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ABSTRACT 

 

ANGUS CATTLE AT HIGH ALTITUDE: PULMONARY ARTERIAL PRESSURE, 

ESTIMATED BREEDING VALUE AND GENOME-WIDE ASSOCIATION STUDY 

 

In high altitude states such as Colorado, New Mexico, Utah and Wyoming, hypoxia-induced 

bovine pulmonary hypertension (PH) commonly referred to as “brisket disease” or “high altitude 

disease (HAD)”, has been observed within the cattle industry. This disease is a major cause of 

morbidity for beef cattle ranches and feedyards above 1500 m and contributed to an estimated 

$60 million (based on cattle price of $800/head) loss each year in beef herds at high altitude of 

the United States. This disease in humans and animals is a response to hypoxia, which results in 

pulmonary vasoconstriction, vascular remodeling, elevated pulmonary arterial pressure (PAP), 

pulmonary hypertension, right heart ventricular hypertrophy, and finally death from congestive 

heart failure. Due to the close physiological relationship between HAD and PAP, this 

measurement has been used as an indicator trait for studying HAD. The objectives of this study 

were to explore the phenotypic and genetic characteristics of various yearling PAP phenotypes, 

develop multivariate models for genetic evaluation of yearling PAP phenotypes, conduct 

genome-wide association studies (GWAS) on yearling PAP phenotypes and performance traits 

and evaluate the genomic relationships among traits. 

Yearling PAP measurements (42.45 ± 0.56 mmHg) and performance phenotypes were 

collected from Angus cattle born from 1993 to 2015 at John E. Rouse Colorado State University 

Beef Improvement Center (CSU-BIC, 2,170 m in elevation). Beside the non-transformed 

yearling PAP measurements (RAW), power-transformed PAP measurements (PT), an ordinal 
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three-category phenotype (CAT3), an ordinal two-category phenotype (CAT2) were investigated 

in this study. The PT (10000×PAP-2) was determined via Box-Cox analysis, the CAT3 

observations were defined as low risk (PAP < 41mmHg), moderate risk (41mmHg ≤ PAP ≤ 

49mmHg) and high risk (PAP > 49mmHg) for HAD. The CAT2 observations were constructed 

by combining low and moderate risk categories of CAT3. Performance traits included birth 

weight (BWT; 36.21 ± 0.50 kg), weaning weight (WW; 213.88 ± 0.34 kg), post-weaning gain 

(PWG; 127.29 ± 0.88 kg) and yearling weight (YW; 344.85 ± 1.10 kg). Genotype data on 2,765 

Angus cattle born from 1997 to 2015 in the CSU-BIC were merged and used in this study. Most 

individuals were genotyped using various formats of Illumina Bovine SNP50 Beadchip version 2 

assays (54,609) over three year-groups (i.e. 2013, 2014 and 2015) and in two labs (i.e. Zoetis and 

GeneSeek), and with a subset (n=65) steers genotyped in 2013 using Illumina BovineHD 

BeadChip (777,962 SNP) through GeneSeek (Lincoln, NE). 

The fixed effects in the models for yearling PAP phenotypes included sex, age of dam, PAP 

measurement date and age at PAP measurement as a covariate. For performance traits, fixed 

effects included sex, age of dam, age of measurements (covariate) and contemporary groups. 

Significance of fixed effects was tested using log-likelihood ratio test from generalized linear 

models and maximum likelihood method. Univariate linear and threshold models were applied to 

estimate heritability for yearling PAP phenotypes (i.e. RAW, PT, CAT3 and CAT2), and 

bivariate and multivariate linear and threshold models were used to obtain genetic correlations 

between yearling PAP phenotypes and performance traits, and between yearling PAP in different 

sex categories.  

Deregressed EBV (DEBV) and associated reliability of various yearling PAP phenotypes 

and performance traits were developed from their EBV and accuracy from multivariate animal 
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models and used as dependent variables in GWAS. The linear models for GWAS were executed 

using Bayes B and Bayes C methods. The percentage of genetic variance of specific trait 

explained by a genomic window (~ 1 Mb) was applied to identify significant QTL regions. The 

SNP effects on each trait from GWAS were obtained to construct associated weight matrix 

(AWM) and calculate SNP effect based genetic correlation between yearling PAP phenotypes 

and performance traits. 

The estimated heritabilities were 0.24, 0.24, 0.25, and 0.32 for RAW, PT, CAT3 and CAT2, 

respectively. Sire EBV accuracies from univariate models of RAW, PT, CAT3 and CAT2 ranged 

from 0.03 to 0.67, 0.03 to 0.68, 0.01 to 0.65 and 0.01 to 0.58 with means of 0.31, 0.31, 0.27 and 

0.21, respectively (pooled sd = 0.13). The absolute genetic correlations between them were 

above 0.91, and the rank correlations between EBV from RAW and PT, CAT3 or CAT2 were 

0.92, 0.84 and 0.77, respectively. The RAW, CAT3 and CAT2 had a downward sloping genetic 

trend, and the PT (the inverse transformation of PAP) has an upward sloping genetic trend that 

consistent with the other PAP phenotypes’ genetic trend. The estimated heritability of yearling 

PAP phenotypes of bulls were significantly different (P < 0.05) from that of heifers. Genetic 

correlations between yearling PAP phenotypes in bulls and heifers were 0.82, 0.79, 0.96 and 

0.87, and EBV rank correlations were 0.94, 0.93, 0.99 and 0.96 for RAW, PT, CAT3 and CAT2, 

respectively. Results suggested violation of assumptions in linear modeling had limited influence 

on genetic evaluation results, and losses in EBV accuracy and some re-ranking of sires was 

observed in ordinal categorical phenotypes compared to continuous PAP scores. The non-

transformed yearling PAP measurements were preferred in genetic evaluation of PAP 

measurements because of its similar genetic heritability with PT, higher accuracy than 

categorical phenotypes and easier interpretation. Ordinal categorical phenotypes can be 
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alternative dependent variables in studying PAP, however, they would cause some re-ranking of 

sires related to non-transformed PAP measruments. The PAP phenotypes in different sexes were 

identified genetically un-identical (P < 0.05). However, it is not necessary to treat yearling PAP 

as separate traits by sex in genetic evaluation because the EBV from all PAP and PAP of 

different sexes were highly correlated and would yield similar rank of animals.  

The estimated genetic correlations between various yearling PAP phenotypes and BWT, 

WW, PWG, YW and MILK ranged from 0.22 to 0.27, 0.16 to 0.22, 0.03 to 0.16, 0.11 to 0.20, 

and 0.07 to 0.16 respectively. The average EBV accuracy of yearling PAP phenotypes was 

improved by 0.011 (sd = 0.0026; 7.20%) and 0.0018 (sd=0.0021, 1.15%) in multivariate 

(including PAP, BWT, WW, PWG) and bivariate models (including PAP and YW), respectively. 

This multivariate model was preferred in estimating EBV for yearling PAP phenotypes, since it 

would increase the accuracy of the EBV and the number of animals used in GWAS.  

We identified 4, 12 and 9 windows (1-Mb) associated with RAW, CAT3 and CAT2, 

respectively. The majority of these lead-SNP (with the highest model frequency in identified 

window) resulted in significant (P < 0.05) additive effects, and only one lead-SNP had 

significant dominant effect. This demonstrated the polygenetic characteristics of yearling PAP 

phenotypes, additive effects of most of yearling PAP phenotypes associated SNP and dominant 

effects of limited number of yearling PAP phenotypes associated SNP. Five concordant windows 

located on chromosome 7, 11, 12, 15 and 20 were identified across the PAP phenotypes when 

considering top 2% windows of each phenotype. Gene enrichment and ontology analysis 

suggested these windows were related to ion binding and transportation, inflammation, innate 

immunity and cell proliferation mechanisms. This gave evidences of the identified QTL’s 

association with hypoxia-induced elevated PAP in cattle. 
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Twenty-two windows were identified to be associated with performance traits (i.e. BWT, 

WW, PWG, YW, MILK), which illustrated the polygenetic characteristics of these traits. Seven 

of them located on chromosome 7, 14, 20 and X were pleiotropic across these performance traits. 

Gene enrichment and ontology of these windows clustered gene functions in categories such as 

adipose tissue development and innate immunity.  

 Only two windows, located on chromosome 7 at 93 Mb and Chromosome 20 at 4 Mb, were 

recognized as pleiotropic between yearling PAP phenotypes and performance traits. Low to 

moderate SNP-based genetic correlation were identified between yearling PAP phenotypes and 

performance traits, and the SNP-based genetic correlation explained 61 % variation of pedigree-

based genetic correlation. Results suggested SNP effects could be used to estimate genetic 

correlation between traits. Genes in two pleiotropic windows and AWM have roles in 

intracellular transportation, cellular metabolism, inflammatory, hypoxia response and cell 

proliferation, which demonstrated the effects of SNP in AWM on PAP phenotypes. Our findings 

will improve the understandings of biological process involving health and growth in Angus 

cattle managed at high altitude, and also help genetic improvement in these cattle against PH and 

HAD. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background 

There is economic relevance to high altitude disease (HAD), with an incidence of 3% to 5% 

typically in native cattle managed at high altitude (Holt and Callen, 2007), and about 10% to 

40% of cattle when they were moved from low altitude to high altitude (Grover et al., 1963, Will 

et al., 1970). Therefore this disease would lead to economic loss in high altitude states such as 

Colorado, New Mexico, Utah and Wyoming in the United States. 

High altitude disease in humans and animals is a consequence of response to hypoxia in high 

altitude. In response to alveolar hypoxia, the pulmonary artery constricts resulting in 

hypertension, right heart ventricular hypertrophy, vascular remodeling, and death from 

congestive heart failure (Holt and Callan, 2007). Therefore, pulmonary hypertension is one of the 

important characteristics for HAD, and it is typically diagnosed using measurement of 

pulmonary arterial pressure (PAP). The measurement of PAP has been used as indicator trait for 

selection against HAD, and reported to be moderately heritable in cattle (with heritability 

ranging from 0.25 to 0.46; Enns et al., 1992; Shirley et al., 2008; Crawford et al., 2016). Previous 

results were based on the PAP measures without studying the data structure and potential 

transformation needs, or the potential genetic differences among PAP measures at different 

environments (e.g. age and sex). However, violation of model assumptions may influence the 

analyses and results (Maas and Hox, 2004; Nimon, 2012;), and different genetic structure of PAP 

may be associated with different environmental situations (Holt and Callen, 2007; Zeng et al., 

2015). 
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Based on physiological studies of HAD and PAP, animal frame, weights, and obesity could 

be somehow related to the PAP measurements and susceptibility of HAD (Koda et al., 2007; 

Neary 2013). Therefore, the PAP measurements and susceptibility of HAD may be genetically 

related to performance traits in cattle (e.g. birth weight (BWT), weaning weight (WW), yearling 

weight, etc.). Crawford et al. (2016) reported low but non-zero (0.19 to 0.24) genetic correlations 

between PAP and pre-weaning growth traits (i.e. BWT and WW), and moderate genetic 

correlations between them were also previously observed (Shirley et al., 2008). This suggested 

the potential improvement in genetic prediction of PAP with using correlated performance traits 

in multi-variate models.     

With the advance in molecular genetic techniques and statistical methods, genome-wide 

association study (GWAS) has been successfully executed to detect associations between single-

nucleotide polymorphisms (SNP) and traits. Moderate heritability of PAP measurements 

provided us the potential to identify its QTL. Identification of QTL could help studying hypoxia-

induced pulmonary hypertension in both human and animals and improve selection of cattle 

against HAD. Also, the concordances observed in GWAS of PAP and performance traits can 

help us explore genes influencing both PAP and performance traits. However, there are few 

published GWAS of PAP, except for unpublished works and proceeding papers from Animal 

Breeding and Genetics group in Colorado State University based on non-transformed and log10-

transformed PAP phenotypes.  

The true genetic merit observed among unrelated animal in the absence of selection is an 

ideal training population data for genomic selection (Garrick et al., 2009). However, true 

breeding values are not available in practice, and the estimate of true breeding value (EBV) of an 

individual is usually calculated using the data of related animals. The EBV estimated from this 
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procedure is a shrinkage estimator of true breeding value and could introduce family relatedness 

into the GWAS. Family relatedness can reduce the power and increase the false positive rate of 

QTL identification in GWAS. Therefore, deregressed estimated breeding value (DEBV), with 

removing the parent average and un-shrinking estimates appeared to be the most appropriate 

response variable for GWAS of PAP.  

 

1.2 Objectives 

The goal of this dissertation effort is to study data structure, estimate EBV and conduct 

DEBV based GWAS of PAP using data from a herd of Angus cattle at CSU Beef Improvement 

Center (CSU-BIC; One Bar Eleven, Rouse Ranch in WY) located at elevation of 2,170 m. This 

herd has bred Angus cattle for high altitude adaptability for more than 50 years through 

phenotypic and genetic selection (from year of 2002) on PAP. The breeding program also 

cooperates with AI companies by progeny testing the PAP genetic merit of bulls via breeding 

cows of this herd with semen from outside AI sires. The goal of this doctoral study is achieved 

through the following objectives: 

1. Study the phenotypic and genetic characteristics of yearling PAP measurements. 

This part investigated distribution of yearling PAP phenotype, tested the fixed effects and 

estimated the genetic parameters of yearling PAP in alternative phenotypic forms, and 

inspected the sex’s influence on genetic parameters of yearling PAP phenotypes. The 

information helped explore the potential violation of modeling assumptions and its 

influence on genetic analysis, develop models for yearling PAP phenotypes and 

determine the phenotypic form of yearling PAP to be used in genetic evaluation.    
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2. Investigate the genetic relationship between yearling PAP measurements and 

performance traits. Genetic correlations were estimated between performance traits (i.e. 

BWT, WW, PWG and YW) and the various yearling PAP phenotypes (i.e. continuous 

and categorical scale). The genetic correlation between performance traits and yearling 

PAP phenotypes in different sex categories (i.e. bull, heifer and steer) were also 

examined. These analyses provided information needed to construct the multivariate 

models to be used in genetic evaluation of yearling PAP phenotypes and obtained the 

EBV from the most appropriate model. 

3. Conduct GWAS on various yearling PAP phenotypes using deregressed EBV. This 

part identified genomic windows (1-Mb QTL) for each yearling PAP phenotype. The 

DEBV of various yearling PAP phenotypes were developed from the EBV and used as 

dependent variable in GWAS. The concordant genomic windows across alternative 

yearling PAP phenotypes were also studied. Candidate genes (located in identified 

genomic window regions) associated with yearling PAP phenotypes were also identified 

and studied.  

4. Conduct GWAS of performance traits using deregressed EBV. Estimated breeding 

values of performance traits (i.e. BWT, WW, PWG, YW) from multivariate models, and 

developed DEBV for GWAS from them. The DEBV were used to conduct GWAS and 

locate the genomic window (1-Mb QTL) associated with each of the performance trait 

and identify the concordant QTL windows across performance traits.   

5. Study the SNP-based genetic relationship between yearling PAP phenotypes and 

performance traits. This section identified the concordant genomic regions and genes 

between yearling PAP phenotypes and performance traits, and obtained the SNP effects 
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of yearling PAP phenotypes and performance traits from GWAS. An association weight 

matrix (Reverter and Fortes, 2013) was constructed based on estimated SNP effects to 

calculate the SNP-based genetic correlations between yearling PAP phenotypes and 

performance traits. These SNP-based correlations were compared with the estimated 

genetic correlations from traditional pedigree-based quantitative genetic methods to 

assess the relationship between the two types of genetic data.  
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 Introduction 

In high altitude states such as Colorado, Wyoming, New Mexico, and Utah, hypoxia-

induced bovine pulmonary hypertension (PH) commonly referred to as “brisket disease” or “high 

altitude disease (HAD)”, has been observed within the cattle industry (Holt and Callen, 2007). 

Glover and Newsome (1915) first studied this disease in cattle as to advise Colorado and New 

Mexico stockman to protect their herds. Because HAD is highly economically relevant, it has 

been studied by agriculture scientists for a century. These studies coved multiple aspects of the 

disease, including physiology, pathology, genetics and now “omics” areas (i.e. Genomics, 

transcriptomics, proteomics and metabolomics). Due to the close physiological relationship 

between HAD and pulmonary arterial pressure (PAP), this measurement has been used as an 

indicator trait for studying HAD. This section reviewed the factors, methods and previous reports 

discussing HAD and PAP. The contents of these reviews included economic aspect of HAD, 

physiology of HAD, the relationship between PAP and HAD, factors influencing HAD or PAP, 

genetics and “omics” information of HAD and PAP.  

 

2.2 Economics 

There is a economic relevance to HAD, since it is a major cause of calf morbidity for beef 

cattle ranches and feedyards above 1500 m (Hecht et al., 1962; Jensen et al., 1976). Williams et 

al. (2012) reported HAD (or Bovine PH) attributed to an estimated $60 million loss each year in 

beef herds at high altitudes of the United States. High altitude disease has been attributed to a 
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producer losing 20% of his 600 calves between summer turnout and weaning, which equates to 

$78,864 of lost potential income based on a market price of $1.24/lb. live weight (November 7th 

2011) and the herd average weaning weight in 2009 (529.8± 72.4lbs; Neary, 2013). Cattle native 

to high altitude may be more resistant to HAD than cattle that originally lived at low altitude due 

to natural and artificial selection (Will et al., 1975). These long-term selections would produce 

cattle that are adapted to high altitude environment and resistant to HAD (Qiu et al., 2012). The 

general incidence of HAD was 3% to 5% typically in native cattle (Holt and Callen, 2007), 

whereas 10% to 40% of non-native cattle developed HAD when they were moved from low 

altitude to high altitude (Grover et al., 1963, Will et al., 1970). It should be note that reports on 

HAD are limited due to the fact that beef production system in mountain terrain are extensive 

cow/calf operation. 

 

2.3 Physiology of HAD 

Alexander and Jenson (1959, 1963) reported that, hypoxia in regions of high elevation is the 

major cause of HAD. As altitude increased, although the proportion of oxygen in the air is the 

same at all altitudes, the barometric pressure falls (Peacock, 1998). The reduction in barometric 

pressure causes a corresponding drop in partial pressure of oxygen, which results in less oxygen 

reaching the lungs and pulmonary artery, sequentially leading to the hypoxia in the lungs 

(Peacock, 1998).  

Due to the hypoxia, some areas of the lung are poorly oxygenated. This leads to 

vasoconstriction in the pulmonary distal vessel as to distribute the blood away from poorly 

oxygenated areas within the lung to the areas that better oxygenated (Neary, 2014). The closure 

of some pulmonary capillaries causes the increased pressure in pulmonary capillaries and the 
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primary pulmonary artery. If an animal stays in a hypoxic condition for longer than 3 weeks, a 

remodeling process begins in the pulmonary artery. Specifically, The smooth muscle growth in 

the pulmonary arteriole wall leads to vascular hypertrophy and thickening of the medial layers of 

the pulmonary arterioles (medial hypertrophy, Stenmark et al., 2006). Vascular remodeling 

leading to loss of peripheral pulmonary arteries contributes to increased pulmonary vascular 

resistance. In early stages of remodeling, a combination of events  (e.g. pulmonary 

vasoconstriction, pulmonary remodeling and unchanged cardiac output) causes the increase in 

PAP and significant PH, which makes it harder for the right ventricle to pump the same amount 

of blood through the lung in the later stage (Holt and Callen, 2007; Neary, 2014). This leads to 

changes in cardiac function: right ventricular hypertrophy, followed by right ventricle dilation, 

and finally right congestive heart failure. In addition, Holt and Callen (2007) described the 

increased vascular hydrostatic pressure (intravascular hypertension) causes ventral edema in the 

brisket region and the loss of fluid into the extra vascular space.  Therefore, HAD is usually 

characterized by the presence of ventral edema in the brisket region (i.e. Brisket Disease). 

In order to adapt to PH, a complex physiological process happens in right ventricle (Vonk-

Noordegraaf et al., 2013). Generally, PH increases right ventricle wall stress, which leads to the 

ischemia, mitochondrial remodeling, neurohormonal and immunological activation, and 

sequentially causes myocardial remodeling. Hypertrophy and matrix remodeling from the 

myocardial remodeling can increase right ventricle contractility to adapt to the increased PAP. 

There are two patterns of ventricular remodeling on the basis of morphometric and molecular 

characteristics: adaptive and maladaptive remodeling. Adaptive remodeling preserves systolic 

and diastolic function, whereas maladaptive remodeling is associated with unhealthy systolic and 

diastolic function. This maladaptive remodeling finally leads to the arrhythmias, right ventricular 
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dilatation and failure. The right heart failure is the eventual clinical characteristic of HAD, and 

ultimately may lead to the death of the animal.   

High altitude disease in human is classified into four categories although they are all 

associated with elevated PAP and PH: acute mountain disease, high-altitude pulmonary edema, 

high-altitude cerebral edema or chronic mountain sickness (Jin et al., 2009; Luo et al., 2014). 

These classifications depend on the duration, stage and level of severity of the high altitude 

disease. In addition, an acclimatization processes is also involves in the development of HAD 

(Vonk-Noordegraaf et al., 2013; Luo et al., 2014).  

Several physiology responses can be initiated in the human or animal during high altitude 

acclimatization, and the acclimatization is a comprehensive effect of various organ systems. This 

process includes: elevated ventilation leading to a rise in arterial oxygen saturation; pulmonary 

vasoconstriction, a mild diuresis and contraction of plasma volume leading to more oxygen per 

unit of blood; elevated blood flow and cardiac output; and greater hemoglobin mass and red 

blood cells (Chawla and Saxena, 2014; Julian et al., 2009). In addition, molecular responses 

regulate many physiological processes to defend hypoxia. For instance, the up-regulation of 

hypoxia inducible factor 1 (HIF-1) expression regulates the genes involved in glucose uptake, 

glycolysis, metabolism, pH balance, angiogenesis, erythropoiesis to help human and animal 

adapt hypoxia environment (Chawla and Saxena, 2014). 

Although physiology mechanisms for acute mountain sickness, high-altitude pulmonary 

edema and high-altitude cerebral edema remain elusive, they generally occur between the initial 

hypoxia exposure and the onset of acclimatization (optimal acclimatization takes days to weeks, 

or perhaps months) and associated with elevated PAP and PH (Imray et al., 2010). The acute 

mountain sickness, high-altitude pulmonary edema and high-altitude cerebral edema have similar 
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the same pathophysiology and considered to represent different points along a single spectrum of 

a same disease, and high-altitude pulmonary edema and high-altitude cerebral edema are 

considered more serious form of acute mountain sickness (Bärtsch and Bailey, 2014). These 

diseases were only caused by hypoxia, and it was associated with the general mechanism 

described above. The HAPE contributes to the increased pressure and damages of pulmonary 

capillary and lung alveolar (Maggiorini et al., 2001). Under hypoxia, in order to satisfy the 

oxygen requirement of brain, the cerebral blood flow elevates to bring more oxygen to the brain, 

which may increase blood-brain barrier permeability or cerebral vascular permeability (Bärtsch 

and Bailey, 2014). This can be a mechanism observed in high-altitude cerebral edema.  

The chronic mountain sickness is a disease that develops after spending an extended time 

(years) living at high altitude (> 3,000 meter), and it is an important high-altitude disease in 

mountain regions (León-Velarde et al., 2010). The chronic mountain sickness of humans and 

animal results from the loss of capacity to adapting hypoxia (developed thicken pulmonary 

arteries), which was related to age, disease (e.g. lung diseases and obesity), unhealthy behavior 

(e.g. smoking) and contamination (Penaloza and Arias-Stella, 2007; Jin et al., 2009). All these 

factors can incorporate the hypoxia on high altitude to cause alveolar hypoventilation (Jin et al., 

2009). Beside PH, this disease was also characterized by excessive erythrocytosis with the 

typical symptoms of polycythemia, hypoxemia, breathlessness, palpitations, sleep disturbances, 

cyanosis, venous dilatation, headaches, tinnitus, and dizziness (Jiang et al., 2014). The level of 

erythrocytosis is used to define the CMS (Jiang et al., 2014; Villafuerte et al., 2014). The 

mechanism of CMS is different from AMS, HAPE or HACE, which may explain the large 

difference of the HAD case rate in high altitude native cattle and cattle that relocated from low 

elevation regions to high elevation regions.  
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2.4 Relationship between PAP and HAD 

Increased PAP is a direct outcome of all types of PH and HAD.  As a physiological indicator 

of PH, PAP measurements have been used to assist selection of cattle to reduce the incidence of 

HAD in recent decades in high altitude regions. Holt and Callen (2007) provided guidelines to 

help breeders make selection decisions using PAP phenotypes to reduce risk of HAD in high 

altitude beef production systems (Table 2.1). Producer reports collected in veterinary health 

studies suggest that, in some cases, low PAP cows should have significantly reduced the 

incidence of HAD within their calf crop (Neary, 2013). However, elevated PAP dose not 

necessary lead to the consequences of HAD (e.g. death and brisket edema). Holt (Personal 

communication, 2015) described that a bull of normal healthy at high altitude region (>2,300m in 

elevation), although his measured PAP measurement was larger than 100 mmHg. Neary (2013) 

also described that reports from some producers showed that the selection on low PAP has 

minimum influence on reducing the mortality of pre-weaned beef calves. The actual genetic 

relationship between PAP and HAD has not been described because of the difficulty to obtain 

data on the incidence of HAD. Therefore, additional studies should be conducted to understand 

that genetic selection on low PAP would reduce the chance of cattle for developing HAD. 

Genomic studies could be effective methodology to genetically tie up HAD and PAP via 

identifying common genes and pathways associated with both HAD and elevated PAP.  
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Table 2.1. Evaluation of pulmonary arterial scores
1 

PAP Interpretation 

30 – 35 mmHg This score is considered excellent and highly reliable. 
36 – 39 mmHg This score is considered excellent for any animal over the 

age of 12 months. If the animal is less than 12 months of 

age, the score is still fairly reliable, but retesting before 

breeding is suggested. 
< 41 mmHg Scores less than 41 mmHg are reliable measurements in all 

animals more than 12 months of age. It is recommended 

that yearling cattle have a PAP measurement less than 41 

mmHg (depending on altitude of the test). The variation 

in scores 41 mmHg and above is inconsistent and 

difficult to predict in some cattle as they age. Any animal 

measuring 41 mmHg and greater should always be 

retested before use. 
41 – 45 mmHg This range is acceptable for older animals (ie, more than 16 

months of age). Animals less than 16 months scoring in 

this range should be retested to predict the future PAP of 

the animal accurately. 
41 – 45 mmHg This range is acceptable for older animals (ie, more than 16 

months of age). Animals less than 16 months scoring in 

this range should be retested to predict the future PAP of 

the animal accurately. 
45 – 48 mmHg This range is acceptable only for older animals that have 

been in high elevations for an extended period of time. 

Animals with this score are more susceptible to 

environmental stresses leading to HMD and should be 

considered at some risk. Elevation of test site and where 

the animal lives must be evaluated closely for those in 

this PAP score range. 
> 49 mmHg Animals that score in this range must always be considered 

high-risk candidates for developing HMD, not only for 

themselves but also their offspring. Many animals that 

have scored in this range have died of HMD. An option 

for these animals is to move them to a lower elevation 

for use there. It is also recommended that offspring of 

these animals never return to high altitude. 
1
These figures are based on cattle tested at or above 1800 m (6000 ft) and12 months of age or greater. If 

the animal does not meet these criteria then adjustments must be made (Holt and Callen, 2007).	
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2.5 Measurement of PAP 

 

2.5.1 Technical procedure  

Pulmonary arterial pressure is a measure of blood pressure found in the primary pulmonary 

artery. The procedure used to measure PAP in cattle has been used for more than 30 years. This 

measurement can only be taken by one licensed veterinarian in one herd in order for selection to 

be more effective, because PAP measures can be influenced by any unprofessional action in the 

process. With the right equipment and facilities, a veterinarian can take PAP score for a large 

number of animals daily (about 200 to 300 cattle), which makes PAP a measurable and 

affordable trait for selection (about $20/head). Pulmonary arterial pressure is measured through a 

right heart catheterization procedure, which requires jugular venipuncture, catheter insertion and 

passing flexible catheter tubing through a large bore needle inserted into the jugular vein (Holt 

and Callen, 2007). The catheter is passed via the jugular vein, through the right atrium, into the 

right ventricle, and then into the pulmonary artery. Once the catheter is inside the pulmonary 

artery, the systolic, diastolic and mean blood pressures are recorded from a heart monitor, which 

is attached to the catheter via a transducer (Ahola et al., 2007; Holt and Callen, 2007).   

 

2.5.2 Calculation of mean PAP 

Although the mean PAP can be directly recorded from cardio graphic monitor, it is not 

directly measured. There are two phase of the arterial pressure:  systole and diastole (Fucuta and 

Little, 2008, Homoud, 2008, PysiologyWeb, 2011). During the systole, blood is ejected from 

right ventricle to the pulmonary artery, and during the diastole, the heart relaxes, and blood flows 

from the pulmonary artery into pulmonary circulation. In the systolic phase, the blood pressure 
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rise during right ventricular ejection after opening of the pulmonary valve, which is followed by 

a general decrease in pressure while blood is being ejected from the right ventricle until closure 

of the pulmonary valve. The closure of the pulmonary valve causes a short increase in pressure, 

which is called dicrotic notch. In the diastolic phase and after the dicrotic notch, PAP decreases 

as the heart relaxes. The maximum and minimum pressures during cycle of ventricular 

contraction and relaxation are defined as the systolic and diastolic PAP, which can be directly 

measured and used to calculate mean PAP (Homoud, 2008, PysiologyWeb, 2011, Chemla et al., 

2004). However, the mean PAP is not the simple average of systolic and diastolic PAP. The 

formula used to calculate the mean PAP is (Homoud, 2008, PysiologyWeb, 2011): 

          

This mathematic formula was constructed based on the duration of systolic and diastolic phases 

of ventricles. In reality, the ventricles spend one-third (1/3) of their time in systole, and two-

thirds (2/3) in diastole. Chemla (2004) reported another formula to approximate the mean PAP 

using the statistical relationship between mean PAP and systolic PAP. As the mean PAP was 

highly correlated with systolic PAP, a regression model is suitable for calculate mean PAP form 

systolic PAP: 

      

The author suggested that mean PAP could be accurately predicted from systolic PAP. The mean 

PAP used in the regression analysis was defined as the area under the pressure curve divided by 

the pulse interval, which can also be considered an appropriate measurement. 

The PAP measurements (mean PAP, systolic PAP, diastolic PAP) are associated with many 

other hemodynamic parameters including cardiac output (CO), pulmonary vascular resistance 

mean PAP = diastolic PAP + (
1

3
pulse PAP)

pulse PAP = systolic PAP − diastolic PAP

mean PAP = 0.61 systolic PAP + 2mmHg
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(PVR), and mean pulmonary artery wedge pressure (PAWP; or Pulmonary Artery Occlusion 

Pressure; Chemla, 2002; Klabunde, 2010).  Blood pressure is the force of blood against the walls 

of the arteries as the heart pumps blood throughout the body. Assuming a constant diameter for 

the pulmonary arteries, the high CO brings more volume of blood and higher force against the 

arterial wall, which causes higher pressure (Mayet and Hughes, 2003). Less elastic and thicker 

arterial wall provides more react force to the blood volume and cause higher pressure (Mayet and 

Hughes, 2003). Like a water pipe, the resistance on one end of an artery can also cause increased 

pressure inside the artery (Chemla, 2002).  Mean PAWP serves as the resistant force in forming 

mean PAP. Thus, another formula to estimate mean PAP is expressed as (Klabunde, 2010, 

Chemla, 2002): 

mean PAP = (CO × PVR) +mean PAWP  

The increase in CO, PVR and PAWP will increase mean PAP. The CO measured the amount of 

blood the heart pumps through the systemic and pulmonary circulation in a minute (Wingfield 

and Raffe, 2002). Sufficient CO is needed to sustain blood pressure and supply oxygen to the 

whole body, and it is influenced by heart rate and stroke volume (Wingfield and Raffe, 2002). 

The PAWP is an indicator for the left atrial pressure, and its increase causes more resistant for 

blood flow in pulmonary arteries resulting in higher PAP (Luchsinger et al., 1962). The PVR is 

the resistance that the blood flow must overcome to go through the pulmonary circulation. 

Vasoconstriction and vascular remodeling (e.g. cell proliferation) both influence PVR and 

therefore blood pressure (Elzouki et al., 2012). Generally, the blood flowing through the 

pulmonary circulation is essentially the same as the blood flowing through the systemic 

circulation, but the blood pressure in systemic circulation is about 10 times higher than that in 

pulmonary circulation because the systemic vascular resistance is 10 to 15 times higher than 



	 17	

pulmonary vascular resistance (Klabunde, 2010). The PVR can be estimated using the 

modification of equation (3) (Griffin et al., 2008; Homoud, 2008). 

  

PVR =
mean PAP − mean PAWP

CO
 

 

2.6 Environmental factors influencing PAP measurements 

The PAP measurements can be influenced by many factors including age, elevation, breed, 

gender, pregnancy statue, temperature, production level, feed and other diseases (Holt and Callen 

2007; Jin et al., 2011; Neary, 2014). In order to understand and use PAP measurements, these 

factors should always be considered. 

 

2.6.1 Elevation 

Humbert (2010) reported that important changes in oxygen saturation and PAP occurred 

with mild and moderate increases of elevation above 3000 m, and elevation degree was inversely 

related to the level of oxygen saturation and directly related to PAP. Also, PAP measurements 

were reported to increase 1 to 2 mmHg per 305 m (1000 ft) rise in elevation (Holt and Callen, 

2007). In addition, the risk of CHF appeared to increase with rising elevation (Neary, 2014). 

Penaloza (2012) reported that people (across different ages) residing high altitude had higher 

PAP than people at sea level (Figure 2.1). Thus, when using PAP in cattle, it is important for 

ranchers to know the associated elevation of the PAP score.  
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Figure 2.1 Relationship between mean pulmonary arterial pressure and age in natives with 
normal health who live at a high altitude, at 4540 m (solid line), compared to the data reported 
for sea level residents (dashed line; the numbers in parenthesis indicate the number of cases). 
The mean pulmonary arterial pressure decreases rapidly at sea level; in contrast, in high-altitude 
natives, the grade of pulmonary hypertension decreases slowly and can persist into adulthood 
(Penaloza, 2012).  

 

In human, the hypoxia-induced pulmonary response would not be seen until individuals 

reached an elevation of 1524 m (5000 ft; Aghababian, 2010; Netzer et al., 2013). Venugopalan 

(2014) indicated that it is difficult to demonstrate significant clinical changes due to hypoxia in 

people at elevations lower than 3000 m. In order to exclude PH from other illnesses, PAP 

measurements performed above 1524 m should be used to identify animals that are sensitive to 

the hypoxic condition. Therefore, PAP measurement would be more accurate and reliable, when 

the data are collected at higher elevation. Thus, the reliable PAP for studying HAD should be 

recorded from animals that stayed at regions higher than 1524 m in elevation for at lease three 

weeks (Holt and Callen, 2007). 

 

2.6.2 Age 

Holt et al. (2007) implied that PAP measurements were likely to change greatly from 

younger ages to older ages. Will et al. (1975) reported that PAP rose with increasing age, and 
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Neary (2014) demonstrated that, even at moderate altitude, PAP significantly increased with age 

among pre-weaned calves. Rhodes (2005) also showed a potential non-linear relationship 

between incidence of hypoxia-induced PH and age as the majority of hypoxia-induced PH of 

cattle occurs between birth and 2 years of age. Similarly in humans, it was reported that systolic 

PAP increased with age regardless of altitude, which would suggest pulmonary vascular 

remodeling with increasing age (Lam et al., 2009). Badesch et al. (2009) reported that although 

the mean PAP of rest persons was not different among different age groups, the mean PAP was 

significant higher in older persons during slight and submaximal exercise. However, Penaloza 

(2012) reported higher PAP in younger man (Figure 2.1). Therefore, age should always be 

considered when we use individuals’ PAP measurements.  

 

2.6.3 Gender 

Different high PAP incidences were observed in male and female cattle (Holt and Callen), 

and heifer calves were reported having significantly lower mean PAP than bull calves (Neary, 

2014). In this discussion (Neary, 2014), it was illustrated that broiler (male) chickens had 

significant greater muscular hypertrophy of the pulmonary arteries than hen-chicks when they 

were raised at an altitude of 3000 m until 4 weeks old. Jin (2010) presented that differences 

existed between males and females in their response to hypoxia, and CMS and AMS appears to 

be more frequent in men than women. In addition, gender differences were reported in breath 

patterns of humans at high altitude that was related to HAD, and males were more sensitive to 

central sleep apneas than females (Lombardi, 2012).  

It is not clearly why these gender differences exits.  Holt and Callen suggested that no 

physiological bases were identified for different PAP between males and females, yet 



	 20	

management factors (e.g. feed, genetic background and husbandry) can often lead to these 

differences (Holt and Callen, 2007). Jin (2010) attributed the gender differences in chronic 

mountain sickness and acute mountain sickness incidences between men and women to the 

female hormones that exert a positive effect on ventilation, oxygen utilization, and oxygen 

metabolism. Neary (2014) also suggested that the female gender hormone estrogen could have 

cardio-protective action that may be related to gender differences in pulmonary hypertension. 

The estrogen-hormone in this example was a growth promoting implant. 

 

2.6.4 Production level 

In cattle, chickens and humans, excess weight gain may be risk factors for PH and right-side 

congestive heart failure (Neary 2014; Jesen, 2009; Peacock et al., 1989). Rapid growth and high 

efficiency cattle were reported to have higher mean PAP and be more susceptible to bovine PH 

and brisket disease (Neary, 2013). This phenomena was not only seen at high altitude, but also 

be reported in feedlot non-high-attitude region (e.g. Texas at elevation of 518 m; Neary, 2014). 

Shirley (2008) reported a positive but unfavorable genetic relationship between weaning PAP 

and pre-weaning growth traits (i.e. birth weight and weaning weight). Holt (2013) presented that 

fast growth and muscling may affect pulmonary function and give rise to PH. In humans, body 

mass was positively related to systolic PAP, which may attribute to the increased cardiac output 

and decreased left ventricular function in obese persons at high altitude (McQuillan et al., 2001). 

Researchers indicated that animals at high production levels require more oxygen than animals at 

low production levels, which puts more pressure on the cardio-pulmonary system of high 

production animals and increase theirs susceptibility to PH, especially at high altitude (Veit and 

Farrell, 1978; Neary, 2013).  
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Smith (2011) also implied that fore-stomach engagement and recumbency can cause intra-

abdominal pressure, hypoventilation and alveolar hypoxia.  Ge et al. (2005) reported that genes 

might contribute to the susceptibility of obese individuals to acute mountain sickness. The 

obesity hormone, Leptin, was associated with acute mountain sickness and chronic mountain 

sickness, because it is reported over expressed in individuals in hypoxia condition and associated 

with higher levels of HIF-1α (Koda et al., 2007). The Leptin were also reported to function on 

many traits in beef including feed intake and fact content (Houseknecht et al., 1998), which tied 

up the relationship between production level and HAD. 

 
2.6.5 Other factors 

Besides the factors stated above, many other factors could influence PAP measurements 

including temperature, feed, and concurrent illness. Holt and Callen (2007) reported that cold 

environment would increase PAP measurements and cause PH in cattle. Kashimura (1993) 

illustrated that cold exposure would increase the incidence of high altitude sickness in rats, such 

as high altitude pulmonary edema. Ingestion of toxin contained in feeds (e.g. swainsonine in 

locoweed) and ionophores feed would increase the incidence and severity of HAD in calves at 

high altitude (Holt and Callen, 2007). Besides HAD, other infectious and noninfectious bovine 

respiratory diseases and lung disease can also lead to alveolar hypoxia, increased PAP and cause 

some similar clinical signs with HAD. In human, the lung disease, heart disease and blood clots 

also can also cause PH.  
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2.7. Inheritance of PAP and HAD 

2.7.1 Inheritance of HAD 

Holt and Callen (2007) reported that there are variations in incidence and susceptibility 

between individual animals, breeds and other species of cattle. Humans native to three high 

altitude geographic regions have been reported to be better adapted to a high altitude 

environment than other nationalities (e.g. Han). These people were from the Qinghai-Tibetan 

Plateau, the Andean Altiplano, and the Semien Plateau of Ethiopia (Bigham et al., 2013), and 

these geographic regions are at altitude of 4,500 m, 3,750 m and 2,000 m, respectively. In human 

and animals, some individuals or families appeared susceptible to HAD while others appeared 

resistant (Maclnnis et al., 2011). This indicated that the genetic make up might play a role in 

different adaptability between different populations, animal breeds, families or individuals.  

Various “omics” studies of high altitude acclimatization/adaptation, acute mountain sickness, 

high altitude pulmonary edema, high altitude cerebral edema and chronic mountain sickness 

revealed many genes differentially expressed with different health condition people. Two genes 

identified to be strongly associated with the evolutionary adaption to high altitude were egl nine 

homolog 1 (EGLN1) and endothelial PAS domain protein 1 (EPAS1). In the study of Simonson 

et al. (2010), they reported that EGLN1 and Peroxisome proliferator-activated receptor alpha 

(PPAR-α) were associated with the hypoxia response factor (HIF), and the some variants in this 

gene were identified in high altitude adapted individuals, which can be used to study the high 

altitude adaption pathway in humans. The EPAS1 gene, also known as hypoxia-inducible factor-

2alpha (HIF-2α) encoding gene, the expression of which is involved in the body’s adaptation to 

hypoxia and high altitude. Several mutations in this gene were identified in Tibetan population 

adapted to living at high altitude, and associated the high altitude acclimation, HAPE and CMS 
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(Scortegagna et al., 2003; Buroker et al., 2012; Ge et al., 2012; Xiang et al., 2013; Yang et al., 

2013).  

Besides these two genes, many other genes have been identified associated with HAD. The 

mu-type opioid receptor 1-encoding gene (OPRM1) was determined to be important in 

cardiopulmonary adaptation to high-altitude environments, and it encodes mu opioid receptors 

(e.g. MOR) that were implicated in deceasing respiration (Jin et al., 2012). Higher expression of 

peroxisome proliferator-activated receptor gamma (PPAR-γ) was identified in Tibetan 

populations, so it was recognized to be associated with the high altitude adaptation (Simonson et 

al., 2010). The increased PPAR-γ level was associated with leptin level in diet, which induced 

obese rats and might imply the relationship between production level and HAD (Törüner et al., 

2004). Also, it is reported that the Angiotensin-converting enzyme encoding gene (ACE) is 

related to acute mountain sickness, high altitude pulmonary edema and chronic mountain 

sickness (Buroker et al., 2010; Luo et al., 2012ab).  The gene encodes angiotensin-converting 

enzyme, and its activation results in narrowed blood vessels, increased blood pressure through 

converting angiotensin I to angiotensin II and cleaving bradykinin. Angiotensin II is the protein 

causing blood vessels to constrict, and the coding genes of itself (AGT) and one of its receptor 

(AGTR1) were also identified relating to high altitude pulmonary edema and acute mountain 

sickness, respectively (Buroker et al., 2010; Luo et al., 2012; Srivastava et al., 2012). The ACE, 

AGT, and AGTR1 are parts of renin-angiotension system that regulates blood pressure, and the 

balance of fluids and salt in the body through cleaving proteins. 

 

  

 



	 24	

2.7.2 Inheritance of PAP 

As a widely used indicator trait for HAD, the heritability and repeatability of PAP have been 

estimated in many studies to reveal the genetics aspect of HAD. Heritability is the proportion of 

phenotypic variation that is explained by additive genetic variation. Table 1 summarizes the 

heritability of PAP reported in historical literatures. Pulmonary arterial pressure (PAP) has been 

shown to be moderately to highly heritable and repeatable in cattle (Schimmel, 1981; Enns et al., 

1992; Shirley et al., 2008; Crawford et al., 2016). The heritability and repeatability of PAP were 

first estimated in a dissertation work of Schimmel (1981). The PAP values in this study were 

collected from weaning calves and mature cow of Hereford, Angus and Red Angus that were 

raised at the San Juan Basin Research Center, Hesperus, Colorado (elevation at 2,316m). He 

reported heritabilities of PAP as 0.77 ± 0.21, 0.60 ± 0.24, 0.40 ± 0.13 and 0.13 ± 0.23 for bull, 

heifer, calves and cows. Enns (1992) reported a heritability estimate of 0.46 ± 0.16 of PAP 

measured at both weaning and yearling, which were from Angus cattle from western Colorado. 

The heritability of PAP at 0.34 ± 0.05 and 0.25 ± 0.03 reported by Shirley et al. (2008) and 

Crawford et al. (2016) using records from Angus cattle in Colorado.  

 
Table 2.2. Estimated heritability and repeatability for pulmonary arterial pressure (PAP) in 
previous literatures 

Author Heritability Repeatability Age of cattle 

Schimmel (1981) 0.13 to 0.23 0.25 to 0.26 Mature Cow 

Schimmel (1983) 0.40 - Weaning 

Enns et al. (1992) 0.46 - 166d-662d 

Shirley et al. (2008) 0.34 - Weaning 

Crawford et al. (2016) 0.25 to 0.26 - Yearling 
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In addition, estimated heritability for PAP of different sexes were reported differently. 

Cockrum et al (2014) showed the estimated heritability of PAP measured in yearling Angus 

cattle was 0.21 ± 0.04, 0.37 ± 0.08, 0.19 ± 0.14 and 0.23 ± 0.03 for bulls, heifers, steers and 

compiled data. The reports from Cockrum (2014) were similar to results from Schimmel (1981), 

in that the heritability of PAP of bulls was higher than that of heifers. The genetic correlation 

between yearling PAP of bulls and heifers (0.67 ± 0.15) was not high. These estimates suggested 

that PAP measurements of heifers and bulls were potentially different traits, and implied a 

genetic difference between bulls and heifers in response to high altitude environment. However, 

we must consider these results as potentially confound with growth management. All of the 

estimates were based on the data from John E. Rouse Ranch of Colorado State University Beef 

Improvement Center (CSU-BIC) in the study of Cockrum (2014). In this production system, 

bulls were developed within a grain-supplemented performance test, whereas heifers were 

grazed. Therefore, there may be a genetic by environmental interaction among two source of 

information: sex and diet environment.  

The heritability of PAP measured at different ages tends to be different. Zeng et al. (2015) 

reported heritability of weaning and yearling PAP as 0.56 and 0.30 using the same dataset used 

in this presented study, respectively. Schimmel (1981) showed difference between heritabilities 

of calves and cows. Although the estimated heritability varied in studies, all of them showed a 

moderate to high heritability for PAP measurements (0.23 to 0.77). The estimated repeatability 

were limited, the reason for which may be that the PAP score is usually measured one time in 

cattle’s life (i.e. yearling), as it’s a difficult to measure trait requiring veterinary expertise. 

However, we can expect a moderate repeatability of PAP based on the report Schimmel (1981) 

who showed PAP repeatability of cows ranging from 0.16 to 0.25. 
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Genomic and transcriptomic studies were also conducted on PAP measurements from Angus 

cattle, whose results demonstrated potential inheritance influence of PAP measurements. 

Newman et al. (2011) provided the first molecular interrogation on Bovine PH based on case-

control (designed using mean PAP score) GWAS and gene expression study (using peripheral 

blood mononuclear cells) of Angus cattle. The authors identified 15 up and down expressed 

genes associated with cattle group with high-altitude pulmonary hypertension (whose PAP 

measurements were range from 72 mmHg and 116 mmHg), and 10 disease processes were 

reported to be associated with high-altitude pulmonary hypertension. These disease processes 

include respiratory disease, inflammatory response, connective tissue disorders, skeletal and 

muscular disorders, immunological disease, genetic disorder, hematological disease, 

cardiovascular disease and metabolic disease. In addition, Newman et al. (2015) reported that 

two cis variants in EPAS1 were highly associated with HAPH in Angus cattle at high altitude 

(5,200-7,850 ft) through studying two cattle groups: HAPH group (whose PAP scores were 

larger than 50 mmHg) and unaffected group (whose PAP scores were smaller than 38mmHg). 

 

2.8 Genetic selections and PAP 

Because of genetic influence on HAD, selection can be used to reduce the incidence of HAD 

in cattle at high elevation. Expected progeny difference (EPD) is used as a tool to aid selection of 

potential breeding stock for a specific trait within a breed. The EPD provides estimates of the 

breeding value of an animal as a parent, and it is expressed as the expect difference between the 

mean performance of the specific individual’s progeny and the mean performance of all progeny 

in a population. Specifically, differences in EPD between two individuals of the same breed 
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predict differences in performance between their future offspring when each is mated to animals 

of the same average genetic merit.  

A genetic evaluation requires estimation of genetic parameters, and the reliability of these 

parameters are influenced by the heritability, the size and the quality of data (Falconer 1989). 

Koots (1996) illustrated that variation of estimated genetic parameters become constant after the 

sample size for analysis reaches 500, and the lower the heritability of a trait, the larger sample 

size are needed to obtain reliable estimates. Generally, the heritability for health traits are low (< 

0.2), so over one thousand animal’ records are needed to achieve acceptable statistical power for 

the heritability estimated for healthy traits (Klein, 1974). However, consistent recording system 

of cattle health traits are limited in the United States, which impedes the implementation of 

genetic evaluation of health traits in cattle industry (Gaddis, 2014). These facts can also apply to 

HAD. Fortunately, given the physiology relation with between PAP and HAD, the PAP-EPD can 

be estimated and used in selection against HAD. The individuals with lower EPD are expected to 

produce offspring with lower PAP who will be more tolerant to the high altitude and have less 

risk of HAD (Holt and Callen, 2007).  

The EPD for PAP were first estimated with data from Angus cattle at Tybar Ranch, 

Carbondale, CO and used for selection of resistance to HAD in 1992 (Enns, 2011). Since then, 

the EPD for PAP has been used in Angus cattle breeding in Colorado. Also, the PAP EPD has 

been used in the selection program in John E. Rouse Ranch of Colorado State University known 

as the Beef Improvement Center (CSU-BIC) since 2002. Figure 2 presents the genetic trend of 

PAP EPD from both Tybar Ranch and CSU-BIC. The downward (favorable) genetic trend has 

been observed in both of the breeding programs. 
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Figure 2.2. Genetic trend for pulmonary artery pressure (PAP) in Angus cattle at the Tybar 
Ranch (Tybar) and the CSU John E. Rouse Beef Improvement Center (BIC) since selection with 
EPD began in 1992 in Tybar) and 2002 in BIC (Enns et al., 2011). 
 

 

2.9 Model for genetic evaluation 

The condition of the data and the fitness of the model determine the quality of a genetic 

evaluation (Werf, 2002). Mixed models using the BLUP methodology, which developed by 

Henderson (1949), have been widely applied in genetic evaluation of livestock animals (Mrode, 

2014). This methodology allows estimating fixed effects and breeding values (random effects) 

simultaneously and potentially delivering the most accurate and unbiased predictions (Werf, 

2002). The livestock industries have applied several types of mixed models in genetic evaluation, 

including animal model, sire model, reduced animal model, random regression model, maternal 

trait model, single trait model, multivariate model, threshold model, etc. as explained by Mrode 

(2014).  
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2.9.1 Multivariate models 

The single trait model uses information from one trait, while the multivariate model uses 

information from more than one traits and the genetic and environmental correlation among 

traits. The multivariate model allows evaluating animals for two or more traits simultaneously. 

Multivariate models have several advantages. First, the use of multivariate model would increase 

the accuracy of genetic evaluation of a trait. The larger the absolute difference between the 

genetic and residual correlations between the traits, the greater the gain in accuracy of 

evaluations (Schaeffer, 1984; Thompson and Meyer, 1986). The traits with lower heritabilities 

tend to gain more in accuracy from use of multivariate models, although all traits can benefit to 

some degree from multivariate analysis. The increases in accuracy from these multivariate 

models come from additional information from correlated traits and better connection in the data 

due to residual covariance between traits (Thompson and Meyer, 1986). Second, multivariate 

models allow the prediction of breeding value of correlated traits. Third, the multivariate analysis 

can account for the culling selection bias for the traits that are measured after sequential rounds 

of selection. For this kind of traits, only the better individuals are measured. For instance, 

yearling weights are only measured on individuals who passed culling based on weaning weights.  

There are also a couple of disadvantages associated with multivariate model. First, 

multivariate analysis requires high computing, time, memory and disk storage. Second, 

multivariate analysis relies on accurate estimates of genetic and residual correlations among 

traits. However, the improvement of computational technology and data recording system 

diminished the influences of the challenges associated with multivariate analysis. 
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2.9.2 Threshold models 

Wright (1934a,b) first introduced the threshold model to the discipline of animal quantitative 

genetics. Threshold models are preferred to analyze categorical traits in genetic evaluation (e.g. 

calving ease, heifer pregnancy, stayability and healthy traits), although they are more complex 

and higher computing cost than linear models (Gianola and Hammond, 2012). Linear models can 

also be applied to categorical traits, but they have limitations on this situation. The widely used 

best linear unbiased prediction (BLUP) linear models assumed the normally distributed additive 

genetic effects and residual effects, and the homogenous variances (Henderson, 1975). These 

assumptions were violated and some of the properties of BLUP do not hold when a linear model 

applied to a categorical trait (Fernando et al., 1983). Categorical traits are not normally 

distributed, and Gianola (1982) reported that the variance of categorical records was 

heterogeneous when there are fixed effects. This occurs because the variance of categorical traits 

is a function of its expectation, and the expectation is related to the fixed effects. A threshold 

model assumes an underlying normally distributed liability, and can overcome the limitations. A 

threshold model scales categorical responses to conform to intervals of normal distribution, and 

applies a linear model to the scale data (i.e. liability; Kendall and Stuart, 1961; Snell, 1964; 

Gianola and Norton, 1981, Gianola and Foulley, 1983).  

Meijering and Gianola (1985) demonstrated that threshold models performed better than 

linear models in estimating breeding values for categorical traits with fixed effects. Ramirez-

Valverde et al. (2001) reported that the best option to predict the genetic effect of calving 

difficulty might be threshold-linear animal model with calving ease and birth weight. However, 

similar performance of threshold and linear models, and better performance of linear models than 

threshold models were both appeared in literatures (Weller et al., 1988; Renand et al., 1990; 
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Matos et al., 1997; Hagger and Hofer, 1989).  Meijering and Gianola (1985) also implied that 

threshold and linear models performed similarly when there are no fixed effects.  

One disadvantage associated with a threshold model is its computing cost. Misztal (1989) 

indicated that the computing cost for a threshold model is three to five folds higher than a linear 

model. Another limitation of a threshold model comes from the extreme category problem, and 

the analysis would not converge in this situation. This problem comes from the no-data variation 

within a fixed effect level and the extreme small category size. Modification of data can be used 

to deal with this problem. 

 

2.9.3 Other types of models 

All animals were evaluated in an animal model, while only sires’ effects were estimated in 

the sire model. In a reduced animal model, the equations for estimating breeding values are only 

built for the individuals having offspring records, and the breeding value of progenies in the 

dataset are calculated by back-solving from the predicted breeding values of parents (Quaas and 

Pollak, 1980). Both of the breeding values for individuals and the maternal genetic effect (the 

additive genetic ability of the dam to provide a suitable environment, e.g. milk) are evaluated 

simultaneously in a maternal trait model (Quaas and Pollak, 1980). The random regression 

models are dealing with longitudinal data such as milk production and cattle weights, which can 

account for the curve of lactation and growth. 
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2.9.4 Model development 

No matter where data is derived (i.e. simulated data or field data) and what is the type of the 

data (i.e. experimental data or observed data), we need to develop statistical models to analyze 

them and mining meaning of them. Jakeman et al. (2006) present ten iterative steps in develop 

models (Figure 3). Generally, these steps can be summarized in four steps: purpose specification, 

exploratory data analysis, model selection and model validation.   

The purpose of a study or an analysis is always important in model development. Based on 

the purpose of a study, Shmueli (2010) summarized the purpose of model development into three 

general categories: explanatory modeling, descriptive modeling and predictive modeling. The 

explanatory modeling is used to test hypotheses and causal relationships; descriptive modeling 

summarizes and mines the relationship between variables; predictive modeling focus on 

producing accurate predictions from data.  The study and modeling purpose guide and influence 

the study design, data collection, dataset building, modeling method selection (Jakeman et al., 

2006; Shmueli, 2010). Well definition of purpose would prevent missing important information, 

and wasting time, labor and money for unnecessary information. For instance, in animal breeding 

and genetics, the collection of performances data should match the specific breeding objective.  
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Figure 2.3. General iterative steps in model building, but these steps are not always clearly 
separable. These steps can be used by both modeler and end-user (Jakeman et al. 2006). 
 

Exploratory data analysis is the initial step for all kinds of modeling (Shmueli, 2010). 

Exploratory data analysis has effective been used to examine the structure of data, check 

assumptions, detect mistake in the data and identify outliers, preliminarily assess the relationship 

between variable and helps select a preliminary model (Seltman, 2012). The exploratory data 

analysis summarizes data numerically (e.g. first and second moments of data, and correlation 

between variables) and graphically (e.g. Scatter plot, histogram and box-plot). Different 

statistical methods have different assumptions on residual distribution and variance structure, so 
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analyses of data variance and distribution are important components to assure the efficient 

modeling. Given that normally distributed residuals and homogeneous variance are the 

assumptions for widely used linear regression, the homoscedasticity and normality of data are 

usually tested in the first step of modeling (Seltman, 2012; Shmueli, 2010). Many numerical and 

graphical methods can determine if a variable is normally distributed or needs transformation. 

These methods include skew test (e.g. Kolmorogov-Smirnov or Shapiro-Wilk's W test), 

histogram and Q-Q plot.  

If assumptions in a statistical model are violated, more complex model (e.g. threshold model) 

or data transformation may be needed. Many transformations were traditionally used in scientific 

data analyses like logarithmic transformations, square root transformation and invers 

transformation.  All these transformations are members of power transformation (Box Cox 

transformation) (Box and Cox, 1964). The form of Box-Cox transformation were illustrated as 

follows: 

   

The Box-Cox analysis estimates the transformation coefficient λ, which indicates the best 

transformation to make a random variable nearly normally distributed. For example, λ = 1 means 

no transformation needed, λ = -1 means reciprocal transformation and λ = 0 indicates log 

transformation. The Box-Cox method has been implemented in SAS, R, SPASS and many other 

statistical softwares. Although the data transformation may benefit an analysis, it should be used 

with care because it may bring issues in interpreting results and alter the fundamental nature of 

the data (Osborne, 2002).  
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Model selection is usually recognized as variable selection, but it also includes the selection 

of modeling methods. The selection of the modeling methods is based on the purpose of study 

and modeling and the exploratory data analysis. For example, multi-trait model should be used to 

study the relationship between traits, threshold model was preferred to analyze categorical traits 

(Meijering and Gianola, 1985; Ramirez-Valverde et al. 2001), and generalized linear model are 

suitable to deal with data that has classic distribution other than normal distribution (Wolfinger et 

al., 1993). The traditional statistical algorithms (e.g. least square and maximum likelihood) 

would be preferred in explanatory modeling to study the relationship between variables, while 

some new algorithms (e.g. machine leaning and data mining methods) appeared preferable in 

predictive modeling because they can capture more complex associations between variables.  

Besides selecting variables to match the modeling objective, there are many criteria that can 

be used to statistically test and select the variables.  Commonly used criteria includes F test (or 

Wald F test), log likelihood ratio test, Akaike information criterion, Bayesian information 

criterion and Mallows's Cp (Kutner, et al., 2004). However, all of them are nested model (using 

the same explanatory variables) selection criteria, and they are not suitable to test select model 

from non-nested models (e.g. having different fixed effects, different variance structures or 

different form of variables; Smith, 2015). In addition, the likelihood value is not comparable 

between models with different fixed effects when using REML, because the likelihood value 

depends on the fixed effects in this situation (Zuur et al., 2009). Therefore, we cannot apply them 

to test fixed effects when the likelihood values are from REML analysis. However, we can test 

random effects using the likelihood value from REML because they are comparable with 

changing random effects in REML. The likelihood value (from maximum likelihood) should be 

used to test fixed effects (Oehlert, 2012). In the non-nested model, researchers suggested that the 
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Cox test (Cox, 1961) could be used to test non-nested model hypothesis in some situations (e.g. 

different fixed effects). When using a predictive model, one of the most important criteria we 

considered is predictive performance, so some model determination criteria could be another 

option to compare non-nested models, e.g. adjusted R2 and prediction accuracy (Wilson et al., 

2012; Kizilkaya et al., 2014).  

The prediction accuracy is one of the most important tools to validate a predictive model. 

Estimating genetic parameters and breeding values are important aspects of quantitative genetics. 

Therefore, comparison of the resulting estimations (e.g. genetic parameters, EBV and accuracy) 

from different models can be used to select or validate a model (Wilson et al., 2012; Kizilkaya et 

al., 2014).  Prediction accuracy can be used to determine if a transformation or a more complex 

model is necessary for a dataset. Tanner and Wells (2001) and Maas and Hox (2004) reported 

that the violation of normality in mixed model analysis would not influence the estimation of 

breeding value and parameters, but it would introduce bias to statistical tests. Therefore, the 

violation of assumption would not be a problem in estimate breeding value and variance 

components, but a robust method should be preferred as a diagnostic tool.  

 

2.9.5 Models for genetic evaluation of PAP   

Because of the influences of environmental factors, the fixed effects involved in the model 

for PAP included age of PAP measurements, sex, age of dam and management contemporary 

group (e.g. herd, year of birth, season of birth, etc.; Enns et al., 1993; Shirley et al., 2008). 

Univaraite animal models were previously used to develop PAP EPD, but a multivariate model 

was preferred in genetic evaluation. Although PAP can be measured on large number of cattle by 

a veterinary, PAP data size was still relatively small (i.e. much smaller than growth traits). 
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Therefore, genetic evaluation on PAP could benefit from multivariate models with growth traits. 

Generally, growth traits are moderate to high heritable and have the largest data size in beef 

cattle industry, which can be potentially used as correlated traits in models to improve the 

accuracy of PAP EPD.  The degree of the benefit that the PAP can obtain from a multi-trait 

model depends on the heritability of correlated traits, the genetic and residual correlation 

between PAP and correlated traits, and the sample size of correlated traits.   

As stated above, the BLUP method that was widely used in quantitative genetics assumed 

the normally distributed response variable conditionally on fixed effects. However, the 

distribution of PAP measurements violates the assumption with a heavy right side tail (Cockrum 

et al., 2014). This violation might limit the properties of BLUP, and influence some outcomes 

from BLUP. In this situation, some researchers use the raw PAP measurements in analyses and 

ignore the potential influences (Shirley et al., 2008; and Shimmel, 1981), but some researcher 

transformed the PAP score in analyses  (e.g. log transformation) to reduce the potential problems 

(Cockrum et al., 2014). When use PAP as an indicator for susceptibility of HAD, we worry about 

the extreme large PAP values that indicate the high risk for HAD. Therefore, some researchers 

used the raw PAP scores to divided animals into different categories (i.e. resistance and 

susceptibility to HAD), and then conducted studies and analyses using the categorical data 

(Newman et al, 2012; 2015). Each of the studoes led to valuable results, but no evidence 

demonstrated which way to utilize PAP scores was preferred in genetic evaluation.  

An important problem associated with the categorical “transformation” is how to determine 

the PAP thresholds to classify cattle. In order to assist breeders make breeding decisions against 

HAD, Holt and Callan (2007) presented a guideline to classify cattle based on PAP 

measurements (Table 1).  It indicated that: cattle having PAP less than 41 mmHg should be 
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considered low risk to HAD and good breeding stock at high altitude region; cattle with PAP 

larger than 49 mmHg are recognized having pulmonary hypertension and high risk to HAD, and 

cattle having PAP between 41 mmHg and 49 mmHg are considered moderate risk to HAD, and 

they should be used with caution. This guideline is based on the test of cattle that were 12 

months of age or older and lived at about 1829 m in elevation.  It can be an accurate reference to 

deal with cattle that are 9 to 16 month old and raised at regions from 1524 m to 2195 m in 

elevation (Holt, 2016; personal communication).  

Because elevation and age are two important factors influencing PAP measurements (Neary, 

2014), some limitations are associated with this guideline when data is collected outside the age 

or elevation range. Holt and Callan (2007) suggested that PAP measurements from cattle 

younger than 9 month of age are only reliable in identifying cattle that are developing pulmonary 

hypertension (PAP > 49 mmHg) and high-risk for HAD, so the lower threshold (PAP <41 

mmHg) from this guideline is less accurate in predicting low-risk cattle.  For the elevation factor, 

PAP measurements would increase 1 to 2 mmHg per 305 m rise in elevation (Holt and Callan, 

2007), so the lower threshold can be increased to 44 mmHg to determine low-risk cattle for HAD 

when the cattle resident above 2195 m. In addition, since the hypoxia-induced pulmonary 

response would not be seen until individuals reached on elevation of 1524 m (Holt and Callan, 

2007; Aghababian, 2010; Netzer et al., 2013), it is not possible to determine the low-risk cattle 

for HAD at low elevation (< 1500 m) using PAP measurements. However, the higher threshold 

in the guideline (PAP > 49 mmHg) is always reliable to identify high-risk cattle (at any age or 

elevation), and we can even relax it to a lower level when cattle (older than 9 month) live at 

regions lower than 1500 m. In summary, when PAP is measured in cattle younger than 9 mouth 

of age, we can only use PAP measurements to identify high-risk cattle for HAD (PAP > 
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49mmHg).  Several altitude levels can be used to advise procedures (Table 2). Therefore, 49 

mmHg PAP score can be a general recommendation to identify high-risk cattle to HAD at any 

elevation, and 41 mmHg can generally serve as a conservative criterion to determined low-risk 

cattle to HAD at high elevation (> 1524 m). One advantage that may come from categorical 

variable is that the phenotype is less sensitive to changing environmental factors (e.g. ages and 

elevation; Table 2.2), and it allow capturing much more complicated relationship (Pasta, 2009). 

 

Table 2.3. Guidelines for using pulmonary arterial pressure to evaluate cattle’s (older than 9 

month) susceptibility for high altitude disease (Holt , 2016; personal communication) 

Elevation Low risk Moderate risk High risk 

< 1524 m Not applicable Not applicable > 45 mmHg 
1524 - 2195 m < 41 mmHg 41 to 49 mmHg > 49 mmHg 
2195 - 2743 m < 45 mmHg 45 to 49 mmHg > 49 mmHg 
> 2743 m Not available for study 

 
 

2.10 Genetic relationship between PAP and growth traits 

In order to develop multivariate animal model for PAP measurements, we need consider 

genetic correlation between PAP and growth traits. Schemmel (1981) reported genetic 

correlations between weaning PAP (from Hereford, Angus and Red Angus) and BWT, WW as -

0.43, 0.19, respectively. Shirley et al. (2008) reported the genetic correlation between PAP 

weaning PAP and BWT, maternal BWT, WW and maternal WW as 0.49, 0.01, 0.51 and -0.05, 

respectively. Absolute genetic correlations between original PAP measurements and 

performance traits were ranged from 0.10 to 0.24 in Crawford et al. (2016), which were 

remarkably lower than the estimated from Shirley et al. (2008). The reported relationship 

between PAP and growth traits was mainly positive, which is in accordance with positive 

phenotypic relationship between them (Neary, 2014). Also, these results indicated a low to 
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moderate genetic relationship between PAP measurements and growth traits, which implied that 

it might be beneficial to conduct genetic evaluation on PAP using multivariate model.  

 

2.11 Genomic wide association study 

Genomics is a discipline in genetics using genotyping, DNA sequencing and bioinformatics 

technologies to study the functional units of genome, and reveal the association between genome 

segments and phenotype. The goal of genomic analyses is to detect phenotype-associated genes 

using data from microarray and genotyping technology. Because of these advanced molecular 

genetics techniques, high-density marker maps and tools are available, and large number of 

animals can be genotyped with a reasonable investment. This fact allows genome wide 

association study (GWAS), which utilizes high-density single-nucleotide polymorphisms (SNP) 

platforms. The GWAS is an approach to revel common genetic variants in different individuals 

to assess if any variant is associated with a trait. Actually, GWAS has been widely used in 

identifying significant SNP, biological pathways and networks underlying complex traits in 

human disease and associated treatment methods. It highly improved the understanding of 

different kind of cancer, diabetes, tuberculosis and high altitude disease (Vasseur and Quintana-

Murci, 2013). In the beef industry, GWAS helped developing genomic-enhanced estimate 

breeding value (GE-EBV) for higher accuracy genomic selection (Northcutt, 2010). Therefore it 

is beneficial to conduct GWAS on PAP and use GEBV or marker assisted selection to conduct 

selection of cattle at both low and high altitude for resistant to HAD. However, there are few 

published GWAS studies on PAP or HAD on cattle, except for the work from Newman et al. 

(2011) and works from Colorado State University. 
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2.11.1 Response variable in GWAS 

To guarantee the accuracy of GEBV prediction, the ideal data for training would be true 

genetic merit data observed on unrelated animals in the absence of selection (Garrick et al., 

2009). However, the true breeding values are not available in practice. Alternative sources of 

information were used in GWAS and genomic prediction, including single or repeated measures 

of individual phenotypic performance, information on progeny, estimated breeding value (EBV) 

from genetic evaluations, or a pooled mixture of more than one of these information sources 

(Garrick et al., 2009).  

Although phenotypes and EBV were commonly used for training, they have limitations that 

would increase the false positive rate in GWAS (Ekine et al., 2014). In the livestock industry, the 

data normally come from individuals who are related to each other, which would introduce 

family relatedness into the association study. The EBV is the estimated measure of the true 

additive genetic merit, and it is estimated from its own performance and the performance of 

related individuals, thus familial information influences the EBV. Because the goal of GWAS is 

to reveal the major gene and polygenic effects (Mendelian sampling term), involving familial 

information in GWAS can affect both power and false positive rate of the study (Ekine et al., 

2014). The familial information can dilute the effect of some important SNP, while lead to the 

false positive relationship between some genomic regions and traits. In addition, the variance of 

the EBV is lower than the variance of true breeding value, and EBV is a shrinkage estimator of 

true breeding value (shrink towards the mean; Garrick et al., 2009).  The degree of shrinkage is 

different on varied accuracy of individuals, which leads to the heterogeneous variance across 

individuals.  
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In order to avoid these problems associated with EBV, Garrick (2009) developed a 

“deregressed” EBV that adjusts for the heterogeneous variance across individuals and parent 

average effects (remove effects from other relatives). Because of these properties, this DEBV 

was widely used as dependent variable in GWAS and to estimate SNP/marker effects. Therefore, 

a deregressed estimated breeding value (DEBV) may be the best response variable used in future 

GWAS on PAP. 

 

2.11.2 Methods used in GWAS 

Even though published GWAS of PAP or HAD on cattle are forthcoming, the statistical 

methods used in GWAS for different traits are generally the same. In order to improve the 

accuracy of GWAS, many statistical methods have been applied during the past 20 years. 

Actually, these methods are different kinds of model selection methods. The most widely used 

methods include ridge regression BLUP (RR-BLUP), BayesA, BayesB, BayeCπ, Bayesian 

LASSO, GBLUP, machine learning etc. Hayes and Goddard (2010) concluded that the highest 

accuracies of GWAS were achieved when the prior distribution of SNP effects matches the true 

distribution. The method assuming many SNP effects of zero and a small proportion of SNPs 

with moderate to large effects yield higher accuracy GEBV.  

The RR-BLUP, BayesA and BayesB were first introduced, compared and discussed in the 

paper of Meuwissen et al. (2001). The BLUP method assumed a normal distribution of SNP 

effects with null mean and covariance matrix , which suggested a very large number of QTL 

with small effects. In RR-BLUP,  is identical for all loci and assumed known. The best linear 

prediction of SNP effects can be obtained through solving the corresponding Henderson’s mixed 

model equations. BayesA assumed a distribution of SNP effects, which is based on a large 
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number of QTL with small effects and a small proportion with moderate to large effects. In 

BayesA, the variance of each SNP effect was assumed unequal and under an inverted chi-square 

distribution with scale parameter S and v degree of freedom, whereas it is assumed that the error 

variance was under an inverted chi-square with scale parameters 2. BayesB is a method 

assuming mixture distribution of zero effects and t distribution of effects for SNP, which suggest 

a large number of genome regions with zero effect (as a proportion of π) and a small proportion 

(1- π) of QTL with moderate effects. The variance distribution assumption for QTL loci and 

error term are the same as BayesA. Bayes A can be referred as a specific case of Bayes B, with π 

equals 0. 

Habier et al. (2011) developed BayesC and BayesCπ methodologies. Both assumed that 

there is π proportion of loci have 0 effect and (1-π) proportion of loci have moderate to large 

effect with common variance across these loci. The π is a fixed value in BayesC while in 

BayesCπ, π is sampled from a beta distribution based on data. The error variance is assumed 

under an inverted chi-square distribution with scale parameter 2 as other Bayes methods.  

Table 2.4 summarizes different Bayesian methods used in animal breeding and genetics. In 

most analyses, Bayes B performed better than Bayes C or Bayes Cπ in predict genomic effects 

(given appropriate value of π and scale parameters for SNP effect; Garrick and Fernando, 2013), 

since the prior assumptions of SNP effects in Bayes B match the true distribution better. 

However, the appropriate values of π and scale parameters are usually not available. In these 

cases, the Bayes Cπ can be used to estimate π, total genetic variance and scale parameters, and 

then these estimates can be applied in Bayes B to develop better prediction of SNP effects 

(Garrick and Fernando, 2013).  
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Table 2.4. Summary of different Bayesian methods 

Method  Bayes A Bayes B Bayes C Bayes Cπ 

Reference Meuwissen et al. (2001) Meuwissen et al. (2001) Habier et al. (2011) Habier et al. (2011) 
     

Prior distribution
1
   t − distribution  

0

t − distribution

⎧
⎨
⎪

⎩⎪
  0

t − distribution

⎧
⎨
⎪

⎩⎪
 0

t − distribution

⎧
⎨
⎪

⎩⎪
 

     

Implication A large number of SNP 

of small effect, a small 

proportion with moderate 

to large effect 

π proportion of SNP with 

zero effect, (1-π) 

proportion with moderate 

to large effect 

π proportion of SNP with 

zero effect, (1-π) 

proportion with moderate 

to large effect 

π proportion of SNP with 

zero effect, (1-π) 

proportion with moderate 

to large effect 
     

π NO YES YES YES 

     

Sample π NO NO NO YES 

     

Constant variance  NO NO YES YES 

     

Sampler
 

Gibbs sampling Metropolis-Hastings Gibbs sampling Gibbs sampling 
1
Prior marginal distribution of SNP effects 
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Another method is Bayesian Lasso introduced by Yi and Xu (2008), which also assumed a 

very large proportion of SNP effects close to zero and small proportion with a moderate to large 

effect. In this method, the SNP effect is assumed a normal distribution and the variance of QTL 

is under an exponential distribution.  

The GBLUP is based on the restricted maximum likelihood (REML) concept. The SNP 

effects and variance can be estimated from a mixed model described by Henderson (1976) based 

on REML with treating the SNP as random effects and including a genomic relationship matrix. 

Using this methods, fixed effects can be estimated too. This GWAS method can be accomplished 

using many software packages including SVS (Golden Helix, Inc., Bozeman, MT), R, SAS (SAS 

Institute, Cary NC), ASReml  (Gilmour et al., 2009), etc. In R, some GWAS packages written by 

other researchers can be used directly.  

In addition to the previous methods, Long et al. (2007) developed a machine learning 

method. This method can be used to classify suspect and healthy animals with high accuracy and 

identify disease related SNPs. Specifically, a case-control experiment is designed, then machine 

learning method was used to select SNPs. Besides the naïve Bayes used in Long’s study, the 

machine learning method has many algorithms including support vector machine, decision tree, 

artificial neural machine, etc.  

In recent years, a method named as multiple locus mixed model (MLMM) were used in 

GWAS studies. It is a method using a simple stepwise mixed-model regression with forward 

inclusion and backward elimination of genotypic markers as fixed effect covariates with a 

genomic relationship matrix (Segura, 2012). The variance components are re-estimated between 

each forward and backward step. Currently, the MLMM is available in the SVS (Golden Helix, 

Inc., Bozeman, MT). 
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2.11.3 Bayesian Inference 

Thomas Bayes first developed Bayes’ theorem, and it is a theorem of probability. The real 

expression of Bayes theorem used in most scientific disciplines is described as Bayesian 

inference. Bayesian inference is statistical inference in which evidence or observations are used 

to update or to newly infer the probability that a hypothesis may be true. It can be expressed as 

the following formula (Box and Tiao):  

       (1) 

where, denote the unknown parameter we want to estimate; y is the observed data. This 

formula indicates that the conditional probability density function (posterior distribution) of 

unknown given observed data ( ) equals the likelihood of unknown with fixed observed 

data or the conditional probability density function of data if the assumed value for unknown is 

true ( ) multiplied by prior probability density function of unknown ( ) divided by the 

marginal distribution of  ( ). Because  is only independent of unknown parameters (only 

related to the observed data), the posterior probability density function for unknown is 

proportional to the product of likelihood (given observed data) and prior distribution of unknown 

parameters. Bayesian methods can be generalized in three steps: deciding prior distribution of 

unknown parameters, deriving posterior distribution, and estimating unknown parameters. In 

Bayesian analyses, the unknowns are estimated through making inferences from their posterior 

distribution (derived from equation 1).  

The Bayesian thought process is different from the traditional Frequentists thought process. 

These differences can be divided into three categories: the expression of uncertainty, the methods 

and used information, and the statistical concept. The Frequentist way of inference is based on 

how a large number of estimates would be distributed around the true value if a large number of 
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f (y |θ) f (θ)
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samples were taken or an infinite number of repetitions of the experiment were performed, 

whereas Bayesians examine the probability distribution of the true value, given the data (Blosco, 

2001). In other words, from the view point of Frenqutists, the true value of parameters are 

constant and fixed and the sample is variable, while from the view point of Bayesianist, the 

parameter is a random variable and the data are fixed. In the Frequentist school, we treat effects 

as fixed and random, but all unknowns are considered as random effects in Bayesian School. The 

expression of uncertainty is based on maximum likelihood or least square in Frequentist school, 

while the Bayesian scientists derive the uncertainty of unknowns from posterior distribution. The 

Bayes methods can also apply previous knowledge in estimating unknowns. In addition, there is 

no “bias” term in Bayesian School because Bayesianist studies the distribution of true values, 

and the “confidence interval” is called “credibility interval”. However, according to the 

illustration of Blasco (2001), most of the methods (e.g. BLUP, REML and maximum likelihood), 

belonging to the traditional Frequentist school, can be described in Bayesian School.  

The Bayesian methods have many advantages over Frequentist approaches. Bayesian 

combines prior information with data in estimating unknowns, which could provide higher 

accuracy for estimates. The inferences from small and large samples are similar in Bayesian 

methods, because asymptotic approximation in maximum likelihood is not necessary in Bayesian 

inference. In addition, Bayesian inference can avoid problems with model identification (number 

of unknowns is larger than the sample size) in methods of Frequentist school (e.g. OLS) by 

manipulating prior distributions. This is main reason for the wide usage of Bayesian methods in 

GWAS study, because the number of markers available for analysis greatly exceeds the number 

of observations (genotyped animals) in most GWAS. However, there are also some limitations 

associated with Bayesian analyses. Given a small data sample size, we could generate misleading 



	 48	

results if the chosen prior distribution is improper. Bayesian analyses are not suitable in 

multivariate analyses, because it is impossible to fix previous beliefs in the multivariate cases. 

Furthermore, the posterior of unknowns are usually not the well-known distributions (e.g. 

normal, passion, gamma, etc.), so we cannot directly make inference from the posterior 

distribution for some computational reasons. This fact hindered the adoption of Bayesian 

methods in statistical analyses, although the Bayesian theory has been introduce earlier than 

many of the theories of frequentists school. The development of Markov chain Monte Carlo 

(MCMC) solved this challenge, which made the Bayesian methods practical.  

Table 5 presented a timeline of Bayesian inference applied in animal breeding. Even though 

the theorem was introduced several centuries age, it became popular since 1960s, and Gianola 

and Fernando first used it in animal breeding for a threshold model paper in 1986. Bayes 

methodologies have been widely used in GWAS in animal breeding since the study of 

Meuwissen et al. (2001). 

Table 2.5. History of Bayesian Inference in animal breeding and genetics 
Event Time Personage 
Bayes’ Theorem 1700s Bayes and Price (1973) 
Bayesian school 1774-1812 Laplace (1812) 
Bayesian in animal breeding  1986 Gianola et al. (1986) 
Bayesian in GWAS  2001 Meuwissen et al. (2001) 
 

2.11.4 Markov chain Monte Carlo 

The Markov chain Monte Carlo (MCMC) can be explained separately as Markov chain and 

Monte Carlo, and Gelf and and Smith (1990) first provide its application in Bayesian statistics. A 

Markov chain is a random process with the following properties: conditional on its present value, 

the future is independent of the past, and stationary distribution of the random process (Grimmett 

and Stirzaker, 2001). Monte Carlo is a statistical approximated estimation of an integral value 
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using evaluations of an integrand at a set of points drawn randomly from a distribution with 

support over the range of integration (Murphy, 2012). The MCMC was placed in the top 10 most 

important algorithms of the 20th century (Murphy, 2012). It is associated with many 

characteristics: easier to implement, suitable for boarder range of models, and able to sample 

from high-dimensional distributions. This algorithm allows drawing samples from unknowns’ 

posterior distribution and indirectly making inferences of them. Two widely used MCMC 

methods are Gibbs sampling and Metropolis-Hasting (MH), which have been applied in GWAS 

of livestock. Many software have implemented Bayesian and MCMC methods, including GenSel 

software (Fernando and Garrick, 2008), SVS (Golden Helix, Inc., Bozeman, MT), BLUPF90 

family (Misztal et al, 2014) and MCMCglmm package in R (Hadfield, 2010).  

 

2.11.4.1 Gibbs Sampling algorithm 

The Gibbs sampling allows sampling joint distribution for parameters through drawing 

samples from full conditional distribution for each parameter. It is an efficient and simple 

algorithm, and a special case of MH (Murphy, 2012). The process of Gibbs sampling was stated 

as follows:  

 

which indicates that this algorithm sample each variables in turn conditionally on the value of 

other variables in the joint distribution. Through the repeated sampling, the algorithm achieves 

the required number of samples for each variable, and these samples are Markov Chain with a 
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stationary distribution. The estimates of unknowns can be obtained through summarizing these 

resulting samples. This algorithm has been implemented in software (e.g. GenSel) to execute 

Bayes A, Bayes C and Bayes Cπ. Known full conditional distribution functions are required for 

Gibbs Sampling, which makes this algorithm not applicable for the cases without known full 

conditional distributions for variables. Because Gibbs sampling only updates one variable at a 

time, it can be quite slow if the variables are highly correlated (Murphy, 2012).   

 

2.11.4.2 Metropolis-Hasting algorithm  

Metropolis-Hasting is another widely used MCMC algorithm, and it is more general than 

Gibbs sampling. In some situations, Gibbs Sampling is not applicable, therefore Metropolis-

Hasting can be a better option. The processes of the Metropolis-Hasting are as follows: 

 

The basic idea in Metropolis-Hasting is that we define the proposal distribution  as the 

probability of the movement from current state xt-1 to a new state xt in each step. The proposal 

distribution is chosen by modelers, which makes it is a flexible method. The normally used 

proposal distributions are symmetric Gaussian distribution conditionally on the current sample 

and independent distribution of x*, which lead to random walk Metropolis algorithm and 

independent sampler, respectively. The proposal distribution is also used to compute the 

acceptance probability that is used to decide whether to accept a new sample. In this process, a 

value U is drawn from Uniform(0,1), then if U<=r, we accept x* as xt, otherwise use xt-1 as xt. As 

1. Specify initial values x0

2. Drawn sample y from a proposal distribution: q(x* | x t−1)

3. Compute acceptance probability: 

r =
p(x*)q(x t−1 | x*)

p(x t−1)q(x* | x t−1)

4. Accept x*  as new sample x t  with probability min(r,1). If x*  is not accepted, x t = x t−1.

5. Repeat Setp 2 to Step 4 to get T draws of samples from joint distribution of unknowns.

q(x* | x t−1)
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a result, candidate draws with higher probability than current samples are always accepted, 

because r is larger than 1 in this situation. An efficient Metropolis-Hasting requires monitoring 

acceptance rate at a reasonable level (not too high or too low), which limits its usefulness for 

automatic modeling process.  In addition, the performance is sensitive to the chosen proposal 

distribution when using independent sampler. If the proposal distribution is far different from the 

posterior distribution, the independent sampler would be extremely inefficient. 

 

2.12 Post GWAS process 

The significant phenotype-associated genomic regions and their associated effects are 

estimated from a GWAS. Many actions can be executed based on these results, including 

development of genomic-enhance EBV and analyses of pathways and networks. 

 

2.12.1 Genomic selection 

The direct genomic breeding values (DGV) can be calculated by summing up the effect of 

markers (SNP) across the whole genome from GWAS (Saatchi et al, 2012). The DGV can be 

directly used in selection tools, but the selection accuracy is dependent on the percentage of 

genetic variation that the DGV can explain. In most cases, the estimated DGV can only explain a 

small portion of genetic variation of complex traits, so it is not an accurate selection tool by itself.  

In the beef cattle industry, DGV were used as additional information to phenotypic and pedigree 

information to derive genomic-enhanced EBV (GEBV) and conduct genomic selection (Gary et 

al., 2012; Saatchi et al, 2012; Rolf et al, 2014).  

Many advantages are associated with genomic selection. First, increasing the accuracy of 

selection is the main advantage of this process in the beef industry (Rolf et al., 2014). This 
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achievement was accomplished by genomic technique through providing additional genomic 

information to genetic evaluation, and helps reveals the “true” relationship between individuals 

(relationship based on pedigree and genomic information). This information helps increase the 

accuracy of the estimated breeding value, and sequentially improves the selection response. 

Traits that are hard or expensive to be measured may benefit the most from the genomic 

technology, including: feed efficiency traits, carcass traits and longevity traits (Garrick, 2011). 

Also, the young animals with no measurements and few offspring and relatives would gain great 

benefit from it, because the genomic selection can use genomic information at early age (Garrick, 

2011).  

Second, genomic selection helps increase selection intensity (Weller, 2016). The rise in 

selection intensity would speed the selection response. The increased selection accuracy of 

genomic selection allows breeder to select less individuals with high confidence (decrease the 

percentage of selected animals). In addition, this technique allows cross-herd selection that 

increases the base size of the animal population, and sequentially increases the selection intensity.  

Third, genomic selection would help decrease the generation interval (Weller, 2016). The 

generation interval influences the speed of genetic gain, and large generation interval slows 

down the genetic improvement (Bourdon, 1997). The genomic technology allows selecting 

animals at earlier age (before the measures of phenotypes and abandoning progeny testing), 

because the genomic information can be available shortly after birth of an animal. This would 

significantly shorten the generation interval in selection, and improve traits expressed late in an 

animal’s life, including carcass, longevity and reproductive traits (Garrick, 2011).  

Fourth, genomic selection reduces breeding costs (Bassi et al., 2016), since genomic 

selection would cut down the number of progeny needed to develop as seedstock. It can make up 
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the loss in accuracy from the reduction in progeny test. In addition, it will reduce the cost in 

measuring phenotype, because it allows selection of animals without phenotypes for traits that 

are expensive to be measured (e.g. feed efficiency traits).  

In beef industry, three methods were developed to incorporate the estimated DGV in to 

transitional genetic evaluation to develop GEBV (Rolf et al, 2014):  (1) the DGV was treated as 

correlated trait; (2) the DGV was used as external EPDs; (3) the GEBV was used in a selection 

index.  The National Cattle Evaluation adapted the first method to develop the genome-enhanced 

EPD for breeders (Kachman, 2008). In the method, the DGV is implemented in the multi-trait 

model as another correlated traits in genetic evaluation. The accuracy of EPD of traits in interest 

increases as the genetic correlation between DGV and the trait in interest rising. The American 

Simmental Association adapted the second method in its evaluation. In this method, the DGV 

influences the accuracy of EPD differently for each animal due to the relationship between the 

animal with the DGV and the training population. The index method develops genomic-

enhanced EBV through combine direct genomic value and parent average and pedigree indexes 

using an index equation. American Angus Association adapts this method in their EPD reports.  

Besides these two-step methods, some “direct” methods, using genomic derived relationship 

matrix, can estimate GEBV from BLUP directly without obtaining marker effects first. These 

methods include GBLUP, TABLUP and single-step methods, which construct genomic 

relationship matrix based on IBD, IBS and the combination of IBD and pedigree-based 

relationship matrix, respectively (Misztal et al., 2009).  

Many advantages are associated with these “indirect” methods (using DGV): (1) more 

computational feasible, and it can be used for large data set analysis; (2) quick and easy to 

predict GEPD for young genotype animal (like traditionally add data to a evaluation); (3) these 
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methods allow the using of MBV that is constructed from portion of genotyped markers. The 

disadvantages of these methods are: (1) deregression is needed to solve the problem of double 

counting relationship from records and individuals; (2) they are not feasible for multi-trait 

analysis; (3) the genomic prediction models are needed to be re-trained on a regular base, 

because the accuracy of genomic predictions decays with the increases in generation between 

training and test population.  Among these methods of the indirect category, the selection index 

method is simple, and does not need modification in traditional genetic evaluation. The external 

EPD method allows varying impacts on accuracies of genomic enhanced EPD depending on the 

relationship between the genotyped animal and the training population. 

 

2.12.2 Genes and pathway analysis 

In order to investigate the physiologic function of genomic regions detected as significant in 

GWAS, bioinformatics related analysis should be done. These analyses may include genes 

identification, pathway analysis, cluster analysis, transcription factor analysis, etc. Given the 

significant regions, we can identify related genes by searching published assembly and 

annotation of the bovine genome (e.g UMD3.1, BTAU4.0). This can be done using public 

website tools, such as Ensembl, NCBI, BMC, etc. Also, the cattle assembly sequence of 

significant windows can be aligned against other species’ genome such as human, pig and mouse 

to determine if any homologous genes were present in the putative region. This method can be 

used to filter less significant SNP. Then, all the selected genes from assemble results can be 

searched on several data bases to obtain pathway information, such as MetaCyc (Caspi et al., 

1008) or KEGG (Kanehisa and Goto, 2000) through tools like DAVID (Dennis et al., 2003), 

Ingenuity (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity), g:Profiler (Reimand et 
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al., 2016), etc. Cluster analyses integrate pathway analysis to provide more complete picture of a 

gene network. Cluster software (e.g. MCODE plug-in of Cytoscape) can construct cluster and 

tree graphic, and explore the connectivity between genes to find highly dense clusters as well as 

the node and hubs (Fortes et al., 2010).  

 

2.12.3 Network analysis 

By knowing QTL using SNP, we can conduct network analysis on single trait or multi-trait 

associated genes. Cluster analyses integrate the pathway analysis to provide more complete 

picture of gene network. Network analysis can be executed using the procedurals described by 

Reverter and Fortes (2013) and Fortes et al. (2011). These network studies generated gene 

regulatory network and epistatic network by association weight matrix (AWM). The partial 

correlation and information theory (Reverter and Chan, 2008) and regulatory impact factor 

(Reverter et al., 2010) can be integrated with associated weight matrix to infer gene co-

association and regulatory networks and identify transcription factor. We can generate a co-

association network and identify highly connected regulators using the GWAS results across a 

variety of phenotypes with this method.  

 

2.12.4 Additional “omics” studies 

Although GWAS can identify SNP explaining high common variance of a specific trait, they 

explain small portion of total variance and far less of the rare variance, which may be causally 

linked to phenotype. Also, GWAS cannot directly identify the variants that are causally linked to 

the phenotype (Marian and Belmont, 2011). However, GWAS can provide target regions (QTL) 

for fine mapping on transcriptomics analysis using next generation sequence, which would detect 
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new causal genomic variation and associated mutations (markers). It can also incorporate other 

“omic” studies to reveal the systems biology of a trait or disease. Genomics and transcriptomics 

(using genotyping and RNA or DNA sequencing) identifies all potential QTL, associated 

markers and corresponding genes through association study; proteomics and metabolomics can 

provide the functional information to these genes, which is defined as functional genomics. Lots 

of GWAS have been done in this area in livestock, the identified genomic makers can only 

explain relatively small portion of the genetic variation, which yeild low accuracy of prediction 

based on these markers. In order to build an effective genomic prediction system, more genomic 

markers accounting for high genetic variation should be identified for economic relevant traits 

(including susceptibility to HAD). Advances in functional genomics make the possibility to 

develop trait (or disease)-specific genotype assay platforms with less but more important makers 

(they explain relatively high genetic variation) than traditional general chips (e.g. BovineSNP50 

or BovineHD). These specific chips would result in high prediction accuracy, but low cost and 

data storage or computation requirement (Rolf et al., 2014). This will largely improve the genetic 

improvement in livestock industry and reduce the breeding cost. Therefore, genomic study of 

PAP in cattle would provide information for functional genomics of HAD and help conduct 

accurate genomic selection against HAD. 

 

2.13 Conclusions  

Selection for resistance to HAD is important for beef cattle, because HAD influences calf 

mortality at high altitudes (above 1500m). Pulmonary arterial pressure is an indicator trait for 

selection of tolerance to high altitude, especially since it is physiologically related to HAD and 

moderately heritable. Genetic selection for low PAP for beef production system at high altitudes 



	 57	

could potentially improve profitability by reducing morbidity and mortality. However, more 

genetic evidence is needed to ensure that selection for low PAP could reduce the incidence of PH 

and HAD. The GWAS of PAP can be used to identify the most significant SNP or inference to 

genes potentially related to PH and HAD, and estimate GEBV to serve as a selection tool. Thus, 

genomic information can help the selection of cattle for resistance to HAD at earlier ages. 

Besides the benefit of traditional genetic selection on PAP, GWAS of PAP will also help reveal 

the genomic architecture of PH by studying genes, and increase the selection efficiency for less 

susceptibility to HAD. However, case/control data of HAD are needed to help expose 

information of the complex high altitude disease. Thus, it is important and beneficial to 

collaborate with breeders of cattle in mountains regions of the country to collect the PH and 

HAD in the future.    
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CHAPTER 3  

PHENOTYPIC AND GENETIC CHARACTERISTICS OF PULMONARY ARTERIAL 

PRESSURE IN ANGUS CATTLE MANAGED AT HIGH ALTITUDE 

 

3.1. Introduction 

Exploratory data analysis and descriptive statistics are the first steps in analyses and 

modeling of complex traits. This chapter addresses the phenotypic and genetic characteristics of 

pulmonary arterial pressure (PAP) in Angus cattle managed at high altitude. The information 

herein helped determine the phenotypic form of yearling PAP in genetic evaluation in the 

subsequent studies. This part examined the data structure, checked modeling assumptions, and 

determined the influences of fixed effects on PAP. In addition, genetic parameters, EBV and 

accuracies were estimated for four yearling PAP phenotypes (non-transformed (RAW), power-

transformed (PT), three-category (CAT3) and two category (CAT2) phenotypes). Also, the 

results from different forms of PAP phenotypes were compared to decide which form was most 

appropriate in genetic evaluation. 

 

3.2. Materials and methods 

3.2.1 Data 

The PAP measurements were collected from Angus cattle from 1993 to 2015 at the John E. 

Rouse Colorado State University Beef Improvement Center. The headquarter of CSU-BIC is 

located at 2,170 m in elevation, and the growth traits and PAP were measured at this elevation, 

but the actual elevation environment ranged from 2,170 m to 2,740 m. In this herd, heifers and 

steers were developed post-weaning by grazing and alfalfa hay supplementation with an 
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expected average daily gain of 0.5 kg/d, while bulls were fed a high concentrate diet in a gain 

test for approximately 120 days with an expected average daily gain of 1.5 kg/d. Measurements 

were taken on spring born calves by the same licensed veterinarian when the cattle were about 

365 days of age. The PAP was measured in millimeters of mercury (mmHg) for every animal 

using the procedures outlined by Holt and Callen (2007). Only the yearling PAP measurements 

(n = 5,659; age ranged from 260 d to 450 d) were used in this study, and the PAP measurements 

that were less than 30 mmHg (n = 18) were considered biologically impossible at high elevation 

and excluded from analyses. Cattle having usable yearling PAP scores were progeny of 299 sires 

and 1,600 dams. The average yearling weight of animals with PAP measurement was 344.85 ± 

81.90 kg with an average weaning hip height of 109.17 ± 21.11 cm. The pedigree file used in 

genetic evaluation contained 11,715 Angus cattle. Fixed effects involved in yearling PAP 

analyses included sex, date of PAP measurements, age of dam and age of PAP measurements as 

a covariate. Table 3.1 presents the descriptive statistics of yearling PAP and age of measurement 

in various sex categories.  

 

Table 3.1. Descriptive statistics of yearling pulmonary arterial pressure measurements (PAP) and 
age in each sex category of Angus cattle managed at high altitude (elevation at 2,170 m) 
Item n Mean Minimum Maximum SD 
PAP, mmHg 5659   42.45   22.00 139.00   9.88 
Age, days 5659 348.32 261.00 450.00 29.65 
PAP of heifers, mmHg 3489   41.36   22.00 135.00   8.57 
Age of heifers, days 3489 351.16 261.00 420.00  25.81 
PAP of bulls, mmHg 1397   45.76   29.00 139.00  11.58 
Age of bulls, days 1397 352.47 261.00 414.00  21.72 
PAP of steers, mmHg   773   41.11   27.00 138.00  10.25 
Age of steers, days   773 327.98 261.00 450.00  45.79 
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3.2.2 Distribution of yearling PAP measurements 

Normality of yearling PAP measurements were tested using the Shapiro-Wilk normality test 

and the density plots, Q-Q plots of PAP phenotypes, and residuals after adjusting for potential 

fixed effects (Ghasemi and Zahediasl, 2012). In order to deal with the non-normality and 

heterogenous variance associated with non-transformed PAP measurements, alterative 

phenotypes of yearling PAP were tested and compared to determine the appropriate analysis. 

These phenotypes included PT, and ordinal categorical phenotypes (i.e. CAT2 and CAT3). A 

Box-Cox analysis was used to determine the power transformation (Box and Cox, 1964). The 

categorical phenotypes were constructed in accordance with the guidelines of PAP measurement 

described by Holt and Callen (2007). The categories of CAT3 were defined as low risk (PAP < 

41 mmHg), moderate risk (41 mmHg ≤ PAP ≤ 49 mmHg) and high risk (PAP > 49 mmHg) for 

high altitude disease (HAD). The CAT2 categories (PAP ≤ 49 mmHg or PAP > 49 mmHg) were 

constructed by combining low and moderate risk categories in CAT3 to indicate the with/without 

risk of pulmonary hypertension (PH) in cattle ( ≥ 25 mmHg is used to define PH in humans 

(Humbert et al., 2013)). Additional genetic analyses were conducted on all the alternative 

phenotypic forms and raw yearling PAP measurements.  

 

3.2.3 Testing fixed effects 

The potential fixed effects for analyses of yearling PAP included sex, age of dam, PAP 

measurement date and age of pap measurements as covariate. The fixed effects were examined 

for each phenotypic form (RAW, PT, CAT2 and CAT3) through log-likelihood ratio test (LR) 

using linear and threshold models. The phenotypic relationship between yearling PAP 

phenotypes and 365-day-adjusted yearling weight were also analyzed using linear and threshold 
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model with also accounting for fixed effects. The estimats of fixed effects and likelihood values 

of models were obtained from regression analyses using the Maximum likelihood method in R 

(R core Team, 2013; using packages “stat” and “ordinal”). Linear models were used to analyze 

RAW and PT, while threshold models were spplied to CAT3 and CAT2. These likelihood values 

were used to calculate the log-likelihood test (LR) for each fixed effect, which were expressed 

as: 

     (Equation 3.1) 

LogLr denoted the log-likelihood of model with less number of parameters, and LogLf stood for 

log-likelihood of the model with more parameters. In addition, Nagelkerke R2 values 

(Nagelkerke, 1991) were calculated to illustrate the performance of each model for the varied 

yearling PAP phenotypes as follows: 

     (Equation 3.2) 

where n was the sample size,  was the log likelihood of the test model, and  denoted 

the log-likelihood of the null model (only the mean was included as explanatory variable). 

Nagelkerke’s R2 is a pseudo coefficient of determination, which is preferred in threshold models 

(Nagelkerke, 1991).  

 

3.2.4 Genetic evaluations 

Heritability, EBV and accuracies were estimated for the different phenotypic forms using 

univariate linear and threshold mixed animal models. Bivariate and multivariate linear and 

threshold animal models were used to estimate the genetic correlations between different PAP 

phenotypic forms or PAP phenotype of different sex categories, respectively. Linear animal 
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models were used to analyze models associated with phenotypes in continuous scale (RAW and 

PT), while threshold animal models were used to study models associated with categorical 

phenotypes (CAT2 and CAT3). Equation 3.3 and Equation 3.5 present the form of these models.  
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represented the threshold model for ordered categorical traits. In this situation, the 
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denoted the liability (l) of categorical observations on a standard normal scale (l~N(0,1)), and the 

relationship between the liability and the standard normal distribution curve was (Mrode, 2014): 
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the φ(l
i
)was the height of the normal distribution at li. The following equation represent the 

model for analyzing genetic relationship between PAP phenotypes in different sex categories. 
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where 
  
y

h
, 

  
y

b
 and 
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s
 were vectors of heifer, bull and steer observations of each PAP phenotype 

when this represented regular linear models. 
 
β
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 and 
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 denoted the vectors of fixed effects 

on heifer, bull and steer observations. The fixed effects used in these models included age of 

dam, date and age (covariate) of PAP measurements. 
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 were genetic covariance between heifer, bull and steer observations. 

Unlike equation 3.3, the residual covariance between heifer, bull and steer PAP phenotypes were 

fixed as 0 in analyses, because there was no individual that appear in more than one sex category. 
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The presented model for estimating variance components, EBV and accuracy were analyzed 

with Gibbs sampling in software: renumf90, thrgibbs1f90 and postgibbs1f90 (Tsuruta and 

Misztal, 2006; Aguilar et al., 2014). A total of 250,000 iterations were run with the first 50,000 

discarded as burn-in, thinning every 10 samples, which resulted in sample size 20,000 for each 

estimated parameter and EBV. The simple two-sample z test were used to test the significance of 

differences between estimates of heritabilities, and the z score was calculated as (Åkesson et al., 

2008):  

(Equation 3.6) 

where 
  
h

i

2  and h
j

2  were two heritability estimates, and 
 
se

i
 and se

j
 were corresponding standard 

error of the estimates. The z scores corresponding two-tail p-values were obtained from the 

standard identity normal distribution to assess the significance level. In order to assess the 

differences between genetic evaluation of different PAP phenotypic forms, Pearson and rank 

correlations between EBV from different phenotypic forms were estimated, and the Beef 

Improvement Federation (BIF) accuracies from different phenotypic forms were compared. The 

EBV and predicted error variance (PEV) were direct output of software, and the BIF accuracies 

(acc) were calculated as: 

acc =1−
PEV

G × (1+ F )
 (Equation 3.7)  

where the G denoted the genetic variance of each PAP phenotypic forms, and F is the inbreeding 

coefficient. The genetic trends were also calculated and plotted for the comparison of genetic 

evaluations of yearling PAP phenotypes.  

To evaluate the differences between genetic evaluations of heifer, bull and steer yearling 

PAP, Pearson and Rank correlations between EBV from PAP measurements of different sexes 

z =
hi
2
− hj

2

sei
2
+ se j

2



	 73	

were calculated. A likelihood ratio test was used to assess the significance of fitting yearling 

PAP of different sexes as separate traits. The likelihood values used to conduct the likelihood 

ratio test were obatained from ASReml 3.0 (Gilmour et al., 2009). Because the likelihood values 

from mixed models using REML with different fixed effects were not comparable (not nested 

model; Pinheiro and Bates, 2000), the likelihood values from univariate model (including all 

PAP scores and sex as a fixed effect) and multivariate model (treating PAP scores as different 

traits by sex without sex as a fixed effect) cannot be used to conduct log likelihood ratio test. A 

similar multivariate model was parameterized to approximate the univariate model of PAP scores 

through the procedure described in Shirley et al. (2008). The converged variance parameters 

from the univariate animal model were applied and fixed in an alternative multivariate model 

fitting PAP as different traits by sex. In this alternative model, the genetic correlations between 

sexes were fixed as 0.99, because these genetic correlations could not be parameterized to unity 

to avoid a singular genetic variance-covariance matrix. The likelihood ratio test was obtained 

using likelihood of the two multivariate models treating PAP as same or different traits by sex in 

ASReml, and the associated degree of freedom was the difference in number of estimated 

parameters between the two models. Because ASReml can only analyze multivariate linear 

models, the tests involving CAT3 and CAT2 phenotypes (should be tested in multivariate 

threshold models) were approximated by treating them as linear traits.   

 

3.3. Results and discussion 

3.3.1 Distribution of yearling PAP measurements 

The Shapiro-Wilk normality test on the residual of PAP while adjusting for fixed effects (i.e. 

sex, age of PAP, age of dam and measurement date) resulted in W = 0.687 (P < 0.0001). Figure 
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3.1 presentes the distribution of yearling PAP measurements and residuals, the Q-Q plot and box 

plot of PAP marginal residuals. This information suggested that the residuals significantly 

violated the assumption of normality, and a long and thin tail existed on the right side of the 

distributions. The normally used linear statistical methods (i.e. LMM) for estimating variance 

components or predicting breeding values assume that the error/random effect is normally 

distributed and homoscedastic (Mrode, 2014). Non-normal and heteroskedastic data can 

potentially introduce bias into estimation and statistical tests (Osborne, 2005). The long right 

side tail caused non-normality of yearling PAP measurements, but we chose not to exclude these 

“extreme” measurements from the data to solve the non-normality problem because these are 

valuable phenotypes to understand the relationship of PAP and risk of HAD. In addition, the 

long right side tail is a general characteristic of the PAP distribution, this could also be 

associated with other cardiac diseases (e.g. congestive heart defects) that leads to the elevated 

PAP. Transformation of the original data was an option to accommodate non-normality and 

heterogeneity of variance (Box and Cox, 1964; Osborne 2005). Many other scientific studies ave 

applied different transformations to solve non-normality problem (Ali and Shook, 1980; Nusser 

et al., 1996). Box-Cox analysis was used to decide the most appropriate power transformation, 

which suggested the power for transforming original yearling PAP measurements was -2 (Figure 

3.2). Specifically, the power transformation was recommended as (PAP)-2. Because of the small 

scale of the transformed data (104), an additional linear transformation was made by multiplying 

104 to the transformed data for easier reporting. Therefore, the final transformation was 

104*(PAP)-2. This transformation reduced the non-normality issue as suggested by the 

distribution, Q-Q plot and box plot of residuals of yearling PAP (Figure 3.2). The Box-Cox data 

transformation is a simple transformation method to effectively resolve the non-normal and 
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heteroscedastic problem, which were applied in many scientific studies involving livestock 

(Besbes et al., 1993; Becerril et al., 1994; Peltier et al, 1998). 

 

Figure 3.1. Histogram of (A) original measurements and (B) associated marginal residuals, and 
(C) Q-Q plot and (D) boxplot of residuals of yearling pulmonary arterial pressure (PAP) 

 

 

A B 

C D 
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Figure 3.2.  (A) Box-Cox analysis result, (B) histogram, (C) Q-Q plot and (D) boxplot of 
residuals of the power-transformed (λ = -2) yearling pulmonary arterial pressure (PAP) 
measurements  
 

According to Holt and Callen (2007) and Holt (2016, personal communication), PAP > 49 

mmHg is a general threshold to distinguish high-risk cattle for HAD at high elevation (elevation 

> 1,524 m), and a measure of PAP < 41 mmHg can be used to determine low-risk cattle to HAD 

when the elevation ranges from 1,524 m to 2,195 m.  In addition, a preliminary study that scaned 

the heritability of categorical phenotypes based on different trunctation points implicated that 

using of truncation points at 41 mmHg and 49 mmHg also resulted in relatively higher 

heritability, and they were the average of the trauncation values of top 10 heritable three-

category PAP phenotypes (Apeendix 3.1).  

A B 

C D 
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Therefore, the categories of CAT3 were defined as low risk (PAP < 41 mmHg), moderate 

risk (41 mmHg ≤ PAP ≤ 49 mmHg) and high risk (PAP > 49 mmHg) for HAD. The CAT2 

categories were constructed by combining low and moderate risk categories of CAT3 to 

represent the with (PAP ≤ 49 mmHg) or without (PAP > 49 mmHg) presenting PH. Figure 3.3 

presents the frequency of categorical phenotypes. The proportions of the second category for 

CAT2 were the same with proportion of the third category for CAT3. The proportions of the first 

category of CAT2 were obtained by summing the first and second category in CAT3, which 

were 88.89%, 91.93%, 80.59% and 91.72% for all, heifer, bull and steer PAP, respectively. The 

category frequencies varied among sexes (i.e. bull, heifer and steer). Figure 3.3 and the Chi-

Squared tests of independence different sexes on CAT3 suggested that different sexes were 

associated with different percentage of animals in each yearling PAP category (P < 0.05). Larger 

proportion of bulls was in second and third categories, but higher percentage of heifers and steers 

were clustered first category, as well as proportion of animals in each category is similar between 

heifers and steers. For original PAP measurements, the heifer PAP measurements were similar 

with steer PAP measurements based on the Student t test on the mean (P = 0.76), and they were 

lower than the bull PAP measurements (P < 0.05; Table 3.1). This suggested a potential 

influence for management and genetic differences of PAP measurements recorded in bulls and 

heifers or steers, since the bulls were fed in a gain test (with average daily gain of 1.5 kg/d) but 

heifer and steers were grazed (average daily gain of 0.5 kg/d) in post-weaning period, which is a 

typical beef production system in U.S. mountain regions. 
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Figure 3.3. Proportion of calves in each of the three phenotypic categories based on all, heifer, 
bull and steer pulmonary arterial pressure (PAP) measurements. 1: (PAP < 41mmHg) ; 2: 
(41mmHg <= PAP <= 49 mmHg); 3: (PAP > 49 mmHg).  
 

3.3.2 Fixed effects 

Table 3.2 presents the log likelihood ratio test results for potential fixed effects in models to 

analyze PAP phenotypes. All the potential fixed effects (i.e. sex, age of dam, PAP measurement 

date and age of pap measurements as a covariate) were significantly associated with described 

yearling PAP phenotypes, so these were included in all analyses of yearling PAP. These fixed 

effects for PAP phenotypes were similar to those reported in Enns et al. (1992), Shirley et al. 

(2008) and Crawford et al. (2016). It appeared the non-normality of yearling PAP did not 

influence the statistical significance of fixed effects. Nagelkerke R2 values were calculated to 

illustrate the performance of each model. Nagelkerke R2 values were estimated as 0.10, 0.16, 

A B 

C D 
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0.15 and 0.14 for models of RAW, PT, CAT2 and CAT3. These results suggested that, with the 

same fixed effects, the model for PT, CAT3 and CAT2 performed better than raw PAP scores 

because the model terms explained slightly more variation in the data. In all phenotypes, bulls 

resulted in significant higher yearling PAP than heifers, and the mature cows (i.e. > 5 years of 

old) gave birth to individuals with higher yearling PAP than those from first calving heifers 

(Appendix 3.2 to Appendix 3.5).   

 

Table 3.2. Results of log-likelihood ratio tests for fixed effects of each form of yearling 
pulmonary arterial pressure (PAP) phenotypes in Angus cattle managed at high altitude 
(elevation at 2,170 m) 
Effect1 LogLf

2 LogLr
2 -2(LogLr-LogLf)

2 df P-Value 
Raw      

PDATE -20456.74 -20643.14 372.80 43 <0.01 
AOD -20456.74 -20466.68   19.88  4  <0.01 
SEX -20456.74 -20508.14 102.80  2 <0.01 
AOP -20456.74 -20475.47   37.45  1 <0.01 

PT      
PDATE -10522.04 -10796.81 549.53 43 <0.01 

AOD -10522.04  -10530.84   17.59  4  <0.01 
SEX -10522.04 -10617.88 191.69  2 <0.01 
AOP -10522.04 -10548.39   52.69  1 <0.01 

CAT3      
PDATE -4997.69 -5203.55 411.71 43 <0.01 

AOD -4997.69 -5008.63   21.88  4 <0.01 
SEX -4997.69 -5057.55 119.72  2 <0.01 
AOP -4997.69 -5025.01   54.64  1 <0.01 

CAT2      
PDATE -1760.05 -1892.54 264.98 43 <0.01 

AOD -1760.05 -1768.78   17.46  4 <0.01 
SEX -1760.05 -1784.63   49.17  2 <0.01 
AOP -1760.05 -1772.85   25.61  1 <0.01 

1RAW: non-transformed PAP; PT: power-transformed PAP; CAT3: three-category phenotype; CAT2: 
two-category phenotype; PDATE: PAP measurement date; AOD: age of dam; AOP: age of cattle when 
taking PAP measurements. 
2 LogLf: log likelihood value of the complete model with including all the fixed effects; LogLr: log 
likelihood value of the reduced model with including all the fixed effects except the one being tested 
(indicated by the raw name of the table). 
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The regression coefficients and statistical test of 365-day-adjusted YW on yearling PAP 

phenotypes after adjusting for other fixed effects (i.e. sex, age of dam, date and age of PAP 

measruments) are presented in Table 3.3. The regression coefficients of adjusted YW were 

significantly different from zero when regressed on each yearling PAP phenotypes based on our 

sample size (n = 4,981), and these positive estimates suggested that the increase in adjusted YW 

would result in a rise in yearling PAP measurements and the probability to be higher risk for 

HAD. However, these estimates were relatively small, for example, the regression coefficient for 

adjusted YW on non-transformed PAP was 0.01, which indicated that 100 kg difference in YW 

would result in only 1 mmHg difference in PAP measurement under the same environmental 

situation. Therefore, although the adjusted YW differed extremely about 300 kg (661 lb), only a 

3 mmHg range in yearling PAP measurement was expected. Also, very small amount (< 0.01) of 

improvement in R2 were obtained from including adjusted YW as covariate in models for 

yearling PAP phenotypes. This could support the weak genetic correlation (0.13) between 

yearling weight and PAP in Crawford et al. (2016). Weight measurements were influenced by 

many factors (e.g. age and management), and these environmental factors were already included 

the model for yearling PAP phenotypes. In addition, the potential relationship between animal 

weights and yearling PAP phenotypes may be attributed to the pleiotropic gene effects, and we 

want to study the genetic relationship between them, so we do not want ignore them from our 

genetic studies. Mortimer et al. (2014) reported the variance partition between effects would be 

altered and the gentic correlation between traits would be overcorrected when using other traits 

as covariate in gentic evaluation of another trait. Therefore, the weights were not included as 

covariate in the model for yearling PAP phenotypes, and their relationship were assessed in 

multivariate models.  
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Table 3.3. Results of regression coefficients, statistical tests and R2 of 365-day-adjusted yearling 
weights on yearling pulmonary arterial pressure phenotypes of Angus cattle managed at high 
altitude (elevation at 2,170 m)1 

Phenotype Coefficients LR P-value ΔR2 

RAW 10.00e-03   7.17   0.01 1.28e-03 
PT  -4.06e-03 30.52 <0.01 5.18e-03 
CAT3   2.80e-03 25.43 <0.01 5.22e-03 
CAT2   2.10e-03   6.62   0.01 2.47e-03 
1LR: Log likelihood ration test for 365-day-adjusted yearling weights; ΔR2: the change of R2 between 
models with or without including 365-day-adjusted yearling weights as covariate 
 

Tables 3.4 to 3.7 present the results of log-likelihood ratio tests for fixed effects when 

modeling RAW, PT, CAT3 and CAT2 phenotypes in sex categories. The date of PAP 

measurement was significant in models for all sex categories of each of the phenotype forms. 

The date information included year information, which accounted for the yearly environmental 

conditions. Age of PAP was significantly (P < 0.05) associated with yearling PAP phenotypes of 

bulls and heifers, while it was not significantly (P > 0.05) related to steer yearling PAP 

phenotypes in analyses. Generally, the PAP went up with the increases in age (Appendix 3.2 to 

Appendix 3.5). 

Varied levels of significance were observed in age of dam when modeling bull and heifer 

yearling PAP in different phenotypic forms (P = 0.01 to 0.24). The age of dam was significant at 

least at the 0.05 level in the model for bulls of all PAP phenotyeps. Also, age of dam was 

significant in the model for heifers of RAW and PT but not significant in models for heifers of 

CAT3 and CAT2. This may contribute to the losses of some phenotypic variation in constructing 

category phenotypes from continuous scal phenotypes. The significant test on age of dam mainly 

resulted from that PAP associated with heifer dam was significantly lower than the PAP 

associated with mature dam (i.e. age of dam as 5 years old). In addition, the non-significant age 

of dam effects in categorical phenotypes showed the similar pattern with thoses are significant in 

continuous phenotypes (Appendex 3.2 to Apeendix 3.5).   
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Table 3.4. Results of log-likelihood ratio tests for fixed effects of non-transformed yearling 
pulmonary arterial pressure (PAP) of Angus cattle managed at high altitude in each sex category 
(elevation at 2,170 m) 
Effect1 LogLf

2 LogLr
2

 -2(LogLr-LogLf)
2 df P-Value 

Bull      
PDATE -5303.69 -5380.21  153.04 25 <0.01 

AOD -5303.69 -5308.97    10.56  4   0.03 
AOP -5303.69 -5308.57     9.78  1 <0.01 

Heifer      
PDATE -12128.35 -12252.25 247.80 31 <0.01 

AOD -12128.35 -12134.31   11.93  4   0.02 
AOP -12128.35 -12146.47   36.25  1 <0.01 

Steer      
PDATE -2771.34 -2882.01 221.24 19 <0.01 

AOD -2771.34 -2772.53     2.26   4 0.69 
AOP -2771.34 -2772.91     3.04   1 0.08 

1PDATE: PAP measurement date; AOD: age of dam; AOP: age of cattle when taking PAP measurements. 
2 LogLf: log likelihood value of the complete model that included all the fixed effects; LogLr: log 
likelihood value of the reduced model that include all the fixed effects except the one being tested 
(indicated by the row name of the table). 
 
 
 
Table 3.5. Results of log-likelihood ratio tests for fixed effects of power-transformation yearling 
pulmonary arterial pressure (PAP) of Angus cattle managed at high altitude in each sex category 
(elevation at 2,170 m) 
Effect1 LogLf

2 LogLr
2

 -2(LogLr-LogLf)
2 df P-Value 

Bull      
PDATE -2507.56 -2613.67  212.23 27 <0.01 

AOD -2507.56 -2515.34   15.57  4 <0.01 
AOP -2507.56 -2515.45   15.78  1 <0.01 

Heifer      
PDATE -6145.94 -6272.41 252.94 32 <0.01 

AOD -6145.94 -6150.90    11.79  4   0.04 
AOP -6145.94 -6495.60  44.91  1 <0.01 

Steer      
PDATE -1441.64 -1558.36 233.44 19 <0.01 

AOD -1441.64 -1442.20   1.12 4   0.89 
AOP -1441.64 -1442.42   1.57 1   0.21 

1PDATE: PAP measurement date; AOD: age of dam; AOP: age of cattle when taking PAP measurements. 
2 LogLf: log likelihood value of the complete model that included all the fixed effects; LogLr: log 
likelihood value of the reduced model that included all the fixed effects except the one being tested 
(indicated by the row name of the table). 
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Table 3.6. Results of log-likelihood ratio tests for fixed effects of three-category yearling 
pulmonary arterial pressure (PAP) of Angus cattle managed at high altitude in each sex category 
(elevation at 2,170 m) 
Effect1 LogLf

2 LogLr
2

 -2(LogLr-LogLf)
2 df P-Value 

Bull      
PDATE -1342.02 -1435.08 186.13 27 <0.01 

AOD -1342.02 -1352.10   20.16 4 <0.01 
AOP -1342.02 -1349.57   15.58 1 <0.01 

Heifer      
PDATE -2993.28 -3090.93 195.31 32 <0.01 

AOD -2993.28 -2997.78     9.00 4   0.06 
AOP -2993.28 -3015.06   43.56 1 <0.01 

Steer      
PDATE -604.42 -664.52 120.22 19 <0.01 

AOD -604.42 -605.38     1.91 4   0.75 
AOP -604.42 -605.15     1.45 1   0.23 

1PDATE: PAP measurement date; AOD: age of dam; AOP: age of cattle when taking PAP measurements. 
2 LogLf: log likelihood value of the complete model that included all the fixed effects; LogLr: log 
likelihood value of the reduced model that included all the fixed effects except the one being tested 
(indicated by the row name of the table). 
 
 
 
Table 3.7. Results of log-likelihood ratio tests for fixed effects of two-category yearling 
pulmonary arterial pressure (PAP) of Angus cattle managed at high altitude in each sex category 
(elevation at 2,170 m) 
Effect1 LogLf

2 LogLr
2

 -2(LogLr-LogLf)
2 df P-Value 

Bull      
PDATE -611.23 -683.26 144.06 27 <0.01 

AOD -611.23 -620.45   18.43 4 <0.01 
AOP -611.23 -618.61  14.77 1 <0.01 

Heifer      
PDATE -922.48 -941.55 104.88 32 <0.01 

AOD -922.48 -925.05     5.14 4   0.27 
AOP -922.48 -931.70   18.43 1 <0.01 

Steer      
PDATE -182.38 -224.96 85.16 19 <0.01 

AOD -182.38 -183.74  2.71 4   0.61 
AOP -182.38 -182.39 0.03       1   0.87 

1PDATE: PAP measurement date; AOD: age of dam; AOP: age of cattle when taking PAP measurements. 
2 LogLf: log likelihood value of the complete model that included all the fixed effects; LogLr: log 
likelihood value of the reduced model that included all the fixed effects except the one being tested 
(indicated by the row name of the table). 
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The observed slight differences between age of dam significance between RAW and PT 

suggested that the violation of normality could slightly alter the statistical test (i.e. log likelihood 

ratio test) on significance of fixed effects, which was implicated in previous reports (Nimon, 

2012). Categrocial phenotypes were analyzed using threshold models without assuming the 

normal distriubution of data, so they did not violate the models assumptions. Also, the fixed 

effects appeared to influence yearling PAP measurements of different sex categories at different 

degrees. This result agreed with the report of Callen and Holt (2007) that different high PAP 

incidences were observed between male and female cattle. Because all fixed effects were 

statistical significant in some models used in the study, and in order to keep consistent across all 

models for yearling PAP measurements, all of these potential fixed effects were included in each 

model for yearling PAP phenotypes in the following studies.   

 

3.3.3 Genetic evaluation 

3.3.3.1 Genetic parameters  

Table 3.8 presents the heritability, genetic variance, and genetic and residual correlation of 

RAW, PT, CAT3 and CAT2 phenotypes. Although the estimated heritabilities were not 

statistically different across various yearling PAP phenotypes (i.e. RAW, PT, CAT3 and CAT2), 

the heritability estimates appeared slightly higher for ordinal categorical yearling PAP 

phenotypes than raw PAP measurements. The estimated heritabilities of RAW, PT and CAT3 

were smaller than the heritability of PAP reported previous literatures (i.e. 0.30 and 0.46), and 

the heritability of CAT2 was similar with these reports (Enns et al., 1992; Shirley et al., 2008). 

Enns et al. (1992) used small number of PAP records and a univariate model to obatain the 

heritability as 0.46, and Shirley et al. (2008) used a multivariate model with BW and WW to get 
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a lower heritability as 0.30. Our estimates from univariate animal model on non-transformed 

PAP were consistent with the heritability estimate in the study of Crawford et al. (2016) who 

used the data from the same herd but analyzed them using multivariate model and REML based 

on method. The differences observed in the heritability of the current study and previous studies 

may be attributed to the different PAP measurements in these studies, since Enns et al. (1997) 

and Shirley et al. (2008) included weaning PAP (measured before 260 days of age) in their study 

and the current study analyzed yearling PAP. Holt and Callen (2007) implicated that weaning 

PAP scores of cattle could not be used to correctly infer the yearling PAP, and Zeng et al. (2015) 

reported the genetic correlation between weaning and yearling PAP measruments as 0.67 (0.18), 

and higher weaning PAP heritability than yearling PAP heritability, which suggested weaning 

and yearling PAP was not genetically identical.  

No heritability estimate has been reported on the incidence of PH or the susceptibility of 

HAD in cattle, but Williams et al. (2012) assumed the missing yearling weight at high altitude 

were predominantly due to brisket disease and obtained the heritability of 0.36 for the cattle 

survivability to yearling weight at high altitude. This heritability estimated was similar to our 

heritability report on CAT2. However, the assumption in Williams et al. (2012) may introduce 

some biases to the data, since many other factors (e.g. other health issues and selection decisions) 

could infleucne the survivability to yearling age at high altitude, and some sick aniamals may not 

be identified and moved to low altitude.  
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Table 3.8. Heritability, genetic correlation (above diagonal) and residual correlation (below 
diagonal) among non-transformed, power-transformed and categorical yearling PAP of Angus 
cattle managed at high altitude (elevation at 2,170 m) 

Phenotype1 Raw PT CAT3 CAT2 
Raw  0.24 (0.03)a -0.95 (0.02) 1.00 (0.00)2 0.92 (0.05) 
PT -0.82 (0.01) 0.24 (0.03)a -0.99 (0.00) -0.91 (0.06) 
CAT3 1.00 (0.00) -1.00 (0.00) 0.25 (0.03)a 1.00 (0.00) 
CAT2 1.00 (0.00) -0.99 (0.01) 1.00 (0.00) 0.32 (0.05)a 

1PT: powered transformed yearling PAP, 10000*(PAP)2; CAT_3: three-category phenotype, 1: PAP < 41 
mmHg, 2: 41 mmHg ≤ PAP ≤ 49 mmHg, 3: PAP > 49 mmHg; CAT_2: two-category phenotype, 1: PAP 
≤ 49 mmHg, 2: PAP > 49 mmHg 
2 The value in the parentheses indicated standard error, and the 0.00 indicate any value less than 0.005. 
a Within the diagonal, the heritability estimates without a common superscript differ (P < 0.05). 
 

Results herein suggested that a larger portion of phenotypic variance was explained by 

genetic components in analyzing CAT3 and CAT2 (higher heritability than continuous 

phenotypes). The better fits of the fixed effects in models for CAT3 and CAT2 would decrease 

the portion of residual variance and result in higher heritability than RAW. However, Kizilkaya 

et al. (2014) reported that the threshold model for analyzing categorical phenotypes would over-

estimate heritability, which may also contribute to the higher heritability obtained from CAT3 

and CAT2 using threshold models. Heritabilities obtained from PT and RAW were the same, and 

no improvement was gained in the heritability estimated from PT than RAW. This implied that 

the violation of normality of the original PAP data had little effects on genetic parameter 

estimates. High absolute genetic correlations (> 0.91) were estimated between RAW, PT, CAT3 

and CAT2 (Table 3.8).  The correlation coefficients associated with PT were negative, because 

PT was inversely transformed from RAW. Genetic correlation informs us how much common 

genetic influence exists across two traits. Therefore, these high genetic correlations suggested 

that the various phenotypic forms of yearling PAP were genetically similar, and the categorical 

phenotypes can be alternative response variables in study of the genetic characteristics of PAP 

measruments, PH and HAD. 
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3.3.3.2 EBV 

Table 3.9 presents the correlations between EBV of all animals in the pedigree from RAW, 

PT, CAT3 and CAT2 using a univariate animal model. The correlations between sire EBV of 

these phenotypes have the same pattern as shown in Table 3.9. The Pearson’s correlations ranged 

from 0.74 to 0.91, and the resulting Rank correlations ranged from 0.69 to 0.92. The Pearson and 

Rank correlations were high  (0.89 and 0.92) between RAW and PT. This suggested that the 

violation of normality had limited influence on yearling PAP EBV and the ranking of the Angus 

cattle. Considering these similar heritability estimates, high correlations and ease of 

interpretation, RAW was the preferred dependent variable in estimating breeding value of to 

select against HAD.  

The resulting EBV rank correlations between RAW and categorical phenotypes were 0.84 

and 0.77, although they are high correlations, these correlations suggest some re-rankings of 

animals based on EBV among RAW and categorical phenotypes. Both of the lowest Pearson and 

Rank correlations were between CAT2 and PT, and suggested use of two-category phenotype 

would lead to the most re-ranking compared to EBV from PT or RAW. The EBV from CAT3 

yielded to higher correlations with EBV from RAW and PT (with correlations larger than 0.8). 

These results implied that the fewer the categories involved in categorical phenotypes, the more 

re-rankings of animals would be. In summary, these categorical PAP phenotypes can be 

alternative response variable to study genetic characteristics of cattle’s PAP at high altitude and 

develop EBV for selecting for low PAP and against HAD based on their moderate heritability, 

high genetic correlations with non-transformed PAP measruments, but some re-ranking of 

animals would be identified compared to non-transformed PAP measurements.  
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Table 3.9. Results of Pearson (above diagonal) and Rank (below diagonal) correlations among 
EBV of raw, continuous transformed and categorical transformed pulmonary arterial pressure 
(PAP) records of Angus cattle managed at high altitude (elevation at 2,170 m) 

Phenotype1 Raw PT CAT3 CAT2 
Raw  1 -0.89 0.81 0.78 
PT -0.92 1 -0.91 -0.74 
CAT3 0.84 -0.91 1 0.81 
CAT2 0.77 -0.69 0.76 1 
1PT: powered transformed yearling PAP, 10000*(PAP)2; Category_3: three-category phenotype, 1: PAP 
< 41 mmHg, 2: 41 mmHg ≤ PAP ≤ 49 mmHg, 3: PAP > 49 mmHg; Category_2: two-category phenotype, 
1: PAP ≤ 49 mmHg, 2: PAP > 49 mmHg 

 

Table 3.10 showed the average EBV accuracies of all animals in the pedigree file from 

univariate animal models of RAW, PT, CAT3 and CAT2, and also included average accuracies 

of sires that have offspring with PAP records. The average number of offspring with PAP 

records for a sire was 19 (associated with accuracy around 0.39 for non-transformed PAP), and 

the average accuracy for these sires was ranged from 0.21 to 0.31 in the four PAP associated 

phenotypes. As expected, average EBV accuracies from PT were similar with those from RAW 

based on the similar heritability obtained from them (P > 0.05). Although higher heritabilities 

were obtained from categorical phenotypes using threshold models, the resulting EBV accuracies 

are higher for RAW and PT than CAT3 and CAT2 (P < 0.05). The difference between sire’s 

accuracies of CAT3 and phenotypes on a continuous scale was about 0.04, and the difference 

between accuracies of CAT2 and continuous phenotypes was about 0.1. Therefore, 

approximately 3 and 8 additional offspring would be needed to compensate for the losses in 

accuracies of CAT3 and CAT2 compared to continuous phenotypes based on the accuracy 

equation for offspring data from Bourdon (1997) and a heritability at 0.24. These results 

suggested losses in EBV accuracy from ordered categorical phenotypes compared to continuous 

yearling PAP scores, and these losses increased as the number of category decreased, which 

could imply that some information was lost when constructing categorical phenotypes based on 
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non-transformed PAP scores. Although the losses in accuracies were not reported in previous 

genetic evaluation studies, Kärkkäinen et al. (2013) and Kizilkaya et al. (2014) reported that 

categorical phenotypes yielded lower genomic prediction accuracy than continuous phenotypes, 

and illustrated that the accuracies increased with increases in ordered categories. In constructing 

the categorical phenotypes, it assumed that animals in the same risk categories for PH had the 

same levels of exposure to genetic risk factors. However, some animals considered “unaffected” 

could be higher risk than others in this group, and some animal considered “affected” could be in 

a more severe hypertensive state than other “affected” animals. This could contribute to the 

losses in information from categorical phenotypes relative to continuous scale phenotypes 

(Kizilkaya et al., 2014).  

 

Table 3.10. Summary of accuracy from univariate model for each form of yearling pulmonary 
arterial pressure (PAP) phenotypes of Angus cattle managed at high altitude (elevation at 2,170 
m) 

Form1 Average  Min Max  SD Sire_average  
Raw  0.17a 0 0.68 0.09 0.31a 

PT 0.17a 0 0.68 0.09 0.31a 

CAT3  0.15b 0 0.65 0.08 0.27b 

CAT2 0.11c 0 0.60 0.06 0.21c 

1PT: powered transformed yearling PAP, 10000*(PAP)2; Category_3: three-category yearling PAP, 1: 
PAP < 41 mmHg, 2: 41 mmHg <= PAP <= 49 mmHg, 3: PAP > 49 mmHg; Category_2: two-category 
yearling PAP, 1: PAP <= 49 mmHg, 2: PAP > 49 mmHg 
abc Within the column, the mean of accuracy without a common superscript differ (P < 0.05). 
 

 

3.3.3 Genetic trend 

Figure 3.4 illustrates the genetic trends (on genetic standard deviation scale) and the 

associated regression lines from RAW, PT, CAT3 and CAT2. The genetic trends of continuous 

traits indicated the average genetic changes of yearling PAP across years. The genetic trends of 

categorical phenotypes reflected the genetic changes of liability under a normal distribution. 



	 90	

 
Figure 3.4. Genetic trends and associated regression lines and equations across year from 1993 to 
2015 from raw yearling pulmonary arterial pressure (PAP) (A), power-transformed yearling PAP 
(B), and three-category (C) and two-category (D) phenotypes.  

 

All forms of phenotypes showed the same overall direction of selection response – decreased 

PAP measurements over years (i.e. negative regression coefficients for these genetic trends). The 

resulting genetic trend for PT was positive, since PT is the inverse transformation of PAP. Enns 

et al. (2011) also reported a similar downwards PAP genetic trend based on information from 

Tybar ranch in Colorado. The resulting genetic trends could be attributed to the CSU-BIC Angus 

herd selecting against HAD using PAP for decades. These results suggest that genetic 

improvements were and can continue to be made on PAP for cattle managed at high altitude 

through selection on PAP measurements. The resulting genetic improvement rate was 

approximated by the regression coefficient of the genetic trend, which suggested a slight (1.1% 

to 1.6% of genetic standard deviation; Figure 3.4) genetic improvement rate per year for these 

PAP phenotypes. Considering the non-transformed PAP phenotype, the PAP was genetically 
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improved by only -0.075 mmHg per year based on the genetic variance of RAW as 21.96 

mmHg2. Although the overall genetic trend was decreasing, large fluctuations were identified 

across years. This may be due to external sires (without genetic information on PAP) were 

introduced in this herd.  

Beside the genetic trend on all animals, we also constructed the genetic trends of non-

transformed PAP phenotypes of animals (whose dams were all CSU bred) from three different 

sire groups, the registered external sires, the CSU-BIC sires (whose sire and dam were both 

CSU-BIC bred), and the partial CSU-BIC sires (one of whose parents were outside bred; Figure 

3.5). The genetic trends of these different sire groups had the same direction with overall genetic 

trend (i.e. decreasing PAP measurements). The genetic improvement in cattle sired by external 

sires may be attributed to the genetic improvement of their CSU-BIC dams. It may also come 

from the genetic improvement of PAP of external herds because increasing number of PAP tests 

were done in seedstock herds at high altitude for selecting against HAD in recent years, and there 

is demand for cattle are adapted to high altitude. The average PAP EBV of cattle from external 

sires was larger than those from CSU-BIC sires (P<0.05, Figure 3.5), which suggested that the 

CSU-BIC cattle tend to have lower yearling PAP and less susceptibility to HAD than those 

external registered cattle under the same environmental conditions.  
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Figure 3.5 Genetic trends and associated regression lines across year from 1993 to 2015 of 
animals from all sires (All), the registered external sires (OUT), the CSU-BIC sires (BIC), and 
the partial CSU-BIC sires (Partial_BIC) on original yearling pulmonary arterial pressure 
measurements in Angus cattle managed at high altitude (elevation at 2,170 m)  
 
 

3.3.3.4 Genetic relationship between PAP in different sex categories 

Tables 3.11 to 3.14 present the genetic correlations between sex categories of RAW, PT, 

CAT3 and CAT2. Table 3.15 summarizes the log-likelihood ratio tests on sex-differences for 

different yearling PAP phenotypes. The log-likelihood ratio tests revealed difference (P < 0.05) 

among bulls, heifers and steers, which suggested that PAP phenotypes in different sex categories 

were not genetically identical for all forms of PAP phenotypes. Non-identical genetic 

correlations and varied heritability estimates, genetic and residual variances across heifer, bull 

and steer PAP in different phenotypic forms may contribute to these results. The cross-sex 

genetic correlations were examined on a large number of traits of different species, Poissant et al. 

(2009) summarized these correlations for 310 traits from 42 animal species and reported that the 

average cross sex correlations were about 0.80 ± 0.03, 0.77 ± 0.09, 0.73 ± 0.05 and 0.62 ± 0.07 
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for morphological, behavioral, developmental and physiological traits, respectively. The genetic 

correlation estimates between heifers and bulls in current study were close to these average 

values. 

The genetic correlations between RAW in varied sex categories was similar to those 

associated with PT (P>0.05), and the heritability estimate of bulls, heifers and steers were 

similar between RAW and PT (P>0.05). These results demonstrated the limited influence of the 

violation of normality. It was reported that violation of normality should not cause major 

problem in regression analysis when sample size was large, while it could introduce different 

statistic results when sample size was small (Ghasemi and Zahediasl, 2012; Statistics Solutons, 

2013). In RAW and PT, the genetic correlations between heifer and steer were high ( > 0.95), but 

the genetic correlation between bull and heifer or steer were lower (< 0.82). Also, the average 

PAP score of bulls were higher than the average of heifers and steers (P < 0.05), and the average 

PAP scores of heifers were similar with that of steers (P > 0.05; Table 3.1).  

Holt and Callen (2007) implied no physiologic basis for a different in PAP measurements 

between male and females cattle. This presented information suggested that, other than sex 

effects, the different management environments might contribute to the genetic difference 

between the yearling PAP measurements of sex categories, since the post-weaning managements 

were different between bulls and heifers or steers, but similar between heifers and steers. In this 

Angus herd, before yearling, the bulls were fed and managed in a gain test (with average daily 

gain at about 1.5kg/day), and the steers were castrated and grazed with heifers (with average 

daily gain at about 0.5 kg/day). Neary et al. (2015) suggested that cattle were more susceptible to 

develop pulmonary hypertension when they were managed for high levels of gain. However, 

Crawford et al. (2016) reported weak genetic relationship between PAP measurements and post-



	 94	

weaning growth traits (i.e. PWG and YW). The results supported there may be a genetic by 

environmental effect from production management type on yearling PAP measurements. 

In categorical phenotypes, the genetic correlation between bulls and heifers were higher than 

those with continuous scale phenotypes, but bulls still had higher heritability than heifers. The 

genetic correlations between steers and bulls or heifers were all moderate in category phenotypes 

and lower than those of continuous phenotypes. This illustrated the categorical PAP was not 

genetically identical across heifers, bulls and steers, and both the sex effect and management of 

gain would contribute to these genetic difference between sexes. Shirley et al. (2008) reported 

the genetic correlation between male and female weaning PAP measurements as 0.64. Darling 

and Holt (1999) suggested that an abnormal Y chromosome could be associated with 

susceptibility of male cattle to HAD.  Also, Jin (2010) reported that the incidence of chronic high 

altitude disease and acute high altitude disease were more frequent in human males. This 

information collectively suggest possible different genetic basis between males and females for 

susceptibility of HAD and the PAP.  

 

Table 3.11. Heritability, genetic variance and genetic correlation (above diagonal) between non-
transformed PAP measurements of heifer, bull and steer Angus cattle managed at high altitude 
(elevation at 2,170 m) 
Sex Heifer Bull Steer 
Heifer 0.19 (0.03) 0.82 (0.10) 0.99 (0.01) 
Bull 0 0.37 (0.07) 0.81 (0.09) 
Steer 0 0 0.33 (0.06) 
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Table 3.12. Heritability, genetic variance and genetic correlation (above diagonal) between 
power-transformed pulmonary arterial pressure measurements of heifer, bull and steer Angus 
cattle managed at high altitude (elevation at 2,170 m) 
Sex Heifer Bull Steer 
Heifer 0.23 (0.06) 0.78 (0.08) 0.95 (0.04) 
Bull 0 0.41 (0.06) 0.67 (0.17) 
Steer 0 0 0.25 (0.06) 
 

Table 3.13. Heritability, genetic variance and genetic correlation (above diagonal) between three-
category pulmonary arterial pressure phenotype of heifer, bull and steer Angus cattle managed at 
high altitude (elevation at 2,170 m) 
Sex Heifer Bull Steer 
Heifer 0.21 (0.03) 0.96 (0.06) 0.46 (0.18) 
Bull 0 0.43 (0.07) 0.58 (0.16) 
Steer 0 0 0.45 (0.12) 

 

Table 3.14. Heritability, genetic variance and genetic correlation (above diagonal) between two-
category pulmonary arterial pressure phenotype of heifer, bull and steer Angus cattle managed at 
high altitude (elevation at 2,170 m) 
Sex Heifer Bull Steer 
Heifer 0.30 (0.06) 0.87 (0.12) 0.32 (0.33) 
Bull 0 0.49 (0.07) 0.63 (0.19) 
Steer 0 0 0.54 (0.11) 
 

Table 3.15 Log likelihood ratio test for sex effects of four yearling pulmonary arterial pressure 

phenotypes of Angus cattle managed at high altitude (elevation at 2,170 m) 
Effect LogLf LogLr -2(LogLr-LogLf) df P-Value 
RAW -4960.61 -5060.56 199.90 7 <0.01 
PT -5319.08 -5331.15 24.14 7 <0.01 
CAT3 -352.94 -362.90 19.92 7 <0.01 
CAT2 3793.07 3670.87 244.40 7 <0.01 
1
PT: powered transformed yearling PAP, 10000*(PAP)

2
; CAT3: three-category phenotype, 1: PAP < 41 

mmHg, 2: 41 mmHg ≤ PAP ≤ 49 mmHg, 3: PAP > 49 mmHg; CAT2: two-category phenotype, 1: PAP ≤ 

49 mmHg, 2: PAP > 49 mmHg 
 

Table 3.16 to 3.19 present the Pearson and Rank correlations between EBV predicted from 

all cattle, bull, heifer and steer yearling PAP phenotypes (i.e. RAW, PT, CAT3 and CAT2). The 

yearling PAP EBV correlations among sexes were consistent between RAW and PT. They were 

all high with the lowest observed value as 0.89. The lowest correlations associated with RAW 
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and PT were identified between PAP EBV from bulls and steers, which corresponded to 

estimated genetic correlations and also suggested that management of gain has an influence on 

PAP measurements. The EBV correlations between all animals and steers were larger than 0.76 

in categorical phenotypes, and some re-ranking was identified between the two sets of EBV. The 

smaller sample size of steers compared to heifers and bulls and the estimated moderate genetic 

correlation in categorical phenotypes would lead to these EBV correlations. In addition, high 

Pearson and Rank correlations (>0.9) were identified between EBV from all cattle and heifer or 

bull yearling PAP data in each PAP phenotypic form, which suggested similar rank of animals 

based on all, heifer and bull PAP EBV. These results suggested that designating yearling PAP 

among sexes as separate traits was not necessary when calculating EBV because of these high 

correlations between EBV from all animals’ PAP phenotypes and PAP measurements in 

different sexes. In addition, it should be noted that since the EBV was shrunk toward the mean 

and the parents average, especially for individuals with less amount of information, and different 

individuals had missing phenotypes in bulls, steers and heifers data compared to data for all 

cattle, the EBV from all, bull, heifer, steer data were shrunk differently, which may introduce a 

few bias in the correlations between EBV.   

Van Vleck and Cundif  (1998) identified high cross-sex correlations (>0.85) of cattle for 

WW and YW, and reported that these genetic correlations were large enough to consider male 

and female weight as the same traits in genetic selection. Moderately to highly positive cross-sex 

correlations were identify for weaning gain and post-weaning gain in the study of Stålhammar 

and Philipsson (1997), and they suggested that sex-specific parameters should be used in an 

evaluation system of post-weaning gain. However, treating phenotypes from different sexes as 

separate traits would result in more than one set of EBV in an evaluation system, which would 
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introduce more complexity in selection systems and subsequently how to use or incorporate 

these EBV. It should also be noted that moderate to high cross-sex correlations between bulls 

and heifers were identified for real time ultrasound traits (e.g. subcutaneous fat thickness, 

longissimus muscle area and intramuscular fat percentage); thus bull and heifer ultrasound traits 

could be considered as separated traits in models for genetic evaluation of carcass traits (all 

measurements were considered as the same trait) because of the high genetic correlations 

between ultrasound and carcass traits (Crews and Kemp, 2001; Crews et al, 2003; Reverter et al., 

2000). However, there is no end-use trait when applying PAP phenotypes among sexes as 

separate traits. Besides the high cross-sex EBV correlations, treating PAP of different sexes as 

the same trait would result in simpler evaluation model and easier interpretation and application 

of EBV.  

 

Table 3.16. Pearson (above diagonal) and rank (below diagonal) correlations between estimated 
breeding value from non-transformed pulmonary arterial pressure measurements of all animals, 
heifer, bull and steer Angus cattle managed at high altitude (elevation at 2,170 m) 
Sex All Heifer Bull Steer 
All 1 0.95 0.93 0.95 
Heifer 0.95 1 0.96 1.00 
Bull 0.93 0.94 1 0.95 
Steer 0.95 1.00 0.93 1 
 

Table 3.17. Pearson (above diagonal) and rank (below diagonal) correlations between estimated 
breeding value from power-transformed pulmonary arterial pressure measurements of all 
animals, heifer, bull and steer Angus cattle managed at high altitude (elevation at 2,170 m) 
Sex All Heifer Bull Steer 
All 1 0.96 0.90 0.96 
Heifer 0.95 1 0 .92 0.99  
Bull 0.90 0.92 1 0.89 
Steer 0.95 0.99 0.88 1 
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Table 3.18. Pearson (above diagonal) and rank (below diagonal) correlations between estimated 
breeding value from three-category pulmonary arterial pressure phenotype of all animals, heifer, 
bull and steer Angus cattle managed at high altitude (elevation at 2,170 m)1 

Sex All Heifer Bull Steer 
All 1 0.95 0.95 0.80 
Heifer 0.95 1 0.99 0.72 
Bull 0.95 0.99 1 0.78 
Steer 0.77 0.65 0.72 1 
1
three-categorical phenotype: 1: PAP < 41 mmHg, 2: 41 mmHg ≤ PAP ≤ 49 mmHg, 3: PAP > 49 mmHg 

 

Table 3.19. Pearson (above diagonal) and rank (below diagonal) correlations between estimated 
breeding value from two-category pulmonary arterial pressure phenotype of all animals, heifer, 
bull and steer Angus cattle managed at high altitude (elevation at 2,170 m)1 

Sex All Heifer Bull Steer 
All 1 0.93 0.93 0.78 
Heifer 0.92 1 0.97 0.72  
Bull 0.92 0.96 1 0.85  
Steer 0.76 0.72 0.84 1 
1
two-categorical phenotype: 1: PAP ≤ 49 mmHg, 2: PAP > 49 mmHg 

 

 

3.4 Conclusions 

Although the non-transformed yearling PAP measurements were not normally distributed, 

the violation of normality had limited influence on the significance of fixed effects tests and 

genetic evaluation of yearling PAP measurements. Sex, age of dam, measurement date of PAP 

and age of PAP (covariate) were important explanatory variables of PAP phenotypes and the 

overall R2 of these variables on RAW, PT, CAT3 and CAT2 were 0.10, 0.16, 0.15 and 0.14, 

respectively. Losses of EBV accuracy were identified for ordinal categorical phenotypes 

compared with continuous phenotypes. Ordered categorical phenotypes can be alternative 

dependent variables in studying characteristics of PAP and selecting against elevated PAP, 

however, they would cause some re-ranking of sires related to non-transformed PAP scores. In 

genetic evaluation, the non-transformed yearling PAP measurements were preferred based on the 
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similar heritability, higher accuracy and same scale of the trait interpretation that ease breeder 

understanding. The PAP measurements of different sexes were identified genetically un-

identical. However, it is not necessary to treat yearling PAP as separate traits by sex in genetic 

evaluation because the EBV from all PAP and PAP of different sexes would yield similar 

ranking of animals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 100	

LITERATURE CITED 

Aguilar I, I. Misztal, S. Tsuruta, A. Legarra, and H. Wang. 2014. PREGSF90–POSTGSF90: 
Computational Tools for the Implementation of Single-step Genomic Selection and 
Genome-wide Association with Ungenotyped Individuals in BLUPF90 Programs. In Proc. 
10th World Congr. Genet. Appl. Livest. Prod. 

Åkesson, M., S. Bensch, D. Hasselquist, M. Tarka, and B. Hansson. 2008. Estimating 
heritabilities and genetic correlations: comparing the ‘animal model’with parent-offspring 
regression using data from a natural population. PLoS One. 3:1739. 

Ali, A. K. A. and G. E. Shook. 1980. An optimum transformation for somatic cell concentration 
in milk. J. Dairy Sci. 63:487-490. 

Bourdon, R. M. 1997. Understanding animal breeding (Vol. 2). Englewood Cliffs, NJ: Prentice 
Hall. 

Becerril, C. M., C. J. Wilcox, G. R. Wiggans, and K. N. Sigmon. 1994. Transformation of 
measurements percentage of white coat color for Holsteins and estimation of 
heritability. J. Dairy Sci. 77:2651-2657. 

Besbes, B., V. Ducrocq, J. L. Foulley, M. Protais, A. Tavernier, M. Tixierboichard, and C. 
Beautnont. 1993. Box-Cox transformation of egg-production traits of laying hens to 
improve genetic parameter estimation and breeding evaluation. Livest. Prod. Sci. 33:313-
326. 

Box, G. E. and D. R. Cox. 1964. An analysis of transformations. J. R. Stat. Soc. Series B 
(Methodological):211-252. 

Buroker, N. E., X. H. Ning, Z. N. Zhou, K. Li, W. J. Cen, X. F. Wu, W. Z. Zhu, C. R. Scott, and 
S. H. Chen. 2012. EPAS1 and EGLN1 associations with high altitude sickness in Han and 
Tibetan Chinese at the Qinghai–Tibetan Plateau. Blood Cells Mol. Dis. 49:67-73. 

Crawford, N. F., M. G. Thomas, T. N. Holt, S. E. Speidel, and R. M. Enns. 2016. Heritabilities 
and genetic correlations of pulmonary arterial pressure and performance traits in Angus 
cattle at high altitude. J. Anim. Sci. doi:10.2527/jas.2016-0703 

Crews, D. H. and R. A. Kemp. 2001. Genetic parameters for ultrasound and carcass measures of 
yield and quality among replacement and slaughter beef cattle. J. Anim. Sci. 79:3008-3020. 

Crews, D. H., E. J. Pollak, R. L. Weaber, R. L. Quaas and R. J. Lipsey. 2003. Genetic parameters 
for carcass traits and their live animal indicators in Simmental cattle. J. Anim. 
Sci. 81:1427-1433. 

Darling, R. W. R. and T. Holt. 1999. Genetic models with reduced penetrance related to the Y 
chromosome. Biometrics. p. 55-64. 

Enns, R. M., J. S. Brinks, R. M. Bourdon, and T. G. Field. 1992. Heritability of pulmonary 
arterial pressure in Angus cattle. In Proc. West. Sect. Am. Soc. Anim. Sci. 43:111-112. 

Ghasemi, A. and S. Zahediasl. 2012. Normality tests for statistical analysis: a guide for non-
statisticians. Int. J. Endocrinol. Metab. 10:486-489. 

Gilmour, A. R., B. J. Gogel, B. R. Cullis, R. Thompson, and D. Butler, 2009. ASReml user guide 
release 3.0. VSN International Ltd, Hemel Hempstead, UK. 

Holt, T. N. and R. J. Callan. 2007. Pulmonary arterial pressure testing for high mountain disease 
in cattle. Vet Clin N Am-Food A 23:575-596. 

Humbert, M., D. Montani, O. V. Evgenov, and G. Simonneau. 2013. Definition and 
classification of pulmonary hypertension. In Pharmacotherapy of Pulmonary 
Hypertension. Springer. Berlin Heidelberg. p. 3-29. 



	 101	

Jin, G., S. Li, R. Ge, M. Albert, and Y. Sun. 2009. High altitude disease: consequences of genetic 
and environmental interactions. N. Am. J. Med. Sci. 2:74-80. 

Kärkkäinen, H. P. and M. J. Sillanpää. 2013. Fast genomic predictions via Bayesian G-BLUP 
and multilocus models of threshold traits including censored Gaussian data. G3 
(Bethesda). 3:1511-1523. 

Kizilkaya, K., R. L. Fernando, and D. J. Garrick. 2014. Reduction in accuracy of genomic 
prediction for ordered categorical data compared to continuous observations. Genet Sel 
Evol. 46:37.  

Mortimer, S. I., A. A. Swan, D. J. Brown, and J. H. J. van der Werf. 2014. August. Genetic 
parameters revisited for ultrasound scanning traits in Australian sheep. In: Proc. 10th 
World Congr. Genet. Appl. Livest. Prod., Vancouver, British Columbia, Canada.  

Mrode, R. A. 2014. Linear models for the prediction of animal breeding values. Cabi. 
Nagelkerke, N. J. 1991. A note on a general definition of the coefficient of 

determination. Biometrika. 78:691-692. 
Neary, J. M. 2014. Epidemiological, physiological and genetic risk factors associated with 

congestive heart failure and mean pulmonary arterial pressure in cattle. PhD Diss. Colorado 
State Univ. Fort Collins. 

Neary, J. M., F. B. Garry, T. N. Holt, M. G. Thomas, and R. M. Enns. 2015. Mean pulmonary 
arterial pressures in Angus steers increase from cow–calf to feedlot–finishing phases. J. 
Anim. Sci. 93:3854-3861. 

Nimon, K. F. 2012. Statistical assumptions of substantive analyses across the general linear 
model: a mini-review. Front. Psychol. 3:1-5.  

Nusser, S. M., A. L. Carriquiry, K. W. Dodd, and W. A. Fuller. 1996. A semiparametric 
transformation approach to estimating usual daily intake distributions. JASA. 91:1440-
1449. 

Osborne, J. 2005. Notes on the use of data transformations. PARE. 9:42-50. 
Peltier, M. R., C. J. Wilcox, and D. C. Sharp. 1998. Technical note: Application of the Box-Cox 

data transformation to animal science experiments. J. Anim. Sci. 76:847-849. 
Pinheiro, J. C. and D. M. BateS. 2000. Linear mixed-effects models: basic concepts and 

examples. Mixed-effects models in S and S-Plus. p. 87 
Poissant, J., A. J. Wilson, and D. W. Coltman. 2010. Sex�specific genetic variance and the 

evolution of sexual dimorphism: a systematic review of cross�sex genetic 
correlations. Evolution. 64:97-107. 

R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. 

Shirley, K. L., D. W. Beckman, and D. J. Garrick. 2008. Inheritance of pulmonary arterial 
pressure in Angus cattle and its correlation with growth. J. Anim. Sci. 86:815-819. 

Reverter, A., D. J. Johnston, H. U. Graser, M. L. Wolcott, and W. H. Upton. 2000. Genetic 
analyses of live-animal ultrasound and abattoir carcass traits in Australian Angus and 
Hereford cattle. J. Anim. Sci. 78:1786-1795. 

Stålhammar, H. and J. Philipsson. 1997. Sex�specific genetic parameters for weaning and post�
weaning gain in Swedish beef cattle under field conditions. Acta. Agr. Scand. A-An. 
47:138-147. 

Statistics Solutions. 2013. Normality. Retrieved 
from http://www.statisticssolutions.com/academic-solutions/resources/directory-of-
statistical-analyses/normality/ 



	 102	

Tsuruta S and I. Misztal. 2006. THRGIBBS1F90 for estimation of variance components with 
threshold linear models. In Proc. 8th World Congr. Genet. Appl. Livest. Prod. Belo 
Horizonte, Brazil. Commun. 27–31. 

Williams, J. L., J. K. Bertrand, I. Misztal, and M. Łukaszewicz. 2012. Genotype by environment 
interaction for growth due to altitude in United States Angus cattle. J. Anim. 
Sci. 90:2152-2158. 

Xiang, K., Y. Peng, Z. Yang, X. Zhang, C. Cui, H. Zhang, M. Li, Y. Zhang, T. Wu, H. Chen, and 
H. Shi. 2013. Identification of a Tibetan-specific mutation in the hypoxic gene EGLN1 
and its contribution to high-altitude adaptation. Mol. Biol. Evol. 30:1889-1898. 

Yang, Y. Z., Y. P. Wang, Y. J. Qi, Y. Du, L. Ma, Q. Ga, and R. L. Ge, 2013. Endothelial PAS 
domain protein 1 Chr2: 46441523 (hg18) polymorphism is associated with susceptibility 
to high altitude pulmonary edema in Han Chinese. Wilderness Environ. Med. 24:315-
320. 

Zeng, X, R. M. Enns, S. E. Speidel, and M. G. Thomas. 2015. Angus Cattle at High Altitude: 
Relationship Between Age and Pulmonary Arterial Pressure. In: Proc. West. Sec. Am. 
Soc. Anim. Sci. 66:119–121. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 103	

CHAPTER 4  

GENETIC RELATIONSHIP BETWEEN PULMONARY ARTERIAL PRESSURE 

PHENOTYPES AND PERFORMANCE TRAITS OF ANGUS CATTLE MANAGED AT 

HIGH ALTITUDE 

 

4.1 Introduction 

This chapter addresses the relationship between yearling PAP phenotypes and commonly 

measured performance traits. Excess weight gains in human and animals (i.e. cattle and chicken) 

could increase PAP and the risk for PH, HAD and right-side congestive heart failure (Peacock et 

al., 1989; Jin et al., 2009; Neary, 2014), which suggests that performance traits could be 

genetically related to PAP measurements, PH and susceptibility to HAD. Shirley (2008) reported 

a moderate-positive but unfavorable genetic relationship between weaning PAP measurements 

and pre-weaning growth traits (i.e. birth weight and weaning weight) in Angus cattle. Crawford 

et al. (2016) reported a low genetic correlation between PAP measurements and performance 

traits using data similar to this study, but this study included additional phenotypes from steers of 

this herd and phenotypes from the year of 2015.  

In order to assess the influence of the violation of normality on genetic correlations and 

examine the genetic correlation between PH and susceptibility to HAD, genetic correlations were 

also studied for alternative phenotypes (power-transformation, three-category and two-category 

phenotypes). These genetic correlations and the EBV accuracies between alternative multivariate 

models helped develop the multivariate model to estimate EBV of PAP measurements (un-

transformed PAP measurements) and susceptibility to HAD (categorical phenotypes) in Angus 

cattle. Although the resulting EBV were highly correlated between PAP phenotypes from 
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different sex categories (i.e., bull, heifer and steer; Chapter 3), this study found the genetic 

dissimilarity between them (i.e., different heritability and moderate to high genetic correlations; 

Chapter 3). Therefore, it is reasonable to explore the genetic correlations between performance 

traits and yearling PAP by sex categories to help understand more about the relationship between 

yearling PAP phenotypes and performance traits under various management-environmental 

situations. 

 

4.2 Materials and methods 

4.2.1 Data 

Yearling PAP records used in this section were the same with those used in Chapter 3. 

Besides the non-transformed yearling PAP measurements (RAW), the alternative phenotypes 

included power-transformed (PT) yearling PAP measurements, three-category (CAT3) and two-

category (CAT2) phenotypes that were defined in Chapter 3. The performance data used in this 

section were collected from 1993 to 2015 from the Angus herd that was described in Chapter 3. 

The studied performance traits included birth weight (BWT), weaning weight (WW), post-

weaning gain (PWG) and yearling weight (YW). Three standard deviations around the mean and 

the phenotypic distribution of each phenotyope were used to decide the ranges of the phenotypes 

to be included in analyses. Table 4.1 presents the descriptive statistic of these traits and their 

associated ages. Also, the pedigree information used in Chapter 3 was also applied in this 

section. 
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Table 4.1. Summary statistics of performance traits and associated ages in Angus cattle managed 
at high altitude (elevation at 2,170 m) 
Traits1 n Mean Min Max SD 
BWT (kg) 9024   36.21   18.14   54.43     5.05 
WW (kg) 8328 213.88   71.67     338.834   31.43 
WAGE (days) 8328 184.30 106.00 256.00   22.56 
PWG (kg) 5529 127.29     0.91 311.62   65.59 
YW (kg) 5569 344.85 180.53       584.23   81.90 
YAGE (days) 5569 354.30 261.00 528.00   38.65 
1BWT: birth weight; WW: weaning weight; PWG: post-weaning gain; YW: yearling weight; WAGE: 
weaning age; YAGE: yearling age 
 

4.2.2 Fixed effects 

The fixed effects for all yearling PAP phenotypes included sex, age of dam, PAP 

measurement date and age (covariate). When studying yearling PAP separately by sexes, the 

fixed effect “sex” was not included in these models. The potential fixed effects for performance 

traits included sex, age of dam, age of measurements (except BWT; covariate) and contemporary 

group (CG). Sex categories for BWT were male and female, and those for other performance 

traits involved bull, heifer and steer.  The birth CG for BWT only included year of birth; the 

weaning CG for WW was defined as birth CG and weaning date; and the yearling CG for PWG 

and YW included weaning CG and yearling date. These fixed effects were evaluated using log-

likelihood ratio tests (LR; Equation 3.1) for each trait by comparing the likelihood value of the 

full model (including all potential effects) and reduced model (including all effects except the 

one in test; Equation 3.1). The estimats of fixed effects and likelihood values of models were 

obtained from regression analyses using the Maximum likelihood method in R (R core Team, 

2013; using packages “stat” and “ordinal”). Linear models were used to analyze RAW and PT, 

while threshold models were spplied to CAT3 and CAT2. 
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4.2.3 Genetic parameters 

Genetic correlations between yearling PAP phenotypes and direct BWT, direct WW, 

maternal WW (MILK), and PWG were estimated from multivariate linear (used for RAW and 

PT) and threshold (used for CAT3 and CAT2) maternal models, and bivariate linear (used for 

RAW and PT) and threshold (used for CAT3 and CAT2) animal models were used to estimate 

genetic correlation between yearling PAP phenotypes and YW. The differences in genetic 

evaluation of the various yearling PAP phenotypes were evaluated by analyzing the differences 

between estimated genetic correlations (with performance traits) across RAW, PT, CAT3 and 

CAT2. The multivariate models for estimating genetic correlations between yearling PAP 

phenotypes and performance traits were expressed as 
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where y
pap

 was each phenotypic form of PAP measurements (i.e. RAW, PT, CAT3 and CAT2), 

and β
pap

 were the vectors of fixed effects of PAP phenotypes. The X
pap

 were incidence matrices 

relating PAP observations to fixed effects. The u
pap

 were vectors of direct random effects on 

PAP observations, and e
pap

 was the random residual effect for PAP. The 
  
σ
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 were direct genetic covariance between BWT, WW and PWG. The 

direct-maternal covariance involved genetic and environmental components, and the direct-

maternal environmental covariance would inflate the estimates of direct-maternal genetic 
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covariance (Meyer, 1997). In addition, direct-maternal genetic covariance could influence the 

heritability of traits. In this, the genetic correlations between direct effects for performance traits 

(BWT, WW, PWG and YW) and maternal effects for BW and WW were fixed as 0. In order to 

explore the genetic correlation between PAP phenotypes and maternal effects weaning weight 

(Milk), was not fixed as 0 in these models. The genetic covariance between yearling PAP 

phenotype and maternal BWT were fixed as 0, since this parameter did not converage well. The 

bivariate models for estimating genetic correlations between yearling weight and PAP 

phenotypes were expressed as: 
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correlation between maternal WW and PAP phenotypes were also controlled to be zero in these 

sex-separate multivariate analyses to correctly assess the genetic correlations between PAP 

phenotypes and direct effect of growth performance traits.. 

 

4.2.4 EBV and accuracy 

In order to be consistent across all models in estimating breeding value and associated 

accuracies for varied PAP phenotypes, genetic parameters of growth traits used in multivariate or 

bivariate models were from performance-traits only models. The genetic parameters that were 

associated with BWT, WW and PWG were estimated from multivariate maternal mixed models. 

The fixed effects for growth traits in this model were the same with those used in the 

multivariate or bivariate models for PAP (Equation 4.1 and Equation 4.2). The maternal effect 

was included in the model for BWT and WW (maternal WW effects were used to study the 

genetic parameters for milk), and the permenant maternal effect was included for WW.  Because 

of the part-whole relationship between WW, PWG and YW, the genetic parameters for YW were 

estimated separately. The heritability of YW and genetic correlations between YW and other 

growth traits were estimated from univaraite or bivariate animal models, respectively. The 

multivariate model for performance traits was expressed in the following Equation 4.3, and the 

model terms in this equation were defined in Equation 4.2. 
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Multivariate and bivariate models were excuted to obatained the EBV and associated 

accuracy for each PAP phenotype: Model 1 (including PAP, BWT, WW, PWG) and Model 2 

(only including PAP and YW). The software outputted the EBV and associated standard error, 

and the EBV associated BIF accuracies were calculated from equation 3.6 discussed in Chapter 3. 

The accuracies of PAP EBV from univariate models (from Chapter 3), multivariate and bivariate 

models were compared to quantify the improvement in genetic evaluation on PAP from 

multivariate or bivariate analysis. The EBV and accuracies of RAW, PT, CAT3 and CAT2 were 

also compared to assess the difference in multivariate genetic evaluation of PAP in different 

phenotypic forms. The models used for estimating genetic parameters, breeding value and 

corresponding accuracies were analyzed using Gibbs sampling algorithm in software packages: 

renumf90, thrgibbs1f90 and postgibbs1f90 (Tsuruta and Misztal, 2006; Aguilar et al., 2014). A 

total of 250,000 iterations were run with the first 50,000 discarded as burn-in, thinning every 10 

samples, which resulted in sample size 20,000 for each estimate.    
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4.3 Results and Discussion 

 
4.3.1 Fixed effects 

The fixed effects were tested in Chapter 3 (Table 3.2). The studied fixed effects were all 

associated (P < 0.05) with BWT, WW, PWG and YW based on the log-likelihood ratio tests 

(Table 4.2). Males had higher weights than females for all the performance traits, and the bulls 

had higher average weights than heifers and steers (P < 0.05). These results were consistent with 

the physiology of bulls and the management strategies in the herd (Soffe, 2011). The mature dam 

(from 5 years old to 10 years old) yielded significant higher BWT, WW and YW for calves than 

other age of dam categories, while calves from them were associated with alightly lower PWG 

than other dam category (except heifer dam). Claves from heifer dams yielded ligher weights in 

all measurement stages. This coincided with reports that the mature dam should produce larger 

calves (BIF, 2010). The lower PWG for mature cows may because their calves had higher 

weaning weights; therefore, their calves experienced less compensatory growth when the pre-

weaning environment provide by the dam was sufficient (Young et al., 1978; Elzo et al., 1987). 

All these effects were included in the models for performance traits in following studies. 
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Table 4.2. Results of log-likelihood ratio tests of fixed effects for performance traits in Angus 
cattle at high altitude (elevation range from 2,170 m to 2,740 m) 
Effect1 LogLf

2 LogLr
2 -2(LogLr-LogLf)

2 df P-Value 
BWT      

YOB -33413.56 -33790.56 753.99 22 <0.01 
AOD -33413.56 -33964.58 1102.04 4 <0.01 
SEX -33413.56 -33726.26 625.40 1 <0.01 

WW      
WCG -44177.44 -44908.84 1462.80 25 <0.01 
AOD -44177.44 -44712.46 1070.03 4 <0.01 
SEX -44177.44 -44929.49 1504.104 2 <0.01 
wage -44177.44 -45670.53 2986.17 1 <0.01 

PWG      
YCG -28248.60 -30961.51 5425.81 56 <0.01 
AOD -28248.60 -28271.26 45.31 4 <0.01 
SEX -28248.60 -28277.61 58.02 2 <0.01 
yage -28248.60 -28337.76 178.31 1 <0.01 

YW      
YCG -30755.03 -32199.29 2888.52 57 <0.01 
AOD -30755.03 -31009.52 508.97 4 <0.01 
SEX -30755.03 -30788.69 67.32 2 <0.01 
yage -30755.03 -31508.26 1506.44 1 <0.01 

1BWT: birth weight; WW: weaning weight; PWG: post-weaning gain; YW: yearling weight; YOB: year 
of birth; AOD: age of dam; WCG: weaning contemporary group; wage: weaning age; YCG: yearling 
contemporary group; yage: yearling age. 
2 LogLf: log likelihood value of the whole model; LogLr: log likelihood value of the reduced model with 
excluding one of the fixed effects for each traits 
 

4.3.2 Genetic correlations between yearling PAP and performance traits 

The genetic correlations between performance traits and yearling PAP in different 

phenotypic forms are presented in Table 4.3. Low to moderate genetic correlations were 

identified between these performance traits and yearling PAP phenotypes. These estimated 

correlations were similar between RAW and PT, which suggested that the violation of normality 

had limited influence on the estimated genetic correlations between yearling PAP measurements 

and performance traits. The genetic correlations involving CAT3 and CAT2 were slightly larger 

than those from RAW and PT, but the difference were not statistically significant (P > 0.05). 

These similar genetic correlations also supported that the ordered categorical phenotypes can be 
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alterative phenotypes to study characteristic of PAP in cattle. The estimated genetic correlations 

between RAW and growth traits were similar with the reports of Crawford et al. (2016) who 

reported genetic correlation ranged from -0.10 to 0.23, except that we identified positive genetic 

correlation between RAW and PWG although it is weak. This difference may be due to the 

exclusion of steer data and the addition of one more year of data (2015). 

 

Table 4.3 Genetic correlations between yearling pulmonary arterial pressure phenotypes (PAP) 
and performance traits of Angus cattle managed at high altitude (elevation at 2,170 m) 
Phenotypes1 Model BWT WW MILK PWG YW 

RAW Linear 
0.22 

(0.09) 
0.16 

(0.13) 
0.10 

(0.15) 
0.03 

(0.11) 
0.11 

(0.09) 

PT Linear 
-0.22 
(0.08) 

-0.21 
(0.12) 

-0.10 
(0.12) 

-0.08 
(0.10) 

-0.19 
(0.08) 

CAT2 Threshold 
0.26 

(0.10) 
0.22 

(0.16) 
0.07 

(0.21) 
0.16 

(0.13) 
0.13 

(0.11) 

CAT3 Threshold 
0.27 

(0.08) 
0.19 

(0.13) 
0.16 

(0.14) 
0.13 

(0.11) 
0.20 

(0.09) 
1RAW: non-transformed yearling PAP measurements; PT: power-transformed yearling PAP 
measurements; CAT3: three-category yearling PAP phenotypes, 1: PAP < 41 mmHg, 2: 41 mmHg ≤ PAP 
≤ 49 mmHg, 3: PAP > 49 mmHg; CAT2: two-category yearling PAP phenotypes, 1: PAP ≤ 49 mmHg, 2: 
PAP > 49 mmHg; BWT: birth weight; WW: weaning weight; MILK: maternal weaning weight; PWG: 
post-weaning gain; YW: yearling weight 
 

The estimated genetic correlation between BWT and yearling PAP phenotypes ranged from 

0.22 to 0.27, which were lower than the estimate of genetic correlation between PAP and BWT 

(0.49) from the study of Shirley et al. (2008) who analyzed data from another Angus seedstock 

operation at high altitude (elevation, 1981 m) in Colorado. This study also reported a genetic 

correlation of 0.51 between direct WW and yearling PAP, which was larger than the estimates 

herein between yearling PAP phenotypes and WW. In addition, when compared to the same 

study, the genetic correlation estimates of 0.07 to 0.16 between milk (maternal WW) and 

yearling PAP tended to be higher, but the differences were not significantly different from their 

estimates (-0.05). Although the genetic correlations between maternal BWT and PAP phenotypes 
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were not estimated in the full model, they were assessed from bivariate models with PAP 

phenotype and BWT, which were resulting in genetic correlation as 0.13, 0.16, 0.15 and 0.14 for 

RAW, PT, CAT3 and CAT2, respectively. Although the estimates tend to be higher than Shirley 

et al. (2008; 0.01), they were not statistically different (P>0.05).  

The differences between the two studies may be because that PAP used in studies were 

measured at different age. My presented study used the PAP measured at yearling (aged from 

260 d to 450 d with a average of 365 d), but they used PAP from younger animals (aged from 

171 d to 343 d with average of 277 d; Shirley et al., 2008). Neary et al. (2015) reported that PAP 

measurements increased from younger ages to older ages, and Zeng et al. (2015) suggested that 

PAP measured at weaning and yearling was not genetically identical and age might influence the 

expression of genes associated with PAP. Schimmel (1981) studied Hereford, Angus and Red 

Angus cattle managed at high altitude (elevation at 2,316 m) in Colorado and reported the 

genetic correlations between PAP measurements and BWT or WW as -0.43 and 0.09, which 

were different from our estimates, and Shirley et al. (2008), especially for BWT (different 

direction). Schimmel (1981) obtained genetic correlations using sire models on a small sample 

size (n = 667) of historical weaning PAP measurements. The small sample size, type of PAP 

measurements and the statistical models may all help explain the differences in estimates 

observed across these studies. 

Genetic correlations in this presented study yield non-zero, positive and unfavorable (except 

BWT) relationships between growth traits and yearling PAP phenotypes, which suggested that 

the genetic improvement in performance traits tended to be associated with increased PAP in 

Angus cattle. However, there would be limited influences on yearling PAP phenotypes based on 

these low to moderate genetic correlations. It was reported in chicken and humans that excess 



	 115	

weight gain may be risk factors for pulmonary hypertension and right-side congestive heart 

failure (Poirier et al., 2009; Friedman and Andrus,2012; Scheele et al., 1997). When studing the 

steers from suckling (4 mo; at elevation of 2,170 m) to finishing (18 mo; at elevation of 1,560 m 

and 1,300 m), rapid growth cattle were associated with higher mean PAP and likely to be more 

susceptible to PH and HAD in steers (Neary et al., 2015).  

Most of the genetic correlations between yearling PAP and pre-weaning performance traits 

(i.e. BWT and WW) were slightly higher than the correlations between yearling PAP phenotypes 

and post-weaning performance traits (i.e. PWG and YW) in this study. The rapid growth before 

weaning tends to have a stronger relationship to increased PAP than the post-weaning period. 

Furthermore, the non-zero and nearly moderate genetic correlation between yearling PAP 

phenotypes and performance traits could provide benefits for improving the accuracy of the 

genetic evaluation of yearling PAP using multivariate models.  

Table 4.4 to 4.7 presents the genetic correlations between performance traits and RAW, PT, 

CAT3 and CAT2 for each sex category. The estimated genetic correlations were low to moderate. 

Some differences in estimated genetic orrelations were observed across various yearling PAP 

phenotypes, especially for steer phenotypes. The genetic correlations between heifer or bull 

yearling PAP phenotypes and performance traits in RAW and PT were similar, but the genetic 

correlations between WW and steer yearling PAP phenotypes tend to be different between RAW 

and PT. In our analyses, the sample size of PAP for heifers (n = 3,456) and bulls (n = 1,392) was 

much larger than it for steers (n = 761), which may supported that the small samples size may be 

more sensitive to the violation of normality because the PT was close to normal (Ghasemi and 

Zahediasl, 2012; Statistics Solutions, 2013).  
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Table 4.4. Genetic correlations between growth traits and non-transformed pulmonary arterial 
pressure (PAP) phenotypes in different sex categories (heifers, bulls, steers) of Angus cattle 
managed at high altitude (elevation at 2,170 m) 
Traits1 Heifer PAP Bull PAP Steer PAP 
BWT 0.29 (0.10) 0.25 (0.13) 0.11 (0.24) 
WW 0.20 (0.13) 0.29 (0.15) 0.28 (0.28) 
YW 0.15 (0.11) 0.08 (0.12) 0.03 (0.22) 
PWG 0.04 (0.13) 0.11 (0.13) 0.08 (0.32) 
1BWT: birth weight; WW: direct weaning weight; PWG: post-weaning gain; YW: yearling weight 
 
Table 4.5. Genetic correlations between growth traits and power-transformed pulmonary arterial 
pressure (PAP) phenotype of different sex categories (heifers, bulls, steers) of Angus cattle 
managed on high altitude (elevation at 2,170 m)1 

Traits1 Heifer PAP Bull PAP Steer PAP 
BWT -0.28 (0.10) -0.31 (0.11) 0.03 (0.19) 
WW -0.24 (0.12) -0.28 (0.12) -0.13 (0.26) 
YW -0.26 (0.09) -0.08 (0.11) 0.03 (0.20) 
PWG -0.10 (0.11) -0.08 (0.11) -0.14 (0.24) 
1power-transformed yearling PAP phenotype: 10000*PAP-2 
2BWT: birth weight; WW: direct weaning weight; PWG: post-weaning gain; YW: yearling weight 
 
Table 4.6. Genetic correlation between growth traits and three-category pulmonary arterial 
pressure (PAP) phenotype of different sex categories (heifers, bulls, steers) of Angus cattle 
managed on high altitude (elevation at 2,170 m)1  
Traits2 Heifer PAP Bull PAP Steer PAP 
BWT 0.33 (0.10) 0.30 (0.12) -0.01 (0.21) 
WW 0.27 (0.13) 0.29 (0.13) 0.01 (0.22) 
YW 0.26 (0.10) 0.03 (0.13) 0.06 (0.19) 
PWG 0.16 (0.12) 0.02 (0.13) 0.17 (0.23) 
1three-category yearling PAP phenotype: 1: PAP < 41 mmHg, 2: 41 mmHg ≤ PAP ≤ 49 mmHg, 3: PAP > 
49 mmHg 
2BWT: birth weight; WW: direct weaning weight; PWG: post-weaning gain; YW: yearling weight 
 

Table 4.7. Genetic correlations between growth traits and two-category pulmonary arterial 
pressure (PAP) phenotype of different sex categories (heifers, bulls, steers) of Angus cattle 
managed on high altitude (elevation at 2,170 m)1 

Traits2 Heifer PAP Bull PAP Steer PAP 
BWT 0.38 (0.13) 0.19 (0.13) -0.08 (0.26) 
WW 0.27 (0.17) 0.22 (0.15) 0.10 (0.25) 
YW 0.06 (0.04) -0.05 (0.14) 0.24 (0.28) 
PWG 0.17 (0.16) -0.09 (0.13) 0.12 (0.15) 
1two-category yearling PAP phenotype: 1: PAP ≤ 49 mmHg, 2: PAP > 49 mmHg 
2BWT: birth weight; WW: direct weaning weight; PWG: post-weaning gain; YW: yearling weight 

 



	 117	

Genetic correlations between PAP phenotypes and performance traits differed across 

different sex categories. Genetic correlations between performance traits and heifer or bull PAP 

phenotypes were similar with those from the whole PAP dataset (Table 4.4) and the estimates 

from Crawford et al. (2016), which reported moderate relationships for BWT and WW, but weak 

relationships for PWG. Nearly moderate positive genetic correlations were obtained between 

WW and heifer or bull PAP phenotypes, but the genetic correlations were still smaller than the 

estimate (0.51) of Shirley et al. (2008) using weaning PAP. Generally, low absolute genetic 

correlations were identified between steer yearling PAP phenotypes and BWT and WW. In 

addition, close to zero genetic correlations were identified between YW and male yearling PAP 

phenotypes, which tended to be lower than those obtained between YW and female yearling PAP 

phenotypes. The low genetic correlations between PWG and CAT3 or CAT2 at high altitude in 

different sexes were lower (P < 0.05) than the estimates (i.e., 0.62) from Williams et al. (2012).  

It was reported that sex hormones, such as estrogen and testosterone, have an influence on 

pulmonary vasculature, which could lead to the different incidence of PH between males and 

females (Jones et al., 2002; Lahm et al., 2007; Pugh and Hemnes, 2010). The hormone could 

interact with genes that influenced the different heritability between males and female PH (West 

et al., 2004 and 2008). In addition, differences in susceptibility to HAD between male and 

females in other species or humans were observed (Wu et al., 1998; Zubieta-Castillo et al., 1998; 

Kayser et al., 1991; Baspyat et al., 2000). The information may be associated with different 

estimated genetic correlations between yearling PAP phenotypes and performance traits across 

various sex categories. In general, the PAP phenotypes in each sex category appeared to be 

weakly to moderately relate to growth traits. Schimmel (1981) reported a negative moderate to 

high genetic correlations between bull PAP scores and BWT (-0.22) or WW (-0.75), which were 
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different from the estimates presented by this study. These differences may have been a result of 

small sample size, multiple breeds (Hereford, Angus and Red Angus), younger age of PAP 

measurements, and (or) the different statistical approach used in the study for Schimmel (1981).  

 

4.3.3 EBV and Accuracy 

The genetic parameters of performance traits, used in multivariate models to develop EBV 

and accuracy of yearling PAP phenotypes, are presented in Table 4.8. High heritabilities were 

identified for BWT and YW, and low heritabilities were estimated for WW and PWG. The 

genetic correlations between performance traits were from moderate to high. These estimates 

presented in this study were within the ranges of heritability and genetic correlations of 

performance traits (i.e. BWT, WW, PWG and YW) in previously reported studies (Crews and 

Kemp, 1999; MacNeil et al., 2011; American Angus Association, 2016). Based on the estimated 

parameters for yearling PAP phenotypes and performance traits, the genetic evaluation of 

yearling PAP phenotypes could take advantage of multivariate models involving performance 

traits. The reasons were: 1. difference between genetic and residual correlations between yearling 

PAP phenotypes and performance traits (Table 4.3); 2. higher heritabilities for performance traits 

than yearling PAP phenotypes (Table 4.8; Mrode, 2014). 

 

Table 4.8. Heritability, genetic variance, genetic correlation (above diagonal) and residual 
correlation (below diagonal) between performance traits of Angus cattle managed on high 
altitude (elevation at 2,170 m) 
Traits1 BWT WW MILK YW PWG 
BWT 0.42 (0.04) 0.69 (0.05) 0 0.57 (0.05) 0.49 (0.07) 
WW 0.26 (0.03) 0.21 (0.03) 0 0.97 (0.01) 0.62 (0.08) 
MILK - - 0.14 (0.02) 0 0 
YW 0.25 (0.03) 0.72 (0.01) 0 0.41 (0.03) 0.75 (0.04) 
PWG 0.05 (0.03) 0.01 (0.03) 0 0.73 (0.01) 0.22 (0.03) 
1BWT: birth weight; WW: direct weaning weight; MILK: maternal weaning weight; PWG: post-weaning 
gain; YW: yearling weight 
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Tables 4.9 to 4.11 summarizes the EBV accuracy of all individuals in the pedigree file and 

sires of offspring with PAP records of RAW, PT, CAT3 and CAT2 from univariate and two 

multivariate (Model 1: PAP, BWT, WW and Model 2: PAP and YW) models, respectively. 

Multivariate Model 1 and 2 both resulted in higher accuracy than univariate model as expected, 

and the Model 1 were associated the highest yearling PAP accuracy. The average difference 

between accuracies from univariate model and Model 1 for RAW, PT, CAT3 and CAT2 were 

0.01 to 0.02. This suggested that approximately 1 to 2 additional offspring with yearling PAP 

phenotypes were needed in univaraite model to achieve the same accuracy obtained from 

multivariate model based on the accuracy equation for offspring phenotypes from Bourdon (1997) 

and the heritability of yearling PAP phenotypes at 0.24 (Table 3.8). When using a genetic 

correlation of approximately 0.25 between a target trait and an indicator trait in a simulation 

study, Calus et al. (2011) reported that the multivariate model could increase accuracy by 0.01 

for target trait. There was almost no accuracy improvement from Model 2 compared to 

univariate model. It was reported that the absolute difference between the genetic and residual 

correlations between the traits determined the gain in accuracy of evaluations (Schaeffer, 1984; 

Thompson and Meyer, 1986). The estimated residual correlations between yearling PAP and 

performance traits were all near zero, so the higher genetic correlations resulted in larger 

accuracy improvement (i.e. continuous versus categorical yearling PAP phenotypes and Model 1 

versus Model 2).  

Results of this chapter suggested that the multivariate model would improve the EBV 

accuracy of each PAP phenotypic forms. Guo et al. (2014) suggested that the EBV from 

multivariate models could be used in GWAS and resulted in more reliable results than the EBV 

from single trait model. Jia et al. (2012) also reported that taking advantage of the genetic 
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relationship with higher heritable traits would increase the genomic prediction accuracy of 

lower-heritable traits and the traits with missing phenotypes. Therefore, Model 1 was preferred 

to generate EBV of PAP phenotypes for the following GWAS study.  

The presented average accuracies of all aniamls in the pedigree were relative low 

(approximate 0.2), but a large portion of the pedigree did not related to any PAP records. 

However, the largest BIF accuracy was 0.69, and the average EBV accuracy of sires having 

offspring with PAP records was approximately 0.32 with the average number of offspring at 19 ± 

1. The moderate sire accuracies implied that we could make genetic improvement against HAD 

based on these estimated EBV. Although higher heritability and genetic correlations between 

performance traits and yearling PAP phenotypes were used in models to develop EBV for 

categorical yearling PAP phenotypes, lower EBV accuracies were observed when compared to 

continuous scale yearling PAP phenotypes. These losses in the genetic prediction accuracy in 

categorical phenotypes compared to continuous phenotypes using the same genetic parameters 

were also observed in other studies (Kärkkäinen et al., 2013; Kizilkaya et al., 2014). 

 

Table 4.9. Comparison of EBV accuracies from univariate and two multivariate models for non-
transformed pulmonary arterial pressure (PAP) phenotype of Angus cattle managed at high 
altitude (elevation at 2,170 m) 
Model1 Mean Min Max SD Sire_average2 

Univariate 0.176 0 0.684 0.091 0.314 
Model 1 0.184 0 0.688 0.093 0.323 
Model 2 0.176 0 0.685 0.091 0.314 
Difference Mean=0.008; 4.55% higher accuracy gained in Model 1 than univariate model 
1Model 1: yearling PAP, birth weight weaning weight and post-weaning gain; Model 2: yearling PAP and 
yearling weight 
2Sire_average: average of accuracies of sires who have offspring with PAP scores 
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Table 4.10. Comparison of EBV accuracies from univariate and two multivariate models for 
power transformed pulmonary arterial pressure (PAP) phenotype of Angus cattle managed at 
high altitude (elevation at 2,170 m) 
Model1 Mean Min Max SD Sire_average2 
Univariate 0.174 0 0.681 0.090 0.311 
Model 1 0.184 0 0.690 0.09 0.321 
Model 2 0.174 0 0.680 0.090 0.312 
Difference Mean=0.010; 5.747% higher accuracy gained in Model 1 than univariate model 
1Model 1: yearling PAP, birth weight weaning weight and post-weaning gain; Model 2: yearling PAP and 
yearling weight 
2Sire_average: average of accuracies of sires who have offspring with PAP scores  

 

 

Table 4.11. Comparison of EBV accuracies from univariate and two multivariate models for 
three-category pulmonary arterial pressure (PAP) phenotype of Angus cattle managed at high 
altitude (elevation at 2,170 m) 
Model1 Mean Min Max SD Sire_average2 
Univariate 0.149 0 0.652 0.078 0.271 
Model 1 0.162 0 0.658 0.081 0.285 
Model 2 0.153 0 0.658 0.079 0.275 
Difference Mean=0.013; 8.72% higher accuracy gained in Model 1 than univariate model 
1three-category yearling PAP phenotype: 1: PAP < 41 mmHg, 2: 41 mmHg ≤ PAP ≤ 49 mmHg, 3: PAP > 
49 mmHg 
2Model 1: yearling PAP, birth weight weaning weight and post-weaning gain; Model 2: yearling PAP and 
yearling weight 
3Sire_average: average of accuracies of sires who have offspring with PAP scores 
 

 

Table 4.12. Comparison of EBV accuracies from univariate and two multivariate models for 
two-category pulmonary arterial pressure (PAP) phenotype of Angus cattle managed at high 
altitude (elevation at 2,170 m) 
Model1 Mean Min Max SD Sire_average2 
Univariate 0.112 0 0.596 0.062 0.207 
Model 1 0.127 0 0.607 0.066 0.226 
Model 2 0.115 0 0.596 0.063 0.211 
Difference Mean=0.015; 13.39% higher accuracy gained in Model 1 than univariate model 
1two-category yearling PAP phenotype: 1: PAP ≤ 49 mmHg, 2: PAP > 49 mmHg 
2Model 1: yearling PAP, birth weight weaning weight and post-weaning gain; Model 2: yearling PAP and 
yearling weight 
3Sire_average: average of accuracies of sires who have offspring with PAP scores 
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4.4 Conclusions 
 

Low to moderate genetic correlations were identified between yearling PAP phenotypes and 

performance traits in Angus cattle managed at high altitude. Similar genetic correlations were 

identified across non-transformed and power transformed yearling PAP measurements. The 

violation of normality appeared to have limited influence on estimated genetic correlation 

between PAP measurements and performance traits. These estimated genetic correlations 

between performance traits and yearling PAP phenotypes in different sex categories also ranged 

from low to moderate, but these performance traits related differently to yearling PAP 

phenotypes among bulls, heifers, and steers. Since the similar ranking of animals based on EBV 

from models with/without treating PAP in different sex categories as separate traits and the ease 

in applying EBV in selection, PAP in different sex category were not treat as sepertate traits in 

genetic evaluation. In both analyses of yearling PAP phenotypes with and without separating 

them by sexes, the pre-weaning performance traits appeared to have stronger relationship with 

yearling PAP phenotypes than post-weaning performance traits because of larger genetic 

correlations between pre-weaning performance traits and yearling PAP phenotypes. The 

multivariate models appeared to improve the genetic evaluation of non-transformed PAP 

measurements and susceptibility of HAD (i.e. CAT3 and CAT2). The multivariate models 

including yearling PAP phenotype, BWT, WW and PWG were preferred to estimate breeding 

values of RAW, PT, CAT3 and CAT2. 
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CHAPTER 5  

GENOMIC WIDE ASSOCIATION STUDY OF YEARLING PULMONARY ARTERIAL 

PRESSURE PHENOTYPES IN ANGUS CATTLE AT HIGH ALTITUDE REGION 

 

5.1 Introduction 

With the advances in molecular biological techniques, the genome of animals can be 

genotyped for a large number of animals with relatively limited cost (Boichard et al., 2016). This 

allows the frequent use of genotype information for genome wide association study (GWAS) of 

complex traits (e.g. disease and fertility traits). Based on the studies in previous sections, the 

yearling PAP phenotypes are moderately heritable, which implies that it is possible to find 

sequence variants associated with PAP phenotypes. This chapter reports GWAS of yearling PAP 

phenotypes using EBV and genotype data from the BovineSNP50 BeadChip. The objective of 

this study was to detect QTL that were associated with yearling PAP phenotypes using GWAS. 

The resulting QTL were also investigated in public databases to identify candidate genes. This 

study also enhanced understanding of adaptation and susceptibility to HAD, and provided 

biomarkers for selecting against elevated PAP and HAD in cattle. 

 

5.2 Materials and Mathods 

5.2.1 Deregressed EBV 

These GWAS were conducted on each of the three yearling PAP phenotypes, including un-

transformed PAP (RAW), ordinal three-category (CAT3; 1: PAP < 41 mmHg, 2: 41 mmHg ≤ 

PAP ≤ 49 mmHg, 3: PAP > 49 mmHg) and two-category phenotypes (CAT2; 1: PAP ≤ 49 

mmHg, 2: PAP > 49 mmHg). Deregressed EBV (DEBV) were used as response variables in 
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these GWAS. The procedure developed by Garrick et al. (2009) was used to calculate DEBV 

free of parent average from the raw EBV and reliabilities (r2; Equation 5.1) of genotyped animals 

and their parents, and this method also accommodated the heterogeneous variances due to 

differences in reliability among animals. These EBV, associated prediction error variance (PEV), 

genetic variance and heritability were obtained from multivariate linear or threshold animal 

models involving each PAP phenotype (i.e. RAW, CAT3 and CAT2), birth weight (BWT), 

weaning weight (WW) and post weaning gain (PWG) through software renumf90, thrgibbs1f90 

and postgibbs1f90. The models used to develop PAP EBV were expressed as Equation 4.1. To 

calculate the DEBV, the reliability for each RAW EBV were calculated first as: 

 r2 =1−
PEV

G × (1+ F)
 (Equation 5.1) 

where r2 denoted the reliability of raw EBV and G was the genetic variance used for estimating 

EBV and accuracies. The genetic variance used for RAW, CAT3 and CAT2 were 22.69 mmHg2, 

0.16, and 0.51, respectively. The DEBV that were free of parents’ average and associated DEBV 

reliabilities ( r
i

2* ) were calculated as: 

   

DEBV =
γ

*

Z
i
'Z

i

 (Equation 5.2) 

   
r

i

2*
= 1− λ / (Z

i
'Z

i
+ λ)  (Equation 5.3) 

where 
  
γ

i

*  was information equivalent to a right-hand-side element pertaining to the individual i 

and expressed as: 

   
γ

i

*
= −2λĝ

PA
+ (Z

i
'Z

i
+ 2λ)ĝ

i
 (Equation 5.4) 

and the λ  was an assumed known parameter that was defined as: 
  
λ = (1− h

2 ) / h
2 , where   h2  was 

the heritability corresponding to each phenotypes. These were 0.25, 0.26 and 0.34 for RAW, 
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CAT3 and CAT2, respectively. The 
  
ĝ

i
 denoted the EBV of this individual i, and 

  
ĝ

PA
was the 

parent average EBV that was calculated from EBV of parent (
  
ĝ

sire
 and 

  
ĝ

dam
) of animal i as 

  
ĝ

PA
=

ĝ
sire

+ ĝ
dam

2
. The 

   
Z

i
'Z

i
 reflected the unknown information of individual i. The 

   
Z

i
'Z

i
 was 

expressed as: 

   
Z

i
'Z

i
= δZ

PA
'Z

PA
+ 2λ(2δ −1)  (Equation 5.5) 

where 
  
δ = (0.5− r

PA

2 ) / (1− r
i

2 )  . Here 
  
r

i

2  denoted the reliability of individual i, and the 
  
r

PA

2  was the 

reliability of parent average that was calculated as: r
PA

2
=
r
sire

2
+ r

dam

2

4
. The 

  
r

i

2 , 
  
r

sire

2  and 
  
r

dam

2  were 

calculated using Equation 5.1. The 
   
Z

PA
'Z

PA
 reflected the unknown information content of the 

parent average of individual i that was expressed as: 

   
Z

PA
'Z

PA
= λ(0.5α − 4)+ 0.5λ (α2

+
16

δ
)  (Equation 5.6). 

In this equation, the α  was defined as: α =
1

(0.5− r
PA

2 )
 . Because the 

  
r

i

2  varies among different 

individuals, the variance of DEBV was heterogeneous. In order to address this problem, a vector 

of scaled weights was needed in the analysis of DEBV to weight the DEBV information. The 

scaled weight (wi) of each individual’s DEBV of each phenotype was calculated as: 

w
i
=

1− h2

[c + (1− r
i

2*) / r
i

2*]h2
 (Equation 5.7) 

where the c was defined as the genetic variance of a trait that was not explained by the genotype 

markers. The value of the c used in this presented study was assumed as 0.4. Animals with low 

accuracy (<0.05) DEBV for each trait were removed from GWAS study to keep the quality of 

analyses.   
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5.2.2 Genotype data 

In total, 2,700 Angus cattle from the Colorado State University Beef Improvement Center 

were genotyped using various formats of Illumina Bovine SNP50K Beadchip version 2 assays 

(54,609 SNP; Matukumalli et al., 2009). These cattle were born from 1997 to 2015 (Appendix 

5.1), and genotyping was completed in three year-groups (i.e. 2013, 2014 and 2015) and in two 

labs (i.e. Zoetis and GeneSeek). In addition, 65 Angus steers in this herd were genotyped in 2013 

using Illumina BovineHD BeadChip (777,962 SNP) through the lab work of GeneSeek. 

Therefore, 2,765 genotyped animals were originally considered in this study. 

In each group of genotyped animals, only samples with call rate larger than 0.95 were used 

in GWAS. Data from these genotyped animals were merged together and used in GWAS, which 

resulted in 2,582 samples (Appendix 5.1). Due to the fact that some SNP markers differed across 

the various genotyping platforms, there were 43,918 SNP markers in common across all marker 

results. Marker quality control were performed on autosome markers of these remaining SNP, 

and genotype at particular loci were filtered according to the following criteria: average call rate 

lower than 0.85 across; minor allele frequency of each loci smaller than 0.01; and Hardy-

Weinberg equilibrium test results of P-value less than  1×10
−4 . The call rate and minor allele 

frequency criteria were also used to filter genotype on X chromosome. Then SNP pruning was 

executed on the remaining marker to remove some SNP that were in very high linkage 

disequilibrium (r2 > 0.99) with other SNP markers. These quality control analyses were 

performed using the SNP & Variation Suite v8.x (Golden Helix, Inc., Bozeman, MT, 

www.goldenhelix.com). Only autosomal and X chromosome markers that passed these quality 

control were kept in analyses (Kizikaya et al., 2014; Saatchi et al, 2014; Snelling et al., 2014). 

Overall, 35,930 SNP makers were used in each GWAS. Genotypes in analyses were coded as -10 
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(AA), 0 (AB) and 10 (BB) based on the suggestion of Fernanco and Garrick (2008). Missing 

genotypes were replaced with the average value (ranged from -10 to 10) for each SNP marker.  

 
5.2.3 Statistical method 
 

The 35,930 SNP makers were fitted in a model simultaneously to study their association 

with yearling PAP phenotypes. For each phenotype, a mixed model was used to estimate maker 

effects, which was expressed as: 

   

y = Xβ + Za + e
m=1

M

∑  (Equation 5.8) 

where 
 
y  was the vector of DEBV for each PAP phenotype; β  was a vector of fixed effects that 

only contained the population mean in this study, because DEBV was developed from EBV that 

has already adjusted out the the fixed effects in genetic evaluation. The a was the vector of 

random marker substitution effects. The  X  was the incidence matrix relating DEBV to the 

population mean, respectively, and  Z  was the value (i.e. -10, 0, and 10) of covariate for marker 

m of individuals. As usual, e denoted the random residual effect. The prediction models for 

DEBV of RAW, CAT3 and CAT2 were analyzed using Bayes methods. Bayes C (Habier et al., 

2011) was used to obtain genetic and residual variance to construct priors of genetic and residual 

scale parameters for Bayes B (Meuwissen et al., 2001), because Bayes C is less sensitive to prior 

assumption than Bayes B (Garrick and Fernando, 2013). Then Bayes B was used to estimate the 

marker effects and associated variances. When using Bayes B, the marker effects were assumed 

to follow a mixture distribution: a = 0  with probability π  and a ~ N(0,σ
a
m

2
)  with probability 

1− π . The π  was assumed as 0.995, which indicated that most of the presented markers (99.5%) 

have no effect on studied traits, and a small portion of them (0.5%) have effects. The σ
a
m

2
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denoted the variance of maker substitute effect at locus m, and the marker effect variance was 

assumed varied across different locus.  

In Bayes analyses, σ
a
m

2  was also assumed unknown and following a scaled inverse chi-

square distribution with a degree of freedom υ
a
= 4  and a scale parameters 

  

S
a
=

σ
g

2 (υ
a
− 2)

(1− π) p
m
(1− p

m
)υ

am=1

M

∑
, where pm was the minor allele frequency at locus m and the 

  
σ

g

2  was 

the marker explained additive genetic variance of the studied trait. Fixed effects were assumed 

following flat distributions. The residual distribution was assumed as
  
e ~ N (0,σ

e

2 )  with degree of 

freedom of 10. The assumptions of Bayes C were the same with Bayes B except the assumption 

on marker effects variances. In Bayes C, marker variance was assumed the same across all 

genomic loci, but variances of different markers was assumed varied in Bayes B. The Markov 

chain Monte Carlo methods  (i.e. Gibbs Sampling and Metropolis–Hastings) were used to 

perform Bayes B and Bayes C on DEBV to estimate marker effects, maker variances, and 

genetic and residual variances of studied traits.  

The effects of consecutive 1-Mb windows based on the position along the whole genome (n 

= 2,648) were also studied. The genetic variance explained by markers in a window was defined 

as σ
g
w

2
=

(g
w
i

− g
w
)

i

n

∑
n

, where the w was the 2,648 windows across the bovine genome, the 
 
g

w
i

was 

sum of the effect of each marker in a window for animal i, and the g
w

denoted the average 

window w effect across all samples, the n denotes the number of samples in a GWAS.    

The GeneSel software (Fernando and Garrick, 2008) that implemented the MCMC methods 

was used to conduct these GWAS. These analyses were executed using 41,000 iterations for each 

run with the first 1000 samples as burn-in. As a result, 40,000 samples were used to provide 
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posterior distribution of each estimable parameter. Marker effects, additive genetic variance, 

residual variance and proportion of genetic variance explained by a genomic window were direct 

output from the software. A genomic window was recognized to be associated with a trait if the 

proportion of the genetic variance accounted by this window was larger than 1%. When jointly 

studying the three PAP phenotypes, the top 2% (53) windows were considered of each 

phenotype were compared, and the SNP effects correlation between these three yearling PAP 

phenotypes were estimated. 

Lead-SNP of an identified yearling PAP phenotypes associated window was recognized as 

the SNP having the largest model frequency in the window region. The model frequency was 

defined as the proportion of fitted models including that maker. Then, the lead-SNP were 

analyzed separately using ordinal least square models to evaluate the significance, least square 

mean of genotypes, additive and dominance effect. In this model, the genotypes (i.e. AA, AB 

and BB) of a single lead-SNP were treated as fixed effects and regressed on DEBV of yearling 

PAP phenotypes, and the least square mean genotypes were obtained from the model. The least 

squares mean of genotypes were used to calculate the additive and dominance effect of the lead-

SNP (Weng et al., 2016), 

addtive effect = 
BB − AA

2    
 (Equation 5.9) 

and 

dominance effect = AB −
AA+ BB

2
 (Equation 5.10) 

We used the software R to execute the analysis, estimate and compare least square mean, and 

estimate and test additive and dominance effect of lead-SNP.   
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5.2.4 Identification of candidate gene and associated pathways 

The identified windows from PAP phenotypes were aligned to the Bos taurus genome 

(UMD 3.1) to identify the genes within these windows using Ensembl (Kinsella et al., 2011; 

http://www.ensembl.org/). The NCBI dbSNP and gene databases (Sherry et al., 2001; 

Coordinators et al., 2013; http:// www.ncbi.nlm.nih.gov/SNP; http:// www.ncbi.nlm.nih.gov/gene) 

were also used to provide additional information for these genes. The genes’ associated 

molecular functions, cell components and pathways were obtained from DAVID (The Database 

for Annotation, Visualization and Integrated Discovery) 6.7 database (Ashburner et al., 2000).  

Gene ontology enrichment analysis on genes locating within concordant windows across 

phenotypes was conducted using g:Profiler (Reimond et al., 2016 ;http://biit.cs.ut.ee/gprofiler/). 

 

5.3 Results and discussion 

5.3.1 DEBV 

The number of cattle analyzed for RAW, CAT3 and CAT2 phenotypes were 2,243, 2,259 

and 2,148 respectively, as there were 339, 323 and 434 animals with DEBV reliability less than 

0.05. Results showed that lower accuracy of EBV from CAT2 used in DEBV calculation might 

lead to more individuals with extremely low DEBV accuracies. The standard deviations of 

DEBV (i.e. 8.9, 0.9 and 1.6 for RAW, CAT3 and CAT2, respectively) were larger than those of 

EBV (i.e. 2.5, 0.2 and 0.3 for RAW, CAT3 and CAT2, respectively), which supported that 

DEBV expanded the distribution of the raw estimates. The average DEBV accuracy of 

genotyped animals of non-transformed PAP was larger than those of categorical phenotype, 

which is consistent with the characteristics of higher EBV accuracies in RAW than categorical 

PAP phenotypes. The GWAS using DEBV were also considered the weighted linear model 
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analyses, and the calculated weights for DEBV were applied to the matrices to adjust the 

heterogeneous variances of DEBV across different individuals having varied reliability (Garrick 

et al., 2009). The weights reflected the emphasis of information (e.g. DEBV) in the analyses, so 

the weights are consistent with DEBV accuracies. Larger weights correspond to the DEBV is 

having more value in the analyses.  

Ekine et al. (2014) reported that original phenotypes or EBV in GWAS may increase rate of 

false positive and decrease power of GWAS, since they could introduce family relatedness into 

the analysis. Therefore, the DEBV in this study removed parent averages and accommodated the 

heterogeneous variances of EBV, was considered a better approach for GWAS than phenotypes 

and EBV (Garrick et al., 2009; Ostersen et al., 2011). A study on purebred pigs demonstrated 

that DEBV yielded more accurate direct genomic values than raw EBV (Ostersen et al., 2011). 

Therefore, the DEBV have been used in several GWAS of cattle and swine (Do et al., 2013; 

Saachi et al., 2013; Boddhireddy et al., 2014; Sevillano et al., 2015). 

 

5.3.2 GWAS of PAP phenotypes 

Nineteen genomic windows (QTL, defined as 1-Mb windows of the genome explaining ≥ 

1% of additive genetic variance) were identified across the three phenotypes. There were 4, 12 

and 9 windows associated with RAW, CAT3 and CAT2, respectively. Figure 5.1 includes 

Manhattan plots of each yearling PAP phenotype and shows the proportion of genetic variance 

explained by each of the 2,648 1-Mb SNP windows with respect to their genomic positions. Note 

the genome-windows had varying degrees of association with PAP continuous and categorical 

scale PAP phenotypes, and small number of regions had large effect on these phenotypes, which 

was consistent with our previous assumptions. Because the GWAS results were based on the 
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DEBV (developed from the EBV), different genetic parameters used in the model to estimate 

breeding value would slightly vary the GWAS results, for example, the percentage value of 

genetic varation explained by a 1-Mb window. These reported results were based on EBV from 

multivariate models with fixing zero correlations between maternal and direct effects for growth 

traits. Without the restriction on genetic correlations, the resulting genetic parameters may be 

varied even though the difference would be small. Some minor changes in estimates for genomic 

window and SNP effects could be observed because of different genetic parameters, but its 

influence on identification of top genomic windows for each phenotypes would be limited.    

Neary (2014) presented GWAS on PAP measured before or at weaning age of cattle (i.e. 6 

mo of age), yet these identified SNP were different from the presened results. These differences 

among results may be explained by several reasons, inclduding the age of PAP measurements 

(i.e. weaning versus yearling PAP scores), the dependent variable (raw observations versus 

DEBV), the sample sizes of GWAS (60 versus 2300), the number of SNP (BovineHD versus 

BovineSNP50) and the statistical methods (REML using SNP versus Bayes using windows). 

Based on the samples size, the current study was a much stronger approach to identify QTL for 

PAP. The GWAS of Cockrum et al. (2014) reported PAP measurements (using log10 transformed 

PAP data) associated loci on chromosome 7 and 28 that were also identified in this study. In 

human GWAS, many loci and genes have been reported to be associated with pulmonary arterial 

hypertension, high altitude adaptation and disease, and various blood pressures phenotypes 

(International Consortium for Blood Pressure Genome-Wide Association Studies, 2011; Ji et al., 

2012; Mishra et al., 2012; Germain et al., 2013). The results of this study in cattle and reports in 

other species all demonstrated the polygenic effects of PAP measurement indicative of 

susceptibility to PH and HAD. 
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A. 

B. 

 
C.

 
Figure 5.1 Manhattan plots of proportion of genetic variance explained by 1-Mb windows from 
genomic wide association study of deregressed EBV from A) non-transformed PAP; B) three-
category; C) two-category yearling pulmonary arterial phenotypes of Angus cattle managed at 
high altitude (elevation at 2,170 m) with the line reprenting 1% of genentic variation.  
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The SNP used in this study (n = 35,930) explained 17.9%, 28.3% and 62.3% of the total 

variance of DEBV from RAW, CAT3 and CAT2, respectively. Golan et al. (2014) also 

illustrated that the phenotypic variation explained by genotype (common variants) was positively 

related with heritability. Among these genetic variances (variation explained by markers), the 

significant windows (windows that explained >1% genetic variation) explained 13.9%, 25.6% 

and 26.3% of total genetic variation, and the top 52 (2%) windows explained 34.2%, 42.0% and 

47.2% of total genetic variation explained by all markers RAW, CAT3 and CAT2, respectively. 

A GWAS logically initial genomic analyses on common variants (with MAF > 5%; Visscher et 

al., 2012), but the common variants could not explain all genetic variation for complex traits. 

There are many other factors that could also contribute to the genetic variation. The unexplained 

portion of genetic variance in a GWAS may be from gene-by-gene interactions, gene-by-

environment interactions, genomic structural variations, epigenetics and rare variants (Eichler et 

al., 2010). In addition, De los Campos et al. (2015) suggested that limited number of genotype 

markers could hardly cover all QTL for a complex trait in a 3 gigabase genome such as cattle. 

However, this presented GWAS provides the best knowledge obtainable at the present time.  

Some concordant windows were identified across the three PAP phenotypes although the 

actual portions of genetic variance explained by these windows were slightly different (Figure 

4.1). A genome window on Chromosome 7 appeared to be the most important genomic region 

associated with all these PAP phenotypes. The GWAS results were more similar between RAW 

and CAT3 than RAW and CAT2, which coincided with genetic correlation between RAW and 

CAT3 and CAT2 (Table 3.7). 
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Table 5.1 Genomic windows explaining > 1% genetic variation of non-transformed pulmonary arterial pressure (PAP) measurements 

of yearling Angus cattle from Beef Improvement Center of Colorado State University (elevation at 2,170 m)
1
 

BTA_Mb Start (bp)
 

End (bp)
 Number of 

SNP
 

% Variance 

Explained
 Lead-SNP 

Model 

Frequency
 

% Variance Explained 

by Lead-SNP
 

7_93 93007435 93886136 6 9.64 rs109819349 0.51 2.44 

X_110 110003891 110719987 9 2.04 rs41618346 0.28 0.18 

11_86 86048363 86965492 15 1.11 rs110993632   0.16 0.09 

20_34 34051201 34981347 18 1.06 rs109633897  0.30 0.24 
1
Bovine chromosome and n

th
 1 Mb window on the same chromosome based on the UMD3.1 assembly; Start: start position of the window; End: 

end position of the window; Num. SNP: number of SNP in the window; % Variance Explained: proportion of the genetic variance explained by 

the window; Lead-SNP: SNP with the highest model frequency; Model Frequency: the proportion of fitted models including that maker; % 

Variance Explained by Lead-SNP: proportion of the variance explained by the lead-SNP 
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5.3.2.1 Non-transformed PAP measurements 

Four windows on chromosomes 7, 11, 20 and X were identified to be associated with RAW. 

Table 5.1 described the details of these windows and their lead-SNP.  In the window on 

chromosome 7, besides the lead-SNP presented in Table 5.1, another SNP (rs41625563) also had 

high model frequency (49%) in the window, which suggested that rs109819349 and rs41625563 

could be of physically linked with each other, and the QTL could be distributing its effect over 

the two markers. Therefore, rs41625563 can also be considered an important SNP this RAW 

associated genomic window. The rs109819349 is within a gene (LOC507513), which was 

reported as a protein-coding gene and described as G-protein coupled receptor 98. The 

rs41625563 is inter-genic between LOC507513 (20 Kb downstream) and LOC104968987 (1.5 

Kb upstream). The LOC104968987 is a non-coding RNA gene. Therefore, these uncharacterized 

genes may have influences on PAP measurements. However, additional investigations on 

function of these genes are needed.  

Besides the lead-SNP related genes, four other uncharacterized genes were identified and 

one annotated gene (ARRDC3) was obtained under this QTL window on chromosome 7.  The 

ARRDC3 (arrestin domain containing 3) is a protein-coding gene and was recognized associated 

with the plasma membrane, endosomes, lysosomes during endocytosis, and cell proliferation 

(Oka et al., 2006). It was also reported to be a HIF-2α regulate gene and influence the endothelial 

sprouting during prolonged hypoxic culturing (Nauta et al., 2016). The ARRDC3 was identified 

by many studies to be associated with breast cancer in human (Draheim et al., 2010; Wang et al., 

2015). Considering the metabolic theory of PH, Stenmark et al. (2015) and Li et al. (2016) 

described the relationship between PH and a metabolic adaptation often observed in cancerous 

cells (i.e. “Warburg effect”). This adaptation has been described in various other studies of 
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cancer and PH cells (Pavlides et al., 2009; Paulin and Michelakis, 2014). These metabolic 

changes may contribute to the tissue remodeling and inflammation observed in PH (Stenmark et 

al., 2015). Also, Patwari et al. (2009) suggested that Arrdc3 protein might play role in 

metabolism regulation, which corroborated that cellular metabolic changes occur with increase in 

PAP and PH.  

A window on chromosome 11 was another important region associated with RAW. The 

lead-SNP (rs110993632) in this window does not reside near (< 2,500 bp) of any annotated 

genes. Besides the lead-SNP, rs109850195 also had a relatively high model frequency (19%), 

which was located in an un-annotated gene region. However, this lead-SNP is about 7.4 Kb 

downstream away from KCNF1 (potassium channel, voltage gated modifier subfamily F, 

member 1). This gene encodes subfamily F, which is a member of the voltage-gated potassium 

channels, and these channels function in many aspects in human including neurotransmitter 

release, heart rate, and smooth muscle contraction (Grant, 2009). This gene’s role in the smooth 

muscle contraction and (or) the cardiac system may relate this gene to the PAP phenotypes in 

Angus cattle. 

Nine other genes were also identified in the region of window 11_86 (Appendix 5.2). The 

protein encoded by ROCK2 (Rho associated coiled-coil containing protein kinase 2) is a 

serine/threonine kinase regulating cytokinesis, smooth muscle contraction, the formation of actin 

stress fibers and focal adhesions and the activation of the c-fos serum response element 

(Coordinators, 2013). Shimizu et al. (2013) reported that ROCK2 in vascular smooth muscle 

cells contributed to the pathogenesis of hypoxia-induced pulmonary arterial hypertension. Do et 

al. (2009) illustrated that the expression of ROCK2 was significantly increased in patients with 

idiopathic pulmonary arterial hypertension. In addition, studies reported that it was related to 
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other aspects of pulmonary and cardiac systems including cardiovascular disease, idiopathic 

pulmonary fibrosis with oxidative stress and non-small cell lung cancer (Vigil et al., 2012; Liu et 

al., 2013; Shimizu et al., 2014). These studies support our finding that ROCK2 could potentially 

be associated with PH and HAD in Angus cattle at high altitude regions. The protein encoded by 

PDIA6 can catalyze formation, reduction, and isomerization of disulfide bonds in proteins and 

are thought to play a role in folding of disulfide-bonded proteins. This gene was overexpressed in 

the lung adenocarcinoma patients. The NTSR2 encodes neurotensin receptor 2, and Leyton et al. 

(2002) indicated that functional neurotensin receptors might play roles in lung cancer cells. Gene 

E2F6 encodes transcription factors that can control cell cycle, which was reported to have 

function on controlling hypoxia-induced apoptosis and hematopoietic progenitor cells apoptosis 

during proliferation.  

On chromosome 11 of the Bos taurus genome, EPAS1 (HIF-2α) located at the position of 

28.57 to 28.67 Mb, and some previous studies tested its association with PAP and HAD in both 

human and cattle. Newman et al. (2015) reported two cis variants in EPAS1 associated with PAP 

of Angus cattle at high altitude, and the mutations in this gene were also reported to be related to 

the high altitude adaptation of humans (Buroker et al., 2012; Xiang et al., 2013; Yang et al., 

2013). The window containing this gene was not associated with any PAP phenotypes in the 

presented study, and it only explained about 0.02% to 0.04% of the genetic variation of these 

PAP phenotypes. Also, a variant in EPAS1 was not expressed differently between low PAP and 

high PAP groups in a study on Angus cattle managed at high altitude (Crawford et al., 2016).  

This gene was normally identified to be associated with HAD or high altitude adaptation through 

comparing the low and high altitude residents. However, all the individuals in our study were 
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exposed to high altitude since birth, so this may lead to the non-significant result on EPAS1 in 

our analysis. 

A QTL on the X chromosome was associated with PAP measurements. The lead-SNP of this 

window was rs41618346 and was not close to any annotated genes. However, another SNP 

(rs110159935) with similar model frequency with the lead-SNP was located within TSPAN7 

(tetraspanin 7). The encoded protein of this gene is a member of the transmembrane 4 

superfamily proteins (cell-surface proteins), which has a role in cell development, activation, 

growth and motility. It was reported to be associated with X-linked mental retardation and 

neuropsychiatric diseases such as Huntington's chorea, fragile X syndrome and myotonic 

dystrophy (Raymond, 2006; Bassani et al., 2012). In this window, there were 4 other annotated 

genes (i.e. SRPX, RPGR, OTC and SYTL5; Appendix 4.1). Shimakage et al. (2009) suggested 

that SRPX is down regulated when developing small-cell lung carcinoma. The other three genes 

were reported possibly related to retinitis pigmentosa, hyperammonemia and Rab27A-dependent 

membrane trafficking in specific tissues (Kuroda et al., 2002, Beltran et al., 2014; Mohamed et 

al., 2015). However, they have not been reported associated with maladaptation of the 

pulmonary and cardiac system.  

Another important window for RAW was identified on chromosome 20 at 34.05 to 34.98 

Mb, but there are no annotated genes in this window. Compared to human and mouse, the bovine 

genome is poorly annotated (Weikard at al., 2013), with better annotation in the future, there 

may be some genes in this region to help study the association with PAP and HAD. This GWAS 

study was based on UMD3.1 sequence assemble map, which has substantial differences from 

and a higher coverage than BTAU4.6. However, a new cattle optimal map (BtoM1.0) was 



	 143	

developed, and will assist improvements to existing sequence builds (i.e. UMD3.1 and BTAU4.6) 

and genomic study in bovine community in future (Zhou et al., 2015).   

 

5.3.2.2 Three-category phenotypes for PAP 

We observed 12 windows on chromosomes 7, 8, 10, 11, 12, 14, 15, 20 and 28 that were 

associated with DEBV from CAT3. The most important window associated with CAT3 was also 

the window on chromosome 7, and the lead-SNP was also rs41625563. Another SNP 

rs109819349 also had relatively high model frequency (42%) in the window. Another 

concordant genomic windows between RAW and CAT3 was 11_86, but the lead-SNP were 

different between RAW and CAT3. Table 5.2 summarizes the QTL windows associated with 

CAT3. 

There were three windows identified in chromosome 12. Beside the lead-SNP of window 

12_12, the rs110675288 also had relatively high model frequency (27.3%). This SNP was 1,284 

bp upstream of AKAP11 (A-kinase anchoring protein 11), and the silencing of this gene retarded 

cell migration in human cancer cell (Logue et al., 2011). Four other genes were in this window 

(Appendix 5.2), among them, the expression of the DGKH (diacylglycerol kinase eta) was 

associated with failing human hearts (Bilim et al., 2011).  
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Table 5.2 Genomic windows explaining > 1% genetic variation of three-category pulmonary arterial pressure (PAP) measurements of 

yearling Angus cattle from Beef Improvement Center of Colorado State University (elevation at 2,170 m)
1
 

BTA_Mb Start (bp)
 

End (bp)
 Number of 

SNP
 

% Variance 

Explained
 Lead-SNP 

Model 

Frequency
 

% Variance Explained 

by Lead-SNP
 

7_93 93007435 93886136 6 6.83 rs41625563 0.49 1.42 

12_42 42046435 42709211 8 3.80 rs110660529 0.60 1.50 

8_89 89007062 89960384 20 2.83 rs43567728 0.80 1.30 

10_36 36065111 36978160 14 1.80 rs108977212 0.60 0.79 

11_86 86048363 86965492 15 1.74 rs109850195 0.42 0.44 

12_34 34013716 34960812 15 1.60 rs11021769 0.33 0.30 

28_31 31053570 31960726 8 1.36 rs109614495 0.56 0.81 

14_64 64005605 64968182 14 1.26 rs109608699 0.55 0.79 

12_12 12041734 12805107 13 1.19 rs43706907  0.30 0.19 

15_59 59020999 59937374 15 1.07 rs42596067  0.60 0.07 

20_4 4145679 4962725 22 1.07 rs109724258 0.40 0.41 

8_83 83023897 83888935 15 1.04 rs41570498  0.36 0.31 
1
Bovine chromosome and n

th
 1 Mb window on the same chromosome based on the UMD3.1 assembly; Start: start position of the window; End: 

end position of the window; Num. SNP: number of SNP in the window; % Variance Explained: proportion of the genetic variance explained by 

the window; Lead-SNP: SNP with the highest model frequency; Model Frequency: the proportion of fitted models including that maker; % 

Variance Explained by Lead-SNP: proportion of the variance explained by the lead-SNP. 
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The lead-SNP (rs110217699) in the window 12_34 was intragenic of gene SPATA13 

(spermatogenesis associated 13), which appears to have role in cell migration in humans 

(Kawasaki et al, 2007). Beside this gene, seven genes were located in this window (Appendix 

5.2). Among them, Srivastava et al. (2005) suggested that the MTMR6 could regulate Ca
2+

-

activated K
+
 channel and T cells, and be associated with pathological cell proliferation, such as 

cancer and atherosclerosis. The Ca
2+

-activated K
+
 channel was also reported to be associated 

with innate immunity (Ahluwalia et al., 2010). The product of C1QTNF9 in serum played an 

important role in metabolic phenotypes, arterial stiffness, inflammation and coronary 

atherosclerosis in human (Hwang et al., 2013; Jung et al., 2014; Wang et al., 2015). The flow of 

Ca
2+ 

and K
+
, the metabolic changes and the innate immunity are involved in PH and HAD 

(Stenmark et al., 2015 and 2016), which could demonstrate this window’s association with PAP 

phenotype of cattle managed at high altitude. 

The SNP rs41593489 was recognized as the lead-SNP in the window 12_42. Another SNP 

(rs110660529) also resulted in relative high model frequency (35%). Therefore, they were both 

considered important markers in this window that were potentially associated with PAP 

phenotype of cattle managed at high altitude. Unfortunately, neither of them resident near (< 

2,500 bp) any annotated genes based on the Bos taurus gene map; as there were no genes 

annotated within this window. Thus, future studies using more advanced techniques or better 

sequence and annotation were needed to validate the potential functions of this locus.  

Two other CAT3 associated windows were located on chromosome 8. No genes were 

located near (< 2,500 bp) the lead SNP of window 8_83 (rs41570498) and 8_89 (rs43567728). 

One gene in the window 8_89 was PDCD1LG2 (programmed cell death 1 ligand 2), whose 

expression may down-regulate autoimmune and allergic reactions in human. Kim et al. (2015) 
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suggested that PDCD1LG2 and CD274 were frequently expressed in human pulmonary 

squamous cell carcinoma. The CD274 gene was also located in this window 8_89, which plays 

important role in human immune response.  Besides the discussed genes, six other genes were 

also identified in this window. These genes have diverse biological function and were not 

previously reported to be associated with the cardiac or pulmonary system (Appendix 5.2).  

The CAT3 genomic window approach also identified a QTL window on chromosome 28, 

and its lead-SNP (rs109614495) was located in an open reading frame but ditant from 

characterized genes. The result suggested that this open reading frame on the bovine genome 

may be associated with the mechanisms of HAD; however, the bovine genome is not currently 

annotated as well as the human genome so no functional genes were annotated to this region. 

Five genes were located in this window region (Appendix 5.2). Among them, Katagiri et al. 

(2011) showed that DUSP13 may inhibit the stress-activated MAPKs, and it may play a role in 

regulating cell proliferation and differentiation (Nakamura et al., 1999). The MAPK signaling 

and cell proliferation were involved in the mechanism of PH and HAD (Stenmark et al., 2006 

and 2013), which could support this genes association with HAD. Other genes functioned on 

many cellular processes including controlling ceramide homeostasis (SAMD8) and realizing 

metabolite diffusion across the mitochondrial outer membrane (VDAC2).  

Five annotated genes were located in the identified window from 64 Mb to 65 Mb on 

chromosome 14 (Appendix 5.2), but the lead SNP (rs109608699) of this window was not located 

within 2,500 bp of any annotated genes. Among them, the interaction between UBR5 (ubiquitin 

protein ligase E3 component n-recognin 5) in this window and MRE11-RAD50-NBS1 complex 

was regulated by PPARγ to control the DNA damage response, which is an impaired signaling 

pathway in pulmonary arterial hypertension.  
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In the region of genomic window 15_59, the SNP rs42596067 had a relative high model 

frequency and was considered the lead-SNP, but there were no genes located nearby (< 2,500 

bp). However, three genes were observed in this window regions: BDNF, KIF18A and 

METTL15. The closest gene to the lead SNP was BDNF (brain-derived neurotrophic factor), 

which encodes a member of the nerve growth factor family of proteins related to many diseases 

(e.g. Huntington's, Alzheimer's, Parkinson's), and plays roles in regulating stress. Baker-Herman 

et al. (2004) suggested that BDNF was necessary and sufficient for spinal respiratory plasticity 

and long-term facilitation. In addition, BDNF and their receptors (TrkB) were reported to be 

associated with pulmonary hypertension through influencing the intracellular Ca
2+

 and NO 

generation and pulmonary arterial smooth musle cell proliferation (Meuchel et al., 2011; 

Kwapiszewska et al., 2012; Prakash et al., 2006; Aravamudan et al., 2012). Hartman et al. (2015) 

also illustrated that a potential mechanism by which hypoxia can promote changes in pulmonary 

arterial structure and function in humans was the enhanced expression and signaling of the 

BDNF-TrkB system in pulmonary arterial smooth muscle cells. This information coincides with 

the presented finding that BDNF is a potential gene influencing PAP, PH and finally HAD in 

Angus cattle. The other two genes were not reported to be associated with PAP or HAD, and the 

KIF18A (kinesin family member 18A) could play a role in controlling mitotic chromosome 

positioning as it regulates kinetochore microtubule dynamics, but little functions are known for 

METTL15 (methyltransferase like 15). 

Another window was detected on chromosome 20. The lead-SNP (rs43350564) of this 

window was located 269 bp downstream from ERGIC1 (endoplasmic reticulum-golgi 

intermediate compartment 1). The ERGIC1 encodes a cycling membrane protein that interacts 

with other proteins in the family to enhance each other’s turn over. This gene has been associated 
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with prostate cancer in humans (Vainio et al., 2012), but no previous evidence suggests it is 

related to PH, HAD or blood pressure.  

In addition, 7 other genes located in within the region. Among them, DUSP1 could regulate 

MAPK (mitogen-activated protein kinases) and function on inflammation and cell proliferation 

in humans and animals (Kim et al., 2011; Shah et al., 2014). Jin et al. (2010) suggested that a 

deficiency of DUSP1 (MKP-1) may be related to the progression of hypoxic PH in mice, and Jin 

et al. (2014) reported that up-regulation of DUSP1 (MKP-1) in pulmonary arterial smooth 

muscle cell would decrease their cell proliferation under hypoxia that may prevent PH. The 

CREBRF encodes regulatory factor for CREB3 (cAMP responsive element binding protein 3), 

and the CREB3 was reported to promote atherosclerosis and vascular smooth muscle cell 

migration. The NKX2-5 (NK2 homeobox 5) functions in heart formation and development in 

humans and was reported to be related to many congenital cardiac defects (Schott et al., 1998; 

Goldmuntz et al., 2001, Peng et al., 2010). Another gene, STC2 (Stanniocalcin-2) involved in the 

regulation of calcium and phosphate transport in the kidney was also reported to play multiple 

roles in human growth and several cancers (Madsen et al., 1998; Jansen et al., 2015; Hou et al., 

2015). Na et al. (2015) showed that STC2 could enhance lung cancer metastasis and progression 

and be a potential biomarker for lung cancer. The SH3PXD2B was located at the edge of this 

window. The abnormality in this gene-associated protein could cause cardiac anomalies in 

animals (Iqbal et al., 2010). This may predispose humans and animals’ risk of cardiac related 

diseases including HAD. The other genes within this window had little relationship with PAP, 

PH or HAD based on previous reports.  
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5.3.2.3 Two-category phenotype for PAP 

Compared to the results from three-category phenotype, fewer genomic windows (n = 9) 

were identified that explained more than 1% genetic variation of CAT2 (Table 5.3).  Window 

7_93 was the most important window in RAW and CAT3, and this genomic window also 

explained the highest portion of genetic variation of CAT2. In addition, the lead-SNP 

(rs109819349 and rs41625563) of this window were the same across RAW and CAT3, although 

the model frequency varied. This result implicated that the G-protein coupled receptor 98 

(LOC507513) gene was associated with the PAP measurements and susceptibility to HAD. 

Window 8_89, 15_59 and 20_4 also explained > 1% genetic variation of both CAT3 and CAT2, 

and the lead-SNP of 8_89 and 20_4 were the same between the two phenotypes, but the lead-

SNP of window 15_59 for CAT2 was rs108980174 that is different from CAT3 (rs42596067). 

The other top windows were unique for CAT2.  

The lead-SNP (rs41589721) of this window at 21 to 22 Mb on chromosome 10 was 

intragenic to RBM23 (RNA binding motif protein 23). The protein encoded by RBM23 increases 

transcription of steroid-responsive transcriptional reporters in a hormone-dependent manner 

(Dowhan et al., 2005). Besides the lead-SNP, another SNP (rs41647560) loci yielded relative 

high model frequency (21.1%).  The rs41647560 also located in RBM23 and located near (~ 

1,300 bp downstream) LRP10, but little function was reported to LRP10.   
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Table 5.3 Genomic windows explaining > 1% genetic variation of two-category pulmonary arterial pressure measurements of yearling 

Angus cattle from Beef Improvement Center of Colorado State University (elevation at 2,170 m)
1
 

BTA_Mb Start (bp)
 

End (bp)
 Number of 

SNP
 

% Variance 

Explained
 Lead-SNP Model Frequency

 % Variance Explained 

by Lead-SNP
 

7_93 93007435 93886136 6 9.32 rs41625563 0.99 9.32 

20_4 4145679 4962725 22 5.59 rs43350564  1.00 5.59 

12_57 57020102 57900635 15 2.37 rs108987669 0.82 1.75 

10_29 29028329 29865159 15 2.05 rs43417234  0.73 1.38 

29_22 22019432 22930524 18 1.62 rs41626199 0.58 0.70 

15_59 59020999 59937374 15 1.37 rs108980174 0.38 0.30 

8_89 89007062 89960384 20 1.29 rs43567728 0.62 0.78 

19_5 5057128 5934293 12 1.26 rs41605392 0.62 0.75 

10_21 21008360 21986516 15 1.01 rs41589721 0.28 0.14 
1
Bovine chromosome and n

th
 1 Mb window on the same chromosome based on the UMD3.1 assembly; Start: start position of the window; End: 

end position of the window; Num. SNP: number of SNP in the window; % Variance Explained: proportion of the genetic variance explained by 

the window; Lead-SNP: SNP with the highest model frequency; Model Frequency: the proportion of fitted models including that maker; % 

Variance Explained by Lead-SNP: proportion of the variance explained by the lead-SNP. 
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Beside these two genes, there were 30 other genes located in this window (Appendix 5.2). 

The MYH6 and MYH7 encode the alpha and beta heavy chain subunits of cardiac myosin, which 

were associated with familial hypertrophic cardiomyopathy. The IL-25 encoded a cytokine 

protein that may be a pro-inflammatory cytokine favoring the Th2-type immune response, and 

IL-25 was a key mediator of RV-induced exacerbations of pulmonary inflammation and 

developed responses to viral respiratory diseases (Beale et al., 2014; Valizadeh et al., 2015). 

Hams et al. (2014) also reported that IL-25 is involved in an innate immunity mechanism for 

generating pulmonary fibrosis. The IL-25 may have a role in inducting and maintaining 

eosinophilic-inflammation in the airways by acting on lung fibroblasts (Severine et al., 2006).   

The overexpressed BCL2L2 was reported to promote the growth of a non-small cell lung 

cancer cell (Kawasaki et al., 2007). Lim et al. (2014) demonstrated that the activation of PRMT1 

could mediate hypoxia- and ischemia-induced apoptosis in human lung epithelial cells and in the 

lung of miniature pigs. Xuan et al. (2013) identified two novel heterozygous missense mutations 

in HOMEZ gene exon-2 in isolated ventricular septal defect patients in the Chinese population, 

which were directly linked with the etiology of isolated Cardio Ventricular Septal Defect that can 

also cause elevated PAP and PH. Also, the non-coding region of HOMEZ still had the possibility 

of harboring recessive mutations leading to congenital heart disease in the Indian population. The 

mechanism of PH and HAD involve inflammation, immunity and cell proliferation in pulmonary 

and cardiac system (Stenmark et al., 2013 and 2015), so the functions of these genes could 

explain their association with HAD. 

Another window (10_29) was also identified on chromosome 10, and three genes were 

located in this region (Appendix 5.2). The lead-SNP (rs43417234) is intragenic to FMN1, which 

was reported to be involved in cell polarity, cytokinesis, cell migration and transcriptional 
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activity (Hu et al., 2014). The RYR3 (ryanodine receptor 3) in this window is one member of 

ryanodine receptors, which are the major Ca
2+

 release channels and control cardiac and skeletal 

muscle contraction in human and animals  (Santulli et al., 2015). The expression of ryanodine 

receptors could influence the intracellular Ca
2+

 level in pulmonary arterial smooth muscle cells 

was important for hypoxic Ca
2+

 and contractile response in PH (Wang and Zheng, 2010).  

The lead-SNP of window 19_5 was located intragenic to TOM1L1, and the amplification of 

this gene could enhance the metastatic progression of ERBB2-positive breast cancers. Among the 

four other genes in this window (Appendix 5.2), the MMD was associated with differentiation 

from monocytes to macrophages, and its interaction with miR-140-5p could affect the non-small 

cell lung cancer in human (Li and He 2014). Another CAT2 unique window was on chromosome 

29, and the SLC17A6 contained the lead-SNP of this window. This window contains three 

additional genes (Appendix 5.2), ANO5 was one of them and is a putative calcium-activated 

chloride channel, whose mutation may enhance dilated cardiomyopathy (Wahbi et al., 2013). 

The increased calcium-activated chloride channel activity was reported to be associated with PH 

induced by various factors in a mice model (Wang et al., 2015). Another CAT2 associated QTL 

was identified on chromosome 12 at 57 Mb, but no genes were annotated in this region. 

 

5.3.2.4 Additive and dominant effects 

This section presents the significance, least square means (LSM), additive and dominant 

effects resulted from analyzing genotypes of each lead-SNP on EBV of yearling PAP phenotypes 

separately in Table 5.4. The majority of these lead-SNP had significant effects (P < 0.05) on 

PAP phenotypes except three SNP (rs41618346, rs42596067, rs41605392). In windows of these 

three lead-SNP, there were other SNP having relatively high model frequency, which could share 
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the QTL variation of the yearling PAP phenotypes and reduce the effect of the lead-SNP. For 

example, the rs41618346 had model frequency of 28% but rs110159935 in the same window 

also had a model frequency of 27%, so the summing of the variation of the SNP in the window 

elevated this region to the top window on a Manhattan plot. 

The LSM of three genotypes (i.e. AA, AB, BB) were different from each other (P < 0.05) in 

studying most of the lead-SNP, which demonstrated these SNP’s association with yearling PAP 

phenotypes. Based on the LSM, the favorable and unfavorable genotype can be identified. For 

example, the individual having AA on rs109819349 could have a unfavorable (0.48) 

performance on yearling PAP phenotypes, while individual with BB could show favorable (-1.31) 

performance. In addition, the majority of these lead-SNP resulted in significant (P < 0.05) 

additive effects but non-significant dominant effects except rs41589721 whose dominant effect 

test was significant. This demonstrated the polygenetic characteristics of yearling PAP 

phenotypes, additive effects of most of yearling PAP associated SNP and dominant effects of 

limited number of yearling PAP associated SNP.  

Historically, studies suggested a single autosomal dominant genetic effect for PAP and 

susceptibility to PH or HAD based on breeding experiments in cattle (Weir et al., 1974; Anand et 

al., 1986). Neary et al. (2014) described a gene (MYH15) linking to lower PAP in a dominant 

manner. However, compared to our study, these reports involved limited sample size and genes, 

or in studies that are preceding the development of the bovine genome and its tools, which would 

lead these older studies to misinterpret the overall inheritance pattern of PAP and susceptibility 

to PH and HAD.  
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Table 5.4 Significance, estimate least square means (s.e.) of each genotype, and estimated additive and dominant effects of lead-SNP 

(identified in QTL windows) on EBV of yearling pulmonary arterial pressure (PAP) phenotypes in Angus cattle managed at high 

altitude (elevation at 2,170 m) 

Phenotype
1 

Lead-SNP P-Value
2 Genotype

3 
Effects

4 

AA AB BB Additive Dominance 

RAW rs109850195 <0.001 0.19(0.18)
a 

-0.34(0.080)
a 

-0.73(0.070)
b 

-0.35*** 0.0097 

RAW rs110993632  <0.001 -0.061(0.13)
a 

-0.51(0.073)
b
 1.11 (0.084)

c
 -0.52*** 0.071 

RAW rs109633897 0.002 -0.32(0.12)
a
 -0.64 (0.075)

ab
 -0.83(0.087)

b 
-0.26*** -0.067 

RAW rs110159935 0.116 -0.68(0.056)
a
 -0.65(0.14)

a
 -0.13(0.26)

a
 0.28* -0.24 

RAW rs41618346 0.073 -0.096(0.25)
a
 -0.63(0.14)

a
 -0.68(0.056)

a
 -0.29* -0.24 

RAW rs41625563 <0.001 0.36(0.11)
a
 -0.66(0.070)

b 
-1.28 (0.091)

c
 -0.82*** -0.20 

RAW rs109819349 <0.001 0.48(0.12)
a
 -0.60(0.070)

b 
-1.31 (0.086)

c
 -0.89*** -0.18 

CAT3 rs108977212 <0.001 0.034(0.033)
ab

 0.023(0.0090)
a
 -0.029(0.0050)

b
 -0.031 0.021 

CAT3 rs109850195 <0.001 0.044(0.015)
a 

-0.00078(0.0069)
b
 -0.039(0.0061)

c
 -0.041*** -0.00035 

CAT3 rs109767777 <0.001 0.017(0.0081)
a 

-0.014(0.0059)
b 

-0.067(0.0088)
c
 -0.042*** 0.011 

CAT3 rs110675288 <0.001 0.0078(0.0083)
a 

-0.016(0.0061)
a 

-0.048(0.0095)
b
 -0.028*** 0.0040 

CAT3 rs110217699 0.046 -0.0026(0.0073)
a
 -0.021(0.0061)

a
 -0.033 (0.012)

a
 -0.015* -0.0031 

CAT3 rs110660529 <0.001 -0.052(0.0070)
a 

-0.0058(0.0061)
b 

0.055(0.012)
c
 0.054*** -0.0073 

CAT3 rs41593489  <0.001 -0.051(0.0073)
a
 0.0053(0.0062)

b
 0.058(0.012)

c
 0.054** -0.0085 

CAT3 rs109608699 <0.001 -0.069(0.016)
a
 -0.019(0.0069)

b
 -0.0058(0.0061)

c
 0.031*** 0.018 

CAT3 rs42596067 0.313 -0.027(0.0094)
a
 -0.016(0.0063)

a
 -0.0086(0.0080)

a
 0.0094 0.0023 

CAT3 rs43350564  <0.001 -0.036(0.0073)
a
 -0.012(0.0063)

b
 0.015(0.011)

b
 0.025*** -0.0019 

CAT3 rs41625563 <0.001 0.061(0.0098)
a 

-0.014(0.0060)
b 

-0.069(0.0078)
c 

-0.065*** -0.010 

CAT3 rs109819349 <0.001 0.080(0.010)
a
 -0.0087(0.0060)

b
 -0.074(0.0071)

c
 -0.078*** -0.011 

CAT3 rs41570498 <0.001 0.0063(0.0059)
a
 -0.037(0.0070)

b
 -0.066(0.016)

b
 -0.036*** -0.0075 

CAT3 rs43567728 <0.001 0.052(0.023)
a
 0.0020(0.0076)

a
 -0.029(0.0054)

b
 -0.040*** -0.0094 
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Table 5.4. Continue 

Phenotype
1
 Lead-SNP P-Value

2
 

Genotype
3
 Effects

4
 

AA AB BB Additive Dominance 

CAT2 rs41589721 <0.001 0.037(0.022)
ab 

0.046(0.010)
a 

-0.013(0.10)
b
 -0.025* 0.034* 

CAT2 rs43417234 <0.001 0.073(0.021)
a
 0.028(0.010)

a
 -0.0087(0.10)

b
 -0.041*** -0.0040 

CAT2 rs108987669 <0.001 0.077(0.011)
a 

-0.0037(0.011)
b 

-0.090(0.019)
c
 -0.078*** 0.0020 

CAT2 rs108980174 <0.001 0.076(0.011)
a
 0.0010(0.010)

b
 -0.079(0.019)

c
 -0.077*** 0.0025 

CAT2 rs41633546 <0.001 -0.079(0.018)
a
 0.0034(0.010)

b
 0.077(0.011)

c
 0.078*** 0.0048 

CAT2 rs41605392 <0.469 -0.024(0.035)
a
 0.021(0.012)

a
 0.019(0.0089)

c
 0.021 0.024 

CAT2 rs43350564 <0.001 -0.020(0.012)
a 

0.022(0.010)
b 

0.085(0.017)
c 

0.052*** -0.010 

CAT2 rs41626199 <0.001 0.044(0.010)
a
 -0.0098(0.011)

b
 0.0017(0.024)

ab
 -0.021 -0.032 

CAT2 rs41625563 <0.001 0.15(0.015)
a
 0.020(0.0095)

b 
-0.075(0.013)

c 
-0.11*** -0.019 

CAT2 rs43567728  <0.001 0.13(0.038)
a
 0.049(0.012)

a
 -0.0031(0.0087)

b
 -0.067*** -0.014 

1
RAW: non-transformed yearling PAP measurements; CAT3: three-category yearling PAP phenotypes; CAT2: two-category yearling PAP 

phenotypes. 
2
The significance of single SNP analysis on EBV. 

3
Different letter within SNP denote significant at P-value < 0.05. 

4
***Significant at P-value < 0.001; **Significant at P-value < 0.01; *Significant at P-value  < 0.05.  
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5.3.3 Effect of different phenotypic forms on GWAS 
 

Table 5.5 presents correlations between the SNP effects estimated from the three yearling 

PAP phenotypes. These SNP effect correlations were lower than the estimate genetic correlations 

and EBV correlations between these phenotypes using pedigree-based quantitative genetic 

methodologies; however, these SNP correlations reflected a similar pattern to genetic and EBV 

correlations. Note the relationship between RAW and CAT3 appeared closer than that between 

RAW and CAT2 (Table 3.7 and Table 3.8).  These results showed genetic differences between 

different yearling PAP phenotypes, and confirmed that genetics may play roles in causing 

different levels of resistance or susceptibility for PH or HAD in Angus cattle.  

 

Table 5.5. Pearson (above diagonal) and Rank (below diagonal) correlations between genome-
wide SNP effect of three yearling pulmonary arterial pressure (PAP) phenotypes of Angus cattle 
at high altitude regions 
Phenotypes1 RAW CAT3 CAT2 
RAW 1 0.48 0.42 
CAT3 0.73 1 0.37 
CAT2 0.67 0.67 1 
1RAW: non-transformed yearling PAP measurements; CAT_3: three-category phenotype, 1: PAP < 41 mmHg, 2: 41 
mmHg <= PAP <= 49 mmHg, 3: PAP > 49 mmHg; CAT_2: two-category phenotype, 1: PAP <= 49 mmHg, 2: PAP 
> 49 mmHg 
 

 

The only window that explained greater than 1% genetic variance in RAW, CAT3 and 

CAT2 was window 7_93 on chromosome 7, and the window 7_93 was the most important 

window for all the studied phenotypes. As discussed, the lead-SNP (rs109819349 and 

rs41625563) in this window were associated with two un-annotated genes on the bovine genome. 

Nonetheless, these two genes have a potential influence on PAP measurements and susceptibility 

of HAD in Angus cattle. Although the LOC507513 was not annotated in the Bos taurus genome, 

it was predicted as a potential G-protein coupled receptor 98 (GPCR98). When aligning the 
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sequence of this gene to genome sequences of other species using BLAST of NCBI (Johnson et 

al., 2008), this gene sequence was homologous with the G-protein coupled receptor 98 gene in 

many other species. The G-protein coupled receptors are the largest superfamily of related 

proteins and the most diverse group of membrane receptors in eukaryotes, which assist cells to 

respond to their environment (O’Connor et al., 2010; OMIM 602851). This group of proteins has 

important roles in modern medicine, as they were one of the most targeted sources for modern 

medicinal drugs. This gene in human genome was named as ADGRV1 (adhesion G protein-

coupled receptor V1). It is calcium-binding G-protein coupled receptor expressed in the central 

nervous system. Several reported studies suggested that ADGRV1 was associated with Usher 

syndrome type 2 (a hearing and vision disease), and mutations in this gene can be used in genetic 

diagnosis of this disease (Scheel et al., 2002, Besnard et al., 2012; Moteki et al., 2015).  In 

addition, it was also reported that a mutation in ADGRV1 had a role in regulating bone mineral 

density in human and mouse (Urano et al., 2012) and its low expression risk factor of epileptic 

seizures in patients with low-grade glioma (Wang et al., 2015). Results of the current study 

suggested that GPCR98’s association with elevated PAP, PH and HAD susceptibility, and which 

may be attribute to its role in calcium-binding and regulating cellular response to hypoxia of high 

altitude because increasing of intracellular calcium level in pulmonary arterial smooth muscle 

cells would contribute to the development of hypoxic PH (Wang et al., 2006; Whitman et al., 

2008). 

When considering the most important genomic windows across the three phenotypes (i.e. 

top 2%), 5 windows were in concordance across phenotypes (Table 5.6). Four of these windows 

explained >1% genetic variation of RAW, CAT3 or CAT2, but window 12_25 consistently 

explained similar and moderate genetic variation of phenotypes across RAW, CAT3 and CAT2, 
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it were also considered important genomic regions associated with PAP measurements and 

susceptibility risk to HAD.  

 

Table 5.6. Common top 2% (n=52) windows across non-transformed (RAW), three-category 
(CAT3) and two-category (CAT2) pulmonary arterial pressure phenotypes of Angus cattle 
managed at high altitude (elevation at 2,170 m)1 

BTA_Mb Start (bp) End (bp) 
Number of 

SNP 
%Variance Explained 

RAW CAT3 CAT2 
7_93 93007435 93886136 6 9.64 6.83 6.78 
11_86 86048363 86965492 15 1.11 1.74 0.93 
12_25 26358215 26967177 5 0.59 0.26 0.44 
15_59 59020999 59937374 15 0.44 1.07 1.43 
20_34 4145679 4962725 22 1.06 0.78 0.52 
1Bovine chromosome and nth 1 Mb window on the same chromosome based on the UMD3.1 assembly; 
Start: start position (base pair) of the window; End: end position (base pair) of the window; Number of  
SNP: number of SNP in the window; %Variance Explained: proportion of the genetic variance 
explained by the window. 
 

Four genes were located in this window (Appendix 5.2). The SPG20 encoded protein 

regulated endosomal trafficking and mitochondria function, and this gene could inhibit BMP 

signalling that is important in pulmonary hypertension by promoting BMP receptor degradation 

(Tsang et al., 2009). Other genes in this window had roles in cancer and cancer development. 

Within the concordant windows, 19 genes were observed, and Table 5.7 summarizes their 

gene ontology information (i.e. biological processes and KEGG pathways) from gene enrichment 

analysis of these genes based on their biological functions and related pathways. Results 

suggested that these genes have roles in metabolic and neural regulation. The significant KEGG 

pathway was cAMP signaling pathway. Serezani et al. (2008) reported that cAMP could regulate 

metabolism and gene regulation, and influence innate immune function of human and animals 

via controlling phagocyte function. Innate immune response and vascular inflammation were 

reported to be involved in the development of PH and HAD (Stenmark et al., 2006 and 2013). 
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Sitbon and Morrell (2012) reported that the cAMP signaling pathway was involved in 

pathogenesis of pulmonary arterial hypertension. 

Table 5.7 Significant gene ontology (GO) terms from gene enrichment analysis on genes within 
identified concordant 1-Mb windows with genome-wide association studies across yearling PAP 
phenotypes of Angus cattle managed at high altitude (elevation at 2,170) 
GO1 ID P-value2 Name Gene list 
BP GO:0051234 1.49E-02 Adipose tissue development ARRDC3, SPG20 

BP GO:0098660 7.00E-03 Collateral sprouting SPG20, BDNF 

ke KEGG:05231 3.27E-02 cAMP signaling pathway ROCK2, BDNF 
1BP: Biological process; ke: KEGG pathway 
2 Benjamini-Honchberg FDR corrected P-Value 
3Associated chromosome and nth 1-Mb window based on UMD3.1 assembly 

 

Besides the enrichment analysis, the gene ontology information (i.e. molecular function, 

cellular component and associated pathways) of single gene was also investigated (Table 5.8). 

The molecular function of the most important gene identified in this study (GPR98/ADGRV1) 

includes ion binding (i.e. calcium and metal ion), cytoskeletal protein binding, myosin binding 

and cation binding. Wilkins et al. (2015) suggested that the mechanism of the acute and chronic 

hypoxic pulmonary vasoconstriction involves hypoxia-induced release of vasoactive mediators 

(i.e. endothelin 1, prostacyclin and nitric oxide), changes in intracellular Ca2+ and changes in 

pulmonary arterial small muscle cell myofilament sensitivity to Ca2+ (arising from inhibition of 

myosin light chain phosphatase; via RhoA/Rho kinase or protein kinase C, or decreased nitric 

oxide signaling; Figure 4.2 and Figure 4.3). Remillard et al. (2005) and Yuan (2005) also 

reported the important roles of Ca2+ and K+ on pulmonary vasoconstriction and vascular 

remodeling in chronic hypoxia-induced PH via their functions on cellular volume, gene 

transcription, apoptosis and cell cycle progression. Therefore, this gene may influence Ca2+ and 

other ion transportation process and subsequentially may have roles in PH and HAD in Angus 

cattle. Newman et al. (2011) also identified a gene (i.e. EMR1) having molecular function on G 

protein-coupled receptor and up-regulated in cattle with hypoxia-induced PH.  
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Among the gene related pathways, there were several pathways were previously reported to 

be associated with high altitude adaptation, PH and HAD in humans and cattle, including MAPK 

signaling pathway, Wnt signaling pathway and TGF-β signaling pathway (De et al., 2013; 

Newman et al. (2011). The MAPK signaling pathway is involved in cell proliferation, 

differentiation and migration in mammals (Sun et al., 2015), and was reported to be involved in 

pulmonary vascular remodeling from PH in both human and cattle (Wilson et al., 2015 and 

Archer et al., 2010). The Wnt signaling pathway is another important pathway included three 

different parts: the canonical pathway, the planar cell polarity pathway and the Wnt/Ca2+ 

pathway. This pathway was related to the MAPK signaling pathway and has a role in cell-fate 

specification, progenitor-cell proliferation and the control of asymmetric cell division (Kenehesa, 

et al., 2008). Also, Königshoff and Eickelberg (2010) summarized and reported that Wnt 

signaling pathway was involved in lung development and lung diseases including lung 

homeostasis, lung cancer, lung fibrosis and pulmonary arterial hypertension. The TGF-β 

signaling pathway, involving TGF-β, activins and bone morphogenetic proteins (BMPs), is 

related to both MAPK signaling pathway and Wnt signaling pathway, and also have roles in 

regulating cell proliferation, apoptosis, differentiation and migration (Massagué, 2012). A 

mutation in the BMPR2 was found in humans and thought to contribute to the abnormal growth 

in pulmonary artery smooth muscle cells (Morrell, 2006). It was also unregulated in the 

peripheral pulmonary vasculature during hypoxia-induced PH (Anderson et al., 2010).  

Cell proliferation pathways therefore could related these genes involved in these pathways to 

PH and HAD, because chronic hypoxia vascular remodeling (i.e. cell proliferation) is an 

important characteristic of PH and was demonstrated by histological changes observed in 

necropsy examination in animal model with PH (e.g. cattle and rats; Hislop et al., 1976; Neary et 
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al., 2015). The increased muscularization of distal vessels with extension of muscle into 

previously un-muscularized arterioles was reported in rats and human residing in hypoxic 

environment (Arias-Stella and Saldana.,1974; Hislop et al., 1976). Alexander (1965) and Neary 

et al. (2015) reported the narrowing of the pulmonary arteries and veins in response to hypoxia. 

The histological changes in pulmonary vascular tree including expanded adventitia with micro-

vascular proliferation were also observed in dairy cattle having PH (Malherbe et al., 2012). In 

addition, Stenmark et al. (2006) described marked adventitial thickening in hypoxic neonatal 

calves.   

Besides the proliferation of the smooth muscle cell and fibroblasts in pulmonary distal 

vascular, inflammation and metabolic reprogramming (i.e. Warburg effect) of fibroblast and 

vascular remolding was also identified in individuals with PH (Li et al., 2011 and 2016). Burke 

et al. (2009) and Stenmark et al. (2015) implicated that the change in cell metabolism and 

infiltration of inflammatory cell, dendritic cells, and T cells were evidence of the pulmonary 

vascular remodeling. Newman et al. (2011) reported that the inflammatory response and 

immunological disease could be associated with hypoxia-induced PH in cattle using gene 

enrichment analysis, and also identified several hypoxia-induced PH associated genes that have 

roles in immune and inflammatory response (e.g. TCRB and PTX3). In this present study, the 

ROCK2 involved in pathways for chemokine signaling pathway and vascular smooth muscle 

contraction were observed. The vascular smooth muscle contraction pathway could influence the 

pulmonary vasoconstriction in PH, and the chemokine signaling pathway is involved in 

inflammatory immune response system (Wong and Fish, 2003), which supported this gene’s 

association with PAP in cattle. 
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Table 5.8 Summary of genes located in concordant genomic windows from genome-wide 
association study of yearling PAP phenotypes of Angus cattle at high altitude (elevation at 2,170 
m)1 

BTA_Mb2  Gene CC3 MF3 Pathway3 

7_93 ADGRV1 Stereocilium, 
plasma membrane 
and cell surface 

Calcium ion and 
protein binding 

- 

ARRDC3 Endosome and 
plasma membrane 

Protein binding - 

11_86 LPIN1 Nucleus Phosphatidate 
phosphatase activity 

Metabolic pathways, 
Glycerolipid 
metabolism and 
Glycerophospholipid 
metabolism 

NTSR2 Membrane and 
plasma membrane 

G-protein coupled 
(neurotensin) 
receptor activity 

Neuroactive 
ligandreceptor 
interaction 

E2F6 Nucleus and 
transcription factor 
complex 

DNA and protein 
binding, and 
transcription factor 
and corepressor 
activity 

- 

ROCK2 Cytoskeleton, 
plasma membrane, 
centrosome 
And cytosol 

protein 
serine/threonine 
kinase activity, meta 
ion binding, ATP 
binding 

Chemokine signaling 
pathway, Vascular 
smooth muscle 
contraction, Wnt 
signaling pathway, 
TGFbeta signaling 
pathway, Axon 
guidance, Focal 
adhesion, Leukocyte 
transendothelial 
migration, Regulation 
of actin cytoskeleton, 
Pathogenic Escherichia 
coli infection 

PQLC3 Endoplasmic 
reticulum, integral 
component of 
membrane 

- - 

 ATP6V1C2 Proton-transporting 
V-type ATPase, V1 
domain 

Hydrolase activity, 
protein dimerization 
activity 

ATPase, V1 complex, 
subunit C 



	 163	

Table 5.8 continue 
BTA_Mb  Gene CC MF Pathway 
11_86 PDIA6 Endoplasmic 

reticulum, 
endoplasmic 
reticulum-Golgi 
intermediate 
compartment, and 
melanosome, 

Protein disulfide 
isomerase activity, 
intra-molecular 
oxidoreductase 
activity, 

Protein processing in 
endoplasmic reticulum 

 

NOL10 Nucleolus Poly(A) RNA 
binding 

- 

HIST1H4A Nuclear 
chromosome, 
nucleus 

DNA, histone, 
poly(A) RNA and 
protein binding,  
histone demethylase 
activity 

- 

KCNF1 Voltage-gated 
potassium channel 
complex and 
membrane 

Potassium channel 
activity 

- 

GREB1 Integral component 
of membrane and   
extracellular 
exosome 

- - 

12_25 CCNA1 - - Cell cycle, 
Progesterone-mediated 
oocyte maturation 

SPG20 - - - 
NBEA Plasma membrane, 

cytosol 
Protein kinase 
binding, phospholipid 
binding 

- 

15_59 BDNF Extracellular region, 
cytoplasmic 
membrane bounded 
vesicle, cytoplasm 

Growth factor 
activity and 
neurotrophin TRKB 
receptor binding 

MAPK signaling 
pathway, Neurotrophin 
signaling pathway, 
Huntington's disease 

KIF18A Ruffle, cytoskeleton, 
microtubule and 
caveola, 

Microtubule motor 
activity, and actin, 
protein ATP, 
microtubule and 
ubiquitin binding 

- 

METTL15 - protein binding, 
methyltransferase 
activity 

- 

1Three yearling PAP phenotypes included non-transformed, three-category (1: PAP < 41 mmHg; 2: 41 mmHg ≤ 
PAP ≤ 49 mmHg; 3: PAP > 49 mmHg) and two category PAP (1: PAP ≤ 49 mmHg; 2: PAP > 49 mmHg)) 
2 Bovine chromosome and nth 1 Mb window on the same chromosome based on the UMD3.1 assemble. 
3CC: cellular component; MF: molecular function; Pathway: Kyoto Encyclopedia of Genes and Genomes pathways. 
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5.4 Conclusions 

Four, twelve and nine 1-Mb genomic windows were identified through GWAS to be 

associated with RAW, CAT3 and CAT2, respectively, and demonstrated the polygenetic basis 

for PAP phenotypes in Angus cattle. Five 1-Mb windows located on chromosome 7, 11, 12, 15, 

20 were concordant across various PAP phenotypes. Genes within these identified windows were 

also recognized to be potentially associated with PAP phenotypes. These genes are related to ion 

binding and transportation, inflammation, innate immunity and cell proliferation mechanisms, 

which provided evidences of their potential functions on chronic hypoxia induced elevated PAP 

in Angus cattle. The identified QTL regions can be used to help understanding of bovine PH and 

HAD, identifying cattle’s susceptibility to elevated PAP, and selecting against PH and HAD with 

genomic selection. The studied yearling PAP phenotypes were moderate heritable polygenetic 

traits and influenced by a lager number of loci with small effects and only a small number of loci 

with large effects. Combining these data in multi-omics studies (i.e. RNA-seq studies) on the 

same phenotypes can be helpful to verify our current findings. 
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Figure 5.2 Signaling mechanisms underlying acute hypoxic pulmonary vasoconstriction (HPV). 
Pathways activated by hypoxia are depicted in blue; those inhibited by hypoxia are depicted in 
red. Both mitochondria and nicotinamide adenine dinucleotide (phosphate) oxidases have been 
suggested as oxygen sensors. A reduction in the cytosolic redox state could inhibit voltage-
dependent potassium channels, subsequent membrane depolarization of PASMCs, opening of l-
type calcium channels and Ca2+ influx.20 By contrast, increased cytosolic ROS levels can result 
in Ca2+ release from the SR, possibly through the oxidation of cysteine residues in RyRs and the 
opening of IP3-gated calcium stores.19 Increased ROS could also provoke an influx of 
extracellular Ca2+ or Na+ through transient receptor potential channels (TRPC6).21 In this 
scenario, the increase of acute hypoxia-induced ROS triggers an accumulation of DAG, resulting 
from the activation of phospholipase C or phospholipase D or inhibition of DAG-degrading 
DAG kinases. Another proposal assumes that acute hypoxia leads to inhibition of the respiratory 
chain and a subtle decrease in ATP production, which does not affect energy state, but rather acts 
as a mediator and alters the cellular AMP/ATP ratio. An increase in the AMP/ATP ratio activates 
AMPK, followed by an increase in cADPR that triggers the release of [Ca2+]i through RyR of 
SR.9 The level of ROS could be relevant through ROS-dependent alteration of function of 
AMPK and cADPR. (Wilkins et al., 2015) 
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Figure 5.3 Signaling mechanisms underlying sustained hypoxic pulmonary vasoconstriction 
(HPV). The endothelium releases a variety of vasoactive mediators, such as endothelin 1, 
prostacyclin, and nitric oxide (NO),9,16 and their production is perturbed by hypoxia. In addition 
to changes in intracellular Ca2+ levels, changes in PASMC myofilament sensitivity to Ca2+, 
arising from inhibition of MLCP via RhoA/Rho kinase or protein kinase C (PKC), or a decreased 
activation of MLCP by decreased NO signaling,9 also contributes to sustained HVP. ADMA 
indicates asymmetrical dimethylarginine; cGMP, cyclic guanosine monophosphate; DDAH, 
dimethylarginine dimethylaminohydrolase; DMA, dimethylamine; ET-1, endothelin 1; EC, 
endothelial cell; MLC20, regulatory myosin light chain; MLCP, myosin light chain phosphatase; 
NO, nitric oxide; NOS, nitric oxide synthase; O2, oxygen; PASMC, pulmonary arterial smooth 
muscle cell; PGI2, prostacyclin; Rho, Ras homolog gene family; ROS, reactive oxygen species; 
and sGC, soluble guanylyl cyclase. Phosphorylated proteins are indicated by a white “P” in a 
blue circle. (Wilkins et al., 2015) 
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CHAPTER 6  

GENOME-WIDE ASSOCIATION STUDY OF GROWTH PERFORMANCE TRAITS OF 

ANGUS CATTLE MANAGED AT HIGH ALTITUDE 

 

6.1 Introduction  

Growth performance traits in cattle are moderately to highly heritable, and it is feasible to 

identify QTL associated with them using genomic wide association study (GWAS; Saatchi et al., 

2014). This section reports GWAS of birth weight, weaning weight, maternal weaning weight, 

post-weaning gain and yearling weight using deregressed EBV and genotype data from the 

BovineSNP50 BeadChip. The objective of this study was to determine the chromosomal regions 

associated with growth performance traits. Chapter 4 suggested a low to moderate genetic 

correlation between performance traits and yearling pulmonary arterial pressure (PAP) 

phenotypes. Therefore, another objective of this chapter was to compare resulgts of the growth 

performance GWAS and PAP phenotypes to help understand the genetic relationships between 

them. 

 

6.2 Materials and Methods 

Genome-wide association studies were conducted on performance traits of Angus cattle 

managed at high altitude (elevation at 2,170 m). These traits included birth weight (BWT), 

weaning weight (WW), maternal weaning weight (MILK), post-weaning gain (PWG) and 

yearling weight (YW). Deregressed EBV (DEBV) of these growth traits were used as dependent 

variables in GWAS. Estimated breeding value of BWT, WW, MILK and PWG were developed 

from the multivariate models described in Equation 4.3. The EBV of YW was obtained by 
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summing up the EBV of WW and PWG, and the accuracy of PWG was used to approximate the 

accuracy for YW. The DEBV and associated scale wights for growth traits were calculated using 

procedures described by Garrick et al. (2009), and was presented in Chapter 5. Heritability of 

BWT, WW, MILK, PWG and YW used in developing DEBV were 0.41, 0.21, 0.23 and 0.41, 

respectively. Animals with low DEBV reliability (< 0.05) were removed from these GWAS for 

quality of analyses.   

Genotype data of 2,582 samples were used in this study, and 35,930 SNP were used in these 

GWAS (for details on quality control, see material and methods in Chapter 5). These SNP were 

simultaneously included in GWAS models for these growth traits (Equation 5.7). Similar with 

GWAS of PAP phenotypes, growth performance traits DEBV were analyzed using Bayes B 

(Meuwissen et al., 2001) and Bayes C (Habier et al., 2011) methods with π equaling 0.995. The 

Bayes C was used to obtain genetic and residual variance to construct priors of genetic and 

residual scale parameters for Bayes B, the reason for this was that Bayes C is less sensitive to 

prior assumptions than Bayes B (Garrick and Fernando, 2013). Also, GeneSel software 

(Fernando and Garrick, 2008) with Marlov chain Monte Carlo (MCMC) method was used to 

conduct these GWAS analyses. These analyses were executed using 41,000 iterations for each 

run with the first 1000 samples as burn-in. As a result, 40,000 samples were used to provide 

posterior distribution of each estimable parameter. The QTL regions of each growth trait were 

identified through the evaluation of 1-Mb windows (explained larger than 1% of genetic 

variation) across the whole genome (n = 2,648), which were explained in Chapter 5.  Pleiotropic 

window regions were recognized as those identified for at least two of these studied performance 

traits.  
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Associated genes were identified via aligning identified genomic windows on Bos taurus 

genome (UMD 3.1) in Ensembl database (Kinsella et al., 2011; 

http://uswest.ensembl.org/index.html). Additional information of identified windows and genes 

were also obtained from NCBI dbSNP and gene database (Sherry et al., 2001; Coordinators et 

al., 2013; http://www.ncbi.nlm.nih.gov/). Gene enrichment analysis on genes located within 

identified pleiotropic genomic windows was conducted via the web tool g:Profiler (Reimond et 

al., 2016; http://biit.cs.ut.ee/gprofiler/). The biological process and KEGG pathways with 

Benjamini–Honchberg false discovery rate (FDR) corrected P value at 0.05 were reported.  

 

 
6.3 Results and Discussion 
 
6.3.1 DEBV 

The number of animals with usable DEBV for BWT, WW, MILK, PWG and YW were 

2,553, 2,553, 548, 2,551 and 2,551, respectively, since there were 29, 29, 2,034, 31 and 31 cattle 

that had DEBV reliability less than 0.05 for these traits, respectively. There were only 510 dams 

with offspring having weaning weights, and the parent average accuracy were removed in 

DEBV, which may contribute to the small number of samples used in GWAS for maternal WW. 

Applying appropriate non-zero direct by maternal genetic correlations in develop maternal WW 

EBV may improve this issue. Table 6.1 summaries the resulting EBV, DEBV, DEBV-associated 

reliability and scale weights for each performance trait.  
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Table 6.1. Summary of EBV and deregressed EBV of performance traits of genotyped Angus 
cattle managed at high altitude region (elevation at 2,170 m) 
Item1 n Mean Min Max SD 
BWT      

EBV 2553 -1.89 -17.79 14.91 4.35 
DEBV 2553 -1.62 -39.42 44.91 10.08 

ACC 2553 0.44 0.09 0.90 0.05 
WEIGHTS 2553 0.83 0.13 2.73 0.22 

      
WW      

EBV 2553 -3.89 -61.16 43.30 14.09 
DEBV 2553 -2.59 -214.05 222.57 44.71 

ACC 2553 0.33 0.09 0.83 0.05 
WEIGHTS 2553 1.49 0.35 6.01 0.34 

      
PWG      

EBV 2551 -0.31 -61.03 66.02 10.78 
DEBV 2551 0.93 -283.01 288.47 46.79 

ACC 2551 0.27 0.07 0.76 0.10 
WEIGHTS 2551 1.20 0.27 5.08 0.52 

      
YW      

EBV 2551 -4.21 -108.46 106.09 23.44 
DEBV 2551 -0.69 -847.30 718.43 120.60 

ACC 2551 0.27 0.07 0.76 0.10 
WEIGHTS 2551 0.48 0.11 2.06 0.21 

      
Milk      

EBV 548 7.48 -27.45 33.66 10.49 
DEBV 548 9.00 -169.46 108.80 33.88 

ACC 548 0.29 0.05 0.53 0.12 
WEIGHTS 548 2.51 0.36 5.43 1.19 

1BWT: birth weight; WW: weaning weight; PWG: post-weaning gain; YW: yearling weight; Milk: 
maternal weaning weight; DEBV: deregressed EBV; ACC: accuracy associated with DEBV; weights: 
weight factor used in analysis with DEBV 
 
 

The DEBV weights were related to the accuracy and heritability (Equation 5.7), so the 

weights were unique to individuals and traits. A weight of a trait indicated the emphasis of a 

DEBV in the analysis of the trait, and the higher the weight in an evaluation was interpreted to 

mean the DEBV having more value in the analysis (Garrick et al., 2009). The SD of DEBV were 

larger than those of EBV, which suggested the DEBV un-shrunk the EBV (Ostersen et al., 2011). 
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The calculation of the DEBV involving individual’s EBV, accuracy, and heritability, and 

parent’s EBV and accuracy, so the degree of expansion was also unique across traits and 

individuals (see details in material and method for developing DEBV in Chapter 5). Because 

EBV were shrunk towards the mean (i.e. 0; Garrick et al., 2009), the deviating degree from the 

mean should be smaller for values close to mean than those on tails of distributions when 

calculating DEBV. Therefore, the differences between EBV and DEBV means were relatively 

small compared to those between minimum and maximum values. 

 

6.3.2 GWAS of performance traits 

The GWAS results of BWT, WW, MILK, PWG and YW are presented in Manhattan plots 

that showed the proportion of genetic variance of each performance trait explained by each of the 

2,648 1-Mb SNP windows spanning the bovine genome (Figure 6.1 to Figure 6.4). Peak QTL 

regions were identified on chromosome 7, 14 and 20. These peaks were similar across four of the 

performance traits, except MILK, although the portion of genetic variation explained by these 

regions were slightly different between traits. Based on the graphs, the MILK had limited 

concordance with other performance traits, which may attribute to the small sample size used for 

MILK GWAS. These results were from multivariate model (Equation 4.3) that restricted the 

growth traits maternal and direct genetic correalation to zero to develop DEBV. Without the 

restrictions, there could be some changed in estimates for genomic window and SNP effects, but 

limited influence on identification of top genomic windows would be limited.  
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Figure 6.1 Manhattan plot of proportion of genetic variance explained by 1-Mb windows from 
genome-wide association study of deregressed EBV of birth weight in Angus cattle managed at 
high altitude (elevation at 2,170 m) with the line representing the 1% of the genetic variation. 
 

 
Figure 6.2 Manhattan plot of proportion of genetic variance explained by 1-Mb windows from 
genome-wide association study of deregressed EBV of weaning weight in Angus cattle managed 
at high altitude (elevation at 2,170 m) with the line representing the 1% of the genetic variation. 
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Figure 6.3 Manhattan plot of proportion of genetic variance explained by 1-Mb windows from 
genome-wide association study of deregressed EBV of maternal weaning weight (MILK) in 
Angus cattle managed at high altitude (elevation at 2,170 m) with the line representing the 1% of 
the genetic variation. 
 
 

 
Figure 6.4 Manhattan plot of proportion of genetic variance explained by 1-Mb windows from 
genome-wide association study of deregressed EBV of post-weaning gain in Angus cattle 
managed at high altitude (elevation at 2,170 m) with the line representing the 1% of the genetic 
variation. 
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Figure 6.5 Manhattan plot of proportion of genetic variance explained by 1-Mb windows from 
genome-wide association study of deregressed EBV of yearling weight in Angus cattle managed 
at high altitude (elevation at 2,170 m) with the line representing the 1% of the genetic variation. 
 

 

Twenty-two QTL windows (defined as 1-Mb genomic windows explaining > 1% of additive 

genetic variance) were identified for the five performance traits (i.e. BWT, WW, MILK, PWG 

and YW), and they were distributed across 11 chromosomes. Generally, QTL on chromosome 7, 

14, and 20 had the largest impact on development of performance traits (Figure 6.1 – Figure 6.6), 

and these windows were also associated with the largest number of traits. These four windows, a 

window on chromosome 12, a window on chromosome 16 and another window on the X 

chromosome were considered pleiotropic QTL windows, which were associated with more than 

one performance trait (Table 6.2). Fifteen of the windows were trait-specific QTL regions 

(Figure 6.1 to Figure 6.5). These pleiotropic 1-Mb QTL were located on chromosome 7 at 93 

Mb, chromosome 12 at 23 Mb chromosome 14 at 24 and 25 Mb, chromosome 16 at 47 Mb, 

chromosome 20 at 4 Mb and chromosome X at 7 Mb.  

They were similar to the reports of Saatchi et al. (2014) of 10 beef cattle breeds and Weng et 

al. (2016) of Brangus cattle, but our data did not result in the QTL region on chromosome 6 at 38 

Mb, which was recognized important QTL region for cattle performance (Snelling et al., 2010; 
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Saatchi et al., 2014). Kneeland et al. (2004) identified a haplotype QTL at approximately 26 Mb 

on chromosome 14 to be associated with BWT and pre-weaning average daily gain. When 

scanning potential QTL with influencing growth traits in commercial Angus cattle, McClure et 

al. (2010) also reported growth-trait associated regions on BTA 7, 14 and 20. Another study of 

crossbred beef cattle involving Angus, Simmental, Hereford, etc. and their performance traits, 

identified genomic regions on BTA 7, 14 and 20 were also identified (Snelling et al., 2010). Mao 

et al. (2016) reported loci on chromosome 7 (at 93 Mb) and 14 (at 25 Mb) that were associated 

with growth traits in dairy cattle, and these regions were similar with the regions described in the 

current study involving Angus cattle managed at high altitude. 

 

Table 6.2 Pleiotropic QTL 1-Mb windows associated with performance traits of Angus cattle 
managed at high altitude (elevation at 2,170 m) 
BTA_Mb1 Start1 End1 Number of SNP1 Associated traits2 

7_93 93007435 93886136 6 BWT, WW, YW 
14_24 24057354 24643266 10 BWT, WW, PWG, YW 
14_25 25107556 25982072 16 BWT, WW 
16_47 47026456 47942535 14 BWT, WW, PWG, YW 
20_4 4145679 4962725 22 BWT, WW, PWG, YW 
X_7 7042383 7909757 10 WW, YW 
1BTA_Mb: Bovine chromosome and nth 1 Mb window on the same chromosome based on the UMD3.1 
assembly; Start: start position of the window; End: end position of the window; Number of SNP: number 
of SNP in the window. 
2BWT: birth weight; WW: weaning weight; MILK: maternal weaning weight; PWG: post-weaning gain; 
YW: yearling weight 

 

There were 8, 11, 5, 5, and 7 genomic windows were identified to be associated with BWT, 

WW, MILK, PWG and YW in this study of Angus cattle managed at high altitude. The numbers 

of identified QTL for these performance traits in this study were larger than the results of Angus 

cattle presented by Saatchi et al. (2014). Many factors can contribute to this difference in power 

of QTL window detection. Hong and Park (2012) reported that increasing sample size would 

result in enhanced statistical power in identifying QTL in GWAS. Besides sample size, the 
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genetic variation level of studied animals (Saatchi et al., 2014), the patterns of linkage 

disequilibrium and the frequencies of causative variants (Spencer et al., 2009; Hong and Park, 

2012) could also increase power of QTL detection.  

The genomic windows explained 36.4%, 17.3%, 20.2%, 14.8% and 22.7% of the variance of 

DEBV and the windows explaining >1% genetic variation explained 27.2%, 29.0%, 15.9%, 

28.5% and 31.5% of the total genetic variation of BWT, WW, MILK, PWG and YW, 

respectively. The proportions of genetic variance explained by these genomic windows of 

growth performance traits were consistent with the heritability estimates of these traits. 

Specifically, higher heritability estimates of performance traits corresponded to higher 

proportions of the genetic variance explained by genotypes of these traits. Golan et al. (2014) 

reported that the phenotypic variation explained by genotype (common variants) could be 

positively related to heritability.  

 

6.3.3 Trait-specific QTL windows 

There were 3 genomic regions that were unique for birth weight (Table 6.3). One BWT 

specific QTL window was located on chromosome 3 spanning on 85 to 86 Mb locus. The 

window 3_85 had a lead-SNP located in an uncharacterized gene. There were two other 

annotated genes in this region (Appendix 6.1), but no publication supported their potential 

effects on cattle birth weight at the present time. 
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Table 6.3 Genomic windows explaining > 1% genetic variation in birth weight of Angus cattle managed at high altitude (elevation at 

2,170 m)
1
 

BTA_Mb Start (bp)
 

End (bp)
 Number of 

SNP
 

% Variance 

Explained
 Lead-SNP 

Model 

Frequency
 

% Variance Explained 

by Lead-SNP
 

20_4 4145679 4962725 22 9.01 rs43350564 1.00 8.68 

7_93 93007435 93886136 6 5.56 rs41625563 0.86 4.69 

14_25 25107556 25982072 16 3.92 rs29021334 0.90 3.32 

26_34 34020541 34955110 15 2.58 rs41567908 0.84 1.85 

16_47 47026456 47942535 14 1.82 rs110974545 0.57 0.73 

14_35 35052708 35962028 14 1.81 rs41628883 0.77 1.27 

3_85 85043515 85901731 16 1.28 rs43271697 0.49 0.43 

14_24 24057354 24643266 10 1.20 rs42646708 0.18 0.07 
1
Bovine chromosome and n

th
 1 Mb window on the same chromosome based on the UMD3.1 assembly; Start: start position of the window; End: 

end position of the window; Num. SNP: number of SNP in the window; % Variance Explained: proportion of the genetic variance explained by 

the window; Lead-SNP: SNP with the highest model frequency; Model Frequency: the proportion of fitted models including that maker; % 

Variance Explained by Lead-SNP: proportion of the variance explained by the lead-SNP. 
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Beside the uncharacterized gene that contained the lead-SNP of window 14_35, this window 

contained four other genes (Appendix 6.1). One of these genes, SULF1 had elevated levels of 

expression in fully differentiated osteoblasts and osteoclasts (Zaman et al., 2016) and played a 

key role in cartilage development and joint formation in a quail study (Zhao et al., 2006). Holst 

et al. (2007) also suggested that SULF1 has a role in embryonic and neonatal development, and it 

may influence neonatal survival, the skeletal defects and the birth weight of mice through 

controlling the pattern of heoaran sulfate proteoglycans that interact with several key growth 

factors.  

Another window associated with BWT was located at 34 Mb on chromosome 26. This 

region was also reported by Saatchi et al. (2014) to influence BWT in several beef cattle breeds 

(i.e. Angus, Gelbvieh, and Simmental). Nine genes (Appendix 6.1) existed in this window, and 

none of them were close (< 2,500 bp) to the lead-SNP of this window. The ADRB1 is a member 

of β-adrenoceptors, whose functions were well documented in heart rate and heart failure in 

humans (Kang et al., 2015; Yogev et al, 2016). One Gly allele polymorphism on ADRB1 was 

identified to confer lower risk for hypertension in eastern Asian population (Wang et al., 2013). 

Additional studies also suggested the functions of β-adrenoceptors on skeletal muscle growth, 

development and hypertrophy in mammals (Ryall et al, 2010), and reported that β-adrenoceptors 

might also respond to the rapid fetal and neonatal growth (Auman et al., 2002 and Lagercrantz 

and Slotkin,1986). This information could support the finding of the current study and the 

relationship between ADRB1 and BWT of cattle managed at high altitude.    
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Table 6.4 Genomic windows explaining > 1% genetic variation of weaning weight of yearling Angus cattle managed at high altitude 

(elevation at 2,170 m)
1
 

BTA_Mb Start (bp)
 

End (bp)
 Number of 

SNP
 

% Variance 

Explained
 Lead-SNP

 Model 

Frequency
 

% Variance Explained 

by Lead-SNP
 

20_4 4145679 4962725 22 10.82 rs43350564 1.00 10.70 

14_24 24057354 24643266 10 4.05 rs41724332 0.34 0.58 

7_93 93007435 93886136 6 3.20 rs41625563 0.64 1.67 

X_7 7042383 7909757 10 1.90 rs110977907 0.69 0.85 

12_23 23046778 23991213 16 1.54 rs41610326 0.56 0.79 

5_19 19128124 19983794 8 1.50 rs110476952 0.57 0.79 

23_41 41103432 41992435 20 1.34 rs41589765 0.46 0.49 

12_88 88018471 88979628 19 1.31 rs42359835 0.52 0.59 

14_25 25107556 25982072 16 1.21 rs29021334 0.29 0.30 

23_32 32110882 32998188 14 1.11 rs29011699 0.40 0.35 

16_47 47026456 47942535 14 1.00 rs110974545 0.26 0.14 
1
Bovine chromosome and n

th
 1 Mb window on the same chromosome based on the UMD3.1 assembly; Start: start position of the window; End: 

end position of the window; Num. SNP: number of SNP in the window; % Variance Explained: proportion of the genetic variance explained by 

the window; Lead-SNP: SNP with the highest model frequency; Model Frequency: the proportion of fitted models including that maker; % 

Variance Explained by Lead-SNP: proportion of the variance explained by the lead-SNP. 

 

 

 

 



	 191	

Four trait-specific QTL windows were associated with WW besides the three pleiotropic 

QTL regions (Table 6.4). Window 5_19 contained three genes, but none of them were within 

2,500 bp of the lead-SNP (rs110476952) of this window (Appendix 6.1). These genes have roles 

in cellular proliferation (DUSP6; Wang et al., 2010), ciliogenesis (POC1B; Pearson et al., 2009), 

blood pressure and risk to hypertension in humans (ATP2B1; Tabara et al., 2010). Cell 

proliferation maybe involved in vascular remodeling mechanisms described in bovine PH and 

HAD (Stenmark et al., 2006 and 2013). However, their association with growth traits and PH in 

cattle needs further research and validation.  

The window 12_88 were novel regions identified on chromosome 12 associated with WW in 

cattle. In this window, no genes contained the lead-SNP (rs42359835) of this window. Among 

the three genes in this window (Appendix 6.1), the IRS2 could be a potential link to type 2 

diabetes (Brady, 2004), and a mutation of COL4A1 was related to muscular defects in humans 

(Kuo et al., 2012). 

The other two windows were located on chromosome 23 at 32Mb and 41 Mb. The QTL at 

31.7 Mb was previously reported to be associated with average daily gain in a Bos taurus 

commercial line of Bos taurus (Kneeland et al., 2004). Lead-SNP of window 23_32 was 

intragenic to ALDH5A1, which were related to body weigh and growth in human and pig (Xiong 

et al., 2015). Seven additional genes were in this QTL window for WW direct (Appendix 6.1).  

The LRRC16A was potentially related to growth traits in cattle and pigs (Puig-Oliveras et al., 

2014). Only two genes were located in window 23_41, and the lead-SNP was far away (> 2,5000 

bp) from these genes. Neither of them was reported to be associated with performance traits. 

The GWAS identified five windows for maternal weaning weight (MILK), and they were all 

trait-specific QTL (Table 6.5). The identified window on chromosome 1 was at 2 Mb, and its 
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lead-SNP (rs110875985) was not near any genes. This window was also identified to be 

associated with maternal WW of Charolais, Hereford and Simmental in Saatchi et al. (2014). 

Among the seven MILK associated genes in this widow (Appendix 6.1), MRAP encodes a 

member of melanocortin receptor-interacting protein, whose polymorphisms could be associated 

with milk production traits (Fontanesi et al., 2011). The lead-SNP of window 7_4 was located 

intragenic to ELL, and 20 additional genes were in this window (Appendix 6.1). The MEF2B 

could affect growth traits Ujumqin sheep (Zhang et al., 2016). The GDF15 in this window were 

reported to be associated with obesity, diabetes and cardiovascular diseases in human and 

animals (Adela and Banerjee, 2015).  

Another MILK associated window was on chromosome 27. This window contained one 

fibroblast growth factor receptor (FGFR1), whose associated pathway has a promotion role in 

proliferation and differentiation of the epithelial tissue in the gastrointestinal tract in calves and 

may influence digestion. The TACC1 was reported to be associated with gastric carcinoma. The 

ADAM9 and ADAM32 are members of a disintegrin and metalloproteinase domain family, which 

was involved in muscle development, inflammation and cancers (Seals and Courtneidge, 2003). 

There is any one (FSCB) gene in window 21_54, and no gene in window 6_114. Li et al. (2007) 

reported that the protein encoded by FSCB was calcium-binding protein. Previous reported 

MILK associated QTL windows, mainly located on chromosome 6 and 14 (Khatkar et al., 2004), 

and were not concordant with those presented in this study. This GWAS of MILK was based on 

genotypes of only 548 animals, such small sample size may influence the power and accuracy of 

QTL identification. 
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Table 6.5 Genomic windows explaining > 1% genetic variation of maternal weaning weight (MILK) of Angus cattle managed at high 

altitude region (elevation at 2,170 m)
1
 

BTA_Mb Start (bp)
 

End (bp)
 Number of 

SNP
 

% Variance 

Explained
 Lead-SNP

 Model 

Frequency
 

% Variance Explained 

by Lead-SNP
 

6_114 114019660 114938340 21 7.14 rs41573388 0.36 1.01 

21_54 54056137 54923774 9 3.50 rs110176118  0.51 1.79 

27_33 33035739 33947904 14 2.62 rs110131802 0.28 0.43 

7_4 4058780 4953801 15 1.48 rs43500370 0.22 0.21 

1_2 2049400 2977063 15 1.12 rs110875985  0.19 0.14 
1
Bovine chromosome and n

th
 1 Mb window on the same chromosome based on the UMD3.1 assembly; Start: start position of the window; End: 

end position of the window; Num. SNP: number of SNP in the window; % Variance Explained: proportion of the genetic variance explained by 

the window; Lead-SNP: SNP with the highest model frequency; Model Frequency: the proportion of fitted models including that maker; % 

Variance Explained by Lead-SNP: proportion of the variance explained by the lead-SNP. 

 

 

 

Table 6.6 Genomic windows explaining > 1% genetic variation of post-weaning gain of Angus cattle managed at high altitude region 

(elevation at 2,170 m)
1
 

BTA_Mb Start (bp)
 

End (bp)
 Number of 

SNP
 

% Variance 

Explained
 Lead-SNP

 Model 

Frequency
 

% Variance Explained by 

Lead-SNP
 

20_4 4145679 4962725 22 14.74 rs43350564 1.00 14.36 

14_24 24057354 24643266 10 8.25 rs41724332 0.67 3.71 

16_47 47026456 47942535 14 3.06 rs110974545 0.54 1.14 

4_13 13061952 13968183 14 1.30 rs109388623 0.43 0.53 

X_49 49506722 49939818 2 1.13 rs41594577 0.35 0.25 
1
Bovine chromosome and n

th
 1 Mb window on the same chromosome based on the UMD3.1 assembly; Start: start position of the window; End: 

end position of the window; Num. SNP: number of SNP in the window; % Variance Explained: proportion of the genetic variance explained by 

the window; Lead-SNP: SNP with the highest model frequency; Model Frequency: the proportion of fitted models including that maker; % 

Variance Explained by Lead-SNP: proportion of the variance explained by the lead-SNP. 



	 194	

Table 6.7 Genomic windows explaining > 1% genetic variation of yearling weaning of Angus cattle managed at high altitude region 

(elevation at 2,170 m)
1
 

BTA_Mb Start (bp)
 

End (bp)
 Number of 

SNP
 

% Variance 

Explained
 Lead-SNP

 Model 

Frequency
 

% Variance Explained by 

Lead-SNP
 

20_4 4145679 4962725 22 16.62 rs43350564 1.00 16.04 

14_24 24057354 24643266 10 8.93 rs41724332 0.44 1.83 

7_93 93007435 93886136 6 1.49 rs41625563 0.27 0.28 

12_23 23046778 23991213 16 1.22 rs41610326 0.29 0.26 

16_47 47026456 47942535 14 1.10 rs110974545 0.19 0.11 

X_7 7042383 7909757 10 1.00 rs110977907 0.27 0.16 
1
Bovine chromosome and n

th
 1 Mb window on the same chromosome based on the UMD3.1 assembly; Start: start position of the window; End: 

end position of the window; Num. SNP: number of SNP in the window; % Variance Explained: proportion of the genetic variance explained by 

the window; Lead-SNP: SNP with the highest model frequency; Model Frequency: the proportion of fitted models including that maker; % 

Variance Explained by Lead-SNP: proportion of the variance explained by the lead-SNP. 
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Five windows were identified to be associated with PWG DEBV, and two of them were 

unique to PWG (Table 6.6). There are no annotated genes in window X_41. The lead-SNP of 

window 4_13 was intragenic to SLC25A13, and the lead-SNP of the other windows did not 

reside within 2,500 bp of any genes. The SLC25A13 appears to have a role in development of 

citrin deficiency, which influences the urea cycle and the malate-aspartate shuttle in humans 

(Avdjieva-Tzavella et al., 2014; Song et al., 2013; Zhang et al., 2014). However, there are no 

reports describing genes’ role in post-weaning growth of cattle.  

For YW DEBV, six genomic windows were identified explaining larger than 1% of genetic 

variation, and all of them were identified for other growth traits (Table 6.1). Table 6.7 

summarizes the information of these windows for YW. These results correspond to the high 

estimated genetic correlation between YW and WW or PWG and the fact that the YW EBV was 

constructed by summing EBV of WW and YW. It should also be noted that there were more 

unique windows for YW that explained < 1% of the genetic variation. The details of genes in 

theses windows were discussed in the pleiotropic window section.  

 

6.3.4 Pleiotropic QTL windows 

Window 7_93 was identified as a pleiotropic QTL influencing BWT, WW and PWG (Table 

6.2). This region explained 5.6%, 2.4% and 1.5% of genetic variation of BWT, WW, and YW, 

respectively. Chromosome 7 contains many cattle growth performance QTL including this 

window region (e.g. BWT, WW, YW and mature weight; Decker et al., 2012; Saatchi et al., 

2014; Weng et al., 2016). Besides growth traits, they also reported this genomic window’s 

association with several carcass traits (e.g. marbling score, rib eye area, carcass weight and fat 

thickness). The detection of the lead-SNP (rs41625563) of this region was consistent across 
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these traits. This lead-SNP was located G protein-coupled receptor 98 (GPR98). The role of 

GPR98 in cattle is yet to be described; however, this gene is known to influence cell growth and 

proliferation (Gutkind, 1998). The only characterized gene, ARRDC3 (arrestin domain 

containing 3), in this window has been shown to affect obesity in humans and mice through 

regulating β-adrenergic signaling (Patwari et al., 2011). Intake of β-adrenergic agonists (a 

growth-promoting agent) in cattle increases muscle and decrease fat accretion in cattle 

(Mersmann, 1998; Johnson et al., 2014). Neary (2014) studied the role of growth-promoting 

agents in PAP of fat cattle in feedlot and found that it significantly (P < 0.05) influenced the 

diastolic PAP but didn’t significantly influence the mean PAP (P > 0.5). In addition, the current 

study identified this window to be associated with yearling PAP and susceptibility to HAD, 

which suggested this region’s pleiotropic genetic effect on both performance traits on yearling 

PAP phenotypes.  

Window 12_23 was pleiotropic between WW and YW, which explained 1.5% and 1.2% of 

genetic variance of them, respectively. McClure et al. (2010) identified a BWT-associated QTL 

contained the window 12_23. The lead-SNP (rs41610326) of window 12_23 is not located 

within 2,500 bp of any annotated gene, and the five genes in this window were not reported to be 

associated with growth performance. 

Another two pleiotropic window was observed on chromosome 14 at 24 and 25 Mb. 

Window 14_24 explained 1.2％, 4.1%, 8.3% and 8.9% of genetic variation in BWT, WW, PWG 

and YW, respectively; and window 12_25 explained 3.9% and 1.2% of genetic variation in BWT 

and WW, respectively (Table 6.2). These findings supported reports of Saatchi et al. (2014), who 

illustrated a big performance traits associated window region, ranging from 23 Mb to 26 Mb on 

chromosome 14. Specifically, the window 14_24 was associated with BWT, WW and YW in 
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Gelbvieh and Simmental cattle. Weng et al. (2016) also described a close region at 26 Mb being 

associated with WW in Brangus cattle. In addition, Chromosome 14 was reported to be 

important in milk production and other performance traits in cattle  (Hu et al., 2013). Two lead-

SNP were identified for window 12_24 across studied performance EBV. The rs42646708 was 

the lead-SNP for BW, while the rs41724332 was the lead-SNP for WW, PWG and YW. The 

model frequency for rs42646708 in BWT was relatively low compared to other lead-SNP, 

because several other SNPs in this window had similar model frequency, suggesting the QTL 

distributed the effect across the whole window. The rs42646708 SNP is intragenic to XKR4 (X-

linked Kx blood group related 4). Utsunomiya et al. (2013) reported a SNP within intron 2 of 

the XKR4 gene that was associated with BWT of Nellore cattle and suggested XKR4 could be a 

candidate gene for performance and carcass traits. This gene was also reported to be associated 

with rump fat thickness in Bos taurus, Bos indicus and composite cattle (Bolormaa et al., 2011; 

Porto Neto et al., 2012). The XKR4 was also reported to be associated with average daily feed 

intake and average daily gain (Lindholm-Perry et al., 2012). The rs41724332 SNP does not 

reside within any gene regions, but it is located approximately 30,000 bp upstream from XKR4.  

Five other characterized genes resided in this 1-Mb window region. The LYPLA1 encodes 

ghrelin deacylation enzyme, which regulates appetite for signals of the stomach (Shanado et al., 

2004). In addition, they were reported to have pleiotropic genetic effects on growth (e.g BWT), 

and feed intake traits (e.g. average daily intake) in various breeds of cattle (Karim et al., 2011; 

Lindholm-Perry et al., 2012; Utsunomiya et al., 2013). Gene RPS20 could also affect calving 

ease via regulating fetal growth traits (Pausch et al., 2011). Gudbjartsson et al. (2008) described 

this gene’s association with human height. Therefore, this genomic region could be considered a 

concordant QTL influencing stature, growth and feed intake traits of beef cattle.  
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The lead-SNP (rs29021334) of window 14_25 was not located near (< 2,500 bp) any gene, 

but five genes were located in this window. Among them, the PENK (proenkephalin), involved 

in the endogenous opioid systems, could play role in maternal adaptation to pregnancy and in 

supporting embryo growth in mice (Zhu and Pintar, 1998). The variants in this gene were widely 

reported to be associated with fertility traits (e.g first service conception, heifer pregnancy and 

puberty) in populations of Brangus, Brahman and tropical composite beef cattle (Hawken et al., 

2012; Peters et al., 2013; Cánovas et al., 2014). In a study of Nelore and Nelore-Angus cattle, 

PENK was suggested to be related to birth weight (Utsunomiya et al., 2013; Riley et al., 2014), 

which could support results of the current study. In addition, Grissom et al. (2013) suggested that 

obesity during pregnancy in mice would lead to offspring obesity, via altered the expression 

level of PENK. 

Mutations in IMPAD1 that encodes Golgi-resident 3'-phosphoadenosine-5'-phosphate 

phosphatase could cause chondrodysplasia abnormal joint development and skeletal elements 

(Vissers et al., 2011).  The PLAG1 and CHCHD in this region were linked to each other in 

previous studies of cattle, and the PLAG1-CHCHD inter-genic region was identified in previous 

studies to be associated with bovine stature, body weight gain and carcass traits in dairy and beef 

cattle (Karim et al., 2011; Nishimura et al., 2012; Hoshiba et al., 2013). Littlejohn et al. (2011) 

suggested PLAG1 could play a role in fetal development, neonatal body weight gain and growth 

in Bos taurus cattle.  

Window 16_47 explained 1.8%, 1.0%, 3.1% and 1.1% of genetic variation of BWT, WW, 

PWG and YW, respectively. This is a novel QTL was reported to be associated with growth 

traits in cattle, but Alexander et al. (2007) showed a QTL for average daily gain near 46.7 Mb on 

this chromosome. The same lead-SNP (rs110974545) was found across these traits, and was 
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intragenic to an un-annotated gene. Among the 16 annotated genes in this window (Appendix 

6.1), PLEKHG5 could regulate ROCK activity and influence the cell migration in cancer 

(Dachsel et al., 2013), and HES3 is expressed in adult pancreatic islet that could regulate cell 

growth and insulin release in human (Masikur et al., 2014). However, their roles in growth 

performance in human and animal are limited. 

The genomic window on chromosome 20 at 4 Mb also had pleiotropic effects on BWT, 

WW, PWG and YW (Table 6.2), which explained 9.0%, 10.8%, 14.7% and 16.6% of genetic 

variation of these traits, respectively. The 20_4 window was previously reported to be associated 

with BWT, WW, YW and mature weight in Angus, Hereford, Red Angus and Simmental cattle, 

and explained relatively large percent of the (> 5%) genetic variation of these traits (Saatchi et 

al., 2014; Weng et al., 2016). Saatchi et al. (2014) also reported its association with carcass 

weight, fat thickness and yield grade. The lead-SNP (rs43350564) of this window was the same 

for these associated traits, and Saatchi et al. (2014) also reported rs43350564 SNP as the lead-

SNP for several growth traits across several beef cattle breeds. The B allele effects of this SNP 

were in the same direction (i.e. positive), and the estimated model frequencies were above 0.99 

in different performance traits. This suggested rs43350564 was very likely in linkage 

disequilibrium with a causal mutation for performance traits of Angus cattle. 

The lead-SNP at chromosome 20_4 Mb resides approximately 269 bp downstream from the 

gene ERGIC1 (endoplasmic reticulum-Golgi intermediate compartment protein 1). In humans, 

ERGIC1 influences membrane selective transport of cargo between the endoplasmic reticulum 

and the golgi apparatus, which regulates early secretory pathways (Breuza et al., 2004). This 

gene was found to be potentially associated with prostate cancer (Vainio et al., 2012). Limited 

information has been written about ERGIC1 in cattle, and no evidence was reported to support 
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ERGIC1’s role in growth traits of cattle. Nine other genes were located in this window 

(Appendix 6.1). Khadir et al. (2015) showed that the up-regulation of DUSP1 was strongly 

linked to human adiposity. The DUSP1 (dual specificity phosphatase 1) was also related to TGF-

β1 and MAPK, which influenced inflammation and cell proliferation in human and animals (Kim 

et al., 2011; Shah et al., 2014). These mechanisms were reported to be involved in vascular 

remodeling in cattle having PH and HAD (Stenmark et al., 2006 and 2013).  

In mouse models, STC2 appears to have a role as a growth inhibitor, which negatively 

influences postnatal growth (Chang et al., 2008). It could inhibit pregnancy-associated plasma 

protein-A mediated IGF receptor signaling in vitro, and reduce intramembranous and 

endochondral bone development and skeletal muscle growth (Gagliardi et al., 2005; Jepsen et al., 

2015). Another gene on the edge of this window was SH3PXD2B, and it was also reported to be 

essential in postnatal growth and development (Mao et al., 2009). Iqbal et al. (2010) 

demonstrated an important role for SH3PXD2B in development of bone, heart, and eye of 

animals. Besides some genes’ roles in inflammation and cell proliferation, this window was also 

identified as an important QTL for yearling PAP phenotypes (Chapter 5), which suggested this 

region’s association with both performance traits and PAP or susceptibility to HAD.  

In addition to the autosome chromosome pleiotropic genomic window, there was a window 

identified on the X chromosome being associated with WW and YW (Table 6.2). This window 

X_7 explained 1.9% and 1.0% of genetic variation of WW and YW, respectively. No previous 

literature reported this region’s association with cattle growth. However, Saatchi et al. (2014) 

identified a window at 145 Mb on chromosome X being associated with WW in Brangus, and 

reported the window X_7 having potential relationship with rib eye area in Gelbvieh cattle. The 

lead-SNP (rs110977907) of this window was concordant between WW and YW. There were five 
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genes located in this region that influence cell growth and death, but none of them were reported 

to have effects on growth in animals.   

 

6.3.5 Gene enrichment analysis 

Forty-five genes were located in these pleiotropic window regions, and they were used in the 

gene ontology analysis. All the candidate genes were clustered based on their involved biological 

function and pathways. Table 6.8 summarizes the significant gene enrichment for biological 

processs and KEGG pathways. Two genes were involved in adipose tissue development. The 

process of adipose tissue development was also reported by the study of Saatchi et al. (2014). 

Two genes were also enriched in a KEGG pathway - NF-kappa B signaling pathway. This 

pathway involves the nuclear factor-kappa B transcription factors, which regulates genes in 

innate immunity, inflammation and cell survival in human and cattle (KEGG PATHWAY: 

04064). Because the infinitesimal-type models were used in this study to identified traits-

associated window and only considered the genes to be within the most important QTL regions 

(explain >1% genetic variation), small numbers of genes were used in this gene enrichment 

analysis and identified in a biological processes. None of these significant processes contained 

all the candidate genes, and this may attribute to that we simply considered all the genes in a 1-

Mb QTL window as candidate genes to be used in this analysis, and these biological processes 

are very polygenetic involving large number of genes.    
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Table 6.8 Significant gene ontology (GO) terms from gene enrichment analysis on genes in 

identified in pleiotropic genomic windows 

GO
1
 ID P-value

2
 Name Gene list BTA_Mb

3
 

BP GO:0060612 5.00E-02 Adipose tissue 

development 

ARRDC3, 

SH3PXD2B 

7_93, 20_4 

      

ke KEGG:04064 1.47E-02 NF-kappa B signaling 

pathway 

BIRC8 LYN 14_24, X_7 

1
BP: Biological process; ke: KEGG pathway 

2
 Benjamini-Honchberg FDR corrected P-Value 

3
Associated chromosome and n

th
 1-Mb window based on UMD3.1 assembly 

 

 

6.4 Conclusions 

We identified 22 QTL windows associated with performance traits of Angus cattle managed 

at high altitude using genotype data from the Bovine SNP50 Beadchip. Besides the previously 

reported QTL regions, several novel performance-related genomic window were identified. This 

supported the polygenetic characteristics of growth performance traits. Further studies need to 

validate these novel QTL regions. Seven of these windows were pleiotropic across performance 

traits, which are located on chromosome 7, 12, 14, 16, 20 and X. The function of the genes in 

these pleiotropic windows had roles in adipose tissue accretion and innate immunity, which 

could influence cattle growth, performance and health. Our findings will improve the 

understandings of biological process involving growth and health of Angus cattle managed at 

high altitude. 
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CHAPTER 7  

GENOMIC RELATIONSHIP BETWEEN YEARLING PULMONARY ARTERIAL 

PRESSURE PHENOTYPES AND GROWTH PERFORMANCE TRAITS OF ANGUS 

CATTLE AT HIGH ALTITUDE 

 

7.1 Introduction 

Pulmonary arterial pressure (PAP) and susceptibility to high altitude disease (HAD) could 

be associated with body mass and growth performance levels of humans and animals (Jin et al., 

2009; Neary 2014), and low to moderate genetic correlations were estimated between 

performance traits (birth weight and weaning weight) and yearling PAP phenotypes in Chapter 4. 

Pleiotropic QTL for growth traits were described in Chapter 6, and these QTL were likely 

influencing yearling PAP measurements. This chapter describes the study of concordant QTL 

and genes that were associated with both performance traits and PAP phenotypes and the 

genomic relationship (SNP effects relationships) between these traits via an associated weight 

matrix (AWM). 

 

7.2 Material and methods 

7.2.1 QTL 

Concordant QTL regions and genes were identified with genomic-wide association study 

(GWAS) of non-transformed PAP scores (RAW), three-category PAP phenotype (CAT3) and 

two-category PAP phenotype (CAT2), birth weight (BWT), weaning weight (WW), maternal 

weaning weight (MILK), post-weaning gain (PWG) and yearling weight (YW; Chapters 5 and 

6). The 1-Mb windows considered in this section were those explained greater than 1% of 
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genetic variation of each trait. Pleiotropic QTL windows across yearling PAP phenotypes and 

growth performance traits were described as those associated with at least one yearling PAP 

phenotype  (i.e. RAW, CAT3 and CAT2) and at least one growth performance trait DEBV (i.e. 

BWT, WW, PWG, MILK and YW). Gene enrichment analysis of genes located within these 

pleiotropic QTL regions was performed with g:Profiler (Reimand et al., 2016 

;http://biit.cs.ut.ee/gprofiler/). The biological process and KEGG pathways with Benjamini–

Honchberg FDR corrected P value at 0.05 were reported.  

 

7.2.2 Genomic correlations 

Effects of 35,930 loci were used to calculate genomic correlation among genomic 

correlations among growth performance traits and yearling PAP phenotypes. The SNP effects 

were developed from Bayes B method (Meuwissen et al., 2001) using DEBV of each phenotype. 

Bayes C (Habier et al., 2011) was used to estimate the prior of the genetic and residual scale 

parameters used in Bayes B. The details of the Bayes B and Bayes C methods were discussed in 

Chapter 5. Two sets of correlations were calculated to assess the genomic correlations: 1. 

Correlations between effects of all SNP used in the GWAS; 2. Construction of an AWM. 

Specifically, the SNP that explained larger than the average genetic variation of SNP were 

considered in AWM. The resulting SNP correlations from all SNP and AWM, which could 

assess the genetic correlations, were compared to the estimated genetic correlations between 

EBV among PAP phenotypes and performance traits. In order to visualize the SNP effect 

correlations and estimate pedigree-based genetic correlations, the SNP effects correlations were 

regressed on the estimate genetic correlations. 
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The concept of an AWM was developed based on results of single trait GWAS and the 

procedures of Reverter and Fortes (2013). The traits considered in construction of this AWM 

included RAW, CAT3, CAT2, BWT, WW, MILK, PWG and YW, and the RAW was used as the 

key trait in AWM. In this study, the AWM was constructed with the following steps: 

1. Select the SNP explaining larger than average genetic variation of the key phenotype 

(RAW).  

2. Calculate the average number of associated non-key phenotypes (µp) for each selected 

SNP in Step 1. The SNP explained larger than average genetic variation of each of non-key 

phenotype were considered.  

3. For each non-key phenotype, consider the SNP explained larger than average genetic 

variation, list the number of their associated non-key phenotypes, and select the SNP influencing 

more than µp of non-key phenotypes. Then merge these selected SNP with those in Step 1. 

4.  Calculate the SNP-to-Gene distance for each potential SNP in the AWM. The gene map 

information was based on Bovine UMD 3.1, which was obtained from Ensembl 

(http://uswest.ensembl.org/index.html). The BovineSNP50 manifest based on the Bovine 

UMD3.1 was used in this calculation.  

5. Remove the unmapped SNP and the SNP mapped distant (2.5 Kb < SNP-to-Gene-distance 

< 1.5 Mb) from any characterized gene. In this step, the selected SNP in Step 1 and Step 3 that 

mapped close to (SNP-to-Gene-distance ≤ 2.5 Kb) and very distant (SNP-to-Gene-distance ≥ 1.5 

Mb) from any genes were only kept in the AWM. 

6. Prune SNPs (located close to genes) that correspond to the same gene to maintain the one 

SNP to one gene relationship. In these examples, if a gene was represented by more than one 
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SNP, the SNP that represented the most phenotypes and explained the highest average 

percentage of genetic variation across phenotypes was used in the AWM.  

7. Standardize and assign the SNP effect of each phenotype to the selected SNP and 

corresponding gene in Step 6. In order to directly compare the SNP effects across phenotypes, 

the SNP effects used in the AMW were standardized for each phenotype by dividing each SNP 

effect for each phenotype by the standard deviation of all SNP effects from the GWAS of a 

phenotype. 

8. To complete the AWM, the corresponding gene name was used as the row name if the 

SNP was located closed to gene (SNP-to-Gene-distance < 2.5 Kb); the SNP identification was 

directly used as row name if it was located far (SNP-to-Gene-distance > 1.5 Mb) away from 

genes. Therefore, the gene or SNP identification was the row name for the AWM, the 

phenotypes represented the columns, and the cells in the matrix contained the standardized 

effects of SNP for phenotypes.    

 

7.3 Results and discussion 

 

7.3.1 Pleiotropic genomic windows of PAP and growth performance traits 

Table 7.1 summarizes the genomic windows that could have pleiotropic effects on PAP 

phenotypes and growth traits. Two windows were considered having pleiotropic effect on PAP 

phenotypes and performance traits, and both of them were identified as pleiotropic QTL of 

performance traits, which suggested the role of performance associated QTL and genes in PAP 

and susceptibility of HAD in Angus cattle managed at high altitude. It is possible that these QTL 

could contribute to the estimated genetic correlation between performance traits and yearling 
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PAP phenotypes. However, there was just one window (7_93) that was identified to be 

concordant between RAW and performance traits and explained an average of 3.61 ± 2.14 % of 

genetic variances of these phenotypes (Table 7.1). This could support the low to moderate 

genetic correlations observed with pedigree-based quantitative analyses between RAW PAP 

phenotypes growth and growth performance traits (Table 4.3, Crawford et al., 2016).    

 

Table 7.1 Pleiotropic QTL windows associated with yearling pulmonary arterial pressure (PAP) 

and performance traits of Angus cattle managed at high altitude (elevation at 2,170 m) 

BTA_Mb
1 

Associated traits
2 

7_93 RAW (9.64)
3
, CAT3 (6.83), CAT2 (9.32), BWT (5.56), WW (3.20), PWG (0.38), 

YW (1.49), MILK (0.06) 

20_4 RAW (0.03), CAT3 (1.07), CAT2 (5.59), BWT (9.01), WW (10.82), PWG 

(14.74), YW (16.62), MILK (0.02) 
1
BTA_Mb

: 
Bovine chromosome and n

th
 1 Mb window on the same chromosome based on the UMD3.1 

assembly 
2
RAW: non-transformed yearling PAP; CAT3: three-category yearling PAP; CAT2: two-category 

yearling PAP; BWT: birth weight; WW: weaning weight; MILK: maternal weaning weight; PWG: post-

weaning gain; YW: yearling weight 
3
Trait (percentage): percentage (%) of genetic variation of certain trait explained by certain genomic 

window  

 

 

The window 7_93 explained the largest portion of genetic variation of all yearling PAP 

phenotypes (i.e. RAW: 9.6%, CAT3: 6.8% and CAT2: 9.3%), and also contributed to the 

relatively high genetic variation of BWT (5.6%), WW (3.2%) and YW (1.4%). Besides its 

important role in cattle growth reported in the presented study and previous studies (Decker et al., 

2012; Saatchi et al., 2014; Weng et al., 2016), we also revealed that the genomic region on 

chromosome 7 at 93 Mb was the most important QTL for PAP and susceptibility of HAD 

(Chapter 5). Genes in this window region (GPR98 and ARRDC3) have roles in cell proliferation, 

ion and adrenergic receptor binding (Gutkind, 1998; Patwari et al., 2011), which may also 
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support this window’s diversified roles in PAP phenotypes and performance of cattle at managed 

at high altitude.  

Window 20_4 explained the largest portion of genetic variation of BWT, WW, PWG and 

YW, and it was also identified to explain a relatively large portion of genetic variance of CAT3 

and CAT2. The lead-SNPs of these windows were consistent across yearling PAP phenotypes 

and cattle performance traits. Ten genes were located in this window, and these genes have roles 

in heart formation, pulmonary arterial smooth muscle cell development, cell proliferation and 

growth in humans and animals (Mao et al., 2009; Peng et al., 2010; Kim et al., 2011;), which 

supported the observed pleiotropic effects of this window on cattle yearling PAP phenotypes and 

growth. Only one of the pleiotropic windows was associated with RAW PAP, while both of them 

were identified in CAT2 and CAT3. This was coincident with the estimated genetic correlation 

between yearling PAP phenotypes and growth traits as categorical yearling PAP phenotypes 

yielded higher genetic correlation than RAW (Chapter 4).  

Although there were only two pleiotropic windows (containing 11 genes), the gene 

enrichment analysis provided general function information for the genes. These genes were 

clustered in adipose tissue development and response to unfolded protein biological processes. 

The adipose tissue development was reported in the GWAS of performance traits (Chapter 6, 

Saatchi et al., 2014). The development of adipose tissue could have negative effects on body 

metabolism and increase incidence of various illnesses (Berry et al., 2013). Some adipose tissue-

derived products (e.g. adiponectin and resistin) were reported to be associated with PH and other 

pulmonary vascular disease development (Mu et al., 2006; Musaad and Haynes, 2007). Hypoxia 

can stimulate unfolded protein response in pulmonary artery smooth muscle cell and 

inflammatory processes to vascular remodeling in PH (Yeager et al., 2012ab). Li et al. (2016) 
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reported metabolic changes in pulmonary vascular cells under PH, so the reported biological 

processes may contribute to the metabolic changes and subsequently be related to PAP 

measurements and PH in humans and cattle. The identified pathways included collecting duct 

acid secretion and SNARE interactions in vesicular transport, which have roles in acid excretion 

and biological product transportation. The SNARE complexes were involved in the intracellular 

protein trafficking, whose dysfunction were observed in pulmonary endothelial cells and 

pulmonary arterial smooth muscle cells (Sehgal and Lee, 2011). The gene ontology information 

supported the identification of pleiotropic QTL on yearling PAP phenotypes and performance 

traits.  

 

Table 7.2 Significant gene ontology (GO) terms from gene enrichment analysis of genes 

identified in pleiotropic windows across PAP phenotypes and performance traits in Angus cattle 

managed at high altitude (elevation at 2,170 m) 

GO
1
 ID P-value

2
 Name Gene list 

BP GO:0060612 2.39E-03 Adipose tissue development ARRDC3, SH3PXD2B 

BP GO:0006986 1.60E-02 Response to unfolded protein STC2, CREBRF 

keg KEGG:04010 3.79E-02 Collecting duct acid secretion ATP6V0E1 

keg KEGG:04130 5.00E-02 SNARE interactions in vesicular 

transport 

BNP1 

1
BP: Biological process; keg: KEGG pathway 

2
 Benjamini-Honchberg FDR corrected P-Value 

 

 

7.3.2 Genomic correlation 

The number of selected SNP of the studied traits was ranged from 195 to 678, which was 

consistent with our assumption in GWAS that only a small portion of the SNP (n = 35,930) had 

large effects on the studied traits. The summary of the selected SNP in AWM is presented in 

Appendix 7.1. After filtering based on SNP-to-gene distance and pruning the SNP, 673 genes 

were associated with these SNP. The AWM contained SNP/genes on rows and the eight traits on 
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columns (Appendix 7.2). Column-wise correlations denoted the genetic correlation based on 

SNP effects (Table 7.3). 

The pair-wise correlations of each SNP effect were calculated for all SNP and SNP in 

AWM, which were presented in Table 7.3. Generally, most of the correlations from all SNP were 

the same with those from SNP in the AWM. These resulting SNP effect correlations between 

performance traits and PAP growth phenotypes were low to moderate, which supported the 

pedigree based genetic correlation. Also, SNP-based genetic correlations between performance 

traits and RAW were lower than those between performance traits and CAT3 or CAT2, which 

was on the same pattern of pedigree-based genetic correlations (Table 4.4).  

 

Table 7.3 Pearson correlations between SNP effects of yearling pulmonary arterial pressure 

phenotypes (PAP) and performance traits in association weight matrix (above diagonal) and all 

studied SNP (below diagonal) 

Traits
1
 RAW CAT3 CAT2 BWT WW PWG YW MILK 

RAW 1.00 0.48 0.44 0.18 0.15 0.02 0.07 0.01 

CAT3 0.48 1.00 0.39 0.17 0.18 0.10 0.14 0.01 

CAT2 0.41 0.37 1.00 0.52 0.50 0.33 0.44 0.00 

BWT 0.18 0.17 0.48 1.00 0.66 0.42 0.54 0.01 

WW 0.15 0.18 0.46 0.66 1.00 0.75 0.88 0.03 

PWG 0.03 0.10 0.30 0.42 0.75 1.00 0.94 0.01 

YW 0.07 0.14 0.40 0.54 0.88 0.94 1.00 0.01 

MILK 0.01 0.01 0.01 0.01 0.03 0.01 0.01 1.00 
1
RAW: non-transformed PAP score; CAT3: three-category phenotype; CAT2: two-category phenotype; 

BWT: birth weight; WW: weaning weight; PWG: post-weaning gain; YW: yearling weight; MILK: 

maternal weaning weight. 
 

 

Figure 7.1 presents plots of the SNP effect correlations against traditional estimated 

pedigree-based genetic correlations and the associated regression line. A point in the graph 

represented the genetic correlation between a pair of phenotypes from pedigree and SNP based 

analyses. The SNP-based correlations from all SNP and AWM-SNP showed moderate agreement 
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on estimate genetic correlations, and they explained the same variation of the estimated genetic 

correlations (R
2 

= 0.61 and 0.61 for AWM-SNP and all SNP, respectively). In addition, the 

correlation between genotype and pedigree-based quantitative genetic correlations was 0.78. 

Theoretically, we can obtain SNP effect correlations that were the same with the estimated 

genetic correlations if all QTL were identified, but it may require at least 200,000 SNPs in 

GWAS (De Roos, 2008) and we only used 35,930 SNP within 1 Mb windows in this analysis. 

Our results suggested that the SNP effects from GWAS could be used to estimate genetic 

correlations between traits.  

 

Figure 7.1 Comparison of traditional estimated genetic correlations and SNP-based correlations 

across eight phenotypes.  Genetic correlations estimated from traditional quantitative analyses 

were compared with AWM-SNP-based correlations (A; n = 2,105), and all-SNP-based 

correlations (B, n = 35,930) in orange. 

 

The SNP effect correlations between maternal WW and yearling PAP phenotypes were 

nearly 0. Although these correlations from pedigree based analysis is also not statistically 

significant from 0, they were slightly larger than the SNP effect based correltions. Low DEBV 

accuracy animals were removed from GWAS, which led to only 548 samples for MILK and may 

contribute to these zero correlations. In addition, the genetic correlations between maternal and 
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direct effects of growth traits were fixed as zero, and this restriction could influence the EBV and 

DEBV (used for GWAS) for maternal WW in some degree and may also subsequently influence 

the SNP effects. The correlations were all positive, which suggested the QTL or genes improving 

Angus cattle performance may also increase the PAP. However, the influence of performance 

associated QTL on PAP measurements is limited because of the low genomic correlations 

between RAW and performance traits. 

The SNP effect correlations across yearling PAP phenotypes (RAW, CAT3 and CAT2) were 

moderate and much lower than the estimated genetic correlation (about 0.99), which suggested 

that they were correlated traits but not the same with each other. This difference may be 

attributed to the relatively small number of SNP used in GWAS, and increasing the number of 

SNP may improve the similarity between them. The SNP effect correlations between growth 

performance traits also supported the moderate to high estimated genetic correlations between 

them (Chapter 4). 

The summary of biological process and pathways from gene enrichment analysis on the 

genes in AWM were presented in Appendix 7.2. These genes were clustered in several biological 

processes, including ion transportation, growth, development, metabolic process, etc. Among 

them, 13 and 12 of these genes were clustered in a role for regulating MAPK and Wnt signaling 

pathway, which were previously reported in association with PH. The identified KEGG 

pathways were Ras signaling pathways, insulin secretion, cAMP signaling pathway, the HIF-1 

signaling pathway etc. The intra- and extra- cellular flow of Ca
2+

 and K
+
 were reported had 

important role in pulmonary vasoconstriction and vascular remodeling in chronic hypoxia-

induced PH via their role in cellular volume, gene transcription, apoptosis and cell cycle 

progression (Remillard and Yuan 2005; Stenmark el al., 2006). Insulin secretion pathway is 
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associated with glucose metabolism in human and animal and is critical to maintain fuel 

homeostasis (Jitrapakdee et al., 2010). HIF-1 signaling pathway responded to hypoxia stress of 

organisms that not only come from reduced oxygen availability but also inflammation, energy 

deprivation or intensive proliferation, and it has important roles in development of PH in human 

and cattle (Zagórska and Dulak, 2004; Stenmark etal., 2015). The Ras signaling pathway could 

regulate cell proliferation, differentiation and migration regulate (Karnoub and Weinberg, 2008), 

which was reported to have an important role in performance development and vascular 

remolding in pulmonary hypertension in both human and cattle (Archer et al., 2010; Saatchi et al., 

2014; De et al., 2013; Wilson et al., 2015; Stenmark 2006 and 2013).  

 

7.4 Conclusions 

This study identified two genomic windows on chromosome 7 and 20 with pleiotropic 

effects for yearling PAP phenotypes and performance traits in Angus cattle managed at high 

altitude. Genes in these windows were involved in adipose tissue development, response to 

unfolded protein, collecting duct acid secretion and SNARE interactions in vesicular transport. 

These biological processes and pathways have roles in intracellular transportation and cell 

metabolic changes, and that could be related to tissue remodeling and cell proliferation, which 

could support the pleiotropic genetic effects of these identified QTL regions. In addition, low to 

moderate genomic (SNP effects based) correlations were identified between PAP phenotypes 

and performance traits. In addition, the genes involved in AWM may influence mechanisms of 

PH and HAD via their roles in cellular metabolism, immunity, hypoxia responses and cell 

proliferation.   
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APPENDIX 3.1 HERITABILITY ASSOCIATED WITH DIFFERENT THRESHOLD POINTS 

TO CONSTRUCT THREE-CATEGORY PULMONARY ARTERIAL PRESSURE 

PHENOTYPE 

 

Low High Genetic variance Residual variance Heritability s.e. 

41 47 0.23 0.69 0.25 0.03 

40 47 0.16 0.50 0.25 0.03 

41 49 0.15 0.46 0.25 0.03 

43 49 0.33 1.00 0.25 0.04 

41 48 0.19 0.57 0.25 0.03 

40 49 0.11 0.35 0.24 0.03 

40 48 0.14 0.42 0.24 0.03 

43 48 0.44 1.37 0.24 0.04 

43 51 0.24 0.74 0.24 0.04 

43 50 0.28 0.88 0.24 0.04 

43 47 0.60 1.89 0.24 0.04 

42 47 0.33 1.06 0.24 0.04 

41 50 0.13 0.43 0.24 0.03 

42 49 0.20 0.65 0.24 0.04 

41 51 0.12 0.38 0.24 0.03 

43 52 0.20 0.65 0.24 0.04 

42 48 0.26 0.84 0.23 0.04 

42 51 0.16 0.51 0.23 0.04 

43 53 0.18 0.59 0.23 0.04 

40 51 0.09 0.30 0.23 0.03 

40 50 0.10 0.33 0.23 0.03 

42 50 0.18 0.59 0.23 0.04 

43 54 0.16 0.53 0.23 0.04 

43 61 0.10 0.35 0.23 0.04 

43 59 0.11 0.39 0.23 0.04 

43 56 0.13 0.45 0.23 0.04 

43 57 0.12 0.42 0.23 0.04 

43 58 0.12 0.40 0.23 0.04 

43 55 0.14 0.49 0.23 0.04 

41 52 0.10 0.35 0.23 0.03 

43 60 0.11 0.38 0.22 0.04 

42 53 0.12 0.42 0.22 0.04 

41 57 0.07 0.25 0.22 0.03 
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41 53 0.09 0.32 0.22 0.03 

42 52 0.13 0.46 0.22 0.04 

43 69 0.08 0.28 0.22 0.04 

43 70 0.08 0.28 0.22 0.04 

43 64 0.09 0.31 0.22 0.04 

43 63 0.09 0.32 0.22 0.04 

43 71 0.08 0.27 0.22 0.04 

43 62 0.09 0.33 0.22 0.04 

41 54 0.09 0.30 0.22 0.03 

41 56 0.08 0.26 0.22 0.03 

41 61 0.06 0.22 0.22 0.03 

42 54 0.11 0.39 0.22 0.04 

43 72 0.08 0.26 0.22 0.04 

43 65 0.09 0.31 0.22 0.04 

41 55 0.08 0.28 0.22 0.03 

40 53 0.07 0.26 0.22 0.03 

43 66 0.08 0.30 0.22 0.04 

40 52 0.08 0.28 0.22 0.03 

41 59 0.07 0.23 0.22 0.03 

41 58 0.07 0.24 0.22 0.03 

42 56 0.09 0.34 0.22 0.04 

43 68 0.08 0.28 0.22 0.04 

43 74 0.07 0.25 0.22 0.04 

43 73 0.07 0.26 0.22 0.04 

41 60 0.06 0.23 0.22 0.03 

43 67 0.08 0.29 0.22 0.04 

40 54 0.07 0.24 0.22 0.03 

42 57 0.09 0.32 0.22 0.04 

42 55 0.10 0.36 0.22 0.04 

41 62 0.06 0.21 0.22 0.03 

41 69 0.05 0.18 0.22 0.03 

41 70 0.05 0.18 0.22 0.03 

41 71 0.05 0.18 0.22 0.03 

41 72 0.05 0.17 0.22 0.03 

42 61 0.08 0.27 0.22 0.04 

42 58 0.08 0.30 0.22 0.04 

43 75 0.07 0.25 0.22 0.04 

41 64 0.05 0.20 0.22 0.03 

41 74 0.05 0.17 0.22 0.03 

41 63 0.06 0.20 0.22 0.03 

42 59 0.08 0.30 0.21 0.04 
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43 78 0.07 0.24 0.21 0.04 

43 77 0.07 0.24 0.21 0.04 

43 76 0.07 0.24 0.21 0.04 

41 66 0.05 0.19 0.21 0.03 

40 55 0.06 0.23 0.21 0.03 

41 78 0.04 0.16 0.21 0.03 

41 67 0.05 0.19 0.21 0.03 

40 56 0.06 0.22 0.21 0.03 

41 73 0.05 0.17 0.21 0.03 

40 57 0.06 0.21 0.21 0.03 

41 68 0.05 0.18 0.21 0.03 

41 77 0.04 0.16 0.21 0.03 

41 65 0.05 0.20 0.21 0.03 

41 76 0.04 0.16 0.21 0.03 

42 69 0.06 0.22 0.21 0.04 

42 70 0.06 0.22 0.21 0.04 

42 71 0.06 0.22 0.21 0.04 

41 75 0.04 0.16 0.21 0.03 

42 74 0.05 0.20 0.21 0.04 

42 60 0.08 0.29 0.21 0.04 

42 72 0.06 0.21 0.21 0.04 

40 59 0.05 0.19 0.21 0.03 

43 84 0.06 0.21 0.21 0.04 

43 79 0.06 0.23 0.21 0.04 

41 84 0.04 0.14 0.21 0.03 

42 62 0.07 0.26 0.21 0.04 

42 73 0.06 0.21 0.21 0.04 

43 85 0.05 0.20 0.21 0.04 

40 58 0.05 0.20 0.21 0.03 

42 64 0.07 0.24 0.21 0.04 

41 85 0.04 0.14 0.21 0.03 

40 61 0.05 0.18 0.21 0.03 

42 68 0.06 0.23 0.21 0.04 

42 63 0.07 0.25 0.21 0.04 

42 65 0.06 0.24 0.21 0.04 

40 74 0.04 0.14 0.21 0.03 

42 66 0.06 0.24 0.21 0.04 

40 78 0.04 0.13 0.21 0.03 

42 78 0.05 0.19 0.21 0.04 

43 80 0.06 0.23 0.21 0.04 

41 83 0.04 0.14 0.21 0.03 
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41 79 0.04 0.16 0.21 0.03 

40 60 0.05 0.19 0.21 0.03 

42 67 0.06 0.23 0.21 0.04 

43 81 0.06 0.22 0.21 0.04 

42 77 0.05 0.19 0.21 0.04 

42 76 0.05 0.19 0.21 0.04 

42 75 0.05 0.20 0.21 0.04 

40 77 0.04 0.14 0.21 0.03 

43 83 0.06 0.21 0.21 0.04 

40 72 0.04 0.15 0.21 0.03 

40 76 0.04 0.14 0.21 0.03 

40 71 0.04 0.15 0.21 0.03 

40 75 0.04 0.14 0.21 0.03 

40 69 0.04 0.15 0.21 0.03 

40 70 0.04 0.15 0.21 0.03 

41 80 0.04 0.15 0.21 0.03 

41 81 0.04 0.15 0.21 0.03 

40 84 0.03 0.12 0.21 0.03 

40 83 0.03 0.12 0.21 0.03 

40 73 0.04 0.14 0.21 0.03 

42 84 0.04 0.17 0.21 0.04 

40 63 0.04 0.17 0.21 0.03 

40 62 0.05 0.17 0.20 0.03 

42 79 0.05 0.19 0.20 0.04 

40 85 0.03 0.12 0.20 0.03 

41 82 0.04 0.15 0.20 0.03 

43 82 0.06 0.22 0.20 0.04 

40 64 0.04 0.17 0.20 0.03 

42 85 0.04 0.17 0.20 0.04 

40 79 0.03 0.13 0.20 0.03 

42 83 0.04 0.17 0.20 0.04 

40 66 0.04 0.16 0.20 0.03 

42 80 0.05 0.18 0.20 0.04 

42 81 0.05 0.18 0.20 0.04 

40 67 0.04 0.16 0.20 0.03 

40 68 0.04 0.16 0.20 0.03 

40 80 0.03 0.13 0.20 0.03 

40 65 0.04 0.17 0.20 0.03 

40 81 0.03 0.13 0.20 0.03 

40 82 0.03 0.13 0.20 0.03 

42 82 0.04 0.18 0.20 0.04 
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APPENDIX 3.2 REGRESSION ESTIMATES OF SEX, AGE OF DAM AND AGE OF 

MEASUREMENT ON NON-TRANSFORMED ALL, BULL, HEIFER AND STEER 

PULMONARY ARTERIAL PRESSURE PHENOTYPE 

 

 Effect level
1 

Number of records
2 

Estimate s.e P-value 

All 

    Intercept 5609 20.20 3.30 <0.001 

aop 5609 0.05 0.01 <0.001 

Heifer 3456 . . . 

Bull 1392 4.24 0.42 <0.001 

Steer 761 1.47 0.59 0.014 

2 963 . . . 

3 780 1.40 0.52 0.007 

4 703 0.97 0.53 0.069 

5-10 2648 1.85 0.44 <0.001 

≥11 515 1.74 0.60 0.003 

Bull 

    Intercept 1392 12.91 9.72 0.185 

aop 1392 0.08 0.03 0.002 

2 251 . . . 

3 167 3.00 1.34 0.025 

4 181 2.64 1.31 0.045 

5-10 714 3.43 1.10 0.002 

≥11 79 1.94 1.63 0.233 

Heifer 

    Intercept 3456 20.50 3.44 <0.001 

aop 3456 0.05 0.01 <0.001 

2 622 . . . 

3 518 1.01 0.56 0.073 

4 434 0.80 0.58 0.172 

5-10 1564 1.52 0.48 0.002 

≥11 318 1.62 0.66 0.014 

Steer 

    Intercept 761 33.01 11.37 0.004 

aop 761 0.04 0.03 0.087 

2 90 . . . 

3 95 1.53 1.52 0.314 
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4 88 0.60 1.62 0.711 

5-10 370 1.68 1.38 0.224 

≥11 118 1.56 1.55 0.314 
1
Age of dam levels contains 2, 3, 4, 5-10, ≥11 year of age 

2
Number of pulmonary arterial pressure records associated with each sex and age of dam level 
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APPENDIX 3.3 REGRESSION ESTIMATES OF SEX, AGE OF DAM AND AGE OF 

MEASUREMENT ON POWER-TRANSFORMED ALL, BULL, HEIFER AND STEER 

PULMONARY ARTERIAL PRESSURE PHENOTYPE 

 

 Effect level
1 

Number of records
2 

Estimate s.e P-value 

All 

    Intercept 5609 10.40 0.56 0.000 

aop 5609 -0.01 0.00 0.000 

Heifer 3456 . . . 

Bull 1392 -0.96 0.07 0.000 

Steer 761 0.01 0.10 0.887 

2 963 . . . 

3 780 -0.15 0.09 0.089 

4 703 -0.19 0.09 0.038 

5-10 2648 -0.29 0.08 0.000 

≥11 515 -0.23 0.10 0.025 

Bull 

    Intercept 1392 12.91 9.72 0.185 

aop 1392 0.08 0.03 0.002 

2 251 . . . 

3 167 3.00 1.34 0.025 

4 181 2.64 1.31 0.045 

5-10 714 3.43 1.10 0.002 

≥11 79 1.94 1.63 0.233 

Heifer 

    Intercept 3456 20.50 3.44 <0.001 

aop 3456 0.05 0.01 <0.001 

2 622 . . . 

3 518 1.01 0.56 0.073 

4 434 0.80 0.58 0.172 

5-10 1564 1.52 0.48 0.002 

≥11 318 1.62 0.66 0.014 

Steer 

    Intercept 761 33.01 11.37 0.004 

aop 761 0.04 0.03 0.087 

2 90 . . . 

3 95 1.53 1.52 0.314 
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4 88 0.60 1.62 0.711 

5-10 370 1.68 1.38 0.224 

≥11 118 1.56 1.55 0.314 
1
Age of dam levels contains 2, 3, 4, 5-10, ≥11 year of age 

2
Number of pulmonary arterial pressure records associated with each sex and age of dam level 
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APPENDIX 3.4 REGRESSION ESTIMATES OF SEX, AGE OF DAM AND AGE OF 

MEASUREMENT ON ALL, BULL, HEIFER AND STEER THREE-CATEGORY 

PULMONARY ARTERIAL PRESSURE PHENOTYPE 

 

 Effect level
1 

Number of records
2 

Estimate s.e P-value 

All 

    aop . 0.01 0.00 0.000 

Heifer 3456 . . . 

Bull 1392 0.56 0.05 0.000 

Steer 761 0.07 0.08 0.332 

2 963 . . . 

3 780 0.07 0.06 0.192 

4 703 0.15 0.06 0.008 

5-10 2648 0.22 0.04 0.000 

≥11 515 0.14 0.06 0.028 

Bull 

    aop . 0.01 0.00 0.000 

2 251 . . . 

3 167 0.31 0.11 0.006 

4 181 0.45 0.11 0.000 

5-10 714 0.49 0.08 0.000 

≥11 79 0.32 0.15 0.028 

Heifer 

    aop . 0.01 0.00 0.000 

2 622 . . . 

3 518 0.04 0.07 0.610 

4 434 0.09 0.08 0.258 

5-10 1564 0.17 0.06 0.004 

≥11 318 0.13 0.09 0.143 

Steer 

    aop . 0.01 0.00 0.002 

2 90 . . . 

3 95 -0.10 0.18 0.591 

4 88 -0.01 0.18 0.975 

5-10 370 0.07 0.14 0.619 

≥11 118 -0.07 0.17 0.667 
1
Age of dam levels contains 2, 3, 4, 5-10, ≥11 year of age 

2
Number of pulmonary arterial pressure records associated with each sex and age of dam level 
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APPENDIX 3.5 REGRESSION ESTIMATES OF SEX, AGE OF DAM AND AGE OF 

MEASUREMENT ON ALL, BULL, HEIFER AND STEER TWO-CATEGORY 

PULMONARY ARTERIAL PRESSURE PHENOTYPE 

 

 Effect level
1 

Number of records
2 

Estimate s.e P-value 

All 

    aop . 0.01 0.00 0.000 

Heifer 3456 . . . 

Bull 1392 0.51 0.07 0.000 

Steer 761 0.26 0.11 0.020 

2 963 . . . 

3 780 0.25 0.08 0.003 

4 703 0.23 0.09 0.007 

5-10 2648 0.35 0.06 0.000 

≥11 515 0.31 0.10 0.002 

Bull 

    aop . 0.01 0.00 0.000 

2 251 . . . 

3 167 0.58 0.15 0.000 

4 181 0.58 0.15 0.000 

5-10 714 0.67 0.12 0.000 

≥11 79 0.50 0.21 0.017 

Heifer 

    aop . 0.01 0.00 0.000 

2 622 . . . 

3 518 0.14 0.11 0.209 

4 434 0.12 0.11 0.284 

5-10 1564 0.23 0.08 0.004 

≥11 318 0.20 0.13 0.118 

Steer 

    aop . 0.00 0.00 0.354 

2 90 . . . 

3 95 0.35 0.32 0.273 

4 88 0.23 0.33 0.494 

5-10 370 0.45 0.25 0.074 

≥11 118 0.47 0.29 0.113 
1
Age of dam levels contains 2, 3, 4, 5-10, ≥11 year of age 

2
Number of pulmonary arterial pressure records associated with each sex and age of dam level 
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APPENDIX 4.1 REGRESSION ESTIMATES OF SEX, AGE OF DAM AND AGE OF 

MEASUREMENT ON GROWTH PERFORMANCE TRAITS 

  

Effect level
1 

Number of records
2 

Estimate s.e. P-value LSM
3 

BWT 

     Intercept . 73.40 0.65 <0.001 . 

Femal 4315 . . . 76.18
a 

Male 4709 5.28 0.21 <0.001 81.45
b 

2 1482 . . . 72.27
a 

3 1276 6.78 0.38 <0.001 79.04
b 

4 1120 7.61 0.39 <0.001 79.88
bc 

5-10 4243 10.16 0.30 <0.001 82.43
d 

≥11 903 8.19 0.42 <0.001 80.46
c 

         

WW 

     Intercept . 2.44 7.68 <0.001 . 

age . 2.00 0.03 <0.001 . 

Heifer 4009 . . . 448.74
a 

Bull 1704 59.76 1.48 <0.001 508.50
b 

Steer 2615 12.48 1.26 <0.001 461.22
c 

2 1306 . . . 441.87
a 

3 1190 29.87 2.20 <0.001 471.74
b 

4 1045 44.84 2.27 <0.001 486.71
c 

5-10 3957 56.04 1.87 <0.001 497.92
d 

≥11 830 24.00 2.48 <0.001 465.87
b 

         

PWG 

     Intercept . -55.03 14.43 <0.001 . 

age . 0.50 0.04 <0.001 . 

Heifer 3304 . . . 323.02
a 

Bull 1355 38.68 7.84 <0.001 361.70
b 

Steer 870 -13.61 3.85 <0.001 309.40
c 

2 960 . . . 321.64
a 

3 754 13.07 2.25 <0.001 334.71
b 

4 696 13.63 2.29 <0.001 335.27
b 

5-10 2613 10.63 1.89 <0.001 332.27
b 

≥11 506 11.34 2.56 <0.001 332.98
b 
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YW 

 

      

 Intercept . -257.88 21.77 <0.001 . 

age . 2.31 0.06 <0.001 . 

Heifer 3324 . . . 769.37
a 

Bull 1363 93.19 11.83 <0.001 862.56
b 

Steer 882 4.88 5.78 0.399 774.25
a 

2 970 . . . 764.14
a 

3 760 38.42 3.40 <0.001 802.56
b 

4 700 53.08 3.45 <0.001 817.22
c 

5-10 2630 61.96 2.85 <0.001 826.10
d 

≥11 509 36.13 3.85 <0.001 800.27
b 

1
Age of dam levels contains 2, 3, 4, 5-10, ≥11 year of age; BWT: birth weight (lb); WW: weaning weight 

(lb); PWG: post-weaning gain (lb); YW: yearling weight (lb). 
2
Number of pulmonary arterial pressure records associated with each sex and age of dam level 

3
LSM: least square mean for each effect level. 

abcd
Within the column, the least square mean without a common superscript differ (P < 0.05). 
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APPENDIX 5.1 SUMMARY OF GENOTYPED SAMPLES 

 

Year of birth Number of samples Year of genotyping 

1997 6 2013 

1998 10 2013 

1999 10 2013 

2000 16 2013 

2001 33 2013 

2002 17 2013 

2003 25 2013 

2004 37 2013 

2005 39 2013 

2006 31 2013 

2007 127 2013 

2008 124 2013 

2009 146 2013 

2010 310 2013 

2011 373 2013 

2012 361 2013 

2013 367 2014 

2014 343 2014 

2015 390 2015 
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APPENDIX 5.2 GENOMIC WINDOWS EXPLAIN >1% GENETIC VARIATION FROM THE 

GWAS RESULTS OF NON-TRANSFORMED, THREE-CATEGORY AND TWO-

CATEGORY YEARLING PULMONARY ARTERIAL PRESSURE PHENOTYPES FROM 

ANGUS CATTLE AT HIGH ALTITUDE (ELEVATION AT 2,170 M) 

 

BTA_Mb
 

Gene
2 

7_93 ARRDC3, G-protein coupled receptor 98 (ADGRV1), LOC104968987 

8_83 FANCC, ERCC6L2, bta-mir-27b, U6 

8_89 5S_rRNA 

10_21 JPH4, AP1G2, THTPA, ZFHX2, NGDN, MYH7, MYH6, CMTM5, IL25, EFS, 

SLC22A17, PABPN1, BCL2L2, PPP1R3E, RNF212B, SLC7A8, CEBPE, ACIN1, 

CDH24, PSMB5, AJUBA, PRMT5, RBM23, REM2, LRP10, MMP14, MRPL52, 

SLC7A7, OXA1L, HOMEZ, PSMB11, U6 

10_29 RYR3, TMCO5B, FMN1 

10_36 

DISP2, KNSTRN, IVD, BAHD1, RPUSD2, RAD51, RMDN3, GCHFR, DNAJC17, 

ZFYVE1, PPP1R14D, SPINT1, RHOV, VPS18, DLL4, CHAC1, INO80, EXD1, 

CHP1, OIP5, NUSAP1, NDUFAF1, CHST14, SNORA2, snoU89 

11_4 TSGA10, C2orf15, LIPT1, MITD1, LYG2, TXNDC9, EIF5B, REV1, AFF3 

11_86 LPIN1, NTSR2, E2F6, ROCK2, PQLC3, PDIA6, ATP6V1C2, NOL10, HIST1H4A, 

KCNF1 

12_12 VWA8, DGKH, AKAP11, TNFSF11, FAM216B 

12_25 CCNA1, SPG20, NBEA, MAB21L1 

12_34 
ATP8A2, NUP58, MTMR6, SPATA13, C1QTNF9, MIPEP, TNFRSF19, SACS, 

SGCG 

12_42 - 

12_57 bta-mir-1256 

14_64 ODF1, UBR5, RRM2B, NCALD 

15_59 BDNF, KIF18A, METTL15 

19_5 TOM1L1, COX11, STXBP4, HLF, MMD, U6 

20_4 NEURL1B, DUSP1, ERGIC1, RPL26L1, ATP6V0E1, CREBRF, BNIP1, NKX2-5, 

STC2, 5S_rRNA 

20_34 5S_rRNA, U2 

28_31 SAMD8, VDAC2, COMTD1, ZNF503, DUSP13 

29_22 GAS2, SLC17A6, ANO5, FANCF 

X_110 TSPAN7, OTC, RPGR, SRPX, SYTL5 
1
Bovine chromosome and n

th
 1 Mb window on the same chromosome based on the UMD3.1 assembly 

2
Genens located in the windows 
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APPENDIX 6.1 WINDOWS FROM THE GWAS EXPLAINED > 1% GENETIC VARIATION 

OF GENETIC VARIATION OF PERFORMANCE TRAITS FROM ANGUS CATTLE AT 

HIGH ALTITUDE REGION (ELEVATION AT 2,170 M)
1
 

 

BTA_Mb
2
 Gene

3 

1_2 PAXBP1, SYNJ1, EVA1C, URB1, MRAP, MIS18A, HUNK 

3_85 NFIA, U1 

5_19 DUSP6, POC1B, ATP2B1 

6_114 - 

7_4 

MEF2B, TMEM161A, SLC25A42, ARMC6, SUGP2, HOMER3, DDX49, COPE, 

UPF1, COMP, CRTC1, U6, KLHL26, TMEM59L, CRLF1,C19orf60, KXD1, ELL, 

ISYNA1, SSBP4, LRRC25, GDF15, PGPEP1, LSM4, KIAA1683, PDE4C, RAB3A, 

MPV17L2, IFI30 

7_93 ARRDC3, G-protein coupled receptor 98 (ADGRV1), LOC104968987 

12_23 LHFP, NHLRC3, PROSER1, PROSER1, STOML3, FREM2, U6 

12_88 MYO16, IRS2, COL4A1, 5S_rRNA 

14_24 XKR4, TMEM68, TGS1, LYN, RPS20, MOS 

14_25 SDR16C5, SDR16C6, PENK, IMPAD1, PLAG1, CHCHD7 

14_35 SULF1, SLCO5A1, PRDM14, NCOA2 

16_47 
DNAJC11, THAP3, PHF13, KLHL21, ZBTB48, TAS1R1, NOL9, PLEKHG5, 

TNFRSF25, ESPN, HES2, ACOT7, GPR153, HES3, ICMT, RNF207 

20_4 NEURL1B, DUSP1, ERGIC1, RPL26L1, ATP6V0E1, CREBRF, BNIP1, NKX2-5, 

STC2 

23_32 
SCGN, LRRC16A, GMNN, C6orf62, ACOT13, TDP2, KIAA0319, ALDH5A1, 

GPLD1, U6 

23_41 DTNBP1, JARID2, U6, SNORD112 

26_34 
HABP2, NRAP, CASP7, PLEKHS1, DCLRE1A, NHLRC2, CCDC186, TDRD1, 

ADRB1 

27_33 
ASH2L, STAR, LSM1, BAG4, PLPP5, WHSC1L1, DDHD2, LETM2, FGFR1, 

TACC1, PLEKHA2, HTRA4, TM2D2, ADAM9, ADAM32, bta-mir-2400, U6 

X_7 GRIA3, THOC2, BIRC8, SNORA43, XIAP, STAG2 

X_49 - 
1
Performance traits included birth weight, weaning weight, maternal weaning weight, post-weaning gain 

and yearling weight 
2
Bovine chromosome and n

th
 1 Mb window on the same chromosome based on the UMD3.1 assembly

 

3
Genens located in the windows 
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APPENDIX 7.1. SUMMARY OF ASSOCIATED WEIGHT MATRIX OF GENOME-WIDE 

ASSOCIATION ANALYSIS ON YEARLING PULMONARY ARTERIAL PRESSURE 

PHENOTYPES AND PERFORMANCE TRAITS IN ANGUS CATTLE  

 

Chromosome  
Num. SNP ≤ 25000 bp 

of a gene 

Num. SNP ≤ 25000 bp 

and < 1.5 Mb of a gene 

Num. SNP ≥ 1.5 Mb 

from a range 
Total 

1 33 83 0 116 

2 31 63 0 94 

3 36 65 1 102 

4 34 64 0 98 

5 23 52 0 75 

6 26 73 0 99 

7 29 61 0 90 

8 25 62 0 87 

9 18 48 2 68 

10 34 47 0 81 

11 19 43 0 62 

12 23 77 0 100 

13 27 37 0 64 

14 27 60 0 87 

15 22 44 2 68 

16 32 47 0 79 

17 16 33 0 49 

18 21 46 0 67 

19 34 32 0 66 

20 17 51 0 68 

21 17 57 0 74 

22 31 21 0 52 

23 20 32 0 52 

24 13 28 0 41 

25 7 14 0 21 

26 9 15 0 24 

27 17 40 0 57 

28 8 30 0 38 

29 11 49 0 60 

30 13 53 0 66 

Total 673 1427 5 2105 
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APENDIX 7.2 RESULTING ASSOCIATED WEIGHT MATRIX
1
 

 

Gene/SNP RAW CAT3 CAT2 BWT WW PWG YW MILK 

ARS-BFGL-NGS-105604 0.05 -0.02 -0.01 0.00 -0.01 0.01 0.01 -1.66 

ARS-BFGL-NGS-27579 0.00 0.02 0.01 -0.02 -0.03 0.01 -0.01 2.12 

BTA-91816-no-rs 0.01 -0.03 -0.07 -1.79 -1.28 -2.57 -1.33 0.11 

BTB-01421892 0.03 0.03 0.11 4.27 0.56 0.80 0.55 -0.19 

BTB-01487164 -0.08 -0.17 -0.03 -0.09 -0.23 -0.01 -0.05 -2.29 

ENSBTAG00000000061 -0.86 -1.91 -0.38 -0.04 -0.05 -0.02 -0.03 -0.13 

ENSBTAG00000000074 -0.07 -0.02 -0.21 -7.73 -0.61 -0.05 -0.14 -0.02 

ENSBTAG00000000138 -0.03 0.01 -0.01 0.01 0.01 0.01 0.01 1.34 

ENSBTAG00000000146 -1.23 -0.06 -0.12 0.04 0.05 0.07 0.06 0.02 

ENSBTAG00000000189 -0.21 -0.45 -0.35 -0.46 -1.83 -0.32 -0.55 0.10 

ENSBTAG00000000207 -0.09 -2.12 -0.04 0.03 0.03 0.01 0.01 0.08 

ENSBTAG00000000212 1.86 6.20 1.39 0.03 0.01 0.00 0.00 0.06 

ENSBTAG00000000219 3.75 0.26 0.06 0.00 -0.03 0.00 -0.03 -0.02 

ENSBTAG00000000289 -0.05 -0.02 0.04 0.87 0.67 1.41 0.46 0.20 

ENSBTAG00000000559 0.01 -0.08 -0.02 -0.09 -1.03 -0.33 -0.47 -0.05 

ENSBTAG00000000571 0.05 -0.01 0.00 -2.99 -0.85 -2.34 -0.93 -0.09 

ENSBTAG00000000575 -0.23 -0.22 -0.02 0.03 -0.01 -0.01 -0.02 -1.34 

ENSBTAG00000000580 -1.57 -0.23 -7.08 -0.48 -0.83 -1.05 -1.05 -0.06 

ENSBTAG00000000588 -0.35 -1.20 -0.20 -0.22 -0.04 -0.03 -0.03 0.02 

ENSBTAG00000000616 2.50 0.27 0.79 0.01 0.02 -0.01 0.00 -1.52 

ENSBTAG00000000655 -0.21 -9.98 -0.08 -0.27 -0.03 0.00 -0.01 0.08 

ENSBTAG00000000664 0.26 0.15 0.58 1.34 8.63 6.24 5.74 0.13 

ENSBTAG00000000698 0.13 2.09 0.18 0.01 0.00 0.02 0.02 0.01 

ENSBTAG00000000700 -0.13 -2.72 -0.19 -0.04 -0.01 -0.01 0.00 -0.02 

ENSBTAG00000000706 2.50 0.29 0.43 0.02 0.04 0.05 0.05 1.45 

ENSBTAG00000000854 -0.13 -0.04 0.01 0.05 0.17 0.15 0.25 2.22 

ENSBTAG00000000873 -0.04 -0.01 -0.04 -0.25 -0.99 -0.10 -0.22 -0.07 

ENSBTAG00000000897 -0.02 -0.02 0.00 -0.05 -0.10 -0.12 -0.11 1.53 

ENSBTAG00000000953 0.06 2.34 0.61 0.14 0.33 1.06 0.44 0.32 

ENSBTAG00000001080 0.10 0.11 0.16 0.03 0.30 0.89 0.61 0.02 

ENSBTAG00000001132 -0.17 -0.01 0.03 1.72 1.57 2.96 2.34 0.08 

ENSBTAG00000001181 0.05 0.07 0.08 0.02 0.03 -0.04 0.01 4.18 

ENSBTAG00000001290 -0.01 -0.04 -0.01 -2.61 -0.07 -0.02 -0.08 -0.06 

ENSBTAG00000001403 0.79 3.93 0.06 0.09 0.00 -0.01 0.00 -0.63 

ENSBTAG00000001406 -0.49 -0.13 -1.54 -0.68 -1.34 -1.61 -1.39 -0.05 

ENSBTAG00000001463 -0.15 -13.85 -0.05 -0.06 -0.07 -0.02 -0.04 0.06 
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ENSBTAG00000001545 -9.62 -0.67 -9.97 -0.18 -0.14 -0.04 -0.05 -0.16 

ENSBTAG00000001578 -0.04 -0.03 -0.28 -0.93 -1.44 -0.70 -1.28 -0.23 

ENSBTAG00000001589 -0.03 -0.03 -0.22 -0.07 -1.61 -11.10 -4.35 -0.04 

ENSBTAG00000001598 -0.16 -0.08 -0.05 -4.30 -0.41 -0.07 -0.22 0.05 

ENSBTAG00000001602 -0.04 0.00 -0.07 -0.30 -3.13 -0.45 -1.23 -0.08 

ENSBTAG00000001616 0.64 10.02 0.49 0.02 0.02 -0.01 0.02 -0.43 

ENSBTAG00000001627 1.89 0.54 0.59 0.10 0.07 0.02 0.03 -0.04 

ENSBTAG00000001707 -0.07 -7.21 -0.04 0.01 0.02 0.08 0.02 -0.03 

ENSBTAG00000001710 0.05 0.23 0.03 -0.02 -0.05 0.01 -0.01 -0.89 

ENSBTAG00000001749 2.21 1.01 1.11 0.02 0.00 -0.02 -0.03 0.00 

ENSBTAG00000001803 0.20 0.00 -0.01 -0.03 -0.14 -0.27 -0.15 -10.50 

ENSBTAG00000001816 -0.03 0.00 0.00 0.02 -0.01 0.01 -0.01 -3.22 

ENSBTAG00000001826 -0.04 0.06 0.08 1.06 0.06 0.05 0.05 -0.07 

ENSBTAG00000001872 -0.12 -0.19 -0.29 -2.83 -0.46 -0.61 -0.48 0.07 

ENSBTAG00000001927 0.91 1.19 0.13 0.02 0.04 0.01 0.03 -0.02 

ENSBTAG00000001966 -0.07 -0.03 -0.29 -3.49 -3.42 -0.63 -1.82 -0.09 

ENSBTAG00000002020 -0.18 -1.79 -0.09 -0.01 0.00 -0.05 -0.03 0.13 

ENSBTAG00000002081 -0.05 -0.07 -0.07 -0.04 -0.58 -1.06 -0.28 -0.02 

ENSBTAG00000002115 -0.04 0.03 0.00 0.12 0.08 0.05 0.07 -1.86 

ENSBTAG00000002174 -0.93 -0.33 -0.20 0.00 0.04 0.02 0.04 0.00 

ENSBTAG00000002181 0.03 -0.04 0.06 -0.01 -0.06 -0.07 -0.07 -12.02 

ENSBTAG00000002214 0.07 0.18 -0.01 -0.02 -0.07 -0.01 -0.06 -1.44 

ENSBTAG00000002316 1.06 3.16 9.90 0.21 0.01 0.00 0.01 -0.14 

ENSBTAG00000002341 -0.04 -0.01 0.03 0.02 0.04 0.01 0.03 2.34 

ENSBTAG00000002356 -0.04 -0.02 0.08 0.60 1.51 0.60 0.62 0.41 

ENSBTAG00000002445 0.14 0.07 0.63 2.19 0.38 0.40 0.34 -0.03 

ENSBTAG00000002452 -0.27 -0.71 -0.43 0.01 -0.01 -0.01 -0.02 -1.21 

ENSBTAG00000002471 -0.27 -0.38 -0.28 -4.69 -0.75 -0.36 -0.33 -0.05 

ENSBTAG00000002485 1.67 1.93 0.57 0.02 0.03 0.05 0.05 -0.05 

ENSBTAG00000002493 -0.04 0.01 0.09 3.04 12.47 5.74 5.87 0.03 

ENSBTAG00000002586 0.10 -0.03 0.14 0.01 -0.01 -0.01 -0.01 -27.53 

ENSBTAG00000002624 -0.15 -12.34 -1.09 -0.07 -0.08 -0.12 -0.10 -0.01 

ENSBTAG00000002678 0.11 0.14 0.09 3.12 0.73 0.22 0.22 -0.92 

ENSBTAG00000002701 -1.03 -0.06 -0.11 -0.06 -0.16 -0.12 -0.17 -0.05 

ENSBTAG00000002730 -1.11 -4.16 -1.54 -0.36 -0.09 0.00 -0.02 0.09 

ENSBTAG00000002822 -0.05 -0.01 -0.07 -0.09 -0.96 -2.02 -0.86 0.09 

ENSBTAG00000002865 -0.07 -0.20 0.01 0.07 0.11 0.04 0.06 1.39 

ENSBTAG00000002898 0.21 0.12 0.52 0.09 0.45 2.04 0.54 0.03 

ENSBTAG00000002914 -0.06 -0.07 -0.02 -0.25 -1.05 -0.04 -0.22 -0.51 

ENSBTAG00000002959 0.10 0.33 0.02 0.37 2.23 1.67 1.28 0.32 

ENSBTAG00000002997 -0.15 -0.20 -0.11 -0.03 -0.06 0.00 -0.03 -0.89 
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ENSBTAG00000003034 -0.01 0.03 -0.14 -0.01 -0.18 -0.11 -0.13 -15.96 

ENSBTAG00000003069 0.01 0.03 0.00 0.04 0.09 0.16 0.08 -1.38 

ENSBTAG00000003101 0.08 0.01 0.04 2.18 0.33 0.49 0.35 0.09 

ENSBTAG00000003128 1.10 0.10 0.75 0.01 0.00 -0.02 -0.02 0.11 

ENSBTAG00000003172 -0.09 0.00 -0.03 -0.09 -0.48 -0.52 -0.60 -0.96 

ENSBTAG00000003218 -0.01 -0.32 -0.12 -1.42 -0.88 -0.18 -0.54 -0.05 

ENSBTAG00000003236 0.08 0.14 0.08 1.03 0.47 0.69 0.52 0.09 

ENSBTAG00000003301 0.00 -0.04 0.01 0.94 0.44 0.08 0.13 -0.43 

ENSBTAG00000003359 -0.12 -0.03 -0.03 -3.17 -0.90 -0.24 -0.58 -0.01 

ENSBTAG00000003418 -2.53 -0.60 -0.17 -0.03 0.01 0.04 0.03 0.18 

ENSBTAG00000003449 1.09 0.69 0.14 -0.01 0.00 -0.04 -0.01 0.13 

ENSBTAG00000003455 1.27 0.07 1.07 -0.03 -0.03 0.01 -0.02 -0.06 

ENSBTAG00000003496 0.13 0.03 0.08 0.12 0.21 0.02 0.06 -2.46 

ENSBTAG00000003509 -0.02 -0.10 0.02 0.08 0.47 0.25 0.40 43.54 

ENSBTAG00000003531 0.01 -0.05 -0.36 -0.68 -1.26 -0.19 -0.32 -0.13 

ENSBTAG00000003555 0.12 -0.02 0.03 0.20 1.03 2.19 1.98 0.13 

ENSBTAG00000003587 -0.08 -0.04 -0.01 0.00 0.10 0.09 0.09 31.13 

ENSBTAG00000003594 1.12 0.50 0.07 -0.04 -0.06 -0.13 -0.08 -0.01 

ENSBTAG00000003606 0.12 0.24 1.31 7.57 5.50 0.51 0.87 -0.11 

ENSBTAG00000003610 0.05 -0.05 1.76 0.01 0.01 0.03 0.03 -3.61 

ENSBTAG00000003690 -0.05 0.10 0.04 2.42 0.71 0.04 0.14 -0.05 

ENSBTAG00000003701 0.01 0.00 -0.01 -0.03 -0.04 -0.01 -0.05 -11.78 

ENSBTAG00000003721 -0.26 -0.07 -0.17 -0.38 -0.14 -0.04 -0.13 -1.56 

ENSBTAG00000003749 0.15 0.07 0.42 0.36 0.81 0.29 0.51 3.56 

ENSBTAG00000003773 0.03 0.00 0.01 -0.08 -0.29 -23.37 -1.47 -0.04 

ENSBTAG00000003808 -0.05 0.06 -0.03 0.02 -0.01 0.04 0.01 -1.19 

ENSBTAG00000003822 0.03 0.00 -0.01 -0.02 -0.07 0.00 -0.03 -6.27 

ENSBTAG00000003825 -0.03 -0.02 -0.14 -0.79 -1.01 -0.39 -0.55 -0.07 

ENSBTAG00000003827 1.41 2.61 0.47 0.14 0.28 0.15 0.29 0.03 

ENSBTAG00000003895 -0.16 -0.03 0.02 0.70 1.13 0.72 0.91 0.02 

ENSBTAG00000004034 0.00 -0.02 -0.27 -5.19 -0.94 -0.52 -0.49 -0.05 

ENSBTAG00000004066 -3.33 -0.14 -2.57 -0.02 -0.02 -0.04 -0.04 -0.48 

ENSBTAG00000004077 0.01 0.00 0.07 0.03 0.01 -0.01 0.00 0.94 

ENSBTAG00000004081 1.36 0.22 0.25 0.00 0.04 0.01 0.02 -0.04 

ENSBTAG00000004165 -3.55 -0.05 -0.17 0.15 0.34 0.61 0.37 0.07 

ENSBTAG00000004238 0.00 0.08 0.00 -0.02 -0.15 -0.29 -0.22 -33.01 

ENSBTAG00000004248 0.06 0.08 0.13 1.06 0.14 0.04 0.09 0.06 

ENSBTAG00000004279 0.03 -0.04 -0.11 -0.17 -0.26 -1.24 -0.40 0.07 

ENSBTAG00000004280 0.96 0.43 0.06 0.00 0.02 0.02 0.03 0.07 

ENSBTAG00000004287 0.02 0.03 0.07 -0.02 -0.01 0.02 -0.01 -3.44 

ENSBTAG00000004297 -0.09 -0.10 -0.02 -3.25 -13.69 -0.84 -2.69 0.02 
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ENSBTAG00000004351 2.08 0.13 0.27 0.02 0.02 0.01 0.02 0.07 

ENSBTAG00000004398 1.31 0.09 0.10 -0.02 -0.05 -0.06 -0.05 0.00 

ENSBTAG00000004407 1.19 0.60 0.08 0.01 -0.06 -0.04 -0.07 -0.33 

ENSBTAG00000004514 -1.35 -0.23 -2.67 -0.25 0.00 0.01 0.00 0.00 

ENSBTAG00000004555 0.01 -0.19 -0.20 -1.44 -0.88 -0.42 -0.59 0.02 

ENSBTAG00000004562 1.38 0.43 0.59 0.03 0.05 0.04 0.06 -0.06 

ENSBTAG00000004587 -0.07 -1.81 -0.01 -0.04 0.00 -0.08 -0.06 -0.11 

ENSBTAG00000004607 -0.07 -0.06 -0.28 -0.46 -2.95 -0.17 -0.44 -0.16 

ENSBTAG00000004723 0.33 1.04 0.01 0.01 0.00 -0.04 -0.02 -0.03 

ENSBTAG00000004770 0.02 0.06 0.03 1.64 0.57 1.38 0.88 -0.02 

ENSBTAG00000004907 -0.80 -1.61 -1.69 -0.01 -0.01 0.01 0.00 0.03 

ENSBTAG00000004920 -1.55 -0.08 -0.39 0.01 -0.01 -0.04 -0.06 -0.80 

ENSBTAG00000004931 -4.22 -0.86 -3.55 -0.03 -0.02 0.00 -0.02 0.05 

ENSBTAG00000005021 -0.07 -2.24 -0.14 -0.05 -0.13 -0.05 -0.07 -0.35 

ENSBTAG00000005083 0.26 0.91 0.06 0.01 0.01 0.00 -0.01 0.05 

ENSBTAG00000005092 4.72 0.10 3.42 0.00 0.00 0.01 0.01 0.10 

ENSBTAG00000005104 0.09 1.25 0.28 0.30 0.97 1.22 0.83 0.16 

ENSBTAG00000005108 -0.28 -0.02 -0.06 -0.01 -0.02 -0.03 -0.03 1.52 

ENSBTAG00000005246 0.05 0.06 0.01 -1.22 -1.52 -0.39 -0.98 -0.26 

ENSBTAG00000005248 0.33 1.67 1.70 -0.01 -0.03 0.00 -0.02 -0.02 

ENSBTAG00000005321 0.26 1.67 0.30 0.05 0.04 0.25 0.07 0.36 

ENSBTAG00000005328 -1.07 -2.06 -0.10 0.01 0.01 0.00 0.00 -0.08 

ENSBTAG00000005349 0.00 -0.03 -0.03 -0.15 -2.23 -0.35 -1.25 -0.15 

ENSBTAG00000005372 -0.69 -1.12 -0.03 -0.02 -0.02 0.00 -0.02 0.00 

ENSBTAG00000005481 0.07 0.03 2.47 1.08 0.75 0.15 0.39 0.34 

ENSBTAG00000005514 0.04 0.00 -0.02 -0.02 -0.02 -0.01 -0.02 -1.51 

ENSBTAG00000005533 -0.38 -0.12 -0.36 -0.72 -5.64 -0.78 -2.13 -0.02 

ENSBTAG00000005562 -0.06 -0.02 -0.19 -0.11 -0.38 -1.03 -0.64 -0.06 

ENSBTAG00000005633 0.94 0.03 0.01 -0.07 -0.60 -1.05 -0.45 -0.08 

ENSBTAG00000005682 -0.08 -0.20 -0.85 -0.20 -0.51 -1.01 -1.08 0.01 

ENSBTAG00000005738 -0.42 -0.21 -1.57 -0.01 0.01 0.02 0.03 1.25 

ENSBTAG00000005803 -1.02 -0.06 -0.37 -0.02 -0.04 -0.04 -0.05 -0.03 

ENSBTAG00000005810 0.06 0.11 0.03 2.51 0.80 0.05 0.17 -0.12 

ENSBTAG00000005824 -0.09 -1.53 0.01 -0.01 -0.05 -0.01 -0.04 0.03 

ENSBTAG00000005827 -0.08 0.01 0.13 0.19 0.43 1.27 0.55 0.14 

ENSBTAG00000005888 -0.01 -0.05 0.00 -0.01 -0.08 -0.01 -0.03 -1.22 

ENSBTAG00000005913 1.92 0.66 3.74 0.00 0.00 0.01 0.00 0.01 

ENSBTAG00000005923 1.39 0.28 0.69 0.03 0.06 -0.02 0.00 0.01 

ENSBTAG00000005973 2.03 0.16 0.19 0.00 -0.01 -0.01 -0.01 -0.08 

ENSBTAG00000006086 0.01 -0.04 -0.07 -0.07 -0.16 -1.38 -0.27 -0.04 

ENSBTAG00000006129 -0.03 -0.02 -0.08 -0.36 -1.25 -0.14 -0.60 -0.01 
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ENSBTAG00000006132 2.06 0.38 0.01 0.10 0.14 0.10 0.09 0.00 

ENSBTAG00000006188 1.21 0.42 0.03 -0.07 -0.06 -0.02 -0.04 -0.03 

ENSBTAG00000006280 -0.07 -0.08 -0.03 -3.44 -0.84 -0.28 -0.36 0.08 

ENSBTAG00000006419 0.11 2.00 0.06 0.10 0.09 -0.01 0.03 0.09 

ENSBTAG00000006440 -0.01 0.03 -0.02 -2.87 -0.42 -0.12 -0.26 0.00 

ENSBTAG00000006466 0.01 -0.05 -0.14 -6.13 -1.88 -0.34 -0.38 -0.05 

ENSBTAG00000006490 -0.24 -0.87 -1.02 -0.05 -0.04 0.02 -0.01 0.03 

ENSBTAG00000006618 0.27 0.16 0.07 0.12 0.06 0.24 0.17 -0.92 

ENSBTAG00000006665 0.00 0.02 -0.02 0.01 0.02 0.00 0.00 2.23 

ENSBTAG00000006712 -1.74 -0.22 -0.05 -0.02 -0.02 -0.03 -0.03 0.27 

ENSBTAG00000006732 0.09 0.04 0.03 2.75 1.30 0.24 0.43 0.00 

ENSBTAG00000006747 -0.05 -0.15 -0.03 -0.58 -16.58 -2.63 -4.17 -0.53 

ENSBTAG00000006810 1.03 0.03 0.04 -0.02 -0.01 -0.01 -0.01 -0.27 

ENSBTAG00000006947 -0.04 0.05 -0.03 -0.02 -0.05 0.00 -0.03 -1.49 

ENSBTAG00000007007 -0.17 -1.24 -0.14 0.00 0.01 0.22 0.07 -0.04 

ENSBTAG00000007013 5.10 4.74 35.56 0.21 0.20 0.17 0.12 -0.07 

ENSBTAG00000007122 0.02 -0.02 0.03 0.04 0.04 0.00 0.02 1.08 

ENSBTAG00000007141 0.05 -0.01 0.02 -0.01 0.00 0.02 0.01 -1.27 

ENSBTAG00000007244 0.07 -0.02 -0.02 -0.27 -0.36 -0.82 -0.44 -0.04 

ENSBTAG00000007305 0.64 0.91 0.51 -0.01 0.08 0.03 0.08 0.96 

ENSBTAG00000007386 0.07 0.05 0.04 0.31 1.28 0.08 0.24 -0.03 

ENSBTAG00000007473 -2.64 -0.16 -0.57 0.01 0.04 0.03 0.04 -0.04 

ENSBTAG00000007634 0.17 0.05 0.16 1.15 0.13 0.04 0.09 -0.39 

ENSBTAG00000007635 0.32 0.11 0.17 -2.10 -0.27 -0.07 -0.16 0.02 

ENSBTAG00000007709 0.03 -0.04 0.01 -0.09 -1.20 -2.35 -1.28 0.14 

ENSBTAG00000007732 -3.14 -0.28 -0.19 0.00 0.00 0.01 0.00 0.22 

ENSBTAG00000007823 -0.43 -0.14 -0.05 -0.03 -0.07 -0.09 -0.11 -1.24 

ENSBTAG00000007867 -1.03 -0.44 -0.28 0.03 0.06 0.00 0.01 -0.06 

ENSBTAG00000007901 0.05 0.05 -0.06 -0.21 -2.02 -0.19 -0.36 -0.06 

ENSBTAG00000007962 1.43 0.09 0.21 0.01 0.02 0.03 0.05 0.01 

ENSBTAG00000008040 -2.05 -2.63 -3.11 -0.58 -0.15 -0.07 -0.14 -0.04 

ENSBTAG00000008093 -0.02 -0.05 -0.03 -8.92 -3.53 -0.42 -0.81 -0.15 

ENSBTAG00000008098 0.04 0.00 0.08 1.87 1.41 0.52 0.75 0.52 

ENSBTAG00000008125 0.02 0.04 0.15 0.19 1.24 0.16 0.69 0.12 

ENSBTAG00000008275 -1.07 -0.64 -0.20 0.02 0.05 0.02 0.02 0.08 

ENSBTAG00000008338 0.08 0.07 0.01 -0.80 -1.71 -0.96 -1.14 -0.39 

ENSBTAG00000008339 -0.03 -0.04 0.00 -0.03 -0.09 -0.09 -0.11 -1.84 

ENSBTAG00000008389 0.13 0.00 0.23 0.04 0.03 -0.01 0.00 2.38 

ENSBTAG00000008401 0.00 -0.04 0.02 0.76 1.45 0.13 0.55 0.31 

ENSBTAG00000008420 2.60 11.73 3.21 0.06 0.19 0.32 0.21 0.00 

ENSBTAG00000008438 0.03 -0.03 -0.06 -0.01 -0.04 -0.04 -0.05 -4.14 
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ENSBTAG00000008442 0.02 0.01 0.03 1.64 1.39 0.35 0.58 0.70 

ENSBTAG00000008468 -0.39 -13.85 -0.51 -0.09 0.00 -0.01 0.01 0.15 

ENSBTAG00000008470 0.13 0.94 0.20 0.02 0.01 0.01 0.02 -0.06 

ENSBTAG00000008484 0.00 -0.02 -0.01 -0.29 -2.37 -0.08 -0.32 -0.19 

ENSBTAG00000008509 -1.60 -0.25 -0.03 -0.01 0.01 -0.02 0.01 -0.02 

ENSBTAG00000008595 0.03 0.07 0.02 0.52 0.56 1.77 0.60 0.11 

ENSBTAG00000008605 -0.84 -1.43 -1.15 0.01 0.00 0.01 0.00 0.00 

ENSBTAG00000008636 0.05 0.34 0.00 0.99 0.07 0.02 0.04 -0.08 

ENSBTAG00000008687 -0.01 -0.02 -0.04 0.01 -0.01 -0.01 -0.02 -2.80 

ENSBTAG00000008696 -0.11 -1.06 -0.17 -0.01 -0.02 -0.03 -0.02 0.09 

ENSBTAG00000008708 1.44 0.39 0.42 0.02 0.01 0.03 0.03 -0.25 

ENSBTAG00000008710 -0.95 -21.08 -0.19 -0.05 -0.08 -0.01 -0.05 -0.04 

ENSBTAG00000008718 -3.07 -0.06 -0.02 -0.03 -0.02 0.02 -0.01 0.03 

ENSBTAG00000008732 -6.36 -0.48 -0.14 0.00 0.06 0.05 0.05 0.00 

ENSBTAG00000008783 1.14 0.22 0.08 -0.01 -0.03 -0.05 -0.04 0.01 

ENSBTAG00000008828 0.62 1.64 0.04 0.04 0.04 0.01 0.03 0.01 

ENSBTAG00000008840 0.02 -0.02 0.00 -0.01 -0.01 0.00 -0.01 3.78 

ENSBTAG00000008868 2.36 0.02 0.02 -0.10 -0.06 0.00 -0.01 0.23 

ENSBTAG00000008888 1.23 4.19 0.86 0.08 0.04 0.00 0.02 -0.01 

ENSBTAG00000008966 3.89 0.03 0.04 0.02 0.02 -0.02 0.01 0.04 

ENSBTAG00000009076 0.01 -0.01 -0.01 -0.88 -0.30 -0.16 -0.23 -0.05 

ENSBTAG00000009155 0.02 0.03 0.03 0.06 0.04 0.02 0.04 -5.94 

ENSBTAG00000009182 -0.03 -0.01 0.04 3.68 0.30 0.05 0.07 0.04 

ENSBTAG00000009258 5.94 1.09 1.69 0.00 0.00 0.00 0.02 0.00 

ENSBTAG00000009306 -3.61 -7.11 -0.34 -0.01 0.00 -0.04 -0.01 0.37 

ENSBTAG00000009331 -1.24 -0.33 -0.11 0.00 -0.01 -0.05 -0.04 -0.03 

ENSBTAG00000009362 -0.05 -0.03 0.00 0.04 0.00 0.01 0.00 -0.96 

ENSBTAG00000009371 0.00 -0.06 -0.15 -0.95 -0.20 -0.03 -0.06 0.05 

ENSBTAG00000009394 0.37 1.49 1.33 0.09 0.28 0.15 0.25 0.12 

ENSBTAG00000009441 0.08 -0.01 0.06 3.52 1.77 0.18 0.59 -0.07 

ENSBTAG00000009446 0.96 0.05 0.03 0.00 -0.02 -0.09 -0.06 0.11 

ENSBTAG00000009475 -0.14 -0.04 -0.10 -1.20 -0.48 -0.13 -0.32 -0.02 

ENSBTAG00000009481 0.01 0.06 0.01 0.94 1.50 0.21 0.66 0.02 

ENSBTAG00000009523 0.37 5.10 0.39 0.02 0.01 0.00 0.00 -0.04 

ENSBTAG00000009575 -2.45 -1.68 -0.15 0.07 0.06 0.00 0.02 -0.20 

ENSBTAG00000009578 0.03 0.01 0.02 0.01 -0.01 -0.02 -0.01 -1.32 

ENSBTAG00000009622 -0.01 -0.07 -0.03 -0.92 -0.50 -0.51 -0.45 -0.11 

ENSBTAG00000009665 -0.09 -0.06 -0.01 0.08 0.08 0.01 0.03 -0.91 

ENSBTAG00000009760 0.07 0.03 0.00 0.00 0.00 0.01 0.01 -1.31 

ENSBTAG00000009777 -1.36 -0.13 -8.34 -0.05 -0.11 -0.09 -0.12 0.06 

ENSBTAG00000009834 2.00 0.66 1.23 -0.01 0.01 -0.01 0.01 -0.02 
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ENSBTAG00000009835 -0.07 -0.09 -1.03 -2.32 -0.39 -0.36 -0.31 -0.05 

ENSBTAG00000009845 -0.01 -0.01 -0.06 -3.90 -1.86 -0.39 -0.46 0.28 

ENSBTAG00000009903 -0.12 -5.97 -0.02 -0.08 -0.11 -0.16 -0.15 -0.08 

ENSBTAG00000009942 -14.14 -0.10 -0.07 0.01 0.02 0.01 0.02 -0.02 

ENSBTAG00000010030 -2.79 -0.10 -1.35 -0.01 -0.01 0.00 0.00 0.28 

ENSBTAG00000010112 0.06 0.01 0.08 0.14 0.16 0.45 0.26 -2.06 

ENSBTAG00000010126 -0.01 0.06 0.00 0.12 0.91 0.33 0.40 0.00 

ENSBTAG00000010241 -0.04 -0.06 0.00 -0.01 0.00 -0.01 0.01 4.10 

ENSBTAG00000010244 0.00 0.00 0.02 1.43 0.29 0.16 0.21 -0.02 

ENSBTAG00000010300 2.96 3.83 0.77 0.00 0.06 0.06 0.06 0.17 

ENSBTAG00000010343 2.81 0.53 0.45 0.06 0.26 0.14 0.13 0.13 

ENSBTAG00000010379 -0.08 -0.07 -0.01 -0.01 0.06 0.02 0.04 1.86 

ENSBTAG00000010380 -4.94 -0.42 -0.59 -0.05 -0.07 -0.02 -0.05 0.04 

ENSBTAG00000010392 -0.09 -0.04 0.00 0.09 1.08 0.27 0.32 0.06 

ENSBTAG00000010571 -1.12 -3.76 -0.06 -0.05 -0.01 -0.02 -0.01 -0.02 

ENSBTAG00000010613 0.14 0.01 0.07 0.82 0.08 0.02 0.04 -1.96 

ENSBTAG00000010661 0.10 0.55 6.98 0.12 0.16 0.11 0.19 8.81 

ENSBTAG00000010672 -5.20 -0.12 -0.10 -0.02 0.03 0.04 0.03 -0.01 

ENSBTAG00000010689 -0.47 -1.31 -0.05 -0.06 -0.02 -0.04 -0.03 0.23 

ENSBTAG00000010786 -0.01 -0.01 -0.01 0.05 0.00 -0.01 -0.01 -1.62 

ENSBTAG00000010837 0.08 0.10 0.19 0.87 0.06 0.04 0.05 0.33 

ENSBTAG00000010852 -0.04 -0.04 -0.01 -1.41 -0.63 -0.24 -0.72 0.06 

ENSBTAG00000010865 -3.93 -0.36 -0.53 -0.16 -0.12 -0.05 -0.07 0.02 

ENSBTAG00000010878 -0.28 -0.06 -0.90 -1.03 -2.82 -0.18 -0.69 -0.60 

ENSBTAG00000010944 -0.05 -0.01 -0.12 -0.28 -2.19 -0.21 -0.64 -0.04 

ENSBTAG00000011001 4.22 0.72 0.69 0.00 -0.03 -0.01 -0.02 0.15 

ENSBTAG00000011032 0.02 0.32 0.04 0.10 0.56 0.94 0.47 0.00 

ENSBTAG00000011075 0.01 0.00 0.00 0.01 0.04 0.04 0.07 1.33 

ENSBTAG00000011076 -0.01 -0.04 -0.16 -1.20 -4.35 -0.21 -0.83 -0.10 

ENSBTAG00000011091 0.30 0.07 0.38 11.83 3.07 0.17 0.63 0.01 

ENSBTAG00000011217 0.27 0.04 0.00 -6.92 -3.28 -8.23 -4.38 -0.02 

ENSBTAG00000011237 1.17 0.09 3.21 2.09 3.43 3.61 3.54 0.21 

ENSBTAG00000011267 1.03 15.02 2.41 -0.03 -0.04 -0.05 -0.04 0.00 

ENSBTAG00000011358 1.07 0.05 0.08 0.00 -0.01 0.01 0.02 0.03 

ENSBTAG00000011367 0.23 0.13 0.09 -0.32 -0.03 0.00 0.00 1.00 

ENSBTAG00000011403 -2.97 -1.00 -1.53 -0.11 -0.26 -0.09 -0.18 -0.10 

ENSBTAG00000011431 1.72 0.41 1.69 0.01 0.02 0.01 0.03 0.09 

ENSBTAG00000011524 -0.12 0.00 0.03 -0.01 0.02 0.01 0.00 1.21 

ENSBTAG00000011527 0.16 1.74 0.21 0.16 0.74 0.08 0.15 0.05 

ENSBTAG00000011538 0.06 0.00 0.04 -0.06 -0.04 -0.05 -0.04 1.92 

ENSBTAG00000011582 2.56 0.27 0.17 0.00 -0.01 -0.02 -0.01 0.02 
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ENSBTAG00000011660 -0.17 -0.03 -0.07 0.05 0.02 0.04 0.06 -1.13 

ENSBTAG00000011693 -6.42 -0.80 -2.59 -0.23 -0.55 -0.21 -0.26 -0.21 

ENSBTAG00000011733 -2.84 -0.25 -1.23 -0.01 0.01 0.05 0.02 -0.02 

ENSBTAG00000011741 1.20 1.96 1.36 0.00 0.01 0.01 0.00 0.04 

ENSBTAG00000011757 0.00 0.00 0.01 0.10 0.18 0.11 0.12 -4.59 

ENSBTAG00000011766 2.01 3.72 0.65 0.02 -0.02 -0.06 -0.06 0.03 

ENSBTAG00000011772 -0.12 -1.93 -0.27 -0.02 0.00 0.00 0.01 0.16 

ENSBTAG00000011804 -0.02 -0.04 -0.06 -1.38 -0.34 -0.04 -0.16 -0.04 

ENSBTAG00000011829 0.01 -0.07 -0.04 -9.63 -0.76 -0.10 -0.28 -0.04 

ENSBTAG00000011833 0.02 -0.03 0.11 3.43 1.00 2.22 2.82 -0.01 

ENSBTAG00000011865 -0.54 -0.79 -0.89 -1.22 -0.20 -0.17 -0.18 -0.27 

ENSBTAG00000011899 0.09 1.33 0.63 0.32 0.18 0.01 0.05 0.04 

ENSBTAG00000011945 0.36 1.21 0.02 0.02 0.03 0.05 0.03 -0.15 

ENSBTAG00000012039 -0.08 -0.01 0.03 0.06 0.53 1.73 0.49 0.06 

ENSBTAG00000012077 -1.37 -2.77 -0.13 0.01 0.01 0.03 0.01 -0.01 

ENSBTAG00000012111 -1.35 -0.49 -0.11 0.01 0.04 0.05 0.06 -0.01 

ENSBTAG00000012222 0.05 0.01 0.05 0.32 0.31 0.08 0.11 -2.58 

ENSBTAG00000012305 -2.42 -0.60 -4.26 -0.09 -0.10 -0.01 -0.02 0.07 

ENSBTAG00000012307 -0.98 -0.14 -0.08 0.01 0.02 0.01 0.02 0.02 

ENSBTAG00000012475 1.43 1.76 1.45 -0.02 0.01 -0.01 0.00 0.01 

ENSBTAG00000012500 -0.03 -0.04 -0.11 -2.30 -1.24 -0.40 -0.60 -0.04 

ENSBTAG00000012558 -0.35 -0.29 -0.04 0.02 0.03 0.04 0.03 -1.73 

ENSBTAG00000012582 0.29 0.01 0.01 -0.62 -1.29 -0.40 -0.54 -0.01 

ENSBTAG00000012585 0.17 0.01 -0.01 -0.83 -0.46 -0.10 -0.17 -0.04 

ENSBTAG00000012615 -0.13 -0.23 -0.20 -0.27 -1.97 -0.77 -0.71 0.05 

ENSBTAG00000012632 0.25 0.04 0.12 0.01 0.04 0.07 0.05 0.94 

ENSBTAG00000012693 -1.57 -0.04 -0.02 -0.23 -0.06 -0.21 -0.11 0.07 

ENSBTAG00000012700 -0.24 -0.08 -0.03 0.02 0.00 0.01 0.00 1.22 

ENSBTAG00000012738 0.07 0.05 0.01 -0.05 -0.07 -0.04 -0.06 2.54 

ENSBTAG00000012800 -0.01 -0.50 -0.07 -1.11 -0.53 -0.04 -0.14 0.00 

ENSBTAG00000012981 0.45 0.10 2.40 0.36 7.08 2.93 5.68 0.24 

ENSBTAG00000012988 -0.17 -0.12 -0.02 -1.05 -0.33 -0.04 -0.07 0.36 

ENSBTAG00000013047 -0.11 -0.14 -0.38 -8.12 -7.59 -8.50 -5.29 -0.37 

ENSBTAG00000013048 0.03 -0.01 0.11 -0.01 0.01 0.00 0.02 1.46 

ENSBTAG00000013099 -0.01 -0.02 0.00 0.00 0.01 0.03 0.03 -2.20 

ENSBTAG00000013100 0.00 0.01 0.00 0.00 -0.01 -0.06 -0.03 2.55 

ENSBTAG00000013116 -0.05 -0.01 -0.02 -0.07 -0.09 -0.13 -0.10 -6.48 

ENSBTAG00000013117 -0.12 -0.03 -0.02 -0.24 -0.12 -0.06 -0.07 14.06 

ENSBTAG00000013153 0.01 -0.01 0.01 1.58 0.32 0.11 0.17 0.15 

ENSBTAG00000013203 -0.01 0.00 0.01 4.51 0.10 0.06 0.10 0.09 

ENSBTAG00000013221 -0.26 -0.45 -3.05 -0.16 -0.54 -1.11 -0.44 -0.40 
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ENSBTAG00000013226 -0.03 -0.01 -0.08 -2.05 -1.82 -0.18 -0.39 -0.13 

ENSBTAG00000013281 0.00 0.00 0.03 0.01 0.04 0.02 0.03 1.45 

ENSBTAG00000013407 -0.29 -0.91 -0.46 -1.09 -0.13 -0.02 -0.04 0.07 

ENSBTAG00000013495 0.02 -0.03 -0.03 -0.06 -0.07 -0.03 -0.05 -1.22 

ENSBTAG00000013551 0.06 0.05 0.05 0.06 0.01 0.00 0.02 -1.33 

ENSBTAG00000013578 -1.36 -0.96 -0.20 -0.04 -0.01 -0.02 -0.02 0.14 

ENSBTAG00000013629 -1.11 -0.25 -0.17 0.03 0.03 0.02 0.02 0.38 

ENSBTAG00000013632 0.01 0.05 0.11 0.00 0.03 0.02 0.03 1.06 

ENSBTAG00000013730 -0.06 -0.02 -0.05 0.36 0.18 1.27 0.47 0.11 

ENSBTAG00000013792 -0.27 -1.48 -3.47 -0.07 -0.06 -0.11 -0.08 -0.13 

ENSBTAG00000013856 -0.08 -0.04 0.02 -0.19 -0.24 -1.00 -0.77 -0.01 

ENSBTAG00000013861 0.03 -0.02 0.09 2.25 1.11 0.24 0.37 -0.02 

ENSBTAG00000013869 -9.66 -0.30 -0.69 0.04 0.10 0.34 0.12 -0.01 

ENSBTAG00000013912 -0.03 -0.03 -1.10 -0.03 -0.08 -0.94 -0.19 0.28 

ENSBTAG00000013935 -0.01 -0.02 -0.49 -0.56 -2.24 -0.25 -0.39 -0.24 

ENSBTAG00000014058 -0.38 -0.06 -0.01 -0.09 -0.22 -0.09 -0.13 -1.88 

ENSBTAG00000014063 -0.08 -1.38 -1.00 -0.11 -0.13 -0.04 -0.09 0.10 

ENSBTAG00000014092 0.44 0.12 2.56 0.36 6.86 2.71 5.44 0.20 

ENSBTAG00000014124 0.77 0.44 0.22 2.06 1.52 0.45 0.64 -0.04 

ENSBTAG00000014132 -2.11 -1.53 -1.89 -0.54 -0.16 -0.09 -0.13 -0.04 

ENSBTAG00000014225 -0.03 -0.01 0.00 0.06 0.01 0.04 0.04 -1.35 

ENSBTAG00000014227 -0.21 -0.22 -0.40 -0.74 -0.51 -0.07 -0.18 -1.78 

ENSBTAG00000014284 0.06 0.57 0.98 0.13 0.05 0.07 0.04 -1.26 

ENSBTAG00000014289 0.29 1.03 0.05 0.00 0.04 0.10 0.07 -0.01 

ENSBTAG00000014295 -26.84 -1.33 -5.82 -0.56 -0.38 -0.14 -0.33 -0.04 

ENSBTAG00000014304 -6.73 -2.88 -3.35 -0.12 -0.18 -0.23 -0.19 -0.16 

ENSBTAG00000014306 -0.21 -0.03 -0.11 -0.02 -0.05 -0.13 -0.10 -1.59 

ENSBTAG00000014376 1.78 0.38 0.29 0.02 0.01 0.01 0.01 -0.16 

ENSBTAG00000014418 1.73 5.17 0.15 -0.08 -0.25 -0.18 -0.18 -0.14 

ENSBTAG00000014463 -2.37 -1.60 -11.42 -0.06 -0.02 0.00 0.00 0.08 

ENSBTAG00000014476 -0.17 -1.35 -0.18 -0.22 -0.09 -0.10 -0.08 0.22 

ENSBTAG00000014482 -0.20 -0.35 -0.04 -0.05 -0.21 -4.77 -0.81 0.05 

ENSBTAG00000014495 -0.15 -0.03 -0.05 -1.14 -0.48 -1.38 -0.35 0.03 

ENSBTAG00000014543 0.33 0.21 0.35 1.85 0.20 0.01 0.04 -0.55 

ENSBTAG00000014551 0.10 0.04 0.01 0.00 -0.02 -0.03 -0.05 1.26 

ENSBTAG00000014575 -0.07 -0.03 0.00 1.11 0.08 0.10 0.12 -0.16 

ENSBTAG00000013117 -0.12 -0.03 -0.02 -0.24 -0.12 -0.06 -0.07 14.06 

ENSBTAG00000013153 0.01 -0.01 0.01 1.58 0.32 0.11 0.17 0.15 

ENSBTAG00000013203 -0.01 0.00 0.01 4.51 0.10 0.06 0.10 0.09 

ENSBTAG00000013221 -0.26 -0.45 -3.05 -0.16 -0.54 -1.11 -0.44 -0.40 

ENSBTAG00000013226 -0.03 -0.01 -0.08 -2.05 -1.82 -0.18 -0.39 -0.13 
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ENSBTAG00000013281 0.00 0.00 0.03 0.01 0.04 0.02 0.03 1.45 

ENSBTAG00000013407 -0.29 -0.91 -0.46 -1.09 -0.13 -0.02 -0.04 0.07 

ENSBTAG00000013495 0.02 -0.03 -0.03 -0.06 -0.07 -0.03 -0.05 -1.22 

ENSBTAG00000013551 0.06 0.05 0.05 0.06 0.01 0.00 0.02 -1.33 

ENSBTAG00000013578 -1.36 -0.96 -0.20 -0.04 -0.01 -0.02 -0.02 0.14 

ENSBTAG00000013629 -1.11 -0.25 -0.17 0.03 0.03 0.02 0.02 0.38 

ENSBTAG00000013632 0.01 0.05 0.11 0.00 0.03 0.02 0.03 1.06 

ENSBTAG00000013730 -0.06 -0.02 -0.05 0.36 0.18 1.27 0.47 0.11 

ENSBTAG00000013792 -0.27 -1.48 -3.47 -0.07 -0.06 -0.11 -0.08 -0.13 

ENSBTAG00000013856 -0.08 -0.04 0.02 -0.19 -0.24 -1.00 -0.77 -0.01 

ENSBTAG00000013861 0.03 -0.02 0.09 2.25 1.11 0.24 0.37 -0.02 

ENSBTAG00000013869 -9.66 -0.30 -0.69 0.04 0.10 0.34 0.12 -0.01 

ENSBTAG00000013912 -0.03 -0.03 -1.10 -0.03 -0.08 -0.94 -0.19 0.28 

ENSBTAG00000013935 -0.01 -0.02 -0.49 -0.56 -2.24 -0.25 -0.39 -0.24 

ENSBTAG00000014058 -0.38 -0.06 -0.01 -0.09 -0.22 -0.09 -0.13 -1.88 

ENSBTAG00000014063 -0.08 -1.38 -1.00 -0.11 -0.13 -0.04 -0.09 0.10 

ENSBTAG00000014092 0.44 0.12 2.56 0.36 6.86 2.71 5.44 0.20 

ENSBTAG00000014124 0.77 0.44 0.22 2.06 1.52 0.45 0.64 -0.04 

ENSBTAG00000014132 -2.11 -1.53 -1.89 -0.54 -0.16 -0.09 -0.13 -0.04 

ENSBTAG00000014225 -0.03 -0.01 0.00 0.06 0.01 0.04 0.04 -1.35 

ENSBTAG00000014227 -0.21 -0.22 -0.40 -0.74 -0.51 -0.07 -0.18 -1.78 

ENSBTAG00000014284 0.06 0.57 0.98 0.13 0.05 0.07 0.04 -1.26 

ENSBTAG00000014289 0.29 1.03 0.05 0.00 0.04 0.10 0.07 -0.01 

ENSBTAG00000014295 -26.84 -1.33 -5.82 -0.56 -0.38 -0.14 -0.33 -0.04 

ENSBTAG00000014304 -6.73 -2.88 -3.35 -0.12 -0.18 -0.23 -0.19 -0.16 

ENSBTAG00000014306 -0.21 -0.03 -0.11 -0.02 -0.05 -0.13 -0.10 -1.59 

ENSBTAG00000014376 1.78 0.38 0.29 0.02 0.01 0.01 0.01 -0.16 

ENSBTAG00000014418 1.73 5.17 0.15 -0.08 -0.25 -0.18 -0.18 -0.14 

ENSBTAG00000014463 -2.37 -1.60 -11.42 -0.06 -0.02 0.00 0.00 0.08 

ENSBTAG00000014476 -0.17 -1.35 -0.18 -0.22 -0.09 -0.10 -0.08 0.22 

ENSBTAG00000014482 -0.20 -0.35 -0.04 -0.05 -0.21 -4.77 -0.81 0.05 

ENSBTAG00000014495 -0.15 -0.03 -0.05 -1.14 -0.48 -1.38 -0.35 0.03 

ENSBTAG00000014543 0.33 0.21 0.35 1.85 0.20 0.01 0.04 -0.55 

ENSBTAG00000014551 0.10 0.04 0.01 0.00 -0.02 -0.03 -0.05 1.26 

ENSBTAG00000014575 -0.07 -0.03 0.00 1.11 0.08 0.10 0.12 -0.16 

ENSBTAG00000014643 0.02 0.25 0.16 3.84 0.91 0.85 0.57 -0.21 

ENSBTAG00000014652 -1.65 -0.17 -0.70 -0.04 -0.03 0.01 -0.01 -0.01 

ENSBTAG00000014784 -2.21 -1.46 -1.90 -0.15 -0.02 -0.01 -0.02 0.00 

ENSBTAG00000014800 2.32 0.18 0.31 0.12 0.04 -0.01 0.02 0.15 

ENSBTAG00000014823 0.02 -0.02 -0.01 0.00 0.01 -0.03 -0.02 -2.80 

ENSBTAG00000014836 -0.30 -1.77 -0.33 0.02 0.03 0.01 0.02 0.10 
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ENSBTAG00000014913 1.38 0.21 0.14 0.22 0.13 0.09 0.10 0.11 

ENSBTAG00000014974 -0.11 -0.29 -0.04 -0.22 -0.42 -1.29 -0.89 -0.03 

ENSBTAG00000014981 0.06 0.05 0.04 7.95 0.55 0.25 0.23 -0.94 

ENSBTAG00000015025 -0.16 -0.08 -0.78 -1.70 -0.21 -0.02 -0.08 -0.41 

ENSBTAG00000015058 -0.05 0.02 -0.01 -0.21 -0.37 -1.24 -0.49 0.01 

ENSBTAG00000015235 0.07 0.00 0.01 -0.01 -0.02 0.00 -0.01 -12.83 

ENSBTAG00000015273 2.62 0.72 2.12 0.35 0.68 0.12 0.25 0.01 

ENSBTAG00000015307 1.38 0.08 0.32 -0.01 0.00 -0.02 -0.01 0.03 

ENSBTAG00000015311 0.12 -0.03 -0.01 -1.34 -0.32 -0.35 -0.25 0.27 

ENSBTAG00000015392 -1.01 -0.83 -0.12 -1.05 -1.21 -0.56 -1.01 0.08 

ENSBTAG00000015413 -0.01 0.11 0.03 0.23 0.44 1.33 0.41 0.01 

ENSBTAG00000015416 -1.21 -0.06 -0.08 -0.01 -0.02 -0.05 -0.02 0.04 

ENSBTAG00000015427 0.02 -0.01 -0.03 -0.01 0.01 0.02 0.01 -4.52 

ENSBTAG00000015459 0.06 0.02 0.06 0.07 0.34 1.97 0.92 0.04 

ENSBTAG00000015512 -0.46 -1.61 -0.31 0.01 0.00 0.00 0.01 0.01 

ENSBTAG00000015580 0.05 0.01 0.01 1.19 0.28 0.17 0.29 0.29 

ENSBTAG00000015596 0.05 0.05 0.01 0.07 2.20 1.06 1.44 -0.02 

ENSBTAG00000015698 0.72 1.12 0.01 0.06 0.06 0.08 0.04 0.06 

ENSBTAG00000015732 -6.33 -0.14 -0.02 0.06 0.05 0.01 0.02 0.15 

ENSBTAG00000015763 7.50 2.60 0.28 0.00 0.01 -0.01 0.00 0.09 

ENSBTAG00000015782 -0.06 -0.04 -0.06 -0.85 -0.10 0.00 -0.04 -0.05 

ENSBTAG00000015835 1.90 3.43 0.57 -0.01 0.01 0.02 0.01 0.06 

ENSBTAG00000015839 -0.09 -0.14 -0.10 -1.48 -0.31 0.02 -0.04 0.03 

ENSBTAG00000015840 0.01 -0.01 -0.01 0.01 0.09 0.17 0.14 1.10 

ENSBTAG00000015880 -0.27 -0.26 -0.02 0.01 0.01 -0.01 -0.01 2.24 

ENSBTAG00000015894 -0.02 -0.02 0.01 0.22 0.98 0.12 0.24 -0.01 

ENSBTAG00000015904 -0.04 0.01 0.00 -0.01 -0.04 -0.02 -0.04 -1.24 

ENSBTAG00000015930 -0.38 -1.02 -0.14 -0.02 -0.02 -0.03 -0.02 -0.32 

ENSBTAG00000015955 0.95 23.54 80.83 90.10 120.44 118.19 140.37 -0.07 

ENSBTAG00000015958 0.05 -0.04 -0.01 -1.45 -1.13 -3.06 -1.35 -0.29 

ENSBTAG00000015974 -0.41 -5.59 -0.05 0.00 0.01 0.01 0.00 -0.08 

ENSBTAG00000016080 0.08 0.02 0.01 -0.04 -1.26 -1.47 -1.52 -0.02 

ENSBTAG00000016208 0.81 0.01 0.04 -1.14 -0.61 -0.78 -0.54 -0.07 

ENSBTAG00000016274 -2.90 -0.58 -0.14 0.03 0.06 0.06 0.04 -0.04 

ENSBTAG00000016277 -0.07 0.01 -0.01 0.21 1.24 2.56 1.26 -0.08 

ENSBTAG00000016355 0.05 0.00 0.09 0.51 1.21 0.27 0.44 -0.10 

ENSBTAG00000016368 -0.11 0.01 -0.03 -0.07 -0.39 -0.92 -0.82 0.03 

ENSBTAG00000016378 -0.60 -0.49 -9.59 -2.43 -2.08 -1.02 -1.13 -0.04 

ENSBTAG00000016387 -1.71 -0.63 -3.37 -0.20 -0.64 -0.10 -0.29 0.03 

ENSBTAG00000016396 0.04 2.28 0.07 0.02 0.02 0.13 0.05 0.08 

ENSBTAG00000016456 -1.75 -0.30 -1.05 -0.14 -0.05 -0.02 -0.06 0.03 
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ENSBTAG00000016524 0.07 0.04 0.26 0.00 0.00 0.05 0.04 -1.65 

ENSBTAG00000016546 1.10 0.24 0.46 0.02 0.00 0.00 -0.01 -0.19 

ENSBTAG00000016640 8.24 0.16 0.22 -0.03 0.00 -0.02 -0.01 -0.16 

ENSBTAG00000016662 0.02 0.05 0.05 0.00 0.01 0.03 0.03 -1.07 

ENSBTAG00000016684 0.02 0.04 0.07 -0.01 -0.01 0.03 0.01 -1.66 

ENSBTAG00000016782 -0.14 -0.96 -0.02 0.00 0.02 0.06 0.04 -0.17 

ENSBTAG00000016890 0.01 0.10 0.02 -0.01 0.02 0.02 0.03 1.26 

ENSBTAG00000016915 1.91 0.26 0.18 0.05 0.06 0.05 0.08 -0.04 

ENSBTAG00000016951 -0.50 -2.03 -0.49 -0.06 -0.04 -0.10 -0.09 0.11 

ENSBTAG00000016984 2.19 4.05 2.42 0.04 0.03 0.02 0.02 -0.06 

ENSBTAG00000017032 1.39 0.47 0.48 0.48 1.35 0.08 0.42 0.05 

ENSBTAG00000017051 -0.09 -0.07 -0.07 -1.24 -0.23 -0.01 -0.08 0.28 

ENSBTAG00000017096 0.17 3.48 0.08 0.03 0.05 0.11 0.07 0.02 

ENSBTAG00000017133 -0.18 -0.04 -0.10 -3.51 -3.52 -1.33 -2.79 -0.04 

ENSBTAG00000017137 -0.27 -0.04 0.00 0.06 0.99 0.62 0.60 -0.12 

ENSBTAG00000017165 -0.04 -0.01 -0.35 -1.49 -0.55 -0.15 -0.40 0.13 

ENSBTAG00000017181 -0.04 -0.06 -0.50 -0.93 -0.41 -0.31 -0.21 -0.16 

ENSBTAG00000017195 -0.98 -0.85 -1.21 0.00 -0.01 0.00 0.00 0.02 

ENSBTAG00000017225 -0.03 0.01 0.00 0.01 -0.01 0.01 0.00 -1.56 

ENSBTAG00000017239 0.12 0.03 0.04 1.73 0.24 0.06 0.09 0.02 

ENSBTAG00000017253 -0.02 -0.01 -0.03 -3.50 -0.85 -0.72 -0.43 0.04 

ENSBTAG00000017310 -0.11 -0.24 -0.06 -0.02 -0.13 0.00 -0.03 -1.61 

ENSBTAG00000017325 -0.17 -0.29 0.00 -0.01 -0.01 0.00 0.01 1.15 

ENSBTAG00000017350 0.53 0.17 0.28 2.02 1.06 0.15 0.28 0.30 

ENSBTAG00000017397 0.95 0.25 0.10 0.02 0.01 0.01 0.00 -0.02 

ENSBTAG00000017458 -1.15 -2.40 -0.08 -0.02 -0.08 -0.03 -0.09 0.02 

ENSBTAG00000017489 -0.11 -0.09 -0.06 -0.18 -1.81 -0.37 -0.93 -4.09 

ENSBTAG00000017537 0.44 8.97 2.81 0.04 0.09 0.14 0.10 -0.02 

ENSBTAG00000017593 0.63 1.82 0.12 -0.01 0.01 0.02 0.01 0.06 

ENSBTAG00000017661 2.62 2.64 0.18 0.00 -0.04 -0.01 -0.02 -0.06 

ENSBTAG00000017719 -0.46 -3.37 -0.03 0.00 0.01 0.01 0.00 0.13 

ENSBTAG00000017731 -0.17 -0.02 -0.17 0.00 0.01 0.00 0.01 2.98 

ENSBTAG00000017753 -1.07 -0.23 -0.32 -0.01 0.00 -0.03 -0.01 0.08 

ENSBTAG00000017764 0.21 0.11 0.25 3.71 2.53 0.60 1.34 0.14 

ENSBTAG00000017788 0.00 -0.05 -0.11 0.01 -0.01 0.00 0.00 -1.98 

ENSBTAG00000017808 1.14 0.75 0.29 0.03 0.01 -0.03 -0.01 0.00 

ENSBTAG00000017847 0.71 1.77 0.15 0.03 0.01 -0.04 0.00 0.14 

ENSBTAG00000018012 2.33 0.44 0.23 0.01 0.01 0.03 0.00 0.00 

ENSBTAG00000018133 -0.05 -0.09 -0.04 -0.06 -0.05 -0.02 -0.05 -2.01 

ENSBTAG00000018138 -0.08 0.03 0.01 0.00 0.00 -0.02 -0.01 1.72 

ENSBTAG00000018218 0.01 -0.02 0.00 -0.01 0.01 0.00 0.01 1.14 
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ENSBTAG00000018260 -0.51 -4.57 -1.34 -0.06 -0.02 -0.01 -0.02 0.17 

ENSBTAG00000018303 -0.01 -0.03 -0.10 -2.07 -0.70 -0.35 -0.42 -0.03 

ENSBTAG00000018404 -0.36 -2.09 -0.22 -0.15 -0.13 -0.15 -0.11 0.12 

ENSBTAG00000018430 -0.17 -0.13 -0.31 -1.56 -2.44 -0.27 -0.63 0.00 

ENSBTAG00000018465 1.93 4.18 0.22 -0.01 0.01 0.00 0.01 0.17 

ENSBTAG00000018488 0.00 -0.05 -0.01 0.00 0.01 0.02 0.02 -1.48 

ENSBTAG00000018501 2.19 4.41 0.93 0.01 -0.01 -0.02 -0.01 -0.02 

ENSBTAG00000018520 1.64 0.25 0.14 0.07 0.21 0.39 0.20 0.16 

ENSBTAG00000018540 -1.06 -0.51 -1.26 -0.01 -0.03 -0.01 -0.01 0.25 

ENSBTAG00000018616 1.42 0.12 0.27 -0.01 -0.02 -0.03 -0.03 -0.07 

ENSBTAG00000018629 -0.05 -0.05 0.00 0.12 0.27 1.10 0.67 -0.03 

ENSBTAG00000018631 -0.38 -2.04 -0.65 -0.06 -0.05 0.01 -0.02 -0.36 

ENSBTAG00000018657 0.33 0.09 0.24 24.06 3.16 0.73 1.55 -0.12 

ENSBTAG00000018851 -0.67 -1.10 -0.14 -0.04 -0.02 0.00 -0.01 0.06 

ENSBTAG00000018854 0.00 0.10 0.05 0.00 0.02 -0.02 -0.01 2.29 

ENSBTAG00000018855 0.00 -0.07 -0.03 0.00 -0.02 0.01 0.00 -2.55 

ENSBTAG00000018965 -1.34 -0.72 -0.25 0.00 0.08 0.08 0.12 0.21 

ENSBTAG00000019012 0.18 0.35 0.53 1.01 0.03 0.01 0.02 0.04 

ENSBTAG00000019041 -0.31 -2.27 -0.12 -0.04 -0.02 -0.01 -0.03 0.03 

ENSBTAG00000019043 -4.42 -3.78 -1.48 -0.03 -0.03 -0.02 -0.02 -0.23 

ENSBTAG00000019052 -1.19 -0.65 -0.03 0.03 0.03 0.05 0.03 -0.03 

ENSBTAG00000019072 -2.43 -0.28 -0.11 -0.02 0.02 0.07 0.05 0.05 

ENSBTAG00000019121 2.62 1.26 0.25 0.01 -0.06 -0.13 -0.07 -0.27 

ENSBTAG00000019159 2.77 0.27 4.88 0.09 0.18 0.06 0.12 -0.18 

ENSBTAG00000019302 -0.16 -1.17 -0.47 -0.03 -0.01 0.00 0.00 0.00 

ENSBTAG00000019327 -0.01 0.27 0.12 2.96 0.37 0.07 0.13 0.12 

ENSBTAG00000019350 0.08 0.08 0.72 0.06 0.04 0.04 0.03 -1.14 

ENSBTAG00000019373 2.11 0.98 0.16 0.33 0.30 0.13 0.21 0.02 

ENSBTAG00000019382 2.50 0.35 0.37 0.07 0.10 0.06 0.09 -0.03 

ENSBTAG00000019426 -0.09 -0.06 -1.55 -0.33 -2.35 -10.85 -4.82 -0.03 

ENSBTAG00000019458 -1.08 -0.92 -1.02 -0.12 -0.01 0.03 0.00 -0.52 

ENSBTAG00000019532 -0.03 0.02 0.03 0.03 0.15 0.17 0.19 1.08 

ENSBTAG00000019545 -1.13 -23.38 -0.95 -0.06 -0.04 0.00 -0.01 -0.06 

ENSBTAG00000019625 -0.26 -2.11 -0.70 -0.02 0.00 -0.03 -0.01 0.05 

ENSBTAG00000019644 -0.44 -0.54 -0.42 -0.61 -0.74 -0.56 -0.47 -1.94 

ENSBTAG00000019651 -0.03 -3.58 -0.24 -0.06 -0.10 0.00 -0.05 -0.44 

ENSBTAG00000019719 0.02 -0.09 -0.05 -0.13 -0.69 -5.51 -0.90 -0.37 

ENSBTAG00000019752 0.08 0.01 0.09 0.01 -0.01 -0.04 0.00 -1.27 

ENSBTAG00000019761 0.05 -0.01 0.12 1.14 0.36 0.08 0.15 0.30 

ENSBTAG00000019793 -0.04 -0.03 -0.03 -0.47 -0.74 -0.93 -0.60 0.41 

ENSBTAG00000019794 -1.62 -0.16 -0.37 -0.16 -0.08 -0.01 -0.04 -0.75 
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ENSBTAG00000019811 -0.02 -0.13 -0.02 -0.02 -0.03 -0.06 -0.04 -1.04 

ENSBTAG00000019821 -0.05 -0.34 -0.19 -1.08 -0.19 -0.04 -0.10 -0.01 

ENSBTAG00000019889 -0.09 0.02 -0.02 -0.02 -0.06 0.01 -0.02 -1.19 

ENSBTAG00000019915 1.21 0.28 0.32 0.00 0.01 -0.02 -0.01 -0.16 

ENSBTAG00000019989 -5.14 -0.47 -0.27 -0.01 0.00 0.00 0.00 0.11 

ENSBTAG00000019997 -0.01 -0.01 -0.01 -1.42 -0.34 -0.09 -0.13 0.02 

ENSBTAG00000020014 0.00 -0.03 -0.01 -0.23 -3.13 -0.41 -1.19 -0.08 

ENSBTAG00000020048 -0.10 -0.01 -0.02 0.02 0.01 0.02 0.01 2.77 

ENSBTAG00000020067 -1.34 -0.51 -0.72 -0.02 -0.02 0.00 -0.01 -0.13 

ENSBTAG00000020096 -1.45 -0.16 -0.15 0.01 0.03 0.05 0.05 0.09 

ENSBTAG00000020125 0.09 0.03 0.16 0.19 1.49 0.51 0.66 -0.01 

ENSBTAG00000020225 -0.89 -0.96 -8.40 -0.17 -0.02 0.00 -0.01 0.29 

ENSBTAG00000020244 -0.42 -1.25 -0.15 0.00 -0.01 -0.01 -0.01 -0.12 

ENSBTAG00000020407 0.02 -0.01 0.04 -0.04 -0.05 -0.05 -0.07 -0.99 

ENSBTAG00000020434 -0.04 -0.04 0.03 0.19 1.30 0.10 0.43 0.28 

ENSBTAG00000020455 -0.09 -0.07 -0.35 -1.12 -0.84 -0.26 -0.49 0.02 

ENSBTAG00000020648 0.98 0.48 0.21 0.04 0.01 0.01 0.02 0.10 

ENSBTAG00000020654 -1.31 -1.83 -0.35 -0.03 -0.17 -0.04 -0.06 -0.31 

ENSBTAG00000020661 0.12 0.16 0.12 1.00 5.79 0.45 1.00 0.24 

ENSBTAG00000020671 0.05 0.04 0.00 -3.99 -0.22 -0.19 -0.14 0.61 

ENSBTAG00000020679 0.05 0.06 0.15 0.04 0.13 0.03 0.07 4.14 

ENSBTAG00000020726 -0.07 -0.04 -0.02 -0.02 0.04 0.13 0.08 2.90 

ENSBTAG00000020750 2.05 0.20 0.16 -0.01 0.00 0.02 0.02 -0.03 

ENSBTAG00000020769 -0.04 -0.14 -0.02 -0.69 -0.59 -0.97 -0.63 0.06 

ENSBTAG00000020839 -0.01 -0.01 0.00 0.06 0.89 0.11 0.55 0.13 

ENSBTAG00000020858 0.00 -0.02 0.00 0.23 1.54 1.03 1.46 0.01 

ENSBTAG00000020958 -0.11 -0.40 -0.75 -0.10 -0.50 -4.25 -0.80 -0.46 

ENSBTAG00000021029 -0.04 0.05 0.08 5.42 10.58 2.54 1.81 4.53 

ENSBTAG00000021036 0.63 0.32 0.00 -0.12 -1.39 -0.11 -0.25 -0.49 

ENSBTAG00000021064 1.36 0.46 0.52 0.04 0.07 0.16 0.12 -0.10 

ENSBTAG00000021098 0.00 -0.06 -0.04 -0.47 -2.07 -0.14 -0.39 0.00 

ENSBTAG00000021133 1.49 -0.01 0.03 -0.08 0.00 -0.05 -0.03 -0.31 

ENSBTAG00000021190 -0.04 -0.03 -0.36 -1.02 -3.28 -1.03 -0.93 -0.21 

ENSBTAG00000021209 -0.96 -1.05 -0.22 -0.03 -0.05 -0.04 -0.08 0.14 

ENSBTAG00000021216 0.00 -0.08 -0.04 -8.19 -2.93 -0.62 -0.94 -0.03 

ENSBTAG00000021217 0.94 0.16 1.57 0.38 0.30 0.35 0.36 0.07 

ENSBTAG00000021231 1.27 0.56 0.93 0.09 0.04 0.02 0.02 0.09 

ENSBTAG00000021291 0.09 0.08 0.02 -0.01 0.00 0.00 0.00 -1.35 

ENSBTAG00000021307 -0.16 -0.52 -0.26 -1.38 -0.33 -0.09 -0.15 0.01 

ENSBTAG00000021365 2.71 1.72 0.70 1.14 0.91 0.14 0.36 0.44 

ENSBTAG00000021381 -0.01 -0.01 -0.09 -1.00 -0.19 -0.01 -0.09 0.01 
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ENSBTAG00000021416 -0.04 -5.62 -0.14 -0.16 -0.04 -0.03 -0.02 -0.19 

ENSBTAG00000021538 -0.01 -0.02 -0.04 -0.09 -0.26 -0.30 -0.27 -1.38 

ENSBTAG00000021543 -0.73 -0.14 -0.05 0.07 0.31 2.08 0.78 0.00 

ENSBTAG00000021673 0.08 0.02 0.00 -1.51 -0.58 -0.40 -0.21 0.21 

ENSBTAG00000021841 -2.50 -1.77 -0.89 -0.03 -0.09 -0.05 -0.11 0.04 

ENSBTAG00000021879 2.63 2.37 1.13 1.03 1.15 0.19 0.37 0.12 

ENSBTAG00000021880 -0.04 0.00 -0.02 0.05 0.15 0.02 0.08 1.50 

ENSBTAG00000021885 -0.27 -0.15 -0.66 -0.47 -0.43 -3.06 -0.94 -0.19 

ENSBTAG00000021902 0.00 -0.01 0.00 8.58 23.43 1.46 5.46 0.06 

ENSBTAG00000021911 -0.06 0.00 -0.05 -0.28 -0.09 -0.10 -0.12 -1.79 

ENSBTAG00000021919 -0.05 0.03 0.08 -0.01 0.00 -0.03 0.00 1.96 

ENSBTAG00000021964 0.03 -0.03 0.00 -0.85 -0.26 -0.07 -0.15 -0.07 

ENSBTAG00000021978 -0.06 -0.02 -0.09 -3.53 -1.00 -0.11 -0.33 0.07 

ENSBTAG00000021999 -2.71 -0.44 -0.12 -1.87 -2.42 -0.65 -0.88 -0.10 

ENSBTAG00000022004 -1.61 -0.41 -0.09 0.02 0.03 0.00 0.02 0.03 

ENSBTAG00000022058 1.21 0.23 0.08 0.00 0.02 0.03 0.03 0.15 

ENSBTAG00000022169 0.09 0.48 0.03 0.07 0.19 0.79 0.22 0.05 

ENSBTAG00000022288 -0.02 -0.01 -0.01 0.01 0.01 0.01 0.01 1.03 

ENSBTAG00000022528 -1.16 -0.44 -0.31 -0.09 -0.02 -0.01 -0.02 -0.05 

ENSBTAG00000022588 -1.84 -0.06 -0.14 -0.01 -0.03 -0.10 -0.04 0.12 

ENSBTAG00000022887 0.00 -0.01 -0.16 -0.06 -0.43 -1.85 -0.73 -0.02 

ENSBTAG00000022920 -0.05 -0.03 -0.05 -0.26 -3.68 -2.24 -2.87 -0.06 

ENSBTAG00000022991 -13.60 -2.17 -4.55 -0.10 -0.05 -0.03 -0.04 -0.28 

ENSBTAG00000023216 4.61 0.15 0.07 0.02 0.00 0.01 0.02 0.01 

ENSBTAG00000023377 -1.11 -0.11 -0.03 0.00 0.01 0.01 0.02 -0.32 

ENSBTAG00000023718 0.06 0.09 0.07 0.03 0.12 0.00 0.06 0.91 

ENSBTAG00000023920 -0.04 -0.02 0.20 0.48 5.89 3.13 2.44 0.09 

ENSBTAG00000024015 -0.02 -0.03 -0.03 -2.88 -0.19 -0.05 -0.09 0.16 

ENSBTAG00000024188 1.08 0.09 0.05 0.10 0.02 0.03 0.05 0.07 

ENSBTAG00000024420 2.78 0.09 0.05 0.00 0.00 -0.03 -0.02 0.01 

ENSBTAG00000024482 20.47 1.22 2.19 0.01 -0.04 -0.02 -0.04 -0.15 

ENSBTAG00000024545 0.04 0.01 -0.11 0.00 0.02 0.03 0.04 1.43 

ENSBTAG00000025035 0.00 0.00 0.00 -0.12 -0.63 -1.09 -0.68 0.00 

ENSBTAG00000025078 0.07 0.00 0.03 -0.34 -0.92 -0.24 -0.34 -5.99 

ENSBTAG00000025200 -0.01 0.05 0.11 6.16 1.45 0.20 0.45 0.49 

ENSBTAG00000025450 -0.01 -0.06 0.01 0.05 0.01 0.02 0.03 -1.01 

ENSBTAG00000025485 -0.20 -0.08 -0.15 -2.08 -1.12 -0.40 -1.00 -0.03 

ENSBTAG00000025642 0.02 0.00 -0.06 -0.10 -0.30 -1.09 -0.60 -0.12 

ENSBTAG00000025942 -1.53 -0.38 -0.12 -0.02 -0.01 0.01 0.00 -0.06 

ENSBTAG00000026133 1.77 0.63 0.23 0.04 0.07 0.07 0.06 0.01 

ENSBTAG00000026234 -0.11 -0.01 -0.26 -3.50 -7.56 -0.61 -1.20 0.17 
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ENSBTAG00000027064 -1.90 -4.16 -0.41 -0.05 -0.03 -0.03 -0.02 0.12 

ENSBTAG00000027134 -0.01 0.02 -0.15 -0.34 -0.52 -1.50 -0.57 0.00 

ENSBTAG00000027173 -31.18 -60.99 -0.87 -0.03 -0.04 -0.04 -0.06 -0.06 

ENSBTAG00000027182 -0.01 0.06 0.01 0.06 0.69 1.62 0.98 0.04 

ENSBTAG00000027327 0.01 0.05 0.05 0.18 1.63 0.15 0.35 0.11 

ENSBTAG00000027629 -0.33 -0.07 -0.13 -1.50 -0.90 -0.37 -0.69 -0.16 

ENSBTAG00000027665 0.04 0.04 0.05 0.03 0.09 0.06 0.08 1.31 

ENSBTAG00000030175 0.47 1.20 0.53 0.03 0.05 0.06 0.06 0.02 

ENSBTAG00000030366 -0.93 -3.43 -0.29 -0.07 -0.02 0.00 -0.01 -0.04 

ENSBTAG00000030599 -1.40 -0.57 -0.09 0.01 0.04 0.02 0.03 0.00 

ENSBTAG00000030669 0.13 1.60 0.06 0.00 -0.01 0.00 -0.01 0.01 

ENSBTAG00000030817 2.30 0.06 0.23 0.12 0.35 0.09 0.14 -0.18 

ENSBTAG00000030990 0.16 0.09 0.53 0.10 1.37 4.54 1.28 -0.14 

ENSBTAG00000031178 -1.05 -0.11 -0.09 -0.04 -0.05 -0.02 -0.05 -0.01 

ENSBTAG00000031335 1.52 0.54 0.09 -0.01 -0.05 -0.05 -0.06 0.17 

ENSBTAG00000031395 -0.02 0.03 0.02 0.13 0.08 0.01 0.03 3.54 

ENSBTAG00000031561 -0.06 -0.04 -0.01 1.46 0.23 0.07 0.13 0.01 

ENSBTAG00000031567 -0.22 -0.54 -0.32 -1.34 -0.11 -0.02 -0.04 0.10 

ENSBTAG00000031654 2.38 0.41 4.59 0.10 0.08 0.09 0.11 -0.04 

ENSBTAG00000031686 -1.26 -0.20 -0.36 0.00 -0.01 -0.03 -0.01 0.03 

ENSBTAG00000031697 4.81 0.86 3.46 0.03 0.03 0.00 0.01 -0.06 

ENSBTAG00000031704 0.06 1.59 0.04 0.00 0.00 0.02 0.02 0.04 

ENSBTAG00000031707 0.59 0.05 0.25 0.00 0.01 -0.01 -0.01 -2.47 

ENSBTAG00000031898 2.91 0.27 4.32 -0.03 0.00 0.05 0.02 0.27 

ENSBTAG00000031967 -1.52 -0.65 -0.10 -0.01 0.00 -0.03 0.00 0.00 

ENSBTAG00000032077 1.14 0.36 0.22 0.00 0.02 0.02 0.04 0.04 

ENSBTAG00000032121 -0.09 -0.16 -0.07 -0.03 -1.38 -0.14 -0.31 0.00 

ENSBTAG00000032148 0.07 -0.04 0.01 -0.03 -0.03 -0.05 -0.05 3.86 

ENSBTAG00000032485 1.52 1.27 0.90 -0.03 -0.02 -0.03 -0.01 0.20 

ENSBTAG00000032519 -0.52 -0.50 -0.27 -0.35 -0.91 -0.91 -0.81 -0.03 

ENSBTAG00000032544 0.02 0.02 -0.01 -3.32 -2.99 -0.80 -0.94 0.11 

ENSBTAG00000032558 1.14 0.09 2.47 0.02 0.19 0.10 0.15 -0.08 

ENSBTAG00000032603 0.11 0.07 0.27 0.05 0.48 0.35 0.44 0.92 

ENSBTAG00000032684 0.12 0.18 0.00 0.18 1.35 0.32 0.52 -0.03 

ENSBTAG00000032719 -0.03 0.01 -0.02 0.00 -0.19 -0.06 -0.12 -1.84 

ENSBTAG00000032914 -0.09 -0.29 -0.01 -0.47 -0.78 -1.87 -0.79 -0.04 

ENSBTAG00000032951 0.11 2.53 3.18 0.09 0.18 0.30 0.19 0.13 

ENSBTAG00000033095 -0.05 -0.01 -0.04 -1.42 -1.58 -0.91 -0.58 0.20 

ENSBTAG00000033137 -0.27 -1.26 -0.07 -0.06 -0.03 -0.02 -0.03 -0.03 

ENSBTAG00000033180 -0.01 -0.03 -0.17 -2.14 -4.20 -2.50 -2.10 -1.34 

ENSBTAG00000033182 -0.02 -0.02 0.00 -0.04 -0.01 -0.07 -0.03 2.73 
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ENSBTAG00000033902 0.23 0.31 0.13 0.06 0.01 0.00 0.01 -2.42 

ENSBTAG00000033983 -5.54 -0.22 -0.30 0.01 -0.02 -0.05 -0.02 0.07 

ENSBTAG00000034441 0.02 -0.01 0.04 0.37 0.61 1.14 0.74 0.06 

ENSBTAG00000034827 -0.04 -0.01 -0.02 0.12 0.21 1.08 0.50 0.04 

ENSBTAG00000035030 -3.50 -0.26 -0.10 0.00 0.00 0.02 0.02 0.14 

ENSBTAG00000035084 0.04 0.07 0.51 1.58 5.49 1.05 0.87 -0.04 

ENSBTAG00000036287 -0.12 -0.02 -0.03 -0.13 -0.13 -0.05 -0.05 1.25 

ENSBTAG00000036349 0.23 1.82 0.56 -0.08 -0.04 0.00 -0.02 -0.07 

ENSBTAG00000037581 -0.26 -9.58 -0.64 -0.54 -6.36 -0.48 -1.65 -2.53 

ENSBTAG00000037717 -0.37 -1.52 -0.03 -0.02 -0.04 -0.06 -0.03 0.20 

ENSBTAG00000037786 4.24 0.19 0.13 -0.02 -0.08 -0.06 -0.08 0.17 

ENSBTAG00000037972 0.83 0.91 0.14 0.03 0.00 -0.01 0.00 -0.04 

ENSBTAG00000037980 2.91 0.35 5.17 1.09 0.12 0.13 0.12 -0.06 

ENSBTAG00000038180 -4.72 -0.16 -1.04 -0.06 -0.22 -0.15 -0.21 0.10 

ENSBTAG00000038181 0.08 -0.01 0.02 0.00 -0.01 0.02 0.01 -1.45 

ENSBTAG00000038251 -1.60 -0.27 -1.05 -0.02 -0.04 0.01 -0.02 0.04 

ENSBTAG00000038281 0.06 0.04 0.25 0.67 0.97 0.51 0.67 -0.01 

ENSBTAG00000038333 -0.71 -0.63 -13.32 -2.78 -2.28 -0.97 -1.10 -0.04 

ENSBTAG00000038340 -0.02 -0.04 -0.22 -0.12 -0.06 -0.02 -0.04 1.25 

ENSBTAG00000038347 -1.79 -0.82 -30.93 -0.03 0.00 0.00 0.01 0.22 

ENSBTAG00000038361 0.03 -0.01 -0.03 -2.06 -0.22 -0.09 -0.11 0.08 

ENSBTAG00000038495 -4.57 -5.04 -2.54 -0.06 -0.09 -0.03 -0.04 -0.10 

ENSBTAG00000038520 0.11 -0.07 -0.02 -0.01 -0.02 -0.01 -0.02 -1.14 

ENSBTAG00000038650 14.98 3.16 0.52 0.00 -0.02 -0.04 -0.06 -0.27 

ENSBTAG00000038687 -0.05 0.00 -0.04 -0.03 -0.02 -0.05 -0.04 2.58 

ENSBTAG00000038716 3.71 6.88 0.31 0.01 0.00 0.04 0.01 -0.36 

ENSBTAG00000038849 1.39 4.33 0.46 0.00 -0.01 -0.03 -0.04 -0.12 

ENSBTAG00000038920 -1.91 -0.51 -0.06 -0.01 0.00 0.01 0.00 0.06 

ENSBTAG00000039055 -0.37 -1.48 -0.08 -0.01 0.01 0.04 0.05 0.00 

ENSBTAG00000039080 -4.17 -2.64 -2.74 -0.06 -0.03 -0.01 -0.01 0.26 

ENSBTAG00000039091 0.39 0.40 0.21 0.06 0.17 0.15 0.15 1.02 

ENSBTAG00000039197 -0.03 0.05 0.01 -0.02 -0.01 -0.03 -0.03 3.68 

ENSBTAG00000040305 2.62 3.66 0.12 -0.03 -0.02 -0.01 -0.03 0.11 

ENSBTAG00000040496 0.13 3.53 0.26 0.03 0.01 -0.04 -0.01 0.03 

ENSBTAG00000042405 -0.21 -3.28 -0.04 0.06 0.14 0.82 0.19 -0.07 

ENSBTAG00000043312 -2.22 -0.72 -2.54 -0.01 0.02 0.06 0.06 0.02 

ENSBTAG00000043960 -0.04 0.04 0.04 0.43 0.07 0.20 0.07 7.23 

ENSBTAG00000043993 -0.07 -0.27 -0.20 -0.03 -0.30 -0.01 -0.09 -31.44 

ENSBTAG00000044006 -0.20 -0.17 -0.05 -0.38 -0.40 -1.06 -0.46 0.02 

ENSBTAG00000044038 -0.66 -1.25 -3.75 -0.11 -0.12 -0.07 -0.09 -0.08 

ENSBTAG00000044046 -0.02 -0.03 -0.04 -0.42 -1.29 -0.24 -0.43 -0.02 
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ENSBTAG00000044050 -0.01 -0.10 -0.23 -14.69 -26.46 -19.75 -39.92 -0.06 

ENSBTAG00000044119 0.07 -0.02 -0.07 -1.12 -0.46 -0.25 -0.44 -0.08 

ENSBTAG00000044158 -0.06 -0.25 -0.07 -1.44 -9.94 -1.68 -1.26 -0.85 

ENSBTAG00000045359 2.70 0.77 1.25 0.24 0.27 0.16 0.27 0.15 

ENSBTAG00000045644 0.00 -0.04 -0.03 -0.47 -2.08 -0.19 -0.45 0.00 

ENSBTAG00000045645 0.03 0.03 0.05 2.71 0.24 0.13 0.17 -0.06 

ENSBTAG00000045661 4.80 0.95 3.60 0.02 0.02 0.00 0.01 -0.06 

ENSBTAG00000045699 -2.31 -1.52 -1.38 -0.02 -0.02 -0.05 -0.03 0.11 

ENSBTAG00000045726 -0.09 -0.04 -0.08 -0.07 -0.15 -0.14 -0.21 -1.22 

ENSBTAG00000045868 0.10 0.06 0.07 -0.01 0.02 0.01 0.01 1.17 

ENSBTAG00000046176 0.05 0.04 0.08 4.16 2.49 0.24 0.63 -0.17 

ENSBTAG00000046199 1.42 0.05 0.04 0.00 0.00 -0.02 -0.02 0.09 

ENSBTAG00000046380 1.12 0.04 1.83 0.06 0.14 0.03 0.06 0.09 

ENSBTAG00000046462 0.10 0.06 0.00 -0.04 -0.02 0.01 -0.02 -2.13 

ENSBTAG00000046486 -3.11 -9.13 -2.46 -0.12 -0.91 -0.26 -0.28 0.04 

ENSBTAG00000046602 0.02 0.00 0.00 0.00 0.00 -0.01 -0.01 1.86 

ENSBTAG00000046723 1.97 0.41 0.19 0.00 0.02 0.02 0.03 -0.01 

ENSBTAG00000046763 1.93 0.38 0.14 -0.02 -0.02 -0.02 -0.01 -0.05 

ENSBTAG00000047450 -0.10 -0.10 -0.01 0.03 0.03 0.06 0.07 0.96 

ENSBTAG00000047611 -0.02 0.01 0.08 0.00 -0.01 0.02 -0.01 -1.27 

ENSBTAG00000047667 0.00 -0.04 -0.02 -1.48 -1.53 -0.40 -0.79 -0.09 

ENSBTAG00000047743 -3.61 -0.41 -0.13 -0.07 -0.11 -0.04 -0.08 -0.10 

ENSBTAG00000047834 -0.06 -0.02 0.01 0.28 0.05 0.04 0.04 -2.74 

ENSBTAG00000048020 0.11 0.05 0.01 0.02 0.01 -0.02 0.00 1.39 

ENSBTAG00000048113 0.05 0.08 -0.01 -0.01 0.00 -0.03 -0.02 -0.92 

ENSBTAG00000048316 2.56 0.43 0.71 0.00 -0.06 -0.05 -0.05 -0.02 
1
RAW: non-transformed PAP score; CAT3: three-category phenotype; CAT2: two-category phenotype; 

BWT: birth weight; WW: weaning weight; PWG: post-weaning gain; YW: yearling weight; MILK: 

maternal weaning weight. 
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APPENDIX 7.3. SIGNIFICANT GENE ONTOLOGY (GO) TERMS FROM GENE 

ENRICHMENT ANALYSIS OF GENES IN AN ASSOCIATED WEIGHT MATRIX ON 

YEARLING PAP PHENOTYPES AND GROWTH PERFORMANCE TRAITS IN ANGUS 

CATTLE MANAGED AT HIGH ALTITUDE (ELEVATION AT 2,170 M) 

 

GO
1
 ID P-value

2
 Name Num. Genes

3 

BP GO:0043087 0.02 regulation of GTPase activity 19 

BP GO:0051260 0.02 protein homooligomerization 12 

BP GO:0014009 0.03 glial cell proliferation 3 

BP GO:1904158 0.01 axonemal central apparatus assembly 2 

BP GO:0007214 0.01 gamma-aminobutyric acid signaling pathway 4 

BP GO:0003013 0.05 circulatory system process 15 

BP GO:0032787 0.01 monocarboxylic acid metabolic process 20 

BP GO:0006631 0.02 fatty acid metabolic process 14 

BP GO:0015800 0.05 acidic amino acid transport 3 

BP GO:0006835 0.02 dicarboxylic acid transport 5 

BP GO:0008150 0.00 biological_process 503 

BP GO:1901362 0.02 organic cyclic compound biosynthetic process 103 

BP GO:0019438 0.03 aromatic compound biosynthetic process 99 

BP GO:0051171 0.00 regulation of nitrogen compound metabolic 107 

BP GO:0009891 0.00 positive regulation of biosynthetic process 58 

BP GO:0031326 0.00 regulation of cellular biosynthetic process 104 

BP GO:0010033 0.02 response to organic substance 62 

BP GO:0051173 0.00 
positive regulation of nitrogen compound 

metabolic process 
60 

BP GO:0010771 0.02 
negative regulation of cell morphogenesis 

involved in differentiation 
7 

BP GO:0048678 0.00 response to axon injury 6 

BP GO:0006935 0.00 chemotaxis 22 

BP GO:0071391 0.01 cellular response to estrogen stimulus 3 

BP GO:0008344 0.03 adult locomotory behavior 7 

BP GO:0006873 0.01 cellular ion homeostasis 18 

BP GO:0021545 0.02 cranial nerve development 5 

BP GO:1903827 0.02 regulation of cellular protein localization 20 

BP GO:0019226 0.00 transmission of nerve impulse 11 

BP GO:0010628 0.00 positive regulation of gene expression 57 

BP GO:0090287 0.02 
regulation of cellular response to growth factor 

stimulus 
12 

BP GO:0060070 0.04 canonical Wnt signaling pathway 12 
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BP GO:0051056 0.01 
regulation of small GTPase mediated signal 

transduction 
13 

BP GO:0051252 0.04 regulation of RNA metabolic process 87 

BP GO:0006366 0.02 transcription from RNA polymerase II promoter 54 

BP GO:0009301 0.01 snRNA transcription 3 

BP GO:0006355 0.05 regulation of transcription, DNA-templated 83 

BP GO:0045860 0.03 positive regulation of protein kinase activity 16 

BP GO:0043405 0.03 regulation of MAP kinase activity 13 

BP GO:1902667 0.05 regulation of axon guidance 3 

BP GO:0043406 0.01 positive regulation of MAP kinase activity 10 

BP GO:0051016 0.04 barbed-end actin filament capping 3 

BP GO:2001238 0.01 
positive regulation of extrinsic apoptotic signaling 

pathway 
6 

BP GO:2001241 0.03 
positive regulation of extrinsic apoptotic signaling 

pathway in absence of ligand 
3 

BP GO:0099024 0.04 plasma membrane invagination 4 

BP GO:1902774 0.03 late endosome to lysosome transport 2 

BP GO:0000727 0.03 
double-strand break repair via break-induced 

replication 
2 

BP GO:0071670 0.03 smooth muscle cell chemotaxis 2 

BP GO:0034086 0.02 maintenance of sister chromatid cohesion 3 

BP GO:0007063 0.05 regulation of sister chromatid cohesion 3 

BP GO:0050890 0.03 cognition 11 

BP GO:0030817 0.05 regulation of cAMP biosynthetic process 7 

BP GO:0032228 0.05 regulation of synaptic transmission, GABAergic 3 

BP GO:1903321 0.02 
negative regulation of protein modification by 

small protein conjugation or removal 
6 

BP GO:0003199 0.03 
endocardial cushion to mesenchymal transition 

involved in heart valve formation 
2 

BP GO:1902259 0.02 
regulation of delayed rectifier potassium channel 

activity 
3 

BP GO:0007160 0.01 cell-matrix adhesion 11 

BP GO:0048545 0.05 response to steroid hormone 11 

BP GO:0048669 0.03 collateral sprouting in absence of injury 2 

BP GO:0040007 0.00 growth 38 

BP GO:0008152 0.00 metabolic process 304 

BP GO:0002376 0.01 immune system process 59 

keg KEGG:04024 0.05 cAMP signaling pathway 11 

keg KEGG:04724 0.03 Glutamatergic synapse 8 

keg KEGG:04510 0.00 Focal adhesion 13 

keg KEGG:04713 0.04 Circadian entrainment 7 

keg KEGG:04071 0.03 Sphingolipid signaling pathway 9 

keg KEGG:04933 0.03 
AGE-RAGE signaling pathway in diabetic 

complications 
8 
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keg KEGG:04918 0.01 Thyroid hormone synthesis 7 

keg KEGG:04066 0.02 HIF-1 signaling pathway 8 

keg KEGG:04728 0.02 Dopaminergic synapse 9 

keg KEGG:04911 0.04 Insulin secretion 7 

keg KEGG:04360 0.02 Axon guidance 11 

keg KEGG:04726 0.00 Serotonergic synapse 10 

keg KEGG:04340 0.03 Hedgehog signaling pathway 5 

keg KEGG:04014 0.02 Ras signaling pathway 13 

keg KEGG:04720 0.02 Long-term potentiation 6 
1
BP: Biological process; ke: KEGG pathway 

2
 Benjamini-Honchberg FDR corrected P-Value 

3
Num.Genes: number of genes in gene ontology term 

 

 

 

 

 

 

 

 


