
 

THESIS 

 

COMBINED EFFECTS OF WARMING AND DRYING ON A TEMPERATE-TO-BOREAL 

FOREST ECOTONE EXERT ADDITIVE CHANGES ON SOIL MICROBIOME STRUCTURE 

AND DIVERSITY 

 

 

Submitted by  

Daniel Dean 

 Department of Agricultural Biology 

 

 

In partial fulfillment of the requirements  

For the Degree of Master of Science  

Colorado State University  

Fort Collins, Colorado  

Fall 2020 

 
 
 
 
Master’s Committee: 
 

Advisor: Pankaj Trivedi 
 
Jan E. Leach 
Kelly Wrighton 
Peter B. Reich  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright by Daniel Dean 2020 

All Rights Reserved

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



ii 

 

ABSTRACT 
 
 
 

COMBINED EFFECTS OF WARMING AND DRYING ON A TEMPERATE-TO-BOREAL 

FOREST ECOTONE EXERT ADDITIVE CHANGES ON SOIL MICROBIOME STRUCTURE 

AND DIVERSITY 

 
 

The soil microbial community is an important mediator of many ecosystem functions, so 

understanding dynamics under climate change. These responses could be more robust in 

transitional zones such as the temperate-to-boreal forest ecotones, which are poised to 

experience substantial changes under projected climate change over the next century and 

beyond. Because these systems are projected to move towards a warmer, drier climate, it is 

important to understand how the soil microbiome’s structure and interactions shift under such 

conditions. Here, we examined the response of microbial communities to simulated warming 

and drought conditions using the B4WarmED (Boreal Forest Warming in an Ecotone in Danger) 

experiment in Minnesota, USA. B4WarmED is a fully factorial blocking experiment which uses in 

situ experimental 3.4C warming and precipitation reduction to simulate the projected regional 

late-21st century climate. Using Shannon-Weaver Diversity and Canonical Analysis of Principled 

Coordinates, we found that combined warming and drying effects exerted significant effects on 

the diversity and structure of microbial communities after 8 years of warming, and 5 of drought 

treatments. Specifically, warming and drying effects appeared to combine additively, rather than 

exhibiting nonlinear interactive effects, at the community level. Per-taxon linear models revealed 

a sizeable portion of individual microbes exhibit a significant abundance response to one or both 

of warming and drying effects. However, co-occurrence network analysis and Dufrene-Legrende 

Indicator Value characterization revealed a smaller portion of bacterial sub-communities with 

persistent taxonomical makeup and response profiles across treatments. Within the microbial 

communities our analysis identified three types of taxon-specific responses to climate change 
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stressors: resistant, opportunistic, and sensitive, with most taxa being resistant to warming and 

drying effects. However, our results provide strong evidence that combined warming and 

drought influences will impact soil microbial communities of temperate-to-boreal ecotone forests 

(“boreal ecotone” hereafter), with potential implications for ecosystem functioning. 
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CHAPTER 1 
 
 
 

Introduction 
 

Over the next century and beyond, the climate is projected to see changes including 

warmer mean temperatures in many regions, shifts in precipitation, and increased frequency of 

events like drought and extreme weather (IPCC 2013). One concern in predicting the ecological 

implications of these changes is that many climate driven trends, such as warming and drying, 

are interlaced. Thus, individual studies that test a single climate driven trend cannot fully explain 

the potential impacts of anthropogenic climate change and necessitates large multifactorial 

experimental designs to empirically understand likely shifts in ecosystem function and stability 

(Steinweg et al. 2013; Rich et al. 2015). Moreover, the potential for positive feedback effects 

and other nonlinear responses to greenhouse gas inputs introduces additional uncertainty to the 

task of modeling, and preparing for, climate change effects (IPCC 2013). This dynamic is of 

special concern for ecotones, or regions transitioning between two ecosystem types, because of 

the strong potential for nonlinear feedback as dissimilar successional communities take hold in 

altered environments (Evans and Brown 2017). Studies have linked increases in temperatures 

and decrease in precipitation to changes in the abundance, distribution, phenology, and 

community composition of tree species at ecotones, as well as compositional and functional 

changes in soil invertebrate food networks (e.g. Rich et al. 2015; Schwartzeberg et al. 2014; 

Schwarz et al 2018). These changes are postulated to influence belowground microbial 

communities that play a critical role in major ecosystem processes (Singh et al. 2010; Jansson 

and Hofmockel 2019; Hutchins et al. 2019). However, the interacting effects of climate change 

drivers on the soil microbiome at ecotones is relatively unstudied. This leaves a critical 

knowledge gap in characterizing and anticipating the response of the soil microbiome to 

warming and drying stressors and as a result, it can be difficult to identify the degree to which 

climate change will impact ecosystem functioning and forest health in ecotones. 
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The boreal ecotone is a critical habitat which is predicted to experience overall increase 

in the pace of change of future climate, including higher global temperature and longer periods 

of extreme drought than lower latitude biomes (Crowther et al. 2016). Because these transitional 

communities comprise tree species both at the upper and lower limits of their respective ranges, 

there is a risk of community breakdown as the southern range of more warming-sensitive 

species contracts (Reich et al 2015), and keystone species may become separated by 

differential migration rates or warming tolerance (Evans and Brown 2017). Warming also 

induces physiological changes in many tree species in this region, including reduced 

photosynthetic activity (Reich et al 2018). Significant functional changes have already been 

documented, like documented forest range contraction or migration (Evans and Brown 2017), 

and the seasonal transition of a northern Swedish boreal forest from a carbon sink to a carbon 

source due to changes in cold-weather dynamics (Hadden and Grelle 2016). These large 

functional shifts coincide with, and to varying extents are driven by, more granular changes like 

reorganization of the soil food network (Schwarz et al. 2017) or weakening of the symbiotic 

relationship between trees and Ectomycorrhizal fungi as a consequence of reduced tree 

photosynthetic capacity (Fernandez et al. 2017). A recent study reported significant shifts in the 

soil microbiome diversity and associated functions in response to warming and disturbances in 

a northern soil ecotone (Van Nuland et al. 2020). Various ecological functions including soil C 

storage (Trivedi et al. 2016) and greenhouse gas emissions (Martins et al. 2017) are influenced 

by multiple direct and indirect interactions of microbes with climate change stressors. Therefore, 

changes in microbial functions and feedback mechanisms will play important roles in 

determining the climate sensitivity and future climatic state of ecotones (Clemmensen et al. 

2013, Martins et al 2017). This context makes it critical to further our understanding of how 

multiple global change drivers modify the structure of the soil microbiome as a whole, and of key 

taxa that modulate alterations in microbial interactions. 
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Although it is now well established that soil microbial communities are crucial for 

ecosystem functioning, we lack a general framework for predicting their response to climate 

change (de vries and Griffiths 2018; Jansson and Hofmockel 2019; Hutchins et al. 2019). In 

recent years, significant efforts have been made to study the impacts of climate change on soil 

microorganisms in different climate-sensitive soil ecosystems (e.g. Bardgett and Caruso 2020, 

Llado et al 2017, van Nuland et al 2020, Dubey et al 2019, Bradford et al 2016).  Overall the 

composition and structure of microbial communities is sensitive to climate change however, the 

strength and direction varies with the stressor(s) (Drigo et al. 2017), their intensity (van Nuland 

et al. 2020; DeAngelis et al. 2015), their duration (de Vries et al. 2018; Acosta-Martinez et al. 

2014), and the ecosystem in question (Evans and Wallenstein 2013; Ladau et al. 2018). Soil 

microbes have different strategies to cope with changing environmental conditions and therefore 

vary significantly in their sensitivity to climate change stressors (Der Voort et al 2016; Bardgett 

and Caruso 2020,). In general, the soil fungal community is often less impacted by climate 

change as compared to bacteria (Yuste et al. 2011; de Vries et al. 2012; 2018; Acosta-Martinez 

et al 2014). Different members within a particular microbial group can respond sensitively, 

tolerant, and opportunistically to climate change stressors (Evans and Wallenstein 2014; 

Crowther et al. 2014; Drigo et al. 2017; Meisner et al. 2018). The degree to which taxa are able 

to maintain relative dominance in the community using resistance or resilience strategies, 

especially under sustained exposure, could have important implications for community structure 

in the long term. While a majority (~80% per Oliviero et al. 2017) of bacterial taxa appear not to 

show a consistently significant response to warming (whether negative or positive), community-

level shifts in alpha and beta diversity in this range are frequently observed (e.g. De Angelis et 

al. 201; van Nuland et al. 2020). This suggests that associations between microbes, 

independent of direct physiological responses to warming or drying, may play an important 

organizing role in shaping a new community order under climate change stressors. 
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Climate change mediated alterations in microbial community structure can alter 

interactions among species (Jansson and Hofmockel 2020). However, we have a very limited 

understanding about how microbial networks shift in response to climate extremes and other 

disturbances (de Vries et al. 2018). It is postulated that environmental change influences a 

multitude of direct and indirect interactions that occur between the networks of coexisting 

microbial communities resulting in shifts in resilience, stability, and ecosystem functioning 

(Jansson and Hofmockel 2020). For instance, a high degree of positive interactions in a 

community are generally held to amplify perturbance effects (potentially leading to a cascade 

effect in highly mutualistic systems), while negative interactions dampen these disturbances and 

tend toward stability of the existing order (Coyte et al. 2015; Landi et al. 2018). Interactions 

between members of soil microbial communities affect their growth and metabolism resulting in 

altered patterns of species abundance across space and time. This information is particularly 

valuable in evaluating the impacts of environmental changes on microbial communities. 

To address how climate change-related warming and drying effect soil microbial 

communities across a boreal forest ecotone, both independently and in conjunction, we used 

soil samples from the long-term ecological research from the B4WarmED (Boreal Forest 

Warming in an Ecotone in Danger) experiment. Beyond being located in a boreal-to-temperate 

ecotone of interest, this experimental system accounts for both direct and interactive effects of 

predicted late-21st century warming and drying in a full-factorial blocking experimental design. 

The B4WarmED system has also hosted a wealth of research into subjects ranging from 

warming effects on leaf respiration (e.g. Wei et al 2016), soil food web dynamics (Thakur et al 

2018, Schwarz et al 2017), and differential success of undergrowth species under warming 

regimes (e.g. Thakur et al 2014). Most relevantly, van Nuland et al (2020) studied the soil 

microbiome in the B4WarmED system from 2009 to 2011, providing a valuable picture of early 

successional dynamics under warming, but predating the implementation of a summer drought 

treatment, precluding the study of interactive effects. For the present study, we focused on three 
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primary research directions: First, we measured soil bacterial and fungal community structure to 

explore compositional changes under separate or combined sustained warming and drying 

stressors, especially whether these effects appear to drive divergence between the control 

community and those subjected to one or both treatments. Second, we use a range of treatment 

response indices (correlation between abundance and treatments, direct changes in 

abundance, and Dufrene-Legendre indicator value scoring) to evaluate the relative proportion of 

taxa showing a significant abundance response to these pressures, and the prevalence of 

positive, or negative, effects on abundance. Third, we use bacterial and fungal co-occurrence 

networks to detect persistent clusters of positively-associated taxa across treatment conditions, 

and characterize their taxonomic composition and indicator value response profiles to warming 

and drying stresses (sensitive, or decreasing in abundance, opportunistic, or increasing in 

abundance, or resistant, with no significant changes). Together, these approaches will give us 

insight into how the taxonomic composition of this Temperate to Boreal Ecotone forest system 

soil microbiome may develop under predicted climate trends. 

 

Materials and Methods 

Site Description: 

We made use of the B4WarmED open-air climate system to explore the effects of paired 

Warming and Drying stressors on the temperate boreal ecotone microbiome in a controlled 

experiment. This northern Minnesota experiment was established in in spring 2008, and 

comprises two sites about 150 km apart, located near the Cloquet Forestry Center (46°40′46”, 

92°31′12″ W), and the Hubachek Wilderness Research Center (47°56’42” N,91°45’29” W). Both 

sites have a similar endemic tree species composition of 40-60-year aspen-birch-fir forest, with 

11 native and naturalized species being planted as saplings for the experiment in 2008 (Rich et 

al. 2015). Local climates are broadly similar (Supplementary Table 1), with Ely being somewhat 

colder and drier on a mean annual basis, although this is not uniform overall, with Cloquet 
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experiencing cooler summers and warmer winters (Rich et al. 2015). Both sites’ experimental 

plots have a mean pH of ~5.3, with no substantial observed treatment-associated changes as of 

2013 (Martins et al. 2016). Local soil is primarily comprised of sandy loam, with roughly 10% 

clay at each site; per USDA soil taxonomy, most CFC soil is classified as Inceptisols, and 

HWRC as Entisols (Eddy 2015; Martins et al. 2016). B4WarmED features on-site logging of 

precipitation, above- and below-ground temperatures, and other pertinent environmental traits, 

including volumetric soil moisture (
𝑐𝑚3 𝐻2𝑂𝑐𝑚3 𝑠𝑜𝑖𝑙), hourly records for ambient above- and belowground 

temperature, and rainfall (Eddy 2015; Rich et al. 2015). These sensor systems, as well as 

regular soil collection and other measurements, provide a wealth of data for isolating 

experimentally induced changes in the system. 

In this study, we used two overlapping treatment factors of the B4WarmED experimental 

design: a Warming and a Drying treatment. The Warming treatment condition is 3.4 °C above 

ambient, and was implemented at the outset of the experiment (along with a clearing of upper-

canopy vegetation), and maintained during a field season bracketed by the first, and last, time 

that mean daily temperatures reached at least 1°C  for at least 5 days, using combined above- 

and belowground heating elements with real-time feedback (full details in Rich et al. 2015). The 

Drying (more specifically, summer drought) treatment was added in 2012, and uses event-

based canvas canopies to intercept ~45% of precipitation from June through September (Rich 

et al. 2015). Taken together, these overlapping treatments create four primary conditions: an 

unmodified control condition with no temperature elevation and ambient precipitation 

(Designated hereafter as CO), a warming condition elevated by 3.4 °C with ambient 

precipitation (WO), a summer drought condition 45% reduction of precipitation from June-

September with no warming (DO), and a combined stressor treatment combing the summer 

drought and 3.4 °C warming conditions (WD). 
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This representation of the B4WarmED experimental model omits an intermediate 1.8 °C 

warming level, as we chose to focus on the higher warming treatment due to lower site- and 

seasonal dependence (e.g. Eddy 2015, Martins et al. 2016). Similarly, we excluded an 

undisturbed “Closed” canopy condition, in which the summer drought treatment was not 

implemented.  The experimental system as represented in our study therefore comprises 8 

study plots (7 m2 circles) distributed across three larger experimental blocks per site ( 24 plots 

across both sites). There is one study plot in each block with a given combination of Warming 

and Drying treatment conditions (CO, WO, DO, and WD) giving three experimental replicates 

per site. In addition, we analyzed samples from June, August, and October of 2017, making a 

total of 36 samples.This simplified experimental design set the stage for sequencing-based 

analysis of the soil microbiome.  

 

Soil Sampling and Analysis 

To gather data on the microbial composition of B4WarmED soil communities, we 

collected bulk soil cores (5 cm diameter, 8 cm deep) from randomized locations within each 7 

m2 plot within a 1-2-day span during June, August, and October of 2017, which we accounted 

for as a fixed factor in models for taxon response (diversity, abundance, etc.). These cores were 

stored in a cooler in the field before being shipped to Ft. Collins, CO on dry ice and stored at -

80°C thereafter, with subsamples being thawed as needed for subsequent analysis. Bulk soil 

was also collected at the outset of the experiment at 0-5, 5-10, and 10-20 cm depths, and dried 

and sieved to obtain soil textures in terms of sand, silt, and clay (Rich et al. 2015). Soil CO2 

efflux was measured in situ using a LI-COR 6400 Infrared gas analyzer (LI-COR Biosciences 

Inc, Lincoln, NE USA) with an attached soil respiration chamber and three 10.2-cm PVC 

respiration collars (installed in 2008) per plot, with two extending 20 cm, and one extending 40 

cm, into the soil, to measure total and heterotrophic respiration, respectively (Eddy 2015). 
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Measurements (n=2) were collected at two-to-three-week intervals during the growing season 

(June-October) (Eddy 2015; Rich et al. 2015). 

 

DNA Extraction and Sequencing Preparation: 

We performed DNA extraction on soil core subsamples using Qiagen’s DNEasy® 

Powersoil kit, following standard protocol, with the exception of increasing initial soil weight from 

0.25 g to 0.50 g, and using nuclease-free water in place of Qiagen’s proprietary elution buffer 

(Qiagen 2016). Extracted DNA was tested for quality (repeating extracting with a 260/280 

absorbance ratio below 1.70) and concentration (ng/μL DNA) on a spectrophotometer (Thermo 

Fisher Scientific NanoDrop 2000C; Waltham, MA 02451). DNA was stored at -80 °C, with 

aliquots subsequently diluted to a target concentration of 25 ng/μL and transferred to 96-well 

plates in preparation for shipping to Argonne National Laboratory’s Environmental Sample 

Preparation & Sequencing Facility (ESPSF), where 16S (region v4; 515f-806r) and ITS (ITS1f-

ITS2) paired-end 250-read sequencing was performed via MiSeq® Illumina instrument, to 

observe bacterial and fungal-associated sequences, respectively (Caporaso et al. 2012). The 

resulting data was returned to our lab as multiplexed FASTQ files for downstream analysis. 

 

Sequencing Analysis and Bioinformatics: 

Sequences were received from Argonne National Laboratory in the FASTQ format and 

processed using CUTADAPT to remove adapters from the sequences in conjunction with the 

USEARCH v.11 pipeline for demultiplexing, denoising (UNOISE; Edgar 2016), quality filtering 

(UCHIME; Edgar 2011), and 97% Operational Taxonomic Unit (OTU) generation (UPARSE; 

Edgar 2013). We also performed taxonomic assignment with USEARCH and UCLUST against 

the SILVA (Quast et al. 2013) database for 16S sequences, and UNITE (Nilsson et al. 2018) for 

ITS, also removing sequences matching mitochondrial or chloroplast samples, using standard 

protocols per Edgar (2016). After taxonomic identification and generation of abundance data, 
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we used sample metadata to filter for low-quality reads and rare or unevenly-distributed taxa. 

This entailed excluding samples containing <5000 total reads from analysis, along with OTUs 

with <500 total reads, or present in <20% (bacterial) or <10% (fungal) of samples, bringing the 

total to 4576 16S and 216 ITS OTUs; in addition, 72 samples (24 each for August, September, 

and October 2017) were used from a larger 2010-2017 sample set. These final pre-filtering 

steps allowed us to focus on representative taxa with sufficient abundance and ubiquity for 

downstream statistical analysis. 

The resulting feature and taxonomic tables were resolved to the operational taxonomic 

unit (OTU) level and passed to R v 4.0.2 for follow-up analysis (R Core Team 2019). OTU 

abundances, taxonomic identity tables, and metadata were passed to the Phyloseq system of 

functions for easier manipulation (McMurdie and Holmes 2013). Here and elsewhere, the 

tidyverse family of functions were used extensively in data import and transformation (Wickham 

et al. 2019). To normalize for read abundance, OTU tables were rarified to 3500 reads using the 

vegan package’s rrarefy function (Okasen et al. 2019). From this point, we moved to 

characterize the general structure of the community using alpha and beta diversity metrics. 

 

Community Alpha and Beta Diversity Analysis 

To characterize community alpha diversity, or characteristics of taxonomic diversity 

within specific sites, we analyzed rarefied OTU abundance using the alpha function from the 

microbiome package (Lahti et al. 2019) to calculate Shannon-Weaver Diversity Index scores for 

each sample. To study the influence of warming and drying treatment effects on these metrics, 

as well as any nonlinear interactions, we used a negative binomial linear model with warming, 

drying, and a warming-by-drying interaction as fixed effects, and Shannon-Weaver Diversity as 

the response variable. In these models, warming and drying were represented as a binary value 

with 0 for the control condition (0°C or AMB, respectively), and 1 for the treatment (3.4°C or 

DRY). We performed an Analysis of Variance (ANOVA) on this linear model using the car 
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function Anova to assess the model-level significance of the three equation terms with type II 

Sums of Squares (Fox and Weisberg 2019). Given that only two samples were available, we 

elected to analyze Cloquet and Ely separately throughout, rather than as experimental 

replicates. To complement the testing of treatment effects and interactions, we used a Wilcoxon 

signed-rank test performed using the ggplot2 extension ggsignif (Ahlmann-Eltze 2019) to 

formally evaluate the significance of differences in the treatment-associated diversity 

observations themselves. To account for experimental replication and seasonal variation for 

overall treatment diversity levels, we also performed a 95% confidence interval least square 

means estimate using the same model to account and the function lsmeans from the 

eponymous lsmeans package (Length 2016). 

To explore how diversity varied between sites, we first converted rarefied OTU 

abundances per site into a Bray-Curtis distance matrix using the base R distance function (R 

Core Team 2020). The significance of treatment effects on these distances was tested using 

permutational analysis of variance (PERMANOVA; Anderson 2001) with the vegan function 

adonis function (with a default 999 permutations), using the model: 

Ywd ~ Ww + Dd + W:Dwd + wd 

where Y is the Bray-Curtis distance as the response variable, W is the warming treatment, D is 

the drying treatment, and  is the error term. In addition to testing treatment effects, we used a 

Canonical Analysis of Principal Coordinates (CAP) analysis with the same formula to provide a 

constrained ordination primarily representing the variation in our treatments of interest. This 

analysis was performed using the phyloseq ordinate function, after splitting corresponding 

phyloseq objects to site-level objects (McMurdie and Holmes 2013); the resulting objects were 

converted to plots using the phyloseq function plot_ordination, unclassed, and modified using 

ggplot2 (Wickham 2019). 
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OTU-level Treatment Effect Calculations 

To assess the strength of correlations between warming and drying treatment effects at 

the OTU level, we performed a fixed-effect negative binomial generalized linear model (GLM) 

again using warming, drying, and warming-by-drying fixed effects as performed for the 

PERMANOVA using and rarefied taxon abundance as the explanatory variable. This was 

accomplished using the MASS glm.nb function (Venables and Ripley 2002),with model 

significance assessed using a Type II ANOVA function from the car package (Fox and Weisberg 

2019), with the default Pillai test statistics, used to assess model significance. To assess the 

range of specific relative abundance trends associated with treatments, abundance of each 

OTU was z-scaled, using the base R scale function, to obtain standard deviations (R Core 

Team 2020). Interaction trend groups were classified by centering scaled relative abundance to 

the Control level (arbitrarily set to 0.0), and measuring the standard deviation-scaled changes 

associated with each treatment group in the order CO, DO, WO, and WD. Changes in relative 

abundance were binned into those above or below 0.5 standard deviations (i.e. 1 standard 

deviation centered on the Control intercept), and negative or positive changes, giving 3 possible 

values (< -0.5 standard deviations, <|0.5| standard deviations, or > 0.5 standard deviations)  for 

each treatment, and a total of 26 possible outcomes. These steps gave us a sense of OTU-level 

treatment effects, but not of the relative centrality of these OTUs in the community, and the 

strength of interactions between taxa. For this information, we moved on to network analysis. 

 

Co-occurrence Network Calculation and Analysis 

To evaluate the nature and extent of associations between OTUs in the B4WarmED 

community, we generated parallel co-occurrence networks for bacterial and fungal taxa. This 

was accomplished by using the graph.edgelist function from the igraph package (Csardi and 

Nepusz 2006) to convert rarefied abundance-based Spearman Rank correlations generated 

using the stats package cor.test function (R Core Team 2020) into undirected association 
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networks. To exclude weak or nonsignificant interactions, as well as negative correlations, we 

limited network membership to OTU pairs with a significant (p ≤ 0.05) interaction and positive 

Spearman correlation value rho at or above 0.65 for bacterial OTUs, and 0.60 for fungal OTUs, 

to limit comparisons to implied cooperative, or at least convergent, interactions (after de Vries et 

al. 2017). To identify the strength and character of associations between OTUs and 

experimental treatments, we calculated Dufrene-Legrende Indicator Values (Dufrene and 

Legrende 1997) for warming and drying treatment effects in parallel (e.g. only considering 0°C 

and 3.4°C for the warming indicator value) as implemented in the labsdv indval function with a 

default 1000 permutations (Roberts 2019). Under this metric, an ideal indicator species with 

respect to e.g. warming would occur in all warmed (3.4°C_AMB and 3.4°C_DRY) samples, and 

exclusively within this group. OTUs were designated as indicators of either the Control (0°C or 

AMB) or treatment (3.4°C or DRY) state for a warming and drying, with significant (p ≤ 0.05) 

OTUs being referred to as “Sensitive” or “Opportunistic” for that treatment, respectively. Taxa 

not exhibiting a significant indicator value (p ≤ 0.05) for a treatment were designated 

“Resistant” in that respect. To visualize this metric, we wanted to include trends in indicator 

values beyond what is conveyed using a strict p ≤0.05 threshold, so we opted to use a two-axis 

color gradient, translating p values for warming or drying indicator values for control (sensitive) 

or treatment (opportunistic) conditions into a derived [0,1] index for each treatment effect, with 

resistant taxa falling at the midpoint. “Warming” was represented as a cyan-to-red gradient, 

while “drying” was represented as a blue-to-yellow gradient, with neutral grey (resistant) at the 

center of both; to prevent skewing from extremely-significant edge cases (e.g. p < 0.0001), we 

imposed an upper threshold of p = 0.05 for visualization. Further details are given in 

Supplemental Section 1. Color assignments were performed using the colorspace HSV and 

mixcolor functions (Hornik and Murrell 2009). While ultimately an aesthetic interpretation of the 

Indval scores, this derived metric does entail some compression of the data and carries some 

representative assumptions. 
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Enrichment Testing: 

To explore the relationship between taxonomy or treatment response and OTU 

membership in positively associated clusters in our Spearman correlation networks, we used 

the hypergeometric distribution to obtain a probability that the number of taxa in a group of 

interest observed in a group was over-, or under-represented relative to the overall distribution 

of taxa within a particular subnetwork. To characterize network subnetworks, we used the 

igraph convenience tool components to access the membership attribute, and generated OTU 

counts per taxon or indicator value group (Csardi and Nepusz 2006). For future reference, these 

groups were named with the convention “C/E.n” , for Cloquet or Ely, where n is the rank of the 

subnetwork by membership (e.g. the largest Cloquet subnetwork is designated C.1). We tested  

these groups for enrichment of OTUs belonging to taxonomic or treatment response groups 

using the phyper function from the base R stats package (R Core Team 2020) at each site using 

the formula phyper(x, m, n, k, lower.tail = FALSE); in the scenario of testing network 

subnetworks for enrichment of a given phylum, x is one fewer than the number of OTUs falling 

both the phylum and subnetwork of interest, m is the number of taxa falling in the phylum of 

interest across the entire site, n is the number of taxa not in the phylum across the entire site, 

and k is the number of taxa occurring in the subnetwork. We also tested for depletion, or under-

representation, of taxonomic groups within subnetworks using the above formula, but with the 

lower.tail parameter set to TRUE. 

 

Results 

Sequencing Analysis and Bioinformatics: 

Our full B4WarmED dataset, containing samples collected from 2010-2017, initially 

included 1,871,571 and 4,044,902 16S and ITS amplicons detected across 1,128 samples (3 

sample runs were ultimately combined to account for poor amplification). After initial quality 
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control and removal of chimeric sequences, a total of unique 41,130 bacterial and 8,864 fungal 

amplicons were retained for further analysis. For this study, the full dataset was subset to 126 

samples collected across the 36 open-canopy sites in June, August, and October of 2017 in 

order to address the most recent state of the soil microbiome, and to integrate seasonal 

differences. The output from the USEARCH pipeline was imported into R (v. 4.0.2) for further 

quality control (R Core Team 2020). To ensure taxa met a minimum threshold of abundance 

and occupancy (presence/absence as a percentage of samples) for statistical analysis, we used 

quality control steps in USEARCH and retained 4,576 of 41,130 and 576 of 8,665 bacterial and 

fungal taxa, respectively. Of these retained taxa, 91.8% bacterial and 81.3% of fungal OTUs 

were identified at least to the level of taxonomic order using the SILVA and UNITE databases, 

respectively. While 28 identified and presumptive bacterial phyla were detected, the majority 

(~90%) belonged to Proteobacteria, Acidobacteria, Verrucomicrobia, Bacteroidetes, or 

Actinobacteria phyla (Figure S1A). Identified fungal taxa were dominated by Basidiomycota, 

Mortierellomycota, and Ascoymcota, with these taxa collectively accounting for >90% of OTUs, 

and all other phyla individually accounting for <5% (Figure S1B).  While the phylum-level 

composition of the bacterial community was remarkably similar across sites (generally differing 

by <5% for any given phylum), there were some noteworthy differences. For example, Cloquet 

had a greater relative abundance of Bacteroidetes (15.7% to Ely’s 12.4%) and Actinobacteria 

and (8.45% to 5.47%) while Ely had higher relative abundance of Verrucomicrobia (13.9% vs 

16%) and Gemmatimonadetes (1.15% vs 2.27%). The fungal community had more dramatic 

compositional differences (Figure S1B), notably a near-doubling of Mortierellomycota in Cloquet 

(40.5% abundance) compared to Ely (22%), with most of the difference being made up by 

increased Basidiomycota and Mucoromycota abundance in Ely, with these phyla advancing to 

32.7% (from Cloquet’s 24.1%) and 8.67% (from Cloquet’s 1.65%), respectively. Ascomycota 

was a relative constant, with a large presence in both sites, at 33.4% relative abundance in 

Cloquet, and 36.5% in Ely. 
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Community Structure and Characteristics 

Our first set of results concerned soil bacterial and fungal community structure; this 

allows us to investigate compositional changes under separate or combined sustained warming 

and drying stressors, and consider these effects appear to drive divergence between the control 

community and those subjected to one or both treatments. These methods comprised alpha and 

beta diversity, concerning sample-specific assemblages of taxa, and the relationships between 

community structures, respectively. 

 

Alpha diversity 

We compared Alpha diversity (measured as Shannon-Weaver index) under Warming 

and Drying regimens to better understand the relative influence of treatment effects at the 

community level. Bacterial diversity least square mean (lsm) estimates ranged from 6.36 – 6.63 

and 6.44– 6.69 for Ely and Cloquet, respectively. In both sites, the bacterial diversity of CO 

samples was significantly higher (p < 0.001; Wilcoxon signed rank test) than the WD treatment 

(lsm estimates of 6.63 vs 6.36, and 6.69 vs 6.44 for Ely and Cloquet, respectively). In Cloquet, 

the bacterial diversity of CO was additionally higher than WO (p < 0.05) while there was no 

significant difference between CO and DO treatment. On the other hand, we observed 

significant (p < 0.05) differences between CO (lsm 6.63) and DO (6.51) in Ely while there was 

no difference between the bacterial diversity of CO and DO treatments. Fungal diversity least 

square mean estimates ranged from 2.93 (WD) – 3.49 (WO) and 3.21 (DO) – 3.39 (CO) for Ely 

and Coquet, respectively. We observed no significant differences in the fungal diversity within 

different treatments at Cloquet. At Ely, the fungal diversity of CO (3.39) samples was 

significantly higher than DO (3.21; p < 0.001) and WD (3.14; p < 0.05). 
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Beta Diversity 

Beta-diversity was analyzed by canonical analysis of principal coordinates (CAP), with 

Bray-Curtis distance as a response variable, and warming, drying, and the warming-by-drying 

interaction as fixed effects (Figure 2). In addition, permutational analysis of variance 

(PERMANOVA) was performed to determine significant differences in the beta diversity patterns 

between different treatments. For bacterial beta diversity, the first two principal components of 

CAP Ordination explained between 10.4% and 10.9% of observed variance for Cloquet and Ely, 

respectively. Both sites also saw a minor overlap between CO and DO treatments (limited to 

several samples). We observed full separation, as well as a larger Bray-Curtis distance, 

between these groups and the WO and WD treatments (Figure 2A and B). The PERMANOVA 

revealed that the bacterial communities in both sites had significant treatment effects for 

warming (Cloquet p = 0.002, Ely p = 0.001) and drying (Cloquet p = 0.007, Ely p = 0.006), with 

no significant interaction effects. The fungal communities (Figure 2C and D) showed slightly 

more site dependency; while Ely behaved like its bacterial counterpart with significant warming 

(p = 0.001) and drying (p = 0.006) effects, Cloquet had no significant drying treatment effect (p = 

0.093), instead having a warming effect (p = 0.022) and a unique nonlinear warming-by-drying 

interaction effect (p = 0.01). This interactive effect might reflect a buffering response under WD, 

as the WO treatment showed greater separation from CO than WD, as might be expected with 

only a warming primary effect 

 

Taxon-Level Treatment Response Characterization 

Our next major route of inquiry was to looks beyond aggregate community-level 

responses, to individual taxon-level responses to treatments, using a range of treatment 

response indices (correlation between abundance and treatments, direct changes in 

abundance, and Dufrene-Legendre indicator value scoring) to gain insight into the range of 

responses observed at this level. We also explored the relationship between the richness, and 
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abundance, of species as classified by treatment response—this gives context for whether a 

given response group is more, or less, represented in the community than would be expected 

from the number of species alone. 

 

Linear Correlations in Relative Abundance by Treatment, and Analysis of Variance 

Earlier studies have reported differential responses among individual taxa within 

microbial communities in response to climate change drivers (Evans and Wallenstein 2014; 

Drigo et al. 2017). Here we used two parallel methods to evaluate these taxon-level changes; 

first, we found the overall fraction of taxa showing a response to a given combination of 

treatment effects using ANOVA on a negative binomial linear model to evaluate the strength of 

correlation between taxon abundance and treatment factors (Figure 3). We complemented this 

broad picture of treatment sensitivity with interaction plots of actual (z-scaled) taxon abundance 

under the CO, DO, WO, and WD treatments to see how general sensitivity translated into 

negative or positive change under a given exact treatment (Figures 4 and 5). 

Roughly half (45% Cloquet, 49.5% Ely) of bacterial OTUs (Figure 3) showed a significant 

correlation between abundance and one or more of warming, drying, or a non-additive warming-

by-drying interaction (shaded groups in heatmaps; designated W--, D--, and –D:W, respectively 

in Figure 3). Of this broadly-defined “reactive” group (all excluding nonreactive in Figure 3), the 

majority (71-73% of reactive taxa, or 33-35% of total taxa) saw abundance correlated with a 

single treatment effect (both warming and drying), or the warming-by-drying interaction alone, 

with roughly equal proportions of each. A much smaller fraction (<5% combined) saw 

correlations between abundance and either a single primary treatment and the interaction (W-

D:W, - D D:W), or—most infrequently—all three effects (W D W:D). Response group proportions 

were similar across sites. Fungal abundance was more frequently tied to treatment effects 

(Figure 3B, 3D), with over 70% of OTUs showing a significant correlation. Sensitivity to both 

Warming and Drying was also more common, at 15-20% of all OTUs, as was sensitivity to the 
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Warming-by-Drying interaction (~16%), with both groups outnumbering OTUs correlated with 

any single treatment effect (~12%). The relative proportions of fungal OTUs in these groups 

showed more variation by site than was the case for bacteria, with shifts of up to ~5% relative 

richness (Figure 3; e.g. group W – W:D). As with bacteria, taxa that significantly correlated with 

a single primary effect with an interaction, or with all three factors, were rare (<5% of OTUs). 

Studying the share of OTUs accounted for by each treatment response group gives some sense 

of their relative contributions to the community, but considering agreement between the number 

of taxa in each category and their abundance gives further context into how taxonomic richness 

translates into community structure in this system. 

 

Relative Abundance and Richness of ANOVA-based Response Groups 

Interestingly, ANOVA response groups showing high taxon richness had a proportional 

level of relative abundance in the community, indicating that by this metric, there were few 

cases of outsize presence by a given response group (Table S2). This was measured by 

comparing the share of OTUs within each ANOVA response group (W D W:D through 

nonreactive) and its corresponding total relative abundance, we found that this ratio was largely 

similar in bacterial taxa. By contrast, relative abundances of fungal response groups differed 

markedly both across sites and from relative richness (Table S3). This difference becomes 

apparent even when considering the ratio of reactive to non-reactive taxa, with this group having 

a relative abundance of 35.4% in Cloquet, and 39.4% in Ely, compared to relative richness of 

25.3% and 23.1%, respectively. Moreover, differences in proportional abundance from richness 

within the reactive groups of fungi are not merely proportional “compression,” but show 

noteworthy increases as well as decreases. Across both sites, there was a similar abundance 

increase for the primary Drying-correlated group, and underrepresentation of the Warming-

correlated group; this, in addition to Ely’s higher presence of taxa reactive to both Warming and 

Drying, could help address Ely’s Drying sensitivity at the community level, rather than Cloquet’s 
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warming response. While it did not appear to influence community diversity, the high abundance 

of taxa sensitive to Warming and Drying at Cloquet is consistent with the significant interaction 

effect detected in CAP ordination. There were also some appreciable site-dependent shifts; for 

instance, the Warming-by-Drying interaction correlation group was somewhat overrepresented 

in Cloquet, with 20.4% relative abundance from 15.5% richness, but shrank dramatically in Ely, 

with 3.8% relative abundance from 12.8% richness; along similar lines, the group reactive to 

both Warming and Drying had an appreciable richness in each site (18.9% in Cloquet, 19.1% in 

Ely), but showed site dependence in abundance, with just 4.2% relative abundance in Cloquet 

to Ely’s 10.4%. 

 

Taxonomic Composition of ANOVA-based Response Groups 

We were also interested in the taxonomic makeup of negative binomial model 

correlation-based response groups, a question we explored using the hypergeometric test for 

over-representation (enrichment) or under-representation (depletion) (Figure 3, Table S4). The 

bacterial community saw a large number of significant phylum-level enrichments and depletions 

within any ANOVA significance group (15 with p < 0.05 in Cloquet, and 22 in Ely), but very little 

in the way of overlap between sites. Shared enrichment was limited to an overrepresentation of 

Actinobacteria (Cloquet p = 0.030, Ely p = 0.001) and Planctomycetes (Cloquet p = 0.028, Ely p 

= 0.005) in the group correlated with both warming and drying. Interestingly, some phyla had 

near-opposing trends—e.g. in Ely, Bacteroidetes was enriched (p > 0.001) in the group 

correlated to both primary treatment effects and the interaction, while in Cloquet, it was depleted 

(p = 0.001) for the group correlated to both primary effect. Fungal communities only showed 

significant over- or underrepresentation in phylum Basidiomycota, which was enriched in 

Cloquet’s all-responsive group (W D W:D; p < 0.05) and depleted in Ely’s non-responsive group 

(p = 0.024) respectively (Table S4). On the whole, the bacterial community saw more 

pronounced differences in taxonomic enrichment by site than did the fungal community, giving 
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something of a counterpoint to the more-dramatic disparity in alpha and beta responses in fungi, 

suggesting the limitations of extrapolating purely from the sum of individual OTU responses; 

indeed, the microbiome is not merely the sum of its constituent OTUs, but an emergent system 

arising from associations and interactions between these taxa. To this end, we next used co-

occurrence networks to identify groups of taxa with strong positive interactions consistent 

across treatments and collection dates, as well as indicator value scoring to quantify the 

association between taxon abundance and Warming and Drying treatment factor levels. 

 

Taxon Response Classification by Z-Scaled Abundance 

In addition to categorizing by correlation significance, OTUs also showed a wide range 

of more granular patterns based on z-scaled abundance under each treatment condition (Figure 

4), with the  26 possible outcomes of our scaled-change classification system containing at least 

0.01% of total taxa, although most taxa were centralized in a smaller subset of response 

patterns. The distribution of these interaction groups was quite even between sites, with ≤3% 

difference in relative proportions of any given group. In Bacteria, the most common interaction 

groups (b and c at a combined 19% of OTUs in Cloquet) saw an increase in relative abundance 

with Drying, and decrease with Warming (Figure 4). The next most-common trend, and largest 

single interaction group (group a) saw the inverse pattern, with a relative increase under Drying, 

and decrease with Warming. In fungal taxa (Figure 5), the largest interaction response group (a; 

22% in Cloquet) showed a relative decrease for all non-control treatments, followed by groups 

(b, c, d) showing increased abundance under to a single treatment (WD, WO, and DO, in order 

of OTU count), with 9-13% abundance in each case depending on site. These results indicate a 

wide range of responses to warming or drying effects, although with some predominant trends 

by taxonomic kingdom which largely persisted across sites. 

In addition to categorizing by correlation significance, OTUs also showed a wide range 

of patterns based on z-scaled abundance under each treatment condition, with wide distribution 
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across the 26 possible outcomes for both bacteria and fungi (Figures 4, 5). The distribution of 

these interaction groups was quite even between sites, with ≤3% difference in relative 

proportions of any given group. The most common interaction groups among bacteria (b, c, and 

e—at a combined 25% of OTUs in Cloquet) were Drying opportunists, which saw an increase in 

relative abundance with DO and decrease with WO, and variable responses under WD (Figure 

4). The next most-common trend interaction group (groups a, k, o at a combined 19% in 

Cloquet) were saw a relative decrease under DO and increase under WO, again with varied WD 

responses. In fungal taxa (Figure 5), the largest interaction response group (a; 22% in Cloquet) 

showed a relative decrease in all drying and warming treatments. This was followed by several 

groups of opportunist fungal taxa (b, c, d) that showed increase in abundance under to a single 

stress treatment (WD, WO, and DO, in order of OTU count). These results indicate a wide range 

of responses to warming or drying effects, although with some predominant trends by taxonomic 

kingdom that largely persisted between sites. Indeed, the microbiome is not merely the sum of 

its constituent OTUs, but an emergent system arising from associations and interactions 

between these taxa. To this end, we next used co-occurrence networks to identify groups of 

taxa with strong positive interactions consistent across treatments and collection dates, as well 

as indicator value scoring to quantify the association between taxon abundance and Warming 

and Drying treatment factor levels. 

 

Co-occurrence Networks Reveal Clusters of Stable, Sensitive, and Opportunistic Microbial Taxa 

While the interaction plots provide a description of individual OTU reactions across the 

experimental treatments, there is still a considerable level of intermediate variation among the 

OTUs that cannot be described via either alpha/beta diversity or OTU-level GLMs. Thus, we 

performed a correlational network analysis to identify and describe groups or clusters of OTUs 

that respond similarly to each other across the warming and drying treatments (Fig. 3). Using 

the non-parametric Spearman’s Rank-Order coefficient (ρ) between pairs of OTUs and a 
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conservative, positive edge threshold of 0.65 for bacteria (0.60 for fungi), we found 224 bacterial 

taxa meeting these parameters in Cloquet, and 227 in Ely, with substantially smaller detected 

fungal assemblies of 99 and 42 taxa, respectively.  We identified 3 large (>10-member) bacterial 

subnetworks in Cloquet, and 4 in Ely, along with many smaller networks, the largest being two 

subnetworks of n=8 in Cloquet, and one of n=5 in Ely (Figure 7).  Fungal networks, even at a 

relaxed correlation threshold (Spearman’s ρ> 0.6) were considerably smaller and fewer in 

number; we identified only 2 large (n ≥10) subnetworks (C.1, n = 19, C.2, n = 13), and one 8-

member subnetwork (C.3), out of the 24 in Cloquet soils, and one 9-member subnetwork (E.1) 

out of the 15 in Ely soils; in most cases, subnetworks had 2-3 members (Figure 7). From this 

basis, we moved to characterize the notable subnetworks (focusing principally on the bacterial 

networks on account of size) in terms of Dufrene-Legrende indicator values and taxonomic 

composition. 

 

Network Integration of Dufrene-Legrende Indicator Values and Enrichment 

To characterize the warming or drying response of network taxa, we used the Dufrene-

Legrende Indicator Value (D) across all taxa, the majority were non-significant, or “Stable”, with 

respect to warming and/or drying stressors, to a greater degree than observed with GLM-based 

metrics (Figure 6A). In addition, both bacteria and fungi had larger proportions of sensitive than 

opportunistic indicators (see Supplemental Section 2 for full details). This method allowed us to 

qualitatively identify a variety of sub-networks in both Cloquet and Ely. 

 

Spearman Subnetworks and Enrichment for Indicator Taxa 

From this foundation, we were able to enumerate and characterize the major 

subnetworks observable in our Spearman networks, as well as to empirically measure over- or 

under-representation (enrichment or depletion, respectively) of these traits using the 

hypergeometric distribution. The largest subnetwork at Cloquet (C.1; n=70) and second-largest 
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at Ely (E.2;n=37) primarily consisted of taxa commonly found among all treatments and are not 

representative of any specific experimental condition. Ely contained an additional subnetwork 

(E.5, n = 22) enriched only for drying-resistant taxa (p = 0.33) This proportion of taxa in these 

subnetworks likely represent the stable core soil microbiome that is tolerant to warming and 

drying perturbations. Both sites also contained a large subnetwork (C.2, n = 32; E.4, n = 22) not 

significantly enriched for any indicator value group, suggesting proportional representation of 

reactive and nonreactive taxa. This suggests that sizeable portions of the taxa showing strong 

correlations in relative abundance across the B4WarmED experimental system showed no 

significant indicator value. 

 

Warming- or Drying-Opportunistic Subnetworks 

Additionally, both Cloquet and Ely contained a large subnetwork of closely-correlated 

taxa which are ‘indicators’ of either warming, drying, or both. For example, Cloquet’s 

subnetwork (C.3, n = 29) was enriched for warming opportunists (p <0.001), and depleted for 

warming- and drying- resistant taxa (p = 0.045), while Ely’s subnetwork (E.1, n = 39) was more 

specifically drying-opportunistic (enrichment p  < 0.001), being somewhat surprisingly enriched 

(p = 0 .024) for warming-resistant taxa. This suggests that these subnetworks represent 

opportunistic microbial taxa that can take advantage of newly available niches opening due to 

the environmental treatment. The differential enrichment of warming-opportunistic taxa in 

Cloquet, and drying-opportunistic taxa in Ely, may additionally be a reflection of, or partial 

mechanism for, the corresponding pattern observed in warming- or drying- sensitivity in alpha 

diversity. 

 

Warming- or Drying-Sensitive Subnetworks 

Lastly, both sites showed subnetworks that seem to represent individual taxa that are 

indicators of the control/unstressed treatment—i.e. occur less frequently in warmed, or dried, 
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conditions. This Cloquet network fell below the sample threshold for a formal hypergeometric 

enrichment test, (C.5, n = 8) but was comprised entirely of warming-sensitive indicators, while 

Ely’s sensitive network (E.3, n = 30) was significantly enriched for warming- (p < 0.001) and 

drying-sensitive (p = 0.005) taxa. This suggests that these are taxa sensitive or vulnerable to 

one or both of warming and drying perturbations. Interestingly, the size of this sensitive Ely 

subnetworks is considerably larger than the analogous network in Cloquet, potentially 

suggesting Ely soils are more vulnerable to microbial species loss than Cloquet. The remaining 

35 subnetworks with >10 members demonstrated a variety of different patterns that are difficult 

to parse. However, this clearly demonstrates that while many microbes will be resistant to 

climate-change related abiotic stresses, other subnetworks of taxa will be diminished, or 

promoted, under warming and drying stressors in the boreal forest microbiome. 

 

Summary of Indicator Values in Spearman Subnetworks 

The differential enrichment of warming-opportunistic taxa in Cloquet, and drying-

opportunistic taxa in Ely, may additionally reflect, or partial mechanism for, the corresponding 

pattern observed in warming- or drying- sensitivity in alpha diversity. Lastly, both sites showed 

subnetworks that seem to represent individual taxa that are indicators of the control/unstressed 

treatment; the Cloquet network fell below the sample threshold for a formal hypergeometric 

enrichment test, (C.5, n = 8) but was comprised entirely of warming-sensitive indicators, while 

Ely’s sensitive network (E.3, n = 30) was significantly enriched for warming- (p < 0.001) and 

drying-sensitive (p = 0.005) taxa. This suggests that these are taxa sensitive or vulnerable to 

one or both of warming and drying perturbations. Interestingly, the size of this sensitive Ely 

subnetworks is considerably larger than the analogous network in Cloquet, potentially 

suggesting Ely soils are more vulnerable to microbial species loss than Cloquet. The remaining 

subnetworks >10 members demonstrated a variety of different patterns that are difficult to parse 

qualitatively. However, this clearly demonstrates that while many microbes will be resistant to 



25 

 

climate-change related abiotic stresses, other subnetworks of taxa will be diminished, or 

promoted, under warming and drying stressors in the boreal forest microbiome. 

 

Taxonomic Characteristics of Bacterial Spearman Subnetworks 

Interestingly, these similarly responding taxa respond in a common phylogenic pattern 

(Figure 6B). As an alternative to labeling sub-networks based on their indicator value, we can 

also assess subnetworks based on their general phylogenic membership (Fig. 3.2A, 3.2B). In 

both Cloquet and Ely, the large stable subnetworks (C.1 and E.2) were enriched for 

Sphingobacteria (Cloquet p < 0.001 and Ely p < 0.001) and Betaproteobacteria (Cloquet 

p=0.027 and Ely p < 0.001). Alternatively, opportunistic subnetworks were primarily enriched for 

Acidobacteria (C.3, p < 0.001; E.1, p < 0.001)—class Acidobacteriia in C.1 and E.2—and 

Verrucomicrobia (C.3, p < 0.001; E.1, p < 0.001), as well as Gemmatimondetes in Ely (p  = 

0.0036). Lastly, large subnetworks containing microbial taxa sensitive to either warming or 

drying showed enrichment for Verrucomicrobia (C.5, p < 0.001; E.3, p > 0.001). There were 

even some commonalities among mixed-response subnetworks with no significant divergence 

from background taxonomic distribution; for instance, Subnetworks C.2 and E.3, which had no 

significant over- or underrepresentation of stress responses, were enriched for 

Alphaproteobacteria (p < 0.001 at both sites), with site differences including enriched 

Thermoleophilia (p = 0.007) at C.2, and Betaproteobacteria, (p = 0.035), Bacteroidetes (p < 

0.001, among other taxa at E.3. These results demonstrate fairly consistent taxonomic 

associations relating to climate stress response between sites, suggesting a high degree of 

continuity in community organization dynamics for bacteria. Fungal networks were considerably 

sparser (Figure 7), which is likely a function of fewer OTUs found as well as the high 

presence/absence nature of ITS marker detection (Figure 7). Even with a more relaxed edge 

threshold (Spearman’s ρ> 0.6), we only identified 2 large (n ≥10) subnetworks (C.1, n = 19, C.2, 
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n = 13), and one 8-member subnetwork (C.3), out of the 24 in Cloquet soils, and one 9-member 

subnetwork (E.1) out of the 15 in Ely soils; in most cases, subnetworks had 2-3 members. 

 

Taxonomic and Indicator Characteristics of Fungal Spearman Subnetworks 

 At the whole-network level in Cloquet, fungal taxa were almost exclusively resistant with 

respect to drying (with 6 drying-sensitive taxa, and 2 drying-opportunistic), while roughly a fifth 

of taxa had a warming response (16 warming opportunistic, 3 sensitive). Ely was even more 

dramatic, with 2 of 44 taxa showing a warming response (both opportunistic), and 7 a drying 

response (3 opportunistic, 4 sensitive). At Cloquet, the two largest subnetworks (C.1 and C.2) 

were almost exclusively Resistant with respect to the water and warming treatments with few 

exceptions (Fig. 8A). The next-largest, 8-member subnetwork (C.3) had mixed membership with 

respect to the stress treatments consisting of 2 warming opportunists and 6 drying opportunists. 

Lastly, the next largest 6-member network (C.4) demonstrated a cluster of strong warming 

opportunist taxa, with two smaller networks (n = 6 and n = 4) following suit. On the whole, these 

results paint a picture of fewer correlated fungal taxa with Cloquet containing larger clusters of 

similar functioning taxa. 

Fungal taxa membership also clustered within a subnetwork similar to bacterial taxa.  Of 

the 99 OTUs in Cloquet’s correlation network, the most-represented phyla were Ascomycota (n 

= 58)—especially Sordariomycetes (n = 20) and Leotiomycetes (n = 18)—and Basidiomycota (n 

= 27), largely of class Agaricomycetes (n = 18). Similarly, Ascomycota (n = 18) and 

Basidiomycota (n = 14) were the largest phyla among the Ely network’s 42 OTUs; classes 

Leotiomycetes (n = 6), Sordariomycetes (n = 5) and Agaricomycetes (n = 9) were again 

relatively well-represented.   Likewise, none of Cloquet’s >10-member subnetworks showed 

significant enrichment or depletion of taxa relative to the network. Ely’s largest subnetwork (E.1, 

n=9) was primarily comprised of 7 Ascomycota OTUs (thee of class Leotiomycetes) and two of 

the network’s three OTUs of Mortierellinycetes. The considerably higher resistance of highly-
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connected fungal taxa to warming and drying stressors therefore gives context for the generally 

weaker effect of warming and drying stressors on community alpha- and beta-diversity 

characteristics. Given the broadly non-reactive nature of these taxa, the dramatic difference in 

network sizes at the same significant and ρ threshold between sites (99 OTUs in Cloquet to 

Ely’s 44) may additionally give context for Cloquet’s greater resistance to treatment effects in 

terms of alpha and beta diversity. 

 

Discussion 

Warming and Drying Demonstrate Site Dependent Changes in Alpha and Beta Diversity  

Our investigation of warming and drying effects on community structure revealed 

significant effects, albeit with some site-specific differences. Both warming and drying appear to 

significantly affect microbial community membership and diversity. We observed that bacterial 

diversity and community structure changed significantly in the combined warming and drying 

treatment as compared to control, although without a statistically significant interaction between 

the primary treatments. Interestingly, we didn’t observe a strong effect of drought only treatment 

on both the diversity and community composition of soil bacterial community at both the sites. 

Only a few in situ studies have explored the interactive effects of warming and drying on soil 

microbial communities (Sheik et al 2012; Zhang et al. 2016). By providing context in a wetter 

(and in one case cooler) climate (Sheik et al 2012 performed their study in central Oklahoma 

grassland, while Zhang et al collected  soil samples from a range of localities surrounding Yining 

city, Xinjiang, China), our results complement these studies, which reported that decreased 

precipitation alone had a slight impactwhile a combination of warming and altered precipitation 

significantly alters the structure of soil bacterial community (Sheik et al 2012; Zhang et al. 2016).  

The compatibility of these findings with our system may be debatable (in that small differences 

in soil moisture in a wetter system are less likely to induce physiological stress than in the above 

arid or semi-arid conditions)m but slight reduction in bacterial alpha diversity, and restructuring 
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of the community structure, under sustained warming is also consistent with patterns observed 

in warming studies performed under much more similar conditions (northern temperate or boreal 

ecotone forests), including a 2020 soil microbiome investigation also performed in the 

B4WarmED study system (De Angelis et al 2015; Van Nuland et al. 2020). Although we 

observed significant differences in the bacterial community structure of warming, drought, and 

warming + drought combined treatment, the absence of a significant Warming-by-Drying 

interaction in either site does not provide evidence for a noteworthy nonlinear interaction 

between the primary treatments (Figure 1). 

Fungal alpha diversity showed greater site dependence than bacteria, with no significant 

responses at Cloquet, while Ely mirrored the bacterial treatment response, with a significant 

reduction in alpha diversity under DO and WD treatments; There was also no significant 

ANOVA effects for alpha diversity in Cloquet’s fungal community, while Ely saw a primary 

Warming response. Similarly, beta diversity had pronounced site dependency, with the Ely 

fungal community again reflecting (albeit with smaller proportional Bray-Curtis distances) its 

bacterial counterpart in having significant primary warming and drought responses, and the 

Cloquet community showed only a nonlinear warming-by-drying interaction—the fact that the 

warming treatment showed a greater distance from the control condition than combined 

suggests this interactive effect may counteract warming trends when combined with drying. 

Zhang et al. (2016) reported no significant effect of warming and drought on soil fungal 

communities in an alpine grassland ecosystem. While de Vries et al. (2018) observed increased 

fungal alpha diversity under acute drought, this quickly returned to the control baseline after the 

treatment ended, suggesting that the relative warming- or drought-insensitivity observed in our 

system may reflect a stable adaption, rather than a short-term community response of the type 

observed under the intermediate disturbance hypothesis (van der Voort 2016). This somewhat 

reflects patterns observed during a natural drought event at a prairie warming experiment 
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(Acosta-Martinez 2014) where previous warming somewhat mitigated community restructuring 

under drought by priming a community adapted to both stressors. 

Since fungal communities are important contributor to soil carbon dynamics in boreal 

forests (Fernandez at al 2017, Clemmensen et al 2013), the site dependency in the B4WarmED 

system warrants some attention, with potential abiotic and biotic factors. On the abiotic front, Ely 

is drier than Cloquet both historically and during the collection period (ambient treatment 2017 

average of 0.184 ± 0.030 cm3 H2O cm-3 soil to Cloquet’s 0.223 ± 0.045l). While Cloquet’s mean 

annual temperature is warmer than Ely’s, this is not constant over the year, with Ely being 

warmer from April through October by a difference of, on average, 0.40°C – 1.37°C, while 

warmer Cloquet temperatures during late Fall and Winter account for the average difference. 

The fact that Ely undergoes a wider temperature difference over the course of a year may go 

some way towards explaining the weaker alpha diversity effect under warming, although the 

range experiences at either site considerably exceeds the 3.4°C difference studied in this 

investigation..  

It was somewhat surprising to see Cloquet exhibit a non-significant drying response, 

given that soil moisture tends to be higher than that seen in (Fig. S2); in this case, the fact that 

warming reduced Cloquet’s soil moisture to a greater extent than the direct drying treatment 

may provide a partial explanation, with warming, as well as the control, effectively contributing to 

combined warming and drying stress. This would be consistent with a study of energy flux in 

B4WarmED soil food networks (Schwarz et al. 2017). In contrast to higher trophic levels, which 

saw increased metabolic activity under warming at ambient precipitation, warming-induced 

drying at the soil surface was enough to dampen this response in the microbial component of 

the food network (broadly defined by respiration measurements). The larger variation in 

taxonomic composition of the fungal communities (notably Cloquet’s greater abundance of 

Mortierellomycota, and Ely’s corresponding increases in Basidiomycota and Mucoromycota) 
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could explain some of this variation, although literature and our metrics for temperature and 

drought sensitivity point to a relative functional equivalence of these groups. 

 

OTU-level Treatment Effect Correlations 

The soil microbial community is highly diverse where members differ widely in their 

physiological traits and dispersal ability. Therefore, it is unlikely that the entire microbial 

community will respond in a similar fashion with climate change (Evans and Wallenstein 2014; 

Classen et al. 2015; Drigo et al. 2017). In line with this, our analysis (using both ANOVA-based 

significance of linear correlations and relative abundance-based approaches) on the responses 

of individual OTUs to warming or drying effects (singly or in conjunction) revealed a wide range 

of response traits, with similar percentages of response groups between sites. A substantial 

percentage of taxa showed a significant correlation between abundance and at least one 

treatment effect (~50% of bacteria, ~70% of fungi), but the relative contributions of warming and 

drying sensitivity varied between bacteria and fungi. Meinser et al. (2018) have reported greater 

abundance changes in fungi (25%) as compared to bacteria (8%) in response to drought in 

sandy Rhine River Delta soil. Bacteria showed a near-total separation between treatment 

response groups, with <10% of taxa showing a response to both primary treatments (with or 

without the interaction term). However, e.g. the total portion of bacteria correlated to Warming 

(disregarding Water effects) (21.8% in Cloquet, 26.5% in Ely) was quite close to the ~20% 

fraction of soil bacteria with a consistent warming response observed by a global survey of soil 

carbon (Oliverio et al 2012). Fungi showed more overlap in treatment effect response, with 

roughly a quarter of taxa showing correlations to both primary treatment effects (either alone or 

with an interaction effect). 

The higher overlap between warming and drying correlation in fungi might be taken to 

suggest that physiological and habitat traits (e.g. soil niche selection) influencing drought 

tolerance in fungi are more likely to overlap with warming tolerance than is the case for bacteria. 
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This is somewhat in contrast to findings by e.g. Sheik et al (2012) pointing to a convergence in 

community structure between bacterial communities under warming, and combined warming 

and drought, pressures. Alternatively, it is possible that fungal responses to unfavorable 

temperature and soil moisture (e.g. endospores, niche selection, cell walls) are more generically 

applicable to both conditions than bacterial mechanisms, which could include active 

physiological tolerance (e.g. high cell water content, thick cell walls, niche selection), dormant 

life stages, or rapid reactivation and reproduction under favorable conditions (Schimel 2020; van 

der Voort 2016). Similarly, the extent of taxonomic richness agreement for each correlation 

response group between sites points to a similar underlying “palette” of possible responses in 

both communities. 

Overall, we observed that the response groups are spread across different phyla (Fig 3). 

It is possible climate change exerts a legacy effect on the soil microbial community through the 

selective enrichment/depletion of response groups with broad phylogenetic origins, with 

possible long-term consequences on ecosystem functioning (Meisner et al. 2018). Microbial 

groups belonging to phylum Actinobacteria and Planctomycetes showed consistent enrichment 

with warming, drying and combined warming and drying treatment. Members of both phyla are 

reported to respond positively to a range of climate change stressors (Sheik et al. 2012; Drigo et 

al. 2017; Meisner et al. 2018; Ochoa-Hueso et al. 2018). Interestingly, in lines with other studies 

(Evans and Wallenstein 2014; Meisner et al. 2018) we observed variable effect of climate 

change stressors on the response of bacterial phylum Bacteroidetes. This suggests that the 

adaptation traits of members of Bacteroidetes might have evolved independently leading to the 

differential selection in their ability to respond to climate change stressors. 

While ANOVA-based approach of classifying taxa based on linear correlations with 

treatment effects did not distinguish between positive and negative coefficients, our more-

granular categorization of taxa based on relative abundance in each treatment group showed a 

similar degree of accord between sites, suggesting that (albeit with only two sites), some degree 
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of large-scale similarity in community response might be expected in the wider boreal ecotone 

region—this would be good grounds for future exploration. Bacterial interaction groups had 

similar richness between sites in all cases, with the largest single disparity being group b, which 

showed increased abundance under Warming, and decreased abundance under Drying—this 

accounted for 9% of richness and Cloquet, but 12% of richness at Ely. Fungal taxa showed a 

somewhat higher degree of variation where most responsive fungal taxa showed a decrease in 

relative abundance in response to either treatment, but several fungal groups could take 

advantage of a single treatment. For bacteria, the largest fraction of taxa, with variable behavior 

under the Combined treatment (b and c at a cumulative 20% in Cloquet, 16% in Ely) see an 

increase under Drying, and a decrease under Warming, followed by the reverse trend, plus 

decreased abundance under the Combined treatment (a, at 14% in each site). These trends 

suggests that, especially in bacteria, the number of species showing a given climate driver 

response pattern correspond fairly closely to relative abundance (e.g. bacterial species which 

opportunistically increasing under warming are not disproportionally rare or abundant in the 

community); by contrast, temperature- or drying-responsive fungal species did tend to see lower 

relative abundance in the community, on average. 

The extent of similarity in the proportion of response groups between sites, as well as 

the large presence treatment-reactive taxa, might appear to contradict the site-dependency 

seen in both bacterial and fungal community responses, as well as the generally lower 

sensitivity of fungi to treatment effects (especially at Cloquet). However, the taxonomic richness 

of a group (taxonomic or functional) does not necessarily predict either abundance or relative 

influence on community structure (Lupatini et al. 2014). We will address network topology in the 

next section, but comparing measured abundance to response group richness gives some 

context for this apparent incongruity. Bacterial relative abundance hewed fairly close to 

taxonomic richness, as might be expected given the broadly similar alpha and especially beta 

diversity responses, while fungi differed markedly both across sites and between richness and 
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relative abundance. Both trends were evident at the level of reactive or non-reactive taxa, with 

both sites’ relative abundance of non-reactive taxa exceeding relative taxonomic richness, and 

Ely almost doubling from 23.1% of OTUs to 39.4% relative abundance, compared to Cloquet’s 

35.4% relative abundance and 25.3% richness. Within the reactive fraction, one potentially 

explanatory site difference is the considerably higher abundance of taxa correlated to the 

warming-by-drying interaction in Ely than in Cloquet (10.4% to 3.9%, respectively), which would 

agree with Cloquet’s significant warming-by-drying interaction effect on beta diversity. In 

addition to baseline taxonomic differences, this disparity in detected abundances could help 

explain the site-dependent community responses seen in fungi, as well as the diminished 

overall sensitivity to treatment effect. 

 

Co-Occurrence Subnetworks Suggests Anaerobic to Aerobic Transition 

Community structure and function is generally accepted to be shaped and driven by 

keystone taxa, which exert an outsize influence for their abundance, with even low-abundance 

taxa showing dense interconnectivity in association networks (van der Heijden and Hartmann 

2016; Banerjee et al. 2018). While composite metrics of community diversity and GLMs of 

individual taxa provide estimations of how soil microbial communities are acting at the macro- 

and micro-scale respectively, co-occurrence network analysis provides an intermediate view 

where we can find groups, or sub-networks, of taxa that are responding similarly across the 

warming and drying treatments. Some discretion is needed in interpreting results, however; 

while co-occurrence metrics are useful for evaluating similar patterns in community dynamics, 

they are unable to strictly distinguish true cooperative relationships from merely similar 

responses to environmental stimuli. Nonetheless, inter-taxon correlations can point to functional 

attributes and adaptation strategies of microbial communities in their ecosystems (Barberán et 

al. 2013). Many of the subnetworks are highly enriched in particular phylogenic classes, but the 

treatment indicator value (D) of each OTU indicates that many of these subnetworks of 
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phylogenetically-related taxa also respond similarly across the treatments. For instance, 

networks C.1 and E.2 were enriched for bacteria in the class Sphingobacteria (Bacteroidetes) 

and -proteobacteria and are largely stable in response to warming and drying levels in the 

scope of projected 21st-century climate change effects. These taxa likely make up a stable core 

of the boreal forest soil microbiome and may not suffer drastically from climate change induced 

warming or drying in the short-term. However, subnetworks sensitive to warming/drying 

pressure (C.5, E.3) showed common enrichment for Verrucomicrobia, along with Bacteroidetes 

of the class Saprospirae (Fig. 5; Table S4). This suggests that these anaerobic eubacterial taxa 

either have a relatively narrow abiotic stress tolerance or at least suffer from the loss of a 

competitive advantage in slightly drier soils. In contrast, bacteria of the putative 

Verrucomycrobia of the candidate class Spartobacteria and members of the class Solibacteres 

(Acidobacteria) appear to take advantage of the drying and/or warming treatments and increase 

their relative abundance upon warming or drying (Fig. 7; Table S4). As many members of these 

eubacteria classes are largely characterized as aerobes, this may suggest a shift whereby 

members of subnetworks C.3 and E.1 enjoy a relative advantage in formerly more water-

saturated niches initially occupied by subnetwork C.5 and E.3, resulting in taxa diminished 

competitive advantage for species with anaerobic traits. A possible explanation for this shift from 

anaerobic to aerobic respiration is the reduction in soil moisture content for both the drying and 

warming treatments (Fig. S3) since excess soil moisture often fills microscopic soil cavities, 

limits soil oxygen flow, and can reduce local soil respiration regardless of available carbon (Hillel 

2003). While these trends appear interesting, a more detailed study of the intraspecific variation 

of these sensitive and opportunistic taxa under a variety of soil conditions is necessary to fully 

explore these potential trends and to explore the potential soil functions lost/gained during 

warming/drought. 
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Conclusion 

The boreal ecotone stands to be altered significantly by projected regional shifts towards 

a warmer, drier climate, with potentially deleterious effects including reduced carbon storage 

capacity. The soil microbiomeplays an important mediating role in this relationship between a 

warming, drying, local climate and altered carbon storage capacity, among other ecosystem 

features. Warming and drying are, individually and in conjunction, known to exert influence such 

as reduced community diversity and shifting community structure, but the interactive effects of 

the two in conjunction is less studied. Our investigation of boreal ecotone microbial communities 

in an experimental system featuring a blocked factorial experiment for warming and drying 

effects suggests that these stressors appear to combine additively, rather than exhibiting major 

nonlinear interactions. Changes associated with primary warming and drying, as well as the 

combination, were associated with turnover in microbial communities, with a considerable 

portion of taxa showing a significant positive or negative correlation between abundance and at 

least one treatment effect. Bacterial communities also exhibited multiple spatially and temporally 

persistent assemblies of co-occurring organisms with common taxonomic makeup and 

treatment response patterns. While some groups (dominated by Betaporteobacteria and 

Sphingobacteria) showed no significant treatment response, and will likely provide a stable core 

community under near-term climate changes, other groups appear to be vulnerable to, or 

benefit from, these climate change agents, pointing toward turnover in key community 

assemblies, rather than purely stochastic variation. These results provide additional context for 

the interactive effects of warming and drought on boreal ecotone forest floor microbial 

community networks, as well as gives a better sense of how such system may change in the 

future. 
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Figures 
 
 
 

 
Figure 1. Distribution of Shannon-Weaver Diversity communities (rarefied) across control (CO, 
blue), drying (DO, yellow), warming (WO, red), and combined warming and drought (WD, 
orange) treatments for Cloquet’s bacterial community (A), Ely’s bacterial community (B), 
Cloquet’s fungal community (C), and Ely’s fungal community (D). Violin plots represent the 
distribution of sample community diversity based on average abundance by treatment. The 
overlaid box plot represents the Least Square Means (LSM) estimate of the same data, 
corrected for monthly variance using the formula (<Shannon diversity> ~ warming + drying + 
warming: drying r); the center line shows the direct estimate, while upper and lower bars 
represent the upper and lower boundaries of the 95% confidence interval. Inset tables show 
ANOVA p values across sites, collection dates, and experimental replicates (n = 9 for each 
treatment). Comparison bars above violin plots show difference (Wilcoxon signed-rank test) 
from Control condition at each site/community type, with values summarized with “***” for p ≤ 
0.001, “**” for p ≤ 0.01, “*” for p ≤ 0.05, “.” For p ≤ 0.1, and “ ” for p > 0.1. 
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Figure 2: Canonical Analysis of Principal coordinates (CAP) ordination of Bray-Curtis 
similarities across control (blue), drying (yellow), warming (red), and combined warming and 
drought (orange) treatments. The formula used was (Bray Curtis Distance ~ Warming + Drying 
+ Warming:Drying). Polygons represent contiguous regions of same-treatment communities in 
the coordinate space of the two primary principal coordinates, which account for between 9.4% 
(Ely ITS) and 10.9% (Cloquet ITS) of observed variance. Inset tables show PERMOANOVA 
significance of treatment effects based on Bray-Curtis distances. 
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Figure 3: Heatmaps by site and community type representing ANOVA p values associated with 
the fixed-effect linear model [Abundance ~ Warming + Drying + Warming:Drying], abbreviated 
W + D + W:D above. The outermost explanatory column represents groups of OTUs significant 
for shared patterns of terms [e.g. Group ‘W D W:D’ is significant for Warming (W), Drying (D), 
and the Warming-by-Drying (W:D) interaction), followed by a column representing membership 
in major bacterial (A, B) or fungal (C, D) phyla. The remaining three columns represent the 
significance of treatment or interaction effects for each OTU in the Cloquet (A, C) or Ely (B, D) 
site. Significance levels are, as in figure 1, summarized with the levels “***” for p ≤ 0.001, “**” for 
p ≤ 0.01, “*” for p ≤ 0.05, “.” For p ≤ 0.1, and “NS” for p > 0.1. 
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Figure 4: Interaction plot representing bacterial response patters in OTU abundance under 
Control (CO), Warming (WO), Drying (DO), and Combined treatments (WD) (positions 1 – 4 on 
the X axis). Abundance values (Y axis) are z-scaled and centered at 0 on the Control treatment 
abundance. Groups are separated based on negative or positive relative change in abundance 
with each treatment, using a threshold of | Δ| >= 0.5 SD to differentiate thee changes from minor 
fluctuation. Line color represents site (blue = Cloquet, green = Ely), and inset numbers (in 
corresponding color) represent the proportion of OTUs represented by the response group, 
compared to the entire site. Response groups are organized by total OTU count, and assigned 
arbitrary alphabetical label in this order. 
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Figure 5: Interaction plot representing bacterial response patters in OTU abundance under 
Control (CO), Warming (WO), Drying (DO), and Combined treatments (WD) (positions 1 – 4 on 
the X axis). Abundance values (Y axis) are z-scaled and centered at 0 on the Control treatment 
abundance. Groups are separated based on negative or positive relative change in abundance 
with each treatment, using a threshold of |Δ| >= 0.5 SD to differentiate thee changes from minor 
fluctuation. Line color represents site (blue = Cloquet, green = Ely), and inset numbers (in 
corresponding color) represent the proportion of OTUs represented by the response group, 
compared to the entire site. Response groups are organized by total OTU count, and assigned 
arbitrary alphabetical label in this order. 
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Figure 6: Color representation of major phyla and classes present in Bacterial Spearman Rank 
Correlation-based networks. The top row (A) shows responses to Warming and Drying 
treatment effects; the axis is derived from Indval score p values as described in Methods and 
shown visually in the key. Colors in this coordinate system are assigned to represent positive, 
negative, or neutral responses to Warming (red – positive through cyan – negative) and Drying 
(yellow – positive through blue – negative), with mixes of these axes representing taxa 
significant for more than one response, and grey representing non-significance. In section (B), 
the top 6 most abundant phyla, and 10 most-abundant classes across both networks are 
assigned unique colors as shown in the key, while rare phyla and classes aggregated into an 
“Other” category. 
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Figure 7: Color representation of major phyla and classes present in Fungal Spearman Rank 
Correlation-based networks. The top row (A) shows responses to Warming and Drying 
treatment effects; the axis is derived from Indval score p values as described in Methods and 
shown visually in the key. Colors in this coordinate system are assigned to represent positive, 
negative, or neutral responses to Warming (red – positive through cyan – negative) and Drying 
(yellow – positive through blue – negative), with mixes of these axes representing taxa 
significant for more than one response, and grey representing non-significance. In section (B), 
the top 6 most abundant phyla, and 10 most-abundant classes across both networks are 
assigned unique colors as shown in the key, while rare phyla and classes aggregated into an 
“Other” category. 
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APPENDIX 
 
 
 

Supplemental Figures 
 

 
Figure S1: Stacked Bar Plots representing the overall taxonomic makeup of the Bacterial and 
Fungal communities at Cloquet, and at Ely. The axis represents the relative abundance of a 
given phylum (with bacterial taxa outside the top 10-most common phyla aggregated into 
“Other”). 
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Figure S2: 2017 Field records of daily mean volumetric soil moisture, aggregated by month and 
treatment type. Horizontal lines represent collection months included in study. 
 
 
 
 
 
 
 



49 

 

 
Figure S3: 2017 Monthly averages of growing season measurements of CO2 efflux by site, 
collar depth, and treatment. Horizontal lines represent collection months included in study. 
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Supplemental Tables 
 

Table S1: B4WarmED Site Conditions (2010-2018 mean values) 
Site elevations, along with annual means of Temperature and mm precipitation, over a 2008-
2018 measuring period. 
 
Location Elevation (m a.s.c.) MAT (°C) Annual ppt (mm)  

Cloquet Forestry Center 382 4.5 807  

Hubacheck Wilderness 
Research Center 

415 3 722  
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Table S2: GLM-based Response Group Enrichment (Significant Cases Only).  
Table shows instances of significant (p < 0.05) Enrichment or Depletion of phyla in Linear model 
correlation-based response groups. “Group” represents response classifications as based on 
generalized linear model correlation to warming and drying effects; the “Enrichment” and 
“Depletion” values given are hypergeometric probability scores for over- or underrepresentation 
in the response group, compared to the overall distribution of taxa in each site. 
Table S2.1: Bacterial Results 
site type group phylum enrichment depletion 

Cloquet 16S - - - p__Proteobacteria 0.020797274 0.982274522 

Cloquet 16S - - - p__Firmicutes 0.983800408 0.041696062 

Cloquet 16S - - - p__Chlamydiae 0.998113834 0.012221269 

Cloquet 16S - - - p__OD1 0.998682741 0.007038962 

Cloquet 16S - - W:D p__Elusimicrobia 0.008064286 0.996897619 

Cloquet 16S - D - p__Acidobacteria 0.006365893 0.995430227 

Cloquet 16S - D - p__Actinobacteria 0.982267112 0.02579258 

Cloquet 16S - D W:D p__Bacteroidetes 0.023252659 0.989683164 

Cloquet 16S W - - p__OD1 3.83E-04 0.999949636 

Cloquet 16S W - - p__Acidobacteria 0.999339199 0.001038235 

Cloquet 16S W - W:D p__BHI80-139 0.041771952 0.99955911 

Cloquet 16S W - W:D p__Planctomycetes 0.99380227 0.022039598 

Cloquet 16S W D - p__Planctomycetes 0.02822504 0.980649267 

Cloquet 16S W D - p__Actinobacteria 0.029587361 0.979162974 

Cloquet 16S W D - p__Bacteroidetes 0.999571869 7.84E-04 

Ely 16S - - - p__Verrucomicrobia 2.37E-04 0.999835825 

Ely 16S - - - p__Armatimonadetes 0.007326516 0.997719244 

Ely 16S - - - p__Planctomycetes 0.984863574 0.019679392 

Ely 16S - - - p__OD1 0.992146521 0.028862651 

Ely 16S - - - NA 0.996990221 0.01236856 

Ely 16S - - - p__Actinobacteria 0.998641339 0.001877484 

Ely 16S - - W:D p__Actinobacteria 0.003692654 0.997597565 

Ely 16S - - W:D p__Firmicutes 0.007268534 0.99821332 

Ely 16S - D - NA 0.015880551 0.996382736 

Ely 16S - D - p__AD3 0.016574656 0.997718025 

Ely 16S - D - p__Gemmatimonadetes 0.986215568 0.039386571 

Ely 16S - D W:D p__FCPU426 0.02874291 0.997828762 

Ely 16S - D W:D p__BHI80-139 0.035598752 0.999681498 

Ely 16S W - - p__Gemmatimonadetes 0.019084396 0.990660293 

Ely 16S W - - p__WS3 0.037086718 0.988382386 

Ely 16S W - - p__WPS-2 0.037193139 0.995829464 

Ely 16S W - - p__Actinobacteria 0.971896878 0.039425479 
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Ely 16S W - W:D p__Bacteroidetes 1.13E-06 0.999999713 

Ely 16S W D - p__Actinobacteria 0.001191028 0.999260972 

Ely 16S W D - p__Planctomycetes 0.004539655 0.997105936 

Ely 16S W D - p__Verrucomicrobia 0.992638809 0.011371336 

Ely 16S W D W:D p__Bacteroidetes 2.20E-06 0.99999955 

 
Table S2.2: Fungal Results 
site type group phylum enrichment_ 

response_group 
depletion_ 
response_group 

Cloquet ITS W D 
W:D 

p__Basidiomycota 0.007549645 0.998087539 

Ely ITS - - - p__Basidiomycota 0.986623772 0.023939254 
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Table S3: Enrichment by Large Network Subnetwork—Taxonomic. Table shows instances of 
significant (p < 0.05) Enrichment or Depletion by phylum in Bacterial Spearman network 
subnetworks. “Cluster Index” represents contiguous clusters of taxa in each site’s co-occurrence 
network, organized by size (e.g. C.1, n = 70, is the largest bacterial subnetwork in Cloquet). 
“Enrichment” and “Depletion” values given are hypergeometric probability scores for over- or 
underrepresentation in the response group, compared to the overall distribution of taxa in each 
site. 
Site cluster_index count phylum enrichment_ 

cluster 
depletion_ 
cluster 

Cloquet 1 70 p__Bacteroidetes 4.70E-14 1 

Cloquet 1 70 p__Verrucomicrobia 0.997828096 0.010378963 

Cloquet 1 70 p__Acidobacteria 0.993152029 0.021150129 

Cloquet 2 32 p__Proteobacteria 0.01277717 0.995607538 

Cloquet 2 32 p__Bacteroidetes 0.999106281 0.005747499 

Cloquet 2 32 p__Actinobacteria 0.004381415 0.99928372 

Cloquet 3 29 p__Proteobacteria 0.999958875 3.80E-04 

Cloquet 3 29 p__Bacteroidetes 0.999822947 0.002129623 

Cloquet 3 29 p__Verrucomicrobia 8.59E-05 0.999988849 

Cloquet 3 29 p__Acidobacteria 0.002353139 0.999483373 

Cloquet 4 8 p__Actinobacteria 1.93E-06 0.999999971 

Cloquet 5 8 p__Verrucomicrobia 0.008483973 0.999226196 

Ely 1 39 p__Proteobacteria 0.999988357 1.17E-04 

Ely 1 39 p__Gemmatimonadetes 0.036771342 0.996661992 

Ely 1 39 p__Bacteroidetes 0.999983528 2.54E-04 

Ely 1 39 p__Acidobacteria 0.002259392 0.999326932 

Ely 1 39 p__Verrucomicrobia 4.40E-05 0.999993399 

Ely 2 37 p__Proteobacteria 0.023902201 0.990761855 

Ely 2 37 p__Bacteroidetes 3.57E-06 0.999999454 

Ely 2 37 p__Acidobacteria 0.999998734 2.49E-05 

Ely 3 30 p__Proteobacteria 0.99765595 0.010956196 

Ely 3 30 p__Bacteroidetes 1.64E-06 0.999999797 

Ely 5 22 p__Bacteroidetes 0.997305004 0.022203292 

Ely 5 22 p__Acidobacteria 0.019134326 0.994332035 
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Table S4: Instances of significant (p < 0.05) Enrichment or Depletion by class in Bacterial 
Spearman network subnetworks. “Cluster Index” represents contiguous clusters of taxa in each 
site’s co-occurrence network, organized by size (e.g. C.1, n = 70, is the largest bacterial 
subnetwork in Cloquet). “Enrichment” and “Depletion” values given are hypergeometric 
probability scores for over- or underrepresentation in the response group, compared to the 
overall distribution of taxa in each site. 
Site cluster_index count class enrichment_ 

cluster 
depletion_ 
cluster 

Cloquet 1 70 c__Flavobacteriia 0.012164833 0.999200491 

Cloquet 1 70 c__Sphingobacteriia 3.39E-14 1 

Cloquet 1 70 c__Betaproteobacteria 0.02707495 0.990640604 

Cloquet 1 70 c__Acidobacteriia 0.995660586 0.034499877 

Cloquet 2 32 c__Thermoleophilia 0.006565014 0.999246964 

Cloquet 2 32 c__Alphaproteobacteria 2.80E-06 0.999999731 

Cloquet 3 29 c__Acidobacteriia 3.88E-06 0.9999998 

Cloquet 3 29 c__[Spartobacteria] 1.89E-07 0.999999991 

Cloquet 3 29 c__Planctomycetia 0.04481275 0.998022967 

Cloquet 4 8 c__Thermoleophilia 0.003222544 0.999868252 

Cloquet 4 8 c__Actinobacteria 5.76E-04 0.999990015 

Cloquet 5 8 c__[Pedosphaerae] 0.006486119 0.999880859 

Cloquet 5 8 c__Cytophagia 9.90E-04 0.999977042 

Cloquet 5 8 c__Opitutae 0.010615008 0.999707214 

Ely 1 39 c__Gemmatimonadetes 0.036771342 0.996661992 

Ely 1 39 c__Acidobacteriia 1.36E-04 0.999979756 

Ely 1 39 c__[Spartobacteria] 4.77E-06 0.999999472 

Ely 2 37 c__Sphingobacteriia 8.30E-10 1 

Ely 2 37 c__Betaproteobacteria 1.78E-05 0.999997822 

Ely 3 30 c__[Saprospirae] 1.31E-07 0.999999992 

Ely 3 30 c__[Chloracidobacteria] 0.019659742 0.997481638 

Ely 4 25 c__Alphaproteobacteria 5.53E-04 0.999930722 

Ely 5 22 c__DA052 0.002543894 0.9996833 

Ely 5 22 c__Solibacteres 0.021549383 0.99805515 
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Supplemental Material and Methods: 

Indicator Value Color Scale Assignment 

Indicator Value assignments and associated p values were translated to a (-1,1) scale, 

with -1 corresponding to the minimum p value (approaching 0.0) for the Control condition, +1 to 

the minimum Treatment value, and 0 to a p value of 1.0 for either condition. These derived 

metrics were used to create a two-axis color gradient, with assigned colors being a mix of 

Warming (spanning Cyan (RGB 0,1,1) to Red (RGB 1,0,0)), and Drying (spanning Blue (RGB 

0,0,1) to Yellow (RGB 1,1,0)). A value of 0 (i.e. p value of 1.0) on either treatment gradient was 

assigned a neutral grey (RGB 0.5,0.5,0.5). These color values were selected to give a neutral 

grey at the midpoint, as well as intuitive color mixes between gradients (e.g. a 1:1 mix of Yellow 

and Cyan yields Green, while Yellow and Blue give grey). To prevent highly significant (e.g. p < 

0.0001) edge cases from overextending the range of available colors and desaturating larger, 

but still significant, p values (e.g. 0.05), raw p values were transformed with -log10(p) when 

translating to RGB coordinates on a 0-1 scale, and had an artificial upper limit of p = 0.05 

imposed. 

 

Supplemental Results: 

Indicator Value Scores Suggest Broad OTU-Level Resistance to Warming and Drying Effects 

Classifying taxa using the Dufrene-Legendre indicator value D, with a probability 

threshold p ≤ 0.05 for reactive taxa, revealed that in both cases the majority of taxa were 

resistant to warming and drying perturbations, at considerably higher proportions than those 

seen using negative binomial linear model correlations as the metric, likely due to accounting for 

taxon relative abundance and distribution across samples. Cloquet’s bacterial community had 

295 significant warming indicator taxa (97 opportunistic, 198 sensitive), and 296 drying indictors 

(132 opportunistic, 164 sensitive), or just ~6.8% in total for both cases. Despite the similarity in 

ratios, these indicator groups were largely distinct, with only 19 indicators OTUs sharing a 
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positive or negative association with both treatments. Ely’s bacterial community similarly had 

6/8% of OTUs indicating for warming (121 opportunistic, 164 sensitive), and only 4.9% 

significant drying indicators (83 opportunistic, 122 sensitive). 

Taxonomic enrichment within the groups also showed a fair degree of accord across sites. 

Warming-resistant taxa were enriched for Actinobacteria and Planctomycetes at both Cloquet (p 

= 0.001, p = 0.003) and Ely (p = 0.003, p = 0.02); drying-resistant taxa showed more site-

dependence for enrichment, with Cloquet being enriched for Actinobacteria (p = 0.001), while 

Ely followed the warming-resistant taxa in a Planctomycetes enrichment (p = 0.006). Warming-

opportunistic indicators were enriched for Acidobacteria (Cloquet p = 0.009, Ely p < 0.001), 

while Ely was additionally enriched for Gemmatimonadetes; drying-opportunistic taxa were 

enriched in Acidobacteria (p < 0.001 in both sites), with Cloquet’s community additionally being 

enriched for Verrucomicrobia (p  < 0.001) and Nitrospirae (p = 0.041). Warming-sensitive 

indicators were enriched for Bacteroidetes in both sites (Cloquet p = 0.026, Ely p  < 0.001), 

while there was no significant enrichment of taxa for water-sensitive bacteria, indicating a fairly 

proportional cross-section of the community (with the exception of depletion for Actinobacteria in 

Ely—p = 0.04). 

The fungal community saw a comparable distribution; 6.8% of Cloquet OTUs were 

indicators for warming (32 opportunistic, 25 sensitive), and 5.8% for drying (9 opportunistic, 20 

sensitive). Ely was slightly more reactive by this metric, with 8.8% of OTUs being a significant 

indicator for warming (24 opportunistic, 20 sensitive) , and 6.2% being indicators for drying (8 

opportunistic, 23 sensitive). As with Ely, very few (1-2) OTUs shared a significant opportunistic 

or sensitive response to both treatment effects. Shared instances enrichment, and enrichment in 

general, of phyla in fungal indicator groups  across sites was rarer than bacteria; the only 

commonality was a depletion of Ascomycota (Cloquet p = 0.036, Ely p = 0.047) among 

warming-sensitive taxa, and enriched Mucoromycota (Cloquet p = 0.017, Ely p = 0.016) among 

drying-opportunistic indicators. Cloquet had more cases of significant enrichment in indicator 
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groups, including Mucoromycota among warming opportunistic taxa (p  < 0.001), and of 

Mortierellomycota in warming sensitive taxa (p = 0.012); this phylum was enriched among 

Cloquet’s water-opportunistic taxa as well (p = 0.017). 

Overall, major implications of this distribution include more bacterial taxa being 

negatively than positively correlated with warming or drying pressure. This would make sense 

with diminished alpha diversity and shifting community structure at the community level, as it 

suggests a dynamic along the ones observed in Sheik et al (2012) or De Angelis etal (2015), or 

a small subset of heat-tolerant taxa proliferating as a larger subset diminish. While most 

bacterial taxa were not significantly over- or underrepresents, major exceptions like 

Acidobacteria, Actinobacteria, and Bacteroidetes point to an important relationship between the 

taxonomic makeup of a community and its response to climate-related perturbations. In the 

fungal community, there appeared to be a preferential enrichment for warming-opportunistic, 

and drying-sensitive response profiles, but these were generally not linked to taxa. 


