WIND ENGINEERING STUDY OF MOUNTAIN BELL DENVER SERVICE CENTER

by

J. A. Peterka\* and J. E. Cermak\*\*

for

Rogers - Nagel - Langhart, Inc. 1610 Arapahoe Street Denver, Colorado 80202

Fluid Mechanics Program Fluid Dynamics and Diffusion Laboratory Department of Civil Engineering Colorado State University Fort Collins, Colorado October 1973

\* Assistant Professor

Tre

\*\* Professor-in-Charge, Fluid Mechanics Program

CER73-74JAP-JEC14





Mountain Bell Denver Service Center

#### ACKNOWLEDGMENTS

The support of Rogers - Nagel - Langhart in carrying out this study is gratefully acknowledged. Construction of the building model and pressure switch was accomplished by personnel of the Engineering Research Center Machine Shop. Mr. James A. Garrison made the motion pictures of flow visualization. Mr. Robert E. Akins supervised pressure data acquisition and reduction. Dr. S. K. Nayak was responsible for velocity measurements.

## TABLE OF CONTENTS

| Chapter |                                           | Page                 |
|---------|-------------------------------------------|----------------------|
|         | ACKNOWLEDGMENTS                           | ii                   |
|         | LIST OF TABLES                            | iv                   |
|         | LIST OF FIGURES                           | ν                    |
|         | LIST OF SYMBOLS                           | vi                   |
| I       | INTRODUCTION                              | 1                    |
|         | <pre>1.1 General</pre>                    | 1                    |
|         | (Telephone Building)                      | 2                    |
| II      | EXPERIMENTAL CONFIGURATION                | 4                    |
|         | 2.1 Wind Tunnel                           | 4<br>4               |
| III     | INSTRUMENTATION AND DATA ACQUISITION      | 6                    |
|         | 3.1       Flow Visualization              | 6<br>6<br>8<br>10    |
| IV      | RESULTS                                   | 11                   |
|         | <ul> <li>4.1 Flow Visualization</li></ul> | 11<br>12<br>13<br>17 |
| V       | CONCLUSIONS                               | 18                   |
|         | REFERENCES                                | 20                   |
|         | APPENDIX A                                | 34                   |
|         | FIGURES                                   | 55                   |

#### LIST OF TABLES

| Table |                                              | Page |
|-------|----------------------------------------------|------|
| 1     | MOTION PICTURE SCENE GUIDE                   | 21   |
| 2     | MEAN AND FLUCTUATING VELOCITIES IN THE PLAZA | 24   |
| 3     | PRESSURE DATA FOR ONE DEGREE WIND AZIMUTH    | 26   |
| 4     | PRESSURE DATA FOR THE AIR DOORS              | 27   |
| 5     | PRESSURE DATA FOR THE CORNER DOORS           | 29   |
| 6     | EXHAUST VENT DIFFUSION DATA                  | 32   |

# LIST OF FIGURES

| Figure |                                                | Page |
|--------|------------------------------------------------|------|
| 1      | Plan View of Meteorological Wind Tunnel        | 55   |
| 2      | Site Plan for Telephone Building               | 56   |
| 3      | Pressure Tap Locations                         | 57   |
| 4      | Completed model installed in the Wind Tunnel   | 60   |
| 5      | Pressure Switch Installed in the Model         | 61   |
| 6      | Data Sampling Time Verification                | 62   |
| 7      | Typical Hot Wire Calibration                   | 63   |
| 8      | Mean Velocity Profiles Approaching the Model   | 64   |
| 9      | Turbulence Intensity Profiles                  | 66   |
| 10     | Pressure Coefficients for Air Door 1           | 67   |
| 11     | Pressure Coefficients for Air Door 2           | 69   |
| 12     | Pressure Coefficients for Corner Door Side 2   | 71   |
| 13     | Pressure Coefficients for Corner Door Side 3   | 73   |
| 14     | Pressure Coefficients for Corner Door Side 2-3 | 75   |

# LIST OF SYMBOLS

| Symbol [Variable]            | Definition                                                                                          |
|------------------------------|-----------------------------------------------------------------------------------------------------|
| U                            | Local mean velocity                                                                                 |
| D                            | Characteristic dimension (building height, width, etc.)                                             |
| ν                            | Kinematic viscosity of approach flow                                                                |
| $\frac{UD}{v}$               | Reynolds number                                                                                     |
| Е                            | Mean voltage                                                                                        |
| А                            | Constant                                                                                            |
| В                            | Constant                                                                                            |
| n                            | Constant                                                                                            |
| Urms                         | Root-mean-square of fluctuating velocity                                                            |
| Erms                         | Root-mean-square of fluctuating voltage                                                             |
| U_                           | Reference mean velocity outside the boundary layer                                                  |
| Y                            | Height above surface                                                                                |
| δ                            | Height of boundary layer                                                                            |
| Tu                           | Turbulence intensity $U_{\rm rms}^{}/U_{\infty}^{}$ or $U_{\rm rms}^{}/U$                           |
| C <sub>pmean</sub>           | Mean pressure coefficient, $\frac{(p-p_{\infty})_{mean}}{\frac{1}{2} \rho U_{\infty}^2}$            |
| C prms                       | Root-mean-square pressure coefficient, $\frac{(p-p_{\infty})_{rms}}{\frac{1}{2} \rho U_{\infty}^2}$ |
| C <sub>pmax</sub>            | Peak maximum pressure coefficient, $\frac{(p-p_{\infty})_{max}}{\frac{l_2}{2} \rho U_{\infty}^2}$   |
| C <sub>p<sub>min</sub></sub> | Peak minimum pressure coefficient, $\frac{(p-p_{\infty})_{\min}}{\frac{1}{2} \rho U_{\infty}^2}$    |
| ρ                            | Density of approach flow                                                                            |
| ( ) <sub>min</sub>           | Minimum value during data record                                                                    |
| ( ) <sub>max</sub>           | Maximum value during data record                                                                    |

# LIST OF SYMBOLS (Cont.)

# Symbol

# Definition

| р                         | Fluctuating pressure at a pressure tap on the structure ${}_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{p}_{\mathbf{w}}$ | Static pressure in the wind tunnel above the model                                                                                   |

vii

#### 1. INTRODUCTION

#### 1.1 General

A significant characteristic of modern tall building design is lighter cladding and more flexible frames. These features combine to produce an increased vulnerability of glass lights and cladding to wind damage. In addition, increased use of pedestrian plazas has brought about a need to consider wind and gustiness in the design of these areas. Techniques have been developed during the past decade for wind-tunnel modeling of proposed structures which allow the prediction of wind pressures on cladding and wind environment about the building. Knowledge of pressures on the structure permits adequate but economical selection of window strength to meet selected maximum design winds while information on sidewalk level gustiness allows plaza areas to be protected by design changes before the structure is constructed. Where exhaust vents from underground parking garages or other obnoxious exhausts can enter pedestrian areas or air ventilation intakes, model tests of concentrations of the exhausts can point to design changes to alleviate the problem.

Modeling the aerodynamic loading on a structure requires special consideration of flow conditions in order to guarantee similitude between model and prototype. A detailed discussion of the similarity requirements and their wind-tunnel implementation can be found in References 1,2 and 3. In general, the requirements are that the model and prototype be scaled in geometry, that the approach mean velocity at the building site have a vertical profile shape similar to the full-scale flow, that the turbulence characteristics of the flows be similar, and that the Reynolds number for the model and prototype be equal. These criteria are satisfied by constructing a scale model of the structure and its surroundings and performing the wind tests in a wind tunnel specifically designed to model atmospheric boundary layer flows. Reynolds number similarity requires that the quantity UD/ $\nu$  be similar for model and prototype. Since  $\nu$ , the kinematic viscosity of air, is identical for both, Reynolds numbers cannot be made precisely equal with reasonable wind velocities. Wind velocity in the wind tunnel would have to be the model scale factor times the prototype wind. However, for sufficiently high Reynolds number (>10<sup>5</sup>) a pressure coefficient at any location on the structure will be essentially constant with Reynolds number. Typical values encountered are 10<sup>8</sup> for the full scale and 10<sup>6</sup> for the wind tunnel model. Thus acceptable flow similarity is achieved without precise Reynolds number equality.

### 1.2 The Mountain Bell Denver Service Center (Telephone Building)\*

A wind study was performed for the proposed Telephone Building in Denver, Colorado. The 323 ft high structure was modeled at a 1:180 scale. The objectives of the wind study were to obtain mean and fluctuating pressures on the building as well as wind velocity and gustiness in the plaza adjacent to the structure. In addition, a flow visualization study was performed to define overall flow patterns and regions where local flow features might cause difficulties in panel loading or pedestrian discomfort. Concentration measurements were made at numerous points near the surface around the building and in the plaza to determine the extent to which pedestrians and building air intakes would be subjected to exhaust gases from the underground parking garage vents.

\*The designation Telephone Building is used throughout the text.

The Telephone Building will occupy the block between 17th and 18th Streets and between Curtis and Arapahoe Streets in Denver. The structure consists of a tower occupying the half-block nearest to 18th Street with a lower structure and large elevated plaza occupying the remaining area. The site is in the center of the downtown area on flat terrain. Surrounding structures range from nearly the same height on the southwest to parking lots on the north and northwest. The flow approaching the site crosses relatively flat terrain with low structures except for the tall buildings in the downtown area close the the building site.

#### 2. EXPERIMENTAL CONFIGURATION

#### 2.1 Wind Tunnel

The wind study was performed in the meteorological Wind Tunnel located in the Fluid Dynamics and Diffusion Laboratory at Colorado State University, Figure 1. The tunnel is a closed circuit facility driven by a 250 h.p. variable-pitch, variable-speed propeller. The test section is nominally 6 feet square and 88 feet long fed through a 9-to-1 contraction ratio. The test section walls diverge 1 in./10 ft and the roof is adjustable to maintain a zero pressure gradient along the test section. The mean velocity can be adjusted continuously from 1 to 120 fps. The facility is described in detail by Plate and Cermak [4].

#### 2.2 Model

In order to obtain an accurate assessment of local pressures using piezometer taps, the model was constructed to the largest scale that would not produce serious blockage in the wind tunnel. A 1:180 scale model was constructed using 3/4 in. "Lucite" plastic for the tower portion of the structure on which pressure measurements were to be made and using styrofoam for the lower structure and plaza where flow visualization, velocity and diffusion data were required. A site plan is shown in Figure 2.

Piezometer taps (1/16 in. dia.) were drilled normal to the exterior surface at 46 locations on each side of the structure, at 16 locations on the top, and at several special points of interest such as door locations and behind the grillwork on the lower sides. The location of the taps on the structure is shown in Figures 3a to 3c. Of the 206 total

taps on the building, 68 were selected for measurement of fluctuating pressures and are marked by filled circles on Figure 3, 4 were in doors for which fluctuating measurements were obtained, and the remaining 134 taps were designated for mean pressure measurement.

An area of 1100 ft radius surrounding the building site was modeled in detail. Structures located within this region were modeled from styrofoam retaining the overall height and shape but omitting small surface details. The Building model and surrounding area was mounted on a 76 in. dia. turntable centered 84 ft from the test section entrance. That portion of the modeled area which did not fit on the turntable was placed upstream and downstream from the turntable and changed to match the turntable azimuthal position each time the turntable was rotated. The turntable indicated azimuthal orientation to  $\pm$  0.1 degree.

The region upstream from the modeled area was covered with a randomized roughness constructed from bricks. A 12 in. high vortex generator provided a boundary layer trip at the entrance to the test section. The distribution of bricks was designed to provide a boundary layer thickness of approximately 50 in., a velocity profile power law exponent similar to that for a city environment, and a logarithmic velocity profile with a realistic roughness length. A photograph of the complete model in-place in the wind tunnel is shown in Figure 4. The wind-tunnel ceiling was adjusted after placement of the model to obtain a zero pressure gradient along the test section.

#### 3. INSTRUMENTATION AND DATA ACQUISITION

#### 3.1 Flow Visualization

Visualization of the flow in the vicinity of the model is helpful in understanding and interpreting mean and fluctuating pressures, in defining zones of separated flow and reattachment where pressure coefficients may be expected to be high, and in indicating areas where pedestrian discomfort may be a problem. Titanium tetrachloride smoke was released from sources on and near the model and motion pictures records made. Conclusions obtained from these smoke studies are discussed in section 4.1.

#### 3.2 Pressures

Mean and fluctuating pressures were obtained at each of the 68 locations on the building indicated by filled circles on Figure 3. A 12 in. length of 1/16 I.D. plastic tubing connected the 68 pressure ports on the building to a 72 tap pressure switch mounted inside the model. The switch (Model 1) was designed and fabricated in the Fluid Dynamics and Diffusion Laboratory to minimize the attenuation of pressure fluctuations across the switch. Each of the 68 measurement ports was directed in turn by the switch to one of 4 pressure transducers mounted close to the switch. The switch was operated manually by means of a shaft projecting through the floor of the wind tunnel. A mechanical indexing feature locked the switch into each of the 18 required positions while a potentiometer provided an indication of the switch position on a digital voltmeter. The 4 pressure switch input taps not used for transmitting building pressures were connected to a common tube leading outside the wind tunnel and provided a means of performing

in-place calibration of the transducers. A photograph of the pressure switch in place is shown in Figure 5.

The pressure transducers used were "statham" differential straingage transducers (Model PM283TC) with a 0.15 psid range. They were selected for the stability and linearity in the working range required. The frequency response of the transducers was greater than 200 Hz adequately covering the range of frequencies encountered. A reference pressure was obtained by connecting the reference side of the transducer with plastic tubing to the static side of a pitot tube mounted in the wind tunnel free stream above the model building. In this way the transducer measured the instantaneous difference between the local surface pressure and the static pressure in the free stream above the model.

Each pressure transducer bridge was monitored by a Honeywell Accudata 118 Gage Control/Amplifier unit which provided excitation to the bridge and amplified the bridge output. These instruments are characterized by a very stable excitation voltage and amplifier gain. Output from the Honeywell signal conditioners was fed to an on-line 8 channel System Development, Inc., analog-to-digital conversion unit. The data was processed onto digital tape for later data analysis by computer. Resolution of conversion was  $\pm$  0.0016 in pressure coefficient. All 4 transducers were recorded simultaneously for 16 seconds at a 240 sample per second rate. The results of an experiment to determine the length of record required to obtain stable mean and rms pressures is shown in Figure 6. A typical pressure port record was integrated for a number of time periods to obtain the data shown. Fluctuations in results for a 16 second average are within 1 percent for mean

pressure and 2 percent for fluctuating pressure. Definitions for the pressure coefficients are given in section 4.3.

Reduction of the raw data to usable form was performed on the Colorado State University CDC 6400 computer as described in Section 4.3.

The 134 pressure taps for which mean velocity only was recorded were connected to a 256 port pressure switch located outside the wind tunnel by 8 ft lengths of 1/8 I.D. plastic tubing. The 4 position switch (Model 0) was designed and fabricated in the Fluid Dynamics and Diffusion laboratory for this purpose. Each of the 134 measurement ports was connected in three switch positions to one of 64 output taps on the switch. These 64 pressures were directed in turn to a single Statham pressure transducer by a 64 port scanivalve pressure switch. In this way each pressure port on the structure was examined sequentially. The signal from the pressure swith the exception that computations recorded only mean values. The long tube lengths attenuated the fluctuating pressures sufficiently that fluctuating information could not be obtained.

#### 3.3 Velocity

Velocity and turbulence intensity profiles were made upstream from the detailed model area and at the building location (with the model removed) for several approach flow directions. In addition, mean velocity and turbulence intensity measurements were made 0.2 in. (3.0 ft prototype) above the surface for 4 wind directions near the building at locations 1 through 8 shown in Figure 2. The surface measurements were intended to indicate the environment to which a pedestrian in the plaza area would be subjected.

Measurements were made with a single hot-wire anemometer mounted with its axis vertical. The instrumentation used was a DISA constant temperature anemometer (Model 55D05) with a 0.0004 in. dia. platinum (80%) - iridium (20%) sensing element 0.080 in. long. Output was read from a Hewlett-Packard integrating digital voltmeter (Model 2401C) for mean voltage and a DISA RMS meter (Model 55D35) for rms voltage.

Calibration was performed by placing the anemometer in the free stream near the pitot tube used to record wind tunnel velocity and recording the output for several velocities. The calibration data was fit to a variable exponent King's Law relationship

$$E^2 = A + BU^n$$

where E is the hot-wire output voltage, U the approach velocity and A, B and n are coefficients selected to fit the data. A typical calibration showing the linear relationship between  $E^2$  and  $U^n$  is plotted in Figure 7. The above relationship was used to recover the mean veloicty at measurement points from the measured mean voltage. The fluctuating veloicty in the form  $U_{\rm rms}$  (root-mean-square velocity) was obtained from

$$U_{\rm rms} = \frac{2 E E_{\rm rms}}{B n U^{\rm n-1}}$$

where  $E_{rms}$  is the root-mean-square voltage output from the anemometer. All turbulence measurements were divided by either local mean velocity U or mean velocity outside the boundary layer  $U_{\infty}$ . Division by U gives an indication of the relative unsteadiness at the location while division by  $U_{\infty}$  permits easy determination of the actual magnitude of rms velocity fluctuations at a point for various approach velocities.

#### 3.4 Diffusion

Concentration measurements were made to determine the extent to which the environment about the structure would be exposed to exhaust gases emitted from the 4 underground garage vents. Surface measurements were made at 14 locations shown on Figure 2. The prototype conditions modeled were 9.5 ft/sec velocity from the vents with an 18 mi/hr ambient wind velocity. The purpose of the low ambient wind was to simulate a typical case where concentrations would be expected to be relatively high in the plaza area. Measurements were taken for each vent operating alone for 4 wind directions.

The exhaust gas used for the experiment was Kr-85, a beta emitting radioactive gas, diluted approximately a million times in air. The mixture was supplied to each vent in turn and regulated with a flow meter. Concentrations at the various plaza locations was determined by placing one end of a 1/8 I.D. plastic tube at the measurement location and drawing air into one of a bank of 16 Geiger-Mueller tubes with a suction pump. Counts emitted by the Geiger-Meuller circuitry were converted to concentrations by a suitable calibration against a known standard. Concentrations measured at each point were divided by the concentration of the gas supplied to the vents to record the concentration as a percentage of the source gas.

#### 4. RESULTS

#### 4.1 Flow Visualization

A 1200 ft. film is included as part of this report showing the characteristics of flow about the structure with smoke. A listing of the contents of the film is shown in Table 1. Several features can be noted from the visualization. With flow approaching the upper portion of the structure from a direction approximately parallel to a face, the flow was seen to separate from the upstream corner of the diagonals on the upstream edge of the side and to remain separated with a thin separated region across the entire face. Fluctuations in the separated flow indicated the possibility of relatively high pressure fluctuations on the side and the upstream diagonal. For flow at other angles, flow separated cleanly from the building with much less evidence of high pressure fluctuations on the surface.

Visualization of smoke near the surface indicated the plaza area should be reasonably well protected from strong winds and exhaust gases except for winds from the west through north. For those directions, a high velocity jet of air swept under the connecting roof between the tower and adjacent structure and continued across the plaza near the tower. Blocking that passageway provided protection to the plaza area. Smoke sources placed at the garage exhaust vents showed that the highest concentrations in the plaza would be expected for west through north winds where the jet discussed above carried garage exhaust into the plaza. Again, blocking the passage prevented some of the smoke from entering the plaza. For easterly winds, smoke from one exhaust vent (Curtis St. nearest 18th St.) was observed in the plaza in the region near the corner of 17th and Curtis St.

#### 4.2 Velocity

Typical approach velocity profiles are shown in Figure 8a and b. One profile was taken 89 in. upstream from the model (1335 ft. prototype) and is characteristic of the boundary layer approaching the model. The boundary layer thickness,  $\delta$ , was 52 inches corresponding to a prototype value of approximately 800 ft. In the form

$$\frac{U}{U_{\infty}} = \left(\frac{Y}{\delta}\right)^n$$

the velocity profile has an exponent n of 0.215 which is a reasonable value for city environments such as Denver with relatively low building heights extending right to the downtown area. The profiles plotted in Figure 8b are shown in semilogarithmic form. The roughness height indicated by the zero velocity intercept of the best fit line is 7.2 ft which is reasonable for the site modeled. A velocity profile taken at the building site with the building removed is shown in Figure 8a. Some modification to the approach flow is evident in the profile caused by nearby structures.

Profiles of longitudinal turbulence intensity are shown in Figure 9 for the upstream approach conditions and for the building site. Modifications to the profiles due to topography and local structures is evident. For the purpose of this report, turbulence intensity is defined as the root-mean-square of the longitudinal velocity fluctuations divided by the reference mean velocity  $U_{\infty}$  at the outer edge of the boundary layer,

$$Tu_1 = \frac{U_{rms}}{U_{\infty}},$$

or as the rms velocity divided by the local mean velocity,

1

$$Tu_2 = \frac{U_{rms}}{U}$$

Mean velocity and turbulence intensity at plaza locations 1-8 shown in Figure 2 for 4 wind directions are listed in Table 2. Measurements were taken 0.2 in. (3.0 ft prototype) above the surface. Locations marked 'A' were repeat measurements with the passage from the plaza to Arapahoe adjacent to the tower portion of the structure blocked to prevent occurance of the high velocity jet of air noted in the flow visualization. The largest mean velocities were recorded at point 1 for 0 and 300 degree winds and point 2 for 0 and 90 degrees with velocities ranging from 50 to 85 percent of  $U_{\rm m}$ . These values dropped sharply when the passage was blocked. The highest 'gustiness' values (U $_{\rm rms}/{\rm U})$  were obtained for locations 8 for 300 degrees at 45 percent, 1A for 180 degrees at 38 percent, 3A for 300 degrees at 29 percent, 3 for 180 degrees at 28 percent, and 6 for 300 degrees at 27 percent. Large values of gustiness must be interpreted in terms of the magnitude of mean velocity since a low wind velocity can lead to large values as effectively as large rms velocities. The large values of  $U_{rms}/U$  for these locations are due in large part to low mean velocities. 4.3 Pressures

For each of the 206 pressure ports at each of the 10 wind directions (36 directions for 4 ports) examined (2164 total measurements), the data record was analysed to obtain pressure coefficients. One pressure coefficient was computed for the 134 mean pressure taps while 4 coefficients were computed for each of the fluctuating pressure taps. The first was the mean pressure coefficient

$$C_{p_{mean}} = \frac{(p - p_{\infty})_{mean}}{\frac{l_2}{2} \rho U_{\infty}^2}$$

where the symbols are as defined in the List of Symbols. It represents the mean of the instantaneous pressure difference between building pressure port and static pressure in the wind tunnel outside the boundary layer non-dimensionalized by the dynamic pressure  $\frac{1}{2} \rho U_{\infty}^{2}$ outside the boundary layer. The magnitude of the fluctuating pressure was obtained by the rms pressure coefficient

$$C_{p_{rms}} = \frac{(p - p_{\infty})_{rms}}{\frac{l_2 \rho U_{\infty}^2}{2}}$$

in which the numerator is the root-mean-square of the instantaneous pressure difference.

If the pressure fluctuations followed a Gaussian probability distribution, no additional data would be required to predict the frequency with which any given pressure level would be observed. However, the pressure fluctuations do not follow a Gaussian probability distribution so that additional information is required to show the extreme values of pressure expected. The peak maximum and peak minimum pressure coefficients are used to determine these values:

$$C_{p_{max}} = \frac{(p - p_{\infty})_{max}}{\frac{l_{2} \rho U_{\infty}^{2}}{U_{\infty}^{2}}}$$
$$C_{p_{min}} = \frac{(p - p_{\infty})_{min}}{\frac{l_{2} \rho U_{\infty}^{2}}{U_{\infty}^{2}}}$$

The values of  $p - p_{\infty}$  which were digitized at 240 samples-per-second for 16 seconds were examined individually by the computer to obtain the most positive and most negative values during the 16 second period. These were converted to  $Cp_{max}$  and  $Cp_{min}$  by non-dimensionalizing with the free stream dynamic pressure.

The four pressure coefficients were calculated by the CSU CDC 6400 computer and tabulated on microfilm. The list of coefficients is included as Appendix A. The tap code number in the appendix is given in Figure 3. The first digit of the code gives the building side while the second and third give sequential tap numbers on the side. Additional information provided in the appendix includes approach wind azimuth in degrees from true north, temperature in the wind tunnel in degrees F, barametric pressure in inches of Hg, and reference velocity outside the boundary layer in feet per second. The largest values of peak maximum  $C_p$  values were 1.25 to 1.43 on and adjacent to the diagonal corners for wind directions perpendicular to the diagonals. The largest values of peak minimum  $C_n$  occurred on and adjacent to the diagonal corners and near the top of each side with flow roughly perpendicular to a face. Values of -2.0 to -2.7 were common on and near the corner diagonal for these wind directions. Negative  $C_p$  values up to -2.0 were seen on the roof near the corners.

To insure that no flow pattern developed between the azimuths used for approach flow direction which would cause sharply higher pressure coefficients than were anticipated from the normally spaced data, one pressure tap was examined for small angular increments. Tap 422 was selected for examination for a range of approach flow azimuths from 45 to 65 degrees in one degree increments. The tap was chosen because of high negative mean, rms and peak minimum pressure coefficients and because smoke flow indicated a region of large amplitude fluctuations in a separated flow at that point. The results of that investigation are shown in Table 3. The pressure coefficients do reach a maximum value within the 20 degree span higher than indicated by the end-point values alone. However, the largest value of peak minimum pressure coefficient (-1.35 at 49 degrees) was only 7.3 percent larger than the value at 45 degrees indicating that no sharp peak in pressure coefficient appears in that azimuthal range.

In order to determine the pressures acting on the air doors opening from side 1 of the tower onto the plaza (see Figure 2), pressure taps were installed in the door recesses and data was taken for every 10 degrees of wind azimuth. Results of those measurements are listed in Table 4 and shown graphically in Figures 10 and 11. Part 'a' of each figure shows  $C_{p_{rms}}$  while the 'b' portion gives  $C_{p_{min}}$ ,  $C_{p_{mean}}$ , and  $P_{rms}$  $C_{p_{max}}$  in order from the center outward. Note that the zero is not placed at the origin on the latter set. The pressures on door 1 (nearest to Arapahoe st) are not large--maximum pressure coefficients are near one. For door 2, the positive peak does not exceed one; however, for an easterly wind, large negative values appear peaking at a  $C_{p_{min}}$ of -2.35 for a 90 degree wind azimuth.

Determination of pressures on the two corner doors at 18th St. and Arapahoe St. was accomplished by installing pressure taps at the door locations. Data was obtained for every 10 degrees of wind azimuth. Results of the measurements are listed in Table 5 and are shown graphically in Figures 12 to 14. Table 5 lists pressure coefficients for the corner door on building side 2, for the corner door in building side 3, and for the instantaneous difference between the two doors. The information is presented in Figures 12 to 14 in the same way as for Figures 10 and 11 described above. The positive pressure coefficient on each door was less than one while the peak negative value reached -2.0 only for a wind azimuth of 320 degrees. The pressure coefficients for the instantaneous difference between the two doors reached both +2 and -2 in pressure coefficient for winds from 330 and 50 degrees respectively (Figure 14). Other wind directions showed more moderate pressures.

#### 4.4 Diffusion

Concentration measurements of exhaust gases emitted from the 4 underground garage vents were divided by the concentration of the emitted exhaust gas to obtain a percentage of pollutant at a given location compared to the vented concentration. The data for the 14 points shown in Figure 2 for each exhaust vent for 4 wind directions is shown in Table 6. Presentation of the data for each vent operating alone permits the concentration at a location to be calculated assuming any desired distribution of exhaust gases to the four vents.

The largest concentrations were found at points 12 and 13 located on the sidewalk adjacent to vents 1 and 3. These locations--particulary 12--showed high concentrations from the adjacent vent for several wind directions. The plaza area in general showed low concentrations for all vents for all wind directions. Blocking the passage from the plaza to Arapahoe St. for a 300 degree wind increased concentrations somewhat at locations 1 and 2 but tended to decrease concentrations elsewhere.

#### CONCLUSIONS

A boundary layer flow over the Telephone Building model was established whose characteristics compared favorably with the expected flow over the Denver area. Flow visualization showed fluctuating separation features around the diagonal corners suggesting high values of pressure coefficient in those regions. Observation of the flow showed rather large velocities in the plaza near the entrances to the main structure. Blocking the passage from the plaza to Arapahoe St. provided a large reduction in velocity.

Measurements of fluctuating velocity in the plaza area indicated the largest value of root-mean-square velocities occurred at plaza points 8, 1 and 1A for 300, 0 and 90 degree wind azimuths respectively. RMS velocities were 6 to 7 percent of the reference velocity above the boundary layer. These correspond to a local turbulence intensity of 45, 7 and 16 percent of the local mean velocity. Only the first of these local values is large. Points experiencing relatively high local turbulence intensity (greater than 30 percent of local mean) were point 8 at 300 degrees and point 1A at 180 degrees. These points both experienced low values of local mean velocity.

Pressure measurements on the structure supported the flow visualization conclusion that the area near the diagonal corners would receive the largest pressure coefficients. The largest peak negative pressure coefficient was -2.72 at tap 228 for a wind azimuth of 330 degrees. Other corner locations showing high negative coefficients were taps 102 and 104 for a 330 degree wind direction. Negative values of above -2.0 were common on the diagonal corners. In addition to showing the largest negative pressures, the corners also showed the largest positive

pressure coefficients. Tap 403 recorded a +1.43 at 180 degrees, tap 201 had a +1.42 at 0 degrees, and tap 228 recorded a +1.35 for 270 degrees. Several other values above +1.2 were also noted.

Diffusion measurements of exhaust gas emitted from the garage vents showed generally low concentrations in the plaza area. The highest concentrations were observed at sidewalk level immediately adjacent to the Curtis Street exhaust vents.

#### REFERENCES

- Cermak, J. E., V. A. Sandborn, E. J. Plate, G. H. Binder, H. Chuang, R. N. Meroney, and S. Ito, "Simulation of atmospheric motion by wind-tunnel flows," CER66JEC-VAS-EJP-GJB-HC-RNM-SI17, FDDL, Colorado State University, 1966.
- Davenport, A. G. and N. Isyumov, "The application of the boundary layer wind tunnel to the prediction of wind loading," Proc. of Int. Res. Seminar on Wind Effects on Buildings and Structures, V1, N.R.C., Canada, 1967.
- 3. Cermak, J. E., "Laboratory simulation of the atmospheric boundary layer," AIAA J1., V9, Sept. 1971.
- Plate, E. J. and J. E. Cermak, "Micrometeorological wind tunnel facility, description and characteristics," CER63JP-JEC9, FDDL, Colorado State Unviersity, 1963.
- 5. Standen, N. M., W. A. Dalgliesh and R. J. Templin, "A wind tunnel and full-scale study of turbulent wind pressures on a tall building," Proc. Third Int. Conf. on Wind Effects on Buildings and Structures, Tokyo, Japan, 1971.

#### TABLE 1

#### MOTION PICTURE SCENE GUIDE

| SCENE  | WIND      | PASSAGE 1 | PASSAGE 2 | SOURCE       | SOURCE            |
|--------|-----------|-----------|-----------|--------------|-------------------|
| попрык | 112. (1)  | (2)       | (3)       | LUDVALION    | LOOKITON (4)      |
| 1      | 300°      |           |           | Ground       | Data point 3      |
| 2      |           |           |           |              | Data Point 1      |
| 3      | "         | Х         |           |              | Data Point 1      |
| 4      |           |           |           |              | Data Point 5      |
| 5      |           |           |           |              | Data Point 13     |
| 6      | н         | Х         |           | 11           | 17th & Arapahoe   |
| 7      | **        |           |           | "            | Data Point 13     |
| 8      |           |           |           |              | Data Point 14     |
| 9      |           |           |           |              | Data Point 8      |
| 10     |           |           |           | "            | Data Point 11     |
| 11     |           |           |           | 11           | Data Point 12     |
| 12     |           |           |           |              | Data Point 2      |
| 13     |           |           |           |              | Data Point 13     |
| 14     |           |           | Х         | "            | Data Point 13     |
| 15     |           | Х         | Х         | 11           | Data Point 13     |
| 16     | н         | Х         |           |              | Data Point 13     |
| 17     |           |           |           | 200'         | Upwind Side       |
| 18     |           |           |           | 300'         | Upwind Side       |
| 19     |           |           |           | Roof         | Penthouse Lee     |
| 20     |           |           |           | 200'         | Upwind of Bldg    |
| 21     | 300°-255° |           |           | 200'         | Bldg. rotated CW  |
| 22     | 255°-315° |           |           | 200'         | Bldg. rotated CCW |
|        |           |           |           | 5777, 201 GP | 0                 |

(1) All data taken at 24 fr./sec. and a wind velocity of 10 ft./sec.

- (2) Passage 1 represents passage from plaza to Arapahoe St. adjacent to tower portion of structure. X indicates passage was closed to air movement.
- (3) Passage 2 represents passage from plaza to 17th St. pedestrian bridge. X indicates passage was closed to air movement.

(4) Data point locations are shown in Figure 2.

# TABLE 1 (Cont.)

| SCENE<br>NUMBER | WIND<br>AZ. | PASSAGE 1 | PASSAGE 2 | SOURCE<br>ELEVATION | SOURCE<br>LOCATION |
|-----------------|-------------|-----------|-----------|---------------------|--------------------|
| 23              | 000         |           | Х         | Ground              | Data Point 1       |
| 24              | "           |           |           |                     | Data Point 5       |
| 25              |             |           |           |                     | 17th & Arapahoe    |
| 26              |             |           |           |                     | Data Point 13      |
| 27              |             |           |           | "                   | Data Point 14      |
| 28              | . 11        |           |           | 11                  | 18th & Arapahoe    |
| 29              |             |           |           |                     | Data Point 3       |
| 30              | "           | Х         |           | "                   | Data Point 3       |
| 31              | "           |           |           | "                   | Data Point 5       |
| 32              |             |           |           |                     | Data Point 6       |
| 33              | "           |           |           | "                   | Data Point 12      |
| 34              | "           |           |           | н                   | Data Point 2       |
| 35              | "           |           |           | "                   | Data Point 11      |
| 36              |             |           |           |                     | 18th & Curtis      |
| 37              | "           |           |           | "                   | 18th               |
| 38              | "           |           |           | 11                  | Plaza from NE      |
| 39              | 090         |           |           | 11                  | 18th & Curtis      |
| 40              | "           |           |           | "                   | Data Point 8       |
| 41              |             |           |           | 11                  | Data Point 11      |
| 42              | "           |           |           | н                   | Data Point 2       |
| 43              |             |           |           | п                   | Data Point 12      |
| 44              |             |           |           | 11                  | Data Point 5       |
| 45              |             |           | Х         | 11                  | Data Point 5       |
| 46              |             | Х         | Х         | 11                  | Data Point 5       |
| 47              |             |           |           | н                   | Data Point 5       |
| 48              |             |           |           |                     | Data Point 14      |
| 49              |             |           |           |                     | Data Point 3       |
| 50              |             | Х         |           | н                   | Data Point 3       |
| 51              |             |           |           | н                   | Data Point 13      |
| 52              | н           |           |           | п                   | Data Point 7       |
| 53              | "           |           |           | "                   | Data Point 2       |
| 54              | 180         |           |           | п                   | Data Point 6       |

TABLE 1 (Cont.)

| SCENE<br>NUMBER | WIND<br>AZ. | PASSAGE 1 | PASSAGE 2 | SOURCE<br>ELEVATION |      | SOUI<br>LOCAT | RCE<br>FION |
|-----------------|-------------|-----------|-----------|---------------------|------|---------------|-------------|
| 55              | 180         |           |           | Ground              | Data | Point         | 12          |
| 56              | "           |           |           | U                   | Data | Point         | 5           |
| 57              |             |           |           | н                   | Data | Point         | 2           |
| 58              |             |           |           | н                   | Data | Point         | 11          |
| 59              | "           |           |           | 11                  | Data | Point         | 8           |
| 60              | "           |           |           | н                   | Data | Point         | 7           |
| 61              | "           |           |           |                     | Data | Point         | 13          |
| 62              | "           |           |           | "                   | Data | Point         | 3           |
| 63              |             |           |           | н                   | Data | Point         | 14          |
|                 |             |           |           |                     |      |               |             |

## TABLE 2

| Wind<br>Azimuth | Location | U/U∞<br>Percent | U <sub>rms</sub> /U∞<br>Percent | U <sub>rms</sub> /U<br>Percent |
|-----------------|----------|-----------------|---------------------------------|--------------------------------|
| 000             | 1        | 84.5            | 6.24                            | 7.4                            |
|                 | 1A*      | 14.4            | 3.00                            | 20.8                           |
|                 | 2        | 50.6            | 7.12                            | 14.1                           |
|                 | 2A       | 23.5            | 4.97                            | 21.1                           |
|                 | 3        | 25.0            | 4.63                            | 18.4                           |
|                 | 3A       | 22.1            | 4.45                            | 20.1                           |
|                 | 4        | 29.9            | 4.46                            | 15.0                           |
|                 | 5        | 38.6            | 5.34                            | 13.8                           |
|                 | 6        | 23.5            | 5.42                            | 23.0                           |
|                 | 7        | 20.8            | 3.84                            | 18.5                           |
|                 | 8        | 24.5            | 5.78                            | 23.6                           |
| 090             | 1        | 25.5            | 5.53                            | 21.7                           |
|                 | 1A       | 38.6            | 6.26                            | 16.2                           |
|                 | 2        | 77.6            | 4.21                            | 5.42                           |
|                 | 2A       |                 |                                 |                                |
|                 | 3        | 18.6            | 4.51                            | 24.2                           |
|                 | 3A       | 15.1            | 3.44                            | 22.7                           |
|                 | 4        | 20.3            | 3.96                            | 19.5                           |
|                 | 5        | 22.6            | 3.88                            | 17.2                           |
|                 | 6        | 31.0            | 5.61                            | 18.1                           |
|                 | 7        | 23.1            | 4.12                            | 17.9                           |
|                 | 8        | 63.1            | 4.29                            | 6.8                            |

# MEAN AND FLUCTUATING VELOCITIES IN THE PLAZA

\* Locations designated 'A' indicate measurements were taken with passage from plaza to Arapahoe St. closed.

# TABLE 2 (Cont.)

| Wind<br>Azimuth | Location | $U/U_{\infty}$ Percent | $U_{rms}/U_{\infty}$ Percent | U <sub>rms</sub> /U<br>Percent |
|-----------------|----------|------------------------|------------------------------|--------------------------------|
| 180             | 1        | 20.8                   | 3.28                         | 15.8                           |
|                 | 1A       | 15.1                   | 2.99                         | 37.7                           |
|                 | 2        | 25.5                   | 4.77                         | 18.7                           |
|                 | 2A       | 26.6                   | 4.81                         | 18.1                           |
|                 | 3        | 10.7                   | 2.99                         | 28.0                           |
|                 | 3A       | 21.7                   | 3.95                         | 18.2                           |
|                 | 4        | 15.1                   | 3.58                         | 23.6                           |
|                 | 5        | 15.9                   | 3.65                         | 23.0                           |
|                 | 6        | 26.6                   | 4.33                         | 16.3                           |
|                 | 7        | 32.2                   | 5.49                         | 17.1                           |
|                 | 8        | 14.4                   | 3.33                         | 23.0                           |
| 300             | 1        | 60.1                   | 5.02                         | 8.3                            |
|                 | 1A       | 5.9                    | 1.38                         | 2.3                            |
|                 | 2        | 33.5                   | 5.26                         | 15.7                           |
|                 | 2A       | 14.0                   | 3.63                         | 25.9                           |
|                 | 3        | 17.2                   | 3.58                         | 20.8                           |
|                 | 3A       | 11.2                   | 3.26                         | 29.1                           |
|                 | 4        | 18.1                   | 3.58                         | 19.8                           |
|                 | 5        | 14.0                   | 2.72                         | 19.4                           |
|                 | 6        | 17.2                   | 4.68                         | 27.2                           |
|                 | 7        | 14.8                   | 3.02                         | 20.5                           |
|                 | 8        | 15.5                   | 7.02                         | 45.2                           |

# TABLE 3

# PRESSURE DATA FOR ONE DEGREE WIND AZIMUTH TAP NO 422

|                 | Primar | y Data |       |        | 1    | Repeat | Data  |        |
|-----------------|--------|--------|-------|--------|------|--------|-------|--------|
| Wind<br>Azimuth | Mean   | RMS    | P.Max | P.Min  | Mean | RMS    | P.Max | P.Min  |
| 045             | 440    | .202   | .152  | -1.261 | 436  | .203   | .199  | -1.315 |
| 46              | 423    | .194   | .261  | -1.161 | 431  | . 211  | .175  | -1.305 |
| 47              | 412    | .201   | .152  | -1.262 | 395  | .191   | . 374 | -1.142 |
| 48              | 388    | .191   | .284  | -1.129 | 362  | .183   | .235  | -1.223 |
| 49              | 379    | .189   | .158  | -1.354 | 353  | .182   | .155  | -1.264 |
| 50              | 352    | .176   | .186  | -1.066 | 337  | .169   | .232  | -1.091 |
| 51              | 322    | .161   | .134  | -1.057 | 337  | .164   | .186  | -1.132 |
| 52              | 316    | .156   | .160  | -1.168 | 296  | .143   | .170  | -1.285 |
| 53              | 297    | .134   | .109  | 991    | 287  | .125   | .090  | -1.035 |
| 54              | 283    | .127   | .242  | -1.186 | 276  | .115   | .183  | 867    |
| 55              | 272    | .114   | .126  | 919    | 262  | .104   | .255  | 779    |
| 56              | 263    | .100   | .163  | 890    | 256  | .093   | .051  | 959    |
| 57              | 253    | .093   | .054  | 862    | 254  | .082   | .137  | 707    |
| 58              | 258    | .096   | .087  | 808    | 248  | .079   | .082  | 887    |
| 59              | 244    | .076   | .044  | 781    | 240  | .075   | .008  | 823    |
| 60              | 243    | .072   | .052  | 647    | 237  | .068   | .029  | 624    |
| 61              | 245    | .066   | .039  | 756    | 236  | .065   | .042  | 676    |
| 62              | 238    | .060   | .042  | 545    | 233  | .057   | .028  | 505    |
| 63              | 231    | .058   | 020   | 514    | 232  | .054   | .002  | 606    |
| 64              | 226    | .051   | .015  | 738    | 229  | .052   | 011   | 514    |
| 65              | 226    | .052   | 046   | 482    |      |        |       |        |

# TABLE 4

# PRESSURE DATA FOR THE AIR DOORS

PROJECT NO 6644

AIR DOOR 1

~

| HIND DIRECTION | MEAN        | RHS         | HAXINUH      | HINIMUH     |
|----------------|-------------|-------------|--------------|-------------|
|                | COFFEICIENT | COFFEICIENT | PRESSURE     | PRESSURE    |
|                | COLFFICIENT | CUEFFICIEN  | COEFFICIENT  | COEFFICIENT |
| ٥              | 255         | 168         | /28          |             |
| 10             | - 170       | 155         |              | /2/         |
| 20             | - 152       | 108         | 877          | -,/03       |
| 50             | 181         | 0.75        | . 377        | 525         |
| 40             | - 142       | 054         | 116          | 361         |
| 50             | 208         | 0.74        | 100          |             |
| 60             | 507         | .069        | - 006        | 506         |
| 70             | 508         | 079         | - 480        |             |
|                | 255         | .095        | 168          |             |
| 90             | - 174       | 105         | 261          | 492         |
| 100            | - 184       | 109         | 287          | 529         |
| 110            | 201         | 126         | 207          | 332         |
| 120            | 254         | 114         | REE          | /51         |
| 1 50           | 227         | 107         | . 555        | /0/         |
| 140            | 260         | 0.95        | . 290        |             |
| 150            | 269         | 108         | . 139<br>E10 | 590         |
| 160            | 201         | 127         | 848          | 007         |
| 170            | 524         | 194         | . 545        | 900         |
| 180            | 365         | 152         | 204          | -1.000      |
| 190            | 590         | 129         |              | -1.050      |
| 200            | 362         | 124         |              | -1.058      |
| 210            | 354         | 115         |              | 900         |
| 220            | 511         | 110         |              | -1.017      |
| 230            | - 204       | 096         | . 457        | -1.055      |
| 240            | . 059       | 120         | .209         | /46         |
| 250            |             | 157         |              | 431         |
| 260            | .067        | 187         |              | 413         |
| 270            | 050         | 194         |              | 36 /        |
| 280            | - 181       | 150         | . 132        | 360         |
| 290            | - 506       | 188         |              |             |
| 500            | - 406       | 168         | . 369        | /86         |
| 510            | - 467       | 184         | .430         | 825         |
| 520            | - 407       | 121         | .314         | -1.060      |
| 350            |             | 122         |              |             |
| 540            | - 368       | 142         | .1/3         | /60         |
| 350            | - 287       | 150         | . 36 /       |             |
| 334            | 201         | .128        | . 374        | 787         |

# TABLE 4 (CONTINUED)

# PRESSURE DATA FOR THE AIR DOORS

PROJECT NO 6644

AIR DOOR 2

|            |         | MEAN        | RMS         | MAXIMUH     | MINIMUM     |
|------------|---------|-------------|-------------|-------------|-------------|
| ALAU DIREC | RECTION | PRESSURE    | PRESSURE    | PRESSURE    | PRESSURE    |
|            |         | COEFFICIENT | COEFFICIENT | COEFFICIENT | COEFFICIENT |
| ٥          |         | 501         | .096        | 232         | - 996       |
| 10         |         | 431         | . 079       | 150         | - 704       |
| 20         |         | 566         | . \$62      | 159         | - 650       |
| 30         |         | 262         | . 057       | 067         | - 479       |
| 40         |         | 165         | .050        | 002         | 521         |
| 50         |         | 200         | .072        | . 026       | - 461       |
| 60         |         | 337         | .077        | 151         | 676         |
| 70         |         | 507         | .085        | 252         | 818         |
| 80         |         | 665         | .111        | 341         | -1.585      |
| 90         |         | 795         | .172        | 271         | -2.350      |
| 100        |         | 826         | . 192       | 240         | -1.842      |
| 110        |         |             | .211        | 064         | -1.957      |
| 120        |         | 649         | .205        | 018         | -1.777      |
| 1 3 0      |         | 302         | .170        | .064        | -1,192      |
| 140        |         | 155         | .119        | . 356       | -1.052      |
| 150        |         | 033         | .105        | .291        | 593         |
| 160        |         | 020         | .110        | . 501       | 622         |
| 170        |         | .043        | .139        | .655        | 612         |
| 1 80       |         | 050         | .104        | . 425       | 552         |
| 190        |         | 091         | .101        | . 421       | 359         |
| 200        |         | 139         | .120        | . 626       | 418         |
| 210        |         | 190         | .148        | . 758       | 556         |
| 220        |         | 184         | .150        | . 454       | 570         |
| 230        |         | 176         | .111        | . 541       | 755         |
| 240        |         | 045         | .149        | .612        | 475         |
| 250        |         | .046        | .179        | . 890       | 405         |
| 260        |         | 021         | .209        | .952        | 472         |
| 270        |         | 140         | .161        | .717        | 505         |
| 280        |         | 275         | .108        | .227        | 580         |
| 290        |         | 410         | . 086       | 008         | 804         |
| 300        |         | 504         | .076        | 284         | 866         |
| 310        |         | 526         | .094        | 217         | 900         |
| 520        |         | 466         | .082        | 176         | 874         |
| 550        |         | 458         | .077        | 175         |             |
| 540        |         | 469         | . 086       | 170         | 954         |
| 350        |         | 479         | .085        | 176         | 820         |
### TABLE 5

### PRESSURE DATA FOR THE CORNER DOORS

CORNER SIDE 2

PROJECT NO 6644

|                | MEAN        | RMS         | MAXIMUM     | MINIM       |
|----------------|-------------|-------------|-------------|-------------|
| WIND DIRECTION | PRESSURE    | PRESSURE    | PRESSURE    | PRESSURE    |
|                | COEFFICIENT | COEFFICIENT | COEFFICIENT | COEFFICIENT |
|                |             |             |             |             |
| C              | .295        | .134        | . 815       | - 121       |
| 1 0            | . 192       | .109        | . 777       | - 314       |
| 20             | 222         | .107        | . 349       | -1 112      |
| 50             | 508         | .217        | .090        | -1.511      |
| 40             | 580         | .210        | 015         | -1 628      |
| 50             | 531         | .230        | . 151       | -1 677      |
| 60             | 441         | .199        | 0.000       | -1 689      |
| 70             | 440         | .149        | 0.000       | -1.174      |
|                | 467         | .117        | 121         | -1 076      |
| 90             | 496         | . 395       | 201         | - 978       |
| 1 0 0          | 499         | . 070       | - 194       | - 869       |
| 110            | 467         | . 054       | 296         | - 645       |
| 120            | 451         | . 050       | 240         | - 619       |
| 1 3 0          | 375         | . 045       | 199         | 591         |
| 140            | 529         | .046        | 167         | - 490       |
| 150            | 302         | . 385       | 150         | 862         |
| 160            | 469         | .106        | 157         |             |
| 170            | 556         | .104        | 0.000       | -1.004      |
| 1 🖯 C          | 456         | . 307       | 044         | 771         |
| 190            | 344         | . 374       | .075        | 758         |
| 200            | 263         | . 364       | .015        | 550         |
| 210            | 240         | .070        | . 029       | 699         |
| 220            | 210         | .067        | .224        | 772         |
| 230            | 196         | . 056       | 025         | 506         |
| 240            | 243         | .045        | 091         | 402         |
| 250            | 294         | .046        | 147         | 467         |
| 260            | 325         | .050        | 129         | 505         |
| 270            | 304         | .057        | 095         | 479         |
| 280            | 271         | .070        | 0.000       | 554         |
| 290            | 251         | .082        | .101        | 684         |
| 500            | 254         | .107        | .206        | 751         |
| 5 1 C          | 295         | . 126       | .175        |             |
| 320            | 326         | . 1 32      | .314        | 879         |
| 350            | 205         | .141        | . 4 3 6     | 720         |
| 540            | .055        | .145        | .639        | 579         |
| 350            | .257        | .149        | .978        | 127         |

# TABLE 5 (CONTINUED)

# PRESSURE DATA FOR THE CORNER DOORS

PROJECT NO 6644

CORNER SIDE 3

|                | MEAT        | RMS         | MAXIMUM     | MINIMUM     |
|----------------|-------------|-------------|-------------|-------------|
| WIND DIRECTION | PRESSURE    | PRESSURE    | PRESSURE    | PRESSURE    |
|                | COEFFICIENT | COEFFICIENT | COEFFICIENT | COEFFICIENT |
|                |             |             |             |             |
| \$             | . 156       | . 162       | . 699       | - 441       |
| 1 C            | .246        | .114        | . 704       | 072         |
| 20             | .176        | . 126       | . 884       | 249         |
| 30             | 350         | . 124       | . 499       | 415         |
| 40             | 195         | .127        | . 555       | - 684       |
| 50             | 206         | . 150       | .261        | - 884       |
| 60             | 177         | .127        | .220        | - 795       |
| 70             | 199         | .096        | . 305       | 665         |
| 80             | 241         | .077        | . 069       | 565         |
| 90             | 510         | . 370       | 052         | 572         |
| 100            | 346         | .054        | 151         | 559         |
| 1 1 0          | -,363       | .045        | 186         | 516         |
| 120            | 354         | . 342       | 167         | 506         |
| 1 3 0          | 328         | . 342       | 154         | 499         |
| 140            | 302         | .042        | 150         | 452         |
| 150            | 306         | .115        | 059         | -1.490      |
| 160            | 556         | .200        | 0 7 7       | -1.592      |
| 170            | 592         | .145        | 101         | -1.664      |
| 180            | 474         | .106        | 098         | -1.066      |
| 190            | 365         | .071        | 051         | 861         |
| 200            | 325         | .075        | 041         | 766         |
| 210            | 271         | .054        | 088         | 565         |
| 220            | 237         | .064        | 057         | 797         |
| 230            | 242         | .071        | 054         | 761         |
| 240            | 515         | .049        | 168         | 480         |
| 250            | 389         | . 052       | 252         | 593         |
| 260            | 447         | . 050       | 201         | 658         |
| 270            | 455         | .065        | 225         | 694         |
| 200            | 471         | .082        | 245         | 995         |
| 290            | 510         | .106        | 185         | -1.192      |
| 500            | 563         | . 151       | 154         | -1.457      |
| 310            | 659         | . 189       | .005        | -1.625      |
| 520            | 810         | .257        | 252         | -2.086      |
| 550            | 789         | .221        | 194         | -1.745      |
| 340            | 360         | .184        | .222        | -1.447      |
| 350            | 060         | . 157       | . 449       | 925         |

# TABLE 5 (CONTINUED)

# PRESSURE DATA FOR THE CORNER DOORS

SIDE 2-SIDE 5

PROJECT NO 6644

.

| HIND DIRECTION | MEAN<br>PRESSURE | RMS<br>PRESSURE | PRESSURE    | MINIMUM     |
|----------------|------------------|-----------------|-------------|-------------|
|                | COEFFICIENT      | COEFFICIENT     | COEFFICIENT | COEFFICIENT |
| ٥              | .139             | .142            | 1.093       | - 205       |
| T G            | 065              | .104            | . 302       | - 657       |
| 20             | 598              | .210            | .057        | -1.612      |
| 30             | 479              | .231            | 005         | -1.898      |
| 40             | 307              | .186            | 002         | -1.468      |
| 50             | 525              | . 152           | .072        | -1.618      |
| 60             | 264              | .115            | .049        | -1.195      |
| 70             | 242              | .086            | . 026       | 691         |
|                | 226              | .067            | 024         | 605         |
| 90             | 187              | .054            | . 0 3 8     | 524         |
| 100            | 142              | .034            | 058         | 359         |
| 110            | 104              | . 026           | .060        | 216         |
| 120            | 077              | .025            | .010        | 180         |
| 130            | 046              | .024            | .080        | 214         |
| 140            | 027              | .021            | .057        | 132         |
| 150            | .004             | .095            | 1.195       | 590         |
| 160            | .087             | .176            | 1.244       | 423         |
| 170            | . 056            | .126            | 1.101       | 397         |
| 180            | . 0 3 8          | . 121           | . 849       | 405         |
| 190            | . 021            | .103            | .691        | 648         |
| 200            | .062             | .087            | .612        | 242         |
| 210            | .051             | .079            | . 529       | 485         |
| 220            | .027             | .057            | .594        | 541         |
| 230            | .045             | .045            | .415        | 196         |
| 240            | .070             | .020            | .176        | .005        |
| 250            | . 095            | .026            | .248        | .015        |
| 260            | . 122            | .034            | .312        | 041         |
| 270            | . 152            | .041            | . 55 1      | . 021       |
| 200            | .200             | . 058           | .652        | 026         |
| 290            | .260             | . 0 8 2         | .717        | .011        |
| 300            | . 300            | .115            | .970        | 134         |
| 310            | . 346            | .136            | 1.097       | 060         |
| 320            | . 484            | .235            | 1.805       | 016         |
| 330            | .587             | .264            | 2.084       | 026         |
| 340            | . 393            | . 190           | 1.552       | 070         |
| 350            | .297             | .175            | 1.200       | 116         |

### TABLE 6

### EXHAUST VENT DIFFUSION DATA

#### WIND DIRECTION 0 DEGREES

| SAMPLING |        | PERCENT OF   | EXHAUST CONCENTR | ATION  |
|----------|--------|--------------|------------------|--------|
| LOCATION | VENT 1 | VENT 2       | VENT 3           | VENT 4 |
| 1        | .007   | .000         | .030             | 1.370  |
| 2        | .306   | .116         | .356             | 1.820  |
| 3        | .000   | .000         | .031             | 1.980  |
| 4        | .082   | .000         | 6.090            | 1.030  |
| 5        | .722   | .156         | 1.720            | .429   |
| 6        | .112   | .001         | 2.000            | .630   |
| 7        | .098   | .003         | 3.230            | 1.130  |
| 8        | .007   | .004         | .015             | .114   |
| 9        | .007   | .017         | .112             | 2.500  |
| 10       | .033   | 2.140        | . 226            | .194   |
| 11       | .189   | 5.960        | .048             | .073   |
| 12       | 33.100 | 1.540        | .709             | .193   |
| 13       | .006   | .000         | .362             | 4.070  |
| 14       | .034   | .007         | .106             | .865   |
|          |        |              |                  |        |
|          | WIND   | DIRECTION 90 | DEGREES          |        |
| 1        | .008   | .089         | .008             | .014   |
| 2        | .004   | .099         | .005             | .024   |
| 3        | .048   | .123         | .730             | .157   |
| 4        | .063   | .194         | .003             | .020   |
| 5        | .189   | .414         | .004             | .003   |
| 6        | 5.880  | 3.920        | .006             | .014   |
| 7        | .838   | .644         | .005             | .021   |
| 8        | .002   | .006         | .000             | .000   |
| 9        | .032   | .068         | .004             | .051   |
| 10       | .000   | .000         | .013             | .012   |
| 11       | .006   | .304         | .003             | .000   |
| 12       | 10.500 | 7.890        | .003             | .005   |
| 13       | .668   | . 363        | 32.400           | .678   |
| 14       | 1.080  | . 294        | 4.240            | 3.680  |

# TABLE 6 (Continued)

### WIND DIRECTION 180 DEGREES

| SAMPLING |        | PERCENT OF | EXHAUST CONCENT | RATION |
|----------|--------|------------|-----------------|--------|
| LOCATION | VENT 1 | VENT 2     | VENT 3          | VENT 4 |
| 1        | 1.090  | .025       | .044            | .000   |
| 2        | 1.370  | .060       | .009            | .000   |
| 3        | .537   | .008       | 2.910           | .013   |
| 4        | .762   | .033       | .001            | .000   |
| 5        | .629   | .016       | .003            | .000   |
| 6        | .169   | .005       | .005            | .000   |
| 7        | .501   | .027       | .009            | .000   |
| 8        | .234   | .135       | .504            | .889   |
| 9        | 1.010  | .020       | .001            | .000   |
| 10       | .713   | .057       | .006            | .000   |
| 11       | 1.770  | 4.800      | .215            | .001   |
| 12       | 17.900 | .064       | .012            | .003   |
| 13       | .103   | .006       | 31.400          | .002   |
| 14       | .282   | .035       | 2.070           | 4.840  |

### WIND DIRECTION 300 DEGREES

| SAMPLING |        | PERCEN | Γ ΟΓ ΕΧΗΑυ | IST CONCENTR | ATION  |         |
|----------|--------|--------|------------|--------------|--------|---------|
| LOCATION | VENT 1 | VENT 2 | VENT 3     | VENT 3*      | VENT 4 | VENT 4* |
| 1        | .013   | .000   | .590       | 1.300        | .371   | .234    |
| 2        | .046   | .001   | .770       | 1.100        | .382   | .188    |
| 3        | .045   | .005   | .500       | .252         | 1.220  | .946    |
| 4        | .033   | .012   | 2.890      | 2.750        | .258   | .188    |
| 5        | .107   | .005   | .100       | .969         | .297   | .204    |
| 6        | .690   | .030   | 3.300      | 2.360        | .279   | .146    |
| 7        | .034   | .004   | 1.950      | 1.530        | .215   | .123    |
| 8        | .147   | .230   | .056       | .068         | 1.860  | 1.810   |
| 9        | .025   | .006   | .695       | 1.250        | .467   | .256    |
| 10       | 1.350  | 8.510  | .450       | .612         | .158   | .140    |
| 11       | 5.450  | 6.370  | .720       | .643         | .175   | .111    |
| 12       | 26.400 | .636   | .858       | .791         | .100   | .110    |
| 13       | .024   | .010   | 5.660      | 4.560        | .960   | .987    |
| 14       | .187   | .013   | .113       | .055         | .913   | .908    |

\* Measurements taken with door from plaza to Arapahoe St. closed.

### APPENDIX A

### PRESSURE DATA

#### Notes -

- Pressure coefficients are defined in section 4.3
  Pressure tap designation is explained in Figure 3
- Pressure taps found to have erroneous information have been deleted in the data.

| WIND DIRECTION   | 0     |     | TEMPERAT | TURE | 69.50 | DEGREES  | F |
|------------------|-------|-----|----------|------|-------|----------|---|
| BAROMETRIC PRESS | 25.05 | 1 N | HG V     | ELO  | CITY  | 50.67FPS |   |

| PRESSURE | MEAN        | RMS         | MAXIMUM     | HINIHUM     |
|----------|-------------|-------------|-------------|-------------|
| TAP      | PRESSURE    | PRESSURE    | PRESSURE    | PRESSURE    |
| NUMBER   | COEFFICIENT | COEFFICIENT | COEFFICIENT | COFFFICIENT |
| 137      | 454         |             |             | COLF COLEMA |
| 136      | 775         | .215        | 240         | -1 502      |
| 1 59     | 524         |             |             |             |
| 140      | 535         |             |             |             |
| 141      | 482         |             |             |             |
| 142      | 469         |             |             |             |
| 145      | 412         | .097        | - 118       | - 742       |
| 144      | 454         |             |             |             |
| 145      | - 440       | 694         | - 151       | 015         |
| 146      | 515         |             |             |             |
| 201      | .639        | 207         | 1 124       |             |
| 202      | 479         | 219         |             | 010         |
| 203      | 511         | 170         | . 995       | 560         |
| 204      | 801         | 1.45        |             | 0.000       |
| 205      | 35.0        |             | . (95       | 15/         |
| 206      | 205         |             |             |             |
| 207      | 188         |             |             |             |
| 209      |             |             | .445        | 255         |
| 200      | . 178       |             |             |             |
| 210      |             | .000        | .114        | -,495       |
| 211      | 540         |             |             |             |
| 212      | . / 39      |             |             |             |
| 212      | .032        |             |             |             |
| 213      | . 592       |             |             |             |
| 214      | . 555       |             |             |             |
| 215      | . 458       |             |             |             |
| 216      | . 344       |             |             |             |
| 217      | .230        |             |             |             |
| 218      | . 058       |             |             |             |
| 219      | 202         |             |             |             |
| 220      | . 523       | .200        | 1.269       | 178         |
| 221      | .512        |             |             |             |
| 222      | . 345       | . 152       | . 851       | 057         |
| 225      | . 390       |             |             |             |
| 224      | .516        |             |             |             |
| 225      |             |             |             |             |
| 226      | 006         |             |             |             |
| 227      | 236         | .084        | .087        | 606         |
| 229      | 606         | .110        | 271         | -1.556      |
| 229      | . 365       |             |             |             |
| 230      | . 312       |             |             |             |
| 231      | . 557       |             |             |             |
| 252      | .516        |             |             |             |
| 255      | .292        |             |             |             |
| 234      | .250        |             |             |             |
| 255      | . 154       |             |             |             |
| 256      | 040         |             |             |             |
| 257      | 542         |             |             |             |
| 258      | .075        | . 119       | . 493       | 482         |
| 259      | . 322       |             |             |             |
| 240      |             |             |             |             |
| 241      | .271        |             |             |             |
| 242      | .252        |             |             |             |
| 245      | 184         |             | 544         | - 156       |
| 244      | .017        |             |             |             |
| 2.44     |             |             |             |             |



| PRESSURE | MEAN        | RMS         | MAXIMUM     | WITHIN        |
|----------|-------------|-------------|-------------|---------------|
| TAP      | PRESSURE    | PRESSURE    | PRESSURF    | Parssigr      |
| NUMBER   | COEFFICIENT | COFFFICIENT | COFFEICIENT | CAFFEICIENT   |
| 1        | 155         | . 111       | EAA         | EVEFF ICIEIII |
| 2        | - 218       | • • • •     | . 344       |               |
| 3        | - 705       | 142         | - 207       |               |
|          | - 277       | . 142       | 29/         | -1.456        |
| -        |             |             |             |               |
|          |             |             |             |               |
|          |             |             |             |               |
| -        | 146         |             |             |               |
|          | 592         |             |             |               |
| 9        | 891         |             |             |               |
| 10       | 895         |             |             |               |
| 11       | 255         |             |             |               |
| 12       | 191         |             |             |               |
| 15       | 297         |             |             |               |
| 14       | 347         | .115        | 050         | 959           |
| 15       | 969         |             |             |               |
| 16       | -1.115      | .185        | 371         | -1.999        |
| 17       | 460         |             |             |               |
| 18       | 086         |             |             |               |
| 101      | 603         | .096        | 304         | -1,106        |
| 102      | 540         | .086        | 275         | 911           |
| 103      | 486         | .082        | 227         | 875           |
| 104      | 516         | .092        | 229         | 882           |
| 105      | 540         |             |             |               |
| 106      | 551         |             |             |               |
| 107      | 571         | .107        | 278         | -1.017        |
| 108      | 525         | .104        | 216         | 959           |
| 109      |             |             |             |               |
| 110      | 491         |             |             |               |
| 111      | 557         |             |             |               |
| 112      | 517         |             |             |               |
| 115      | 557         |             |             |               |
| 114      | 512         |             |             |               |
| 115      | 560         |             |             |               |
| 116      | 558         |             |             |               |
| 117      | 550         |             |             |               |
| 118      | 528         |             |             |               |
| 119      | 542         |             |             |               |
| 120      | 598         | . 121       | - 212       | -1.721        |
| 121      | 641         |             |             |               |
| 122      |             |             |             |               |
| 125      | 672         |             |             |               |
| 124      | - 621       |             |             |               |
| 125      | - 565       | 4.87        | - 284       | - 021         |
| 126      | - 521       |             |             |               |
| 127      | - 477       | 100         | - 180       | - 807         |
| 128      | - 449       |             |             | - 788         |
| 120      | - 768       |             |             |               |
| 150      | - 744       |             |             |               |
| 181      | - 75.4      |             |             |               |
| 182      | - 761       |             |             |               |
| 188      | - 724       |             |             |               |
| 184      | - 613       |             |             |               |
| 1 85     | - 516       |             |             |               |
| 186      | - 166       |             |             |               |
|          | . = 0 0     |             |             |               |



|          | IND DIRECTION  | 0 TE!       | PERATURE 69.5 | DEGREES F    |
|----------|----------------|-------------|---------------|--------------|
| 84       | ROMETRIC PRESS | 25.05 IN HG | VELOCITY      | 50.67FPS     |
| PRESSURE | MEAN           | RMS         | HANTHUN       |              |
| TAP      | PRESSURE       | PRESSURE    | PRESSURE      | POESSURE     |
| NUMBER   | COEFFICIENT    | COFFEICIENT | CASESICIENT   | CASECICIENT  |
| 407      | - 459          | 164         | - 361         | CULFF ICILL: |
| 409      | 410            | 357         | - 204         | 0/8          |
| 409      | - 359          | 060         | - 145         |              |
| 410      | - 405          |             |               | 04           |
| 411      | 481            |             |               |              |
| 412      | - 445          |             |               |              |
| 415      | - 454          |             |               |              |
| 414      | - 412          |             |               |              |
| 415      | 591            |             |               |              |
| 416      | 595            |             |               |              |
| 417      | 596            |             |               |              |
| 418      | 385            |             |               |              |
| 419      | 585            |             |               |              |
| 420      | 450            | 071         | - 211         | 761          |
| 421      | 455            |             | • 2 1 1       |              |
| 422      | 496            | . 158       | - 279         | - 728        |
| 425      | 410            |             | .2.3          | 123          |
| 424      | 525            |             |               |              |
| 425      | 454            | . 057       | - 227         |              |
| 426      | 404            |             |               |              |
| 427      | 375            | . 36 1      | - 175         | - 604        |
| 428      | 599            | .057        | - 212         | - 645        |
| 429      | 445            |             |               |              |
| 430      | 495            |             |               |              |
| 451      | 461            |             |               |              |
| 432      | 446            |             |               |              |
| 455      | 449            |             |               |              |
| 434      | 192            |             |               |              |
| 435      | 428            |             |               |              |
| 436      | 429            |             |               |              |
| 437      | 419            |             |               |              |
| 458      | 575            | .135        | 261           | -1 449       |
| 459      | 495            |             |               |              |
| 440      | 494            | .094        | 292           | - 826        |
| 441      | 465            |             |               |              |
| 442      | 480            |             |               |              |
| 445      | 428            | .090        | 211           |              |
| 444      | 425            |             |               | • • • •      |
| 445      | 435            | .090        | 175           | -1.360       |
| 446      | 455            |             |               |              |

TEMPERATURE 69.50 DEGREES F BAROMETRIC PRESS 25.05 IN HG VELOCITY 50.67FPS PRESSURE MEAN RMS MAXIMUM MINIMUM TAP PRESSURE PRESSURE PRESSURE PRESSURE NUMBER COEFFICIENT COEFFICIENT COEFFICIENT COEFFICIENT 245 -.250 .112 .265 -.692 246 -.472 501 -.457 . 060 -.255 -.755 302 505 .041 . 085 . 361 -.252 304 .145 .097 . 521 -. 186 505 .256 306 .209 507 308 509 . 369 .257 . 985 -.635 510 .679 511 -. 597 312 -.189 515 .001 514 . 156 515 .261 316 . 542 517 .412 518 .481 519 .408 520 -.210 .065 . 047 -. 456 521 -.057 322 .034 . 380 . 525 -.258 325 .217 524 .201 325 526 .404 527 . 356 .242 1.057 -.552 529 .517 .185 1.097 .015 329 -.418 550 -.228 351 -.000 552 . 056 355 . 155 334 . 188 355 .224 356 .235 357 .176 358 -. 555 .064 -.121 -.654 559 -.007 540 -.004 .068 . 385 -.206 541 .136 542 .149 545 .167 . 086 .505 -.096 344 .111 545 .047 .154 .575 -.446 546 .099 401 -. 574 .015 -. 510 -.415 402 -. 468 -. 188 . .... -1.021 405 -. 395 .082 -.119 -.985 404 -. 398 .084 -.087 -.905 405 -.405

WIND DIRECTION O

ŀ.i

36

-. 399

|       | WIND DIRECTION   | 2: TE*       | PERATURE 60.5: | CERREES F   |
|-------|------------------|--------------|----------------|-------------|
|       | BARCHETRIC PRESS | 24.95 115    | SE. 22174      | 5: . 72525  |
|       |                  |              |                |             |
| PRESS | PE - "E1".       | 2 M S        | WIN WIN        |             |
| TAP   | PRESSURE         | PRESSURE     | PRESSURE       | PRESSURE    |
| BER   | COEFFICIENT      | COEFF! CIENT | COEFFICIENT    | COEFFICIENT |
| ,     | 506              | . 125        | . 52 "         | - 814       |
| 2     | 226              |              |                |             |
| 3     | 546              | . 25         | . 157          | - 956       |
| 4     | 519              |              |                |             |
| 5     | - 263            |              |                |             |
| 6     | - 274            |              |                |             |
| -     | - 518            |              |                |             |
|       | - 515            |              |                |             |
| 9     | - 157            |              |                |             |
|       | - 100            |              |                |             |
|       | - 648            |              |                |             |
|       | 045              |              |                |             |
| 1 2   |                  |              |                |             |
|       |                  |              |                |             |
|       | 0=0              |              | 36             |             |
|       |                  | 150          | 171            |             |
|       | 89               |              | 525            | 59          |
|       | 52               |              |                |             |
| 18    | 361              |              |                |             |
| 101   | 405              | . 364        |                |             |
| 102   | 545              | . 362        | 144            | 650         |
| 105   | 307              | . 361        | 15             | 601         |
| 104   | 556              | . 366        | 070            | 6''         |
| 105   | 32               |              |                |             |
| .06   | 329              |              |                |             |
| 107   | 413              | .075         | 091            | 704         |
| 108   | 369              | . 385        | 101            | 746         |
| 109   | 350              | .010         | 096            | 446         |
| 110   | 406              |              |                |             |
| 111   | 316              |              |                |             |
| 112   | 524              |              |                |             |
| 113   | 517              |              |                |             |
| 114   | 292              |              |                |             |
| 115   | 355              |              |                |             |
| :16   | 559              |              |                |             |
| 117   | 355              |              |                |             |
| 1.16  | 552              |              |                |             |
| 119   | 546              |              |                |             |
| :2:   | 526              | .056         | 005            | 515         |
| 121   | 326              |              |                |             |
| 122   | 2                |              |                |             |
| 123   | 540              |              |                |             |
| 124   | 329              |              |                |             |
| :25   | 547              | . 067        | 101            | 562         |
| :26   | 52 1             |              |                |             |
| 12    | 519              | . 084        | .056           | 657         |
| 126   | 367              | .102         | .090           | 949         |
| 129   | 356              |              |                |             |
| 150   | 55 5             |              |                |             |
| 131   | 574              |              |                |             |
| : 52  | 349              |              |                |             |
| 151   | 547              |              |                |             |
| 154   | 554              |              |                |             |
| : 55  | 559              |              |                |             |
| : 36  | 554              |              |                |             |
|       |                  |              |                |             |



| PRESSURE | MEAN        | RMC         | W1       |            |
|----------|-------------|-------------|----------|------------|
| TAP      | PRESSURF    | PRESSURE    | PPFcc PF | 20555.05   |
| MBER     | COEFFICIENT | COFFFICIENT |          | TRESSURE . |
| : 37     | 352         |             |          |            |
| . 58     | - 692       |             | - 278    |            |
| . 39     | - 217       |             | 2 0      | 65.        |
| .40      |             |             |          |            |
| 141      | - 554       |             |          |            |
| : 42     | - 545       |             |          |            |
| 145      | - 540       | 16.7        |          | 6.8.2      |
| 1 4 4    | - 350       |             | 22       | 552        |
| : 45     | - 411       | * 6 *       |          | 70.        |
| :46      | - 447       |             |          | 0          |
| 201      | 525         |             | 8.2      |            |
| 2:2      | - 695       | 2.0         |          |            |
| 203      | 150         | 266         |          | 555        |
| 204      | . 222       | 183         |          |            |
| 205      | . 256       |             |          | 2          |
| 206      | 024         |             |          |            |
| 207      | - 077       | 16.4        |          | 207        |
| 208      |             |             |          | 20         |
| 209      | - 195       | 156         |          |            |
| 210      | - 515       |             |          | 2          |
| 2:*      | 585         |             |          |            |
| 2:2      | - 558       |             |          |            |
| 2.3      | - 254       |             |          |            |
| 2:4      | 181         |             |          |            |
| 2:5      | 070         |             |          |            |
| 2:6      | . 159       |             |          |            |
| 217      | 022         |             |          |            |
| 219      | 107         |             |          |            |
| 219      | 221         |             |          |            |
| 220      | 580         | 228         | 554      | -' 666     |
| 221      | 284         |             |          | . 900      |
| 222      | 059         | 145         | \$27     | - 868      |
| 223      | .041        |             |          | .095       |
| 224      | .011        |             |          |            |
| 225      |             |             |          |            |
| 226      | 151         |             |          |            |
| 227      | 203         | . 053       | 020      | - 585      |
| 220      | 324         | .059        | 149      | 547        |
| 229      | .145        |             |          |            |
| 250      | 549         |             |          |            |
| 231      | 56 1        |             |          |            |
| 252      | 081         |             |          |            |
| 255      | 000         |             |          |            |
| 234      | 015         |             |          |            |
| 235      | 061         |             |          |            |
| 256      | 149         |             |          |            |
| 237      | 252         |             |          |            |
| 250      | 443         | . 172       | .015     | -1,259     |
| 259      | 041         |             |          |            |
| 240      |             |             |          |            |
| 241      | . 020       |             |          |            |
| 242      | . 027       |             |          |            |
| 245      | 000         | . 055       | .191     | 207        |
| 244      | 157         |             |          |            |

WIND DIRECTION 20 TEMPERATURE 60.50 DEGREES F BAROMETRIC PRESS 24.95 IN HG VELOCITY 50.72FPS

| WIND DIRECTION  | 20       |     | TEMP | RATURE | 68.50 | CEGREES  | F |
|-----------------|----------|-----|------|--------|-------|----------|---|
| BAROMETRIC PRES | \$ 24.95 | 11: | HŞ   | VELOC  | : 1 4 | 50.72FPS |   |

| PRESSURE | MEAN        | RMS         | MAYTMIN     | M 7 1 7 M 7 M |
|----------|-------------|-------------|-------------|---------------|
| TAP      | PRESSURE    | PRESSURE    | PRESSURF    | Perscuer      |
| NUMBER   | COEFFICIENT | COEFFICIENT | COFFFICIENT | COEFE LAIFA   |
| 107      | 515         | .115        | - 154       | -1 ROE        |
| 409      | 441         | .115        | - 364       | -1 126        |
| 409      | 405         | .112        | - 146       | 0.75          |
| 410      | 492         |             |             |               |
| 411      | 370         |             |             |               |
| 412      | 495         |             |             |               |
| 413      | 440         |             |             |               |
| 414      | 451         |             |             |               |
| 415      | 595         |             |             |               |
| 416      | 409         |             |             |               |
| 417      | 391         |             |             |               |
| 418      | 378         |             |             |               |
| 419      | 377         |             |             |               |
| 420      | 507         | .140        | 105         | -1 225        |
| 421      | 447         | 001 005     |             |               |
| 422      | 517         | .078        | 255         | - 802         |
| 425      | 419         |             |             |               |
| 424      | 516         |             |             |               |
| 425      | 417         | .090        | 118         | -1.062        |
| 426      | 376         |             |             |               |
| 427      | 360         | .096        | 364         | -1.042        |
| 428      | 420         | .109        | 165         | -1.508        |
| 429      | 599         |             |             |               |
| 450      | 500         |             |             |               |
| 451      | 446         |             |             |               |
| 432      | 438         |             |             |               |
| 455      | 446         |             |             |               |
| 434      | 106         |             |             |               |
| 4 3 5    | 408         |             |             |               |
| 436      | 406         |             |             |               |
| 437      | 401         |             |             |               |
| 459      | 524         | . 152       | 151         | -1.462        |
| 439      | 440         |             |             |               |
| 440      | 467         | .102        | 201         | 921           |
| 441      | 465         |             |             |               |
| 442      | 459         |             |             |               |
| 445      | 446         | .157        | 007         | -1.460        |
| 444      | 596         |             |             |               |
| 445      | 457         | . 150       | 122         | -1.512        |
| 446      | 475         |             |             |               |



| PRESSURE | MEAN        | RMS         | MAXIMUM     | HINIMUM     |
|----------|-------------|-------------|-------------|-------------|
| TAP      | PRESSURE    | PRESSURE    | PRESSURE    | PRESSURE    |
| NUMBER   | COEFFICIENT | COEFFICIENT | COEFFICIENT | COEFFICIENT |
| 245      | 320         | . 38 3      | :36         | 6:9         |
| 246      | 325         |             |             |             |
| 301      | 576         | .142        | 261         | - ' . 65 '  |
| 302      |             |             | × `         |             |
| 505      | .200        | . 135       | . 720       | 195         |
| 504      | .410        | . 151       | .975        | 000         |
| 505      | .490        |             |             |             |
| 506      | . 551       |             |             |             |
| 507      | 720         |             |             |             |
| 500      | . /29       |             |             | .694        |
| 309      | . (69       | .200        | . 559       | .2          |
| 811      |             |             |             |             |
| 512      | - 005       |             |             |             |
| 818      | 003         |             |             |             |
| 514      | 479         |             |             |             |
| 515      | 599         |             |             |             |
| 316      | 678         |             |             |             |
| 517      | .768        |             |             |             |
| 518      | .802        |             |             |             |
| 519      | . 754       |             |             |             |
| 520      | 039         | .091        | . 555       | 559         |
| 521      | .254        |             |             |             |
| 522      | . 324       | .151        | . 75 '      | :49         |
| 525      | . 560       |             |             |             |
| 324      | .620        |             |             |             |
| 525      | .724        | .012        | . 759       | .688        |
| 326      | .706        |             | a - 1983    | A           |
| 527      | .657        | .206        | .205        | .046        |
| 520      | . 306       | .207        | 1.106       | 999         |
| 529      | 427         |             |             |             |
| 550      | 074         |             |             |             |
| 551      | .179        |             |             |             |
| 332      | . 364       |             |             |             |
| 884      |             |             |             |             |
| 534      |             |             |             |             |
| 336      | 594         |             |             |             |
| 557      | .511        |             |             |             |
| 358      | 219         | . 091       | .224        | 671         |
| 339      | .111        |             |             |             |
| 340      | .265        | .109        | . 686       | 000         |
| 341      | . 450       |             |             |             |
| 342      | .497        |             |             |             |
| 545      | . 559       | . 157       | 1.095       | . 152       |
| 344      | . 495       |             |             |             |
| 545      | . 326       | . 157       | . 848       | 304         |
| 346      | 086         |             |             |             |
| 401      | :25         | .015        | .075        | 265         |
| 402      | 500         | .169        | .011        | -1.307      |
| 405      | 450         | . 156       | . 020       | -1.045      |
| 404      | 442         | . 126       | 724         | -1.024      |
| 405      | 456         |             |             |             |
| 406      | 447         |             |             |             |

-mel

|         | WIND DIRECTION  | 45 TEM      | PERATURE 69.50 | CEGREES F   |
|---------|-----------------|-------------|----------------|-------------|
| 8       | AROMETRIC PRESS | 24.95 11 HG | VELOCITY       | 50.77FPS    |
|         |                 |             | -              |             |
| PRESSUR | E MEAN          | RMS         | HAXIMUM        | MINIMUM     |
| TAP     | PRESSURE        | PRESSURE    | PRESSURE       | PRESSURE    |
| NUMBER  | COEFFICIENT     | COEFFICIENT | COEFFICIENT    | COEFFICIENT |
| 1       | 281             | .198        | .472           | -1.091      |
| 2       | 254             |             |                |             |
| 3       | 229             | .194        | .616           | 977         |
| 4       | 418             |             |                |             |
| 5       | 225             |             |                |             |
| 6       | 401             |             |                |             |
| 7       | 572             |             |                |             |
|         | 545             |             |                |             |
| 9       | 558             |             |                |             |
| 10      | 566             |             |                |             |
| 11      | 686             |             |                |             |
| 12      | 704             |             |                |             |
| 15      | 698             |             |                |             |
| 14      | 604             | . 120       | 165            | -1.161      |
| 15      | 674             |             |                |             |
| 16      | 670             | .150        | 250            | -1.495      |
| 17      | 105             |             |                |             |
| 18      | . 100           |             |                |             |
| 101     | 207             | .156        | .154           | -1.011      |
| 102     | 204             | .099        | .105           | 616         |
| 105     | 152             | .088        | . 095          | 552         |
| 104     | 168             | .083        | .075           | 497         |
| 105     | 175             |             |                |             |
| 106     | 167             |             |                |             |
| 107     | 241             | .082        | .035           | 608         |
| 109     | 190             | .095        | .095           | 681         |
| 109     |                 |             |                | 2           |
| 110     | 222             |             |                |             |
| 111     | 217             |             |                |             |
| 112     | 189             |             |                |             |
| 115     | 185             |             |                |             |
| 114     | 135             |             |                |             |
| 115     | 157             |             |                |             |
| 116     | 152             |             |                |             |
| 117     | 165             |             |                |             |
| 119     | 174             |             |                |             |
| 119     | 179             |             |                |             |
| 120     | 176             | . 110       | .188           | 715         |
| 121     | 150             |             |                |             |
| 122     |                 |             |                |             |
| 123     | 132             |             |                |             |

.064

.100

.158

124

125

126

127

120

129

150

131

1 52

155

154

1 35

1 36

-.156

-.165

-.155

-.155

-.206

-.206

-.155

-.124

-.100

1-.105

-.112

-.116

-.104

| .075  | 407    | ť.       |
|-------|--------|----------|
|       |        | A.V.     |
| .035  | 609    |          |
| .095  | 681    | 1        |
|       |        | <b>F</b> |
|       |        | :        |
|       |        | ł        |
|       |        | -        |
|       |        |          |
|       |        |          |
|       |        | Å        |
| .188  | 715    |          |
|       |        |          |
|       |        |          |
|       |        |          |
| .020  | 400    |          |
| .140  | 621    |          |
| . 152 | -1.081 |          |

| 30.133340 | WC 11       |             |             |             |
|-----------|-------------|-------------|-------------|-------------|
| TID       | Barccube    | RUZ         | HAXINUH     | HINIHUH     |
| I AF      | PHESSURE    | PRESSURE    | PRESSURE    | PRESSURE    |
| TUTBER    | CUEFFICIENT | COEFFICIENT | COEFFICIENT | COEFFICIENT |
| 157       | 156         |             |             |             |
| 58        | 218         | . 386       | . 354       | 678         |
| 159       | 117         |             |             |             |
| 1 2 0     |             |             |             |             |
| 141       | 397         |             |             |             |
| 142       | 100         |             |             |             |
| 143       | 085         | .060        | .100        | 527         |
| 144       | 101         |             |             |             |
| 145       | 104         | . 364       | .116        | 595         |
| 146       | 106         |             |             |             |
| 201       | 354         | . 166       | . 069       | -1.292      |
| 202       | 766         | .167        | 540         | -1.659      |
| 205       | 746         | .174        | 291         | -1.548      |
| 204       | 745         | .185        | 313         | -1 805      |
| 205       | 616         |             |             |             |
| 206       | 478         |             |             |             |
| 207       | 374         | .197        | 276         | -1 545      |
| 209       | •           |             |             |             |
| 209       | 202         | .160        | 271         | -1 017      |
| 210       | 224         |             | ••          |             |
| 211       | - 429       |             |             |             |
| 212       | - 680       |             |             |             |
| 215       | - 657       |             |             |             |
| 214       | - 709       |             |             |             |
| 215       | - 635       |             |             |             |
| 216       | - 521       |             |             | *           |
| 217       | - 841       |             |             |             |
| 218       | - 251       |             |             |             |
| 219       | - 286       |             |             |             |
| 220       | - 634       | 24.8        |             |             |
| 221       | - 504       | .203        |             | -1.805      |
| 222       | - 748       | 224         |             |             |
| 222       | /00         | .220        |             | -1.819      |
| 223       |             |             |             |             |

.183

.145

.2:4

. 149

.224

.155

-.108

. 222

-1.057

-1.555

-1.026

-. 856

| WIND DIRECTION   | 45    | TEMPERATURE | 69.50 CE | GREES F |
|------------------|-------|-------------|----------|---------|
| BAROMETRIC PRESS | 24.95 | IN HG VELOC | ITY 50.  | TTEPS   |

224

225

226

227

229

229

230

252

235

234

-.471

`

-.259

-.257

-.226

-.565

-. 606 -.615

-.611

-.545

-. 452

-. 501

-.249

-.246

-.669

-.415

-.474

-.545

-.250

-.101

NUND

-----

. 1 .

10

#### WIND DIRECTION 45 TEMPERATURE 69.50 DEGREES F BAROMETRIC PRESS 24.95 IN HG VELOCITY 50.77FPS

| PRESSURE | MEAN        | RMS         | MAXIMUM     | HINI HILW   |
|----------|-------------|-------------|-------------|-------------|
| TAP      | PRESSURE    | PRESSURE    | PRESSURE    | PRESSURE    |
| NUMBER   | COEFFICIENT | COEFFICIENT | COEFFICIENT | COFFFICIENT |
| 437      |             | .170        | 297         | -1 615      |
| 409      | 740         | :56         | 265         | -1 645      |
| 409      | 700         | . 160       | - 185       | -1 760      |
| 410      | 355         |             |             |             |
| 411      | 219         |             |             |             |
| 412      | 254         |             |             |             |
| 415      | 244         |             |             |             |
| 414      | 555         |             |             |             |
| 415      | 469         |             |             |             |
| 416      | 624         |             |             |             |
| 417      | 672         |             |             |             |
| 418      | 676         |             |             |             |
| 419      | 656         |             |             |             |
| 420      | 215         | . 149       | 175         | - 95/       |
| 421      | 245         |             |             |             |
| 422      | 407         | . 195       | 266         | -1 178      |
| 425      | 485         |             |             | -1.113      |
| 424      | 512         |             |             |             |
| 425      | 701         | . 197       | 010         | -1 728      |
| 426      |             |             |             | 1.123       |
| 427      | 635         | 175         | - 154       | -1 420      |
| 428      | 599         | . 335       | .291        | -2 072      |
| 429      | 160         |             |             | -2.012      |
| 450      | 175         |             |             |             |
| 451      | 184         |             |             |             |
| 452      | 255         |             |             |             |
| 455      | 597         |             |             |             |
| 434      | 432         |             |             |             |
| 435      | 658         |             |             |             |
| 436      | 697         |             |             |             |
| 437      | 706         |             |             |             |
| 459      | 196         | . 368       | .058        | - 663       |
| 439      | 118         |             |             |             |
| 440      | 186         | .092        | . 119       | - 720       |
| 441      | 220         |             |             |             |
| 442      | 572         |             |             |             |
| 445      | 621         | .258        | .149        | -1.429      |
| 444      | 704         |             | • • • •     |             |
| 445      | 769         | .242        | 114         | -2.010      |
| 446      | 494         |             | •           |             |

WIND DIRECTION 45 TEMPERATURE 69.50 DEGREES F BAROMETRIC PRESS 24.95 IN HG VELOCITY 50.77FPS

| PRESSURE | MEAN        | RMC         | MAYIM       |             |
|----------|-------------|-------------|-------------|-------------|
| TAP      | PRESSURE    | PRESSURE    | PRESCURE    | PARTERIA    |
| NUMBER   | COEFFICIENT | COFFFICIENT | COFFEICIENT | CASESICIENT |
| 245      | 175         | .112        | 227         | CUEFFICIEN: |
| 246      | .020        | • • • •     | • 22 1      | ///         |
| 301      | 947         | 386         | 200         |             |
| 502      |             |             | .2.3        | -2.301      |
| 305      | . 535       | 180         | 1 195       |             |
| 504      | .607        | 185         | 1.175       | 049         |
| 305      | . 645       |             |             |             |
| 306      | .646        |             |             |             |
| 307      |             |             |             |             |
| 308      |             |             |             |             |
| 309      | .228        | . 196       | 1.055       | . 826       |
| 310      | 803         |             |             | 320         |
| 511      | -1.099      |             |             |             |
| 312      | .085        |             |             |             |
| 515      | . 491       |             |             |             |
| 514      | .687        |             |             |             |
| 315      | . 765       |             |             |             |
| 316      | .749        |             |             |             |
| 317      | . 684       |             |             |             |
| 518      | . 545       |             |             |             |
| 519      | . 152       |             |             |             |
| 320      | .005        | .171        | . 659       | 621         |
| 521      | . 421       |             |             |             |
| 322      | .521        | . 170       | 1.055       | .070        |
| 525      | . 666       |             |             |             |
| 324      | .679        |             |             |             |
| 325      |             |             |             |             |
| 326      | . 455       |             |             |             |
| 327      | .067        | . 194       | . 774       | 554         |
| 528      | -1.012      | . 575       | .265        | -2.345      |
| 529      | -1.078      |             |             |             |
| 350      | 050         |             |             |             |
| 551      | . 527       |             |             |             |
| 552      | .500        |             |             |             |
| 335      | .578        |             |             |             |
| 334      | .555        |             |             |             |
| 335      | . 490       |             |             |             |
| 336      | . 325       |             |             |             |
| 557      | 046         |             |             |             |
| 558      | 195         | . 154       | . 549       | 753         |
| 339      | .197        |             |             |             |
| 340      | . 345       | .130        | . 874       | 005         |
| 341      | .405        |             |             |             |
| 342      | .414        |             |             |             |
| 545      | . 364       | .151        | . 956       | .005        |
| 344      | . 162       |             |             |             |
| 345      | 149         | . 155       | .588        | 766         |
| 546      | 957         |             |             |             |
| 401      | 160         | .017        | 020         | 285         |
| 402      | 251         | . 155       | .258        | -1.055      |
| 403      | 205         | .171        | . 522       | -1.097      |
| 404      | 306         | .207        | . 550       | -1.264      |
| 405      | 467         |             |             |             |
| 406      | 636         |             |             |             |



|        | WIND DIRECTION   | 90 TE       | MPERATURE 68.00 | DEGREES F   |
|--------|------------------|-------------|-----------------|-------------|
|        | BAROMETRIC PRESS | 24.95 IN HG | VELOCITY        | 50.70FPS    |
|        |                  |             | -               |             |
| PRESSU | RE MEAN          | RMS         | MAXIMUM         | HINIMUM     |
| TAP    | PRESSURE         | PRESSURE    | PRESSURE        | PRESSURE    |
| NUMBER | COEFFICIENT      | COEFFICIENT | COEFFICIENT     | COEFFICIENT |
| 137    | 669              |             |                 |             |
| 138    | 606              | .077        | 58 !            | -1 111      |
| 139    | 580              |             |                 |             |
| 140    | 483              | .019        | - 44:           | - 525       |
| 141    | 552              |             |                 | . 520       |
| 142    | 743              |             |                 |             |
| 145    | 795              | 106         | - 500           | -1 262      |
| 144    | - 719            |             |                 |             |
| 145    | - 704            | 694         | - 861           | -1 040      |
| 146    | - 705            |             |                 | -1.040      |
| 201    | - 627            | 179         | - 400           | -1 000      |
| 202    | - 546            | 078         |                 |             |
| 205    | - 590            | 176         | 310             | 919         |
| 204    | - 594            |             | 550             | 906         |
| 205    | 576              | 2           |                 | 800         |
| 205    | - 599            |             |                 |             |
| 207    |                  | 100         |                 |             |
| 200    | 020              |             | 545             | 985         |
| 200    | - 640            |             |                 |             |
| 210    | 649              | . 991       | 405             | -1.145      |
| 210    | 652              |             |                 |             |
| 211    | 566              |             |                 |             |
| 2:2    | 5/1              |             |                 |             |
| 215    | 571              |             |                 |             |
| 214    | 576              |             |                 |             |
| 215    | 587              |             |                 |             |
| 216    | 507              |             |                 |             |
| 217    | 598              |             |                 |             |
| 218    | 606              |             |                 |             |
| 219    | 628              |             |                 |             |
| 220    | 555              | .000        | 268             | -1.088      |
| 221    | 544              |             |                 |             |
| 222    | 599              | .070        | 517             | 875         |
| 225    | 567              |             |                 |             |
| 224    | 570              |             |                 |             |
| 225    |                  |             |                 |             |
| 226    | 596              |             |                 |             |
| 227    | 621              | .085        | 566             | -1.042      |
| 229    | 620              | . 092       | 279             | -1.160      |
| 229    | 552              |             |                 |             |
| 230    | 526              |             |                 |             |
| 251    | 525              |             |                 |             |
| 232    | 534              |             |                 |             |
| 255    | 540              |             |                 |             |
| 234    | 552              |             |                 |             |
| 235    | 560              |             |                 |             |
| 236    | 558              |             |                 |             |
| 257    | 564              |             |                 |             |
| 258    | 556              | .099        | 269             | -1.251      |
| 259    | 210              |             |                 |             |
| 240    | 122              |             |                 |             |
| 241    | 525              |             |                 |             |
| 242    | 526              |             |                 |             |
| 245    | 524              | . 098       | 255             | -1.215      |
| 244    | 497              |             |                 |             |
|        |                  |             |                 |             |



| PRESSURE | MEAN        | RMS         | MAXIMUM     | MINIMUM     |
|----------|-------------|-------------|-------------|-------------|
| TAP      | PRESSURE    | PRESSURE    | PRESSURE    | PRESSURE    |
| MBER     | COEFFICIENT | COEFFICIENT | COEFFICIENT | COEFFICIENT |
| 1        | 744         | .158        | 258         | -1.447      |
| 2        | 334         |             |             |             |
| 3        | 295         | . 150       | .309        | 867         |
| 4        | 521         |             |             |             |
| 5        |             |             |             |             |
| 6        | - 414       |             |             |             |
| 7        | -1.055      |             |             |             |
|          | - 709       |             |             |             |
| 9        | - 598       |             |             |             |
| 10       | - 622       |             |             |             |
| 11       | - 321       |             |             |             |
| 12       | - 650       |             |             |             |
| 18       | - 546       |             |             |             |
| 14       | -1 826      | 222         | - 725       | -2.126      |
| 15       | -1.520      |             |             | 2           |
| 15       |             | 180         | - 2/5       | -1 440      |
| 10       | 040         |             | .245        |             |
| 10       | 550         |             |             |             |
| 1.6      | .404        |             | . 807       | .1 288      |
| 101      | /14         | .101        | 597         | -1.250      |
| 102      | 660         | .112        | 525         |             |
| 105      | 677         | .096        | 50/         | -1.191      |
| 104      | 669         | .105        | 525         | -1.000      |
| 105      | 657         |             |             |             |
| 106      | 641         |             |             |             |
| 107      | 687         | .000        | 402         | -1.050      |
| 108      | 604         | .090        | 204         | 951         |
| 109      | 661         |             |             |             |
| 110      | 641         |             |             |             |
| 111      | 655         |             |             |             |
| 112      | 699         |             |             |             |
| 113      | 671         |             |             |             |
| 114      | 592         |             |             |             |
| 115      | 657         |             |             |             |
| : 16     | 657         |             |             |             |
| 117      | 635         |             |             |             |
| 119      | 626         |             |             |             |
| 119      | 617         |             |             |             |
| 120      | 679         | .114        | 525         | -1.166      |
| 121      | 654         |             |             |             |
| 122      | 656         | .015        | 614         | 704         |
| 125      | 661         |             |             |             |
| 124      | 666         |             |             |             |
| 125      | 604         | .078        | 367         | 959         |
| 126      | 621         |             |             |             |
| 127      | 615         | .078        | 361         | 975         |
| 129      | 607         | .076        | 572         | 993         |
| 120      |             |             |             |             |
| 150      | - 648       |             |             |             |
| 181      | - 640       |             |             |             |
| 182      |             |             |             |             |
| 132      | - 712       |             |             |             |
| 199      | - 787       |             |             |             |
| 1 34     | - 704       |             |             |             |
| 1 3 3    |             |             |             |             |
| 56       | 0.0         |             |             |             |

WIND DIRECTION 90 TEMPERATURE 60.00 DEGREES F BAROMETRIC PRESS 24.95 IN HG VELOCITY 50.70FPS

 $\sim$ 

#### E 60.00 DEGREES F OCITY 50.70FPS

.

| WIND DIRECTION<br>BAROMETRIC PRESS | 90    | TEMPERATURE 68.00 DEGREES F |  |
|------------------------------------|-------|-----------------------------|--|
| BARUNEIRIC PRESS                   | 24.95 | IN HG VELOCITY 50.70FPS     |  |

| PRESSURE | MEAN        | RMS         | MAXIMUM     | MINIMIN     |
|----------|-------------|-------------|-------------|-------------|
| TAP      | PRESSURE    | PRESSURE    | PRESSURE    | PRESSURE    |
| NUMBER   | COEFFICIENT | COEFFICIENT | COEFFICIENT | COFFEICIENT |
| 407      | . 186       | . 123       | . 593       | - 186       |
| 408      | . 341       | . 141       | .857        | - 036       |
| 409      | .289        | .245        | . 975       | - 626       |
| 410      | .627        |             |             |             |
| 411      | 620         |             |             |             |
| 412      | 356         |             |             |             |
| 415      | 129         |             |             |             |
| 414      | .054        |             |             |             |
| 415      | . 187       |             |             |             |
| 416      | .259        |             |             |             |
| 417      | . 348       |             |             |             |
| 418      | . 434       |             |             |             |
| 419      | . 389       |             |             |             |
| 420      | 358         | . 069       | 090         | 637         |
| 421      | 142         |             |             |             |
| 422      | 018         | .084        | . 392       | 250         |
| 423      | . 155       |             |             |             |
| 424      | . 295       |             |             |             |
| 425      | . 358       | . 118       | . 769       | .029        |
| 426      | . 420       |             |             |             |
| 427      | . 376       | .223        | . 956       | 583         |
| 428      | .573        | .175        | 1.168       | .095        |
| 429      | 651         |             |             |             |
| 430      | 597         |             |             |             |
| 451      | 178         |             |             |             |
| 432      | .008        |             |             |             |
| 455      | . 142       |             |             |             |
| 434      | .467        |             |             |             |
| 435      | . 314       |             |             |             |
| 436      | . 397       |             |             |             |
| 437      | . 320       |             |             |             |
| 458      | 461         | .068        | 382         | 925         |
| 459      | 191         |             |             |             |
| 440      | .026        | .064        | . 556       | 140         |
| 441      | . 142       |             |             |             |
| 442      | .211        |             |             |             |
| 443      | .290        | . 119       | . 781       | 188         |
| 444      | . 351       |             |             |             |
| 445      | . 52 1      | . 169       | 1.099       | 284         |
| 446      | . 562       |             |             |             |

WIND

N

HIND DIRECTION 90 TEMPERATURE 60.00 DEGREES F BAROMETRIC PRESS 24.95 IN HG VELOCITY 50.70FPS

| PRESSURE | MEAN        | RMS         | MAXIMUM     | MINIMUM              |   |     |
|----------|-------------|-------------|-------------|----------------------|---|-----|
| TAP      | PRESSURE    | PRESSURE    | PRESSURE    | PRESSURE             |   |     |
| NUMBER   | COEFFICIENT | COEFFICIENT | COEFFICIENT | COEFFICIENT          |   |     |
| 245      | 521         | .098        | - 258       | -1 115               | 1 |     |
| 246      | 270         |             |             |                      |   |     |
| 501      | 615         | 194         |             | 453                  |   |     |
| 802      |             |             | • 2         | . 052                |   |     |
| EAE      | 175         |             |             |                      |   |     |
| 303      | .425        | . 157       | .892        | 020                  |   |     |
| 504      | . 509       | . 154       | . "2 "      | 069                  |   |     |
| 505      | .226        |             |             |                      |   |     |
| 506      | . 164       |             |             |                      |   |     |
| 507      | .745        | .073        | .925        | 188                  |   |     |
| 309      | 251         | .233        | . 764       | 552                  |   |     |
| 309      | 296         | .069        | . 054       | - 529                |   |     |
| 510      | 527         |             |             |                      |   |     |
| 311      | .672        |             |             |                      |   |     |
| 512      | 540         |             |             |                      |   | /   |
| 515      | 518         |             |             |                      |   | 1   |
| 514      | 482         |             |             |                      |   | 1   |
| TIE      |             |             |             |                      |   | 1   |
| 315      | . 522       |             |             |                      |   | 1   |
| 516      | .264        |             |             |                      |   |     |
| 517      | .115        |             |             |                      |   |     |
| 518      | 075         |             |             |                      |   |     |
| 319      | 291         |             |             |                      |   | 1   |
| 320      | .449        | .260        | 1.152       | 515                  |   | 1   |
| 321      | . 452       |             |             |                      |   | 8   |
| 322      | .813        | .149        | 867         | - 717                |   |     |
| 323      | . 500       |             |             | •                    |   |     |
| 524      | .214        |             |             |                      |   |     |
| 525      | - 248       |             |             |                      |   | p   |
| 826      | .245        |             | . 823       | 292                  |   | 1   |
| 827      |             |             |             |                      |   | 8   |
| 321      | 505         | .077        | . 056       | 621                  |   | 1   |
| 528      | 555         | .001        | 260         | -1.164               |   | 1   |
| 529      | .481        |             |             |                      |   | £.1 |
| 550      | . 526       |             |             |                      |   | 1   |
| 551      | . 345       |             |             |                      |   |     |
| 532      | .285        |             |             |                      |   | 1   |
| 333      | .214        |             |             |                      |   |     |
| 554      | . 1 36      |             |             |                      |   | 6   |
| 335      | .057        |             |             |                      |   |     |
| 336      | 119         |             |             |                      |   |     |
| 557      | 506         |             |             |                      |   |     |
| 339      |             |             |             |                      |   |     |
| 550      | 227         |             |             |                      |   |     |
| 3.40     | .221        |             |             |                      |   |     |
| 340      |             |             |             |                      |   |     |
| 341      | .141        |             |             |                      |   |     |
| 542      | .0          |             |             |                      |   |     |
| 545      | 016         | .079        | . 589       | 284                  |   |     |
| 344      | 149         |             |             |                      |   |     |
| 345      | 522         | .077        | . 024       | 715                  |   |     |
| 346      | 499         |             |             | - 11 <del>15</del> 0 |   |     |
| 401      |             |             |             |                      |   |     |
| 402      | 517         | .074        | - 056       | - 887                |   |     |
| 405      | - 170       | 0.07        | 176         | - 438                |   |     |
| 404      | 0.00        |             |             |                      |   |     |
| 405      |             |             |             |                      |   |     |
| 405      | .100        |             |             |                      |   |     |
| 406      | .170        |             |             |                      |   |     |

| H        | IND DIRECTION  | 150 TEM     | PERATURE 68.80 | DEGREES F      |
|----------|----------------|-------------|----------------|----------------|
| BA       | ROMETRIC PRESS | 25.00 11 HG | VELOCITY       | 51.69FPS       |
| PRESSURE | MEAN           | 2 M C       |                |                |
| TAP      | PRESSURE       | PRESS       | PPFCC PF       | Porceipe       |
| NUMBER   | COEFFICIENT    | COFFFICIENT | COFFE : CIENT  | CORFEICIEL     |
| 157      | 154            |             |                | COLFF SC. ETc. |
| : 59     | 511            | . 153       | 24             | 5.1            |
| : 59     | 270            |             |                |                |
| 140      |                |             |                |                |
| 141      | . : : 2        |             |                |                |
| : 42     | 308            |             |                |                |
| 145      | 050            | . \$65      | . 3' 2         | 240            |
| 1 1 4    | 075            |             |                |                |
| 145      | 149            | .112        | . 395          | 640            |
| :46      | 035            |             |                |                |
| 201      | 511            | . 366       | :62            | 934            |
| 202      | 24             | . 352       | ::             | 45"            |
| 205      | 268            | . : 46      | :67            | 477            |
| 204      | 255            | .042        | 101            | 450            |
| 205      | 245            |             |                |                |
| 207      | 242            |             |                |                |
| 208      | .256           |             | 44             | 441            |
| 209      | - 252          | 142         |                |                |
| 210      | - 245          | • • • 2     |                | 410            |
| 211      | 285            |             |                |                |
| 2:2      | 269            |             |                |                |
| 215      | 258            |             |                |                |
| 214      | 249            |             |                |                |
| 215      | 248            |             |                |                |
| 216      | 250            |             |                |                |
| 217      | 243            |             |                |                |
| 219      | 245            |             |                |                |
| 219      | 246            |             |                |                |
| 220      | 271            | . 051       | 059            | 599            |
| 221      | 259            |             |                |                |
| 222      | 205            | . 058       | 167            | 447            |
| 223      | 252            |             |                |                |
| 224      | 240            |             |                |                |
| 226      | - 248          |             |                |                |
| 227      | 250            | 041         | - 124          |                |
| 228      | 246            | . 045       | - 090          | - 596          |
| 229      | 274            |             |                |                |
| 230      | 265            |             |                |                |
| 251      | 258            |             |                |                |
| 232      | 256            |             |                |                |
| 233      | 252            |             |                |                |
| 234      | 252            |             |                |                |
| 235      | 255            |             |                |                |
| 256      | 252            |             |                |                |
| 237      | 252            |             |                |                |
| 258      | 265            | . 046       | 154            | 487            |
| 259      | 202            |             | 105            |                |
| 240      | 125            | . 251       | 095            | 327            |
| 241      | - 280          |             |                |                |
| 248      | - 266          | 156         | . 119          | - 181          |
| 244      | - 274          |             |                |                |
|          |                |             |                |                |

| WIND DIRECTION 150     | EmbEst. SE | 68.8: CESPEES F |
|------------------------|------------|-----------------|
| BARGMETRIC PRESS 25.00 | IN HS VELD | 11" 51.6grps    |

| PRESSURE | MEAN        | RMS         | w1, .w. w |             |  |
|----------|-------------|-------------|-----------|-------------|--|
| TAP      | PRESSURE    | PRESS       | P9555 95  | PPF 55 PF   |  |
| BER      | COEFFICIENT | COEFFICIENT |           |             |  |
|          | 72:         | . '6-       | 225       | - 324       |  |
| 2        | 256         |             |           |             |  |
| 5        | :04         | .105        | . 255     | - 671       |  |
| 1        | 249         |             |           |             |  |
| 5        | 105         |             |           |             |  |
| 6        | '89         |             |           |             |  |
| 7        | 545         |             |           |             |  |
| 8        | 554         |             |           |             |  |
| 9        | :69         |             |           |             |  |
| . 0      | 270         |             |           |             |  |
| 11       | 363         |             |           |             |  |
| :2       | 295         |             |           |             |  |
| 15       | 172         |             |           |             |  |
| 14       | 501         | .158        | 047       | - ' . 6 7 2 |  |
| 15       | 255         |             |           |             |  |
| 16       | 109         | .111        | . 46 7    | 445         |  |
| 17       | . 020       |             |           |             |  |
| 18       | .716        |             |           |             |  |
| 101      | 275         | . 34 :      | '44       | 456         |  |
| 102      | 100         | .050        | 35 t      | 56 -        |  |
| 105      | :69         | .041        | 016       | 525         |  |
| 104      | 154         | .056        | .105      | 540         |  |
| : 05     | :15         |             |           |             |  |
| 106      | 116         |             |           |             |  |
| 107      | 152         | .077        | . '56     | 552         |  |
| :08      | 175         | .142        | .209      | 967         |  |
| 109      | ·           |             |           |             |  |
| 110      | 056         |             |           |             |  |
| 111      | 240         |             |           |             |  |
| 112      | 212         |             |           |             |  |
| 115      | 175         |             |           |             |  |
| 114      | 002         |             |           |             |  |
| 115      | 111         |             |           |             |  |
|          | 097         |             |           |             |  |
| 111      | 095         |             |           |             |  |
|          |             |             |           |             |  |
| 120      | - 318       | 141         | - 12/     | - 400       |  |
| 12:      | - 170       |             |           |             |  |
| 122      |             |             |           |             |  |
| 128      | - 106       |             |           |             |  |
| 124      | - 186       |             |           |             |  |
| 125      | - 135       | 0.00        | \$22      | - 405       |  |
| 126      | - 067       |             |           |             |  |
| 127      | 21!         | 192         | . 450     | -1.009      |  |
| 129      | .056        | .164        | .670      | 485         |  |
| 129      | 240         |             |           |             |  |
| 151      | 2:0         |             |           |             |  |
| 131      | 185         |             |           |             |  |
| 1 52     | 155         |             |           |             |  |
| 155      | 115         |             |           |             |  |
| 154      | 075         |             |           |             |  |
| 1 55     | 346         |             |           |             |  |
| 1 56     | 052         |             |           |             |  |

-.352

MINO

ivi

| HIND DIRE  | CTION | 150   |    | TEMP | ERATURE | 68.80 | DECREES  | r |
|------------|-------|-------|----|------|---------|-------|----------|---|
| BAROMETRIC | PRESS | 25.00 | IN | HG   | VELOC   | ITT   | 50.69FPS | ć |

| PRESSURE | MEAN        | RMS         | MAYTHUM     |             |
|----------|-------------|-------------|-------------|-------------|
| TAP      | PRESSURE    | PRESSURE    | PRECEMPE    | RINIHUM     |
| NUMBER   | COEFFICIENT | COEFFICIENT | COFFFICIENT | COEFFICIENT |
| 407      | .098        | .171        | att         | CUEFFICIENT |
| 408      | .060        | .175        | 788         | 462         |
| 409      | 196         | .171        |             | 526         |
| 410      | 684         |             | ••••        | (27         |
| 411      | .054        |             |             |             |
| 412      | .154        |             |             |             |
| 415      | .204        |             |             |             |
| 414      | .182        |             |             |             |
| 415      | .175        |             |             |             |
| 416      | .149        |             |             |             |
| 417      | . 095       |             |             |             |
| 418      | 026         |             |             |             |
| 419      | 242         |             |             |             |
| 420      | .174        | .150        | 787         | 200         |
| 421      | . 180       |             |             | 299         |
| 422      | . 129       | .078        | 408         | 187         |
| 425      | . 150       |             |             | 197         |
| 424      | . 155       |             |             |             |
| 425      | . 054       | .087        | 515         | - 336       |
| 426      | 065         |             |             | 225         |
| 427      | 269         | .115        | 110         | 75.0        |
| 428      | 598         | .218        | - 096       | -1 677      |
| 429      | .098        |             |             | -1.0//      |
| 430      | .149        |             |             |             |
| 451      | .149        |             |             |             |
| 432      | .122        |             |             |             |
| 435      | .104        |             |             |             |
| 434      | .149        |             |             |             |
| 435      | .015        |             |             |             |
| 436      | 092         |             |             |             |
| 437      | 269         |             |             |             |
| 438      | .018        | .085        | . 485       | - 245       |
| 439      | .077        |             |             |             |
| 440      | .105        | . 06 1      | . 554       | - 088       |
| 441      | .076        |             |             |             |
| 442      | .054        |             |             |             |
| 445      | 010         | .065        | . 552       | - 101       |
| 444      | 075         |             |             |             |
| 445      | 201         | . 096       | . 065       | - 657       |
| 446      | 566         |             |             |             |
|          |             |             |             |             |



.

|         | IND DIRECTION  | 150 TEM     | PERATURE 68.80 | DEGREES F   |
|---------|----------------|-------------|----------------|-------------|
| BAI     | ROMETRIC PRESS | 25.00 IN HG | VELOCITY       | 50.69FPS    |
| RESSURE | WEAN           | 840         |                |             |
| TAP     | PRESSURE       | 381122388   | RECEUSE        | HINIWUM     |
| NUMBER  | COFFFICIENT    | COFFEICIENT | CAFEFICIENT    | PRESSURE    |
| 245     | 294            | .065        | - IAS          | COEFFICIENT |
| 246     | 106            |             |                |             |
| 501     | 597            | .180        | 127            | -1 400      |
| 302     |                |             |                |             |
| 505     | 624            | .160        | 101            | -1.445      |
| 504     | 528            | .140        | .072           | -1.266      |
| 305     | 419            |             |                |             |
| 506     | 371            |             |                |             |
| 507     | 200            | .017        | .046           | 670         |
| 500     |                |             |                |             |
| 310     | 313            | .085        | .018           | 853         |
| 511     | - 560          |             |                |             |
| 512     | - 552          |             |                |             |
| 313     | 528            |             |                |             |
| 314     | 552            |             |                |             |
| 315     | 461            |             |                |             |
| 516     | 595            |             |                |             |
| 517     | 350            |             |                |             |
| 318     | 295            |             |                |             |
| 319     | 205            |             |                |             |
| 520     | 487            | . 151       | 072            | -1.568      |
| 521     | 467            |             |                |             |
| 322     |                |             |                |             |
| 323     | 416            |             |                |             |
| 325     | 390            |             |                |             |
| 326     | - 201          |             |                |             |
| 327     | 302            | . 066       | - 087          | - 685       |
| 528     | 285            | .057        | 090            | 559         |
| 329     | 486            |             |                |             |
| 350     | 461            |             |                |             |
| 351     | 455            |             |                |             |
| 552     | 458            |             |                |             |
| 355     | 426            |             |                |             |
| 334     | 575            |             |                |             |
| 355     | 525            |             |                |             |
| 336     | 292            |             |                |             |
| 337     | . 143          |             |                |             |
| 550     | - 475          |             |                |             |
| 340     | - 454          | 117         | - 151          | -1 185      |
| 541     | 407            |             |                |             |
| 542     | 546            |             |                |             |
| 345     | 294            | . 085       | 005            | 719         |
| 344     | 255            |             |                |             |
| 345     | 251            | .066        | 042            | 758         |
| 346     | 258            |             |                |             |
| 401     | 204            | .015        | 144            | 247         |
| 402     | .201           | .167        | . 892          | 271         |
| 405     | . 192          | .160        | . 929          | 204         |
| 404     | .174           | . 155       | .920           | 176         |
| 405     | .171           |             |                |             |
| 406     | .147           |             |                |             |

| HIND D | RECTION TRIC PRESS | 0<br>24.70 In | TEMPERATURE | 71.20 DEGREES F |  |
|--------|--------------------|---------------|-------------|-----------------|--|
|        |                    |               |             |                 |  |

| PRESSURE | MEAN        | RMS         | MAXIMUM     | MET BET MET IM |
|----------|-------------|-------------|-------------|----------------|
| TAP      | PRESSURE    | PRESSURE    | PRESSURE    | PRESSURE       |
| NUMBER   | COEFFICIENT | COEFFICIENT | COEFFICIENT | COEFFICIENT    |
| 157      | 259         |             |             |                |
| 138      |             |             |             |                |
| 159      | 316         |             |             |                |
| 140      | 205         | .155        | .252        | 846            |
| 141      | 094         |             |             |                |
| 142      | 111         |             |             |                |
| 145      |             |             |             |                |
| 144      |             |             |             |                |
| 145      | 217         | .151        | .294        | 977            |
| 146      | 396         |             |             | 1000           |
| 201      | 295         | .102        | :24         |                |
| 202      | 246         | . 396       | . 029       | 720            |
| 205      |             |             |             |                |
| 204      | 246         | . :90       | . 059       | 838            |
| 205      | 278         |             |             |                |
| 206      | 266         |             |             |                |
| 207      | 220         | .060        | 015         | 520            |
| 208      | 224         | .077        | . :26       | 591            |
| 209      |             |             |             |                |
| 210      | 261         |             |             |                |
| 211      | 301         |             |             |                |
| 212      | 275         |             |             |                |
| 213      | 259         |             |             |                |
| 214      | 269         |             |             |                |
| 215      | 276         |             |             |                |
| 216      | 274         |             |             |                |
| 217      | 265         |             |             |                |
| 218      | 255         |             |             |                |
| 219      | 251         | 100 C       |             |                |
| 220      | 301         | .075        | .075        | 622            |
| 221      | 204         |             |             |                |
| 222      | 204         | . 053       | 106         | 405            |
| 223      | 297         |             |             |                |
| 224      | 295         |             |             |                |
| 225      | 200         |             |             |                |
| 220      | 206         |             |             |                |
| 221      | 201         |             |             |                |
| 220      | 284         | .961        | 069         | 627            |
| 229      | 359         |             |             |                |
| 250      | 520         |             |             |                |
| 251      | 510         |             |             |                |
| 232      | 325         |             |             |                |
| 233      | 322         |             |             |                |
| 236      | 307         |             |             |                |
| 237      | - 515       |             |             |                |
| 230      |             |             |             |                |
| 230      | - 822       |             | 480         |                |
| 230      | 522         |             | 056         | 640            |
| 239      |             |             |             |                |
| 241      |             |             |             |                |
| 242      | - 531       |             |             |                |
| 242      | 320         |             |             |                |
| 243      |             |             |             |                |
| 244      |             |             |             |                |

| WIND DIRECTION ID.     |    |                             |
|------------------------|----|-----------------------------|
| MIND DIMECTION 103     |    | TEMPERATURE 71.20 DEGREES F |
| BARCHETRIC PRESS 24.70 | IN | HG VELOCITY ST. TIFPS       |

| PRESSURE      MEAN      RMS      MAXIMUM        TAP      PRESSURE      PRESSURE      PRESSURE        NUMBER      COEFFICIENT      COEFFICIENT      COEFFICIENT        1      1022      .20T     126        2     454     126     126        3     196      .140      .250        4     211     077     609        6     220     609     217        10     285     11     579        11     579     359     217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HINIHUH<br>PRESSURE<br>OEFFICIENT<br>-1.665<br>-1.027 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| TAP      PRESSURE      PRESSURE      PRESSURE      PRESSURE        NUMBER      COEFFICIENT      COEFFICIENT <td< th=""><th>PRESSURE<br/>0EFFICIENT<br/>-1.665<br/>-1.027</th></td<> | PRESSURE<br>0EFFICIENT<br>-1.665<br>-1.027            |
| NUMBER COEFFICIENT COEFFICIENT COEFFICIENT C<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0EFFICIENT<br>-1.665<br>-1.027                        |
| 1  .622  .207 126    2 454  .140  .250    3 196  .140  .250    4 211  .140  .250    5 077  .140  .250    6 220  .140  .250    7 609  .150  .140    9 217  .100  .285    11 359  .259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.027                                                |
| 2454<br>3196140 .230<br>4211<br>5077<br>6220<br>7609<br>6513<br>9217<br>10285<br>11359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.027                                                |
| 5196140 .250<br>4211<br>5077<br>6220<br>7609<br>8515<br>9217<br>10285<br>11559<br>12559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.027                                                |
| 4 - 211<br>5077<br>6220<br>7609<br>8515<br>9217<br>10285<br>11559<br>12559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.02/                                                |
| 5277<br>6220<br>7609<br>8513<br>9217<br>10283<br>11359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 6220<br>7609<br>6513<br>9217<br>10285<br>11359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |
| 7609<br>6515<br>9217<br>10285<br>11559<br>12559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |
| •515<br>•217<br>10285<br>11559<br>12559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |
| 9217<br>10295<br>11379<br>12359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |
| 9217<br>10283<br>11379<br>12358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |
| 10295<br>11579<br>12558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |
| 12 358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 12 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |
| 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |
| 14014 .160 .462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.058                                                |
| 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |
| 16077 .114 .474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 676                                                   |
| 17009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |
| 101250 .086 .052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 758                                                   |
| 102159 .004 .211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 606                                                   |
| 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |
| 104065 .119 .542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 752                                                   |
| 105047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 106054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 107 .011 .138 .560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 421                                                   |
| 100 .056 .168 .012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 720                                                   |
| 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |
| .246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |
| 111264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 112225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 115196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 114106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 115157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 116126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 117104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 110129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 119508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 120250 .054 .126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 469                                                   |
| 121255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |
| 125102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 124157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 125110 .074 .291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 412                                                   |
| 126164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |
| 120099 .125 .425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 506                                                   |
| 129521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 150269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 131236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 152206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 155167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 134140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 155124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| 184 - 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |



| WIND DIRECTION 180     |    | TEMPERATURE | 71 | . 20 | DECOFFS  | F |
|------------------------|----|-------------|----|------|----------|---|
| BAROMETRIC PRESS 24.70 | IN | HE VELO     | 11 | ۲    | 51.11FPS |   |

| PRESSUR | RE MEAN     | RMS         | MAXIMUM     | HET N. T. PETIN |
|---------|-------------|-------------|-------------|-----------------|
| TAP     | PRESSURE    | PRESSURE    | PRESSURE    | POFSSIOF        |
| NUMBER  | COEFFICIENT | COEFFICIENT | COEFFICIENT | COFFEICIENT     |
| 407     | .148        | .155        | .555        | - 872           |
| 408     | . 055       | .117        |             | - 162           |
| 409     | .297        | .001        | 500         | - 462           |
| 410     | 351         |             |             |                 |
| 411     | . 1 52      |             |             |                 |
| 412     | .251        |             |             |                 |
| 413     | .272        |             |             |                 |
| 414     | .228        |             |             |                 |
| 415     | .246        |             |             |                 |
| 416     | .215        |             |             |                 |
| 417     | . 122       |             |             |                 |
| 418     | 065         |             |             |                 |
| 419     |             |             |             |                 |
| 420     | .079        | .175        | . 908       | - 181           |
| 421     | .125        |             |             |                 |
| 422     | . 156       | .161        | . 875       | - 104           |
| 423     | .145        |             |             |                 |
| 424     | .174        |             |             |                 |
| 425     | .076        | .123        | .514        | - 207           |
| 426     | 052         |             |             |                 |
| 427     | .257        | .079        | .545        | - 064           |
| 428     | 353         | .085        | 142         | 947             |
| 429     | 055         |             |             |                 |
| 430     | .014        |             |             |                 |
| 431     | .047        |             |             |                 |
| 452     | .075        |             |             |                 |
| 455     | .057        |             |             |                 |
| 434     | .067        |             |             |                 |
| 435     | 021         |             |             |                 |
| 436     | 114         |             |             |                 |
| 437     | 229         |             |             |                 |
| 438     | . 0 5 8     | .111        | .661        | 507             |
| 439     | .029        |             |             |                 |
| 440     | .075        | .085        | .459        | 155             |
| 441     | .036        |             | a. 1312     |                 |
| 442     | 012         |             |             |                 |
| 443     | . 571       | .075        | .608        | .087            |
| 444     | 126         |             |             |                 |
| 445     | 255         | .074        | .038        | 528             |
| 446     | 414         |             |             |                 |
|         |             |             |             |                 |



.

-

| HIND   | DIRE | CTION | 180   |    | TEMPERATURE | 71.20 | DEGREES  | F |
|--------|------|-------|-------|----|-------------|-------|----------|---|
| BAROME | TRIC | PRESS | 24.70 | IN | HG VELOC    | ITY   | 51.11FPS |   |

| PRESSURE | MEAN        | RMS         | MAXIMUM     | MINIMUM     |
|----------|-------------|-------------|-------------|-------------|
| TAP      | PRESSURE    | PRESSURE    | PRESSURE    | PRESSURE    |
| NUMBER   | COEFFICIENT | COEFFICIENT | COEFFICIENT | COEFFICIENT |
| 245      | 322         | . 369       | 111         | - 614       |
| 246      | 117         |             |             |             |
| 501      | 329         | . 386       | - 164       | - 841       |
| 302      |             |             |             |             |
| 305      |             |             |             |             |
| 304      | - 351       | 087         | ***         |             |
| 505      | - 341       |             |             |             |
| 506      | - 548       |             |             |             |
| 507      | - 358       | 100         | 178         |             |
| 508      | - 849       | 160         |             |             |
| 509      |             |             |             | /43         |
| 510      | - 510       |             |             |             |
| 511      | - 820       |             |             |             |
| 512      | - 315       |             |             |             |
| 515      | - 515       |             |             |             |
| 314      | - 521       |             |             |             |
| 515      | - 343       |             |             |             |
| 516      | - 342       |             |             |             |
| 517      | - 365       |             |             |             |
| 518      | - 385       |             |             |             |
| 519      | - 454       |             |             |             |
| 520      | - 886       |             | - 117       |             |
| 521      | - 384       |             |             | -1.019      |
| 322      | - 346       | 164         | . 167       |             |
| 325      | - 320       |             |             |             |
| 324      | - 868       |             |             |             |
| 325      | - 860       | ACR         |             |             |
| 326      | - 405       |             |             |             |
| \$27     |             |             |             |             |
| 528      | - 578       | 182         | - 121       |             |
| 529      | - 575       |             | 020         | 028         |
| 330      | - 356       |             |             |             |
| 351      | - 362       |             |             |             |
| 332      | - 357       |             |             |             |
| 355      | - 370       |             |             |             |
| 334      | - 379       |             |             |             |
| 335      | 591         |             |             |             |
| 356      | - 425       |             |             |             |
| 557      | - 449       |             |             |             |
| 358      | 580         | 096         | - 001       | -1 282      |
| 559      | 587         |             |             |             |
| 340      | 577         | 101         | - 114       | -1 111      |
| 341      | - 407       |             |             | -1.111      |
| 342      | 405         |             |             |             |
| 345      |             |             |             |             |
| 344      | - 420       |             |             |             |
| 345      | 441         | . 108       | - 122       | -1.014      |
| 346      | 388         |             |             |             |
| 401      |             |             |             |             |
| 402      | . 505       | 246         | 1 144       | - 876       |
| 405      | . 760       | 215         | 1 429       | 116         |
| 404      | .278        | 101         | AAR.        | - 203       |
| 405      | 257         |             |             |             |
| 405      | 215         |             |             |             |
|          | .2.3        |             |             |             |

| WIND DIRECTION 210     | TEMPERI | TURE 69.0 | O DEGREES F |
|------------------------|---------|-----------|-------------|
| BAROMETRIC PRESS 24.70 | It: HG  | VELOCITY  | ST.COFPS    |

| PRESSURF | MEAN        | PHC         | ML          |             |
|----------|-------------|-------------|-------------|-------------|
| TAP      | POFSSURF    | 201023399   | 20505105    | TINITUR .   |
| MAFR     | COFFFICIENT | COFFEICIENT | COFFEICIENT | PRESSURE    |
| : 57     | - 356       | COLFFICIEN  | CUEFF .CIER | COEFFIC.EN" |
| 150      | 162         |             |             |             |
| : 59     | - 241       |             | . 0         | -1288       |
| 140      |             |             |             |             |
| 141      | - 177       |             |             |             |
| 147      | - 251       |             |             |             |
| 143      | - 172       | ,           |             |             |
|          | - 345       |             |             | 5:5         |
| 145      | - 240       |             |             |             |
| 146      | - 272       | • • • •     |             | /10         |
| 201      | - 286       |             |             |             |
| 202      | - 292       |             |             |             |
| 205      | - 163       |             |             | 025         |
| 204      | - 205       | 122         |             |             |
| 205      | - 501       |             | . 192       |             |
| 206      | - 325       |             |             |             |
| 207      | - 355       | 160         |             |             |
| 208      | - 375       | 178         |             |             |
| 209      | 501         | 251         | 7/5         | - 202       |
| 210      | - 451       |             | .2          | -2.225      |
| 211      | 286         |             |             |             |
| 212      | 279         |             |             |             |
| 213      | 281         |             |             |             |
| 214      | 209         |             |             |             |
| 215      | 302         |             |             |             |
| 216      | 516         |             |             |             |
| 217      | 527         |             |             |             |
| 218      | 345         |             |             |             |
| 219      | 343         |             |             |             |
| 220      | 195         | .072        | .047        | -,475       |
| 221      | 271         |             |             |             |
| 222      | 205         | . 076       | 351         | 550         |
| 225      | 205         |             |             |             |
| 224      | 299         |             |             |             |
| 225      |             |             |             |             |
| 226      | 326         |             |             |             |
| 227      | 199         | . 084       | . 364       | -1.089      |
| 228      | 240         | .087        | .015        | 769         |
| 229      | 260         |             |             |             |
| 230      | 252         |             |             |             |
| 251      | 241         |             |             |             |
| 232      | 25!         |             |             |             |
| 255      | 265         |             |             |             |
| 254      | 277         |             |             |             |
| 235      | 316         |             |             |             |
| 256      | 321         |             |             |             |
| 257      | 346         |             | 10000       |             |
| 259      | 252         | . 052       | 051         | 464         |
| 239      | 185         |             |             |             |
| 240      |             |             |             |             |
| 241      | 236         |             |             |             |
| 242      | 247         |             |             |             |
| 245      | 157         | . 38 1      | .077        | 506         |
| 244      | 304         |             |             |             |

| WIND DIRECTION 210     | "E"PERA | T.RE 69. | CO DEGREES F |
|------------------------|---------|----------|--------------|
| BAROMETRIC PRESS 24.70 | 15. HG  | ELOCITY  | 5            |

| PRESSURE | TEAN .      | **5         | at y la la  | N111108     |
|----------|-------------|-------------|-------------|-------------|
| AP.      | PRESSURE    | PRESSURE    | PRESSURE    | PRESSURE    |
| CHBER    | COEFFICIENS | COEFFICIENT | COEFFICIENT | COEFFICIENT |
| 1        | 415         | . 49        |             | -1.175      |
| 2        | 205         |             |             |             |
| 5        | 095         | . 92        | .709        | 035         |
| 4        | 095         |             |             |             |
| 5        | 320         |             |             |             |
| 6        | 120         |             |             |             |
| 7        | 220         |             |             |             |
| 8        | . 316       |             |             |             |
| 9        | 118         |             |             |             |
| 10       | 095         |             |             |             |
| 11       | 118         |             |             |             |
| 12       | 105         |             |             |             |
| 13       | 075         |             |             |             |
| 14       | .102        | .097        | . 420       | 204         |
| 15       | .091        |             |             |             |
| 16       | .030        | .108        | .495        | 5"2         |
| 17       | 144         |             |             |             |
| 18       | . 427       |             |             |             |
| 101      | 525         | .295        | . 165       | -2.259      |
| 102      | 351         | . 150       | .510        | 955         |
| 105      | 301         | .127        | .523        | 495         |
| 104      | 035         | . 150       | .557        | 657         |
| 105      | 055         |             |             |             |
| 106      | . 006       |             |             |             |
| 107      | . 121       | . 161       | .746        | 441         |
| 108      | .289        | .208        | 1.106       | 649         |
| 109      |             |             |             |             |
| 110      | .510        |             |             |             |
| 111      | 555         |             |             |             |
| 112      | 295         |             |             |             |
| 115      | 241         |             |             |             |
| 114      | 142         |             |             |             |
| 115      | 130         |             |             |             |
| 116      | 062         |             |             |             |
| 117      | .074        |             |             |             |
| 118      | . 251       |             |             |             |
| 119      | . 300       |             |             |             |
| 120      | 205         | .077        | .098        | 642         |
| 121      | 255         |             |             |             |
| 122      |             |             |             |             |
| 125      | 175         |             |             |             |
| 124      | 115         |             |             |             |
| 125      | .020        | . 121       | .611        | 558         |
| 126      | .109        |             |             |             |
| 127      | . 557       | .177        | . 999       | 198         |
| 129      | .276        | .174        | .906        | 518         |
| 129      | 520         |             |             |             |
| 1 50     | 298         |             |             |             |
| 131      | 276         |             |             |             |
| : 52     | 261         |             |             |             |
| 155      | 247         |             |             |             |
| 1 54     |             |             |             |             |
| : 55     |             |             |             |             |
| 1 56     | 114         |             |             |             |

UNIND

1.1

|        | WIND DIRECTION   | 210 TE      | MPERATURE 69.00 | DEGREES E   |
|--------|------------------|-------------|-----------------|-------------|
|        | BAROMETRIC PRESS | 24.70 IN HG | VE: OCITY       | ST JAFPS    |
|        |                  |             |                 |             |
| PRESSU | RE MEAN          | RMS         | MAXIMUM         | HTRITHTW    |
| TAP    | PRESSURE         | PRESSURE    | PRESSURE        | PRESSURE    |
| NUMBER | COEFFICIENT      | COEFFICIENT | COEFFICIENT     | COEFFICIENT |
| 407    | 058              | . 362       | .203            | 260         |
| 409    | 306              | . 350       | . 179           | 292         |
| 409    | 021              | .046        | . 165           | 176         |
| 410    | 209              |             |                 |             |
| 41:    | . 555            |             |                 |             |
| 412    | 265              |             |                 |             |
| 415    | 020              |             |                 |             |
| 414    | 039              |             |                 |             |
| 415    | 044              |             |                 |             |
| 416    | 075              |             |                 |             |
| 417    | 096              |             |                 |             |
| 419    | 129              |             |                 |             |
| 419    | 170              |             |                 |             |
| 420    | 262              | .2:2        | .257            | -1.152      |
| 421    | 132              |             |                 |             |
| 422    | 125              | . 350       | . 367           | 349         |
| 425    | 125              |             |                 |             |
| 424    | 060              |             |                 |             |
| 425    | 147              | . 345       | . 359           | 392         |
| 426    | 159              |             |                 |             |
| 421    | 060              | .040        | .098            | 254         |
| 420    | 125              | .045        | .030            | 512         |
| 429    |                  |             |                 |             |
| 430    | 331              |             |                 |             |
| 482    | - 160            |             |                 |             |
| 4 32   | 100              |             |                 |             |
| - 33   | 142              |             |                 |             |
| 125    | 089              |             |                 |             |
| 486    | - 167            |             |                 |             |
| - 30   | 104              |             |                 |             |
| 480    |                  |             |                 |             |
| - 38   |                  |             | . 359           | 650         |

. 355

. 051

. 050

-.169 -.152 -.117

-.121 -.009

-.115

-.257

439 440

441 442

445

444 445

446

. 159

. 075

.168

. 359

-.650

-.302

-.206

-.328

HIND DIRECTION 210 TEMPERATURE 69.00 DEGREES F BAROMETRIC PRESS 24.70 IN HG VELOCITY 51.03FPS

| PRESSURE | MEAN        | <b>RM</b> C | MITTH         |             |
|----------|-------------|-------------|---------------|-------------|
| TAP      | PRESSURF    | PRESSURE    | PRECEMPE      | Parssure    |
| MUMBER   | COEFFICIENT | COFFFICIENT | COFFF : C : F | CAFECICIES. |
| 245      | 242         | 104         | -95           |             |
| 246      | 111         |             |               |             |
| 501      | - 212       | 149         |               | 101         |
| 502      |             |             |               |             |
| 505      | - 081       | 2.4.7       |               |             |
| 504      | - 121       |             | •••••         | 24.         |
| 505      | - 215       |             | • • •         | 204         |
| 306      | - 216       |             |               |             |
| 507      |             |             |               |             |
| 538      |             |             |               |             |
| 309      | - 142       |             | * 8 2         |             |
| 510      | - 275       |             |               | •••         |
| 311      | 213         |             |               |             |
| 312      | 206         |             |               |             |
| 313      | 205         |             |               |             |
| 514      | 207         |             |               |             |
| 315      | 216         |             |               |             |
| 316      | 26 1        |             |               |             |
| 517      | 257         |             |               |             |
| 318      | 245         |             |               |             |
| 319      | 263         |             |               |             |
| 320      | 124         | . : 46      | 5             | - \$2*      |
| 52 !     | 209         |             |               |             |
| 322      | 219         | . 343       | 091           | 559         |
| 525      | 201         |             |               |             |
| 324      | 255         |             |               |             |
| 525      |             |             |               |             |
| 526      | 25!         |             |               |             |
| 527      | 149         | . 060       | . : : : :     | 475         |
| 529      | 197         | . 369       | 025           | 552         |
| 529      | 200         |             |               |             |
| 330      | 201         |             |               |             |
| 551      | 210         |             |               |             |
| 352      | 217         |             |               |             |
| 333      | 224         |             |               |             |
| 334      | 241         |             |               |             |
| 335      | 244         |             |               |             |
| 336      | 250         |             |               |             |
| 537      | 265         |             |               |             |
| 330      | 250         | . 366       | :29           | 627         |
| 339      | 257         |             |               |             |
| 340      | 257         | . 066       | 000           | 541         |
| 54 !     | 244         |             |               |             |
| 342      | 242         |             |               |             |
| 343      | 117         | . 05 1      | .042          | 540         |
| 344      | 237         |             |               |             |
| 345      | 165         | . 059       | . 328         | 547         |
| 346      | 230         |             |               |             |
| 40:      | . 453       | .171        | . 988         | 263         |
| 402      | 246         | .245        | .447          | -1.514      |
| 105      | .144        | . 396       | .477          | 220         |
| 404      | .092        | . 383       | . 451         | 234         |
| 405      | 001         |             |               |             |
| 406      | 319         |             |               |             |



|        | WIND DIRECTION   | 270 TE        | MPERATURE 69.00 | DEGREES F   |
|--------|------------------|---------------|-----------------|-------------|
|        | BAROMETRIC PRESS | 5 24.70 IN HG | VE: OCITY       | ST CAFPS    |
|        |                  |               |                 | 3           |
| PRESSU | RE MEAN          | RMC           | MAYTHIN         |             |
| TAP    | PRESSURE         | PRESSURE      | PPECCUPE        | RININUR     |
| NUMBER | COFFFICIENT      | COFFEICIENT   | COFFEIGLENT     | FRESSURE    |
| : 57   | - 439            | COLITICIEN    | COEFFICIEN      | CUEFFICIENT |
| 1 38   |                  |               |                 |             |
| 139    | 266              |               |                 |             |
| 1.4.0  | .200             |               |                 |             |
| 1.4.1  | 215              |               |                 |             |
| 142    | 215              |               |                 |             |
| 1.48   | 145              |               |                 |             |
| 144    | 065              | .089          | . 366           | 350         |
| 1/5    | 504              |               |                 |             |
| 145    | 590              | -0/6          | 114             | 701         |
| 140    | 656              |               |                 |             |
| 201    | 505              | .073          | 240             | 911         |
| 202    | 286              | .056          | 090             | 465         |
| 205    | . 020            | .094          | . 46 1          | 278         |
| 204    | .090             | .108          | .568            | 247         |
| 205    | .086             |               |                 |             |
| 206    | . 146            |               |                 |             |
| 207    | . 199            | .122          | .58!            | 242         |
| 208    | .317             | .075          | .629            | 158         |
| 209    | . 394            | .264          | 1.060           | 606         |
| 210    | .660             |               |                 |             |
| 211    | 429              |               |                 |             |
| 212    | 255              |               |                 |             |
| 213    | 081              |               |                 |             |
| 214    | .068             |               |                 |             |
| 215    | .159             |               |                 |             |
| 216    | .249             |               |                 |             |
| 217    | . 356            |               |                 |             |
| 219    | .410             |               |                 |             |
| 219    | . 371            |               |                 |             |
| 220    | 179              | .063          | . 065           | 585         |
| 221    | 087              |               |                 |             |
| 222    | .017             | .089          | . 598           | 747         |
| 223    | . 159            |               |                 |             |
| 224    | .249             |               |                 |             |
| 225    |                  |               |                 |             |
| 226    | . 397            |               |                 |             |
| 227    | .506             | .245          | 1.084           | - 408       |
| 228    | .705             | . 191         | 1 549           | 178         |
| 229    | 422              |               |                 |             |
| 230    | 267              |               |                 |             |
| 251    | 115              |               |                 |             |
| 252    | 011              |               |                 |             |
| 255    | 115              |               |                 |             |
| 234    | 199              |               |                 |             |
| 235    | 250              |               |                 |             |
| 236    | 828              |               |                 |             |
| 230    | . 323            |               |                 |             |
| 280    | - 345            | 45/           |                 |             |
| 230    |                  |               |                 | 521         |
| 239    |                  |               |                 |             |
| 240    |                  |               |                 |             |
| 241    | .072             |               |                 |             |

245

244

.124

.295

.219

.075

. 621

.098



150

131

152

135

134

1 35

1 56

. 334

. 322

.210

. 085

-.009

-.129

-.204

| Contraction of Contraction | WIND M |  |
|----------------------------|--------|--|
|                            |        |  |
| gan was                    |        |  |

THE REAL PROPERTY AND ALL OF LALLE AND LALLER

| 4 |
|---|
| 9 |
| - |
|   |

|         | WIND DIRECTION  | 270 TE        | MPERATURE 69.0 | O DEGREES F |
|---------|-----------------|---------------|----------------|-------------|
|         | ANONE INIC PRES | 5 24.70 IN HG | VELOCITY       | ST. OOFPS   |
| PRESSUR | E MEAN          |               |                |             |
| TAP     | PPFSSUPF        | RES           | MAXIMUM        | HINIMUH     |
| NUMBER  | COEFFICIENT     | PRESSURE      | PRESSURE       | PRESSURE    |
| 407     | - 632           | CUEFFICIENT   | COEFFICIENT    | COEFFICIENT |
| 409     | - 618           | . 104         | 201            | -1.075      |
| 409     | 546             | - 121         | 191            | -1.184      |
| 410     | 596             | 49            | 109            | -1.372      |
| 411     | 525             |               |                |             |
| 412     | 529             |               |                |             |
| 413     | 532             |               |                |             |
| 414     | 556             |               |                |             |
| 415     | 555             |               |                |             |
| 416     | 579             |               |                |             |
| 417     | 606             |               |                |             |
| 419     | 642             |               |                |             |
| 419     | 695             |               |                |             |
| 420     | 460             | 179           |                |             |
| 421     | 551             |               | 62             | -1.150      |
| 422     | 606             | .070          |                |             |
| 423     | 586             |               | 35             | 951         |
| 424     | 500             |               |                |             |
| 425     | 608             | . 365         | - 108          |             |
| 426     | 613             |               |                | 869         |
| 427     | 572             | . 125         | - 247          |             |
| 428     | 492             | .002          | - 165          | -1.084      |
| 429     | 597             |               |                |             |
| 450     | 605             |               |                |             |
| 431     | 597             |               |                |             |
| 452     | 626             |               |                |             |
| 455     | 639             |               |                |             |
| 454     | 541             |               |                |             |
| 435     | 593             |               |                |             |
| 456     | 598             |               |                |             |
| 457     | 646             |               |                |             |
| 458     | 696             | .097          | 415            | -1.253      |
| 459     | 669             |               |                |             |
| 440     | 691             | . 100         | 384            | -1.260      |
| 441     | 692             |               |                |             |
| 442     | 651             |               |                |             |
| 443     | 461             | .076          | 199            |             |
| 115     | 547             |               |                |             |
| 447     | 492             | . 386         | 275            | -1.075      |
| 440     | - 542           |               |                |             |

| WIND DIRECT!  | ON 270       | TEMPERATURE | 69.0 | CEGREES  | F |
|---------------|--------------|-------------|------|----------|---|
| BAROMETRIC PR | ESS 24.70 1% | HG VELO     | CITY | 51.00FPS |   |

| OBECCUME | -           |             | 44.5        |             |
|----------|-------------|-------------|-------------|-------------|
| PRESSURE | REAN        | RMS         | MAXIMUM     | HINIMUH     |
| I AP     | FRESSURE    | PRESSURE    | PRESSURE    | PRESSURE    |
| NUMBER   | CUEFFICIENT | COEFFICIENT | COEFFICIENT | COEFFICIENT |
| 245      | .286        | .128        | . 759       | 554         |
| 246      | .449        |             |             |             |
| 501      | 655         | . 146       | 304         | -1.510      |
| 502      |             |             |             |             |
| 505      | 555         | . 095       | 088         | 95          |
| 504      | 569         | . 391       | 077         | 856         |
| 505      | 445         |             |             |             |
| 506      | 442         |             |             |             |
| 50 -     |             |             |             |             |
| 500      |             |             |             |             |
| 509      | 550         | .076        | 069         | 657         |
| 510      | 424         |             |             |             |
| 511      | 605         |             |             |             |
| 512      | 517         |             |             |             |
| 313      | 4/1         |             |             |             |
| 314      | 454         |             |             |             |
| 315      | 441         |             |             |             |
| 817      | 435         |             |             |             |
| 319      | 436         |             |             |             |
| 310      | - 425       |             |             |             |
| 520      | - 410       | 477         |             |             |
| 521      | - 450       |             |             | -1.050      |
| \$22     | - 408       | 15.6        |             | 600         |
| 525      | - 427       |             | 3:2         | 689         |
| 324      | - 441       |             |             |             |
| 325      |             |             |             |             |
| 326      | 422         |             |             |             |
| 327      | 306         | . 062       | - 060       | - 545       |
| 529      | 352         | . 063       | - 090       | - 647       |
| 529      | 517         |             |             |             |
| 550      | 479         |             |             |             |
| 331      | 469         |             |             |             |
| 552      | 454         |             |             |             |
| 333      | 456         |             |             |             |
| 554      | 450         |             |             |             |
| 335      | 441         |             |             |             |
| 336      | 451         |             |             |             |
| 357      | 428         |             |             |             |
| 359      | 552         | .069        | 260         |             |
| 359      | 496         |             |             |             |
| 340      | 492         | .064        | 255         | 697         |
| 541      | 486         |             |             |             |
| 342      | 401         |             |             |             |
| 345      | 354         | . 064       | 144         | 500         |
| 344      | 465         |             |             |             |
| 345      | 385         | .065        | 145         | 621         |
| 546      | 457         |             |             |             |
| 401      | 589         | .048        | 426         | 761         |
| 402      | 550         | .084        | 240         | -1.099      |
| 405      | 455         | .002        | 151         | 765         |
| 404      | 402         | . 302       | 150         | 766         |
| 405      | 568         |             |             |             |
| 406      | 569         |             |             |             |



| 5  | 5 |            |
|----|---|------------|
| 01 | Š |            |
|    | - | <b>U</b> 1 |
|    |   | -          |

| WIND DIRECTION 300     |    | TEMPERAT | TURE  | 70.00 | DEGREES  | F |
|------------------------|----|----------|-------|-------|----------|---|
| BAROMETRIC PRESS 25.05 | IN | HG       | VELOC | ITY   | 50.69FPS |   |

| PRESSURE | MEAN        | RMS         | MAXIMUM     | Se 1 PJ 1 PFt ; se |
|----------|-------------|-------------|-------------|--------------------|
| TAP      | PRESSURE    | PRESSURE    | PRESSURE    | Parssuar           |
| NUMBER   | COEFFICIENT | COEFFICIENT | COEFFICIENT | COFFFICIENT        |
| 137      | 591         |             |             |                    |
| 1 39     |             |             |             |                    |
| 159      | 306         |             |             |                    |
| 140      |             |             |             |                    |
| 141      | 541         |             |             |                    |
| 142      | 528         |             |             |                    |
| 143      | 464         | .083        | 206         | 898                |
| 144      | 448         |             |             |                    |
| 145      | 452         | .077        | 110         | 745                |
| 146      | 470         |             |             |                    |
| 201      | 804         | .224        | 314         | -1.754             |
| 202      | 117         | .140        | . 540       | 692                |
| 205      | .289        | . 162       | .072        | 297                |
| 204      | . 422       | .172        | 1.095       | 121                |
| 205      | .457        |             |             |                    |
| 206      | .551        |             |             |                    |
| 207      | .577        | .191        | 1.102       | 116                |
| 208      | . 595       | .158        | 1.042       | 069                |
| 209      | .549        | .210        | 1.217       | 252                |
| 210      | .019        |             |             |                    |
| 211      | 667         |             |             |                    |
| 212      | 072         |             |             |                    |
| 215      | .275        |             |             |                    |
| 214      | . 495       |             |             |                    |
| 215      | .591        |             |             |                    |
| 216      | . 662       |             |             |                    |
| 217      | . /15       |             |             |                    |
| 218      | . 667       |             |             |                    |
| 219      | .4/5        |             |             |                    |
| 220      | 000         | .150        | . 367       | 653                |
| 221      | .192        |             |             |                    |
| 228      | . 391       | . 165       | .915        | .015               |
| 223      | .516        |             |             |                    |
| 225      |             |             |             |                    |
| 226      | 505         |             |             |                    |
| 227      | 421         | 200         |             |                    |
| 228      | - 109       | 274         | 671         | -1 860             |
| 229      | - 572       |             |             | -1.369             |
| 250      | - 141       |             |             |                    |
| 251      | .144        |             |             |                    |
| 252      | . 522       |             |             |                    |
| 255      | . 463       |             |             |                    |
| 234      | .510        |             |             |                    |
| 255      | .537        |             |             |                    |
| 236      | .469        |             |             |                    |
| 257      | . 306       |             |             |                    |
| 258      | 271         | . 113       | . 124       | 768                |
| 259      | .095        |             |             |                    |
| 240      |             | 2           |             |                    |
| 241      | . 554       | 5           |             |                    |
| 242      | . 584       |             |             |                    |
| 245      | . 435       | .150        | . 990       | 029                |
| 244      | .405        |             |             |                    |

| WIND DIRECTION 300     |    | TE | MPERATURE 70.0 | O DEGREES | ş |
|------------------------|----|----|----------------|-----------|---|
| BAROMETRIC PRESS 25.05 | IN | HG | VELOCITY       | 50.69FPS  |   |

| PRESSURE | MEAN        | RMS         | MAXIMUM     | MINIMUM     |
|----------|-------------|-------------|-------------|-------------|
| TAP      | PRESSURE    | PRESSURE    | PRESSURE    | PRESSURF    |
| NUMBER   | COEFFICIENT | COEFFICIENT | COEFFICIENT | COEFFICIENT |
| 1        | 406         | .150        | . 095       | 928         |
| 2        | 676         |             |             |             |
| 5        | 963         | . 159       | 555         | -1.762      |
| 4        | 490         |             |             |             |
| 5        | 430         |             |             |             |
| 6        | 965         |             |             |             |
| 7        | 307         |             |             |             |
| 8        | - 469       |             |             |             |
| 9        | - 961       |             |             |             |
| 10       | 954         |             |             |             |
| 11       | - 562       |             |             |             |
| 12       | - 684       |             |             |             |
| 15       | - 895       |             |             |             |
| 14       | - 558       | 140         | 810         |             |
| 15       | - 726       |             |             |             |
| 16       | - 814       | 158         | - 871       | .1 641      |
| 17       | - 550       |             |             | -1.001      |
| 18       | - 346       |             |             |             |
| 101      | - 302       | 150         | 804         | 0.08        |
| 102      | -1 344      | . 1 3 3     | . 394       | 903         |
| 102      | - 0/5       | -219        |             | -2.089      |
| 104      |             | .209        | 114         | -1.749      |
| 105      |             | . 192       |             | -1.585      |
| 105      | - 208       |             |             |             |
| 107      | 290         | 103         |             |             |
| 107      | 3/2         | . 192       | 159         | -2.295      |
| 100      | 339         |             | 152         | 545         |
| 109      | 509         | .036        | 214         | 552         |
| 110      | 399         |             |             |             |
| 112      | 200         |             |             |             |
| 112      | -1.102      |             |             |             |
| 113      |             |             |             |             |
| 115      |             |             |             |             |
| 115      | 294         |             |             | •           |
| 110      | 293         |             |             |             |
| 110      | 312         |             |             |             |
| 110      | 343         |             |             |             |
| 120      | 3/5         | 264         |             | 1 110       |
| 120      | -1.006      | .200        |             | -2.220      |
| 121      | 910         |             |             |             |
| 122      |             |             |             |             |
| 123      | 335         |             |             |             |
| 124      | 320         |             | 244         |             |
| 125      | 3/4         | . 051       | 200         |             |
| 120      | 359         |             |             |             |
| 127      | 363         | . 052       | 211         | 544         |
| 120      |             | .05/        | 214         | 5/5         |
| 129      | 356         |             |             |             |
| 150      | -1.061      |             |             |             |
| 191      |             |             |             |             |
| 152      | 479         |             |             |             |
| 155      | 595         |             |             |             |
| 154      | 595         |             |             |             |
| 1 55     | 402         |             |             |             |
| 156      | 395         |             |             |             |



### HIND DIRECTION 500 TEMPERATURE 70.00 DEGREES F BAROMETRIC PRESS 25.05 IN HG VELOCITY 50.69FPS

| PRESSURE | MEAN        | RHS         | HAXIMUN     |             |
|----------|-------------|-------------|-------------|-------------|
| TAP      | PRESSURE    | PRESSURE    | PRESSURE    | POFSCUPF    |
| NUMBER   | COEFFICIENT | COEFFICIENT | COEFFICIENT | COFFEICIENT |
| 407      | 467         | .082        | 287         | B75         |
| 408      | 495         | . 101       | - 191       | - 087       |
| 409      | 482         | . 127       | 091         | -1 020      |
| 410      | 547         |             |             | 1.029       |
| 411      | 410         |             |             |             |
| 412      | 410         |             |             |             |
| 415      | 416         |             |             |             |
| 414      | 416         |             |             |             |
| 415      | 393         |             |             |             |
| 416      | 425         |             |             |             |
| 417      | 430         |             |             |             |
| 419      | 455         |             |             |             |
| 419      | 482         |             |             |             |
| 420      | 404         | . 060       | 211         | - 606       |
| 421      | 406         |             |             |             |
| 422      | 452         | . 055       | 279         | - 650       |
| 425      | 417         |             |             |             |
| 424      | 325         |             |             |             |
| 425      | 453         | . 056       | 225         | 642         |
| 426      | 431         |             |             |             |
| 427      | 445         | .084        | 204         | 854         |
| 428      | 534         | .114        | 224         | -1.460      |
| 429      | 395         |             |             |             |
| 450      | 414         |             |             |             |
| 451      | 409         |             |             |             |
| 432      | 429         |             |             |             |
| 455      | 455         |             |             |             |
| 434      | 259         |             |             |             |
| 435      | 404         |             |             |             |
| 436      | 400         |             |             |             |
| 457      | 440         |             |             |             |
| 438      | 515         | .079        | 507         | 955         |
| 439      | 485         |             |             |             |
| 440      | 545         | .074        | 556         | 879         |
| 441      | 475         |             |             |             |
| 442      | 439         |             |             |             |
| 443      | 384         | .064        | 160         | 604         |
| 444      | 300         |             |             |             |
| 445      | 449         | .089        | 185         | 854         |
| 446      | 517         |             |             |             |

-

WIND DIRECTION 300 TEMPERATURE 70.00 DEGREES F BAROMETRIC PRESS 25.05 IN HG VELOCITY 50.69FPS

| PRESSURE | MEAN        | RMS         | MAXIMUM     | MINIMUM     |
|----------|-------------|-------------|-------------|-------------|
| TAP      | PRESSURE    | PRESSURE    | PRESSURE    | PRESSURE    |
| NUMBER   | COEFFICIENT | COEFFICIENT | COEFFICIENT | COEFFICIENT |
| 245      | .294        | .163        | 1.065       | 384         |
| 246      | .198        |             |             |             |
| 301      | 505         | .157        | 034         | -1.405      |
| 502      |             |             |             |             |
| 505      | 547         | .168        | . 024       | -1.471      |
| 304      | 556         | .166        | . 024       | -1.571      |
| 505      | 581         |             |             |             |
| 306      | 608         |             |             |             |
| 307      | 642         | .075        | 405         | -1.017      |
| 308      |             |             | 0.000       |             |
| 509      | 577         | .134        | 126         | -1.255      |
| 310      | 573         |             |             |             |
| 511      | 537         |             |             |             |
| 312      | 607         |             |             |             |
| 515      | 568         |             |             |             |
| 314      | 545         |             |             |             |
| 315      | 520         |             |             |             |
| 316      | 553         |             |             |             |
| 517      | 557         |             |             |             |
| 318      | 555         |             |             |             |
| 519      | 525         |             |             |             |
| 320      | 635         | .159        | 250         | -1 245      |
| 321      | 585         |             |             |             |
| 322      | 599         | .106        | 299         | -1.192      |
| 523      | 518         |             |             |             |
| 324      | 518         |             |             |             |
| 325      |             |             |             |             |
| 326      | 505         |             |             | •           |
| 527      | 509         | .142        | 160         | -1.465      |
| 528      | 565         | .171        | 205         | -1 725      |
| 329      | 540         |             |             |             |
| 330      | 646         |             |             |             |
| 331      | 579         |             |             |             |
| 552      | 568         |             |             |             |
| 333      | 526         |             |             |             |
| 334      | 545         |             |             |             |
| 335      | 525         |             |             |             |
| 336      | 488         |             |             |             |
| 357      | 499         |             |             |             |
| 339      | 641         | .177        | 275         | -1.571      |
| 359      | 575         |             |             |             |
| 340      | 582         | .122        | 268         | -1.255      |
| 541      | 591         |             |             |             |
| 342      | 556         |             |             |             |
| 545      | 551         | .140        | 254         | -1.264      |
| 344      | 541         |             |             |             |
| 345      | 527         | . 152       | 204         | -1.614      |
| 546      | 579         |             |             |             |
| 401      | 10100 1000  |             |             |             |
| 402      | 447         | . 062       | - 209       | 678         |
| 405      | 599         | . 065       | 175         | - 612       |
| 404      | 417         | .066        | - 175       | - 650       |
| 405      | - 414       |             |             |             |
| 406      | 418         |             |             |             |
|          |             |             |             |             |



| WIND DIRECTION 330     | TEMPERA | TURE 68.5 | DEGREES  | F |
|------------------------|---------|-----------|----------|---|
| BAROMETRIC PRESS 25.05 | IN HG   | VELOCITY  | 50.62FPS |   |

|          |             | -           |             |             |
|----------|-------------|-------------|-------------|-------------|
| PRESSURE | MEAN        | RMS         | MAXIMUM     | MINIMUM     |
| IAP      | PRESSURE    | PRESSURE    | PRESSURE    | PRESSURE    |
| NURBER   | COEFFICIENT | COEFFICIENT | COEFFICIENT | COEFFICIENT |
| 157      | 574         | 2122        |             |             |
| 158      | 672         | .162        | 150         | -1.421      |
| 159      | 651         |             |             |             |
| 140      | Sec. 2      |             | 14 A. A. A. |             |
| 141      | 417         |             |             |             |
| 142      | 407         |             |             |             |
| 145      | 36 1        | .088        | 062         | 848         |
| 144      | 352         |             |             |             |
| 145      | 369         | .082        | 042         | 921         |
| 146      | 400         |             |             |             |
| 201      | 121         | .100        | . 425       | -1.271      |
| 202      | .401        | .212        | .968        | 284         |
| 203      | .665        | .211        | 1.255       | . 021       |
| 204      | .640        | .195        | 1.267       | . 021       |
| 205      | . 591       |             |             |             |
| 206      | .562        |             |             |             |
| 207      | .437        | .172        | 1.009       | 501         |
| 209      | .460        | .054        | . 681       | 098         |
| 209      | 086         | .187        | .556        | - 603       |
| 210      | 895         |             |             |             |
| 211      | 216         |             |             |             |
| 212      | . 351       |             |             |             |
| 213      | .607        |             |             |             |
| 214      | . 696       |             |             |             |
| 215      | .681        |             |             |             |
| 216      | .659        |             |             |             |
| 217      | .550        |             |             |             |
| 219      | . 500       |             |             |             |
| 219      | 195         |             |             |             |
| 220      | .179        | 285         | 062         | - 505       |
| 221      | .481        |             |             | 590         |
| 222      | .517        | 200         | 1 117       | - 418       |
| 225      | .574        |             |             |             |
| 224      | 535         |             |             |             |
| 225      |             |             |             |             |
| 226      | 208         |             |             |             |
| 227      | - 220       | 178         | 151         | . 770       |
| 228      | -1,160      | 545         | - 018       | -2 710      |
| 229      | - 458       |             |             | -2.119      |
| 230      | .065        |             |             |             |
| 251      | 796         |             |             |             |
| 252      | 450         |             |             |             |
| 255      | 442         |             |             |             |
| 254      | 421         |             |             |             |
| 285      | 828         |             |             |             |
| 236      | 181         |             |             |             |
| 287      | - 274       |             |             |             |
| 250      | - 105       | 157         | 447         | - 645       |
| 250      | 105         |             | .44/        | 642         |
| 239      | . 183       |             |             |             |
| 240      | 810         |             |             |             |
| 241      | . 516       |             |             |             |
| 242      | . 506       |             |             |             |
| 245      | .268        | .112        |             | 020         |
| 244      | .141        |             |             |             |

| WIND DIRECTION 350     |    | TEMPERAT | URE  | 68.50 | DEGREES  | ş |
|------------------------|----|----------|------|-------|----------|---|
| BAROMETRIC PRESS 25.05 | IN | NG VI    | ELOC | 174   | 50.62FPS |   |

| PRESSURE | MEAN        | RHS         | HAXINUN     | WINI WUW    |
|----------|-------------|-------------|-------------|-------------|
| TAP      | PRESSURE    | PRESSURE    | PRESSURE    | PRESSURE    |
| NUMBER   | COEFFICIENT | COEFFICIENT | COEFFICIENT | COEFFICIENT |
| 1        | 259         | .149        | .415        | 765         |
| 2        | 601         |             |             |             |
| 5        | 007         | .150        | 455         | -1.904      |
| 4        | 408         |             |             |             |
| 5        | 642         |             |             |             |
| 6        | 895         |             |             |             |
| 7        | 078         |             |             |             |
|          | 511         |             |             |             |
| 9        | 926         |             |             |             |
| 10       | 928         |             |             |             |
| 11       | 350         |             |             |             |
| 12       | 102         |             |             |             |
| 15       | 914         |             |             |             |
| 14       | .015        | .143        | .498        | 555         |
| 15       | 297         |             |             |             |
| 16       | -1.010      | .165        | 474         | -1.015      |
| 17       | 426         |             |             |             |
| 18       | 246         |             |             |             |
| 101      | 805         | .180        | 392         | -1.875      |
| 102      | 984         | .198        | 475         | -2.555      |
| 105      | 957         | .177        | 515         | -1.806      |
| 104      | 941         | .210        | .105        | -2.442      |
| 105      | 605         |             |             |             |
| 100      | 601         |             |             |             |
| 107      | 552         | .210        | .157        | -1.403      |
| 108      | 431         | .186        | .157        | -1.318      |
| 109      |             |             |             |             |
|          | 410         |             |             |             |
| 112      | 022         |             |             |             |
| 118      |             |             |             |             |
| 114      |             |             |             |             |
| 115      |             |             |             |             |
| 116      | - 665       |             |             |             |
| 117      | - 478       |             |             |             |
| 118      | - 580       |             |             |             |
| 119      | 574         |             |             |             |
| 120      | 905         | .187        | 265         | -2.458      |
| 121      | 901         |             |             |             |
| 122      |             |             |             |             |
| 125      | 786         |             |             |             |
| 124      | 602         |             |             |             |
| 125      | 495         | . 169       | .067        | -1.528      |
| 126      | 502         |             |             |             |
| 127      | 356         | .106        | .047        | 954         |
| 128      | 500         | .105        | 127         | -1.591      |
| 129      |             |             |             | ···         |
| 150      | -1.019      |             |             |             |
| 151      | -1.026      |             |             |             |
| 152      | 858         |             |             |             |
| 155      | 620         |             |             |             |
| 154      | 452         |             |             |             |
| 1 55     | 589         |             |             |             |
| 156      | 356         |             |             |             |

WIND

### WIND DIRECTION 330 TEMPERATURE 60.50 DEGREES F BAROMETRIC PRESS 25.05 IN HG VELOCITY 50.62FPS

|   | PRESSURE | MEAN        | 986         |             |             |
|---|----------|-------------|-------------|-------------|-------------|
|   | TAP      | PPESSUPE    | PRESSURE    | MUMIXAM     | MINIMUM     |
|   | NUMBER   | COFFFICIENT | FRESSURE    | PRESSURE    | PRESSURE    |
|   | 407      | - 374       | CUEFFICIENT | COEFFICIENT | COEFFICIENT |
|   | 408      | - 340       | .043        | 225         | 567         |
|   | 409      | - 289       | .045        | 175         | 549         |
|   | 410      | - 313       | .04/        | 140         | 501         |
|   | 411      | - 377       |             |             |             |
|   | 412      | 541         |             |             |             |
|   | 415      | 550         |             |             |             |
|   | 414      | - 529       |             |             |             |
|   | 415      | - 295       |             |             |             |
|   | 416      | 512         |             |             |             |
|   | 417      | 506         |             |             |             |
|   | 418      | 305         |             |             |             |
|   | 419      | 303         |             |             |             |
|   | 420      | 354         | 670         |             |             |
|   | 421      | 330         |             | 055         | 975         |
|   | 422      | 409         | . 049       | - 248       |             |
|   | 423      | 324         |             | 243         | 617         |
|   | 424      | 250         |             |             |             |
|   | 425      | 340         | .040        | - 205       | 463         |
| 1 | 426      | 301         |             | .205        | 40/         |
|   | 427      | 286         | .048        | - 129       | - 516       |
|   | 428      | 316         | . 053       | - 162       | - 688       |
|   | 429      | 400         |             |             |             |
|   | 430      | 392         |             |             |             |
|   | 451      | 390         |             |             |             |
|   | 432      | 349         |             |             |             |
|   | 455      | 519         |             |             |             |
|   | 434      | 182         |             |             |             |
|   | 435      | 299         |             |             |             |
|   | 436      | 505         |             |             |             |
|   | 437      | 301         |             |             |             |
|   | 458      | 457         | .074        | 205         | 906         |
|   | 459      | 356         |             |             |             |
|   | 440      | 359         | .049        | 219         | 616         |
|   | 441      | 298         |             |             |             |
|   | 442      | 305         |             |             |             |
|   | 445      | 294         | .043        | 149         | 475         |
|   | 444      | 278         |             |             |             |
|   | 445      | 310         | . 051       | 155         | 559         |
|   | 446      | 517         |             |             |             |

WIND DIRECTION 330 TEMPERATURE 60.50 DEGREES F BAROMETRIC PRESS 25.05 IN HG VELOCITY 50.62FPS

| PRESSURE | MEAN        | RMS         | MAYTHUM     |             |
|----------|-------------|-------------|-------------|-------------|
| TAP      | PRESSURE    | PRESSURE    | PRESSURE    | PESSURE     |
| NUMBER   | COEFFICIENT | COEFFICIENT | COEFFICIENT | COFFFICIENT |
| 245      | 094         | .162        | .642        | - 654       |
| 246      | 247         |             |             |             |
| 501      | 379         | .045        | 201         | 645         |
| 502      |             |             |             |             |
| 503      | 172         | .042        | .020        | 597         |
| 504      | 155         | .048        | .044        | 505         |
| 305      | 158         |             |             |             |
| 306      | 204         |             |             |             |
| 307      | 538         | .106        | 225         | -1.050      |
| 308      | 2·····4     |             |             |             |
| 309      | -1.119      | . 22 1      | 506         | -1.959      |
| 510      | 328         |             |             |             |
| 511      | 306         |             |             |             |
| 512      | 265         |             |             |             |
| 515      | 214         |             |             |             |
| 316      | 170         |             |             |             |
| 315      | 177         |             |             |             |
| 817      | 236         |             |             |             |
| 319      | 00/         |             |             |             |
| 519      |             |             |             |             |
| 320      | - 272       | 440         |             |             |
| 321      | - 228       |             | 0/0         | 725         |
| 322      | - 274       | 068         |             | 241         |
| 325      | - 222       |             | 025         | /01         |
| 324      | - 350       | 1 m         |             |             |
| 325      |             |             |             |             |
| 326      | 912         |             |             |             |
| 327      | 911         | 200         | - 550       | -1 854      |
| 528      | 418         | . 157       | 113         | -1 277      |
| 329      | 316         |             |             |             |
| 330      | 267         |             |             |             |
| 351      | 240         |             |             |             |
| 332      | 225         |             |             |             |
| 355      | 275         |             |             |             |
| 334      | 362         |             |             |             |
| 335      | 632         |             |             |             |
| 336      | 791         |             |             |             |
| 557      | 835         |             |             |             |
| 358      | 345         | . 052       | 165         | 647         |
| 339      | 235         |             |             |             |
| 340      | 251         | .070        | .013        | 647         |
| 341      | 234         |             |             |             |
| 542      | 508         |             |             |             |
| 545      | 471         | .175        | .002        | -1.529      |
| 344      | 619         |             |             |             |
| 345      | 645         | .184        | 176         | -1.586      |
| 346      | 446         |             |             |             |
| 401      | 502         | .009        | 268         | 621         |
| 402      | 585         | .094        | 005         | 906         |
| 403      | 317         | .072        | 064         | 670         |
| 404      | 32 (        | .060        | -,144       | 585         |
| 405      | - 515       |             |             |             |
|          | 309         |             |             |             |



.



Figure 1. Plan View of Meteorological Wind Tunnel



Figure 2. Site Plan for Telephone Building



Taps 17 and 18 on Side Zero are Located Behind Grillwork on Building Sides I and 4 Respectively



Figure 3a. Pressure Tap Locations



Figure 3b. Pressure Tap Locations



Figure 3c. Pressure Tap Locations





Figure 5. Pressure Switch Installed in the Model



Figure 6. Data Sampling Time Verification

18. 16. 14

E²

12. 10, L 2.  $\circ$ 3. 4. U<sup>n</sup> 5. 6.

Figure 7. Typical Hot Wire Calibration

۱



Figure 8a. Mean Velocity Profiles Approaching the Model


Figure 8b. Mean Velocity Profiles Approaching the Model



Figure 9. Turbulence Intensity Profiles



FLUID MECHANICS PROGRAM

PRESSURE COEFFICIENT (R.M.S.)

Figure 10a. Pressure Coefficients for Air Door 1



Figure 10b. Pressure Coefficients for Air Door 1



Figure 11a. Pressure Coefficients for Air Door 2



Figure 11b. Pressure Coefficients for Air Door 2



Figure 12a. Pressure Coefficients for Corner Door Side 2



Figure 12b. Pressure Coefficients for Corner Door Side 2



Figure 13a. Pressure Coefficients for Corner Door Side 3



Figure 13b. Pressure Coefficients for Corner Door Side 3







τ.

Figure 14b. Pressure Coefficients for Corner Door Side 2-3

76

· · · · · · · · ·