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ABSTRACT 
 
 
 

ROTATION OF CELL SURFACE AND DISSOLVED BIOMOLECULES EXAMINED BY  
 

FLUORESCENCE IMAGING, TIME-TAGGED SINGLE-PHOTON COUNTING, AND  
 

FLUORESCENCE DEPLETION ANISOTROPY  
 
 
 

 In this dissertation, I discuss our studies examining protein rotation both in solution and 

on single cells. Chapter I gives background on physics of rotational diffusion, the application of 

these measurements to cellular systems, and a general overview of the field, including a survey 

of techniques that have been used to measure rotation of membrane proteins. In the next two 

chapters, I discuss our research on the effect of various cell treatments known to perturb the 

dynamics of membrane proteins on the rotation of the high-affinity Type I IgE receptor (FcεRI) 

expressed on RBL-2H3 cells. I investigated effects on receptor rotation resulting from treatment 

with IgE antibody as well as from four treatments with IgE and an additional agent including 

DNP-BSA, paraformaldehyde, MβCD, and cytochalasin D. These agents have varied effects that 

I expect to cause a significant perturbation of the rotational dynamics of the receptor. These 

effects range from receptor crosslinking by DNP-BSA and paraformaldehyde which would be 

expected to hinder receptor rotation to effects on membrane cholesterol content and the 

underlying cytoskeleton in the cases of MβCD and cytochalasin D, the effects of which are more 

uncertain and thus of particular interest. I have investigated these phenomena using a single-

particle fluorescence imaging approach and, alternatively, a time-tagged single photon counting 

approach. These topics are the subject of Chapters II and III respectively. These two approaches, 

while both designed with the intent to investigate the rotational dynamics of membrane proteins 
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using fluorescence microscopy, share little in common with regards to their methods of data 

collection and analysis. The concepts behind them are completely different and they use an 

entirely different set of analysis programs. Chapter IV consists of a published manuscript entitled 

“Continuous fluorescence depletion anisotropy measurement of protein rotation” which 

describes our work using a newly-developed pump-probe technique to examine protein rotation 

in solution and extends this to single-cell measurements. In the continuous variant of 

fluorescence depletion anisotropy used here, the intensity and polarization of a laser beam are 

modulated continuously by a programmed acousto-optic modulator and Pockels cell respectively 

to produce the desired excitation waveform. We have used this method to examine rotation of 

eosin conjugates of carbonic anhydrase, BSA, and immunoglobulin G in 90% glycerol at varying 

temperatures. We have also explored the potential application of this method to single-cell 

measurements and recorded preliminary results on eosin-IgE-bound FcεRI. Generally, we found 

good agreement with time-resolved phosphorescence anisotropy measurements of rotation of 

solution-phase molecules and of cell surface FcεRI. Chapter V discusses future avenues worth 

exploring which would improve upon the methods presented in Chapters II and III. These 

include faster cameras to access shorter timescales, gold nanorods to improve the signal-to-noise 

ratio, and a method to obtain a true anisotropy in a microscope. 
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Chapter I: Introduction to rotation 

 

1.1. Importance of measurements of rotational diffusion of cell membrane proteins 

 

1.1.1. Special significance of membrane receptor dynamics 

 

 Integral membrane proteins fulfill a variety of cell functions and play important roles in 

cellular activation, transmembrane transport, and cellular metabolism. Membrane receptors are 

of particular importance, as they provide a way for exogenous molecules to indirectly relay 

information to the inside of the cell without actually needing to transit across the membrane. Few 

molecules possess the requisite characteristics (namely small size and hydrophobicity) to 

traverse the membrane and so a significant amount of information is transferred from the exterior 

to the interior of a cell through this indirect route. Consequently, receptors account for a large 

proportion of drug targets and therefore rightfully command a considerable degree of interest in 

contemporary cell biology.  

 

1.1.2. Advantage of kinetic approaches over FRET 

 

 The standard and currently the most widely-used method for investigating intermolecular 

interactions between such proteins within the cell membrane is fluorescence resonance energy 

transfer (FRET) and its associated variants. While these techniques are useful for examining 

interactions with known species, they are of limited utility when applied to a situation in which 

one of the binding partners is not known because both species must be labeled and their identities 
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known in order conduct such an experiment. Furthermore, these techniques provide little 

information on the local environment of the protein. In such situations, alternative approaches 

are required.  

 

1.1.3. Advantage of measuring rotational diffusion instead of lateral diffusion 

 

 Kinetic approaches which monitor lateral or rotational diffusion are well-suited to such 

situations. Both types of measurements reflect the molecular size, shape/conformation, and, by 

extension, the molecular interactions in which a protein participates. Larger molecules generally 

exhibit slower diffusion and, by the same principle, molecules undergoing interactions with other 

molecules exhibit slower diffusion then would be the case if such interactions did not occur. 

Furthermore, these techniques are sensitive to the local environment and ambient temperature to 

which the molecule is subjected. Generally, if a molecule is exposed to a more viscous 

environment, it will experience slower rotation. A decrease in temperature would have a similar 

effect indirectly through this same mechanism. The dependencies of diffusion on these two 

factors can be more formalized more rigorously through a number of established mathematical 

equations. In the case of translational diffusion for a molecule approximated as a sphere, the 

following relationship, the well-known Stokes-Einstein equation, is observed: 

  

  
6

t

kT
D

r
=    (1.1) 

 

where Dt is the translational diffusion constant in m2/s, k is Boltzmann’s constant (1.38*10-23 

J/K), T is the absolute temperature in K, η is the viscosity in decapoise (Pa⸱s or, in more 
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fundamental units, kg⸱m-1⸱s-1), and r is the hydrodynamic radius in m. The rotational diffusion 

coefficient, Dr, can similarly be defined as: 

   

 38
r

kT
D

r
=   (1.2) 

This is also sometimes written in terms of the hydrated volume Vhyd as: 
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where Vhyd=4πr3/3 [2, 3]. The rotational correlation time is inversely related to the rotational 

diffusion constant as Φ=1/6Dr and is therefore directly proportional to the hydrated specific 

volume as: 

  

 
hyd

V

kT


 =   (1.4) 

 

Thus, in three-dimensional systems, the rotational diffusion constant differs from the 

translational diffusion constant by a factor of 3r-2/4 and is therefore much more sensitive to 

molecular size. In fact, the difference in the sensitivity is even more pronounced than this 

because, for lateral diffusion in two dimensions as is the case for a receptor embedded in the 

membrane (modeled as a cylindrical inclusion), the Stokes-Einstein equation is no longer 

applicable and the translational/lateral diffusion constant Dt exhibits an even weaker dependence 

on molecular size, varying inversely with the logarithm of the particle radius as described by the 

Saffman-Delbrück equation [2] shown below: 
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where ηm is the membrane viscosity, h is the membrane thickness, Lsd is the Saffman-Delbrück 

length which is equal to hηm/2ηf where ηf is the viscosity of the bulk fluid surrounding the 

membrane, and γ is the Euler-Mascheroni constant, an irrational number with a value of ~0.577. 

The Saffman-Delbrück also makes a small amendment to the equation for the rotational diffusion 

coefficient of a membrane protein modeled as a cylindrical inclusion [2]:  

 

 24
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Consider the ratio of the value of the translational diffusion constant to that of the rotational 

diffusion constant using the Stokes- Einstein treatment for isotropic diffusion in 3-D and the 

Saffman-Delbrück treatment for diffusion in 2-D. In the 2-D membrane case, this ratio is 

increased by a factor of ~4. This is not surprising when considering how the velocity fields 

decline in the 3-D and the 2-D case for rotational relative to lateral diffusion. For rotation, the 

velocity fields decline by 1/r2 in 3-D compared to 1/r in 2-D whereas, for lateral diffusion, the 

sensitivity to molecular radius is weaker, decaying as 1/r in 3-D and -log(r) in 2-D. In both cases, 

the sensitivity of the diffusion constant to molecular radius is lowered in a membrane. This is 

because, while energy can be dissipated in 3-D, in 2-D this is not the case and flow fields 

representing a membrane particle’s motion extend into the aqueous layer quite a distance. The 

decline in sensitivity is more drastic for translation than it is rotation. For rotation, the energy 
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dissipated is localized and the receptor’s resistance to rotation is limited practically completely 

by the viscous membrane and the less viscous aqueous layer makes little contribution. For 

translation, energy is dissipated over a larger area and the translational drag declines because of 

low dissipation of energy into the aqueous phases. Given the greater sensitivity (especially in the 

2-D case as in a membrane), measurement of rotational diffusion is a better candidate than lateral 

diffusion to elucidate processes such as receptor oligomerization and aggregation.   

 

1.1.4. Examples of molecular interactions 

 

 Consider some common events known to occur within the context of the cell membrane 

which can be examined via measurement of protein rotation and can be broadly classified under 

the aforementioned categories of receptor interactions or changes in the local environment of the 

receptor. Examples of the former would include receptor interactions with the cytoskeleton, 

receptor binding to ligand, or crosslinking of sensitized immune receptors with polyvalent 

antigen, hapten-carrier adducts, or fixative agents. An example of the latter would be 

confinement of receptor to compartments which possess different local compositions and 

viscosities than the surrounding bulk membrane. 

 

1.2. Optical techniques to measure cell membrane protein rotation 

 

1.2.1. Survey of previously-used optical techniques to measure rotation 
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 For the investigator who wishes to examine rotation of cell membrane proteins,  a variety 

of optical techniques are available. These techniques may measure emission, absorption, or 

scattering. A commonality between these techniques is their reliance on the measurement of 

anisotropy or polarization, quantities that reflect the orientational assymmetry in the light 

distribution resulting from the rotational motion of a molecule. A variety of techniques have 

been used to measure the rotation of ensembles of molecules on both single cells and in cell 

suspensions. Time-resolved fluorescence anisotropy has been used to measure the rotation of 

fluorescent lipid probes in membranes on timescales on the order of several nanoseconds. 

However, the inherent transience of fluorescence lifetimes imposes an upper bound on the 

rotational correlation times that can measured with such a technique. Unfortunately, given that 

the rotational diffusion of individual, unhindered cell membrane proteins is expected to occur on 

the 10-100 μs timescale, the technique cannot access timescales long enough to be applicable to 

such systems. Other techniques which rely either directly or indirectly on the kinetically slower 

phenomena of triplet decay and, in some cases, measurement of the associated phosphorescence 

lifetimes are better suited for measurements of membrane protein rotation. Amongst these 

techniques are linear dichroism [4], E-type fluorescence (also known as delayed fluorescence) 

[5], time-resolved phosphorescence anisotropy [6], and fluorescence depletion anisotropy (also 

known as polarized fluorescence depletion) [7, 8]. Of these techniques, time-resolved 

phosphorescence anisotropy and E-type fluorescence have enjoyed the greatest popularity, 

largely owing to their relative simplicity and ease of use. However, while time-resolved 

phosphorescence anisotropy enables measurement of the microsecond-timescale rotational 

correlation times associated with membrane protein rotation, a disadvantage stemming from this 

method’s reliance on phosphorescence emission is its low sensitivity. Compared to time-resolved 
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phosphorescence anisotropy, FDA possesses greater sensitivity because the signal actually 

monitored by this method is fluorescence which has a much greater photon flux rate than 

phosphorescence. Thus FDA is unique in that it involves triplet decay yet measures fluorescence 

and thus has both the capability to measure the longer rotational correlation times associated with 

membrane proteins and the sensitivity conferred by the higher photon throughput of fluorescence 

emission. In FDA, a low-intensity laser beam is used to excite chromophores which then emit 

steady-state fluorescence. A short-duration, high-intensity laser beam is then used to induce a 

fraction of chromphores to undergo intersystem crossing to a long-lived triplet state, producing a 

decay in the fluorescence signal. The gradual return to the singlet ground state replenishes the 

fluorescence signal. Rotational reorientation also makes a contribution to the fluorescence 

recovery and thus the superimposition of these two phenomena produces the recovery observed. 

Analysis of such a decay involves parsing out the contribution from each and extracting the 

rotational information contained within. Multiple variants of FDA exist, including time- and 

frequency- domain variants. We have developed a continuous variant of FDA (CFDA) which 

combines the merits of time- and frequency- domain variants into a single approach. These 

studies have resulted in a publication in the Journal of Fluorescence [1] and are also presented in 

this thesis as the subject of Chapter IV.  

 

1.2.2. Drawbacks of above techniques 

 

 However, all of these techniques suffer from drawbacks. One issue is that these 

techniques are designed for ensemble measurements of protein rotation. Consequently, while 

they may provide information on the average properties of a molecule, they offer no information 



8 
 
 

on individual molecules. This is problematic because receptors may exhibit varying degrees of 

aggregation giving a distribution of sizes. Additionally, they may experience drastically different 

environments from one molecule to the next (e.g.a receptor confined to a lipid raft versus one 

experiencing the lower viscosity of the bulk membrane). Another limitation of these techniques 

is their inability to access even longer timescales, a matter which our imaging technique, the 

subject of Chapter II, is able to address. 
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Chapter II: Examination of rotation of quantum dot-labeled type I Fcε receptor by 

fluorescence imaging 

 

2.1. Overview 

 

 In this chapter, we describe our studies employing fluorescence imaging to examine 

rotation of the type I Fcε receptor. This imaging approach involves correlation analysis of 

orientational fluctuations of FcεRI conjugated to a fluorescent quantum dot probe. Measurement 

of these orientational fluctuations was achieved by imaging a single quantum dot-labeled 

receptor at multiple discrete points in time and monitoring the progressive change in 

fluorescence polarization upon rotation. This technique enables examination of receptor 

rotational motion on a timescale ranging from tens to hundreds of milliseconds-a timescale on 

which there has been little previous study. We investigated the effect of various cell treatments 

expected to alter receptor rotation. We observed rotational correlation times scattered within a 

range of ~10-103 ms amongst individual copies of the receptor with weighted geometric mean 

rotational correlation times within the ~100-150 ms range. As such times exceed that which 

could be expected to reflect the hydrodynamic rotation of the receptor, we interpreted this to 

reflect the rotational or librational motion of localized domains containing these receptors and/or, 

depending on treatment, interactions of the receptor with other proteins which significantly slow 

its rotation.  

 

2.2. Introduction 
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2.2.1. Fluorescence Imaging Approach to Visualize QD-Labeled Receptors 

 

 The advent of asymmetric, rod-shaped nanoparticles conjugatable to certain membrane 

proteins, including quantum dots (QDs) used in this study and gold nanorods, enables single-

molecule examination of rotation occurring on a time regime inaccessible to the techniques 

described in the previous chapter. Although time-resolved phosphorescence anisotropy is useful 

for examining hydrodynamic rotation of receptors occurring on the aforementioned 10-100 μs 

timescale, it does not provide information on timescales significantly longer than this. In time-

resolved phosphorescence anisotropy measurements on these proteins, the phosphorescence 

lifetime of the probe used places an upper bound on the timescale that can be examined. An 

example of the magnitudes of phosphorescence lifetimes typically encountered is that of the 

commonly-employed phosphor erythrosin, which has a lifetime of about 500 μs in deoxygenated 

samples. Thus these measurements are generally limited to measurement of rotational motion 

occurring on a timescale no longer than about 5 ms. What is observed with this technique is a 

limiting/residual anisotropy which reflects a rotationally immobile fraction of receptors which 

could possibly decay on a longer timescale. Rotational motion occurring on a longer timescale is 

accessible to polarized photobleaching measurements; however, such measurements require a 

minimum of 100 ms to bleach fluorophores. Consequently, there has been little study on the 

rotational motion of membrane receptors with correlation times between about 5 ms to 100 ms.  

To examine this timescale, we have employed a fluorescence correlation imaging technique. 

Specifically, we have applied this technique to examine 1-1000 points at 10 ms per point giving 

an accessible time range of about 10-10,000 ms (0.01-10 s). The lower constraint on this range is 

determined by the frame rate that can be recorded by our camera. As for the upper bound, though 
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theoretically our technique has an acquisition time of 10 s, in practice not much useful 

correlation information is found for correlation times exceeding 1000 ms. Thus, while this 

technique is expected to provide little information on the timescale for hydrodynamic rotation of 

membrane proteins (~10-100 μs), an advantage of the technique is its ability of probe rotation on 

a longer timescale which may be characteristic of hindered protein rotation or rotation of 

domains to which the receptor is confined. 

 

2.2.2. Asymmetric Nanoparticle Labels to Probe Membrane Protein Rotation 

   

 Quantum dots (QDs) are semiconductor nanoparticles with dimensions on the order of a 

few nanometers. When these nanoparticles absorb light, they undergo a transition in which an 

electron within the QD is excited from the valence band to the conductance band. When this 

electron relaxes to a lower energy state and returns to the valence band, light is emitted. QDs can 

be composed of a variety of different materials including PbS, PbSe, CdS, CdTe, InAs, and InP, 

amongst others. Our QDs consist of a cadmium selenide (CdSe) core and a zinc sulfide (ZnS) 

shell. The ZnS shell is coated with a third layer which is chemically inert thereby preventing 

non-specific interactions. This coat can be composed of various materials including polymers, 

peptides, or amphiphilic micelles. The coat can be conjugated to biomolecules such as the 

protein streptavidin which has a high affinity for biotin and can thereby be strongly linked to 

biotinylated proteins. A schematic of a QD showing the various layers and their compositions 

and molecules they can be conjugated to is depicted in Figure 2.1. 

 

Depending on their aspect ratio, CdSe nanoparticles can be considered to possess a one-  
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Figure 2.1: Schematic diagram of QD with a CdSe core and ZnS shell. The ZnS shell can be 
coated with a variety of materials including amphiphilic polymers, amphiphilic micelles, small 
molecules, or peptides. Functional groups such as polyethylene glycol (PEG) or amino, carboxyl, 
and thiol groups allow for the conjugation of various biomolecules to the QDs to form a QD-
biomolecule adduct. In our studies, we have conjugated the QD to streptavidin, a protein with 
high affinity for biotin. This formed the linker to biotinylated DNP-specific A2 IgE antibody. 
Image adapted from Pinaud et al., 2010 [1]. 
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or a degenerate two-dimensional absorption dipole [2]. If the aspect ratio is greater than two, 

then the QD behaves as a one-dimensional absorber with a single transition absorption dipole 

oriented along the principal C3 axis.  If the aspect ratio is less than two, our QDs behave as two-

dimensional absorbers. For such an absorber, light can be absorbed polarized in either of two 

orthogonal orientations within the equatorial plane of the molecule. This plane is known as the 

“bright plane” of the molecule. Light polarized along the long C3 principal axis of the molecule, 

on the other hand, is incapable of exciting the molecule and this is hence appropriately referred 

to as the “dark axis” of the molecule. Figure 2.2 shows the geometries and orientations of the 

absorption transition dipoles for one- and two-dimensional absorbers. 

 

 One potential concern surrounding the use of nanoparticle labels to probe membrane 

protein rotational motion is the possibility that the nanoparticles themselves could perturb this 

motion, thereby altering the very characteristic of the system they are intended to enable us to 

measure and rendering them unsuitable for this application. These types of concerns fall into two 

categories: concerns that conjugation of quantum dots to the protein could itself inhibit rotation 

of the protein, and concerns that flexibility of the linker to the quantum dot probe could degrade 

measurements of protein rotation. 

 

 Fortunately, theoretical predictions suggest that conjugation to these nanoparticles will 

not encumber protein rotation to an appreciable extent [4]. According to theory, molecules with 

larger friction coefficients will exhibit longer rotational correlation times. In the case of 

membrane protein attached to a nanoparticle label, this friction coefficient is approximately 

equal to the sum of the friction coefficients of the protein and the attached label (these are in turn   
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Figure 2.2: Structures and spatial arrangement of absorption transition dipole vectors for CdSe 
QDs possessing a wurtzite crystal structure. These QDs belong to the C3V point group and their 
C3 principal axis runs longitudinally through the QD. Panel A shows a QD with an aspect ratio 
≤2. This type of QD possesses a two-dimensional absorption transition dipole which can be 
thought of as a composite of two orthogonal one-dimensional absorption transition dipoles (ρ1 

and ρ2) contained within the equatorial plane of the molecule. Panel B shows an elongated CdSe 
QD with an aspect ratio ≥2. These QDs are considered nanorods and possess a single, one-
dimensional absorption transition dipole which is aligned with the principal C3 axis. Image 
adapted from Shapiro, 2009 [3]. 
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functions of both their sizes and the local environment to which they are exposed such that an 

increase in either the size or viscosity of the local environment will result in an increase in the 

friction coefficient of the respective molecule). As a consequence, the rotational correlation time 

of the labeled protein is equal to the product of the rotational correlation times of the protein and 

the nanoparticle label divided by the sum of these correlation times such that an increase in the 

size and, by extension, rotational correlation time of either the protein or the probe will result in 

a labeled protein with a longer correlation time. Sizes of Invitrogen Quantum Dots 605 and 655 

were estimated from TEM electron micrographs to be 5.1 nm x 10.9 nm and 5.8 nm x 12.8 nm 

respectively (see Fig. 2.3) [5]. These are similar to values reported by the manufacturer, which 

were reported to be 5 nm x 12 nm and 8 nm x15 nm respectively [6]. The longer rotational 

correlation time of the larger QD655 probe, corresponding to rotation around either of its 

degenerate short axes, is predicted to be ~0.27 μs [7]. This value is for QD655 immersed in 

aqueous solution which is expected to closely resemble that of a QD attached to a membrane 

protein because, unlike the membrane proteins they label which are confined to the plane of 

membrane, the QD probes protrude into the extracellular fluid and will thus exhibit a shorter 

rotational correlation time than they would if they too experienced the high viscosity of the 

membrane. If, considering the conservative case in which this larger QD probe is conjugated to 

small membrane proteins such as MHC class I and class II antigens having rotational correlation 

times ranging from 25-30 μs, this would give a correlation time which is not substantially 

different than the rotational correlation time of the unlabeled protein. Even in the case in which 

these relatively small proteins are labeled with the largest of nanoparticle probes, gold nanorods 

which dimensions have been measured by TEM as 9.5x35 nm and correlation time 3.5 μs, the 

rotational correlation time would still only be increased by a negligible amount. To summarize,    
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Figure 2.3: TEM image of QD605. Average dimensions were found to be 5.1x10.9 nm.  
Image adapted from Zhang et al., 2017 [5] 
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the IgE-bound QD is unlikely to have a significant effect on the rotational correlation time of the 

receptor because, unlike the receptor, it is exposed to the aqueous extracellular solution and thus 

experiences a low viscosity whereas the receptor is embedded in the membrane and thus 

experiences a much higher viscosity. Therefore practically all of the rotational restraint is a 

consequence of the membrane-embedded receptor’s resistance to rotation.   

 

 Theoretical considerations also allay concerns that probe flexibility associated with the 

nanoparticle probes might degrade protein rotation measurements [4]. Though it is true that the 

nanoparticle is conjugated to the protein through a flexible linker, there will still some restriction 

in the number of conformational states it can assume by virtue of this linkage. This is because the 

QD is anchored by this linkage conferring a degree of rigidity and preventing the QD from 

moving through this bond. For this reason, the anisotropy decay will always contain a 

contribution corresponding to the rotation of the entire nanoparticle-labeled protein.  This 

mechanism has been shown to account for almost a quarter of the observed anisotropy [8]. 

 

 An additional concern presented by the use of QDs is their propensity to spontaneously 

switch between a fluorescent “on” state and a dark “off” state, a phenomenon termed “blinking” 

[9]. This tendency to fluctuate between these two states is an intrinsic property of QDs. This dark 

state can persist from nanoseconds up to hundreds of seconds [10, 11]. The probability 

distributions for these two states are each dictated by their own individual power laws. The 

probability of observing a given “on” or “off” time is related to the duration of that time in the 

following fashion: 
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 ( )P
  −   (2.1) 

  

where the exponent μ ranges from 1.1-2.2. For blinking “on” times, μ varies with sample 

temperature and excitation intensity, but blinking “off” times are independent of these factors 

[12]. As will be discussed in depth later on, QD blinking represents a major concern for our 

experiments because changes in the fluorescence intensity function can manifest to some degree 

in the polarization function, thereby distorting the polarization TACF. Thus one important aim of 

data analysis was to develop an optimization procedure in which instrumental parameters were 

selected so that the statistical dependence of the polarization TACF on the intensity TACF was 

minimized.  

 

 Multiple mechanisms have been proposed to explain the fluorescence intermittency 

exhibited by QDs. Chronologically, the first of these to be proposed was the Auger ionization 

model. This empirical model was proposed by Efros and Rosen in a seminal 1997 article in 

which they analogize QD blinking to a random telegraph signal [13]. According to this model, 

the cycling of QDs between a radiative “on” state and a non-radiative “off” state can be 

described as follows. An initially non-emitting QD in the “off” state is excited by low-intensity 

continuous-wave light. This ejects an electron generating an electron-hole pair which undergoes 

radiative recombination causing the QD to transition to an “on” state which emits light. This 

continues until the QD undergoes either thermal or Auger auto-ionization, transitioning back to 

an “off” state where fluorescence is quenched by a fast non-radiative Auger recombination 

process. The duration of the “on” period depends on the rate of auto-ionization and exhibits a 

strong dependence on the excitation intensity. The electron that was ejected creating a “hole” is 
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temporarily trapped and resides in the surrounding matrix during the “off” phase until it 

eventually returns to the nanocrystal and the “on” state thereby resumes. 

 

 Frantusov and colleagues proposed a phenomenological theory of multiple recombination 

centers [14] which considers the Auger ionization model for QD blinking inadequate because it 

fails to account for experimental evidence that suggests  that QDs do not two exhibit two discrete 

“on” and “off” states but rather exhibit a spectrum of emission intensities. This model makes an 

amendment to the Auger ionization model by proposing that non-radiative relaxation occurs via 

multiple recombination centers. Electron holes are trapped by these quenching centers and 

undergo non-radiative recombination with the electron. Each recombination center can exist in 

quasi-stationary active and inactive conformations which differ in trapping ability. 

 

 Most recently, the atomistic model was proposed as a mechanism to explain the blinking 

phenomenon which describes it in terms of surface vacancies [15]. This model suggests that such 

surface vacancies enhance fluorescence quantum yield, but aggregation of such vacancies 

actually has the opposite effect and can convert the QD to an “off’ state. This model also predicts 

that foreign cations can stabilize these vacancies, thereby improving quantum yield and has 

informed approaches to surface passivation of QDs.  

 

2.2.3. Fluorescence Polarization to Measure Rotation of QD-labeled Proteins 

 

 Analysis of fluorescence fluctuations due to rotational reorientation yields information on 

QD rotation. This can be viewed in a manner analogous to the measurement of fluctuations in 
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particle position as is done in single-particle tracking. Consider an optical configuration in which 

the optical/longitudinal axis along which excitation occurs is designated as the z-axis, and 

exciting light can be polarized laterally in a horizontal direction along the x-axis, in a vertical 

direction along the y-axis, or with some component of each (i.e. in any orientation within a space 

defined by the xy-plane). Conducting an experiment using non-polarized excitation is, in 

essence, equivalent to what would be obtained if the sample was excited by light polarized in the 

x- and y-orientations separately. It is necessary to emphasize here that carrying out an 

experiment with non-polarized excitation is not equivalent to conducting one with simultaneous 

x- and y-polarized excitation or, alternatively, every intermediate orientation between these two 

axes specified by a vector lying in the I/III quadrants in the Cartesian xy-plane. In either case, a 

vector sum of these vectors would result in a net field vector with equal x- and y- components 

such that it would amount to polarized excitation at a 45 degree angle between these two axes. 

This is clearly distinct from what is meant when discussing non-polarized excitation.    

 

 Regardless of the polarization of the exciting light, the emission anisotropy, which 

describes rotational reorientation in three dimensions, is defined in the same manner: 
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  (2.2) 

 

 The denominator of this expression, equal to the sum of the intensities, is also referred to 

as the intensity function s(t). However, the optical configuration/geometry of our experimental 

setup imposes limitations on which quantities can practically be measured. Z-polarized emission 

can only be measured by a T-format fluorometer and typically not in a conventional microscope 
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as we have used in our experiments. On this note, it is worth mentioning that we have developed 

a novel method for obtaining z-polarized emission in a microscope. A description of this method 

is given in future directions, the subject of Chapter Five in this thesis.  

 

 Without information on the z-polarized intensity, what is typically measured as a proxy 

for the “true” anisotropy described by Equation 1.7 is an apparent anisotropy where it is assumed 

that Iz=Iy. This assumption regards these two emission orientations to be equivalent because they 

are both perpendicular to the orientation of the exciting light and it can thus be rationalized 

statistically under certain conditions (namely in a situation where we have an ensemble average 

of many freely-rotating particles). Then we have instead: 
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Or, if excitation is polarized in the x-plane, we can use the alternative notation where I║ and I┴ 

are emission light intensities polarized parallel (║) and perpendicular (┴) to the polarization of 

the exciting light: 
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 In the experiments described herein, we have chosen to measure the 2-dimensional 

analogue of the anisotropy known as the polarization which is defined as follows: 
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Though we could approximate the three-dimensional anisotropy function by assuming the two 

perpendicular emission orientations (z and y using our current convention) are equivalent as 

described above, we have instead chosen to measure this polarization function to circumvent this 

assumption entirely. As such, the “2” drops outs of the formula above. Therefore, from this point 

onwards, we have used polarization. In any case, it is worth noting that both functions contain 

the same information on rotational reorientation, and can be interconverted using the following 

equation: 
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 Modeling fluorescence polarization for a QD-labeled protein is complicated by a number 

of aforementioned factors including the experimental configuration whether the excitation is 

polarized or non-polarized, and whether the molecule is a one- or two-dimensional absorber. 

Another consideration is how the single-molecule measurements we have conducted here on 

cells relate to ensemble measurements in solution or in a suspension. To start, it is useful to 

consider a simplified case in which a one-dimensional absorber with a single absorption 

transition dipole in some orientation prior to rotation evolves to some new orientation upon 

rotation. If the vector corresponding to this absorption transition dipole in some initial orientation 

is designated A and has components ax, ay, and az, then rotation through the internal polar angle θ 
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(the angle from the z-axis), the internal azimuthal angle φ (the angle from the azimuthal x-axis), 

and the angle corresponding to rotation around the molecular internal z-axis ψ results in an 

absorption transition dipole in some final orientation described by vector A′ with components ax′, 

ay′, and az′. The components of this new vector A′ are given by the matrix product of vector A 

and an Euler rotation matrix R as follows: 

 

 'A R A=    (2.7) 

 

where the Euler rotation matrix R, a function of the angles θ, φ, and ψ, is defined as: 
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If we express vectors in terms of their constituent components and substitute this definition of R 

into Equation 2.6, we have the following equation for the components of the new vector A′ in 

terms of its Cartesian components ax′, ay′, and az
′: 
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  (2.9)  

 

Thus the matrix product of the 3x3 Euler rotation matrix and the 3x1 initial absorption transition 

dipole vector gives a 3x1 vector describing the final orientation of the absorption transition  
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dipole after rotation.  

 

 With our expression for the rotated absorption vector, it is possible to determine the 

orientation and magnitude of the expected fluorescence emission. Given our definition of this 

rotated absorption vector, the extent of excitation E′ can be defined as the dot (or scalar) product 

of this vector and the excitation polarization vector E as follows: 

 

 ' 'E A E=    (2.10) 

 

 The orientation of the resultant fluorescence emission can then be represented by a 

fluorescence emission field vector F which is defined as the normal product of the scalar extent 

of excitation and the rotated absorption transition dipole vector divided by the magnitude of the 

initial unrotated absorption transition dipole vector: 
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 The accompanying magnitude of the fluorescence intensity I is defined as the square root 

of the matrix product of the complex conjugate of the fluorescence emission field vector and the 

fluorescence emission field vector: 

 

 *
I F F=    (2.12) 
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I is thus a vector with components Ix, Iy, and Iz. By this convention, a one-dimensional absorber 

with an absorption coefficient of unity and an absorption transition dipole that is in alignment 

with polarized excitation with an intensity of one would produce an instantaneous fluorescence 

intensity of one. 

 

 With these basic fundamentals established in our model of fluorescence polarization, it is 

now possible to consider some situations which introduce an additional degree of complexity to 

our discussion and which are all relevant to our experiments. As previously mentioned, these 

factors include the experimental geometry used, the nature of the excitation, whether the QD is 

considered as a one or two-dimensional absorber, and the relationship between the single-

molecule experiments we have conducted to ensemble measurements. Regarding the 

experimental geometry, we had the capability of measuring either an apparent anisotropy or a 

polarization. As will be discussed, measuring polarization instead of apparent anisotropy 

provides some distinct advantages. Regarding the QD absorption behavior, there is some debate 

about whether our quantum dots behave as one- or two- dimensional absorbers, and so it is 

worthwhile to consider a scenario in which a molecule has more than one absorption transition 

dipole. In the former case regarding two- dimensional absorbers, one can consider each 

absorption transition dipole vector and excitation polarization vector combination separately and 

subsequently add the fluorescence intensity vectors produced in each case. Since we are also 

interested in what difference there may be (if any) between experiments conducted with 

polarized and non-polarized excitation, it is additionally worth considering the treatment of the 

non-polarized case. For a situation involving non-polarized excitation, a similar treatment would 

be required in which the x- and y-polarized excitation vectors are considered separately and the 
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fluorescence intensity vectors generated from the combination of each with the absorption 

transition dipole vector(s) are summed.  

 

  Table 2.1 provides a summary of the various experimental parameters that can be 

expected to result from various combinations of the experimental conditions outlined above 

(namely the experimental geometry, type of excitation, QD symmetry, and whether the 

experiment is a single-molecule or ensemble measurement). These parameters include the 

average intensity 𝑠̅ and anisotropy/polarization (𝑟̅ or 𝑝̅) in an ensemble measurement and the 

corresponding single particle-averages 𝑠̅𝑠𝑝 and 𝑝̅𝑠𝑝 (or 𝑟̅𝑠𝑝) respectively. In the remainder of this 

thesis, we will use r(t) to represent either anisotropy or polarization as appropriate to the type of 

analysis used. Also included is the amplitude of the anisotropy or polarization time-amplitude 

autocorrelation function (TACF) which is defined as: 

 

 2 2(0) ( ) ( )G G p p−  = −   (2.13) 

 
where G(0) is the initial and G(∞) is the residual or limiting value of the TACF defined as: 
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This can also be written as: 
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Table 2.1: Prediction of polarization TACF amplitudes and other quantities for various 
combinations of experimental conditions including ensemble and single-particle experiments, 
one- and  two-dimensional absorbers, polarized and non-polarized excitation, and true 
anisotropy, apparent anisotropy, and polarization. The table has been organized hierarchically by 
experimental geometry for the first level and ordered by type of excitation for the second in order 
to facilitate comparison between experiments in which either true or apparent anisotropy or 
polarization were calculated.  The third column lists the type of QD absorption dipole. The 
single-particle numbers for non-polarized excitation in the case of apparent anisotropy and 
polarization result from numerical integration, while other calculations involve closed-form 
integration. 
 

Experimental Conditions Ensemble measurements Single-particle measurements 

analysis exc abs 15 <Ix,Iy,Iz>   3 <s> <r> or <p> 3 <sSp> <rSp> <rSp2> G(0)-G(∞) 

true x x 3,1,1 1 2/5 1 0 0.267 0.27 

true x xy(np) 3,1,1 1 2/5 1 0.250 0.231 0.17 

true xy(np) x 2,2,1 1 0 1 0 0.267 0.27 

true xy(np) xy(np) 2,2,1 1 0 1 0 0.161 0.16 

app x x 3,1,1 1 2/5 1 0.121 0.288 0.27 

app x xy(np) 3,1,1 1 2/5 1 0.300 0.274 0.18 

app xy(np) x 2,2,1 6/5 0 6/5 0.121 0.288 0.27 

app xy(np) xy(np) 2,2,1 6/5 0 6/5 0.065 0.150 0.15 

pol x x 3,1,1 4/5 1/2 4/5 0 0.500 0.50 

pol x xy(np) 3,1,1 4/5 1/2 4/5 0.293 0.363 0.28 

pol xy(np) x 2,2,1 4/5 0 4/5 0 0.500 0.50 

pol xy(np) xy(np) 2,2,1 4/5 0 4/5 0 0.273 0.27 
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 One important observation from Table 2.1 is that non-polarized xy-excitation is predicted 

to give ensemble and average single-molecule anisotropies of zero. In fact, this is true for both 

true and apparent anisotropy as well as for polarization and is also true for both one- and two-

dimensional absorbers. This can be easily explained by the fact that non-polarized excitation 

results in equal average fluorescence intensities in the vertical and horizontal orientations (i.e. 

‹Ix›=‹Iy›) and therefore the average anisotropy is zero (‹rens›=0). The two exceptions to this occur 

in the case of the single-particle measurement of the apparent anisotropy. This discrepancy 

occurs because Iy which, in the case of the apparent anisotropy is substituted for Iz, is an 

imperfect approximation of Iz. In the case of x-polarized excitation, this gives a constant limiting 

anisotropy of (3×21/2-4)/2=0.121. However, although the average polarization is zero for non-

polarized excitation, the polarization (and anisotropy) fluctuation TACF amplitudes ((G(0)-

G(∞)) are not zero and it is from this decay that important information on rotational dynamics 

can be extracted. Furthermore, comparison of these amplitudes to those corresponding to 

measurements taken with x-polarized excitation reveals that they are equivalent. Thus it is 

expected that experiments conducted with non-polarized excitation will not produce significantly 

different results from those obtained from polarized excitation. 

 

 Examination of the Table 2.1 leads to another interesting observation. If the QD is treated 

as a one-dimensional absorber, the TACF fluctuation amplitude is found to be ~0.27 for both 

true and apparent anisotropy, but, if instead polarization is measured, then this value is increased 

to ~0.50. A similar trend is observed for two-dimensional absorbers. Thus by measuring 

polarization there is the added advantage of a larger TACF amplitude and a thus more sensitive 

measurement. As alluded to previously, in the case of an absence of information on Iz due to the 
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limitations of the experimental setup, another advantage of measuring polarization is that, unlike 

apparent anisotropy which gives an average single-particle anisotropy of 0.121, the polarization 

is, as is the case for the true anisotropy, equal to zero.  

 

 There is some debate about whether the QDs that we are using in this study behave as 

one-dimensional or two-dimensional absorbers. If the aspect ratio is greater than two, then the 

QD is expected to behave as a one-dimensional absorber with a single absorption transition 

dipole aligned with the principal C3 axis of the molecule [3]. If the aspect ratio is less than two, 

then  the QD is expected to behave as  a two-dimensional absorber. In this case it would be more 

appropriate to treat them as two-dimensional absorbers with two degenerate orthogonal 

equatorial transition absorption dipoles which are in turn orthogonal to the C3 principal axis. As 

previously mentioned, our QD655 were measured by TEM to have dimensions of 5.8 nm x 12.8 

nm [5] which would give an aspect ratio of ~2.2. Given this ratio calculated from our TEM 

measurements is greater than 2, we might expect these QDs to possess a two-dimensional 

transition absorption dipole, but this hypothesis is tentative because this value is only slightly 

above two and thus borderline.  

 

 Table 2.1 clearly shows that, if the sample is excited by x-polarized light, then the 

ensemble-averaged intensity functions and polarization (as well as the true and apparent 

anisotropies) are equivalent regardless of whether the QD is treated as a one-dimensional or a 

two-dimensional absorber. The average squares of the anisotropies however are consistently 

lower for two-dimensional absorbers than they are for one-dimensional absorbers. Consequently, 

because the polarization TACF amplitude is the average square of the polarization subtracted 
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from the squared average, the smaller average squared polarizations associated with two-

dimensional absorbers result in overall reduced polarization TACF amplitudes for these one-

dimensional absorbers relative to two-dimensional absorbers. Typically, these values are lowered 

to ~½-⅔ the values observed for one-dimensional absorbers.  

 

 Taken together, the above points have important implications for our experiments. The 

important takeaway for our experiments in which we measure polarization is that, regardless of 

whether the QD behaves as a one- or two-dimensional absorber, the polarization fluctuation 

TACF will remain the same for x-polarized and non-polarized excitation. For one-dimensional 

absorbers, this value is predicted to be about 0.50. For two-dimensional absorbers, it is reduced 

substantially to ~0.27-0.28, but still predicted to be near identical for polarized and non-polarized 

excitation. 

 

2.2.4. Type I Fcε Receptor 

   

 The Type I Fcε Receptor (FcεRI) is a member of a class of receptors known as Fc 

receptors and one of two receptor types belonging to the Fcε receptor subclass [16]. Possessing 

two immunoglobulin-like domains, it also belongs to the immunoglobulin superfamily. It 

exhibits a high affinity for immunoglobulin E (IgE). The FcεRI is a modular tetrameric structure 

(see Figure 2.4) consisting of a single membrane-spanning α-subunit, a quadruple membrane-

spanning β-subunit with three loops, two of which are extracellular and one of which is 

intracellular, and two γ-subunits linked by a pair of disulfide bonds. In rat basophilic leukemia 

cells as we have used in this study, the α-subunit has a molecular weight of ~50 kDa, the β-
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subunit ~33 kDa, and the γ-subunits are about 7-9 kDa each, giving a total weight for the 

receptor of ~97-101 kDa [17]. The α-subunit structure possesses two extracellular domains 

which together comprise the ligand binding pocket for IgE antibody. It binds to the constant 

sequences contained with the Fc portion of the ε heavy chain of IgE [18]. The α-subunit has two 

other parts: a transmembrane-spanning chain and a cytoplasmic chain. The β-subunit consists of 

four transmembrane domains and two extracellular loops. The first extracellular loop is located 

between the first and second transmembrane domains and the second loop between the third and 

fourth transmembrane domains. It also contains a cytoplasmic loop between the second and third 

transmembrane domains along with a carboxy terminus and an amino terminus both on the 

cytoplasmic side of the membrane. Consistent with its role in initiating downstream signal 

transduction, the β-subunit contains an immunoreceptor tyrosine-based activation motif (ITAM) 

located within its carboxy-terminal domain [19]. The disulfide-linked γ-subunits form a 

homodimer and, as is the case for the β-subunit, play a role in the activation of intracellular 

messengers (namely tyrosine kinases) which relay information to the interior of the cell through 

a signaling cascade. Each γ-subunit of the homodimer complex also contains an ITAM located in 

its cytoplasmic domains [19], consistent with its role in such a process. These ITAMs activate 

src and syk tyrosine kinases in sequence. The signal transduction pathways initiated by these 

kinases later connect with pathways that overlap with those of many other receptors. 

 

IgE, one of several immunoglobulin isotypes, is the cognate ligand of the FcεRI, which it 

binds with a stoichiometry of 1:1. IgE, like other immunoglobulin antibodies, is comprised of 

two Fab fragments and two Fc fragments (see Figure 2.5). Two duplicate ε heavy chains which 

are comprised of ~550 amino acids each span both of these regions and are linked by disulfide   
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Figure 2.4: Schematic diagram of FcεRI depicting its α, β, and two γ –chains which are bound 
by intermolecular interactions. The α-subunit structure possesses two extracellular domains 
which together comprise the ligand binding pocket for IgE antibody. It also possesses a 
transmembrane-spanning chain and a cytoplasmic chain. The β-subunit consists of four 
transmembrane domains and three loops, two of which are extracellular and one of which is 
cytoplasmic. The carboxyl and amino termini of the β-subunit are both located on the 
cytoplasmic side of the membrane. The γ-subunits each consist of an extracellular domain, a 
transmembrane domain, and a cytoplasmic domain and are linked by intermolecular disulfide 
bonds. Image adapted from Sari, 2011 [20]. 
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Figure 2.5: Schematic diagram of IgE antibody depicting its two heavy chains and two light 
chains viewed from the side (left) and rotated 90 degrees (right). The heavy chains span both the 
Fc and Fab region whereas the light chain spans only the Fab region. The Fc portion of each 
heavy chain consists of three constant domains and the Fab portion possesses a single constant 
domain and terminates in a variable domain. Each light chain possesses a constant domain and 
terminates in a variable domain. Together the four variable domains comprise the antigen 
binding site of the antibody. Image adapted from Sari, 2011 [20]. 
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bonds [21]. The ε heavy chain defines the IgE immunoglobulin subclass. Two equivalent light 

chains spanning the Fab region are joined to the heavy chains by disulfide bonds. Each of the 

heavy chains has a molecular weight of ~50 kDa and the light chains have molecular weights of 

~25 kDa giving a total molecular weight of approximately 150 kDa for the entire IgE antibody 

[21]. The Fc portion of the heavy chain is comprised of three constant segments (CH4, CH3, and 

CH2). The Fab portion of the heavy chain consists of a constant segment (CH1) and a variable 

segment (VH). Each light chain consists of a constant segment (CL) and terminates in a variable 

segment (VL). The VH and VL segments together comprise the antigen binding site of the 

antibody. As the variable designation implies, these segments confer antigen binding specificity 

to the antibody by recognizing only the epitope of a particular antigen. 

 

The FcεRI plays an important role in the adaptive immune system and is involved in 

allergic responses to pollen and other allergens. This receptor is expressed on epidermal 

Langerhans cells, eosinophils, mast cells, basophils, and antigen-presenting cells [22], [23]. It is 

constitutively expressed only on mast cells and basophils [24]. Upon crosslinking of FcεRI-

bound IgE expressed on mast cells by polyvalent antigen, a signal transduction cascade is 

triggered leading to mast cell degranulation. The degranulation process involves the exocytosis 

of vesicle contents releasing a variety of compounds into the extracellular millieu. These 

compounds, which include the small vasoactive amines histamine and serotonin, proteins such as 

proteoglycans and serine protease enzymes, and cytokines, interleukins, leukotrienes, and 

prostaglandins amongst other agents, mediate the inflammatory response characteristic of allergy 

[25, 26]. This produces a variety of physiological changes including mucous secretion, 

vasodilation, and smooth muscle contraction which are responsible for symptoms associated with 
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allergy such as rhinorrhea, pruritis, dyspnea, and anaphylaxis. These symptoms may manifest in 

an entire-body, systemic response such as observed in anaphylaxis, or a localized response that 

affects a single body system such as asthma which is localized to the respiratory system and 

involves inflammation of the bronchi and bronchioles [21]. 

 

 This process of FcεRI activation typically occurs within the context of an acute allergic 

response known as a type I hypersensitivity reaction in which mast cells or basophils are primed 

for an allergic response after initial exposure to an antigen/allergen. These steps precede the 

receptor crosslinking and subsequent cell degranulation steps described above. Upon initial 

exposure to an allergen, the allergen is bound and displayed by antigen-presenting cells. The 

allergen is then presented to a type of T-helper cell known as a TH2-lymphocyte. Through direct 

interaction and production of the cytokine interleukin-4, these TH2 cells stimulate another type of 

lymphocyte known as bursa- or bone marrow-derived cells (B cells) to produce IgE antibody 

which is released into systemic circulation. Upon encounter with a mast cell or basophil 

expressing FcεRI on its surface, the IgE binds the receptor and the cell is now considered to be 

sensitized to the allergen. Re-exposure to allergen initiates the aforementioned receptor 

crosslinking and subsequent cell degranulation processes which lead to the variety of 

physiological changes associated with allergy some of which are described above [21]. 

 

2.2.5. Goals of Study 

 

 The major goal of the study contained herein was, firstly, to demonstrate the feasibility of 

measuring cell surface receptor rotation through optical examination of QD-labeled receptors. 
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We then applied this method to examine the effect of a variety of cell treatments expected to 

perturb receptor rotation either via changing receptor interactions or altering the local 

environment of the receptor. Including a control group, we conducted experiments with six such 

treatments. With the exception of the control group which was only tested with non-polarized 

excitation, all groups had a further three subgroups which consisted of two groups measured with 

non-polarized excitation and one with polarized excitation. We structured our experiments in this 

manner in order to facilitate assessments of the reproducibility of our measurements and to test 

our hypothesis concerning the equivalence of polarized and non-polarized excitation. The control 

group, hereafter referred to as the “dry” group, consisted of untreated QDs fixed on glass 

coverslips and these QDs were as such expected to remain immobile. The group treated with IgE 

only was the cell-bound control group. In the absence of foreign antigen to crosslink IgE-bound 

receptor, we expect to see rotational motion corresponding to solely the IgE-bound FcεRI 

unit/complex. Our group has previously monitored the dynamics of erythrosin-tagged IgE-FcεRI 

expressed on 2H3 cells using time-resolved phosphorescence anisotropy and it was indeed 

observed to exhibit a rotational correlation time of 82 μs which was taken to reflect the 

hydrodynamic rotation of the receptor-ligand complex [27]. The other four treatments involved 

IgE and an additional agent. Receptors expressed on cells treated with dinitrophenyl bovine 

serum albumin (DNP-BSA), an agent consisting multiple dinitrophenyl haptens linked to a 

protein carrier, were expected to exhibit slowed rotation relative to the IgE-only group because 

this agent crosslinks receptor-bound DNP-specific A2 IgE antibody [27]. Given that 

paraformaldehyde crosslinks membrane proteins, cells treated with this agent were expected to 

undergo an even more drastic reduction in rotational motion to the point of immobility [28]. The 

potential effects of MβCD and cytochalasin D, agents which deplete membrane cholesterol and 
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disrupt cytoskeletal integrity respectively, on FcεRI rotation are more complex and especially 

interesting. These selected treatments provide feedback on the viability of our method and the 

results of these experiments have important implications for FcεRI receptor function.  

 

2.3. Materials and Methods 

 

2.3.1. Wet Chemistry and Cell Culture Procedures  

 

 Quantum Dots 605 and QD655 were obtained from Invitrogen, a subsidiary of Life 

Technologies (Eugene, OR). QDs were conjugated to streptavidin, a protein with a high affinity 

for biotin. To prepare the non-cell-bound dry QDs on glass which were used as a control group, 

after ligation of streptavidin to the QD, one μmol of these streptavidin-bound QD655 was 

dissolved in a liter of ethanol and diluted in ethanol to a final concentration of 0.005 nM. A 20 

μL aliquot was pipetted on a glass coverslip with a spin coater operating at 3000 rpm. The glass 

coverslips were then mounted on the microscope slides. 

 

 2H3-RBL cells were cryogenically preserved in liquid N2 with DMSO as a cryoprotectant 

Cells were partially thawed in a water bath and transferred into Minimum Essential Medium. 

Cells were centrifuged with a vortexer for 4 min. and the supernatant removed to extract any 

residual DMSO contaminant. The cells remained in the pellet and this cycle was repeated two 

additional times. Media was again added to the cells along with 10% fetal bovine serum and 200 

nM L-glutamine as nutritional supplements and 1x104 units/mL penicillin G, 10 μg/mL 

streptomycin, and 25 μg/mL fungizone as antibiotics/antifungals to inhibit contamination by 
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other microorganisms. The cells were kept in culture flasks and 1-1.5 days before experiments 

were detached from the sides of the flask using the chelating agent EDTA, transferred to petri 

dishes using sterile technique, and allowed to attach to the bottom of the dish and grown to ~50% 

confluence as described previously [29]. A Bunsen burner was used to sterilize all potentially 

contaminating surfaces. Cells were maintained in an incubator under humidified conditions with 

a concentration of 5% CO2 and at a temperature of 37° C. 

 

 Cells were sensitized with biotinylated DNP-specific IgE antibody designated A2 which 

was kindly provided by Dr. Israel Pecht of the Weizmann Institute of Science, Rehovoth, Israel 

and then subsequently treated with quantum dots conjugated to streptavidin, a protein with high 

affinity for biotin.  The streptavidin functioned as the linker between the quantum dot and the 

receptor-bound biotinylated IgE. Cells were washed twice with a 1 mL pH 7.4 PBS/0.1% BSA 

buffer solution and subsequently incubated with 1 nM biotinylated IgE for 20 minutes. After 

cells were labeled, they were washed four times with the aforementioned buffer solution. 

Accompanying directions from Invitrogen regarding conjugation of these quantum dots to 

biotinylated proteins were followed in order to conjugate QD to protein in a stoichiometric ratio 

of one or less [30]. 

 

 A portion of samples were treated with 100 μg/mL DNP-BSA in PBS for 1 h, another 

portion with 40 mg/mL paraformaldehyde in PBS for 45 min., another with 100 μg/mL MβCD in 

PBS for 1 h, and another with 40 μM (~20.3 μg/L) cytochalasin D in PBS for 1 h as performed 

previously [5]. After their respective treatments, cells were washed four times with the 

previously mentioned buffer solution and incubated with 100 pM streptavidin-conjugated QD655 
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for 10 min. Before an experiment, all medium was thoroughly removed, washed several times 

with buffer solution to remove any residual fluorescent phenol red, and replaced with buffer 

solution. 

 

2.3.2. Imaging Collection and Analysis 

 

 Images were collected with a Zeiss Axiovert 200M microscope with a Zeiss αPlan-Fluar 

oil immersion objective at 100x magnification and a numerical aperture of 1.40. The microscope 

2.5x Optivar and a 2x image extender/magnifier yielded a total magnification of 500x at the 

camera chip. The microscope was outfitted with a 460 +/-50 nm bandwidth excitation filter, a 

475 nm cutoff dichroic mirror and a 655 +/-40 nm bandwidth emission filter. A 100 W arc lamp 

was used to excite the sample. A schematic of the apparatus is shown in Figure 2.6. For one out 

of the three groups of experiments conducted for each treatment, vertically-polarized light was 

used to excite the sample instead of non-polarized light. A Princeton Instruments Dual View 

image divider equipped with a polarizing beamsplitter enabled the simultaneous collection of 

vertically- and horizontally-polarized images for each frame. An Ixon Andor DU897E EMCCD 

camera with 512x512 pixel resolution and a 16x16 μm pixel size was use to collect images 

Images were collected at a frame rate of 10 ms/frame with 1000 frames recorded in total. To 

achieve that speed, the 512x512 chip was binned to 102x102 so our actual images are 102x102. 

A sample image of cell-bound QD is shown in Figure 2.7. Fluorescence is observed on the 

periphery of the cell corresponding to QD-labeled receptor localized to the cell membrane 

whereas the interior of the cell does not fluoresce in this manner except for some 

autofluorescence emanating primarily from the nucleus. The dry quantum dots mounted on glass 
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coverslips were imaged in the same manner (see Figure 2.8). Background images necessary for 

later correction of vertical and horizontal intensities were collected by taking images of regions 

on the cell in which no quantum dot-bound receptor was present.  

 

 Vertically and horizontally-polarized image stacks were analyzed using NIH ImageJ. 

Images were re-expanded 5x to 510x510 pixels, each pixel width being 0.16 μm. In order to 

perform correlation calculations on separate image frames, it was necessary for the images to be 

aligned with sub-pixel precision. Since this cannot be accomplished by mechanical optimization 

of the image alignment via the Dual View image splitter, further correction for this displacement 

using computational methods was necessary. Image stack pairs were corrected in ImageJ for 

relative displacement, rotation, and dilation using four adjustable parameters and maximizing the 

intensity cross-correlation of the two images. 

 

Usually, >10 QDs were selected per cell. In order to compensate for background noise 

originating from the sample or artifactually-introduced by our camera, it was necessary to 

conduct various background measurements. The images for these background regions of interest 

were processed in a similar manner as described for the QD measurements above. A total of four 

backgrounds were taken per cell and these four vertical and horizontal intensities were separately 

 averaged. The cell backgrounds were all taken in inconspicuous portions of the cell surface 

where no QD-labeled receptor was present and varied from cell to cell. This enabled correction 

for factors such as cellular autofluorescence originating from inside the cell. Also calculated was 

a camera background, which, in contrast to the orientation-dependent backgrounds, does not  
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Figure 2.6: Schematic diagram of the imaging apparatus used for measurement of QD rotation 
on ms timescales. A beamsplitter was used to separate vertically- and horizontally-polarized 
fluorescence emanating from differently-oriented QDs. Vertically- and horizontally-polarized 
QD are shown in green and red respectively. Image adapted from  Zhang et al., 2017 [5]. 
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Figure 2.7: Fluorescence image of QD655-IgE bound to FcεRI on 2H3-RBL cells. Image 
adapted from Zhang et al., 2017 [5]. 
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Figure 2.8: Fluorescence image of dry QD605. QD producing vertically- and horizontally-
polarized fluorescence are shown in green and red respectively. Image adapted from Zhang et 

al., 2017 [5]. 
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arise from the sample but instead reflects a constant of ~300 intensity units per frame added by 

the camera driver. All of these background corrections were necessary because they were of 

significant magnitude relative to the fluorescence signal emanating from the quantum dots, and 

failure to account for these would result in the signal being drowned out entirely by background 

noise. 

 

 The final output from this initial processing of the image data consisted of CSV files 

designated “LRB” to indicate “left, right & background”. Each of these files contained 

information corresponding to all dots on a single cell. These files consisted of tabulated data of 

left- and right-hand intensities plotted against the number of frames recorded (typically 1000) for 

each dot analyzed on a given cell. Also calculated in these spreadsheets were averages for all 

vertically- and horizontally-polarized intensities. 

 

 The LRB files generated by our initial processing of the imaging data were then analyzed 

in a Mathematica notebook, i.e. a .nb program. A major interest was to compare the results from 

our most recent version of the primary analysis program version 140 (which is included in its 

entirety as Program Code 3: “Image Corr v.140” in the Appendix) to that of an earlier primary 

analysis program (see Program Code 1: “Image Corr Mod15k”). We also analyzed results with 

another intermediary version of the program produced in the process of developing the most 

recent program which had several notable and significant differences from this final program we 

settled on (see Program Code 2: “Image Corr v.122”). Though these programs differed slightly in 

the details of the analysis, they shared the same overall goals and general format. The differences 



46 
 

between this final program from the initial in terms of analysis methods and the results obtained 

will be discussed subsequently. What follows below is a general discussion of the layout and 

purpose of this program with a focus on our latest analysis.    

  

 Regardless of the version used, the ultimate goals of these programs were the same, 

namely to go from the uncorrected vertical and horizontal intensities obtained from our initial 

processing of the imaging data and, from here, to obtain fitted intensity and polarization time-

autocorrelation fluctuation functions (TACFs) along with tabulated fitted parameters for these 

decays such as the intensity and polarization, TACF amplitudes, and correlation times, amongst 

others. These programs were similar in form and consisted of ten separate sections. The first two 

were “Definitions” and “Depend” sections which are run once together to initialize the program 

prior to running subsequent sections of the program. The third section was the “Optimize” 

section which used a non-linear least squares regression to optimize a number of adjustable 

parameters used to correct the observed vertical and horizontal intensities for a number of factors 

which need to be accounted for such as cell and camera backgrounds and differential detection 

efficiencies in the two orientations. This was done in a manner that allowed us to minimize the 

dependence of the anisotropy on the intensity function and then, using these parameters, we 

calculated the intensity and anisotropies point-by-point. From these, the intensity and 

polarization TACFs were in turn calculated. The next section was “ShowOptResults” which 

displayed graphs of the TACFs obtained from the aforementioned “Optimize” section. The next 

two sections were the “FitAnisDecay” and “FitIntenDecay” which fit the aforementioned 

intensity and anisotropy TACFs and output the resulting graphs and fitted parameters. These 

graphs and numbers were saved to files using the “SaveResults” and “SavePlots” sections 
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respectively. The ninth section was the “ProcessOneDot” section, which, after initialization via 

sections one and two above, ran sections three through eight together in concert and produces the 

aforementioned results and plots files for a single dot. The tenth and final section of the program 

was the “DataImport” section, which performed an automated analysis of all the dots for all 

cells. This section consisted of two sub-sections: the first was entitled “ProcessDotsThisFile” 

which runs sections 3-8 of the program for all dots for a given LRB CSV file corresponding to a 

single cell. The second sub-section, entitled “ProcessAllDotsAllFiles” iterated this procedure for 

all LRB files/cells in a given directory and the “DataExport” function outputs results and plots 

files as described above for each dot on each cell. The sections that follow elaborate on each of 

the previously described sections in the Mathematica program in more detail.      

  

 The key functions in the program associated with the execution of the tasks described in 

this section are primarily contained within the “Optimize” and “ShowOptResults” with some 

code contained in the “Definitions” and “Depend” sections described above. Observed intensities 

in the vertical and horizontal orientations obtained experimentally had to be corrected using three 

adjustable parameters. One of these parameters was the g-factor which was used to calibrate 

intensity measurements so as to account for differential detection efficiencies in the two 

orientations. It is typically expressed as an adjustment factor for the perpendicular (or in our case 

horizontal) intensity. With this correction, the polarization is rewritten as: 
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where gtrad is the traditional, conventionally-used g-factor. The other two parameters were the 

sample background b and the camera background c. The conversion was then done using the 

following formulae for the corrected true intensities vt and ht in terms of the observed intensities 

vobs and hobs: 

 

 / 2
t obs

v v c b= − −   (2.17) 
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For computational reasons we have found it more convenient to use a g-factor defined in the 

following way:  

 

 
1

1
trad

trad

g
g

g

−
=

+
  (2.19) 

 

Re-arranging this equation for gtrad, substituting in the equation for ht above, and multiplying 

both this term and its respective counterpart in vt by (1-g) gives the following symmetrical 

expressions: 
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As can be observed, the formula for the corrected intensities involves both a variable term (1-

g)vobs or (1+g)hobs which varies with the respective observed intensity and a constant expression 

(1±g)( ±b/2)-c containing contributions from both the cell and camera backgrounds. Careful 

selection of these parameters was important, because otherwise there could be feed-through of 

the intensity TACF into the polarization TACF. Since the intensity TACF intrinsically fluctuated 

in accordance with QD blinking, if the anisotropy TACF was dependent on the intensity TACF, 

then it too could be adversely affected by such a complication which would compromise the 

quality of the rotational parameters we hoped to extract from it. To select these parameters in a 

manner that insured maximum independence between the two quantities, we employed the 

Marquardt iterative non-linear optimization algorithm. What follows is a derivation of b, g, and 

the associated variances of vt and ht in terms of the observed intensities and their associated 

variances, quantities that are determined experimentally. 

 

Given that polarization or anisotropy values are small (<<1), we have for their averages: 

 

 ~t tv h   (2.22) 

 

Equating the averages of vt and ht using Equations 2.20 and 2.21 and solving for b gives: 

  

 (1 ) (1 )obs obsb g v g h= − − +   (2.23) 

 

And the expression for the corresponding error in b can be determined by the appropriate error 

propagation formula and set to zero: 
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Rearranging we obtain: 
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The variance of vt is equal to the average of the squares of vt minus the square of the average: 
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Substituting the expression for vt from Equation 2.22 into Equation 2.29 gives the following 

equation: 
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Analogously, using the expression for ht from Equation 2.23 we obtain: 

 

 2 2 2(1 )
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s g s= +   (2.28) 

 

 As a method for assessing whether our method for selecting these parameters was 

appropriate or not, we quantified the degree to which it achieved our goal of minimizing the 
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interdependence of the intensity and polarization TACFs. To accomplish this, we first made a 

provisional assumption that the two quantities were uncorrelated and attempted to determine the 

chance that we would obtain a non-zero correlation coefficient (i.e. determine that the two 

quantities are in fact correlated) given this assumption. In practice, we calculated “minus log 

total probability” which was defined as the negative logarithm of the probability that the two 

quantities were uncorrelated. This was calculated as a function of “minus log probability”, the 

negative logarithm of the probability of getting a negative vertical or horizontal intensity. We 

sought to minimize this quantity so that we could accept the null hypothesis and confirm that the 

intensity and polarization were indeed uncorrelated. 

 

 This portion of the analysis procedure was also one of the areas in which there were 

substantive differences between versions 122 and 140 of the new analysis program. In the 

“Image Corr v.122” of the program, g, b, and c were all optimized together whereas in “Image 

Corr v.140”, g and b were determined in closed form from background measurements and then 

the third parameter c was adjusted in the fit. 

 

 The fluctuation time-autocorrelation functions of the intensity and polarization 

fluctuations were calculated using the following formulae applicable to small fluctuations in s or 

p, respectively: 
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where τ is the correlation time in frames, T is the total number of frames, and Gs(τ) and Gp(τ) are 

the intensity and polarizations TACFs respectively. It is important to note that these averages are 

over regions consisting of the same number of points 

 

 The intensity and polarization fluctuation TACF decays were both fitted with a two-

parameter single-exponential where the two parameters were an amplitude G(0) and a correlation 

time τ using a Marquardt non-linear least-squares regression. In some experiments, a three-

parameter fit which included an additional constant, a limiting polarization correlation G(∞) was 

used to fit the polarization fluctuation TACF. Given that the polarization fluctuation TACF 

should decay to zero, G(∞) can then be considered a measure of imperfect fit. The resulting fitted 

parameters were saved in results CSV files with one file corresponding to each individual dot. 

The various graphs obtained, including plots of the intensity and anisotropy functions and 

TACFs as well as plots fitted for 100, 200, 500, and 1000 (all) points, amongst others, were 

saved in PDF files. 

 

 Results CSV files output from the final primary analysis program containing data for 

each quantum dot were processed using a program written in Visual Basic to merge data. This 

program was used to merge intensity and polarization TACF functions for all dots in a given 

group into a single file for comparison of individual dot results. 
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 Fitted parameters from the results files generated by the final primary analysis program 

corresponding to each quantum dot were combined and averaged by a secondary notebook 

analysis program in Mathematica (see Program Code 4: “MergeFiles v.39” in Appendix). 

Weighted arithmetic averages of the polarization TACF amplitudes ‹Gp(0)› were calculated as 

follows: 
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where n is the total number of dots and [Gp(0)]i is the polarization fluctuation TACF amplitude 

of the individual dots i. The weights were calculated as:  
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the accompanying weighted linear standard deviation was calculated using the following 

formula: 
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Because the range of rotational correlation times spanned several orders of magnitude, a 

weighted geometric average was calculated instead of an arithmetic average as follows: 
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where, if the value and standard deviation of a rotational correlation time for a particular 

quantum dot are both greater than zero, then the weight corresponding to this is inversely 

proportional to the variance of the natural logarithm of the rotational correlation time: 
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The accompanying weighted geometric standard deviation was determined using the following 

formula: 
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where the standard deviation of the natural log of the rotational correlation time was calculated 

as: 
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 Tabulated parameters for each quantum dot along with averages for these parameters 

output from the secondary Mathematica analysis program and graphs of TACF intensity and 

polarization decays output from the Visual Basic program were compiled together in Excel 

spreadsheets. Quantum dots were screened for quality using a number of constraints. Typically, 

dots were excluded if they gave parameters that did not fall within the following constraints: a 

range of 0.2-0.6 for the g-factor, a range of 0-0.01 for the amplitude of the polarization 

fluctuation TACF, a range of 1-200 μs for the rotational correlation time, and 0-0.0012 for the 

standard deviation of the anisotropy TACF. Additionally, QDs which passed this initial 

screening were visually inspected and manually excluded if they exhibited abnormal behavior in 

either the intensity or polarization TACF. A secondary Mathematica analysis program used to 

merge and average the results files for each individual QD was then used to obtain averages and 

associated statistics for these remaining select QDs.  

 

2.4. Results and Discussion 

 

2.4.1. Exponential Decay of Polarization Fluctuation TACF is due to Rotational Reorientation 

and not Blinking 
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A major concern pertaining to these measurements was whether QD blinking would be a 

confounding factor that contributed to the decay of the polarization fluctuation TACF. If this 

were the case, this would represent a significant issue because then the decay would not be solely 

attributable to rotational reorientation because of the feed-through of blinking into the 

polarization fluctuation TACF. A comparison of cell-bound QD655 to dry QD655 largely allays 

these concerns (see Figures 2.9 and 2.10). Both cell-bound and dry dots blink yet, while dry dots 

are largely immobile and display correspondingly flat decay curves (except for shot noise in the 

first channels giving a variable non-zero Gp(0)), the cell-bound dots exhibit the exponential 

decay characteristic of rotational reorientation. The presence of this difference in the polarization 

fluctuation TACFs of cell-bound and dry dots, despite these differently-treated groups being 

similarly affected by blinking, suggests that the fluctuations in intensity due to blinking did not 

affect the polarization fluctuation TACF to a significant extent. A further argument against such 

a complication comes when the intensity fluctuation TACF and the polarization fluctuation 

TACF for the cell-bound QD are examined in parallel (see Figures 2.11 and 2.12). This indicates 

that, while the kinetic signature characteristic of blinking phenomena is present in the intensity 

fluctuation TACF, this is not the case for the polarization fluctuation TACF.   

 

2.4.2. Lateral diffusion does not distort polarization fluctuation TACF 

 

 Lateral diffusion of receptors represents another possible complication that could 

potentially interfere with our measurements. This could have an effect if the regions of interest 

selected around the QD for the vertical and horizontal images were displaced relative to each 

other. If such misalignment were present, lateral diffusion resulting in the movement of the QD  
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Figure 2.9: Polarization fluctuation TACF for a single QD from NP2 dry subgroup (top panel) 
and from the NP2 IgE subgroup (bottom  panel). The gradual decay of the IgE only-treated QD 
compared to the immediate decay of the immobile dry QD on glass suggests that the decay is due 
to actual rotational reorientation and not an artifact of QD blinking. 
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Figure 2.10: Average polarization TACF for NP2 dry subgroup (top panel) and average 
polarization fluctuation TACF for NP2 IgE subgroup (bottom panel). The gradual decay of the 
NP2 IgE QDs as compared to the immediate decay of the immobile NP2 dry dots after the first 
channel suggests that the NP2 IgE decay is due to rotational reorientation and not QD blinking.   
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Figure 2.11: Polarization fluctuation TACF (top panel) vs intensity fluctuation TACF (bottom 
panel) for a single QD in the NP2 IgE subgroup. The large fluctuations between non-zero and 
zero intensity in the intensity fluctuation TACF are indicative of a QD switching between an 
“on” state to an “off” state. This kinetic signature is not readily apparent in the polarization 
fluctuation TACF. 
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Figure 2.12: Average intensity fluctuation TACF (top panel) and average polarization 
fluctuation TACF for NP2 IgE subgroup (bottom panel). Whereas the kinetic signature of QD 
blinking is readily apparent in the intensity fluctuation TACF, no such phenomenon is reflected 
by the polarization fluctuation TACF. 
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from an image corresponding to one polarization to the image corresponding to the other 

polarization would artificially decrease the signal in the former channel and inflate the signal in 

the latter, distorting the apparent polarization fluctuation TACF.  

 

 Fortunately, experimental evidence suggests that lateral diffusion does not affect our 

measurements to an appreciable extent. One piece of evidence comes from comparisons of data 

sets taken for QDs with differently-sized regions of interest (ROIs). For one set of data, a 2x 

extender was used in addition to a 2.5x Optivar which, with the 100x objective, gave a total 

magnification of 500x. The other set of data was collected without the extender, giving a total 

magnification of 250x.  

 

 Additionally, paraformaldehyde fixation did not produce a significant change in the 

TACF decay relative to cells treated solely with IgE (see Figures 2.13 and 2.14). 

Paraformaldehyde is a protein cross-linking agent and is thus expected to result in complete 

lateral immobilization of the receptor [28]. Taken together, the fact that paraformaldehyde 

fixation essentially eliminates receptor lateral diffusion along with the fact that the TACF decays 

do not differ significantly from those produced from the IgE-only treatment group suggests that 

such a complication is not present. This is because such a complication, if it existed, would be 

present in the IgE-only treatment group, the contribution to paraformaldehyde TACF decays 

would be negligible, and this difference would be apparent when comparing the 

paraformaldehyde treatment group to the IgE treatment group. 

 

Furthermore, theoretical considerations suggest that such a complication resulting from 
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Figure 2.13: Polarization fluctuation TACF for a single QD from the NP2-IgE subgroup (top 
panel) and from the NP2-Pf subgroup (bottom panel). The similarity between the two traces 
provides an argument against a lateral diffusion distortion of these traces.  
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Figure 2.14: Average polarization fluctuation TACF for NP2-IgE subgroup (top panel) and for 
the NP2-Pf subgroup (bottom). The similarity between the two traces provides an argument 
against a lateral diffusion artifact distorting of these traces.  
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lateral diffusion of receptors will not adversely affect our measurements because the fluctuations 

caused, if present, would occur on a faster timescale than those of the rotational correlation times 

obtained. Consider the conservative, worst-case scenario in which the offset of the two images 

Δx is as great as 10 nm and the diffusion constant D is as small as 5x10-11 cm2s-1 [31]. Since the 

characteristic lateral diffusion time is Δx2/ 4D, this would give, at longest, a characteristic 

diffusion time of 5 ms. This is a worst case scenario and this is still a much faster timescale than 

our measured rotational correlation times. Thus the timescale of such lateral diffusion-induced 

fluctuations is likely shorter than could be reasonably expected to interfere with our 

measurements. 

 

2.4.3. Reproducibility of Data Collected using Non-Polarized Excitation  

 

 One concern is whether our measurements would be reproducible. Accordingly, an 

important question we sought to resolve was whether, for a given treatment, there would be a 

statistically significant difference between the two non-polarized groups, NP1 and NP2. Because 

these two groups both consisted of dots excited by non-polarized light with data collected in an 

identical manner, we expected that there would not be a statistically significant difference 

between them. If this was found to be the case, this would be an indication that our experiments 

were reproducible. 

   

 To answer this question, we compared both the weighted geometric averages of the 

rotational correlation times and weighted linear averages of the Gp(0)s as well as the histogram 

distributions for these two groups. As an example, consider the NP1 and NP2 groups treated with  
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cytochalasin D (see Tables 2.2 and 2.3). Initial inspection of the data processed by the final 

primary and secondary Mathematica analysis programs suggests that the averages of the 

rotational correlation times for these two groups are similar (105 ms with a standard error of 

±104 ms for N=34 selected QDs vs 97 ms with a standard error of ±16 ms with N=21). A more 

statistically rigorous analysis employing a two-tailed t-test with α=0.05 gives a t-value for the 

difference between these rotational correlation times of 0.078 which is substantially less than the 

critical value of 2.086 obtained for 20 degrees of freedom. Regarding the observed Gp(0)s, initial 

examination suggests these are also very similar for these two groups ((1.2 with a standard error 

of ±0.2)x10-3 vs (1.3 with a standard error of ±0.2)x10-3 respectively). A two-tailed t-test with 

α=0.05 gives a t-value for the difference between these amplitudes of which is -0.301 which is 

also significantly smaller than the critical value of -2.086. These tests suggest that we can accept 

the null hypothesis which states that these values are essentially the same and conclude that there 

is no significant difference between the NP1 and NP2 groups. The averages for the rotational 

correlation times and Gp(0)s for the other four treatments also support this conclusion. The 

histograms of both the rotational correlation times and amplitudes corroborate this point as in 

neither case does it appear that the histogram for the NP1 group is shifted significantly one way 

or the other relative to the NP2 group and this seems to be the case for the other four treatments 

as well (see Figures 2.15 and 2.16). Such an affirmation lends credence to the reproducibility of 

our measurements. Taking this conclusion into consideration, it was determined that it would be 

appropriate to merge both the averages and histograms for these groups and use these combined 

results for further analyses. 
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Table 2.2: Comparison of rotational correlation  times and associated statistics for QD bound to 
cells in the two non-polarized subgroups (NP1 and NP2) in each  of the six treatment groups. 
Measurements for dry dots were only conducted with non-polarized excitation (NP2-dry). 
 

Group 1st 
reagent 

2nd 
reagent 

Type of 
Excitation 

Wtd Geo. Avg. 
RCT (ms) 

SD RCT 
(ms) 

Std. Err. 
RCT (ms) 

Tot. 
QD 

QD 
Selected 

NP2-dry - - Non-Pol. 8.0 9.3 2.3 106 17 

NP1-IgE IgE - Non-Pol. 104.1 295.9 45.7 86 42 

NP2-IgE IgE - Non-Pol. 74.4 147.8 18.3 339 65 

NP1-
DNP-
BSA 

IgE DNP-BSA Non-Pol. 226.7 544.9 73.5 93 55 

NP2-
DNP-
BSA 

IgE DNP-BSA Non-Pol. 105.0 200.3 34.4 140 34 

NP1-Pf IgE Pf Non-Pol. 123.9 488.2 86.3 73 32 

NP2-Pf IgE Pf Non-Pol. 203.0 497.4 81.8 151 37 

NP1-
MβCD 

IgE MβCD Non-Pol. 57.5 81.1 22.5 44 13 

NP2-
MβCD 

IgE MβCD Non-Pol. 89.0 57.6 12.6 68 21 

NP1-
CytoD 

IgE CytoD Non-Pol. 104.7 606.8 104.1 82 34 

NP2-
CytoD 

IgE CytoD Non-Pol. 96.6 72.8 15.9 112 21 
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Table 2.3: Comparison of polarization TACF amplitudes and associated statistics for QD bound 
to cells in the two non-polarized subgroups (NP1 and NP2) for each of the six treatment groups. 
Measurements for dry dots were only conducted with non-polarized excitation (NP2-dry). 
 

Group 1st 
reagent 

2nd 
reagent 

Excitation Wtd. Arith. Avg. 
Gpp(0) 

SD 
Gpp(0) 

SE 
Gpp(0) 

Tot. 
QD 

QD 
Selected 

NP2-dry - - Non-Pol. 0.00664 0.00392 0.00095 106 17 

NP1-IgE IgE - Non-Pol. 0.00165 0.00133 0.00021 86 42 

NP2-IgE IgE - Non-Pol. 0.00164 0.00133 0.00017 339 65 

NP1-DNP-
BSA 

IgE DNP-
BSA 

Non-Pol. 0.00133 0.00092 0.00012 93 55 

NP2-DNP-
BSA 

IgE DNP-
BSA 

Non-Pol. 0.00144 0.00109 0.00019 140 34 

NP1-Pf IgE Pf Non-Pol. 0.00140 0.00123 0.00022 73 32 

NP2-Pf IgE Pf Non-Pol. 0.00134 0.00080 0.00013 151 37 

NP1-
MβCD 

IgE MβCD Non-Pol. 0.00124 0.00165 0.00046 44 13 

NP2-
MβCD 

IgE MβCD Non-Pol. 0.00116 0.00078 0.00017 68 21 

NP1-CytoD IgE CytoD Non-Pol. 0.00125 0.00125 0.00021 82 34 

NP2-CytoD IgE CytoD Non-Pol. 0.00133 0.00082 0.00018 112 21 
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Figure 2.15: Comparison of the histogram distributions of rotational correlation times of 
receptor-bound QD on cells from the two subgroups for which experiments were carried out with 
non-polarized excitation (NP1 and NP2) for each of the six treatment groups. 
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Figure 2.16: Comparison of polarization fluctuation TACF amplitude histogram distributions for 
QD bound to cells from of the two non-polarized subgroups (NP1 and NP2) for the each of the 
six treatment groups. 
 
 
 
 

 



70 
 

2.4.4. Comparison of polarized to non-polarized groups 

 

Another objective of these analyses was to determine whether there would be a difference 

between results obtained for experiments in which samples were excited with polarized light and 

non-polarized light, respectively. If we use a convention in which the longitudinal/optical axis is 

designated as the z-axis, then the molecule can be excited in any direction within the xy-plane. 

This could be the x-axis, y-axis, or a combination in which the vector could have components of 

each. In the experiments in which we used polarized light to excite the sample, we chose to use 

excitation light polarized horizontally/along the x-axis. In others, we used non-polarized light. 

Regardless of whether the molecule is excited by polarized or non-polarized light, it can only be 

excited by light in an orientation that is in alignment with its absorption dipole. The fluorescence 

produced by non-polarized excitation can, in essence, be considered akin to the fluorescence that 

would be obtained if the sample was excited in the x- and y-polarized orientations separately. 

Intuitively, non-polarized excitation gives ensemble and average single-molecule polarizations 

equal to zero. The reason for this is that, in this scenario, the average fluorescence intensities are 

equal in the two orientations (i.e. ‹Ix› =‹Iy›) and therefore ‹rEns›=0. However, less obvious is that 

the polarization fluctuation TACF amplitude in this scenario does not equal zero. Although it 

might also be expected intuitively that polarized excitation should give a larger Gp(0), theoretical 

considerations suggest this is not the case. As observed in Table 2.1 and explained in the 

accompanying discussion (vide supra), the difference between the initial amplitude and limiting 

value of the polarization fluctuation TACF, Gp(0)-Gp(∞) should be equivalent for non-polarized 

and polarized excitation.  
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 Examination of Table 2.4 reveals no consistent difference in the geometric averages of 

the rotational correlation times between the polarized (P3) and the merged non-polarized (NP1 

and NP2) subgroups. For some treatment groups, polarized excitation gives a larger rotational 

correlation time and for others, it is smaller. Examination of Table 2.5 shows arithmetic averages 

of polarization fluctuation TACF amplitudes that are very similar. As an example, consider the 

P3 and merged NP1 and NP2 IgE subgroups. The P3 IgE subgroup had an average amplitude of 

0.00164±0.00133 and the NP1 and NP2 merged subgroups had an average of 0.00163±0.00103. 

The t-value for the difference between these two sample means is 0.097 which is less than the 

critical value of ~1.992 for α=0.05 and 74 degrees of freedom. This suggests we should not 

reject the null hypothesis which suggests that the population means are the same. A similar 

conclusion could be drawn when comparing the other polarized and non-polarized subgroups. 

Together, the lack of a consistent difference in the rotational correlation times and the similarity 

of the values for the amplitudes suggest that experiments conducted with polarized and non-

polarized excitation do not yield significantly different results. In agreement with this finding, 

the histograms in Figure 2.17 and Figure 2.18 do not indicate consistent, significant differences 

in the respective rotational correlation times and amplitude distributions. No trend suggesting 

that polarized excitation gives a higher amplitude than non-polarized can be observed in Table 

2.5 or Figure 2.18. Thus we concluded that these observations provide evidence that experiments 

conducted with polarized and non-polarized excitation are equivalent in terms of the data they 

produce.  

 

2.4.5. Effects of cell treatments on QD rotation as observed by imaging 
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Table 2.4: Comparison of rotational correlation times and associated statistics of polarized (P3) 
and merged non-polarized (NP1 and NP2) subgroups for each of the six treatment groups. 
Weighted averages were calculated for the rotational correlation times and associated statistics 
when merging the NP1 and NP2 groups. 
 

Group 1st 
reagent 

2nd 
reagent 

Excitation Wtd Geo. 
Avg. RCT 
(ms) 

SD 
RCT 
(ms) 

Std. Err. 
RCT 
(ms) 

Tot. 
QD 

QD 
Sel. 

NP2-dry - - Non-Pol. 8.0 9.3 2.3 106 17 

NP1 and NP2-IgE IgE - Non-Pol. 86.0 205.9 19.9 425 107 

P3-IgE IgE - Pol. 208.3 573.8 66.3 340 75 

NP1- and NP2-DNP-
BSA 

IgE DNP-
BSA 

Non-Pol. 180.2 413.3 43.8 233 89 

P3-DNP-BSA IgE DNP-
BSA 

Pol. 88.7 146.7 39.2 189 14 

NP1- and NP2-Pf IgE Pf Non-Pol. 166.3 493.2 59.4 224 69 

P3-Pf IgE Pf Pol. 108.8 180.6 35.4 187 26 

NP1- and NP2-MβCD IgE MβCD Non-Pol. 76.9 66.6 11.4 112 34 

P3-MβCD IgE MβCD Pol. 145.0 108.3 34.3 124 10 

NP1- and NP2-CytoD IgE CytoD Non-Pol. 101.6 402.9 54.3 194 55 

P3-CytoD IgE CytoD Pol. 135.2 273.6 59.7 163 21 
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Table 2.5: Comparison of polarization TACF amplitudes and associated statistics of merged 
non-polarized subgroups (NP1 and NP2) and polarized subgroup (P3) for each of the six 
treatment groups.  
 
Group 1st 

reagent 
2nd 
reagent 

Excitation Wtd. Arith. 
Avg. gpp(0) 

SD gpp(0) SE gpp(0) Tot. 
QD 

QD 
Sel. 

NP2-dry - - Non-Polarized 0.00664 0.00392 0.00095 106 17 

NP1- and NP2-
IgE merged 

IgE - Non-Polarized 
 

0.00164 0.00133 0.00013 425 107 

P3-IgE IgE - Polarized 0.00163 0.00103 0.00012 340 75 

NP1 and NP2-
DNP-BSA 
merged 

IgE DNP-BSA Non-Polarized 0.00137 0.00098 0.00010 233 89 

P3-DNP-BSA IgE DNP-BSA Polarized 0.00150 0.00121 0.00032 189 14 

NP1- and NP2-Pf 
merged 

IgE Pf Non-Polarized 0.00137 0.00100 0.00012 224 69 

P3-Pf IgE Pf Polarized 0.00128 0.00068 0.00013 187 26 

NP1 and NP2-
MβCD merged 

IgE MβCD Non-Polarized 0.00119 0.00111 0.00019 112 34 

P3-MβCD IgE MβCD Polarized 0.00136 0.00054 0.00017 124 10 

NP1- and NP2-
CytoD merged 

IgE CytoD Non-Polarized 0.00128 0.00108 0.00015 194 55 

P3-CytoD IgE CytoD Polarized 0.00180 0.00184 0.00040 163 21 
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Figure 2.17: Comparison of histogram distributions of rotational correlation times of QD bound 
to cells from subgroups for which experiments were conducted with polarized excitation (P3) 
and merged results for subgroups in which experiments were carried out with non-polarized 
excitation (NP1 and NP2) for each of the six treatment groups. 
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Figure 2.18: Comparison of polarization fluctuation TACF amplitude histogram distributions for 
QD bound to cells from the polarized (P3) and merged non-polarized (NP1and NP2) subgroups 
for the six treatment groups. 
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 A major aim of this study was to determine what differences in rotational behavior, if 

any, might result from treatment of cells with various agents expected to perturb receptor 

rotation either by changing receptor interactions or altering the local environment of the receptor. 

Figure 2.19 and Table 2.6 show histogram distributions of rotational correlation times and 

accompanying statistics respectively for the six different treatments. Regarding rotational 

correlation times, it is apparent from the histograms that the range of rotational correlation times 

exhibited spans 2-3 orders of magnitude (~10 ms to ~2000 ms). As previously mentioned, this is 

why we have calculated geometric averages instead of arithmetic averages for the rotational 

correlation times. If we had calculated arithmetic averages, QDs exhibiting slow rotation would 

have had a disproportionate effect on the average, increasing it substantially. With the obvious 

exception of dry QDs which are immobile, averages for rotational correlation times ranged from 

about 100-150 ms. With the exception of the MβCD-treated group and the dry QDs for which the 

standard deviation scaled with the lower average, the standard deviations of the rotational 

correlation times ranged from ~±350-400 ms. However, because the groups differed in the 

number of QDs selected for analysis, it was more informative to calculate the standard error to 

account for differences in sample size. These values for the most part ranged from ~±25-40 ms.  

 

Figure 2.20 and Table 2.7 show histogram distributions of Gp(0) and accompanying 

statistics respectively for the six different treatments. From this data, a few general observations 

can be made. Firstly, it is apparent that, with the exception of the group treated with only IgE, 

which has an amplitude of 0.00164, the amplitudes are similar in magnitude. The IgE-treated 

group has a slightly larger average Gp(0). If this does indeed represent a statistically significant 

difference, one explanation for this could be because these other treatments which include the 



77 
 

Table 2.6: Comparison of rotational correlation times and associated statistics of all merged 
subgroups (NP1, NP2, and P3) for the six treatment groups. Weighted averages were calculated 
for the rotational correlation times and associated statistics when merging the NP1, NP2, and P3 
groups. 
 

Group 1st 
reagent 

2nd 
reagent 

Wtd Geo. Avg. 
RCT (ms) 

SD RCT 
(ms) 

Std. Err. 
RCT (ms) 

Tot. 
QD 

QD Selected 

NP2-dry - - 8.0 9.3 2.3 106 17 

NP1, NP2, and P3 
IgE merged 

IgE - 136.4 357.5 26.5 765 182 

NP1,NP2, and P3 
DNP-BSA 
merged 

IgE DNP-BSA 167.8 377.0 37.2 422 103 

NP1, NP2, and P3 
Pf merged 

IgE Pf 150.5 407.6 41.8 411 95 

NP1, NP2, and P3 
MβCD merged 

IgE MβCD 92.4 76.1 11.5 236 44 

NP1, NP2, and P3 
CytoD merged 

IgE CytoD 110.9 367.1 42.1 357 76 
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Figure 2.19: Comparison of histograms distributions of rotational correlation times of all 
merged subgroups including those in which experiments were conducted with non-polarized 
(NP1 and NP2) and polarized excitation (P3) for each of  the six different treatment groups. 
groups. The distributions for the three subgroups for each of the treatment groups have been 
summed to give the merged histograms displayed above. 
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Table 2.7: Comparison of polarization TACF amplitudes and associated statistics of all merged 
subgroups (NP1, NP2, and P3) for each of the six treatment groups. 
 

Group 1st 
reagent 

2nd 
reagent 

Wtd. Arith. 
Avg. Gpp(0) 

SD 
Gpp(0) 

SE 
Gpp(0) 

Tot. 
QD 

QD Selected 

NP2-dry - - 0.00664 0.00392 0.00095 106 17 

NP1, NP2, and P3 
IgE merged 

IgE - 0.00164 0.00121 0.00009 765 182 

NP1, NP2, and P3 
DNP-BSA 
merged 

IgE DNP-
BSA 

0.00139 0.00101 0.00010 422 103 

NP1, NP2, and P3 
Pf merged 

IgE Pf 0.00135 0.00091 0.00009 411 95 

NP1, NP2, and P3 
MβCD merged 

IgE MβCD 0.00123 0.00098 0.00015 236 44 

NP1, NP2, and P3 
CytoD merged 

IgE CytoD 0.00143 0.00129 0.00015 357 76 
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Figure 2.20: Comparison of histogram frequency distributions of polarization fluctuation TACF 
amplitudes for each of the six treatment groups. The distributions for the three subgroups for 
each of the treatment groups have been summed to give the merged histograms displayed above. 
Since the dry treatment group only had one subgroup taken with non-polarized excitation (NP2), 
this group is displayed by itself. 
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DNP-BSA, paraformaldehyde, MβCD, and CytoD -treated groups, immobilize a fraction of 

receptors. If these immobile receptors do not contribute to the polarization fluctuation TACF 

amplitude, this could potentially be the reason behind the reduced amplitudes for these treatment 

groups relative to the IgE-only group. With the exception of the CytoD-treated group, the 

standard deviations of the Gp(0)s for these groups are also reduced when compared to the IgE-

only treated group, which has an standard deviation of 0.00121. The CytoD group has a very 

similar standard deviation of 0.00129. These lowered standard deviations could also be 

indicative of receptor immobilization induced by these treatments, as this would also be expected 

to decrease the breadth of the distribution of amplitudes exhibited by the receptors. The standard 

errors, however, are all very similar at ~0.0001. The MβCD and CytoD groups have slightly  

elevated standard errors of 0.000148. What follows is a more in-depth discussion of the effects 

of each treatment. 

 

2.4.5.1. Dry QDs 

 

Because dry QDs are obviously expected to be immobile, we hypothesize their 

polarization correlation curves should decay to 0 almost immediately. The exception is the first 

point which must be non-zero due to correlation of shot noise and detector after-pulsing in the 

correlation of each point with itself. Regardless of the size of the amplitude Gp(0) by the second 

point all of the polarization should have decayed to 0. In this way a fast rotational correlation 

time can be an indicator of immobility.  

 



82 
 

For the dry QDs we employed as a control, after processing with Image Corr v.140 and 

MergeFiles v.39 programs, raw data output from the full set of QDs indicated that 28 out of 106 

QDs exhibited rotational correlation times <1 μs for a total of 26% of QDs exhibiting very fast 

correlation times. A higher proportion of QDs were represented in this category than for other 

treatment categories as was expected. Final data output after rejection of QDs based on various 

criteria including the rotational correlation time τD and the amplitude Gpp(0) and several other 

criteria as well as manual rejection of QDs with unreasonable parameters left 17 QDs all 

exhibiting correlation times in the 0-30 ms bin of our histogram (see Figure 2.19). Selection 

criteria were the same as for other treatment groups with the exception of the rotational 

correlation time which was constrained to 0-3 µs instead of 1-200 µs and the amplitude for 

which the range was wider to allow for the inclusion of QDs with large amplitudes. As can be 

seen in Figure 2.20, the overwhelming majority of these fell in the top bin of the histogram with 

values between 0.0035 and 1x106. Though this bias towards short correlation times and long 

correlation times could be considered an artifact of the aforementioned selection criteria with the 

change in the range permitted for the rotational correlation time, it is worth mentioning again that 

the raw results from the program before undesired QD outliers were removed did give a 

significant portion of QDs (larger than other treatment groups) with very fast correlation times. 

These results are consistent with the previously explained expectations for these dry QDs. 

  

2.4.5.2. IgE only 

 

 For the cells treated with IgE only, we would initially expect to see rotational correlation 

times corresponding to the hydrodynamic rotation of the QD-labeled IgE-receptor complex. 
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Since we have labeled the ligand to which the receptor binds instead of directly labeling the 

receptor, we might initially expect a longer rotational correlation time than we would obtain for 

the unbound receptor. The IgE-bound FcεRI complex has a total molecular mass of ~250 kDa 

which is significantly larger than the lone receptor (which has a molecular mass of ~100 kDa). 

However, considering the IgE is located extracellularly, we would not expect a substantial 

difference in the rotational correlation time between the bound and unbound receptor because the 

receptor itself, being confined to the membrane, is thus responsible for the majority of the 

resistance to rotational motion and the IgE, despite its significant size, would slow this motion to 

a negligible extent. Our group has previously studied the rotation of this system by time-resolved 

phosphorescence anisotropy and determined the rotational correlation time of the erythrosin-

labeled IgE-FcεRI to be 79 ±31 μs at 4° C [32]. In close agreement with these results, our group 

has also studied this system using fluorescence depletion anisotropy and determined the 

rotational correlation time of the eosin isothiocyanate-conjugated IgE-FcεRI complex to be 79 

±4 μs [33]. In the absence of polyvalent antigen or other receptor-crosslinking agents, we would 

also not expect a distribution of receptor complex sizes and corresponding rotational correlation 

times, but rather a single rotational correlation time with a value ~80 μs corresponding to the 

rotation of this receptor-ligand complex.  

  

 Our imaging method yielded a weighted geometric average rotational correlation time of 

136 ms at room temperature (25 ℃) with a standard error of ±27 ms (see Table 2.6). This value 

is several orders of magnitude larger than what could be attributed to the hydrodynamic rotation 

of the receptor. In fact, our imaging method is unable to detect such fast rotation as this is below 

the 10 ms minimum frame time of our present camera. Also, the standard deviation and 
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histogram (see Figure 11) indicates that the variability in rotational correlation time from dot to 

dot is greater than might be expected. The reason we observe such a long rotational correlation 

time may be because what we are observing is not in fact the hydrodynamic rotation of the 

receptor, but instead the rotation or libration of domains containing the receptor such as lipid 

rafts which could plausibly exhibit rotation on this timescale. This would also provide an 

explanation for the variability, as we would expect several distinct receptor populations 

occupying domains of varying sizes. The polarization TACF amplitude Gp(0) was 0.001637 

±0.001205 (see Table 2.7) which is slightly higher than the other treatments and the histogram 

for these amplitudes (see Figure 2.20) appears to be shifted slightly to the right as well. The 

reason for this will be considered in our discussion of the remaining treatments. 

 

2.4.5.3. DNP-BSA and IgE 

 

 DNP-BSA is a ~66 kDa hapten-carrier adduct [34] that consists of bovine serum albumin  

conjugated with multiple dinitrophenyl haptens. According to the manufacturer ThermoFisher 

Scientific, typically this is prepared with ~25 of these per protein [35]. We used a previously-

published protocol [36] to derivatize DNP-BSA which give an average of ~11-14 DNP-groups 

per molecule as performed previously [31, 32]. These dinitrophenyl haptens have specificity for 

A2 IgE antibody and therefore this agent can, by virtue of its multi-valency, crosslink multiple 

IgE-bound FcεRI receptors, thereby slowing their rotation. Each Fab arm of the IgE ligand is 

capable of binding a dinitrophenyl group of the haptenated BSA and thus this ligand is bivalent. 

This allows for an even greater degree of crosslinking creating even bigger complexes involving 

multiple DNP-BSA proteins and correspondingly longer rotational correlation times. Such 



85 
 

slowed rotational behavior has been observed experimentally in time-resolved phosphorescence 

anisotropy measurements in which it was found that such treatment led to an increase in the 

limiting anisotropy of the receptor which suggested rotational immobilization of a larger fraction 

of receptors on the 100 μs timescale [27]. It is for this reason that we expect pre-treatment with 

IgE followed by treatment with DNP-BSA should slow protein rotation relative to when cells are 

treated with solely IgE. We expect the retardation of rotational diffusion to occur to a significant 

degree given the results from the time-resolved phosphorescence anisotropy experiments. For the 

rotational correlation time to have remained relatively constant on these timescales (reflecting 

receptors that did not undergo crosslinking) while the limiting anisotropy increased (reflecting a 

larger population of receptors that are immobile on this timescale), the rotational correlation time 

must have increased at least 10-fold upon crosslinking into larger complexes. Otherwise the 

increase in size would have been detectable by this method as a curve shifted to the right with a 

longer rotational correlation time. 

 

 It is difficult to predict the exact extent of binding that will occur and resultant rotational 

correlation times we should expect to observe. For example, if we assumed an average of 14 

DNP groups per protein with two DNPs bound per IgE, this would give 7 IgE-receptor 

complexes crosslinked by a single molecule of BSA. However, the situation is considerably 

more complex than this. Firstly, this assumes that all the DNPs on BSA bind to an IgE and that 

both sites of every IgE molecule are occupied. In reality, such complete saturation is unlikely 

especially considering some binding sites may be inaccessible (e.g. buried within the BSA 

protein or on the side facing away from the membrane). Another issue with such a simplified 

model is that it is possible for an IgE molecule, because it has two Fab fragments and is therefore 
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divalent, to bind two different molecules of DNP-BSA and thus form a crosslinked network of 

IgE crosslinked with not just a single but multiple molecules of DNP-BSA. It is difficult to 

predict which kind of binding is more likely. On one hand, if IgE is already bound at one site to a 

DNP on a BSA protein, then this would put it in closer proximity to other DNP groups on this 

protein and perhaps make binding more likely. On the other hand, for binding of both sites of a 

single molecule of IgE to two DNPs on the same molecule of BSA to occur, a very particular 

spacing of the DNPs on the BSA would be required. Steric considerations are necessary in order 

to determine the most likely arrangements and sizes of such a crosslinked complex. In any case, 

on the millisecond timescale as examined by our imaging method, we would expect these 

complexes to exhibit rotational correlation times lower than what we might expect from the lipid 

domains and so we cannot rule out the possibility that we may counterintuitively observe a lower 

average rotational correlation time than we did for IgE despite the fact that we expect larger 

receptor complexes upon treatment with DNP-BSA.   

 

 We would also expect the DNP-BSA-treated group to display more variability in 

rotational correlation times from dot-to-dot because we expect a distribution of complex sizes. 

As previously mentioned, assuming 14 DNP groups per molecule of BSA, a single molecule of 

DNP-BSA could crosslink up to 7 receptor-antibody complexes via binding of the IgE Fab 

fragment to the dinitrophenyl group at which point it would be saturated, but it is reasonable to 

suspect that a portion of the DNP groups would not undergo binding to an IgE antibody or that 

some IgE-receptor complexes will not be bound to DNP-BSA. Furthermore, it is not necessary 

that both Fab fragments of IgE bind to the same molecule of BSA, and therefore it is possible to 

have networks of receptors crosslinked with BSA with multiple DNP-BSA molecules. Our 
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laboratory has calculated the size distributions of receptor-polyvalent ligand aggregates in a 

different cellular system. 

 

 Upon examination of Table 2.6, a rotational correlation time of 168 ms with a standard 

error of ±37 ms is observed for the DNP-BSA-treated group. This is slightly higher than what we 

observed for the IgE-only group, and though the standard error is a little bigger, it is very similar 

to that seen for the IgE-only treated group. Moreover, the histogram distributions of rotational 

correlation times appear very similar for these two groups (see Figure 11). Though we would 

expect larger rotational correlation times for this treatment group than we would for the IgE-only 

treated group due to extensive crosslinking by DNP-BSA, we also saw rotation occurring on a 

similar timescale for the IgE-only group which we attributed to the motion of lipid 

microdomains, and we have every reason to suspect the same phenomenon is occurring in this 

situation. Thus we once again attributed this rotation to the rafts or other discrete domains 

containing the receptors, though we do not rule out the rotation of large complexes crosslinked 

by DNP-BSA especially for those receptors with rotational correlation times in the lowest bins of 

the histogram. If the fraction of receptors that were observed to exhibit rotational immobility on 

the 100 μs timescale in time-resolved phosphorescence anisotropy experiments were not 

completely immobilized but instead simply exhibited slower rotation than could be observed on 

this timescale, it is possible that some decay attributable to the rotation of receptors crosslinked 

by DNP-BSA could be present on a longer timescale in addition to that attributable to the 

rotation of domains which would be predicted to occur on an even longer timescale. Predicting 

the range of sizes and corresponding rotational correlation times of such complexes is difficult. 

Noteworthy is the slightly reduced Gp(0) obtained for the DNP-BSA-treated group (0.00139 
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±0.00101) relative to the IgE-only-treated group. One possible explanation for this effect is that 

treatment with DNP-BSA has resulted in the immobilization of a fraction of receptors, which, 

because they would no longer contribute to the average, would accordingly result in a decreased 

average value. This is a plausible explanation, as receptors that are crosslinked and, presumably, 

immobilized, should exhibit reduced Gp(0)s since the immobilized receptor fraction has Gp(0)=0. 

 

2.4.5.4. Paraformaldehyde and IgE 

 

 Paraformaldehyde is synthesized via evaporation of aqueous solutions of formaldehyde. 

Formation involves hydration of formaldehyde followed by nucleophilic addition of the resulting 

geminal diol to another molecule of formaldehyde forming a hemiacetal or, for subsequent steps 

in the polymerization, an acetal. It is a linear (non-cyclical) polyoxymethylene with a general 

molecular formula of HO[CH2O]nH where the number of units n ranges from 8 to 100 with the 

typical average number of units being 12 [37]. It is a polyacetal in which the terminal carbon 

positions are classified as hemiacetals and the interior carbon positions as acetals. 

Paraformaldehyde solutions that are pH-neutral of ~0.5 wt % are often used as fixatives. The 

hypothesized mechanism by which paraformaldehyde fixates membrane proteins involves 

covalent crosslinking of the primary amine -NH2 groups of lysine residues to -NH- groups in a 

peptide backbone [38]. Thus this agent, in contrast to DNP-BSA, the other crosslinking agent we 

employed, has much less specificity as it can crosslink any membrane proteins that possess these 

groups.  
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 Paraformaldehyde fixation of a different, but related system, the MHC class II antigen I-

Ad on A20 cells, crosslinked these proteins into larger-scale structures that, in fluorescence 

photobleaching measurements, underwent a substantial reduction in lateral mobility but did not 

exhibit complete lateral immobilization. They also displayed apparent rotational immobility on 

the timescale of the time-resolved phosphorescence anisotropy technique used [28]. The lateral 

diffusion constant decreased monotonically with increasing concentrations of paraformaldehyde 

yet the fractional recovery in these photobleaching experiments remained constant. This suggests 

that, though the receptors would have had to have been crosslinked into much larger complexes 

to exhibit such a decrease in diffusion, they were not completely immobile. Otherwise they 

would not have diffused at a detectable size-dependent rate and contributed to the fluorescence 

recovery. Increasing concentrations of paraformaldehyde produced a corresponding increase in 

the limiting anisotropy of the receptor while not affecting the rotational correlation time on the 

timescale of these time-resolved phosphorescence anisotropy measurements. The constant 

correlation time observed is reflective of the portion of unperturbed, non-crosslinked receptors. 

The fact that the correlation time did not increase on this timescale suggests that, whatever the 

size of complex formed, it was likely to be many-fold larger than the monomeric protein. The 

increase in the limiting anisotropy suggests an increased fraction of large crosslinked complexes 

that are immobile on the μs timescale. Based on these observations, it was concluded that these 

molecules were crosslinked into aggregates that were large enough to appear immobile on the 

timescale of time-resolved phosphorescence anisotropy measurements and to exhibit a slower 

lateral diffusion constant but were nevertheless not large enough to appear laterally immobile on 

the timescale of the photobleaching measurements. Based on Saffman-Delbrück calculations and 

the observed decrease in the lateral diffusion constant, the aggregates formed upon treatment 
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with 0.2% paraformaldehyde may be on the order of 250-fold larger than those not treated with 

paraformaldehyde. The time-resolved phosphorescence anisotropy measurements implied that 

the rotational correlation time must have increased at minimum 10-fold and thus put a lower 

bound on the molecular weight of these complexes of 500,000 kDa. Similarly, it is anticipated 

that FcεRI expressed on the surface of cells treated with paraformaldehyde would exhibit the 

slowest rotational correlation times of our five treatments as paraformaldehyde fixation was 

expected to result not only in a substantial reduction in lateral diffusion but also near complete 

rotational immobilization of the receptor. 

 

 The paraformaldehyde-treated group displayed an average rotational correlation time of 

151 ms with a standard error of 42 ms. This value is slightly elevated relative to that obtained for 

the IgE-only-treated group. Since we expect these receptors to be immobile and to not exhibit 

any decay in the polarization fluctuation TACF, we do not attribute these findings to crosslinking 

by paraformaldehyde, but instead once again attribute them to the movement of the lipid rafts to 

which the receptors are confined. As was the case for the DNP-BSA-treated group, the 

paraformaldehyde group exhibits a slightly reduced Gp(0) relative to the IgE-only-treated group 

of 0.00135 ±0.00091. This could once again be due to the immobilization of a fraction of 

receptors by paraformaldehyde. 

 

2.4.5.5. Methyl-β-Cyclodextrin and IgE 

 

 Methyl-beta-cyclodextrin (MβCD) is a cyclodextrin compound which directly extracts 

membrane cholesterol with high specificity. In order to predict the effect such depletion of 
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membrane cholesterol would have on the rotational diffusion of the FcεRI, it is necessary to 

consider the effect of cholesterol on membrane fluidity and organization. Cholesterol is an 

integral component of eukaryotic cell membranes important for membrane structure, 

organization, function, and dynamics [39, 40]. Cholesterol is an amphipathic molecule with a 

hydrophilic hydroxyl head in the 3β position oriented towards the exterior of the membrane 

leaflet and a hydrophobic portion consisting of a planar tetracyclic fused steroid ring and flexible 

alkyl chain oriented towards the interior of the leaflet so that, as a result, it is aligned with other 

amphipathic lipids in the bilayer. These structural features are responsible for cholesterol’s 

varied effects on membrane physical properties, such as membrane fluidity [41]. 

 

 The effects of cholesterol on membrane fluidity are multifaceted. Cholesterol can have 

seemingly contradictory effects on membrane order depending on the initial state of the 

membrane. For example, if the membrane is in an intrinsic state of disorder such as is the case in 

the liquid-disordered (Ld) phase, incorporation of cholesterol tends to confer order to the 

membrane. A membrane in this phase tends to be enriched in unsaturated phospholipids which, 

on account of the double bonds present in their fatty acid tails, possess a “kink” in their chains, 

and thereby tend to reduce lipid packing efficiency. Temperatures significantly above 

physiological temperature (~37 °C) would also tend to favor such a state. This effect on 

membrane order can be attributed to the rigid, planar steroid ring of cholesterol which constrains 

the conformational flexibility of the fatty acid tails of adjacent phospholipids, imparting a more 

tightly-packed, ordered structure [41]. Conversely, if the membrane is in an inherent state of 

order as is the case in the solid-ordered phase (So), then incorporation of cholesterol will induce 

disorder in the membrane. A membrane in this phase is typically enriched in saturated 
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phospholipids and sphingolipids which have a high packing efficiency. Temperatures 

significantly below physiological temperature (~37 °C) would also tend to favor such a state. In 

this case, cholesterol disrupts the tight packing of the acyl chains of the saturated phospholipids 

and sphingolipids [42]. In either case, incorporation of cholesterol converts the membrane to a 

quasi-crystalline/quasi-liquid state known as the liquid-ordered phase (Lo). It is in this manner 

cholesterol can both increase membrane fluidity, preventing the membrane from solidifying and 

maintaining some degree of permeability and plasticity, as well as impart a certain level of order, 

maintaining the structural integrity of the membrane. 

 

 The effects of cholesterol on membrane fluidity are further complicated by the uneven 

distribution of certain lipids throughout the cell membrane. Tightly-packed saturated 

phospholipids and sphingolipids have a higher affinity for each other than for unsaturated 

phospholipids and, as a result, tend to aggregate into small microdomains known as lipid rafts 

[43], excluding unsaturated phospholipids which remain in the bulk membrane. Because the 

interaction of cholesterol with these saturated lipids is more favorable [44, 45], the distribution of 

cholesterol reflects this non-uniform distribution of lipids and therefore it is disproportionately 

distributed in these lipid rafts. This heterogeneous distribution of cholesterol produces a situation 

in which immiscible lipid rafts enriched in cholesterol in the Lo phase are suspended in the 

cholesterol-deficient bulk membrane which exists in the Ld state. 

 

 Modulation of membrane cholesterol content can be achieved using various classes of 

agents including water-soluble sterol-specific carriers that can extract and/or replenish 

cholesterol from the membrane such as cyclodextrins and liposomes, agents that can sequester 
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cholesterol in the membrane such as digitonin and nystatin, enzymatic oxidation by cholesterol 

oxidase, and agents that interfere with cholesterol biosynthesis via inhibition of 

hydroxymethylglutaryl-coenzyme A (HMG-CoA), which are collectively known as statins [46]. 

In this study, we have utilized the cyclodextrin known as methyl-beta-cyclodextrin (MβCD). 

MβCD is an oligomer that consists of seven residues of methylated-glucose. Compared to other 

cyclodextrins, it exhibits a higher specificity for cholesterol and extracts other lipids to a lesser 

degree. Previous studies have shown that treatment with increasing concentrations of MβCD 

generates a progressive reduction in levels of membrane cholesterol while simultaneously having 

an insignificant effect on the total phospholipid content of the membrane [47]. MβCD binds 

cholesterol with a stoichiometry of 2:1. Substitution of the polar hydroxyl groups of glucose in 

MβCD with methyl groups, where typically 10.5-14.7 such substitutions are made per molecule 

of β-cyclodextrin, imparts a hydrophobic character to the side of the molecule that will interact 

with cholesterol, while the remaining unsubstituted hydroxyl groups allow it to retain its overall 

water-soluble character. It is in this way that two molecules of MβCD can “sandwich” 

cholesterol, selectively extracting cholesterol without partitioning into the membrane. An 

advantage of cyclodextrins over other lipid carriers such as liposomes [48] or lipoproteins [49] 

are their small size which enables them to come into close proximity to the membrane and 

minimize the extent to which the hydrophobic cholesterol molecule experiences the energetically 

incompatible aqueous environment [50].    

 

 Considering the above discussion, it is now possible to consider what effect membrane 

cholesterol depletion by MβCD may have on the rotational diffusion of the FcεRI receptor. It has 

been reported that, unlike other membrane cholesterol-depleting agents, MβCD slows the lateral 
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diffusion of membrane proteins [51]. However, the effect this agent has on rotational diffusion of 

membrane proteins, and, in particular, the FcεRI receptor remains uncertain. Given that we 

would expect IgE-bound FcεRI to be localized in lipid rafts so as to allow for signal transduction 

and eventual receptor internalization, the effect of such a treatment on the fluidity of the rafts to 

which these receptors are confined is of interest. Since, as previously discussed, these domains 

exist in the Lo state, depletion of membrane cholesterol might be expected to cause them to revert 

to the So state. Based on this, it can be hypothesized that cholesterol depletion with MβCD would 

place the receptor in a more ordered surrounding environment with lowered fluidity, thereby 

causing the receptor to undergo slower rotational motion. A hypothesis in which treatment with 

MβCD causes spontaneous desorption of cholesterol from rafts thereby lowering their fluidity is 

also consistent with the observation from Shvartsman et al. (vide supra) that MβCD slows lateral 

diffusion [51]. Thus a scenario can be imagined in which a localized decrease in membrane 

fluidity in lipid rafts upon MβCD-mediated cholesterol efflux leads to both slowed lateral and 

rotational diffusion of raft-localized IgE-bound FcεRI.     

 

 We observed an average rotational correlation time of 92 ms with a standard error of ±12 

ms for the group treated with IgE followed by MβCD. This was the fastest rotational correlation 

time observed of all groups and was significantly faster than the average rotational correlation 

time displayed by the group treated with solely IgE. Correspondingly, the histogram of rotational 

correlation times for the MβCD-treated group shows more QDs in the 30-100 ms bin than for the 

preceding treatments with >80% of QDs exhibiting rotational correlation times in the 30-300 ms 

range and relatively fewer QDs exhibiting rotational correlation times >300 ms. This is 

somewhat surprising given our expectation that depletion of membrane cholesterol with MβCD 
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would lead to slower rotational diffusion of the receptor. We had based this on a model in which 

cholesterol at low temperatures imparts a degree of disorder and fluidity to rafts and thus 

depletion of membrane cholesterol would be predicted to cause rafts to transition to a more 

ordered, less fluid state. We observed an amplitude and associated standard deviation for the 

polarization fluctuation TACF of (1.23±0.98)x10-3. 

 

2.4.5.6. Cytochalasin D and IgE 

 

 Cytochalasin D is a disrupter of actin filament polymerization. It has been demonstrated 

that cytochalasin D increases FcεRI-mediated degranulation. This suggests that actin 

microfilaments interact with the receptor in either a direct or indirect manner and down-regulate 

FcεRI-mediated signal transduction, possibly through a mechanism involving an alteration in the 

degree of receptor tyrosine phosphorylation taking place [52]. It has also been shown that, upon 

disruption of actin polymerization with cytochalasin D, crosslinking of FcεRI causes lipid raft 

components to coalesce on RBL-2H3 mast cells [53]. 

 

 In fluorescence photobleaching recovery measurements, cytochalasin D has been found 

to increase lateral diffusion and the observed mobile fraction of hCG-occupied luteinizing 

hormone (LH) receptor, a G-protein coupled receptor studied extensively in our lab [54]. It was 

observed that untreated hCG-occupied LH receptor possessed a lateral diffusion constant of 

3.3x10-11 cm2 s-1 and a mobile fraction of 10.3% and, upon treatment with cytochalasin D, these 

values underwent a substantial increase to 22.0x10-11 cm2 s-1 and ~25-30% respectively. It was 

also observed that the receptor exhibits a bigger lateral diffusion coefficient and mobile fraction 
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on regions of the membrane which are physically separated from the underlying cytoskeletal 

scaffolding known as blebs. These two observations suggest that, when intact, actin filaments 

tether/anchor the receptor in place and/or constrain its motion/coral the receptor via boundaries 

dictated by actin fences. Cytochalasin D, as a disrupter of actin filament polymerization, would 

then be expected to liberate the receptor which would explain its increased lateral mobility. 

Whether such effects could be generalized to other membrane receptors and thereby extended to 

the FcεRI remains to be determined, but seems likely. 

 

 We report an average rotational correlation time of 111 ms with a standard error of ±42 

ms for the group treated with cytochalasin D. This is a similar yet slightly reduced value than we 

observed for the IgE-only treated group. In support of this, the histogram of rotational correlation 

times exhibits a slightly left-skewed distribution when compared to the IgE-only-treated group. 

We observed an average polarization fluctuation TACF amplitude of (1.43±1.29)x10-3 for the 

cytochalasin D-treated group.  

 

2.4.6. Comparisons of analysis programs 

 

 Our new primary analysis program differed from the initial old analysis program in 

several respects. One of these differences related to how we optimized the values of 

experimental parameters such as the g-factor and the backgrounds. As we mentioned previously, 

a major aim of this optimization was to minimize the dependence of the polarization fluctuation 

TACF on the intensity fluctuation TACF in order to prevent feedthrough of blinking into the 

polarization fluctuation TACF. In mathematical terms, this meant we wanted a correlation 
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coefficient between these two quantities as close to zero as possible, which would imply that 

there was no interdependence between them. In the old method, this meant calculating a 

conventional Pearson correlation coefficient. In the new method, we employed the Szekeley 

distance correlation coefficient. 

 

 Another difference between these programs was in how we weighted points during the 

fitting of the polarization fluctuation TACF. In the initial primary analysis program, we used a 

s0
2(1+p0

2) weighting scheme whereas the new program permitted several different weighting 

modes including 1. a uniform weighting mode; 2. a s2 weighting mode; and 3. a full weighting 

mode using individual point values of s and p. For the majority of our analyses, we employed 

mode 2 - that is, an s2 weighting mode. Another difference was in the number of parameters used 

for the fit. Whereas both programs could execute a two-parameter fit with no limiting 

polarization and a three-parameter fit which included a limiting polarization, in the initial 

program a separate add-on program was required in order to do a three-parameter fit whereas in 

the final program this could be specified at the end of the program. 

 

 In both the initial and final programs we employed for correlation calculations a fast 

Fourier transform-based function in Mathematica. This expedited the analysis time so that 

instead of the time being proportional to N2 where N is the number of points to be correlated, it is 

instead proportional to N log N. This shortened what would otherwise have been a prohibitively 

long analysis time considerably.   

 

2.4.7. Theoretical Expectations for Polarization Fluctuation TACF Amplitudes 



98 
 

 

 In order to understand the significance of the magnitudes of the polarization fluctuation 

TACF amplitudes, it is necessary to provide some theoretical context. Previous results from our 

lab report values for the initial anisotropy of solution phase QD605 and QD655 of 0.079 and 

0.042 respectively [5]. Grecco et al. report a similar value of 0.085 for the initial anisotropy of 

QD 605 [55]. Theory predicts that these dots should be expected to display initial anisotropies in 

solution of 0.200 in accordance with the following equation 

 6 6
0( )

5
r rD t D tf

r t e r e
− −= =   (2.38) 

The lower values obtained in our experiments could reflect the transition of those QDs.  In water, 

Gp(0) is equal to 0.07. Squaring this gives 0.0049. The real anisotropy is 5/12 of the steady-state 

anisotropy which gives 0.0020. 

 

2.4.8. Theoretical Estimations for Rotational Correlation Times 

 

 The magnitudes of the rotational correlation times obtained using the fluorescence 

imaging technique described herein merit comment. In order to put these values in context, it is 

worthwhile to consider previous results regarding this topic. Our lab has previously monitored 

the rotational dynamics of erythrosin-tagged IgE-FcεRI expressed on 2H3 cells using time-

resolved phosphorescence anisotropy [27]. In these experiments, the receptor was observed to 

exhibit a rotational correlation time of 82 μs which was taken to reflect the hydrodynamic 

rotation of the receptor. Such short timescales are inaccessible by our imaging approach because 

the ability of this technique to resolve such information is inherently limited by the frame rate of 

the camera used. This limitation is addressed in Chapter III of this thesis by our alternative 
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approach of time-tagged single photon counting. However, the appeal of the imaging approach 

used here is its ability to access information on a timescale longer than that which is accessible 

by time-resolved phosphorescence anisotropy methods. The time regime accessible to time-

resolved phosphorescence anisotropy methods is intrinsically limited by the phosphorescent 

lifetime of the probe which, for probes like erythrosin, are typically <500 μs. Consequently, this 

technique can only yield rotational information on timescales below that of the phosphorescence 

lifetime such that rotational motion occurring on a timescale greater than ~500 μs cannot be 

observed. However, what is observed in such measurements is a limiting anisotropy at 350 μs 

after excitation.  

 

 While this residual anisotropy could be interpreted as reflecting a rotationally immobile 

fraction of receptors, we suggest that it is instead indicative of rotational motions on a longer 

timescale. We propose that these ms motions observed using our imaging technique here do not 

correspond to the hydrodynamic rotation of the receptor itself, but instead reflect the rotational 

dynamics of the larger-scale compartments to which the receptors are confined. It is well known 

that the cell membrane has a heterogeneous composition and organization, and these motions 

could reflect the motions of mesoscale heterogeneities distributed throughout the membrane 

known as lipid rafts that have been discussed previously. These domains may undergo rotational 

or librational motion and the receptor would, by virtue of being contained within such a region, 

also be subjected to such ms global membrane motions which are superimposed on its own 

individual rotations occurring on a μs time regime. Theoretical calculations can give an 

approximation of how big such a region would need to be to in order to produce rotational 
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motions on such a timescale. Rearrangement of Equation 1.5 and substitution of the diffusion 

constant with the rotational correlation time via the equation DR=1/6φ  gives: 
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

=   (2.39) 

 

where ρ is the radius, kB is Boltzmann’s constant, T is the temperature, µ is the membrane 

viscosity, and h is the membrane thickness. If we use typical values for the membrane thickness 

and viscosity of 5 nm and 3 poise respectively , a temperature of 37 °C (physiologic 

temperature), and an rotational correlation time of ~125 ms as was typical in our experiments, 

this would give a radius of ~413 nm. However, since our experiments were conducted at room 

temperature (25 ℃) without a warm water bath, this value is expected to be a little smaller: 
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Thus, according to the Saffman-Delbrück equation, to give a rotational correlation time of 125 

ms, a body embedded in a membrane would need to possess a radius of around 400 nm. This 

value lies within the estimated range of plasma membrane compartment sizes.  

 

2.5. Conclusions 

 

 As demonstrated in this study, correlation analysis of polarization by fluorescence 

imaging is a viable method for examining membrane protein rotation, and can elucidate 
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processes such as molecular aggregation events and reveal information on the local environment 

of these proteins. We have demonstrated that this technique produces reproducible results and 

that rotation can be examined with this technique even in the presence of complications such as 

QD blinking and receptor lateral diffusion. We also conducted experiments with both polarized 

and non-polarized excitation and concluded that these two types of experiments did not give a 

statistically significant difference in results. We examined the effect of a variety of cell 

treatments which we expected to change rotational dynamics of the FcεRI on the rotation of this 

receptor. We observed rotational correlation times scattered within a range of ~10-103 ms 

amongst individual copies of the receptor with weighted geometric mean rotational correlation 

times within the ~100-150 ms range. As these average correlation times displayed little 

variability between the different treatments, we attributed them as representing not the rotation of 

the receptor itself, but rather rotation or libration of the domains to which the receptors are 

confined, the dimensions of which we have attempted to calculate. This phenomenon, 

presumably present for all treatments (with the possible exception of MβCD as it alters 

membrane composition and likely organization) does not preclude the possibility of larger 

receptor complexes as would be observed upon treatment with DNP-BSA or paraformaldehyde, 

and such higher-order complexes could also contribute to these averages given they rotate on a 

sufficiently long timescale.  
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Chapter III: Examination of rotation of quantum dot-labeled type I Fcε receptor by time-

tagged single photon counting 

 

3.1. Overview 

 

 Correlation analysis of polarized optical signals emanating from quantum dot (QD) 

probes attached to membrane receptors can reveal information on the rotation of these receptors. 

In this study, we have used a time-tagged single photon counting approach to examine receptor 

rotation on μs timescales. In this method, a focused laser excites individual receptor-bound QD 

displayed on the cell membrane and the resultant fluorescence emitted by the QD polarized 

parallel and perpendicular with respect to the polarization of the excitation source is collected by 

separate confocal avalanche photodiode (APD) detectors and thereby sorted into two channels 

depending on the polarization of the signal. A Becker and Hickl DPC 230 digital time-tagged 

single photon counter stores information on both arrival time of a detected photon (with a 

resolution of 165 ps) and the channel in which it arrived. The auto- and cross-correlations of the 

vertically- and horizontally- polarized signals are determined directly from the arrival times 

without binning and corrected using a number of experimental parameters such as the g-factor. 

Careful selection of these parameters was necessary in order to minimize the dependence of the 

polarization fluctuation time-autocorrelation function (TACF) on the intensity TACF and prevent 

feed-through of blinking into the polarization TACF. The minimum rotational correlation time 

accessible to this technique is determined by the maximum detected photon count rate that can 

be attained. Given typical count rates, correlation times as low as 20 μs are attainable which 

should, in theory, enable observation of the hydrodynamic rotation of the receptor. We obtained 
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correlation times for several QDs that could correspond to the hydrodynamic rotation of the 

receptor for the IgE-treated group and slightly hindered rotation for the DNP-BSA and 

paraformaldehyde-treated groups. However, we observed a prevalence of QDs that either 

displayed a combination of very large correlation times and very small TACF amplitudes or vice 

versa. Though these may be legitimate indicators of immobility for these QDs, given the ubiquity 

of QDs exhibiting such behavior throughout all treatment groups, we have considered the 

possibility that our measurements may have been affected by a systematic error. We speculate on 

possible causes for such an error, both experimental and in our method of data analysis, and 

propose possible solutions for removing this complication.  

 

3.2. Introduction 

 

3.2.1. Time-tagged single photon counting approach to measure QD-labeled receptor rotation 

 

  In Chapter II, we examined the slow, hindered rotation of the Type I FcεRI (FcεRI) on 

2H3 rat basophilic leukemia (2H3-RBL) cells using polarized fluorescence imaging of the 

commercial Quantum Dot 655 (QD655). While our imaging approach is uniquely appealing in 

that it can potentially reveal rotational phenomena occurring on a previously unexamined ms 

timescale, the maximum frame rate of available cameras imposes an inherent limitation on the 

timescale of rotation that can be examined. Though this method is suitable for measuring 

hindered rotation of this receptor which we attributed to complexation events or localization to 

lipid microdomains, it is unable to examine rotation on a time-scale faster than several camera 

frame times, which, for the fastest low-light cameras, is typically on the order of one to several 
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ms. In our application of this method using an ANDOR EMCCD camera, frames are separated 

by a minimum of 10 ms and thus it lacks the requisite resolution to reveal phenomena occurring 

more rapidly than this. Therefore, while this technique may be suitable to examine rotational 

motion associated with the aforementioned phenomena (e.g. rotation of domains in which the 

receptor is confined or incorporation of the receptor into large aggregates), phenomena that occur 

on a shorter timescale than this cannot be measured by this method. Importantly, the 

hydrodynamic rotation of the ligand-bound receptor, which has been measured by time-resolved 

phosphorescence anisotropy to be 28 μs at 37 °C [1], 40 µs at 25 °C [2], and 82 µs at 4 °C [3] 

cannot be observed with this technique as these values are far below the minimum threshold 

accessible to imaging techniques. 

 

 To address this limitation, we have implemented an alternative time-tagged single-photon 

counting approach. These time-tagged single photon counting measurements enable the 

examination of rotation on a timescale inaccessible to our imaging approach. For this reason, we 

have also employed an alternative time-tagged single photon counting approach. With this 

method it is possible to examine rotational motion occurring on a shorter timescale than could be 

observed with our imaging approach. In theory, given sufficiently high count rates, this 

technique can be used to probe sub-nanosecond timescales. The clock on our DPC-230 time-

tagged single photon counter yields measurements with a resolution of 0.164 ns (164 ps) per 

point. In practice, given typical maximum photon count rates 50,000 counts/s, this method can 

probe rotational correlation times ≥20 μs and therefore has the potential to allow us to observe 

the hydrodynamic rotation of the receptor.  
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 Unlike our imaging method, the time-tagged single photon counting method is, in theory, 

capable of detecting the hydrodynamic rotation of the ligand-bound receptor. Because this 

technique has a resolution of 165 ps, in theory, it is possible to observe rotational correlation 

times under 1 ns. However, in practice the lower bound on the rotational correlation times we 

expect to be able to observe is dictated by the maximum number of photons that can be collected 

over a period of time. Rotation can only be satisfactorily observed if the product of the rotational 

correlation time with this photon count rate is greater than or equal to one (i.e. there is at least 

one count per correlation time). Given, from a single QD, a maximum signal rate of ~5x104 

counts per second, the lower bound on the rotational correlation times we can expect to observe 

with this technique is ~20 μs. 

 

 Quantum Dot 605 has a lifetime determined by our IBH 5000U lifetime fluorometer to be 

5.5 ns [4]. Considering this value, in order to get at least one count per lifetime, we would need 

~1.8x108 counts/s which is orders of magnitude above the maximum rate of photons that can be 

emitted by, much less detected from, an individual QD. This imposes an absolute lower limit on 

correlation times which might be calculated from such fluorescence signals. 

 

3.2.2. Fluorescence Correlation for Asynchronous Time-Tagged Single-Photon Counting Data 

 

 An obstacle that arises when performing single molecule spectroscopy is low photon 

count rates. This presents a problem in conventional experiments involving synchronous 

acquisition in which photons are binned into consecutive intervals of equal width. A 

consequence of the sparse photon streams associated with single molecule methods when 
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conducting experiments with a synchronous mode of acquisition are empty time bins that collect 

no photons. This is particularly problematic at high temporal resolution and with the low light 

intensities which are characteristic of single molecule experiments. In this situation, the small bin 

widths combined with the rarity of photon detection events means that most bins will contain no 

information, yet occupy large amounts of memory space. As an example, consider that a bin 

width of 10 ns would require a count rate of 108 photons/s, yet typical count rates tend to be 

much lower at ~103-105 photons/s. Hence most bins are empty in this scenario. If we consider a 

count rate as high as 105 photons/s, an experiment with a 30 s measurement time would give an 

average of 3x106 total photons. Given the 10 ns temporal resolution, there would be 3x109 bins 

in total. Assuming each bin requires 4 bits of space, recording all this data would occupy 

1.50 GB of space. This is both excessive and unnecessary, as based on the total number of 

photons collected over the full duration of the experiment, in only 0.1% of these will a photon be 

recorded whereas the rest of these will be devoid of any valuable information. Given the 

effective bin width for the raw data in our TTSPC experiments would be the minimal resolution 

or clock time of 0.164 ns, this excessive overhead of information would be even greater. 

 

 An alternative method of data acquisition that addresses the above concern is an 

asynchronous data acquisition mode known as the time-tagged time-resolved (TTTR) mode [5]. 

In this mode, unlike with a synchronous mode of data acquisition, there is no sorting of photons 

based on the time interval in which they arrived and data is only recorded when a photon is 

detected. A time-tagged single photon counter records two numbers-the arrival time of the 

photon and the channel in which it was detected (i.e. 1 or 2 corresponding to the APDs detecting 

vertically- and horizontally-polarized light respectively). The obvious advantage of this TTTR 



113 
 

data acquisition mode when compared to the synchronous data acquisition mode is that in this 

mode the amount of data is directly proportional to the photon count rate. Thus this saves a 

substantial amount of memory and makes this a suitable method for data acquisition where 

synchronous acquisition would prove impractical. 

 

3.2.3. Goals of study 

 

 In this study, we first aimed to establish our TTSPC method as a viable way of measuring 

the rotation of cell membrane receptors on a microsecond timescale. Examination of the rotation 

of the receptor on this shorter timescale would provide complementary information on faster 

receptor motion and give a more complete picture of receptor rotational dynamics than our 

imaging approach (the subject of the previous chapter) can alone. Amongst other goals, we 

hoped this technique would enable us to observe the hydrodynamic rotation of QD-labeled, IgE-

bound FcεRI. Additionally, we sought to examine the effect of a number of cell treatments which 

we anticipated would perturb receptor rotation to a considerable degree. These treatments 

consisted of IgE plus an additional agent such as DNP-BSA, paraformaldehyde, MβCD, and 

cytochalasin D. We also experimented with two different types of QD to label the receptor, 

QD605 and QD655, the goal being to compare the effect of their differing optical properties and 

aspect ratios on the results obtained.  

 

3.3. Materials and Methods 

 

3.3.1. “Wet” chemistry procedures 
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 Methods for growing RBL-2H3 cells, sensitization of FcεRI with DNP-specific A2-IgE, 

and labeling with QD655 and QD605 are described in detail in chapter II of this dissertation. See 

section 2.3.1 above for a full description of these procedures. 

 

3.3.2. Photon-counting data collection and analysis 

 

 The experimental apparatus used to conduct time-tagged single photon counting 

experiments included an Olympus IX-71 microscope equipped with a Becker & Hickel DPC-230 

time-tagged single photon counter and an ALV-7004 digital hardware correlator. A schematic of 

this experimental setup is shown in Figure 3.1. A 488 nm blue ModuLaser StellarPro multiline 

argon ion laser was used to excite the sample. The laser traveled along a KineFLEXTM-P-3-S-

488-640-0.7-FCP-P2 fiber optic cable and, upon exiting the cable was re-collimated by a 

collimating lens. The microscope and laser excitation path are shown in Figure 3.2. 

 

 A 0.5X Galilean telescope reduced the beam radius by half. The spot size/detection 

volume radius on the sample is inversely related to the beam radius by the equation r=λf/πR 

where λ is the emission wavelength, f is the focal length of the objective, and R is the laser beam 

radius. Thus this 0.5x reduction in laser beam produced a 2x expansion of the beam radius on the 

sample. The laser beam then passed through an adjustable iris. It was then reflected by a mirror 

and a gimbal mount positioned at the re-created back focal plane of the objective. This system of 

mirror and gimbal mount could be adjusted (both the position and pitch and yaw of either mirror) 

so that the laser was centered on the objective and did not come through at an angle.   
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Figure 3.1: Schematic diagram of microscope used for TTSPC measurements. A system 
consisting of a primary mirror and a secondary gimbal-mounted mirror were used to direct the 
laser into the microscope. The locations of alternating aperture and image planes are denoted by 
blue and red asterisks, respectively. A dichroic mirror reflects incident laser light onto the sample 
and transmits fluorescence emitted from the sample onto the detection path. The fluorescence 
travels through a pinhole which filters out-of-focus light originating from front or behind the 
back focal plane of the objective. A custom-built detector box separates this light by polarization 
and directs it to separate avalanche photodiode (APD) detectors.  
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Figure 3.2: Olympus IX-71 microscope used in TTSPC measurements and excitation path for 
argon 488 nm laser. After leaving the laser housing on the left side of the diagram, the laser 
travels through a fiber optic cable, a collimator, a mounted telescope, and an adjustable iris. It is 
then reflected by a mirror onto a second mirror on a gimbal mount. The laser beam then enters 
the port on the left side of the microscope and is directed onto the sample positioned on the 
adjustable stage. Fluorescence exits the port on the right side of the microscope travels through a 
pinhole and our custom-built detector box (not pictured). 
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 For these measurements, a mechanism was needed to separate vertically- and 

horizontally-polarized fluorescence emissions so that they could be individually recorded by our 

detectors. To accomplish this, we fabricated our own unique custom detector system. 

Fluorescence polarized in vertical and horizontal orientations was recorded in 2 channels by this 

detector system which is capable of recording up to 4 channels. If required, these extra 2 

detectors could independently record fluorescence of the same polarization examined by one of 

the aforementioned detectors for use in subsequent pseudo-autocorrelation calculations. For 

these experiments; however, only 2 detectors were used.  

   

 Fluorescence exiting the side port of the microscope entered a 300 µm pinhole positioned 

at an image plane which filtered out out-of-focus light originating from front or behind the back 

focal plane of the objective. This fluorescence then entered our custom detector box (see Figures 

3.3 and 3.4). After a telescope, a polarizer is positioned in the optical path which separates 

incident light by polarization. Vertically-polarized light is reflected by the polarizer and travels 

along a new optical path through a telescope and towards a collimating lens connected by a fiber 

optic to an APD detector, while horizontally-polarized light is transmitted  through the polarizer 

orthogonally to this optical path and reflected 90° by a mirror onto a third parallel optical path, 

through another telescope, and onto a second collimating lens connected by a fiber optic to 

another APD detector. For these experiments, we have only used these two detectors to 

separately monitor vertically- and horizontally- polarized fluorescence. 

 

  It is worth noting that this detection system is, in theory, capable of monitoring up to 

four channels using four APD detectors. This is accomplished by placing a beamsplitter before  
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Figure 3.3: Schematic of custom-built detector box. A 50 μm pinhole positioned at an image 
plane filters out-of-focus fluorescence originating from front or behind the back focal plane of 
the objective. Fluorescence originating from the sample enters a primary telephoto lens system 
(T1) consisting of an array of two convex and one concave lenses. A beamsplitter (BS) is placed 
behind this which can transmit and reflect 50% of incoming light, or, in the case of cross-
correlation measurements, a wavelength-partitioning filter can be used. The light then travels 
through a secondary telephoto lens system (T2) consisting of another array of three lenses. A 
polarizer/polarizing beamsplitter (PBS) separates vertically- and horizontally-polarized light and 
directs it onto separate avalanche photodiode (APD) detectors. Fiber optic cables relay the 
signals to a Becker and Hickl DPC 230 digital photon counter. 
 

 

 



119 
 

 

Figure 3.4: Picture of custom-built detector box for TTSPC measurements. The design of this 
setup is explained in the text and the accompanying caption for the schematic representation in 
Figure 3.3. 
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each of the aforementioned detectors. The beamsplitter transmits half of the incident light 

intensity onto this detector and an additional detector is positioned to collect the other half of the 

light reflected by the beamsplitter. This is done in a likewise fashion for the other detector. This 

enables the collection of the vertically-polarized light by two separate detectors. Likewise, 

horizontally-polarized light can be collected by the other two detectors. In this manner, it is 

possible to autocorrelate the same signal (at half intensity) collected by two different detectors. 

This practice, termed “pseudo-autocorrelation”, circumvents problems such as detector-

afterpulsing typically associated with conventional autocorrelation of signals recorded by the 

same detector. This is especially important as it affects early points in the correlation curve and 

can therefore interfere with the ability to accurately determine amplitudes. However, a drawback 

to using the additional detectors for pseudo-autocorrelation measurements is that the signal 

intensity is effectively split in half. 

 

A Becker and Hickl DPC 230 digital photon counter records the arrival time and channel 

(either 1 or 2) of every photon and has a minimal time resolution of 0.17 ns. The information 

corresponding to each photon takes up 4 bytes of space in each file. 

 

 SPC files generated by the DPC-230 time-tagged single photon counter containing raw 

data for each QD were processed with a program written in Power Basic to generate CSV files 

which consisted of tabulated data with a column recording the arrival time in DPC-230 clocks 

(“time-tag”) of each photon and another column indicating whether the photon was sorted into 

channel 1 or 2 (i.e. whether the photon arrived at the APD detector which detects parallel-

polarized or the detector for perpendicularly-polarized signals). 
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 A program written in Mathematica implemented a corrected correlation algorithm based 

on a principle introduced by Enderlein and colleagues [6]. This program is included in its 

entirety in the Appendix as Program Code 5: “PC Corr v.80”. This algorithm does not attempt to 

bin all photons into a set of equal-width bins but rather only processes each photon individually.  

Consider a 30 s experiment with a photon flux of 5×104 photons/s. A file of 1.8x1011 bins 

uniformly-spaced bins, and possibly 4x this number of bytes, would be needed for these data.  

Since each bin would require mathematical processing, analysis of such a file would be 

effectively impossible. By contrast, this example would involve 1.5×106  photons so that the 

arithmetic required to process the individual photons but ignoring empty bins would be about 

105-fold less than that needed to process each bin.   

 

 Our algorithm was used to correlate the time-tagged photon data from the CSV files 

described previously. A total of nine auto- and cross-correlation functions were calculated as 

described subsequently. Four of these correlation functions cover the possible combinations of 

the vertical and horizontal intensity functions including the auto-correlation of the vertical 

intensity with itself Gvv, the cross-correlation of the vertical intensity with the horizontal 

intensity Gvh, the cross-correlation of the horizontal intensity with the vertical intensity Ghv, and 

the auto-correlation of the horizontal intensity with itself Ghh. The other five correlations give the 

averages of v1, v2, h1, and h2 where v1 and h1 are early points in the correlation and v2 and h2 are 

the second points some time τ later. These are equivalent to correlating intensities with an array 

of ones: Gv1, G1v, G1h, Gh1 and G11, that is, the number of points n. When these correlations are 

performed using our sparse matrix method, it is much faster than simply summing the huge 
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sparse arrays. For example, a data file from one of these experiments reflects ~3x1011 detector 

clocks and contains entries for 3 million photons in a file ~5-30 mB in length. 

 

 All correlation functions were calculated at pseudo-logarithmically-spaced lag times. 

These lag times were multiples of the minimal clock time of our photon counter which was 0.17 

ns. Data were sorted into bins with widths 2m that are multiples of this fundamental clock time.  

So for m values of 0, 1, 2, and 3, the bin widths would be 1, 2, 4, and 8 clocks or 0.17 ns, 0.34 

ns, 0.68 ns, and 1.36 ns. However, because these timescales are far too short to monitor rotation, 

we pre-bin raw data by a factor of 210. With this first bin consisting of 1024 clock times, this 

gave an initial bin width of ~0.17 μs. Our algorithm produced lag times spaced with this minimal 

resolution of ~0.17 μs. The lag times are spaced this far apart for the first eight lag time points at 

which point the spacing doubled to ~0.34 μs which continued for eight time points at which 

point the value quadrupled to ~0.68 μs between points and so on.  

 

 As was the case for the imaging data, several parameters, both instrumental and arising 

from the sample, were employed to correct these raw correlation functions to obtain the true 

correlations. These parameters include the instrumental parameter g which, as described in 

Chapter II, is used to correct for differential detection efficiencies in the two orientations as well 

as correction constants a and b which account for cell background intensities in the vertical and 

horizontal orientations respectively. These correction factors contain the same information as the 

g, b, and c used in processing the imaging data, but are, for historical reasons, written differently 

for the photon-counting analogues. To correct the observed vertical and horizontal intensities vo 
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and ho to obtain the corrected intensities vc and hc, the following equations were used. It proved 

convenient to replace the quantities 1-g and 1+g with simpler symbols gv and gh respectively. 

 
(1 )( )

( )

c o

ov

v g v a

g v a

= − −

= −
  (3.1) 

 
(1 )( )

( )

c o

oh

h g h b

g h b

= + −

= −
  (3.2) 

 This correction procedure allows us to calculate the corrected TAC of polarization 

fluctuations in terms of the observable quantities. For example, obtaining the cross-correlation at 

time τ of the corrected vertical intensity v1c at time t and the corrected horizontal intensity h2c at 

some time later t+τ in terms of the uncorrected observed intensities at these times v1o and h2o is 

then straightforward:  
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Equations for v1cv2c, h1cv2c, and h1ch2c were derived in an analogous manner using the equations 

for vc and hc. 

 

 Likewise, the sums of the individual signals <v1o>, etc. are effectively the correlation of 

the signal in question with an array of ones and can be calculated during the correlation process: 
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 Obtaining the value of the corrected autocorrelations Gvv(c), Gvh(c), Ghv(c), Ghh(c), Gv1, G1v, 

Gh1, G1h, and G11 for a given value of τ involves evaluating the product of the corrected 

intensities for every combination of time points separated by a given lag time τ, summing these 

products, and repeating this for every τ in the correlation curve. We note that we will henceforth 

use the notations for two points and the respective correlation (e.g. v1ch2c and Gvh) 

interchangeably-where a formula specifies two points, it can be assumed that the respective 

correlation function that we desire is simply obtained in this manner. 

 

 With the four corrected correlations, it was possible to calculate a corrected polarization 

time autocorrelation function (TACF). As introduced in chapter II, the polarization is defined as: 
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Where the numerator is simply recognized as the difference in the intensities in the orientations 

parallel and perpendicular to the polarization of the exciting light and the denominator is the sum 

of these intensities in these parallel and orthogonal or orthogonal relative to the exciting light. 

Given this definition, the product of the corrected polarizations p1c and p2c could be calculated 

as: 
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Where d1cd2c is the autocorrelation of the corrected difference function and s1cs2c is the 

autocorrelation of the sum function. The polarization TACF Gpp was then calculated as the 
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quotient of Gdd/Gss. To obtain this, it was first necessary to determine the autocorrelation of the 

difference function Gdd and the autocorrelation of the sum function Gss. For Gdd, consider the 

product of the corrected differences d1c and d2c at two different time points for a pair of corrected 

vertically-polarized v1c and v2c and horizontally-polarized intensities h1c and h2c at those 

respective points:  

 

 1 2 1 1 2 2( )( )
c c c c c c

d d v h v h= − −   (3.7) 

Substituting the observed intensities from equations 3.1 and 3.2 into equation 3.8 for d1cd2c   

gives the corrected difference function in terms of experimental observables: 
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Consolidating like terms gives: 

 

 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 6 2 7 1 8 2 9c c o o o o o o o o o o o o
d d C v v C v h C h v C h h C v C v C h C h C n= + + + + + + + +  (3.9) 

 

Where the coefficients for each term are: 
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  (3.10) 

 

The respective corrected difference correlation function is then: 

 

 
( ) 1 ( ) 2 ( ) 3 ( ) 4 ( ) 5 1 6 1 7 1 8 1 9 11dd c vv o vh o hv o hh o v v h h

G C G C G C G C G C G C G C G C G C G= + + + + + + + +  (3.11) 

 
 
Obtaining this corrected autocorrelation Gdd(c) involves evaluating the observed correlation 

functions in each term (e.g. Gvv(o)) for every combination of time points separated by a given lag 

time τ, summing these products and repeating this for every τ in the correlation curve to obtain 

the respective correlation and summing these first four terms. If we were to simplify by assuming 

0-based signal arrays in Mathematica, Gdd(c) could be expressed in terms of these first four basic 

correlations Gvv(o), Gvh(o), Ghv(o), and Ghh(o). However, five other combinations (corresponding to 

the last five terms of equations 3.9 and 3.11) were correlated involving 1-based signal arrays in 

Mathematica: the correlation of v1c with an array of ones which represents the average of the 

corrected vertical intensities at time t and will henceforth denoted as <v1c>, the correlation of v2c 

with an array of ones which represents the time-average of the corrected vertical intensities at 

time t+τ henceforth denoted as <v2c>, the correlation of h1c with an array of ones which 

represents the time-average of the corrected horizontal intensities at time t+τ henceforth denoted 

as <h1c>, the correlation of h2c with an array of ones which represents the time-average of the 
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corrected horizontal intensities at time t+τ henceforth denoted as <h2c>, and the correlation of 

these arrays of ones with each other which simply represents the number of points in the 

correlation n.  

 

Similarly, for Gss, consider the product of the sums: 

 

 1 2 1 1 2 2( )( )
c c c c c c

s s v zh v zh= + +   (3.12) 

 

This is treated in an analogous manner as d1cd2c. Expanding equation 3.10 and substituting the 

expression for vc and hc from equations 3.1 and 3.2, s1cs2c would then be expressed in terms of 

these more fundamental observed correlations: 
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  (3.13) 

 

Consolidating like terms gives: 

 

 1 2 1' 1 2 2' 1 2 3' 1 2 4' 1 2 5' 1 6' 2 7' 1 8' 2 9'c c o o o o o o o o o o o o
s s C v v C v h C h v C h h C v C v C h C h C n= + + + + + + + +  (3.14) 

 

where the prime is intended to differentiate these new constant coefficients from those obtained 

earlier in our derivation of the expression for d1cd2c. The expressions for these new constants are 

as follows: 



128 
 

 

 

2
1'

2 '

3'

2
4'

5'

6 '

7 '

8'

9 '

( )

[ ]

( )

( )

2( )

v

v h

v h

h

v v h

v v h

h v h

h v h

v h

C g

C zg g

C zg g

C g

C g ag zbg

C g ag zbg

C zg ag zbg

C zg ag zbg

C ag zbg n

=

=

=

=

= − +

= − +

= − +

= − +

= +

  (3.15) 

 

The respective corrected intensity sum correlation function is then: 

  
 

( ) 1' ( ) 2' ( ) 3' ( ) 4' ( ) 5' 1 6' 1 7' 1 8' 1 9' 11ss c vv o vh o hv o hh o v v h h
G C G C G C G C G C G C G C G C G C G= + + + + + + + +  (3.16) 

   

 While the expression we have derived above can be used in the calculation of either the 

anisotropy (z=2) or the polarization (z=1) TACF, we have opted to use the polarization TACF in 

these studies. Since we have continued to use polarization as we did in the imaging project, z is 

equal to 1 and can be omitted in the above equation. The product of the corrected polarizations 

p1c and p2c and respective autocorrelation Gpp was then calculated as the quotient of the 

respective intensity difference function divided by the intensity sum function as introduced 

previously in this section. 

 

 Because we required the TACF of the polarization fluctuations, this expression had to be 

modified slightly to give the autocorrelation of the fluctuations of the polarization from the mean 

polarization. This polarization fluctuation TACF is defined as follows: 

 



129 
 

 1 1 2 2
1

1
( , ) ( ( ) )( ( ) )

1

m

i
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

 
−

=
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For each τ in the correlation trace, the product of the fluctuations is evaluated for all m and these 

are summed to give the value of G(p,τ). The upper bound is adjusted from m to m-τ because no 

complementary p2(i+τ) exists for a p1(i) when i=m. 

 

This expression can also be written in an alternative notation with Δp1=p1(n)-<p1> and 

Δp2=p2(n)-<p2> for brevity: 

 1 2
1

1
( , ) ( ( ))( ( ))

1

m

i

G p p i p i
m i



 
−

=

=   +
− +    (3.18) 

 

The constant product of the averages can be taken out of the summation as follows: 

1 2 1 2
1

1
( , ) ( ) ( )

1

m

i

G p p i p i p p
m i



 
−

=

 
= + − − + 

   (3.19) 

 

Four of the nine correlation functions derived in the preceding section were used to derive the 

polarization autocorrelation. The polarization autocorrelation Gpp was used to give the 

polarization fluctuation TACF Gpp-<p1c><p2c> where the average polarizations <p1c> and <p2c> 

were given by the following equations: 

 

 
1 1
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−
=

+
  (3.20) 
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And the corresponding equations in terms of the correlations: 
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The product of <p1c> and <p2c> was then subtracted from the polarization TACF Gpp to give the 

polarization fluctuation TACF. 

 

 We calculated a residual χ for every point based upon the following equation: 

 

 1 2dd ss c cG G p p = −    (3.24) 

 

Optimization of the polarization fluctuation TACF was achieved by minimizing this quantity. 

The goal of this was to minimize the contribution of the intensity TACF which may be affected 

by QD blinking to the polarization fluctuation TACF, thereby eliminating the possible 

complication of QD blinking feed-through into the polarization TACF. Thus this procedure was 

intended to minimize the correlation between the polarization fluctuation TACF and intensity 

TACF. Because Gdd is typically small relative to Gss and polarizations, as the ratio of these two 

quantities are smaller still, multiplying the sum autocorrelation by the product of the average 

polarizations makes this term more comparable in magnitude to the difference autocorrelation in 
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the first term. The chi-squared χ2 was defined as the square of this quantity. Because there were 

different uncertainties associated with each point, we accounted for this by applying weights to 

each χ2 point commensurate with their associated uncertainties. We note that although this 

weighting scheme is not entirely arbitrary and is necessary to account for these uncertainties, this 

weighting is a lower-order phenomena and, so long as it is appropriately chosen to model the 

correct trend in uncertainties, shouldn’t artifactually hide information present in the polarization 

fluctuation TACF or conversely create information that was not originally there to begin with 

even if not derived from first principles. The weighting factor for a χ2 point W is defined as the 

reciprocal of the variance σ2 of that point:  

 

 2

1
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i

W


=   (3.25) 

 

Since these two quantities are inversely related, this means that points with greater 

uncertainties/variance would be weighted less during the optimization of the polarization 

fluctuation TACF. We sought to select values for the parameters g, a, and b which would 

satisfactorily minimize the average weighted chi-squared: 
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Typical constraints used in the optimization were values of -0.9 to 0.9 for g (corresponding to 

values of 0.05-19 for gtrad, 0-0.005 for a, and 0-0.005 for b. The value of z was fixed at 1 to give 

a polarization instead of an apparent anisotropy. 

 

 After optimizing the above parameters and calculating point-by-point the corrected 

polarization fluctuation TACF, a single exponential decay was fitted to the points: 

 

 
1 2

/
(0) ( )

t
cG G e G p p

pp

−
= +  +   (3.27) 

 

where t is the time, G(0) is the initial amplitude, τc is the correlation time, and the base factor 

G(∞) is the limiting polarization (otherwise known as the residual polarization). We note that the 

average of the product of p1 and p2 can be approximated by the product of their averages because 

the correlation is weak. The square of the deviations of the fitting model from the experimental 

data d2 was calculated for each point and for each point a weighted chi-squared using weights w 

was calculated as follows: 

 

 2 2
wtd

w d =    (3.28) 

 

We use w here to designate the weighting factor for each fitted point in the polarization 

fluctuation TACF and to differentiate this quantity from the weighting factor W used previously 

which refers to the weights applied to each point when we optimized the polarization fluctuation 

TACF. This weighting factor was applied to account for the greater scatter/uncertainty in early 

points of the polarization fluctuation TACF relative to the latter. Because the intervals between 
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correlation times are much smaller at early times due to the pseudo-logarithmic spacing of 

correlation times, early channels may contain information resulting from less than an average of 

one photon per point which accounts for the greater uncertainty in these early bins compared to 

the latter. Therefore it was necessary to devise a weighting scheme that would give small weights 

to early points in the correlation curve to compensate for the greater uncertainty associated with 

these points and progressively larger weights to later points which have smaller uncertainties 

associated with them. Given the inverse relationship between the error associated with a point 

and how heavily we wished to weight it, the weight for a point was simply calculated as the 

reciprocal of the variance σ2 of the polarization fluctuation TACF. Thus, in order to determine 

the weights in a rigorous fashion, it was necessary to determine an appropriate formula for the 

variance of the anisotropy fluctuation TACF. Then the weight was just the reciprocal of this 

quantity. Calculating the variance of the polarization fluctuation TACF requires that we calculate 

the variance associated with the product of the deviations of the polarization r(t) from the mean 

polarization μp(t) and the deviations of the time-shifted polarization p(t+τ) from the mean time-

shifted polarization μp(t+τ). For brevity, we will use the following notation for these quantities: 

 

 ( )
1 ( )

p p t
p t

 = −   (3.29) 

 
 

2 ( )( )
p t

p p t   + = + −   (3.30) 

   

The autocorrelation of these fluctuations is also easily recognizable as simply the covariance of 

these two quantities, and thus the problem essentially amounts to calculating the variance of the 

covariance of these two quantities. Framing this problem as the variance of the product of these 
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quantities, the following formula for the variance of the product of two correlated variables now 

applies: 
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  (3.31) 

 

If we assume Δp1 and Δp2 are independent (i.e. uncorrelated), then both the covariance and the 

covariance of the squares are equal to zero and we obtain the familiar Goodman’s expression [7] 

for the variance of the product of two independent variables:  

 

 
1 2 1 2 1 2

2 2 2 2 2 2

1 2

2
p p p p p pp p

           = + + 
  (3.32) 

 

Because these are averages of fluctuations/deviations from a mean and by definition the first 

order central moment is zero, the following stipulations apply: 
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  (3.33) 
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  (3.34) 

 

Thus equation 3.34 simplifies to: 
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pp p p    =   (3.35) 

 

Since this is an autocorrelation of these fluctuations, Δp1 is similar to Δp2 and thus we obtain the 

simple result: 

 

 
1 2

2 4
p p p   =   (3.36) 

 

These early points are necessarily modeled by Poisson statistics. A statistical characteristic 

intrinsic to Poisson distributions is that the standard deviation is equal to the square root of the 

mean. Thus the variance of the polarization fluctuations is equivalent to the mean of the 

distribution: 
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−
  (3.37) 

 

For later bins, which are larger and the number of photons per bin greater than one, the 

uncertainty can be modeled with simple Gaussian statistics. 

 

 An exact expression for the variance of a polarization calculated from Poisson variables 

can be derived from first principles. In practice, to determine the variance of a point of a 

polarization fluctuation, we used the following approximation: 
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Here, x is the combined counts in the vertical and horizontal channels per bin for a given time 

regime. The counts per clock in the vertical channel pv and the counts per clock for the horizontal 

channel ph are calculated by multiplying the respective average photon count rate per second for 

the experiment (Iv and Ih) by the fundamental clock time in seconds (1.7x10-9 s). These quantities 

are then summed to give the combined counts per clock for the vertical and horizontal channels. 

Recognizing the relationship between the spacing of the pseudo-logarithmically-spaced bins, an 

adjustment can be made to obtain the combined counts per bin. The combined counts per bin is 

calculated on a given time regime is calculated by multiplying the combined counts per clock for 

the two channels pv+ph by 2m where m is the binning index introduced previously. For example, 

the first eight bins have a binning index of m=10 so the number of clocks per bin is 210. 

Therefore the combined counts per clock is multiplied by 1024 to obtain the combined counts for 

these first bins. The next eight bins have a binning index of m=11, so the counts per clock is 

multiplied by 2048 to obtain the combined counts for these bins.   

 

 A property of the function in Equation 3.38 is that when combined count rate per bin x is 

much less than one, the x2 in the denominator becomes very small compared to 1 and the 

standard deviation can be approximated by x1/2. When x is large (much greater than one), the 

denominator can be approximated by x2 and the function can be approximated by x-1/2. Then this 

variance is squared to give the variance of the autocorrelation and the reciprocal of this gives the 

weight for each point. This makes for a good approximation both of the early points best 
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modeled by Poissonian statistics with the weights decreasing slightly up to the bin in which there 

is one count per bin/x=1 and then increasing when there is more than one count per bin where the 

function is best approximated by Gaussian statistics. The variance of the polarization fluctuation 

TACF was then calculated as the square of this quantity in accordance with equation 3.36, and 

the weight for a point used for the fitting algorithm was calculated as the reciprocal of this 

quantity. Once the appropriate weighting was applied to each bin, the average weighted chi-

squared was minimized: 
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  (3.39) 

 

The reduced chi-squared was calculated as: 
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−
  (3.40) 

 

We sought to select parameters for the initial TACF amplitude Gp(0), the correlation time τc, and 

the base term G(∞) that minimized the value of this reduced chi-squared. 

 

3.4. Results and Discussion 

 

3.4.1. Sample Data from TTSPC Experiments 
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Figure 3.5 shows intensities collected in vertically- and horizontally-polarized channels. 

QD blinking is responsible for the large fluctuations observed in these traces. The transition of a 

QD to an “off” state is accompanied by a corresponding decrease in the intensity to the detector 

dark count rate. Figure 3.6 shows a sample sum/intensity autocorrelation curve for a single cell-

bound QD treated with IgE. In this trace, it is observed that the intensity TACF undergoes a 

steep initial decrease in the first microsecond or so followed by a more gradual decrease 

thereafter, seeming to asymptotically approach/stabilize at a value of ~3000. Because the 

intensity function is defined as the the sum of the intensities in the vertical and horizontal 

orientations, its value is independent of orientation and therefore the decay is not attributable to 

molecular rotation. The decrease is not completely monotonic, with small fluctuations/noise 

throughout. These fluctuations are small and not between a zero and non-zero value. This is what 

would be expected if this phenomenon represented blinking since this is for a single QD which 

can only assume one of two states (i.e. an “on” or “off” state) at any given time. If this was an 

average of multiple QDs/an ensemble measurement, then blinking would likely not manifest as 

fluctuations between a zero and non-zero value, because the likelihood that all QDs would 

coincidentally be in an “off’ state at the same corresponding delay times is near 

negligible/infinitesimally small. Instead, what would be observed would be smaller fluctuations 

corresponding to a slightly varying proportion of QDs in the “off’ state relative to the “on’ state 

at any given time. Comparing to what we observed with our imaging approach, we see the 

intensity TACF for a single QD yielded results more like what we expected with this imaging 

approach, with the curve decaying and eventually stabilizing at around zero, but with 

fluctuations around zero reflecting the transition of the QD from an “on” state to an “off” state. 
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Figure 3.5: Intensities for vertically- and horizontally-polarized channels for IgE-treated RBL-
2H3 cells expressing QD605-labeled FcεRI, channel 1, red, and channel 2, blue, respectively. 
Observation of these traces reveals large intensity fluctuations over the 30 second run time which 
are attributable to QD blinking. 
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Figure 3.6: Intensity autocorrelation function for cell-bound QD 655 on RBL-2H3 cells treated 
with IgE. Data was obtained from TTSPC experiments. 
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 Figure 3.7 shows the difference autocorrelation function for this same IgE-treated QD. 

What is immediately apparent upon comparison of this graph to the respective intensity TACF 

for this QD are the much smaller magnitudes for the values of the difference TACF relative to 

those of the intensity TACF. This is because, while the sum of the vertical and horizontal 

intensities may be a large value, if these respective quantities are similar in value, then the 

difference between them would be very small. This also means that the relative errors associated 

with each point in the difference TACF are much greater than they are in the intensity TACF. 

The graph showed an initial steep decay corresponding to the rotation of the QD from the 

vertical orientation into the horizontal orientation. This would cause a decrease in the former 

quantity and an increase in the latter, resulting in a smaller difference between the two values. 

 

 Figure 3.8 shows the polarization autocorrelation function, defined as the quotient of the 

difference TACF and the sum/intensity TACF. Because the difference TACF is very small 

relative to the intensity TACF and the polarization is the ratio of these two quantities, these 

values are overall very small and even smaller than those associated with the difference TACF. 

Because the difference TACF initially decays faster than the intensity TACF and then both 

functions eventually stabilize at some constant, non-zero value, the polarization TACF 

undergoes a rapid initial decrease before stabilizing at a value of ~0.005, the ratio of these two 

constant values. 

 

 Figure 3.9 shows the variance and corresponding weighting functions used to optimize 

the polarization fluctuation TACF. A satisfactory model for the variance associated with a point 

in the polarization fluctuation TACF should be dependent on the binning level (i.e. the space  
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Figure 3.7: Difference autocorrelation function for cell-bound QD 655 on RBL-2H3 cells 
treated with IgE. Data was obtained from TTSPC experiments. 
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Figure 3.8: Polarization autocorrelation function for cell-bound QD 655 on a RBL-2H3 cell 
treated with IgE. This data was obtained from a TTSPC experiment. 
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Figure 3.9: Variance function and corresponding weighting function used for optimization of 
polarization fluctuation TACF. The weight was calculated as the reciprocal of the variance. Data 
was obtained from TTSPC experiments. 
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between the points) and should therefore meet two criteria. Firstly, because the bin widths 

become larger at longer correlation times and the relative uncertainty of any point in the curve 

becomes smaller as these bin widths become wider, the variance function should display a 

progressive pointwise decrease at larger correlation times. The exception to this is for a set of 

points on a given binning regime (i.e. with equal spacing between them). In this case, the 

variance function should remain constant. It is apparent upon inspection of the variance function 

in the top panel of Figure 3.9 that this function possesses both of these characteristics. The 

variance decreases with larger bin widths. The variance also remains constant at a given binning 

level. For instance, for the first eight points spaced by ~0.17 µs, we observe that the variance 

remains constant. But for the second set of eight points, this spacing doubles to ~0.34 µs and the 

variance decreases as should be the case given the larger bin width. The variance remains 

constant for these next eight points until it once again doubles for the next set of points and so 

on. Thus the variance function appears as a stepwise function with each step corresponding to a 

particular binning level. Each set of eight points belonging to a binning level are evenly spaced 

in time, though on the logarithmic scale this appears as a set of points that get closer together 

with increasing correlation times. The weight function (see the bottom panel of Figure 3.9), 

inversely related to the variance function as simply its reciprocal, undergoes a progressive 

increase with longer correlation times and larger bin widths. Applying this weight in the 

optimization procedure compensates for the greater uncertainty in earlier points with smaller bin 

widths by weighting them to a lesser degree than those at latter times.  

 

Figure 3.10 displays the points optimized polarization  fluctuation TACF along with a 

trendline giving the moving average calculated with a period of eight. This particular QD gave a  
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Figure 3.10: Polarization fluctuation TACF for cell-bound QD 655 on RBL-2H3 cells treated 
with IgE. The graph shows the points with a trend line giving the moving/cumulative average 
with a period of eight. Data was obtained from a TTSPC experiment. 
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RCT of 96 µs and a Gp(0) of 0.0044. 

 

 Figure 3.11 shows the raw (unweighted) residuals produced by the polarization 

fluctuation TACF optimization procedure (where the errors χ are defined as a difference between 

the difference autocorrelation Gdd and the product of Gss and <p1c><p2c>) as well as the weighted 

residuals and weighted chi-squared (χ×W1/2 and χ2×W respectively). Upon inspection of the raw 

residuals, it is observed that they display increased scatter for early points, commensurate with 

their greater associated uncertainties. This feature disappears in the weighted residuals and the 

residuals appear flat and even throughout, suggesting that our weighting scheme accomplished 

what it was intended for. These weighted residuals show both the direction (i.e. positive if 

Gdd>Gss×r1r2 and negative if Gdd<Gss×r1r2) and magnitude of the deviations. The weighted chi-

squared values, calculated as simply the square of the weighted residuals, show the absolute 

magnitude of the deviations and are always positive. Optimization involved selecting the 

parameters a, b, and g that satisfactorily gave a minimum in the chi-squared hypersurface. For 

this particular QD, the average weighted chi-squared was 1.51. 

 

After successful optimization of the polarization fluctuation TACF, the resulting data 

points were fit to a one-exponential decay. Figure 3.12 shows this model fitted to the polarization 

fluctuation TACF data points. This particular QD gave a RCT of 96 µs and a Gp(0) of 0.0044. 

Also displayed in the bottom two panels are the residual function showing the error between the 

raw data points and the fitted model as well as the weighted Chi-squared. 

 

3.4.2. Comparing time-tagged single photon counting data for Quantum Dot 605 and 655 
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Figure 3.11: Unweighted and weighted residuals/error functions generated during optimization 
of polarization fluctuation TACF. The top panel shows the raw errors, defined as the difference 
between the difference autocorrelation and the product of the intensity autocorrelation and 
<p1><p2>. The middle panel shows the error multiplied by the square root of the weight and thus 
shows both the direction and magnitude of the deviations whereas the bottom panel showing the 
weighted chi-squared values gives the square of this and thus only shows the absolute magnitude 
of the deviations. Optimization of the polarization fluctuation TACF involved minimizing the 
weighted average of these deviations. Data was obtained from a TTSPC experiment. 
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Figure 3.12: Polarization fluctuation TACF for cell-bound QD 655 on RBL-2H3 cells treated 
with IgE. The top panel shows the model fitted to the raw data points. This QD had a rotational 
correlation time of ~96 μs and an amplitude of 0.0044. The middle panel shows the difference of 
the model from the fitted points. The bottom panel shows the weighted residuals. 
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For all treatment groups except the paraformaldehyde-treated group for which we conducted 

experiments using only QD605 probes, there were two subgroups of experiments. In one 

subgroup the IgE was labeled with a QD605 probe, while in the other subgroup the IgE was 

labeled with a QD655 probe. We hypothesized that any difference in results between these two 

groups would not be attributable to a difference in the actual rotation of receptors that have been 

labeled with different probes. This is because, since both the IgE ligand and QD probe are 

situated outside the membrane in the extracellular aqueous environment, we do not expect the 

IgE, let alone the QD probe, to hinder receptor rotation to a considerable degree. An extensive 

theoretical treatment of this matter can be found in Chapter  II where we concluded that 

effectively all the rotational restraint came from the membrane-embedded receptor. Therefore we 

hypothesize that any difference in these two groups would be attributable to differences in the 

optical properties of these two probes and not differences in rotation. 

 

  The most obvious difference in the optical properties of these two probes is the 

wavelength at which they emit light. Though both QD605 and QD655 have a wavelength of 

maximum absorbance around 456 nm, as their names suggest, they differ in their wavelength of 

maximum emission (605 nm for QD605 and 655 nm for QD655). Another difference of potential 

significance between QD605 and QD655 are their differing aspect ratios.  

   

 Table 3.1 shows the weighted geometric average rotational correlation times and 

associated statistics including the weighted geometric standard deviations and standard errors 

along with the total number of experiments in a subgroup and the number of experiments 

selected for treatment for subgroups treated with QD605- and QD655- labeled IgE. Table 3.2  
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Table 3.1: Comparison of rotational correlation times and associated statistics of QD 605 and 
QD 655 subgroups for all five treatment groups. These data were obtained from TTSPC 
experiments. 
 

Group QD emission 
wavelength 
(nm) 

1st 
reagent 

2nd 
reagent 

ln(Wtd. 
Geo. Avg. 
RCT) 

Wtd. Geo. 
Avg. RCT 
(µs) 

Wtd. 
Geo. SD 
RCT (µs) 

Std. Err. 
RCT 
(µs) 

Tot. 
QD 

QD 
Selected 

QD 
605 
IgE  

605 IgE - 8.1 3147.6 - - 5 1 

QD 
655 
IgE 

655 IgE - 5.4 224.7 518.8 366.8 5 2 

QD 
605 
DNP-
BSA 

605 IgE DNP-
BSA 

8.1 3303.2 - - 5 1 

QD 
655 
DNP-
BSA 

655 IgE DNP-
BSA 

- - - - 5 0 

QD 
605 Pf 

605 IgE Pf -0.5 0.6 1.4 0.8 5 3 

QD 
655 Pf 

655 IgE Pf - - - - - - 

QD 
605 
MβCD 

605 IgE MβCD 0.2 1.2 6.7 3.4 5 4 

QD 
655 
MβCD 

655 IgE MβCD -0.8 0.4 1.7 1.0 5 3 

QD 
605 
CytoD 

605 IgE CytoD 3.9 50.0 - - 5 1 

QD 
655 
CytoD 

655 IgE CytoD 2.7 14.3 206.7 43.1 41 23 
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Table 3.2: Comparison of polarization TACF amplitudes and associated statistics of QD 605 and 
QD 655 subgroups for all five treatment groups. These data were obtained from TTSPC 
experiments.  
 

Group QD emission 
wavelength (nm) 

1st 
reagent 

2nd 
reagent 

Wtd. Arith. 
Avg. Gp(0) 

SD 
Gp(0) 

SE 
Gp(0) 

Tot. 
QD 

QD 
Selected 

QD 605 
IgE  

605 IgE - 0.00356 - - 5 1 

QD 655 
IgE 

655 
 

- 0.00251 0.00261 0.00185 5 2 

QD 605 
DNP-BSA 

605 IgE DNP-
BSA 

0.00452 - - 5 1 

QD 655 
DNP-BSA 

655 
 

DNP-
BSA 

- - - 5 0 

QD 605 Pf 605 IgE Pf 0.38310 0.53775 0.31047 5 3 

QD 655 Pf 655 
 

Pf - - - - - 

QD 605 
MβCD 

605 IgE MβCD 0.21866 0.23153 0.11577 5 4 

QD 655 
MβCD 

655 
 

MβCD 1.00000 0.00000 0.00000 5 3 

QD 605 
CytoD 

605 IgE CytoD 0.00500 - - 5 1 

QD 655 
CytoD 

655 
 

CytoD 0.02057 0.02928 0.00611 41 23 
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shows the weighted average arithmetic amplitudes of the polarization fluctuation TACFs and 

associated statistics including the weighted arithmetic standard deviation and standard errors 

along with the total number of experiments in a subgroup and the number of experiments 

selected for treatment for these respective subgroups. Unfortunately, many QDs exhibited 

unreasonable values for their rotational correlation times and/or amplitudes and were therefore 

omitted in calculations of averages and associated statistics. The majority of these outliers fell 

into two categories: QDs that exhibited very long rotational correlation times and small 

polarization fluctuation TACFs, and QDs that exhibited very short correlation times and large 

Gp(0)s. We speculated that both of these cases could indicate immobile QDs. In the former case, 

a long rotational correlation time could be indicative of a QD which does not decay on the 

timescale being observed. Such a QD could either decay on a much longer timescale yet still  

appear immobile on this shorter timescale (indicating slow, hindered rotation) or could be 

completely immobile. Perhaps less intuitive is that, in the latter case as we have discussed 

previously, a short rotational correlation time is not necessarily indicative of fast rotation. A very 

short, near-zero rotational correlation time could alternatively be an indicator of receptor 

immobility. The accompanying large Gp(0) can be attributed to shot noise in the first point 

resulting from the correlation of each point with itself. A third category of outliers was 

designated for those QDs that exhibited rotational correlation times and amplitudes that could 

reasonably be interpreted to represent actual rotation, yet, given the treatment group had enough 

QDs selected to enable us to observe a discernable trend with sufficient statistical confidence, 

exhibited behavior that differed from the majority of the other QDs included in final analysis (i.e. 

was not reproducible). 
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 For many of the subgroups, only 2, 1, or even 0 QDs exhibited behavior that could be 

interpreted as actual rotation. For instance, for IgE-treated cells, only 1/5 and 2/5 of the QDs 

exhibited such behavior for the QD605 and QD655 subgroups, respectively. For the DNP-BSA-

treated group, these numbers were 1/5 and 0/5 respectively. For the paraformaldehyde-treated 

group, all experiments were conducted using QD605 so a comparison could not be made for this 

treatment group. Out of these 1/5 QDs displayed rotation. For the MβCD-treated group, 1/5 and 

0/5 QDs were selected for the QD605 and QD655 subgroups respectively. For the cytochalasin 

D group, 1/5 QDs were selected in the QD605 group. Because so few QDs in the QD605 or 

QD655 subgroups for each treatment exhibited behavior that could be attributed to actual 

rotation and most QDs appeared to be immobile, any differences between groups lack statistical 

significance and therefore it is difficult to draw any conclusions about differences between the 

QD605 and QD655 subgroups. 

 

3.4.3. Effects of cell treatments as observed by time-tagged single photon counting 

 

 Table 3.3 shows compiled results for the weighted geometric average rotational 

correlation times and associated statistics obtained for the five treatment groups. Table 3.4 shows 

compiled results for the weighted arithmetic average polarization fluctuation TACF amplitudes 

and associated statistics for these same five treatment groups. As observed in the “QDs Selected” 

column, relatively few QDs were chosen for calculation of final statistics. This is because many 

QDs exhibited unreasonable values for their rotational correlation times and/or amplitudes. As 

mentioned in the previous section, the majority of these outliers fell into two categories: QDs 

that exhibited very long rotational correlation times and small polarization fluctuation TACFs  
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Table 3.3: Comparison of rotational correlation times and associated statistics for all five 
treatment groups. These data were obtained from TTSPC experiments.  
 

Group 1st 
reagent 

2nd 
reagent 

ln(Wtd. Geo. 
Avg. RCT) 

Wtd. Geo. Avg. 
RCT (µs) 

SD RCT 
(µs) 

Std. Err. 
RCT (µs) 

Tot. 
QD 

QD 
Selected 

IgE  IgE - 6.3 541.7 2553.9 1474.5 10 3 

DNP-
BSA 

IgE DNP-
BSA 

8.1 3303.2 - - 10 1 

Pf IgE Pf -0.5 0.6 1.4 0.8 5 3 

MβCD IgE MβCD -0.2 0.8 3.5 1.3 10 7 

CytoD IgE CytoD 2.7 15.1 206.8 42.2 46 24 
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Table 3.4: Comparison of polarization TACF amplitudes and associated statistics for all five 
treatment groups. These data were obtained from TTSPC experiments. 
 
Group 1st 

reagent 
2nd 
reagent 

Wtd. Arith. 
Avg. Gp(0) 

SD Gp(0) SE Gp(0) Total QD QD Selected 

IgE IgE - 0.00286 0.00194 0.00112 10 3 

DNP-
BSA 

IgE DNP-
BSA 

0.00452 - - 10 1 

Pf IgE Pf 0.38310 0.53775 0.31047 5 3 

MβCD IgE MβCD 0.55352 0.44859 0.16955 10 7 

CytoD IgE CytoD 0.01992 0.02881 0.00588 46 24 
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and QDs that exhibited very short near-zero rotational correlation times and large polarization 

fluctuation TACFs. A third category of outliers was reserved for those QDs exhibiting rotational 

correlation times which could reasonably be interpreted as representing rotation, yet displayed 

behavior that was not typical of the group (i.e. was not reproducible). 

 

3.4.3.1. Immunoglobulin E Only 

 

Because, unlike our imaging approach, our photon-counting approach has the capability 

of accessing the microsecond timescale, we hoped this technique would enable us to observe the 

hydrodynamic rotation of the receptor. As previously mentioned, this rotational correlation time 

has been measured to be 27 μs at 37 °C by time-resolved phosphorescence anisotropy [1]. 

Assuming a photon count rate of at least ~37,000 photons/s, such a timescale should be 

accessible to our photon-counting approach.  At 4 °C, this slows to 82 µs, requiring only ~12,000 

photons/s [3]. At 25 °C as conducted in this study, this value is ~40 µs, requiring 25,000 

photons/s to yield one photon per correlation time [2]. We expect less variability in rotational 

correlation time from dot-to-dot and hence a smaller standard deviation than we observed with 

the imaging approach. This is because, while with the imaging group the variability may have 

been due to receptors occupying lipid domains of varying sizes, we do not expect to observe 

such long-lived rotation with our photon-counting approach and instead expect to observe the 

hydrodynamic rotation of the IgE-bound receptor. Because no polyvalent antigen is present to 

crosslink the IgE-bound receptor, we do not expect higher molecular weight receptor complexes. 
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 We obtained a weighted geometric average rotational correlation time of 542 µs and an 

accompanying standard error of ± 1475 µs for IgE-treated cells (see Table 3.3). We obtained a 

weighted arithmetic average polarization fluctuation TACF amplitude of 0.002863 and an 

accompanying standard deviation of 0.001943 (see Table 3.4). Because the majority of quantum 

dots exhibited unreasonable values for rotational correlation times and/or amplitudes that could 

not possibly be attributable to hydrodynamic rotation of the receptor, only three out of ten QDs 

were ultimately selected to be used for further calculations of averages and associated statistics. 

Three of these seven excluded QDs had very small correlation times on the order of sub-

microsecond to several microseconds and very large polarization fluctuation TACF amplitudes 

exceeding a value of 0.02. These QDs were considered to be immobile. The rationale for this 

interpretation has been discussed in previous sections. The other four of these seven excluded 

QDs had very large correlation times ranging from 200 ms up to 1 s combined with small 

polarization TACF amplitudes ranging from as small as 0.00002 to as large as 0.00081. These 

results could also indicate QDs that are completely immobile or, alternately, could indicate 

hindered rotation with decay occurring on a longer timescale such as would be expected for lipid 

rafts (we note that in this context, the term “raft” is used as a generic term for cholesterol-rich 

microdomains and isn’t intended to have the more specific characteristics sometimes associated 

with the term). This would provide an explanation for the long rotational correlation times, 

although the smaller-than-expected amplitudes are difficult to explain. Of the three QDs that 

were selected, one QD in particular, the data for which is shown in section 3.4.2 “Sample data 

for TTSPC experiments”, gave promising results that suggest that what is being observed here is 

indeed the hydrodynamic rotation of the receptor. This QD gave a rotational correlation time of 

96.4 µs and a polarization fluctuation TACF amplitude of 0.00436. The other two QDs that were 
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included had rotational correlation times of 524 µs and 3148 µs and polarization fluctuation 

TACF amplitudes of 0.00067 and 0.00356 respectively. Both of these rotational correlation times 

are orders of magnitude too large to represent hydrodynamic rotation of the receptor, yet could 

still be interpreted to represent meaningful rotation. Perhaps in these cases, the receptor has 

become integrated into some larger complex of unknown identity and this is responsible for the 

larger-than-expected rotational correlation time. The cells were not treated with polyvalent 

antigen, so no crosslinking of the IgE-bound receptor is expected and this could not be 

responsible for the inflated rotational correlation times for these two QDs. It is not possible to 

ascertain the identity of such a binding partner with this technique and thus we can only 

speculate on what might cause the hindered rotation. This is because this technique is 

characteristically non-specific. This can be construed as either an advantage or a disadvantage. It 

can be advantageous when investigating whether unknown interactions with the receptor occur 

as it does not require labeling of a known binding partner. Thus this technique can be regarded as 

an exploratory one capable of revealing binding events that would otherwise be overlooked when 

using a more specific technique such as FRET. However, this can also be considered a limitation 

because it gives no information on the identity of possible binding partners of the receptor. Thus 

further studies with alternative methods would be needed to determine the cause of the hindered 

rotation in these two cases and elucidate the identity of any possible binding partner that could be 

responsible.   

 

3.4.3.2. Immunoglobulin E and DNP-BSA 
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 We obtained a weighted geometric average rotational correlation time of 3302.2 µs. 

Because only a single QD was included, no standard error was calculated for DNP-BSA-treated 

cells (see Table 3.3). We obtained a weighted arithmetic average polarization fluctuation TACF 

amplitude of 0.004517 (see Table 3.4). As was the case for the IgE-treated group, most QDs 

either exhibited large correlation times and small amplitudes or small correlation times and large 

amplitudes, suggestive of immobility or hindered rotation. A total of nine out of ten QDs 

exhibited this behavior, with seven of these possessing rotational correlation times ranging from 

the sub-µs timescale to several µs and amplitudes exceeding a value of 0.03. The other two 

excluded QDs exhibited rotational correlation times in the 100 ms to 1 s range and amplitudes 

<0.0005. Because this treatment was expected to result in hindered rotation, it is possible that 

this large proportion of QDs that are seemingly immobile is legitimately attributable to the 

crosslinking of receptors by DNP-BSA; however, because a similar proportion of QDs 

displaying these characteristics were present in other groups including those not expected to 

hinder rotation to an appreciable extent (e.g. IgE), it is possible that this is instead attributable to 

systematic error in analysis. It is impossible to determine which explanation is correct using 

solely this method. Our imaging approach shows rotation on a longer timescale, but it was 

unclear whether this was due to crosslinking or libration of lipid rafts. Furthermore, including a 

limiting polarization as a fitted parameter in these studies on a longer timescale may reveal a 

population of receptors displaying absolute immobility that do not decay on any timescale. In 

any case, we decided to assume the latter and exclude these QDs from further analyses. A single 

QD exhibited a more reasonable correlation time of 3302.2 µs. Though this is almost a couple 

orders of magnitude greater than what would be expected for hydrodynamic rotation of the 
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receptor, given extensive crosslinking of receptor by DNP-BSA, such a rotational correlation 

time is plausible. 

 

3.4.3.3. Immunoglobulin E and paraformaldehyde 

 

 Paraformaldehyde is a fixative agent which is expected to cause membrane protein 

aggregation via intermolecular crosslinking of these proteins through covalent bonds. We 

hypothesize that fixation of receptors with paraformaldehyde will significantly slow (if not 

completely immobilize) receptors. This could possibly manifest as either a very long rotational 

correlation time or as an increase in the limiting polarization in our experiments. Our group has 

previously studied the effect of various concentrations of paraformaldehyde on the lateral and 

rotational dynamics of the MHC class II antigen I-Ad on A20 cells [8]. Lateral and rotational 

diffusion were measured by fluorescence recovery after photobleaching (FRAP) and time-

resolved phosphorescence anisotropy (TPA) using tetramethyl-rhodamine-labeled MKD6 Fab 

fragments as probes. Together with these two different techniques, it was possible to classify 

membrane structures into three distinct groups. The first of these groups consisted of those 

membrane proteins or small complexes which exhibited measurable mobility in TPA 

measurements suggesting they were of small size. In TPA measurements, any small change in 

size would appear as an increase in rotational correlation time/decrease in the rotational diffusion 

constant manifesting as a shift of the decay to the right. This would occur without any increase in 

the limiting anisotropy which is indicative of the immobile fraction observed by this technique. 

Such rotational mobility was only observed for untreated cells on the timescale of TPA 

measurements. A second group was comprised of intermediately-sized and likely higher-order 
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structures which were immobile in TPA measurements, yet still exhibited measurable lateral 

mobility as reflected by a lack of change in the observed mobile fraction. This decrease in the 

lateral diffusion constant was found to be concentration-dependent. This scenario was observed 

for paraformaldehyde concentrations ranging from 0.2 % to up to 2%. In TPA measurements, 

what was seen was an increase in the limiting anisotropy on this timescale, reflecting a larger 

proportion of molecules which were immobile on this timescale. Since these molecules exhibited 

measurable lateral mobility, this means that the molecules are likely not rotationally immobile in 

an absolute sense, but rather simply rotate too slowly for this rotation to be measured in TPA 

experiments.  In FRAP measurements, upon increasing paraformaldehyde concentrations, the  

observed increase in fluorescence during the fluorescence recovery period was more gradual 

following photobleaching, reflected by a slower fitted lateral diffusion constant [8]. Additionally, 

the observed mobile fraction, reflected in the ratio of the final fluorescence intensity after 

recovery to the initial fluorescence intensity before photobleaching, did not change over this 

range of concentrations. This suggested that these molecules, while immobile on the timescale of 

TPA measurements, still exhibited measurable lateral mobility. It is worth mentioning that the 

fact that these molecules were rotationally immobile on the timescale of TPA measurements 

does not preclude them from being rotationally mobile on a much slower timescale, and, more 

than this, the fact that these molecules are laterally mobile suggests that they also exhibit some 

rotation, albeit slow, on a longer timescale. A final group encompassed very large, definitively 

higher-order structures which both laterally and rotationally immobile as shown by 

photobleaching and TPA experiments respectively.   
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 We obtained a weighted geometric average rotational correlation time of 0.6 µs and an 

accompanying standard error of ±0.8 µs for paraformaldehyde-treated cells (see Table 10). We 

obtained a weighted arithmetic average polarization fluctuation TACF amplitude of 0.3831 and 

an accompanying standard deviation of ±0.5377 (see Table 11). Of the five QDs, three exhibited 

very small rotational correlation times (sub-microsecond to on the order of a few microseconds) 

and very large amplitudes (>0.01). Of the remaining two, one exhibited a short correlation time 

of 11.8 µs and an amplitude of 0.00203. Though the amplitude is a reasonable magnitude, in 

order to get one count per correlation time for a correlation time this short, a count rate of about 

85,000 counts/s would be required which is approximately the lower threshold accessible by this 

technique. For this particular QD, the vertical and horizontal intensities were 167401 and 87226 

counts/s respectively. So, while enough counts were acquired in order to observe such a 

correlation time, it is difficult to explain such a short rotational correlation time. It is possible 

that there is a population of receptors that were not crosslinked. At 25 °C, the hydrodynamic 

rotation of the receptor has been measured to be ~40 µs. This value of 11.8 µs, though low, is 

well within the margin of error and could indeed represent the hydrodynamic rotation of the lone 

IgE-bound receptor. The other QD had a rotational correlation time of 2041.1 µs and an 

amplitude of 0.00039. This rotational correlation time suggests hindered rotation, but, for 

paraformaldehyde, we expected complete immobilization. Furthermore, this amplitude is 

significantly lower than what we might expect. For these reasons, we believe these two QDs 

were outliers because they differed from the characteristic combination of short correlation time 

and long amplitude exhibited by the other three QDs and exhibited behavior that that was not 

suggestive of immobility as we would expect for these paraformaldehyde-treated QDs. For this 

reason, we excluded these two QDs and only included the three seemingly immobile QDs in 
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calculations of averages and associated statistics. Since this pattern of short correlation time and 

long amplitude was also fairly prevalent for many QDs in the other treatment groups, it is 

difficult to determine whether this is simply a systematic error present throughout our 

measurements, or if this actually represents the immobilization effects of paraformaldehyde. 

 

3.4.3.4. Immunoglobulin E and methyl-β-cyclodextrin 

 

 Predicting the effects of membrane cholesterol depletion by MβCD on the rotational 

diffusion of the FcεRI is more difficult than for the previously discussed treatments. Initial 

considerations might lead one to expect that this treatment might eliminate lipid rafts because 

cholesterol is an essential constituent of these domains. The logical conclusion following from 

such an assumption is that the receptor, now liberated from these domains, would transition from 

an environment of high localized viscosity to one of lower viscosity. The receptor would then be 

expected to undergo a corresponding increase in both its lateral and rotational diffusion 

constants. However, as discussed in Chapter II, we have proposed a model in which cholesterol 

reduces order in lipid rafts. These domains are enriched in saturated phospholipids and 

sphingolipids which have a high packing efficiency. The enrichment of these domains in 

cholesterol is theorized to disrupt this tight packing, thereby preventing these domains from 

solidifying. Therefore we expect depletion of membrane cholesterol by MβCD to increase order 

in these domains, resulting in hindered lateral and, by extension, rotational diffusion  [9]. Indeed, 

a number of studies have observed decreased lateral diffusion upon treatment with MβCD, 

consistent with this hypothesis [10-12]. However, this was found to be true for some non-raft-

localized membrane proteins as well. This is surprising because, according to this hypothesis, 
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cholesterol should have the exact opposite effect outside of a lipid raft-that is, it should increase 

membrane order. Although cholesterol is less abundant outside of lipid rafts, it still has an 

important role in this bulk membrane environment. This phase tends to be enriched in 

unsaturated phospholipids which do not pack together tightly and have a large degree of 

conformational freedom. The rigid, planar steroid ring of cholesterol constrains the number of 

conformational states that can be assumed by the fatty acid tails of adjacent phospholipids, 

imparting a more tightly-packed, ordered structure. Thus we would expect depletion of 

cholesterol with MβCD to decrease membrane order outside of lipid rafts, thereby increasing 

both lateral and rotational diffusion. Shvartsman et al. [13] have reported a similar finding for 

non-raft-localized mutants of Ras and influenza hemagglutinin. Furthermore, although 

Shvartsman et al.obtained results suggesting that, while MβCD did retard the lateral diffusion of 

raft-localized Ras and influenza hemagglutinin, compactin, a metabolic inhibitor of cholesterol 

production, had the opposite effect and α-cyclodextrin (α-CD), a cyclodextrin which 

nonspecifically depletes membrane cholesterol, also decreased lateral diffusion of these raft-

localized proteins. Based on these results, they hypothesized that the decrease in the lateral 

diffusion constant of the raft-localized proteins induced by MβCD was not attributable to actual 

cholesterol depletion, but instead attributable to a collateral effect involving the non-specific 

depletion of other membrane lipids. They argue that, because compactin should specifically 

target cholesterol and α-CD is not specific for cholesterol and, since the effects of MβCD are 

opposite that of compactin yet similar to α-CD, MβCD effects on lateral diffusion are 

independent of its modulation of membrane cholesterol content, and instead attributable to its 

effects on the membrane content of other lipids. We regard these claims with some skepticism, 

as MβCD was designed to be much more specific for cholesterol than other cyclodextrins. In 
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support of this, previous studies have shown that treatment with increasing concentrations of 

MβCD generate a progressive reduction in levels of membrane cholesterol while simultaneously 

having an insignificant effect on the total phospholipid content of the membrane [14]. Whether 

this holds true for other membrane lipids is a topic worthy of further investigation. Regardless of 

which model is more accurate, we expect the same effect on the lateral and, by extension, 

rotational diffusion constant of raft-localized FcεRI upon treatment with MβCD. We expect to 

observe a decrease in the rotational diffusion constant in these studies. 

 

 We obtained a weighted geometric average rotational correlation time of 0.8 µs and an 

accompanying standard error of ±1.3 µs (see Table 3.3). We obtained a weighted arithmetic 

average polarization fluctuation TACF amplitude of 0.5535 and an accompanying standard 

deviation of ±0.4486 (see Table 3.4). In selecting data for inclusion in calculations of averages 

and associated statistics, we looked for trends in the distribution of extracted parameters. Since 

the majority (seven out of ten) of the QDs displayed very short correlation times (sub-

microsecond to on the order of several microseconds)along with large amplitudes (>0.009), we 

interpreted this to represent the most probable outcome of these experiments. A total of three out 

of the ten QDs were excluded from final analysis. Of these outliers, two displayed very long 

correlation times on the order of several hundred ms) and small amplitudes (<0.0005). For the 

other outlier, the parameters did not change from the incumbent values (selected by visual 

inspection although this was admittedly difficult given the large amount of scattering/noise in 

early points) during the fitting routine, perhaps because the algorithm did not explore the full 

space of possible optimization solutions and this initial value was the best local solution that 

could be found. The large proportion of QDs exhibiting very short correlation times and large 
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amplitudes could be explained in two ways. The first (and most likely) explanation is that this is 

the result of a systematic error. There was a high prevalence of QDs exhibiting this behavior for 

all treatments and not just the MβCD-treated cells, suggesting that this effect was independent of 

treatment. A second possible explanation is that the treatment with MβCD has indeed 

immobilized a proportion of receptors on the cell surface. Such an effect would be consistent 

with our hypothesis of cholesterol depletion with MβCD increasing order in lipid rafts, thereby 

slowing the rotational diffusion of raft-localized FcεRI. Whether this would produce a modest 

decrease in diffusion or complete immobilization or the receptor is hard to determine. Neither 

would be accessible on this timescale, so it would be difficult to differentiate between these two 

possibilities. The two QDs that displayed long correlation times and small amplitudes could be 

considered immobile, although this is likely also due to systemic error, as such QDs were also 

fairly common regardless of treatment. 

 

3.4.3.5. Immunoglobulin E and Cytochalasin D 

 

 In a study using time-resolved phosphorescence anisotropy with erythrosine-conjugated 

IgE conducted by Torigoe et al., the RCT did not significantly decrease upon treatment with 

cytochalasin D [15]. This lack of effect was observed both for unaggregated receptor and from 

ligand-aggregated receptors. 

 

 We obtained a weighted geometric average rotational correlation time of 15 μs and an 

accompanying standard error of 42 μs for cells treated with cytochalasin D (see Table 3.3). We 
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obtained a weighted arithmetic average polarization fluctuation TACF amplitude of 0.0199 and 

an accompanying standard deviation of  0.0288 (see Table 3.4).  

 

3.5. Conclusions 

 

 In these experiments, we observed a high proportion of QDs with fast rotational 

correlation times and large polarization TACF amplitudes. QDs exhibiting this behavior occurred 

throughout our experiments, independent of treatment and the proportion exhibiting this behavior 

also remained relatively unchanged regardless of treatment. The magnitude of these rotational 

correlation times were typically in the range of sub-microsecond to several microseconds. This is 

well below the rotational correlation time that would be expected for any membrane protein.  

 

We also observed a large fraction of QDs which exhibited the inverse phenomenon of 

long correlation times and small polarization TACF amplitudes. It is possible that the high 

prevalence of QDs that exhibited large correlation times and small amplitudes is an artifact of 

our analysis and does not reflect a population of receptors that is actually absolutely immobile. 

The model which we fitted to the polarization fluctuation TACF decays was a simple single-

exponential and did not include a constant base term to account for a possible limiting 

polarization. In theory, the polarization fluctuation TACF, which represents the correlation of 

fluctuations about the mean polarization, should decay to zero. It is possible then, if a three-

parameter fit were the more appropriate fitting model for the data, that by fitting to a single-

exponential with no base term which decays to zero, the model would at long times decay very 

slowly in order to minimize the errors between it and the actual data which asymptotically 
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approaches some non-zero limiting polarization. This would explain the long rotational 

correlation times. 
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Chapter IV: Continuous fluorescence depletion anisotropy measurement of protein 

rotation1 

 

4.1. Overview 

 

 Protein rotation in viscous environments can be measured by fluorescence depletion 

anisotropy (FDA) which combines long lifetimes of chromophore triplet states with the 

sensitivity of fluorescence excitation and detection.  FDA achieves sensitivity well beyond that 

attainable by the more common technique of time-resolved phosphorescence anisotropy (TPA).  

We have now combined benefits of both time-domain and frequency-domain FDA into a single 

continuous technique (CFDA).  Intensity and polarization of a single laser beam are modulated 

continuously according to a complex, repeating waveform.  Fluorescence signals excited from 

triplet-forming fluorescent probes are digitized over recurring waveform periods by a high-speed 

signal averager.  CFDA experiments typically involve substantial ground state depletion.  Thus 

signals, unlike those of TPA, are not linear in the exciting light intensity and simple data analysis 

based on such linearity is not appropriate.  An exact solution of the coupled diffusion and triplet 

production/decay equation describing CFDA within individual data points has been combined 

with simulated annealing optimization to extract triplet and anisotropy decay kinetics from 

experimental data.  Related calculations compare possible excitation waveforms with respect to 

rotational information provided per fluorescence photon.  We present CFDA results for the 

model system of eosin conjugates of carbonic anhydrase, BSA and immunoglobulin G in 90% 

glycerol at various temperatures and initial cellular results on eosin-IgE bound to 2H3 cell Type I  

 
1 Zhang, D., et al., Continuous Fluorescence Depletion Anisotropy Measurement of Protein 

Rotation. Journal of Fluorescence, 2018. 28: p. 533-542. 
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Fc receptors.  We explore how CFDA reflects rotational parameters of heterogeneous systems 

and discuss challenges of extending this method to single cell microscopic measurements. 

 

4.2. Introduction 

 

 Changes in the motions of integral membrane proteins reflect and/or modulate primary 

events in cellular activation [1, 2].  In particular, rates of rotational diffusion [3] reflect protein 

interactions, aggregation and conformation and so are sensitive measures of the size and 

microenvironment of these molecules.  Experimentally, unhindered rotational diffusion occurs 

on the microsecond timescale and has been studied using various methods, including linear 

dichroism, delayed fluorescence, time-resolved phosphorescence anisotropy (TPA) and 

fluorescence depletion anisotropy (FDA) [4-6].  However, cellular studies demand robust, 

broadly-applicable methods and only the latter two of these methods have been widely used. 

 

 The anisotropy function describes the orientational asymmetry of any molecular 

distribution and is in fact the simplest quantitative measure of the deviation of the emission 

dipole distribution from spherical symmetry.  Emission anisotropy r is calculated as (I||-

I⊥)/(I||+2I⊥) where I|| and I⊥ are luminescence intensities polarized  parallel and perpendicular, 

respectively, to the polarization of an exciting pulse. The anisotropy of a freely-rotating 

spherical species in solution decays mono-exponentially with a rotational correlation time τ of 

1/6D =ηVh/kT where D is the rotational diffusion constant, η is the viscosity and Vh is the 

molecular hydrated volume.  Chromophores in the asymmetric environment of a membrane can 

exhibit multiple rotational correlation plus a non-decaying component or “limiting” anisotropy.  
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However, distinct rotational correlation times can rarely be resolved in practice, so it is most 

common to represent apparent decay as r = r∞ + (r0 - r∞) exp (-t/φ) where φ is an average 

rotational correlation time. This quantity clearly reflects size, asymmetry, environment and 

interactions of the rotating molecule. 

 

 Protein rotation in viscous solutions or on cell surfaces can be measured by various 

methods. Time-resolved phosphorescence anisotropy (TPA) measurements of protein rotation 

are analogous to the better-known time-resolved fluorescence anisotropy (TFA) methods.  

However, singlet lifetimes of fluorescent probes are typically only a few nanoseconds, hence 

TFA is limited to measuring low-nanosecond timescale rotations. Apart from low quantum 

yields of suitable phosphors, the necessarily long triplet state lifetimes imply low photon fluxes, 

even at saturation, and long-wavelength phosphorescence is poorly detected by most high-speed 

detectors.  By contrast, fluorophores typically exhibit high quantum yields, nanosecond lifetimes 

and mid-visible fluorescence emission. 

 

 It is thus natural to ask if the long lifetime of triplet states could be combined with the 

sensitivity of fluorescence excitation and detection.  Such a technique, Fluorescence Depletion 

Anisotropy, was proposed by Peter Garland [7] and used subsequently by our group in a number 

of studies [8-10].  The method depends upon fluorophores like eosin isothiocyanate (EITC) 

which have substantial quantum yields both for triplet formation and for prompt fluorescence 

[11].  Rotationally-mobile macromolecules labeled with such a chromophore are first irradiated 

by a low-intensity, linearly-polarized probe beam (Figure 4.1 upper panel), e.g. from an Ar-ion 

laser at 514.5 nm.  The resulting steady-state fluorescence is proportional to the number of   
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Figure 4.1: Rotation information in pulse fluorescence depletion anisotropy (FDA) and 

continuous fluorescence depletion anisotropy (CFDA) data.  Blue (solid) lines and red (dashed) 

lines in upper panel halves marked “lasers” indicate vertical and horizontal polarizations, 

respectively. 
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ground state chromophores whose absorption transition dipoles are parallel to the probe 

polarization.  The sample is then subjected to a brief pulse of high-intensity, linearly polarized 

light. A pulsed Nd:YAG laser producing mJ pulses at 532 nm is appropriate to examine 1mm2 of 

sample. Under this intense illumination, a substantial fraction of chromophores undergo 

intersystem crossing to the triplet state.  These triplets can exist for several hundred 

microseconds and, during this period, they cannot be excited to fluorescence by the probe beam.  

Thus, immediately after the pump pulse, there is asymmetric depletion in sample fluorescence 

which recovers back to the original steady state by the mechanisms of triplet decay and rotational 

reorientation.  By recording traces in the presence and absence of both pump and probe beams, 

undesired signals from sample autofluorescence, gating transients, etc. are cancelled 

automatically cancelled. 

 

 The relative advantage of FDA over TPA can be estimated by considering the major 

photophysical processes in a three-level system (Figure 4.2).  The maximum FDA fluorescence 

signal reflecting the non-fluorescent, slowly-decaying triplet state can be compared with the 

maximum phosphorescence signal arising from this or from another chosen chromophore. If one 

ignores reverse intersystem crossing kR, the maximum fluorescence rate arising in FDA from 

triplet decay is approximately f t /t  where, for the FDA chromophore, f and i are the 

quantum yields for prompt fluorescence and inter-system crossing, respectively, and t is the 

triplet lifetime.  The maximum phosphorescence rate in TPA is approximately one 

phosphorescence quantum yield p of photons per phosphorescence lifetime p or pp. The  

relative signal advantage of FDA over TPA is thus (f i p) (p  t).  Comparing eosin in FDA 

with erythrosin in TPA, this advantage is 10- to 100-fold.  This sensitivity enhancement relative   
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Fig. 4.2: Jablonski diagram showing major photophysical processes in a three-level system. 
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to TPA has allowed protein rotation measurements via FDA on individually-selected cells [12]. 

Nonetheless there are practical difficulties in time-domain FDA measurements. Apart from the 

photophysical limitations on signal intensities just described, there are instrumental constraints 

on data acquisition rate, detector saturation from excitation pulse and waste of fluorescence 

photons during excitation pulse. 

 

 While the above limitations might be approached by improved dyes, faster lasers 

combined with fast photon counting and more effective detector gating, respectively, frequency 

domain measurements may also appear to address at least the latter two issues. We have 

previously investigated frequency-domain FDA where a continuous-wave laser’s intensity and 

polarization are modulated by frequencies v and w, respectively [13].  Unfortunately, intrinsic 

non-linearity of FDA spreads rotation information into many frequencies, e.g. v, w, 2v, 2w, v-w, 

v+w, 2v, 2w, 2(v-w), 2(v+w), 2v-w, etc. Thus efficient collection of distributed rotational 

information actually amounts to performing a time-domain experiment. 

 

 One may wonder if advantages of time- and frequency-domain approaches could be 

combined into single technique.  Intensity and polarization of a single laser beam would be 

modulated continuously according to a complex, repetitive waveform and fluorescence signals 

averaged over recurring waveform periods by a low rearm-time signal averager.  This would 

offer prospective advantages of no gating, no wasted fluorescence, use of a single laser and data 

collection in a continuous experiment.  We have previously realized such a technique, 

continuous fluorescence depletion anisotropy (CFDA), and described preliminary experiments 

measurements using the approach [14].  In the present paper we describe an improved approach 
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to analysis of resulting data and present rotational information obtained on glycerol solutions of 

well-known proteins at various temperatures as well as initial cellular results on eosin-IgE bound 

to 2H3 cell Type I Fc receptors.  Our goal in this project is to evaluate the suitability of CFDA 

for further development aimed at measuring protein rotation on cell surfaces. 

 

4.3. Theory underlying data analysis 

 

 Consider an L-format optical system with excitation along the z-axis and emission 

acquired along the x-axis.  Samples consist of freely-rotating macromolecules to which 

chromophores are rigidly attached.  The absorption and fluorescence emission transition dipoles 

are assumed here to be collinear, a reasonable approximation for the xanthine dyes such as 

fluorescein and eosin. However, a similar treatment can be developed for non-colinear transition 

dipoles.  On the timescale of experiments and at light intensities employed, chromophores can be 

assumed to exist only in the singlet ground state and the first triplet excited state.  

 

 The rate constant for triplet formation by light of unit intensity polarized parallel to the 

absorption transmission dipole is given by 

 

 
3 2303

M T
b

A

hc
k

N




 
=  (4.1) 

   

where M is the molar absorptivity, T is the triplet quantum yield, h is Planck's constant, c is the 

speed of light, NA is Avogadro's number and  is the wavelength. The factor of 3 arises since M 

is defined for randomly-oriented molecules. 
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 The basic equation for CFDA is expressed in terms of the distribution function c(θ,φ,t) of 

ground state chromophore transition dipoles 

 

 2 ( , , )
( , , ) (1 ( , , )) ( , , ) ( , , )

r d b

c t
k c t k c t k I t c t

t

         
 + − − =


 (4.2) 

 

where kr is the rotational diffusion constant of the chromophore, kd is the decay rate of triplet 

chromophores to the ground-state kb, is the rate of excitation of ground-state chromophores to 

the triplet state and I(θ,φ,t) is the intensity of time- and polarization-varying exciting light on the 

sample. 

 

 Since we can express c as a sum of even-order spherical 

harmonics Yn
m(θ,φ)   
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 Without loss of generality, we can assume that so that a0
0(0)=1. For a 

given set of kd, kr and kb, combining Equations 4.2 and 4.3 yields  
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   Sample illumination I(θ,φ,t) affects Yn
m  in the RHS of Equation 4.3.  Our 

illumination consists of mixtures of x- and y-polarized light of intensities Ix(t) and Iy(t), 

respectively, so that Ix(t)= sin2 θ cos2 ϕ Ix0(t) and Iy(t)= sin2 θ sin2ϕ Iy0(t).   Interaction of such 

light with a given Yn
m produces up to 9 spherical harmonics ranging from Yn-2

m-2 up to Yn+2
m+2.   

Explicit equations for the magnitudes of these new Yn
m can be derived from the properties of 

spherical harmonics or their underlying associated Legendre polynomials [15].  The distribution 

function c can be obtained as a power series in kbI.  If n is the order of a given term in that series, 

then the term will be comprised of spherical harmonics up to order 2n.   Such a series converges 

unconditionally and we have explored this approach.  However, convergence is slow when kd 

and/or kr are large and an alternate solution is desirable. 

 

 The indices n and m of a spherical harmonic Yn
m uniquely determine its position i in a list 

where all Yn
m are ordered, first, by increasing n and, then, by increasing m, as shown.  Hence all 

spherical harmonics can be described as members of a one-dimensional array. Simple relations 

allow i to be evaluated from n and m and n and m from i and we can consider c to be a function 

of a fixed number of even spherical harmonics up to some order nmax..  Then the distribution 

function c will consist of (nmax /2+1)2 terms. As a concrete example, if nmax is 2, there are four 

terms. For simplification, let Is0 (t)=Ix0(t)+Iy0(t) and Id0(t)=Ix0(t)-Iy0(t). 
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Thus an inhomogeneous equation of the form shown can be used to describe the chromophore 

distribution function to whatever precision desired. 

 

 Solution of Equation 4.5 at a given point follows standard procedures [16]. For the matrix 

B comprising the LHS of Equation 4.5, eigenvalues li are calculated as a vector of length n and 

corresponding eigenvectors as an n × n matrix Λ, respectively.  An n-vector λ(t) whose elements 

λ i are exp (li t) is generated  and a fundamental matrix M(t) is constructed as 

. The solution A(t) of the inhomogeneous equation at time t following an 

initial value A(t0) is then given by 

 

 
0

1 1
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 As written, this system of inhomogeneous linear first-order differential equations has 

non-constant coefficients Ix0 (t), Iy0 (t) and, as such, is only soluble with substantial difficulty.  A 

satisfactory alternate approach is to consider the equation pointwise. Since the exciting laser 

intensity remains constant during each measurement point, the equation may readily be solved at 

each point using as initial conditions the results of the previous point. The entire experimental 

( ) [ ( )]t t=M Λ Diag λ



183 
 
 

signal can thus be generated for specified rate constants and other parameters as desired.  The 

time-dependent orientational distribution function c(θ,φ,t) can thus be evaluated as  

 

 ( ) 0 2 0 2
0 2 2 2, , ,( ) )| ( ( ( (, ), , ), , , ).... |Tc t Y Yt Y Y         −= A  (4.7) 

  

to any desired precision by incorporating spherical harmonics up to a sufficiently large order n.  

  

 The last computational issue is the fluorescence elicited from the sample by the 

illumination. Both x- and y-polarized light of unit intensity can be decomposed into four 

spherical harmonics. 
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 Fluorescence elicited by light of either polarization is calculated using the orthonormality 

of spherical harmonics. The choice for leading constants is such that initial fluorescence from 

unit excitation intensity is 1. Our experimental configuration uses a magic-angle polarizer to 

measure total emitted fluorescence [17] so that, if E is the efficiency of fluorescence collection, 

the measured total fluorescence F is  
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 We assume that triplet decay and molecular rotation are independent of each other.  Then 

triplet decay is characterized by nd multiple decay rates kdi, with fractions fdj and molecular 

rotation is specified by nr multiple rotational decay rates or correlation times krj with fractions frj 

and the overall signal Fo(t) becomes 

 

 ( )
1 1

( ) ,,
d rn n

o i

j

i j

i

d rj
F t f f tF k k

= =

=     (4.10) 

   

 The rotational rate constants krj are rotational diffusion constants. We 

assume only a single rotational diffusion constant, i.e. kri =kr for all i.   

 

 Data analysis according to Equation 4.10 involves considerable computation, the amount 

of which increases strongly with the number of constants fitted.  We therefore fitted CFDA data 

to seven fixed lifetimes, typically 8, 24, 80, 240, 800, 2400 and 8000 s, evaluating the best-

fitting decay fraction of each lifetime. .  The rotational behavior of the macromolecule is 

modeled assuming a limiting anisotropy r representing rotationally-immobile species and 

amplitude (r0-r) decaying as a single exponential, i.e. with a single rotational correlation time.  

We can evaluate the rotation fractional amplitudes frj  for 3 rotation rates, the first kr1 being 

arbitrarily fast and representing sub-microsecond motions, the second kr2 representing overall 

protein rotation and the third kr3 being zero and so representing the rotationally-immobile 

fraction of chromophores.  To maintain consistency with TPA and TFA experiments, we can 

then report (fr2 + fr3) as the “initial anisotropy” r0, 1/6kr2 as the protein RCT and fr3 as the 

“limiting anisotropy” r∞. 
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 Even if the decay rates kdi are considered fixed, the preceding treatment nonetheless 

specifies a large number of independent parameters which must be adjusted to optimize 

agreement between the observed and calculated fluorescence traces. We initially employed the 

Marquardt non-linear fitting procedure [18] but found that searches became trapped in local 

minima.  Even when small random increments were added to parameters to restart trapped 

searches, global minima were not reached. 

 

 Satisfactory optimizations were achieved using the so-called Simulated Annealing 

method of Goffe et al. [19].  This procedure simulates the process by which melted substances, 

through slow cooling, escape from defect traps to reach a minimum-energy crystalline state.  

Briefly, a system is assigned a starting “temperature” and initial parameter set.  A random 

variation in parameters is introduced and a system “energy”, here the average square deviation 

between observed and calculated fluorescence, is evaluated.  If the parameter change reduces the 

energy, i.e. improves the fit, then that parameter change is accepted and a new parameter change 

attempted.  However, if the energy is increased by the parameter change, i.e. E>0, then that 

change may be rejected or accepted.  The quantity exp (-E/aT) where a is a constant is 

compared to a random number between 0 and 1 and the parameter change accepted if the random 

number is smaller.  Thus, parameter changes that only slightly increase energy are most likely to 

be accepted, but changes substantially increasing energy nonetheless have finite probabilities of 

acceptance.  As the search proceeds, the temperature and the parameter step sizes are reduced to 

simulate the annealing process. 
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4.4. Materials and methods 

 

4.4.1. Apparatus and data acquisition 

  

 The apparatus used in CFDA experiments is shown in Figure 4.3 and has been described 

in a preliminary report [14].  Continuous wave excitation at 514.5 nm is provided by the 

vertically-polarized TEM00 output from a Coherent Radiation Innova 90 argon ion laser.  A 

Lasermetrics 3031 transverse Pockels cell (Lasermetrics Inc./FastPulse Technology, Teaneck, 

NJ), driven by a Lasermetrics AF-3 driver, rotates the beam polarization in response to a 

waveform generated in timing hardware, the response time being less than 200ns for a 90 

rotation.  The beam intensity is then adjusted by a Coherent 304 acoustic-optic modulator 

(AOM; Coherent Inc., Modulator Division, Danbury, CT) in response to an input waveform.  

Maximum modulated power at the sample is approximately 100 mW.  To increase laser intensity 

at the sample, a 2x Galilean telescope reduces the beam 1/e2 diameter to approximately 0.7 mm.  

A Tektronix AF320 Arbitrary Function Generator generates waveforms for the Pockels cell and 

AOM. A half-wave plate set at 22 adjusts the polarization of the un-rotated and rotated beams to 

+45 and -45 with respect to the vertical.   Samples are examined in 5x5 mm Suprasil cuvets 

(Helma).  Sample fluorescence is collected at 90 to the excitation axis and through a polarizer 

set at 35 to the vertical. Fluorescence of any polarization is thus collected with equal efficiency 

[17] so that the measured signal is proportional to the total emitted fluorescence. Depletion data 

thus reflect only the orientation of absorption transition dipoles and, as such, are true absorption 

anisotropies.  Scattered light and phosphorescence are removed by a K2Cr2O7 chemical filter, a 

Schott KV550 filter and a 600 nm short-pass interference filter and fluorescence is detected  
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Figure 4.3: Apparatus for Continuous Fluorescence Depletion Anisotropy (CFDA) 

measurements on bulk samples.The functions of the various components are described in the 

text. 
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using an EMI9816 photomultiplier tube (PMT; Thorn EMI Gencom Inc., Plainview, NY).  PMT 

signals are amplified by a Tektronix 473 oscilloscope and averaged by an EG&G 9826 signal  

averager with 0.6s re-arm time.  In a typical experiment 256k points, 256 ns/pt, are digitized 

per trace and 4096 traces are averaged at a repetition rate of 16 traces/sec.  

 

 Test systems exhibiting rotational correlation times comparable to many membrane 

proteins were prepared from 200-500 nM solutions of eosin isothiocyanate-conjugated proteins 

[20] in approximately 90% glycerol and examined over 4-37C, with actual glycerol 

concentrations in samples determined by measurement of refractive index.  Bovine IgG, bovine 

serum albumin (BSA) and bovine carbonic anhydrase (CA) were obtained from Sigma Chemical 

Co. (St. Louis, MO).    

 

 Independent measurements of eosin triplet, i.e. phosphorescence, lifetime were 

performed using an IBH 5000U fluorescence lifetime spectrometer equipped with xenon flash 

lamp and multichannel scaling for phosphorescence lifetime measurements.  Excitation was at 

526 nm and emission was recorded at 680 nm.  Band widths were 16 nm and 32 nm, 

respectively.  Data from ~110,000 lamp flashes were acquired in 1000 0.5μs channels and were 

analyzed beginning at 5 μs after the lamp flash to avoid including the large fluorescence transient 

immediately after each flash. Decay was fitted to a single exponential decay model. 

 

4.4.2. Waveform Selection 
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 Any light waveform where intensity changes both with and without polarization change 

can yield rotation information and many such optical waveforms are possible. Waveform 

optimization must be with respect to a specific parameter for a typical sample. A suitable figure 

of merit for optimization is (s2F)–1, the reciprocal of the squared standard error for a particular 

parameter multiplied by the total intensity in the detected waveform from which the parameter is 

estimated.   This quantity increases as the desired parameter is better defined from a constant 

amount of sample fluorescence.   

  

 We calculated this figure of merit for accuracy of determining rotational correlation time 

for the waveforms illustrated in Figure 4.4. The upper waveform (a) where the polarization never 

changes contains no rotational information The next two waveforms (b, c) where four shorter 

sections in the latter replace two longer ones  but with equal total power, exhibit equal figures of 

merit.  Waveform (d) with four equal intensity segments, one of which involves a polarization 

change, affords substantially, more information. The chirp waveform (e) is more efficient, where 

intensity changes over the range of triplet decay times both with and without polarization change 

over the range of rotational correlation times. The most efficient waveform is (f).  Acousto-optic 

modulators exhibit substantial nonlinearity, so it is difficult to determine the exact optical 

intensity provided by a given electrical waveform.  However, the uniform-intensity waveform (f) 

provides even more information than the chirp, while avoiding such calibration issues.  Hence 

we currently use a single illuminated intensity to avoid issues of AOM non-linearity.  

 

4.4.3. Data obtained 
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Figure 4.4: Relative efficiencies of various waveform types in using available fluorescence 

photons in evaluating the rotational correlation time of a rotating species in solution. All traces 

represent 4096 points with triplet decay times of 3, 30 & 300 points and fractional amplitudes of 

0.3, 0.4 & 0.3 respectively. Rotational correlation time is 30 points in all cases. 
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 Figure 4.5 shows a complete example waveform used to generate rotation data. The 

illuminated portions of the waveform were separated by substantial dark intervals.  This was 

done to guarantee complete decay of light-induced triplet states between illuminated sections, 

thus possibly simplifying analysis.  However, we emphasize that this is not necessary as our 

analysis scheme applies to any repetitive waveform. Hence, shortening the dark intervals shown 

in Figure 4.5 would increase the rate of data acquisition by several-fold. 

  

 Rotation information is available whenever the polarization of the exciting light is 

changed.  This phenomenon is most clearly in Figure 4.6 where the sum of Figure 4.5 sections b 

and d is subtracted from the sum of sections a and c.  This removes the large fluorescence 

decrease over time resulting from the exciting light conversion of chromophores to triplets. The 

actual dependence of fluorescence signal on the intensity and polarization of the exciting light is 

exceptionally complex as shown in Section 2 and inclusion of this complexity is essential in 

quantitative analysis of CFDA data.   

 

 Data analysis involves optimizing agreement between full 4-section fluorescence trace 

such as shown in Figure 4.5 and those calculated Eq. 10.  The standard deviation of experimental 

points about best-fitted curves for full-scale fluorescence signals of over 1x106 is typically 500-

1000, a relative standard error less than 0.1%.  The quality of such agreement can be visualized 

by examination of Figure 4.6.  

 

4.5. Results and discussion 
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Figure 4.5: Excitation waveform and raw fluorescence data for CFDA measurement of EITC-

BSA rotation at 4°C in 90% glycerol. 
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Figure 4.6: Excitation waveform and raw fluorescence data for CFDA measurement of EITC-BSA 

rotation at 4°C in 90% glycerol. Dotted lines indicate raw data while the smooth line represents fitted 

curves calculated by Equation 4.10. 
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4.5.1. Protein rotation versus temperature and viscosity 

   

        We examined by CFDA the rotation of three proteins, IgG, BSA and CA, in ~90% glycerol 

over 4-37 ℃. Table 4.1 shows the rotational correlation times τ of eosin-conjugates of these 

proteins. Because neither the hydrated partial specific volume  nor the effective axial ratio p 

of the proteins under these conditions is known, the expected values of the rotational correlation 

time cannot be predicted precisely. What can be said is that the rotational correlation time τ of a 

freely-rotating protein is given by 

 

  ( )/  /h p wV M RT V V M RTf f  = +=  (4.11) 

 

where ,  and  are, the partial specific volumes of the hydrated protein, the protein 

alone, and its bound water, respectively, δ is the amount of bound water and f is a factor 

reflecting asymmetry of the hydrated particle [21]. Hence, a plot of τ vs. ηM/RT should have a 

slope of   which should be approximately constant for a given protein in solutions of fixed 

composition. In fact, Figure 4.7 shows the RCT of each protein to vary linearly with ηM/RT and 

the slopes of such plots are indicated beside the best-fit lines and range from 1.9 to 2.9.   

Moreover, when the RCTs and corresponding ηM/RT for the three proteins are plotted on log-

log plots, the slopes are 0.9-1.0, as predicted by Equation 4.11.  While the uncertainties in RCT 

values are clearly substantial, increasing the waveform duty cycle and/or increasing the laser 

intensity at the sample should allow very substantial improvement. 

 

hV

hV pV wV

hf V
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Table 4.1: CFDA measurements of protein rotation in 90% glycerol solutions. 
a  Indicated uncertainties are the estimated standard deviations of the averaged RCTs.  
b Uncertainties in these quantities are discussed in the text. 

 

 

 

 

 

______________________________________________________________________________ 

 
 

 

 

 

         

Sample Temp RCT (μs)a r0
b r∞

b 

t½   

(CFDA, 

μs) 

t½ (from 

TPA 

lifetime, 

μs) 

IgG 4 146.4 ± 12.6 0.096 0.000 160 - 

IgG 15 46.8 ± 8.2 0.224 0.009 167 - 

IgG 25 16.3 ± 7.9 0.235 0.006 103 - 

IgG 37 7.8 ± 2.3 0.324 0.013 23 - 

Bsa 4 101.3 ± 11.4 0.238 0.000 280 177 

Bsa 15 38.1 ± 1.7 0.282 0.001 169 157 

Bsa 25 20.4 ± 2.0 0.267 0.004 171 142 

Bsa 37 8.4 ± 2.3 0.313 0.012 99 122 

Ca 4 29.6 ± 8.2 0.190 0.004 140 - 

Ca 15 13.8 ± 1.4 0.163 0.003 114 - 

Ca 25 10.6 ± 3.9 0.259 0.003 186 - 

Ca 37 6.9 ± 4.1 0.220 0.006 150 - 
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Figure 4.7: RCT of IgG, BSA and carbonic anhydrase in ~90% glycerol as functions of solution 
temperature and viscosity. Estimated uncertainties for points are given in Table 1. Slopes of the 
fitted lines are shown beside each plot.   
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 Protein rotation in water has been examined by other investigators and their measured 

RCTs can be compared with our results. For carbonic anhydrase at room temperature, values of 

14.6 ns [22] and 11.2 ns [23] have been reported. Immunoglobulin decay is strongly multi-

exponential on account of the segmental flexibility of the Fab domains but, for the slow 

component reflecting overall molecular rotation, the mean of several studies [23-26] is 

approximately 130 ns.  Several investigators have examined BSA, but a particularly careful 

examination by Ferrer et al. [27] using several methods gives a mean value of 40 ± 2 ns at 20 °C 

(1.00 cP). 

 

 Information concerning rotation of proteins in glycerol solutions is more limited. Using 

NMR methods Korchuganov [28] finds that addition of 20% glycerol almost doubles the RCT of 

barnase at 31.5 °C from 5.51 ns (0.77cP) to 9.38 ns (1.79 cP).  For BSA in 95% glycerol at 23°C 

Yao et al. [29] obtain a value of 22 μs while, for BSA in 92% glycerol at 6°C, Ferrer et al. [27] 

report 47 μs. The RCTs of barnase and BSA both increase linearly with η/T as expected.  In 

general, Priev et al. [30] suggest that glycerol causes compaction of the protein core but 

increases the size of the hydration layer. 

 

Typical values for  and δ in water are 0.73 cm3g-1 and 0.40 g H20 per g protein [21], 

so that  might be estimated at 1.13 cm3g-1.  If proteins can be modeled satisfactorily as 

rotation ellipsoids, effects of asymmetry can be predicted from protein axial ratios p calculated 

from ultracentrifuge data or intrinsic viscosity measurements. For fluorescence anisotropy, 

Perrin’s treatment [31] predicts three rotational correlation times for ellipsoids of revolution.  In 

practice, for axial ratios of about 5 or less, the actual decay curve cannot be distinguished from a 

pV

hV
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single exponential. Axial ratios reported for IgG, BSA and CA in water at room temperature are 

5.4 [32], 3.5 [33] and 5.4 [34], respectively.  Thus, for an axial ratio of 3.5, relative to an equal-

volume sphere, the RCTs and (fractional amplitudes) are predicted to be 0.97 (0.4), 1.92 (0.4) 

and 2.84 (0.2). Such a decay can be characterized by the harmonic mean of the rotational 

correlation times [31] or as the single exponential which can be best-fitted to the theoretical 

three-exponential decay.  On the latter basis, for axial ratios of 3.5 and 5.4, single RCTs of 1.73 

and 2.44, respectively, times those of equivalent spheres would be predicted.  These quantities 

can be multiplied by  to predict slopes of plots of RCT vs ηM/RT for the various proteins.  

For IgG, BSA and CA, predicted slopes are 2.8, 2.0 and 2.8 while experimental slopes, shown on 

Figure 4.7, are 1.9, 2.9 and 2.2, respectively.  Taken together, these estimates of and f  can 

largely explain the observation that RCTs of globular proteins are typically 2-3 times theoretical 

values [35] and that the slopes of plots of RCT vs ηM/RT in Figure 4.7 fall in this range.  

 

4.5.2. Initial and limiting anisotropy values 

 

 Samples examined by CFDA exhibit initial anisotropies averaging 0.23 ±0.06 while 

limiting anisotropies are 0.004 ±0.007.  The first quantity is a typical absorption anisotropy for a 

chromophore conjugated to a protein [36], since nanosecond- timescale flexibility substantially 

reduces the initial anisotropy from its theoretical value of 2/5.  Limiting anisotropies for 

solutions of homogeneous macromolecules should be zero, so the standard deviation of 

measured anisotropies perhaps indicates the uncertainty in absolute anisotropies measured by 

these methods. 

 

pV
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4.5.3. Lifetime values and distributions 

 

To accommodate the multi-exponential triplet decay observed in CFDA, we have fitted 

this decay to a set of seven fixed lifetimes, typically 8, 24, 80, 240, 800, 2400 and 8000 μs. 

Examples of resulting decay distributions for EITC-BSA at 4°C and 37 °C are shown in 

Figure 4.8.  At 4°C, the peak decay amplitudes are at 240 and 800 μs while, at 37°C, peak decays 

are at 80 and 240 μs.  How such distributions relate to that lifetime(s) observed in a technique 

like time-resolved phosphorescence anisotropy (TPA) is complex.  This is because, in TPA, an 

initial distribution of triplet chromophores is produced by a high-intensity and asymmetric pulse 

of nominally negligible width and this distribution decays by only by triplet decay and rotational 

randomization.  In CFDA, the evolution of fluorescence over time also involves continuous 

pumping of molecules into the triplet state throughout the experiment by exciting light.  This 

situation is properly modeled by Equation 4.10 but precisely how the resulting lifetime 

distributions such as those shown in Figure 4.8 relate to what might be observed in a TPA 

measurement is not clear.  One possible comparison is to use the complete CFDA lifetime 

distributions to calculate apparent decay half-times t½ and compare these quantities with 0.69  

times the triplet lifetimes measured directly by TPA.  Half-times ranging from approximately 

100-300 μsec as evaluated by these two methods are shown in Table 4.1 and are in reasonable 

agreement, given the differences in the methods being compared. 

 

4.5.4. Preliminary cellular results 

 

 The apparatus described in this paper was intended for measurements on cuvet-sized samples of 
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Figure 4.8: Triplet decay distributions for EITC-BSA in 90% glycerol at 4° and 37 °C. 
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protein solutions. However, suspended 2H3 cells labeled with EITC-A2-IgE were also examined 

at 4°C using single-intensity waveforms, albeit with small fluorescence signals and high noise 

(Figure 4.9). The fitted RCT is approximately 76 μs and this can be compared with a value of 

82±17 μs obtained for erythrosin isothiocyanate-labeled A2-IgE in extensive TPA studies [37]. 

The CFDA method should be much more promising if implemented in a microscope-based 

system. The key factor in such expected improvement would be the much smaller illuminated 

area and resulting more intense illumination at the sample.  For example, cuvet samples are 

examined in a Gaussian beam of diameter 0.7 mm. In a microscope implementation intended for 

examination of individual cells, the illuminated diameter might be 20 μm.  For a given laser 

intensity, the peak intensity on a microscope sample would be about 800-fold greater than on a 

cell in the cuvet and hence a 20-50mW frequency-doubled Nd:YAG laser would provide almost 

ideal illumination. 

 

4.6. Conclusions 

 

 Fluorescence Depletion Anisotropy (FDA) combines the long lifetime of triplet states 

with the sensitivity of fluorescence excitation and detection to measuring rotation of proteins in 

solution or on cell surfaces. Combination of time- and frequency-domain FDA in a single 

technique, Continuous Fluorescence Depletion Anisotropy (CFDA), provides protein rotation 

measurements via a continuous, single-laser method with no gating and no wasted photons.  

Rotational correlation times measured for common proteins in glycerol solutions exhibit the 

expected dependence on solution viscosity and temperature. Moreover, the technique appears to  
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Figure 4.9: CFDA examination of suspended 2H3 mucosal mast cells at 4°C binding eosin 
isothiocyanate-conjugated A2 IgE. The fitted RCT is 76 μs.  The inset shows the difference 
between fluorescence excited by light of alternating polarization and that from fixed polarization. 
See Fig. 6. 
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have unique potential for measuring rotation of specific proteins on individual living cells, as 

will be examined in future studies. 
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Chapter V: Overview and Future Directions 

  

 In this chapter, I discuss further avenues which could address some of the limitations 

posed by the methods presented in Chapters II and III involving quantum dots. These include 

faster cameras which would allow us to access timescales below those which we were able to 

access with our TTSPC measurements in Chapter III, utilizing gold nanorods instead of quantum 

dots to improve the signal-to-noise ratio for both of these studies, and a method to obtain a true 

anisotropy in a microscope system which would represent an improvement over the polarization 

measurements used in these studies. I also discuss the meaning and broader implications of the 

studies presented in the preceding chapters. 

 

5.1. Faster Cameras 

 

As previously mentioned in Chapter I, most techniques that have historically been used to 

measure membrane protein rotation (e.g. linear dichroism, E-type fluorescence, time-resolved 

phosphorescence anisotropy, and fluorescence depletion anisotropy) can only access rotation on 

timescales of one millisecond or faster. For those techniques reliant on phosphorescence (e.g. 

time-resolved phosphorescence anisotropy and fluorescence depletion anisotropy), the lifetime of 

organic phosphors imposes a limit on the maximum rotational correlation time that can be 

recorded.  

 

Approaches combining low-light cameras as we have used in this study with nanoparticle 

labels (such as the quantum dots used in this study or the gold nanorods discussed in the next 
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section) can address this limitation associated with the aforementioned techniques as they are 

capable of measuring rotational correlation times of several milliseconds or slower. In our 

particular imaging approach, the maximum frame time of our camera imposed a limit on our 

ability to observe rapid rotation. Even in its fastest mode (540x100 pixels), the Andor EMCCD 

camera is not capable of measuring rotational correlation times shorter than several times the 

frame rate of 10 ms. There are currently even faster low-light cameras available, such as the 

Photometrics “Cascade: 128+”, but this camera can still only acquire a maximum of about 500 

frames per second (~1 frame every 2 ms), even if assuming the conservative case of very small 

images. CMOS cameras with their higher frame rates are still only able to give full-frame images 

at a frame rate of a few thousand frames per second. Assuming a frame rate of 3,000 frames per 

second, this would still provide 1 frame every third of a millisecond.. Thus, given that the 

minimum rotational correlation time accessible to a given camera would have to be at least 

several times the frame rate, even the fastest low-light cameras cannot be used to measure 

rotational correlation times of less than about one millisecond and, practically speaking, likely 

not less than several milliseconds. Thus there is a large window of time too long to be accessed 

by the aforementioned ensemble measurements (e.g. linear dichroism, E-type fluorescence, time-

resolved phosphorescence anisotropy, and fluorescence depletion anisotropy), and too short to be 

examined using imaging approaches employing low-light cameras. 

 

If an imaging method applicable to low-light samples capable of obtaining higher-frame 

rates could be developed, it could potentially address this issue and enable measurement of 

rotational correlation times falling within this window spanning about one to several ms. To 

achieve this, we would propose using a high-speed intensified, gated camera in a “sampling” 
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mode to examine proteins labeled with nanoparticle probes such as the QDs used in the studies 

presented here or with the nanorods described in the next section. We believe that the application 

of such an instrument to imaging measurements in combination with the imaging approaches 

presented here could represent a potential improvement over an approach relying solely on our 

imaging method as it could provide supplementary information on these shorter timescales. As 

far as we are aware, this faster approach to imaging protein rotation is novel and has not been 

proposed previously by other investigators. 

 

Our lab currently possesses a camera which meets the prior description, the Princeton 

Instruments 1300YHS-DIF camera system. This is a specialized camera capable of recording 

images with a variable inter-frame time as low as 200 ns. Using this camera, a split vertically- 

and horizontally- polarized image of a nanoparticle-labeled protein could first be recorded at 

some time t and then a second image will be recorded at some later time t+τ after an inter-

frame/lag time of τ. Image pairs could be downloaded from the camera. The product of the spot 

intensity in the vertically-polarized image and the spot intensity in the horizontally-polarized 

image of the second image of the pair would give an approximation of the molecule’s rotational 

cross-correlation function at lag time τ. A scan over all possible inter-frame times τ and for all 

times t would give the true rotational cross-correlation function. With this method, the average 

time required to download an image from the camera would be significantly less than the 

magnitudes of typical inter-frame times, and thus it is the inter-frame time that imposes a limit 

on the lowest correlation time obtainable by this method. If we consider experiments involving 

quantum dot probes as we have used in this study, for which data acquisition is much simpler 

than it is for scattering by gold nanorods, it is expected that the rate of photon detection will 
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impose a limit on the minimum timescales that can be accessed via its effect on the minimum 

inter-frame time. Considering excitation of QD605 with a 50 mW 532 nm laser, given its molar 

absorptivity of 5.8×105 L cm-1 mol-1, we expect to record a count rate of 105 photons per second 

per chromophore over an 80 µm illuminated field. This could enable measurement of rotational 

correlation times down to a time less than ten µs. Thus not only would this technique enable 

measurement of rotational correlation times on timescales between those accessible to TPA and 

the imaging approach presented in this thesis, but, given its ability to probe timescales 

overlapping with those capable of being measured by TPA, it could also provide an independent 

method for measuring fast rotation and perhaps even the hydrodynamic rotation of individual 

membrane proteins. If we combine this imaging approach using this faster camera with gold 

nanorod probes, a crucial question will be how to avoid photobleaching and cell photodamage 

under high laser intensities. To circumvent this issue, we might use only brief laser pulses 

produced using the modulation input settings on our solid-state lasers. Another possible solution 

that could accomplish this would be to combine this approach with total internal reflection 

excitation to reduce penetration into deeper layers of the cell. 

 

5.2. Gold Nanorods 

 

 Another potential avenue of future exploration would be to use gold nanorods to conduct 

similar kinds of studies. Gold nanorods are another type of asymmetric nanocrystal that have 

been widely used in a variety of analytical, diagnostic, and therapeutic settings [1-3]. Like QDs, 

gold nanorods also fluoresce and this fluorescence has been monitored in imaging  
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experiments using 2-photon excitation in a scanning confocal microscope in both solution and 

cellular preparations [4]. However, this fluorescence does not occur at a rate that could be 

examined fast enough by imaging. One could, however, make use of the ability of these 

nanorods to scatter light polarized along their long rod axis. This resonant light scattering could 

be observed using darkfield microscopy [5]. Like QDs, these nanorods can give large polarized 

signals and do not bleach under high illumination. In fact, as will be discussed later, they may 

even be superior with regards to the former.  

 

 These nanorods, though larger than QDs, are still unlikely to perturb receptor rotation to a 

significant extent for the same reasons (their small size and location in the extracellular aqueous 

medium). Imaging of nanorod samples by electron microscopy suggests a fairly homogeneous 

size and gives typical  nanorod lengths and widths of ~35 and ~9.5 nm respectively. Their 

rotational correlation time has been calculated as ~3.5 µs in water. 

 

 We have previously synthesized gold nanorods in our lab. These synthesis procedures are 

based upon work by Sau and Murphy [6] and fine-tuned by Hafner [7], a co-collaborator with 

our lab. Synthesis of these nanorods involves preparation of nanorod seeds which provide a 

substrate for subsequent nucleation and growth phases leading to nanorod formation. 

Experimental conditions are tailored in order to insure production of a homogenous, uniformly-

sized nanorod population. This step is typically performed in a 0.1 M cetyltrimethylammonium 

bromide detergent (CTAB) solution. At this stage, for quality control it is necessary to check 

both the concentration and size of the nanorods produced. Absorption spectroscopy conducted at 

the longitudinal plasmon resonance frequency using the large effective molar absorptivity of 
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4.4x109 L mol-1 cm-1 can be used to determine nanorod concentration [7]. A couple analytical 

techniques are available for determining the length of the nanorods. These include imaging by 

electron microscopy (EM) or via absorption spectroscopy in which a calibration curve generated 

by plotting the maximum apparent optical absorbance occurring at a λmax of 750 nm of nanorods 

synthesized with varying reduction times (i.e. synthesis times) versus these reduction times. The 

longer the reduction time, the more time the nanorod has had to grow thus this reduction time is 

positively correlated with nanorod length . Nanorods of known size and reduction time are then 

used to construct a calibration curve and the size of the nanorod in question is extrapolated using 

the calibration curve based on its maximum apparent optical absorbance at its λmax. We have 

determined the lengths and diameters of nanorods synthesized in our lab with measurements by 

EM to be 34±3.2 and 9.7±0.8 nm respectively. 

  

 After production of a uniformly-sized population of gold nanorods, the nanorod probes 

are subsequently conjugated to the protein of interest (in this case IgE antibody). Preparation of 

the nanorods for protein conjugation involves replacement of the CTAB detergent solution with 

α-thio-ω-carboxypoly(ethylene glycol) and activation with 1-ethyl-[3-

dimethylaminopropyl]carbodiimide and N-hydroxysuccinimide. This is followed by quenching 

with β-mercaptoethanol and conjugation of the protein with the activated nanorod probe. 

 

 Though imaging scattering from gold nanorods may be methodologically more complex 

than imaging fluorescence from QDs, one potential advantage of this alternative approach is a 

much larger signal to noise ratio. These nanorods have a large effective molar absorptivity >109 

L mol-1 cm-1. Thus the signal produced from resonant light scattering by gold nanorods can be 
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expected to vastly outweigh background noise from non-resonant light scattering, cellular 

autofluorescence, etc.  

 

5.3. Method to obtain true anisotropy in a microscope 

 

 In order to calculate a “true” anisotropy, it is necessary to experimentally obtain 

information on the intensity of z-polarized light. This information, while accessible to a T-format 

fluorometer, is typically not accessible to a conventional microscope. To address this issue, we 

have developed a novel method for obtaining z-polarized emission in a microscope. This method 

involves recovery of light depolarized by a high numerical aperture objective (NA≥1.3). For this 

purpose we have a special mirror located in a reconstructed back focal plane with a suitable hole 

in the middle of its reflective coating designed to separate light of z-polarized light from that of 

x- and y- polarized light. Light from the center of the objective is transmitted through the hole 

and can be directed on a separate optical path to a polarizer which directs this light to two 

separate detectors. Light from the edge of the objective directed towards the rim of this hole 

forming an annulus can be directed by a polarizer to a separate detector. This light originating 

from the edge of the objective and directed towards the rim of the hole contains a substantial 

component associated with the z-polarized light whereas the former signal originated from the 

center of the objective and directed towards the center of the hole is primarily comprised of x- 

and y-polarized light. In this way it is possible to parse out the z-polarized signal from the x- and 

y- polarized signals. In practice however, this is difficult to implement. Together these 

approaches could overcome several of the limitations associated with the methods we employed 

in Chapters II and III of this thesis. Faster cameras could enable us to access faster timescales, 
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gold nanorods could give an improved signal to noise ratio, and our unique setup could enable us 

to obtain a true anisotropy in a microscope system. 

 

5.4. Summary of Studies 

 

 As discussed in Chapter I, kinetic approaches involving the measurement of diffusion can 

provide valuable information on molecular size and, by extension, molecular interactions. They 

can also provide information on the viscosity of the local environment in which a molecule 

resides. Methods measuring rotational diffusion are superior to those measuring lateral diffusion 

because rotational diffusion is more sensitive to these variables. In this dissertation, I have 

presented our studies examining protein rotation both on single cells (Chapters II and III) and in 

solution (Chapter IV). In Chapters II and III, I presented two approaches to measuring the 

rotation of the membrane-embedded FcεRI on RBL-2H3 cells in a fluorescence microscope 

using quantum dots as labels.  

 

 In Chapter II, I discussed our fluorescence imaging approach to measuring rotation of the 

QD-labeled FcεRI. We observed rotational correlation times scattered within a range of ~10-103 

ms amongst individual copies of the receptor with weighted geometric mean rotational 

correlation times within the ~100-150 ms range. These correlation times are much too long to 

possibly represent the hydrodynamic rotation of the receptor and, moreover, it is not even 

theoretically possible to measure the hydrodynamic rotation of the receptor using this technique 

because any such rotation would happen within one 10 ms frame time. As such, I interpreted 

these correlation times as representing the rotation of lipid microdomains of varying sizes 
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containing the QD-labeled receptor. The possibility of the larger complexes formed upon 

treatment with DNP-BSA being large enough to give correlation on this timescale was 

considered, but it was thought unlikely that they would be this large. For paraformaldehyde, I 

expected absolute immobilization of the receptor through intermolecular covalent crosslinking of 

receptors, but considered the possibility that the lipid microdomains containing them might still 

rotate on timescales of several hundred milliseconds as was the case for the other treatments. I 

also examined the effect of cholesterol on rotation via treatment with the cholesterol-depleting 

agent MβCD. Though it might be expected that the ligand-bound receptor itself would rotate 

more slowly inside a lipid microdomain which has transitioned to a solid-ordered state, we 

instead observed a shorter correlation time relative to the other treatments which could have 

represented the lipid microdomain moving faster upon the lowering of the viscosity of the bulk 

membrane in which the microdomain was suspended. Because, if anything, I would expect 

tethering to actin filaments to restrict receptor rotation (though this may not be the case for 

lateral diffusion), I expected faster rotation upon disruption of these filaments with cytochalasin 

D. Faster rotation was observed, but this could not correspond to the lone untethered receptor on 

the long timescales measured by this technique and likely once again corresponds to the rotation 

of lipid microdomains containing the receptor. 

 

 In Chapter III, I discussed our time-tagged single-photon counting approach (TTSPC) to 

measuring rotation of the QD-labeled FcεRI. This method enabled us to examine rotation on 

much shorter timescales fast enough to observe the hydrodynamic rotation of the receptor. We 

may have accomplished this with the IgE-treated cells as we did observe rotation of a magnitude 

that could possibly represent this, but unfortunately this result was not reproducible. Though I 
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expected prolonged correlation times for the DNP-BSA group corresponding to crosslinked 

receptors, it was difficult to say if there would be any that were small enough to give rotational 

correlation times below the upper threshold accessible to this technique and the results were once 

again not reproducible. Paraformaldehyde immobilizes receptors, so any rotation that was 

observed on this timescale would have had to correspond to the occasional receptor which was 

not exposed to this agent. MβCD was expected to increase the viscosity of the microdomains in 

which IgE-bound receptor would be expected to be found, so slower rotation was expected on 

these short timescales, perhaps in contrast to that observed by our imaging technique. 

Cytochalasin D was expected to disrupt actin filaments tethered to the receptor which was 

expected to result in faster rotation. It was difficult to observe such a trend however as the results 

were not reproducible for this treatment group. 

 

 In Chapter IV, we discussed our method for examining protein rotation in solution using 

continuous fluorescence depletion anisotropy (CFDA). We examined eosin conjugates of 

carbonic anhydrase, BSA and immunoglobulin G in highly-viscous 90% glycerol solution at 

various temperatures. We also obtained preliminary cellular results on eosin-IgE-bound Type I 

Fc receptors on RBL-2H3 cells and explored how this method might be applied to single cell 

measurements in a microscope.   

 

5.5. Significance of Studies 

 

 Together, these three fluorescence techniques are promising methods to measure rotation 

of membrane proteins on single cells. The ability to do this in a fluorescence microscope on cells 
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instead of just with fluorescence spectroscopy on molecules in solution, with single receptor 

instead of ensemble measurements allowing the distribution of molecular sizes and local 

environments to be observed, and on multiple different time regimes allowing examination of 

both small and large structures makes this a versatile combination of methods. As a kinetic 

approach, rotational measurements, in addition to providing information on the size of molecules 

and the sizes of higher-order molecular complexes which they form, can provide information on 

molecular interactions without needing to directly label the molecules which interact with the 

system under study. This can provide valuable information on the processes in which these 

molecules participate, especially if they were combined with other approaches to confirm the 

identity of the binding molecules. As observed in our studies of the FcεRI (the subject of 

Chapters II and III of this thesis),  rotational measurements allowed us to observe receptor 

crosslinking upon treatment with IgE and DNP-BSA. The crosslinked receptors exhibit much 

longer rotational correlation times than the un-crosslinked IgE-bound receptor. This simulates 

the processes that would be expected to occur upon exposure of cells expressing this receptor to 

foreign antigen. In this manner, our methods can help elucidate the processes occurring on the 

cell surface after binding to IgE antibody which precede the intracellular events leading to an 

immune response. It is natural to ask whether these methods could be adapted in order to be 

applied to other systems. For instance, our lab has extensively studied the luteinizing hormone 

receptor (LH receptor), a G-protein-coupled receptor (GPCR). In this system, binding of receptor 

to ligand also initiates receptor-receptor interactions preceding intracellular signaling events. 

Although the mechanism of receptor aggregation is different for this system and this family of 

receptors in general, our methods could be extended to such systems and seem promising in their 

ability to enable us to observe these processes as well. 
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 The rotational information obtained from these approaches can also provide information 

on the local environment of cell receptors. Rotation is sensitive to changes in local viscosity 

which can give important information on the surrounding membrane lipid composition and 

compartmental organization. Our studies have focused on the role of cholesterol on receptor 

membrane dynamics. These studies improve our understanding of how cholesterol modifies 

formation and dissolution of lipid microdomains, and how it regulates membrane viscosity both 

inside these domains and in the larger bulk membrane. Because we have developed approaches 

capable of examining both short timescales, we are able to observe rotation of individual 

receptors which can provide information on the immediate environment around the receptor both 

inside and outside a lipid microdomain. With the ability to access longer timescales, we are also 

able to examine rotation of the domains themselves, which can provide information about the 

membrane environment in which the domain containing the receptor is suspended.   

 

5.6. Broader Importance of Work 

 

The cell membrane is the primary theater in which information is transmitted to cells 

from the outside environment. The standard model for this process involves binding of ligands to 

integral membrane receptors which triggers a subsequent intracellular signal transduction 

cascade. However, this simplified conventional model ignores the complex dynamics occurring 

on the cell surface which precede these intracellular signaling events.  A proper understanding of 

these processes is important as they are a determinant of the extent to which downstream 

intracellular signaling events occur which ultimately determines cellular responses. As has been 
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demonstrated in this dissertation, measurements of rotational diffusion provide a viable method 

for examining these dynamics occurring within the cell membrane. 

 

Because rotational diffusion is sensitive to molecular size, it enables the observation of 

molecular interactions occurring on the cell surface. For example, in these studies we observed 

the crosslinking of IgE-bound FcεRI by DNP-BSA through this method. This process is 

analogous to what would occur upon crosslinking by foreign antigen. Our methods enabled us to 

differentiate between receptors exposed to antigen and receptors in the un-crosslinked state in the 

absence of antigen. It is easy to imagine applying this method to examination of other systems 

such as G protein-coupled receptors which are a common target for a variety of pharmaceuticals. 

For example, the luteinizing hormone receptor undergoes oligomerization upon exposure to its 

cognate ligand luteinizing hormone or the homologous ligand human chorionic gonadotropin. 

One could imagine the rotational approaches described in this thesis enabling the differentiation 

between ligand-bound and non-ligand-bound receptors.    

 

Because rotational diffusion is also sensitive to viscosity, measurements of this 

phenomenon offer the ability to examine changes in the local environment around a protein. This 

was observed in the CFDA study when we examined the dependence of rotational correlation 

times of proteins in solution on temperature and viscosity. This was observed with cell receptors 

by our imaging and TTSPC methods when IgE-bound FcεRI expressed on RBL-2H3 was treated 

with MβCD. The slower rotation on short timescales examined by TTSPC was thought to be 

attributable to the receptor being subjected to a more viscous local environment within a 

microdomain, consistent with the transition of these microdomains from a liquid-ordered to a 
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solid-ordered state. The faster rotation on long timescales examined by imaging was thought to 

be attributable to the microdomain containing the receptor being subjected to a less viscous bulk 

membrane environment caused by transition of the bulk membrane from a liquid-ordered to a 

liquid-disordered state. One could imagine using these techniques to observe the localization of 

receptors to lipid microdomains upon binding of ligand as well, though this would require 

labeling of the receptor itself instead of the ligand in order to observe rotation of unbound 

receptors outside of microdomains. 

 

The three methods used to examine rotational diffusion described in this dissertation each 

have their own unique merits which make them suitable for different specific applications. Both 

the imaging and TTSPC techniques enable measurement of the rotation of single receptors on 

single cells in a microscope. The imaging approach allows examination of rotation on long ms 

timescales which can reveal the origin of the limiting anisotropies observed by ensemble 

measurements on shorter timescales such as TPA. As we observed here, this technique has the 

potential to reveal phenomena such as the libration of lipid microdomains containing the 

receptors or rotation of very large receptor complexes. TTSPC enables examination of shorter μs 

timescales and so can reveal hydrodynamic rotation of receptors and small receptor complexes. 

Thus these two techniques are complementary as they allow access to both short and long 

timescales and so give a more complete understanding of receptor rotational movement. The 

CFDA approach takes advantage of the long lifetimes associated with triplet decay along with 

the large signal given by fluorescence. By exploiting the long lifetimes of phosphors such as 

eosin and erythrosine, this technique is able to access μs timescales similar to our TTSPC 

approach and therefore has the ability to observe hydrodynamic rotation of membrane proteins. 
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As a proof of principle, it was demonstrated that this spectroscopic technique could be used to 

examine the dependence of rotational correlation time on the hydrated specific volumes of 

various proteins in viscous solutions with high concentrations of glycerol. We also showed how 

it could be adapted to examine rotation of membrane proteins such as FcεRI on single cells and 

speculated on how this approach could be improved for such systems by adapting it for a 

microscope system.  Combining these different approaches enables a more complete 

characterization of the rotational behavior of membrane receptors which provides a better 

understanding of these systems. 
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Appendices 
 
Program Code 1: Image Corr Mod15k 
 
(* GOAL: assign bkg and g-factor to QD traces  *) 
(* so as to minimize dependence of r and s  *) 
(* use the new defn of g as 1+f and 1-f  *) 
(* mpy 2 reals=~0.4us div 2 reals=~8us *) 
(**********************************************************
) 
 
(**********************************************************
) 
(*  hard-define column numbers for Excel sheet            
*) 
(**********************************************************
) 
ClearSystemCache[]; 
ClearAll [iFirstRow,iTime,iv,ih] 
SetDirectory[NotebookDirectory[]]; 
inFileName="IgE-1.csv"; 
inFileName="2015-04-10-DNP-3-LRB.csv"; 
inFileName="2013-01-14-IgE-11-LRB.csv"; 
inFileName="IgE-1-LRB.csv"; 
inFileName="2015-01-06-dry655-6-LRB.csv"; 
inFileName="2013-01-14-IgE-5-LRB.csv"; 
inFileName="2015-01-31-IgE-1-LRB.csv"; 
(*inFileName="pf-3-LRB.csv";*) 
(*inFileName="PF-4-LRB.csv";*) 
(*inFileName="SimRS-10k-NoBl.csv";*) 
(*inFileName="SimRS-100k-NoBl.csv";*) 
(*inFileName="SimRS-10k-NoBl-gIs0.csv";*) 
(*inFileName="SimRS-100k-SD5-AllZeros.csv";*) 
(*inFileName="SimRS.csv";*) 
(*inFileName="IgE-1-1.csv";*) 
(*inFileName="IgE-1.csv";*) 
(*inFileName="SimRS-100k-SD5-AllZeros.csv";*) 
(*inFileName="SimRS-100k-e2e1-rTau1-rMax0.csv";*) 
(*inFileName="SimRS-100k-s10-e2s100-rTau1-rMax0p0.csv";*) 
(*inFileName="SimRS-10k-gmp4-c320-b50-s100-e2s10-exp8-
rTau20-rMax0p5.csv";*) 
(*inFileName="SimRS-10k-gmp4-c320-b50-s100-e2s10-exp8-
rTau20-rMax0p5-A.csv";*)(*inFileName="SimRS-10k-gmp4-c320-
b50-s100-e2s10-exp8-rTau20-rMax0p5-E.csv";*) 
(*inFileName="SimRS-10k-gmp4-c320-b50-s100-e2s10-tOnOff1-
rTau20-rMax0p5-E.csv";*) 
(*inFileName="SimRS-10k-gmp4-c320-b50-s100-e2s10-tOnOff1-
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rTau20-rMax0p5-F.csv";*)(*inFileName="SimRS-10k-gmp4-c320-
b50-s100-e2s10-tOnOff1-rTau20-rMax0p04.csv";*) 
(*inFileName="IgE-5-10000-510-LRB.csv";*) 
(*inFileName="IgE-1-510-LRB.csv";*) 
(*inFileName="dataFile.csv"; (* mean=50, SD=var=1*)*) 
(*inFileName="IgE-1-510-QdBkg.csv"; *) 
(*inFileName="2015-04-10-IgE-7-4000-LRB.csv";*) 
 
iFirstRow=2; 
(*iLastRow=1+1000;*) 
iDotInput=9; (* iDot=-1  no background traces i.e. old 
SimRS *) 
iDot=If[StringFreeQ[inFileName,"SimRS",IgnoreCase-
>True]==False, 
   1,iDotInput]; 
If[iDot==-1,  
  n2bvc=Input["n2bvc=n2bhc="]; 
  n2bhc=n2bvc]; 
iTime=3*iDot+4; 
iv=3*iDot+5; 
ih=3*iDot+6; 
ibv=2; 
ibh=3; 
base= StringTake[inFileName, StringLength[inFileName]-
4]<>If[iDot!=-1,"-d"<>IntegerString[iDot,10,2],""]; 
 
(**********************************************************
) 
(*  set graphics point sizes (fract of total graph)       
*) 
(**********************************************************
) 
SetOptions[{Plot,ListPlot}, 
  PlotStyle->PointSize[0.01], 
  PlotStyle->{RGBColor[0.2472,0.24,0.6], 
    RGBColor[0.6,0.24,0.4429], 
    RGBColor[0.6,0.5470,0.24], 
    RGBColor[0.24,0.6,0.3369]}, 
  BaseStyle->{ 
    FontFamily->"Helvetica", 
    FontWeight->"Bold" }, 
  ImageSize->{144,108}(*Medium*) 
  ]; 
 
(* SZEKELY "DCOR" 
******************************************) 
(* END SZEKELY "DCOR" 
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**************************************) 
 
(*$MinPrecision=31;*) 
ClearAll[parListCorrelate] 
ClearSystemCache[]; 
(*Needs["CCompilerDriver`"]; 
Needs["SymbolicC`"]; 
$CCompiler = 
{"Compiler" CCompilerDriver`VisualStudioCompiler`VisualStud
ioCompiler,    
"CompilerInstallation" "c:\\Program Files\\Microsoft Visual 
Studio 12.0" (*32bit*)};*) 
 
(*$CCompiler = 
{"Compiler" CCompilerDriver`VisualStudioCompiler`VisualStud
ioCompiler, 
"CompilerInstallation" "c:\\Program Files (x86)\\Microsoft 
Visual Studio 12.0" (*64bit*)};*) 
 
(*(********************************************************
*********) 
(*  important relations                                            
*) 
(**********************************************************
*********) 
e2r=(4 v^2 dh^2)/(h+v)^4+(4 h^2dv^2)/(h+v)^4-(8 (h v) dh 
dv)/(h+v)^4; (*OK*) 
e2r=1/s^2((1+r)^2 dh^2+(1-r)^2 dv^2 -2(1-r^2)dv dh); 
e2d=dh^2+dv^2- 2 dhdv; 
e2s=dh^2+dv^2+ 2 dhdv; 
eds=dv^2- dh^2; 
(* note that for corr'd bkgs, v~=h so dhdv~0*) *) 
 
 
(**********************************************************
*********) 
(* calc variance of ratio                                          
*) 
(**********************************************************
*********) 
(*ClearAll[drsq,dd,ds,s,d,v,h,dv,dh]; 
drsq=((v-h+dv-dh)/(v+dv+h+dh)-(v-h)/(v+h))^2 
Series[drsq, {dv,0,4} ,{dh,0,4}] 
(-((-h+v)/(h+v))+(-dh+dv-h+v)/(dh+dv+h+v))^2 
((4 v^2 dh^2)/(h+v)^4-(8 v^2 dh^3)/(h+v)^5+(12 v^2 
dh^4)/(h+v)^6+O[dh]^5)+(-((8 (h v) dh)/(h+v)^4)+((16 h 
v)/(h+v)^5-(8 v^2)/(h+v)^5) dh^2+(-((24 h v)/(h+v)^6)+(24 
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v^2)/(h+v)^6) dh^3+((32 h v)/(h+v)^7-(48 v^2)/(h+v)^7) 
dh^4+O[dh]^5) dv+((4 h^2)/(h+v)^4-(8 (h^2-2 h v) 
dh)/(h+v)^5+(12 (h^2-4 h v+v^2) dh^2)/(h+v)^6-(16 (h^2-6 h 
v+3 v^2) dh^3)/(h+v)^7+(20 (h^2-8 h v+6 v^2) 
dh^4)/(h+v)^8+O[dh]^5) dv^2+(-((8 h^2)/(h+v)^5)+(24 (h^2-h 
v) dh)/(h+v)^6-(16 (3 h^2-6 h v+v^2) dh^2)/(h+v)^7+(80 
(h^2-3 h v+v^2) dh^3)/(h+v)^8-(120 (h^2-4 h v+2 v^2) 
dh^4)/(h+v)^9+O[dh]^5) dv^3+((12 h^2)/(h+v)^6-(16 (3 h^2-2 
h v) dh)/(h+v)^7+(20 (6 h^2-8 h v+v^2) dh^2)/(h+v)^8-(120 
(2 h^2-4 h v+v^2) dh^3)/(h+v)^9+(140 (3 h^2-8 h v+3 v^2) 
dh^4)/(h+v)^10+O[dh]^5) dv^4+O[dv]^5 
PDF[BinormalDistribution[{Subscript[μ, 1],Subscript[μ, 
2]},{Subscript[σ, 1],Subscript[σ, 2]},ρ],{x,y}] 
 
SubsuperscriptBox[ ∫ , -∞ , ∞ ] ( 
SubsuperscriptBox[ ∫ , -∞ , ∞ ] ( 
SuperscriptBox[ (x -  
SubscriptBox[ μ , 1 ]) , 2 ] 
SuperscriptBox[ (y -  
SubscriptBox[ μ , 2 ]) , 2 ]PDF[BinormalDistribution[{ 
SubscriptBox[ μ , 1 ],  
SubscriptBox[ μ , 2 ]}, { 
SubscriptBox[ σ , 1 ],  
SubscriptBox[ σ , 2 ]}, ρ], {x, y}]) x) y\n 
FractionBox[ 
SuperscriptBox[ , - 
FractionBox[  
FractionBox[ 
SuperscriptBox[ (x -  
SubscriptBox[ μ , 1 ]) , 2 ], 2\  
SubsuperscriptBox[ σ , 1 , 2 ] ] +  
FractionBox[ 
SuperscriptBox[ (y -  
SubscriptBox[ μ , 2 ]) , 2 ], 2\  
SubsuperscriptBox[ σ , 2 , 2 ] ] -  
FractionBox[ ρ\ (x -  
SubscriptBox[ μ , 1 ]) \ (y -  
SubscriptBox[ μ , 2 ]) ,  
SubscriptBox[ σ , 1 ]\  
SubscriptBox[ σ , 2 ] ] , 1 -  
SuperscriptBox[ ρ , 2 ] ] ], 2\ π\  
SqrtBox[ 1 -  
SuperscriptBox[ ρ , 2 ] ]\  
SubscriptBox[ σ , 1 ]\  
SubscriptBox[ σ , 2 ] ]\nSimplify[ 
FractionBox[ (1 + 2\  
SuperscriptBox[ ρ , 2 ]) \  
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SubscriptBox[ σ , 1 ]\  
SqrtBox[ 
FractionBox[ 1 ,  
SubsuperscriptBox[ σ , 2 , 2 ]]]\  
SubsuperscriptBox[ σ , 2 , 3 ] ,  
SqrtBox[ 1 -  
SuperscriptBox[ ρ , 2 ] ]\  
SqrtBox[ - 
FractionBox[ 1 , ( -1  +  
SuperscriptBox[ ρ , 2 ]) \  
SubsuperscriptBox[ σ , 1 , 2 ] ] ] ], Assumptions  
{ Re[ 
FractionBox[ 1 , ( -1  +  
SuperscriptBox[ ρ , 2 ]) \  
SubsuperscriptBox[ σ , 1 , 2 ] ]] < 0 && Re[ 
FractionBox[ 1 ,  
SubsuperscriptBox[ σ , 2 , 2 ]]] > 0 &&  
SubsuperscriptBox[ σ , 2 , 2 ] > 0 &&  
SuperscriptBox[ ρ , 2 ] > 0 &  
SubsuperscriptBox[ σ , 1 , 2 ] > 0}]\n 
SqrtBox[ 
FractionBox[ 1 , 1 -  
SuperscriptBox[ ρ , 2 ] ]]\  
SqrtBox[ 1 -  
SuperscriptBox[ ρ , 2 ] ]\ (1 + 2\  
SuperscriptBox[ ρ , 2 ]) \ Abs[ 
SubscriptBox[ σ , 1 ]]\  
SubscriptBox[ σ , 1 ]\  
SqrtBox[ 
FractionBox[ 1 ,  
SubsuperscriptBox[ σ , 2 , 2 ]]]\  
SubsuperscriptBox[ σ , 2 , 3 ]\n\ (1 + 2\  
SuperscriptBox[ ρ , 2 ]) \  
SuperscriptBox[ 
SubscriptBox[ σ , 1 ], 2 ] 
SubsuperscriptBox[ σ , 2 , 2 ]  
*) 
 
(*(********************************************************
**********) 
(*  variance of product and quotient                                
*) 
(**********************************************************
**********) 
ClearAll[d,e,s,t,w]; 
w=Expand[((d+e)/(s+t)-d/s)^2]; 
Series[s^4 w,{e,0,2},{t,0,2}]; 
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(*red=terms lost on integ*) 
(d^2 t^2)/s^4-1/s^42 (d s) t e+(4 d t^2e)/s^4+(s^2e^2)/s^4-
(2 s t e^2)/s^4+(3 t^2 e^2)/s^4; 
(* for normal distn's, Σt^2e^2 = 2eds^2+e2s*e2d *) 
ClearAll[d,e,s,t,w]; 
w=Expand[((d+e)(s+t)-d*s)^2]; 
(*red=terms lost on integ*) 
e^2 s^2+2 d e s t +2 e^2 s t +d^2 t^2 +2 d e t^2+e^2 t^2;*) 
(* for normal distn's, Σt^2e^2 = 2eds^2+e2s*e2d *) 
 
(*(********************************************************
************) 
(* series weighting of anis correlation products                    
*) 
(**********************************************************
**********)ClearAll[r1,r2,v1,v2,iOrder,ir1,ir2]; 
nMax=1 
q=1/(v1*v2)Series[1/(1+r1/v1+r2/v2),{r1,0,nMax},{r2,0,nMax}
]; 
Do[Do[ 
ir2=iOrder-ir1; 
c=SeriesCoefficient[q,{ir1,ir2}]*r1^(2ir1)*r2^(2 ir2); 
Print["r1=",ir1," r2=", ir2, " c=",c] 
,{ir1,0,iOrder}],{iOrder,0,nMax}]*) 
 
(**********************************************************
*********) 
(*  test autocorrelation for finite data set using 
LISTCORRELATE   *) 
(**********************************************************
*********) 
ClearAll[DataCorrelate]; 
DataCorrelate[t_,u_]:=Module[{n}, 
z=ListCorrelate[t,u,1,0];n=Length[t];Table[z[[i]]/(n-
i+1),{i,n}]]; 
(*t={4,3,2,1} 
u={1,2,3,4} 
z=ListCorrelate[t,u,1,0] 
z1=Table[z[[i]]/(Length[z]-i+1),{i,Length[z]}] 
DataCorrelate[t,u]*) 
 
(**********************************************************
*********) 
(*  define pattern replace to pull constants out of sums           
*) 
(**********************************************************
*********) 
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(* patt /; test is a pattern which matches only if the 
evaluation of test yields True *) 
(* lhs  rhs \"\\\"\"\"RuleDelayed\"\"\\\"\" represents a 
rule that transforms lhs to rhs evaluating rhs only after 
the rule is used *) 
(* FreeQ[expr,form] yields True if no subexpression in expr 
matchesformand yields False *) 
ClearAll[BringOut,outrules]; 
outrules={Sum[f_+ 
g_,it:{x_Symbol,__}]:>Sum[f,it]+Sum[g,it],Sum[c_ 
f_,it:{x_Symbol,__}]:>c 
Sum[f,it]/;FreeQ[c,x],Sum[c_,it:{x_Symbol,__}]:>c 
Sum[1,it]/;FreeQ[c,x]}; 
BringOut[s_]:=s //. outrules 
(*BringOut [Sum [c*i*x[[i]]1,{i,n}]];*) 
 
(**********************************************************
*********) 
(*  map Sum function over sum of terms                             
*) 
(**********************************************************
*********) 
(*ClearAll[x,y,z,qd0,n]; 
qd0= x[[i]] +2y[[i]]^2+ 3 z[[i]]^3; 
gd0=Total[Sum[#,{i,1,n}]&/@(List@@qd0)]; 
BringOut[gd0]*) 
 
(**********************************************************
*********) 
(*  weighted covariance function                                   
*) 
(**********************************************************
*********) 
ClearAll[wtdCov]; 
wtdCov[f_,g_,w_]:=Module[{n,wTot,temp}, 
   n=Length[f]; 
   wTot=Total[w]; 
   temp=Total[f*g*w]/wTot-Total[f*w]/wTot Total[g*w]/wTot]; 
(* fails for f=g and i=1 *) 
 
(**********************************************************
*********) 
(*  weighted correlation coeff                                     
*) 
(**********************************************************
*********) 
ClearAll[wtdCorrCoeff]; 
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wtdCorrCoeff[f_,g_,w_]:=Module[ 
  {}, 

  wtdCov[f,g,w]/  
  ] 
 
(**********************************************************
*********) 
(*  abbreviate FortranForm for printing                            
*) 
(**********************************************************
*********) 
ClearAll[ff]; 
ff[x_]:=FortranForm[x]; 
 
(**********************************************************
*********) 
(*  define gRound to get suitable form printing large, 
small nums  *) 
(**********************************************************
*********) 
ClearAll[gR]; 
gR[x_,sf_]:= (* "g Round" *)Module[{e,xr}, 
   (e=MantissaExponent[x][[2]]-sf; 
    xr=(10^e)*Round[x*10^(-e)]; 
    xr)]; 
 
(**********************************************************
*********) 
(*  define gF "George Format" for compact 1-line output            
*) 
(**********************************************************
*********) 
ClearAll[gF]; 
gF[x_]:=ff[gR[x,6]]; 
 
(**********************************************************
*********) 
(*  define "appendCol"                                             
*) 
(*  does NOT expand table if col too long or pad col if too 
short  *) 
(**********************************************************
*********) 
appendCol[a_,b_]:=(*Module[{aa},If[Length[Dimensions[x]] 1,
aa={a};Transpose[Append[aa,b]], 
 Transpose[Append[Transpose[a],b]]]];*) 

wtdCov f, f, w wtdCov g, g, w
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 If[Length[a]!=Length[b],Print["Unequal lengths. Unable to 
append"];a, 
  If[Length[Dimensions[a]]==1, 
   Join[Transpose[{a}], Transpose[{b}],2], 
   Join[a, Transpose[{b}],2]]] 
 
(**********************************************************
*********) 
(*  define "addParam"                                              
*) 
(*  if new var runs below existing cols, table is padded 
line of blanks*) 
(**********************************************************
*********) 
ClearAll[addParam]; 
addParam[a_,nameCol_,valCol_,name_,val_]:= 
 Module[{nParams,ap}, 
  nParams=0; 
  Do[If[a[[i,nameCol]]!= 
"",nParams=nParams+1],{i,2,Length[a]}]; 
  
If[Length[a]==nParams+1,ap=Append[a,Table["",{i,Length[a[[1
]]]}]];,ap=a]; 
  ap=ReplacePart[ap,{nParams+2,nameCol}-> name]; 
  ap=ReplacePart[ap,{nParams+2,valCol}-> val]; 
  ap 
  ] 
 
(**********************************************************
*********) 
(*  define "mlpNeg" =-Log prob of getting negative v or h         
*) 
(**********************************************************
*********) 
ClearAll[mlpNeg]; 

mlpNeg[b_,sb_,v_]:=Log[2]-Log[Erfc[(b-v)/(  sb)]]; 
(**********************************************************
*********) 
(*  extrapolate xc or ac curve to time zero                        
*) 
(**********************************************************
*********) 
extrap[x_]:={x[[1]],x[[1]]-x[[2]],x[[1]]-2x[[2]]+x[[3]]}; 
 
(**********************************************************
*) 
(*  get v,h from CSV file                                  

2
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*) 
(* iDot=-1  no background traces                          
*) 
(**********************************************************
*) 
ClearAll[n,v,h] 
data=Import[inFileName,"CSV"]; 
lastData=Length[data]; 
time=data[[iFirstRow;;(*iLastRow*),iTime]]; (*1st dim is 
DOWN, 2nd ACROSS *) 
v=data[[iFirstRow;;(*iLastRow*),iv]]; (*starts 2nd row, 
indicated col *) 
h=data[[iFirstRow;;(*iLastRow*),ih]]; (*starts 2nd row, 
indicated col *) 
If [iDot!=-1, 
  bv=data[[iFirstRow;;(*iLastRow*),ibv]]; (*starts 2nd row, 
indicated col *) 
  bh=data[[iFirstRow;;(*iLastRow*),ibh]], 
  (*else*) 
  bv=Table[0,{lastData} ]; 
  bh=Table[0,{lastData}]];(*starts 2nd row, indicated col 
*) 
Print["inFileName=",n=Length[time]]; 
 
(**********************************************************
****) 
(* examine raw data                                           
*) 
(**********************************************************
****) 
 bvf=bv-Mean[bv];  bhf=bh-Mean[bh];  
gbv=DataCorrelate[bvf,bvf]; 
gbh=DataCorrelate[bhf,bhf]; 
inputPlots={ 
  vhRawPlot=ListPlot[{v,h},PlotLabel->"vhRaw",PlotRange-
>{0,1.25Max[v,h]}], 
  bkgRawPlot=ListPlot[{bv,bh},PlotLabel-
>"bkgsRaw",PlotRange-
>{0,1.25Max[v,h]}],bkgCorrPlot=ListPlot[{gbv,gbh},PlotLabel
->"bkgCorr"]} 
 
(**********************************************************
*********) 
(*  set date-time format to distinguish file versions              
*) 
(**********************************************************
*********)$DateStringFormat={"Year",(*"-",*)"Month",(*"-
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",*)"Day","-","Hour24","Minute","Second"}; 
 
(**********************************************************
*******) 
(* generate timestamp for all output this pass                   
*) 
(**********************************************************
*******) 
tdList=DateList[]; 
dateFormat={"Year","-","Month","-","Day"}; 
timeFormat={"Hour",":","Minute",":","Second"}; 
timeStampFormat={"Year",(*"-",*)"Month",(*"-",*)"Day","-
","Hour24","Minute","Second"}; 
dateString=DateString[tdList,dateFormat]; 
timeString=DateString[tdList,timeFormat]; 
timeStampString=DateString[tdList,timeStampFormat]; 
 
(**********************************************************
****) 
(* generate parallelizable ListCorrelate                      
*) 
(**********************************************************
****)(*parListCorrelate=Compile[{{ker, _Real,1},{list, 
_Real,1},{klist, _Integer}, {p, 
_Real}},ListCorrelate[ker,list,klist,p] 
,CompilationTarget "C",RuntimeAttributes {Listable},Paralle
lization True];*) 
(*parListCorrelate[ker_,list_,klist_,p_]:=ListCorrelate[ker
,list,klist,p];*) 
 
(**********************************************************
*********) 
(*ANIS:  fit single exponential decay                              
*) 
(**********************************************************
*********) 
ClearAll[fitExpDecay]; 
fitExpDecay[fitData_, 
fitDataName_,wtData_,nEff_,kFirst_,kLast_,fitPlotName_]:= 
  Module[ 
   {gTable,wTable,iPass,g0,g∞,gTau,t}, 
   If[kLast>nEff,Print["kLast=",kLast," > nEff=",nEff,".  
Results unpredictable"]]; 
   gTable=Table[{i-1,fitData[[i]]},{i,nEff}]; 
   wTable=Table[wtData[[i]],{i,nEff}]; 
   (*gTable=Table[{i-
1,RandomVariate[NormalDistribution[0,2]]},{i,nEff}]; 
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   wTable=Table[1,{i,nEff}];*) 
   Do[If[k<kFirst||k>kLast,wTable[[k]]=0],{k,nEff}]; 
   iPass=0; 
    
   Monitor[ 
    nlm=NonlinearModelFit[ 
      gTable, 
      g∞+(g0-g∞)*Exp[-t/gTau], 
      {{g0(*,.0005*)},{g∞(*,-.0005*)},{gTau}}, 
      t, 
      Weights->wTable, 
      StepMonitor :>{iPass=iPass+1}, 
      VarianceEstimatorFunction->(Total[#12 #2]/Total[#2]&), 
      MaxIterations->1000(*Infinity*) 
      ], 
    Pause[0.0]; 
    "iPass="<>ToString[gF[iPass]]<>" 
chiSq="(*<>ToString[gF[redChiSq]]*)<>" 
tDecay="<>ToString[gF[gTau]]<>" 
gInf="<>ToString[gF[g0]]<>ToString[gF[g∞]]<>" gAmp=" 
    ]; 
    
   Print["\n","FIT RESULTS"]; 
   paramTable=nlm["ParameterTable"]; 
   Print["params=",params=nlm["BestFitParameters"]]; 
   Print["errs=",errs=nlm["ParameterErrors"]]; 

   Print["estdSD=",estdSD= ]; 
   Print["nlm[0]=",nlm[0]]; 
    
   
params=nlm["BestFitParameters"];errs=nlm["ParameterErrors"]

;estdVar=nlm["EstimatedVariance"];gSD= ; 
   
gZero=params[[1,2]];gInf=params[[2,2]];gTd=params[[3,2]]; 
   gInfErr=errs[[1]];gZeroErr=errs[[2]];gTdErr=errs[[3]]; 
   fluctCalc=Table[nlm[i-1],{i,1,nEff}]; 
    
   xyCalc=Table[{i-1,nlm[i-
1]},{i,kLast}];range={1.1Min[xyCalc[[All,2]],gTable[[All,2]
]],1.1*Max[xyCalc[[All,2]],gTable[[All,2]]]}; 
   
fitPlot=ListPlot[{gTable[[kFirst;;kLast,2]],xyCalc[[kFirst;
;kLast,2]]},PlotLabel-> fitPlotName]; 
   ]; 
 
(**********************************************************

nlm "EstimatedVariance "

estdVar
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****) 
(*  define "marq"                                           
*) 
(**********************************************************
****) 
(*nSum=1; 
marq[ 
v_List,h_List,iWt_Integer,iFirst_Integer,iLast_Integer,kFir
st_Integer,kLast_Integer,a1_Real,a2_Real,a3_Real] 
:=Sum[depend[v,h,iWt,iFirst,iLast,kFirst,kLast,a1,a2,a3]^2,
{i,,nSum}];*) 
 
(* 
(**********************************************************
****) 
(*  define "depend"                                           
*) 
(**********************************************************
****) 
 
ClearAll[depend]; 
depend=Compile[{{v, _Real,1},{h, _Real,1},{iWt, _Integer}, 
{iFirst, 
_Integer},{iLast,_Integer},{kFirst,_Integer},{kLast,_Intege
r},{g,_Real},{c,_Real},{b,_Real},{aIn,_Real}},*) 
 
ClearAll[depend]; 
 
depend[v_List,h_List,iWt_Integer,iFirst_Integer,iLast_Integ
er,kFirst_Integer,kLast_Integer,nBkgsDummy_Integer,gDummy_R
eal,cDummy_Real,bDummy_Real,fDummy_Real,aIn_Real,iThreshMod
e_Integer,thresh_Real,iInitDummy_Integer,iOrderDummy_Intege
r]:=( 
    
   
(**********************************************************
*********) 
   (*  check input data                                               
*) 
   
(**********************************************************
*********) 
   If [Length[v]!= Length[h], Print["v and h unequal 
length. Exiting...."];Abort[] ]; 
   nMax=Length[v]; 
   n=If [iLast==0,Length[v],iLast]; 
   m=If [iFirst==0,1,iFirst]; 
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   nEff=n-m+1; 
   nCorr=nEff; 
    
   kMax=If[kLast==0, nEff-1, kLast]; 
   If [kLast>nEff,Print["kMax exceeds nEff. 
Exiting...."];Abort[]]; 
   kMin=If[kFirst==0, 2,kFirst]; 
   nk=kMax-kMin+1; 
    
   nBkgs=If [nBkgsDummy==0,4,nBkgsDummy]; 
   alpha=If [aIn==0,2.0,aIn]; (* 0<aIn<2; 1=Szekaly; 
2=Pearson cov *) 
   (*f=If [fDummy 0,0.0,fDummy];*) 
   (*Print["m=",m,"  n=",n];*) 
    
   
(**********************************************************
*********) 
   (*  set constants                                                  
*) 
   
(**********************************************************
*********) 
   g=gDummy; 
   c=cDummy; 
   b=bDummy; 
   f=fDummy; 
   iInit=iInitDummy; 
   iOrder=iOrderDummy; 
    
   
(**********************************************************
*********) 
   (*  create tables                                                  
*) 
   (*  use length of v or h as nMax                                   
*) 
   
(**********************************************************
*********) 
    
   createArrays=AbsoluteTiming[ 
     ClearAll[]; 
     scr1D=Table[0,{nEff}]; 
     scr1Dp1=Table[0,{nEff+1}]; 
      
     (*  saved variables and products *) 
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     vs=scr1D; (* s variance *) 
     vd=scr1D; (* d variance *) 
     vr=scr1D; (* r variance *) 
      
     ws=scr1D; (* s wt *) 
     wd=scr1D; (* d wt *) 
     If[iInit== 1,wr=scr1D;wrSq=Scr1D;wrCb=Scr1D]; (* r wt 
*) 
      
     (* terms for s *) 
     sCum=scr1Dp1; 
     sAvg1=scr1D; 
     sAvg2=scr1D; 
      
     sSq=scr1D; 
     sSqCum=scr1Dp1; 
     sSqAvg1=scr1D; 
     sSqAvg2=scr1D; 
      
     sCb=scr1D; 
     sCbCum=scr1Dp1; 
     sCbAvg1=scr1D; 
     sCbAvg2=scr1D; 
      
     swr=scr1D; 
     swrCum=scr1Dp1; 
     swrAvg1=scr1D; 
     swrAvg2=scr1D; 
      
     sSqwr=scr1D; 
     sSqwrCum=scr1Dp1; 
     sSqwrAvg1=scr1D; 
     sSqwrAvg2=scr1D; 
      
     sCbwr=scr1D; 
     sCbwrCum=scr1Dp1; 
     sCbwrAvg1=scr1D; 
     sCbwrAvg2=scr1D; 
      
     (* terms for d *) 
     dCum=scr1Dp1; 
     dAvg1=scr1D; 
     dAvg2=scr1D; 
      
     dSq=scr1D; 
     dSqCum=scr1Dp1; 
     dSqAvg1=scr1D; 
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     dSqAvg2=scr1D; 
      
     dwr=scr1D; 
     dwrCum=scr1Dp1; 
     dwrAvg1=scr1D; 
     dwrAvg2=scr1D; 
      
     dSqwr=scr1D; 
     dSqwrCum=scr1Dp1; 
     dSqwrAvg1=scr1D; 
     dSqwrAvg2=scr1D; 
      
     (* terms for r *) 
     wrCum=scr1Dp1; 
     wrSum1=scr1D; 
     wrSum2=scr1D; 
      
     If[iInit== 1,rwr=scr1D;rSqwr=scr1D; rCbwr=scr1D]; 
     rwrCum=scr1Dp1; 
     rwrAvg1=scr1D;  
     rwrAvg2=scr1D;  
      
     r=scr1D; 
     rSq=scr1D; 
     rSqwr=scr1D;  
     rSqwrCum=scr1Dp1; 
     rSqwrAvg1=scr1D;  
     rSqwrAvg2=scr1D; 
      
     rCb=scr1D; 
     rCbwr=scr1D;  
     rCbwrCum=scr1Dp1; 
     rCbwrAvg1=scr1D;  
     rCbwrAvg2=scr1D; 
      
     (*  add'l terms for s r *)  
     r1s1=scr1D; 
     r2s1=scr1D; 
     r1s2=scr1D; 
     r3s1=scr1D; 
     r2s2=scr1D; 
     r1s3=scr1D; 
      
     r1s1wr=scr1D; 
     r2s1wr=scr1D; 
     r1s2wr=scr1D; 
     r3s1wr=scr1D; 
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     r2s2wr=scr1D; 
     r1s3wr=scr1D; 
      
     (*r2s1wrSq=scr1D; 
     r3s1wrCb=scr1D; 
     r2s2wrSq=scr1D;*) 
     th=scr1D; 
      
     corrResults=Table[scr1D,{32}] 
     ]; (*end create arrays*) 
    
   
(**********************************************************
*********) 
   (*  CALCULATION STARTS HERE                                        
*) 
   
(**********************************************************
*********) 
    
   
(**********************************************************
********) 
   (* input raw data                                                 
*) 
   
(**********************************************************
********) 
   veff=v[[m;;n]]; 
   heff=h[[m;;n]]; 
   bveff=bv[[m;;n]]; 
   bheff=bh[[m;;n]]; 
    
   
(**********************************************************
****) 
   (*  get raw data avgs, var's ....                                 
*) 
   
(**********************************************************
****) 
   vAvg=Mean[veff]; 
   hAvg=Mean[heff]; 
   vVar=Variance[veff]; 
   hVar=Variance[heff]; 
   vhCov=Covariance[veff,heff]; 
   e2v=vVar;  (* var this v-trace *) 
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   e2h=hVar;  (* var this h-trace *) 
   e2vh=vhCov;  (* var this h-trace *) 
    
   
(*(********************************************************
******) 
   (*   and for g-corrected vc, hc                              
*) 
   
(**********************************************************
****) 
   gFact=(1+g^2); 
   vcAvg=vAvg*(1-g); 
   hcAvg=hAvg*(1+g);  (* cov this v,h-traces *) 
   e2vc=e2v*gFact;  (* var this v-trace *) 
   e2hc=e2h*gFact;  (* var this h-trace *) 
   e2vhc=e2vh*gFact; (* cov this v,h-traces *) 
   *) 
    
   
(**********************************************************
****) 
   (*  get baseline variances                                    
*) 
   
(**********************************************************
****) 
   (* nBkgs = number of baselines averaged *) 
   bvAvg=Mean[bveff]; 
   bhAvg=Mean[bheff]; 
   bvVar=Variance[bveff]; 
   bhVar=Variance[bheff]; 
   bvhCov=Covariance[bveff,bheff]; 
   e2bv  (*var 1 bkg trace*)=bvVar(*4 traces*)/nBkgs(*4*); 
   e2bh=bhVar/nBkgs;  (* var one h-bkg trace *) 
   e2bvh=bvhCov/nBkgs;  (* cov v,h-bkg traces *) 
    
   
(**********************************************************
****) 
   (* assume any slow BKG fluctuations 100% correlated v  h    
*) 
   (* scaled ABOVE for 4 (or other) bkg traces                
*) 
   
(**********************************************************
***) 
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   If[ iDot!=-1,(*if NOT a simulation*) 

    rf= ; (* ratio to simplify calcns below *) 
    gEstBkgs=(rf-1)/(rf+1);  (* g est'd from bkgs *) 
    n2bv=e2bv-rf*e2bvh; (* true var in raw v -  inten 
flucts taken out *)  
    n2bh=e2bh-e2bvh/rf; 
    n2bvc=(1-gEstBkgs)2 n2bv; (* true var in vc *) 
    n2bhc=(1+gEstBkgs)2 n2bh; 
    n2bsc=n2bvc+n2bhc; 
    n2bdc=n2bvc+n2bhc]; 
    
   
(**********************************************************
****) 
   (*  assume any slow DATA fluctuations 100% correlated v  
h   *) 
   
(**********************************************************
****) 
   If[ iDot!=-1,(*if NOT a simulation*) 

    rf= ; (* ratio to simplify calcns below *) 
    gEst=(rf-1)/(rf+1);  (* g est'd from bkgs *) 
    n2v=e2v-rf*e2vh; (* true var in raw v -  inten flucts 
taken out *)  
    n2h=e2h-e2vh/rf; 
    n2vc=(1-gEst)2 n2v; (* true var in vc *) 
    n2hc=(1+gEst)2 n2h; 
    n2sc=n2vc+n2hc; 
    n2dc=n2vc+n2hc]; 
    
   (*gbv=DataCorrelate[bv-bvAvg,bv-bvAvg]; 
   gbh=DataCorrelate[bh-bhAvg,bh-bhAvg]; 
   gbvbh=DataCorrelate[bv-bvAvg,bh-bhAvg];*) 
    
   
(**********************************************************
********) 
   (* calculate functions                                            
*) 
   (* generate subarrays from full input data as needed              
*) 
   (* COULD replace const 'cBkg' with vaying 'c' *) 
   
(**********************************************************
********) 
    

e2bv e2bh

e2v e2h
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   fillArrays=AbsoluteTiming[ 
     If [iDot!=-1, 
      cBkg=319.75;(*cBkg=c;*) 
      (*cBkg=f;*) 
      iv=(bveff-cBkg)/(bvAvg-cBkg); 
      ih=(bheff-cBkg)/(bhAvg-cBkg); 
      it=((bveff-cBkg)+(bheff-cBkg))/((bvAvg-cBkg)+(bhAvg-
cBkg))(*it should=iv,ih, so calc unbiased it*), 
      (*else*) 
      iv=Table[1,{nEff}]; 
      ih=Table[1,{nEff}]]; 
     vc=(1-g)(veff -bveff)/it-b ;  
     hc=(1+g)*(heff-bheff)/it-c; 
     s=vc+hc; 
     d=vc-hc; 
     vMin=Min[veff]; 
     hMin=Min[heff]; 
     (*Print["s,d calc'd"];*) 
      
     
(**********************************************************
*********) 
     (*  calculate autocorrelation of raw data                          
*) 
     
(**********************************************************
*********) 
     (*gvvInit=DataCorrelate[v,v]; 
     ghhInit=DataCorrelate[h,h]; 
     gssInit=DataCorrelate[s,s];*) 
     gddInit=DataCorrelate[d,d]; 
      
     
(**********************************************************
*********) 
     (* replace variance of raw data with g(0)-g(1)                     
*) 
     (* this is to estimate counting errors w/o true var in 
st)        *)  
     
(**********************************************************
*********) 
      
     (*e2vc=(1-g)^2extrap[gvvInit][[2]]; 
     e2hc=(1+g)^2extrap[ghhInit][[2]]; 
     e2vc=(1-g)^2Variance[bv]; 
     e2hc=(1+g)^2Variance[bh];*) 
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     (*e2s=Variance[s]; 
     e2d=Variance[d];*) 
     (*e2d=extrap[gddInit][[2]];*) 
     (*ws0=1/e2s; 
     wd0=1/e2d;*) 
      
     
(**********************************************************
*********) 
     (* calc variances of v,h,s,d INCLUDING blinking                   
*) 
     
(**********************************************************
*********) 
     e2vc=Variance[vc]; 
     e2hc=Variance[hc]; 
     e2vhc=Covariance[vc,hc]; 
     e2sc=Variance[s]; 
     e2dc=Variance[d]; 
      
     
(**********************************************************
******) 
     (* loop through data and generate s,d,r and calc wts            
*)  
     (* generates sSq,r,vr,wr,qr                                     
*) 
     
(**********************************************************
******) 
      
     threshLevel=If [ iThreshMode==0,  

       (*0=n2sc*)thresh* , 
       (*<>0=abs*)thresh]; 
     Do[ (*pts i*) 
      s0=s[[i]];  
      If [s0<threshLevel, nCorr=nCorr-1]; 
      d0=d[[i]]; 
      dSq[[i]]=d02; 
      r0=If[s0==0.0,0.0,d0/s0]; 
      r[[i]]=r0; 
       
      s20=s02; 
      s30=s20*s0; 
      sSq[[i]]=s20; 
      sCb[[i]]=s30; 
       

2 n2sc
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      r20=r02; 
      r30=r20*r0; 
      rSq[[i]]=r20; 
      rCb[[i]]=r20*r0; 
       
      vr0=(1+r02)/s20; (* must be mult'd by "e2vc" or "e2hc" 
*) 
      vr[[i]]=vr0; 

      wr0= ; (* var r0 inverse *) 
      If[iInit==1,  (* if first pass, generate wts. If not, 
carry over*) 
       wr[[i]]=wr0; 
       rwr[[i]]=r0*wr0; 
       swr[[i]]=s0*wr0; 
       dwr[[i]]=d0*wr0; 
       rSqwr[[i]]=r20*wr0; 
       rCbwr[[i]]=r30*wr0; 
        
       r1s1[[i]]=d0; 
       r2s1[[i]]=r20*s0; 
       r1s2[[1]]=r0*s20; 
       r3s1[[i]]=r30*s0; 
       r2s2[[i]]=r20*s20; 
       r1s3[[i]]=r0*s30; 
        
       r1s1wr[[i]]=d0*wr0;(*r1s1=d0;*) 
       r2s1wr[[i]]=r20*s0*wr0; 
       r1s2wr[[1]]=r0*s20*wr0; 
       r3s1wr[[i]]=r30*s0*wr0; 
       r2s2wr[[i]]=r20*s20*wr0; 
       r1s3wr[[i]]=r0*s30*wr0; 
       ]; 
      rMax=.04; 
      (*rMax=1;*) 
      th[[i]]=Re[(1/2)ArcSin[r0/rMax]] 
       
      ,{i,1,nEff} (* pts i *) 
      ]; 
      
     
(**********************************************************
*********) 
     (* generate sNew = 0.5*(s[[i-1]]+s[[i+1]])                         
*) 
     
(**********************************************************
*********) 

1 vr0
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     (*Do[ (*i=2,nEff-1*) 
     sNew[[i]]=0.5*(s[[i-1]]+s[[i+1]]), 
     {i,2,nEff-1} 
     ];*) 
      
     
(**********************************************************
******) 
     (* normalize weights if desired                                 
*)  
     
(**********************************************************
******) 
     wrFact=nEff/Total[wr]; 
     wrn=wr*wrFact; 
      
     
(**********************************************************
******) 
     (* calc r,s averages                                            
*)  
     
(**********************************************************
******) 
     sAvg=Total[s]/nEff; 
     dAvg= Total[d]/nEff; 
     dSqAvg=Total[dSq]/nEff; 
     dAvgWtd=Total[r1s1wr]/Total[wr]; 
     rwrAvg=Total[rwr]/Total[wr]; 
      
     
(**********************************************************
******) 
     (* loop through data and generate everything else               
*)  
     
(**********************************************************
******) 
      
     Do[ (*pts i*) 
      (* generate saved terms *) 
      (* SAVE QR ARRAYS----DON'T SAVE WR ARRAYS *) 
       
      ip1=i+1; 
      wr0=wr[[i]]; 
      wrCum[[ip1]]=wrCum[[i]]+wr0; 
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      If [iOrder>=2, 
       (* terms for ss *) 
       sCum[[ip1]]=sCum[[i]]+s[[i]]; 
       swrCum[[ip1]]=swrCum[[i]]+swr[[i]]; 
       sSqCum[[ip1]]=sSqCum[[i]]+sSq[[i]]; 
       sCbCum[[ip1]]=sCbCum[[i]]+sCb[[i]]; 
        
       dCum[[ip1]]=dCum[[i]]+d[[i]]; 
       dwrCum[[ip1]]=dwrCum[[i]]+dwr[[i]]; 
       dSqCum[[ip1]]=dSqCum[[i]]+dSq[[i]]; 
        
       rwrCum[[ip1]]=rwrCum[[i]]+rwr[[i]]; 
       rSqwrCum[[ip1]]=rSqwrCum[[i]]+rSqwr[[i]]; 
       rCbwrCum[[ip1]]=rCbwrCum[[i]]+rCbwr[[i]](*; 
        
       r1s1wrCum[[i]]=d[[i]]*wr0;(*r1s1=d0;*) 
       r2s1wrCum[[i]]=rSq[[i]]*s[[i]]*wr0; 
       r1s2wrCum[[1]]=r[[i]]*sSq[[i]]*wr0; 
       r3s1wrCum[[i]]=rCb[[i]]*s[[i]]*wr0; 
       r2s2wrCum[[i]]=rSq[[i]]*sSq[[i]]*wr0; 
       r1s3wrCum[[i]]=r0*s30*wr0*) 
       ] 
       ,{i,1,nEff} (* pts i *) 
      ] 
      
     ]; (* end fillArrays*) 
    
   
(**********************************************************
***) 
   (* here calc e2r                                             
*) 
   
(**********************************************************
***) 
   (*grrInit=DataCorrelate[rwr,rwr]; 
   rSqAvg=grrInit[[1]]/(wrCum[[nEff+1]]-wrCum[[1]]); 
   rAvg=(rwrCum[[nEff+1]]-rwrCum[[1]])/(wrCum[[nEff+1]]-
wrCum[[1]]); 
   *) 
    
   
(**********************************************************
***) 
   (* get most significant averages                             
*) 
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(**********************************************************
***) 
    
   
(**********************************************************
***) 
   (* get region averages                                       
*) 
   
(**********************************************************
***) 
   regionAvgs=AbsoluteTiming[ 
      
     Do[(*correlation time k-1 *) 
      iLimit=nEff-k+2; (*add 1 pt since cums start at 1*) 
      jLimit=nEff+1; 
      nRegionPts=nEff-k+1; 
       
      If[iOrder>=2, 
       wrSum1[[k]]=wrCum[[iLimit]]-wrCum[[1]]; 
       wrSum2[[k]]=wrCum[[jLimit]]-wrCum[[k]]; 
        
       sAvg1[[k]]=(sCum[[iLimit]]-sCum[[1]])/nRegionPts; 
       sAvg2[[k]]=(sCum[[jLimit]]-sCum[[k]])/nRegionPts; 
        
       swrAvg1[[k]]=(swrCum[[iLimit]]-
swrCum[[1]])/wrSum1[[k]]; 
       swrAvg2[[k]]=(swrCum[[jLimit]]-
swrCum[[k]])/wrSum2[[k]]; 
        
       sSqAvg1[[k]]=(sSqCum[[iLimit]]-
sSqCum[[1]])/nRegionPts; 
       sSqAvg2[[k]]=(sSqCum[[jLimit]]-
sSqCum[[k]])/nRegionPts; 
        
       dwrAvg1[[k]]=(dwrCum[[iLimit]]-
dwrCum[[1]])/wrSum1[[k]]; 
       dwrAvg2[[k]]=(dwrCum[[jLimit]]-
dwrCum[[k]])/wrSum2[[k]]; 
        
       dSqAvg1[[k]]=(dwrCum[[iLimit]]-
dwrCum[[1]])/wrSum1[[k]]; 
       dSqAvg2[[k]]=(dwrCum[[jLimit]]-
dwrCum[[k]])/wrSum2[[k]]; 
        
       (*dSqAvg1[[k]]=(dSqCum[[iLimit]]-
dSqCum[[1]])/nRegionPts; 
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       dSqAvg2[[k]]=(dSqCum[[jLimit]]-
dSqCum[[k]])/nRegionPts;*) 
        
       sCbAvg1[[k]]=(sCbCum[[iLimit]]-
sCbCum[[1]])/nRegionPts; 
       sCbAvg2[[k]]=(sCbCum[[jLimit]]-
sCbCum[[k]])/nRegionPts; 
        
       rwrAvg1[[k]]=(rwrCum[[iLimit]]-
rwrCum[[1]])/wrSum1[[k]]; 
       rwrAvg2[[k]]=(rwrCum[[jLimit]]-
rwrCum[[k]])/wrSum2[[k]]; 
        
       rSqwrAvg1[[k]]=(rSqwrCum[[iLimit]]-
rSqwrCum[[1]])/wrSum1[[k]]; 
       rSqwrAvg2[[k]]=(rSqwrCum[[jLimit]]-
rSqwrCum[[k]])/wrSum2[[k]]; 
        
       rCbwrAvg1[[k]]=(rCbwrCum[[iLimit]]-
rCbwrCum[[1]])/wrSum1[[k]]; 
       rCbwrAvg2[[k]]=(rCbwrCum[[jLimit]]-
rCbwrCum[[k]])/wrSum2[[k]] 
       ] 
      ,{k,1,nEff} (* was kMin*) 
      ]; 
      
     
(**********************************************************
***) 
     (* get overall averages                                      
*) 
     
(**********************************************************
***) 
     If[iOrder>=2, 
      sAvg=sAvg1[[1]]; 
      sSqAvg=sSqAvg1[[1]]; 
      sCbAvg=sCbAvg1[[1]]; 
       
      rwrAvg=rwrAvg1[[1]]; 
      rSqwrAvg=rSqwrAvg1[[1]]; 
      rCbwrAvg=rCbwrAvg1[[1]]; 
       
      ]; 
      
     e2rw=rSqwrAvg1[[1]]-rwrAvg1[[1]]2 
     ];(*end regionAvgs*) 
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(**********************************************************
***) 
   (* calc r1sAvg2                                              
*) 
   (* these correlations are now AVERAGES                       
*) 
   
(**********************************************************
***) 
   correlations=AbsoluteTiming[ 
      
     kList=Table[nEff-k+1,{k,1,nEff}]; 
     oneList=Table[1,{k,1,nEff}]; 
      
     (*ClearAll[gssFluct,grrFluct,gsrFluct,grsFluct];*) 
     If [iOrder>=2, 
      gww=ListCorrelate[wr,  wr,1,0]; 
       
      sDiff=s; 
      sDiffSq=sDiff2; 
       
      dDiff=d; 
      dDiffSq=dDiff2; 
       
      (*nRTerms=4; 
      ClearAll[x]; 
      rModel=Table[x^i, {i,0,nRTerms-1}]; 
      rBkgFunct= 
GeneralizedLinearModelFit[r[[1;;nEff]],rModel, x,Weights 
wr]; 

      rBkg=Table[rBkgFunct[i], {i,1,nEff}]; 
      rDiff=r-rBkg;*) 
      rDiff=r; 
      rDiffwr=rDiff*wr; 
      rDiffSqwr=rDiffwr*rDiff; 
       
      gss=ListCorrelate[swr,swr,1,0]/gww; 
      gssFluct=gss-swrAvg1[[1]]*swrAvg2[[1]]; 
      gssFluct12=gss-swrAvg1*swrAvg2; 
      gss1=ListCorrelate[(s-swrAvg1)*wr,(s-
swrAvg2)*wr,1,0]/gww; 
      gssn=ListCorrelate[s,s,1,0]/kList; 
      gsst=ListCorrelate[s,s,1,0]; 
       
      gdd=ListCorrelate[dwr,dwr,1,0]/gww; 
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      gddFluct=gdd-dwrAvg1[[1]]*dwrAvg2[[1]]; 
      gdFluct12=gdd-dwrAvg1*dwrAvg2; 
      gdd1=ListCorrelate[(d-dwrAvg1)*wr,(d-
dwrAvg2)*wr,1,0]/gww; 
      gddn=ListCorrelate[d,d,1,0]/kList; 
      gddt=ListCorrelate[d,d,1,0]; 
       
      grr=ListCorrelate[rwr,rwr,1,0]/gww; 
      grrFluct=grr-rwrAvg1[[1]]2; 
      grrFluct12=grr-rwrAvg1*rwrAvg2; 
      grr1=ListCorrelate[(r-rwrAvg1)*wr,(r-
rwrAvg2)*wr,1,0]/gww; 
      grrt=ListCorrelate[(r-rwrAvg1)*wr,(r-
rwrAvg2)*wr,1,0]*kList/gww; 
       
      gsr=ListCorrelate[swr,rwr,1,0]/gww; 
      gsrFluct12=gsr-swrAvg1*rwrAvg2; 
      gsrFluct     =gsr-swrAvg1[[1]]*rwrAvg2[[1]]; 
      gsr1=ListCorrelate[(s-swrAvg1)*wr,(r-
rwrAvg2)*wr,1,0]/gww; 
       
      grs=ListCorrelate[rwr,swr,1,0]/gww; 
      grsFluct12=grs-rwrAvg1*swrAvg2; 
      grsFluct    =grs-rwrAvg1[[1]]*swrAvg2[[1]]; 
      grs1=ListCorrelate[(r-rwrAvg1)*wr,(s-
swrAvg2)*wr,1,0]/gww; 
       
      gthth=ListCorrelate[th,th,1,0]; 
      gth1=ListCorrelate[th^2,oneList,1,0]; 
      gth2=ListCorrelate[oneList,th^2,1,0] 
      ] 
     ];(*end correlations*) 
    
   msd=(gth1+gth2-2*gthth)/kList; 
    
   (************* prob the neg pts are really zero 
****************) 
   (* assume true val of -'ve pt actually zero *) 
   (* hc using implied g-factor *) 
   mlpNegVSum=Sum[If [vc[[i]]<0,0*(1/2)Log[2 π]+(1/2)Log[ 
n2vc]+vc[[i]]2/(2 n2vc),0],{i,1,nEff}]; (* only neg pts are 
suspect *) 
   mlpNegHSum=Sum[If [hc[[i]]<0,0*(1/2)Log[2 π ]+(1/2)Log[ 
n2hc]+hc[[i]]2/(2 n2hc),0],{i,1,nEff}]; 
   mlpNeg=mlpNegVSum+mlpNegHSum;  (* vc,hc must both be 
non-neg *) 
    



253 
 

   (********** prob that DAvg really zero *********) 
   (* since 4>>1 bkg traces, ignore bkg variance *) 

   dAvgErr= ; 
   mlpDAvg=0*(1/2)Log[2 π]+1/2 (dAvg /dAvgErr)2;  (* d=(vc-
bvc)-(hc-bhc) OK!!!! *) 
    
   (********** prob that DIntercept really zero *********) 
   sumy=Total[d];sumyy=Total[dSq];sumxy=Total[d*s]; 
   sumx=Total[s];sumxx=Total[sSq]; 
   denom=nEff*sumxx-sumx2; 
   intercept2P=(sumy*sumxx-sumxy*sumx)/denom; 
   slope2P=(nEff*sumxy-sumx*sumy)/denom; 
   var2P=(sumyy-intercept2P*sumy-slope2P*sumxy)/nEff; 

   interceptErr2P= ; 
   mlpDInt=0*(1/2)Log[2 π ]+1/2 (intercept2P 
/interceptErr2P)2;   
    
   (********** prob that DSlope2P really zero *********) 

   slopeErr2P= ; 
   mlpDSlope2P=0*(1/2)Log[2 π ]+1/2 (slope2P /slopeErr2P)2;   
    
   (********** prob that DSlope1P really zero *********) 
   slope1P=sumxy/sumxx; 
   var1P=(sumyy-slope1P*sumxy)/nEff; 

   slopeErr1P= ; 
   mlpDSlope1P=0*(1/2)Log[2 π ]+1/2 (slope1P /slopeErr1P)2;   
    
   (********** prob that DFit really zero *********) 
   slope1P=sumxy/sumxx; 
   var1P=(sumyy-slope1P*sumxy)/nEff; 

   tFit=(dAvg-slope1P*sAvg)/ ; 
   mlpFit=0*(1/2)Log[2 π ]+1/2 tFit2;  (* d=(vc-bvc)-(hc-
bhc) OK!!!! *) 
    
   (********** prob that s,d uncorrelated *********) 
   rho=Correlation[s,d]; 
   mlpDCorr=0*(1/2)Log[2 π ]+1/2 rho2 /(1-rho2) nEff;   
    
   mlpTot=mlpNeg; 
   mlpTot=mlpTot+mlpDCorr; 
   mlpTot=mlpTot+mlpDAvg; 
   mlpTot=mlpTot+mlpDInt; 
   mlpTot=mlpTot+mlpDSlope2P; 
   mlpTot=mlpTot+mlpDSlope1P; 

Variance d nEff

var2P sumxx denom

var2P nEff denom

var1P nEff denom

var1P nEff
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   mlpTot=mlpTot+ mlpFit; 
   Return[mlpTot] 
   ); 
(**********************************************************
***)  
(* end of "depend" code                                      
*) 
(**********************************************************
***)  
 
(*v,h,iWt,iFirst,iLast,kFirst,kLast,nBkgs, 
g,c,b,f,aIn, 
iThreshMode,Thresh,iInit,iOrder*) 
 
depend[v,h,0,1,1000,0,0,4,0.40,0.,0.,0.,0.,0,3.,1,2]// 
AbsoluteTiming 
 inFileName= 1000 

 { , , } 
 {0.091002,13.5331} 
  
(**********************************************************
***)  
(* process varying numbers of pts                            
*) 
(**********************************************************
***)  
(*  
v,h,iWt,iFirst,iLast,kFirst,kLast,nBkgs,g,c,b,f,aIn,iThresh
Mode,Thresh,iInit,iOrder 
*) 
 depend[v,h,0,1,100,1,0,4,-
0.40,0.0,0.0,0.0,0.0,0,3.0,1,2]// AbsoluteTiming 
 {0.,depend[v,h,0,1,100,1,0,4,-0.4,0.,0.,0.,0.,0,3.,1,2]} 
 {0.078000,10358.3} 
 depend[v,h,0,1,1000,0,0,4,-
0.40,0.0,0.0,0.0,0.0,0,3.0,1,2]// AbsoluteTiming 
 {0.265201,1699.86} 
 
depend[v,h,0,1,1000,0,0,4,+0.40,0.0,0.0,0.0,0.0,0,3.0,1,2]/
/AbsoluteTiming 
 {0.249601,18778.9} 
 depend[v,h,0,1,10000,0,0,4,-
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0.40,0.0,0.0,0.0,0.0,0,3.0,1,2]// AbsoluteTiming 
 {2.496004,549.423} 
 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
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(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
 
  
(**********************************************************
**********) 
(* process one dot completely                                       
*) 
(**********************************************************
**********) 
optimize[] 
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showOptResults[] 
fitAnisDecay[] 
fitIntenDecay[] 
saveResults[] 
savePlots[] 
 pInit= 271.514   g0= 0.3   c0= 0.   b0= 0.   f0= 0. 
 iPass= 1910   
 pMin= 3.61439*10-7  gMin= 0.389915  cMin= -2.5127  bMin= -
2.45579  fMin= 0. 
 Optimization NOT completed! 
 iPass=1910  
neg=0 DAvg=2.98805e-7 DInt=1.83856e-8 DSlo2P=3.56529e-9 
DSlo1P=3.48633e-8 fit=2.25472e-9 DCorr=3.56529e-9  
p=3.61439e-7 g=0.389915 c=-2.5127 b=-2.45579 f=0 

 { , } 
  

  { , } 
 pOpt= 3.61439*10-7   gNew= 0.389915   cNew= -2.5127   bNew= 
-2.45579   fNew= 0. 

 { , , ,

} 
  
  FIT RESULTS 
 params= {g0$328236->0.00249034,g∞$328236-
>0.000251663,gTau$328236->2.40416} 
 errs= {2.85593*10-6,6.44024*10-8,0.00353535} 
 estdSD= 0.000895542 
 nlm[0]= 0.00249034 
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  FIT RESULTS 
 params= {g0$331394->0.0025177,g∞$331394-
>0.000312165,gTau$331394->2.2368} 
 errs= {2.60529*10-6,6.32661*10-8,0.00299363} 
 estdSD= 0.000757096 
 nlm[0]= 0.0025177 
  
  FIT RESULTS 
 params= {g0$332931->0.00252162,g∞$332931-
>0.000325196,gTau$332931->2.20465} 
 errs= {2.52635*10-6,8.8048*10-8,0.00287654} 
 estdSD= 0.000721435 
 nlm[0]= 0.00252162 
  
  FIT RESULTS 
 params= {g0$334168->0.00252948,g∞$334168-
>0.000362315,gTau$334168->2.11908} 
 errs= {2.57147*10-6,1.20166*10-7,0.00284529} 
 estdSD= 0.000700752 
 nlm[0]= 0.00252948 

 { , , ,

} 
  
  FIT RESULTS 
 params= {g0$335309->194.526,g∞$335309-
>2.51739,gTau$335309->3.2067} 
 errs= {0.0390577,0.00115967,0.00079947} 
 estdSD= 16.0735 
 nlm[0]= 194.526 
  
  FIT RESULTS 
 params= {g0$338466->194.789,g∞$338466-
>2.59879,gTau$338466->3.19736} 
 errs= {0.0309347,0.00106616,0.000631573} 
 estdSD= 12.6917 
 nlm[0]= 194.789 
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  FIT RESULTS 
 params= {g0$340003->198.869,g∞$340003-
>3.91519,gTau$340003->3.0558} 
 errs= {0.0291364,0.00141269,0.000559861} 
 estdSD= 11.4601 
 nlm[0]= 198.869 
  
  FIT RESULTS 
 params= {g0$341240->199.421,g∞$341240-
>4.10101,gTau$341240->3.03714} 
 errs= {0.0242828,0.00165739,0.000468706} 
 estdSD= 9.45952 
 nlm[0]= 199.421 

 { , , ,

} 
 2015-01-31-IgE-1-LRB-d09-results-20161108-151849.csv 
 2015-01-31-IgE-1-LRB-d09-plots-20161108-151849.pdf 
 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
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(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
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(**********************************************************
*********) 
(* maximize prob wrt g,b,c                                        
*) 
(**********************************************************
*********) 
ClearAll[optimize ]; 
optimize[]:=( 
   (* ClearAll[g,c,b];*) 
   ClearAll[g0,c0,b0,r,s,d]; 
    
   g0=.30;c0=0.0;b0=0.0;f0=0.0; 
   (*g0=-.35 (*was-.4*);c0=320.0;b0=50.0;f0=1.0;*) 
   
iWt=0;iFirst=1;iLast=1000;kFirst=0;kLast=0;nBkgs=4;alpha=0.
0;iThreshMode=0;thresh=0.; 
   iOrderSave=4; 
    
   progressFileName=base<>"-"<>"progress"<>"-
"<>DateString[]<>".csv"; 
   (*If [FileExistsQ[progressFileName], 
   Close[progressFileName]; 
   DeleteFile[progressFileName]]; 
   prog=OpenWrite[progressFileName]; *) 
    
   pInit=depend[v,h,iWt,iFirst,iLast,kFirst,kLast,nBkgs,g0, 
c0, b0,f0,alpha,iThreshMode,thresh,1,iOrderSave]; 
    Print["pInit=",pInit,"  g0=",g0,"  c0=",c0, "  b0=", 
b0,"  f0=", f0]; 
    
   pMin=pInit; 
   iPass=0; 
   q={0,{{0,0},{0,0},{0,0},{0,0}}}; 
   Off[StringJoin::string]; 
   q=Monitor[ 
     
FindMinimum[{depend[v,h,iWt,iFirst,iLast,kFirst,kLast,nBkgs
,g,c,b,f,alpha,iThreshMode,thresh,1,0],(*b≥ 0&&c≥ 0&&*) -
1<g<1(*&& -1<f<1*)},{{g,g0},{b,b0},{c,c0}(*,{f,f0}*)}, 
      EvaluationMonitor:>   
       ( 
        p=mlpTot; 
        iPass=iPass+1; 
        (*WriteString[prog, 
gF[iPass],",",gF[p],",",gF[mlpNeg],",",gF[mlpBkgs],",",gF[m
lpRAvg],",",gF[mlpDAvg],",",gF[mlpRhoSR],",",gF[mlpRhoRS],"
,"gF[mlpRhoSSR],",",gF[mlpRhoSRR],",",gF[g],",",gF[c],",",g



262 
 

F[b],"\n"];*) 
        If[p<pMin, 
         gMin=g;cMin=c;bMin=b;pMin=p;fMin=f]; 
        
q[[2]][[1]][[2]]=g;q[[2]][[2]][[2]]=c;q[[2]][[3]][[2]]=b;q[
[2]][[4]][[2]]=f; 
        If 
[CurrentValue["ControlKey"]==True,Goto[continue]] 
        ),(* end EvalMon*) 
      PrecisionGoal->Automatic, 
      AccuracyGoal -> Automatic, 
      MaxIterations->10000(*Infinity*), 
      WorkingPrecision->MachinePrecision, 
      Method->Automatic 
      ], (* end FindMin*) 
     "iPass="<>ToString[gF[iPass]] 
      <>" \np="<>ToString[gF[p]] 
      <>" neg="<> ToString[gF[mlpNeg]] 
      <>" DAvg="<> ToString[gF[mlpDAvg]] 
      <>" DInt2P="<> ToString[gF[mlpDInt]] 
      <>" DSlo2P="<> ToString[gF[mlpDSlope2P]] 
      <>" DSlo1P="<> ToString[gF[mlpDSlope1P]] 
      <> " fit="<>ToString[gF[mlpFit]] 
      <> " DCorr="<>ToString[gF[mlpDCorr]] 
      <>" \ng="<>ToString[gF[g]] 
      <>" c="<>ToString[gF[c]] 
      <> " b="<>ToString[gF[b]] 
      <> " f="<>ToString[gF[f]] 
     ]; (*end Monitor*) 
    
   Label[continue ]; 
   Print["iPass=",iPass," \npMin=",pMin," gMin=",gMin," 
cMin=", cMin, " bMin=",bMin, " fMin=",fMin]; 
   If[q[[1]]==0 , 
    Print["Optimization NOT completed!"]; 
    
q[[2]][[1]][[2]]=gMin;q[[2]][[2]][[2]]=cMin;q[[2]][[3]][[2]
]=bMin;q[[2]][[4]][[2]]=fMin, 
    (*otherwise*) 
    Print["Optimization successful!"] 
    ]; 
   (*Close[prog];*) 
   
p=depend[v,h,iWt,iFirst,iLast,kFirst,kLast,nBkgs,gMin,cMin,
bMin,fMin,alpha,iThreshMode,thresh,1,2]; 
   Print["iPass="<>ToString[gF[iPass]] 
     <>" \nneg="<> ToString[gF[mlpNeg]] 
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     <>" DAvg="<> ToString[gF[mlpDAvg]] 
     <>" DInt="<> ToString[gF[mlpDInt]] 
     <>" DSlo2P="<> ToString[gF[mlpDSlope2P]] 
     <>" DSlo1P="<> ToString[gF[mlpDSlope1P]] 
     <> " fit="<>ToString[gF[mlpFit]] 
     <> " DCorr="<>ToString[gF[mlpDCorr]] 
     <>" \np="<>ToString[gF[p]] 
     <>" g="<>ToString[gF[gMin]] 
     <>" c="<>ToString[gF[cMin]] 
     <> " b="<>ToString[gF[bMin]] 
     <> " f="<>ToString[gF[fMin]]]; 
   Print[optPlot={vchcPlot=ListPlot[{vc,hc},PlotLabel->"vc 
hc"],vchcDiffPlot=ListPlot[{vc-hc},PlotLabel->"vc-hc"]}]; 
   Print ["\n",srPlot={sPlot=ListPlot[{s},PlotLabel-
>"s"],rPlot=ListPlot[{r},PlotLabel->"r"]}] 
   ); 
optimize[]; 
 
 
 pInit= 833.806   g0= 0.3   c0= 0.   b0= 0.   f0= 0. 
 iPass= 833   
 pMin= 830.496  gMin= 0.3  cMin= -0.00839591  bMin= 
5.25733*10-9  fMin= 0. 
 Optimization NOT completed! 
 iPass=833  
neg=244.842 DAvg=99.4498 DInt=0.250408 DSlo2P=164.877 
DSlo1P=156.068 fit=0.131583 DCorr=164.877  
p=830.496 g=0.3 c=-0.00839591 b=5.25733e-9 f=0 

 { , } 
  

  { , } 
 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 

200 400 600 800 1000
5

5

10

15

20

vc hc

200 400 600 800 1000
5

5

10

15

vc hc

200 400 600 800 1000

10

20

30

40

50

s

200 400 600 800 1000

1.5
1.0
0.5

0.5
1.0
1.5
2.0

r



264 
 

(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********)(***********************************************
*********************) 
  
(**********************************************************
**********) 
(* show gbc-optimization results                                    
*) 
(**********************************************************
**********) 
ClearAll[showOptResults]; 
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showOptResults[]:= ( 
   (*gNew=q[[2]][[1]][[2]]; 
   cNew=q[[2]][[2]][[2]]; 
   bNew=q[[2]][[3]][[2]]; 
   fNew=q[[2]][[4]][[2]];*) 
   gNew=gMin; 
   cNew=cMin; 
   bNew=bMin; 
   fNew=fMin; 
   (*fNew=f0;*) 
   (*gNew, cNew, bNew*) 
   
Print["pOpt=",(*pOpt=*)depend[v,h,iWt,iFirst,iLast,kFirst,k
Last,nBkgs,gNew,cNew,bNew,fNew,0.,iThreshMode, 
thresh,iInit, iOrder],"  gNew=",gNew,"  cNew=",cNew,"  
bNew=", bNew,"  fNew=",fNew] 
     
    SetOptions[{Plot,ListPlot},ImageSize->{144,108}]; 
   ListPlot[{vc,hc},PlotRange-
>Automatic(*{0,100}*),PlotLabel->"vc,hc"]; 
    
   
gsrPlots={gsrFullPlot=ListPlot[{gsrFluct,gsrFluct12},PlotLa
bel->"gsrFluctFull"], 
     
gsr500Plot=ListPlot[{gsrFluct[[;;500]],gsrFluct12[[;;500]]}
,PlotLabel->"gsrFluct500"], 
     
gsr200Plot=ListPlot[{gsrFluct[[;;200]],gsrFluct12[[;;200]]}
,PlotLabel->"gsrFluct200"], 
     
gsr100Plot=ListPlot[{gsrFluct[[;;100]],gsrFluct12[[;;100]]}
,PlotLabel->"gsrFluct100"]}; 
    
   
grsPlots={grsFullPlot=ListPlot[{grsFluct,grsFluct12},PlotLa
bel->"grsFluctFull"], 
     
grs500Plot=ListPlot[{grsFluct[[;;500]],grsFluct12[[;;500]]}
,PlotLabel->"grsFluct500"], 
     
grs200Plot=ListPlot[{grsFluct[[;;200]],grsFluct12[[;;200]]}
,PlotLabel->"grsFluct200"], 
     
grs100Plot=ListPlot[{grsFluct[[;;100]],grsFluct12[[;;100]]}
,PlotLabel->"grsFluct100"]}; 
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gssPlots={gssFullPlot=ListPlot[{gssFluct,gssFluct12},PlotLa
bel->"gssFluctFull"], 
     
gss500Plot=ListPlot[{gssFluct[[;;500]],gssFluct12[[;;500]]}
,PlotLabel->"gssFluct500"], 
     
gss200Plot=ListPlot[{gssFluct[[;;200]],gssFluct12[[;;200]]}
,PlotLabel->"gssFluct200"], 
     
gss100Plot=ListPlot[{gssFluct[[;;100]],gssFluct12[[;;100]]}
,PlotLabel->"gssFluct100"]}; 
    
   
grrPlots={grrFullPlot=ListPlot[{grrFluct,grrFluct12},PlotLa
bel->"grrFluctFull"], 
     
grr500Plot=ListPlot[{grrFluct[[;;500]],grrFluct12[[;;500]]}
,PlotLabel->"grrFluct500"], 
     
grr200Plot=ListPlot[{grrFluct[[;;200]],grrFluct12[[;;200]]}
,PlotLabel->"grrFluct200"], 
     
grr100Plot=ListPlot[{grrFluct[[;;100]],grrFluct12[[;;100]]}
,PlotLabel->"grrFluct100"]}); 
showOptResults[] 
 
 pOpt= 830.496   gNew= 0.3   cNew= -0.00839591   bNew= 
5.25733*10-9   fNew= 0. 

 { , , ,

} 
  
(**********************************************************
*********) 
(*ANIS:  fit anis decays of various ranges                         
*) 
(**********************************************************
*********) 
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ClearAll[fitAnisDecay]; 
fitAnisDecay[]:= ( 
   grFitData=grrFluct12; 
   grFitDataName="grrFluct"; 
   ClearAll[grFitPlots,grFitPlotFull,grFitPlot500, 
grFitPlot200, grFitPlot100]; 
    
   grFitFull=fitExpDecay[grFitData, 
grFitDataName,gww,nEff,2,Length[grFitData]-1,"grFitFull"] 
     grkFirstFull=2;grkLastFull=Length[grFitData]; 
   
grSDFull=gSD;grInfFull=gInf;grZeroFull=gZero;grTdFull=gTd; 
   
grInfErrFull=gInfErr;grZeroErrFull=gZeroErr;grTdErrFull=gTd
Err; 
   grFluctCalcFull=fluctCalc;grFitPlotFull=fitPlot; 
    
   grFit500=fitExpDecay[grFitData, 
grFitDataName,gww,nEff,2,500,"grFit500"] 
     grkFirst500=2;grkLast500=500; 
   grSD500=gSD;grInf500=gInf;grZero500=gZero;grTd500=gTd; 
   
grInfErr500=gInfErr;grZeroErr500=gZeroErr;grTdErr500=gTdErr
; 
   grFluctCalc500=fluctCalc;grFitPlot500=fitPlot; 
    
   grFit200=fitExpDecay[grFitData, 
grFitDataName,gww,nEff,2,200,"grFit200"] 
     grkFirst200=2;grkLast200=200; 
   grSD200=gSD;grInf200=gInf;grZero200=gZero;grTd200=gTd; 
   
grInfErr200=gInfErr;grZeroErr200=gZeroErr;grTdErr200=gTdErr
; 
   grFluctCalc200=fluctCalc;grFitPlot200=fitPlot; 
    
   grFit100=fitExpDecay[grFitData, 
grFitDataName,gww,nEff,2,100,"grFit100"] 
     grkFirst100=2;grkLast100=100; 
   grSD100=gSD;grInf100=gInf;grZero100=gZero;grTd100=gTd; 
   
grInfErr100=gInfErr;grZeroErr100=gZeroErr;grTdErr100=gTdErr
; 
   grFluctCalc100=fluctCalc;(grFitPlot100=fitPlot); 
    
   Print[grFitPlots={grFitPlotFull,grFitPlot500, 
grFitPlot200, grFitPlot100}]); 
fitAnisDecay[] 
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  FIT RESULTS 
 params= {g0$17385->0.00431244,g∞$17385->-
0.0048433,gTau$17385->279.502} 
 errs= {1.96231*10-6,3.39432*10-6,0.25542} 
 estdSD= 0.00404109 
 nlm[0]= 0.00431244 
  
  FIT RESULTS 
 params= {g0$20551->0.00634675,g∞$20551->-
0.00129116,gTau$20551->74.4138} 
 errs= {2.44084*10-6,9.53381*10-7,0.0474367} 
 estdSD= 0.00318781 
 nlm[0]= 0.00634675 
 NonlinearModelFit::sszero: The step size in the search has 
become less than the tolerance prescribed by the 
PrecisionGoal option, but the gradient is larger than the 
tolerance specified by the AccuracyGoal option. There is a 
possibility that the method has stalled at a point that is 
not a local minimum. >> 
  
  FIT RESULTS 
 params= {g0$22088->0.00524667,g∞$22088->-
176337.,gTau$22088->4.29153*109} 
 errs= {1.33572*10-6,52.1321,0.00214208} 
 estdSD= 0.00289532 
 nlm[0]= 0.00524667 
  
  FIT RESULTS 
 params= {g0$23813->0.0127492,g∞$23813-
>0.00285702,gTau$23813->4.5406} 
 errs= {7.07547*10-6,7.84871*10-7,0.00459721} 
 estdSD= 0.00214637 
 nlm[0]= 0.0127492 

 { , , ,

} 
  
(**********************************************************
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*********) 
(*INTEN:  fit single exponential decay                             
*) 
(**********************************************************
*********) 
 
ClearAll[fitIntenDecay]; 
fitIntenDecay[]:=( 
   gsFitData=gssFluct12; 
   gsFitDataName="gssFluct"; 
    
   gsFitFull=fitExpDecay[gsFitData, 
gsFitDataName,gww,nEff,2,nEff,"gsFitFull"] 
     gskFirstFull=2;gskLastFull=999; 
   
gsSDFull=gSD;gsInfFull=gInf;gsZeroFull=gZero;gsTdFull=gTd; 
   
gsInfErrFull=gInfErr;gsZeroErrFull=gZeroErr;gsTdErrFull=gTd
Err; 
   gsFluctCalcFull=fluctCalc;gsFitPlotFull=fitPlot; 
    
   gsFit500=fitExpDecay[gsFitData, 
gsFitDataName,gww,nEff,2,500,"gsFit500"] 
     gskFirst500=2;gskLast500=500; 
   gsSD500=gSD;gsInf500=gInf;gsZero500=gZero;gsTd500=gTd; 
   
gsInfErr500=gInfErr;gsZeroErr500=gZeroErr;gsTdErr500=gTdErr
; 
   gsFluctCalc500=fluctCalc;gsFitPlot500=fitPlot; 
    
   gsFit200=fitExpDecay[gsFitData, 
gsFitDataName,gww,nEff,2,200,"gsFit200"] 
     gskFirst200=2;gskLast200=200; 
   gsSD200=gSD;gsInf200=gInf;gsZero200=gZero;gsTd200=gTd; 
   
gsInfErr200=gInfErr;gsZeroErr200=gZeroErr;gsTdErr200=gTdErr
; 
   gsFluctCalc200=fluctCalc;gsFitPlot200=fitPlot; 
    
   gsFit100=fitExpDecay[gsFitData, 
gsFitDataName,gww,nEff,2,100,"gsFit100"] 
     gskFirst100=2;gskLast100=100; 
   gsSD100=gSD;gsInf100=gInf;gsZero100=gZero;gsTd100=gTd; 
   
gsInfErr100=gInfErr;gsZeroErr100=gZeroErr;gsTdErr100=gTdErr
; 
   gsFluctCalc100=fluctCalc;(gsFitPlot100=fitPlot); 
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   Print[gsFitPlots={gsFitPlotFull,gsFitPlot500, 
gsFitPlot200, gsFitPlot100}]); 
fitIntenDecay[]; 
  
  FIT RESULTS 
 params= {g0$24960->147.946,g∞$24960->-68.1992,gTau$24960-
>133.181} 
 errs= {0.0382019,0.0223134,0.0551765} 
 estdSD= 63.2721 
 nlm[0]= 147.946 
  
  FIT RESULTS 
 params= {g0$28117->158.759,g∞$28117->-49.8709,gTau$28117-
>101.779} 
 errs= {0.0441285,0.0250898,0.0503983} 
 estdSD= 64.4431 
 nlm[0]= 158.759 
  
  FIT RESULTS 
 params= {g0$29654->346.354,g∞$29654->28.646,gTau$29654-
>9.58794} 
 errs= {0.134011,0.0179001,0.0061978} 
 estdSD= 65.5688 
 nlm[0]= 346.354 
  
  FIT RESULTS 
 params= {g0$30896->398.764,g∞$30896->76.7332,gTau$30896-
>5.27963} 
 errs= {0.129896,0.0163102,0.00310049} 
 estdSD= 43.7703 
 nlm[0]= 398.764 

 { , , ,

} 
  
(**********************************************************
*******) 
(* save results as CSV                                           
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*) 
(**********************************************************
*******) 
 
ClearAll[saveResults]; 
saveResults[]:=( 
   resultsFileName=base<>"-"<>"results"<>"-
"<>timeStampString<>".csv"; 
    
   If [FileExistsQ[resultsFileName] , 
    Close[resultsFileName]; 
    DeleteFile[resultsFileName] 
    ]; 
   res=OpenWrite[resultsFileName];  
   nameCol=1; 
   valCol=2; 
   ClearAll[rA]; (* rA= "Results Array"  *) 
   rA=Prepend[Table["",{i,nEff}],"param"]; 
   (*Print["Len=",Length[rA]]*) 
   rA=appendCol[rA,Prepend[Table["",{i,nEff}],"value"]]; 
   rA=appendCol[rA,Prepend[Table[i,{i,nEff}],"iPt"]]; 
   rA=appendCol[rA,Prepend[veff, "veff"]]; 
   rA=appendCol[rA,Prepend[heff, "heff"]] ; 
   rA=appendCol[rA,Prepend[bveff, "bveff"]] ; 
   rA=appendCol[rA,Prepend[bheff, "bheff"]] ; 
   rA=appendCol[rA,Prepend[vc, "vc"]] ; 
   rA=appendCol[rA,Prepend[hc, "hc"]] ; 
   rA=appendCol[rA,Prepend[s, "s"]] ; 
   rA=appendCol[rA,Prepend[d, "d"] ]; 
   rA=appendCol[rA,Prepend[r, "r"]] ; 
   rA=appendCol[rA,Prepend[wr, "wr"]] ; 
   rA=appendCol[rA,Prepend[gssFluct, "gssFluct"]] ; 
   rA=appendCol[rA,Prepend[gssFluct12, 
"gssFluct12"]];rA=appendCol[rA,Prepend[gsrFluct, 
"gsrFluct"]] ; 
   rA=appendCol[rA,Prepend[gsrFluct12, "gsrFluct12"]]; 
   rA=appendCol[rA,Prepend[grsFluct, "grsFluct"]] ; 
   rA=appendCol[rA,Prepend[grsFluct12, "grsFluct12"]]; 
   rA=appendCol[rA,Prepend[grrFluct, "grrFluct"]] ; 
   rA=appendCol[rA,Prepend[grrFluct12, "grrFluct12"]]; 
   rA=appendCol[rA,Prepend[gww, "gww"]] ; 
   rA=appendCol[rA,Prepend[grFluctCalcFull, 
"grFluctCalcFull"]] ; 
   rA=appendCol[rA,Prepend[grFluctCalc500, 
"grFluctCalc500"]] ; 
   rA=appendCol[rA,Prepend[grFluctCalc200, 
"grFluctCalc200"]] ; 
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   rA=appendCol[rA,Prepend[grFluctCalc100, 
"grFluctCalc100"]] ; 
   (*rA=appendCol[rA,Prepend[wTable, "grrFluctWts"]] ;*) 
   (*rA//MatrixForm*) 
    
   (*rA=addParam[rA,nameCol,valCol,"var1",1111]; 
   rA=addParam[rA,nameCol,valCol,"var2",2222];*) 
   rA=addParam[rA,nameCol,valCol,"nb",NotebookFileName[]]; 
   rA=addParam[rA,nameCol,valCol,"inFileName",inFileName]; 
   rA=addParam[rA,nameCol,valCol,"iDot",iDot]; 
    
   rA=addParam[rA,nameCol,valCol,"nEff",nEff]; 
   rA=addParam[rA,nameCol,valCol,"cBkg",cBkg]; 
   rA=addParam[rA,nameCol,valCol,"thMode",iThreshMode]; 
   rA=addParam[rA,nameCol,valCol,"thLev",threshLevel]; 
   rA=addParam[rA,nameCol,valCol,"nCorr",nCorr]; 
   rA=addParam[rA,nameCol,valCol,"n2v",n2v]; 
   rA=addParam[rA,nameCol,valCol,"n2h",n2h]; 
   rA=addParam[rA,nameCol,valCol,"n2vc",n2vc]; 
   rA=addParam[rA,nameCol,valCol,"n2sc",n2sc]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
    
   (*rA=addParam[rA,nameCol,valCol,"iOrder",iOrder];*) 
   rA=addParam[rA,nameCol,valCol,"kMin",kMin]; 
   rA=addParam[rA,nameCol,valCol,"kMax",kMax]; 
    
   rA=addParam[rA,nameCol,valCol,"mlpNeg",mlpNeg]; 
   rA=addParam[rA,nameCol,valCol,"mlpDAvg",mlpDAvg]; 
   rA=addParam[rA,nameCol,valCol,"mlpDInt",mlpDInt]; 
   
rA=addParam[rA,nameCol,valCol,"mlpDSlope2P",mlpDSlope2P]; 
   
rA=addParam[rA,nameCol,valCol,"mlpDSlope1P",mlpDSlope1P]; 
   rA=addParam[rA,nameCol,valCol,"mlpFit",mlpFit]; 
    
   rA=addParam[rA,nameCol,valCol,"iPass",iPass]; 
   rA=addParam[rA,nameCol,valCol,"pMin",pMin]; 
   rA=addParam[rA,nameCol,valCol,"gMin",gMin]; 
   rA=addParam[rA,nameCol,valCol,"cMin",cMin]; 
   rA=addParam[rA,nameCol,valCol,"bMin",bMin]; 
   rA=addParam[rA,nameCol,valCol,"fMin",fMin]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"rFitData",grFitDataName]; 
   
rA=addParam[rA,nameCol,valCol,"krFirstFull",grkFirstFull];r
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A=addParam[rA,nameCol,valCol,"krLastFull",grkLastFull]; 
   rA=addParam[rA,nameCol,valCol,"grSDFull",grSDFull]; 
   
rA=addParam[rA,nameCol,valCol,"grZeroFull",grZeroFull];rA=a
ddParam[rA,nameCol,valCol,"grZeroErrFull",grZeroErrFull]; 
   rA=addParam[rA,nameCol,valCol,"grInfFull",grInfFull]; 
   
rA=addParam[rA,nameCol,valCol,"grInfErrFull",grInfErrFull]; 
   rA=addParam[rA,nameCol,valCol,"grTdFull",grTdFull]; 
   
rA=addParam[rA,nameCol,valCol,"grTdErrFull",grTdErrFull]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"rFitData",grFitDataName]; 
   
rA=addParam[rA,nameCol,valCol,"krFirst500",grkFirst500];rA=
addParam[rA,nameCol,valCol,"krLast500",grkLast500]; 
   rA=addParam[rA,nameCol,valCol,"grSD500",grSD500]; 
   
rA=addParam[rA,nameCol,valCol,"grZero500",grZero500];rA=add
Param[rA,nameCol,valCol,"grZeroErr500",grZeroErr500];rA=add
Param[rA,nameCol,valCol,"grInf500",grInf500]; 
   
rA=addParam[rA,nameCol,valCol,"grInfErr500",grInfErr500]; 
   rA=addParam[rA,nameCol,valCol,"grTd500",grTd500]; 
   rA=addParam[rA,nameCol,valCol,"grTdErr500",grTdErr500]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"rFitData",grFitDataName]; 
   
rA=addParam[rA,nameCol,valCol,"krFirst200",grkFirst200];rA=
addParam[rA,nameCol,valCol,"krLast200",grkLast200]; 
   rA=addParam[rA,nameCol,valCol,"grSD200",grSD200]; 
   
rA=addParam[rA,nameCol,valCol,"grZero200",grZero200];rA=add
Param[rA,nameCol,valCol,"grZeroErr200",grZeroErr200];rA=add
Param[rA,nameCol,valCol,"grInf200",grInf200]; 
   
rA=addParam[rA,nameCol,valCol,"grInfErr200",grInfErr200]; 
   rA=addParam[rA,nameCol,valCol,"grTd200",grTd200]; 
   rA=addParam[rA,nameCol,valCol,"grTdErr200",grTdErr200]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"rFitData",grFitDataName]; 
   
rA=addParam[rA,nameCol,valCol,"krFirst100",grkFirst100];rA=
addParam[rA,nameCol,valCol,"krLast100",grkLast100]; 
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   rA=addParam[rA,nameCol,valCol,"grSD100",grSD100]; 
   
rA=addParam[rA,nameCol,valCol,"grZero100",grZero100];rA=add
Param[rA,nameCol,valCol,"grZeroErr100",grZeroErr100]; 
   rA=addParam[rA,nameCol,valCol,"grInf100",grInf100]; 
   
rA=addParam[rA,nameCol,valCol,"grInfErr100",grInfErr100]; 
   rA=addParam[rA,nameCol,valCol,"grTd100",grTd100]; 
   rA=addParam[rA,nameCol,valCol,"grTdErr100",grTdErr100]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"sFitData",gsFitDataName]; 
   
rA=addParam[rA,nameCol,valCol,"ksFirstFull",gskFirstFull]; 
   rA=addParam[rA,nameCol,valCol,"ksLastFull",gskLastFull]; 
   rA=addParam[rA,nameCol,valCol,"gsSDFull",gsSDFull]; 
   rA=addParam[rA,nameCol,valCol,"gsZeroFull",gsZeroFull]; 
   
rA=addParam[rA,nameCol,valCol,"gsZeroErrFull",gsZeroErrFull
];rA=addParam[rA,nameCol,valCol,"gsInfFull",gsInfFull]; 
   
rA=addParam[rA,nameCol,valCol,"gsInfErrFull",gsInfErrFull]; 
   rA=addParam[rA,nameCol,valCol,"gsTdFull",gsTdFull]; 
   
rA=addParam[rA,nameCol,valCol,"gsTdErrFull",gsTdErrFull]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"sFitData",gsFitDataName]; 
   rA=addParam[rA,nameCol,valCol,"ksFirst500",gskFirst500]; 
   rA=addParam[rA,nameCol,valCol,"ksLast500",gskLast500]; 
   rA=addParam[rA,nameCol,valCol,"gsSD500",gsSD500]; 
   rA=addParam[rA,nameCol,valCol,"gsZero500",gsZero500]; 
   
rA=addParam[rA,nameCol,valCol,"gsZeroErr500",gsZeroErr500];
rA=addParam[rA,nameCol,valCol,"gsInf500",gsInf500]; 
   
rA=addParam[rA,nameCol,valCol,"gsInfErr500",gsInfErr500]; 
   rA=addParam[rA,nameCol,valCol,"gsTd500",gsTd500]; 
   rA=addParam[rA,nameCol,valCol,"gsTdErr500",gsTdErr500]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"sFitData",gsFitDataName]; 
   rA=addParam[rA,nameCol,valCol,"ksFirst200",gskFirst200]; 
   rA=addParam[rA,nameCol,valCol,"ksLast200",gskLast200]; 
   rA=addParam[rA,nameCol,valCol,"gsSD200",gsSD200]; 
   rA=addParam[rA,nameCol,valCol,"gsZero200",gsZero200]; 
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rA=addParam[rA,nameCol,valCol,"gsZeroErr200",gsZeroErr200];
rA=addParam[rA,nameCol,valCol,"gsInf200",gsInf200]; 
   
rA=addParam[rA,nameCol,valCol,"gsInfErr200",gsInfErr200]; 
   rA=addParam[rA,nameCol,valCol,"gsTd200",gsTd200]; 
   rA=addParam[rA,nameCol,valCol,"gsTdErr200",gsTdErr200]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"sFitData",gsFitDataName]; 
   rA=addParam[rA,nameCol,valCol,"ksFirst100",gskFirst100]; 
   rA=addParam[rA,nameCol,valCol,"ksLast100",gskLast100]; 
   rA=addParam[rA,nameCol,valCol,"gsSD100",gsSD100]; 
   rA=addParam[rA,nameCol,valCol,"gsZero100",gsZero100]; 
   
rA=addParam[rA,nameCol,valCol,"gsZeroErr100",gsZeroErr100];
rA=addParam[rA,nameCol,valCol,"gsInf100",gsInf100]; 
   
rA=addParam[rA,nameCol,valCol,"gsInfErr100",gsInfErr100]; 
   rA=addParam[rA,nameCol,valCol,"gsTd100",gsTd100]; 
   rA=addParam[rA,nameCol,valCol,"gsTdErr100",gsTdErr100]; 
    
   rA=addParam[rA,nameCol,valCol," "," 
"];rA=addParam[rA,nameCol,valCol,"grrFluct12[[2]]",grrFluct
12[[2]]]; 
   
rA=addParam[rA,nameCol,valCol,"grrFluct12[[3]]",grrFluct12[
[3]]]; 
    
   Do[(*i down*) 
    jLast=Length[rA[[i]]]; 
    Do[(*j across*) 
     WriteString[res,ToString[ff[rA[[i,j]]]]]; 
     
If[j!=jLast,WriteString[res,","],WriteString[res,"\n"]] 
     ,{j,1,jLast} 
     ] 
    ,{i,Length[rA]} 
    ]; 
   Close[res]); 
saveResults[] 
 2015-01-31-IgE-1-LRB-d01-results-20161108-150450.csv 
  
(**********************************************************
*********) 
(* combine all graphics and export                                 
*) 
(**********************************************************
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*********) 
ClearAll[savePlots]; 
savePlots[]:= 
  (ClearAll[pageLabel]; 
   
(*bs(*BaseStyle*)={FontFamily "CourierNew",FontSize 12};*) 
   pageLabel= 
    Framed[ 
     Graphics[ 
      Inset[ 
       Pane[ 
        TextCell[ 
         StringJoin[inFileName," = 
inFileName","\n",ToString[ iDot ] ," = iDot" ,   
"\n",FileBaseName[NotebookFileName[]]," = 
notebook","\n",dateString," = date","\n", timeString, " = 
time"], 
         "Text", 
         FontSize->10 
         ], 
        144 (*pane width pts*) 
        ], 
       {0,0} (*inset pos*) 
       ], 
      ImageSize->{144,108} 
      ] 
     ]; 
   allPlots=GraphicsGrid[{ 
      {pageLabel,vhRawPlot,bkgRawPlot, bkgCorrPlot}, 
      {vchcPlot,vchcDiffPlot,sPlot,rPlot}, 
      {gsrFullPlot, gsr500Plot ,gsr200Plot, gsr100Plot}, 
      {gssFullPlot,gss500Plot,gss200Plot,gss100Plot}, 
      {grrFullPlot,grr500Plot,grr200Plot,grr100Plot}, 
      {gsFitPlotFull,gsFitPlot500, gsFitPlot200, 
gsFitPlot100}, 
      {grFitPlotFull,grFitPlot500, grFitPlot200, 
grFitPlot100} 
      }]; 
   plotFileName=base<>"-"<>"plots"<>"-
"<>timeStampString<>".pdf"; 
   Export [plotFileName, allPlots]); 
savePlots[] 
 
 2015-01-31-IgE-1-LRB-d01-plots-20161108-150450.pdf 
  
(**********************************************************
***)  
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(*  test execution time                                      
*) 
(**********************************************************
***)  
nEff 
createArrays[[1]] 
fillArrays[[1]] 
regionAvgs[[1]] 
correlations[[1]] 
(*distCorr[[1]]*) 
  
(**********************************************************
*********) 
(* attempt single probability calc'                                
*) 
(* takes 28 mSec (iWt=0) or 37 mSec (iWt=1)                        
*) 
(* graph data                                                      
*) 
(* "mlp" means "Minus Log Probability"                             
*) 
(**********************************************************
*********) 
ClearAll[] 
g0=+.30;(*g0=-.364;*) 
c0=320.0; (*c0=324.6;*) 
b0=200.0; 
(*b0=40.5;*) 
f0=.35; 
 
iWt=0; 
iFirst=0; 
iLast=00; 
kFirst=0; 
kLast=0; 
nBkgs=4; 
α=0.0; 
iThreshMode=0; 
thresh=3.0; 
iInit=1; 
 
q=depend[v,h,iWt,iFirst,iLast,kFirst,kLast,nBkgs, 
g0,c0,b0,f0,α,iThreshMode,thresh,iInit,iOrder]; 
If[q<qMin,qMin=q]; 
If [(q==0 || q=="Indeterminate" || q<qOld ), 
 Print["prob=",q, "* pPrev=", qOld," pMin=",qMin, " 
g0=",g0,"  c0=",c0, "  b0=", b0], 
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 Print["prob=",q, "  pPrev=", qOld," pMin=",qMin, " 
g0=",g0,"  c0=",c0, "  b0=", b0] 
 ] 
qOld=q; 
 
Print["varS=", Variance[s], " sAvg=",sAvg," 
mlpBkgs=",mlpBkgs] 
Print["mlpNeg=",mlpNeg," mlpDAvg=",mlpDAvg," 
mlpBkgs=",mlpBkgs," mlpRho=", mlpRho, " mlpRhossr=", 
mlpRhossr, " mlpRhosrr=", mlpRhosrr, " mlpRhossrr=", 
mlpRhossrr]; 
Print["ρ11=",mlpRho11,"  ρ21=",mlpRho21,"  ρ12=",mlpRho12,"  
ρ31=",mlpRho31,"  ρ22=",mlpRho22,"  ρ13=",mlpRho31]; 
ListPlot[{vc,hc, vc-hc}] 
  
(**********************************************************
*********) 
(* estimate initial parameters                                       
*) 
(**********************************************************
*********)Plot[(*Log10[*)depend[v,h,0,1,1000,0,0,g0,0.0,0.0
,0.0(*α*),0(*iInit*),1.0(*f*),0(*iOrder*)](*]*),{g0,-0.59,-
0.29},(*PlotRange {0,6},*)PlotPoints->4,ImageSize->Medium] 

  
 Plot[(*Log10[*)depend[v,h,0,1,1000,0,0,-
.44,c0,0.1,0.0(*α*),0(*iInit*),1.0(*f*),0(*iOrder*)](*]*),{
c0,-10,10},PlotRange->{0,2000},PlotPoints->4,ImageSize-
>Medium] 
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 Plot[(*Log10[*)depend[v,h,0,1,1000,0,0,-.44,-
2.0,b0,0.0(*α*),0(*iInit*),1.0(*f*),0(*iOrder*)](*]*),{b0,-
20,10},PlotRange->{0,2000},PlotPoints->4,ImageSize->Medium] 

  
  
 ContourPlot[Log[depend[v,h,0,1,1000,0,0,-
0.45,c0,b0,0.0(*α*),0(*iInit*),0.0(*f*),0(*iOrder*)]],{c0,-
10.0,10.0},{b0,-10.0,10.0},PlotPoints->4] 
 $Aborted 
 
ListContourPlot[ParallelTable[Log[depend[v,h,0,1,1000,0,0,-
0.445,c0,b0,0.0(*α*),0(*iInit*),1.0(*f*),0(*iOrder*)]],{c0,
-10.0,10.0,0.5},{b0,-10.0,10.0,0.5}],DataRange->{{-
10,10},{-10,10}},PlotRange-
>Automatic(*{0,300}*),PlotLegends->Automatic] 
 { 
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 { , } 
} 
  
(**********************************************************
******) 
(*  calculate anisotropy and intensity fluctuations             
*) 
(**********************************************************
******) 
SetOptions[{Plot,ListPlot},ImageSize-
>{144,108}];gsrPlots={gsrFullPlot=ListPlot[{gsrFluct,gsrFlu
ct12},PlotLabel->"gsrFluctFull"], 
  
gsr500Plot=ListPlot[{gsrFluct[[;;500]],gsrFluct12[[;;500]]}
,PlotLabel->"gsrFluct500"], 
  
gsr200Plot=ListPlot[{gsrFluct[[;;200]],gsrFluct12[[;;200]]}
,PlotLabel->"gsrFluct200"], 
  
gsr100Plot=ListPlot[{gsrFluct[[;;100]],gsrFluct12[[;;100]]}
,PlotLabel->"gsrFluct100"]} 
 
gssPlots={gssFullPlot=ListPlot[{gssFluct,gssFluct12},PlotLa
bel->"gssFluctFull"], 
  
gss500Plot=ListPlot[{gssFluct[[;;500]],gssFluct12[[;;500]]}
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,PlotLabel->"gssFluct500"], 
  
gss200Plot=ListPlot[{gssFluct[[;;200]],gssFluct12[[;;200]]}
,PlotLabel->"gssFluct200"], 
  
gss100Plot=ListPlot[{gssFluct[[;;100]],gssFluct12[[;;100]]}
,PlotLabel->"gssFluct100"]} 
 
grrPlots={grrFullPlot=ListPlot[{grrFluct,grrFluct12},PlotLa
bel->"grrFluctFull"], 
  
grr500Plot=ListPlot[{grrFluct[[;;500]],grrFluct12[[;;500]]}
,PlotLabel->"grrFluct500"], 
  
grr200Plot=ListPlot[{grrFluct[[;;200]],grrFluct12[[;;200]]}
,PlotLabel->"grrFluct200"], 
  
grr100Plot=ListPlot[{grrFluct[[;;100]],grrFluct12[[;;100]]}
,PlotLabel->"grrFluct100"]} 
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Program Code 2: Image Corr v.122 
 
(* GOAL: assign bkg and g-factor to QD traces  *) 
(* so as to minimize dependence of r and s  *) 
(* use the new defn of g as 1+f and 1-f  *) 
(* mpy 2 reals=~0.4us div 2 reals=~8us *) 
(**********************************************************
) 
 
(**********************************************************
) 
(*  initialize Mathematica system                         
*) 
(**********************************************************
) 
ClearSystemCache[]; 
SetDirectory[NotebookDirectory[]]; 
Needs["CCompilerDriver`"]; 
Needs["SymbolicC`"]; 
Needs["CompiledFunctionTools`"]; 
Unprotect[CompiledFunctionTools`Private`getInstruction]; 
CompiledFunctionTools`Private`getInstruction[line_,{0,_}]:=
CompiledFunctionTools`Private`getInstruction[line,{3,1}] 
SetDirectory[NotebookDirectory[]]; 
(*SetOptions[$FrontEndSession,PrintingStyleEnvironment "Wor
king"];*) 
Off[General::munfl]; 
{\pard{}}[FittedModel::precw]; 
Off[NonlinearModelFit::sszero]; 
 
ClearAll[gPrint, 
one,remOdd,dP,aP,se,restIPrint,saveIPrint]; 
gPrint= If[iPrint!=0,Print[##]]&; 
iPrint=1; 
iPrintS=1; 
one=#1&; 
remOdd[e_, x_]:=((e/.{x->Power[x,2]})/.{ x2->0, x6->0, x10-> 
0,x14-> 0})/.{x-> x1/2} 
SetAttributes[dP,HoldAll]; 
dP[z_]:=If[(iPrint!=0 &&ValueQ[z]==True)|| 
(ValueQ[iPrint]==False),Print[HoldForm[z],"=",ReleaseHold[z
](*//MatrixForm*)]]; (* debug print showing variable name*) 
aP[a_]:=Module[{last},last=Min[8, 
Length[a]];Evaluate[dP[a[[1;;last]]]]]; (*array print 
showing 8 list members max*) 
se[x_]:=Simplify[Expand[x]]; (* simplify-expand *) 
restIPrint[]:=(iPrint=iPrintS); 

http://reference.wolfram.com/mathematica/ref/Off.html
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saveIPrint[]:=(iPrintS=iPrint); 
 
(**********************************************************
**) 
(*  global parameters                                       
*) 
(**********************************************************
**) 
(*inFileName="IgE-1-LRB.csv";*) 
iFirstDot=1; iLastDot=1; (*"0" means all dots*) 
iDot=1; (* used when NOT entering via "dataImport"*) 
iPrint=1; 
cBkg=300.0(*319.75*);  (* initial value of camera bkg *) 
isStamp=True; 
iWt=2;(*2=Gaussian; 1=Poisson*) 
iGeom=1;(*1=polariz, 2=anis*) 
iPrint=1; (* print all dP instances *) 
pGoal=0.01; 
maxPass=2000; 
g0=0.4;b0=0.0;c0=0.0;f0=-1.; (*"-1" means use prog's camera 
bkg *) 
iFirst=2;iLast=1001; kFirst=0; kLast=0; 
nBkgs=4; 
isBkgs=1; 
isSim=0; (* simulation? *) 
 
(**********************************************************
*) 
(**********************************************************
*) 
(*  UTILITIES  *) 
(**********************************************************
*) 
(**********************************************************
*) 
 
(**********************************************************
) 
(*  set graphics point sizes (fract of total graph)       
*) 
(**********************************************************
) 
SetOptions[{Plot,ListPlot, ListLinePlot}, 
  PlotStyle->PointSize[0.01], 
  PlotStyle->{RGBColor[0.2472,0.24,0.6], 
    RGBColor[0.6,0.24,0.4429], 
    RGBColor[0.6,0.5470,0.24], 
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    RGBColor[0.24,0.6,0.3369]}, 
  BaseStyle->{ 
    FontFamily->"Helvetica", 
    FontWeight->"Bold" }, 
  ImageSize->{144,108}(*Medium*) 
  ]; 
 
(**********************************************************
*********) 
(*  define pattern replace to pull constants out of sums           
*) 
(**********************************************************
*********) 
(* patt /; test is a pattern which matches only if the 
evaluation of test yields True *) 
(* lhs  rhs \"\\\"\"\"RuleDelayed\"\"\\\"\" represents a 
rule that transforms lhs to rhs evaluating rhs only after 
the rule is used *) 
(* FreeQ[expr,form] yields True if no subexpression in expr 
matchesformand yields False *) 
ClearAll[BringOut,outrules]; 
outrules={Sum[f_+ 
g_,it:{x_Symbol,__}]:>Sum[f,it]+Sum[g,it],Sum[c_ 
f_,it:{x_Symbol,__}]:>c 
Sum[f,it]/;FreeQ[c,x],Sum[c_,it:{x_Symbol,__}]:>c 
Sum[1,it]/;FreeQ[c,x]}; 
BringOut[s_]:=s //. outrules 
(*BringOut [Sum [c*i*x[[i]]1,{i,n}]];*) 
 
(**********************************************************
*********) 
(*  map Sum function over sum of terms                             
*) 
(**********************************************************
*********) 
(*ClearAll[x,y,z,qd0,n]; 
qd0= x[[i]] +2y[[i]]^2+ 3 z[[i]]^3; 
gd0=Total[Sum[#,{i,1,n}]&/@(List@@qd0)]; 
BringOut[gd0]*) 
 
(**********************************************************
*********) 
(*  abbreviate FortranForm for printing                            
*) 
(**********************************************************
*********) 
ClearAll[ff]; 
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ff[x_]:=FortranForm[x]; 
 
(**********************************************************
*********) 
(*  define gRound to get suitable form printing large, 
small nums  *) 
(**********************************************************
*********) 
ClearAll[gR]; 
gR[x0_,sf_]:= (* "g Round" *)Module[{e,xr,x}, 
   (x=Re[x0];e=MantissaExponent[x][[2]]-sf; 
    xr=(10^e)*Round[x*10^(-e)]; 
    xr)]; 
 
(**********************************************************
*********) 
(*  define gF "George Format" for compact 1-line output            
*) 
(**********************************************************
*********) 
ClearAll[gF]; 
gF[x_]:=ff[gR[x,6]]; 
 
(**********************************************************
*) 
(**********************************************************
*) 
(*  FUNCTIONS THIS PROGRAM  *) 
(**********************************************************
*) 
(**********************************************************
*) 
 
(**********************************************************
) 
(*        SZEKELY dist covariance via Hu's algorithm      
*) 
(**********************************************************
) 
ClearAll[distCovCompile]; 
distCovCompile=Compile[ 
   {{xIn,_Real,1}, 
    {yIn,_Real,1}}, 
   
Module[{index,si,sLast,t,ax,v,nw,zeros,idx,iv1,iv2,iv3,iv4, 
     
i,r,s,gap,k,idxr,csumv,idx1,idx2,st1,st2,e1,e2,kf,covterm,c
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1,c2,c3,c4,d,ySorted,by,nsq,ncb,nq,term1,term2,term3,x,y,n,
j}, 
    (*iPrint=0;*) 
    n=Length[xIn]; 
    index=Ordering[xIn]; 
    x=Sort[xIn];(*gPrint["xSorted=",x//MatrixForm];*) 
    y=yIn[[index]];(*gPrint["yReordered=",y//MatrixForm];*) 
    si=Accumulate[x];(*gPrint["si=",si//MatrixForm];*) 
    sLast=si[[n]]; 
    t=Table[i, {i,-(n-
2),n,2}];(*gPrint["t=",t//MatrixForm];*) 
    ax=t*x+(sLast-2 si);(*gPrint["ax=",ax//MatrixForm];*) 
    v={x,y,x*y} ; (*gPrint["v=",v//MatrixForm];*) 
    nw=Dimensions[v][[2]]; 
    zeros=Table[0,n]; 
    
idx={Table[i,{i,n}],zeros} ;(*gPrint["idx=",idx//MatrixForm
];*) 
    iv1=Table[0.,n];iv2=iv1;iv3=iv1;iv4=iv1; 
    i=1;r=1;s=2; 
     
    (*While [i<n,*) 
    Label[startWhileI]; 
    If[i>=n, Goto[endWhileI]]; 
    gap=2*i; 
    k=0; 
    idxr=idx[[All,r]];(*gPrint["idxr=",idxr//MatrixForm];*) 
    csumv=Prepend[Accumulate[v[[idxr]]],Table[0,nw]]; 
    (* OK to here*) 
    (*gPrint["csumv=", csumv//MatrixForm];*) 
     
    (*For [j=1, j<n, j=j+gap,*) 
    j=1;  
    Label[startForJ]; 
    If [j>=n, Goto[endForJ]]; 
    (*st1=j;e1=Min[st1+i-1,n];st2=j+i;e2=Min[st2+i-1,n];*) 
    st1=j;e1=st1+i-1; If[e1>=n,e1=n];st2=j+i;e2=st2+i-
1;If[e2>=n,e2=n]; 
    (*While [(st1≤e1)&&(st2≤e2),*) 
    Label[startWhileSt]; 
    If[(st1>e1)||(st2>e2),Goto[endWhileSt]]; 
    k=k+1;(*gPrint ["i=",i," j=",j, " k=",k," st1=",st1," 
e1=",e1," st2=",st2," e2=",e2];*) 
    idx1=idxr[[st1]];idx2=idxr[[st2]]; 
    (*gPrint ["idx1=",idx1," idx2=",idx2];*) 
    If[ y[[idx1]]>=y[[idx2]], 
     idx[[k,s]]=idx1; 
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     st1=st1+1, 
     (*else*) 
     idx[[k,s]]=idx2; 
     st2=st2+1; 
     iv1[[idx2]]      =iv1[[idx2]]+e1-st1+1;iv2[[idx2]]      
=iv2[[idx2]]+(csumv[[e1+1,1]]-csumv[[st1,1]]);   
  
     iv3[[idx2]]      =iv3[[idx2]]+(csumv[[e1+1,2]]-
csumv[[st1,2]]); 
     iv4[[idx2]]      =iv4[[idx2]]+(csumv[[e1+1,3]]-
csumv[[st1,3]]); 
     ];(*end If[y[idx1...*) 
    (*gPrint ["ivN=",{iv1,iv2,iv3,iv4} //MatrixForm];*) 
     
    (*]; (*end While[(st1...]*)*) 
    Goto[startWhileSt]; 
    Label[endWhileSt]; (*end While[(st1...]*) 
     
    (*gPrint["i,j=",i,"  ",j];*) 
    If[ st1<=e1, 
     kf=k+e1-st1+1; (*gPrint["kf=",kf];*) 
     idx[[(k+1);;kf,s]]=idxr[[st1;;e1]]; 
     k=kf, 
     (*else*) 
      If[st2<=e2, 
       kf=k+e2-st2+1; 
       (*gPrint[idx[[(k+1);;kf,s]]];*) 
       idx[[(k+1);;kf,s]]=idxr[[st2;;e2]]; 
       k=kf 
       ]; 
     ];(*end If[st2...]*) 
     
    (*gPrint["kf=",kf," idx=",idx//MatrixForm];*) 
    (*gPrint["idx=",idx//MatrixForm];*) 
    (*];(* end For[j=1...*)*) 
    j=j+gap; 
    Goto[startForJ]; 
    Label[endForJ];(* end For[j=1...*) 
     
    i=gap; 
    r=3-r;s=3-s; 
    (*];(* end While i<n*)*) 
    Goto[startWhileI]; 
    Label[endWhileI];(* end While i<n*) 
    covterm=n*(x-Mean[x]).(y-Mean[y]); 
     
    c1=iv1.v[[All,3]]; 
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    c2=Total[iv4]; 
    c3=iv2.y; 
    c4=iv3.x; 
     
    d=4*((c1+c2)-(c3+c4))-2*covterm; 
    ySorted=y[[idx[[Table[i,{i,n,1,-1}],r]]]]; 
    si=Accumulate[ySorted]; 
    sLast=si[[n]]; 
    by=Table[0.,n]; 
    by[[idx[[n;;1;;-1,r]]]]=Table[i,{i,-(n-
2),n,2}]*ySorted+(sLast-
2*si);nsq=N[n*n];ncb=nsq*n;nq=ncb*n;term1=d/nsq;term2=2*(ax
.by)/ncb;term3=Total[ax]*Total[by]/nq; 
    Return[N[(term1+term3)-term2]] 
    ],(*end module/function*) 
   RuntimeAttributes->{Listable},Parallelization->False, 
   CompilationTarget->"C",RuntimeOptions->"Speed" 
   ]; (*end compile*) 
<<CompiledFunctionTools` 
(*CompilePrint[distCovCompile]*) 
(*yIn=N[{3,5,7,3,8,4,6,7}];Print["yIn=",yIn]; 
xIn=N[{1,5,3,2,4,6,7,5}];Print["xIn=",xIn]; 
Print["distCov=",distCovCompile[xIn,yIn]];*) 
 
(**********************************************************
*) 
(* SZEKELY dist correlation from dist covariances          
*) 
(**********************************************************
*) 
ClearAll[distCorrFunct]; 
distCorrFunct[x_,y_]:=Module[{covAB,covAA,covBB}, 
   covAB=Evaluate[distCovCompile[x,y]]; 
   covAA=Evaluate[distCovCompile[x,x]]; 
   covBB=Evaluate[distCovCompile[y,y]]; 
   
(*Print["covAB=",covAB,"\ncovAA=",covAA,"\ncolBB=",covBB];*
) 
   Return[N[covAB/Sqrt[covAA*covBB]]]; 
   ]; 
(*yIn=N[{3,5,7,3,8,4,6,7}];Print["yIn=",yIn]; 
xIn=N[{1,5,3,2,4,6,7,5}];Print["xIn=",xIn]; 
Print["distCorr=",distCorrFunct[xIn,yIn]];*) 
 
(**********************************************************
*********) 
(*  fast autocorrelation using LISTCORRELATE                       
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*) 
(**********************************************************
*********) 
ClearAll[dataCorrelate]; 
dataCorrelate[t_,u_]:=Module[{n}, 
z=ListCorrelate[t,u,1,0];n=Length[t];Table[z[[i]]/(n-
i+1),{i,n}]]; 
(*t={4,3,2,1} 
u={1,2,3,4} 
z=ListCorrelate[t,u,1,0] 
z1=Table[z[[i]]/(Length[z]-i+1),{i,Length[z]}] 
dataCorrelate[t,u]*) 
 
(**********************************************************
*********) 
(*  weighted covariance function                                   
*) 
(**********************************************************
*********) 
ClearAll[wtdCov]; 
wtdCov[f_,g_,w_]:=Module[{n,wTot,temp}, 
   n=Length[f]; 
   wTot=Total[w]; 
   temp=(wTot*Total[f*g*w]-Total[f*w]*Total[g*w])/wTot2 
   ]; (* fails for f=g and i=1 *) 
 
(**********************************************************
*********) 
(*  weighted correlation coeff                                     
*) 
(**********************************************************
*********) 
ClearAll[wtdCorrCoeff]; 
wtdCorrCoeff[f_,g_,w_]:=Module[{}, 
   wtdCov[f,g,w]/\[Sqrt](wtdCov[f,f,w]*wtdCov[g,g,w])]; 
 
(**********************************************************
) 
(*        faster version of brute force correlate         
*) 
(**********************************************************
) 
SetSystemOptions["CompileOptions"-
>{"CompileReportExternal"->True}]; 
SetSystemOptions["CompileOptions"-
>{"CompileReportExternal"->False}]; 
ClearAll[trueCorr,i]; 
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trueCorr=Compile[(* wx, wy are just 1/vx, 1/vy for each pt 
*) 
   
{{x,_Real,1},{y,_Real,1},{wx,_Real,1},{wy,_Real,1}},Module[
{n,nFact,tau,txy=0.0,tx=0.0,ty=0.0, 
     tw=0.0,w=0.0,iy,ix,vx=0.0,vy=0.0,xVar,yVar, 
     x0=0.0,y0=0.0,kList,gxy,gx,gy,gw}, 
    n=Length[x]; 
    gxy=Table[0.0,{n}];gx=gxy;gy=gxy;gw=gxy; 
    xVar=1.0/wx;yVar=1.0/wy; 
    kList=Table[n-tau+1,{tau,n}]; 
    For[tau=1,tau<=n,tau++, 
     txy=0.0;tx=0.0;ty=0.0;tw=0.0; 
     For[ix=1,ix<=n-tau+1,ix++, 
      iy=ix+tau-1; 
      x0=x[[ix]];y0=y[[iy]]; 
      vx=xVar[[ix]];vy=yVar[[iy]]; 
      w=(vy*x0^2+vx y0^2+vx*vy)-1; 
      txy+=w*x0*y0;tx += w*x0;ty+=w*y0;tw+=w 
      ];(*for i*) 
     gxy[[tau]]=txy;  (* weighted sums, not averages*) 
     gx[[tau]]=tx; 
     gy[[tau]]=ty; 
     gw[[tau]]=tw 
     ];(*for tau*) 
    Return[{gxy,gx,gy,gw}] 
    ],(*end module/function*) 
   RuntimeAttributes->{Listable}, 
   Parallelization->False, 
   CompilationTarget->"C", 
   RuntimeOptions->"Speed" 
   ]; (*end compile*) 
<<CompiledFunctionTools`; 
(*CompilePrint[trueCorr]*) 
(*yIn=N[{3,5,7,3,8,4,6,7}];Print["yIn=",yIn]; 
xIn=N[{1,5,3,2,4,6,7,5}];Print["xIn=",xIn]; 
Print["trueCorr=",trueCorr[xIn,yIn,xIn,yIn]]//AbsoluteTimin
g 
g0=trueCorr[r,r,wr,wr]/trueCorr[ones,ones,wr,wr]//AbsoluteT
iming; 
Print[ListPlot[g0]]; 
Print[ListPlot[grr]];*) 
 
(**********************************************************
*********) 
(*  define "appendCol"                                             
*) 
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(*  does NOT expand table if col too long or pad col if too 
short  *) 
(**********************************************************
*********) 
appendCol[a_,b_]:=(*Module[{aa},If[Length[Dimensions[x]] 1,
aa={a};Transpose[Append[aa,b]], 
  Transpose[Append[Transpose[a],b]]]];*) 
  If[Length[a]!=Length[b],Print["Unequal lengths. Unable to 
append"];a, 
   If[Length[Dimensions[a]]==1, 
    Join[Transpose[{a}], Transpose[{b}],2], 
    Join[a, Transpose[{b}],2]]]; 
 
(**********************************************************
*********) 
(*  define "addParam"                                              
*) 
(*  if new var runs below existing cols, table is padded 
line of blanks*) 
(**********************************************************
*********) 
ClearAll[addParam]; 
addParam[a_,nameCol_,valCol_,name_,val_]:= 
  Module[{nParams,ap}, 
   nParams=0; 
   Do[If[a[[i,nameCol]]!= 
"",nParams=nParams+1],{i,2,Length[a]}]; 
   
If[Length[a]==nParams+1,ap=Append[a,Table["",{i,Length[a[[1
]]]}]];,ap=a]; 
   ap=ReplacePart[ap,{nParams+2,nameCol}-> name]; 
   ap=ReplacePart[ap,{nParams+2,valCol}-> val]; 
   Return[ap] 
   ]; 
 
(**********************************************************
*********) 
(*  define "mlpNeg" =-Log prob of getting negative v or h         
*) 
(**********************************************************
*********) 
ClearAll[mlpNeg]; 

mlpNeg[b_,sb_,v_]:=Log[2]-Log[Erfc[(b-v)/(  sb)]]; 
 
(**********************************************************
*********) 
(*  define extrapolate xc or ac curve to time zero                 

2
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*)  
(**********************************************************
*********) 
ClearAll[extrap];extrap[x_]:={x[[1]],x[[1]]-x[[2]],x[[1]]-
2x[[2]]+x[[3]]}; 
 
(**********************************************************
******) 
(* Fit to single exponential decay                              
*) 
(* mode 0  2p fit all pts & print                              
*) 
(* mode 1  3p fit all pts & print                              
*) 
(* mode 2  2p fit 3 pts & NO print                             
*) 
(**********************************************************
******) 
ClearAll[fitExpDecay]; 
fitExpDecay[iMode_,fitData_, 
fitDataName_,wtData_,nEff_,kFirst_,kLast_,fitPlotName_]:= 
  Module[ 
   
{gTable,wTable,iPass,g0,g∞,gTau,t,eq,vars(*,nlm,StepMonitor
,Weights, 
    
VarianceEstimatorFunction,MaxIterations,paramTable,params,e
rrs,estdVar,estdSD, 
    
gSD,gZero,gInf,gTd,gInfErr,gZeroErr,gTdErr,fluctCalc,xyCalc
,range,fitPlot}*)}, 
   saveIPrint[]; 
   iPrint=0; 
   If[kLast>nEff,gPrint["kLast=",kLast," > nEff=",nEff,".  
Results unpredictable"]]; 
   gTable=Table[{i-1,fitData[[i]]},{i,nEff}]; 
   wTable=Table[wtData[[i]],{i,nEff}]; 
    
   (*gPrint[nEff]; 
   gPrint[wTable];*) 
   (*gTable=Table[{i-
1,RandomVariate[NormalDistribution[0,2]]},{i,nEff}]; 
   wTable=Table[1,{i,nEff}];*) 
   Do[If[k<kFirst||k>kLast,wTable[[k]]=0],{k,nEff}]; 
   wTableNorm=(kLast-kFirst+1)*wTable/Total[wTable]; 
(*Mathematica wts must be norm'd*) 
   iPass=0; 
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   Monitor[ 
    nlm=NonlinearModelFit[ 
      gTable, (*data as x,y pairs*) 
      If[iMode==1(*s*), 
       eq=g∞+(g0-g∞)*Exp[-t/gTau]; 
       vars={g0,g∞,gTau}, 
       If[(iMode==0)(* fit all grr*)||(iMode==2)(*fit 3 
grr*), 
        eq=g0*Exp[-t/gTau]; 
        vars={g0,gTau}, 
        gPrint["unrecognized iMode"]; Abort[] 
        ]]; 
      eq,  (* eq to use *) 
      vars, (* adjustable params*) 
      t, (* var in eq*) 
      Weights->wTableNorm, 
      StepMonitor :>{iPass=iPass+1}, 
      VarianceEstimatorFunction->(Total[#12 #2]/Total[#2] 
n/(n-2)&), 
      MaxIterations->1000; (*Infinity*) 
      WorkingPrecision->Automatic (*MachinePrecision*) 
      ], 
    Pause[0.0]; 
    "iPass="<>ToString[gF[iPass]]<>" 
chiSq="(*<>ToString[gF[redChiSq]]*)<>" 
tDecay="<>ToString[gF[gTau]]<>" 
gInf="<>ToString[gF[g0]]<>ToString[gF[g∞]]<>" gAmp=" 
    ]; 
    
   gPrint["\n","fit results"]; 
   gPrint["paramTable=",paramTable=nlm["ParameterTable"]]; 
(*val,SE,p*) 
   gPrint["params=",params=nlm["BestFitParameters"]]; 
   gPrint["errs=",errs=nlm["ParameterErrors"]]; 
   
gPrint["estdSD=",estdSD=\[Sqrt]nlm["EstimatedVariance"]]; 
   gPrint["nlm[0]=",nlm[0]]; (*"FittedModel"*) 
    
   gSD=estdSD; 
   gZero=params[[1,2]]; 
   gZeroErr=errs[[1]](*errs[[2]]*); 
   If[(iMode==0)||(iMode==2), (*2p fits*) 
    gInf=0;(*params[[2,2]];*) 
    gInfErr=0; 
    gTd=params[[2,2]]; 
    gTdErr=errs[[2]], 
    If[iMode==1,(*s*)gInf=params[[2,2]]; (*3p fit*) 
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     gInfErr=errs [[2]]; 
     gTd=params[[3,2]]; 
     gTdErr=errs[[3]], 
     Print["unrecognized iMode.  Exiting...."];Abort[]   
     ]]; 
   dP[gZero]; 
   dP[gZeroErr]; 
   If[(iMode==0)||(iMode==1), 
    fluctCalc=Table[nlm[i-1],{i,1,nEff}]; 
    xyCalc=Table[{i-1,nlm[i-
1]},{i,kLast}];range={1.1Min[xyCalc[[All,2]],gTable[[All,2]
]],1.1*Max[xyCalc[[All,2]],gTable[[All,2]]]}; 
    
fitPlot=ListPlot[{gTable[[kFirst;;kLast,2]],xyCalc[[kFirst;
;kLast,2]]},PlotLabel-> fitPlotName] 
    ];(*if*) 
   restIPrint[]; 
   ]; 
(*setIPrint[0];fitExpDecay[fitData, 
fitDataName,wtData,nEff,kFirst,kLast,fitPlotName];restIPrin
t[];*) 
 
(**********************************************************
*********) 
(*getFileList[]:  get names of raw data files in current 
directory *) 
(**********************************************************
*********) 
ClearAll[getFileList]; 
getFileList[]:=Module[{f,l,c1,c2,c3,c4,c,i}, 
   f=FileNames[All];l=Length[f]; 
   c1=StringContainsQ[f, "LRB"];c2=StringContainsQ[f, 
"csv"]; 
   c3=Thread[!StringContainsQ[f, 
"results"]];c4=Thread[!StringContainsQ[f, "plots"]]; 
   c=Table[c1[[i]]&&c2[[i]]&&c3[[i]]&&c4[[i]],{i,l}]; 
   fs={};For [i=1,i<=l,i++,If[c[[i]],AppendTo[fs,f[[i]]]]];   
   Return[fs] 
   ]; 
(*getFileList[]*) 
 
(**********************************************************
*********) 
(* wtd linear fit                                               
*) 
(**********************************************************
*********) 
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ClearAll[probs,xList,data,wtdLin]; 
wtdLinFit[s_,d_,nP_,iFirstOrder_,wTable_]:=Module[{x,xList,
data,ev, β,se,pr,probs,lm}, 
   (* nP=num params; iFirstOrder=*) 
   n=Length[s]; 
   data=Transpose@{s,d}; 
   (*Print[ListPlot[data]];*) 
   xList=Table[xi,{i,iFirstOrder,nP+iFirstOrder-1}]; 
   (*Print[xList];*) 
   lm=LinearModelFit [data,xList,x, 
     IncludeConstantBasis->False, 
     Weights->wTable, 
     VarianceEstimatorFunction->((Total[#12 
#2]/Total[#2])*(n/(n-2))&)]; 
   β=lm["BestFitParameters"]; 
   ev=lm["EstimatedVariance"]; 
   se=lm["ParameterErrors"]; (* std err*) 
   pr=lm["PredictedResponse"]; (* yCalc*) 
   probs= (1/2)(β/se)2; 
   (*dP[probs]; 
   dP[Total[probs]];*) 
   Return[{ev,β,se, (1/2)(β/se)2}] 
   (* [[1]]= fit variance, [[2]=params, [[3]]=std errs, 
[[4]]=mlp param probs *) 
   ]; 
 
(**********************************************************
**) 
(*   functiot to calc variance of variance of list          
*) 
(**********************************************************
**) 
ClearAll[varOfVar]; 
varOfVar[x_]:=Module[{n, 
μ,ones,dxSq,μ2,μ4,μ2Sq,varVar,vov}, 
   n=Length[x]; 
   μ=Total[x]/n; 
   ones=Table[1,{n}]; 
   dxSq=(x-ones*μ)2; 
   μ2=Total[dxSq]/n; 
   μ4=Total[dxSq2]/n; 
   μ2Sq=μ22; 
   vov=(μ4-μ2Sq)/n+μ2Sq*(2/(n(n-1))) 
   ]; 
 
(*(********************************************************
****) 
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(*   test var of difference in variances                    
*) 
(**********************************************************
**) 
ClearAll[x,y,vx,vy,diff,vvx,vvy,vvsum,vvsumsd,ratio]; 
n=1000; 
m=1000; 
iPrint=0; 
x=RandomVariate[NormalDistribution[10,1],n]; 
y=RandomVariate[NormalDistribution[10,1],n]; 
xt=Table[x=RandomVariate[NormalDistribution[10,1],n], 
m];(*dP[xt];*) 
yt=Table[y=RandomVariate[NormalDistribution[10,1],n], 
m];(*dP[yt];*) 
s2x=Variance[xt ];dP[s2x]; 
s2y=Variance[yt ];dP[s2y]; 
vovx=Table[varOfVar[xt[[i]]],{i,m}];dP[vovx]; 
vovy=Table[varOfVar[yt[[i]]],{i,m}];dP[vovy]; 
diff=s2x- s2y; dP[diff]; 
vvsum=vovx+vovy;dP[vvsum]; 
vvsumsd=Sqrt[vvsum];dP[vvsumsd]; 
ratio=(diff/vvsumsd);dP[ratio]; 
mlp=ratio^2/2;dP[mlp]; 
iPrint=1; 
Length[ratio] 
Variance[ratio] 
Histogram[ratio]*) 
 
restIPrint[]; (* overall for 'definitions'*) 
 
(**********************************************************
**) 
(*                    end of definitions                    
*) 
(**********************************************************
**) 
 
ClearAll[depend]; 
depend[vEff_List,hEff_List,bvEff_List,bhEff_List,iWt_Intege
r,iGeom_Integer,kFirst_Integer,kLast_Integer,nBkgsDummy_Int
eger,gDummy_Real,bDummy_Real,cDummy_Real,fDummy_Real,iFirst
Dot_Integer,iLastDot_Integer]:=Module[{(*nMax,n,m,nEff,nCor
r,kMax,kMin,nk,nBkgs*)}, 
   
(**********************************************************
*********) 
   (*  initialization code                                            
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*)(********************************************************
***********) 
   saveIPrint[]; 
   (*dP[isNewMin,"  ", iPass]; *) 
   If [Length[vEff]!= Length[hEff], Print["vEff and hEff 
unequal length. Exiting...."];Abort[] ]; 
   nEff=Length[vEff]; 
   zeros=Table[0,{nEff}]; 
   ones=Table[1,{nEff}]; 
   kList=Table[nEff-k+1,{k,1,nEff}]; 

   sqrtKList= ; 
   time=Table[i, {i,nEff}]; 
   kMax=If[kLast==0, nEff, kLast]; 
   If [kLast>nEff,Print["kMax exceeds nEff. 
Exiting...."];Abort[]]; 
   kMin=If[kFirst==0, 2,kFirst]; 
   nk=kMax-kMin+1; 
   (*nBkgs=If [nBkgsDummy 0,4,nBkgsDummy];*) 
    
   
(**********************************************************
*********) 
   (*  set constants                                                  
*) 
   
(**********************************************************
*********) 
   g=gDummy; (* old g-fact: (1-g)v, (1+g)h *) 
   b=bDummy; (* sample bkg *) 
   c=cDummy; (* camera bkg *) 
   f=fDummy; (* ???? *) 
   (*Pause[1*^9];*) 
    
   
(**********************************************************
*********) 
   (*  CALCULATION STARTS HERE                                        
*) 
   
(**********************************************************
*********) 
    
   
(**********************************************************
****) 
   (*  get inten funct & baseline vars                           
*) 

kList
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(**********************************************************
****) 
   (* nBkgs = number of baselines averaged *) 
   bvAvg=Mean[bvEff]; (* avg of nBkgs traces *) 
   bhAvg=Mean[bhEff]; 
    
   If[ f<0,f=cBkg];(*if f<0 (e.g. -1), f initialized to 
cBkg *) 
   If [isBkgs!=0, (*yes, bkgs.  calc inten funct from bkgs 
*) 
    intV=(bvEff-f)/(bvAvg-f);(*inten should=iv,ih*) 
    intH=(bhEff-f)/(bhAvg-f),(*inten should=iv,ih*) 
    (*else let inten factors=1 *) 
    intV=Table[1,{nEff}]; 
    intH=intV 
    ]; 
   (*dP[intH]; 
   Pause[1*^9];*) 
    
   bvc=(1-g)bvEff/intV;  (* correcting for src flucts *) 
   bhc=(1+g)bhEff/intH;  (* no corr if no bKgs *) 
    
   If [isBkgs!=0,(*yes, bkgs.  calc bkg variances 
UNCORRECTED *) 
    e2bv=Variance[bvEff]; (* actual variance corr'd bkgs *) 
    e2bh=Variance[bhEff], 
    (*else*) 
    e2bv=1;  (* need some placeholder num here *) 
    e2bh=1 
    ]; 
    
   If [isBkgs!=0,(*yes, bkgs.  calc CORRECTED bkg variances 
*) 
    e2bvc=(1-g)2 Variance[bvEff]; (* actual variance corr'd 
bkgs *) 
    e2bhc=(1+g)2 Variance[bhEff], 
    (*else*) 
    e2bvc=1;  (* need some placeholder num here *) 
    e2bhc=1 
    ]; 
    
   If [iWt==2,  (* rs weights*) 
    (*Gaussian*)vVar=e2bvc;hVar=e2bhc, 
    If[iWt==1, 
     (*Poisson*)vVar=(1-g)2 (vEff+2 bvEff); (* 2 baselines / 
vc*)hVar=(1+g)2 (hEff+2 bhEff),  
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     Print["bad iWt"]] 
    ]; 
   vVarSq=vVar2; 
   hVarSq=hVar2; 
    
   (*intV=(bvEff-f)/(bvAvg-f);(*inten should=iv,ih*) 
   intH=(bhEff-f)/(bhAvg-f);*) 
    
   vs=(vEff-bvEff)/intV; (* v sub't'd *) 
   hs=(hEff-bhEff)/intH;  
   vM=Mean[vs]; (* v(sub't'd)Mean *) 
   hM=Mean[hs]; 
   vSD=StandardDeviation[vs]; 
   hSD=StandardDeviation[hs]; 
    
   g= (vSD-hSD)/(vSD+hSD); 
   c=(hM(1+g)-(1-g) vM)/(2g); 
   (*Print[iPass,"  ",vM,"  ",hM,"  ",vSD,"  ",hSD,"  ",g,"  
",c,"  ",b];*) 
   vc=Collect[Simplify[(1-g)(vs-c)-b/2],vs]; 
   hc=Collect[Simplify[(1+g)(hs-c)+b/2],hs];  
    
   s=vc+iGeom*hc;sSq=s2;s4th=sSq2; 
   d=vc-hc;dSq=d2;d4th=dSq2; 
   r=Table[If[s[[i]]!=0,d[[i]]/s[[i]],0], {i,nEff}];rSq=r2; 
    
   
(**********************************************************
****) 
   (*  get variances and wts                                     
*) 
   
(**********************************************************
****) 
   If[(isNewMin!=0)||(iPass==0 ),(*dP[iPass];*) 
    (*Print[iPass];*) 
    sVar=ones*(2(vVar+iGeom2 hVar)); (* two bkgs each 
meas't*) 
    dVar=ones*(2(vVar+hVar)) 
    ]; 
    
   (*get INITIAL values for sAvg, rAvg to calc init rWts*) 
   If[iPass== 0, 
    ws=ones/sVar;  
    sws=s*ws; 
    sAvg=Total[sws]/Total[ws]; 
    rAvg=zeros (* start with rAvg = 0*) 
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    ]; 
    
   wsRaw=ones/sVar; 
   ws=nEff*wsRaw/Total[wsRaw]; (*normalize s-wts*) 
   sws=s*ws; 
   sSqws=sSq*ws; 
   sAvg=Total[sws]/Total[ws]; 
    
   wdRaw=ones/dVar; 
   wd=nEff*wdRaw/Total[wdRaw]; (*normalize d-wts*) 
   dwd=d*wd; 
   dSqwd=dSq*wd; 
   dAvg=Total[dwd]/Total[wd]; 
    
   (* only have 2nd order sums of v, h so ignore 4th-order 
tems *) 
   z=iGeom;rVar=(1/s4th)*(vVar (-1+r)2 sSq+hVar  sSq (1+r 
z)2 +3 vVarSq (-1+r)2+3 z2 hVarSq (1 +r z)2 +3 vVar  hVar  
((1-4 z+z2 )+6 r z (1- z) +6 z2 rSq ));wrRaw=1/rVar; 
   wr=nEff*wrRaw/Total[wrRaw];(*normalize r-wts*) 
   rwr=r*wr; 
   rSqwr=rSq*wr; 
   rAvg=Total[rwr]/Total[wr]; 
    
   (*Print["end calc basic terms"];*) 
    
   
(**********************************************************
***) 
   (* calc correlations (now AVERAGES  )                        
*) 
   
(**********************************************************
***) 
    
   (*kList=Table[nEff-k+1,{k,1,nEff}];*) 
   (*oneList=Table[1,{k,1,nEff}];*) 
   ClearAll[]; 
   sws=s*ws; 
   rwr=r*wr; 
   sAvg=Total[sws]/Total[ws]; 
   rAvg=Total[rwr]/Total[wr]; 
   (*g11=ListCorrelate[ones,ones,1,0];*) 
    
   gss=ListCorrelate[sws,sws,1,0]; 
   gs1=ListCorrelate[sws,ones,1,0]; 
   g1s=ListCorrelate[ones,sws,1,0]; 
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   gwsws=ListCorrelate[ws,ws,1,0]; 
   gws1=ListCorrelate[ws,ones,1,0]; 
   g1ws=ListCorrelate[ones,ws,1,0]; 
   gssFluct12=gss/gwsws-gs1/gws1 g1s/g1ws ; 
    
   gsr=ListCorrelate[sws,rwr,1,0]; 
   (*gs1=ListCorrelate[sws,ones,1,0];*)  (* already done *) 
   g1r=ListCorrelate[ones,rwr,1,0]; 
   gwswr=ListCorrelate[ws,wr,1,0]; 
   (*gws1=ListCorrelate[ws,ones,1,0];*)(* already done *) 
   g1wr=ListCorrelate[ones,wr,1,0]; 
   gsrFluct12=gsr/gwswr-gs1/gws1 g1r/g1wr ; 
    
   grs=ListCorrelate[rwr,sws,1,0]; 
   gr1=ListCorrelate[rwr,ones,1,0]; 
   (*g1s=ListCorrelate[ones,sws,1,0];*)(* already done *) 
   gwrws=ListCorrelate[wr,ws,1,0]; 
   gwr1=ListCorrelate[wr,ones,1,0]; 
   (*g1ws=ListCorrelate[ones,ws,1,0]*);(* already done *) 
   grsFluct12=grs/gwrws-gr1/gwr1 g1s/g1ws ; 
    
   grr=ListCorrelate[rwr,rwr,1,0]; 
   (*gr1=ListCorrelate[rwr,ones,1,0];*)(* already done *) 
   (*g1r=ListCorrelate[ones,rwr,1,0];*)(* already done *) 
   gwrwr=ListCorrelate[wr,wr,1,0]; 
   (*gwr1=ListCorrelate[wr,ones,1,0];*)(* already done *) 
   (*g1wr=ListCorrelate[ones,wr,1,0];*)(* already done *) 
   grrFluct12=grr/gwrwr-gr1/gwr1 g1r/g1wr; 
    
   (*(************* enforce that vVar = hVar  
***************) 
   x=StandardDeviation [vs]; 
   y=StandardDeviation[hs]; 
   g=(x-y)/(x+y);*) 
    
    
   (************* prob the neg pts are really zero 
****************) 
   (* assume true val of -'ve pt actually zero *) 
   mlpNegVSum=Total[0.5*(1-Sign[vc])*vc2/(2*e2bvc)]; 
   mlpNegHSum=Total[0.5*(1-Sign[hc])*hc2/(2*e2bhc)]; 
   mlpNeg=mlpNegVSum+  mlpNegHSum;  (* vc,hc must both be 
non-neg *) 
   (*Print[vc[[10]],"  ",mlpNegVSum,"  ",mlpNegHSum,"   
",mlpNeg, "  iWt=",iWt];*) 
    
   (********** prob that s,r uncorrelated 
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************************) 
   (*  all "mlp" terms preceded by (1/2)Log[2 π]-
(1/2)Log[nEff] *) 
   (*  distCorr=distCorrFunct[r,s];*) 
   
(**********************************************************
****) 
   RSDistCorr=distCorrFunct[r,s]; 
   RSPmCorr=  wtdCorrCoeff[r,s,ones]; 
   RSWpmCorr=  wtdCorrCoeff[r,s,wr*ws]; 
   mlpRSDistCorr=(1/2)RSDistCorr/(1(*-rho^2*)) nEff;  
   mlpRSPmCorr=(1/2)RSPmCorr2 /(1(*-rho^2*))nEff;   
   mlpRSWpmCorr=(1/2)RSWpmCorr2/( 1(*-rho^2*))nEff;  
    
   (*(******* prob coeffs a0=0,a1=0 **************) 
   wTable=ws*wr; 
   mlpRAvg=wtdLinFit[s,r,1,0,wTable][[4]][[1]]; 
   mlpRSlope=wtdLinFit[s,r,1,1,wTable][[4]][[1]]; 
   (*mlpRCurve=wtdLinFit[s,r,1,2,wTable][[4]][[1]];*) 
   (*mlpR4th=wtdLinFit[s,r,1,3,wTable][[4]][[1]];*)*) 
   wTable=ws*wr; 
   mlpRAvg=0; 
   mlpRSlope=wtdLinFit[s,r,1,1,wTable][[4]][[1]]; 
   mlpRCurve=0; 
    
    
   (*(********** enfoprob that v- & h-variances are same 
*********) 
   varDiff=Variance[vc]-Variance[hc]; 
   varDiffErr=Sqrt[(varOfVar[vc]+varOfVar[hc])/1(*only 1 
pt*)]; 
   mlpVarDiff=(1/2)(varDiff/varDiffErr)^2;  (* d=(vc-bvc)-
(hc-bhc) OK!!!! *) 
   (*Print["dAvg=",  dAvg,"  dAvgErr=",dAvgErr,"  
mlpDAvg1P=",mlpDAvg1P];*)*) 
   mlpVarDiff=0; 
    
   (*(********** prob that true min is zero *********) 
   nMin=16; 
   vcs=Sort[vc]; 
   hcs=Sort[hc]; 
   mlpZeroErr=Sum[vcs[[i]]^2/(2*varV)+ 
hcs[[i]]^2/(2*varH),{i,1,nMin}];*) 
   mlpZeroErr=0; 
    
   (********** overall probability *********) 
   (*      all selected measures           *) 
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   mlpTot=0; 
   mlpTot=mlpTot+0mlpNeg;       (*prob neg pts are really 
zero*) 
   mlpTot=mlpTot+0mlpRSDistCorr;    (*prob that r,s 
uncorrelated*) 
   mlpTot=mlpTot+0mlpRSPmCorr;          (*prob that r,s 
uncorrelated; wtd*) 
   mlpTot=mlpTot+1mlpRSWpmCorr;          (*prob that r,s 
uncorrelated; wtd*) 
    
   mlpTot=mlpTot+0 mlpRAvg;    (*prob that interceptis 
zero*) 
   mlpTot=mlpTot+0mlpRSlope;    (*prob that slope is zero*) 
   mlpTot=mlpTot+0mlpRCurve;    (*prob that slope is zero*) 
   (*mlpTot=mlpTot+1mlpRCurve;*)    (*prob that slope is 
zero*) 
    
   mlpRCurve=mlpZeroErr; 
   mlpTot=mlpTot+0 mlpVarDiff;    
   mlpTot=mlpTot+0 mlpZeroErr; 
    
   mlpTot=mlpTot(*+0 p3*);    (*max of 3 adj constants*) 
    
   Return[mlpTot]  
   ];(*module*) 
(*inFileName="IgE-1-LRB.csv"; 
data=Import[inFileName]; 
bvEff=data[[2;;All,2]];  
bhEff=data[[2;;All,3]];  
vEff=data[[2;;All,8]]; hEff=data[[2;;All,9]];  
dep=depend[vEff,hEff,bvEff,bhEff,2,1, 0,0,4,+.4,0.,0.,-
1.,iFirstDot,iLastDot]; 
Print["nEff=",nEff, "  dep=", dep]; 
isNewMin=1; 
depend[];*) 
 
restIPrint[]; 
 
(**********************************************************
***)  
(* end of "depend" code                                      
*) 
(**********************************************************
***)  
 
(**********************************************************
*********) 
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(* maximize prob wrt g,b,c                                        
*) 
(**********************************************************
*********) 
ClearAll[optimize ]; 
optimize[]:=Module[{(*iWt=2, 
iFirst=1,iLast=1000,kFirst=0,nBkgs=4,kLast=1000,iThreshMode
=0,thresh=0,iOrderSave=4,iGeom=1,g0=.40,b0=0.,c0=0.,f0=-
1.*)}, 
    
   saveIPrint[]; 
   (*progressFileName=base<>"-"<>"progress"<>"-
"<>DateString[]<>".csv"; 
    If [FileExistsQ[progressFileName], 
   Close[progressFileName]; 
   DeleteFile[progressFileName]]; 
   prog=OpenWrite[progressFileName]; *) 
    
   
pInit=depend[vEff,hEff,bvEff,bhEff,iWt,iGeom,0,0,nBkgs,g0,b
0,c0,f0,iFirstDot,iLastDot]; 
   (*Print["pInit=",pInit,"  g0=",g0,"  b0=", b0,"  
c0=",c0,"  f0=", f0,"  iWt=",iWt];*) 
    
   pMin=pInit; 
   iPass=0; 
   qq={0,{{0,0},{0,0},{0,0},{0,0}}}; 
   Off[StringJoin::string]; 
   c=c0; 
   f=f0; 
   isNewMin=1; 
   qq=Monitor[ 
     
FindMinimum[{depend[vEff,hEff,bvEff,bhEff,iWt,iGeom,0,0,nBk
gs,g,b,c,f,iFirstDot,iLastDot],(*b≥ 0&&c≥ 0&&*) -1<g<1(*&& 
-1<f<1*)},{(*{g,g0}*)(*,*){b,b0}(*,{c,c0}*)(*,{f,f0}*)}, 
      EvaluationMonitor:>   
       ( 
        p=mlpTot; 
        iPass=iPass+1; 
        (*WriteString[prog, 
gF[iPass],",",gF[p],",",gF[mlpNeg],",",gF[mlpBkgs],",",gF[m
lpRAvg],",",gF[mlpDAvg],",",gF[mlpRhoSR],",",gF[mlpRhoRS],"
,"gF[mlpRhoSSR],",",gF[mlpRhoSRR],",",gF[g],",",gF[c],",",g
F[b],"\n"];*) 
        If[p<pMin , 
         gMin=g;bMin=b;cMin=c;pMin=p;fMin=f; 
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         isNewMin=1(*;dP[iPass]*), 
         (*else*) isNewMin=0;]; 
        If[p<pGoal|| iPass>= maxPass, Goto[continue]]; 
        If 
[CurrentValue["ControlKey"]==True,Goto[continue]] 
        ),(* end EvalMon*) 
      PrecisionGoal->Automatic (* tried 0 *), 
      AccuracyGoal ->Automatic (* tried 3 *), 
      MaxIterations->1000(*Infinity*), 
      WorkingPrecision->Automatic (*"MachinePrecision"*), 
      Method->Automatic 
      ], (* end FindMin*) 
     "iPass="<>ToString[gF[iPass]] 
      <>" iDot=" <>ToString[gF[iDot]] 
      <>" of " <>ToString[gF[nDots]] 
       
      <>"\n RAvg="<> ToString[gF[mlpRAvg]] 
      <>" RSlope="<> ToString[gF[mlpRSlope]] 
      <>" RCurve="<> ToString[gF[mlpRCurve]] 
      <>" varDiff="<> ToString[gF[mlpVarDiff]] 
      <>" zeroErr="<> ToString[gF[mlpZeroErr]] 
       
      <> "\n mlpNeg=" <> ToString[gF[mlpNeg]] 
      <> " RSDistCorr=" <> ToString[gF[mlpRSDistCorr]] 
      <> " RSPmCorr=" <> ToString[gF[mlpRSPmCorr]] 
      <> " RSWPmCorr=" <> ToString[gF[mlpRSWpmCorr]] 
       
      <>"\n p="<>ToString[gF[p]] 
      <>" g="<>ToString[gF[g]] 
      <> " b="<>ToString[gF[b]] 
      <> " c="<>ToString[gF[c]] 
      <> " f="<>ToString[gF[f]] 
      
     ]; (*end Monitor*) 
    
   Label[continue ]; 
   (*Print["\n iPass=",iPass," pMin=",pMin," gMin=",gMin," 
bMin=",bMin," cMin=", cMin,  " fMin=",fMin];*) 
   (*Print["pause"]; 
   Pause[1*^6];*) 
    
   If[qq[[1]]==0&& p>pGoal, 
    Print["Optimization NOT completed! "  ], 
    (*otherwise*) 
    Print["Optimization successful! - p = ",p]   
    ]; 
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p=depend[vEff,hEff,bvEff,bhEff,iWt,iGeom,kFirst,kLast,nBkgs
,gMin,bMin,cMin,fMin,iFirstDot,iLastDot]; 
   Print["iPass="<>ToString[gF[iPass]] 
     <>" iDot=",ToString[gF[iDot]] 
     <>" of " <>ToString[gF[nDots]] 
      
     <>"\n RAvg="<> ToString[gF[mlpRAvg]] 
     <>" RSlope="<> ToString[gF[mlpRSlope]] 
     <>" RCurve="<> ToString[gF[mlpRCurve]] 
     <>" varDiff="<> ToString[gF[mlpVarDiff]] 
     <>" zeroErr="<> ToString[gF[mlpZeroErr]] 
      
     <> "\n mlpNeg=" <> ToString[gF[mlpNeg]] 
     <> " mlpRSDistCorr=" <> ToString[gF[mlpRSDistCorr]] 
     <> " mlpRSPmCorr=" <> ToString[gF[mlpRSPmCorr]] 
     <> " mlpRSWpmCorr=" <> ToString[gF[mlpRSWpmCorr]] 
      
     <>"\n p="<>ToString[gF[p]] 
     <>" g="<>ToString[gF[g]] 
     <> " b="<>ToString[gF[b]] 
     <> " c="<>ToString[gF[c]] 
     <> " f="<>ToString[gF[f]] 
    ]; 
   Print[{vchcPlot=ListPlot[{vc,hc},PlotLabel->"vc hc"], 
     vchcDiffPlot=ListPlot[{vc-hc},PlotLabel->"vc-hc"], 
     sPlot=ListPlot[{s},PlotLabel->"s"], 
     rPlot=ListPlot[{r},PlotLabel->"r"]} ] ; 
   restIPrint[]; 
    
   b=Table[i,{i,0,150,2}]; 
   (*Print[{Histogram[vc,{b}],Histogram[vc,{b}]}]*) 
   ];   
(*optimize[];*) 
 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
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(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
 
 
(**********************************************************
**********) 
(* show gbc-optimization results                                    
*) 
(**********************************************************
**********) 
ClearAll[showOptResults]; 
showOptResults[]:= ( 
   saveIPrint[]; 
   iPrint=0; 
   gNew=gMin; 
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   bNew=bMin; 
   cNew=cMin; 
   fNew=fMin; 
   
(*depend[vEff_List,hEff_List,bvEff_List,bhEff_List,iWt_Inte
ger,iGeom_Integer,kFirst_Integer,kLast_Integer,nBkgsDummy_I
nteger,gDummy_Real,bDummy_Real,cDummy_Real,fDummy_Real,iFir
stDot_Integer,iLastDot_Integer*) 
    (*Print["pOpt=",depend[vEff,hEff,bvEff,bhEff,iWt, 
iGeom,kFirst,kLast,nBkgs,gNew,bNew,cNew,fNew,iFirst,iLastDo
t],"  gNew=",gNew,"  bNew=", bNew,"  cNew=",cNew,"  
fNew=",fNew]*); 
   SetOptions[{Plot,ListPlot},ImageSize->{144,108}]; 
   ListPlot[{vc,hc},PlotRange-
>Automatic(*{0,100}*),PlotLabel->"vc,hc"]; 
    
   
gsrPlots={gsrFullPlot=ListPlot[{gsrFluct12[[2;;]]},PlotLabe
l->"gsrFluctFull"], 
     gsr500Plot=ListPlot[{gsrFluct12[[2;;500]]},PlotLabel-
>"gsrFluct500"], 
     gsr200Plot=ListPlot[{gsrFluct12[[2;;200]]},PlotLabel-
>"gsrFluct200"], 
     gsr100Plot=ListPlot[{gsrFluct12[[2;;100]]},PlotLabel-
>"gsrFluct100"]}; 
   gPrint[gsrPlots]; 
    
   
grsPlots={grsFullPlot=ListPlot[{grsFluct12[[2;;]]},PlotLabe
l->"grsFluctFull"], 
     grs500Plot=ListPlot[{grsFluct12[[2;;500]]},PlotLabel-
>"grsFluct500"], 
     grs200Plot=ListPlot[{grsFluct12[[2;;200]]},PlotLabel-
>"grsFluct200"], 
     grs100Plot=ListPlot[{grsFluct12[[2;;100]]},PlotLabel-
>"grsFluct100"]}; 
   gPrint[grsPlots]; 
    
   
gssPlots={gssFullPlot=ListPlot[{gssFluct12[[2;;]]},PlotLabe
l->"gssFluctFull"], 
     gss500Plot=ListPlot[{gssFluct12[[2;;500]]},PlotLabel-
>"gssFluct500"], 
     gss200Plot=ListPlot[{gssFluct12[[2;;200]]},PlotLabel-
>"gssFluct200"], 
     gss100Plot=ListPlot[{gssFluct12[[2;;100]]},PlotLabel-
>"gssFluct100"]}; 



309 
 

   gPrint[gssPlots]; 
    
   
grrPlots={grrFullPlot=ListPlot[{grrFluct12[[2;;]]},PlotLabe
l->"grrFluctFull"], 
     grr500Plot=ListPlot[{grrFluct12[[2;;500]]},PlotLabel-
>"grrFluct500"], 
     grr200Plot=ListPlot[{grrFluct12[[2;;200]]},PlotLabel-
>"grrFluct200"], 
     grr100Plot=ListPlot[{grrFluct12[[2;;100]]},PlotLabel-
>"grrFluct100"]}; 
   Print[grrPlots]; 
   restIPrint[]; 
   ); 
(*showOptResults[]*) 
 
(**********************************************************
*********) 
(*ANIS:  fit anis decays of various ranges                         
*) 
(**********************************************************
*********) 
ClearAll[fitAnisDecay]; 
fitAnisDecay[]:= ( 
   saveIPrint[]; 
   iPrint=0; 
   grFitData=grrFluct12; 
   grFitDataName="grrFluct"; 
   wrr=gwrwr; 
   ClearAll[grFitPlots,grFitPlotFull,grFitPlot500, 
grFitPlot200, grFitPlot100]; 
    
   grFitFull=fitExpDecay[0,grFitData, 
grFitDataName,wrr,nEff,2,Length[grFitData]-1,"grFitFull"]; 
   grkFirstFull=2;grkLastFull=Length[grFitData]; 
   
grSDFull=gSD;grInfFull=gInf;grZeroFull=gZero;grTdFull=gTd; 
   
grInfErrFull=gInfErr;grZeroErrFull=gZeroErr;grTdErrFull=gTd
Err; 
   grFluctCalcFull=fluctCalc;grFitPlotFull=fitPlot; 
    
   grFit500=fitExpDecay[0,grFitData, 
grFitDataName,wrr,nEff,2,500,"grFit500"]; 
   grkFirst500=2;grkLast500=500; 
   grSD500=gSD;grInf500=gInf;grZero500=gZero;grTd500=gTd; 
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grInfErr500=gInfErr;grZeroErr500=gZeroErr;grTdErr500=gTdErr
; 
   grFluctCalc500=fluctCalc;grFitPlot500=fitPlot; 
    
   grFit200=fitExpDecay[0,grFitData, 
grFitDataName,wrr,nEff,2,200,"grFit200"]; 
   grkFirst200=2;grkLast200=200; 
   grSD200=gSD;grInf200=gInf;grZero200=gZero;grTd200=gTd; 
   
grInfErr200=gInfErr;grZeroErr200=gZeroErr;grTdErr200=gTdErr
; 
   grFluctCalc200=fluctCalc;grFitPlot200=fitPlot; 
    
   grFit100=fitExpDecay[0,grFitData, 
grFitDataName,wrr,nEff,2,100,"grFit100"]; 
   grkFirst100=2;grkLast100=100; 
   grSD100=gSD;grInf100=gInf;grZero100=gZero;grTd100=gTd; 
   
grInfErr100=gInfErr;grZeroErr100=gZeroErr;grTdErr100=gTdErr
; 
   grFluctCalc100=fluctCalc;grFitPlot100=fitPlot; 
    
   Print[grFitPlots={grFitPlotFull,grFitPlot500, 
grFitPlot200, grFitPlot100}]; 
   restIPrint[]; 
   ); 
(*fitAnisDecay[]*) 
 
(**********************************************************
*********) 
(*ANIS:  fit single exponential decay - 3 parameters               
*) 
(**********************************************************
*********) 
fitAnisDecay3Pts[]:=( 
   (*gTable=Table[{i-1,fitData[[i]]},{i,nEff}];*) 
   saveIPrint[]; 
   gTable={grrFluct12 
[[2]],grrFluct12[[3]],grrFluct12[[4]]}; 
   wTable={1,1,1}; 
   fitExpDecay[2(*iMode*),gTable, 
Null(*fitDataName*),wTable,3,1,3,Null]; 
   gZero3Pts=gZero; 
   gZeroErr3Pts=gZeroErr; 
   gTd3Pts=gTd; 
   gTdErr3Pts=gTdErr; 
   (*nums[[127]]=Log10[gTd]; 
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   nums[[128]]=(0.434294/gTd)*gTdErr;*) 
   gSD3Pts=gSD); 
 
(**********************************************************
*********) 
(*INTEN:  fit single exponential decay                             
*) 
(**********************************************************
*********) 
 
ClearAll[fitIntenDecay]; 
fitIntenDecay[]:=( 
   saveIPrint[]; 
   iPrint=0; 
   gsFitData=gssFluct12; 
   gsFitDataName="gssFluct"; 
   wss=gwsws; 
    
   (*iMode=r - force fitted flucts to go to zero *) 
   gsFitFull=fitExpDecay[0,gsFitData, 
gsFitDataName,wss,nEff,2,nEff,"gsFitFull"]; 
   gskFirstFull=2;gskLastFull=999; 
   
gsSDFull=gSD;gsInfFull=gInf;gsZeroFull=gZero;gsTdFull=gTd; 
   
gsInfErrFull=gInfErr;gsZeroErrFull=gZeroErr;gsTdErrFull=gTd
Err; 
   gsFluctCalcFull=fluctCalc;gsFitPlotFull=fitPlot; 
    
   gsFit500=fitExpDecay[0,gsFitData, 
gsFitDataName,wss,nEff,2,500,"gsFit500"]; 
   gskFirst500=2;gskLast500=500; 
   gsSD500=gSD;gsInf500=gInf;gsZero500=gZero;gsTd500=gTd; 
   
gsInfErr500=gInfErr;gsZeroErr500=gZeroErr;gsTdErr500=gTdErr
; 
   gsFluctCalc500=fluctCalc;gsFitPlot500=fitPlot; 
    
   gsFit200=fitExpDecay[0,gsFitData, 
gsFitDataName,wss,nEff,2,200,"gsFit200"]; 
   gskFirst200=2;gskLast200=200; 
   gsSD200=gSD;gsInf200=gInf;gsZero200=gZero;gsTd200=gTd; 
   
gsInfErr200=gInfErr;gsZeroErr200=gZeroErr;gsTdErr200=gTdErr
; 
   gsFluctCalc200=fluctCalc;gsFitPlot200=fitPlot; 
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   gsFit100=fitExpDecay[0,gsFitData, 
gsFitDataName,wss,nEff,2,100,"gsFit100"]; 
   gskFirst100=2;gskLast100=100; 
   gsSD100=gSD;gsInf100=gInf;gsZero100=gZero;gsTd100=gTd; 
   
gsInfErr100=gInfErr;gsZeroErr100=gZeroErr;gsTdErr100=gTdErr
; 
   gsFluctCalc100=fluctCalc;(gsFitPlot100=fitPlot); 
    
   gPrint[gsFitPlots={gsFitPlotFull,gsFitPlot500, 
gsFitPlot200, gsFitPlot100}]; 
   restIPrint[]; 
   ); 
 
(*setiPrint[0];fitIntenDecay[];restIPrint[];*) 
 
(**********************************************************
*******) 
(* save results as CSV                                           
*) 
(**********************************************************
*******) 
 
ClearAll[saveResults]; 
saveResults[]:=( 
   (* generate timestamp for all output this pass  *) 
   saveIPrint[0]; 
   isStamp=True; 
   base= StringTake[inFileName, StringLength[inFileName]-
4]<>If[iDot!=-1,"-
d"<>IntegerString[iDot,10,2],""];tdList=DateList[]; 
   dateFormat={"Year","-","Month","-","Day"}; 
   timeFormat={"Hour",":","Minute",":","Second"}; 
   dateString=DateString[tdList,dateFormat]; 
   timeString=DateString[tdList,timeFormat]; 
   timeStampFormat={(*"-",*)"Year",(*"-",*)"Month",(*"-
",*)"Day","-","Hour24","Minute","Second"}; 
   
timeStampString=If[isStamp,DateString[tdList,timeStampForma
t],""]; 
   (* dP[timeStampString];*) 
    
   (* set up results file *) 
   resultsFileName=base<>"-"<>"results"<>"-
"<>timeStampString<>".csv"; 
    
   If [FileExistsQ[resultsFileName], 
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    q=Close[resultsFileName]; 
    gPrint[q]; 
    DeleteFile[resultsFileName] 
    ]; 
   res=OpenWrite[resultsFileName];  
   nameCol=1; 
   valCol=2; 
    
   ClearAll[rA]; (* rA= "Results Array"  *) 
   (* fill columns C through V with all pts *) 
   rA=Prepend[Table["",{i,nEff}],"param"]; 
   rA=appendCol[rA,Prepend[Table["",{i,nEff}],"value"]]; 
   rA=appendCol[rA,Prepend[Table[i,{i,nEff}],"iPt"]]; 
   rA=appendCol[rA,Prepend[vEff, "vEff"]]; 
   rA=appendCol[rA,Prepend[hEff, "hEff"]] ; 
   rA=appendCol[rA,Prepend[bvEff, "bvEff"]] ; 
   rA=appendCol[rA,Prepend[bhEff, "bhEff"]] ; 
   rA=appendCol[rA,Prepend[vc, "vc"]] ; 
   rA=appendCol[rA,Prepend[hc, "hc"]] ; 
   rA=appendCol[rA,Prepend[s, "s"]] ; 
   rA=appendCol[rA,Prepend[d, "d"] ]; 
   rA=appendCol[rA,Prepend[r, "r"]] ; 
   rA=appendCol[rA,Prepend[wr, "wr"]] ;   
   (*rA=appendCol[rA,Prepend[gssFluct, "gssFluct"]] ;*) 
   rA=appendCol[rA,Prepend[gssFluct12, "gssFluct12"]]; 
   (*rA=appendCol[rA,Prepend[gsrFluct, "gsrFluct"]] ;*) 
   rA=appendCol[rA,Prepend[gsrFluct12, "gsrFluct12"]]; 
   (*rA=appendCol[rA,Prepend[grsFluct, "grsFluct"]] ;*) 
   rA=appendCol[rA,Prepend[grsFluct12, "grsFluct12"]]; 
   (*rA=appendCol[rA,Prepend[grrFluct, "grrFluct"]] ;*) 
   rA=appendCol[rA,Prepend[grrFluct12, "grrFluct12"]]; 
   rA=appendCol[rA,Prepend[wrr, "wrr"]] ; 
   rA=appendCol[rA,Prepend[grFluctCalcFull, 
"grrFluctCalcFull"]] ; 
   rA=appendCol[rA,Prepend[grFluctCalc500, 
"grrFluctCalc500"]] ; 
   rA=appendCol[rA,Prepend[grFluctCalc200, 
"grrFluctCalc200"]] ; 
   rA=appendCol[rA,Prepend[grFluctCalc100, 
"grrFluctCalc100"]]; 
    
   (* fill cols A and B with names and values of params 
*)rA=addParam[rA,nameCol,valCol,"nb",NotebookFileName[]];rA
=addParam[rA,nameCol,valCol,"inFileName",inFileName]; 
   rA=addParam[rA,nameCol,valCol,"iDot",iDot]; 
   rA=addParam[rA,nameCol,valCol,"nEff",nEff]; 
   rA=addParam[rA,nameCol,valCol,"cBkg",cBkg]; 
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   rA=addParam[rA,nameCol,valCol,"thMode",0];  (* no longer 
used*)   
   rA=addParam[rA,nameCol,valCol,"thLev",0]; (* no longer 
used*)   
   rA=addParam[rA,nameCol,valCol,"nCorr",0]; (* no longer 
used*)   
   rA=addParam[rA,nameCol,valCol,"n2v",0]; (* no longer 
used*)   
   rA=addParam[rA,nameCol,valCol,"n2h",0]; (* no longer 
used*)   
   rA=addParam[rA,nameCol,valCol,"n2vc",0]; (* no longer 
used*)   
   rA=addParam[rA,nameCol,valCol,"n2sc",0]; (* no longer 
used*)   
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"kMin",kMin];  
   rA=addParam[rA,nameCol,valCol,"kMax",kMax]; 
   
rA=addParam[rA,nameCol,valCol,"mlpIntercept",mlpRAvg(*mlpIn
tercept*)]; 
   
rA=addParam[rA,nameCol,valCol,"mlpSlope",mlpRSlope(*mlpSlop
e*)]; 
   
rA=addParam[rA,nameCol,valCol,"mlpLFeedthru",mlpVarDiff]; 
   rA=addParam[rA,nameCol,valCol,"mlpTot",mlpTot]; 
   rA=addParam[rA,nameCol,valCol,"unused1",0]; 
   rA=addParam[rA,nameCol,valCol,"unused2",0];  
   rA=addParam[rA,nameCol,valCol,"iPass",iPass]; 
   rA=addParam[rA,nameCol,valCol,"pMin",pMin]; 
   rA=addParam[rA,nameCol,valCol,"gMin",gMin]; 
   rA=addParam[rA,nameCol,valCol,"bMin",bMin]; 
   rA=addParam[rA,nameCol,valCol,"cMin",cMin]; 
   rA=addParam[rA,nameCol,valCol,"fMin",fMin]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"rFitData",grFitDataName]; 
   
rA=addParam[rA,nameCol,valCol,"krFirstFull",grkFirstFull]; 
   rA=addParam[rA,nameCol,valCol,"krLastFull",grkLastFull]; 
   rA=addParam[rA,nameCol,valCol,"grSDFull",grSDFull]; 
   rA=addParam[rA,nameCol,valCol,"grZeroFull",grZeroFull]; 
   
rA=addParam[rA,nameCol,valCol,"grZeroErrFull",grZeroErrFull
]; 
   rA=addParam[rA,nameCol,valCol,"grInfFull",grInfFull]; 



315 
 

   
rA=addParam[rA,nameCol,valCol,"grInfErrFull",grInfErrFull]; 
   rA=addParam[rA,nameCol,valCol,"grTdFull",grTdFull]; 
   
rA=addParam[rA,nameCol,valCol,"grTdErrFull",grTdErrFull]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"rFitData",grFitDataName]; 
   rA=addParam[rA,nameCol,valCol,"krFirst500",grkFirst500]; 
   rA=addParam[rA,nameCol,valCol,"krLast500",grkLast500]; 
   rA=addParam[rA,nameCol,valCol,"grSD500",grSD500]; 
   
rA=addParam[rA,nameCol,valCol,"grZero500",grZero500];rA=add
Param[rA,nameCol,valCol,"grZeroErr500",grZeroErr500];rA=add
Param[rA,nameCol,valCol,"grInf500",grInf500];rA=addParam[rA
,nameCol,valCol,"grInfErr500",grInfErr500]; 
   rA=addParam[rA,nameCol,valCol,"grTd500",grTd500]; 
   rA=addParam[rA,nameCol,valCol,"grTdErr500",grTdErr500]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"rFitData",grFitDataName]; 
   rA=addParam[rA,nameCol,valCol,"krFirst200",grkFirst200]; 
   rA=addParam[rA,nameCol,valCol,"krLast200",grkLast200]; 
   rA=addParam[rA,nameCol,valCol,"grSD200",grSD200]; 
   
rA=addParam[rA,nameCol,valCol,"grZero200",grZero200];rA=add
Param[rA,nameCol,valCol,"grZeroErr200",grZeroErr200];rA=add
Param[rA,nameCol,valCol,"grInf200",grInf200]; 
   
rA=addParam[rA,nameCol,valCol,"grInfErr200",grInfErr200]; 
   rA=addParam[rA,nameCol,valCol,"grTd200",grTd200]; 
   rA=addParam[rA,nameCol,valCol,"grTdErr200",grTdErr200]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"rFitData",grFitDataName]; 
   rA=addParam[rA,nameCol,valCol,"krFirst100",grkFirst100]; 
   rA=addParam[rA,nameCol,valCol,"krLast100",grkLast100]; 
   rA=addParam[rA,nameCol,valCol,"grSD100",grSD100]; 
   rA=addParam[rA,nameCol,valCol,"grZero100",grZero100]; 
   
rA=addParam[rA,nameCol,valCol,"grZeroErr100",grZeroErr100]; 
   rA=addParam[rA,nameCol,valCol,"grInf100",grInf100]; 
   
rA=addParam[rA,nameCol,valCol,"grInfErr100",grInfErr100]; 
   rA=addParam[rA,nameCol,valCol,"grTd100",grTd100]; 
   rA=addParam[rA,nameCol,valCol,"grTdErr100",grTdErr100]; 
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   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"sFitData",gsFitDataName]; 
   
rA=addParam[rA,nameCol,valCol,"ksFirstFull",gskFirstFull]; 
   rA=addParam[rA,nameCol,valCol,"ksLastFull",gskLastFull]; 
   rA=addParam[rA,nameCol,valCol,"gsSDFull",gsSDFull]; 
   rA=addParam[rA,nameCol,valCol,"gsZeroFull",gsZeroFull]; 
   
rA=addParam[rA,nameCol,valCol,"gsZeroErrFull",gsZeroErrFull
]; 
   rA=addParam[rA,nameCol,valCol,"gsInfFull",gsInfFull]; 
   
rA=addParam[rA,nameCol,valCol,"gsInfErrFull",gsInfErrFull]; 
   rA=addParam[rA,nameCol,valCol,"gsTdFull",gsTdFull]; 
   
rA=addParam[rA,nameCol,valCol,"gsTdErrFull",gsTdErrFull]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"sFitData",gsFitDataName]; 
   rA=addParam[rA,nameCol,valCol,"ksFirst500",gskFirst500]; 
   rA=addParam[rA,nameCol,valCol,"ksLast500",gskLast500]; 
   rA=addParam[rA,nameCol,valCol,"gsSD500",gsSD500]; 
   rA=addParam[rA,nameCol,valCol,"gsZero500",gsZero500]; 
   
rA=addParam[rA,nameCol,valCol,"gsZeroErr500",gsZeroErr500]; 
   rA=addParam[rA,nameCol,valCol,"gsInf500",gsInf500]; 
   
rA=addParam[rA,nameCol,valCol,"gsInfErr500",gsInfErr500]; 
   rA=addParam[rA,nameCol,valCol,"gsTd500",gsTd500]; 
   rA=addParam[rA,nameCol,valCol,"gsTdErr500",gsTdErr500]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"sFitData",gsFitDataName]; 
   rA=addParam[rA,nameCol,valCol,"ksFirst200",gskFirst200]; 
   rA=addParam[rA,nameCol,valCol,"ksLast200",gskLast200]; 
   rA=addParam[rA,nameCol,valCol,"gsSD200",gsSD200]; 
   rA=addParam[rA,nameCol,valCol,"gsZero200",gsZero200]; 
   
rA=addParam[rA,nameCol,valCol,"gsZeroErr200",gsZeroErr200]; 
   rA=addParam[rA,nameCol,valCol,"gsInf200",gsInf200]; 
   
rA=addParam[rA,nameCol,valCol,"gsInfErr200",gsInfErr200]; 
   rA=addParam[rA,nameCol,valCol,"gsTd200",gsTd200]; 
   rA=addParam[rA,nameCol,valCol,"gsTdErr200",gsTdErr200]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"sFitData",gsFitDataName]; 
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   rA=addParam[rA,nameCol,valCol,"ksFirst100",gskFirst100]; 
   rA=addParam[rA,nameCol,valCol,"ksLast100",gskLast100]; 
   rA=addParam[rA,nameCol,valCol,"gsSD100",gsSD100]; 
   rA=addParam[rA,nameCol,valCol,"gsZero100",gsZero100]; 
   
rA=addParam[rA,nameCol,valCol,"gsZeroErr100",gsZeroErr100]; 
   rA=addParam[rA,nameCol,valCol,"gsInf100",gsInf100]; 
   
rA=addParam[rA,nameCol,valCol,"gsInfErr100",gsInfErr100]; 
   rA=addParam[rA,nameCol,valCol,"gsTd100",gsTd100]; 
   rA=addParam[rA,nameCol,valCol,"gsTdErr100",gsTdErr100]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   
rA=addParam[rA,nameCol,valCol,"grrFluct12[[2]]",grrFluct12[
[2]]]; 
   
rA=addParam[rA,nameCol,valCol,"grrFluct12[[3]]",grrFluct12[
[3]]]; 
   
rA=addParam[rA,nameCol,valCol,"grrFluct12[[4]]",grrFluct12[
[4]]]; 
   rA=addParam[rA,nameCol,valCol,"gZero3Pts",gZero3Pts]; 
   
rA=addParam[rA,nameCol,valCol,"gZeroErr3Pts",gZeroErr3Pts]; 
   rA=addParam[rA,nameCol,valCol,"gTd3Pts",gTd3Pts]; 
   rA=addParam[rA,nameCol,valCol,"gTdErr3Pts",gTdErr3Pts]; 
   rA=addParam[rA,nameCol,valCol,"gSD3Pts",gSD3Pts]; 
    
   rA=addParam[rA,nameCol,valCol," "," 
"];rA=addParam[rA,nameCol,valCol,"model",model]; 
    
   (*rA//MatrixForm*) 
   (*Print[Length[rA]]; 
   Print[rA[[35]]]; 
   Abort[];*) 
    
   Do[(*i down*) 
    jLast=Length[rA[[i]]]; 
    Do[(*j across*) 
     WriteString[res,ToString[ff[rA[[i,j]]]]]; 
     
If[j!=jLast,WriteString[res,","],WriteString[res,"\n"]] 
     ,{j,1,jLast} 
     ] 
    ,{i,Length[rA]} 
    ]; 
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   Close[res]; 
   Print["results filename= ",resultsFileName]; 
   restIPrint[] 
   ); 
(*saveResults[];*) 
 
 
(**********************************************************
*********) 
(* combine all graphics and export                                 
*) 
(**********************************************************
*********) 
ClearAll[savePlots]; 
savePlots[]:= 
  ( 
   saveIPrint[0]; 
   ClearAll[pageLabel]; 
   
(*bs(*BaseStyle*)={FontFamily "CourierNew",FontSize 12};*) 
   pageLabel= 
    Framed[ 
     Graphics[ 
      Inset[ 
       Pane[ 
        TextCell[ 
         StringJoin[inFileName," = 
inFileName","\n",ToString[ iDot ] ," = iDot" ,   
"\n",FileBaseName[NotebookFileName[]]," = 
notebook","\n",dateString," = date","\n", timeString, " = 
time"], 
         "Text", 
         FontSize->10 
         ], 
        144 (*pane width pts*) 
        ], 
       {0,0} (*inset pos*) 
       ], 
      ImageSize->{144,108} 
      ] 
     ]; 
   allPlots=GraphicsGrid[{ 
      {pageLabel,vhEffPlot,bkgEffPlot, bkgCorrPlot}, 
      {vchcPlot,vchcDiffPlot,sPlot,rPlot}, 
      {gsrFullPlot, gsr500Plot ,gsr200Plot, gsr100Plot}, 
      {grsFullPlot,grs500Plot,grs200Plot,grs100Plot}, 
      {gsFitPlotFull,gsFitPlot500, gsFitPlot200, 
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gsFitPlot100}, 
      {grFitPlotFull,grFitPlot500, grFitPlot200, 
grFitPlot100} 
      }, ImageMargins->{{36,36},{36,36}}]; 
   plotFileName=base<>"-"<>"plots"<>"-
"<>timeStampString<>".pdf"; 
   Export [plotFileName, allPlots]; 
   Print["plot filename= ",plotFileName]; 
   restIPrint[]; 
   ); 
(*savePlots[]*) 
 
(**********************************************************
**********) 
(* show analysis done this dot                                     
*) 
(**********************************************************
**********) 
ClearAll[done]; 
done[]:=Print["dot ", iDot, " processed and products 
saved\n\n"]; 
(*done[]*) 
 
(**********************************************************
**********) 
(* process one dot completely                                       
*) 
(**********************************************************
**********) 
ClearAll[processOneDot]; 
processOneDot[]:= 
  (optimize[]; 
   showOptResults[]; 
   fitAnisDecay[]; 
   fitAnisDecay3Pts[]; 
   fitIntenDecay[]; 
   saveResults[]; 
   savePlots[]; 
   done[]); 
(*processOneDot[]*) 
 
(**********************************************************
**) 
(*             process dots this file                       
*) 
(*             iDot=-1  no background traces               
*) 
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(**********************************************************
**) 
ClearAll[dotsThisFile]; 
dotsThisFile[(*inFileName_,iFirstDot_,iLastDot_*)]:=Module[
{(*inFileName*)(*,iFirstRow,isBkgs,data,dim,iLastRow,nCols,
nDots,n,iDot,cBkg,iTime,iv,ih,ibv,ibh,ibTime,v,h,bv,bh,bvf,
bhf,gbv,gbh,vhRawPlot,bkgRawPlot, 
bkgCorrPlot,inputPlot,s,dep*)}, 
   saveIPrint[]; 
    
   (* generate timestamp for all output this pass  *) 
   isStamp=True; 
   tdList=DateList[]; 
   dateFormat={"Year","-","Month","-","Day"}; 
   timeFormat={"Hour",":","Minute",":","Second"}; 
   dateString=DateString[tdList,dateFormat]; 
   timeString=DateString[tdList,timeFormat]; 
   timeStampFormat={(*"-",*)"Year",(*"-",*)"Month",(*"-
",*)"Day","-","Hour24","Minute","Second"}; 
   
timeStampString=If[isStamp,DateString[tdList,timeStampForma
t],""];  
   (*dP[timeStampString];*) 
    
   (*inFileName="IgE-1-LRB.csv"; 
   q=DialogInput[{},Column[ 
   
{"inFileName=\t"InputField[Dynamic[inFileName],String,Align
ment Right], 
   
(*"isBkgs=\t"InputField[Dynamic[isBkgs],Number,Alignment Ri
ght], 
   
"cBkgs=\t"InputField[Dynamic[cBkg],Number,Alignment Right], 
   
"iFirst=\t"InputField[Dynamic[iFirstRow],Number,Alignment R
ight],*) 
   Button["proceed",DialogReturn[{inFileName, 
isBkgs,cBkg,iFirst}]]}]]; 
   inFileName=q[[1]];*)(* dP[inFileName];*) 
    
   data=Import[inFileName];(*dP[inFileName];*) 
   dim=Dimensions[data]; (*dP[dim];*) 
   len=dim[[1]];(*dP[len];*) 
   nCols=dim[[2]]; (*dP[nCols];*) 
   If[Mod[nCols,3]!=0, Print["nCols not divisible by 
3"];Exit[]]; 
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   nDots=(nCols-6)/3; (*dP[nDots];*) 
   (*nDots=1;*) 
   n(*num pts*)=len-iFirst +1; (*dP[n];*) 
   i1=If[iFirstDot<1, 1,iFirstDot]; 
   i2=If[iLastDot<1, nDots,iLastDot]; 
    
   For [iDot=i1,iDot<=i2,iDot++, 
    (*Print info this dot*) 
    Print["Analyzing ",inFileName,"  dot=", iDot, " of ", 
nDots]; 
    Print["Model: ",model]; 
    base= StringTake[inFileName, StringLength[inFileName]-
4]<>If[iDot!=-1,"-d"<>IntegerString[iDot,10,2],""]; 
    ibTime=1;ibv=2;ibh=3; 
    iTime=4+3*iDot;iv=5+3*iDot;ih=6+3*iDot; 
    dataRange={}; 
    time=data[[iFirst;;len,iTime]]; (*1st dim is DOWN, 2nd 
ACROSS *) 
    vEff=data[[iFirst;;len,iv]]; (*starts 2nd row, 
indicated col *) 
    hEff=data[[iFirst;;len,ih]]; (*starts 2nd row, 
indicated col *) 
    If [iDot!=-1, (* yes, bkgs *) 
     bvEff=data[[iFirst;;len,ibv]]; (*starts 2nd row, 
indicated col *) 
     bhEff=data[[iFirst;;len,ibh]], 
     (*else*) 
     bvEff=Table[0,{n}]; 
     bhEff=Table[0,{n}] 
     ];(*if*) 
     
    bvf=bvEff-Mean[bvEff];  bhf=bhEff-Mean[bhEff];  
    gbv=dataCorrelate[bvf,bvf]; 
    gbh=dataCorrelate[bhf,bhf]; 
    range={0, 1.25Max[vEff,hEff]}; 
    inputPlots={ 
      vhEffPlot=ListPlot[{vEff,hEff},PlotLabel-
>"vhEff",PlotRange->range], 
      bkgEffPlot=ListPlot[{bvEff,bhEff},PlotLabel-
>"bkgsRaw",PlotRange-
>range],bkgCorrPlot=ListPlot[{gbv,gbh},PlotLabel-
>"bkgCorr"]}; 
    ListPlot[{gbv,gbh},PlotLabel->"bkgCorr"]; 
    processOneDot[] 
    ] ;(*for*) 
   restIPrint[];(* ";" needed here; otherwise prints "0"*) 
   ]; (*module*) 
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(*inFileName="IgE-1-LRB.csv";dotsThisFile[];*) 
  
  
 
(**********************************************************
**********) 
(*               process all dots all files                                   
*) 
(**********************************************************
**********) 
ClearAll[dotsAllFiles]; 
dotsAllFiles[]:= 
  (fileList=getFileList[]; 
   nFiles=Length[fileList]; 
   iFirstFile=1; iLastFile=2; 
   If[iLastFile==0, iLastFile=nFiles]; 
   iFirstDot=2;iLastDot=5; 
   For[i=iFirstFile,i<=iLastFile,i++, 
    inFileName=fileList[[i]];  
    (*inFileName="IgE-1-LRB.csv"; *)(* REMOVE THIS to 
analyze all QD in arb directory *) 
    model="v120-NewGC-wtdpmc"; (* THIS MUST BE FILLED IN 
BEFORE STARTING ANALYSIS *) 
    dotsThisFile[] 
    ]); 
dotsAllFiles[]  
 Analyzing  2013-01-14-IgE-4-LRB.csv   dot= 2  of  11 
 Model:  v120-NewGC-wtdpmc 
 Optimization successful! - p =  0.0000333759 
 iPass=11 iDot= 2 of 11 
  RAvg=0 RSlope=20.8732 RCurve=0 varDiff=0 zeroErr=0 
  mlpNeg=47.6623 mlpRSDistCorr=103.419 mlpRSPmCorr=8.25468 
mlpRSWpmCorr=0.0000333759 
  p=0.0000333759 g=0.367622 b=-4.30105 c=-9.48952 f=300 
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 { , , ,

} 

 { , , ,

} 
 results filename=  2013-01-14-IgE-4-LRB-d02-results-
20200728-150405.csv 
 plot filename=  2013-01-14-IgE-4-LRB-d02-plots-20200728-
150405.pdf 
 dot  2  processed and products saved 
  
  
 Analyzing  2013-01-14-IgE-4-LRB.csv   dot= 3  of  11 
 Model:  v120-NewGC-wtdpmc 
 Optimization successful! - p =  7.91313*10-8 
 iPass=11 iDot= 3 of 11 
  RAvg=0 RSlope=5.58685 RCurve=0 varDiff=0 zeroErr=0 
  mlpNeg=0 mlpRSDistCorr=19.0368 mlpRSPmCorr=3.09615 
mlpRSWpmCorr=7.91313e-8 
  p=7.91313e-8 g=0.350105 b=1.91124 c=-26.1886 f=300 
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} 

 { , , ,

} 

 { , , ,

} 
 NonlinearModelFit::cvmit: Failed to converge to the 
requested accuracy or precision within 100 iterations. 
 results filename=  2013-01-14-IgE-4-LRB-d03-results-
20200728-150411.csv 
 plot filename=  2013-01-14-IgE-4-LRB-d03-plots-20200728-
150411.pdf 
 dot  3  processed and products saved 
  
  
 Analyzing  2013-01-14-IgE-4-LRB.csv   dot= 4  of  11 
 Model:  v120-NewGC-wtdpmc 
 Optimization successful! - p =  2.75128*10-6 
 iPass=11 iDot= 4 of 11 
  RAvg=0 RSlope=10.0824 RCurve=0 varDiff=0 zeroErr=0 
  mlpNeg=0 mlpRSDistCorr=4.03122 mlpRSPmCorr=1.12456 
mlpRSWpmCorr=2.75128e-6 
  p=2.75128e-6 g=0.459352 b=2.09034 c=-12.734 f=300 
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 { , , ,

} 

 { , , ,

} 

 { , , ,

} 
 results filename=  2013-01-14-IgE-4-LRB-d04-results-
20200728-150417.csv 
 plot filename=  2013-01-14-IgE-4-LRB-d04-plots-20200728-
150417.pdf 
 dot  4  processed and products saved 
  
  
 Analyzing  2013-01-14-IgE-4-LRB.csv   dot= 5  of  11 
 Model:  v120-NewGC-wtdpmc 
 Optimization successful! - p =  0.0000151239 
 iPass=11 iDot= 5 of 11 
  RAvg=0 RSlope=10.8477 RCurve=0 varDiff=0 zeroErr=0 
  mlpNeg=2.24106 mlpRSDistCorr=21.7861 mlpRSPmCorr=27.7224 
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mlpRSWpmCorr=0.0000151239 
  p=0.0000151239 g=0.297798 b=-2.28086 c=-3.29489 f=300 

 { , , ,

} 

 { , , ,

} 

 { , , ,

} 
 results filename=  2013-01-14-IgE-4-LRB-d05-results-
20200728-150423.csv 
 plot filename=  2013-01-14-IgE-4-LRB-d05-plots-20200728-
150423.pdf 
 dot  5  processed and products saved 
  
  
 Analyzing  2013-01-14-IgE-5-LRB.csv   dot= 2  of  13 
 Model:  v120-NewGC-wtdpmc 
 Optimization successful! - p =  0.00827842 
 iPass=1 iDot= 2 of 13 
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  RAvg=0 RSlope=0.686262 RCurve=0 varDiff=0 zeroErr=0 
  mlpNeg=0 mlpRSDistCorr=1.62927 mlpRSPmCorr=0.722485 
mlpRSWpmCorr=0.124673 
  p=0.124673 g=0.437762 b=-2.28086 c=-2.58008 f=300 

 { , , ,
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} 
 results filename=  2013-01-14-IgE-5-LRB-d02-results-
20200728-150428.csv 
 plot filename=  2013-01-14-IgE-5-LRB-d02-plots-20200728-
150428.pdf 
 dot  2  processed and products saved 
  
  
 Analyzing  2013-01-14-IgE-5-LRB.csv   dot= 3  of  13 
 Model:  v120-NewGC-wtdpmc 
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 Optimization successful! - p =  1.96067*10-6 
 iPass=18 iDot= 3 of 13 
  RAvg=0 RSlope=7.68376 RCurve=0 varDiff=0 zeroErr=0 
  mlpNeg=195.729 mlpRSDistCorr=63.6675 
mlpRSPmCorr=0.0974481 mlpRSWpmCorr=1.96067e-6 
  p=1.96067e-6 g=0.479288 b=-2.46901 c=3.63387 f=300 

 { , , ,

} 

 { , , ,

} 

 { , , ,

} 
 results filename=  2013-01-14-IgE-5-LRB-d03-results-
20200728-150435.csv 
 plot filename=  2013-01-14-IgE-5-LRB-d03-plots-20200728-
150435.pdf 
 dot  3  processed and products saved 
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 Analyzing  2013-01-14-IgE-5-LRB.csv   dot= 4  of  13 
 Model:  v120-NewGC-wtdpmc 
 Optimization successful! - p =  0.0000251235 
 iPass=11 iDot= 4 of 13 
  RAvg=0 RSlope=15.2808 RCurve=0 varDiff=0 zeroErr=0 
  mlpNeg=0 mlpRSDistCorr=19.653 mlpRSPmCorr=15.9208 
mlpRSWpmCorr=0.0000251235 
  p=0.0000251235 g=0.289786 b=3.17398 c=-6.38602 f=300 

 { , , ,

} 

 { , , ,

} 

 { , , ,

} 
 results filename=  2013-01-14-IgE-5-LRB-d04-results-
20200728-150441.csv 
 plot filename=  2013-01-14-IgE-5-LRB-d04-plots-20200728-
150441.pdf 
 dot  4  processed and products saved 
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 Analyzing  2013-01-14-IgE-5-LRB.csv   dot= 5  of  13 
 Model:  v120-NewGC-wtdpmc 
 Optimization successful! - p =  0.00184716 
 iPass=11 iDot= 5 of 13 
  RAvg=0 RSlope=17.3646 RCurve=0 varDiff=0 zeroErr=0 
  mlpNeg=0.0135595 mlpRSDistCorr=49.0963 mlpRSPmCorr=53.747 
mlpRSWpmCorr=0.00184716 
  p=0.00184716 g=0.262132 b=4.80445 c=-11.0218 f=300 

 { , , ,

} 

 { , , ,

} 

 { , , ,

} 
 results filename=  2013-01-14-IgE-5-LRB-d05-results-
20200728-150447.csv 
 plot filename=  2013-01-14-IgE-5-LRB-d05-plots-20200728-
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150447.pdf 
 dot  5  processed and products saved 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Program Code 3: Image Corr v.140 
 
 
(* GOAL: assign b, c and g-factor to QD traces  *) 
(* so as to minimize dependence of r and s  *) 
(* use the new defn of g as 1+f and 1-f  *) 
(**********************************************************
) 
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(**********************************************************
) 
(*  initialize Mathematica system                         
*) 
(**********************************************************
) 
ClearSystemCache[]; 
SetDirectory[NotebookDirectory[]]; 
Needs["CCompilerDriver`"]; 
Needs["SymbolicC`"]; 
Needs["CompiledFunctionTools`"]; 
Unprotect[CompiledFunctionTools`Private`getInstruction]; 
CompiledFunctionTools`Private`getInstruction[line_,{0,_}]:=
CompiledFunctionTools`Private`getInstruction[line,{3,1}] 
SetDirectory[NotebookDirectory[]]; 
(*SetOptions[$FrontEndSession,PrintingStyleEnvironment "Wor
king"];*) 
Off[General::munfl]; 
{\pard{}}[FittedModel::precw]; 
Off[NonlinearModelFit::sszero]; 
Off[FittedModel::constr]; 
 
ClearAll[gPrint, 
one,remOdd,dP,aP,se,restIPrint,saveIPrint]; 
gPrint= If[iPrint!=0,Print[##]]&; 
iPrint=1; 
iPrintS=1; 
one=#1&; 
remOdd[e_, x_]:=((e/.{x->Power[x,2]})/.{ x2->0, x6->0, x10-> 
0,x14-> 0})/.{x-> x1/2} (*remove odd pwrs of x*) 
SetAttributes[dP,HoldAll]; 
dP[z_]:=If[(iPrint!=0 &&ValueQ[z]==True)|| 
(ValueQ[iPrint]==False),Print[HoldForm[z],"=",ReleaseHold[z
](*//MatrixForm*)]]; (* debug print showing variable name*) 
aP[a_]:=Module[{last},last=Min[8, 
Length[a]];Evaluate[dP[a[[1;;last]]]]]; (*array print 
showing 8 list members max*) 
se[x_]:=Simplify[Expand[x]]; (* simplify-expand *) 
restIPrint[]:=(iPrint=iPrintS); 
saveIPrint[]:=(iPrintS=iPrint); 
 
(**********************************************************
**) 
(*  global parameters                                       
*) 
(**********************************************************
**) 

http://reference.wolfram.com/mathematica/ref/Off.html
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(*inFileName="IgE-1-LRB.csv";*) 
iFirstDot=1; iLastDot=1; (*"0" means all dots*) 
iDot=1; (* used when NOT entering via "dataImport"*) 
iPrint=1; 
cBkg=300.0(*319.75*);  (* initial value of camera bkg *) 
isStamp=True; 
iWt=2;(*2=Gaussian; 1=Poisson*) 
iGeom=1;(*1=polariz, 2=anis*) 
iPrint=1; (* print all dP instances *) 
pGoal=0.01; 
maxPass=2000; 
tauMin=2-6; 
g0=0.4;b0=0.0;c0=0.0;f0=-1.; (*"-1" means use prog's camera 
bkg *) 
iFirst=2;iLast=1001; kFirst=0; kLast=0; 
nBkgs=4; 
isBkgs=1; 
isSim=0; (* simulation? *) 
iWeight=2;  (* 1=uniform wt, 2=s^2 wt; 3=full s,r pt wt*) 
nParams=2;  (*2 or 3 p *) 
isSavePlots=True; 
 
(**********************************************************
*) 
(**********************************************************
*) 
(*  UTILITIES  *) 
(**********************************************************
*) 
(**********************************************************
*) 
 
(**********************************************************
) 
(*  set graphics point sizes (fract of total graph)       
*) 
(**********************************************************
) 
SetOptions[{Plot,ListPlot, ListLinePlot}, 
  PlotStyle->PointSize[0.01], 
  PlotStyle->{RGBColor[0.2472,0.24,0.6], 
    RGBColor[0.6,0.24,0.4429], 
    RGBColor[0.6,0.5470,0.24], 
    RGBColor[0.24,0.6,0.3369]}, 
  BaseStyle->{ 
    FontFamily->"Helvetica", 
    FontWeight->"Bold" }, 
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  ImageSize->{144,108}(*Medium*) 
  ]; 
 
(**********************************************************
*********) 
(*  define pattern replace to pull constants out of sums           
*) 
(**********************************************************
*********) 
(* patt /; test is a pattern which matches only if the 
evaluation of test yields True *) 
(* lhs  rhs \"\\\"\"\"RuleDelayed\"\"\\\"\" represents a 
rule that transforms lhs to rhs evaluating rhs only after 
the rule is used *) 
(* FreeQ[expr,form] yields True if no subexpression in expr 
matchesformand yields False *) 
ClearAll[BringOut,outrules]; 
outrules={Sum[f_+ 
g_,it:{x_Symbol,__}]:>Sum[f,it]+Sum[g,it],Sum[c_ 
f_,it:{x_Symbol,__}]:>c 
Sum[f,it]/;FreeQ[c,x],Sum[c_,it:{x_Symbol,__}]:>c 
Sum[1,it]/;FreeQ[c,x]}; 
BringOut[s_]:=s //. outrules 
(*BringOut [Sum [c*i*x[[i]]1,{i,n}]];*) 
 
(**********************************************************
*********) 
(*  map Sum function over sum of terms                             
*) 
(**********************************************************
*********) 
(*ClearAll[x,y,z,qd0,n]; 
qd0= x[[i]] +2y[[i]]^2+ 3 z[[i]]^3; 
gd0=Total[Sum[#,{i,1,n}]&/@(List@@qd0)]; 
BringOut[gd0]*) 
 
(**********************************************************
*********) 
(*  abbreviate FortranForm for printing                            
*) 
(**********************************************************
*********) 
ClearAll[ff]; 
ff[x_]:=FortranForm[x]; 
 
(**********************************************************
*********) 
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(*  define gRound to get suitable form printing large, 
small nums  *) 
(**********************************************************
*********) 
ClearAll[gR]; 
gR[x0_,sf_]:= (* "g Round" *)Module[{e,xr,x}, 
   (x=Re[x0];e=MantissaExponent[x][[2]]-sf; 
    xr=(10^e)*Round[x*10^(-e)]; 
    xr)]; 
 
(**********************************************************
*********) 
(*  define gF "George Format" for compact 1-line output            
*) 
(**********************************************************
*********) 
ClearAll[gF]; 
gF[x_]:=ff[gR[x,6]]; 
 
(**********************************************************
*) 
(**********************************************************
*) 
(*  FUNCTIONS THIS PROGRAM  *) 
(**********************************************************
*) 
(**********************************************************
*) 
 
(**********************************************************
) 
(*        SZEKELY dist covariance via Hu's algorithm      
*) 
(**********************************************************
) 
ClearAll[distCovCompile]; 
distCovCompile=Compile[ 
   {{xIn,_Real,1}, 
    {yIn,_Real,1}}, 
   
Module[{index,si,sLast,t,ax,v,nw,zeros,idx,iv1,iv2,iv3,iv4, 
     
i,r,s,gap,k,idxr,csumv,idx1,idx2,st1,st2,e1,e2,kf,covterm,c
1,c2,c3,c4,d,ySorted,by,nsq,ncb,nq,term1,term2,term3,x,y,n,
j}, 
    (*iPrint=0;*) 
    n=Length[xIn]; 



336 
 

    index=Ordering[xIn]; 
    x=Sort[xIn];(*gPrint["xSorted=",x//MatrixForm];*) 
    y=yIn[[index]];(*gPrint["yReordered=",y//MatrixForm];*) 
    si=Accumulate[x];(*gPrint["si=",si//MatrixForm];*) 
    sLast=si[[n]]; 
    t=Table[i, {i,-(n-
2),n,2}];(*gPrint["t=",t//MatrixForm];*) 
    ax=t*x+(sLast-2 si);(*gPrint["ax=",ax//MatrixForm];*) 
    v={x,y,x*y} ; (*gPrint["v=",v//MatrixForm];*) 
    nw=Dimensions[v][[2]]; 
    zeros=Table[0,n]; 
    
idx={Table[i,{i,n}],zeros} ;(*gPrint["idx=",idx//MatrixForm
];*) 
    iv1=Table[0.,n];iv2=iv1;iv3=iv1;iv4=iv1; 
    i=1;r=1;s=2; 
     
    (*While [i<n,*) 
    Label[startWhileI]; 
    If[i>=n, Goto[endWhileI]]; 
    gap=2*i; 
    k=0; 
    idxr=idx[[All,r]];(*gPrint["idxr=",idxr//MatrixForm];*) 
    csumv=Prepend[Accumulate[v[[idxr]]],Table[0,nw]]; 
    (* OK to here*) 
    (*gPrint["csumv=", csumv//MatrixForm];*) 
     
    (*For [j=1, j<n, j=j+gap,*) 
    j=1;  
    Label[startForJ]; 
    If [j>=n, Goto[endForJ]]; 
    (*st1=j;e1=Min[st1+i-1,n];st2=j+i;e2=Min[st2+i-1,n];*) 
    st1=j;e1=st1+i-1; If[e1>=n,e1=n];st2=j+i;e2=st2+i-
1;If[e2>=n,e2=n]; 
    (*While [(st1≤e1)&&(st2≤e2),*) 
    Label[startWhileSt]; 
    If[(st1>e1)||(st2>e2),Goto[endWhileSt]]; 
    k=k+1;(*gPrint ["i=",i," j=",j, " k=",k," st1=",st1," 
e1=",e1," st2=",st2," e2=",e2];*) 
    idx1=idxr[[st1]];idx2=idxr[[st2]]; 
    (*gPrint ["idx1=",idx1," idx2=",idx2];*) 
    If[ y[[idx1]]>=y[[idx2]], 
     idx[[k,s]]=idx1; 
     st1=st1+1, 
     (*else*) 
     idx[[k,s]]=idx2; 
     st2=st2+1; 
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     iv1[[idx2]]      =iv1[[idx2]]+e1-st1+1;iv2[[idx2]]      
=iv2[[idx2]]+(csumv[[e1+1,1]]-csumv[[st1,1]]);   
  
     iv3[[idx2]]      =iv3[[idx2]]+(csumv[[e1+1,2]]-
csumv[[st1,2]]); 
     iv4[[idx2]]      =iv4[[idx2]]+(csumv[[e1+1,3]]-
csumv[[st1,3]]); 
     ];(*end If[y[idx1...*) 
    (*gPrint ["ivN=",{iv1,iv2,iv3,iv4} //MatrixForm];*) 
     
    (*]; (*end While[(st1...]*)*) 
    Goto[startWhileSt]; 
    Label[endWhileSt]; (*end While[(st1...]*) 
     
    (*gPrint["i,j=",i,"  ",j];*) 
    If[ st1<=e1, 
     kf=k+e1-st1+1; (*gPrint["kf=",kf];*) 
     idx[[(k+1);;kf,s]]=idxr[[st1;;e1]]; 
     k=kf, 
     (*else*) 
      If[st2<=e2, 
       kf=k+e2-st2+1; 
       (*gPrint[idx[[(k+1);;kf,s]]];*) 
       idx[[(k+1);;kf,s]]=idxr[[st2;;e2]]; 
       k=kf 
       ]; 
     ];(*end If[st2...]*) 
     
    (*gPrint["kf=",kf," idx=",idx//MatrixForm];*) 
    (*gPrint["idx=",idx//MatrixForm];*) 
    (*];(* end For[j=1...*)*) 
    j=j+gap; 
    Goto[startForJ]; 
    Label[endForJ];(* end For[j=1...*) 
     
    i=gap; 
    r=3-r;s=3-s; 
    (*];(* end While i<n*)*) 
    Goto[startWhileI]; 
    Label[endWhileI];(* end While i<n*) 
    covterm=n*(x-Mean[x]).(y-Mean[y]); 
     
    c1=iv1.v[[All,3]]; 
    c2=Total[iv4]; 
    c3=iv2.y; 
    c4=iv3.x; 
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    d=4*((c1+c2)-(c3+c4))-2*covterm; 
    ySorted=y[[idx[[Table[i,{i,n,1,-1}],r]]]]; 
    si=Accumulate[ySorted]; 
    sLast=si[[n]]; 
    by=Table[0.,n]; 
    by[[idx[[n;;1;;-1,r]]]]=Table[i,{i,-(n-
2),n,2}]*ySorted+(sLast-
2*si);nsq=N[n*n];ncb=nsq*n;nq=ncb*n;term1=d/nsq;term2=2*(ax
.by)/ncb;term3=Total[ax]*Total[by]/nq; 
    Return[N[(term1+term3)-term2]] 
    ],(*end module/function*) 
   RuntimeAttributes->{Listable},Parallelization->False, 
   CompilationTarget->"C",RuntimeOptions->"Speed" 
   ]; (*end compile*) 
<<CompiledFunctionTools` 
(*CompilePrint[distCovCompile]*) 
(*yIn=N[{3,5,7,3,8,4,6,7}];Print["yIn=",yIn]; 
xIn=N[{1,5,3,2,4,6,7,5}];Print["xIn=",xIn]; 
Print["distCov=",distCovCompile[xIn,yIn]];*) 
 
(**********************************************************
*) 
(* SZEKELY dist correlation from dist covariances          
*) 
(**********************************************************
*) 
ClearAll[distCorrFunct]; 
distCorrFunct[x_,y_]:=Module[{covAB,covAA,covBB}, 
   covAB=Evaluate[distCovCompile[x,y]]; 
   covAA=Evaluate[distCovCompile[x,x]]; 
   covBB=Evaluate[distCovCompile[y,y]]; 
   
(*Print["covAB=",covAB,"\ncovAA=",covAA,"\ncolBB=",covBB];*
) 
   Return[N[covAB/Sqrt[covAA*covBB]]]; 
   ]; 
(*yIn=N[{3,5,7,3,8,4,6,7}];Print["yIn=",yIn]; 
xIn=N[{1,5,3,2,4,6,7,5}];Print["xIn=",xIn]; 
Print["distCorr=",distCorrFunct[xIn,yIn]];*) 
 
(**********************************************************
*********) 
(*  fast autocorrelation using LISTCORRELATE                       
*) 
(**********************************************************
*********) 
ClearAll[dataCorrelate]; 
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dataCorrelate[t_,u_]:=Module[{n}, 
z=ListCorrelate[t,u,1,0];n=Length[t];Table[z[[i]]/(n-
i+1),{i,n}]]; 
(*t={4,3,2,1} 
u={1,2,3,4} 
z=ListCorrelate[t,u,1,0] 
z1=Table[z[[i]]/(Length[z]-i+1),{i,Length[z]}] 
dataCorrelate[t,u]*) 
 
(**********************************************************
*********) 
(*  weighted covariance function                                   
*) 
(**********************************************************
*********) 
ClearAll[wtdCov]; 
wtdCov[f_,g_,w_]:=Module[{n,wTot,temp}, 
   n=Length[f]; 
   wTot=Total[w]; 
   temp=(wTot*Total[f*g*w]-Total[f*w]*Total[g*w])/wTot2 
   ]; (* fails for f=g and i=1 *) 
 
(**********************************************************
*********) 
(*  weighted correlation coeff                                     
*) 
(**********************************************************
*********) 
ClearAll[wtdCorrCoeff]; 
wtdCorrCoeff[f_,g_,w_]:=Module[{}, 
   wtdCov[f,g,w]/\[Sqrt](wtdCov[f,f,w]*wtdCov[g,g,w])]; 
 
(**********************************************************
) 
(*        faster version of brute force correlate         
*) 
(**********************************************************
) 
SetSystemOptions["CompileOptions"-
>{"CompileReportExternal"->True}]; 
SetSystemOptions["CompileOptions"-
>{"CompileReportExternal"->False}]; 
ClearAll[trueCorr,i]; 
trueCorr=Compile[(* wx, wy are just 1/vx, 1/vy for each pt 
*) 
   
{{x,_Real,1},{y,_Real,1},{wx,_Real,1},{wy,_Real,1}},Module[
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{n,nFact,tau,txy=0.0,tx=0.0,ty=0.0, 
     tw=0.0,w=0.0,iy,ix,vx=0.0,vy=0.0,xVar,yVar, 
     x0=0.0,y0=0.0,kList,gxy,gx,gy,gw}, 
    n=Length[x]; 
    gxy=Table[0.0,{n}];gx=gxy;gy=gxy;gw=gxy; 
    xVar=1.0/wx;yVar=1.0/wy; 
    kList=Table[n-tau+1,{tau,n}]; 
    For[tau=1,tau<=n,tau++, 
     txy=0.0;tx=0.0;ty=0.0;tw=0.0; 
     For[ix=1,ix<=n-tau+1,ix++, 
      iy=ix+tau-1; 
      x0=x[[ix]];y0=y[[iy]]; 
      vx=xVar[[ix]];vy=yVar[[iy]]; 
      w=(vy*x0^2+vx y0^2+vx*vy)-1; 
      txy+=w*x0*y0;tx += w*x0;ty+=w*y0;tw+=w 
      ];(*for i*) 
     gxy[[tau]]=txy;  (* weighted sums, not averages*) 
     gx[[tau]]=tx; 
     gy[[tau]]=ty; 
     gw[[tau]]=tw 
     ];(*for tau*) 
    Return[{gxy,gx,gy,gw}] 
    ],(*end module/function*) 
   RuntimeAttributes->{Listable}, 
   Parallelization->False, 
   CompilationTarget->"C", 
   RuntimeOptions->"Speed" 
   ]; (*end compile*) 
<<CompiledFunctionTools`; 
(*CompilePrint[trueCorr]*) 
(*yIn=N[{3,5,7,3,8,4,6,7}];Print["yIn=",yIn]; 
xIn=N[{1,5,3,2,4,6,7,5}];Print["xIn=",xIn]; 
Print["trueCorr=",trueCorr[xIn,yIn,xIn,yIn]]//AbsoluteTimin
g 
g0=trueCorr[r,r,wr,wr]/trueCorr[ones,ones,wr,wr]//AbsoluteT
iming; 
Print[ListPlot[g0]]; 
Print[ListPlot[grr]];*) 
 
(**********************************************************
*********) 
(*  define "appendCol"                                             
*) 
(*  does NOT expand table if col too long or pad col if too 
short  *) 
(**********************************************************
*********) 
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appendCol[a_,b_]:=(*Module[{aa},If[Length[Dimensions[x]] 1,
aa={a};Transpose[Append[aa,b]], 
  Transpose[Append[Transpose[a],b]]]];*) 
  If[Length[a]!=Length[b],Print["Unequal lengths. Unable to 
append"];a, 
   If[Length[Dimensions[a]]==1, 
    Join[Transpose[{a}], Transpose[{b}],2], 
    Join[a, Transpose[{b}],2]]]; 
 
(**********************************************************
*********) 
(*  define "addParam"                                              
*) 
(*  if new var runs below existing cols, table is padded 
line of blanks*) 
(**********************************************************
*********) 
ClearAll[addParam]; 
addParam[a_,nameCol_,valCol_,name_,val_]:= 
  Module[{nParams,ap}, 
   nParams=0; 
   Do[If[a[[i,nameCol]]!= 
"",nParams=nParams+1],{i,2,Length[a]}]; 
   
If[Length[a]==nParams+1,ap=Append[a,Table["",{i,Length[a[[1
]]]}]];,ap=a]; 
   ap=ReplacePart[ap,{nParams+2,nameCol}-> name]; 
   ap=ReplacePart[ap,{nParams+2,valCol}-> val]; 
   Return[ap] 
   ]; 
 
(**********************************************************
*********) 
(*  define "mlpNeg" =-Log prob of getting negative v or h         
*) 
(**********************************************************
*********) 
ClearAll[mlpNeg]; 

mlpNeg[b_,sb_,v_]:=Log[2]-Log[Erfc[(b-v)/(  sb)]]; 
 
(**********************************************************
*********) 
(*  define extrapolate xc or ac curve to time zero                 
*)  
(**********************************************************
*********) 
ClearAll[extrap];extrap[x_]:={x[[1]],x[[1]]-x[[2]],x[[1]]-

2
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2x[[2]]+x[[3]]}; 
 
(**********************************************************
******) 
(* Fit to single exponential decay                              
*) 
(* mode 2  2p fit k-k pts & print                              
*) 
(* mode 3  3p fit k-k pts & print                              
*) 
(* mode 20  2p fit 3 pts & NO print                            
*) 
(* mode 30  3p fit 3 pts & NO print                            
*) 
(**********************************************************
******) 
ClearAll[fitExpDecay]; 
fitExpDecay[iMode_,fitData_, 
fitDataName_,wtData_,nEff_,kFirst_,kLast_,fitPlotName_, 
isPlot_]:= 
  (* mode 2 = nEff 2p; mode 3= nEff 3p *) 
  Module[ 
   
{gZeroTemp,gTdTemp,gInfTemp,n,gTable,(*wTable,wTableNorm*),
iPass,eq,vars,t}, 
    
   (*Print["fit start; iMode=",iMode];*) 
   saveIPrint[]; 
   iPrint=0; 
    
   gTable=Table[{(i-1),fitData[[i]]},{i,nEff}]; 
   wTable=wtData; 
   Do[If[k<kFirst||k>kLast,wTable[[k]]=0],{k,2,nEff}]; 
   n=(kLast-kFirst+1);  (* num pts used HERE  nEff = total 
pts *) 
   wTableNorm=n*wTable/Total[wTable];(*Mathematica wts must 
be norm'd*) 
   If[iMode==3|| iMode==30,(*s*)  (* 3 PARAMS *) 
    eq={gInfTemp+(gZeroTemp-gInfTemp)*Exp[-
t/gTdTemp],gTdTemp>=tauMin}; 
    vars={gTdTemp, gZeroTemp,gInfTemp}, 
    If[iMode==2||iMode==20,(* 2 PARAMS *) 
     eq={gZeroTemp*Exp[-t/gTdTemp], gTdTemp>=tauMin}; 
     vars={gTdTemp, gZeroTemp}, 
     gPrint["unrecognized iMode"]; Abort[] 
     ]]; 
   (*Print["iMode=",iMode]; 



343 
 

   Print["eq=",eq]; 
   Print["vars=",vars];*) 
    
   iPass=0; 
   Monitor[ 
    nlm=NonlinearModelFit[ 
      gTable, (*data as x,y pairs*) 
      eq,  (* eq to use *) 
      vars, (* adjustable params*) 
      t, (* var in eq*) 
      Weights->wTableNorm, 
      StepMonitor :>{iPass=iPass+1}, 
      VarianceEstimatorFunction->(Total[#12 #2]/Total[#2] 
n/(n-2)&), 
      MaxIterations->1000, (*Infinity*) 
      WorkingPrecision->Automatic (*MachinePrecision*) 
      ], 
    Pause[0.0]; 
    "iPass="<>ToString[gF[iPass]]<>" 
chiSq="(*<>ToString[gF[redChiSq]]*)<>" 
tDecay="<>ToString[gF[gTd]]<>" 
gInf="<>ToString[gF[g0]]<>ToString[gF[gInf]]<>" gAmp=" 
    ]; 
   (* gPrint["expModelDecay: end NLM"];*) 
    
   gPrint["\n","fit results"]; 
   gPrint["paramTable=",paramTable=nlm["ParameterTable"]]; 
(*val,SE,p*) 
   gPrint["params=",params=nlm["BestFitParameters"]]; 
   gPrint["errs=",errs=nlm["ParameterErrors"]]; 
   
gPrint["estdSD=",estdSD=\[Sqrt]nlm["EstimatedVariance"]]; 
   gPrint["nlm[0]=",nlm[0]]; (*"FittedModel"*) 
    
   gSD=estdSD; 
   gTd=params[[1,2]]; 
   gTdErr=errs[[1]]; 
   gZero=params[[2,2]]; 
   gZeroErr=errs[[2]](*errs[[2]]*); 
   If[(iMode==2)||(iMode==20), (*2p fits*) 
    gInf=0;(*params[[2,2]];*) 
    gInfErr=0, 
    If[iMode==3 ||iMode==30,(*s*) 
     gInf=params[[3,2]]; (*3p fit*) 
     gInfErr=errs [[3]], 
     Print["unrecognized iMode.  Exiting...."];Abort[]   
     ]]; 
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   dP["\n",gTd]; 
   dP[gTdErr]; 
   dP[gZero]; 
   dP[gZeroErr]; 
   dP[gInf]; 
   dP[gInfErr]; 
    
   If[isPlot&&(iMode==2||iMode==3), 
    fluctCalc=Table[nlm[i-1],{i,1,nEff}]; 
    xyCalc=Table[{i-1,nlm[i-
1]},{i,kLast}];range={1.1Min[xyCalc[[All,2]],gTable[[All,2]
]],1.1*Max[xyCalc[[All,2]],gTable[[All,2]]]}; 
    
fitPlot=ListPlot[{gTable[[kFirst;;kLast,2]],xyCalc[[kFirst;
;kLast,2]]},PlotLabel-> fitPlotName] 
    ];(*if*) 
   restIPrint[]; 
   (*Pause[1*^9];*) 
   (*Print["fit exit"];*) 
   ]; 
 
(*setIPrint[0];fitExpDecay[fitData, 
fitDataName,wtData,nEff,kFirst,kLast,fitPlotName];restIPrin
t[]; 
Pause[1*^9];*) 
 
(**********************************************************
*******) 
(* do exp fit 3 Pts  *) 
(**********************************************************
*******) 
ClearAll[fitAnisDecay3Pts]; 
fitAnisDecay3Pts[]:=( 
   (* iMode 2= k-k pts 2p; iMode 3= k-k Pts 3p *) 
   (* iMode=20 > 2pts; iMode=30 > 3 pts NO PRINT *) 
   iMode=10*nParams; 
   wTable=gwrwr; 
   
fitExpDecay[iMode,grrFluct12,"grrFluct12",wTable,nEff,2,4,N
ull,False]; 
   grZero3Pts=gZero; 
   grZeroErr3Pts=gZeroErr; 
   grTd3Pts=gTd; 
   grTdErr3Pts=gTdErr; 
   grInf3Pts=gInf; 
   grInfErr3Pts=gInfErr; 
   grSD3Pts=gSD); 
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(**********************************************************
*******) 
(* print anis fit nums                                           
*) 
(**********************************************************
*******) 
ClearAll[printAnisFitNums]; 
printAnisFitNums[]:=Module[{}, 
   Print[ 
    "tau=",gF[grTdFull], " +/- ",gF[grTdErrFull], 
    "   g0=",gF[grZeroFull], " +/- ",gF[ grZeroErrFull], 
    "   g∞=", gF[grInfFull]," +/- ", gF[grInfErrFull],  
    "   gSD=",gF[grSDFull], "  nEff=",gF[ nEff]]]; 
 
(**********************************************************
*********) 
(*getFileList[]:  get names of raw data files in current 
directory *) 
(**********************************************************
*********) 
ClearAll[getFileList]; 
getFileList[]:=Module[{f,l,c1,c2,c3,c4,c,i}, 
   f=FileNames[All];l=Length[f]; 
   c1=StringContainsQ[f, "LRB"];c2=StringContainsQ[f, 
"csv"]; 
   c3=Thread[!StringContainsQ[f, 
"results"]];c4=Thread[!StringContainsQ[f, "plots"]]; 
   c=Table[c1[[i]]&&c2[[i]]&&c3[[i]]&&c4[[i]],{i,l}]; 
   fs={};For [i=1,i<=l,i++,If[c[[i]],AppendTo[fs,f[[i]]]]];   
   Return[fs] 
   ]; 
(*getFileList[]*) 
 
(**********************************************************
*********) 
(* wtd linear fit                                               
*) 
(**********************************************************
*********) 
ClearAll[probs,xList,data,wtdLin]; 
wtdLinFit[s_,d_,nP_,iFirstOrder_,wTable_]:=Module[{x,xList,
data,ev, β,se,pr,probs,lm}, 
   (* nP=num params; iFirstOrder=*) 
   n=Length[s]; 
   data=Transpose@{s,d}; 
   (*Print[ListPlot[data]];*) 
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   xList=Table[xi,{i,iFirstOrder,nP+iFirstOrder-1}]; 
   (*Print[xList];*) 
   lm=LinearModelFit [data,xList,x, 
     IncludeConstantBasis->False, 
     Weights->wTable, 
     VarianceEstimatorFunction->((Total[#12 
#2]/Total[#2])*(n/(n-2))&)]; 
   β=lm["BestFitParameters"]; 
   ev=lm["EstimatedVariance"]; 
   se=lm["ParameterErrors"]; (* std err*) 
   pr=lm["PredictedResponse"]; (* yCalc*) 
   probs= (1/2)(β/se)2; 
   (*dP[probs]; 
   dP[Total[probs]];*) 
   Return[{ev,β,se, (1/2)(β/se)2}] 
   (* [[1]]= fit variance, [[2]=params, [[3]]=std errs, 
[[4]]=mlp param probs *) 
   ]; 
 
(**********************************************************
**) 
(*   functiot to calc variance of variance of list          
*) 
(**********************************************************
**) 
ClearAll[varOfVar]; 
varOfVar[x_]:=Module[{n, 
μ,ones,dxSq,μ2,μ4,μ2Sq,varVar,vov}, 
   n=Length[x]; 
   μ=Total[x]/n; 
   ones=Table[1,{n}]; 
   dxSq=(x-ones*μ)2; 
   μ2=Total[dxSq]/n; 
   μ4=Total[dxSq2]/n; 
   μ2Sq=μ22; 
   vov=(μ4-μ2Sq)/n+μ2Sq*(2/(n(n-1))) 
   ]; 
 
(*(********************************************************
****) 
(*   test var of difference in variances                    
*) 
(**********************************************************
**) 
ClearAll[x,y,vx,vy,diff,vvx,vvy,vvsum,vvsumsd,ratio]; 
n=1000; 
m=1000; 
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iPrint=0; 
x=RandomVariate[NormalDistribution[10,1],n]; 
y=RandomVariate[NormalDistribution[10,1],n]; 
xt=Table[x=RandomVariate[NormalDistribution[10,1],n], 
m];(*dP[xt];*) 
yt=Table[y=RandomVariate[NormalDistribution[10,1],n], 
m];(*dP[yt];*) 
s2x=Variance[xt ];dP[s2x]; 
s2y=Variance[yt ];dP[s2y]; 
vovx=Table[varOfVar[xt[[i]]],{i,m}];dP[vovx]; 
vovy=Table[varOfVar[yt[[i]]],{i,m}];dP[vovy]; 
diff=s2x- s2y; dP[diff]; 
vvsum=vovx+vovy;dP[vvsum]; 
vvsumsd=Sqrt[vvsum];dP[vvsumsd]; 
ratio=(diff/vvsumsd);dP[ratio]; 
mlp=ratio^2/2;dP[mlp]; 
iPrint=1; 
Length[ratio] 
Variance[ratio] 
Histogram[ratio]*) 
 
restIPrint[]; (* overall for 'definitions'*) 
 
(**********************************************************
**) 
(*                    end of definitions                    
*) 
(**********************************************************
**) 
 
ClearAll[depend]; 
depend[vEff_List,hEff_List,bvEff_List,bhEff_List,iWt_Intege
r,iGeom_Integer,kFirst_Integer,kLast_Integer,nBkgsDummy_Int
eger,gDummy_Real,bDummy_Real,cDummy_Real,fDummy_Real,iFirst
Dot_Integer,iLastDot_Integer]:=Module[{(*nMax,n,m,nEff,nCor
r,kMax,kMin,nk,nBkgs*)}, 
   
(**********************************************************
*********) 
   (*  initialization code                                            
*)(********************************************************
***********) 
   saveIPrint[]; 
   (*dP[isNewMin,"  ", iPass]; *) 
   If [Length[vEff]!= Length[hEff], Print["vEff and hEff 
unequal length. Exiting...."];Abort[] ]; 
   nEff=Length[vEff]; 
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   zeros=Table[0,{nEff}]; 
   ones=Table[1,{nEff}]; 
   kList=Table[nEff-k+1,{k,1,nEff}]; 

   sqrtKList= ; 
   time=Table[i, {i,nEff}]; 
   kMax=If[kLast==0, nEff, kLast]; 
   If [kLast>nEff,Print["kMax exceeds nEff. 
Exiting...."];Abort[]]; 
   kMin=If[kFirst==0, 2,kFirst]; 
   nk=kMax-kMin+1; 
   (*nBkgs=If [nBkgsDummy 0,4,nBkgsDummy];*) 
    
   
(**********************************************************
*********) 
   (*  set constants                                                  
*) 
   
(**********************************************************
*********) 
   g=gDummy; (* old g-fact: (1-g)v, (1+g)h *) 
   b=bDummy; (* sample bkg *) 
   c=cDummy; (* camera bkg *) 
   f=fDummy; (* ???? *) 
   (*Pause[1*^9];*) 
    
   
(**********************************************************
*********) 
   (*  CALCULATION STARTS HERE                                        
*) 
   
(**********************************************************
*********) 
    
   
(**********************************************************
****) 
   (*  get inten funct & baseline vars                           
*) 
   
(**********************************************************
****) 
   (* nBkgs = number of baselines averaged *) 
   bvAvg=Mean[bvEff]; (* avg of nBkgs traces *) 
   bhAvg=Mean[bhEff]; 
    

kList
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   If[ f<0,f=cBkg];(*if f<0 (e.g. -1), f initialized to 
cBkg *) 
   If [isBkgs!=0, (*yes, bkgs.  calc inten funct from bkgs 
*) 
    intV=(bvEff-f)/(bvAvg-f);(*inten should=iv,ih*) 
    intH=(bhEff-f)/(bhAvg-f),(*inten should=iv,ih*) 
    (*else let inten factors=1 *) 
    intV=Table[1,{nEff}]; 
    intH=intV 
    ]; 
   (*dP[intH]; 
   Pause[1*^9];*) 
    
   bvc=(1-g)bvEff/intV;  (* correcting for src flucts *) 
   bhc=(1+g)bhEff/intH;  (* no corr if no bKgs *) 
    
   If [isBkgs!=0,(*yes, bkgs.  calc bkg variances 
UNCORRECTED *) 
    e2bv=Variance[bvEff]; (* actual variance corr'd bkgs *) 
    e2bh=Variance[bhEff], 
    (*else*) 
    e2bv=1;  (* need some placeholder num here *) 
    e2bh=1 
    ]; 
    
   If [isBkgs!=0,(*yes, bkgs.  calc CORRECTED bkg variances 
*) 
    e2bvc=(1-g)2 Variance[bvEff]; (* actual variance corr'd 
bkgs *) 
    e2bhc=(1+g)2 Variance[bhEff], 
    (*else*) 
    e2bvc=1;  (* need some placeholder num here *) 
    e2bhc=1 
    ]; 
    
   If [iWt==2,  (* rs weights*) 
    (*Gaussian*)vVar=e2bvc;hVar=e2bhc, 
    If[iWt==1, 
     (*Poisson*)vVar=(1-g)2 (vEff+2 bvEff); (* 2 baselines / 
vc*)hVar=(1+g)2 (hEff+2 bhEff),  
     Print["bad iWt"]] 
    ]; 
   vVarSq=vVar2; 
   hVarSq=hVar2; 
    
   (*intV=(bvEff-f)/(bvAvg-f);(*inten should=iv,ih*) 
   intH=(bhEff-f)/(bhAvg-f);*) 
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   vs=(vEff-bvEff)/intV; (* v sub't'd *) 
   hs=(hEff-bhEff)/intH;  
   vM=Mean[vs]; (* v(sub't'd)Mean *) 
   hM=Mean[hs]; 
   vSD=StandardDeviation[vs]; 
   hSD=StandardDeviation[hs]; 
    
   g= (vSD-hSD)/(vSD+hSD); 
   c=(hM(1+g)-(1-g) vM)/(2g); 
   (*Print[iPass,"  ",vM,"  ",hM,"  ",vSD,"  ",hSD,"  ",g,"  
",c,"  ",b];*) 
   vc=Collect[Simplify[(1-g)(vs-c)-b/2],vs]; 
   hc=Collect[Simplify[(1+g)(hs-c)+b/2],hs];  
    
   s=vc+iGeom*hc;sSq=s2;s4th=sSq2; 
   d=vc-hc;dSq=d2;d4th=dSq2; 
   r=Table[If[s[[i]]!=0,d[[i]]/s[[i]],0], {i,nEff}];rSq=r2; 
    
   
(**********************************************************
****) 
   (*  get variances and wts                                     
*) 
   
(**********************************************************
****) 
   If[(isNewMin!=0)||(iPass==0 ),(*dP[iPass];*) 
    (*Print[iPass];*) 
    sVar=ones*(2(vVar+iGeom2 hVar)); (* two bkgs each 
meas't*) 
    dVar=ones*(2(vVar+hVar)) 
    ]; 
    
   (*get INITIAL values for sAvg, rAvg to calc init rWts*) 
   If[iPass== 0, 
    ws=ones/sVar;  
    sws=s*ws; 
    sAvg=Total[sws]/Total[ws]; 
    rAvg=zeros (* start with rAvg = 0*) 
    ]; 
    
   wsRaw=ones/sVar; 
   ws=nEff*wsRaw/Total[wsRaw]; (*normalize s-wts*) 
   sws=s*ws; 
   sSqws=sSq*ws; 
   sAvg=Total[sws]/Total[ws]; 



351 
 

    
   wdRaw=ones/dVar; 
   wd=nEff*wdRaw/Total[wdRaw]; (*normalize d-wts*) 
   dwd=d*wd; 
   dSqwd=dSq*wd; 
   dAvg=Total[dwd]/Total[wd]; 
    
   (* only have 2nd order sums of v, h so ignore 4th-order 
tems *) 
   z=iGeom; 
   rVar=If[iWeight==1,ones,If 
[iWeight==2,1/sSq,If[iWeight==3, 
       (1/s4th)*(vVar (-1+r)2 sSq+hVar  sSq (1+r z)2 +3 
vVarSq (-1+r)2+3 z2 hVarSq (1 +r z)2 +3 vVar  hVar  ((1-4 
z+z2 )+6 r z (1- z) +6 z2 rSq )),Print["Bad iWeight"]]]]; 
   wrRaw=1/rVar; 
   wr=nEff*wrRaw/Total[wrRaw];(*normalize r-wts*) 
   rwr=r*wr; 
   rSqwr=rSq*wr; 
   rAvg=Total[rwr]/Total[wr]; 
    
   (*Print["end calc basic terms"];*) 
    
   
(**********************************************************
***) 
   (* calc correlations (now AVERAGES  )                        
*) 
   
(**********************************************************
***) 
    
   (*kList=Table[nEff-k+1,{k,1,nEff}];*) 
   (*oneList=Table[1,{k,1,nEff}];*) 
   ClearAll[]; 
   sws=s*ws; 
   rwr=r*wr; 
   (*sAvg=Total[sws]/Total[ws]; 
   rAvg=Total[rwr]/Total[wr];*) 
   (*g11=ListCorrelate[ones,ones,1,0];*) 
    
   gss=ListCorrelate[sws,sws,1,0]; 
   gsr=ListCorrelate[sws,rwr,1,0]; 
   grs=ListCorrelate[rwr,sws,1,0]; 
   grr=ListCorrelate[rwr,rwr,1,0]; 
    
   gs1=ListCorrelate[sws,ones,1,0]; 
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   g1s=ListCorrelate[ones,sws,1,0]; 
   gr1=ListCorrelate[rwr,ones,1,0]; 
   g1r=ListCorrelate[ones,rwr,1,0]; 
    
   gwsws=ListCorrelate[ws,ws,1,0]; 
   gwswr=ListCorrelate[ws,wr,1,0]; 
   gwrws=ListCorrelate[wr,ws,1,0]; 
   gwrwr=ListCorrelate[wr,wr,1,0]; 
    
   gws1=ListCorrelate[ws,ones,1,0]; 
   g1ws=ListCorrelate[ones,ws,1,0]; 
   gwr1=ListCorrelate[wr,ones,1,0]; 
   g1wr=ListCorrelate[ones,wr,1,0]; 
   g11=ListCorrelate[ones,ones,1,0]; 
    
   s1Avg=gs1/gws1; 
   s2Avg=g1s/g1ws; 
   r1Avg=gr1/gwr1; 
   r2Avg=g1r/g1wr; 
    
   gssFluct12=(g11 *gss-gs1*g1s)/(gws1 g1ws); 
   gsrFluct12=(g11 *gsr-gs1*g1r)/(gws1 g1wr); 
   grsFluct12=(g11 *grs-gr1*g1s)/(gwr1 g1ws); 
   grrFluct12=(g11 *grr-gr1*g1r)/(gwr1 g1wr); 
   (* 
   gssFluct12=gss/gwsws-s1Avg*s2Avg; 
   gsrFluct12=gsr/gwswr-s1Avg*r2Avg; 
   grsFluct12=grs/gwrws-r1Avg*s2Avg; 
   grrFluct12=grr/gwrwr-r1Avg*r2Avg;*) 
    
   (*(************* enforce that vVar = hVar  
***************) 
   x=StandardDeviation [vs]; 
   y=StandardDeviation[hs]; 
   g=(x-y)/(x+y);*) 
    
   (************* prob the neg pts are really zero 
****************) 
   (* assume true val of -'ve pt actually zero *) 
   mlpNegVSum=Total[0.5*(1-Sign[vc])*vc2/(2*e2bvc)]; 
   mlpNegHSum=Total[0.5*(1-Sign[hc])*hc2/(2*e2bhc)]; 
   mlpNeg=mlpNegVSum+  mlpNegHSum;  (* vc,hc must both be 
non-neg *) 
   (*Print[vc[[10]],"  ",mlpNegVSum,"  ",mlpNegHSum,"   
",mlpNeg, "  iWt=",iWt];*) 
    
   (********** prob that s,r uncorrelated 
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************************) 
   (*  all "mlp" terms preceded by (1/2)Log[2 π]-
(1/2)Log[nEff] *) 
   (*  distCorr=distCorrFunct[r,s];*) 
   
(**********************************************************
****) 
   RSDistCorr=distCorrFunct[r,s]; 
   RSPmCorr=  wtdCorrCoeff[r,s,ones]; 
   RSWpmCorr=  wtdCorrCoeff[r,s,wr*ws]; 
   mlpRSDistCorr=(1/2)RSDistCorr/(1(*-rho^2*)) nEff;  
   mlpRSPmCorr=(1/2)RSPmCorr2 /(1(*-rho^2*))nEff;   
   mlpRSWpmCorr=(1/2)RSWpmCorr2/( 1(*-rho^2*))nEff;  
    
   (*(******* prob coeffs a0=0,a1=0 **************) 
   wTable=ws*wr; 
   mlpRAvg=wtdLinFit[s,r,1,0,wTable][[4]][[1]]; 
   mlpRSlope=wtdLinFit[s,r,1,1,wTable][[4]][[1]]; 
   (*mlpRCurve=wtdLinFit[s,r,1,2,wTable][[4]][[1]];*) 
   (*mlpR4th=wtdLinFit[s,r,1,3,wTable][[4]][[1]];*)*) 
   wTable=ws*wr; 
   mlpRAvg=0; 
   mlpRSlope=wtdLinFit[s,r,1,1,wTable][[4]][[1]]; 
   mlpRCurve=0; 
    
   (*(********** enfoprob that v- & h-variances are same 
*********) 
   varDiff=Variance[vc]-Variance[hc]; 
   varDiffErr=√((varOfVar[vc]+varOfVar[hc])/1(*only 1 
pt*)); 
   mlpVarDiff=(1/2)(varDiff/varDiffErr)^2;  (* d=(vc-bvc)-
(hc-bhc) OK!!!! *) 
   (*Print["dAvg=",  dAvg,"  dAvgErr=",dAvgErr,"  
mlpDAvg1P=",mlpDAvg1P];*)*) 
   mlpVarDiff=0; 
    
   (*(********** prob that true min is zero *********) 
   nMin=16; 
   vcs=Sort[vc]; 
   hcs=Sort[hc]; 
   mlpZeroErr=Sum[vcs[[i]]^2/(2*varV)+ 
hcs[[i]]^2/(2*varH),{i,1,nMin}];*) 
   mlpZeroErr=0; 
    
   (********** overall probability *********) 
   (*      all selected measures           *) 
   mlpTot=0; 
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   mlpTot=mlpTot+0mlpNeg;       (*prob neg pts are really 
zero*) 
   mlpTot=mlpTot+0mlpRSDistCorr;    (*prob that r,s 
uncorrelated*) 
   mlpTot=mlpTot+0mlpRSPmCorr;          (*prob that r,s 
uncorrelated; wtd*) 
   mlpTot=mlpTot+1mlpRSWpmCorr;          (*prob that r,s 
uncorrelated; wtd*) 
    
   mlpTot=mlpTot+0 mlpRAvg;    (*prob that interceptis 
zero*) 
   mlpTot=mlpTot+0mlpRSlope;    (*prob that slope is zero*) 
   mlpTot=mlpTot+0mlpRCurve;    (*prob that slope is zero*) 
   (*mlpTot=mlpTot+1mlpRCurve;*)    (*prob that slope is 
zero*) 
    
   mlpRCurve=mlpZeroErr; 
   mlpTot=mlpTot+0 mlpVarDiff;    
   mlpTot=mlpTot+0 mlpZeroErr; 
    
   mlpTot=mlpTot(*+0 p3*);    (*max of 3 adj constants*) 
    
   Return[mlpTot]  
   ];(*module*) 
(*inFileName="IgE-1-LRB.csv"; 
data=Import[inFileName]; 
bvEff=data[[2;;All,2]];  
bhEff=data[[2;;All,3]];  
vEff=data[[2;;All,8]]; hEff=data[[2;;All,9]];  
dep=depend[vEff,hEff,bvEff,bhEff,2,1, 0,0,4,+.4,0.,0.,-
1.,iFirstDot,iLastDot]; 
Print["nEff=",nEff, "  dep=", dep]; 
isNewMin=1; 
depend[];*) 
 
restIPrint[]; 
 
(**********************************************************
***)  
(* end of "depend" code                                      
*) 
(**********************************************************
***)  
 
(**********************************************************
*********) 
(* maximize prob wrt g,b,c                                        
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*) 
(**********************************************************
*********) 
ClearAll[optimize ]; 
optimize[]:=Module[{(*iWt=2, 
iFirst=1,iLast=1000,kFirst=0,nBkgs=4,kLast=1000,iThreshMode
=0,thresh=0,iOrderSave=4,iGeom=1,g0=.40,b0=0.,c0=0.,f0=-
1.*)}, 
    
   saveIPrint[]; 
   (*progressFileName=base<>"-"<>"progress"<>"-
"<>DateString[]<>".csv"; 
    If [FileExistsQ[progressFileName], 
   Close[progressFileName]; 
   DeleteFile[progressFileName]]; 
   prog=OpenWrite[progressFileName]; *) 
    
   
pInit=depend[vEff,hEff,bvEff,bhEff,iWt,iGeom,0,0,nBkgs,g0,b
0,c0,f0,iFirstDot,iLastDot]; 
   (*Print["pInit=",pInit,"  g0=",g0,"  b0=", b0,"  
c0=",c0,"  f0=", f0,"  iWt=",iWt];*) 
    
   pMin=pInit; 
   iPass=0; 
   qq={0,{{0,0},{0,0},{0,0},{0,0}}}; 
   Off[StringJoin::string]; 
   c=c0; 
   f=f0; 
   isNewMin=1; 
   qq=Monitor[ 
     
FindMinimum[{depend[vEff,hEff,bvEff,bhEff,iWt,iGeom,0,0,nBk
gs,g,b,c,f,iFirstDot,iLastDot],(*b≥ 0&&c≥ 0&&*) -1<g<1(*&& 
-1<f<1*)},{(*{g,g0}*)(*,*){b,b0}(*,{c,c0}*)(*,{f,f0}*)}, 
      EvaluationMonitor:>   
       ( 
        p=mlpTot; 
        iPass=iPass+1; 
        (*WriteString[prog, 
gF[iPass],",",gF[p],",",gF[mlpNeg],",",gF[mlpBkgs],",",gF[m
lpRAvg],",",gF[mlpDAvg],",",gF[mlpRhoSR],",",gF[mlpRhoRS],"
,"gF[mlpRhoSSR],",",gF[mlpRhoSRR],",",gF[g],",",gF[c],",",g
F[b],"\n"];*) 
        If[p<pMin , 
         gMin=g;bMin=b;cMin=c;pMin=p;fMin=f; 
         isNewMin=1(*;dP[iPass]*), 
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         (*else*) isNewMin=0;]; 
        If[p<pGoal|| iPass>= maxPass, Goto[continue]]; 
        If 
[CurrentValue["ControlKey"]==True,Goto[continue]] 
        ),(* end EvalMon*) 
      PrecisionGoal->Automatic (* tried 0 *), 
      AccuracyGoal ->Automatic (* tried 3 *), 
      MaxIterations->1000(*Infinity*), 
      WorkingPrecision->Automatic (*"MachinePrecision"*), 
      Method->Automatic 
      ], (* end FindMin*) 
     "iPass="<>ToString[gF[iPass]] 
      <>" iDot=" <>ToString[gF[iDot]] 
      <>" of " <>ToString[gF[nDots]] 
       
      <>"\n RAvg="<> ToString[gF[mlpRAvg]] 
      <>" RSlope="<> ToString[gF[mlpRSlope]] 
      <>" RCurve="<> ToString[gF[mlpRCurve]] 
      <>" varDiff="<> ToString[gF[mlpVarDiff]] 
      <>" zeroErr="<> ToString[gF[mlpZeroErr]] 
       
      <> "\n mlpNeg=" <> ToString[gF[mlpNeg]] 
      <> " RSDistCorr=" <> ToString[gF[mlpRSDistCorr]] 
      <> " RSPmCorr=" <> ToString[gF[mlpRSPmCorr]] 
      <> " RSWPmCorr=" <> ToString[gF[mlpRSWpmCorr]] 
       
      <>"\n p="<>ToString[gF[p]] 
      <> " f="<>ToString[gF[f]] 
      <>" g="<>ToString[gF[g]] 
      <> " c="<>ToString[gF[c]] 
      <> " b="<>ToString[gF[b]] 
      
     ]; (*end Monitor*) 
    
   Label[continue ]; 
   (*Print["\n iPass=",iPass," pMin=",pMin," gMin=",gMin," 
bMin=",bMin," cMin=", cMin,  " fMin=",fMin];*) 
   (*Print["pause"]; 
   Pause[1*^6];*) 
    
   If[qq[[1]]==0&& p>pGoal, 
    Print["Optimization NOT completed! "  ], 
    (*otherwise*) 
    Print["Optimization successful! - p = ",p]   
    ]; 
   
p=depend[vEff,hEff,bvEff,bhEff,iWt,iGeom,kFirst,kLast,nBkgs
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,gMin,bMin,cMin,fMin,iFirstDot,iLastDot]; 
   Print["iPass="<>ToString[gF[iPass]] 
     <>" iDot=",ToString[gF[iDot]] 
     <>" of " <>ToString[gF[nDots]] 
      
     <>"\n RAvg="<> ToString[gF[mlpRAvg]] 
     <>" RSlope="<> ToString[gF[mlpRSlope]] 
     <>" RCurve="<> ToString[gF[mlpRCurve]] 
     <>" varDiff="<> ToString[gF[mlpVarDiff]] 
     <>" zeroErr="<> ToString[gF[mlpZeroErr]] 
      
     <> "\n mlpNeg=" <> ToString[gF[mlpNeg]] 
     <> " mlpRSDistCorr=" <> ToString[gF[mlpRSDistCorr]] 
     <> " mlpRSPmCorr=" <> ToString[gF[mlpRSPmCorr]] 
     <> " mlpRSWpmCorr=" <> ToString[gF[mlpRSWpmCorr]] 
      
     <>"\n p="<>ToString[gF[p]] 
     <> " f="<>ToString[gF[f]] 
     <> " g="<>ToString[gF[g]] 
     <> " c="<>ToString[gF[c]] 
     <> " b="<>ToString[gF[b]] 
     
    ]; 
   Print[{vchcPlot=ListPlot[{vc,hc},PlotLabel->"vc hc"], 
     vchcDiffPlot=ListPlot[{vc-hc},PlotLabel->"vc-hc"], 
     sPlot=ListPlot[{s},PlotLabel->"s"], 
     rPlot=ListPlot[{r},PlotLabel->"r"]} ] ; 
   restIPrint[]; 
    
   b=Table[i,{i,0,150,2}]; 
   (*Print[{Histogram[vc,{b}],Histogram[vc,{b}]}]*) 
   ];   
(*optimize[];*) 
 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
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**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
(**********************************************************
**********) 
 
 
(**********************************************************
**********) 
(* show gbc-optimization results                                    
*) 
(**********************************************************
**********) 
ClearAll[showOptResults]; 
showOptResults[]:= ( 
   saveIPrint[]; 
   iPrint=0; 
   gNew=gMin; 
   bNew=bMin; 
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   cNew=cMin; 
   fNew=fMin; 
   
(*depend[vEff_List,hEff_List,bvEff_List,bhEff_List,iWt_Inte
ger,iGeom_Integer,kFirst_Integer,kLast_Integer,nBkgsDummy_I
nteger,gDummy_Real,bDummy_Real,cDummy_Real,fDummy_Real,iFir
stDot_Integer,iLastDot_Integer*) 
    (*Print["pOpt=",depend[vEff,hEff,bvEff,bhEff,iWt, 
iGeom,kFirst,kLast,nBkgs,gNew,bNew,cNew,fNew,iFirst,iLastDo
t],"  gNew=",gNew,"  bNew=", bNew,"  cNew=",cNew,"  
fNew=",fNew]*); 
   SetOptions[{Plot,ListPlot},ImageSize->{144,108}]; 
   ListPlot[{vc,hc},PlotRange-
>Automatic(*{0,100}*),PlotLabel->"vc,hc"]; 
    
   
gsrPlots={gsrFullPlot=ListPlot[{gsrFluct12[[2;;]]},PlotLabe
l->"gsrFluctFull"], 
     gsr500Plot=ListPlot[{gsrFluct12[[2;;500]]},PlotLabel-
>"gsrFluct500"], 
     gsr200Plot=ListPlot[{gsrFluct12[[2;;200]]},PlotLabel-
>"gsrFluct200"], 
     gsr100Plot=ListPlot[{gsrFluct12[[2;;100]]},PlotLabel-
>"gsrFluct100"]}; 
   gPrint[gsrPlots]; 
    
   
grsPlots={grsFullPlot=ListPlot[{grsFluct12[[2;;]]},PlotLabe
l->"grsFluctFull"], 
     grs500Plot=ListPlot[{grsFluct12[[2;;500]]},PlotLabel-
>"grsFluct500"], 
     grs200Plot=ListPlot[{grsFluct12[[2;;200]]},PlotLabel-
>"grsFluct200"], 
     grs100Plot=ListPlot[{grsFluct12[[2;;100]]},PlotLabel-
>"grsFluct100"]}; 
   gPrint[grsPlots]; 
    
   
gssPlots={gssFullPlot=ListPlot[{gssFluct12[[2;;]]},PlotLabe
l->"gssFluctFull"], 
     gss500Plot=ListPlot[{gssFluct12[[2;;500]]},PlotLabel-
>"gssFluct500"], 
     gss200Plot=ListPlot[{gssFluct12[[2;;200]]},PlotLabel-
>"gssFluct200"], 
     gss100Plot=ListPlot[{gssFluct12[[2;;100]]},PlotLabel-
>"gssFluct100"]}; 
   gPrint[gssPlots]; 
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grrPlots={grrFullPlot=ListPlot[{grrFluct12[[2;;]]},PlotLabe
l->"grrFluctFull"], 
     grr500Plot=ListPlot[{grrFluct12[[2;;500]]},PlotLabel-
>"grrFluct500"], 
     grr200Plot=ListPlot[{grrFluct12[[2;;200]]},PlotLabel-
>"grrFluct200"], 
     grr100Plot=ListPlot[{grrFluct12[[2;;100]]},PlotLabel-
>"grrFluct100"]}; 
   gPrint[grrPlots]; 
    
   restIPrint[]; 
   ); 
(*showOptResults[]*) 
 
(**********************************************************
*********) 
(*ANIS:  fit anis decays of various ranges                         
*) 
(**********************************************************
*********) 
ClearAll[fitAnisDecay]; 
fitAnisDecay[]:= ( 
   saveIPrint[]; 
   iPrint=0; 
   grFitData=grrFluct12; 
   grFitDataName="grrFluct"; 
   wrr=gwrwr; 
   ClearAll[grFitPlots,grFitPlotFull,grFitPlot500, 
grFitPlot200, grFitPlot100]; 
   If[nParams==2,iMode=2,If[nParams==3,iMode=3,Print 
["fitAnisDecay: bad nParams"]]]; 
    
   grFitFull=fitExpDecay[iMode,grFitData, 
grFitDataName,wrr,nEff,2,Length[grFitData],"grFitFull",True
]; 
   grkFirstFull=2;grkLastFull=Length[grFitData]; 
   
grSDFull=gSD;grInfFull=gInf;grZeroFull=gZero;grTdFull=gTd; 
   
grInfErrFull=gInfErr;grZeroErrFull=gZeroErr;grTdErrFull=gTd
Err; 
   
grFluctCalcFull=fluctCalc;grFitPlotFull=fitPlot;(*dP[gTdErr
]; dP[grTdErrFull];*) 
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   grFit500=fitExpDecay[iMode,grFitData, 
grFitDataName,wrr,nEff,2,500,"grFit500",True]; 
   grkFirst500=2;grkLast500=500; 
   grSD500=gSD;grInf500=gInf;grZero500=gZero;grTd500=gTd; 
   
grInfErr500=gInfErr;grZeroErr500=gZeroErr;grTdErr500=gTdErr
; 
   grFluctCalc500=fluctCalc;grFitPlot500=fitPlot;(* 
dP[gTdErr]; dP[grTdErr500];*) 
    
   grFit200=fitExpDecay[iMode,grFitData, 
grFitDataName,wrr,nEff,2,200,"grFit200",True]; 
   grkFirst200=2;grkLast200=200; 
   grSD200=gSD;grInf200=gInf;grZero200=gZero;grTd200=gTd; 
   
grInfErr200=gInfErr;grZeroErr200=gZeroErr;grTdErr200=gTdErr
; 
   grFluctCalc200=fluctCalc;grFitPlot200=fitPlot; 
    
   grFit100=fitExpDecay[iMode,grFitData, 
grFitDataName,wrr,nEff,2,100,"grFit100",True]; 
   grkFirst100=2;grkLast100=100; 
   grSD100=gSD;grInf100=gInf;grZero100=gZero;grTd100=gTd; 
   
grInfErr100=gInfErr;grZeroErr100=gZeroErr;grTdErr100=gTdErr
; 
   grFluctCalc100=fluctCalc;grFitPlot100=fitPlot; 
    
   Print[grFitPlots={grFitPlotFull,grFitPlot500, 
grFitPlot200, grFitPlot100 }]; 
   restIPrint[] 
   ); 
(*fitAnisDecay[]*) 
 
(**********************************************************
*********) 
(*INTEN:  fit single exponential decay                             
*) 
(**********************************************************
*********) 
 
ClearAll[fitIntenDecay]; 
fitIntenDecay[]:=( 
   saveIPrint[]; 
   iPrint=0; 
   gsFitData=gssFluct12; 
   gsFitDataName="gssFluct"; 
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   wss=gwsws; 
    
   If[nParams==2,iMode=2,If[nParams==3,iMode=3,Print ["s 
fitexp decay - bad nParams"]]]; 
   gsFitFull=fitExpDecay[iMode,gsFitData, 
gsFitDataName,wss,nEff,2,nEff,"gsFitFull",True]; 
   gskFirstFull=2;gskLastFull=999; 
   
gsSDFull=gSD;gsInfFull=gInf;gsZeroFull=gZero;gsTdFull=gTd; 
   
gsInfErrFull=gInfErr;gsZeroErrFull=gZeroErr;gsTdErrFull=gTd
Err; 
   gsFluctCalcFull=fluctCalc;gsFitPlotFull=fitPlot; 
    
   gsFit500=fitExpDecay[iMode,gsFitData, 
gsFitDataName,wss,nEff,2,500,"gsFit500",True]; 
   gskFirst500=2;gskLast500=500; 
   gsSD500=gSD;gsInf500=gInf;gsZero500=gZero;gsTd500=gTd; 
   
gsInfErr500=gInfErr;gsZeroErr500=gZeroErr;gsTdErr500=gTdErr
; 
   gsFluctCalc500=fluctCalc;gsFitPlot500=fitPlot; 
    
   gsFit200=fitExpDecay[iMode,gsFitData, 
gsFitDataName,wss,nEff,2,200,"gsFit200",True]; 
   gskFirst200=2;gskLast200=200; 
   gsSD200=gSD;gsInf200=gInf;gsZero200=gZero;gsTd200=gTd; 
   
gsInfErr200=gInfErr;gsZeroErr200=gZeroErr;gsTdErr200=gTdErr
; 
   gsFluctCalc200=fluctCalc;gsFitPlot200=fitPlot; 
    
   gsFit100=fitExpDecay[iMode,gsFitData, 
gsFitDataName,wss,nEff,2,100,"gsFit100",True]; 
   gskFirst100=2;gskLast100=100; 
   gsSD100=gSD;gsInf100=gInf;gsZero100=gZero;gsTd100=gTd; 
   
gsInfErr100=gInfErr;gsZeroErr100=gZeroErr;gsTdErr100=gTdErr
; 
   gsFluctCalc100=fluctCalc;(gsFitPlot100=fitPlot); 
    
   gPrint[gsFitPlots={gsFitPlotFull,gsFitPlot500, 
gsFitPlot200, gsFitPlot100}]; 
   restIPrint[]; 
   ); 
 
(*setiPrint[0];fitIntenDecay[];restIPrint[];*) 
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(**********************************************************
*******) 
(* save results as CSV                                           
*) 
(**********************************************************
*******) 
 
ClearAll[saveResults]; 
saveResults[]:=( 
   (* generate timestamp for all output this pass  *) 
   saveIPrint[0]; 
   isStamp=True; 
   base= StringTake[inFileName, StringLength[inFileName]-
4]<>If[iDot!=-1,"-
d"<>IntegerString[iDot,10,2],""];tdList=DateList[]; 
   dateFormat={"Year","-","Month","-","Day"}; 
   timeFormat={"Hour",":","Minute",":","Second"}; 
   dateString=DateString[tdList,dateFormat]; 
   timeString=DateString[tdList,timeFormat]; 
   timeStampFormat={(*"-",*)"Year",(*"-",*)"Month",(*"-
",*)"Day","-","Hour24","Minute","Second"}; 
   
timeStampString=If[isStamp,DateString[tdList,timeStampForma
t],""]; 
   (* dP[timeStampString];*) 
    
   (* set up results file *) 
   resultsFileName=base<>"-"<>"results"<>"-
"<>timeStampString<>".csv"; 
    
   If [FileExistsQ[resultsFileName], 
    q=Close[resultsFileName]; 
    gPrint[q]; 
    DeleteFile[resultsFileName] 
    ]; 
   res=OpenWrite[resultsFileName];  
   nameCol=1; 
   valCol=2; 
    
   ClearAll[rA]; (* rA= "Results Array"  *) 
   (* fill columns C through V with all pts *) 
   rA=Prepend[Table["",{i,nEff}],"param"]; 
   rA=appendCol[rA,Prepend[Table["",{i,nEff}],"value"]]; 
   rA=appendCol[rA,Prepend[Table[i,{i,nEff}],"iPt"]]; 
   rA=appendCol[rA,Prepend[vEff, "vEff"]]; 
   rA=appendCol[rA,Prepend[hEff, "hEff"]] ; 
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   rA=appendCol[rA,Prepend[bvEff, "bvEff"]] ; 
   rA=appendCol[rA,Prepend[bhEff, "bhEff"]] ; 
   rA=appendCol[rA,Prepend[vc, "vc"]] ; 
   rA=appendCol[rA,Prepend[hc, "hc"]] ; 
   rA=appendCol[rA,Prepend[s, "s"]] ; 
   rA=appendCol[rA,Prepend[d, "d"] ]; 
   rA=appendCol[rA,Prepend[r, "r"]] ; 
   rA=appendCol[rA,Prepend[wr, "wr"]] ;   
   (*rA=appendCol[rA,Prepend[gssFluct, "gssFluct"]] ;*) 
   rA=appendCol[rA,Prepend[gssFluct12, "gssFluct12"]]; 
   (*rA=appendCol[rA,Prepend[gsrFluct, "gsrFluct"]] ;*) 
   rA=appendCol[rA,Prepend[gsrFluct12, "gsrFluct12"]]; 
   (*rA=appendCol[rA,Prepend[grsFluct, "grsFluct"]] ;*) 
   rA=appendCol[rA,Prepend[grsFluct12, "grsFluct12"]]; 
   (*rA=appendCol[rA,Prepend[grrFluct, "grrFluct"]] ;*) 
   rA=appendCol[rA,Prepend[grrFluct12, "grrFluct12"]]; 
   rA=appendCol[rA,Prepend[wrr, "wrr"]] ; 
   rA=appendCol[rA,Prepend[grFluctCalcFull, 
"grrFluctCalcFull"]] ; 
   rA=appendCol[rA,Prepend[grFluctCalc500, 
"grrFluctCalc500"]] ; 
   rA=appendCol[rA,Prepend[grFluctCalc200, 
"grrFluctCalc200"]] ; 
   rA=appendCol[rA,Prepend[grFluctCalc100, 
"grrFluctCalc100"]]; 
    
   (* fill cols A and B with names and values of params 
*)rA=addParam[rA,nameCol,valCol,"nb",NotebookFileName[]];rA
=addParam[rA,nameCol,valCol,"inFileName",inFileName]; 
   rA=addParam[rA,nameCol,valCol,"iDot",iDot]; 
   rA=addParam[rA,nameCol,valCol,"nEff",nEff]; 
   rA=addParam[rA,nameCol,valCol,"cBkg",cBkg]; 
   rA=addParam[rA,nameCol,valCol,"thMode",0];  (* no longer 
used*)   
   rA=addParam[rA,nameCol,valCol,"thLev",0]; (* no longer 
used*)   
   rA=addParam[rA,nameCol,valCol,"nCorr",0]; (* no longer 
used*)   
   rA=addParam[rA,nameCol,valCol,"n2v",0]; (* no longer 
used*)   
   rA=addParam[rA,nameCol,valCol,"n2h",0]; (* no longer 
used*)   
   rA=addParam[rA,nameCol,valCol,"n2vc",0]; (* no longer 
used*)   
   rA=addParam[rA,nameCol,valCol,"n2sc",0]; (* no longer 
used*)   
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   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"kMin",kMin];  
   rA=addParam[rA,nameCol,valCol,"kMax",kMax]; 
   
rA=addParam[rA,nameCol,valCol,"mlpIntercept",mlpRAvg(*mlpIn
tercept*)]; 
   
rA=addParam[rA,nameCol,valCol,"mlpSlope",mlpRSlope(*mlpSlop
e*)]; 
   
rA=addParam[rA,nameCol,valCol,"mlpLFeedthru",mlpVarDiff]; 
   rA=addParam[rA,nameCol,valCol,"mlpTot",mlpTot]; 
   rA=addParam[rA,nameCol,valCol,"unused1",0]; 
   rA=addParam[rA,nameCol,valCol,"unused2",0];  
   rA=addParam[rA,nameCol,valCol,"iPass",iPass]; 
   rA=addParam[rA,nameCol,valCol,"pMin",pMin]; 
   rA=addParam[rA,nameCol,valCol,"gMin",gMin]; 
   rA=addParam[rA,nameCol,valCol,"bMin",bMin]; 
   rA=addParam[rA,nameCol,valCol,"cMin",cMin]; 
   rA=addParam[rA,nameCol,valCol,"fMin",fMin]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"rFitData",grFitDataName]; 
   
rA=addParam[rA,nameCol,valCol,"krFirstFull",grkFirstFull]; 
   rA=addParam[rA,nameCol,valCol,"krLastFull",grkLastFull]; 
   rA=addParam[rA,nameCol,valCol,"grSDFull",grSDFull]; 
   rA=addParam[rA,nameCol,valCol,"grZeroFull",grZeroFull]; 
   
rA=addParam[rA,nameCol,valCol,"grZeroErrFull",grZeroErrFull
]; 
   rA=addParam[rA,nameCol,valCol,"grInfFull",grInfFull]; 
   
rA=addParam[rA,nameCol,valCol,"grInfErrFull",grInfErrFull]; 
   rA=addParam[rA,nameCol,valCol,"grTdFull",grTdFull]; 
   
rA=addParam[rA,nameCol,valCol,"grTdErrFull",grTdErrFull]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"rFitData",grFitDataName]; 
   rA=addParam[rA,nameCol,valCol,"krFirst500",grkFirst500]; 
   rA=addParam[rA,nameCol,valCol,"krLast500",grkLast500]; 
   rA=addParam[rA,nameCol,valCol,"grSD500",grSD500]; 
   
rA=addParam[rA,nameCol,valCol,"grZero500",grZero500];rA=add
Param[rA,nameCol,valCol,"grZeroErr500",grZeroErr500];rA=add
Param[rA,nameCol,valCol,"grInf500",grInf500];rA=addParam[rA
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,nameCol,valCol,"grInfErr500",grInfErr500]; 
   rA=addParam[rA,nameCol,valCol,"grTd500",grTd500]; 
   rA=addParam[rA,nameCol,valCol,"grTdErr500",grTdErr500]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"rFitData",grFitDataName]; 
   rA=addParam[rA,nameCol,valCol,"krFirst200",grkFirst200]; 
   rA=addParam[rA,nameCol,valCol,"krLast200",grkLast200]; 
   rA=addParam[rA,nameCol,valCol,"grSD200",grSD200]; 
   
rA=addParam[rA,nameCol,valCol,"grZero200",grZero200];rA=add
Param[rA,nameCol,valCol,"grZeroErr200",grZeroErr200];rA=add
Param[rA,nameCol,valCol,"grInf200",grInf200]; 
   
rA=addParam[rA,nameCol,valCol,"grInfErr200",grInfErr200]; 
   rA=addParam[rA,nameCol,valCol,"grTd200",grTd200]; 
   rA=addParam[rA,nameCol,valCol,"grTdErr200",grTdErr200]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"rFitData",grFitDataName]; 
   rA=addParam[rA,nameCol,valCol,"krFirst100",grkFirst100]; 
   rA=addParam[rA,nameCol,valCol,"krLast100",grkLast100]; 
   rA=addParam[rA,nameCol,valCol,"grSD100",grSD100]; 
   rA=addParam[rA,nameCol,valCol,"grZero100",grZero100]; 
   
rA=addParam[rA,nameCol,valCol,"grZeroErr100",grZeroErr100]; 
   rA=addParam[rA,nameCol,valCol,"grInf100",grInf100]; 
   
rA=addParam[rA,nameCol,valCol,"grInfErr100",grInfErr100]; 
   rA=addParam[rA,nameCol,valCol,"grTd100",grTd100]; 
   rA=addParam[rA,nameCol,valCol,"grTdErr100",grTdErr100]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"sFitData",gsFitDataName]; 
   
rA=addParam[rA,nameCol,valCol,"ksFirstFull",gskFirstFull]; 
   rA=addParam[rA,nameCol,valCol,"ksLastFull",gskLastFull]; 
   rA=addParam[rA,nameCol,valCol,"gsSDFull",gsSDFull]; 
   rA=addParam[rA,nameCol,valCol,"gsZeroFull",gsZeroFull]; 
   
rA=addParam[rA,nameCol,valCol,"gsZeroErrFull",gsZeroErrFull
]; 
   rA=addParam[rA,nameCol,valCol,"gsInfFull",gsInfFull]; 
   
rA=addParam[rA,nameCol,valCol,"gsInfErrFull",gsInfErrFull]; 
   rA=addParam[rA,nameCol,valCol,"gsTdFull",gsTdFull]; 
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rA=addParam[rA,nameCol,valCol,"gsTdErrFull",gsTdErrFull]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"sFitData",gsFitDataName]; 
   rA=addParam[rA,nameCol,valCol,"ksFirst500",gskFirst500]; 
   rA=addParam[rA,nameCol,valCol,"ksLast500",gskLast500]; 
   rA=addParam[rA,nameCol,valCol,"gsSD500",gsSD500]; 
   rA=addParam[rA,nameCol,valCol,"gsZero500",gsZero500]; 
   
rA=addParam[rA,nameCol,valCol,"gsZeroErr500",gsZeroErr500]; 
   rA=addParam[rA,nameCol,valCol,"gsInf500",gsInf500]; 
   
rA=addParam[rA,nameCol,valCol,"gsInfErr500",gsInfErr500]; 
   rA=addParam[rA,nameCol,valCol,"gsTd500",gsTd500]; 
   rA=addParam[rA,nameCol,valCol,"gsTdErr500",gsTdErr500]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"sFitData",gsFitDataName]; 
   rA=addParam[rA,nameCol,valCol,"ksFirst200",gskFirst200]; 
   rA=addParam[rA,nameCol,valCol,"ksLast200",gskLast200]; 
   rA=addParam[rA,nameCol,valCol,"gsSD200",gsSD200]; 
   rA=addParam[rA,nameCol,valCol,"gsZero200",gsZero200]; 
   
rA=addParam[rA,nameCol,valCol,"gsZeroErr200",gsZeroErr200]; 
   rA=addParam[rA,nameCol,valCol,"gsInf200",gsInf200]; 
   
rA=addParam[rA,nameCol,valCol,"gsInfErr200",gsInfErr200]; 
   rA=addParam[rA,nameCol,valCol,"gsTd200",gsTd200]; 
   rA=addParam[rA,nameCol,valCol,"gsTdErr200",gsTdErr200]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"sFitData",gsFitDataName]; 
   rA=addParam[rA,nameCol,valCol,"ksFirst100",gskFirst100]; 
   rA=addParam[rA,nameCol,valCol,"ksLast100",gskLast100]; 
   rA=addParam[rA,nameCol,valCol,"gsSD100",gsSD100]; 
   rA=addParam[rA,nameCol,valCol,"gsZero100",gsZero100]; 
   
rA=addParam[rA,nameCol,valCol,"gsZeroErr100",gsZeroErr100]; 
   rA=addParam[rA,nameCol,valCol,"gsInf100",gsInf100]; 
   
rA=addParam[rA,nameCol,valCol,"gsInfErr100",gsInfErr100]; 
   rA=addParam[rA,nameCol,valCol,"gsTd100",gsTd100]; 
   rA=addParam[rA,nameCol,valCol,"gsTdErr100",gsTdErr100]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   
rA=addParam[rA,nameCol,valCol,"grrFluct12[[2]]",grrFluct12[
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[2]]]; 
   
rA=addParam[rA,nameCol,valCol,"grrFluct12[[3]]",grrFluct12[
[3]]]; 
   
rA=addParam[rA,nameCol,valCol,"grrFluct12[[4]]",grrFluct12[
[4]]]; 
   
rA=addParam[rA,nameCol,valCol,"grrFluct12[[5]]",grrFluct12[
[5]]]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"grZero3Pts",grZero3Pts]; 
   
rA=addParam[rA,nameCol,valCol,"grZeroErr3Pts",grZeroErr3Pts
]; 
   rA=addParam[rA,nameCol,valCol,"grInf3Pts",grInf3Pts]; 
   
rA=addParam[rA,nameCol,valCol,"grInfErr3Pts",grInfErr3Pts]; 
   rA=addParam[rA,nameCol,valCol,"grTd3Pts",grTd3Pts]; 
   
rA=addParam[rA,nameCol,valCol,"grTdErr3Pts",grTdErr3Pts]; 
   
rA=addParam[rA,nameCol,valCol,"log10Td3Pts)",Log10[grTd3Pts
]]; 
   rA=addParam[rA,nameCol,valCol,"0.43err/tau3pts)",0.434 
grTdErr3Pts/grTd3Pts]; 
   rA=addParam[rA,nameCol,valCol,"grSD3Pts",grSD3Pts]; 
    
   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"grZeroFull",grZeroFull]; 
   
rA=addParam[rA,nameCol,valCol,"grZeroErrFull",grZeroErrFull
]; 
   rA=addParam[rA,nameCol,valCol,"grInfFull",grInfFull]; 
   
rA=addParam[rA,nameCol,valCol,"grInfErrFull",grInfErrFull]; 
   rA=addParam[rA,nameCol,valCol,"grTdFull",grTdFull]; 
   
rA=addParam[rA,nameCol,valCol,"grTdErrFull",grTdErrFull]; 
   
rA=addParam[rA,nameCol,valCol,"log10grTdAll",Log10[grTdFull
]]; 
   rA=addParam[rA,nameCol,valCol,"log10grTdErFull",0.434 
grTdErrFull/grTdFull]; 
   rA=addParam[rA,nameCol,valCol,"grSDFull",grSDFull]; 
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   rA=addParam[rA,nameCol,valCol," "," "]; 
   rA=addParam[rA,nameCol,valCol,"nParams",nParams]; 
   
rA=addParam[rA,nameCol,valCol,"NotebookFileName",NotebookFi
leName[]]; 
    
   (*rA//MatrixForm*) 
   (*Print[Length[rA]]; 
   Print[rA[[35]]]; 
   Abort[];*) 
    
   Do[(*i down*) 
    jLast=Length[rA[[i]]]; 
    Do[(*j across*) 
     WriteString[res,ToString[ff[rA[[i,j]]]]]; 
     
If[j!=jLast,WriteString[res,","],WriteString[res,"\n"]] 
     ,{j,1,jLast} 
     ] 
    ,{i,Length[rA]} 
    ]; 
   Close[res]; 
   Print["results filename= ",resultsFileName]; 
   restIPrint[] 
   ); 
(*saveResults[];*) 
 
 
(**********************************************************
*********) 
(* combine all graphics and export                                 
*) 
(**********************************************************
*********) 
ClearAll[savePlots]; 
 
savePlots[]:= 
  ( 
   saveIPrint[0]; 
   ClearAll[pageLabel]; 
   
(*bs(*BaseStyle*)={FontFamily "CourierNew",FontSize 12};*) 
   pageLabel= 
    Framed[ 
     Graphics[ 
      Inset[ 
       Pane[ 
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        TextCell[ 
         StringJoin[inFileName," = 
inFileName","\n",ToString[ iDot ] ," = iDot" ,   
"\n",FileBaseName[NotebookFileName[]]," = 
notebook","\n",dateString," = date","\n", timeString, " = 
time"], 
         "Text", 
         FontSize->10 
         ], 
        144 (*pane width pts*) 
        ], 
       {0,0} (*inset pos*) 
       ], 
      ImageSize->{144,108} 
      ] 
     ]; 
   allPlots=GraphicsGrid[{ 
      {pageLabel,vhEffPlot,bkgEffPlot, bkgCorrPlot}, 
      {vchcPlot,vchcDiffPlot,sPlot,rPlot}, 
      {gsrFullPlot, gsr500Plot ,gsr200Plot, gsr100Plot}, 
      {grsFullPlot,grs500Plot,grs200Plot,grs100Plot}, 
      {gsFitPlotFull,gsFitPlot500, gsFitPlot200, 
gsFitPlot100}, 
      {grFitPlotFull,grFitPlot500, grFitPlot200, 
grFitPlot100} 
      }, ImageMargins->{{36,36},{36,36}}]; 
   plotFileName=base<>"-"<>"plots"<>"-
"<>timeStampString<>".pdf"; 
   Export [plotFileName, allPlots]; 
   Print["plot filename= ",plotFileName]; 
   restIPrint[]; 
   ); 
(*savePlots[]*) 
 
 
(**********************************************************
**********) 
(* show analysis done this dot                                     
*) 
(**********************************************************
**********) 
ClearAll[done]; 
done[]:=Print["dot ", iDot, " processed and products 
saved\n\n"]; 
(*done[]*) 
 
(**********************************************************
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**********) 
(* process one dot completely                                       
*) 
(**********************************************************
**********) 
ClearAll[processOneDot]; 
processOneDot[]:= 
  (optimize[]; 
   showOptResults[]; 
   
fitAnisDecay[];fitAnisDecay3Pts[];printAnisFitNums[];fitInt
enDecay[]; 
   saveResults[]; 
   If[isSavePlots,savePlots[]]; 
   done[]); 
(*processOneDot[]*) 
 
(**********************************************************
**) 
(*             process dots this file                       
*) 
(*             iDot=-1  no background traces               
*) 
(**********************************************************
**) 
ClearAll[dotsThisFile]; 
dotsThisFile[(*inFileName_,iFirstDot_,iLastDot_*)]:=Module[
{(*inFileName*)(*,iFirstRow,isBkgs,data,dim,iLastRow,nCols,
nDots,n,iDot,cBkg,iTime,iv,ih,ibv,ibh,ibTime,v,h,bv,bh,bvf,
bhf,gbv,gbh,vhRawPlot,bkgRawPlot, 
bkgCorrPlot,inputPlot,s,dep*)}, 
   saveIPrint[]; 
    
   (* generate timestamp for all output this pass  *) 
   isStamp=True; 
   tdList=DateList[]; 
   dateFormat={"Year","-","Month","-","Day"}; 
   timeFormat={"Hour",":","Minute",":","Second"}; 
   dateString=DateString[tdList,dateFormat]; 
   timeString=DateString[tdList,timeFormat]; 
   timeStampFormat={(*"-",*)"Year",(*"-",*)"Month",(*"-
",*)"Day","-","Hour24","Minute","Second"}; 
   
timeStampString=If[isStamp,DateString[tdList,timeStampForma
t],""];  
   (*dP[timeStampString];*) 
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   (*inFileName="IgE-1-LRB.csv"; 
   q=DialogInput[{},Column[ 
   
{"inFileName=\t"InputField[Dynamic[inFileName],String,Align
ment Right], 
   
(*"isBkgs=\t"InputField[Dynamic[isBkgs],Number,Alignment Ri
ght], 
   
"cBkgs=\t"InputField[Dynamic[cBkg],Number,Alignment Right], 
   
"iFirst=\t"InputField[Dynamic[iFirstRow],Number,Alignment R
ight],*) 
   Button["proceed",DialogReturn[{inFileName, 
isBkgs,cBkg,iFirst}]]}]]; 
   inFileName=q[[1]];*)(* dP[inFileName];*) 
    
   data=Import[inFileName];(*dP[inFileName];*) 
   dim=Dimensions[data]; (*dP[dim];*) 
   len=dim[[1]];(*dP[len];*) 
   nCols=dim[[2]]; (*dP[nCols];*) 
   If[Mod[nCols,3]!=0, Print["nCols not divisible by 
3"];Exit[]]; 
   nDots=(nCols-6)/3; (*dP[nDots];*) 
   (*nDots=1;*) 
   n(*num pts*)=len-iFirst +1; (*dP[n];*) 
   i1=If[iFirstDot<1, 1,iFirstDot]; 
   i2=If[iLastDot<1, nDots,iLastDot]; 
    
   For [iDot=i1,iDot<=i2,iDot++, 
    (*Print info this dot*) 
    Print["Analyzing ",inFileName,"  dot=", iDot, " of ", 
nDots]; 
    Print["Model: ",model]; 
    base= StringTake[inFileName, StringLength[inFileName]-
4]<>If[iDot!=-1,"-d"<>IntegerString[iDot,10,2],""]; 
    ibTime=1;ibv=2;ibh=3; 
    iTime=4+3*iDot;iv=5+3*iDot;ih=6+3*iDot; 
    dataRange={}; 
    time=data[[iFirst;;len,iTime]]; (*1st dim is DOWN, 2nd 
ACROSS *) 
    vEff=data[[iFirst;;len,iv]]; (*starts 2nd row, 
indicated col *) 
    hEff=data[[iFirst;;len,ih]]; (*starts 2nd row, 
indicated col *) 
    If [iDot!=-1, (* yes, bkgs *) 
     bvEff=data[[iFirst;;len,ibv]]; (*starts 2nd row, 
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indicated col *) 
     bhEff=data[[iFirst;;len,ibh]], 
     (*else*) 
     bvEff=Table[0,{n}]; 
     bhEff=Table[0,{n}] 
     ];(*if*) 
     
    bvf=bvEff-Mean[bvEff];  bhf=bhEff-Mean[bhEff];  
    gbv=dataCorrelate[bvf,bvf]; 
    gbh=dataCorrelate[bhf,bhf]; 
    range={0, 1.25Max[vEff,hEff]}; 
    inputPlots={ 
      vhEffPlot=ListPlot[{vEff,hEff},PlotLabel-
>"vhEff",PlotRange->range], 
      bkgEffPlot=ListPlot[{bvEff,bhEff},PlotLabel-
>"bkgsRaw",PlotRange-
>range],bkgCorrPlot=ListPlot[{gbv,gbh},PlotLabel-
>"bkgCorr"]}; 
    ListPlot[{gbv,gbh},PlotLabel->"bkgCorr"]; 
    processOneDot[] 
    ] ;(*for*) 
   restIPrint[];(* ";" needed here; otherwise prints "0"*) 
   ]; (*module*) 
(*inFileName="IgE-1-LRB.csv";dotsThisFile[];*) 
  
 
(**********************************************************
**********) 
(*               process all dots all files                                   
*) 
(* run the code ABOVE once before running this, possibly 
multiple times       *) 
(**********************************************************
**********) 
 
ClearAll[dotsAllFiles]; 
iWeight=2;  (* 1=uniform wt, 2=s^2 wt; 3=full s,r pt wt*) 
nParams=2;  (*2 or 3 p *) 
tauMin=0.1; (* min tau allowed*) 
isSavePlots=True; (* "False" speeds up checking calcn's & 
saves disc space *)  
 
dotsAllFiles[]:= 
  (fileList=getFileList[]; 
   nFiles=Length[fileList]; 
   iFirstFile=1; iLastFile=1; 
   If[iLastFile==0, iLastFile=nFiles]; 
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   iFirstDot=1;iLastDot=2; 
   For[i=iFirstFile,i<=iLastFile,i++, 
    inFileName=fileList[[i]];  
    (*inFileName="Pf-1-LRB-4.csv";  (* REMOVE THIS to 
analyze all QD in arb directory *)*) 
    inFileName="IgE-1-LRB.csv"; (* REMOVE THIS to analyze 
all QD in arb directory *) 
    (*inFileName="2015-04-15-para-10pl-LRB.csv";(* REMOVE 
THIS to analyze all QD in arb directory *)*) 
    model="v140-2wt-2p-p1tau" ;(* THIS MUST BE FILLED IN 
BEFORE STARTING ANALYSIS *) 
    dotsThisFile[] 
    ]); 
dotsAllFiles[]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Program Code 4: MergeFiles v.39 
 
(**********************************************************
************) 
(* MERGEFILES                                                                   
*) 
(* Merge and avg "results" CSV files from multiple QDs                          
*) 
(* mode=0 → identifies and avg's "results" files into 
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"nums.csv"                *) 
(* mode=1 →  avgs only cols in merged "nums.csv"  w/ non-
blank 1st cells        *) 
(* mode=2 →  replaces "nums/csv" with saved "numsSaved.csv" 
to allow new mode 1 *) 
 
(* USE:                                                                         
*) 
(* 1) run mode 0 to process and avg ALL files in curr 
directory into 'nums.csv' *) 
(* 2) in "nums.csv' edit "" into 1st cells of QD to be 
removed; run mode 1      *) 
(* 3) to get back orig 'nums.csv' with ALL QD, run mode 2                       
*) 
 
(* NOTE:                                                                         
*)  
(* This prog intended ONLY for use with "results" files 
created by        *)  
(* RS-sWtd-485-FINALcopy-mod15k.nb                                              
*) 
(* and re-processed by NoGrrInf-17-New3PtFit.nb                                 
*) 
(**********************************************************
*************) 
 
 
(**********************************************************
) 
(*  initialize Mathematica system                         
*) 
(**********************************************************
) 
ClearSystemCache[]; 
ClearAll 
[iFirstRow,iTime,iv,ih,dP,aP,se,uGeom,wGeom,uMean,wMean,mer
geFiles,i]; 
SetDirectory[NotebookDirectory[]]; 
 
Needs["CCompilerDriver`"]; 
Needs["SymbolicC`"]; 
Needs["CompiledFunctionTools`"]; 
Unprotect[CompiledFunctionools`Private`getInstruction]; 
CompiledFunctionTools`Private`getInstruction[line_,{0,_}]:=
CompiledFunctionTools`Private`getInstruction[line,{3,1}] 
SetDirectory[NotebookDirectory[]]; 
(*SetOptions[$FrontEndSession,PrintingStyleEnvironment "Wor
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king"];*) 
Off[General::munfl]; 
gPrint= If[iPrint!=0,Print[##]]&; 
iPrint=1; 
one=#1&; 
remOdd[ e_, x_]:=((e/.{x->Power[x,2]})/.{ x2->0, x6->0, x10-> 
0,x14-> 0})/.{x-> x1/2}; 
SetAttributes[dP,HoldAll]; 
dP[z_]:=If[(iPrint!=0 &&ValueQ[z]==True)|| 
(ValueQ[iPrint]==False),Print[HoldForm[z],"=",ReleaseHold[z
](*//MatrixForm*)]]; (* debug print*) 
aP[a_]:=Module[{last},last=Min[8, Length[a]];a[[1;;last]]]; 
se[x_]:=Simplify[Expand[x]]; (* simplify-expand *) 
 
(**********************************************************
*********) 
(*getFileList[]:  get names of raw data files in current 
directory *) 
(**********************************************************
*********) 
ClearAll[getFileList]; 
getFileList[]:=Module[{(*f,l,c1,c2,c3,c4,c,i*)}, 
   f=FileNames[All];l=Length[f]; 
   c2=StringContainsQ[f, "csv"]; 
   c3=Thread[StringContainsQ[f, "results"]]; 
   c=Table[c2[[i]]&&c3[[i]],{i,l}]; 
   fs={};For [i=1,i<=l,i++, 
    If[c[[i]],AppendTo[fs,f[[i]]]]]; 
   Return[fs] 
   ]; 
 
(**********************************************************
*********) 
(* "_means" :  define various averaging modes                                
*) 
(**********************************************************
*********) 
 
ClearAll[uMean,wMean,uGeom,wGeom]; 
uMean[x_,sd_,ok_]:=Module[{nDots,w,wTot(*w*)}, (* simple 
arith avg/sd *) 
   (*iu=iii;dP[iu];*) 
   (*Print["uMean"];*) 
   nDots=Length[x]; 
   nUsed=nDots; 
   w=ok; (* here, w is integer = 0 or 1 *)(*dP[ok];*) 
   wTot=Total[w];(*dP[wTot];*) 
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   wAvg=Total[x*w]/wTot;(* dP[wAvg];*) 

   wSd=(Total[(x-wAvg)^2*w]/wTot)1/2* ; 
   Return[{wAvg,wSd}]]; 
wMean[x_,sd_,ok_]:=Module[{j,nDots,nUsed,w,wTot,wN},(*wtd 
arith avg*) 
   (*iw=iii;dP[iw];*) 
   (*Print["wMean"];*) 
   ClearAll[j]; 
   nDots=Length[x]; (*ok=1 or ok=0*) 
   w=Table[If[sd[[j]]>220,0, 
If[sd[[j]]>0,ok[[j]]/sd[[j]]2,0]],{j,nDots}]; 
   nUsed=Sum[If[w[[j]]>0,1,0],{j,nDots}]; 
   wTot=Total[w]; 
   wAvg=Total[x*w]/wTot;  

   wSd=(Total[(x-wAvg)^2*w]/wTot)1/2* ; 
   Return[{wAvg,wSd}]]; 
wGeom[ 
x_,sd_,ok_]:=Module[{j,nDots,w,nUsed,wTot,wN,xn,lx,avgLx},(
*wtd geom avg*) 
   (*ig=iii;dP[ig];*) 
   (*Print["gMean"];*) 
   nDots=Length[x]; 
   w=Table[If[sd[[j]]>0 
&&x[[j]]>0,ok[[j]]*x[[j]]2/sd[[j]]2,0],{j,nDots}]; 
   nUsed=Sum[If[w[[j]]>0,1,0],{j,nDots}]; 
   wTot=Total[w]; 
   lx=Table[If[x[[i]]>0,Log[x[[i]]],0],{i,nDots}];  
   lxAvg=Total[lx*w]/wTot;(*dP[avgLx];*) 
   gAvg=Exp[lxAvg];  (* wtd geom avg *) 
   lVar=(Total[(lx-lxAvg)^2*w]/wTot*nUsed/(nUsed-1))1; 
   lSD=lVar1/2; 
   gSd=gAvg(ElSD-1); 
   (*dP[{gAvg,gSd,lSD}];*) 
   Return[{gAvg,gSd,lSD}]]; 
 
 
(**********************************************************
*********) 
(*  actual prog "MergeFiles" begins here                                    
*) 
(**********************************************************
*********) 
 
ileName="paramListFile.csv"; 
fileListFileName="fileListFile.csv"; 
inFileName="inFile.csv"; 

nUsed nUsed 1

nUsed nUsed 1



378 
 

outFileName="nums.csv"; 
savedOutFileName="numsSaved.csv"; 
 
iFirstDotColumn=5; (* cols name, value, blank, blank 
precede *) 
ClearAll[mergeFiles]; 
mergeFiles[iModeTemp_, paramListFileName_, outFileName_, 
savedOutFileName_]:= 
  Module[{i},  
   (* iMode 0  combine & avg into "nums.csv" AND(!) copy 
"nums.cvs" into "numsSaved.csv" *)  
   (* iMode 1  re-average "numsSaved.csv" with selected 
colunms omitted into "nums.csv"*) 
   (* iMode 2  copy "numsSaved.csv" into "nums.csv" with 
selected colunms omitted *) 
    
   (* get iMode this pass *) 
   iMode=Input["mode (0, 1 or 2) = ",iModeTemp]; 
   Print["iMode=", iMode]; 
    
   (* continue *) 
   If [iMode==0 , 
    files=getFileList[];dP[files]; 
    nFiles=Dimensions[files][[1]];dP[nFiles]; 
    (*nFiles=16;*) 
    (*For [ i=iFirstDotColumn, i≤iFirstDotColumn+nFiles-
1,i++,*) 
    For [i=1, i<=nFiles,i++, 
     currFile=files[[i]];(*dP[currFile];*) 
     Open[currFile]; 
     data=Import[currFile]; 
     (*dP[Dimensions[data]];dP[[data]];*) 
     mCols=Dimensions[data][[2]]; 
     iLastDotColumn=nFiles+iFirstDotColumn -
1;(*dP[iLastDotColumn];*) 
     If[!FileExistsQ[paramListFileName],Print["no 
paramListFile; exiting"];Abort[]]; 
     If [i==1, 
      paramListFile=Import[paramListFileName]; 
      mRows= Count[paramListFile,Except[""]]; 
      params=ArrayReshape[paramListFile,{mRows,1}];  
(*dP[Dimensions[params]];*)(*dP[params];*) 
      blanks=Table["",{mRows},{iFirstDotColumn-2}];  
(*dP[Dimensions[blanks]];*) 
      outFile=Join[params, blanks,2];  (* 
dP[Dimensions[outFile]];*) 
      outFile[[1,2]]="avg"; 



379 
 

      outFile[[1,3]]="avg stderr"; 
      ];(*if i=1*) 
     WriteString["stdout",ToString[i],"-"]; 
     If[i>1 && Mod[i,32]==0,WriteString["stdout", "\n"]];  
     ones=Table[1,mRows]; 
     outFile=Join[outFile,data[[1;;mRows,2;;2]],2];  
     ]; (*for*) 
    ];(*if0*) 
   (*dP[nFiles]; 
   Export["x.csv", outFile]; 
   gPrint["end if i=0"]; 
   Abort[];*) 
    
   (*dP[iMode];*) 
   If [(iMode ==  1|| iMode==2) , 
    If[iMode==1,If[!FileExistsQ[outFileName],Print["no 
'outFile' to re-avg; exiting"];Abort[], 
      outFile=Import[outFileName]]]; 
    If[iMode==2,If[!FileExistsQ[savedOutFileName],Print["no 
'savedOutFile' to re-avg; exiting"];Abort[], 
      outFile=Import[savedOutFileName]]]; 
    (*Print["in loop"];*) 
    mRows=Dimensions[outFile][[1]]; 
    mCols=Dimensions[outFile][[2]]; 
    nFiles=mCols-iFirstDotColumn+1; 
    iLastDotColumn=mCols; 
    (*outFile=avgInFile;*) 
    ]; (*if*) 
   (*gPrint["paused"]; 
   Pause[1*^9];*) 
    
   (*all of iMode=0 and =1 and =2 come here*) 
   iLastDotColumn=iFirstDotColumn+nFiles-1; 
   dP[iFirstDotColumn];dP[iLastDotColumn]; 
   ok=Table[If[outFile[[1,i]]=="value",1,0],{i,  
iFirstDotColumn,iLastDotColumn}];dP[ok]; 
   If[iMode==2, 
    For[i=iFirstDotColumn,i<=iLastDotColumn,i++, (*sheet 
index i*) 
     ii=i-iFirstDotColumn+1; (*file index ii*) 
     Print["i=",i,"  ii=",ii]; 
     gMin=.12;gMax=.55; 
     If[(outFile[[25,i]]<gMin)||(outFile[[25,i]]>gMax), 
ok[[ii]]=0;outFile[[1,i]]=""]; 
      
     gr0Min=-.1;gr0Max=.1; 
     If[(outFile[[34,i]]<gr0Min)||(outFile[[34,i]]>gr0Max), 
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ok[[ii]]=0;outFile[[1,i]]=""]; 
     If[(outFile[[45,i]]<gr0Min)||(outFile[[45,i]]>gr0Max), 
ok[[ii]]=0;outFile[[1,i]]=""]; 
     If[(outFile[[56,i]]<gr0Min)||(outFile[[56,i]]>gr0Max), 
ok[[ii]]=0;outFile[[1,i]]=""]; 
     If[(outFile[[67,i]]<gr0Min)||(outFile[[67,i]]>gr0Max), 
ok[[ii]]=0;outFile[[1,i]]=""]; 
      
     grTdMin=0.;grTdMax=500.; 
     
If[(outFile[[38,i]]<grTdMin)||(outFile[[38,i]]>grTdMax), 
ok[[ii]]=0;outFile[[1,i]]=""]; 
     
If[(outFile[[49,i]]<grTdMin)||(outFile[[49,i]]>grTdMax), 
ok[[ii]]=0;outFile[[1,i]]=""]; 
     
If[(outFile[[60,i]]<grTdMin)||(outFile[[60,i]]>grTdMax), 
ok[[ii]]=0;outFile[[1,i]]=""]; 
     
If[(outFile[[71,i]]<grTdMin)||(outFile[[71,i]]>grTdMax), 
ok[[ii]]=0;outFile[[1,i]]=""]; 
      
     ](*for*) 
    ];(*if*) 
    
   
uMeanTargets={17,18,19,20,21,22,23,24,25,26,27,28,33,44,55,
66,77,88,99,110,118,119,120,121,131,141};  
   wMeanTargets={34,36,45,47,56,58, 
67,69,78,80,89,91,100,102, 111,113, 123,125,133,135};  
   wGeomTargets={38,49,60,71,82,93,104,115,127,137}; 
   log10Tau={129,139}; 
   log10TauErr={130,140}; 
    
   (*dP[nFiles];*) 
   iLastDotColumn=iFirstDotColumn+nFiles-1; 
   outFile[[All,2;;3]]="";(*clear avg, err cols*) 
   dP[mRows]; 
   dP[Dimensions[outFile]]; 
   For[i=1,i<=mRows,i++, 
    iii=i; 
    (*dP[i];*) 
    o=    outFile[[i,iFirstDotColumn;;iLastDotColumn]];(* 
dP[o];*) 
    
op1=If[i<mRows,outFile[[i+1,iFirstDotColumn;;iLastDotColumn
]],Table[1,{nFiles}]]; 
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    op1Tot=Total[op1]; 
    If[MemberQ[uMeanTargets,i], 
     avg=uMean[o,op1,ok]; 
     outFile[[i,2]]=avg[[1]]; 
     outFile[[i,3]]=avg[[2]]]; 
    If[MemberQ[wMeanTargets,i]&&op1Tot>0, 
     avg=wMean[o,op1,ok];(* dP[o];dP[op1];dP[ok];*) 
     outFile[[i,2]]=avg[[1]]; 
     outFile[[i,3]]=avg[[2]]]; 
    If[MemberQ[wGeomTargets,i]&&op1Tot>0, 
     avg=wGeom[o,op1,ok]; 
     outFile[[i,2]]=avg[[1]]; 
     outFile[[i,3]]=avg[[2]]]; 
     
    ]; (* for *) 
    
   For[i=1,i<=mRows,i++, (*dP[i];*)   (* seems to be 
circular ref though how ??? *) 
    If[MemberQ[log10Tau,i],  
      outFile[[i,2]]=Log10[outFile[[i-2,2]]]; 
      (*outFile[[i,3]]=0.434 avg[[3]]; 
dP[outFile[[i,3]]];*) 
      outFile[[i,3]]=Log10[E]* Log[1+outFile[[i-
2,3]]/outFile[[i-2,2]]]; 
      ]; (*if*) 
    ]; (* for*) 
    
   Print["dim[outFile]=",Dimensions[outFile]]; 
   If[FileExistsQ[outFileName], DeleteFile[outFileName]]; 
   outFile[[1,2]]="avg"; 
   outFile[[1,3]]="st dev"; 
   outFile[[1,4]]="(blank col)"; 
   Export[outFileName,outFile]; 
   If [iMode==0,  
    If[FileExistsQ[savedOutFileName], 
DeleteFile[savedOutFileName]]; 
    CopyFile[outFileName, savedOutFileName]]; 
   (*avgInFile=outFile;*) 
   ]; 
 
mergeFiles[0,"paramNamesColumnNew.csv", 
"nums.csv","numsSaved.csv" ]; 
 
 iMode= 0 
 files = {2015-04-15-para-10pl-LRB-d01-results-20201001-
134712.csv,2015-04-15-para-10pl-LRB-d02-results-20201001-
134719.csv,2015-04-15-para-10pl-LRB-d03-results-20201001-



382 
 

134726.csv,2015-04-15-para-10pl-LRB-d04-results-20201001-
134734.csv,2015-04-15-para-10pl-LRB-d05-results-20201001-
134741.csv,2015-04-15-para-10pl-LRB-d06-results-20201001-
134748.csv} 
 nFiles = 6 
 1-2-3-4-5-6- 
 iFirstDotColumn = 5 
 iLastDotColumn = 10 
 ok = {1,1,1,1,1,1} 
 mRows = 144 
 Dimensions[outFile] = {144,10} 
 iu = 17 
 iu = 18 
 iu = 19 
 iu = 20 
 iu = 21 
 iu = 22 
 iu = 23 
 iu = 24 
 iu = 25 
 iu = 26 
 iu = 27 
 iu = 28 
 iu = 33 
 iw = 34 
 iw = 36 
 ig = 38 
 iu = 44 
 iw = 45 
 iw = 47 
 ig = 49 
 iu = 55 
 iw = 56 
 iw = 58 
 ig = 60 
 iu = 66 
 iw = 67 
 iw = 69 
 ig = 71 
 iu = 77 
 iw = 78 
 iw = 80 
 ig = 82 
 iu = 88 
 iw = 89 
 iw = 91 
 ig = 93 
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 iu = 99 
 iw = 100 
 iw = 102 
 ig = 104 
 iu = 110 
 iw = 111 
 iw = 113 
 ig = 115 
 iu = 118 
 iu = 119 
 iu = 120 
 iu = 121 
 iw = 123 
 iw = 125 
 ig = 127 
 iu = 131 
 iw = 133 
 iw = 135 
 ig = 137 
 iu = 141 
 dim[outFile]= {144,10} 
 avg 
 {46.0766,178.559,1.58417} 
  
 
   
 
ClearAll[x,sd,w,ok,lAvg]; 
nDots=16; 
x={16.37268197, 7.050827591,3.389313532, 
242.4241185,465.5862344 ,26.24850047 ,7.382614208 
,10.33169337 ,6.119239947 ,17.52866473 ,21.51468385 
,38.816786 ,12.09501695 ,15.39400941 ,65.26227094 
,5.888714016}; 
sd={2.342689162 ,0.771996157, 0.321129931, 8.550285455 
,264.0147962, 3.486522097, 0.886088484, 1.084189108, 
0.920431403, 4.531403416,1.788593673, 3.81401505, 
1.326592628 ,1.732702052, 4.904354864 ,0.626745194}; 
ok={1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}; 
 
w=Table[If[sd[[j]]>0 
&&x[[j]]>0,ok[[j]]*x[[j]]2/sd[[j]]2,0],{j,nDots}];dP[w]; 
lx=Log[x];dP[lx]; 
lAvg=Total[lx*w]/Total[w];dP[lAvg]; 
avg=ElAvg; 
 
lVar=Total[(lx-lAvg)2 w]/Total[w]*nDots /(nDots-1);dP[lVar]; 
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lSD= ;dP[lSD]; 
 
lSdFact=(ElSD-1);dP[lSdFact]; 
e=avg*lSdFact;dP[e]; 
q=wGeom[x,sd,ok];dP[q]; 
dl=Log10[E]*q[[3]] 
 
 w = 
{48.8439,83.4161,111.394,803.879,3.10988,56.6793,69.4171,90
.8098,44.199,14.9635,144.693,103.58,83.1262,78.9325,177.076
,88.2793} 
 lx = 
{2.79561,1.95314,1.22063,5.49069,6.1433,3.26761,1.99913,2.3
3522,1.81144,2.86384,3.06874,3.65885,2.49279,2.73398,4.1784
1,1.77304} 
 lAvg = 3.83031 
 lVar = 2.50961 
 lSD = 1.58417 
 lSdFact = 3.87526 
 e = 178.559 
 q = {46.0766,178.559,1.58417} 
 0.687998 
 lSD = 1.58417 
 
 lSdFact = 3.87526 
 Total[lWtd]/Total[w] = 2.35276 
 e = 178.559 
 avg 
 {46.0766,178.559,1.58417} 
  
 
 
 
 
 
 
 
 
Program Code 5: PC Corr v.80 
 
 
(**********************************************************
*) 
(**********************************************************
*) 
(**********************************************************
*) 

lVar
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(* Enderlein correlation from hv arrival times *) 
(**********************************************************
*) 
(**********************************************************
*) 
(**********************************************************
*) 
 
(**********************************************************
*) 
(*Initialize *) 
(**********************************************************
*) 
ClearSystemCache[]; 
ClearAll[]; 
SetDirectory[NotebookDirectory[]]; 
 
(**********************************************************
*) 
(* create arrays for each channel from files                       
*) 
(**********************************************************
*) 
ClearAll[makeChannelArrays]; 
makeChannelArrays[inFileName_]:=Module[{i1,i2,l,l1,l2,gEst,
t1,t2,w1,w2,w1Tot,w2Tot,data,psPerPt,secPerPt,maxInitPts,gT
radEst,maxTimeSec, r1,r2, gGbEst,wm,im}, 
   (* import data; get length; make empty tables for times, 
wts*) 
   secPerPt=164.61*^-12;(*DPC230 psPerPt=164.61;*) 
   data=Import [inFileName](*[[All,1;;2]]*); 
   l=Length[data]; 
   i1=0;i2=0;im=0; 
t1=Table[0,{l}];t2=Table[0,{l}];w1=Table[0,{l}];w2=Table[0,
{l}];wm=Table[0,{l}]; 
   tm=data[[All,1]]; 
    
   (*read data & make times, wts each ch*) 
   If [Length[data[[1]]]==2, 
    (*no wt column*) 
    Do[ 
     im++; 
     If[data[[i,2]]==1,i1++; 
t1[[i1]]=t1[[i1]]+data[[i,1]];w1[[i1]]=N[1];wm[[im]]=N[1]]; 
     If[data[[i,2]]==2,i2++; 
t2[[i2]]=t2[[i2]]+data[[i,1]];w2[[i2]]=N[1];wm[[im]]=N[-
1]], 
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     {i,l} 
     ], 
    (*exists wt column*) 
    Do[ 
     im++; 
     If[data[[i,2]]==1,i1++; 
t1[[i1]]=t1[[i1]]+N[data[[i,1]]];w1[[i1]]=data[[i,3]]]; 
     If[data[[i,2]]==2,i2++; 
t2[[i2]]=t2[[i2]]+N[data[[i,1]]];w2[[i2]]=data[[i,3]]], 
     {i,l} 
     ] 
    ]; 
   (* make output *) 
   t1=t1[[1;;i1]]; (* hv arrival times array *) 
   t2=t2[[1;;i2]]; 
   l1=Length[t1]; (* length of time array - typ num hv *) 
   l2=Length[t2]; 
   w1=w1[[1;;i1]]; (* wt per each time - typically 1 *) 
   w2=w2[[1;;i2]]; 
   w1Tot=Total[w1]; (* tot wts or hv this channel *) 
   w2Tot=Total[w2]; 
   Print[w1Tot,"  ",w2Tot]; 
   latestPt=Max[t1[[l1]],t2[[l2]]];   
   maxTimeSec=latestPt*secPerPt; 
   r1=l1/maxTimeSec; (* hv per sec *) 
   r2=l2/maxTimeSec; 
   gTradEst=N[w1Tot/w2Tot]; 
   gGbEst=N[(w1Tot-w2Tot)/(w1Tot+w2Tot)]; 
    
   Print["len tot=",l]; 
   Print["len 1=",l1]; 
   Print["len 2=",l2]; 
   Print["w 1=",w1Tot]; 
   Print["w 2=",w2Tot]; 
   Print["maxInitPts=",maxInitPts]; 
   Print["max Time=",maxTimeSec]; 
   Print["r1=",r1]; 
   Print["r2=",r2]; 
   Print["gTradEst=",gTradEst]; 
   Print["gGbEst=",gGbEst]; 
    
   (*Return[{t1,t2,l1,l2,w1,w2,gTradEst,maxTimeSec, r1,r2, 
gGbEst,maxInitPts,tm,wm}];*) 
   Return[{t1,t2,tm,l1,l2,w1,w2,wm,latestPt,maxTimeSec, 
r1,r2, gTradEst,gGbEst}] 
   ]; 
(*makeChannelArrays["outRaw-1k.csv"]; 
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Print["i1=",i1,"   ", "i2=",i2]; 
Print["t1=",t1[[1;;16]]]; 
Print["t2=",t2[[1;;16]]]; 
Print["tm=",tm[[1;;16]]]; 
Print["w1=",w1[[1;;16]]]; 
Print["w2=",w2[[1;;16]]]; 
Print["wm=",wm[[1;;16]]];*) 
 
(**********************************************************
*) 
(* merge two single-photon channel arrays                       
*) 
(**********************************************************
*) 
ClearAll[mergePhotonArrays]; 
mergePhotonArrays[a_,b_]:=Module[{}, 
   jaMax=Length[a]; 
   jbMax=Length[b]; 
   m=Table[0,jaMax+jbMax]; 
    
   ja=0; 
   jb=1; 
   i=1; 
   While[True, 
    bb=b[[jb]]; 
    (*wbb=wb[[jb]];*) 
    Print[];Print["jb=",jb,"  bb=",bb]; 
    While[True, 
     If[ja<jaMax,ja++,Goto[done]]; 
     (*Print["ja=",ja, "  a=",a[[ja]]];*) 
     If[(aa= a[[ja]])< bb,m[[i]]=aa;i++,Break[]] 
     ];(* end while *) 
    Print[];Print["ja=",ja,"  aa=",aa];  
    ja++; 
    aa=a[[ja]]; 
    (*waa=wa[[ja]];*) 
    While[True, 
     If[jb<jbMax,Goto[done]]; 
     Print["jb=",jb, "  bb=",b[[jb]]]; 
     If[(bb=b[[jb]])<aa,m[[i]]=bb;i++,Break[]]; 
     jb++; 
     ] (* end while *) 
    ];(* end while *) 
   Label[done]; 
   Return[m] 
   ]; 
(*a={10,30,50,60,90,120,150,190}; 
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b={11,15,45,71,80,93,110,135}; 
jaMax; 
jbMax;m 
mergePhotonArrays[a,b]*) 
 
(**********************************************************
*) 
(* enderlein deflate list of hv times                              
*) 
(**********************************************************
*) 
ClearAll[deflate]; 
deflate[x_,w_,j_]:=Module[{l,i,xx,xxTemp,ww,wwTemp,wwTerm,i
New}, 
   (* divide data times by pwr of 2 *) 
   l=Length[x]; 
   If[l<2, Break[]]; 
   fact=2j; 
   xx=IntegerPart[x/fact]; 
   ww=w; 
    
   (* combine new pts at equal time *) 
   For [i=2,i<=l,i++, 
    If[ xx[[i]]==xx[[i-1]], 
      ww[[i]]=ww[[i]]+ww[[i-1]]; 
      ww[[i-1]]=0; 
      xx[[i-1]]=0; 
      ]; 
    ]; 
    
   (* remove 0-wt points *) 
   xxTemp=Table[0,l]; 
   wwTemp=xxTemp; 
    
   iNew=0; 
   For [i=1,i<= l,i++, 
    If[(wwTerm=ww[[i]])!=0, 
      iNew++; 
      wwTemp[[iNew]]=wwTerm; 
      xxTemp[[iNew]]=xx[[i]] 
      ]; 
    ]; 
    
   Return[{xxTemp[[1;;iNew]],wwTemp[[1;;iNew]]}] 
   ]; 
(*Print["x=",x={1,10,20,30,32,34,40,50}]; 
Print["wx=",wx={1,1,1,3,7,1,1,1}]; 



389 
 

Print["x=",deflate[x,wx,2][[1]]]; 
Print["wx=",deflate[x,wx,2][[2]]]; 
Print["wtMax=", deflate[x,wx,2][[3]]]; 
Print["tot wx=", Total[deflate[x,wx,2][[2]]]];*) 
 
 
(**********************************************************
*) 
(* enderlein 'deflate'  -  PARALLEL                                
*) 
(* about 3.3 sec(TS 0)-4.6 sec (TS 30)/546031 pts                 
*) 
(* .085  sec / 10k pts                                             
*) 
(**********************************************************
*) 
Needs["CompiledFunctionTools`"]; 
ClearAll[deflateCompile]; 
deflateCompile=Compile[ 
   {{x,_Integer,1}, 
    {w,_Real,1}, 
    {j,_Integer}}, 
   
Module[{done,l,i,xx,xxTemp,ww,wwTemp,wwTerm,iNew,fact,qxx,q
ww,q}, 
    l=Length[x]; 
    If[l<2, Goto[done]]; 
     
    fact=2j; 
    xx=IntegerPart[x/fact]; 
    ww=w; 
    For [i=2,i<=l,i++, 
     If[ xx[[i]]==xx[[i-1]], 
       ww[[i]]=ww[[i]]+ww[[i-1]]; 
       ww[[i-1]]=0.0; 
       xx[[i-1]]=0; 
       ]; 
     ]; 
     
    xxTemp=Table[0,{l}]; 
    wwTemp=Table[0.,{l}]; 
    iNew=0; 
     
    For [i=1,i<= l,i++, 
     wwTerm=ww[[i]]; 
     If[wwTerm==0,Goto[endIf2]]; 
     iNew++; 
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     wwTemp[[iNew]]=wwTerm; 
     xxTemp[[iNew]]=xx[[i]]; 
     Label[endIf2]; 
     ]; 
     
    Label[done]; 
    q={xxTemp[[1;;iNew]],wwTemp[[1;;iNew]]}; 
    Return[q] 
    ], 
   RuntimeAttributes->{Listable},Parallelization->True]; 
 
(*CompilePrint[deflateCompile] 
Print[(*/n*)"x=",x={1,10,20,30,32,34,40,50}]; 
Print["wx=",wx=N[{1,1,3,7,1,1,1,1}]]; 
Print["x=",deflateCompile[x,wx,2][[1]]]; 
Print["w=",deflateCompile[x,wx,2][[2]]]; 
Print["tot wx=", Total[deflateCompile[x,wx,2][[2]]]];*) 
 
(**********************************************************
*) 
(* enderlein single-photon correlation                            
*) 
(**********************************************************
*) 
ClearAll[endCorr]; 
endCorr[a_,b_,wa_,wb_,tau_]:= 
  Module[{bShift,g,jStart,jMax, 
ja,jb,jaMax,jbMax,aa,bb,iMax,iPass,maxPass,wbb,bLast,sa,sb,
a1,waa,s2ab,sab,na,nb,s2g}, 
    
   jaMax=Length[a]; jbMax=Length[b];jMax=Max[jaMax,jbMax]; 
(*num times or bins*) 
   g=0; 
    
   (*Print["entering endCorr....","  iOrder=", iOrder, "  
tau=",tau]; 
   iMax=Min[32,Length[a]]; 
   Print["a=",a[[1;;iMax]]]; 
   Print["wa=",wa[[1;;iMax]]]; 
   Print ["jaMax=",jaMax,"  jbMax=",jbMax(*, "  
jMax=",jMax*)]; 
   Print ["ta=",ta,"  tb=",tb, "  tMax=",tMax]; 
   Print ["na=",na,"  nb=",nb]; 
   Print ["sa=",sa,"  sb=",sb,"  sab=",sab]; 
   Print ["var wa=",Variance[wa],"  var wb=",Variance[wb]]; 
   Print["entering 'ab'...."];*) 
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   ja=0; 
   jb=1; 
   bShift=b+tau; 
   While[True, 
    bb=bShift[[jb]]; 
    wbb=wb[[jb]]; 
    (*Print[];Print["jb=",jb,"  bb=",bb];*) 
    While[True, 
     If[ja<jaMax,ja++,Goto[done]]; 
     (*Print["ja=",ja, "  a=",a[[ja]]];*) 
     If[(aa= a[[ja]])>= 
bb,If[aa==bb,p=wa[[ja]]*wbb;g=g+p];Break[]] 
     ];(* end while *) 
    (*Print[];Print["ja=",ja,"  aa=",aa]; *) 
    aa=a[[ja]]; 
    waa=wa[[ja]]; 
    While[True, 
     If[jb<jbMax,jb++,Goto[done]]; 
     (*Print["jb=",jb, "  bb=",bShift[[jb]]];*) 
     If[(bb=bShift[[jb]])>=aa, If[aa==bb,p=waa*wb[[jb]]; 
g=g+p];Break[]] 
     ] (* end while *) 
    ];(* end while *) 
    
   Label[done]; 
   Return[N[g]] 
   ];(* end module 'endCorr' *) 
 
 
(**********************************************************
*) 
(* enderlein single-photon correlation  -  PARALLEL                
*) 
(* about 7 sec/546031 photons                                      
*) 
(* .085  sec / 10k pts                                             
*) 
(**********************************************************
*) 
ClearAll[endCorrCompile]; 
Needs["CompiledFunctionTools`"]; 
endCorrCompile=Compile[ 
   {{a,_Integer,1}, 
    {b,_Integer,1}, 
    {wa,_Real,1}, 
    {wb,_Real,1}, 
    {tau,_Integer}}, 
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   Module[{bShift,g,jStart,jaMax,jbMax, 
ja,jb,aa,bb,iPass,maxPass,wbb,q,done,endWhile2,sa,sb,waa}, 
    jaMax=Length[a]; 
    jbMax=Length[b]; 
    g=0.0; 
     
    ja=0; 
    jb=1; 
    bShift=b+tau; 
     
    Label[WhileStart1]; 
    bb=bShift[[jb]]; 
    wbb=wb[[jb]]; 
     
    Label[WhileStart2]; 
    q=(ja>=jaMax); 
    If[q,Goto[done]]; 
    ja++; 
    q=(aa= a[[ja]])>=  bb; 
    If[!q,Goto[WhileStart2]]; 
    q=(aa== bb); 
    (*Print[ja,"  ", wa[[ja]],"  ",wbb,"  ",g];*) 
    If[q,g=g+wa[[ja]]*wbb]; 
     
    aa=a[[ja]]; 
    waa=wa[[ja]]; 
     
    Label[WhileStart3]; 
    q=(jb>=jbMax); 
    If[q,Goto[done]]; 
    jb++; 
    q=(bb=bShift[[jb]])>=aa; 
    If[!q,Goto[WhileStart3]]; 
    q=(aa== bb); 
    If[q, g=g+waa*wb[[jb]]]; 
     
    Goto[WhileStart1]; 
     
    Label[done]; 
    Return[N[g]] 
    ], 
   RuntimeAttributes->{Listable},Parallelization->True(*, 
   
RuntimeOptions {"RuntimeErrorHandler" Function[Throw[$Faile
d]]}*) 
   ]; 
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(*CompilePrint[endCorrCompile]*) 
(*xx={1,10,20,30,32,33,40,50}; 
www={1,1,1,1,1,1,1,1}; 
endCorr[xxx,xxx,www,www,2]//AbsoluteTiming; 
endCorrCompile[xxx,xxx,www,www,2]//AbsoluteTiming*) 
 
 
(**********************************************************
*) 
(* enderlein single-photon SUMS                                    
*) 
(**********************************************************
*) 
ClearAll[endSums]; 
endSums[a_,b_,wa_,wb_,tau_]:= 
  Module[{bShift,g,jStart,jMax, 
ja,jb,jaMax,jbMax,aa,bb,iPass,maxPass,wbb,bLast,sa,sb,a1,wa
a,len,tMax,tMin,totLen}, 
   (*Print["entering endCorr...."];*) 
   jaMax=Length[a]; 
   jbMax=Length[b]; 
   (*Print ["jaMax=",jaMax,"   ","jbMax=",jbMax];*) 
   g=0; 
    
   If [jaMax!=0 && jbMax==0, (* counting up "a" *) 
    ja=0; 
    a1=a[[1]]; 
    While[True, 
     If[ja<jaMax,ja++(*;Print["ja=",ja]*),Goto[done]]; 
     If[( a[[ja]]-a1)>= tau,g=g+wa[[ja]]] 
     ] (* end while*) 
    ];(* end 'if' *) 
    
   If [jaMax==0 && jbMax!=0,(* counting up "b" *) 
    (*Print["entering '1b'...."];*) 
    jb=0; 
    bLast=b[[jbMax]]; 
    While[True, 
     If[jb<jbMax,jb++(*;Print["jb=",jb,"   
",b[[jb]]]*),Goto[done]]; 
     If[(bLast-b[[jb]])>=   tau,g=g+wb[[jb]]] 
     ] (* end while*) 
    ]; (* end 'if' *) 
    
   If [jaMax==0 && jbMax==0, (* counting 1's *) 
    (*Print["entering '11'...."];*) 
    (* here wa, wb are actually a, b to provide times *) 
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    tMax=Max[wa[[Length[wa]]], wb[[Length[wb]]]]; 
    tMin=Min[wa[[1]], wb[[1]]]; 
    totLen=tMax-tMin+1; 
    g=totLen-tau;  
    ]; (* end 'if' *) 
    
   Label[done]; 
   Return[g]; 
   (*Print[g]*) 
   ];(* end module 'endSums' *) 
(*Print["\na=",a={1,10,20,30,32,33,40,50}]; 
Print["b=",b={1,10,20,30,32,33,40,50}]; 
Print["a=",a={1,2,3,4,5,6,7,8}]; 
Print["b=",b={1,2,3,4,5,6,7,8}]; 
Print["wa=",wa={11,1,1,1,1,1,1,111}]; 
Print["wb=",wb={22,1,1,1,1,1,1,222}]; 
Print["tau=",tau=6]; 
Print["g=",g=endSums[a,a,wa,wa,tau]]; 
Print["g=",g=endSums[a,1,wa,wb,tau]]; 
Print["g=",g=endSums[1,b,wa,wb,tau]];*) 
 
 
(**********************************************************
*) 
(* enderlein sums - COMPILED                                       
*) 
(**********************************************************
*) 
ClearAll[endSumsCompile]; 
Needs["CompiledFunctionTools`"]; 
endSumsCompile=Compile[ 
   {{a,_Integer,1}, 
    {b,_Integer,1}, 
    {wa,_Real,1}, 
    {wb,_Real,1}, 
    {tau,_Integer}}, 
   Module[{g,jaMax, jbMax, 
ja,jb,tMax,tMin,totLen,q,iOrderEff,a1,aCrit,bCrit,bLast}, 
    jaMax=Length[a]; 
    jbMax=Length[b]; 
    g=0.0; 
    ja=0; 
    jb=0; 
     
    q=(jaMax!=0 && jbMax==0); 
    If[!q,Goto[endIf1]]; 
    aCrit=a[[1]]+tau; 
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    ja=jaMax+1; 
    Label[whileStart1]; 
    ja--; 

    q=(ja<1)∨(a[[ja]]< aCrit); 
    If[q, Goto[done] ]; 
    g=g+wa[[ja]]; 
    Goto[whileStart1]; 
    Label[endIf1]; 
     
    q=(jaMax== 0 && jbMax!= 0); 
    If[!q, Goto[endIf2] ]; 
    bCrit=b[[jbMax]]-tau; 
    jb=0; 
    Label[whileStart2]; 
    jb++; 

    q=(jb>jbMax)∨(b[[jb]]> bCrit ); 
    If[q, Goto[done] ]; 
    g=g+wb[[jb]]; 
    Goto[whileStart2]; 
    Label[endIf2]; 
     
    Label[done]; 
    Return[N[g]] 
    ],(* end module 'endSumsCompile' *) 
   RuntimeAttributes->{Listable},Parallelization->True]; 
(*CompilePrint[endSumsCompile]*) 
(*Print["\na=",a={1,10,20,30,32,33,40,50}]; 
Print["b=",b={1,10,20,30,32,33,40,50}]; 
Print["a=",a={1,2,3,4,5,6,7,8}]; 
Print["b=",b={1,2,3,4,5,6,7,8}]; 
Print["wa=",wa={11,1,1,1,1,1,1,111}]; 
Print["wb=",wb={22,1,1,1,1,1,1,222}]; 
Print["tau=",tau=6]; 
Print["g=",g=endSumsCompile[a,a,wa,wa,tau]]; 
Print["g=",g=endSumsCompile[a,{},wa,wb,tau]]; 
Print["g=",g=endSumsCompile[{},b,wa,wb,tau]];*) 
 
(**********************************************************
*) 
(* enderlein count                                    *) 
(**********************************************************
*) 
ClearAll[endCount]; 
endCount[a_,b_,wa_,wb_,tau_]:= 
 Module[{g,jaMax, jbMax, ja,jb,tMax,tMin,totLen,q}, 
  jaMax=Length[a]; 
  jbMax=Length[b]; 
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  tMax=Max[a[[jaMax]],b[[jbMax]]]; 
  tMin=Min[a[[1]], b[[1]]]; 
  totLen=tMax-tMin+1; 
  g=(totLen-tau)(**oneScaled*); (*Print["tot len=",totLen,"  
",tMax, "  ",tMin,"  tau=",tau];*) 
  (*Print[totLen ,"   ", tau, "  ",g];*) 
  Return[N[g]] 
  ](* end module 'endSums' *) 
(*Print["endCount=",endCount[a,b,wa,wb,(*tau*)0]];*) 
 
(**********************************************************
*) 
(* enderlein count - COMPILED                                      
*) 
(**********************************************************
*) 
ClearAll[endCountCompile]; 
Needs["CompiledFunctionTools`"]; 
endCountCompile=Compile[ 
   {{a,_Integer,1}, 
    {b,_Integer,1}, 
    {wa,_Real,1}, 
    {wb,_Real,1}, 
    {tau,_Integer}}, 
   Module[{g,jaMax, jbMax, ja,jb,tMax,tMin,totLen,q}, 
    jaMax=Length[a]; 
    jbMax=Length[b]; 
     
    tMax=Max[a[[jaMax]],b[[jbMax]]]; 
    tMin=Min[a[[1]], b[[1]]]; 
    totLen=tMax-tMin+1; 
    g=(totLen-tau)(**oneScaled*); (*Print["tot 
len=",totLen,"  ",tMax, "  ",tMin,"  tau=",tau];*) 
    Return[N[g]] 
    ],(* end module 'endSumsCompile' *) 
   RuntimeAttributes->{Listable},Parallelization->True]; 
(*CompilePrint[endCountCompile]*) 
(*Print["endCountCompile=",endCountCompile[a,b,wa,wb,(*tau*
)0]];*) 
 
(**********************************************************
*) 
(* deflate data by desired factor                                  
*) 
(**********************************************************
*) 
ClearAll[deflateSub]; 
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deflateSub[aInit_,waInit_,order_]:=Module[{qa,laNew,aa,wa}, 
   (*Print["starting deflations(s)"];*) 
   qa=deflateCompile[aInit,N[waInit],order]; 
   laNew=If[order>0,Length[qa[[1]]]-1,Length[qa[[1]]]]; (* 
drop incomplete last point*) 
   laNew=Length[qa[[1]]]-1; 
   aa=qa[[1]][[1;;laNew]]; 
   wa=qa[[2]][[1;;laNew]]; 
   Return[{aa,wa}]; 
   (*Print["deflations(s) done"];*) 
   ]; 
 
 
(**********************************************************
*) 
(* calc corr time (tau) for desired iorder, iPt                    
*) 
(* NOTE! value returned in pre-deflated pts i.e. iOrder 0 
pts      *) 
(**********************************************************
*) 
ClearAll[makeTau]; 
makeTau[iPt_, iOrder_,nPtsPerOrder_]:=Module[{index,tau, 
tauCorr,iEffOrder}, 
   index=(iPt-1)+iOrder*nPtsPerOrder; 
   tau=((2iOrder- 1)*nPtsPerOrder+(iPt-1)*2iOrder) (* enderlein 
formula for tau values *); 
   Return[tau] 
   (*tauCorr=IntegerPart[tau*2^-iEffOrder]*) 
   ]; (* end module*) 
(*Print["tau=",makeTau[2,1,10]];*) 
 
 
(**********************************************************
*) 
(* calc tot sum squares for gdd   *) 
(*                   *) 
(**********************************************************
*) 
ClearAll[gddSq]; 
gddSq[v1_,h1_,v2_,h2_]:= (v2-h2)2 (v1+h1) + (v1-h1)2 (v2 
+h2) + v1 v2 + h1 h2 +v1 h2+v2 h1; 
 
(**********************************************************
*) 
(* attempt full time-tagged correlation                            
*) 
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(**********************************************************
*) 
ClearAll[processPhotons]; 
processPhotons[a_,b_,waInit_,wbInit_,ra_,rb_]:=Module[{(*ma
xOrder,nPtsPerOrder,l,aa,bb,qa,qb,wa,wb,outFileName,index,t
au,gRaw,gCorr,(*iEffOrder,*)nPreDeflate,lenAA,tauUsec,psPer
Pt,orderFactor,file,lNew,max,la,lb,laNew,lbNew,maxA,maxB,ma
xT,gList,sa,sb,tauList,nPts,minA,minB,nPtsA,nPtsB,totLen,(*
span,*)done,gvv,gvh,ghv,ghh,gv1,g1v,gh1,g1h,g11, 
     
tgvv,tgvh,tghv,tghh,tgv1,tg1v,tgh1,tg1h,tg11,tTauUsec,iOrde
r,msPerPt, 
     
tauUsecTab,gvvTab,gvhTab,ghvTab,ghhTab,gv1Tab,g1vTab,gh1Tab
,g1hTab,g11Tab, 
     
tauCorrTab,corrFactTab,orderFactor2,orderFactor1,orderFacto
r0,maxWt*)}, 
    Print["starting 'processPhotons'"]; 
    SetDirectory[NotebookDirectory[]]; 
     
    (* inputs *) 
    (* a, b = raw arr times ch a, b hvs *) 
    (* wa, wb = num hv each arr time *) 
    (* ra, rb = hv rate per DPC230 ch *) 
     
    (* define constants *) 
    maxOrder=46; (* ~11,259 sec = 2+ hr *) 
    nPtsPerOrder=8; 
    psPerPt=164.61;(*DPC230 psPerPt=164.61;*) 
    usPerPt=psPerPt*1*^-6; 
    nPreDeflate=10; (* start with .16856 us/pt =2^10 *) 
    (*Print ["ra=",ra, "  rb=",rb];*) 
     
    (*create blank lists *) 
    tauUsecTab={};tTauUsec={}; 
    gv1v2Tab={};tgvv={}; 
    gv1h2Tab={};tgvh={}; 
    gh1v2Tab={};tghv={}; 
    gh1h2Tab={};tghh={}; 
    gh1Tab={};tgh1={}; 
    g1hTab={};tg1h={}; 
    gv1Tab={};tgv1={}; 
    g1vTab={};tg1v={}; 
    g11Tab={};tg11={}; 
    iOrderTab ={};tiOrder={}; 
    iPtTab={}; tiPt={}; 
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    lenTab={}; tLen={}; 
    gddSqTab={};tgddSq={}; 
    tauiOrderTab={};tTauiOrder={}; 
    scaleTab ={};tScale={}; 
     
    (* pre-deflate raw data *) 
    Print ["before predeflate: 
Total[waInit]=",Total[waInit]," 
Total[wbInit]=",Total[wbInit]]; 
    qa=deflateSub(*uses 
compile*)[a,waInit,nPreDeflate];qb=deflateSub(*uses 
compile*)[b,wbInit,nPreDeflate]; 
    aa=qa[[1]];bb=qb[[1]]; 
    wa=qa[[2]];wb=qb[[2]]; 
    laNew=Length[aa];lbNew=Length[bb]; 
    Print ["after predeflate: Total[wa]=",Total[wa]," 
Total[wb]=",Total[wb]]; 
     
    (* NOTE!  after this all times, etc. are in units of 
2^(nPreDeflate) orig pts *) 
     
    (* work through desired orders *) 
    For[iOrder=0,iOrder<=1*maxOrder, iOrder++, 
      
     iTotOrder=nPreDeflate+iOrder; 
     s2a=ra*psPerPt*10-12*2iTotOrder; (*hv per this iOrder Pt 
*) 
     s2b=rb*psPerPt*10-12*2iTotOrder;  
     (*Print ["s2a=",s2a, "  s2b=",s2b];*) 
      
     (* deflate to desired order *) 
     If [iOrder>0, 
      qa=deflateSub(*uses 
compile*)[aa,wa,1];qb=deflateSub(*uses compile*)[bb,wb,1]; 
      aa=qa[[1]];bb=qb[[1]]; 
      wa=qa[[2]];wb=qb[[2]]; 
      laNew=Length[aa];lbNew=Length[bb]; 
      ]; 
      
     orderFactor2=2.-iOrder; 
     orderFactor1=2.0; 
     orderFactor0=2.iOrder; 
      
     span=Max[aa[[laNew]],bb[[lbNew]]]-
Min[aa[[1]],bb[[1]]]; 
     totLen=span+1; 
     (*If[iOrder==17, 
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iOrderSave=iOrder;aaSave=aa;bbSave=bb;waSave=wa;wbSave=wb];
*) 
      
     (* make tables of tau's and flags for parallel calc of 
correlations for given iOrder*) 
     
tauiOrderTab=Table[IntegerPart[makeTau[iPt,iOrder,nPtsPerOr
der]*2-iOrder],{iPt,nPtsPerOrder}]; 
     tauUsecTab=tauiOrderTab*2iTotOrder*psPerPt*1*^-6; 
     corrFactTab=Table[If[totLen-
tauiOrderTab[[iPt]]>0,N[totLen/(totLen-
tauiOrderTab[[iPt]])],0],{iPt,nPtsPerOrder}]; 
     ok=Table[tauiOrderTab[[i]]<=span,{i,nPtsPerOrder}]; 
     If [!ok[[1]],Break[]]; 
      
     
(*gvvTab=Table[If[ok[[iPt]],endCorrCompile[aa,aa,wa,wa,taui
OrderTab[[iPt]]],0],{iPt,nPtsPerOrder}]; 
     gvhTab=Table[If[ok[[iPt]],endCorrCompile[aa,bb,wa,wb, 
tauiOrderTab[[iPt]]],0],{iPt,nPtsPerOrder}];ghvTab=Table[If
[ok[[iPt]],endCorrCompile[bb,aa,wb,wa, 
tauiOrderTab[[iPt]]],0],{iPt,nPtsPerOrder}];ghhTab=Table[If
[ok[[iPt]],endCorrCompile[bb,bb,wb,wb, 
tauiOrderTab[[iPt]]],0],{iPt,nPtsPerOrder}]; 
     gv1Tab=Table[If[ok[[iPt]],endSumsCompile[aa,{},wa,{}, 
tauiOrderTab[[iPt]]],0],{iPt,nPtsPerOrder}];g1vTab=Table[If
[ok[[iPt]],endSumsCompile[{},aa,{},wa, 
tauiOrderTab[[iPt]]],0],{iPt,nPtsPerOrder}];gh1Tab=Table[If
[ok[[iPt]],endSumsCompile[bb,{},wb,{}, 
tauiOrderTab[[iPt]]],0],{iPt,nPtsPerOrder}];g1hTab=Table[If
[ok[[iPt]],endSumsCompile[{},bb,{},wb, 
tauiOrderTab[[iPt]]],0],{iPt,nPtsPerOrder}]; 
     g11Tab=Table[If[ok[[iPt]],endCountCompile[aa,aa,wa,wa, 
tauiOrderTab[[iPt]]],0],{iPt,nPtsPerOrder}];*) 
       
     (* parallel calc of correlations for given iOrder w/ 
Compile*) 
     
gvvTab=ParallelTable[If[ok[[iPt]],endCorrCompile[aa,aa,wa,w
a,tauiOrderTab[[iPt]]],0],{iPt,nPtsPerOrder}]; 
     
gvhTab=ParallelTable[If[ok[[iPt]],endCorrCompile[aa,bb,wa,w
b, 
tauiOrderTab[[iPt]]],0],{iPt,nPtsPerOrder}];ghvTab=Parallel
Table[If[ok[[iPt]],endCorrCompile[bb,aa,wb,wa, 
tauiOrderTab[[iPt]]],0],{iPt,nPtsPerOrder}];ghhTab=Parallel
Table[If[ok[[iPt]],endCorrCompile[bb,bb,wb,wb, 
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tauiOrderTab[[iPt]]],0],{iPt,nPtsPerOrder}]; 
     
gv1Tab=ParallelTable[If[ok[[iPt]],endSumsCompile[aa,{},wa,{
}, 
tauiOrderTab[[iPt]]],0],{iPt,nPtsPerOrder}];g1vTab=Parallel
Table[If[ok[[iPt]],endSumsCompile[{},aa,{},wa, 
tauiOrderTab[[iPt]]],0],{iPt,nPtsPerOrder}];gh1Tab=Parallel
Table[If[ok[[iPt]],endSumsCompile[bb,{},wb,{}, 
tauiOrderTab[[iPt]]],0],{iPt,nPtsPerOrder}];g1hTab=Parallel
Table[If[ok[[iPt]],endSumsCompile[{},bb,{},wb, 
tauiOrderTab[[iPt]]],0],{iPt,nPtsPerOrder}]; 
     g11Tab=Table[If[ok[[iPt]],endCountCompile[aa,aa,wa,wa, 
tauiOrderTab[[iPt]]],0],{iPt,nPtsPerOrder}]; 
     scaleTab=Table[2^iOrder,{iPt,nPtsPerOrder}]; 
     iOrderTab=Table[iOrder,{iPt,nPtsPerOrder}]; 
     iPtTab=Table[iPt,{iPt,nPtsPerOrder}]; 
     lenTab=Table[totLen,{iPt,nPtsPerOrder}]; 
      
     
(*gv1v1v2v2Tab=ParallelTable[If[ok[[iPt]],endCorrCompile[aa
,aa,wa^2,wb^2,tauCorrTab[[iPt]]],0],{iPt,nPtsPerOrder}];*) 
      
     (* append results this iOrder to those of previous 
iOrder's *) 
     tTauUsec=Join[tTauUsec,tauUsecTab]; 
     tgvv=Join[tgvv,gvvTab*corrFactTab*orderFactor2]; 
     tgvh=Join[tgvh,gvhTab*corrFactTab*orderFactor2]; 
     tghv=Join[tghv,ghvTab*corrFactTab*orderFactor2]; 
     tghh=Join[tghh,ghhTab*corrFactTab*orderFactor2]; 
     tgv1=Join[tgv1,gv1Tab*corrFactTab*orderFactor1]; 
     tg1v=Join[tg1v,g1vTab*corrFactTab*orderFactor1]; 
     tgh1=Join[tgh1,gh1Tab*corrFactTab*orderFactor1]; 
     tg1h=Join[tg1h,g1hTab*corrFactTab*orderFactor1]; 
     tg11=Join[tg11,g11Tab*corrFactTab*orderFactor0]; 
     tScale=Join[tScale,scaleTab]; 
     tiOrder=Join[tiOrder,iOrderTab]; 
     tiPt=Join[tiPt,iPtTab]; 
     tLen=Join[tLen,lenTab]; 
     tTauiOrder=Join[tTauiOrder,tauiOrderTab]; 
      
     ];(* end for 'iOrder'  *) 
     
    
Return[{tTauUsec,tgvv,tgvh,tghv,tghh,tgv1,tg1v,tgh1,tg1h,tg
11,tScale,tiOrder,tiPt,tLen,tTauiOrder}];  
    ];(* end module - 16 output vars *); 
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(**********************************************************
*) 
(* full processing of 'outRaw.csv' file                            
*) 
(**********************************************************
*) 
ClearSystemCache[]; 
ClearAll[]; 
SetDirectory[NotebookDirectory[]]; 
Off[CompiledFunction::cfta]; 
 
(*out=makeChannelArrays["hvSimOutRaw.csv"];*) 
(*{t1,t2,l1,l2,w1,w2,gTradEst,maxTimeSec, r1,r2, gGbEst}]*) 
out=makeChannelArrays["OutRaw-2015-04-08-IgE-cell 10-dot1-
1.csv"]; 
t1=out[[1]]; 
t2=out[[2]]; 
tm=out[[3]]; 
l1=out[[4]]; 
l2=out[[5]]; 
w1=out[[6]]; 
w2=out[[7]]; (*{t1,t2,l1,l2,w1,w2,gTradEst,maxTimeSec, 
r1,r2, gGbEst}]*) 
wm=out[[8]]; 
latestPt=out[[9]]; 
maxTimeSec=out[[10]]; 
r1=out[[11]]; (*hvPerSec*) 
r2=out[[12]];(*hvPerSec*) 
gTradEst=out[[13]]; 
gGbEst=out[[14]]; 
(*n=10000; 
t1={}; 
t2={}; 
w1={}; 
w2={}; 
For [i=1,i≤ n,i++, 
x=RandomVariate[PoissonDistribution[.1]]; 
y=RandomVariate[PoissonDistribution[.1]]; 
(*x=i;*) 
AppendTo[t1,i];  
AppendTo[t2,i];  
AppendTo[w1,x]; 
AppendTo[w2,y] 
]; 
Print["tot w1=",Total[w1]]; 
Print["tot w2=",Total[w2]];*) 
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Monitor[q=processPhotons[t1,t2,w1,w2,r1,r2],{"iOrder= 
"iOrder}];//AbsoluteTiming  
ClearAll[outData,outDataRect]; 
outData=Append[q,{"","l1=","l2=","time=","r1=","r2=","gTrad
Est","gGbEst="}]; 
AppendTo[outData,{"",l1,l2,maxTimeSec, r1,r2, 
gTradEst,gGbEst}]; 
outDataRect=Transpose[PadRight[outData]]; 
headings={"uSec","gvv","gvh","ghv","ghh","gv1","g1v","gh1",
"g1h","g11","scale","iOrder","iPt","len","tauiOrder","param
","val"}; 
outDataRect=Prepend[outDataRect,headings]; 
If[FileExistsQ["gg.csv"],DeleteFile["gg.csv"]]; 
Export["gg.csv",outDataRect]; 
 1.12953*106    494492. 
 len tot= 1624017 
 len 1= 1129525 
 len 2= 494492 
 w 1= 1.12953*106 
 w 2= 494492. 
 maxInitPts= maxInitPts$2365 
 max Time= 30.0002 
 r1= 37650.6 
 r2= 16483. 
 gTradEst= 2.28421 
 gGbEst= 0.391026 
 starting 'processPhotons' 
 before predeflate: Total[waInit]= 1.12953*106  
Total[wbInit]= 494492. 
 after predeflate: Total[wa]= 1.12952*106  Total[wb]= 
494491. 
 {49.2014,Null} 
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List of Abbreviations  

 

APD   Avalanche Photodiode Detector     

BFP  Back Focal Plane 

CFDA Continuous Fluorescence Depletion Anisotropy 

CSV  File-comma separated values file 

CTAB Cetyltrimethylammonium bromide 

DNP-BSA Dinitrophenyl bovine serum albumin 

EM Electron microscopy 

FcεRI Type I Fcε receptor 

FDA Fluorescence Depletion Anisotropy 

FRAP Fluorescence Recovery after Photobleaching 

FPR Fluorescence Photobleaching Recovery 

GPCR G-protein-coupled receptor 

IgE Immunoglobulin E 

LH receptor Luteinizing hormone receptor  

MβCD Methyl-beta-cyclodextrin 

NA Numerical Aperture 

NB file Mathematica Notebook 

PFD Polarized Fluorescence Depletion 

QD Quantum dot 

RCT Rotational correlation time 

ROI Region of interest 
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TACF Time-autocorrelation function 

TPA Time-resolved phosphorescence anisotropy 

TTSPC Time-tagged single photon counting 

TTTR Time-tagged time-resolved 

 
 
 
 
 
 
 
 
 


