SIGN PATTERNS THAT ALLOW A POSITIVE OR NONNEGATIVE LEFT INVERSE*

IN-JAE KIM†, D. D. OLESKY‡, B. L. SHADER§, AND P. VAN DEN DRIESSCHE¶

Abstract. An m by n sign pattern S is an m by n matrix with entries in {+, −, 0}. Such a sign pattern allows a positive (resp., nonnegative) left inverse, provided that there exist an m by n matrix A with the sign pattern S and an n by m matrix B with only positive (resp., nonnegative) entries satisfying BA = In, where In is the n by n identity matrix. For m > n ≥ 2, a characterization of m by n sign patterns with no rows of zeros that allow a positive left inverse is given. This leads to a characterization of all m by n sign patterns with m ≥ n ≥ 2 that allow a positive left inverse, giving a generalization of the known result for the square case, which involves a related bipartite digraph. For m ≥ n, m by n sign patterns with all entries in {+, 0} and m by 2 sign patterns with m ≥ 2 that allow a nonnegative left inverse are characterized, and some necessary or sufficient conditions for a general m by n sign pattern to allow a nonnegative left inverse are presented.

Key words. bipartite digraph, nonnegative left inverse, positive left inverse, positive left null-vector, sign pattern, strong Hall

AMS subject classifications. 15A09, 15A48, 05C20, 05C50

DOI. 10.1137/060660916

1. Introduction. An m by n sign pattern S = [sij] is an m by n matrix with entries in {+, −, 0}. If a sign pattern S has all entries in {+, 0}, then S is a nonnegative sign pattern. A subpattern of S is an m by n sign pattern U = [uij] such that uij = 0 whenever sij = 0. If U is a subpattern of S, then S is a superpattern of U. The sign pattern class Q(S) of an m by n sign pattern S is the set of m by n matrices A = [aij] such that sgn(aij) = sij for all i, j. If A ∈ Q(S), then A is a realization of S.

Let A = [aij] be an m by n matrix. If each entry of A is positive (resp., nonnegative), then A is positive (resp., nonnegative), written A > 0 (resp., A ≥ 0). A left inverse of an m by n matrix A is an n by m matrix B such that BA = In, where In denotes the n by n identity matrix. If B > 0, then B is a positive left inverse (abbreviated as PLI) of A. If B ≥ 0, then B is a nonnegative left inverse (abbreviated as NLI) of A. In general, neither a PLI nor an NLI of A is unique. It is easily verified that A has a left inverse if and only if rank A = n; thus, if A has a left inverse, then necessarily m ≥ n. An m by n sign pattern S allows a positive (resp., nonnegative) left inverse, provided there exist A ∈ Q(S) and a matrix B > 0 (resp., B ≥ 0) such that BA = In. Note that if P1 and P2 are permutation matrices, then S allows a PLI (resp., an NLI) if and only if P1SP2 allows a PLI (resp., an NLI).

*Received by the editors May 25, 2006; accepted for publication (in revised form) by R. Bhatia October 5, 2006; published electronically April 20, 2007.
†Department of Mathematics and Statistics, Minnesota State University, Mankato, MN 56001 (in-jae.kim@mnsu.edu). The research of this author was done while he was a postdoctoral fellow at the University of Victoria.
‡Department of Computer Science, University of Victoria, P.O. Box 3055, Victoria, BC, Canada V8W 3P6 (dolesky@cs.uvic.ca). The research of this author was supported in part by an NSERC Discovery Grant.
§Department of Mathematics, University of Wyoming, Laramie, WY 82071 (bshader@uwyo.edu).
¶Department of Mathematics and Statistics, University of Victoria, P.O. Box 3045, Victoria, BC, Canada V8W 3P4 (pvdd@math.uvic.ca). The research of this author was supported in part by an NSERC Discovery Grant.

554
A motivation for studying PLIs and NLIs comes from determining the qualitative behavior of solutions of $A^T x = b$ with A an m by n matrix; see, for example, [2, Chapter 1] and [5] for applications in economics. Specifically, A has a PLI (resp., an NLI) if and only if for each n by 1 nonzero vector $b \geq 0$ there exists an m by 1 vector $x > 0$ (resp., $x \geq 0$) satisfying $A^T x = b$ or equivalently $x^T A = b^T$; see Proposition 4.1 for a proof.

Square sign patterns with entries in \{+, -\} that allow a positive (left) inverse are characterized in [6], and this characterization is extended to arbitrary square sign patterns in [4]. These results are summarized in [2, section 9.2]. In section 2, we characterize nonsquare sign patterns that allow a PLI, and combine the square and nonsquare characterizations. In section 3, we discuss sign patterns that allow an NLI. More specifically, we characterize nonnegative sign patterns and m by 2 sign patterns in [4]. These results are summarized in [2, section 9.2]. In section 2, we characterize nonnegative sign patterns and m by 2 sign patterns with $m \geq 2$ that allow an NLI, and present some necessary or sufficient conditions for general m by n sign patterns with $m \geq n$ to allow an NLI. We conclude with some remarks in section 4.

2. Positive left inverses. We begin this section with a necessary and sufficient condition for a column sign pattern to allow a PLI or an NLI.

Proposition 2.1. Let $S = (s_1, s_2, \ldots, s_m)^T$ be an m by 1 sign pattern. Then the following are equivalent:

(i) S has a $+$ entry.

(ii) S allows a PLI.

(iii) S allows an NLI.

Proof. Suppose there is an index $i \in \{1, \ldots, m\}$ with $s_i = +$. For $j \in \{1, \ldots, m\}$, set

$$a_j = \begin{cases}
1 & \text{if } j \neq i \text{ and } s_j = +, \\
-1 & \text{if } j \neq i \text{ and } s_j = -, \\
0 & \text{if } j \neq i \text{ and } s_j = 0, \\
1 + \sum_{k \neq i} |a_k| & \text{if } j = i.
\end{cases}$$

Then $A = (a_1, \ldots, a_m)^T \in Q(S)$, and $(1, 1, \ldots, 1)A = 1 + \sum_{k \neq i} (|a_k| + a_k) = c > 0$. This implies that $\frac{1}{c}(1, 1, \ldots, 1)$ is a PLI of A. Thus, S allows a PLI.

It is clear that (ii) implies (iii). Next, suppose that the sign pattern S allows an NLI. Then there exist $A = (a_1, \ldots, a_m)^T \in Q(S)$ and $B = (b_1, \ldots, b_m) \geq 0$ such that $BA = 1$, i.e., $\sum_{j=0}^m b_j a_i = 1 > 0$. This implies that there exists an i with $b_i a_i > 0$. Since $b_i \geq 0$, it follows that $b_i > 0$; hence $a_i > 0$ and thus $s_i = +$. \(\square\)

We now consider $m \geq n \geq 2$. The following two lemmas give necessary conditions for a sign pattern to allow a PLI.

Lemma 2.2. Let S be an m by n sign pattern with $n \geq 2$. If S allows a PLI, then each column of S has a $+$ and a $-$ entry.

Proof. Suppose that there exist $A \in Q(S)$ and an n by m positive matrix B such that $BA = I_n$. Let $i \in \{1, 2, \ldots, n\}$. Since the (i, i)-entry of BA is 1 and each entry of B is positive, it follows that some entry in column i of A is positive. Hence, column i of S has a $+$ entry.

Since $n \geq 2$, there exists $j \in \{1, \ldots, n\}$ with $j \neq i$. The (j, i)-entry of BA is 0, so since $B > 0$ and at least one entry of column i of A is positive, it follows that at least one entry of column i of A must be negative. Thus, column i of S has a $-$ entry. \(\square\)

An m by n sign pattern S with $n \geq 2$ is strong Hall, provided that for every nonempty proper subset γ of $\{1, 2, \ldots, n\}$ the submatrix of S consisting of the columns...
indexed by γ has nonzero entries in at least $|\gamma| + 1$ rows (see [3]). Note that if \mathcal{S} is strong Hall, then necessarily $m \geq n$. Also, for $m \geq n$, \mathcal{S} is not strong Hall if and only if there exist permutation matrices P_1 and P_2 such that

$$P_1SP_2 = \begin{bmatrix} S_{11} & S_{12} \\ O & S_{22} \end{bmatrix},$$

where S_{11} is a k by ℓ sign pattern for some integers k, ℓ with $n > \ell \geq 1$ and $k \leq \ell$.

Lemma 2.3. Let \mathcal{S} be an m by n sign pattern with $n \geq 2$. If \mathcal{S} allows a PLI, then \mathcal{S} is strong Hall.

Proof. To prove the contrapositive, assume that \mathcal{S} is not strong Hall. If $m < n$, then it is clear that \mathcal{S} does not allow a PLI. Otherwise, without loss of generality, we may assume that \mathcal{S} has the form (2.1). If $k < \ell$, then the first ℓ columns of each realization of \mathcal{S} are linearly dependent, and hence \mathcal{S} does not allow a PLI.

Otherwise, $k = \ell < n$. Suppose that there exists a matrix $A = \begin{bmatrix} A_{11} & A_{12} \\ O & A_{22} \end{bmatrix} \in Q(\mathcal{S})$ with a left inverse $B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$, where B_{11} is an ℓ by ℓ matrix. Clearly, the ℓ by ℓ matrix A_{11} is invertible, and by $BA = I_n$, it follows that $B_{21}A_{11} = O$. Thus, $B_{21}A_{11} = O$, and since A_{11} is invertible, the $(n - \ell)$ by ℓ matrix $B_{21} = O$. Since $n - \ell \geq 1$ and $\ell \geq 1$, every left inverse of a matrix in $Q(\mathcal{S})$ has a zero entry, and hence \mathcal{S} does not allow a PLI.

Note that if \mathcal{S} is a square sign pattern of order $n \geq 2$, then \mathcal{S} is strong Hall if and only if \mathcal{S} is fully indecomposable (see [3]), and \mathcal{S} allows a PLI if and only if \mathcal{S} allows a positive inverse. The next theorem, first proved in [4], provides a characterization of square sign patterns that allow a positive inverse. In order to recall this characterization, we use the following definition as in [1] and [2]. Let $S = [s_{ij}]$ be an m by n sign pattern. The **bipartite digraph** $D(\mathcal{S})$ of \mathcal{S} is the digraph with row vertices u_1, \ldots, u_m, column vertices v_1, \ldots, v_n, an arc $u_i \rightarrow v_j$ if $s_{ij} = +$, and an arc $v_j \rightarrow u_i$ if $s_{ij} = -$. Note that there exists at most one arc between u_i and v_j.

Theorem 2.4 (see [2, Theorem 9.2.1]). An m by n square sign pattern \mathcal{S} with $n \geq 2$ allows a positive (left) inverse if and only if \mathcal{S} is strong Hall and the bipartite digraph $D(\mathcal{S})$ of \mathcal{S} is strongly connected.

Let \mathcal{S} be an m by n sign pattern and let $D(\mathcal{S})$ be its bipartite digraph. A **strong component** of $D(\mathcal{S})$ is a maximal strongly connected subdigraph of $D(\mathcal{S})$. If α is a strong component of $D(\mathcal{S})$, then $|\alpha|$ denotes the number of vertices in α.

Remark 2.5. Let α be a strong component of $D(\mathcal{S})$. Since $D(\mathcal{S})$ is a bipartite digraph with no cycles of length 2, it follows that if $|\alpha| \geq 2$, then α has at least two row vertices and at least two column vertices.

Let $\alpha_1, \alpha_2, \ldots, \alpha_t$ be the strong components of $D(\mathcal{S})$. The **condensed digraph** $CD(\mathcal{S})$ of \mathcal{S} has vertices $\alpha_1, \alpha_2, \ldots, \alpha_t$ and an arc $\alpha_i \rightarrow \alpha_j$ if and only if $i \neq j$ and $D(\mathcal{S})$ has at least one arc from a vertex in α_i to a vertex in α_j. A strong component α_i of $D(\mathcal{S})$ is a **source** if there is no arc coming into α_i in $CD(\mathcal{S})$ and there is at least one arc coming out of α_i in $CD(\mathcal{S})$; α_i is a **sink** if there is no arc coming out of α_i in $CD(\mathcal{S})$ and there is at least one arc coming into α_i in $CD(\mathcal{S})$; and α_i is **isolated** if there are no arcs coming into or out of α_i in $CD(\mathcal{S})$.

Lemma 2.6. Let \mathcal{S} be an m by n sign pattern which has a $+$ and a $-$ entry in each column and no rows of zeros. Then the following hold for $D(\mathcal{S})$:

(i) Each sink and source strong component of $D(\mathcal{S})$ has at least one row vertex.

(ii) Each isolated strong component has at least two row vertices.

Proof. (i) Let α be a sink or source strong component. If $|\alpha| = 1$, then since each column of \mathcal{S} has a $+$ and a $-$ entry, it follows that no sink or source strong component
consists of exactly one column vertex. Hence, α is a row vertex. If $|\alpha| \geq 2$, then Remark 2.5 implies that α has at least one row vertex.

(ii) By the assumptions on the rows and columns of S, there is no isolated strong component with exactly one vertex. Hence, by Remark 2.5, each isolated strong component has at least two row vertices. \hfill \square

Let A be an m by n matrix with $m \geq n$. If there exists an m by 1 vector $y > 0$ satisfying $y^T A = 0$, then y^T is a positive left nullvector of A. The following theorem gives a characterization of nonsquare sign patterns with no rows of zeros that allow a PLI. Note that conditions for such a sign pattern to allow a PLI are weaker than those for square sign patterns (Theorem 2.4), although the bipartite digraph is used in our proof for a nonsquare sign pattern.

Theorem 2.7. For $m > n \geq 2$, let S be an m by n sign pattern with no rows of zeros. Then the following are equivalent:

(i) There exists a matrix $A \in Q(S)$ with a PLI and a positive left nullvector.

(ii) S allows a PLI.

(iii) Each column of S has a $+$ and a $-$ entry, and S is strong Hall.

Proof. Clearly, (i) implies (ii). By Lemmas 2.2 and 2.3, (ii) implies (iii).

To prove that (iii) implies (i), assume that S is strong Hall and that S has a $+$ and a $-$ entry in each column. We claim that it suffices to show that there exists an m by $(m-n)$ sign pattern C so that the m by m sign pattern $[S | C]$ allows a positive (left) inverse. To prove this claim, suppose there exists an m by m matrix $[A | C] \in Q([S | C])$ with a positive (left) inverse $[B_1 | B_2]$, where B_1 is an n by m positive matrix and B_2 is an $(m-n)$ by m positive matrix. Then $B_1 A = I_n$ and hence B_1 is a PLI of A, implying that S allows a PLI. In addition, since $B_2 A = O$ and B_2 has at least one positive row, A has a positive left nullvector. Therefore, by Theorem 2.4, it suffices to find an m by $(m-n)$ sign pattern C such that the m by m sign pattern $[S | C]$ is strong Hall and its bipartite digraph $D([S | C])$ is strongly connected.

Consider the bipartite digraph $D(S)$ of S. Let $\alpha_1, \alpha_2, \ldots, \alpha_t$ be its strong components, where $\alpha_1, \ldots, \alpha_k$ are sinks, $\alpha_{k+1}, \ldots, \alpha_{k+\ell}$ are sources, $\alpha_{k+\ell+1}, \ldots, \alpha_{k+\ell+r}$ are isolated, and $\alpha_{k+\ell+r+1}, \ldots, \alpha_t$ are neither sinks, sources, nor isolated strong components. By Lemma 2.6 (i), each sink and source strong component has a row vertex. Let r_i be a fixed row vertex of α_i for each $i \in \{1, \ldots, k+\ell\}$. Also, by Lemma 2.6 (ii), each isolated strong component has at least two row vertices. Let r_i^+, r_i^- be distinct fixed row vertices of α_i for each $i \in \{k+\ell+1, \ldots, k+\ell+r\}$. Let C_{n+1} be the m by 1 column sign pattern with nonzero jth coordinate:

\[
\begin{cases}
 + & \text{if } u_j \in \{r_1, \ldots, r_k\} \cup \{r_{k+\ell+1}, \ldots, r_{k+\ell+r}\}, \\
 - & \text{if } u_j \in \{r_{k+1}, \ldots, r_{k+\ell}\} \cup \{r_{k+\ell+1}, \ldots, r_{k+\ell+r}\}, \\
 + & \text{otherwise.}
\end{cases}
\]

Then $D([S | C_{n+1}])$ is obtained from $D(S)$ by appending a new column vertex c_{n+1}, and arcs $r_j \to c_{n+1}$ if r_j is in a sink component; $c_{n+1} \to r_j$ if r_j is in a source component; $r_j^+ \to c_{n+1}$ and $c_{n+1} \to r_j^-$ if r_j^+ and r_j^- are in the same isolated component; as well as some additional arcs coming into vertex c_{n+1}.

To prove that $D([S | C_{n+1}])$ is strongly connected, we show that for each vertex w of $D(S)$ there exists in $D([S | C_{n+1}])$ a walk from c_{n+1} to w and a walk from w to c_{n+1}. Note that if w is not in an isolated strong component of $D(S)$, then there is a walk from w to a vertex in a sink strong component α_i of $D(S)$ ($i \in \{1, \ldots, k\}$). Since α_i is strongly connected, this walk from w can be extended to the fixed row vertex r_i of α_i. By (2.2), there is an arc $r_i \to c_{n+1}$ in $D([S | C_{n+1}])$. Hence, there is
a walk from w to c_{n+1}. Similarly, there is a walk from c_{n+1} to w.

Next, suppose that w is a vertex in an isolated strong component α_i in $D(S)$ ($i \in \{k + \ell + 1, \ldots, k + \ell + r\}$). Since α_i is strongly connected, there is a walk from w to the fixed row vertex r_i^- of α_i. By (2.2), there are arcs $r_i^- \to c_{n+1}$ and $c_{n+1} \to r_i^+$ in $D([S | C_{n+1}])$. Since α_i is strongly connected, there is a walk from r_i^+ to w. Thus, there exist a walk from w to c_{n+1} and a walk from c_{n+1} to w.

Finally, define C_{n+2}, \ldots, C_m to be m by 1 column sign patterns, each having no zeros, at least one $+$, and at least one $-$ entry. Then it is easily verified that $D([S | C_{n+1} | \ldots | C_m])$ is strongly connected. Since S is strong Hall and $[C_{n+1} | \ldots | C_m]$ has no zeros, it is clear that $[S | C_{n+1} | \ldots | C_m]$ is strong Hall, completing the proof.

Example 2.8. Consider the 6 by 4 sign pattern

$$S = \begin{bmatrix} + & - & 0 & 0 \\ - & + & 0 & 0 \\ + & - & 0 & 0 \\ 0 & 0 & + & - \\ 0 & 0 & - & + \\ 0 & 0 & 0 & - \end{bmatrix}$$

with

$$D(S)$$

Each column of S has a $+$ and a $-$ entry, and S is strong Hall. Thus, by Theorem 2.7, S allows a PLI. However, $D(S)$ is not strongly connected, illustrating a distinction between the nonsquare and square cases (see Theorem 2.4). In fact, $D(S)$ has one sink strong component α_1 that consists of vertex u_6, one source strong component α_2 with vertices u_4, u_5, v_3, v_4, and one isolated strong component α_3 with vertices u_1, u_2, u_3, v_1, v_2. Taking $r_1 = u_6$, $r_2 = u_5$, $r_3^+ = u_1$, and $r_3^- = u_2$ in the proof of Theorem 2.7, it follows that

$$C_5 = \begin{bmatrix} - \\ + \\ + \\ - \\ + \end{bmatrix}.$$

The last column C_6 can be taken to be any 6 by 1 column having a $+$ and a $-$ entry, and no zeros. Let $C = [C_5 | C_6]$. In order to determine a matrix $[A | C] \in Q([S | C])$ with a positive (left) inverse $[B_1 | B_2]$, the algorithm described in the proof of [2, Theorem 9.2.1] can be used. Then B_1 is a PLI of A, and the rows of B_2 are positive left nullvectors of A.

The next lemma is used to prove Theorem 2.10, in which square and nonsquare cases are combined.
LEMMA 2.9. Let S be an m by n sign pattern with $n \geq 2$ and let T be the sign pattern obtained from S by deleting the rows of zeros in S. Then

(i) S is strong Hall if and only if T is strong Hall, and

(ii) S allows a positive (nonnegative) left inverse if and only if T allows a positive (nonnegative) left inverse.

Proof. Without loss of generality, assume that $S = [O]$. The proof of (i) follows immediately from the definition of strong Hall.

To prove (ii), suppose first that S allows a PLI. Let $A_1 \in Q(T)$ and $A = [A_1 O] \in Q(S)$ have $B = [B_1 B_2]$ as a PLI. Then $B_1 A_1 = I_n$ and hence T allows a PLI. Next, suppose that T allows a PLI. Let $A_1 \in Q(T)$ have B_1 as a PLI. With J denoting the all 1’s matrix, it is easily verified that $B = [B_1 J]$ is a PLI for $A = [A_1 O] \in Q(S)$. Hence, S allows a PLI. The nonnegative case can be shown by a similar argument to that above.

THEOREM 2.10. Let $m \geq n \geq 2$. The m by n sign pattern S allows a PLI if and only if

(i) each column of S has a + and a − entry;

(ii) S is strong Hall; and

(iii) the bipartite digraph $D(S_1)$ of S_1 is strongly connected whenever S is permutationally equivalent to $[S_1 O]$ and S_1 is an n by n sign pattern.

Proof. For the necessity, suppose that S allows a PLI. Then (i) and (ii) follow from Lemmas 2.2 and 2.3, and (iii) follows from Theorem 2.4 and Lemma 2.9 (ii).

For the sufficiency, first assume $m = n$. Then S is permutationally equivalent to S_1, and by Theorem 2.4 the result follows from (ii) and (iii). Next, suppose that $m > n$. If S has no rows of zeros, then, by Theorem 2.7, the result follows from (i) and (ii). Otherwise, without loss of generality, assume that $S = [S_1 O]$, where T has no rows of zeros. By Lemma 2.9 (i), it follows from (ii) that T is strong Hall. Thus, if T is an n by n sign pattern, then (iii) and Theorem 2.4 imply that T allows a PLI. By Lemma 2.9 (ii), this implies that S allows a PLI. Otherwise, since it follows from (i) that each column of T has a + and a − entry, Theorem 2.7 implies that T allows a PLI. Therefore, by Lemma 2.9 (ii), S allows a PLI.

Remark 2.11. For $m \geq n \geq 2$, let S be an m by n sign pattern. Then the following hold:

(i) If S satisfies (i), (ii), and (iii) in Theorem 2.10, then so does every superpattern of S. Hence, if S allows a PLI, then every superpattern of S allows a PLI.

(ii) Suppose that $S = [S_1 O]$, where S_1 is a square sign pattern, satisfies (iii) in Theorem 2.10. Then, in contrast with Theorem 2.7 (i), there is no matrix $A = [A_1 O] \in Q(S)$ with a PLI that also has a positive left nullvector, since the equation $[y^T \ z^T] [A_1 O] = 0$ and the fact that A_1 is nonsingular together imply that $y = 0$.

The following theorem gives sufficient conditions for an m by n sign pattern with $m > n \geq 1$ to have a realization with a PLI and a positive left nullvector.

THEOREM 2.12. Let S be an m by n sign pattern with $m > n$ and let T be the n by n sign pattern obtained from S by deleting the rows of zeros in S. Then

(i) If $n = 1$ and T has a + and a − entry, then there exists a matrix in $Q(S)$ with a PLI and a positive left nullvector.

(ii) If $t > n \geq 2$ and T allows a PLI, then there exists a matrix in $Q(S)$ with a PLI and a positive left nullvector.

Proof. (i) By Proposition 2.1, a + entry implies the existence of $A \in Q(S)$ with a
by induction, it can be shown that S decomposable sign patterns that allow a nonnegative (left) inverse.

Clearly, S has a nonnegative column having only + or 0 entries. For ease of notation, we sometimes use $(M)_{ij}$ to denote the (i, j)-entry of a matrix M.

Proposition 3.2. For $m > n \geq 2$, let S be an m by n strong Hall sign pattern with a + and a − entry in each column, and let T be the t by n sign pattern obtained from S by deleting the rows of zeros in S. If $t > n$, then S allows an NLI. If $t = n$, then S allows an NLI if and only if $D(T)$ is strongly connected.

Proof. The result follows directly from Theorem 2.10 and the fact that if S allows a PLI, then S allows an NLI.

Let I_n denote the n by n sign pattern with I_n as a realization, i.e., $I_n \in Q(I_n)$. Clearly, I_n allows an NLI. Thus, in order to allow an NLI, an m by n sign pattern with $m \geq n$ need not have a − entry in each column as is required to allow a PLI (see Lemma 2.2), but clearly must have a + entry in each column. We first consider the case that S has a nonnegative column having only + or 0 entries. For ease of notation, we sometimes use $(M)_{ij}$ to denote the (i, j)-entry of a matrix M.

Proposition 3.3. For $m \geq n \geq 2$, let S be an m by n sign pattern with at least one nonnegative column. If S allows an NLI, then each nonnegative column has at most $m - n + 1$ positive entries.

Proof. Let B be an NLI of $A \in Q(S)$, and let t be the number of positive entries in any nonnegative column of A. Without loss of generality, assume that the first column of A is a nonnegative column with its first t entries positive. Since $(BA)_{h1} = 0$ for each $h \in \{2, \ldots, n\}$, it follows that B has the block form $B = [B_{ij}]$ with $1 \leq i, j \leq 2$, where the $(2,1)$-block B_{21} is the $(n-1)$ by t zero matrix. Hence, the equality rank $B = n$ implies that the rank of the $(n-1)\times(m-t)$ matrix B_{22} is $n-1$. Thus, $n-1 \leq m-t$ and the result follows.

If all columns are nonnegative, then the following result gives a necessary and sufficient condition for such a sign pattern to allow an NLI.

Theorem 3.4. For $m \geq n \geq 1$, let S be an $m \times n$ nonnegative sign pattern. Then S allows an NLI if and only if S is permutationally equivalent to

\[
\begin{bmatrix}
I_n \\
T
\end{bmatrix},
\]

where T is an $(m-n) \times n$ nonnegative sign pattern.

Proof. The case $n = 1$ follows directly from Proposition 2.1. Suppose that $n \geq 2$.

For the sufficiency, assume without loss of generality that $S = \begin{bmatrix} I_n \\ T \end{bmatrix}$. Since $[I_n \mid O]A = I_n$, it follows that S allows an NLI.

For the necessity, suppose that $S = [s_{ij}]$ allows an NLI; i.e., there exist $A = [a_{ij}] \in Q(S)$ and an $n \times m$ nonnegative matrix $B = [b_{ij}]$ such that $BA = I_n$. Let $i \in \{1, \ldots, n\}$. Since $(BA)_{ii} = 1$, there exists $j_i \in \{1, \ldots, m\}$ such that $b_{i j_i} a_{j_i i} > 0$. This implies that $s_{j_i i} = +$. Also, for each $k \in \{1, \ldots, n\} \setminus \{i\}$, $(BA)_{ik} = 0$ implies that $b_{ij_k} a_{k j_i} = 0$. Thus, row j_i of S is equal to row i of I_n. As this holds for each $i \in \{1, \ldots, n\}$, the result follows.

Remark 3.5. Let $S = \begin{bmatrix} I_p \\ T \end{bmatrix}$ be the $m \times n$ nonnegative sign pattern with $m \geq n \geq 2$, where T is the sign pattern with all entries positive. Then, by Theorem 3.4, S allows an NLI. However, in contrast with Remark 2.11 (i), Theorem 3.4 implies that no nonnegative superpattern of S (except S itself) allows an NLI.

Next, we consider sign patterns that have at least one nonnegative column and at least one column with a $+$ and a $-$ entry. We use e_i to denote the ith column vector of an identity matrix.

Theorem 3.6. For $m \geq n \geq 2$, let S be an $m \times n$ sign pattern that has $p \geq 1$ nonnegative columns and $n-p \geq 1$ columns with a $+$ and a $-$ entry. Suppose that S allows an NLI. Then S is permutationally equivalent to a matrix of the form

\[
\begin{bmatrix}
I_p & S_{12} \\
S_{21} & S_{22} \\
O & S_{32}
\end{bmatrix},
\]

where S_{21} is an $r \times p$ nonnegative sign pattern with no rows of zeros, O is an $s \times p$ zero matrix with $s \geq 1$, and each of the last $n-p$ columns of S has a $+$ and a $-$ entry. Furthermore, if S is strong Hall, then S_{21} is not vacuous and has no column of zeros.

Proof. Without loss of generality, we may assume that the first p columns of S are nonnegative, and that each of the last $n-p$ columns of S has a $+$ and a $-$ entry.
Since S allows an NLI, so does the m by p nonnegative sign pattern consisting of the first p columns of S. Therefore, by Theorem 3.4, we may permute the rows of S to obtain a matrix of the form (3.2), where S_{21} is a nonnegative matrix with no row of zeros, O is an s by p zero matrix with $s \geq 0$, and each of the last $n - p$ columns has a + and a − entry.

Let A be a matrix in $Q(S)$ that has an NLI, say B. Since $BA = I_n$, each of the vectors e_1^T, \ldots, e_n^T is a nontrivial, nonnegative linear combination of the rows of A. Since the first p columns of A are nonnegative and $n > p$, this requires that $s \geq 1$, and we conclude that S has the desired form.

If S_{21} is vacuous or has a column of zeros, then S has an $(m - 1)$ by 1 zero submatrix. Hence S is not strong Hall, and the result follows by taking the contrapositive. \qed

Proposition 3.7. For $m \geq n \geq 2$, let S be an m by n sign pattern that has $p \geq 1$ nonnegative columns and $n - p \geq 1$ columns with a + and a − entry. Suppose that S allows an NLI and has the form (3.2). Let

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ O & A_{32} \end{bmatrix} \in Q(S)$$

have an NLI $B = \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \end{bmatrix}$, where each of A_{21}, A_{22}, B_{12}, and B_{22} may be vacuous if S is not strong Hall. Then the following hold:

1. B_{11} is a diagonal matrix, and B_{21} and B_{22} are zero matrices.
2. The sign pattern S_{21} allows an NLI.
3. If row q of S_{21} has at least two positive entries, then column q of B_{12} is a zero column.
4. Each column of B_{12} has at most one positive entry. Furthermore, the sign pattern of B_{12} is a subpattern of S_{21}.

Proof. Assume that S_{21} is not vacuous. Since $BA = I_n$, it follows that $B_{21}A_{11} + B_{22}A_{21} = O$. Moreover, since $B_{21}, B_{22}, A_{11},$ and A_{21} are nonnegative, and no row of A_{11} or A_{21} is all zeros, $B_{21} = O$ and $B_{22} = O$. Also, $BA = I_n$ implies that $B_{11}A_{11} + B_{12}A_{21} = I_p$. Since $B_{11}, B_{12}, A_{11},$ and A_{21} are nonnegative, both $B_{11}A_{11}$ and $B_{12}A_{21}$ are diagonal matrices. Since $A_{11} \in Q(I_p)$, A_{11} is an invertible diagonal matrix, and hence B_{11} is a diagonal matrix. Thus, (i) is proven.

Since B_{21} and B_{22} are zero matrices, and $BA = I_n$, B_{23} is an NLI of A_{32}, and (ii) is proven.

Since $B_{12}A_{21}$ is a diagonal matrix and B_{12} is nonnegative, the ith row of $B_{12}A_{21}$ is a nonnegative linear combination of the rows of A_{21} (weighted by the entries of the ith row of B_{12}). As the ith row of $B_{12}A_{21}$ is a nonnegative multiple of e_i^T, and A_{21} is a nonnegative matrix with no row of zeros, it follows that if the (i, j)-entry of B_{12} is nonzero, then the jth row of A_{21} is a multiple of e_i^T. In particular, this implies that each column of B_{12} has at most one nonzero entry. If the jth row of A_{21} has at least two positive entries, then column j of B_{12} is a column of zeros, proving (iii). If the (i, j)-entry of B_{12} is nonzero, then the (j, i)-entry of A_{21} is nonzero, completing the proof of (iv).

If S_{21} is vacuous, then A_{21}, A_{22}, B_{12}, and B_{22} are vacuous, in which case the proofs of (i) for B_{11}, B_{21} and (ii) are similar, but statements (i) for $B_{22},$ (iii), and (iv) are vacuous. \qed
For \(m \geq 2 \), Proposition 3.2, Theorem 3.4, and the following theorem completely characterize the \(m \) by 2 sign patterns that allow an NLI.

Theorem 3.8. For \(m \geq 2 \), let \(S \) be an \(m \) by 2 sign pattern such that the first column is nonnegative and the second column has a + and a − entry. Then \(S \) allows an NLI if and only if the first column of \(S \) has a + entry and \([0 +]\) is a row of \(S \).

Proof. Suppose that \(S \) allows an NLI. Then the first column of \(S \) also allows an NLI. Hence, Theorem 3.4 implies that the first column of \(S \) has a + entry. By Theorem 3.6, we may assume without loss of generality that \(S \) is of the form (3.2). Since \(S_{32} \) is a column sign pattern, Propositions 3.7 (ii) and 2.1 imply that \(S_{32} \) has a + entry. Hence, \([0 +]\) is a row of \(S \).

For the converse, suppose that the first column of \(S \) has a + entry and \([0 +]\) is a row of \(S \). Suppose that \([+ −]\) is also a row of \(S \). Then without loss of generality, \(A \in S \) has the form

\[
\begin{bmatrix}
a & −b \\
u & v \\
0 & c
\end{bmatrix},
\]

where \(a, b, c > 0 \), and \(u \) and \(v \) are \((m − 2)\) by 1 vectors. It is easy to verify that

\[
\begin{bmatrix}
1/a & 0 & b/ac \\
0 & O & 1/c
\end{bmatrix}
\]

is an NLI of \(A \).

Next suppose that \([+ −]\) is not a row of \(S \). Then without loss of generality, \(A \in S \) has the form

\[
\begin{bmatrix}
a & b \\
u & v \\
0 & −c \\
0 & d
\end{bmatrix},
\]

where \(a, c, d > 0 \), \(b \geq 0 \), and \(u \) and \(v \) are \((m − 3)\) by 1 vectors. It is easy to verify that

\[
\begin{bmatrix}
1/a & 0 & b/ac & 0 \\
0 & O & 1/c & 2/d
\end{bmatrix}
\]

is an NLI of \(A \).

Hence, \(S \) allows an NLI. □

Note that the proof of Theorem 3.8 actually shows that if \(S \) is an \(m \) by 2 matrix whose first column is nonnegative, second column has a + and a − entry, and \([0 +]\) is one of its rows, then each matrix with sign pattern \(S \) has an NLI.

Example 3.9. The strong Hall sign pattern

\[
S = \begin{bmatrix}
+ & − \\
+ & − \\
0 & +
\end{bmatrix}
\]

does not allow a PLI (by Lemma 2.2), but does allow an NLI (by Theorem 3.8) since

\[
\begin{bmatrix}
1 & 0 & 1/2 \\
0 & 0 & 1/2
\end{bmatrix}
\begin{bmatrix}
1 & −1 \\
1 & −1/2
\end{bmatrix} = I_2.
\]
In general (as noted in the introduction) an NLI is not unique. For instance,

$$\begin{bmatrix}
1/2 & 1/2 & 1/2 \\
0 & 0 & 1/2
\end{bmatrix}$$

is another NLI of the above matrix.

In the next theorem, it is shown that if a sign pattern S of the form (3.2) has a $(3,2)$-block S_{32} that allows an NLI or PLI, then some conditions on the negative entries in S_{12} insure that S allows an NLI.

Theorem 3.10. For $m \geq n \geq 2$, let S be an $m \times n$ sign pattern of the form (3.2) with $p \geq 1$, $n - p \geq 1$, and S_{21}, S_{22} arbitrary. Then the following hold:

(i) If S_{32} allows an NLI and S_{12} has only 0 or $-$ entries, then S allows an NLI.
(ii) If S_{32} allows a PLI and each row of S_{12} has a $-$ entry, then S allows an NLI.

Proof. (i) Let

$$A = \begin{bmatrix}
I_p & A_{12} \\
A_{21} & A_{22} \\
O & A_{32}
\end{bmatrix} \in Q(S),$$

where $-A_{12} \geq 0$ and A_{32} has B_{23} as an NLI. Let

$$B = \begin{bmatrix}
I_p & O & B_{13} \\
O & O & B_{23}
\end{bmatrix}$$

with $B_{13} = -A_{12}B_{23}$, which is a nonnegative matrix. Then $B \geq 0$, $BA = I_n$, and hence the result follows.

(ii) Let $A \in Q(S)$ be of the form (3.3) and let B be of the form (3.4). If B_{23} is a PLI of A_{32} and $B_{13} = -A_{12}B_{23}$, then $B_{13} > 0$, provided that the negative entries of A_{12} are sufficiently large in magnitude, and $BA = I_n$ as required.

4. **Concluding remarks.** In section 3, we have characterized nonnegative sign patterns, strong Hall sign patterns with each column having a + and a $-$ entry, and $m \times 2$ sign patterns that allow an NLI. For other cases, we have given some necessary or sufficient conditions for S to allow an NLI. A characterization for the blocks of the last column of a sign pattern S of the form (3.1) with $k \geq 2$ that allows an NLI remains open. We conclude by showing (in Theorem 4.2) that some conditions on the submatrix S_{kk} of a sign pattern S of the form (3.1) with $k \geq 2$ insure that S allows an NLI for arbitrary $S_{1k}, \ldots, S_{k-1,k}$.

Let S allow a PLI and $A \in Q(S)$. The following proposition, which is used to prove Theorem 4.2, describes a relation between a PLI of A and the qualitative behavior of solutions of $x^T A = b^T$. The latter equation is given in the introduction as motivation for studying PLIs and NLIs.

Proposition 4.1. For $m \geq n$, let A be an $m \times n$ matrix. Then A has a PLI if and only if for each n by 1 nonzero vector $b \geq 0$ there exists an m by 1 vector $x > 0$ satisfying $x^T A = b^T$.

Proof. Suppose that an n by m matrix $B > 0$ is a PLI of A. For an n by 1 nonzero vector $b \geq 0$, it is clear that $(b^T B)A = b^T$ and $b^T B > 0$. Hence, the result follows.

Next, suppose that for each n by 1 nonzero vector $b \geq 0$ there exists an m by 1 vector $x > 0$ satisfying $x^T A = b^T$. Take b to be the ith column e_i of I_n and let $x_i > 0$.
be a solution of \(x^T A = e_i^T \). Then the matrix

\[
B = \begin{bmatrix}
x_1^T \\
\vdots \\
x_n^T
\end{bmatrix}
\]

is a PLI of \(A \).

Theorem 4.2. For \(m > s \geq 1 \), \(n > t \geq 1 \), and \(m > n \), let \(S_{11} \) be an \(s \times t \) sign pattern that allows an NLI and let \(S_{22} \) be an \((m - s) \times (n - t) \) sign pattern that allows a PLI. Suppose that if \(n - t = 1 \), then \(S_{22} \) has a 0 entry, and if \(n - t \geq 2 \), then \(S_{22} \) is not permutationally equivalent to the sign pattern \(\left[\begin{smallmatrix} 0 \\ \vdots \\ 0 \end{smallmatrix} \right] \) in which \(T \) is a square sign pattern. Then, for an arbitrary \(s \) by \((n - t) \) sign pattern \(S_{12} \), the sign pattern \(S = \left[\begin{smallmatrix} S_{11} & S_{12} \\ \tilde{O} & S_{22} \end{smallmatrix} \right] \) allows an NLI.

Proof. Let \(A_{11} \) be a matrix in \(Q(S_{11}) \) with \(B_{11} \) as an NLI. By Theorem 2.12, there exists \(A_{22} \in Q(S_{22}) \) that has a PLI \(B_{22} \) and a positive left nullvector \(y^T \). Let \(A_{12} \in Q(S_{12}) \). Then \(A_{12} \) can be written as \(A_{12} = V_1 - V_2 \), where \(V_1, V_2 \geq 0 \) and the entrywise (Hadamard) product \(V_1 \circ V_2 = O \). Let \(v_i^T \geq 0 \) for \(1 \leq i \leq s \) denote row \(i \) of \(V_1 \). If \(v_i \neq 0 \), then by Proposition 4.1 there exists an \((m - s)\) by 1 vector \(x_i > 0 \) such that \(x_i^T A_{22} = v_i^T \). If \(v_i = 0 \), then \(x_i^T A_{22} = v_i^T = 0 \) when \(x_i^T = y^T \). Thus, \(K_1 = [x_1, \ldots, x_s]^T > 0 \) and \(K_1 A_{22} = V_1 \). Similarly, there exists \(K_2 \geq 0 \) such that \(K_2 A_{22} = V_2 \).

Let \(A_{12}(\epsilon) = \epsilon V_1 - V_2 = (\epsilon K_1 - K_2) A_{22} \) for a sufficiently small \(\epsilon > 0 \) such that \(K_2 - \epsilon K_1 > 0 \). Note that \(V_1 \circ V_2 = O \) implies that \(A_{12}(\epsilon) \in Q(S_{12}) \). Let \(B_{12} = B_{11}(K_2 - \epsilon K_1) \). Since \(K_2 - \epsilon K_1 > 0 \) and \(B_{11} \geq 0 \) with no rows of zeros, it follows that \(B_{12} > 0 \). It can be easily verified that \(\left[\begin{smallmatrix} B_{11} & B_{12} \\ \tilde{O} & B_{22} \end{smallmatrix} \right] \left[\begin{smallmatrix} A_{11} & A_{12}(\epsilon) \\ \tilde{O} & A_{22} \end{smallmatrix} \right] = I_n \). Hence, the result follows.

Remark 4.3. Take \(S_{11} \) and \(S_{22} \) in Theorem 4.2 to be \(S' \) in Remark 3.1 and \(S_{kk} \) in the form (3.1) with \(k \geq 2 \), respectively. Then the conditions on \(S_{kk} \) in Theorem 4.2 insure that the sign pattern \(S \) of the form (3.1) with \(k \geq 2 \) allows an NLI for arbitrary \(S_{1k}, \ldots, S_{k-1,k} \).

Acknowledgment. The authors thank the referee for comments that improved the readability of the paper.

References