood pH. Further, such analysis could serve as an early 

indicator of renal failure in the event that an animal has begun to experience organ failure in the 

end stages of HMD or FHD.  

Base Excess 

 Despite having a lower period 2 BE estimate than all other finishing systems, 

Norm_Mod_Stocker steers had venous BE levels above the normal range. Likewise, 

Ext_Mod_Stocker, Grain_HA, and Grass_HA steers had elevated period 2 BE levels. Elevated 

BE levels were also noted in all finishing systems for period 4. These BE levels have been noted 

to be indicative of alkalosis (Taussig and Landau, 2008). Overall, the venous blood pH levels did 

not agree with findings of alkalosis, but arterial results of blood gases and hematology were 

indicative of respiratory alkalosis. Therefore, there could have been a renal system reaction to the 

elevated arterial pH resulting in its mitigation in the venous blood. No research has been 

conducted to report BE in venous blood of cattle exposed to varying altitudes and diets during 

the stocker and finishing phases of beef production. Further research should be conducted to 

evaluate renal function and to gather further data of BE in cattle exposed to hypoxic conditions.    

6.4.5 Venous Blood Gases 

Partial Pressure of Carbon Dioxide 

Partial pressure of CO2 in the venous blood did not change between finishing systems or 

sampling periods. Further, the mean PvCO2 values that were reported for period 2 and period 4 

were within the normal range for bovine venous blood (Smith et al., 2014). Based on the low 

PaCO2 and normal PvCO2 observations noted in this research, steers were experiencing 

compensated respiratory alkalosis. The primary means to alleviate alkalosis in affected cattle has 

been the renal system. In the presence of a PaCO2 below normal range, the renal system will 
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offset the acid-base imbalance by excreting HCO3 in the urine and reabsorbing H+ ions in the 

nephrons of the kidneys (Smith et al., 2014). Neary et al. (2013) has published the only study 

evaluating blood parameters in cattle exposed to high altitudes, and while findings of that study 

agreed with those of PaCO2 data in this research, they did not evaluate PvCO2 data. Despite this 

difference, it appears that results were concordant between this study and Neary et al. (2013), 

who also reported compensated respiratory alkalosis in calves up to six months of age and cows 

24 to 27 months of age.  

Total Carbon Dioxide 

 Total CO2 in the venous blood differed between finishing systems for both periods that 

venous data was available. According to the normal ranges reported by Smith et al. (2014), the 

three finishing systems that remained at high altitude for the stocker phase of the study had 

TVCO2 levels that exceeded the acceptable range. However, Norm_Mod_Stocker steers had a 

normal TvCO2 in period 2. This could be attributed to increased stress during the summer months 

that resulted in hyperventilation of steers, thus, an increase in circulating CO2 in the bloodstream 

that may manifest as either HCO3 or CO2. Further analysis investigating fluctuations of 

respiratory rates could elucidate if this was occurring. In period 4, all finishing systems had 

TvCO2 levels that were within the normal range (Smith et al., 2014). No studies to date have 

evaluated TvCO2 in cattle exposed to different finishing strategies and altitudes. However, it has 

been documented that TCO2 measurements are utilized in lieu of measuring HCO3 (Blood Gases, 

2019). Neary et al. (2013) reported HCO3 levels, but not for venous blood measures. Therefore, 

this is the first study that has reported TvCO2 for steers fed different finishing rations and 

managed at different altitudes. 
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Partial Pressure of Oxygen 

 Partial pressures of O2 in the venous blood was below the normal range for steers in both 

sampling periods of this study (T.N. Holt, personal communication). This result was expected 

given the low PaO2 that was also recorded in this study. The A-a O2 pressure gradient indicated 

that a perfusion issue existed such that O2 was not crossing the alveoli to oxygenate the arterial 

blood. Given that the PaO2 measurements were below normal range, it was expected that PvO2 

would also be less than the expected range for healthy adult cattle. Neary et al. (2013) reported 

differences in PaO2 that were also indicative of an alveolar perfusion insufficiency, but PvO2 was 

not evaluated.  

Oxyhemoglobin Saturation 

 Oxyhemoglobin saturation in the venous blood was less than that of the arterial blood, 

which was expected since systemic tissues extract oxygen from the arterial blood for 

maintenance of physiologic function. Further, the svO2 measures recorded were within the 

expected range (Smith et al., 2014). Therefore, oxygen extraction by the tissues was normal. 

Despite the amount of O2 entering the arterial blood via alveolar perfusion being less than the 

normal range for cattle, the percentages of O2 bound to hemoglobin in both venous and arterial 

blood samples were normal. Further, the svO2 measures indicated that tissues were likely still 

receiving adequate oxygenation for maintenance. In order to validate these findings further, this 

study should be replicated in order to measure saO2, svO2, and cardiac output. Measuring cardiac 

output would elucidate any changes indicative of insufficient oxygen delivery to the tissues since 

one of the body’s responses to low oxygen delivery to the tissues is to increase cardiac output in 

order to increase oxygen transport (C.W. Miller, personal communication; Smith et al., 2014). 

6.4.6 Venous Electrolytes 
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Bicarbonate 

 Venous HCO3 for periods 2 and 4 was below the normal range for all finishing systems 

(Smith et al., 2014). Contrary to the arterial blood for period 2, venous blood for the same time 

point indicates a reduction in HCO3 such that it was well below the accepted range. This 

reduction was likely due to the observed alkalotic state of steers at this sampling period. As a 

physiological response in regulating blood acid-base balance, the renal system acts as a regulator 

of HCO3 in the blood (Hamm et al., 2015). Therefore, it is likely that excess levels of HCO3 were 

excreted to maintain an acceptable blood pH. Interestingly, the BE levels in the venous blood did 

not reflect a reduction in HCO3, which should have lowered the pH and BE levels. No research 

has been conducted evaluating venous blood parameters in steers during the stocker and 

finishing phases at high altitudes. Follow-up research evaluating venous blood parameters and 

urinalysis would better reflect the changes that may be occurring via either excretion of HCO3 in 

urine or reabsorption of HCO3 by the nephrons within the renal system. 

Lactate 

 In period 2, all steers had comparable Lac levels that were within the middle and upper 

levels of the normal reported range in cattle. However, in period 4, steers within the Grain_HA 

finishing system had a mean Lac measurement above the accepted range of 0.54 to 2.22 mmol/L 

(Figueiredo et al., 2006; Smith et al., 2014). Elevated Lac levels are indicative of poor perfusion 

of systemic tissues. These elevated Lac levels may be caused by dehydration, excessive muscle 

activity, increased anaerobic metabolism, or hypoperfusion, among other stressors (Broder and 

Weil, 1964; Weil and Afifi, 1970; Vincent et al., 1983; Bakker et al., 1991; Mizock and Falk, 

1992; Bakker et al., 1996; Gernardin et al., 1996; Figueiredo et al., 2006). Reindl et al. (1998) 

speculated that pulmonary vascular tone may lead to pulmonary hypertension as well as alveolar 
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hypoperfusion in humans experiencing heart failure. Neary et al. (2013) reported elevated arterial 

L-lactate levels due to substantial anaerobic respiration of cows and calves. However, Neary et 

al. (2013) did not report venous lactate measurements. Based on previous research and results 

from this study, it is probable that elevated Lac levels observed in this study could be attributed 

to respiratory alkalosis or the onset of heart failure in susceptible cattle. However, histopathology 

results are not available yet. 

6.5 Conclusions 

 Overall, arterial blood parameters were indicative of respiratory alkalosis in steers. 

Regardless of finishing system, steers exhibited signs of alkalosis. Further, most of the venous 

blood parameters were within normal ranges, which was indicative of compensation in the renal 

system in order to maintain acceptable acid-base blood chemistry. The findings of respiratory 

alkalosis were concordant with findings by Neary et al. (2013). However, this was the first study 

that evaluated the roles of altitude and finishing strategy on blood parameters during the stocker 

and finishing phases of beef production. In conclusion, altitude and diet both impacted blood 

parameters in steers that were stockered and finished at moderate or high altitudes. Future 

research should evaluate these parameters at low altitudes with each of the finishing diets in 

addition to the finishing systems investigated in this research.  
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CHAPTER 7  

VARIANTS ASSOCIATED WITH PULMONARY HYPERTENSION IN ANGUS CATTLE 

DETECTED WITH WHOLE GENOME SEQUENCE 

7.1 Introduction  

 Pulmonary hypertension (PH) in cattle has been thoroughly characterized since its initial 

discovery (Glover and Newsom, 1915; Hecht et al., 1962; Krafsur et al., 2020). Further, 

substantial research has investigated mean pulmonary arterial pressures (PAP), which is still 

recognized by the beef industry as the best indicator of an animal’s PH status and risk of 

developing high mountain disease (HMD; Will et al., 1962; Grover and Reeves, 1962; Grover et 

al., 1963; Holt and Callan, 2007; Pauling et al., 2018; Speidel et al., 2020). In addition to 

understanding the signs, symptoms, and pathology of the condition, studies have reported 

heritability estimates for PAP that have indicated the trait is moderately heritable (Schimmel, 

1981; Schimmel, 1983; Enns et al., 1992; Shirley et al., 2008; Crawford et al., 2016; Pauling, 

2018). Therefore, genetic improvement has been made possible through PAP expected progeny 

difference (EPD) estimates available through relatively limited resources for ranchers to consider 

in breeding and selection decisions (Enns et al., 2011; Pauling et al., 2017; Thomas et al., 2017; 

American Angus Association, 2019).  

 Development of EPD for traits such as PAP has been challenging since the accuracies of 

PAP EPD estimates are lower than those of more commonly measured traits due to the limited  

number of observations (Glover and Newsom, 1915; Hecht et al., 1962; Neary et al., 2014; Zeng, 

2016). In cases such as these, genomic information has been useful to enhance accuracies for 

EPD estimates through genome-enhanced EPD (gEPD) or marker assisted selection (MAS) 

(Northcutt, 2010; Garrick, 2011; Rolf et al., 2014). 
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 Research to date that has investigated potential variants and genes associated with PAP 

has revealed several regions within the genome that could be valuable for selection. However, 

these research efforts were limited with many efforts focusing on either SNP chip genotype data, 

transcriptome data, exome data, or searching specific regions of the bovine genome, which 

leaves regions of the bovine genome uninvestigated (Newman et al., 2011; Newman et al., 2015; 

Zeng, 2016; Crawford, 2019). Therefore, the objective of this study was to utilized whole 

genome sequence of steers and bulls of different PAP risk categories to discover candidate 

variants and genes that may be useful for selection to reduce incidence of HMD in cattle.  

7.2 Materials and Methods 

7.2.1 Selection of Angus cattle for sequencing 

Thirty Angus bulls and steers were selected based on their PAP measurements and 

pedigree information. Through selection of cattle based on these criteria, the population to be 

sequenced contained both high and low PAP cattle and represented genetics from registered 

American Angus sires that are prevalent in many pedigrees and have been popular for artificial 

insemination. Sequencing candidates were from two ranches in Colorado. Five bulls were 

managed at Battle Creek Ranch LLC (Parshall, CO; 2,438 m altitude). Twenty-five bulls and 

steers were from the Colorado State University Beef Improvement Center (BIC; 2,150m). Cattle 

sourced from the BIC for whole-genome sequencing were a combination of herd bulls (n= 4), 

steers from a growth and development study (n=12), and steers from a comparative finishing 

system study across high and moderate altitudes (n=8) (Table 7.1).  

Table 7.1 PAP summary statistics for each study population expressed as mean + standard error 

Data Source 
Number 

of cattle 
Ranch 

Location 
Altitude 

(m) 
Sex PAP 
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2012 Angus RNA 
sequence study 

12 Saratoga, WY 2,150 S 
High: 64.00 + 9.40 
Low: 36.50 + 1.43 

2016 Angus finishing 
system study  

8 
Saratoga, WY 

Akron, CO 
2,150 
1,420 

S 
High: 73.25 + 9.50 
Low: 40.75 + 1.49 

Battle Creek Ranch 5 Parshall, CO 2,460 B 
High: 51.00 + 2.08 
Low: 41.00 + 1.00 

CSU Beef 
Improvement Center 

5 Saratoga, WY 2,150 B 
High: 71.50 + 18.5 
Low: 38.33 + 0.33 

 

The twelve steers from the growth and development study were BIC steers born in 2012. 

These steers were a subset of the sample population in a study that compared high and low PAP 

steers administered a bull development ration (target body weight gain 1.5 kg/d) as a model for 

yearling bull performance. As part of this study, PAP measurements were recorded at three 

separate time points, so the subset of steers selected for sequencing were sorted into either low or 

high PAP categories for future comparisons based on their first on-ranch PAP measure. Further, 

these steers were considered of value for variant detection due to the RNA sequence data that 

was generated for each of the twelve steers for various cardiopulmonary tissues. Through 

combination of the transcriptomic data from this prior study (Crawford, 2019) and the genomic 

data generated in the current study, a multi-omics approach was possible. Thus, these steers were 

considered an informative subset within the whole-genome sequence population.  

 Eight of the BIC steers were a subset from a study that evaluated how diet and altitude 

impacted PAP postweaning. From each of four finishing strategies highlighted in Chapter 3, one 

high PAP and one low PAP steer from each group were chosen for whole-genome sequencing. 

Sequence information from this study was valuable because the PAP measurements were 

induced by physiologic response to altitude and diet, which provides additional phenotype data 
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to accompany the sequence data of the overall study population as described in Chapters 3 

through 6. 

7.2.2 Blood collection and storage 

 Blood samples were collected from 18 of the 30 bulls and steers via jugular venipuncture 

in a squeeze chute at the ranch where the animals were maintained. Samples were collected in 10 

mL EDTA tubes and stored on ice for transport to the laboratory. Blood samples were 

centrifuged for 30 minutes at 2,500 rpm to fractionate the blood components. The white blood 

cell layer or “buffy coat” was evacuated for each sample and placed in a 1.5 mL microcentrifuge 

tube. The buffy coat was then suspended up to a volume of 1 mL in 1x phosphate buffered saline 

and stored at -20C until DNA was extracted for sequencing.  

7.2.3 DNA extraction and quality assessment 

 Genomic DNA was extracted from blood (n=18) or liver caudate (n=12) from each 

animal using the Qiagen DNeasy Blood and Tissue Kit (Cat. No. 69504) according to the 

instructions provided for each sample type. Sample quality was determined utilizing a NanoDrop 

One (Thermofisher Scientific) to assess sample purity and a Qubit 4 Fluorometer using the broad 

range DNA assay (Cat. No. Q32850; Thermofisher Scientific) in order to assess sample 

concentrations (Table 7.2). Samples that did not have a satisfactory concentration according to 

the Rapid Genomics submission guidelines were cleaned and resuspended via an ethanol 

precipitation. In cases where an individual consistently had low DNA yields from extraction 

attempts, samples for that animal were combined and an ethanol precipitation was performed to 

increase concentration. 

 

Table 7.2 A table of the absorbance ratios and concentrations measured by Nanodrop and Qubit 
machines that indicate acceptable DNA quality for submission for sequencing. The 260/230 ratio 
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measures the absorbance of nucleic acids (260 nm) compared to the absorbance of organic 
materials such as ethanol or phenol (230 nm). The 260/280 ratio measures the absorbance of 
nucleic acids (260 nm) compared to the absorbance of proteins (280 nm). Concentration is not 
noted for Nanodrop measurements because the Qubit has greater specificity in measuring 
concentration. However, the Qubit does not provide 260/230 or 260/280 ratio estimates. 

Technology 260/230 

(nm) 

260/280 

(nm) 

Concentration 

(ng/uL) 

Nanodrop > 1.80 > 2.00 - 
Qubit - - > 30 

 

 Once samples were extracted and met sequencing standards, samples were assessed via 

an Agilent 2200 TapeStation machine with the Genomic DNA Screen Tape Analysis. The 

TapeStation assessed samples for DNA degradation and measured fragment sizes (Figure 7.1). 

This was the final quality assessment step prior to plating submission for DNA library 

preparation and next-generation sequencing and demonstrates that the samples were of 

acceptable quality and integrity for the proceeding steps. 

 

 

Figure 7.1 Tapestation images for a subset of animals to be submitted for sequencing. Lane A 
contains a DNA ladder, and lanes B through H contain genomic DNA from randomly selected 
samples that were submitted for sequencing. The large bands at the top of the gel image indicate 

A B C D E F G H 
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quantities of in-tact DNA in large enough fragments to submit for library preparation and 
subsequent sequencing. Note that an error occurred with the sample in lane E, which resulted in 
it appearing to have a low concentration with smaller fragments than other samples. This sample 
was tested a second time to verify sample integrity. 

7.2.4 Dilution and plating of samples 

 Once all DNA samples were assessed for quantity, quality, and integrity, they were plated 

on a 96-well full-skirted plate. The well plate was then submitted to Rapid Genomics 

(Gainesville, FL) for library preparation and sequencing. Samples were diluted prior to plating 

with the intent to achieve a well volume of 40 ul each while maintaining a concentration above 

30 ng/ul per well (Appendix A). The plating volumes and concentrations needed to be similar for 

the automated pipetting processes necessary for library preparation and subsequent sequencing.
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7.2.5 Library preparation and sequencing  

 Extracted DNA from each bull or steer was submitted to Rapid Genomics for library 

preparation and subsequent sequencing. The library preparation was performed using a 

proprietary protocol to fragment the DNA into 150 base pair fragments then ligate adapters and 

barcodes compatible with an Illumina sequencing run. The samples were then pooled and 

sequenced using Illumina NovaSeq technology to generate 150 base paired-end reads with 30x 

median coverage.  

7.2.6 Bioinformatic analysis 

 Samples were de-multiplexed by the bioinformatics team at Rapid Genomics 

(Gainesville, FL). The de-multiplexed reads were then processed and analyzed using CLC 

Genomics Workbench version 11 (Qiagen Bioinformatics).  First, read quality was assessed using 

the “Create Sequencing QC Report” tool from the “NGS Core Tools” section of the software’s 

toolbox. An adapter list was then created that contained all i5 and i7 adapter sequences that 

needed to be trimmed off of the reads. Reads were then trimmed using the “Trim Reads” tool 

within the “NGS Core Tools” section of the CLC toolbox using the default settings. A second 

QC report was then generated to verify that the trimming was effective. The trimmed reads were 

then aligned to the ARS-UCD1.2 (RefSeq ID: GCF_002263795.1) bovine reference genome 

assembly using the “Map Reads to Reference” tool within the “NGS Core Tools” section of the 

toolbox (Table 7.3).  
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Table 7.3 Settings used to map sequence reads to the reference genome in CLC Genomics 
Workbench (Qiagen Bioinformatics).  

Parameter  

name 

Parameter  

description 

Parameter 

value 

Match Score Cost of a match between the 
reference and the sequence 

1 

Mismatch Score Cost of a mismatch between 
the reference and the sequence 

2 

Insertion Cost Cost of an insertion in the read 
resulting in a gap in the 
reference sequence 

3 

Deletion Cost Cost of a gap in the read 
resulting in an insertion in the 
reference 

3 

Length Fraction Minimum fraction of the 
length of a read that must 
match the reference 

0.5 

Similarity Fraction Minimum fraction of  the read 
that must be compatible with 
the reference 

0.8 

 

Known variants were called for the mapped sequences using the “Fixed Ploidy Variant 

Detection” tool within the “Resequencing Analysis” section of the CLC toolbox (Table 7.4). 

These files were then sorted into HPAP or LPAP groups such that any animal with a PAP > 49 

mmHg were classified as HPAP (n=14), and any animals with a PAP < 49 mmHg was classified 

as LPAP (n=16).  
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Table 7.4 Settings used for the “Fixed Ploidy Variant Detection” tool to call variants in CLC 
Genomics Workbench (Qiagen Bioinformatics)  and the description for each parameter.  

Parameter  

name 

Parameter  

description 

Parameter value 

Ploidy Ploidy of the species being 
evaluated (bovine) 

2 

Required Variant 
Probability 

Minimum probability for 
which variants will be called 

90% 

Reference Masking Ignore positions with coverage 
above a designated level 

100,000 (default) 

Read Filters Ignore broken pairs De-selected 
Minimum Coverage Minimum number of reads 

covering a region for a variant 
to be called 

10 

Minimum Count Minimum number of reads to 
contain a variant for it to be 
called 

2 

Minimum Frequency Minimum frequency for a 
variant to be called 

5% 

Base Quality Filter Minimum quality necessary 
for a variant to be called 

Selected and default 
values used 

Relative Read 
Direction Filter 

Compares observed read 
direction distributions 
compared to those expected 
for a region 

Selected and default 
values used 

 

7.2.7 Variant detection  

 Variants detected in both HPAP and LPAP cattle were compared using CLC Genomics 

Workbench. First, single tracks were generated for both HPAP and LPAP groups using the 

“Compare Variants Within Group” tool. The called variant tracks for each LPAP animal were 

compiled into a single track with the frequency percentage set to 1%, which would include any 

called variants present in a single animal. The same procedure was then performed for the HPAP 

group. In order to increase stringency of the comparisons between HPAP and LPAP cattle, the 

files were also compiled with the frequency percentage set to 100%, meaning that a variant had 

to be called in the individual files for each of the animals in that PAP category in order to be 

included in the single HPAP or LPAP track generated.  
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 The compiled HPAP and LPAP variant tracks were then compared to one another using 

the “Compare Variants Between Groups” tool such that the 1% frequency HPAP and LPAP files 

were compared to one another, and the 100% frequency HPAP and LPAP files were compared to 

one another. Utilization of this function compares an input file to a designated file to call variant 

similarities or differences contained within the input file. For example, if the LPAP file was the 

input file that was compared to the HPAP file (LPAP vs HPAP), the tool would output a file of 

variants present in the LPAP file that were either identical or different from the HPAP file 

depending on whether the user instructed the tool to call for similarities or differences. 

Conversely, the inverse comparison was made such that the HPAP file was now the input file, 

which was compared to the LPAP file (HPAP vs LPAP). When evaluating variant similarities, 

the LPAP vs HPAP and HPAP vs LPAP results were identical. However, the variant differences 

were dependent on which file was the input file, meaning that the results from the LPAP vs 

HPAP comparisons were not the same as those of the HPAP vs LPAP comparisons.  

Once the similarities and differences between HPAP and LPAP cattle were detected, the 

resulting files were annotated using the variant annotation that was compatible with the reference 

genome used. Further, functional consequences were evaluated to determine which variants may 

result in amino acid changes, loss of function, or other disruptions within the genome.  

7.3 Results 

 The average number of reads generated exceeded 25 million per animal (Table 7.5). Of 

those generated reads, about 24.9 million per animal were successfully mapped to the ARS-

UCD1.2 reference genome. Within the mapped reads for each animal, at least 45,599 known 

variants were called when compared to the reference genome.  
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Table 7.5 Statistics for the number of reads generated per animal, the number of mapped reads 
per animal, and the number of called variants per animal. All means have been expressed as 
mean + standard error.  

 
Mean Minimum Maximum 

Total Number of Reads 25,553,713.6 + 7,049,402.1 3,713,082 149,616,664 

Number of Mapped Reads 24,900,678.5 + 6,862,141.7 3,649,144 145,757,570 

Number of Called Variants 275,346.8 + 99,472.4 45,599 2,530,785 

 

The LPAP and HPAP categories had 3,421,234 and 1,512,287 variants respectively that 

were prevalent in at least 1% of samples. Comparison of these 1% filtered variant files for HPAP 

and LPAP categories revealed 977,861 common variants between the two populations (Figure 

7.3). There were 514,050 variants unique to HPAP cattle and 2,214,162 variants unique to LPAP 

cattle.  

 

Figure 7.2 Comparison of variants between HPAP and LPAP cattle. Variants were compiled into 
HPAP and LPAP files for comparisons if they were present at a 1% frequency, meaning that the 
variant appeared in at least one animal within each of the two PAP categories.  

 
 Both LPAP and HPAP samples were also filtered at 100% frequency, meaning that a 

variant had to be called in all samples within a PAP category to be included in subsequent 

analysis steps. This resulted in 15,775 and 19,765 variants present in LPAP and HPAP groups 

respectively. Further, comparison of the 100% filtered variant files for HPAP and LPAP 

categories revealed fewer variants (Figure 7.4). There were 13,858 variants concordant between 

LPAP HPAP 

514,050 2,410,162 
977,861 
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HPAP and LPAP cattle. Only 2,750 of the 13,858 variants common between the two PAP 

categories were recorded in dbSNP. There were 1,690 variants unique to HPAP cattle and 5,543 

variants found exclusively in LPAP cattle. Only 1,142 of the 5,543 variants unique to HPAP 

cattle were documented in dbSNP. Further, 263 of 1,690 variants unique to LPAP cattle were 

documented in dbSNP. 

 

Figure 7.3 Comparison of variants between HPAP and LPAP cattle. Variants were compiled into 
HPAP and LPAP files for comparisons if they were present at a 100% frequency, meaning that 
the variant appeared in at least one animal within each of the two PAP categories. 

 
 Variants detected that were unique to HPAP cattle and were prevalent in 100% of the 

HPAP sequencing population spanned all 29 autosomes and the X chromosome (Figure 7.5). The 

chromosome with the fewest detected variants was chromosome 24. Conversely, autosomes 16 

and 17 as well as the X chromosome had the most abundant number of variants detected in 

HPAP cattle. 

LPAP HPAP 

5,543 1,690 
13,858 
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Figure 7.4 The distribution of variants detected at 100% prevalence and were unique to HPAP 
cattle by chromosome. 

 Variants that were prevalent in 100% of the LPAP cattle sequenced were also evaluated 

by chromosome (Figure 7.6). The distribution of detected variants spanned all 29 autosomes as 

well as the X chromosome. Autosome 24 had the fewest variants detected. Further, autosomes 7, 

17, 21, and the X chromosome had the most abundant variants detected that were unique to 

LPAP cattle.  
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Figure 7.5 Variants that were prevalent in 100% of the LPAP cattle population and were unique 
to LPAP cattle distributed by chromosome on which they were located. 

 Variants that were prevalent in all cattle within each PAP category had concordant 

variants detected between HPAP and LPA cattle that spanned all 29 autosomes as well as the X 

chromosome (Figure 7.7). Autosomes 20 and 24 had the fewest detected variants. Conversely, 

autosomes 7 and 17 as well as the X chromosome contained the most variants concordant 

between HPAP and LPAP cattle. 
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Figure 7.6 Variants common between both LPAP and HPAP cattle by chromosome. Note that 
only variants present in 100% of the LPAP and HPAP cattle respectively were compared to 
develop this subset of variants. 

7.4 Discussion 

 The initial analysis in which a variant had to only be in one animal from either the LPAP 

or HPAP group to be included in the analysis revealed over 2 million variants warranting further 

investigation. Due to the immense number of variants detected with these parameters, a more 

stringent frequency was implemented to filter variants that may be less informative in 

understanding the PAP phenotype. The more stringent frequency of 100% eliminated additional 

variants, resulting in subsequent annotation and analysis of only those variants that appeared in 

all cattle within a PAP phenotype category.  

 The number of variants discovered was greater than that of Newman et al. (2011) who 

investigated 6,344 SNP from 8,011 variants detected from SNP chip genotype data. Further, the 

number of variants detected initially in this research was greater than those reported by Zeng 

(2016), who discovered and investigated 35,930 SNP from SNP chip genotype data. However, 
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the final list of variants for future analysis was less than those investigated by Zeng (2016). 

Similarly, Cockrum et al. (2019) investigated SNP associated with yearling PAP as well as 

growth traits in cattle using Illumina BovineSNP50 data via GWAS. That study yielded 37 

variants of interest associated with PAP. 

 Most variants for HPAP cattle were located on autosomes 16 and 17 as well as the X 

chromosome. Further, most variants for LPAP cattle were located on autosomes 7, 17, and 21 as 

well as the X chromosome. These results reflected findings from previous research in which 

windows on autosome 7 and the X chromosome were associated with two category yearling PAP 

(Zeng, 2016). However, that study focused on SNP chip data in a genome-wide association study 

(GWAS) and compared 1 mb SNP windows to an older version of the bovine reference genome. 

This author also reported windows on autosomes 11 and 20 that accounted for more than 1% of 

the genetic variation of non-transformed two category yearling PAP (Zeng, 2016). Cockrum et 

al. (2019) detected eight variants on autosome 7 out of the 37 variants that were associated with 

PAP. Further, autosomes 16 and 21 each had one variant associated with PAP in the same study. 

However, the authors did not report any variants detected on autosome 17 or the X chromosome. 

While fewer variants were noted within autosomes 11 and 20 than other locations within the 

genome, the number of variants detected on these chromosomes were greater than those reported 

by Zeng (2016) or Cockrum et al. (2019).  

Newman et al. (2011) reported SNP located on chromosomes 1, 3, 10, 24, and 29. While 

none of these chromosomes had the most variants detected of all chromosomes in this research, 

the number of variants that were detected on these chromosomes exceeded those detected by 

Newman et al. (2011). Like Zeng (2016), Newman et al. (2011) used an older reference genome 

assembly and did not utilize whole genome sequence data. Instead, they utilized low density SNP 
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genotyping data to detect SNP relevant to PAP, and then performed targeted RNA sequencing 

for those regions to evaluate fold-change differences. Overall, the approach in the current 

research was more exhaustive in detecting variants than studies that have evaluated markers 

associated with PAP to date through incorporation of 30x whole genome sequence data, and as a 

result, more variants were detected on each of the bovine chromosomes.  

 The regions of interest that differed between HPAP and LPAP cattle will be investigated 

further in the next chapter. Focus of variant detection would emphasize genes recognized for 

their association with PH in cattle from previous research (Table 7.6). Regions flanking these 

genes will also be investigated for variants that may be informative in estimating susceptibility of 

developing HMD of cattle in high altitude production systems. Additional genes may be detected 

based on concordance between transcriptome and genome sequence data. The ultimate objective 

of combining data from this chapter with transcriptome data was to find genes and variants for 

validation that may aid producers in distinguishing which cattle have greater risk of developing 

HMD. 
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Table 7.6 Genes from previous research that will be investigated using multi-omics data.  

Gene Gene Description Chr. Position Citations 

BMPR2 Bone morphogenetic 
protein receptor type 
2 

2 90,864,689-91,017,391 West et al., 2004 

NFIA Nuclear factor I A 3 84,197,144 - 84,620,790 Heaton et al., 2020 

ARRDC3 Arrestin domain 
containing 3 

7 90,839,580 - 90,853,625 Oka, 2006;  
Zeng, 2016;  
Heaton et al., 2020 

ROCK2 Rho associated 
coiled-coil containing 
protein kinase 2 

11 86,489,069 - 86,618,649 Zeng, 2016  

EPAS1 Endothelial PAS 
domain protein 1 

11 28,735,330 - 28,825,665 Gale et al., 2008; 
Newman et al., 2015; 
Zeng, 2016; 
Heaton et al., 2016; 
Crawford et al., 2016 

 

In addition to genomic differences, variants that were similar between LPAP and HPAP 

were also detected in this study. While these variants may not be informative for diagnostic 

purposes or distinguishing between HPAP and LPAP cattle, they were collected for further 

investigation and inclusion as marker effects to estimate gEPD for PAP. These markers would 

enhance the accuracy of genetic predictions for PAP (Northcutt et al., 2010; Thomas et al., 2013; 

Garrick and Fernando, 2013; Zeng et al., 2016). Further, these markers would be useful as the 

beef industry works to provide selection tools for high altitude beef production systems. Only a 

limited number of resources have cultivated a PAP EPD for selection, with one of the most 

notable being the American Angus Association (American Angus Association, 2019). Through 

detection and validation of markers associated with the PAP phenotype, more selection tools can 

be made available for producers looking to reduce incidence of PH and subsequent HMD within 

their herds (Thomas et al., 2013; Zeng, 2016). 
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7.5 Conclusions 

 These results demonstrated a vast number of variants that may be informative for 

selection of cattle with reduced risk of developing HMD resulting from PH. Through stringently 

filtering the called variant files (vcf), those variants that were not prevalent in all cattle within a 

PAP category were eliminated prior to comparisons of HPAP and LPAP cattle. Variants were 

detected that differed between PAP categories, which, once validated, may be informative in 

distinguishing cattle less suitable for high altitude production settings. Further, variants that were 

similar between production systems may be useful to enhance accuracies of GEPD estimations 

for PAP. Despite the discovery of these markers, the genes and functional consequences still 

need to be evaluated.  
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CHAPTER 8  

DETECTION OF VARIANTS IN THE BOVINE GENOME ASSOCIATED WITH MEAN 

PULMONARY ARTERIAL PRESSURE AND HIGH MOUNTAIN DISEASE 

8.1 Introduction 

Increased affordability of sequencing technologies has resulted in thousands of animals 

being sequenced. In addition, sequencing efforts have been conducted with increased depth and 

coverage (Muir et al., 2016). For example, chapter 7 described 30 Angus cattle sequenced at 30x 

coverage. Through increased sequencing efforts as well as increased sequencing depth and/or 

coverage, novel variants may be discovered within a genome. Further, reduced costs associated 

with sequencing lends to the ability to deploy multi-omic and bioinformatic strategies to 

characterize genes, transcripts, and proteins within a species (Heather and Chain, 2015; Muir et 

al., 2016; Cánovas et al., 2014; Nguyen et al., 2018). 

Within the beef industry, genomic information for selection has been contributed through 

SNP chip genotypes that cover the genome at varying densities. However, when assessing this 

information, regions of the bovine genome may be underserved or overlooked due to reduced 

coverage in a particular region (Hickey, 2013). These discrepancies complicate variant discovery 

efforts. 

Variant discovery or detection can be important for development of genetic predictions 

for new traits, polygenic traits, or traits with few records. An example of a newer trait with few 

records is mean pulmonary arterial pressure (PAP), an indicator trait important for beef 

production systems that manage cattle at altitudes of 1,500 m or greater in order to select against 

high mountain disease (HMD). Due to the cost of measuring PAP and limited global regions 

concerned with PAP, limited records have been reported to breed associations for genetic 
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evaluations (Holt and Callan, 2007). Therefore, the estimates of expected progeny differences 

(EPD) for PAP have been accompanied by low accuracies of estimates. Accuracies of these 

EPDs can be increased by incorporation of genomic markers to create genome-enhanced EPDs 

(Glover and Newsom, 1915; Hecht et al., 1962; Northcutt, 2010; Garrick, 2011; Rolf et al., 2014; 

Neary et al., 2014; Zeng, 2016).  

Research efforts to detect markers associated with PAP have used SNP genotype data or 

have focused on specific regions within the genome. However, the increased affordability of 

sequencing allows for more robust data to be generated to search the bovine genome for variants 

that may have been missed through previous variant detection efforts (Heather and Chain, 2015; 

Muir et al., 2016). Therefore, the objective of this study was to utilize RNA sequence to guide 

variant detection efforts within exons of bulls and steers with varying PAP risk categories. The 

research objective was addressed through four aims: (1) detection of variants in transcriptome 

data that vary between three category (high PAP sick (HPAPS); high PAP healthy (HPAPH); 

low PAP (LPAP)) and two category (high PAP (HPAP); low PAP (LPAP)) groups for each 

tissue; (2) determination of concordant variants across tissues; (3) investigation of regions within 

the common transcriptome variant list for variants, genes, or regions of increased interest 

pertaining to PAP phenotype; (4) evaluation of genes or regions of the genome associated with 

PAP that were detected using whole genome sequence data. Through isolation of regions of 

interest from genome sequence that accompanies the transcriptome data, variants may be 

detected for downstream validation.  

8.2 Materials and methods 

8.2.1 Selection of cattle, sample collection, and storage of samples 

Thirty Angus bulls and steers were selected for sequencing based on their PAP 

measurements and pedigree information. These animals were from four different sources 
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described in Chapter 7. Template DNA was extracted from all thirty animals using either blood 

samples or liver caudate samples, which were processed and maintained as previously described 

(Chapter 7).  

8.2.2 RNA sequence data 

 Twelve samples with varying PAP risk categories from a bull development study at the 

CSU Beef Improvement Center had RNA sequence that was generated from previous research 

efforts. Transcriptome sequences were available for right ventricle, pulmonary artery, left 

ventricle, aorta, lung, and Longissimus dorsi across each of the twelve steers. Steers had PAP 

measurements recorded at three separate time periods and were then selected for sequencing 

based on the three separate time points. Graphs of PAP over time for hypertensive and 

normotensive steers was summarized by Crawford in 2019 (Figure 8.1). 
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Figure 8.1 Image generated by Crawford (2019) that provides graphical representation of how PAP measures for the RNA sequence 
population changed over time prior to harvest. 
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The RNA sequences from these twelve steers also have DNA sequence to accompany 

them. When combining two data sources it is important to acknowledge factors that could impact 

the results of the study. These two sequence types (RNA and DNA) were sequenced in different 

years, at different sequencing facilities, utilizing different Illumina sequencer models. In 

addition, the sequencing coverage and depths likely differ from one another, which could result 

in differences in the variants called in the individual sequence types. The genomic data was 

sequenced to a median coverage of 30x, but the median coverage of the RNA sequence data in 

this study is unknown. Due to the increased affordability of sequencing since the RNA sequence 

data was generated in 2014, it was speculated that the coverage of the RNA sequence was less 

than that of the DNA sequence (Muir et al., 2016).  

8.2.3 Bioinformatic analysis 

 Initial processing of the transcriptome data generated was performed by the research team 

at University of California- Davis that conducted the sequencing. At this time, all reads were 

demultiplexed, adapters were trimmed from the reads, and low-quality reads were either trimmed 

or separated from the data that was of acceptable quality. The trimmed data files were then 

processed and analyzed using CLC Genomics Workbench version 11 (Qiagen Bioinformatics). 

First, reads were aligned to the bovine reference genome, ARS-UCD1.2, using the RNA Seq 

Analysis tool.  

8.2.4 Variant detection 

 Once reads were mapped to the ARS-UCD1.2 bovine reference genome, the files sorted 

by tissue (right ventricle, left ventricle, pulmonary artery, aorta, lung, and longissimus dorsi) as 

well as PAP risk categories (LPAP, HPAPH, and HPAPS; LPAP and HPAP). These variant 

tracks were then annotated with the annotation corresponding to ARS-UCD1.2. Variants within 
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the mapped files were called utilizing the Fixed Ploidy Variant Detection tool. Upon completion 

of variant calling, comparisons of variant tracks were performed according to a procedure 

described in Figure 8.2.  

 



159 
 

 

Figure 8.2 A summary of the workflow from variant calling through to comparisons of PAP categories and comparisons between 
RNA and DNA
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8.2.5 Variant filtering 

 Transcriptome data for each tissue were analyzed separately by first filtering variants 

within each PAP category at a filtration rate of 100%. This filtration rate meant that a variant had 

to be called in all animals within the PAP category in order for it to be included in the next 

analytical step. Once this was performed for all PAP phenotypes within each of the six tissues, 

the variants were compared and contrasted to between PAP categories using the “Compare 

Sample Variants” tool to obtain variants that were the same and variants that were different 

between the different categories, keeping in mind that comparisons were order-dependent. These 

data were utilized to create Venn diagrams illustrating three category and two category PAP 

variants for each tissue (Microsoft Office, version 16.16.21).  

 Variants for each PAP category were then compared across all tissues in order to 

establish which variants were consistently called across all tissues for a particular PAP risk 

category. These variants were then compared to the genomic data that was described in chapter 

7. Common variants between these two data types were then compared and contrasted to 

determine which variants may be most informative when evaluating the trait of PAP in cattle. 

These variants were then summarized by chromosome, evaluated for their proximity to a gene, 

and searched within Ensembl Genome Browser database ascertain known gene functions (Yates 

et al., 2020).  

8.3 Results 

8.3.1 Variants detected within transcriptome data 

 The number of variants detected in each tissue for three PAP category comparisons 

revealed different numbers of variants detected for each PAP category and tissue (Figure 8.3). 

Right ventricle samples revealed 4,889 variants unique to HPAPS cattle. Further, there were 
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9,289 and 2,159 variants unique to HPAPH and LPAP cattle respectively. Left ventricle analyses 

resulted in 10,449 variants detected only in HPAPS cattle, while 7,235 and 1,132 variants were 

only found in HPAPH and LPAP cattle respectively. The most variants detected for a single PAP 

category was detected in the pulmonary artery samples. There were 25,080 variants unique to 

HPAPS cattle. Pulmonary artery sequence analysis also revealed 4,382 variants exclusively in 

HPAPH cattle and 4,671 variants exclusive to LPAP cattle. For the aorta sequences, 13,603, 

5,593, and 4,089 variants were unique to HPAPS, HPAPH, and LPAP cattle respectively. The 

longissimus dorsi results revealed 10,291 variants only in HPAPS cattle. There were also 5,925 

and 2,519 variants unique to HPAPH and LPAP cattle respectively.  
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Figure 8.3 Three category PAP (high PAP healthy (HPAPH); high PAP sick (HPAPS); low PAP (LPAP)) comparisons by tissue, 
where each number represents the number of variants that were detected for each individual category or comparison of categories.
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Like three category PAP, two category PAP was also compared for all of the tissues 

sequenced across the thirty animals (Figure 8.4). In right ventricle sequences, HPAP cattle had 

3,555 variants that were different from LPAP cattle. Conversely, LPAP cattle had 5,674 unique 

variants detected in the right ventricle. Cattle within the HPAP category had 5,453 unique 

variants found in left ventricle sequence data, and cattle within the LPAP category had 3,870 

variants not found in HPAP cattle. In pulmonary artery sequence data, LPAP cattle had nearly 

twice as many variants with 10,224 unique variants versus 5,277 in HPAP cattle. There were 

3,739 detected exclusively in HPAP cattle from aorta sequence, which was less than the 9,123 

variants unique to LPAP cattle in the same tissue. Both PAP categories were similar in the 

number of unique variants detected in lung tissue, with LPAP cattle having 5,876 variants and 

HPAP cattle having 5,432 variants. Cattle in the LPAP category had twice as many unique 

variants detected in longissimus dorsi tissue as HPAP cattle with 6,588 versus 3,307 

respectively. 
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Figure 8.4 Comparisons of variants in HPAP (high PAP) and LPAP (low PAP) cattle across various tissues. 
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8.3.2 Concordant variants detected across all tissues 

 When comparing three category PAP variants detected in RNA across multiple tissues, 

3,485 variants were detected that were unique to HPAPS cattle (Figure 8.5). Further, HPAPH 

cattle had 1,810 variants only detected in that PAP category. Comparatively, only 461 variants 

were identified exclusively in LPAP cattle. Common variants were noted between the three PAP 

categories such that 4,801 variants were common across all categories. There were 699 variants 

observed in both HPAPS and LPAP cattle. Cattle in the HPAPH and LPAP categories had 452 

variants in common, and cattle in the HPAPS and HPAPH categories had 1,230 common 

variants.  

 

Figure 8.5 Comparison of detected variants in the RNA samples across all tissues for three 
category PAP.  

 Evaluation of variants detected in RNA across all tissues for two category PAP revealed 

4,808 variants that were common between LPAP and HPAP cattle (Figure 8.6). Individually, 

there were 1,608 variants unique to LPAP cattle and 1,226 variants unique to HPAP. 
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Figure 8.6 Comparison of detected variants in the RNA samples across all tissues for two 
category PAP. 

8.3.3 Concordant variants between RNA and DNA 

 RNA and DNA were compared for LPAP cattle and HPAP cattle separately, revealing 

which variants were concordant between the two sequence data sources (Figure 8.7). There were 

42 variants concordant between DNA and RNA sequence for LPAP cattle. For HPAP cattle, 

there were 562 concordant variants.  

LPAP HPAP 

1,226 1,608 4,808 
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Figure 8.7 Comparisons of DNA and RNA variants for LPAP and HPAP cattle. 

 
 Variants concordant between DNA and RNA data sources for LPAP and HPAP cattle 

respectively were then compared to one another (Figure 8.8). This comparison yielded 39 

common variants between HPAP and LPAP cattle. Conversely, there were 3 variants that were 

unique to LPAP cattle and 523 variants unique to HPAP cattle.  

RNA DNA 

15,733 6,385 42 

LPAP 

RNA DNA 

19,203 5,493 562 

HPAP 
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Figure 8.8 Comparison of concordant variants in RNA and DNA for each LPAP and HPAP.  

 Variants were then assessed by chromosome on which they were located for HPAP 

(Figure 8.9) and LPAP (Figure 8.10) groups respectively. In HPAP cattle, most of the variants 

were located on chromosome 16, and in LPAP cattle, two out of the three variants were located 

on the X chromosome.  

 

Figure 8.9 Variants that were concordant in RNA and DNA sequence and exclusive to HPAP 
cattle, organized by chromosome. 
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Figure 8.10 Variants that were detected in RNA and DNA and exclusive to LPAP cattle 

organized by chromosome.  

8.3.4 Description of regions of interest 

Of the variants detected in both DNA and RNA, those that were within 1,000 base pairs 

of a gene or RNA were considered worthy of further investigation. The three variants that were 

detected in both the DNA and RNA of LPAP cattle were not located within a gene or within 

1,000 base pairs of a gene. However, in HPAP cattle, three variants on chromosome 2 were near 

a small nuclear RNA (snRNA) that may be of interest when evaluating the PAP phenotype 

(Table 8.2). Chromosome 10 contained 63 variants that were called within a single protein 

coding gene. There were 85 variants detected within 1,000 base pairs of one of three protein 

coding genes on chromosome 16. Further, within the 3 genes on chromosome 16, there were 21 

observed variants. Five variants detected on chromosome 28 were within a single protein coding 

gene. 
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Table 8.1 Summary of the number of variants that met the final filtration criteria based on 
proximity to a gene. Chromosome denotes the chromosome number, number of variants includes 
the number of variants that met the criteria on that chromosome, and proximity to gene lists 
whether variants were considered to be near a gene (less than 1,000bp away) or within the gene 
itself. Note that the numbers in parentheses for the “Proximity to gene” column denote the 
number of variants near or within a gene based on the total number of variants given in the 
corresponding “Number of variants” column.  

Chromosome 
Number of 

variants 
Proximity to gene 

2 3 Near 

10 63 Within 

16 106 
Near (85) 

Within (21) 

28 5 Within 

 
 The six genes that were near detected variants were researched in the Ensembl Genome 

Browser to determine gene names and locations (Table 8.3). This revealed three novel genes, 

two known protein coding genes, and a small nuclear RNA (snRNA) that accompanies a gene.  

Table 8.2 Gene annotation information for the six genes that were near variants or contained 
variants with their Ensembl ID, gene name, gene description, location (chromosome : position in 
base pairs), and gene type 

Ensembl ID Gene Name Description Location Gene Type 

ENSBTAG00000052593 U6 U6 spliceosomal RNA 2: 2,097,072-2,097,178 snRNA 

ENSBTAG00000034998 
SIMC1 

SUMO interactive motifs 
containing 1 

10: 5,026,117-5,109,495 
Protein coding 

ENSBTAG00000049875 Novel gene Unknown 16: 818,146-818,352 Protein coding 

ENSBTAG00000048925 Novel gene Unknown 16: 819,140-819,436 Protein coding 

ENSBTAG00000050274 Novel gene Unknown 16: 820,704-820,967 Protein coding 

ENSBTAG00000021497 CDH23 Cadherin related 23 28: 27,570,723-27,963,222 Protein coding 

8.4 Discussion 

8.4.1 Tissue-specific transcriptome variants 

 Even with stringent filtering parameters, thousands of variants were detected for each 

tissue when comparing cattle based on PAP categories. The transcriptome data from these steers 

were previously evaluated in a targeted discovery approach in which a subset of genes related to 

calcium transport, availability, and utilization in cardiopulmonary tissues were evaluated with 



171 
 

PAP as the trait of interest (Crawford, 2019). The fundamental difference between this study and 

that of Crawford (2019) was the overall scope of the discovery effort. This study assessed the 

entire breadth of the transcriptome data to detect variants related to either two category or three 

category PAP by tissue.  

8.4.2 Concordant variants across all tissues 

 Variants that were concordant in the transcriptomes of all steers within each PAP 

category were then compared across tissues. Through this approach the number of regions to 

investigate was further reduced. In addition, variants that were not present in all steers for all 

tissues were then eliminated from future steps. This approach allowed for detection of the 

variants highly likely related to PAP phenotype. A similar approach was applied to detect genetic 

variants associated with splicing, finding that variants of interest were present in many tissues 

(Xiang et al., 2017). Based on the conclusion from Xiang et al. (2017), this approach was 

implemented to detect variants that may be most likely to impact PAP phenotype. Further, this 

approach reduced the number of variants to be compared to the genomic data.  

8.4.3 Concordant variants in RNA and DNA 

Concordant variants in the RNA and DNA data were stringently evaluated due to the 

small number of animals in comparison to the immense amount of sequence data for each 

animal. Therefore, if a variant did not appear in all HPAP cattle or all LPAP cattle, it was 

excluded from downstream PAP category comparisons. This data sorting procedure greatly 

reduced the number of variants investigated. However, in addition to the stringency of the 

filtering process, variants may have been eliminated from downstream evaluation due to 

differences in sequencing coverage between the RNA and DNA sequence data or due to 

hemizygosity in the population. 
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The RNA and DNA data were generated at separate locations in different years using 

different Illumina sequencing platforms. In addition to these differences, the amount of data 

generated through each sequencing run differed. These differences in sequencing depth, 

coverage, and other parameters differed primarily because of increased affordability of 

sequencing between the two runs (Heather and Chain, 2015). Because the depth and coverage 

differed between the two data sets, variants that were called in the genomic data may have gone 

undetected in the transcriptome sequence (Sims et al., 2014). Therefore, more variants and genes 

may be present in all HPAP or LPAP cattle within this study population, but they were not 

detected in the RNA sequence and were therefore excluded from the final PAP category 

comparisons.  

The resulting variants detected within the X chromosome in this study may be of interest 

for future research. However, prior to accepting any variants on this particular chromosome, the 

variants in question need to be evaluated in females with PAP records via a genotype to 

phenotype association study. Variants on the X chromosome that are not valuable in predicting 

PAP phenotype may have been detected through this study due to hemizygosity at the loci on the 

X chromosome. Because all cattle sequenced were male, hemizygosity was an important 

consideration during variant detection efforts due to a single X chromosome being present 

without possibility of being masked or altered in expression by the presence of a second X 

chromosome as would be observed in female cattle.  

8.4.4 Variant descriptions 

 There were six genes that contained variants common to RNA and DNA sequence for all 

HPAP cattle within the study population. None of the genes that were found had been reported in 

previous gene and variant discovery efforts pertaining to PAP (Newman et al., 2011; Newman et 
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al., 2015; Heaton et al., 2016; Zeng, 2016; Crawford, 2019; Heaton et al., 2020). These genes 

and the variants within or flanking them should not be considered as superior to those discovered 

in previous literature, but should instead be considered an addition to the list of regions to 

include when working to cultivate selection tools for breeders using PAP as a trait in their 

breeding objective to combat HMD. It is well documented that PAP has a moderate heritability 

and is polygenic (Schimmel, 1981; Schimmel, 1983; Enns et al., 1992; Shirley et al., 2008; 

Cockrum et al., 2014; Zeng, 2016; Crawford, 2016). Therefore, inclusion of new genes and (or) 

variants would be in addition to those already identified.  

 The first gene observed in this study was located on chromosome 2. While the current 

bovine annotation recognizes the region as a snRNA, it’s a highly conserved spliceosomal RNA 

that accompanies a single-copy gene. The U6 snRNA is part of a family of U RNAs that play 

various roles in the processing of genetic information and ultimately how a particular gene is 

expressed. The U6 snRNA often pairs with U4 snRNA to form a ribonucleoprotein complex that 

interacts with pre-mRNA to generate a spliceosome. Overall, this complex is responsible for 

splicing introns and joining exons for a particular region during transcription (Chen and Moore, 

2015).  

Within bovine genetics, research involving U6 snRNA has investigated the modification 

of this U RNA type for the purpose of RNA interference of short hairpin RNA as a means of 

gene-knockdown. The utilization of RNA interference allows for activation or inactivation of a 

gene of interest based on the ability of U6 snRNA to interact at a sequence-specific region of the 

genome (Lambeth et al., 2005).  

Through the aforementioned research efforts describing the overall role and use of U6 

snRNA, the potential for negative effects of variants in and around these regions was evident. 
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Within the context of PAP, if a variant were present in this particular region, it could negatively 

impact the ability of splicing in a particular region, which could result in mutations within 

surrounding genes. While the three variants that were indicated in this region were only flanking 

the U6 region, they were within 206 bases of the region and could interact or interfere with 

splicing. Further, the relationship between variants in this region and the HPAP phenotype in 

cattle is uncharacterized. Future research in this region should focus on exploration of this region 

of the genome to see if mutations in this region pose a specific consequence in translation and 

transcription and ultimately alter gene expression. If alterations in transcript abundance and 

overall gene expression exist in this region, variants in this region may be informative for 

selection of cattle that perform better at high elevations.  

Sixty-three variants were found within a single gene on chromosome 10. The gene was 

annotated in the bovine reference genome as SUMO interactive motif containing 1 (SIMC1). 

Description of SIMC1 in cattle has been limited in literature. However, human research has 

described the gene as a regulator of autolysis for calpain-3 (CAPN3) (Ono et al., 2013). The gene 

has been identified as part of the calpain family of Ca2+- regulated cysteine proteases and 

predominantly impacts skeletal muscle. Previous studies have reported that this gene has been 

related to intracellular processes such as cell proliferation, cell apoptosis, and muscle atrophy in 

humans (Roperto et al., 2010; Paco et al., 2012; Felicio et al., 2013; Wang et al., 2013; Liu et al., 

2015). The Human Gene Expression Atlas reported expression of CAPN3 in epithelial cells of 

the bronchioles in the presence of carcinogenic compounds from tobacco smoke. In addition, 

other studies in humans reported deletions downstream of CAPN3 resulting Sotos syndrome, 

curvature of the spine, heart defects, and kidney defects (Ko, 2013; Dikow et al., 2013; 

Klaassens et al., 2014; Begum et al., 2016). 
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Both SIMC1 and CAPN3 have been located within the Bos Taurus genome 

(ARS_UCD1.2). However, while these genes were detected on chromosome 5 of the human 

genome, they are found on chromosome 10 of the bovine genome (Ensembl Release 101; Yates 

et al., 2020). Further, while no studies in cattle have evaluated SIMC1, there have been 

numerous studies describing the role of CAPN3. Most notably, variations in CAPN3 have been 

linked to tenderness in beef products through mechanisms of sarcomere remodeling and 

mitochondrial protein turnover (Cohen et al., 2006; Robinson et al., 2012; Barendse et al., 2008; 

Liu et al., 2015). While CAPN3 has been related to meat quality, it has not been evaluated within 

cardiopulmonary tissues or investigated within the context of PH in cattle. Given the expansive 

research of this gene in human literature, it is possible that CAPN3 may impact the 

cardiopulmonary tissue in the presence of variation within the SIMC1 gene. However, extensive 

research evaluating genomics, transcriptomics, and PAP phenotype within these genes would 

need to be performed in order to elucidate a relationship between PH and loci of interest within 

SIMC1 and CAPN3.  

 Three genes were found on chromosome 16. However, all three of these genes were 

classified as “novel” when they were investigated in Ensembl Genome Browser (Release 101; 

Yates et al., 2020). Each of these genes contained a single transcript but had no description or 

other classifying information. This lack of information may mean that the annotation did not 

include any information on these particular genes, or that ontological data has been submitted but 

not yet updated on any bioinformatic resource. Regardless, further research into these genes may 

be beneficial when working to characterize PAP phenotypes from a genetic perspective.  

Cadherin related 23 (CDH23) has not been characterized in bovine research. However, it 

has been documented in humans as being related to cell adhesion and has been expressed in 
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tissues including brain, kidney, heart, lung, nose, eye, and ear. Further, research has indicated 

that, when upregulated, CDH23 may play a role in early metastasis of breast cancer cells 

(Apostolopoulou and Ligon, 2012; Takahashi et al., 2016). Further, ontology of this gene has 

revealed that in addition to cellular adhesion, CDH23 may also play a role in calcium transport 

(The UniProt Consortium, 2019). Within the context of PH, variants in this gene may reduce 

cardiopulmonary efficiency by interfering with calcium transport and resulting muscle 

contractility. Further, if variants in this gene resulted in cell to cell adhesions, a reduced 

efficiency in the heart or lungs may be observed, which may result in increased sensitivity to 

changes in altitude or other pulmonary diseases. This gene should be investigated in other cattle 

with known PAP categories in order to validate the role of CDH23 in cattle at high altitudes.  

8.5 Conclusions 

 Through a multi-step filtration process, multi-omics data were utilized to detect variants 

associated with specific PAP phenotypes within coding regions of the bovine genome. This 

process revealed six genes for further exploratory efforts and variant validation. Of those, three 

were novel, not being characterized in the current genome annotation, which leaves the roles of 

those genes unknown. Two genes were protein coding genes that, while less characterized in 

cattle, had thorough descriptions in humans and mice that indicated they could play a role in 

what PAP phenotype an animal may develop. The last region was an snRNA that accompanies a 

gene, which, while less informative than other protein coding genes that were found, interacts 

with a gene in humans that may be relevant to cattle and how they express the PAP phenotype in 

hypoxic conditions.  

 These six variants, which have not been evaluated for their relationship to PAP in 

previous literature, should be investigated further in order to detect intergenic variants, 
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differential expression, and other information that may allow for better understanding of the 

genetics underlying PAP. Further, these variants along with variants from previous research 

efforts (Appendix B) should be validated on a larger population with known PAP phenotypes in 

order to determine which variants would be of value to genetic improvement programs if 

included on a SNP genotyping panel. 
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APPENDIX A 

WELL PLATE LAYOUT OF SAMPLES SUBMITTED FOR SEQUENCING 

 

 ✧ Battle Creek Ranch bulls 

❊ CSU Beef Improvement Center bulls 
▲ CSU Beef Improvement Center 2012 born steers from RNA sequencing study 

◼︎ CSU Beef Improvement Center 2016 born steers from finishing system study
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APPENDIX B 

LIST OF GENES TO INVESTIGATE FURTHER 

 
Ensembl ID Gene name Gene description Chromosome Position Gene Type Citations 

ENSBTAG00000020035 RCAN1 
Regulator of 
calcineurin 1 

1 882,081-1,002,223 Protein coding 
Bush et al., 2004; van Rooij et al., 2004; 
Canaider et al., 2006; Grammer et al., 2006; 
Crawford, 2019 

ENSBTAG00000052593 U6 U6 spliceosomal RNA 2 2,097,072-2,097,178 snRNA 
Lambeth et al., 2005; Chen and Moore, 2015; 
Jennings, 2020 

ENSBTAG00000006420 BMPR2 
Bone morphogenetic 

protein receptor type 2 
2 90,864,689-91,017,391 Protein coding West et al., 2004 

ENSBTAG00000046277 RGS4 
Regulator G protein 

signaling 4 
3 6,290,852-6,298,224 Protein coding 

Owen et al., 2001; Mittmann et al., 2002; Cho et 
al., 2003; Gu et al., 2010; Opel et al., 2015; 
Crawford, 2019 

ENSBTAG00000000074 NFIA Nuclear factor I A 3 84,197,144 - 84,620,790 Protein coding Heaton et al., 2020 

ENSBTAG00000008063 PPARA 

Peroxisome 
proliferator-activated 

receptor alpha 
5 116,438,987-116,507,065 Protein coding 

Törüner et al., 2004; Simonson et al., 2010; 
Zeng, 2016; Heaton et al., 2016 

ENSBTAG00000007116 ARRDC3 
Arrestin domain 

containing 3 
7 90,839,580 - 90,853,625 Protein coding 

Oka, 2006; 
Zeng, 2016; 
Heaton et al., 2020 

ENSBTAG00000034998 SIMC1 
SUMO interactive 
motifs containing 1 

10 5,026,117-5,109,495 Protein coding Ono et al., 2013; Jennings, 2020 

ENSBTAG00000012866 THBS4 Thrombospondin 4 10 11,005,591-11,060,139 Protein coding 
Stenina et al., 2005; Gabrielsen et al., 2007; 
Mustonen et al., 2012; Crawford, 2019 

ENSBTAG00000008868 CAPN3 Calpain 3 10 37,711,578-37,766,813 Protein coding 

Cohen et al., 2006; Barendse et al., 2008; 
Roperto et al., 2010; Paco et al., 2012; Robinson 
et al., 2012; Felicio et al., 2013; Wang et al., 
2013; Liu et al., 2015 

ENSBTAG00000002278 FBN1 Fibrillin 1 10 61,653,913-61,919,176 Protein coding 
Powell et al., 1997; Shen et al., 2011; Jeppesen 
et al., 2012; Chen et al., 2014; Crawford, 2019 

ENSBTAG00000005847 ROCK2 

Rho associated coiled-
coil containing protein 

kinase 2 
11 86,489,069 - 86,618,649 Protein coding Zeng, 2016 

ENSBTAG00000003711 EPAS1 
Endothelial PAS 
domain protein 1 

11 28,735,330 - 28,825,665 Protein coding 

Gale et al., 2008; Newman et al., 2015; 
Zeng, 2016; 
Heaton et al., 2016; 
Crawford et al., 2016 

ENSBTAG00000020399 RNF139 ring finger protein 139 14 15,593,322-15,607,732 Protein coding Wang et al., 2017 

ENSBTAG00000008432 NUP98 
nucleoporin 98 and 96 

precursor 
15 51,264,707-51,350,656 Protein coding Dogan et al., 2018 

ENSBTAG00000038737 P2RY6 
Pyrimidinergic receptor 

P2Y6 
15 52,784,745-52,790,305 Protein coding 

Hou et al., 1999; Nishida et al., 2008; Tovell et 
al., 2008; Nishimura et al., 2016; Sunggip et al., 
2017; Crawford, 2019 

ENSBTAG00000049875 Novel gene Unknown 16 818,146-818,352 Protein coding Jennings, 2020 
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Ensembl ID Gene name Gene description Chromosome Position Gene Type Citations 
ENSBTAG00000048925 Novel gene Unknown 16 819,140-819,436 Protein coding Jennings, 2020 
ENSBTAG00000050274 Novel gene Unknown 16 820,704-820,967 Protein coding Jennings, 2020 

ENSBTAG00000013298 PLA2G4A 
Phospholipase A2 

group IVA 
16 67,906,979-68,081,283 Protein coding 

Osanai et al., 1998; Handlogten et al., 2001; 
Magne et al., 2001; Ait-Mamar et al., 2005; 
Crawford, 2019 

ENSBTAG00000024950 
ACE 

 

Angiotensin-converting 
enzyme encoding 

 
19 47,798,389-47,819,083 Protein coding 

Buroker et al., 2010; Srivastava et al., 2011; 
Luo et al., 2014; Zeng, 2016 

ENSBTAG00000025200 ASIC2 
Acid sensing ion 
channel subunit 2 

19 16,022,746-17,228,096 Protein coding 
Grifoni et al., 2008; Lu et al., 2009; Abboud and 
Benson, 2015; Zhou et al., 2017; Crawford, 
2019 

ENSBTAG00000001823 STC2 stanniocalcin 2 20 
4,999,725-5,011,125 

 
Protein coding Chang et al., 2008; Na et al., 2015 

ENSBTAG00000001333 PPARG 

Peroxisome 
proliferator-activated 

receptor gamma 
22 56,709,248-56,835,386 Protein coding 

Törüner et al., 2004; Simonson et al., 2010; 
Zeng, 2016; Heaton et al., 2016 

ENSBTAG00000008096 EDN1 Endothelin 1 23 44,156,426-44,163,955 Protein coding 
Schiffrin, 2005; Murphy and Eisner, 2006; 
Castro et al., 2007; Deacon et al., 2010; Calabro 
et al., 2012; Bkaily et al., 2015; Crawford, 2019 

ENSBTAG00000053296 EGLN1 EGL nine homolog 1 28 4,087,440-4,150,379 Protein coding 
Simonson et al., 2010; Buroker et al., 2012; Ge 
et al., 2012; Xiang et al., 2013; Zeng, 2016 

ENSBTAG00000021497 CDH23 Cadherin related 23 28 27,570,723-27,963,222 Protein coding 
Apostolopoulou and Ligon, 2012; Takahashi et 
al., 2016; The UniProt Consortium, 2019; 
Jennings, 2020 

ENSBTAG00000013300 KCNMA1 

Potassium calcium-
activated channel 

subfamily M alpha 1 
28 32,616,314-33,387,186 Protein coding 

Tomas et al., 2008; Barnes et al., 2016; D. 
Brown (results unpublished); Crawford, 2019 

ENSBTAG00000018540 NOX4 NADPH oxidase 4 29 6,120,515-6,303,004 Protein coding 
Mittal et al., 2007; Li et al., 2008; Chen et al., 
2012; Zhao et al., 2015; He et al., 2017; 
Crawford, 2019 

 


