CubeSat Functionality and Microgravity Testing Platform: Aerodynamics

Barbara Giffin
With:
Chris Marcum, Daniel Kerbs, and Cameron Ellis
Agenda

• Overall Program
 – Background
 – Objectives
 – Operations

• Aerodynamics Team
 – Objectives
 – Background
 – Preliminary Analysis
 – Original Design
 – Updated Design
 – Results
 – Conclusions
Overall Program
Program Background

• NASA Grant
 – Evaluate the microgravity research method of dropping package from high elevation

• Microgravity
 – Pull of gravity is very weak
 – Need to know how things react in space
 – Research techniques exist, but are very expensive
Program Background
Current Technologies

• “Vomit Comet”
 – Aircraft
 – Parabolic flight path
 – 20-25 seconds microgravity

• Drop Tower
 – Drag shield
 – 2.2 seconds of microgravity
Program Objectives

• Develop high quality, inexpensive microgravity testing platform
 – Evaluate the concept of a microgravity testing platform dropped from a balloon at high altitude
 – Microgravity quality of 1×10^{-3} g or better
• Investigate practical microgravity quality experienced during drops
• Investigate costs of operation
Program Operations
Design Teams

• Manufacturing and Assembly
• Recovery, Frame/Nose Cone Design
• Communications and Data Acquisition
• Aerodynamics
• Attitude Control
Program Operations
Platform Design

- Drop methodology
 - Weather balloon
 - 30,480 m (100,000 ft.) AMSL
- 20 seconds free fall
 - CubeSat technology
- Parachute Deployment
- Recovery
Aerodynamics Team
Team Objectives

• Determine optimal aerobody design to provide highest quality microgravity
 – Lower coefficient of drag=Lower drag
 =Better microgravity
 – Better restoring moments
• Experimentally quantify drag
• Locate center of pressure
• Experimentally determine restoring moments
• Observe boundary layer effects
Background – Aerobody Shape

• Two profiles based on Goldschmeid design
 – Well known aerodynamicist in 1960s
• Low Coefficient of Drag
• Passive boundary layer control
 – Controls flow separation
 – Lowers the pressure drag on the body
Background – Boom and Tail Fins

• Original design incorporates boom and tail fins
 – Shifts center of pressure further aft of the center of gravity
 – Greater restoring moments

• Consequences
 – Very heavy compared to rest of design
 – Can induce vibrations

Original design w/ boom and tail fins
Background – Turbulator Tape

• Additional passive boundary layer control
• Causes turbulent flow to develop earlier on the body
 – Helps lower pressure drag at the back of the body
• Used in industry
 – Airplanes
 – Wind Turbines

“Zig-Zag” tape from Wings and Wheels
Dimpled tape from Wings and Wheels
Background – Wind Tunnel Mount

- Tooling Foam Centrepiece
- Datum Rod
- Threaded Rod Mount
- Threaded Aluminum Sleeve

Wire frame model of mounting system
Background – Wind Tunnel Mount

Monocoque mounted in wind tunnel

Drag Force

Mount

Air
Preliminary Analysis

• Wind Tunnel – Testing Apparatus
 – Strain gauges on cantilever beams measure deflection due to drag and lift forces
 – Calibrate drag force to corresponding strain gauge voltage
 – Resistive wiring heats glycerin to create smoke for streamlines
Preliminary Analysis

• Wind Tunnel – Streamline Tests:
 – Resistive wires coated in glycerin
 • Creates consistent smoke trail
 • Low heat of vaporization
 – Resistive wiring can be moved horizontally or vertically, parallel to the wind tunnel walls
 • Allows for proper streamline placement
 – Visualize flow separation location
 • Locate separation point over range of Reynolds numbers
 • Compare separation location to cusped designs
Preliminary Analysis

• Wind Tunnel - Drag Quantification:
 – Assumptions:
 • C_D is a function of Re only
 • Re at ground level can be equated to Re at elevation
 – Wind tunnel velocity equation:
 \[
 v_G = \frac{\mu_G \rho_E}{\mu_E \rho_G} v_E
 \]
 • Testing velocities become much smaller
Matching Flight Conditions for Wind Tunnel Testing

- Velocity (m/s)
- Time (s)
- Re

Graph showing the relationship between velocity, time, and Re.
Original Design – Restoring Moments

• Two sets of load cells measure drag and lift forces
• Lift and drag operate through center of pressure
 – Both cells measure at center of mass
 – Restoring moment is observed at center of mass
• Lift measurements at varied angles of attack
Original Design – Center of Pressure

• Center of pressure location affects freefall behavior
 – Restoring moments depend on location
 – Helps determine use of X- and Y- axis reaction wheels

• Theoretical determination
 – Goldschmied paper includes plot of static pressure coefficient as function of body length

• Experimental determination
 – Pressure taps along body, measure static pressure and sectional diameter
 – In practice, results were inconclusive
Original Design – Center of Pressure
Original Design – Center of Pressure

\[CP = \frac{\sum \left(\frac{1}{2} C_P \rho \infty v \infty^2 + P \infty \right) xL}{\sum \left(\frac{1}{2} C_P \rho \infty v \infty^2 + P \infty \right) L} \]

Center of Pressure for Original Design

- CP Sum: 14.923, 47.998
- CP (m - in): 0.3109, 12.200
- CP % (x/L): 0.49961

Goldschmeid Pressure Distribution

Free Stream C_p

BLC Cusp Location

Goldschmeid Pressure Distribution
Cusp Design

Cusp Vertex

Aftbody

Forebody

\[U_0 \]

\[\epsilon \]
Drag Coefficients for Various Designs Over a Range of Reynolds Numbers: With Boom and Tail Fins

- Original Design
- Original Design w/ Turbulator Tape
- Ringleb Cusp Design
- Ringleb Cusp Design w/ Turbulator Tape

CD vs. Re

Reynolds Numbers: 4.0E+04 to 1.2E+05

CD: 0.00 to 0.50

Inset: Photo of a model rocket with boom and tail fins.
Drag Coefficients for Various Designs Over a Range of Reynolds Numbers: Without Boom and Tail Fins

- Original Design
- Original Design w/ Turbulator Tape
- Ringleb Cusp Design
- Ringleb Cusp Design w/ Turbulator Tape

Re

C_D

4.0E+04 5.0E+04 6.0E+04 7.0E+04 8.0E+04 9.0E+04 1.0E+05 1.1E+05 1.2E+05

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Results

Flow Separation on Original Design
Results

Flow Separation on Final Design
Conclusions

• Final design won’t be determined until after initial test flights
• Any design with the boom will increase the drag
• Initial cusp design results are very encouraging
• Turbulator tape results are also encouraging
Questions?
Appendix
Original Design– Drag Quantification
Original Design– Drag Quantification
Cusp Design – Testing Results

Cusp, No Boom, No Turbulator Tape

<table>
<thead>
<tr>
<th>Date</th>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-15-2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-26-2017</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Turbulator Tape – Testing Results

Turbulator Tape, With Boom

Re

1.50E+04 3.50E+04 5.50E+04 7.50E+04 9.50E+04 1.15E+05

C₀

0.15 0.25 0.35 0.45 0.55 0.65

Turbulator Tape – Testing Results

Turbulator Tape, No Boom

![Graph showing test results for Turbulator Tape, No Boom across different trials and Re values.]

- 3-15-2017 Trial 1
- 3-15-2017 Trial 2
- 3-26-2017 Trial 1
- 3-26-2017 Trial 2

36