The Algalrithm

Turning Algae into Bio-surfactants

By: Catherine Brame, Katie Hopfensperger, Traci Reusser, and Mary Uselmann
Project Definition:

Utilize algae as a way to collect CO$_2$ emissions from industrial plants, then harvest the algae and extract the energy dense lipids. Our objective is to reduce the carbon footprint in the production of a bio-surfactant, and create this product with an economic and environmentally friendly process.
Commercial Uses of Algae

- Biogas
- Bioethanol
- Biodiesel
- Biobutanol
- Biofuel
- Cosmetics
- Nutraceuticals
 - Pharmaceuticals
 - Vitamins
- Food
- Bioplastics
- Feedstock
- Animal feed
- Fertilizer/nutrients
Bio-surfactants

• Bio-surfactants vs. traditional surfactants
 – Absence of toxicity
 – Biodegradability
 – Eco-friendly

• Bio-surfactants vs. Bio-based surfactants
 – Currently produced by:
 • Soybean, linseed, canola, sunflower, and rubberseed oils
Replace Chloroform with Dichloromethane

Palmitic acid
Stearic acid
Oleic acid
Linoleic acid
α-linolenic acid

$\text{CH}_3\text{OH}:\text{HCl}:\text{CHCl}_3$, $(10:1:1, \text{v/v/v})$

Palmitic acid methyl ester
Stearic acid methyl ester
Oleic acid methyl ester
Linoleic acid methyl ester
α-linolenic acid methyl ester

FAMEs: $30\% \text{ H}_2\text{O}_2$:toluene
$(1:10:5, \text{w/w/v}), 4 \text{ mol CHO0H}$

Possible side product

Plasticizer

Triepoxidized α-linolenic acid methyl ester
Surfactant

Glycerol

Glycerol:NaOH (10:1, w/w)

Polyglycerol

Surfactant

Palmitic acid methyl ester

Stearic acid methyl ester

Monoepoxidized oleic acid methyl ester

Diepoxidiized linoleic acid methyl ester

Triepoxidiized α-linolenic acid methyl ester

Palmitic acid polyglycerol ester

Stearic acid polyglycerol ester

Monoepoxidized oleic acid polyglycerol ester

Diepoxidiized linoleic acid polyglycerol ester

Triepoxidiized α-linolenic acid polyglycerol ester
Business Opportunity
Wastewater

• Why use wastewater?
 – Cost effective
 – Low energy requirement
 – Production of chlorella algal biomass

• Agricultural, municipal, and industrial wastewaters
 – Agricultural WW is most common for algae cultivation

• Algal growth will depend on nutrients present in wastewater

• Permit for wastewater discharge will be needed
Business Opportunity and Plan

• Environmental Benefits:
 – Recycling wastewater
 – Reducing oil-based surfactants and introducing promising bio-surfactants without toxicity
 – Sequestering CO$_2$ from high-producing industrial power plants

• Carbon Tax
Bio-surfactants Process Design
Algae Cultivation and Lipid Isolation
Algal Lipid to Bio-surfactants
Design Alternatives
Algae Cultivation Method

- **Algae Fermentation Tank**
 - Heterotrophic growth (no sunlight, sugars required)
 - Controlled, sterile growth
 - More expensive, but greater efficiency and lipid yield

- **Open Pond System**
 - Autotrophic growth (requires sunlight, no sugars required)
 - Less expensive, variable production
Lipid Separation Method

• Mechanical Separation
 – Oil Press
 – Centrifuge

• Thermal Separation
 – Heater
 – Dryer

• Dissolved Air Flotation
Solvent Extraction

- Dichloromethane & Chloroform Extraction
- Potential Hazardous Byproducts
- Dissolved Air Flotation
 - Hexane Removal
Economics
Economics

• Assumptions:
 – 10 Photobioreactors, 1000m³ ---> 475 lbₘ/hr product
 – Projected market to sell at 98 ¢/lb
 – Utilities, equipment, miscellaneous costs

<table>
<thead>
<tr>
<th>Economics Summary ($MM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Capital Investment</td>
</tr>
<tr>
<td>Start-Up Costs</td>
</tr>
<tr>
<td>Annual Revenue</td>
</tr>
<tr>
<td>Net Present Value (R= 12%)</td>
</tr>
<tr>
<td>Internal Rate of Return</td>
</tr>
<tr>
<td>Pay Back Period(yrs)</td>
</tr>
<tr>
<td>Minimum Acceptable Rate of Return</td>
</tr>
</tbody>
</table>
Opportunities for Improvement

• Realistic carbon tax as a source of revenue
• Room for improvement on:
 – Equipment costs
 – By-product revenue sources
 – Utility/heat duty costs from our unit ops
• Second part of process
 – Cost of chemicals, and permits for waste
The Future of The Algalrithm
Moving forward with Bio-surfactants

• End-product verification
 – Molecular analysis
 – Physical property analysis

• Detailed economic analysis
 – Current & future market analysis
 – Unit operations and operating conditions of Part II
Simulation Future Work

- **PBR**
 - Wastewater
 - Photosynthesis reaction
 - Separator for Vapor Stream
 - N₂ Gas
 - O₂ Gas
 - CO₂ Gas
 - Flare

- Water-Lipid Separation
 - Distillation Column

- Specifications of Part II
Acknowledgments

• Special Thanks
 – John Oakey
 – John Myers
Questions?