Microgravity Communications and Data Acquisition Team

Jesse Gonzales
Kaitlin Laughlin
Grant Lindblom
Mohamed Zayed
Microgravity Project
Introduction

• Providing NASA with a low-cost, reliable microgravity testing platform for CubeSats
• Design concept is to drop a vessel (pictured) from a high-altitude balloon and reach accelerations close to 9.8 m/s²
CONOPS

- Deploy balloon with vessel attached over the Shirley Basin
- Track vessel as it rises to 100,000 ft with two ground stations (one mobile and one fixed downrange)
- Send ARM and CUT command from ground stations once the vessel reaches altitude
- Store acceleration data of vessel for 20 seconds, then deploy parachutes
- Continue to track vessel through fall and after parachute deployment
Design Details
Functional Block Diagram

- FirstSensor
- Honeywell Pressure Sens.
- Adafruit GPS
- Max232
- PIC
- Cut-Away Power
- Solenoid 2&3
- Solenoid 1
- Personal Computer
- Inside Drop Module
- P900 Modem
- Ground
- Cut-Away Circuit
- P900 Modem
- MSP430
- Solenoid Control
Main Board PCB Layout
Cut-away

• Main goal
 – Separate the vessel from high-altitude balloon
 – Deploy parachute 20 seconds later

• Hardware
 – Two 5 VDC 2.62A solenoids, two bipolar junction transistors, and two 3.7 volt batteries, and one MSP430.

• How it works
 – MSP430 receives a digital “drop” command from PIC
 – MSP430 sets digital output high to actuate solenoid 1, dropping the vessel
 – MSP430 counts 20 seconds, then actuates solenoids 2, releasing the parachute
Cut-Away PCB Layout
PIC Software

- All code written in C and compiled with MPLAB’s XC-8 compiler (command line freeware)
- Pseudocode Explanation:
 - Set up digital and analog I/Os on the PIC
 - Set up UART
 - Set up timers and interrupts
 - Enter main loop:
 - Query instrumentation for GPS (UART), pressure (SPI), temperature (SPI) and acceleration (SPI) data
 - Load data into buffer and pass to modem
 - Incoming commands are interrupt-driven
 - “Cut” command drives a digital output high to kick the MSP430
Communication

- Point-to-Multipoint Configuration
- Master unit is in the vessel, two slave units are the ground stations
- 9600 Baud, 8 bit, no parity, 1 stop bit
- Reed-Solomon(15,11) FEC
- 30 dBm (1000mW) output power
 - Adjustable, 30dBm is maximum
Power Budget

- Instrumentation powered by three 2300 mAh, 3.7V Li-ion batteries, connected in series
- Cut-away powered by 2 1200 mAh, 3.7 Li-ion batteries, connected in series
- Estimate of 4 hours and 42 minutes of on-time, if no attempt is made to mitigate power consumption

<table>
<thead>
<tr>
<th>Part name:</th>
<th>Manufacturer:</th>
<th>Current (mA):</th>
<th>Supply Voltage (V):</th>
<th>Power needed (mW):</th>
</tr>
</thead>
<tbody>
<tr>
<td>P900 Modem</td>
<td>Microhard</td>
<td>1500</td>
<td>3.3</td>
<td>4950</td>
</tr>
<tr>
<td>Pressure sensor</td>
<td>TruStability</td>
<td>2.7</td>
<td>5</td>
<td>13.5</td>
</tr>
<tr>
<td>Accelerometer(2)</td>
<td>FirstSensor</td>
<td>48</td>
<td>5</td>
<td>240</td>
</tr>
<tr>
<td>Max232</td>
<td>TI</td>
<td>9</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>MSP430G2553</td>
<td>TI</td>
<td>0.23</td>
<td>2.2</td>
<td>0.506</td>
</tr>
<tr>
<td>PIC18F46K22</td>
<td>Microchip</td>
<td>0.5</td>
<td>2.3</td>
<td>1.15</td>
</tr>
<tr>
<td>Total Current (mA):</td>
<td></td>
<td>1560.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Power (mW):</td>
<td></td>
<td>5250.156</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions
Progress This Semester

- Hardware mounted to PCBs
- PDR with NASA in-progress (awaiting feedback)
- Voltage monitoring, accelerometers, pressure sensor, GPS, temperature sensor all functional
- Cut-away circuit prototyped
Successes and Failures

• Most desired functionality implemented
• Size and weight constraints met easily, room for further hardware

• Modem range not yet verified
• ARM and CUT commands not yet functional
• Vessel dynamics only characterized in two dimensions currently
• Temperature constraints not yet addressed
Lessons Learned

• Don’t try to reinvent the wheel- build on what’s been done
• Re-evaluate goals and timelines frequently
Questions?

Special Thanks to:
Victor Bershinsky, Course Instructor
George Janack, ECE Technician
Jerry Hamann, Faculty Support
Shane Cornell, Microgravity Testing Platform Project Manager
Project Justification

- CubeSats have a growing market in commercial, military, research and gov’t sectors
- Currently, approximately 50% of launched CubeSats fail in their mission, partially due to inadequate testing
- To reach launch, adequate TRL must be reached
Shirley Basin

- Equivalent population density of 37 people living in Rhode Island
Main Board Hardware

• Microhard P900 Modem (3)
 – Low cost ($79), small form factor (1.05”x1.3”x0.13”), lightweight (5 grams), 40 mile range (unverified)

• Adafruit Ultimate GPS
 – Low cost ($40), accessible (9600 baud, NMEA output)

• FirstSensor Accelerometer (2)
 – Large measurement range (±8g), low noise density (<20μg/√Hz), also measures temperature

• PIC18F46K22
 – 64 KB program memory, 2-UART, 2-SPI