
DISSERTATION

LINEAR MODELS, SIGNAL DETECTION, AND THE GRASSMANN MANIFOLD

Submitted by

Anthony Norbert Schwickerath

Department of Mathematics

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2014

Doctoral Committee:

Advisor: Michael Kirby
Co-Advisor: Chris Peterson

Louis Scharf
Richard Eykholt

Copyright by Anthony Norbert Schwickerath 2014

All Rights Reserved

ABSTRACT

LINEAR MODELS, SIGNAL DETECTION, AND THE GRASSMANN MANIFOLD

Standard approaches to linear signal detection, reconstruction, and model identification

problems, such as matched subspace detectors (MF, MDD, MSD, and ACE) and anomaly

detectors (RX) are derived in the ambient measurement space using statistical methods

(GLRT, regression). While the motivating arguments are statistical in nature, geometric

interpretations of the test statistics are sometimes developed after the fact. Given a standard

linear model, many of these statistics are invariant under orthogonal transformations, have a

constant false alarm rate (CFAR), and some are uniformly most powerful invariant (UMPI).

These properties combined with the simplicity of the tests have led to their widespread use.

In this dissertation, we present a framework for applying real-valued functions on the

Grassmann manifold in the context of these same signal processing problems. Specifically,

we consider linear subspace models which, given assumptions on the broadband noise, corre-

spond to Schubert varieties on the Grassmann manifold. Beginning with increasing (decreas-

ing) or Schur-convex (-concave) functions of principal angles between pairs of points, of which

the geodesic and chordal distances (or probability distribution functions) are examples, we

derive the associated point-to-Schubert variety functions and present signal detection and

reconstruction algorithms based upon this framework.

As a demonstration of the framework in action, we implement an end-to-end system

utilizing our framework and algorithms. We present results of this system processing real

hyperspectral images.

ii

ACKNOWLEDGEMENTS

Any dissertation is the culmination of a decades-long journey, and this one is not ex-

ception. Unfortunately, it is not possible to acknowledge every teacher, friend, or family

member who nurtured me or nudged me along, though I am grateful to you all.

The research program presented here is the product of regular meetings with Michael

Kirby, Chris Peterson, and Louis Scharf. Each brought a different view of signal detection

on the Grassmann manifold, whether statistical, geometric, theoretic, or data-directed. The

connections made between these various views form the scaffolding upon which this work

is built, and it would not have developed without their collaboration and guidance. Thank

you for your time, wisdom, and patience.

Frequent opportunities to present my work to the Pattern Analysis Lab forced me to orga-

nize my ideas. Discussions with members of the lab about their own work broadened my per-

spectives, exposing me to ideas like the mean flag. Thank you Sofya Chepushtanova, Tegan

Emerson, and Tim Marinnan; your camaraderie kept my research and myself grounded..

Financial support from the Department of Defense Science, Mathematics, & Research

for Transformation (SMART) Scholarship program allowed me to focus on completing this

work.

I would not have had this opportunity without the early encouragement from my family.

Thank you mom (my advocate), dad (building a geodesic dome is an exercise in applied

geometry), Julie, Angie, and Jessie.

Lastly, I would like to thank my wife, Kristi. It has been said that earning a PhD is a

test of endurance and her love, encouragement, and baking kept me going throughout this

journey. Words are insufficient express my thanks.

iii

TABLE OF CONTENTS

Abstract . ii

Acknowledgements . iii

List of Tables . vii

List of Figures . viii

Chapter 1. Introduction . 1

1.1. Signal Detection and Related Tasks . 1

1.2. Challenges . 3

1.3. Overview . 3

Chapter 2. Background . 5

2.1. Introduction . 5

2.2. Linear Subspace Models. 5

2.3. Classical Subspace Detectors . 8

2.3.1. Matched Subspace Detector (MSD) . 9

2.3.2. Adaptive Coherence/Cosine Estimator (ACE) . 11

2.3.3. Matched Direction Detector (MDD) . 12

2.3.4. RX Anomaly Detector . 13

2.4. Model Identification. 14

2.4.1. Principal Component Analysis (PCA) . 15

2.4.2. Maximum Noise Fraction (MNF) . 16

2.4.3. Flag Mean . 17

2.5. The Grassmann Manifold . 19

iv

2.5.1. Notation . 20

2.5.2. Principal Angles and Vectors . 22

2.6. Summary . 23

Chapter 3. Geometric Tests . 25

3.1. Introduction . 25

3.2. Point-to-Point Functions . 25

3.3. Point-to-Set Functions . 29

3.3.1. Detection Theory . 32

3.3.2. Recovery Theory . 40

3.3.3. Signal Detection . 48

3.3.4. Signal Recovery . 49

3.4. Summary . 49

Chapter 4. Empirical Results . 51

4.1. Introduction . 51

4.2. System Architecture . 51

4.2.1. Model Identification . 53

4.2.2. Shortcomings . 53

4.3. Datasets . 54

4.4. Results . 55

4.5. Challenges . 59

4.5.1. Model Identification . 59

4.5.2. Parameter Selection . 61

4.5.3. Dataset Selection. 61

v

4.6. Summary . 61

Chapter 5. Conclusion . 63

5.1. Contributions . 63

5.2. Future Directions . 63

Bibliography . 65

Appendix A. Code. 70

A.1. Algorithms . 70

A.2. Experiments. 71

A.3. Package hsi . 79

vi

LIST OF TABLES

4.1 Classes for Indian Pines data. 56

4.2 Classes for Salinas data. 56

4.3 Classes for Pavia University data. 57

4.4 Per category accuracy for Indian Pines tasks. 57

4.5 Per category accuracy for Salinas tasks. 58

4.6 Per category accuracy for Pavia University tasks. 58

vii

LIST OF FIGURES

2.1 Algorithm for computing the best subspace basis using PCA. 16

2.2 Algorithm for computing the best subspace basis using MNF. 17

2.3 Algorithm for constructing a basis for the range of a matrix using Gram-Schmidt. 18

2.4 Algorithm for computing the best subspace basis using the flag mean. 19

2.5 Mapping pixel data to Euclidean space. 21

2.6 Mapping a tile of pixel data to a Grassmann manifold. 21

2.7 Algorithm for computing principal angles between the ranges of two matrices. 24

2.8 Algorithm for computing principal vectors given two matrices. 24

3.1 The distance between two points on a Grassmann manifold. 27

3.2 Examples of Schubert varieties. The red linear subspace is the subspace S and

the black linear subspace T is the subspace which corresponds to the point

t ∈ ΩS,a ⊂ Gr(m,n). 31

3.3 The distance between a point and a set (e.g., a Schubert variety) on a Grassmann

manifold. 33

3.4 A schematic representation of the proof of Lemma 3.3.2. 36

3.5 Algorithm for evaluating the detection function for a linear model and data point. 48

3.6 Algorithm to recover the signal given a model and data point. 49

4.1 Block diagram of the classification system. The image, minimum intersection, a,

and the set of classes under consideration, K, are given. 52

4.2 Ground truth label images for uniform tiles. 55

viii

4.3 Example Indian Pines classifications using PCA-generated subspace models

(a = 1). Tiles are color coded by the best class (detector) using the same scale as

in Figure 4.2(a). 60

ix

CHAPTER 1

Introduction

1.1. Signal Detection and Related Tasks

In general, signal (or signature) detection is the task of determining whether a signal

occurs in a data set. For example, we might ask whether a broadcast radio signal exists in a

specific frequency band or if the channel only consists of noise. The data can be a time series,

as in this example, spatial data, or spatio-temporal data. Spatial data might be an image

or measurements made by sensors placed at discrete points over a geographic area. Spatio-

temporal data consists of a number of time series, each identified with a spatial location.

For example, it may take the form of a sequence of images (a movie) or time series from

a number of geographically distributed weather stations. Data can even come from non-

physical phenomena, such as computer network traffic. Despite the different provenance of

the data, the same detection algorithms may be applied to each.

In this dissertation, we will be concerned with methods which utilize an explicit data

formation model. Specifically, we are interested in linear models, meaning models where the

signal and noise components act independently from each other and are combined by simple

addition. While this may not be a strictly accurate model in every problem domain, it is a

frequently employed simplification. The widespread success of linear models suggests that

this is often a useful approximation.

We differentiate between the detection task and classification task. In detection, we

attempt to identify the presence or absense of a signal. We can think of this as a single class

problem. In classification, there are multiple signal classes and we attempt to determine

which one is present in the data. In our radio broadcast example, we might wish to distinguish

1

between talk, music, and Morse code. In some domains, we assume that the data can only

contain a single signal; while in others, the data may contain a mixture of multiple classes.

For example, in an image taken from an airplane, a given pixel might represent a 10m × 10m

patch on the ground. A patch at the edge of a parking lot may contain a mixture of grass, tree,

asphalt, and automobile. In some applications, we might wish to determine the percentage

of each substance in the pixel, in others, to simply identify the class which is most prevalent.

All of the previous examples have involved a known signature that we are attempting

to locate in the data. Sometimes we do not have a signature, but are simply looking for

a deviation from the bulk of the data set. This task is known as anomaly detection.

While our primary focus in this work is on signal detection, our approach may be applied to

anomaly detection.

After we have detected a signal, we may wish to determine the signal which is embedded

in the data. Returning to the radio example, once we know that there is a broadcast signal,

we would like to reconstruct the original signal free of noise and interference, so that we can

listen to it. We refer to this as signal recovery.

In order to perform these tasks, we first need a model. Sometimes these models are

derived theoretically from first principles. In many scenarios, either due to the complex

interactions or to lack of knowledge, we would be satisfied with a model which fits a training

data set well. For example, if we are attempting to detect roads in an image, we might fit a

model to some hand labeled examples of road pixels. We refer to the task of fitting a model

to training data as model estimation.

Signal detection, signal recovery, and model estimation are very closely related. Solutions

to these generally revolve around a single theoretical framework. Often there is an underlying

statistical or geometric approach tying constellations of algorithms together.

2

1.2. Challenges

Currently, standard methods such as the matched subspace detector (MSD) are based

upon a common linear model and are stated as generalized likelihood ratio tests (GLRT).

These methods are developed in data space. They have the advantage of a directness and

simplicity in both derivation and application. Some also have a constant false alarm rate

(CFAR) and are uniformly most powerful invariant (UMPI). Many of these methods were

originally presented by Scharf in [1] with variations and additional properties proven later,

e.g., in [2–4].

There are some examples of detection or classification performed in derived spaces or

manifolds, such as the Grassmann manifold [5–9]. To the best of our knowledge, these are

each developed on a problem-by-problem basis. We have not found a general framework for

developing a detector in a principled fashion along the lines used to motivate the standard

data-space methods.

In this dissertation, we lay out a research program to develop similar general methods

on the Grassmann manifold and present our initial results. This path contains some clear

challenges.

• We have found no existing general signal processing framework on the Grassmann

manifold.

• Mapping interesting probability distributions from a vector space to the Grassmann

manifold is frequently difficult.

1.3. Overview

In Chapter 2, we provide some general background material. First we define the signal

detection problem. Then we focus on the linear subspace models which appear in a number

3

of contexts. Based upon these, we present an overview of some classic signal detectors such

as the Matched Subspace Detector (MSD) and the Adaptive Coherence/Cosine Estimator

(ACE). We then present methods for constructing a linear model given labeled data. Finally,

we introduce the Grassmann manifold, the setting in which we will explore signal detection

and recovery throughout the remainder of this dissertation.

In Chapter 3, we develop a set of geometric tests for comparing aggregate data with more

general linear models on the Grassmann manifold. First we introduce some classes of point-

to-point functions on the Grassmann manifold. Then we use these functions to generate

functions for comparing a point with a Schubert variety. Armed with these functions, we

present signal detection and signal recovery algorithms.

Based upon the theory developed in Chapter 3, we present an example end-to-end system

for detection and classification of pixels in hyperspectral imagery (HSI) in Chapter 4. This

begins with model estimation using standard methods. Then detection and classification

are performed using our method. This system is demonstrated on real imagery and an

exploration of challenges is presented in this context.

Finally, we recap in Chapter 5. Then we discuss open questions and data sets where

these techniques might yield interesting and useful results.

4

CHAPTER 2

Background

2.1. Introduction

Our ultimate goal is to produce a signal detection framework on the Grassmann manifold.

Before we can do that, we need to discuss similar work on vector spaces, specifically linear

subspace models and classic signal detectors derived from these models. These models will

provide a starting point for those we will assume in Chapter 3. We will then address some

methods for fitting a linear subspace model to training data. Finally, we will introduce the

Grassmann manifold. Throughout this chapter, we will be developing a notation which will

prove essential to discussing our results in Chapter 3.

2.2. Linear Subspace Models

As a simple example, suppose we have a temporal data set. We have n sensors and

every so often (say once every second) we record the measurements of these sensors. This

may be modeled as three components: signal, clutter, and noise. Signal is the part of the

measurements that we are ultimately most interested in; this is the part that tells us about

the true state of the world as it applies to our application. Clutter is also sometimes referred

to as background or interference, depending upon the application. This is the part of the

world which is signal dependent but does not apply to our question; in fact, it may actually

obscure our ability to discern the signal. Finally, noise is distinct from clutter in that it is a

random process, independent of the signal.

In our example, let the data at time i be organized in a vector, xi ∈ Rn; each element

in the vector is the measurement from one of the n sensors. There are many ways in which

signal, clutter, and noise can interact to produce xi. One of the simplest is if they are simply

5

combined additively:

xi = signal + clutter + noise.

To be a useful model, we need to identify the sets of possible values for signal and clutter, as

well as a distribution for noise, so that we can tease apart the components which comprise

our measurements.

Once again, let us take a simple approach. Suppose signal and clutter each lives in a

linear subspace. We can write a model like this as

xi = Sψi + Cφi + νi,

where the column spaces of the fixed (and usually known) S ∈ Rn×r and C ∈ Rn×p are

the linear subspaces where the signal and clutter reside, respectively.1 The vectors ψi ∈ Rr

and φi ∈ Rp are the basis-specific coordinates in the signal and noise subspaces. The n-

dimensional random vector νi is distributed as the noise is, say Nn [0, σ2In]. We call such a

model a linear subspace model.

Linear subspace models make up one of the most popular classes used in signal detection.

While the general idea is consistent, there are variations on this theme used in the literature.

The simplest form,

xi = Sψi + νi(2.1)

1When we are referring to the column space of a matrix, we will sometimes write S = 〈S〉 to explicitly
indicate that linear subspace S is the span of the columns of S. By convention, we use the same letter.
A boldface S indicates the matrix encoding a specific fixed basis. A script S indicates the abstract linear
subspace.

6

can be read two different ways. First, it can mean that there is no clutter, only signal and

noise. This is the way in which we will use this form. Alternately, some papers use this

notation when clutter still exists but is written as the mean of the distribution of νi. We do

not favor that use of notation, as we prefer νi to be identically distributed for all i.

In some situations, we may believe that spatial data collected in a small region or temporal

data collected over a short period of time is more restricted than the previous model would

show. If we believe that this is the case, we may write the model as2

xi = SMψi + Cφi + νi.(2.2)

Here a fixed but unknown mixture matrix M ∈ Rr×q selects a subspace of S for the data,

as is done for the Matched Direction Detector (MDD) to be presented in Section 2.3.3. Now

that the restricted signal subspace 〈SM〉 is q-dimensional rather than r-dimensional, ψi ∈ Rq

is the signal for the i-th measurement (in the coordinate system defined by the columns of

SM), xi.

This formulation draws a clear distinction between the signal, correlated background

clutter, and broadband noise which is often lacking in work that simply uses the signature-

noise model of Equation (2.1), such as that surveyed in [11, 12]. The signature-background-

noise model considers νi to represent only broadband noise, such as sensor noise. In some

formulations written as Equation (2.1), the clutter term still exists but is given as the mean of

the noise distribution. In others, rather than being broadband noise, νi has a rank-deficient

covariance matrix and so constrains the noise to live in a subspace. In this case, the noise

may be dominated by clutter, rather than sensor noise.

2While this draws on the explanation given by Scharf, et al. in [10], some letters chosen to denote the
different components are altered to be more mnemonic or to avoid conflict with other standard notation.

7

2.3. Classical Subspace Detectors

Given the general statement of the model in Equation (2.2), we may still have differences

in what is known. In some we know all of the model parameters: the signature and clutter

subspaces, as well as the true noise distribution. In some we know these but not the exact

portion of the signature subspace where the local measurements lie. In others we know the

subspaces but not the noise parameters. In the final type, the RX anomaly detector, we only

know the general form of the model a priori, but not the exact signature subspace or noise

parameters.

Definition 2.3.1. Assume a family of distributions with parameter space Θ. Let X be a

random vector with a fixed but unknown distribution selected from this family. Let {Θ0,Θ1}

be a partition of Θ and hypotheses H0 and H1 be that the distribution have parameters in

Θ0 and Θ1, respectively. We refer to H0 as the null hypothesis and H1 as the alternate

hypothesis.

Given a realization x of X, the likelihood function l(θ;x) = f(x; θ), the probability

density function at x conditioned on θ ∈ Θ. The generalized likelihood ratio is

L(x) = supθ∈Θ1 l(θ;x)
supθ∈Θ0 l(θ;x)

A generalized likelihood ratio test (GLRT) assigns a hypothesis to the data using the

generalized likelihood ratio. For a threshold η, L(x) > η results in the assignment of x to

H1, while L(x) < η assigns x to H0.

All four of the following detectors employ GLRTs. In each, there is a definition for the

null hypothesis H0, which assumes that the measurements only contain clutter and noise,

and an alternate hypothesis H1, where signal is also present. Due to the simplicity of the

8

derived test statistics and the general applicability of the model assumptions, these have

found widespread use in a range of signal detection and estimation problem domains. For

some examples in hyperspectral imagery and radar, see [13, 12].

2.3.1. Matched Subspace Detector (MSD). Up to this point we have assumed our

measurements to produce real (R) values. A number of the signal processing papers that

we will refer to assume complex (C) values. We use the complex forms here, but the results

still hold when restricted to the real domain.

The Matched Subspace Detector (MSD) was originally introduced by Scharf [1] without

an interference term and expanded to the form presented here in Scharf and Friedlander [10].

The data is assumed to be produced by the model

xi = Sψi + Cφi + νi.

Without loss of generality, we will assume that the noise has the multivariate normal distri-

bution νi ∼ CNn [0, σ2I]. The hypotheses used to produce the GLRT are

H0 : ψi = 0

H1 : ψi 6= 0.

H0 represents the case where no signal is present and H1 where signal is present. Hence,

when the likelihood ratio

L(x) = l(H1;x)
l(H0;x) ,

is greater than 1, it is more likely that the data contains signal than that it does not.

9

If we know the variance (σ2) of the noise, the test statistic is

LMSD-1(x) = 1
σ2x

HPC⊥PGPC⊥x,

where PC⊥ is the orthogonal projection matrix onto the orthogonal complement of the clutter

subspace (C). G is the projection of the portion of the signal subspace which is orthogonal

to the clutter subspace, PC⊥S. If we do not know the variance of the noise, the test statistic

is

LMSD-2(x) = xHPC⊥PGPC⊥x

xHPC⊥PG⊥PC⊥x
.

To use a detection statistic L(x), we must select a threshold η. When L(x) < η, we label

x as H0. Otherwise we label x as H1 (containing signal). LMSD-2 has been shown to be a

Constant False Alarm Rate (CFAR) detector. This means that the threshold η can be set

to provide (in a statistical sense) a constant rate of claiming H0 events as H1 independent

of the signature subspace S.

Additionally, MSD has been proven to be a Uniformly Most Powerful Invariant (UMPI)

detector.

Definition 2.3.2. Suppose we have a random vector X parameterized by a deterministic

but unknown parameter θ ∈ Θ and that Θ is partitioned into two sets, Θ0 (which we identify

with the null hypothesis H0) and Θ1 (identified with H1). A detection function d(X) −→

{0, 1} is said to be uniformly most powerful of size α when, for any other detection

function d′(X) where

sup
θ∈Θ0

Eθd
′(X) = α′ ≤ α = sup

θ∈Θ0

Eθd(X),

10

then

Eθd
′(X) = 1− β′ ≤ 1− β = Eθd(X),

for all θ ∈ Θ1.

Essentially what this says is that, while there may be detectors which produce fewer false

positives (claim H1 when Θ0) in the worst case (for some θ ∈ Θ0), such detectors cannot

produce more correct detections (claim H1 when Θ1).

2.3.2. Adaptive Coherence/Cosine Estimator (ACE). Scharf and McWhorter [14]

and Kraut, Scharf, and McWhorter [2] presented the Adaptive Coherence3 Estimator(ACE)

an adaptive version of the Matched Subspace Detector where the noise variance is unknown.

This is based upon many of the assumptions used by MSD. The principal difference is that,

rather than knowing that broadband noise is distributed as νi ∼ CNn [0, σ2I], we instead

only assume that νi ∼ CNn [0,R] and that the covariance matrix R is unknown. The origi-

nal papers also deviate from MSD by assuming no clutter subspace. Data is assumed to be

modeled by

xi = Sψi + νi.

The method used in to produce a detector to cope with this problem is to estimate the

covariance with a sample covariance. Specifically, if we have M samples {x̃1, . . . , x̃M} known

to be devoid of signal (H0), we can produce an n×M matrix X̃ = [x̃1, . . . , x̃M]. The sample

covariance has the form R̂ = X̃X̃H. Using the estimated sample covariance, we can whiten

3Sometimes “Cosine” is used in place of “Coherence” to emphasize a geometric rather than statistical inter-
pretation.

11

the data ẑ = R̂−1/2. This results in the ACE detection statistic

LACE(x) =
ẑHPĜẑ

ẑHẑ

=
xHR̂−1S

(
SHR̂−1S

)
SHR̂−1x

xHR̂−1x

If dim S = 1, we write S = 〈s〉. Then the detection statistic can be rewritten

LACE(x) = |sHR̂−1x|2

xHR̂−1xsHR̂−1s
.

Both of these adaptive detectors are CFAR. Later, Kraut, Scharf, and Butler [3] demon-

strated that this detector is UMPI.

2.3.3. Matched Direction Detector (MDD). In some applications, we may be-

lieve that data which is nearby spatially or temporally is more similar than what the general

signal subspace might suggest. The Matched Direction Detector (MDD) was originally in-

troduced by Besson, Scharf, and Vincent [4] to address this situation. This is similar to

MSD, but the signal is assumed to lie in some (unknown) 1-dimensional subspace of S for

all of the data. In other words, the model is

xi = Sµψi + Cφi + νi.

Here, the unknown vector µ ∈ Cr fixes the 1-dimensional subspace of S and ψi is the location

in this subspace. The hypotheses are the same as before. Noise is assumed to be CNn [0, σ2I]

with σ2 known.

Because we are assuming that a collection of measurements live in a 1-dimensional linear

subspace of our signal subspace, we need to answer the question about all of measurements

12

simultaneously. Let us take a collection of N measurements {x1, . . . ,xN} and write them

as a matrix X = [x1, . . . ,xN]. The likelihood ratio test produces a detection function

LMDD(X) = 1
σ2λmax

(
XHPGX

)H1

R
H0

η

where G = C⊥ ∩ S, the part of S which is orthogonal to C.

Besson and Scharf [15] demonstrated that the MDD is CFAR.

2.3.4. RX Anomaly Detector. Reed and Yu presented a CFAR adaptive (anomaly)

detector in [16, 17]; this is now generally known in the literature as the RX (Reed-Xiaoli)

detector. The data model is

xi = sµi + νi

where s is the common unknown signal vector and µi is the signal mask. The test operates

on a collection of m n-dimensional data points (m > n) which is partitioned into a region

assumed to be background (µi = 0) and another which is the set under test (µi = 1). A

GLRT is constructed using the hypotheses

H0 : X = N

H1 : X = sµT + N

where X is the data matrix, N = [ν1, . . . ,νm] is the nominal process (noise + background),

and µ is the known column vector [µ1, . . . , µm]T.

13

The test statistic derived from the GLRT is

L(X) =
(Xµ)T

(
XXT

)−1
(Xµ)

µTµ

H1

R
H0

η.

This detection function is CFAR.

2.4. Model Identification

With the exception of RX, we have focused on signal detectors which require a known

signal subspace. This raises the question of how we determine the signal subspace. In some

cases, such as when identifying gases in hyperspectral imagery [12], the spectral signature

may be determined in a laboratory using pure samples and a spectrometer. In practice, these

ideal signatures may not be representative of what is found in the field. Also, there are cases

where it may be impractical or impossible to identify a signal subspace under laboratory

conditions.

In cases such as these, it may be necessary to identify the signal subspace based upon

field data. This is an area of active research. For three examples of determining spectral

signatures (sometimes termed “endmembers”) in unlabeled hyperspectral imagery, see [18–

20]. In this dissertation, we focus on simple–and, in all but one case, well-known–supervised

methods.

The basic form of each of these methods is as follows. First, assume that our data is

modeled by

xi = Sφi + νi.

14

We assume that we know which measurements contain signal and which do not.4 We then

solve an optimization problem which produces an ordered basis for the space spanned by

{xi}. The exact details of how this is done distinguishes these methods from each other.

Finally, select the r basis vectors which best fit the data.

2.4.1. Principal Component Analysis (PCA). Perhaps the most well known method

for identifying the subspace nearest a cloud of noisy measurements is Principal Component

Analysis (PCA).

Given a zero-mean data set in RJ , the idea behind principal components analysis is to

find a linear subspace RK (K < J) which captures the maximum variance in the data. In

other words, consider the set of N zero-mean, m-dimensional column data vectors X =[
x(1), . . . ,x(N)

]
. The principal components are the basis vectors of this subspace in order of

decreasing variance. The first principal component y(1) solves the problem

arg max
y

‖Xy‖2
2

subject to yTy = 1 .

In other words, y is the (unit) eigenvector of the covariance matrix of X corresponding to

the largest eigenvalue. In fact, the second principal component is the (unit) eigenvector

of the covariance matrix corresponding to the second largest eigenvalue. The eigenvectors

of the covariance matrix XXT are also the left singular vectors U in the singular value

decomposition (SVD) of X, as noted throughout the literature, including in [21–23].

4In their simplest form, which we present, we only consider signal-containing measurements. By considering
both data with and without signal, we would be able to produce a model xi = Sφi + Cψi + νi.

15

1: function SubspaceUsingPCA(X)
2: (U,Σ,V)← SVD(X)
3: ρ← diag(Σ)
4: return (U,ρ)
5: end function

Figure 2.1. Algorithm for computing the best subspace basis using PCA.

Now assume that our data is modeled by the linear subspace model

xi = Sφi + νi

with νi ∼ CNn [0, σ2I]. Then the basis for the least-squares r-dimensional subspace S?

spanning the r eigenvectors (left singular vectors) associated with the r largest eigenvalues

(singular values). Pseudocode for accomplishing this is shown in Figure 2.1.

2.4.2. Maximum Noise Fraction (MNF). When applied to real data containing

noise, PCA produces results that do not necessarily decrease in quality (increase in noise)

with increasing dimension (r) of the subspace. To address this issue, Green, et al. [24]

produced what they term the maximum noise fraction (MNF), and which is elsewhere [23]

referred to as noise-adjusted PCA (NAPCA).

In the context of hyperspectral imagery, assume each pixel to be a random vector. We

decompose the ith pixel to be xi = si+νi, the sum of a signal component si =
{
s

(i)
1 , . . . , s

(i)
n

}T

and a noise component νi =
{
ν

(i)
1 , . . . , ν(i)

n

}T
.

Define the noise fraction of the jth spectral band to be

Var
[
ν

(i)
j

]
Var

[
x

(i)
j

] ,

16

1: function SubspaceUsingMNF(X)
2: dX← X−

[
x(i+1),j

]
i,j

3: (U,V,Y,C,S)← GSVD(X,dX)
4: ρ← ReverseColumnOrder(

[
{ci,i/si,i}i

]
)

5: Z← ReverseColumnOrder(X ∗Y−T)
6: Q← GramSchmidtBasis(Z) . See Figure 2.3
7: return (Q,ρ)
8: end function

Figure 2.2. Algorithm for computing the best subspace basis using MNF.

where Var [w] is the variance of the random variable w. As the name “maximum noise

fraction” suggests, we want the linear transformation

yi = ATxi

= ATsi + ATνi

that solves the problem

arg max
A

Var
[
ATνi

]
Var [ATxi]

subject to ATA = I

Since we do not know the covariance of the noise, 〈νi,νiT〉, Green, et al. suggest approxi-

mating it with the 〈xi,xi+∆
T〉 for some offset ∆.

Originally, this was cast as the solution of two PCA problems. Roger [23] shows that

solving these is equivalent to solving the generalized singular value decomposition problem.

We use his method in Figure 2.2.

2.4.3. Flag Mean. A much more recent approach known as the flag mean is introduced

by Draper, et al. in [25] and compared with other subspace means in Marrinan, et.all [26]. A

17

1: function GramSchmidtBasis(A)
2: (n,m)← size(A) . A ∈ Cn×m

3: q1 ← A/‖A‖2 . qi is the ith column of Q
4: r ← 1
5: for k = 2, . . . , n do
6: zk = (I−QQH)Ak

7: if ‖zk‖2 = 0 then
8: r ← r + 1
9: qr ← zk/‖zk‖2

10: end if
11: end for
12: return Q
13: end function

Figure 2.3. Algorithm for constructing a basis for the range of a matrix
using Gram-Schmidt.

subspace mean finds an average subspace of a given a collection of N subspaces D = {X i},

where X i ∈ V . Generally the X i are all of the same dimension.

The flag mean differs in two key respects. First, the subspaces X i do not need to have

the same dimension. Second, it produces a nested sequence of linear subspaces known as a

flag. Any of these subspaces can be used as a mean.

Let r be the dimension of the span of X 1 ⊕ · · · ⊕XN . We wish to produce a sequence

of 1-dimensional subspaces U (j) which solve the optimization problems

U (1) .= arg min
U∈V

∑
X∈D

dpF (U ,X)2

and for j = 2, . . . , r

U (j) .= arg min
U∈V

∑
X∈D

dpF (U ,X)2

subject to U (j) ⊥ U (l), for l < j.

18

1: function SubspaceUsingFlagMean(
{
X(i)

}k
i=1

)

2: Z←
[{

GramSchmidtBasis(X(i))
}k
i=1

]
. See Figure 2.3

3: (U,Σ,V)← SVD(Z)
4: ρ← diag(Σ)
5: return (U,ρ)
6: end function

Figure 2.4. Algorithm for computing the best subspace basis using the flag mean.

Here dpF (Y ,T), the projection Frobenius norm,5 is the 2-norm of the sines of the principal

angles6 between Y and T .

This problem can be solved using the SVD. Let the columns of the matrix Xi form a

basis for X i and Xi
TXi = I. Construct a matrix

X = [X1|· · · |XN] .

If we take the SVD of X = UΣVT, then for j = 1, . . . , r, U (j) is the span of the j-th column

of U.

2.5. The Grassmann Manifold

Up to this point, we have focused on detection algorithms which explicitly view the data

in the ambient space where the measurements were taken: Rn or Cn. There has been some

work which instead maps aggregate measurements to the Grassmann manifold and performs

comparisons there [5–9].

5As we shall see later, in some contexts this is referred to as the chordal distance.
6See Section 2.5.2 for the definition of principal angles.

19

Definition 2.5.1. The Grassmann manifold7 Gr(m,V) is the manifold of points

which parameterize m-dimensional linear subspaces of the vector space V. When V = Rn,

we denote this Gr(m,n) and can view it as homeomorphic to O(n)/ (O(m)×O(n−m)) or

Pm,n [27, Section 1.3.2].

For example, suppose we wish to perform signal detection on the pixels in an image.

Specifically, suppose we have far more spectral bands than the three provided by a traditional

RGB color sensor. This is the case with hyperspectral imagery, where we use a spectrometer

to collect data over, in some cases, hundreds of spectral bands. If the sensor samples n

spectral bands, a single pixel may be thought of as a vector in Rn. See Figure 2.5 for a

schematic of this interpretation. If we look at a 2× 2 pixel tile, we now have 4 such vectors.

This corresponds to the first two steps shown schematically in Figure 2.6. In our schematics,

the color coding should be read as identifying specific pixels, vectors, and points, not as

indicating the value of the pixel.

Continuing with the next step in the schematic, we consider the linear subspace spanning

these vectors. If our data contains broadband noise, it is reasonable to assume that the vec-

tors are linearly independent, yielding a 4-dimensional subspace. This subspace is uniquely

identified by a point on the Grassmann manifold Gr(4, n). Of course, if our tile consisted of

k × k pixels (where k2 < n), our point would reside on Gr(k2, n) instead.

Generally this approach has been taken in the context of cluster-based classifiers rather

than detectors based upon linear subspace models.

2.5.1. Notation. As already noted, there are isomorphisms between points on the

Grassmann manifold Gr(m,n), m-dimensional linear subspaces in an n-dimensional vector

7Many texts refer to a Grassmann manifold as a Grassmannian. We prefer the term Grassmann manifold
to emphasize that it is a manifold.

20

p1
R6

p2

p3

p4 p1

p4
p3

p2

Figure 2.5. Mapping pixel data to Euclidean space.

P

P

p

Gr(4, 6)

Figure 2.6. Mapping a tile of pixel data to a Grassmann manifold.

space V , and equivalence classes of full-rank n ×m matrices. Because these isomorphisms

are well-known, there is a temptation to treat these objects as interchangeable. In the next

chapter, our discussion of subspaces, matrices, and points on the Grassmann manifold will

become more involved, though. To facilitate this, we will lay out an explicit notation now.

We have already touched upon some aspects of this notation.

First, we write an n ×m matrix as the boldface capital T. When viewed as a function

on points in an m-dimensional vector space, we will write the range of T as R (T). This is

the same as the span of the columns of T, written 〈T〉.

Suppose we have two matrices T(1) and T(2). Even though T(1) 6= T(2), it is still possi-

ble that
〈
T(1)

〉
=
〈
T(2)

〉
. In other words, while there is not an isomorphism between the

set of m-dimensional linear subspaces and rank m matrices, there is an isomorphism be-

tween m-dimensional linear subspaces and equivalence classes of full rank n×m matrices.

21

Specifically, these equivalence classes are defined by the relation

T(1) ∼ T(2)

⇐⇒
〈
T(1)

〉
=
〈
T(2)

〉
.

Given a representative T, the isomorphism is defined by

[T] 7→ 〈T〉

T 7→
[
T(0)

]

where [T] is the class of matrices equivalent to T(0), and T(0) is constructed so that
〈
T(0)

〉
=

T .

As mentioned in Definition 2.5.1, points onGr(m,n) parameterize the set ofm-dimensional

linear subspaces of an n-dimensional vector space. We will write points on a Grassmann man-

ifold in lower case, e.g., t ∈ Gr(m,n). The isomorphism between z and T is the one implicit

in the definition of the Grassmann manifold.

Why make the distinction between t and T ? First, the Grassmann manifold is a set

of points, not a set of subspaces. While this distinction may not be important in some

applications, it exists none the less. Second and more importantly for us, in Chapter 3

we will be comparing subspaces of differing dimension. While comparing subspaces makes

perfect sense, comparing a point t(1) ∈ Gr(m1, n) to one on t(2) ∈ Gr(m2, n) does not.

2.5.2. Principal Angles and Vectors. How do we compare two subspaces? A stan-

dard answer to this is to compute the principal angles.

22

Definition 2.5.2. Given an inner product space V and two subspaces A,B ∈ V with

r > dim A ≥ dim B, the first principal angle is defined

θ1(A,B) .= min
u∈A
v∈B

‖u‖=‖v‖=1

arccosuHv.

Let u1 and v1 be minimizers yielding θ1. We refer to these as the principal vectors

associated with the first principal angle.

The principal angles θ2, . . . , θr are defined recursively as

θi(A,B) .= min
u∈A
v∈B

‖u‖=‖v‖=1

arccosuHv

subject to uHuj = 0,vHvj = 0 for all j = 1, . . . , i− 1.

As in the case with the first principal angle, ui and vj, the ith principal vectors, are mini-

mizers yielding θi.

We will write the function producing the principal angles

θ(A,B) .= [θ1(A,B), . . . , θr(A,B)] ,

with 0 ≤ θmin = θ1 ≤ θ2 ≤ · · · ≤ θr = θmax ≤ π/2.

Björck and Golub [28] describe a method for computing the principal angles and principal

vectors using the SVD. We use this approach in Algorithms 2.7 and 2.8.

2.6. Summary

In this chapter, we have discussed linear subspace models. Based upon different assump-

tions about the linear model and our knowledge, we presented some classic matched and

23

1: function PrincipalAngles(A, B)
2: (QA,RA)← QR(A)
3: (QB,RB)← QR(B)
4: (U,Σ,V)← SVD(QA

HQB)
5: return arccos diag(Σ)
6: end function

Figure 2.7. Algorithm for computing principal angles between the ranges of
two matrices.

1: function PrincipalVectors(A, B)
2: (QA,RA)← QR(A)
3: (QB,RB)← QR(B)
4: (U,Σ,V)← SVD(QA

HQB)
5: return (QAU,QBV)
6: end function

Figure 2.8. Algorithm for computing principal vectors given two matrices.

adaptive subspace detectors, as well as the RX anomaly detector. In most cases, the useful-

ness of linear subspace models relies upon our knowledge of the signal subspace. To identify

the subspace, we presented some simple methods which have been employed to fit a sub-

space to data. Finally, looking forward to our contributions in Chapter 3, we discussed the

Grassmann manifold and some ways in which it has been applied to classification. Next we

will bridge the gap between linear subspace model-based detection and Grassmann manifold

techniques.

24

CHAPTER 3

Geometric Tests

3.1. Introduction

Let us start with the premise that we have the ability and are motivated to map our

data to a Grassmann manifold. As noted in Chapters 1 and 2, this is an approach which has

been used in signal detection and classification [5–8].

Suppose we have two collections of data, e.g., two points on a Grassmann manifold.

It is reasonable to study functions that compare these two points. A function might be

a likelihood ratio, a probability, a distance, or any other “well-behaved” comparison. In

Section 3.2, we describe and motivate what we mean by “well-behaved.”

When we consider a linear model, as described in Chapter 2, we are comparing our data

point to more than one other point. We are, in some sense, comparing it to all possible

model parameter choices. In Section 3.3, we discuss the construction of a set of realizations

for a given model. This novel approach results in a new set of theoretical results. We present

the optimal function value and set of optimizers for the class of models which use only a

single subspace. These lead directly to algorithms for signal detection and reconstruction.

3.2. Point-to-Point Functions

Consider a function f which, given two points on the same Grassmann manifold, produces

a real value. That is

f : Gr(m,V)×Gr(m,V) −→ R.

25

Figure 3.1 provides a schematic representation. Two commonly used functions are the geo-

desic distance

dgeo(t, u) = ‖θ(T ,U)‖2(3.1)

and the chordal distance [29, 5]

dchord(t, u) = ‖sin (θ (T ,U))‖2(3.2)

where θ (T ,U) is the vector of principal angles between the subspaces identified with points

t, u ∈ Gr(m,V). A probability density function and likelihood ratio are also examples [27].

Absil, et al. [30] specifically mention the distribution of dgeo between two uniformly dis-

tributed random points.1

Notice that both the geodesic and chordal distances are functions of the principal angles

between the two spaces. It has been shown that certain metrics on a Grassmann manifold

can be written as functions of principal angles [31, 32]. Hence, we will consider functions f

which can be stated as real-valued functions g on the vector of principal angles between the

two subspaces

f(t, u) = g (θ (T ,U))

where t, u ∈ Gr(m,V). See Figure 3.1 for a schematic view of this relationship.

In Section 3.3, we will want to find the minimum value of a point-to-point function

between a fixed point and every point in a set. To facilitate this, it will be useful to consider

functions f which preserve an order on the arguments. In other words, if we define our

1A general practical form of this distribution appears to still be an open problem.

26

X

Y

x

y

Gr(m,V)

f(x, y)
g(θ(X ,Y))

Figure 3.1. The distance between two points on a Grassmann manifold.

order to be some relation ≤V on vector space V , then we wish to consider functions where

u ≤V v =⇒ f(u) ≤ f(v) for all u,v ∈ V .

There are three preorders that are often applied to vectors. First, we can simply consider

the product order, which we will simply write ≤.

Definition 3.2.1. Let u and v be vectors from the same n-dimensional vector space with

fixed basis. u ≤ v if and only if ui ≤ vi for all i = 1, . . . , n. This relation is refered to as the

product order.

Definition 3.2.2. If the function f preserves the product order, then we say that the

function is monotone increasing. If f(u) = f(v) only when u = v, then we say that the

function is strictly increasing.

We can also consider the majorization preorder.

Definition 3.2.3. Let u and v be vectors from the same n-dimensional vector space with

fixed basis and {u[i]} be a permutation of the elements of u such that u[1] ≥ · · · ≥ u[n] and

27

similarly for v. We say that v majorizes u (or u is majorized by v) if and only if

r∑
i=1

u[i] ≤
r∑
i=1

v[i] for r = 1, . . . , n− 1,

n∑
i=1

u[i] =
n∑
i=1

v[i].

If v majorizes u, we write u ≺ v.

Definition 3.2.4. When a function f preserves the majorization preorder, we say that

the function is Schur-convex.

Majorization only provides information on vectors whose components produce the same

sum. When considering vectors of principal angles, a function being Schur-convex only

provides us with ordering when the principal angles sum to the same value. If we remove

this restriction, we arrive at the following definitions.

Definition 3.2.5. Let u and v be vectors from the same n-dimensional vector space with

fixed basis. We say that v weakly majorizes u (or u is weakly majorized by v) if and

only if

r∑
i=1

u[i] ≤
r∑
i=1

v[i] r = 1, . . . , n.

If v weakly majorizes u, we write u ≺w v.

A function f which preserves the weak majorization preorder is both Schur-convex and

monotone increasing [33, Section A3.1.2]. Most of our results apply to monotone increasing

functions on principal angles, so they also apply those known to preserve weak majorization.

28

3.3. Point-to-Set Functions

Up to this point, we have only considered functions for comparing two points on a

Grassmann manifold. This may be viewed as analogous to the case in Chapter 2 of comparing

a data point with a single realization of a model. The practical detectors discussed in

Section 2.3 use the maximum likelihood estimate for each hypothesis, effectively considering

the likelihood function for all realizations of the model parameters.

In this section, we propose the use of a set of points on the Grassmann manifold. Specif-

ically, we provide a mapping of a broad family of linear subspace models to the set of loci

known as Schubert varieties. Using such a set and a point-to-point function as discussed in

Section 3.2, we will produce a point-to-set function which behaves as a geometric analog of

the MLE. As with the GLRT, a signal detection algorithm can be developed from such a

point-to-set function.

To build the necessary base of concepts, we will use simple examples to motivate general

results. In some cases, we will use vague terms such as “nearby.” If necessary, these will be

clarified when we formally develop the associated general result.

Consider the simple linear model for the ith sample

xi = sψi + νi,

where xi, s,νi ∈ Rn and ψi ∈ R. Suppose we consider the span of two data samples, xj

and xj+1, and map that to the associated point on a Grassmann manifold. Then we will be

mapping our data to p ∈ Gr(2, n)2. While s is known, the broadband noise terms νj and

νj+1 may result in our point lying anywhere on Gr(2, n). Assuming a reasonably high SNR,

2This statement is true with probability 1. There is a probability 0 set of events where we end up with a 0-
or 1-dimensional subspace.

29

though, our point p will be near a point t ∈ Gr(2, n) whose associated subspace T actually

contains 〈s〉 with high probability. So let us consider the set of points on a Grassmann

manifold which contain 〈s〉. In other words, we can think of these as points where the

noise is impossibly3 well-behaved–νj and νj+1 lie in the same 1-dimensional linear subspace.

Assuming we have signal (ψj, ψj+1 6= 0), this is the best case we can hope for and actually

produce linearly independent samples.

What does the set of points on Gr(2, n) produced by these well-behaved realizations of

our model look like? When n = 3 it looks like the schematic in Figure 3.2(a). Since it is all

of the 2-dimensional subspaces containing 〈s〉, it is simply the set of configurations formed

by rotating a plane about s.

Now let us look at another linear model,

xi = Sψ + νi,(3.3)

where xi,νi ∈ Rn, S ∈ Rn×2, and ψi ∈ R2. This time, instead of combining two samples, we

will only use one and map it to Gr(1, n). As before, if the SNR is reasonably high, we may

now expect to be near points which correspond to a 1-dimensional linear subspace contained

in 〈S〉. We can think of these as points which have no noise that can be distinguished from

the signal. When n = 3 this set looks like the schematic in Figure 3.2(b).

The sets of these “best case” points that we expect data to cluster around are examples of

sets called Schubert varieties. There are several equivalent definitions of a Schubert variety.

We use the following due to its clear connection with some linear models of interest.

3While this is a useful way of thinking about this set, such an event has probability 0 for all reasonable
distributions on νi.

30

Gr(2, 3)

〈s〉

(a) Ω〈s〉,1 in Gr(2, 3).

Gr(1, 3)

〈s1, s2〉

(b) Ω〈s1,s2〉,1 in Gr(1, 3).

Figure 3.2. Examples of Schubert varieties. The red linear subspace is the
subspace S and the black linear subspace T is the subspace which corresponds
to the point t ∈ ΩS,a ⊂ Gr(m,n).

Definition 3.3.1. Given an n-dimensional vector space V, a flag4 F = {0} ⊂ U1 ⊂

· · · ⊂ Uk ⊂ V, and vector of associated integers a = [a1, . . . , ak] with 0 < a1 < a2 < · · · <

ak ≤ m, its Schubert variety on Gr(m,V) is

ΩF,a
.= {t | t ∈ Gr(m,V), dim (T ∩ U i) ≥ ai,∀i} .

4A flag is an increasing sequence of linear subspaces.

31

Let us return to the examples shown in Figure 3.2. As noted previously, while the

ambient space is the same, in (a) the realizations contain both our signature and some noise

and in (b) the realizations are exactly subspaces of our signature subspace. These simple

examples are restricted by the low ambient dimension (3), but with higher ambient dimension

comes the opportunity for these behaviors and more to exist in a single Schubert variety.

This combination of simple and clear statements with complex phenomena mark this as an

interesting formalism to explore.

To the best of our knowledge, associating a Schubert variety with a linear signal model

is a new idea. While there may be interesting results for the general case, we will begin with

a restricted case; for the remainder of this treatment, let us restrict ourselves to relatively

simple Schubert varieties which have a clear connection to existing linear subspace models.

Specifically, consider the case where the flag is comprised of only a single signature subspace,

S ∈ V .5 While we will prove results for ΩS,a, it may be useful to keep the special case where

a = 1 in mind. The model associated with ΩS,1 is the one used by MSD when there is no

clutter term (see Section 2.3.1 and Equation (3.3)).

3.3.1. Detection Theory. To develop a signal detection algorithm, we need to find

a closed form for the pointwise minimum value of g between ΩS,a and our aggregate data

point p ∈ Gr(m,V). This is the geometric analog of the maximum likelihood estimate. We

will denote this with the function g?,

g?(ΩS,a, p) = min
t∈ΩS,a

g(θ (T ,P) .(3.4)

5As we do frequently throughout this dissertation, the vector space V may be read as the ambient space in
which me make our measurements. This will often be Rn, Cn, or some subset of one of these. The primary
requirement is simply that V be an inner product space.

32

P

p

t1
t2

t?

t3

ΩS,a

Figure 3.3. The distance between a point and a set (e.g., a Schubert variety)
on a Grassmann manifold.

This is shown schematically in Figure 3.3. As in Figure 3.2, the red line represents the

Schubert variety corresponding to our model, the black dots t1, t2, t3 represent points in the

Schubert variety. The purple dot t? is the point on the Schubert variety which is (according

to g) closest to the blue dot (p), the aggregate data point under consideration.

Before we find the solution for the general case, let us informally consider the ΩS,1 case

and use that as a guide for ΩS,a. Assume that we are given a monotone increasing function

g on the principal angles between two points on Gr(m,V). We would like to find a closed

form for g?(ΩS,1, p). For example, if g is dgeo, then this amounts to deriving a function which

directly computes the smallest geodesic distance between our data, p, and our model, ΩS,1.

As usual, let our ambient vector space be denoted V . Points in ΩS,1 are associated

with subspaces of the form 〈v1, . . . ,vm−1, s〉 where the vectors s ∈ S ⊂ V , vi ∈ V , and

v1, . . . ,vm−1, s are linearly independent. We can select m − 1 mutually orthogonal vectors

p1, . . . ,pm−1 ∈ P that are also orthogonal to s. This is clear if we consider constructing an

orthonormal basis with Gram-Schmidt on [s,P]6 where P is an n×m matrix and 〈P〉 = P .

6When we write a sequence of matrices and vectors in brackets (e.g., [s, P]), we mean the matrix formed
by concatenating these column vectors and matrices to form a matrix. In this example, if s ∈ Rn and
P ∈ Rn×m, the resulting matrix has dimensions n× (m + 1).

33

The principal angles between P and this space are

θ
(〈
p1, . . . ,pm−1, s

〉
,P

)
= [0, . . . , 0, θ (〈s〉 ,P)] ,

since the first m−1 principal directions will be in P (and specifically, in
〈
p1, . . . ,pm−1

〉
and

the associated principal angles will be 0. The final principal direction needs to be orthogonal

to the first m − 1 principal directions (
〈
p1, . . . ,pm−1

〉
), so it must lie in 〈s〉. Hence, the

m-th principal angle is simply the principal angle between P and 〈s〉.

Let us select s? to be a principal vector in S associated with θmin(S,P) and {p?i}m−1
i=1

to be the associated orthogonal basis in 〈s?〉⊥ ∩P .

θ
(〈
p?1, . . . ,p

?
m−1, s

?
〉
,P

)
= [0, . . . , 0, θmin (S,P)] .

From the definition of the minimum principal angle, for any other t̃ ∈ ΩS,1,

[0, . . . , 0, θmin (S,P)] ≤ θ
(
T̃ ,P

)
.

Since g preserves the partial ordering ≤,

g ([0, . . . , 0, θmin (S,P)]) ≤ g
(
θ
(
T̃ ,P

))
.

Hence,
〈
p?1, . . . ,p

?
m−1, s

?
〉

is a (potentially nonunique) point in ΩS,1 which minimizes

g (θ (·,P)) restricted to ΩS,1. Therefore

g?(ΩS,1, p) = g ([0, . . . , 0, θmin (S,P)]) .

34

It seems reasonable that we can find a similar result for general a by following the

template suggested by a = 1. The primary difficulty we face occurs where we previously

stated that [0, . . . , 0, θmin (S,P)] ≤ θ
(
T̃ ,P

)
for any t̃ ∈ ΩS,1. To extend this argument, we

must first prove that there actually is a unique least vector of principal angles between p

and points in ΩS,a.

Lemma 3.3.2. Given a Schubert variety ΩS,a ⊆ Gr(m,V) and a point p ∈ Gr(m,V), for

every point x ∈ ΩS,a

[0m−a,θ1,...,a (S,P)] ≤ θ (X ,P) .

The proof of this lemma relies on a two-stage approach, shown schematically in Figure 3.4.

First we prove in step (I) that, for certain subsets Ux of ΩS,a, there exists a unique least

vector of principal angles. This vector of principal angles is realized at point x? ∈ Ux. These

subsets form a cover of ΩS,a. In (II), we compare our candidate least vector of principal

angles for the whole variety and realized at y ∈ ΩS,a with the unique least vector for each

set in the cover we constructed in (I).

Proof. We are given S ⊆ V (dim S = r) and a ∈ Z (0 < a ≤ min{m, r}). Let S be an

n× r matrix with orthogonal unit columns and S = 〈S〉. Fix a point p ∈ Gr(m,V). Define

an n×m matrix P with orthogonal unit columns such that p refers to the subspace 〈P〉.

Step (I). Let us consider an arbitrary point x ∈ ΩS,a. Let k ∈ {0, . . . ,m − a}. We can

write this as a span of the columns of an n ×m matrix [X1,...,k,SQm−k] where Qm−k is an

r× (m−k) matrix with orthonormal columns. We can also write this same matrix as MQm

where M = [X1,...,k,S] and Qm is an r×m matrix with orthonormal columns. As described

35

I

II

x?1 x?2
x?3

x?5
x?4

y

ΩS,a

U1

U2
U3

U5
U4

Figure 3.4. A schematic representation of the proof of Lemma 3.3.2.

by [28], we can calculate the principal angles

θi(p, x) = arccos σi(PTX)

= arccosσi(PTMQm),

where σi(A) is the i-th largest singular value of A. By [34, Lemma 3.3.1],

σi(PTMQm) ≤ σi(PTM)

=⇒ arccosσi(PTMQm) ≥ arccosσi(PTM)

θi(p, x) ≥ θi(p,S).

In other words, if we look at m-dimensional linear subspaces of S + 〈X1,...,k〉, the one pro-

duced by the first m principal vectors has component-wise smaller (or equal) principal angles

relative to P than any other. Call this point x? ∈ Gr(m,V).

36

Step (II). Now let us consider the point y = 〈Pa+1,...,m,S1,...,a〉 ∈ ΩS,a, where P and S are

matrices whose columns are unit vectors in the directions of the principal vectors in p and

S, respectively. Compare the principal angles produced by this to those produced for the

arbitrary point x? described above. Since y was constructed by choosing at least m−a basis

vectors from P , θ1,...,m−a (Y ,P) = 0m−a, so we only need to consider θm−a+1,...,m (Y ,P) =

θ1,...,a(S,P). This is equivalent to arccosσ1,...,a
(
PTS

)
. Notice that the matrix PTS is simply

PTM with the first k columns removed. Using [34, Corollary 3.1.3], for i = 1, . . . , a,

σi+m−a(PTY) = σi(PTS) ≥ σi+k(PTM) ≥ σi+m−a(PTM)

=⇒ arccosσi+m−a(PTY) ≤ arccosσi+m−a(PTM)

θi+m−a(p, y) ≤ θi+m−a(p, x?).

Since θ1,...,m−a = 0m−a, we also know that θ1,...,m−a(p, y) ≤ θ1,...,m−a(p, x?). Hence, for all

x ∈ ΩS,a,

[0m−a,θ1,...,a (S,P)] ≤ θ (X ,P) . �

Theorem 3.3.3. Given an increasing, real-valued function g on ordered m-vectors of

principal angles and the Schubert variety ΩS,a,

g?(ΩS,a, p) = g ([0m−a,θ1,...,a (S,P)]) .

Proof. Define g? to be the minimum value of g on p ∈ Gr(m,V) and any point in ΩS,a.

g?(ΩS,a, p) = min
t∈ΩS,a

g (θ (T ,P))

37

Points in ΩS,a are associated with subspaces of the form 〈v1, . . . ,vm−a, s1, . . . , sa〉 where

s1, . . . , sa ∈ S and v1, . . . ,vm−a, s1, . . . , sa are linearly independent. We can select m − a

mutually orthogonal vectors p1, . . . ,pm−a ∈ P that are also orthogonal to 〈s1, . . . , sa〉, since7

〈s1, . . . , sa〉⊥ ∩P ⊇
(
〈s1, . . . , sa〉+ P⊥

)⊥
=⇒ dim

(
〈s1, . . . , sa〉⊥ ∩P

)
≥ dim

(
〈s1, . . . , sa〉+ P⊥

)⊥
≥ m− a.

The principal angles between P and this space are

θ
(〈
p1, . . . ,pm−a, s1, . . . , sa

〉
,P

)
= [0, . . . , 0, θ (P , 〈s1, . . . , sa〉)] ,

since the first m− a principal vectors will be in P (specifically, in
〈
p1, . . . ,pm−a

〉
) and the

associated principal angles will be 0. The final a principal vectors must be orthogonal to

the first m − a principal vectors (
〈
p1, . . . ,pm−a

〉
), so they lie in 〈s1, . . . , sa〉. Hence, the a

largest principal angles are simply the principal angles between P and 〈s1, . . . , sa〉.

Let us select s?1, . . . , s
?
a to be the principal vectors in S associated with θ1,...,a (S,P)

and {p?i} to be the associated orthogonal basis in 〈s?1, . . . , s
?
a〉⊥ ∩P .

θ
(〈
p?1, . . . ,p

?
m−1, s

?
〉
,P

)
= [0, . . . , 0, θmin (S,P)] .

From Lemma 3.3.2, for any other t̃ ∈ ΩS,a,

[0, . . . , 0,θ1,...,a (S,P)] ≤ θ
(
T̃ ,P

)
.

7Proving that (U +T ⊥)⊥ ⊆ U∩T is simply a matter of demonstrating that any arbitrary point in (U +T ⊥)⊥
is in both U and P . The inequality follows from noting that

dim(〈s1, . . . , sa〉+ P⊥) ≤ a + (n−m).
The details do not provide any deeper understanding of the matter at hand, though.

38

Since g preserves the partial ordering ≤,

g ([0, . . . , 0,θ1,...,a (S,P)]) ≤ g
(
θ
(
T̃ ,P

))
.

Hence,
〈
p?1, . . . ,p

?
m−a, s

?
1, . . . , s

?
a

〉
is a (potentially nonunique) point in ΩS,a which mini-

mizes g(θ(P , ·)) and

g?(ΩS,a, p) = g ([0, . . . , 0,θ1,...,a (S,P)]) . �

All of the results so far had been on increasing functions g. In other words, metric- or

distance-like functions. Functions related to probability, statistics, or similarity will generally

be decreasing functions. We can produce analogous results for g̃ decreasing and g̃? the

maximum point-to-set value, by considering g = −g̃ and g̃? = −g?.

Returning to the clutter-free MSD model (ΩS,1), there are a few interesting results.

Combined, Corollaries 3.3.4 and 3.3.5 suggest a geometric argument behind the clutter-free

MSD detector and provide an alternate interpretation of the UMP property.

Corollary 3.3.4. The minimum geodesic distance between a point p ∈ Gr(m,V) and

the Schubert variety ΩS,1 is θmin(P ,S).

Proof. The geodesic distance between two points t, u ∈ Gr(m,V) is defined as

dgeo(t, u) = ‖θ (T ,U)‖2.

39

This is an increasing function on ordered vectors of principal angles (0 ≤ θi ≤ π/2 for

i = 1, . . . ,m), hence

d?geo(ΩS,1, p) = dgeo ([0, . . . , 0, θmin (S,P)])

= θmin (S,P) . �

Corollary 3.3.5. The minimum geodesic distance between a point p ∈ Gr(m,V) and

the Schubert variety ΩS,1 is at least as discriminating8 as that produced by any other increas-

ing function of principal angles.

Proof. Let dgeo be the geodesic distance on Gr(m,V) and ga be some arbitrary, real-

valued, increasing function on ordered m-vectors of principal angles. Let g? be defined as

in Theorem 3.3.3 for each of these functions. Consider two points p(1), p(2) ∈ Gr(m,V). If

g?a(ΩS,a, p
(1)) 6= g?a(ΩS,a, p

(2)), then θmin(P (1),S) 6= θmin(P (2),S). Hence, d?geo(ΩS,a, p
(1)) 6=

d?geo(ΩS,a, p
(2)). In other words, there is no real-valued, increasing function on ordered m-

vectors of principal angles for which the minimum value to ΩS,a is more discriminating than

that produced using the geodesic distance. �

3.3.2. Recovery Theory. Up to this point we have provided theoretical results which

allow us to perform signal detection. Specifically, they allow us to convert point-to-point

comparisons to point-to-linear model comparisons. Now we will move to signal recovery,

determining the set of points produced by the “noise-free” model which best correspond

to the data p. While we considered monotone increasing functions on the principal angles

before, now we will require them to be strictly increasing. This guarantees that g restricted

8By “discriminating,” we mean able to distinguish two points from each other, i.e., maps the two points to
different values. A function is at least as discriminating as another when it can distinguish an two points
that the second function maps to different values.

40

to p × ΩS,a only achieves the minimum when θ, also restricted to p × ΩS,a achieves the

minimum stated in Lemma 3.3.2.

Before stating a general theorem, let us look at a few special cases. First, what happens

when our data point p ∈ Gr(m,V) is actually in ΩS,a? When an a-dimensional subspace of

P is an a-dimensional subspace of S, the data fits the model perfectly. Clearly we would

expect p to be in the set of optimal solutions; and since θ (P ,P) = 0, that is true. Are any

other points in the set? Since the only point x ∈ ΩS,a ⊂ Gr(m,V) with θ (P ,X) = 0 is p,

p is the only point in ΩS,a which minimizes g. This is the Schubert variety ΩP,m.

Now suppose that p is not in ΩS,a. As stated in Theorem 3.3.3, the minimum is

g?(ΩS,a, p) = g ([0m−a,θ1,...,a (S,P)]) .

Suppose θa(P ,S) < θa+1(P ,S). If S1,...,a is the a-dimensional subspace spanning the prin-

cipal directions of S associated with θ1,...,a (S,P), then the best solutions must contain this

subspace. If it contained a different a-dimensional subspace of S, it would, as a conse-

quence of Lemma 3.3.2, have to contribute larger principal angles. For clarity, let us define

QS-fixed
.= S1,...,a.

We still need an additional (m − a)-dimensional subspace to form a point in ΩS,a ⊂

Gr(m,SpaceV). We require this subspace to only contribute principal angles of 0, so it

must be a subspace of p. Additionally, since we need it to not interfere with the principal

angles we carefully selected from S, it needs to be orthogonal to QS-fixed. We can draw any

(m− a)-dimensional subspace from

QP
.= P ∩Q⊥S-fixed.

41

We can think of the set of solutions as the Schubert variety formed by the flag F = QS-fixed ⊂

QS-fixed + QP and minimum intersections a < m: ΩF,a<m. While we don’t strictly need to

make QP orthogonal to QS-fixed, we will choose to emphasizes the orthogonal decomposition

to underscore the logic behind the construction; the computation of principal angles centers

around a special pair of orthogonal decompositions.

When does b = dim QP = (m− a)? Exactly when θa(P ,S) < π/2.9 In this case, clearly

the set of minimizers is once again a single point. However, suppose b > (m − a). Then

you can think of the set of solutions as isomorphic to Gr(m− a, b) and dimGr(m− a, b) =

(m− a)(b− (m− a)) > 0.

So far this would seem to indicate that all sets of minimizers are Schubert varieties. What

happens when, looking at θ (S,P), we find

θa−1 < θa = θa+1 < θa+2?

As before, we are forced to start with a fixed subspace QS-fixed
.= S1,...,(a−1). When it

comes to selecting the next orthogonal direction, though, we have a choice. If we add any

1-dimensional linear subspace of QS-choice
.= Sa,...,(a+1), we will contribute the same principal

angle as we would with any other.

Once we have made our choice of 1-dimensional Sa ⊂QS-choice, we know that the (m−a)-

dimensional subspace of P must come from QP
.=
(
P ∩ S⊥1,...,a

)
; if our choice of Sa could

alter this, it would imply that we could have selected Sa such that θa = 0 and our chain of

inequalities rules this out. Therefore, QP = P ∩ (QS-fixed + QS-choice)⊥.

9For the case under consideration, this is true so long as dim S > a.

42

As before, let b = dim QP . So long as b = (m−a), we can construct this set of minimizers

as the Schubert variety. This time it is defined by the flag

F = QS-fixed ⊂ (QS-fixed + QP) ⊂ (QS-fixed + QS-choice + QP)

and minimum intersections (a − 1) < (m − 1) < m. The set of points in ΩF,(a−1)<(m−1)<m

corresponds with the set of subspaces

{QS-fixed + QP + T | t ∈ Gr(1,QS-choice)} .

Since dim QS-choice = 2, ΩF,(a−1)<(m−1)<m is isomorphic to Gr(1, 2).

However, if b > (m − a), then we have a problem. We need to select exactly (m − a)

dimensions from a b-dimensional space and follow it up by selecting exactly 1 from the 2-

dimensional one. If we try to construct a single Schubert variety, we will find ourselves

unable to rule out cases where we either select extra dimensions from QS-choice or extra ones

from QP . Points in the previous solution select at least (m−a) dimensions from QP . Points

in the Schubert variety defined by flag

E = QS-fixed ⊂ (QS-fixed + QS-choice) ⊂ (QS-fixed + QS-choice + QP)

and minimum intersections (a− 1) < a < m provides points with at least a dimensions from

QS-fixed + QS-choice. The intersection of the two

ΩF,(a−1)<a<m ∩ ΩE,(a−1)<(m−1)<m

43

enforces equality of intersection dimensions, rather than ≤, as described above. We can also

think of this as the set

{QS-fixed + T S + T p | tS ∈ Gr(1,QS-choice), tp ∈ Gr(m− a,QP)}

embedded in Gr(m,V).

Now that we have an idea of the variety of solution sets, we are ready to prove a general

statement.

Theorem 3.3.6. Given a Schubert variety ΩS,a and a strictly increasing function on

principal angles g, and a point p ∈ Gr(m,V), the set of points B ⊂ ΩS,a which minimize g

is a subvariety. Specifically, B is either a Schubert variety itself or the intersection of two

Schubert varieties.

Proof. Consider a point t ∈ ΩS,a such that g(t, p) = g?(ΩS,a, p). Since g is strictly

increasing, if we have two such points t(1) and t(2), then θ
(
T (1),P

)
= θ

(
T (2),P

)
. From

Lemma 3.3.2, this unique least element exists and is [0m−a,θ1,...,a (S,P)].

As previously discussed, if p ∈ ΩS,a, then B = {p} = Ωp,m, which is a subvariety of ΩS,a.

For the remainder of this proof, assume that p /∈ ΩS,a, hence θa(P ,S) > 0. Suppose we

have principal angles θ (S,P) where

0 ≤ θ1 ≤ · · · ≤ θl < θ(l+1) = · · · = θa = · · · = θk < θ(k+1).

We take this to include the case where θa = θm, i.e., k = m. As in the earlier discussion, let

Si,...,j be the subspace of S identified with the principal angles θi,...,j. Define the fixed part of

S to be QS-fixed
.= S1,...,l and the part of S we get to choose from QS-choice

.= S(l+1),...,k. Then

each point in our set of minimizers consists of QS-fixed extended by an (a − l)-dimensional

44

subspace of QS-choice and an (m − a)-dimensional subspace of p which is orthogonal to the

first two.

If a = k, then dim QS-choice = (a− l) and offers no actual choice. Here the fixed portion

is actually QS
.= QS-fixed + QS-choice. The part from p is QP

.= P ∩Q⊥S . In this case, the

set of solutions is the Schubert variety defined by the flag F = QS ⊂ QS + QP and the

minimum intersection is a < m. This is isomorphic to Gr((m− a),QP).

If a < k, we will have more than a single choice for S1,...,a. Let us consider the orthogonal

decomposition S1,...,a = S1,...,l ⊕ S(l+1),...,a. As already noted, QS-fixed is the fixed portion

S1,...,l, as the principal angle problem produces only a single subspace with principal angles

θ1,...,l (S,P).

Choice comes in when selecting an (a − l)-dimensional subspace of QS-choice. Note that

for all u ∈ QS-choice, θ(P ,u) = θa(P ,S). Therefore, for all u ∈ Gr(a − l,QS-choice),

θ (U ,P) = θa (S,P) · [1, . . . , 1].

Now we have shown that the subspaces associated with each minimizer contains an a-

dimensional subspace

U ∈ {QS-fixed + T S | tS ∈ Gr(a− l,QS-choice)} .

and that for each element (subspace) in the set, we can find a minimizer containing it. All

that remains is to discover what (m−a)-dimensional subspaces of P can be used to complete

the construction for a given point.

As already noted, P1,...,(m−a) is an (m − a)-dimensional subspace of P ∩ S⊥1,...,a. In this

form, we need to know which subspace we chose for S1,...,a before we know what options we

have for P1,...,(m−a).

45

Note that, because of orthogonality of the principal directions,

S⊥1,...,l = S⊥1,...,k + S(l+1),...,k

P ∩ S⊥1,...,l = P ∩ S⊥1,...,k + P ∩ S(l+1),...,k︸ ︷︷ ︸
=〈0〉

= P ∩ S⊥1,...,k.

So for any choice of S1,...,a, we can select our P1,...,(m−a) to be any (m − a)-dimensional

subspace of QP = P ∩ S⊥1,...,k.

Hence, the set of solutions is

{QS-fixed + T S + T p | tS ∈ Gr(a− l,QS-choice), tp ∈ Gr(m− a,QP)}(3.5)

We can write this as the intersection of the Schubert varieties. The Schubert variety drawing

at least a dimensions from QS-fixed + QS-choice is defined by the flag

F = QS-fixed ⊂ (QS-fixed + QS-choice) ⊂ (QS-fixed + QS-choice + QP)

with minimum intersections l < a < m. The Schubert variety where points take at least

(m− a) dimensions from QP is defined by the flag

E = QS-fixed ⊂ (QS-fixed + QP) ⊂ (QS-fixed + QS-choice + QP)

and minimum intersections l < (l−m−a) < m). Minimizers are exactly those which satisfy

both of these conditions.

B = ΩF,l<a<m ∩ ΩE,l<(l+m−a)<m

46

The intersection of two varieties is itself a variety, hence B is a subvariety. Therefore, the

set of minimizers is a subvariety. In all cases, we constructed this set either with a single

Schubert variety or with the intersection of two Schubert varieties. �

Corollary 3.3.7. The set of minimizers is a single point when either

(1) θa(P ,S) < θa+1(P ,S) and θa(P ,S) < π/2 or

(2) p ∈ ΩS,a.

Proof. This comes directly from the construction in the proof of Theorem 3.3.6. The

first is the general case where there is only a single choice for the subspace in S and a single

one in p. The second is the special case where all choices from S and p produce the same

point. �

Corollary 3.3.8. The set of minimizers is a Schubert variety when

(1) the set of minimizers is a single point,

(2) θa(P ,S) < π/2, or

(3) θa(P ,S) < θa+1(P ,S).

Proof. A single point is always a Schubert variety; aside from p ∈ ΩS,a, this is a special

case of the remaining two cases. The other two cases are exactly those in the proof of

Theorem 3.3.6 where at least one of S or p produces a single choice. �

Corollary 3.3.9. The set of points in Gr(m,V) where there is a unique reconstruction

has Haar measure 1.

Proof. Let us fix ΩS,a. If ΩS,a = Gr(m,V), this is trivially true from Corollary 3.3.7,

as every p ∈ Gr(m,V) is in ΩS,a.

47

1: function DetectSignal(g, (S, a), P)
2: θ ← PrincipalAngles(S,P) . See Figure 2.7
3: return g([0(m−a),θ1,...,a])
4: end function

Figure 3.5. Algorithm for evaluating the detection function for a linear
model and data point.

Then let us consider the case where ΩS,a (Gr(m,V). Clearly θa(P ,S) < π/2 almost ev-

erywhere, as perturbing pa within S⊥1,...,(a−1) will result in θa(P ,S) < π/2 almost everywhere.

The same argument can be made to show that θa(P ,S) < θa+1(P ,S) almost everywhere.

Hence, the conjunction of these two cases is also almost everywhere. By Corollary 3.3.7, all

of the points where this is true have unique minimizers in ΩS,a.

These two cases cover every possible ΩS,a ⊆ Gr(m,V), therefore the set of points in

Gr(m,V) with unique minimizers has a Haar measure of 1. �

3.3.3. Signal Detection. Given a known model for signal formation, we can use the

above geometric relationships to determine whether a given aggregate data point is close to

signature containing data or not.

Since the null hypothesis with only broadband noise produces the Schubert variety which

is all of Gr(m,V), this would be equivalent to the uniform distribution10 on the Grassmann

manifold. In the case where there is a non-trivial background clutter subspace, the Schubert

variety is non-trivial as well, and the null hypothesis is no longer uniform on a Grassmann

manifold.

Given a function g, Figure 3.5 provides a simple method for calculating g?(S,P).

10On the Grassmann manifold Gr(m, V), the uniform distribution is the Haar measure. In this setting, the
Haar measure is the invariant measure under the orthogonal (in the case of V = Rn) or unitary (V = Cn)
group action on V . It is interesting to note that the span of m i.i.d. spherically distributed vectors in V
maps to a uniformly distributed point on Gr(m, V). For a nice treatment of both of these ideas, see [27,
Sections 1.4 and 2.2].

48

1: function SignalRecovery((S, a), P)
2: θ ← PrincipalAngles(S,P) . See Figure 2.7
3: (Ŝ, ·)← PrincipalVectors(S,P) . See Figure 2.8
4: l← arg maxi θi < θa
5: k ← arg mini θa < θ(i+1)

6: X̂← GramSchmidtBasis([Ŝ1,...,k,P]) . See Figure 2.3
7: if θa = 0 then
8: l← k . p ∈ ΩS,a
9: else if a = k then

10: l← a . unique best subspace in S
11: end if
12: return (Ŝ1,...,l, Ŝ(l+1),...,k, X̂(k+1),...) . (QS-fixed,QS-choice,QP)
13: end function

Figure 3.6. Algorithm to recover the signal given a model and data point.

3.3.4. Signal Recovery. The goal here is to determine the signature component in

the data. In the language that we have been using, we wish to find a point on the Schubert

variety which is has a sufficiently small value of g. In the traditional signal processing

literature, we really want to know the portion of this recovered subspace which intersects

with F (e.g., S) or the parameterization of this reconstruction in the coordinates of S.

Given a model (S, a) and data P, Figure 3.6 produces an orthogonal deconstruction of

the portion of S which must be in the optimal reconstruction, the portion of S from which

we must select a subspace, and the portion of P which best fills the remainder.

3.4. Summary

In this chapter, we developed a framework for linear models on a Grassmann manifold.

We began by defining the sorts of point-to-point functions that we would be concerning

ourselves with. Then we presented a mapping from a class of linear models to sets of points

called Schubert varieties. From here, we proved theorems for defining point-to-Schubert

variety functions derived from the point-to-point functions. These functions can be used for

49

signal detection. Finally, we presented a reconstruction theorem which describes the set of

“best” points in the Schubert variety given a data point. The cases where a unique “best”

point exists were enumerated.

Algorithms for both detection and reconstruction based upon these theorems were pro-

vided. In the next chapter, we will explore the application of these algorithms to both

synthetic and real data.

50

CHAPTER 4

Empirical Results

4.1. Introduction

In the previous chapter, we developed a theoretical framework for comparing linear mod-

els with experimental data. Specifically, we derived a class of functions on the Grassmann

manifold comparing data points with Schubert varieties. From these results, we developed

simple algorithms which exploit this framework.

In this chapter, we develop a basic end-to-end detection system based on the detection

algorithm. This is applied to labeled hyperspectral imagery. We conclude with a discussion

of the behavior of the system and challenges yet to be addressed.

4.2. System Architecture

The system provides an end-to-end detector. See Figure 4.1 for a block diagram of the

system. When labeled data is given, the process begins first splits the data into training

and testing sets. Then the training tiles for each class, κ, are fed to the model identification

module, which produces a linear model for each class. For each of these models, the detection

algorithm (see Figure 3.5) is run to produce a score. For classification, we choose the model

with the lowest score.

First, we compile a list of tiles with uniform label; that is, every pixel in a tile has the

same label. A tile is an spatially contiguous collection of pixels. In our system, we use a

k × k square of pixels for m = k2 samples of each spectral band. Each tile is aggregated as

a point on Gr(k2, n), where n is the number of spectral bands.

51

Image

Tiles

Training Tiles Testing Tiles

Sκ

Class

Scoreκ

Random Partition

Detection Algorithm

Classifier

Model Identification

g?(ΩSκ,a, p)

arg minκ∈K Scoreκ

Figure 4.1. Block diagram of the classification system. The image, minimum
intersection, a, and the set of classes under consideration, K, are given.

For each image, we perform 30 trials. For each trial, we randomly divide the tiles of each

class into training data and testing data. We fit a linear model to the training data using

one of the methods discussed in Section 4.2.1.

Then for each of the test tiles and each model, we compute a score using the detection

algorithm. We identify the tile as belonging to the class whose detector provided the lowest

score. We construct a confusion matrix which counts the number of tiles of each class

identified as a given class. We compute the accuracy over all of the trials as the percent of

correct classifications.

52

4.2.1. Model Identification. The success of any model-based detection algorithm

hinges on identification of a sufficiently accurate model. The algorithm we propose is no

exception. The literature is full of suggestions for determining a linear model from a set of

data. For examples, see [24, 35, 19, 36, 26]. For these initial tests, we started at the simple

end with PCA, which seems to be the standard. Then we tried minimum noise fraction

(MNF), which was developed for visualizing hyperspectral imagery [24]. Finally we tried

the relatively new flag of best fit, which conceptually seems to be a good match for our

Grassmann-based classifier [26].

The classic methods PCA and MNF are generally employed to reduce the dimensionality

of the data rather than to produce a linear model. In adhering to the hyperspectral image

formation model, we feed the raw image data, not mean-subtracted data, into the these

algorithms. See Algorithms 2.1, 2.2, and 2.4 for these subspace-fitting algorithms. Our

Matlab implementations are included in Listing A.8.

With many of these model identification algorithms, we are given an ordered list of basis

vectors. We then need to choose which basis vectors correspond to the subspace. In the

broadest terms, this amounts to selecting the “best” subspace of the m! possibilities in the

power set. We make use of ρ, the “energy” associated with the sequence of basis vectors. For

simplicity, we assume that the best subspace is the span of the first k basis vectors, where

k is the index of the knee of graph of {ρi}i. We find the knee using the Kneedle method

described by Satopaa, et al. [37]. See Listing A.8 for our Matlab implementation of this

procedure.

4.2.2. Shortcomings. These experiments represent a first step in exploring the be-

havior of the Schubert variety-based method. The methodology described here has some

shortcomings which future studies will need to correct.

53

In the current experiments, we are only considering tiles which have a single label. In

reality, tiles will tend to have a mixture of labels, either at the pixel level or the subpixel

level. In the future, it would be useful to observe responses on mixed tiles, as this is the

situation in actual applications.

As will be discussed in more detail later, we are using relatively simple subspace fitting

methods for model identification. While these provide a basis for building a test system,

results based upon them should be viewed as a starting point rather than a statement of the

intrinsic power of our approach.

4.3. Datasets

We used three hyperspectral imagery (HSI) datasets which appear in the HSI classifica-

tion literature: Indian Pines, Salinas Valley, and Pavia University. The classes appearing in

these are listed in Tables 4.1, 4.2, and 4.3. All three of these datasets are readily available

and include a ground truth per pixel labeling for much of the image. Figure 4.2 shows the

ground truth labelling of the uniform 3× 3 tiles.

These datasets were each recorded using aerial hyperspectral sensors. Indian Pines is

a popular dataset which was collected with the AVIRIS sensor in 1992 in Indiana, USA.

The image is 145× 145 pixels in 224 spectral bands. While some studies remove the water

absorption bands prior to classification, we include all spectral bands.

Salinas Valley was also collected with the AVIRIS sensor in California, USA. The image

is 512× 217 pixels in 224 spectral bands.

Finally, the Pavia University dataset was acquired using the ROSIS sensor in Italy. The

image is 610× 340 pixels in 103 spectral bands. Unlike the other two datasets, which are of

agricultural areas, Pavia University is an urban setting.

54

unknown
alfalfa
corn-notill
corn-mintill
corn
grass-pasture
grass-trees
grass-pasture-mowed
hay-windrowed
oats
soybean-notill
soybean-mintill
soybean-clean
wheat
woods
buildings-grass-trees-drives
stone-steel-towers

(a) Indian Pines

unknown
broccoli-green-weeds-1
broccoli-green-weeds-2
fallow
fallow-rough-plow
fallow-smooth
stubble
celery
grapes-untrained
soil-vinyard-develop
corn-senesced-green-weeds
lettuce-romaine-4wk
lettuce-romaine-5wk
lettuce-romaine-6wk
lettuce-romaine-7wk
vinyard-untrained
vineyard-vertical-trellis

(b) Salinas Valley

unknown

asphalt

meadows

gravel

trees

painted-metal-sheets

bare-soil

bitumen

self-blocking-bricks

shadows

(c) Pavia University

Figure 4.2. Ground truth label images for uniform tiles.

4.4. Results

For each dataset, we chose a few sets of classes. In some cases, we intended them to

be difficult by choosing a number of similar classes. For example, for the Salinas dataset,

we attempt to distinguish between classes 11–14, which are all romaine lettuce at different

stages of development. In other cases, we chose classes which we believed would be easier to

differentiate, such as asphalt and meadow in the Pavia University dataset. We attempted

to distinguish between all of the given classes from each other in each dataset.

We chose to report the accuracy, the proportion of classifications which are correct for

the task (see Listing A.6 for our Matlab code). Tables 4.4, 4.5, and 4.6 report the accuracy

achieved over all trials for each model identification method (PCA, MNF, and flag mean),

55

Table 4.1. Classes for Indian Pines data.

Label Class # Tiles
1 alfalfa 3
2 corn-notill 113
3 corn-mintill 75
4 corn 15
5 grass-pasture 33
6 grass-trees 57
7 grass-pasture-mowed 2
8 hay-windrowed 41
9 oats 0

10 soybean-notill 77
11 soybean-mintill 207
12 soybean-clean 49
13 wheat 14
14 woods 124
15 buildings-grass-trees-drives 31
16 stone-steel-towers 6

Table 4.2. Classes for Salinas data.

Label Class # Tiles
1 broccoli-green-weeds-1 192
2 broccoli-green-weeds-2 379
3 fallow 188
4 fallow-rough-plow 100
5 fallow-smooth 239
6 stubble 368
7 celery 334
8 grapes-untrained 1174
9 soil-vinyard-develop 635

10 corn-senesced-green-weeds 320
11 lettuce-romaine-4wk 83
12 lettuce-romaine-5wk 173
13 lettuce-romaine-6wk 62
14 lettuce-romaine-7wk 78
15 vinyard-untrained 772
16 vinyard-vertical-trellis 184

value of a, and task. This demonstrates the mean behavior, but does not indicate the best

or worst case.

In nearly every case, two things are clear. First, our implementation of MNF produces

noticeably lower quality classifications than either PCA or flag mean in nearly every case. It

56

Table 4.3. Classes for Pavia University data.

Label Class # Tiles
1 asphalt 279
2 meadows 1812
3 gravel 109
4 trees 61
5 painted-metal-sheets 65
6 bare-soil 513
7 bitumen 91
8 self-blocking-bricks 86
9 shadows 15

Table 4.4. Per category accuracy for Indian Pines tasks.

Classes Accuracy
PCA MNF Flag Mean

a = 1 2 1 2 1 2
all 0.5468 0.0000 0.1515 0.0000 0.4057 0.0000

2, 5 0.9797 0.7899 0.8872 0.7899 0.9684 0.7899
10, 11 0.6767 0.2645 0.4836 0.2645 0.6653 0.2645

did well in distinguishing classes 2 (meadows) and 4 (trees) in Pavia University, as well as in

tasks which we identified as easy: differentiating classes 2 (corn-notill) and 5 (grass-pasture)

in Indian Pines and classes 1 (asphalt) and 2 (meadows) in Pavia University. While we

did not perform a statistical test, flag mean appears to produce classifiers which generally

comparable to those generated using PCA.

Second, in nearly every case investigated, a = 1 produced a better classifier than a = 2.

We only used these two values, because we only ever reliably produced signature subspaces

of dimension 2. The single case where a = 2 excelled across the board was in distinguishing

classes 2 (meadows) and 4 (trees) in the Pavia University dataset, although a = 1 results

for this task were not far off. This may simply indicate that the signature subspaces overlap

considerably and could be pruned and a = 1 used. Alternatively, it may suggest that a given

class varies sufficiently over a small area that it is best described locally by a 2-dimensional

subspace.

57

Table 4.5. Per category accuracy for Salinas tasks.

Classes Accuracy
PCA MNF Flag Mean

a = 1 2 1 2 1 2
all 0.8513 0.0360 0.1095 0.0360 0.8005 0.0360

1, 2 0.9859 0.3339 0.5570 0.3339 0.9268 0.3339
3–6 0.9472 0.2093 0.2846 0.2093 0.9769 0.2093

11–14 0.9882 0.2079 0.3224 0.2079 0.9593 0.2079
15, 16 0.9985 0.8101 0.5839 0.8101 0.9961 0.8101

Table 4.6. Per category accuracy for Pavia University tasks.

Classes Accuracy
PCA MNF Flag Mean

a = 1 2 1 2 1 2
all 0.6722 0.0918 0.4438 0.0918 0.3913 0.0918

1, 3, 6, 7 0.8468 0.2818 0.4185 0.2818 0.6278 0.2818
2, 4 0.9503 0.9694 0.8185 0.9694 0.7503 0.9694
1, 2 0.9806 0.1320 0.9568 0.1320 0.9369 0.1320

This study provides primarily annecdotal results. It was designed to provide direction

for a more detailed investigation. While the average accuracy on various classification tasks

does provide some guidance in constructing subspace models, it does not provide us with

details of the behavior of each trial. Figure 4.3 offers an example of this detail.

We chose to show results for Indian Pines, as this is probably the most common dataset

used in the HSI classification literature. Also, it is the smallest of the datasets considered, so

comparison of individual trials can be achieved by inspection. Each row contains examples

on a particular classification task: all classes, corn-notill vs. grass-pasture, and soybean-

notill vs. soybean-mintill. Each column displays the classification produced for a given set

of detectors, dubbed a “trial.” We attempted to select trials which illustrate the range of

behavior observed.

The first column of Figure 4.3 shows each task performed with the set of detectors pro-

duced during random trial 12. Figure 4.3(d) demonstrates an ability of this set of classifiers

58

to distinguish corn-notill from grass-pasture with only a single error. Attempting to distin-

guish these two classes within the full gamut of classes, as shown in Figure 4.3(a) results in

significant misclassifications in most regions.

In contrast, the more difficult task of discriminating soybean-notill and soybean-mintill

generally results in a number of misclassifications. Figure 4.3(g)-(i) show results using three

different sets of detectors which range from favoring correct classification of soybean-notill

at the expense of misclassification of soybean-mintill in (g) to the opposite in (h).

Without further investigation, the source of difficulty in discriminating some classes is

not clear. Possible sources include the nature of the classes, the size and distribution of the

training set, and the methods used for constructing a suite of models. The literature does

note that some classes appear difficult to distinguish [9], so our difficulty may be inherent in

the data set. This does not mean that our system is performing as well as it might.

We chose a small training set size, since some classes have few uniform tiles, realizing

that this may penalize classes where we have a surplus of examples. The literature contains

examples of infrequently occuring classes being discarded [38], so we could take this approach

and then use larger training sets. We could also use a percentage of the data for training,

rather than a fixed number of samples per class.

4.5. Challenges

4.5.1. Model Identification. Likely the greatest challenge is model selection. For

this demonstration, we use relatively simple subspace fitting methods. We select the basis

vectors based solely on the “energy” reported by the fitting method. For example, we use the

singular values when employing PCA. Somewhat surprisingly, the simplest method (PCA)

consistently outperforms the other two.

59

(a) all, Trial 12 (b) all, Trial 18 (c) all, Trial 20

(d) {2, 5}, Trial 12 (e) {2, 5}, Trial 18 (f) {2, 5}, Trial 20

(g) {10, 11}, Trial 12 (h) {10, 11}, Trial 18 (i) {10, 11}, Trial 20

Figure 4.3. Example Indian Pines classifications using PCA-generated sub-
space models (a = 1). Tiles are color coded by the best class (detector) using
the same scale as in Figure 4.2(a).

In addition to the fitting method, selecting the basis vectors which provide the most

discrimination also poses a challenge. The simple approach we employ appears to work

well in some settings. As already noted, there are more sophisticated methods which take

60

into account information content. While outside of the scope of this dissertation, a more

intelligent approach to subspace selection seems to be necessary, if we wish to produce a

competitive classification system.

4.5.2. Parameter Selection. A related issue is that of selecting an appropriate value

for a. In our examples, the estimated signal subspaces are quite small (dim S = 2). This

restricts the search to only two possible values, if we assume all models have the same value.

In general, there is nothing that says that each signal model must have the same value for

a. In other words, even in this simple case, if there are k classes, there are 2k possible sets

of classifiers.

It is an open question whether the minimum intersection dimension a can be selected

for each detector independent of the full set of classifiers. We conjecture that this is the

case, which would reduce the problem to that of selecting the most appropriate detector for

each class rather than that of selecting the best ensemble of detectors. This belief follows, if

our family of models fit the underlying nature of the world. More investigation is necessary,

however, as our current study only provides annecdotal evidence

4.5.3. Dataset Selection. The datasets used here all indicate the simplest model

(ΩS,1) is the appropriate one and hence fail to take advantage of the power of our approach.

We believe that there are datasets which will require a > 1, but locating one remains a

challenge. We suggest that a collection in a variety of lighting and atmospheric conditions

may demonstrate this. Locating such a dataset with ground truth will be difficult.

4.6. Summary

In this chapter, we demonstrated a reference implementation of our detection algorithm.

We exercised the software on three hyperspectral imagery datasets commonly reported in the

61

literature. While not based upon a rigorous statistical analysis, it appears that the correct

model for these datasets are of the form ΩS,1.

62

CHAPTER 5

Conclusion

5.1. Contributions

This dissertation focused on the development of a principled framework for signal pro-

cessing on the Grassmann manifold. Specifically, we made the following contributions.

• We introduced the association of a linear subspace model with a Schubert variety.

• We proved a novel and surprising ordering result on principal angles in Lemma 3.3.2.

• For Schubert varieties of the form ΩS,a increasing (decreasing) functions on prin-

cipal angles, we proved both signal detection and signal recovery theorems (Theo-

rems 3.3.3 and 3.3.6).

• We proved results using our framework which agree with existing signal detection

theory in Euclidean space.

• We provided simple algorithms for applying the signal detection and recovery the-

orems and a Matlab implementation based upon these principles.

5.2. Future Directions

Our work was a fundamentally new approach. As a consequence, there are opportunities

to apply the techniques developed, as well as to expand the techniques to more general cases.

The class of models which we addressed in this work provides an extension to traditional

clutter-free models. There are two clear directions in which to grow. The first is to develop

a Schubert variety-based approach that includes traditional models containing clutter. The

second is to develop detection and recovery theorems which are applicable to general Schubert

varieties, rather than only those of the form ΩS,a.

63

So far, the problem domain in which we applied our technique did not benefit from

the increased space of models; the best ones were of the form ΩS,1, which is equivalent to

standard clutter-free matched subspace detectors. We believe that there are applications

where a model with a > 1 is necessary. The challenge is to identify such an application.

While our framework allows from detectors to be constructed from a broad class of

functions, our practical implementation has been limited to simple, geometrically motivated

functions such as the geodesic and chordal distances. The next step in this progression is to

begin with a probability density function. The difficulty of developing these distributions on

the Grassmann manifold originally lead us to develop our geometric framework. Returning

to these questions may result in both specific results, as well as general techniques.

We view this dissertation as only the beginning. With clear opportunities to both expand

the scope of the framework and to apply it to practical questions, there is no end of work in

sight.

64

BIBLIOGRAPHY

[1] L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series

Analysis. Prentice Hall, 1991.

[2] S. Kraut, L. Scharf, and L. McWhorter, “Adaptive subspace detectors,” IEEE Transac-

tions on Signal Processing, vol. 49, no. 1, pp. 1–16, 2001.

[3] S. Kraut, L. Scharf, and R. Butler, “The adaptive coherence estimator: a uniformly

most-powerful-invariant adaptive detection statistic,” IEEE Transactions on Signal Pro-

cessing, vol. 53, pp. 427–438, Feb. 2005.

[4] O. Besson, L. L. Scharf, and F. Vincent, “Matched direction detectors and estimators

for array processing with subspace steering vector uncertainties,” IEEE Transactions

on Signal Processing, vol. 53, pp. 4453–4463, Dec. 2005.

[5] J.-M. Chang, Classification on the Grassmannians: Theory and Applications. PhD

dissertation, Colorado State University, 2008.

[6] P. Turaga, A. Veeraraghavan, and R. Chellappa, “Statistical analysis on stiefel and

Grassmann manifolds with applications in computer vision,” in Computer Vision and

Pattern Recognition, pp. 1–8, IEEE, June 2008.

[7] T. Wang and P. Shi, “Kernel grassmannian distances and discriminant analysis for face

recognition from image sets,” Pattern Recognition Letters, vol. 30, pp. 1161–1165, Oct.

2009.

[8] J.-m. Chang, C. Peterson, and M. Kirby, “Feature patch illumination spaces and karcher

compression for face recognition via Grassmannians,” Advances in Pure Mathematics,

vol. 2, no. 4, pp. 226–242, 2012.

65

[9] S. Chepushtanova, C. Gittins, and M. Kirby, “Band selection in hyperspectral imagery

using sparse support vector machines,” in SPIE DSS, (Baltimore, Maryland), SPIE,

2014.

[10] L. Scharf and B. Friedlander, “Matched subspace detectors,” IEEE Transactions on

Signal Processing, vol. 42, no. 8, pp. 2146–2157, 1994.

[11] D. Manolakis, “Signal processing algorithms for hyperspectral remote sensing of chem-

ical plumes,” in 2008 IEEE International Conference on Acoustics, Speech and Signal

Processing, no. 2, pp. 1857–1860, IEEE, Mar. 2008.

[12] D. Manolakis, E. Truslow, M. Pieper, T. Cooley, and M. Brueggeman, “Detection algo-

rithms in hyperspectral imaging systems: An overview of practical algorithms,” IEEE

Signal Processing Magazine, vol. 31, pp. 24–33, Jan. 2014.

[13] L. McWhorter, L. Scharf, and L. Griffiths, “Adaptive coherence estimation for radar sig-

nal processing,” in Conference Record of The Thirtieth Asilomar Conference on Signals,

Systems and Computers, vol. 1, pp. 536–540, IEEE Comput. Soc. Press, 1996.

[14] L. Scharf and L. McWhorter, “Adaptive matched subspace detectors and adaptive co-

herence estimators,” in Conference Record of The Thirtieth Asilomar Conference on

Signals, Systems and Computers, pp. 1114–1117, IEEE Comput. Soc. Press, 1996.

[15] O. Besson, L. L. Scharf, and S. Kraut, “Adaptive detection of a signal known only

to lie on a line in a known subspace, when primary and secondary data are partially

homogeneous,” IEEE Transactions on Signal Processing, vol. 54, pp. 4698–4705, Dec.

2006.

[16] I. S. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical pattern

with unknown spectral distribution,” IEEE Transactions on Acoustics, Speech, and Sig-

nal Processing, vol. 38, no. 10, pp. 1760–1770, 1990.

66

[17] X. Yu, I. S. Reed, and A. D. Stocker, “Comparative performance analysis of adap-

tive multispectral detectors,” IEEE Transactions on Signal Processing, vol. 41, no. 8,

pp. 2639–2656, 1993.

[18] G. Yanfeng and Y. Zhamg, “Unsupervised subspace linear spectral mixture analysis for

hyperspectral images,” in Proceedings 2003 International Conference on Image Process-

ing, vol. 1, pp. I–801–4, IEEE, 2003.

[19] J. M. P. Nascimento and J. M. Bioucas-Dias, “Vertex component analysis: a fast al-

gorithm to unmix hyperspectral data,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 43, pp. 898–910, Apr. 2005.

[20] J. M. Bioucas-Dias and J. M. P. Nascimento, “Hyperspectral subspace identification,”

IEEE Transactions on Geoscience and Remote Sensing, vol. 46, pp. 2435–2445, Aug.

2008.

[21] B. Moore, “Principal component analysis in linear systems: Controllability, observabil-

ity, and model reduction,” IEEE Transactions on Automatic Control, vol. 26, pp. 17–32,

Feb. 1981.

[22] G. W. Stewart, “On the early history of singular value decomposition,” SIAM Review,

vol. 35, no. 4, pp. 551–566, 1993.

[23] R. Roger, “A faster way to compute the noise-adjusted principal components transform

matrix,” IEEE Transactions on Geoscience and Remote Sensing, vol. 32, no. 6, pp. 1194–

1196, 1994.

[24] A. Green, M. Berman, P. Switzer, and M. Craig, “A transformation for ordering mul-

tispectral data in terms of image quality with implications for noise removal,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 26, no. 1, pp. 65–74, 1988.

67

[25] B. Draper, M. Kirby, J. Marks, T. Marrinan, and C. Peterson, “A flag representation for

finite collections of subspaces of mixed dimensions,” Linear Algebra and its Applications,

vol. 451, pp. 15–32, June 2014.

[26] T. Marrinan, J. R. Beveridge, B. Draper, M. Kirby, and C. Peterson, “Finding the

subspace mean or median to fit your need,” in IEEE Conference on Computer Vision

and Pattern Recognition, pp. 1082–1089, 2014.

[27] Y. Chikuse, Statistics on Special Manifolds. New York, New York, USA: Springer-Verlag,

2003.

[28] A. k. Björck and G. H. Golub, “Numerical methods for computing angles between linear

subspaces,” Mathematics of Computation, vol. 27, no. 123, pp. 579–594, 1973.

[29] A. Edelman, T. a. Arias, and S. T. Smith, “The geometry of algorithms with orthogonal-

ity constraints,” SIAM Journal on Matrix Analysis and Applications, vol. 20, pp. 303–

353, June 1998.

[30] P.-A. Absil, A. Edelman, and P. Koev, “On the largest principal angle between random

subspaces,” Linear Algebra and its Applications, vol. 414, pp. 288–294, Apr. 2006.

[31] J. Von Neumann, “Some matrix inequalities and metrization of matrix space,” Tomsk

University Review, vol. 1, no. 11, pp. 286–300, 1937.

[32] L. Qiu, Y. Zhang, and C.-K. Li, “Unitarily invariant metrics on the Grassmann space,”

SIAM Journal on Matrix Analysis and Applications, vol. 27, pp. 507–531, Jan. 2005.

[33] P. J. Schreier and L. L. Scharf, Statistical Signal Processing of Complex-Valued Data:

The Theory of Improper and Noncircular Signals. New York, New York, USA: Cam-

bridge University Press, 2010.

[34] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. New York City, New York:

Cambridge University Press, 1994.

68

[35] J. W. Boardman, “Geometric mixture analysis of imaging spectrometry data,” in Pro-

ceedings of IGARSS ’94 - 1994 IEEE International Geoscience and Remote Sensing

Symposium, vol. 4, pp. 2369–2371, IEEE, 1994.

[36] U. Amato, R. M. Cavalli, A. Palombo, S. Pignatti, and F. Santini, “Experimental

approach to the selection of the components in the minimum noise fraction,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 47, pp. 153–160, Jan. 2009.

[37] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a ”kneedle” in a haystack:

Detecting knee points in system behavior,” in 2011 31st International Conference on

Distributed Computing Systems Workshops, pp. 166–171, IEEE, June 2011.

[38] A. Chakrabarty, O. Choudhury, P. Sarkar, A. Paul, and D. Sarkar, “Hyperspectral image

classification incorporating bacterial foraging-optimized spectral weighting,” Artificial

Intelligence Research, vol. 1, pp. 63–83, Aug. 2012.

69

APPENDIX A

Code

A.1. Algorithms

The following Matlab code implements the algorithms described in the text.
Listing A.1. principal angles.m–Implementation of algorithms in Fig-
ures 2.7 and 2.8.

1 function [theta , M_A , M_B] = principal_angles(A, B)
2 %PRINCIPAL_ANGLES Compute the principal angles between subspaces.
3 % A, B -
4 econ = 0; % constant
5
6 nargoutchk (1, 3);
7
8 % compute orthonormal bases for A and B
9 [Q_A , ˜] = qr(A, econ);
10 [Q_B , ˜] = qr(B, econ);
11
12 [U, S, V] = svd(Q_A ’ * Q_B);
13
14 theta = acos(diag(S));
15
16 if nargout >= 2
17 M_A = Q_A * U;
18 end
19 if nargout >= 3
20 M_B = Q_B * V;
21 end
22 end

Listing A.2. detect signal.m–Implementation of Figure 3.5.
1 function [h] = detect_signal(model , P)
2 %DETECT_SIGNAL compute the detection function for (model , P)
3 % model -
4 % P -
5
6 assert(size(P, 1) == size(model.S, 1));
7 assert(size(P, 2) == model.m);
8
9 try
10 theta = principal_angles(P, model.S);
11 h = model.g([zeros(1, model.m - model.a), theta (1: model.a)]);
12 catch
13 % We could not calculate h, for some reason.
14 % - Generally this occurs because a > size(S, 2).
15 h = NaN;
16 end
17 end

Listing A.3. recover signal.m–Implementation of Figure 3.6.
1 function [S_fixed , S_choice , P_choice] = recover_signal(model , P)
2 %RECOVER_SIGNAL Compute the set of h-minimizers for (model , P)
3 % model -

70

4 % P -
5
6 vector_norm2 = @(M, axis) sum(M .* M, axis);
7
8 assert(size(P, 1) == size(model.S, 1));
9 assert(size(P, 2) == model.m);
10
11 [theta , S_hat] = principal_angles(model.S, model.P);
12 l = find(theta < theta(model.a), ’last’);
13 k = find(theta(model.a) < theta , ’first ’);
14 X_hat = gram_schmidt_basis ([S_hat (1:k), P]);
15 if theta(model.a) == 0 || model.a == k
16 l = k;
17 end
18
19 S_fixed = S_hat(:, 1:l);
20 S_choice = S_hat(:, (l + 1):k);
21 P_choice = X_hat(:, (k + 1):end);
22 end
23
24 function [Q] = gram_schmidt_basis(A)
25 Q(:, 1) = A(:, 1) / norm(A(:, 1));
26 for k = 2:n
27 z = A(:, k) - Q * Q’ * A(:, k);
28 len_z = norm(z);
29 if len_z > eps(’single ’)
30 Q(:, end + 1) = z / len_z;
31 end
32 end
33 end

A.2. Experiments

The following Matlab code was used in Chapter 4 to perform the experiments on the
system.

Listing A.4. experiment.m–Function to run an experiment.
1 function [confusion] = experiment(name , options)
2 %EXPERIMENT
3 %
4 % Inputs:
5 % name.
6 % options.
7 %
8 % Outputs:
9
10 import hsi.*
11
12 % Helper functions.
13 % - How many of each value in A?
14 count = @(A, values) arrayfun(@(value) sum(A(:) == value), values);
15 % - Get the tile (all bands) from the image.
16 % The matrix is indexed by (bandIndex , pixelIndex).
17 % - TODO! Select a random m-subset of the pixels when m < tileSize.
18 extract_tile = ...
19 @(image , tile) (reshape(image(tile (1):tile (3), tile (2):tile (4), :), ...
20 [], size(image , 3))) ’;
21

71

22 % Assign defaults for optional arguments.
23 defaultOptions = struct(’dataRoot ’, ’˜/Data/HSI/HyperspectralRemoteSensingScenes/’

, ...
24 ’ntrials ’, 30, ...
25 ’L’, 3, ...
26 ’overlapTiles ’, false , ...
27 ’trainCount ’, false , ...
28 ’trainPercent ’, false , ...
29 ’method ’, ’PCA’, ...
30 ’zeroMean ’, false , ...
31 ’a’, [1], ...
32 ’m’, false , ...
33 ’g’, @d_geo , ...
34 ’tasks’, { { [] } }, ...
35 ’generateLabelImage ’, false , ...
36 ’labelImageRoot ’, ’˜/tmp/HSI/’, ...
37 ’labelText ’, false);
38 options = hsi.copyoptions(options , options , defaultOptions);
39 % Some defaults/conversions require additional processing.
40 % - options.m
41 if not(options.m)
42 % By default , m is the number of pixels in (full) tile.
43 if numel(options.L) == 1
44 options.m = options.L ˆ 2;
45 else
46 options.m = prod(options.L);
47 end
48 end
49 % - options.g
50 if isa(options.g, ’char’)
51 % We support a few common g functions , accessible by name string.
52 switch upper(options.g)
53 case ’D_GEO’
54 options.g = @d_geo;
55 case ’D_CHORD ’
56 options.g = @d_chord;
57 otherwise
58 error(’Unknown␣g␣function.’);
59 end
60 end
61 assert(isa(options.g, ’function_handle ’));
62
63 % Brittle! We assume MAT files contain a single variable.
64 s = load([options.dataRoot , name , ’.mat’]);
65 sFieldNames = fieldnames(s);
66 assert(numel(sFieldNames) == 1);
67 hsiImage = getfield(s, sFieldNames {1});
68 s = load([options.dataRoot , name , ’_gt.mat’]);
69 sFieldNames = fieldnames(s);
70 assert(numel(sFieldNames) == 1);
71 labelImage = double(getfield(s, sFieldNames {1}));
72
73 % - Compute the detection score matrix.
74 % The matrix is indexed by (tile , model).
75 compute_detection_matrix = ...
76 @(models , tiles) ...
77 reshape(cell2mat(cellfun(@(model) ...
78 cellfun(@(tile) ...
79 detect_signal(model , ...

72

80 extract_tile(hsiImage , ...
81 tile)), ...
82 num2cell(tiles , 2)), ...
83 models , ...
84 ’uniformOutput ’, false)), ...
85 [size(tiles , 1), numel(models)]);
86
87 % Translate Labels to be 1:L.
88 minLabel = min(labelImage (:));
89 maxLabel = max(labelImage (:));
90 % - Convert [] to 1: maxLabel
91 options.tasks{cellfun(@(A) numel(A) == 0, options.tasks)} = ...
92 [minLabel:maxLabel];
93 % - Some labels start at 0, which cannot be used as an index.
94 labelOffset = 1 - minLabel;
95 minLabel = minLabel + labelOffset;
96 maxLabel = maxLabel + labelOffset;
97 labelImage = labelImage + labelOffset;
98 options.tasks = cellfun(@(task) task + labelOffset , ...
99 options.tasks , ...
100 ’uniformOutput ’, false);
101
102 % Generate tiles.
103 tiles = hsi.finduniformtiles(labelImage , ...
104 struct(’L’, options.L, ...
105 ’overlapTiles ’, options.overlapTiles));
106
107 if isa(options.labelText , ’cell’)
108 % Add ’unknown ’ as class label text for labels originally below 1.
109 options.labelText = ...
110 [repmat ({ ’unknown ’ }, [1, labelOffset]), ...
111 options.labelText];
112 else
113 % Generate default class label text.
114 options.labelText = ...
115 arrayfun(@(label) sprintf(’%d’, label), ...
116 [minLabel:maxLabel] - labelOffset , ...
117 ’uniformOutput ’, false);
118 end
119
120 if not(options.ntrials)
121 % Generate baseline labelImage from ground truth ...
122 labelImageFilename = sprintf(’%s/%s-%s.%s’, ...
123 options.labelImageRoot , ...
124 name , ...
125 ’BASELINE ’, ...
126 ’eps’);
127 tileLabelImage = NaN(size(labelImage));
128 for labelIndex = minLabel:maxLabel
129 labelTiles = tiles{labelIndex };
130 for tileIndex = 1:size(tiles{labelIndex}, 1)
131 tileLabelImage(labelTiles(tileIndex , 1):labelTiles(tileIndex , 3), ...
132 labelTiles(tileIndex , 2):labelTiles(tileIndex , 4)) =

...
133 labelIndex;
134 end
135 end
136 pcolor(tileLabelImage(end:-1:1, :));
137 caxis ([minLabel , maxLabel]);

73

138 % A better color scale is constructed using
139 %caxis([minLabel - 0.5, maxLabel + 0.5]);
140 %colormap(hsv(maxLabel - minLabel + 1));
141 shading flat;
142 axis image;
143 axis on;
144 set(gca , ’xtick ’, [], ’ytick ’, []);
145 colorbar(’YTick ’, minLabel:maxLabel , ...
146 ’YTickLabel ’, options.labelText);
147 set(gca , ’FontSize ’, 14);
148 set(gcf , ’renderer ’, ’painters ’);
149 print(’-depsc’, ’-cmyk’, labelImageFilename);
150 % ...and tile counts from ground truth
151 tileCounts = ...
152 [[minLabel:maxLabel] - labelOffset ; ...
153 cellfun(@(tileList) size(tileList , 1), tiles)]
154 end
155
156 % Run random trials.
157 confusionByTrial = cell([0, 0]);
158 for trial = 1: options.ntrials
159 % Partition the tiles into train and test sets.
160 [trainTiles , testTiles] = ...
161 hsi.partitiontiles(tiles , ...
162 struct(’trainCount ’, options.trainCount , ...
163 ’trainPercent ’, options.trainPercent));
164 % Build a subspace model for each label.
165 S = cellfun(@(tiles) hsi.computesubspace(hsiImage , ...
166 tiles , ...
167 struct(’method ’, options.method , ...
168 ’zeroMean ’, options.zeroMean ,

...
169 ’m’, options.m)), ...
170 trainTiles , ...
171 ’uniformOutput ’, false);
172 for a = options.a
173 models = cellfun(@(S) struct(’S’, S, ...
174 ’a’, a, ...
175 ’m’, options.m, ...
176 ’g’, options.g), ...
177 S, ...
178 ’uniformOutput ’, false);
179 % Compute the score for each test tile using each model.
180 scores = ...
181 cellfun(@(tiles) compute_detection_matrix (models , tiles), ...
182 testTiles , ...
183 ’uniformOutput ’, false);
184 for task = 1: numel(options.tasks)
185 taskSize = numel(options.tasks{task});
186 % For each tile in the task , pick the best model.
187 % - This produces indices in task , not labels.
188 [˜, best] = ...
189 arrayfun(@(label) min(scores{label }(:, options.tasks{task}), ...
190 [], ...
191 2), ...
192 options.tasks{task}, ...
193 ’uniformOutput ’, false);
194 % Generate the confusion matrix for {taskIndex , a}(:, :, trial).
195 % - Matrix indexed by (trueIndex , bestIndex)

74

196 confusionByTrial {task , a}(:, :, trial) = ...
197 cell2mat(cellfun(@(b) count(b, 1: taskSize)’, ...
198 best , ...
199 ’uniformOutput ’, false))’;
200 if options.generateLabelImage
201 % Generate a label image
202 labelImageFilename = sprintf(’%s/%s-%s-%d-%d-%d.%s’, ...
203 options.labelImageRoot , ...
204 name , ...
205 upper(options.method), ...
206 a, ...
207 task , ...
208 trial , ...
209 ’eps’);
210 taskLabelImage = NaN(size(labelImage));
211 for labelIndex = 1:numel(options.tasks{task})
212 labelTiles = testTiles{options.tasks{task}(labelIndex)};
213 for tileIndex = 1:numel(best{labelIndex })
214 taskLabelImage(labelTiles(tileIndex , 1):labelTiles(

tileIndex , 3), ...
215 labelTiles(tileIndex , 2):labelTiles(

tileIndex , 4)) = ...
216 options.tasks{task}(best{labelIndex }(tileIndex));
217 end
218 end
219 pcolor(taskLabelImage(end:-1:1, :));
220 % A better color scale is constructed using
221 %caxis ([minLabel - 0.5, maxLabel + 0.5]);
222 %colormap(hsv(maxLabel - minLabel + 1));
223 shading flat;
224 axis image;
225 axis on;
226 set(gca , ’xtick’, [], ’ytick ’, []);
227 set(gca , ’FontSize ’, 14);
228 set(gcf , ’renderer ’, ’painters ’);
229 print(’-depsc ’, ’-cmyk’, labelImageFilename);
230 end
231 end
232 end
233 end
234
235 % Compute min , max , and average confusion matrices for {taskIndex , a}.
236 confusion.min = cellfun(@(confusion) min(confusion , [], 3), ...
237 confusionByTrial , ...
238 ’uniformOutput ’, false);
239 confusion.max = cellfun(@(confusion) max(confusion , [], 3), ...
240 confusionByTrial , ...
241 ’uniformOutput ’, false);
242 confusion.mean = cellfun(@(confusion) mean(confusion , 3), ...
243 confusionByTrial , ...
244 ’uniformOutput ’, false);
245 end
246
247 function [distance] = d_geo(theta)
248 distance = norm(theta);
249 end
250
251 function [distance] = d_chord(theta)
252 distance = norm(sin(theta));

75

253 end

Listing A.5. experimentsall.m–Matlab script to run experiments and per-
form analysis.

1 path(’˜/ Dropbox/Documents/MATLAB ’, path)
2 path(’˜/ Dropbox/Research/Code’, path)
3 path(’˜/ Dropbox/Research/Code/Dissertation ’, path)
4 import hsi.*
5
6 % Generate the baseline images and tile counts.
7 experiment(’Indian_pines ’, ...
8 struct(’ntrials ’, 0, ...
9 ’labelText ’, {{ ’alfalfa ’, ...
10 ’corn -notill ’, ...
11 ’corn -mintill ’, ...
12 ’corn’, ...
13 ’grass -pasture ’, ...
14 ’grass -trees’, ...
15 ’grass -pasture -mowed’, ...
16 ’hay -windrowed ’, ...
17 ’oats’, ...
18 ’soybean -notill ’, ...
19 ’soybean -mintill ’, ...
20 ’soybean -clean’, ...
21 ’wheat ’, ...
22 ’woods ’, ...
23 ’buildings -grass -trees -drives ’, ...
24 ’stone -steel -towers ’ }}));
25 experiment(’Salinas ’, ...
26 struct(’ntrials ’, 0, ...
27 ’labelText ’, {{ ’broccoli -green -weeds -1’, ...
28 ’broccoli -green -weeds -2’, ...
29 ’fallow ’, ...
30 ’fallow -rough -plow’, ...
31 ’fallow -smooth ’, ...
32 ’stubble ’, ...
33 ’celery ’, ...
34 ’grapes -untrained ’, ...
35 ’soil -vinyard -develop ’, ...
36 ’corn -senesced -green -weeds’, ...
37 ’lettuce -romaine -4wk’, ...
38 ’lettuce -romaine -5wk’, ...
39 ’lettuce -romaine -6wk’, ...
40 ’lettuce -romaine -7wk’, ...
41 ’vinyard -untrained ’, ...
42 ’vineyard -vertical -trellis ’ }}));
43 experiment(’PaviaU ’, ...
44 struct(’ntrials ’, 0, ...
45 ’labelText ’, {{ ’asphalt ’, ...
46 ’meadows ’, ...
47 ’gravel ’, ...
48 ’trees’, ...
49 ’painted -metal -sheets ’, ...
50 ’bare -soil’, ...
51 ’bitumen ’, ...
52 ’self -blocking -bricks ’, ...
53 ’shadows ’}}));
54

76

55 % Run the experiments on the datasets.
56 %load(’confusion.mat ’);
57 confusion.pca.IndianPines = experiment(’Indian_pines ’, ...
58 struct(’a’, [1, 2], ...
59 ’ntrials ’, 30, ...
60 ’tasks’, { { [], ...
61 [1:16] , ...
62 [2, 5], ...
63 [10, 11] } }, ...
64 ’trainCount ’, 4, ...
65 ’method ’, ’pca’, ...
66 ’generateLabelImage ’, true));
67 confusion.mnf.IndianPines = experiment(’Indian_pines ’, ...
68 struct(’a’, [1, 2], ...
69 ’ntrials ’, 30, ...
70 ’tasks’, { { [], ...
71 [1:16] , ...
72 [2, 5], ...
73 [10, 11] } }, ...
74 ’trainCount ’, 4, ...
75 ’method ’, ’mnf’, ...
76 ’generateLabelImage ’, true));
77 confusion.flag.IndianPines = experiment(’Indian_pines ’, ...
78 struct(’a’, [1, 2], ...
79 ’ntrials ’, 30, ...
80 ’tasks’, { { [], ...
81 [1:16] , ...
82 [2, 5], ...
83 [10, 11] } }, ...
84 ’trainCount ’, 4, ...
85 ’method ’, ’flag’, ...
86 ’generateLabelImage ’, true));
87 save(’confusion.mat’, ’confusion ’);
88 confusion.pca.Salinas = experiment(’Salinas ’, ...
89 struct(’a’, [1, 2], ...
90 ’ntrials ’, 30, ...
91 ’tasks’, { { [], ...
92 [1:16] , ...
93 [1, 2], ...
94 [3, 4, 5, 6], ...
95 [11, 12, 13, 14], ...
96 [15, 16] } }, ...
97 ’trainCount ’, 4, ...
98 ’method ’, ’pca’, ...
99 ’generateLabelImage ’, true));
100 confusion.mnf.Salinas = experiment(’Salinas ’, ...
101 struct(’a’, [1, 2], ...
102 ’ntrials ’, 30, ...
103 ’tasks’, { { [], ...
104 [1:16] , ...
105 [1, 2], ...
106 [3, 4, 5, 6], ...
107 [11, 12, 13, 14], ...
108 [15, 16] } }, ...
109 ’trainCount ’, 4, ...
110 ’method ’, ’mnf’, ...
111 ’generateLabelImage ’, true));
112 confusion.flag.Salinas = experiment(’Salinas ’, ...
113 struct(’a’, [1, 2], ...

77

114 ’ntrials ’, 30, ...
115 ’tasks ’, { { [], ...
116 [1:16] , ...
117 [1, 2], ...
118 [3, 4, 5, 6], ...
119 [11, 12, 13, 14], ...
120 [15, 16] } }, ...
121 ’trainCount ’, 4, ...
122 ’method ’, ’flag’, ...
123 ’generateLabelImage ’, true));
124 save(’confusion.mat’, ’confusion ’);
125 confusion.pca.PaviaU = experiment(’PaviaU ’, ...
126 struct(’a’, [1, 2], ...
127 ’ntrials ’, 30, ...
128 ’tasks’, { { [], ...
129 [1:9] , ...
130 [1, 3, 6, 7], ...
131 [2, 4], ...
132 [1, 2] } }, ...
133 ’trainCount ’, 4, ...
134 ’method ’, ’pca’, ...
135 ’generateLabelImage ’, true));
136 confusion.mnf.PaviaU = experiment(’PaviaU ’, ...
137 struct(’a’, [1, 2], ...
138 ’ntrials ’, 30, ...
139 ’tasks’, { { [], ...
140 [1:9] , ...
141 [1, 3, 6, 7], ...
142 [2, 4], ...
143 [1, 2] } }, ...
144 ’trainCount ’, 4, ...
145 ’method ’, ’mnf’, ...
146 ’generateLabelImage ’, true));
147 confusion.flag.PaviaU = experiment(’PaviaU ’, ...
148 struct(’a’, [1, 2], ...
149 ’ntrials ’, 30, ...
150 ’tasks’, { { [], ...
151 [1:9], ...
152 [1, 3, 6, 7], ...
153 [2, 4], ...
154 [1, 2] } }, ...
155 ’trainCount ’, 4, ...
156 ’method ’, ’flag’, ...
157 ’generateLabelImage ’, true));
158 save(’confusion.mat’, ’confusion ’);
159
160 % Analyze the results.
161 % - Compute accuracies.
162 accuracy = struct ();
163 methods = fieldnames(confusion);
164 for methodIndex = 1:numel(methods)
165 filenames = fieldnames(getfield(confusion , methods{methodIndex }));
166 for filenameIndex = 1:numel(filenames)
167 eval(sprintf(’%s.%s.%s␣=␣%s;’, ...
168 ’accuracy ’, ...
169 methods{methodIndex}, ...
170 filenames{filenameIndex}, ...

78

171 ’cellfun(@hsi.accuracy ,␣getfield(getfield(getfield(confusion ,␣
methods{methodIndex }),␣filenames{filenameIndex }),␣’’mean’’))’
));

172 end
173 end
174 save(’accuracy.mat’, ’accuracy ’);
175 % - Output accuracies.
176 % - Brittle! Assumes accuracy.pca exists and that all accuracy fields have
177 % exactly the same fields.
178 filenames = fieldnames(accuracy.pca);
179 for filenameIndex = 1:numel(filenames)
180 filenames{filenameIndex}
181 cell2mat(cellfun(@(method) getfield(getfield(accuracy , method), ...
182 filenames{filenameIndex }), ...
183 fieldnames(accuracy)’, ...
184 ’UniformOutput ’, false))
185 end

A.3. Package hsi

The following Matlab code is the subset of our hsi package which the system detailed
in Chapter 4 utilizes.

Listing A.6. +hsi/accuracy.m
1 function [result] = accuracy(confusion)
2 %ACCURACY Compute accuracy based upon the confusion matrix.
3 result = sum(diag(confusion)) / sum(confusion (:));
4 end

Listing A.7. +hsi/copyoptions.m
1 function obj = copyoptions(obj , options , defaultOptions)
2 %COPYOPTIONS Copy default and overloaded options into obj
3 % Copy fields from defaultOptions or, if they exist , options into obj.
4
5 % Verify the option names
6 for s = (fieldnames(options))’
7 if ˜isfield(defaultOptions , s)
8 warning(’HSI:invalidOptionName ’, ...
9 ’"%s"␣is␣not␣a␣valid␣option␣name’, s);
10 end
11 end
12
13 % Copy default options or overloaded values into the structure
14 for s = (fieldnames(defaultOptions))’
15 if isfield(options , s)
16 obj.(char(s)) = options .(char(s));
17 else
18 obj.(char(s)) = defaultOptions .(char(s));
19 end
20 end
21
22 end

Listing A.8. +hsi/computesubspace.m
1 function [S, rho] = computesubspace(image , tiles , options)
2 %COMPUTESUBSPACE Compute the subspace the tiles best fit.
3 %

79

4 % Inputs:
5 % image.
6 % tiles.
7 % options.
8 %
9 % Outputs:
10 % S.
11
12 import hsi.*
13
14 % Helper functions.
15 % - Check to see if the vector is effectively zero.
16 iszerov = @(v) all(v < eps(’single ’));
17
18 % Assign defaults for optional arguments
19 defaultOptions = struct(’method ’, ’PCA’, ...
20 ’zeroMean ’, false , ...
21 ’m’, false , ...
22 ’N’, false , ...
23 ’threshold ’, false , ...
24 ’test’, false);
25 options = hsi.copyoptions(options , options , defaultOptions);
26
27 Z = tilestosamples(image , tiles);
28 if options.zeroMean
29 % - Mean -center the data.
30 meanZ = mean(Z, 2);
31 Z = Z - repmat(meanZ , [1, size(Z, 2)]);
32 end
33 if options.test
34 % We are just running a test on a randomly generated basis.
35 % - S is
36 % - rho is
37 [S, rho] = test(options);
38 elseif numel(Z) == 0
39 % There is no data , so create 0-dimensional subspace.
40 S = NaN([size(image , 3), 0]);
41 else
42 % There is data , so create a subspace as requested.
43 switch upper(options.method)
44 case ’PCA’
45 [S, rho] = computesubspacewithpca(Z, options);
46 case ’MNF’
47 [S, rho] = computesubspacewithmnf(Z, options);
48 case ’FLAG’
49 [S, rho] = computesubspacewithflag(Z, options);;
50 otherwise
51 error(’Unknown␣method ’);
52 end
53 if options.zeroMean && ˜iszerov(S \ meanZ)
54 % - When centering the data , we adjoin the mean to the subspace.
55 % We only do this when this increases span(S).
56 S = [meanZ , S];
57 % - Since there is no real meaning to it, we assign the mean ’s rho
58 % to NaN.
59 rho = [NaN , rho];
60 end
61 end
62 end

80

63
64 function [samples] = tilestosamples(image , tiles)
65 % Make a data matrix out of the tiles in the image.
66 % - samples is indexed by (bandIndex , pixelIndex).
67 nbands = size(image , 3);
68 samples = NaN([size(image , 3), 0]);
69 for i = 1:size(tiles , 1)
70 tile = reshape(image(tiles(i, 1):tiles(i, 3), ...
71 tiles(i, 2):tiles(i, 4), ...
72 :), ...
73 [], nbands);
74 % - We want a data point to form a column , so transpose.
75 samples(:, end + [1: size(tile , 1)]) = tile ’;
76 end
77 end
78
79 function [k] = samplecurvature(y)
80 % Naive difference approximations of the derivatives.
81 % - dy spans two samples to stay centered on the same samples.
82 dy = (y(3: end) - y(1:(end - 2))) / 2.0;
83 % - ddy is the difference between adjacent half -sample dy’s.
84 ddy = y(3:end) + y(1:(end - 2)) - 2.0 * y(2:(end - 1));
85 % - Pad the curvature series to be index -compatible with y.
86 k = [0, (ddy .* (1.0 + dy .ˆ 2) .ˆ 1.5)’ , 0];
87 end
88
89 function [N] = computeN(rho , options)
90 if numel(options.N) == 1
91 % We are just taking the first N dimensional subspace.
92 if not(options.N)
93 % Automatically determine the best dimensions of the subspace.
94 if options.threshold
95 [˜, options.N] = find(rho > options.threshold , ’last’);
96 else
97 % Cut off at the knee of the scree plot.
98 % - This is based on Satopaa , et. al. "... Kneedle ...", 2011.
99 % - Unlike Kneedle , we do not smooth the data. We assume that
100 % the distribution of values and the finite difference
101 % approximation does enough smoothing.
102 [˜, options.N] = max(abs(samplecurvature(rho)));
103 end
104 end
105 N = [1: options.N];
106 else
107 N = options.N;
108 end
109 end
110
111 function [S, rho] = computesubspacewithpca(Z, options)
112 [Uz , Sz , Vz] = svd(Z, ’econ’);
113 rho = diag(Sz);
114 N = computeN(rho , options);
115 S = Uz(:, N);
116 end
117
118 function [S, rho] = computesubspacewithmnf(Z, options)
119 % Helper functions.
120 % - Reverse the vector.
121 reversev = @(v) v(end : -1:1);

81

122 % - Reverse the columns of a matrix , then return the k-indexed columns.
123 reversemk = @(M, k) M(:, end - k + 1);
124 % - Give the columns unit length.
125 tounit = @(M) M ./ repmat(sqrt(sum(M .ˆ 2)), [size(M, 1), 1]);
126 % - Check to see if the matrix appears illconditioned
127 isillconditioned = @(M) (rcond(M) < (max(size(M)) * max(eps(M(:)))));
128
129 % - dZ ’ * dZ is an estimate of the noise covariance.
130 dZ = Z - circshift(Z, [1, 0]);
131 [Uz , Vz, Xz, Cz, Sz] = gsvd(Z, dZ);
132 % - Noise is on the left , so reverse; now 1 is signal and end is noise.
133 % - Rho is the (estimated) signal -to-noise ratio of the new basis.
134 rho = reversev(diag(Cz) ./ diag(Sz));
135 N = computeN(rho , options);
136 if isillconditioned(Xz)
137 S = tounit(reversemk(Z * pinv(Xz)’, N));
138 else
139 S = tounit(reversemk ((Xz \ Z’)’, N));
140 end
141 end
142
143 function [S, rho] = computesubspacewithflag(Z, options)
144 X = cell2mat(cellfun(@orth , ...
145 mat2cell(Z, ...
146 [size(Z, 1)], ...
147 options.m * ones(1, size(Z, 2) / options.m)), ...
148 ’uniformOutput ’, false));
149 [Ux , Sx, Vx] = svd(X, ’econ’);
150 rho = diag(Sx);
151 N = computeN(rho , options);
152 S = Ux(:, N);
153
154 end
155
156 function [SEst , rho] = test(options)
157 import hsi.*
158 % Helper functions.
159 % - Give the columns unit length.
160 tounit = @(M) M ./ repmat(sqrt(sum(M .ˆ 2)), [size(M, 1), 1]);
161 % - Check to see if the vector is effectively zero.
162 iszerov = @(v) all(v < eps(’single ’));
163
164 % - N is [ambientDimension , subspaceDimension , nDataPoints].
165 N = [30, 5, 15];
166 sigma = 1e-2;
167 STrue = sin((pi / N(1)) * [1:N(1)]’ * randi (10, [1, N(2)]));
168 Z = STrue * tounit(randn(N(2:3))) + sigma * tounit(randn(N([1, 3])));
169 if options.zeroMean
170 % - Mean -center the data.
171 meanZ = mean(Z, 2);
172 Z = Z - repmat(meanZ , [1, size(Z, 2)]);
173 end
174 switch upper(options.method)
175 case ’PCA’
176 SEst = computesubspacewithpca(Z, options);
177 case ’MNF’
178 SEst = computesubspacewithmnf(Z, options);
179 case ’FLAG’
180 SEst = computesubspacewithflag(Z, options);

82

181 otherwise
182 error(’Unknown␣method ’);
183 end
184 if options.zeroMean && ˜iszerov(SEst \ meanZ)
185 % - When centering the data , we adjoin the mean to the subspace.
186 % We only do this when this increases span(S).
187 SEst = [meanZ , SEst];
188 end
189 rho = hsi.principalangles(STrue , SEst);
190 end

Listing A.9. +hsi/finduniformtiles.m
1 function [tiles] = finduniformtiles (labelImage , options)
2 %FINDUNIFORMTILES Generate a list of tiles with uniform label.
3 %
4 % Inputs:
5 % labelImage. A (number of rows) x
6 % (number of cols) label image.
7 % options
8 % .ignoreOutliers. (Optional).
9 % .L. (Optional). The size of the tile used in [rows , cols].
10 % .mask. (Optional). A binary matrix the size of the image with 1
11 % for pixels to include and 0 for pixels not to
12 % include in building the flag.
13 % .overlapTiles. (Optional).
14 %
15 % Output:
16 % tiles. A (max label) element cell array of 4 x # tile locations
17
18 import hsi.*
19
20 % Assign defaults for optional arguments
21 defaultOptions = struct(’ignoreOutliers ’, false , ...
22 ’L’, [3, 3], ...
23 ’mask’, [], ...
24 ’overlapTiles ’, false);
25 options = hsi.copyoptions(options , options , defaultOptions);
26
27 % L should be [rows , cols]. If L is a scalar , use an L x L tile.
28 if numel(options.L) == 1
29 options.L = [options.L, options.L];
30 end
31 L_2 = fix(options.L / 2);
32
33 imageSize = size(labelImage);
34
35 % If none was given , create a mask of the data of interest.
36 % (use = 1, ignore = 0)
37 if isempty(options.mask)
38 options.mask = single(true(imageSize (1:2)));
39 end
40 assert(size(options.mask , 1) == imageSize (1) && ...
41 size(options.mask , 2) == imageSize (2));
42 % Create outlier mask. (good = 1, outlier = 0)
43 if options.ignoreOutliers
44 outlierMask = ˜hsi.finddropoutsstats(image , options.L, 22);
45 else
46 % Don ’t ignore outliers. Use a trivial mask.

83

47 outlierMask = true(imageSize (1:2));
48 end
49 imageMask = options.mask & outlierMask;
50
51 % We do not want to end up with tiles trimmed by the image edge.
52 % - This is organized the same as a tile bound --[ij_min , ij_max].
53 bounds = [(L_2 + 1), imageSize - L_2];
54 % Select the stride based upon whether the tiles should overlap or not.
55 if options.overlapTiles
56 stride = [1, 1];
57 else
58 stride = options.L;
59 end
60
61 % Find uniform tiles for each label/class.
62 % - initialize 1:max(label)
63 tiles{max(labelImage (:))} = [];
64 for i = bounds (1):stride (1):bounds (3)
65 for j = bounds (2):stride (2):bounds (4)
66 ij = [i, j];
67 % - We used to allow tiles to straddle the image boundary. Use
68 % these two lines , if we return to that approach.
69 % ij_min = max([(ij - L_2) ; 1, 1]);
70 % ij_max = min([(ij + L_2) ; imageSize]);
71 ij_min = (ij - L_2);
72 ij_max = (ij + L_2);
73 uv_min = ij_min - ij + L_2 + 1;
74 uv_max = ij_max - ij + L_2 + 1;
75 tile_ij = labelImage(ij_min (1):ij_max (1), ij_min (2):ij_max (2));
76 tile_labels = ...
77 tile_ij(imageMask(ij_min (1):ij_max (1), ij_min (2):ij_max (2)));
78 tile_label = tile_labels (1);
79 if (all(tile_labels == tile_label))
80 tiles{tile_label }(end + 1, :) = [ij_min , ij_max];
81 end
82 end
83 end
84
85 end

84

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Signal Detection and Related Tasks
	1.2. Challenges
	1.3. Overview

	Chapter 2. Background
	2.1. Introduction
	2.2. Linear Subspace Models
	2.3. Classical Subspace Detectors
	2.3.1. Matched Subspace Detector (MSD)
	2.3.2. Adaptive Coherence/Cosine Estimator (ACE)
	2.3.3. Matched Direction Detector (MDD)
	2.3.4. RX Anomaly Detector

	2.4. Model Identification
	2.4.1. Principal Component Analysis (PCA)
	2.4.2. Maximum Noise Fraction (MNF)
	2.4.3. Flag Mean

	2.5. The Grassmann Manifold
	2.5.1. Notation
	2.5.2. Principal Angles and Vectors

	2.6. Summary

	Chapter 3. Geometric Tests
	3.1. Introduction
	3.2. Point-to-Point Functions
	3.3. Point-to-Set Functions
	3.3.1. Detection Theory
	3.3.2. Recovery Theory
	3.3.3. Signal Detection
	3.3.4. Signal Recovery

	3.4. Summary

	Chapter 4. Empirical Results
	4.1. Introduction
	4.2. System Architecture
	4.2.1. Model Identification
	4.2.2. Shortcomings

	4.3. Datasets
	4.4. Results
	4.5. Challenges
	4.5.1. Model Identification
	4.5.2. Parameter Selection
	4.5.3. Dataset Selection

	4.6. Summary

	Chapter 5. Conclusion
	5.1. Contributions
	5.2. Future Directions

	Bibliography
	Appendix A. Code
	A.1. Algorithms
	A.2. Experiments
	A.3. Package hsi

