IMPROVED TUNNELING KNOWLEDGE
THROUGH ROBUST MACHINE
LEARNING

by
James I. Maher Jr.
A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Science).

Golden, Colorado
Date _______________________

Signed: ______________________
James I. Maher Jr.

Signed: ______________________
Dr. Tracy Camp
Thesis Advisor

Golden, Colorado
Date _______________________

Signed: ______________________
Dr. Randy Haupt
Professor and Head
Department of Electrical Engineering and Computer Science
ABSTRACT

Earth Pressure Balance Machines (EPBMs) are essential equipment for excavating and constructing underground tunnels in urban environments with soft ground conditions. As examples, EPBMs are used for subways, underground highways, and water conduits. Our work utilizes data collected from hundreds of sensors on an EPBM to understand which systems affect the EPBM’s performance. The ultimate goal is to optimize these systems in future tunneling projects, reducing project costs and construction time. We apply machine learning techniques to two data sets from EPBM excavated tunnels in the Seattle, WA, University Link subway project (U230 Contract). Specifically, we apply ensemble feature selection to identify sensor readings that are correlated with changes in the EPBM’s advance rate. We found that current ensemble feature selection methods are insufficient for our data sets; thus, we created a novel ensemble feature selection method, JENNA Ensemble Network Normalization Algorithm (JENNA). JENNA allows diversity in the configurations of Feature Selection Algorithms, allows for regression FSAs, and enables both subset and ranker FSAs to be used simultaneously. JENNA also introduces a novel ensemble feature selection aggregation function that weights each feature by predicted accuracy performance and feature stability, in addition to average feature selection algorithm ranking.

During our initial work, we identified a time delay between changes to some EPBM machine parameters and when these changes affect the EPBM’s advance rate. In order to account for the time delay, we trained Recurrent Neural Networks (RNNs) to the data set. We then created a novel anomaly detection algorithm Recurrent Neural Network Anomaly Detection Algorithm (ReNN AnD) based on the trained RNNs. ReNN AnD varies from traditional anomaly detection, because it accounts for time delays in the data set. We used ReNN AnD to successfully detect soil at the front of an EPBM. This soil type information could be used to improve an EPBM’s performance in future tunneling projects.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>xv</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>xvi</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background and Related Work</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Description of an Earth Pressure Balance Machine (EPBM)</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Performance Prediction of EPBMs</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1 Computer Model or Laboratory Simulation</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2 Soil and Rock Property Regression Models</td>
<td>11</td>
</tr>
<tr>
<td>1.3.3 Analyze Soil and TBM Data through Machine Learning Techniques</td>
<td>14</td>
</tr>
<tr>
<td>1.4 Seattle Project Case Study Description</td>
<td>21</td>
</tr>
<tr>
<td>1.4.1 Geology Description</td>
<td>22</td>
</tr>
<tr>
<td>1.4.2 Data Preparation</td>
<td>22</td>
</tr>
<tr>
<td>1.5 Feature Selection Algorithms (FSAs)</td>
<td>28</td>
</tr>
<tr>
<td>1.5.1 Filter FSAs</td>
<td>33</td>
</tr>
<tr>
<td>1.5.2 Wrapper FSAs</td>
<td>37</td>
</tr>
</tbody>
</table>
CHAPTER 2 FSA APPLICATION TO EPBM DATA

2.1 Input Feature Selection Methods Applied

2.2 Assessment of the Prediction Power of the Selected Features

2.3 Results and Analysis

2.3.1 \textit{RReliefF} Filter FSA

2.3.2 R^2 Estimation Filter FSA

2.3.3 F-statistic Filter FSA

2.3.4 CFS Wrapper FSA

2.3.5 MLP ANN Wrapper FSA

2.3.6 SVM Regression Wrapper FSA

2.3.7 Comparison of the Best FSA Configurations

2.3.8 Number of Features Selected

2.4 Conclusions

CHAPTER 3 JENNA ENSEMBLE NETWORK NORMALIZATION ALGORITHM (JENNA)

3.1 Related Work

3.2 JENNA Ensemble Network Normalization Algorithm (JENNA)

3.3 Experimental Procedure

3.4 Methodology

3.4.1 JENNA Aggregation Equation

3.4.2 Saeys Method
3.5 JENNA FSA Types ... 95

3.5.1 Correlation Based Feature Selection (CFS) 96
3.5.2 mRMR ... 96
3.5.3 l_1-norm .. 98
3.5.4 Bias and Variance in FSAs and MLAs 99
3.5.5 Validation-Machine Learning Algorithms (V-MLA) 101

3.6 Consistency and Repeatability ... 102

3.7 Experimental Results .. 102

3.7.1 JENNA FSA Instance Performance Analysis 106
3.7.2 JENNA Selected EPBM Machine Parameter Analysis 107
3.7.3 Ground Conditioning System (GCS) 112
3.7.4 Cutterhead Torque .. 121

3.8 Conclusions .. 124

CHAPTER 4 TIME DELAYED DATA ... 126

4.1 Deep Learning ... 127

4.1.1 Long Short-Term Memory (LSTM) 128
4.1.2 Generalized Long Short-Term Memory (LSTM-g) 132

4.2 Proposed Method .. 134

4.2.1 Calibrate the RNN to the Data set 134
4.2.2 Anomaly Thresholding ... 138
4.2.3 Anomaly Detection .. 139

4.3 ReNN AnD Application Experiment 140

4.4 Experimental Results ... 140
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Photos of an EPBM and concrete tunnel segments.</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Cross-sectional view of an Earth Pressure Balance (EPB) Tunnel Boring Machine (TBM).</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Illustration of how soil and water pressures are balanced at the front of the EPBM.</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Schematic of the GCS on an EPBM.</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>GBR soil diagram of predicted soil types along the Seattle project tunnel alignment.</td>
<td>23</td>
</tr>
<tr>
<td>1.6</td>
<td>NB advance rate histogram before and after outlier removal.</td>
<td>25</td>
</tr>
<tr>
<td>1.7</td>
<td>SB advance rate histogram before and after outlier removal.</td>
<td>26</td>
</tr>
<tr>
<td>2.1</td>
<td>Feature selection and feature validation workflow.</td>
<td>50</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of the mean correlation coefficients for the RReliefF (10 neighbors) for the NB Seattle tunnel data.</td>
<td>54</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison of the mean correlation coefficients for the RReliefF (100 neighbors) for the NB Seattle tunnel data.</td>
<td>54</td>
</tr>
<tr>
<td>2.4</td>
<td>Comparison of the mean correlation coefficients for the RReliefF (350 neighbors) for the NB Seattle tunnel data.</td>
<td>55</td>
</tr>
<tr>
<td>2.5</td>
<td>Comparison of the mean correlation coefficients for the RReliefF (700 neighbors) for the NB Seattle tunnel data.</td>
<td>55</td>
</tr>
<tr>
<td>2.6</td>
<td>Comparison of the mean correlation coefficients for the RReliefF (10 neighbors) for the SB Seattle tunnel data.</td>
<td>56</td>
</tr>
<tr>
<td>2.7</td>
<td>Comparison of the mean correlation coefficients for the RReliefF (100 neighbors) for the SB Seattle tunnel data.</td>
<td>56</td>
</tr>
<tr>
<td>2.8</td>
<td>Comparison of the mean correlation coefficients for the RReliefF (350 neighbors) for the SB Seattle tunnel data.</td>
<td>57</td>
</tr>
</tbody>
</table>
Figure 2.9 Comparison of the mean correlation coefficients for the RReliefF (700 neighbors) for the SB Seattle tunnel data. ... 57

Figure 2.10 Comparison of the mean correlation coefficients for the R^2 Estimation for the NB Seattle tunnel data. ... 58

Figure 2.11 Comparison of the mean correlation coefficients for the R^2 Estimation for the SB Seattle tunnel data. ... 58

Figure 2.12 Comparison of the mean correlation coefficients for the R^2 Estimation for the NB Seattle tunnel data using new training data. 59

Figure 2.13 Comparison of the mean correlation coefficients for the F-statistic for the NB Seattle tunnel data. ... 62

Figure 2.14 Comparison of the mean correlation coefficients for the F-statistic for the SB Seattle tunnel data. ... 63

Figure 2.15 Comparison of the mean correlation coefficients for the CFS wrapper for the NB Seattle tunnel data. ... 63

Figure 2.16 Comparison of the mean correlation coefficients for the CFS wrapper for the SB Seattle tunnel data. ... 64

Figure 2.17 Comparison of the mean correlation coefficients for the MLP ANN wrapper for the NB Seattle tunnel data. ... 67

Figure 2.18 Comparison of the mean correlation coefficients for the MLP ANN wrapper for the SB Seattle tunnel data. ... 67

Figure 2.19 Comparison of the mean correlation coefficients for the SVM Regression for the NB Seattle tunnel data. ... 69

Figure 2.20 Comparison of the mean correlation coefficients for the SVM Regression for the SB Seattle tunnel data. ... 70

Figure 3.1 Flowchart of our experimental procedure for training and testing a Saeys ensemble and a JENNA ensemble with the Seattle project case study data. ... 88

Figure 3.2 Illustration of the division of data within our experiment. 91

Figure 3.3 Chart of the V-MLA error versus the number of selected features used to train the V-MLA for the JENNA Method and the Saeys Method ensembles in the NB tunnel. ... 103
Figure 3.4 Chart of the V-MLA error versus the number of selected features used to train the V-MLA for the JENNA Method and the Saey Method ensembles in the SB tunnel. .. 104

Figure 3.5 Schematic of GCS lines facing the front of the EPBM, looking at the cutterhead face. .. 113

Figure 3.6 Foam Volume per Ring in the NB and SB tunnels. 115

Figure 3.7 Solution Volume per Ring in the NB and SB tunnels. 117

Figure 3.8 Additive Volume per Ring in the NB and SB tunnels. 118

Figure 3.9 Line #1 Foam Flow in the NB and SB tunnels. 120

Figure 3.10 Cutter Torque in the NB and SB tunnels. 122

Figure 3.11 Average Cutter Motor Torque in the NB and SB tunnels. 123

Figure 4.1 Detailed diagram of a single LSTM memory cell. 129

Figure 4.2 Comparison of the LSTM memory cell architecture to the LSTM-g memory cell architecture. 133

Figure 4.3 Graph of the RMSE of varying memory cells and break-in data lengths in the NB tunnel. 142

Figure 4.4 Graph of the RMSE of varying memory cells and break-in data lengths in the SB tunnel. 143

Figure 4.5 ReNN AnD soil change detection results for chainage 108,200 to 107,000 in both tunnels. 148

Figure 4.6 ReNN AnD soil change detection results for chainage 107,000 to 106,000 in both tunnels. 149

Figure 4.7 ReNN AnD soil change detection results for chainage 106,000 to 104,600 in both tunnels. 150

Figure B.1 An example FFBP ANN configuration. 171

Figure B.2 Contour plots of an example gradient descent iterative search for a global minimum and an example gradient descent iterative search. 177
Figure B.3 Illustration of the margin between support vectors (of opposite classes)
that SVMs are optimizing in a two class classification example. 178
LIST OF TABLES

Table 1.1 Comparison of R^2 and RMSE values among TBM performance prediction studies. .. 21

Table 2.1 Description of the properties of FSAs applied to the Seattle EPBM data. 47

Table 2.2 A comparison of all FSAs tested. .. 72

Table 2.3 The number of significant wins and losses for the best performing FSA configuration in the NB tunnel. 72

Table 2.4 The number of significant wins and losses for the best performing FSA configuration in the SB tunnel. 73

Table 2.5 Features selected by FSAs that significantly outperformed at least one other FSA in the NB tunnel. 74

Table 2.6 Table 2.5 continued. .. 75

Table 2.7 Features selected by FSAs that significantly outperformed at least one other FSA in the SB tunnel. 76

Table 2.8 The number of features selected by each FSA configuration that did not utilize an artificial halting criteria. 79

Table 3.1 FSA instances created for each of the five cross validation folds. 90

Table 3.2 Comparison of the similarity of the features selected by the JENNA and Saeyys methods across the five cross validation folds. 106

Table 3.3 Average RMSE of each FSA instance in the JENNA ensemble, in the NB tunnel. .. 108

Table 3.4 Average RMSE of each FSA instance in the JENNA ensemble, in the SB tunnel. .. 109

Table 3.5 Top 50 EPBM machine parameters selected by JENNA in the NB and SB tunnels. .. 110

Table 3.6 Machine parameters selected by JENNA in both tunnels of the Seattle project. .. 111
LIST OF SYMBOLS

correlation coefficient .. R^2
cost function ... $J(\cdot)$
hypothesis function ... $f(\cdot)$
index of input feature .. l
input feature ranking in an FSA ensemble instance f
input feature vector ... x
mean of x (Note: x can be replaced by any variable) \bar{x}
number of examples ... m
number of input features .. n
number of instances in an FSA ensemble k
output target column vector ... y
output target value ... y
similarity function .. $S(\cdot)$
time ... t
tuning parameter .. λ
vector features selected by an ensemble FSA instance f
LIST OF ABBREVIATIONS

Geotechnical Baseline Report .. GBR
Interquartile Range outlier identification method IQR
Feature Selection Algorithm ... FSA
Earth Pressure Balance Machine .. EPBM
Support Vector Machine Recursive Feature Elimination SVM-RFE
Correlation-based Feature Selection ... CFS
JENNA Ensemble Network Normalization Algorithm JENNA
Validation-Machine Learning Algorithm V-MLA
ACKNOWLEDGMENTS

The views expressed in this dissertation are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government.

Thank you to Jay Dee Contractors for use of the EPBM data studied throughout this dissertation. Thank you to my advisor Tracy Camp for her support, ideas, and careful reading of my many, many drafts. I also would like to thank my committee for always being there to help me along the way: Michael Mooney, William Navidi, Christopher Painter-Wakefield, and Hua Wang.

Finally, I would like to thank my wonderful wife Ashley and my two children James and Jenna for their support of me throughout this program.
“I believe in speed and power. Power and speed solves many things.” – Jeremy Clarkson
CHAPTER 1
INTRODUCTION

Modern tunneling projects increasingly rely on Tunnel Boring Machines (TBMs), rather than traditional Drill and Blast (D&B) methods, because of TBMs’ increased tunneling efficiency [1]. TBMs have a circular drill bit, commonly referred to as the cutterhead, which can range in diameter from 1 meter to 19.25 meters, depending on the desired use of the completed tunnel. Applications of tunnels dug by TBMs range from underground water and sewer conduits to subway lines and double-decker, 3-lane wide highways. Most TBM contractors monitor the performance of their TBMs with sensors that send data back to a central data collection system. While the number of sensors installed varies by TBM manufacturer, TBMs usually contain 400-800 sensors that are sampled every 10 seconds over tunneling projects that can last over a year [2]. Clearly, an immense amount of data is collected, which can be stored for future analysis.

Underground construction and tunneling projects can incur project costs from tens of millions of dollars to well over one billion dollars. Project costs are estimated based on prior experience, or a best guess, of the advance rate. The advance rate of a TBM is defined by the tunnel distance excavated divided by the time to excavate and is commonly measured in \(\text{meters/hour}\). A scientific model for understanding the factors that affect the advance rate of a TBM can lead to improved cost prediction and lower overall cost to complete the tunnel [3]. Data collected by TBMs is visible to human operators as the TBM constructs the tunnel, and is also recorded in a database for later analysis. Applying machine learning algorithms to this large data set provides an opportunity to find long-term trends that may not be visible during operation of the TBM.
1.1 Background and Related Work

Much of our research focuses on studying methods for predicting and improving TBM performance. TBM performance can be defined by several factors, including the TBM’s advance rate, the TBM’s production rate, the soil surface settlement, and the TBM cutterhead wear, which are all factors that impact the monetary and temporal cost of building a tunnel. In TBM literature, advance rate and penetration rate are often used as synonyms. In our work, we use the term advance rate to define the amount of time the TBM is excavating, and we exclude construction of tunnel rings and maintenance interventions. The TBM’s production rate includes the time spent excavating soil, constructing tunnel rings, and maintenance interventions. Our research focuses on advance rate, because it is a problem that can be optimized by machine learning algorithms. Production rate estimation is a more difficult performance prediction problem than advance rate, because many factors that affect the production rate are probability based, e.g., unscheduled maintenance, concrete liner construction time, and TBM accidents. Since the advance rate only examines when the TBM is actively excavating soil, these three examples of probability-based factors are not present; however, some probability-based factors still exist, e.g., soil type at the cutterhead face.

There are two major categories of TBMs: hard-rock and soft-soil. Most prior research focused on hard-rock TBMs; however, we focus on data collected from soft-soil TBMs. There are two major types of soft-soil TBMs: Earth Pressure Balance Machines (EPBMs) and slurry shield TBMs. Photographs of an EPBM are shown in Figure 1.1. Our research specifically focuses on EPBMs, and we were unable to locate research on advance rate prediction of EPBMs in the literature; therefore, we compare the results of our research to hard-rock TBM advance rate prediction research. While previous work from hard-rock TBMs is relevant, because hard-rock TBMs are performing a similar function to soft-soil TBMs, the fundamental differences between excavating a tunnel in soft-soil vs. hard-rock must be understood when predicting the performance of an EPBM.
1.2 Description of an Earth Pressure Balance Machine (EPBM)

Figure 1.2 illustrates the major components of an EPBM. A list of common tunneling and TBM terms are defined in Appendix A. The cutterhead face (shown in Figure 1.2, number 1) rotates in a clockwise or counterclockwise direction to loosen soil, which then passes through the cutterhead face and into the muck chamber (shown in Figure 1.2, number 2). As the name Earth Pressure Balance Machine (EPBM) implies, the machine must balance earth and water pressure that is pushing on the cutterhead face of the machine with the pressures of the excavated soil maintained in the muck chamber. The excavated soil is referred to as muck, because it has been mixed with ground conditioning chemicals to change its consistency. A diagram of the EPBM balancing the soil and water pressure with the pressure of the excavated soil, which is stored in the muck chamber, is shown in Figure 1.3. The Ground Conditioning System (GCS), which controls the chemicals that are mixed with the excavated soil, is discussed later in this section.

The pressure balance between the cutterhead face and the soil and water pressure must be maintained even when the EPBM is stopped for maintenance. In order to allow for maintenance of the cutterhead face, the muck chamber is emptied and filled with compressed air. The compressed air replaces the muck that was balancing the soil and water pressure. Commercial scuba divers then enter the muck chamber through the airlock (shown in Figure 1.2,
number 3) to perform maintenance on the cutterhead.

When the machine is operating, a screw conveyor (shown in Figure 1.2, number 4) increases or decreases the pressure in the muck chamber by adjusting its rate of rotation. Increasing the rotation speed of the screw conveyor will remove a greater amount of muck and, thus, decrease the pressure in the muck chamber. If the pressure in the muck chamber is significantly lower than the earth and water pressure, too much soil will flow into the muck chamber causing a pressure vacuum in front of the cutterhead face. The soil in front of the cutterhead face will then collapse into this vacuum. Since EPBMs generally tunnel in urban environments, it is possible that the soil collapse will cause a collapse of buildings at the surface. The opposite of soil collapse is soil bulge, which occurs when too much pressure builds up in the muck chamber. Furthermore, soil bulge at the surface can also damage buildings. The screw conveyor is also partially responsible for the advance rate of
the EPBM. As the screw conveyor increases the rate of muck removed from the chamber, the advance rate generally increases; however, the pressure balance at the front of the EPBM must be maintained to avoid any damage at the surface.

In order to propel the EPBM forward, propulsion cylinders (shown in Figure 1.2, number 5) push against the already completed concrete tunnel liner (shown in Figure 1.2, number 6). The gray rings at number 6 are pre-cast concrete segments that are placed by the segment erector (shown in Figure 1.2, number 7). Once these segments are placed, they are bolted together and a grout compound is sprayed between the concrete tunnel liner and the soil. The grout compound provides the finished tunnel a watertight seal and prevents the soil from further settling around the concrete ring. The EPBM constructs the tunnel in a cyclic manner. The propulsion cylinders push the machine forward until it excavates approximately 5 linear feet of soil. The cylinders then retract, giving the segment erector room to place the concrete tunnel segments and bolt them together. Each of these sections is called a tunnel ring. The tunnel construction portion of the cycle, i.e., not including excavation, usually

Figure 1.3: Illustration of how soil and water pressures are balanced at the front of the EPBM with excavated soil in the muck chamber. Image reproduced as non-copyrighted material from the Federal Highway Administration [4].
takes between 30 and 45 minutes to complete, then the cycle repeats itself until the EPBM has excavated and constructed the entire tunnel. As mentioned previously, our research only focuses on when the EPBM is being pushed forward through the soil.

In addition to a potential soil collapse or soil bulge in front of the EPBM, the machine must prevent soil from collapsing into the excavated portion of the soil until the concrete tunnel liner is constructed and grouted. Notice the metal shield in Figure 1.2, number 8. This shield is a metal cylinder that surrounds the excavation and tunnel construction portion of the EPBM from the rear of the cutterhead to the last tunnel ring that has been constructed and grouted. As the EPBM advances, grout is expelled behind the machine to seal the concrete liner. Without this metal linear and pressurized grouting process, it would be impossible to tunnel in soft ground conditions.

Another challenge to the excavation process is the removal of materials in front of the cutterhead face of the machine. Since the machine is excavating in soft soils, soil that is too loose will be difficult to push into the muck chamber and for the screw conveyor to remove from the muck chamber. Soil that is too loose will also leak out of the dump trucks that are removing the soil from the job site. On the other hand, soil that is not pliable enough slows the screw conveyor and could eventually clog the machine, bringing excavation to a halt. To prevent these issues, EPBMs utilize a Ground Conditioning System (GCS) that alters the consistency of the soil in front of the machine, in the muck chamber, and in the screw conveyor. There are three locations where nozzles can spray ground conditioning chemicals: through the front of the cutterhead face (foam), into the muck chamber (additive), or into the screw conveyor (additive). The liquids used in the GCS are extremely expensive, so it is beneficial to only use the necessary amount of GCS fluids to maintain the desired soil consistency. The challenges of (1) maintaining balances of pressures in front of and surrounding the EPBM and (2) controlling the GCS are unique to soft-soil TBM.

Figure 1.4 is a schematic view of the Ground Conditioning System (GCS), which adds chemicals to the excavated soil as previously discussed. Reading from right to left in Fig-
ure 1.4, ground conditioning chemicals are contained in the additive and agent tanks\(^1\). Water is mixed with both the additive and the agent chemicals in a ratio defined by the EPBM operator. When the agent is mixed with water it is referred to as a solution. This solution is then mixed with air to become GCS foam that is sprayed through nozzles in the front of the cutterhead. The purpose of the GCS foam is to lubricate the cutterhead as it is excavating soil and to change the consistency of the soil before it enters the muck chamber. The additive mixture is sprayed into the muck chamber to change the consistency of the soil already excavated. Changing the consistency of the soil in the muck chamber is another way to adjust the pressure of the soil, in addition to adjusting the speed of the screw conveyor. Adjusting the soil consistency in the muck chamber also helps the soil flow out of the EPBM more efficiently. The additive mixture can also be sprayed into the screw conveyors. Additive mixture is sprayed into the screw conveyor if the screw conveyors are starting to clog.

Before a tunneling project begins, hundreds of geotechnical tests are performed along the proposed path of the tunnel. The proposed path of the tunnel is referred to as the tunnel alignment. These tests are often focused on projected problem areas for the project. An example problem area in the U230 Seattle Project (described in Section 1.4) was crossing under a segment of Interstate 5, with only 10 feet of clearance, in an area that contained many types of compacted soils. To determine the properties of the subsurface (e.g., at locations of concern), 6 inch diameter boreholes are drilled along the tunnel alignment, in-situ soil tests are performed to determine the soil properties at each borehole, and an extrapolation is made about the soil properties between the boreholes. Because most of these boreholes are focused on project problem areas in the tunnel alignment, soil conditions in areas that are not considered problem areas are often not predicted correctly. For example, in the Seattle project, we have found several incorrectly predicted changes in soil conditions in the data.

\(^1\)We note that, in our project, the same chemicals were used in both additive and agent tanks, but the option exists to use different chemicals in these tanks.
Figure 1.4: Schematic of the GCS on an EPBM. Five nozzles expel GCS foam from the front of the machine. Three nozzles spray additive into the muck chamber, and two nozzles spray additive into the screw conveyor. The additive and solution can be changed during the project to accommodate different conditions. Image modified from non-copyrighted material from the Federal Highway Administration [4].
1.3 Performance Prediction of EPBMs

Researchers use several approaches to predict a TBM’s production or advance rate. Although our work focuses on advance rate prediction, we also examined production rate research to gain a complete picture of the TBM performance prediction field. There are three major categories of research that attempts to predict the production or advance rate of TBMs. We discuss each of these three categories in the following three subsections:

1. Create a computer simulation or laboratory model of the TBM’s interactions with the soil or rock.

2. Model the TBM’s performance by applying regressions to soil and rock properties obtained from geotechnical reports.

3. Analyze soil and TBM data through machine learning techniques.

In the following three subsections, we review related research in both hard-rock and soft-soil TBMs for these three categories.

1.3.1 Computer Model or Laboratory Simulation

Dubugnon and Barendsen attempted to simulate a hard-rock TBM without computer simulation [5]. They hypothesized that some of the early simulations were too theoretical, and thus real-world testing was needed in order to create an accurate assessment of the TBM’s performance. The researchers created a small-scale model TBM and used laws of scaling to extrapolate the predicted real-world machine values from observations in the small-scale test. The model was then used to predict the performance of two tunnels dug in Austria.

TBM performance prediction studies often compute the error between the predicted advance rate or production rate of the model and the advance rate or production rate observed by the TBM data monitoring system. In order to compare an average error value to other studies, the Root Mean Squared Error (RMSE) is reported by Dubugnon and Barendsen
and several other TBM performance prediction studies. RMSE is defined as:

\[
RMSE = \sqrt{\frac{1}{m} \sum_{j=1}^{m} (y_{j,\text{observed}} - y_{j,\text{predicted}})^2},
\]

where \(y_{j,\text{predicted}}\) is the advance rate or production rate predicted by the model or simulation, \(y_{j,\text{observed}}\) is the advance rate or production rate observed by the TBM data monitoring system, and \(m\) is the number of data points used to compute the RMSE. The RMSE of Dubugnon and Barendsen’s model (when compared to the real data) was 0.733 \(\frac{\text{meters}}{\text{hour}}\) for the first analyzed tunnel and 0.675 \(\frac{\text{meters}}{\text{hour}}\) for the second tunnel. The range of observed advance rates were 1.3 \(\frac{\text{meters}}{\text{hour}}\) - 3.7 \(\frac{\text{meters}}{\text{hour}}\) for the first tunnel, and 3.8 \(\frac{\text{meters}}{\text{hour}}\) - 5.2 \(\frac{\text{meters}}{\text{hour}}\) for the second tunnel. TBM data monitoring systems were not as prevalent in the early 1980’s and, thus, the researchers were only able to measure the TBM at six points in the first tunnel and four points in the second tunnel. A linear relationship between torque and advance rate was identified in multiple hard-rock samples.

In another laboratory experiment conducted by Peila et al., the researchers created an EPBM simulator that contained a soil tank simulating the pressurized muck chamber and constructed a screw conveyor to extract soil from that pressurized chamber [6]. The Ground Conditioning System (GCS) was simulated by mixing different amounts of GCS foam with the test soil in a cement mixer. This system was intended to simulate the nozzles, which are in the cutterhead face of the EPBM, that spray GCS foam into the soil as the soil is excavated. One soil sample was completely saturated with water as a control test. The torque exerted by the screw conveyor was measured with soil that was saturated versus soil that was enhanced with GCS foam. When the screw conveyor removed the saturated soil, significantly more torque was required by the screw conveyor than was required by the foam conditioned soil. Since the advance rate of an EPBM partially depends on the speed that soil can be removed from the muck chamber, this experiment indicates that the screw conveyor torque, GCS foam, water content in the soil, and the type of soil can all have a direct impact on the EPBM’s advance rate. Recently Peila and others have conducted more research with
this EPBM simulator [7], using several soil samples from a tunnel project in Italy. Peila et al. determined soil conditioning parameters that will not only reduce the torque at the screw conveyor, but also manage the conditioned soils’ pressure in the muck chamber. As previously discussed, it is important for the bulkhead soil chamber to present a consistent pressure to the face of the EPBM in order to balance the soil and water pressure at the cutterhead face. The tests in [7] modified three independent variables\(^2\): the soil’s water content, the Foam Injection Ratio (FIR), and the Foam Expansion Ratio (FER). The study found that these independent variables have ideal points that decrease screw conveyor torque and provide consistent pressure across the bulkhead soil chamber, but these ideal points are different for different types of soil.

Maynar and Rodriguez modeled part of a subway extension project in Madrid, Spain, using a Discrete-Element Method (DEM) [8]. In-situ tests were conducted to determine the soil properties of borehole soil samples along the proposed tunnel alignment. The soil properties were used to create a DEM model of the soil and the EPBM. The authors used this model to analyze the thrust and torque necessary to maintain a desired advance rate and determined factors that impact surface settlement when the machine is drilling and when the machine is stopped. It was found that a high initial thrust and torque are necessary after the construction of a ring is completed and the machine must be restarted. It was also found that there is not a clear relationship between the type of soil or the depth of the EPBM to the amount of torque necessary to maintain a particular advance rate. For reasons previously discussed, the torque and thrust forces are not as dependent on the soil type in soft soils as they are in hard-rock. The researchers stated that the DEM modeled the torque and thrust of the EPBM satisfactorily, but did not provide results to substantiate this claim.

1.3.2 Soil and Rock Property Regression Models

Gong and Zhao investigated rock mass properties and TBM parameters during the construction of two sewage tunnels in Singapore [9]. These tunnels were drilled with a hard-rock

\(^2\)A description of common tunneling terms can be found in Appendix A.
TBM and the only rock type encountered was a granite formation. Parameters of this granite formation such as rock brittleness, joint spacing, and joint orientation varied throughout the project and had an impact on the advance rate of the TBM. The authors created a rock mass model that consisted of: compressive strength of the rock material, rock brittleness, joint spacing, and joint orientation. During periods when the TBM was stopped for maintenance, rock conditions were measured and recorded. Parameters were obtained from sensors on the TBM to determine the advance rate of the machine. Because the type of TBM can affect the advance rate, the Specific Rock Mass Boreability Index (SRMBI) was chosen (rather than the actual advance rate of the machine) to normalize these effects [10]. The rock mass model was used to predict the SRMBI using a multivariate linear regression.

Gong and Zhao computed the \(R^2 \) value between the advance rates predicted by their model (\(X \)) and the observed advance rate (\(Y \)). Computing \(R^2 \) is a common measure of model performance and is used in several of the studies discussed herein. The \(R^2 \) value indicates the amount of variance from the mean of the data explained by the model, i.e., the mean squared error divided by the amount of variance in the original observations. Equation 1.2 shows how the \(R^2 \) value is computed:

\[
R^2 = 1 - \frac{\sum_{i=1}^{m} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{m} (y_i - \bar{y})^2},
\]

where \(m \) is the number of data points (i.e., examples), \(y_i \) is observed output, \(\hat{y}_i \) is the model predicted output, and \(\bar{y} \) is the mean of all observations. The \(R^2 \) value of Gong and Zhao’s regression was 0.749. The study indicated that the rock’s Uniaxial Compressive Strength (UCS) and joint count have the most effect on advance rate. This model did not consider machine parameters, which are more important for a soft-soil TBM than a hard-rock TBM.

The use of the SRMBI as a prediction target instead of the advance rate of a hard-rock TBM is common, although different authors have called the SRMBI by different names [11]. For example, Delisio et al. predicted the Field Penetration Index (FPI) of a hard-rock TBM, such that the FPI uses the same units as the SRMBI: \(\text{kNewtons/cutter} / \text{millimeters/revolution} \). Delisio et al. also
modified the FPI equations in conditions where the TBM does not encounter a solid wall of rock at the cutterhead face, called blocky conditions. In these conditions, each cutter will not always maintain contact with the rock face due to gaps in the rock. Therefore the FPI utilizes the total applied thrust force instead of the force at each cutterhead cutter:

\[FPI_{\text{blocky}} = \frac{\text{TotalThrust}}{\text{millimeters/revolution}} \text{ (kNewtons)} \]

Using \(FPI_{\text{blocky}} \) for blocky conditions showed that, like Gong and Zhao’s experiment, the UCS and joint count had a high correlation with the FPI, but the joint count was correlated more with the FPI in blocky conditions. Delisio et al., ran a multi-linear regression with the same input parameters as Gong and Zhao, but used \(FPI_{\text{blocky}} \) as the target values; in this study, the regression returned an \(R^2 \) value of 0.78.

In addition, the author conducted linear regressions comparing the thrust and cutterhead RPMs to the advance rate of the TBM. These parameters returned \(R^2 \) values of 0.35 and 0.13, respectively. An inverse correlation between the cutterhead face thrust and RPMs was noted, but it is not a conclusive result due to the low reported \(R^2 \) values.

Several other studies [12–15] have used the same approach as Gong and Zhao [10] and Delisio et al. [11]. These studies focused primarily on utilizing different rock classification systems to express the strength of the rock and the number and orientation of gaps in the rock. Two rock classification systems are often referenced as comparison models. Specifically, the Colorado School of Mines model (CSM) [16] and the Norwegian University of Science and Technology model (NTNU) [17, 18] are the most commonly cited, and most researchers apply a modification of these classification systems in their research. Both models use geotechnical tests on the rocks along the path of the proposed tunnel and a few additional parameters that describe the TBM’s characteristics (e.g., TBM cutterhead diameter). These systems are then used to make predictions about torque, thrust, and advance rate of hard-rock TBMs. The difference between the models is that the NTNU model uses specialized tests, whereas the CSM model uses tests that are commonly available in standard geotechnical reports. It has been shown that both models make similar predictions [19]; thus, the choice of either model is a project contractor’s preference. After classifying the rock and TBM type, a regression is
calculated from the results of these rating systems to predict the advance rate index: SRMBI or FPI. The computed regression model then becomes an equation for predicting the advance rate of the TBM. The R^2 values of these regressions are normally in the 0.70 to 0.80 range. The regression modeling technique provides insight into the factors that affect the advance rate of the machine, because the regression assigns a weight to each of the input parameters. A larger weight identifies a correlation between a particular input parameter and the advance rate, and also provides whether it is a positive or negative correlation. While this research has been primarily focused on hard-rock TBMs, the basic methodology can be extended to EPBMs.

Yagiz used a similar approach using core samples from a hard-rock TBM tunnel project in New York [20]. Yagiz produced multi-linear regression equations, and also utilized forward stepwise regression analysis. Forward stepwise regression analysis is a statistical and machine learning technique for identifying input features that are relevant to predicting the output target value. Yagiz used the results of the stepwise regression function to show which input parameters had the greatest impact on predicting the production rate of the TBM. This automated feature selection methodology was extended to EPBMs in our research, and additional feature selection algorithms were added. See Section 1.5 for more details about the Feature Selection Algorithms (FSAs) applied in our work.

1.3.3 Analyze Soil and TBM Data through Machine Learning Techniques

Analyzing TBM data with machine learning techniques is not as prevalent in the tunneling community as the prior two methods, but a few studies have attempted to apply multiple machine learning algorithms to the TBM performance prediction problem. A. Benardos conducted two studies (with assistance from D. Kaliampakos in the first study) that applied an Artificial Neural Network (ANN) to predict the advance rate of TBM projects [21, 22]. The first study analyzed two tunnels in the Italian Alps (both were hard-rock projects), and the second study, in Athens, Greece, analyzed a tunnel with both hard-rock and soft-soil; we note, however that a hard-rock TBM was used for the second project (not an EPBM). The
authors assumed that TBM operating parameters have minimal effects on the advance rate of a hard-rock TBM; thus, the authors only used geotechnical parameters as inputs to the ANN. In the Athens, Greece project, the input parameters were normalized in an unconventional method, which is shown in Equation 1.3. In Equation 1.3, $E[X]$ is the expected value of the nominal input feature X.

$$E[X] = \sum_{i=1}^{x} P_i \cdot V_i,$$

(1.3)

where x is the number of possible values of X, P_i is the probability of observing the ith value of the possible values of the input feature X ($\sum_{i=1}^{n} P_i = 1$), and V_i is the value of x. We note that the authors chose to bin each continuous input feature into four discrete bins, which caused data loss. Unfortunately, the probability distribution of P_i is not defined in [22]. Although P_i appears to be an attempt at normalization, some of the input parameters have values that are much larger than the other parameters, and Equation 1.3 does not account for the difference in magnitudes of the input parameters. In addition, P_i may induce additional biases to the input data; however, these biases are difficult to determine since the probability distribution is unknown. The output prediction rate was averaged over the segment in meters day^{-1}, and the error rate was biased by heavily averaging the data. More information about ANNs and back-propagation algorithms can be found in Appendix B.

In the first study, the authors presented RMSE values that were labeled as training data results, and they presented R^2 values that were not labeled as testing or training data results. Without R^2 results from the testing data set, it is impossible to determine the accuracy of the first study’s results. In the second study, the RMSE of three testing segments are presented, and the average RMSE of these three segments was 0.0713 meters day^{-1}. Even though testing, training, and validation data was used to build and test the models, heavy averaging, attribute binning, and the application of an unknown probability distribution may have caused an artificially low RMSE.
Other researchers have conducted a similar application of ANNs to geotechnical data to predict the advance rate of hard-rock TBMs. Javad and Narges [23] applied ANNs in a nearly identical method to [21] and [22], except fewer input parameters were utilized and Equation 1.3 was not applied to the data before applying an ANN model. Javad and Narges found a model with an R^2 value of 0.939, but it appears that the R^2 value was computed on a linear curve fitted to their predicted vs. observed values chart, rather than applying Equation 1.2.

Another interesting application of ANNs to production rate prediction was taken by Lau et al. [24]. Lau et al. combined probability theory with a Radial Basis Function (RBF) ANN. While related, we note the tunneling project examined in this study was a drill and blast project rather than a TBM project. Also, all sources of delay were considered, not just when excavation was occurring; in other words, the model predicted production rate rather than advance rate. Lau et al. first applied k-means clustering to the input data, then created a Gaussian distribution of each of these clusters. Equation 1.4 shows the Gaussian distribution using the Euclidean Square Distance from the mean of the cluster and a weight obtained from the RBF ANN, where $f(x)$ is the predicted production rate for the given tunnel cycle3:

$$f(x) = \sum_{j=1}^{M} w_j \exp\left(\frac{-\|x - u_j\|^2}{2v_j^2}\right),$$ \hspace{1cm} (1.4)

where M is the number of clusters created by k-means, w_j are the weights of each cluster from the RBF ANN, x is the vector of input values, u_j is the center of the cluster j, and v_j is the standard deviation of the examples within the jth cluster. Applying a Gaussian distribution to the input values allows for uncertainty in human controlled processes, such as setting blast charges and building the tunnel framework after blasting. To apply this method, the researchers used the previously completed tunnel cycle to predict the next tunnel cycle’s production rate. The Root Mean Squared Error (RMSE) over 56 tunnel cycles was calculated.

3A tunnel cycle is defined as 12 hours in Lau et al.’s research.
as 0.61 m/day. RMSE is defined in Equation 1.1, where y_j is the output value (production rate in Lau et al.’s work) for each observation j and n is the number of observations calculated in the RMSE value.

Although 0.61 m/day is a good RMSE value (when compared to other studies), the researchers were only able to predict the advance rate for the next tunnel cycle, and the model missed some of the larger changes in production rate that may be of most interest to a project manager. Also, the 0.61 m/day RMSE was only achieved at the last tunnel cycle; the RMSE ranged from a high of approximately 1.1 m/day at the 13th tunnel cycle to 0.61 m/day at the last cycle. It is also important to note that drill and blast project production rates are significantly slower than TBM projects. The range of production rates for this project was only 1.20 m/day - 7.50 m/day. Although Lau et al.’s RBF ANN model has a good RMSE, the best RMSE was only achieved after using the entire data set. It is also likely that Lau et al.’s model is overfitted to the training data, because the results are based only on training data.

Zhao et al. extended the ANN approach by leveraging an ensemble of Feed Forward Back Propagation (FFBP) Artificial Neural Networks (ANNs) to predict cutter wear and advance rate performance in hard-rock TBMs [25]. The input parameters to the ANN were geotechnical characteristics of the rock (e.g., Uniaxial Compressive Strength (UCS) and joint spacing). Ensemble methods are techniques to create multiple input data sets from one training data set (see Section 1.5.3). These ensemble instances can then be used to train multiple machine learning algorithms, and the results of each of these algorithms is combined through voting methods. Zhao et al.’s work applied the FFBP ANN algorithm to ensemble methods. Specifically, this study used a method called bootstrapping, where N input data records are randomly sampled from the training data to create the ensemble instances and an input record can be used across multiple ensemble instances (repetition allowed). This work extended traditional bootstrapping by also creating a set of FFBP ANNs, with varying hidden layer configurations, for each ensemble instance. In classification
problems, each bootstrapped FFBP ANN instance contributes a vote and these votes are tallied; the output class with the most votes then becomes the predicted output. Because advance rate prediction is a regression problem, Zhao et al. averaged each predicted advance rate from the hidden layer configuration that produced the lowest RMSE across all ensemble instances. (It is unclear which hidden layer FFBP ANNs were chosen when the ensemble network was trained.) Zhao et al. predicted the Specific Rock Mass Boreability Index (SRMBI) rather than the advance rate, because it normalized the effects of hard-rock TBM s of different cutterhead sizes and from different manufacturers. The R^2 value for the model, comparing the predicted SRMBI to the observed SRMBI, was 0.75 for non-linear regression and 0.81 for the best ensemble model.

We note the R^2 value did not increase much for the ensemble method when compared to standard non-linear regression, which may be caused by the bootstrap ensemble method used by Zhao et al. Boosting is another ensemble method that could have been used instead of bootstrapping [26], and it may have provided better results. To explain boosting, we use the FFBP ANN algorithm; however, we note that any machine leaning algorithm could be substituted for FFBP ANN. The first boosted FFBP ANN instance is created by applying the bootstrap method (i.e., a random subset of the input data records are selected and used to train the initial FFBP ANN instance). The initial training instance is then assigned a weight. The assigned weight is the RMSE, which means that higher weights are assigned to instances with high error rates. A high error rate increases the probability that a training instance will be selected when boosting creates the next ensemble instance. By making it more probable that misclassified training instances (i.e., high error rate instances in regression problems) are selected for constructing the next ensemble instance, boosting focuses on creating ensemble instances that are trained on the training examples that are difficult to predict. Additional FFBP ANNs are trained via boosting until the RMSE of a validation data set is below a threshold or a user-defined number of FFBP ANNs are created.
Ensemble methods are usually applied to classification problems rather than regression problems. As previously discussed, in order to combine the results of an ensemble of FFBP ANNs, a majority rules voting scheme is used to select the output class; alas, this voting scheme is not possible in a regression problem, because the output of each ensemble instance is a continuous value rather than a class value. Zhao et al. averages the regression output of the FFBP ANNs to determine the output advance rate of the TBM; however, since input instances used in each ensemble instance were selected randomly, the average could have been potentially biased by interspersing difficult training instances, which skews the average for easier training instances.

Grima et al. presents research that utilized the University of Texas, Austin’s database of over 640 hard-rock TBM projects to predict the advance rates of these projects through neuro-fuzzy methods [27]. A similar, comprehensive data set has not yet been compiled for EPBM projects. Most research on EPBMs rely on laboratory tests or a few tunneling projects where the researchers have been able to obtain access to the contractor’s data collection system. The parameters selected as inputs to the model in [27] were: two parameters based on rock strength, three parameters based on the type of TBM, the maximum cutterhead torque, and cutterhead RPMs. Grima et al. picked these parameters based on previous studies of rock classification systems, which are discussed in Section 1.3.2. The number of input parameters was then reduced with the Principle Component Analysis (PCA) method, which created three new inputs from the original seven. Each of these three new inputs was a weighted sum of the original seven inputs, where the weights were generated by PCA. Ten sets of testing data (of unknown size) were used to ensure the model was not overfitted. The RMSE of these testing data sets was also compared to the RMSE of the training data to ensure there was not a large increase from the RMSE of the training data to the RMSE of the test data. (A large increase in the RMSE of the test data would indicate a model overfitted to the training data.) The RMSE of the training data was $0.888 \text{ meters/hour}$, and the RMSE of the testing data was $0.900 \text{ meters/hour}$. The testing data consisted of 20% of the 640
TBM projects, and one advance rate value was calculated for each of these projects. These results were combined to find the overall RMSE (see Equation 1.1).

Recently, Mahdevari et al. applied Regression Support Vector Machines to the hard-rock TBM prediction problem in the same manner (and with the same weaknesses) as prior hard-rock TBM prediction studies [28]. Mahdevari et al. applied a Regression Support Vector Machine to data from the Queens Water Tunnel Number 3 in Queens, NY. The researchers selected features based on a combination of the properties of the hard-rock and TBM machine parameters, for a total of nine input features. Instead of using the entire data set, as we do in our work, Mahdevari et al. used 150 measurements from the tunnel. Ten fold cross validation was implemented, but the Support Vector Machine parameters were selected without using a separate validation set, which may have caused overfitting. The Regression Support Vector Machine seemed to return a low error\(^4\): a mean squared error (MSE) of 0.0013, an RMSE of 0.0361, and \(R^2 = 0.9903\) in one of the cross validation folds; however, the authors admit that they do not know how the features impact the penetration rate, the algorithms may be overfitted, and the results are based on a very small sample size.

Since little research on the prediction of advance or production rates in EPBMs could be found, the research results from hard-rock TBM and Drill and Blast projects are our best comparison points when analyzing the RMSE of new EPBM advance rate models. Table 1.1 compares the \(R^2\) values and the RMSE values for the various performance prediction studies discussed in Sections 1.3.2 and 1.3.3. The range of observed production or advance rates for each TBM project is listed in the “Range of Values” column. If data was not available in the article, the range of values was estimated based on figures and tables within each article. Several authors predicted values other than the production rate, penetration rate, or advance rate of the machine, but the methodology is other performance studies and, therefore, valuable to our discussion of previous work conducted in the field.

\(^4\)The penetration rate was normalized (0,1); therefore, MSE and RMSE have no units.
Table 1.1: Comparison of R^2 and RMSE values among TBM performance prediction studies. Only studies that included valid R^2 or RMSE values are included in the table. If multiple R^2 or RMSE values were reported, the best value is shown in the table. We note that the 0.94 R^2 value from Javad and Narges’s work appears to be computed incorrectly (a line fitted to the data points rather than the line $y = x + 0$).

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Output Predicted</th>
<th>R^2 Testing Data</th>
<th>RMSE Testing Data</th>
<th>Range of Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gong and Zhao</td>
<td>SRMBI</td>
<td>0.749</td>
<td>not recorded</td>
<td>108 to 211</td>
</tr>
<tr>
<td>Delisio et al.</td>
<td>FPI</td>
<td>0.78</td>
<td>not recorded</td>
<td>750 to 4600</td>
</tr>
<tr>
<td>Yagiz</td>
<td>advance rate</td>
<td>0.82</td>
<td>3.218 $\frac{m}{h}$</td>
<td>1.4 $\frac{m}{h}$ to 2.93 $\frac{m}{h}$</td>
</tr>
<tr>
<td>A. Benardos</td>
<td>advance rate</td>
<td>Not recorded</td>
<td>0.0713 $\frac{m}{day}$</td>
<td>4.54 $\frac{m}{day}$ to 16.67 $\frac{m}{day}$</td>
</tr>
<tr>
<td>Javad and Narges</td>
<td>advance rate</td>
<td>0.939</td>
<td>0.329 $\frac{m}{h}$</td>
<td>1.38 $\frac{m}{h}$ to 10.30 $\frac{m}{h}$</td>
</tr>
<tr>
<td>Lau et al.</td>
<td>production rate</td>
<td>Not recorded</td>
<td>0.61 $\frac{m}{day}$</td>
<td>1.20 $\frac{m}{day}$ to 7.50 $\frac{m}{day}$</td>
</tr>
<tr>
<td>Z. Zhao et al.</td>
<td>SRMBI</td>
<td>0.81</td>
<td>11.290</td>
<td>110 to 240</td>
</tr>
<tr>
<td>A. M. Grima et al.</td>
<td>advance rate</td>
<td>Not recorded</td>
<td>0.900 $\frac{m}{h}$</td>
<td>0.5 $\frac{m}{h}$ to 7.6 $\frac{m}{h}$</td>
</tr>
<tr>
<td>Mahdevari et al.</td>
<td>penetration rate</td>
<td>0.9903</td>
<td>0.0361</td>
<td>0 to 1 (normalized)</td>
</tr>
</tbody>
</table>

1.4 Seattle Project Case Study Description

We studied two light rail tunnels excavated and constructed with a Hitachi-Zosen EPBM with a 6.44 meter diameter cutterface in Seattle, WA, USA, as part of the University Link subway extension project. The entire University Link subway extension project included two stations (the University of Washington station and the Capital Hill station), two parallel subway tunnels that connect the stations, two parallel subway tunnels that connect the Capitol Hill Station to the Pine Street Stub Tunnel (PSST), and various cross-passages and supporting structures for these tunnels. The subway stations were constructed using cut and cover methods, while the length of the parallel twin tunnels was excavated by launching closed-shield, EPBMs from the subway stations.

The full project was divided into five contracts and our work uses data from one of these five contracts: the U230 contract. The U230 contract constructed the 3,000 foot, parallel tunnels that connected the Capital Hill Station to the PSST, and the contract included excavating at shallow depth beneath Interstate 5 (I-5), a major roadway in Seattle. We hereafter refer to the U230 contract as the Seattle Project for brevity.
1.4.1 Geology Description

A subsurface exploratory project drilled boreholes to explore the subsurface conditions in the area of the Seattle project. Adams et al. described the geology at the Seattle project area as, “...[laying] near the southern end of the Seattle basin, a depression in the volcanic bedrock that is filled with middle to late Tertiary (36 to 2 million years before present) sedimentary and volcanic rock, and Quaternary (last 2 million years) sediments [29].” In addition, Adam et al. described the geology predicted along the tunnel alignment,

“In general, the ground conditions along the alignment consist of glacially consolidated pre-Vashon deposits consisting of hard cohesive clay and silt, very dense cohesionless silt and fine sand, very dense glacial till and till-like deposits, and very dense cohesionless sand and gravel. The glacial till and till-like deposits consist of a heterogeneous mixture of clay, silt, sand, gravel, cobble and boulders. The predominant soil type within the tunnel is expected to consist of hard cohesive silt and clay and very dense cohesionless silt and silty sand. Boulders may be present in all of these glacial deposits [29].”

Figure 1.5 shows the Geotechnical Baseline Report (GBR) soil map for the tunnel alignment of the Seattle project. We note that the EPBM excavated through a variety of glacial soil types and mixed face soil conditions. We also note the subsurface I-5 crossing on the left side of the GBR soil map, where jet grouting and extra precautions reduced the advance rate to ensure the stability of I-5. The twin, parallel tunnels were named Northbound (NB) and Southbound (SB) (in accordance with the direction the light rail trains travel in the completed tunnels); however, both the NB and SB tunnels were excavated in the same direction (from right to left in Figure 1.5) to take advantage of a downward slope.

1.4.2 Data Preparation

The raw data from the Seattle Project contains over two million examples, per tunnel, and over 700 input features (i.e., input sensor readings). We created the advance rate output
Figure 1.5: GBR soil diagram of predicted soil types along the Seattle project tunnel alignment (the Capital Hill Station is on the right side of the map and the PSST is on the left side of the map; I-5 is annotated near the PSST). The tunnel path is marked by three black lines running from the right to the left side of the map; the top line is the top of the tunnel, the bottom line is the bottom of the tunnel, and the center line is the position of the subway track.

We then removed all examples when the EPBM was not excavating or when the jack strokes were retracted for tunnel lining construction. Removing these examples resulted in 199,193 examples in the NB tunnel and 228,788 examples in the SB tunnel.

In our initial work (see Chapter 2), several of the FSAs identified features that correlated with advance rate, but were a result of changes in the advance rate (e.g., belt scale weight and grout expelled). Because we want to determine features that affect the advance rate (i.e., input features that do not change as a result of advance rate changes), we consulted with experts on the EPBM’s features to remove features that all parties agreed were caused by changes in the advance rate. After removing these features from the initial set of 756 features, the data sets contained 537 features, including the advance rate.

The resulting features were a mixture of binary and numeric features. The binary features represented “on” and “off” switches or indicator lights (e.g., a methane gas warning light) in the EPBM. These were recorded as “1” and “0” in the data sets, representing “on” and “off”
states, respectively. We then visualized the data by plotting histograms of each of the 537 attributes, which provided an approximation of the feature distributions and we discovered the impact the outliers had on the data sets. Because there were several extreme outliers in the data, Figure 1.6 and Figure 1.7 each contained one very large “spike” of data points instead of a normal data distribution. By removing the outliers the advance rate followed a distribution much closer to a normal data distribution. In the NB tunnel we remove 188 outliers (resulting in 199,005 examples remaining), and in the SB tunnel we remove 144 outliers (resulting in 228,644 examples remaining).

In Chapter 3 and Chapter 4, our visualizations revealed that most of the numeric input attributes did not follow a normal distribution (i.e., many of the measurements were clustered in a small area within the range of possible values for the input attribute); therefore, we standardized the input attributes so that all values would have a mean of zero and unit variance. In other words, standardizing the input features “spreads” the measurements closer to a normal distribution, making it easier for the FSAs and MLAs to find a model that accurately predicts the output target value. In addition, we found that the EPBM’s advance rate contained several severe outlier values. Figure 1.6 and Figure 1.7 shows histograms of the advance rates (before and after removing negative and outlier values) in the Seattle project NB tunnel and SB tunnel, respectively.

In order to identify advance rate outliers, we used the Interquartile Range (IQR) outlier identification method. The median advance rate example (i.e., the Quartile 2 dividing line) was determined before the negative advance rate examples were removed. We then removed all examples where the advance rate exceeded 10 times the Quartile 3 value; the Quartile 3 value was computed as the median advance rate value between the Quartile 2 value and the maximum observed advance rate. The threshold of 10 times the Quartile 3 value was chosen to eliminate the very high advance rate readings that occurred when the EPBM was not moving; however, realistic high advance rates when the EPBM is moving are retained. Figure 1.6(b) and Figure 1.7(b) show the histograms after removing the outlier advance rate
(a) NB advance rate histogram before outlier removal. The x axis range indicates that there are outlier advance rate values up to 376.75 mm/sec. We note that the scale of the y-axis is \log_{10}.

(b) NB advance rate histogram after outlier removal. The EPBM’s advance rate values for the NB tunnel are now contained within a more realistic range of up to 1.8 mm/sec.

Figure 1.6: NB advance rate histogram before and after outlier removal.
(a) SB advance rate histogram before outlier removal. The range of advance rate values in the SB tunnel was not as severe as the NB tunnel; however, both negative advance rates and outlier advance rates up to 33.6 mm/sec existed in the SB tunnel. We note that the scale of the y-axis is \log_{10}.

(b) SB advance rate histogram after outlier removal. The EPBM's advance rate values for the SB tunnel are now contained within a more realistic range of up to 1.4 mm/sec.

Figure 1.7: SB advance rate histogram before and after outlier removal.
We further examined the NB tunnel raw data to better understand the severe outlier values. We found that all of the severe outlier values occurred during the excavation of concrete tunnel Ring #23. We then looked at data for the “Net Stroke (mm)” sensor, which measured the average number of millimeters that the propulsion jacks had expanded in the current tunnel ring under excavation. In Ring #23, the “Net Stroke (mm)” values oscillate back and forth between 0 and 1507; however, the individual jack strokes do not move. We, therefore, conclude that the “Net Stroke (mm)” oscillation in Ring #23 is a sensor error, validating our removal of these outlier values.

Figure 1.7(a) shows the histogram of advance rates in the SB tunnel with the y-axis adjusted to a logarithmic scale. As with the NB tunnel, several negative advance rate measurements exist and, thus, we investigated these measurements in the raw data. We, again, found that during the excavation of one concrete tunnel ring (#162) the advance rate exhibited the same oscillating behavior between measurements in the “Net Stroke (mm)” input feature; however, the oscillation in the SB tunnel was only 1mm (between 1529 and 1530). Because, the range of oscillation was smaller in the SB tunnel, the outlier values in the SB tunnel were not as extreme as in the NB tunnel. The IQR outlier removal procedure accounts for differing magnitudes of outliers; we, thus, applied the IQR outlier procedure to both tunnels to remove the outliers and maintain consistency.

In summary, the following preprocessing steps were applied to both the NB and SB Seattle project data sets:

1. removal of outliers using the IQR outlier removal method,
2. removal of examples with advance rates less than or equal to zero,
3. standardization of numeric input features to a mean of zero and unit variance, and
4. removal of input features with very small variances, i.e., “useless features”.

values.
We note that we applied the IQR outlier method before removing examples with an advance rate less than or equal to zero, because of the oscillating behavior in the negative values discussed earlier. We included the negative values so that the extreme oscillation outliers would be removed.

The results from our experiments are more accurate than other TBM performance studies, because we use the entire data set without any averaging. Many studies average the advance rate over a tunnel ring, an entire day of tunneling, or some other defined section of the tunnel, which provides unrealistically optimistic error rates. Even with other authors’ unrealistically optimistic error rates, our feature stabilization work is able to predict advance rates with a lower error than most previous advance rate studies. Furthermore, our work provides a more precise model of the EPBM than studies with less error and heavily averaged TBM advance rates.

After pre-processing the Seattle project data sets, we utilized five-fold cross validation to prove that the accuracy of our work statistically improves upon state-of-the-art feature stability methods. Cross validation is a method of dividing the data set into testing and training data where no examples used to train an algorithm are used to test the algorithm; thus, we avoid one source of overfitting in MLA and FSA algorithms. In five-fold cross validation, 80% of the data is selected as the training data and 20% of the data is selected as the testing data. The selection process is repeated a total of five times, such that each example is used as a testing example in exactly one of the folds. As a reminder, a description of common machine learning and tunneling terms can be found in Appendix A. We now describe how FSAs use the pre-processed data to select the input features most important in predicting the output target value.

1.5 Feature Selection Algorithms (FSAs)

EPBM data collection systems present a machine learning challenge, often referred to as the “Curse of Dimensionality [30].” The “Curse of Dimensionality” occurs when a machine learning algorithm trains on a large number of input features. Machine learning researchers
generally attempt to record as many input features as possible to better understand their prediction domain, but too many inputs can cause the machine learning algorithm to focus on input attributes that are not relevant in predicting the output target value. Definitions vary on the number of input attributes required before the number of input attributes has reached the “Curse of Dimensionality,” but the literature discussed previously shows that researchers believe hard-rock TBMs have the “Curse of Dimensionality”; these researchers, therefore, attempt to select important input attributes through literature search and prior knowledge. Methods used to select a subset of important input attributes from the set of all input attributes are referred to as Feature Selection Algorithms (FSAs) in machine learning terminology. Many automated FSAs exist and we research these FSAs to determine the input features that are significant in the prediction of an EPBM’s advance rate.

A common theorem in data mining and machine learning is called the “No Free Lunch Theorem,” which states that there is no single algorithm that will provide the most relevant set of features to all machine learning problems. Because there is no single best Feature Selection Algorithm (FSA), research has focused on finding the best FSAs for individual ML problems. The purpose of an FSA is to determine which input features are relevant, but first the concept of relevance must be defined. Blum and Langley’s seminal paper [31] on applications of FSAs presents multiple definitions of relevance and these definitions have been used throughout FSA literature [32, 33]. We define relevance next; other definitions of common ML terminology used in this work can be found in Appendix A.

- **Strong Relevance:** A feature x_i is strongly relevant if there exists a pair of examples A and B where changing only the value of feature x_i will change the output target class ($c(\cdot)$) value such that $c(A) \neq c(B)$.

- **Weak Relevance:** A feature x_i is weakly relevant if x_i is not relevant, but it is possible to create a subset X' ($X' \subset X|x_i \in X'$) such that X' is strongly relevant. X' contains one or more features, x_j, ($x_j \in X$), and x_i.

...
- Incremental Usefulness: Given a feature set X, a feature x_i is incrementally useful if $\{x_i\} \cup X$ increases the prediction accuracy of the ML algorithm.

- Relevance as a Complexity Measure: the smallest number of relevant features to an output target class c from sample S is defined as $r(S,c)$.

These definitions of relevance provide a framework for creating FSAs, which are a computational approach to identifying relevant features [33]. We note, however, that these definitions are often loosely applied in the design of FSAs. For example, when designing FSAs for regression ML problems (as opposed to classification), the strict definition of strong relevance, weak relevance, and relevance as a complexity measure cannot be used, because each relies on differentiating features by the output target class; in other words, a regression problem’s output target is a continuous value.

Blum and Langley also describe four properties that all FSAs must define in [31]. These properties are:

1. Starting Point: Define which features are included in the beginning feature set. For example, forward feature selection starts with no features ($X' = \{\emptyset\}$) and backwards feature selection starts with the entire feature set ($X' = \{X\}$).

2. Search Organization: Define which combinations of individual features $X'|X' \subset X$ and $x_i \in X'$ will be evaluated by the FSA. An exhaustive search will evaluate 2^n combinations of X, where $X \in \mathbb{R}^n$. An exhaustive search is often computationally infeasible; thus, other approaches such as stepwise selection are used to incrementally add and remove features at each step, which avoids searching all possible X' subsets.

3. Subset Evaluation Function: Define an algorithm that evaluates the relevance of the subset X' to the output target. These algorithms can be equations from information theory, such as entropy, or a measure of accuracy like RMSE.
4. Halting Criteria: Define when the search for the optimal \(X' \) subset will stop. The experimenter can stop once a pre-defined number of features is reached, stop when the subset evaluation function no longer improves, or stop when the end of the search space is reached.

FSAs can be divided into three categories: filters, wrappers, and embedded FSAs. Filter and wrapper FSAs differ in their subset evaluation function. Wrappers use an ML algorithm (usually the ML algorithm that will be trained with the testing data) as the subset evaluation function. Filters create subset evaluation functions that measure relevance using the definitions of relevance previously discussed, independent of an ML algorithm. Embedded algorithms integrate FSAs into the ML algorithm. Some examples of embedded algorithms are decision trees, which use information theory to determine which features to prune after the decision tree has been created. Feed-Forward, Back-Propagation, Artificial Neural Networks (FFBP ANNs) are also embedded FSAs that select relevant features by penalizing the synaptic weights of features that contribute the most to the error in predicting the output target. We do not use embedded methods in our work, because embedded FSAs are targeted at classification problems and we have chosen to apply FSAs to regression problems. Thus, only filter and wrapper FSAs are discussed in the following sections.

Molina et al. [33] reviewed Bloom and Langley’s work in [31], but also analyzed 42 FSAs to determine how well each detected relevant, irrelevant, and redundant features using synthetic data and a scoring metric. As discussed previously, FSAs require a subset evaluation function to differentiate the performance of subsets of selected features; Molina et al. outlines several evaluation functions and each evaluation function is related to one of the measures of relevance discussed previously. The authors then take the properties of an FSA and arrange the properties in 3-d space, with each application of an FSA being a point within this space. The three dimensions in this space are: subset evaluation function, search organization, and next subset generation. Starting and ending criteria are not listed in the 3-d space, which implies that these criteria are defined in the search organization and next
subset generation dimensions. A scoring system was created to determine if the algorithm left out redundant and irrelevant features while selecting relevant features. Weights were assigned to these properties, because it was considered less harmful if the algorithm selected irrelevant features rather than missing a relevant feature. Choosing a redundant feature was also considered less harmful than choosing an irrelevant feature. (Guyon and Elisseef showed that redundant variables can actually be helpful in reducing noise in data [34].) Of the 42 FSAs analyzed, Molina et al. concluded that ReliefF performed best when differentiating relevant and irrelevant features, while the Las Vegas Filtering (LVF) algorithm performed best at detecting redundant features.

Another, more recent, review of FSAs is Saeys et al.’s review of applying FSAs to bioinformatics [35]. Much of Saeys et al.’s review is similar to other FSA review articles, but the authors sub-categorize the three categories of FSAs discussed previously. Filter FSAs are sub-categorized into univariate or multivariate FSAs. Multivariate, filter FSAs were created to find dependencies among features instead of only considering each feature’s relation to the target variable. In terms of relevance, multivariate FSAs identify strongly and weakly related features whereas univariate FSAs can only identify strongly related features. Wrapper FSAs are sub-categorized into deterministic and randomized FSAs, based on the feature space search method. A deterministic, wrapper FSA will search the feature space in a predetermined order, while a random, wrapper FSA will randomly create subsets of features. The randomly created subsets of features may be randomly generated at each iteration, or a genetic algorithm can be used to evolve the random subsets that perform the best. The feature selection methods listed in this work are the same methods listed in other review papers. These review papers also discuss the evaluation of FSAs. Researchers will often apply an FSA to an entire data set and then evaluate the FSA’s performance with the same data set. Saeys et al. [35], however, suggest using a training and test set when applying an FSA, such that the test set is used for evaluating the performance of the FSA. If the set of examples is too small, researchers can apply ensemble techniques to create more example
sets for training the FSAs.

1.5.1 Filter FSAs

The choice between filter FSAs and wrapper FSAs is somewhat controversial. Kohavi and John argue that a major disadvantage of using a filter FSA instead of a wrapper FSA is that the filter FSA completely ignores the ML algorithm the researcher is trying to optimize [32]. On the other hand, there may be problem instances where filter algorithms will perform as well or better than wrapper algorithms [34]. The filter algorithm is computationally efficient, because it does not need to run an ML algorithm for each candidate subset X'. Filter algorithms can introduce bias, but are less prone to overfitting the training data.

Guyon and Elisseeff present a review of FSAs that balances coverage of filter and wrapper FSAs [34]. Because our research is a supervised, regression ML problem, we focus on supervised, regression methods for feature selection. Guyon and Elisseeff present 10 steps that are intended as guidelines to the application of ML algorithms to prediction problems. Step 5 of this procedure specifically refers to the decision of whether or not to use a filter FSA. The answer is unequivocally “yes,” regardless of your end prediction goals. If the researcher’s prediction goals are only to assess the impact of the features on the output target, and not build a predictor, the filter FSA will provide these results. If the research also needs to build a predictor, the filter FSA will provide baseline results to assist in determining if the final selected features are overfitted.

Guyon and Elisseeff examined a category of filter FSAs called variable ranking. The authors defined a data set as $\{x_{k,i}, y_k\}(k = 1, \ldots, m), (i = 1, \ldots, n)$, where $x_{k,i}$ is the value of an example k for the input feature i, y_k is the output target value for example k, m is the number of training examples, and n is the number of input features. Variable ranking uses a scoring function, $S(i)$, that creates a score for each input feature (i), using x_i and y, where x_i is a column vector containing all m training examples for each input feature i, and y is a column vector containing the output value of each example. A commonly used scoring function is Pearson’s Correlation Coefficient (or the R^2 value) of each input feature.
Pearson's correlation coefficient is defined by Equation 1.5. Pearson's Correlation Coefficient of each input feature identifies the estimated fraction of total variance around the mean of \(Y \) that is explained by the linear relation between the input feature \(X_i \) and the output target \(Y \).

\[
R^2 = \frac{\text{cov}(X_i, Y)}{\sqrt{\text{var}(X_i)\text{var}(Y)}}^2
\]

(1.5)

Note that the capital \(X \) and \(Y \) vectors represent the entire population of potential observations (which is infinite), but we are taking samples of the random variables \(X \) and \(Y \) in an ML problem (represented by the lowercase \(x \) and \(y \) variables). Equation 1.6 shows how to estimate the \(R^2 \) value based on these samples (or examples in machine learning terminology).

\[
R^2_i = \left(\frac{\sum_{k=1}^{m}(x_{k,i} - \bar{x}_i)(y_k - \bar{y})}{\sqrt{\sum_{k=1}^{m}(x_{k,i} - \bar{x}_i)^2 \sum_{k=1}^{m}(y_k - \bar{y})^2}} \right)^2,
\]

(1.6)

where \(\bar{x}_i \) represents the mean input feature value for feature \(i \) across the \(m \) examples, and \(\bar{y} \) represents the mean output target value across the \(m \) examples. In order to determine non-linear relationships between the input features and the output target, attributes can be fitted to the target using a non-linear function, or the attributes can be pre-processed with a non-linear function and then a correlation coefficient is calculated for the non-linear fit. These methods increase the risk of overfitting to the training data and, thus, the selected variables may not generalize well to a test data set.

Estimating the \(R^2 \) value of each input feature allows for an exhaustive search of the feature space in \(O(n) \) time, but the features are only ranked and there is no mechanism that specifies a stopping point for the number of features selected. A common method for determining the number of features to select from the ranked list of input features is to retain a testing set of data and then see how well different numbers of features performs with an MLA [31]; however, this method partially transforms a filter FSA into a wrapper FSA. Stoppiglia et al., [36] suggests an alternative method for ranking features, while also automatically determining a stopping point. Specifically, the algorithm first determines the input feature that most explains the output target by determining the magnitude of the
angle between the input feature’s vector and the output feature’s vector in \(\mathbb{R}^n \) space (where \(n \) is the number of input features). The \(\cos^2 \) of the angle between the vector of each input feature and the target vector is computed using Equation 1.7:

\[
\cos^2(x_i, y) = \frac{(x_i \cdot y)^2}{\|x_i\|^2 \|y\|^2},
\]

where \(i = 1, \ldots, n \) and \(n \) is the number of input features. The input feature with the greatest result from Equation 1.7 is the selected feature. To remove the effects of the selected feature, the remaining input features are projected onto the subspace of the selected feature using the Gram-Schmidt algorithm [37]. In order to determine the stopping point, a random variable, called a probe variable, is used. The random variable is not instantiated, but the cumulative distribution function of the angle between the random variable and the target output is computed, where the distribution of the random variable is assumed to be normal. From the cumulative distribution function of the random probe, the chance of an instantiation of the random probe having more relevance to the output target than the selected feature can be found. (This chance is called the risk by Stoppiglia et al. [36].) The researcher then defines a threshold for the amount of risk he or she is willing to accept, and if the calculated risk is greater than this threshold, the selected variable is discarded and the FSA stops. This process seems to be a precise method for determining when to stop a regression, filter FSA.

We note, however, that Bi et al. were also successful with a stopping criteria that uses three instantiations of the random variable instead of the cumulative probability distribution function [38]. The three random variables, i.e., input features, were generated from a normal distribution with a mean of zero and a standard deviation of one. Bi et al. stated that any distribution could replace the normal distribution. We also note that Bi et al. used a random probe variable as an additional measure to exclude non-relevant features; the primary method was to use a sparse norm regularized Support Vector Machine (SVM) with a linear kernel.
Another type of filter FSAs is the Relief algorithm originally created by Kira and Rendell [39]; instead, many researchers use the modified algorithm (ReliefF) created by Kononenko [40]. Since Relief and ReliefF are only valid for classification problems, Robnik-Sikonja and Kononenko extended ReliefF into an algorithm (RReliefF) that can also rank input features in regression problems, where the input features and output target is a continuous value [41].

All Relief algorithms are based on randomly selecting an example (R) from the training data set and then examining the nearest neighbors to that example. Relief examines the nearest neighbor that is misclassified (MISS) and the nearest neighbor that is correctly classified (HIT). The distance between each of R’s input features and each of the MISS and HIT’s input features is then calculated. Each input feature (A) is assigned a weight (W[A]), which is initialized to 0. A larger distance between R[A] and MISS[A] increases the weight of A, while a larger distance between R[A] and HIT[A] decreases the weight. The researcher can specify how many R[A] examples to examine (the examples are called neighbors in Relief), and ReliefF allows the researcher to examine multiple MISS and HIT nearest neighbors. Also in ReliefF, a σ term specifies the standard deviation of a Gaussian distribution that sharpens the decrease (or increase) in the weight parameter with a change in distance from R.

In ReliefF, W[A] is based on the distance between an input feature A and whether the selected example’s class is the same or different than its neighbors. Instead of categorizing the examples into HIT or MISS, RReliefF computes the Euclidean distance between the predicted output target and the output target of the example’s neighbors, allowing RReliefF to be used in regression problems with a continuous output target. The distance between the attributes and the distance between the output targets of the examples is applied to Bayes’ Rule to create a probability that a feature is related to the output target. Specifically, Equation 1.8,

\[
W[A] = \frac{P_{C|A}P_A}{P_C} - \frac{(1 - P_{C|A})P_A}{1 - P_C},
\]

(1.8)
computes the probability that a feature is relevant to the output target, where P_A represents the probability the selected example’s feature A is different than its neighbors and P_C represents the probability that the selected example’s output value is different than its nearest neighbors. Using Equation 1.8, input features that are close in examples with similar output target values are given increased weights.

Another filter FSA applied in our work is a stepwise regression algorithm called the F-statistic FSA. The F-statistic FSA searches for a good subset of features by using a greedy stepwise search method instead of individually ranking each feature. Starting from the subset of no features, a linear regression line is fitted for each of the input features. An F-test is computed on these linear regressions and the feature with the smallest p-value is added to the selected feature subset. The p-value represents the likelihood the feature will not contribute to reducing the prediction error (over the subset of features that does not include the feature). At each step of the greedy stepwise search, the linear regression is refitted with the selected feature subset and each remaining feature; features will be removed from the selected feature subset if their p-value is greater than the exit criteria, and a feature will be added to the selected feature subset if its p-value is less than the entrance criteria. At the extremes of the entrance and exit criteria values, a researcher can configure the FSA to select all features or no features.

1.5.2 Wrapper FSAs

Kohavi and John introduced a concept called optimality, stating that an input feature can be relevant to the output target, but may not be optimal with regard to the underlying distribution [32]. Researchers do not have access to the underlying distribution of the problem space, as they are only making finite observations on an infinite domain. Therefore, a feature that is relevant to the observations made by the researcher may not be optimal with regard to the underlying distribution. Kohavi and John argue that since relevance is not always the same as optimality, researchers should always use wrapper methods. The wrapper methods should adjust for the biases of the ML algorithm being optimized by be-
ing aware of and compensating for overfitting. In our work, we compare the performance between wrapper and filter FSAs to our problem domain.

In order to test the impact of wrappers on the performance of ML algorithms, Kohavi and John tested several real and synthetic data sets using ID3 decision trees and Naive Bayes wrappers. The wrappers started with an empty set of features, and used both hill-climbing and best first search methods to traverse the feature space. To avoid selecting features overfitted to the data, five fold cross validation was used within the selection evaluation algorithm. The selection evaluation algorithm was the ML algorithm (Naive Bayes or ID3) and the accuracy of the five cross validation folds were averaged together. The standard deviation of these folds was also calculated and if the standard deviation of the accuracy was greater than 1%, the feature selection algorithm was re-run. To determine the final accuracy of the selected features, ten fold cross validation was used.

In real data sets, it was found that the wrapper methods (when compared to no feature selection) increased the accuracy of the predictors, because the reduction of available features reduced the variance in the ML algorithm [32]. The artificial data sets did not see an increase in accuracy with the wrapper methods; the authors argue this result exists because there are higher level interactions between the features in these data sets.

Hall introduces a wrapper FSA called Correlation-based Feature Selection (CFS) [42] that extends the R^2 filter method (see Section 1.5.1). CFS is a subset evaluation function that identifies features that are highly-correlated to the output target value, but are not correlated to other variables. CFS assumes that redundancy does not improve prediction accuracy and, therefore, seeks to remove redundant and irrelevant features. The evaluation function used by CFS is:

\[
M_S = \frac{\bar{r}_{cf}}{\sqrt{n + n(n-1)r_{ff}}},
\]

(1.9)

where M_S is the merit of the feature subset S, n is the number of features in subset S, \bar{r}_{cf} is the mean correlation of each feature to the output class, and \bar{r}_{ff} is the mean correlation between all features in subset S. Pearson’s Correlation Coefficient is used to calculate r_{cf}.
and r_{ff}, and the output class can be a continuous value (which means this method can be used with regression problems). CFS is only the subset evaluation function; any search method, starting point, and halting criteria can be used with CFS. Several performance tests of CFS were run, using both artificial and real data sets. The results for the real data sets were mixed, i.e., some data sets showed significant improvement in performance after the application of CFS and others showed a significant decrease in performance. Hall attributes this result to CFS’s bias towards smaller data sets and suggests combining some of the top data sets identified by CFS to include more features. The disadvantage of this approach is that it may reintroduce redundant features that the algorithm sought to eliminate.

CFS can also apply another method (as an additional step to greedy stepwise and best first) called locally predictive. Hall found that CFS has a bias toward eliminating features that predict well on a small percentage of the examples and predict poorly on the remaining examples. After CFS selects a feature subset (through best first or greedy stepwise search), the locally predictive algorithm searches the non-selected features; if a non-selected feature has a higher correlation to the output target than the non-selected feature’s correlation to any of the selected features, the feature is added to the selected feature subset. The limitation requiring the non-selected feature to be more correlated with the output target than the selected features prevents the locally predictive method from introducing redundancy into the selected feature subset. The locally predictive method was also used when applying the CFS wrapper FSA to our data, and it was applied to the best first search method.

1.5.3 Ensemble Methods

An ensemble method is a method used to combine the results of multiple MLA instances together into a single predictor. Since an ensemble method increases the number of MLAs trained to predict a machine learning problem, processing time for an ensemble will be greater than training an individual MLA; however, the prediction accuracy of the ensemble will be greater than an individual MLA as long as certain conditions are met. Tan et al. show that if the conditions are not met, ensemble accuracy is less than the accuracy of an individual
Tan et al. states the two conditions, “... (1) the base classifiers [MLAs] should be independent of each other, and (2) the base classifiers should do better than a classifier [MLA] that performs random guessing.”

Although it is difficult to achieve true MLA independence in real data sets, diversity of the ensemble instances increases the independence among the ensemble instances. Multiple methods exist for increasing diversity within an ensemble, e.g., input data diversity, MLA diversity, input feature manipulation, and output target manipulation [43, 44]. In order to create an MLA ensemble, one must decide on two architectural considerations: (1) how will the ensemble instances be modified to achieve diversity, and (2) how will the ensemble combine the outputs of each ensemble instance?

Bagging [45] and boosting, e.g., AdaBoost [46], are common methods of manipulating the input data to create ensemble instances. Bagging creates a “bag” of training examples the same size as the original set of training examples. The examples for the “bag” are chosen at random and repetition of examples is allowed and nearly impossible to avoid. The repetition of training examples forces the ensemble instance to give greater importance to those training examples that are repeated. We note that the bagging method is used by the Saeys Method [47], which we compare to our method (called the JENNA Method) in Chapter 3.

Boosting assigns a weight to each training example instead of creating “bags” of examples. An MLA is trained with all of the training examples, and then the examples are assigned a weight that is large if the example is classified correctly and small if the example is classified incorrectly. Training the MLA is repeated several times and the training example weights are updated at each iteration. The resulting weights can be used when deciding which training examples to pick for each ensemble instance [43].

Another method of ensuring ensemble instance diversity is to use the same training data for each ensemble instance, but modify the configuration of the MLA (e.g., selecting different learning rate or starting weights in an ANN) [43, 44]. In our JENNA Method, we modify
the configuration of FSAs (instead of MLAs) in addition to using different types of FSAs to increase ensemble diversity.

Once the ensemble instance configuration is determined, one must choose a method of combining the ensemble instances’ results. Typically ensemble method used for classification problems implement a “majority rules” voting method for aggregating the ensemble instances’ outputs. In a binary classification problem, each ensemble instance votes for “0” or “1”; the binary digit with the most votes wins and, thus, the winning class is the ensemble’s output. In a multi-class classification problem, the ensemble instances vote for each class, and in the regression problem the mean of the ensemble instances’ output replaces the voting method.

1.6 Contributions

Our work is an interdisciplinary project focused on improving machine learning algorithms and improving understanding of EPBMs used in underground tunneling projects. We successfully implemented and tested improvements in both fields. The research questions we seek to answer are:

1. What EPBM systems impact the EPBM’s performance as it is excavating?

2. How do EPBM systems impact the EPBM’s performance as it is excavating?

3. Can we improve machine learning methods to better understand an EPBM’s performance?

We answer these questions in the following chapters. In Chapter 2 we apply Feature Selection Algorithms to identify the machine parameters that are important to EPBM performance, and in Chapter 3 we propose a novel feature stabilization algorithm to address feature stability issues identified in our preliminary work (Chapter 2). In Chapter 4, we create a method for detecting anomalies in data sets with a time delay and apply our algorithm to detecting EPBM soil changes. Lastly, we conclude our work in Chapter 5.
Previous studies have focused on the performance prediction of hard-rock TBMs, but our research focuses on soft-soil EPBMs. Because EPBMs face different challenges than hard-rock TBMs, it is hypothesized that the input features of an accurate, EPBM performance prediction model will be different than the input features of accurate, hard-rock TBM performance models. As previously discussed, the input parameters for hard-rock TBM performance models are usually (1) rock or soil geotechnical properties and (2) static properties of the TBM (such as cutterhead diameter or machine manufacturer). Instead of relying on traditional rock and soil classification models, our research utilized automated Feature Selection Algorithms (FSAs) to determine the input features that are important in the prediction of the EPBM’s advance rate. Once the input features that most affect the EPBM’s advance rate are identified, machine learning algorithms can then be applied to these features to validate they accurately predict the EPBM’s advance rate. We present the FSAs we applied to the NB and SB tunnel data in Section 2.1. We also provide our associated error rate for comparison with hard-rock TBM research, as well as details of our validation methodology, in Section 2.2. Lastly, in Section 2.3, we present comparison results on the different FSAs considered.

FSAs are implemented to address the “Curse of Dimensionality” (discussed in Section 1.5), which is a machine learning challenge where machine learning algorithms perform well in small feature spaces, but performance degrades significantly in large feature spaces. Two common categories of algorithms that alleviate the “Curse of Dimensionality” challenge are (1) dimensionality reduction and (2) feature selection. Dimensionality reduction seeks to represent input data in a lower dimension subspace through the application of linear or non-linear projections (e.g., Principle Component Analysis (PCA) [48]). The dimensionality
reduction algorithms focus on creating features that increase class separability; however, it is then difficult to assess the impact of the original input feature in the lower dimensional subspace. As with many other real-world applications, our work focuses on feature selection, because feature selection focuses on identifying a subset of the input features; therefore, the impact of the individual input features is not lost.

FSAs reduce the input feature space by assigning an importance value to each input feature (or subset of input features), which is based on the feature’s relation to the output target, and then eliminates features with a low importance score. Often researchers will train several FSAs, because different types of FSAs have different biases and adjusting the configuration of an FSA can cause variations in the features that the FSA selects. Our work seeks to stabilize the set of features selected by the FSAs while also achieving high prediction accuracy. In addition, our work ranks FSAs (in addition to ranking individual features), which allows proportional contributions from all FSA instances with a focus on maximizing accuracy and feature stability.

If a researcher’s purpose is to develop an MLA with the best possible prediction accuracy, the researcher can train an MLA (or an ensemble of MLAs) using features selected by multiple FSA instances (assuming FSA types and configurations are varied). The researcher would then chose the trained MLA with the lowest testing error, and ignore the selected features from the other, less accurate FSAs; however, only picking the features selected by one of the FSAs and ignoring features selected by similarly performing FSAs may cause the researcher to miss insights into the causes of increased prediction accuracy. Our work seeks to identify the best performing features selected across multiple FSAs. The selected input features are robust input features, because multiple FSAs identified the input features as important. The identified features can then be further analyzed to determine their impact on changes to the output target value.

We apply FSAs to EPBM operating parameter data and geotechnical data obtained from two tunnels that were previously excavated in Seattle, WA, USA, as part of the U-230.
University Link subway extension project (hereafter referred to as the Seattle project). The two EPBMs analyzed are Hitachi EPBMs with cutterhead diameters of 21 feet. One tunnel is referred to as the northbound tunnel and the other tunnel is referred to as the southbound tunnel; we note, however, that the TBMs drilled these tunnels in the same direction to take advantage of a downward slope. TBM operating parameters are measurements of how the machine is performing as it is running, such as torque exerted to turn the cutterhead, amount of liquid used in the Ground Conditioning System (GCS), forward thrust of the propulsion system, and weight of the material excavated on the belt conveyor.

The machine learning techniques applied to the geotechnical and TBM operating data in previous hard-rock TBM studies are: Artificial Neural Networks (ANNs), ensemble methods, multi-linear regression, fuzzy logic, and neuro-fuzzy methods (a combination of ANNs and fuzzy logic). Some of the EPBM’s operating features are known to have a linear dependence on the advance rate of the TBM. For example, as an EPBM excavates faster, more soil is removed from in front of the machine. Furthermore, as the advance rate increases, the weight of muck on the conveyor belt also increases linearly. The linear parameters exhibit strong relevance to the output target value; however, adding weakly related parameters could increase the prediction accuracy of the strongly related parameters. In order to search for these strongly and weakly related parameters, we applied FSAs that are known to be efficient in searching for subsets of strongly and weakly related input features.

As mentioned in Section 1.2, the EPBM excavates the distance of a new concrete tunnel ring during each excavation cycle. The EPBM is propelled forward by propulsion cylinders which are pushing on the previously constructed concrete tunnel ring. Once the excavation of one tunnel ring is complete, the propulsion cylinders are retracted to make room for the segment erector to construct the next tunnel ring. Sensors are attached to each propulsion cylinder to measure their extension in millimeters. A smoothing algorithm computes the average advance rate (per ring) by dividing the millimeters the propulsion cylinders advanced...
by the time it took for the propulsion cylinders to advance. The output target value was set to the smoothed advance rate of each tunnel ring, and the input sensor values were averaged by tunnel ring as well.

Our research explored two hypotheses. First, we predict that applying FSAs to the full data set will identify features that better predict the EPBM’s advance rate than using the full set of EPBM features. Second, we predict that some of the FSAs will be able to identify weakly related features that improve the prediction accuracy of the strongly related features. We used FSAs to identify the input features that are most related to the advance rate of each EPBM. Previous research, on the other hand, utilized a literature search to determine which input features are most related to the advance rate of the machine. We do not discount the value of a literature search, but we do not use it in the initial feature selection phase; instead, we use a literature search to analyze the results of the FSAs that we applied.

2.1 Input Feature Selection Methods Applied

Based on our review of the feature selection literature, a mix of wrapper and filter methods were selected. The following feature selection methods were each applied to the sensor data from the NB and SB tunnels:

- RReliefF (filter),
- Estimation of the R^2 value (filter),
- F-statistic (filter),
- CFS Subset evaluation (wrapper),
- Multilayer Perceptron Artificial Neural Network (MLP ANN) (wrapper), and
- Support Vector Machine (SVM) Regression (wrapper).

Table 2.1 lists the FSAs and their properties that we applied to the Seattle EPBM data. The four properties of the FSAs are represented by the columns in Table 2.1 and were discussed in Section 1.5. The filter methods assign a rank to each input feature based on each
algorithm’s subset evaluation function. Two of the FSA properties do not apply to most of the filter FSAs; these properties are marked as not applicable, annotated in Table 2.1 as “N/A”. Specifically, there is no starting point or search organization with RReliefF and estimation of the R^2 value, because these two filter FSAs (1) evaluate each feature individually, instead of as part of a subset, and (2) evaluate all features. Also, while there is no subset evaluation function for some filter FSAs, there is a feature evaluation which replaces the subset evaluation function. Lastly, for filter FSAs that do not have a halting criteria, we chose an artificial halting criteria of 5, 10, 15, and 20 top ranked features. The performance of each of these subsets will be evaluated using the same method as the wrapper methods, which is described in Section 2.2.

The wrapper methods were tested using forward feature selection, which means that the starting subset is \emptyset for CFS and SVM; the MLP ANN’s starting subset is the first feature in the data set, because the MLP ANN algorithm fails with a subset of \emptyset. Greedy stepwise and best first search strategies were applied to each wrapper FSA, and the locally predictive search strategy was applied to CFS. The best first search traverses the feature subset space by expanding the most promising node until there is no improvement in the result of the subset evaluation function. In our work, the best first search was allowed to backtrack up to five previous nodes to prevent the algorithm from stopping at a local minima. A greedy stepwise search uses the same algorithm as best first search, but it does not implement backtracking. Both SVM and MLP ANN FSAs use the RMSE value as the subset evaluation function, and this is a valid measure because the data is normalized to a range of [0, 1] before applying the FSAs. That is, some FSA objective functions are dependent on distances between data points; thus, normalization ensures that a feature with a larger range of values will not dominate a feature with a smaller range of values. In other words, if the feature with the smaller range of values was more relevant than the feature with the larger range of values, the smaller range feature may be missed by the FSA without normalization [49].
Table 2.1: Description of the properties of FSAs applied to the Seattle EPBM data. Each FSA was applied to the NB and SB Seattle data. The number after RReliefF is the number of neighbors used to compute the RReliefF equations. Not applicable is denoted as N/A in the table. We note that the locally predictive method also utilized a best first search.

<table>
<thead>
<tr>
<th>FSA Properties</th>
<th>Starting Point</th>
<th>Search Organization</th>
<th>Subset or Feature Evaluation Function</th>
<th>Halting Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter FSAs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RReliefF 10</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.8</td>
<td>5 features</td>
</tr>
<tr>
<td>RReliefF 100</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.8</td>
<td>5 features</td>
</tr>
<tr>
<td>RReliefF 350</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.8</td>
<td>5 features</td>
</tr>
<tr>
<td>RReliefF 700</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.8</td>
<td>5 features</td>
</tr>
<tr>
<td>RReliefF 10</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.8</td>
<td>10 features</td>
</tr>
<tr>
<td>RReliefF 100</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.8</td>
<td>10 features</td>
</tr>
<tr>
<td>RReliefF 350</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.8</td>
<td>10 features</td>
</tr>
<tr>
<td>RReliefF 700</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.8</td>
<td>10 features</td>
</tr>
<tr>
<td>RReliefF 10</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.8</td>
<td>15 features</td>
</tr>
<tr>
<td>RReliefF 100</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.8</td>
<td>15 features</td>
</tr>
<tr>
<td>RReliefF 350</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.8</td>
<td>15 features</td>
</tr>
<tr>
<td>RReliefF 700</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.8</td>
<td>15 features</td>
</tr>
<tr>
<td>RReliefF 10</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.8</td>
<td>20 features</td>
</tr>
<tr>
<td>RReliefF 100</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.8</td>
<td>20 features</td>
</tr>
<tr>
<td>RReliefF 350</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.8</td>
<td>20 features</td>
</tr>
<tr>
<td>RReliefF 700</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.8</td>
<td>20 features</td>
</tr>
<tr>
<td>(\mathcal{R}^2)</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.6</td>
<td>5 features</td>
</tr>
<tr>
<td>(\mathcal{R}^2)</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.6</td>
<td>10 features</td>
</tr>
<tr>
<td>(\mathcal{R}^2)</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.6</td>
<td>15 features</td>
</tr>
<tr>
<td>(\mathcal{R}^2)</td>
<td>N/A</td>
<td>N/A</td>
<td>Equation 1.6</td>
<td>20 features</td>
</tr>
<tr>
<td>F-Statistic</td>
<td>(\emptyset)</td>
<td>Greedy Stepwise</td>
<td>F-statistic</td>
<td>all p-values > 0.001</td>
</tr>
<tr>
<td>Wrapper FSAs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFS</td>
<td>(\emptyset)</td>
<td>Best First</td>
<td>Equation 1.9</td>
<td>No (M_S) improvement</td>
</tr>
<tr>
<td>CFS</td>
<td>(\emptyset)</td>
<td>Greedy Stepwise</td>
<td>Equation 1.9</td>
<td>No (M_S) improvement</td>
</tr>
<tr>
<td>CFS</td>
<td>(\emptyset)</td>
<td>Locally Predictive</td>
<td>Equation 1.9</td>
<td>No (M_S) improvement</td>
</tr>
<tr>
<td>MLP ANN</td>
<td>(x_0)</td>
<td>Best First</td>
<td>Equation 1.1</td>
<td>No RMSE improve-</td>
</tr>
<tr>
<td>MLP ANN</td>
<td>(x_0)</td>
<td>Greedy Stepwise</td>
<td>Equation 1.1</td>
<td>No RMSE improve-</td>
</tr>
<tr>
<td>SVM</td>
<td>Regression</td>
<td>Best First</td>
<td>Equation 1.1</td>
<td>No RMSE improve-</td>
</tr>
<tr>
<td>SVM</td>
<td>Regression</td>
<td>Greedy Stepwise</td>
<td>Equation 1.1</td>
<td>No RMSE improve-</td>
</tr>
<tr>
<td>SVM</td>
<td>Regression</td>
<td>Best First</td>
<td>Equation 1.1</td>
<td>No RMSE improve-</td>
</tr>
<tr>
<td>SVM</td>
<td>Regression</td>
<td>Greedy Stepwise</td>
<td>Equation 1.1</td>
<td>No RMSE improve-</td>
</tr>
<tr>
<td>SVM</td>
<td>Regression</td>
<td>Best First</td>
<td>Equation 1.1</td>
<td>No RMSE improve-</td>
</tr>
<tr>
<td>SVM</td>
<td>Regression</td>
<td>Greedy Stepwise</td>
<td>Equation 1.1</td>
<td>No RMSE improve-</td>
</tr>
</tbody>
</table>

47
After averaging the input features and output target value of the Seattle EPBM tunnels by tunnel ring, each tunnel contained approximately 750 examples. A training data set and test data set were created to implement the FSA. A split of 66% training data and 33% testing data was chosen. Cross validation was not chosen because each fold would potentially identify a different set of features, and there is no valid way to combine the selected features.

2.2 Assessment of the Prediction Power of the Selected Features

After the feature selection algorithms determined the important input features, the selected features were used to create a model of the EPBM’s advance rate. The algorithms used to create the machine learning models (hereafter referred to as ML algorithms) follow.

- **Linear Regression** generates a linear regression model using all selected input features. When solving the linear equation \(y = mx + b \), \(y \) is a column vector of output target values, \(m \) is a vector of weights for the selected input features, and \(x \) is a matrix of training data containing all selected input features.

- **Multilayer Perceptron (MLP) ANN** generates a non-parametric, non-linear regression model when used with a linear activation function. MLP ANNs are organized into an input layer, a number of hidden layers, which is specified by the user, and an output layer. Each layer contains nodes that are connected to nodes in the other layers by weights. The input layer contains a node for each input feature, the number of nodes in each hidden layer is specified by the user (in our work this value was determined by multiple iterative tests using a validation data set), and the output layer contains a node for each class of output (e.g., one node for regression problems). The organization of an MLP ANN is meant to simulate the synaptic connections among neurons in the human brain. An activation function is used in classification problems to convert a continuous value from the hidden layers into a binary value for the output layer. We note that Feedforward Backpropagation (FFBP) ANNs are a subset of MLP ANNs.
A workflow was established to select features, using the FSAs listed in Table 2.1, and to validate whether the selected feature subset improved the performance of the two ML algorithms. Figure 2.1 illustrates the feature selection and validation workflow, starting with the original EPBM data.

In Figure 2.1, the NB and SB data sets are first normalized, because the input features vary widely in their magnitudes. As discussed in Section 2.1, the data is then split into a training data set and a test data set, where 66% of the examples are used as input for the FSA to select relevant features and 33% of the examples are used in the two machine learning algorithms to validate each FSA’s performance. A random seed is used to ensure that each FSA receives the same training data set, and all validation workflows receive the same testing data.

To validate the performance of the selected features, the test data set is modified to only include features selected by each FSA instance. A linear regression ML algorithm and an MLP ANN MLA are trained using five fold cross validation, where 80% of the data is used for training and 20% is used for testing in each of the five cross validation folds. The RMSE and correlation coefficients are then computed in each fold. The five fold cross validation process is repeated for five iterations; thus a total of 25 validation tests are completed on each of the ML algorithms. The RMSE and correlation coefficient for the 25 iterations are averaged and the standard deviation is computed. The results of the validation test are then used in two-tailed, corrected t-tests to determine if there are significant differences among the FSAs. The two-tailed, corrected t-test was used instead of a standard t-test because (1) the cross validation folds are not drawn from an independent population and (2) the standard t-test assumes that each data set is drawn from an independent population. Some of the FSAs were tested with multiple search methods and halting criteria. In these cases, a t-test determined if there was a significant difference among the FSA configurations and then the best performing configuration was chosen for comparison to the other FSAs. The

MLP ANNs and linear regression MLAs are discussed in Appendix B.

49
Figure 2.1: Feature selection and feature validation workflow. Tan rectangles represent data pre or post processing, white rectangles represent data, blue diamonds represent data splits, and red rectangles represent applying FSAs or ML algorithms to the data.
FSA that significantly outperformed the most other FSAs was declared the best performing FSA.

To determine the predictive power of the selected features, each test example’s observed output target was compared to the example’s output target value predicted by the ML algorithm (created with the selected features). If we were to visualize this comparison, the observed values would be plotted on the x-axis and the ML algorithm predicted values would be plotted on the y-axis. An R^2 value (i.e., the correlation coefficient) was computed for each of the cross-validation folds and iterations, in order to determine how well the results fit the line $y = x + 0$, which describes a model that perfectly predicts every observed testing value.

In order to determine which features could be optimized to improve the advance rate performance of the EPBM, the selected input features were compared across the NB and SB data sets. Features that could not be modified by the EPBM operator (such as the weight of the material on the rear belt scale) were eliminated from consideration. The remaining input features were examined on a time series plot to determine their effects on the advance rate.

2.3 Results and Analysis

The FSAs tested in our work did not select the same features, but some difference in features selected was expected due to our FSA literature review. In other words, we expected the FSA configurations to select different features and, therefore, developed a validation workflow to determine which FSA configuration best predicted EPBM advance rate. As previously discussed, our validation workflow contained five iterations of five fold cross validation to determine if an FSA configuration performed statistically better than no feature selection or other FSA configurations.

Before comparing the FSAs to each other, the best FSA configuration for each FSA type was determined. The best FSA configuration was determined from the results of the five-fold cross validation and five iteration loop depicted in Figure 2.1. A two-tailed, corrected t-test
compared each FSA’s correlation coefficient against the correlation coefficient of the same data with no feature selection. The corrected t-test relaxes the independence constraint and reduces type I errors caused by cross validation [50]. Although the correlation coefficient and the RMSE were computed for each FSA, we chose to use the correlation coefficient due to the large variance in the RMSE when no feature selection was applied. Specifically, when no feature selection was applied, at least one cross validation fold returned an RMSE several orders of magnitude larger than the maximum advance rate of the EPBM. Instead of removing the large cross-validation folds in our analysis, we leave it in our analysis to illustrate how FSAs reduce the variance in the EPBM data set.

2.3.1 RRReliefF Filter FSA

Four configurations of the RRReliefF neighbors were tested against four halting criteria. The 5, 10, 15, and 20 selected features were chosen as halting criteria for two filter FSAs (i.e., RRReliefF and R^2), because the accuracy of the validation ML algorithms decreased significantly when 20 features (or more) were selected. The four configurations of neighbors (10, 100, 350, and 700) were chosen to test claims by Khoavi and John [32] that RRReliefF must use almost all of the available neighbors to identify an accurate set of features. The configurations with 700 neighbors utilized all of the examples in the calculation of feature weights. Figure 2.2, Figure 2.3, Figure 2.4, and Figure 2.5 show the mean correlation coefficient value and standard deviations (each figure represents 10, 100, 350, and 700 neighbors used, respectively) for the NB tunnel when the RRReliefF Filter FSA is applied; Figure 2.6, Figure 2.7, Figure 2.8, and Figure 2.9 show the same data for the SB tunnel. Configurations that performed significantly better than applying no feature selection are highlighted with a red box and the R^2 and σ values are shown; we note that some figures do not contain an FSA that outperformed no feature selection and, thus, do not contain any red boxes.

A linear regression algorithm and an MLP ANN algorithm were trained using (1) data without feature selection and (2) data resulting from the features selected by each of the
16 RReliefF configurations. When a linear regression algorithm was trained, 6 of the 16 configurations outperformed no feature selection and 1 of the 16 configurations performed worse. When an MLP ANN algorithm was trained, 12 of the 16 configurations outperformed no feature selection and 1 of the 12 configurations performed worse.

To understand which configuration to test against the other FSAs, the corrected t-test determined if there existed significant differences in the mean correlation coefficient (R^2) among the 16 configurations. The null hypothesis, i.e., that two configurations did not contain a significant difference between their correlation coefficients, was rejected if the p-value was less than 0.05. A rank was created for each of the RReliefF configurations by calculating the number of other configurations that were statistically better than a given configuration, as well as the number of configurations that were statistically worse than the given configuration. Each configuration lost one point if it was worse than another configuration and gained one point if it was better than another configuration. The results showed that Khoavi and John’s assertions were correct, i.e., the highest scoring configurations used all neighbors. In the NB tunnel, RReliefF with all neighbors and 10 features selected was the highest ranked; in the SB tunnel, RReliefF with all neighbors and 5 features selected was the highest ranked. These two configurations competed against the other FSAs in Section 2.3.7.

2.3.2 R^2 Estimation Filter FSA

Figure 2.10 and Figure 2.11 show the mean correlation coefficients for the features selected by the R^2 Estimation FSA configurations. As with the RReliefF FSA, an artificial halting criteria (5, 10, 15, and 20 features) was created, because the R^2 Estimation FSA ranks individual features rather than searching for the best subset.

In the SB tunnel, the mean correlation coefficient of all configurations (except the 15 features, linear regression ML algorithm configuration) performed significantly better than no feature selection. In the NB tunnel, no configurations of R^2 Estimation improved the mean correlation coefficient when training a linear regression ML algorithm or an MLP ANN
Figure 2.2: Comparison of the mean correlation coefficients for the RReliefF (10 neighbors) FSA over five cross validation folds and five iterations (each data point encompasses 25 simulations) for the NB Seattle tunnel data. The x-axis contains the number of features selected.

Figure 2.3: Comparison of the mean correlation coefficients for the RReliefF (100 neighbors) FSA over five cross validation folds and five iterations (each data point encompasses 25 simulations) for the NB Seattle tunnel data. The x-axis contains the number of features selected.
Figure 2.4: Comparison of the mean correlation coefficients for the RReliefF (350 neighbors) FSA over five cross validation folds and five iterations (each data point encompasses 25 simulations) for the NB Seattle tunnel data. The x-axis contains the number of features selected.

Figure 2.5: Comparison of the mean correlation coefficients for the RReliefF (700 neighbors) FSA over five cross validation folds and five iterations (each data point encompasses 25 simulations) for the NB Seattle tunnel data. The x-axis contains the number of features selected.
Figure 2.6: Comparison of the mean correlation coefficients for the RReliefF (10 neighbors) FSA over five cross validation folds and five iterations (each data point encompasses 25 simulations) for the SB Seattle tunnel data. The x-axis contains the number of features selected.

Figure 2.7: Comparison of the mean correlation coefficients for the RReliefF (100 neighbors) FSA over five cross validation folds and five iterations (each data point encompasses 25 simulations) for the SB Seattle tunnel data. The x-axis contains the number of features selected.
Figure 2.8: Comparison of the mean correlation coefficients for the RReliefF (350 neighbors) FSA over five cross validation folds and five iterations (each data point encompasses 25 simulations) for the SB Seattle tunnel data. The x-axis contains the number of features selected.

Figure 2.9: Comparison of the mean correlation coefficients for the RReliefF (700 neighbors) FSA over five cross validation folds and five iterations (each data point encompasses 25 simulations) for the SB Seattle tunnel data. The x-axis contains the number of features selected.
Figure 2.10: Comparison of the mean correlation coefficients for the R^2 Estimation FSA over five cross validation folds and five iterations (each data point encompasses 25 simulations) for the NB Seattle tunnel data. The x-axis contains the number of features selected.

Figure 2.11: Comparison of the mean correlation coefficients for the R^2 Estimation FSA over five cross validation folds and five iterations (each data point encompasses 25 simulations) for the SB Seattle tunnel data. The x-axis contains the number of features selected.
Figure 2.12: Comparison of the mean correlation coefficients for the R^2 Estimation FSA over five cross validation folds and five iterations (each data point encompasses 25 simulations) for the NB Seattle tunnel data. The x-axis contains the number of features selected. A different training and testing data set were used to test whether the training and testing data in Figure 2.10 is representative of the underlying population.

ML algorithm. This result was unexpected; that is, we expected at least one of the linear regression ML algorithms would show improvement since R^2 Estimation FSA selects features linearly related to the output target.

We, therefore, investigated the NB tunnel further. The features selected by the FSA (in the NB tunnel) did not include the rear or front side belt scales, which have a strong linear relation to the output target. Examining the R^2 estimate for each feature showed that none of the features in the NB tunnel returned an R^2 value of more than 0.45, whereas the SB tunnel returned several R^2 values of 1.0. We re-sampled the training and testing data to determine if the training or testing data did not provide the R^2 filter with a representative sample of the underlying population. Figure 2.12 shows the results of selecting a new training and testing data set. Although none of the configurations performed significantly better than no feature selection, the correlation coefficients in Figure 2.12 were an improvement over the correlation coefficients in Figure 2.10; in addition, the front side belt scale and rear side belt scale were selected as predictors of advance rate with the different training and testing data sets. The non-significant improvement using a different testing and training data set...
indicates that: (1) The R^2 Estimation Filter was not able to find highly correlated patterns in the original training and testing data split, and (2) the NB tunnel data may contain weakly related features that significantly improve predictive power.

In the SB tunnel, the R^2 Estimation FSA configurations with a halting criteria of 5, 10, 15, and 20 features tied in the rankings, i.e., each configuration significantly improved no feature selection in at least one of the ML algorithms, but none of these configurations were able to significantly improve upon the other configurations. If we only examine mean correlation coefficient scores, the features selected when halting at 10 features performed the best in the SB tunnel. We, therefore, compare this configuration against the other FSAs in Section 2.3.7. Since none of the R^2 Estimation FSA configurations improved upon no feature selection in the NB tunnel, the 20 feature halting criteria was selected as our best configuration (for comparison against the other FSAs) because it returned the highest mean correlation coefficient score.

2.3.3 F-statistic Filter FSA

In order to select between 5 and 20 features (similar to the 5, 10, 15, and 20 feature halting criteria of other filter FSAs) we found that an entrance criteria of $p < 0.001$ and exit criteria of $p > 0.01$ provided the number of features within our bounds in both tunnels. The resulting features were used in the validation workflow, described in Section 2.1; the results are shown in Figure 2.13 and Figure 2.14. As noted in Table 2.1, only one configuration of the F-statistic FSA was tested, i.e., the greedy stepwise search method. Configurations that performed significantly better than applying no feature selection are highlighted with a red box, and the R^2 and σ values are shown. The number of input features selected by each search method is shown below the mean and error bars and labeled “n features selected,” where n is the number of input features selected.

In the NB tunnel, the F-statistic FSA performed significantly better than no feature selection when a linear regression algorithm was trained with the selected features, but the MLP ANN ML algorithm did not perform significantly better than no feature selection.
Significantly better results were obtained in the SB tunnel when the F-statistic selected features were applied to the MLP ANN, but the linear regression ML algorithm did not produce significantly better results than no feature selection.

We now consider why the linear regression algorithm performed significantly better in the NB tunnel and the MLP ANN ML algorithm performed significantly better in the SB tunnel. In the NB tunnel, linear regression with no feature selection returned a correlation coefficient of 0.10; however, in the SB tunnel, linear regression with no feature selection returned a correlation coefficient of 0.23. Because of the low correlation coefficient value in the NB tunnel, the performance of the linear regression algorithm does not need to improve as much in the NB tunnel as it does in the SB tunnel. The MLP ANN ML algorithm preformed better in the NB tunnel than the SB tunnel with no feature selection, returning a correlation coefficient of 0.26 in the NB tunnel and 0.06 in the SB tunnel. These differences in the correlation coefficient with no feature selection illustrate why the linear regression algorithm performed significantly better than no feature selection in the NB tunnel, whereas the MLP ANN ML algorithm performed significantly better than no feature selection in the SB tunnel.

We note there was a stronger linear relationship between the input features in the SB tunnel than in the NB tunnel. The SB tunnel had sharper changes in advance rate than the NB tunnel, and these changes align with changes in the GCS system. The linear regression algorithm was then able to focus on a few features that predicted the advance rate changes and ignore the rest, providing better performance without feature selection. The NB tunnel showed a more consistent advance rate, which means that a more complex ML algorithm, i.e., the MLP ANN, performed better. In other words, the amount of variation in the advance rate caused a different ML algorithm to perform better in the NB tunnel than in the SB tunnel.

The F-statistic FSA identified strong linear features, such as the front and rear belt scale weight and the grout expelled, in both tunnels. In the NB tunnels, more features were
identified, including the soil type, as important features; however, the soil type was not shown to have a significant impact in the SB tunnel. Visualizations of the data indicate that the advance rate of the EPBM was more consistent when the soil type was constant in the NB tunnel than in the SB tunnel, which confirms why the soil type was only identified in the NB tunnel. We had several discussions with project managers and conclude the advance rate was more consistent in the SB tunnel because the SB tunnel was excavated *after* the NB tunnel; in other words, the operators were more familiar with the tunnel alignment during the SB excavation, allowing the operators to achieve a consistently high advance rate despite the varying soil conditions.

Figure 2.13: Comparison of the mean correlation coefficients for the F-statistic FSA over five cross validation folds and five iterations (each data point encompasses 25 simulations) for the NB Seattle tunnel data.

2.3.4 CFS Wrapper FSA

Three search methods were utilized when selecting feature subsets with CFS: best first, greedy stepwise, and the locally predictive method was applied to a best first search. Figure 2.15 and Figure 2.16 compare the mean correlation coefficients for each CFS FSA configuration across the NB and SB tunnels, respectively. In the NB tunnel, when the features trained an MLP ANN ML algorithm, the best first and greedy stepwise search methods
Figure 2.14: Comparison of the mean correlation coefficients for the F-statistic FSA over five cross validation folds and five iterations (each data point encompasses 25 simulations) for the SB Seattle tunnel data.

Figure 2.15: Comparison of the mean correlation coefficients for the CFS wrapper FSA over five cross validation folds and five iterations (each data point encompasses 25 simulations) for the NB Seattle tunnel data. We note that the locally predictive method also utilized a best first search.
Figure 2.16: Comparison of the mean correlation coefficients for the CFS wrapper FSA over five cross validation folds and five iterations (each data point encompasses 25 simulations) for the SB Seattle tunnel data. We note that the locally predictive method also utilized a best first search.

selected the same feature subset, and the selected subset resulted in a statistically significant improvement over no feature selection. The best first, locally predictive search method did not show a statistically significant improvement in the NB tunnel, perhaps because of its bias towards removing redundant features. That is, the subset in the NB tunnel that performed statistically better than no feature selection contained a redundant feature that may have reduced noise in the data. Because some of the features have a strong linear correlation to the output target (e.g., front and rear side belt scales), it may have been difficult for CFS to identify other features with a stronger correlation than these features and, thus, caused CFS to select a small feature set. It is also important to note that the features selected by CFS have a much larger variance than the subsets selected by other FSAs. The large variance is usually seen when a model is overfitting the training data; however, since very few features were selected by CFS, we suspect the selected subset is underfitting the training data. We note that overfitting occurs when an overly complex model is trained and performs well on the training data, but does not perform well on the testing data. Underfitting occurs when a model is trained that is not complex enough to properly model the training data and, thus,
also performs poorly on the testing data.

There is no absolute method to determine if an ML algorithm is overfitting or underfitting the training data. As the complexity of a model increases, it is more likely to overfit the data; similarly, as the complexity of the model decreases, it is more likely to underfit the data. We seek to find a balance between overfitting and underfitting the training data. Comparing the correlation coefficient of the training data to the testing data is one method for determining a model’s balance between overfitting and underfitting. If the correlation coefficient of the testing data is much lower than the correlation coefficient of the training data, i.e., the model fits the training data much better than the testing data, the model is either underfitted or overfitted to the training data. To determine whether the model is overfitted or underfitted, we examine the complexity of the model: a low complexity model is underfitted and a high complexity model is overfitted.

The CFS configurations in the NB tunnel identified low complexity models, i.e., models that utilized a small number of input features, which means that the CFS models in the NB tunnel are underfitted if the correlation coefficient difference between the training data and the testing data is large. In the NB data set, the linear regression algorithm had an average correlation coefficient difference of 0.26 in the best first and greedy stepwise configurations and 0.32 in the locally predictive configuration. The MLP ANN ML algorithm fared better with a difference of 0.06 in the best first and greedy stepwise configurations and 0.13 in the locally predictive configuration. In the SB tunnel, more features were selected and the smaller correlation coefficient differences between the training and testing data indicates that the models did not overfit or underfit the data. The linear regression model performed 0.04 better in the testing data set in all configurations. The MLP ANN ML algorithm’s training data correlation coefficient performed 0.01 better in the best first and greedy stepwise configurations and 0.05 better in the locally predictive configuration. The correlation coefficients in the NB tunnel suggest that the smaller feature set is underfitting the data, and the correlation coefficients in the SB tunnel suggest that the configurations
are neither overfitting or underfitting the data.

In the SB tunnel, all search methods identified a set of features that were significantly better than no feature selection, but only when validated with the MLP ANN ML algorithm. Best first and greedy stepwise identified the same subset of features and this subset of features outperformed the set of features identified by the locally predictive search method. The best first and greedy stepwise feature subset were, therefore, chosen to compete against the best subsets selected by the other FSAs. In the NB tunnel, no selected subset outperformed no feature selection. Therefore, the tie breaker method (discussed in Section 2.3) was used to select the best subset. Specifically, the locally predictive search method slightly outperformed the best first and greedy stepwise search methods (i.e., had higher correlation coefficients), so the locally predictive subset was chosen to compete against other FSA selected subsets.

2.3.5 MLP ANN Wrapper FSA

The MLP ANN wrapper FSA selected features using the method described by Khoavi and John [32] for training wrapper algorithms. As discussed in Section 2.1, each wrapper method was tested with two search strategies: best first and greedy stepwise, and additionally, locally predictive search was used with CFS. At each step of the search, five-fold cross validation trained five MLP ANN FSAs. If the standard deviation of the RMSE (from the five cross validation folds) was greater than a threshold, the cross validation folds were run again. The subset with the lowest RMSE was then selected as the final set of features. We set the threshold as low as possible without causing the algorithm to cycle into an infinite loop. Specifically, we set the MLP ANNs to use a threshold of 0.01. Each MLP ANN also utilized a hidden layer and the number of nodes in the hidden layer was equal to one half the number of features. The learning rate of the MLP ANN was set to 0.3 for all trials.

Figure 2.17 and Figure 2.18 show the mean correlation coefficient of all configurations for the MLP ANN FSA in the NB and SB tunnels, respectively. The mean correlation coefficient only increased significantly in the NB tunnel when a linear regression ML algorithm was used. In the SB tunnel, no significant improvement was found with any of the MLP ANN
Figure 2.17: Comparison of the mean correlation coefficients for the MLP ANN wrapper FSA over five cross validation folds and five iterations (each data point encompasses 25 simulations) for the NB Seattle tunnel data.

Figure 2.18: Comparison of the mean correlation coefficients for the MLP ANN wrapper FSA over five cross validation folds and five iterations (each data point encompasses 25 simulations) for the SB Seattle tunnel data.
wrapper configurations when compared to no feature selection. We did not expect the linear regression ML algorithm to perform better than the MLP ANN ML algorithm (in the NB tunnel), because the features were selected by an MLP ANN wrapper FSA. The linear regression ML algorithm is biased towards less variance (i.e., more likely to underfit the test data set because of the simplicity of the model), which means the underlying distribution may be less complex than the model created by the MLP ANN ML algorithm. The linear regression ML algorithm performed better than the MLP ANN ML algorithm with no feature selection only in the NB tunnel, which may indicate that the conditions in the NB tunnel do not require as complex of a model as the SB tunnel.

The ranking method, described in Section 2.1, was used to assess the performance of each of the FSA configurations (within the same tunnel). In the NB tunnel, both FSA configurations training a linear regression ML algorithm performed significantly better than no feature selection and both configurations of the FSA (i.e., greedy stepwise search and best first search) were tied in outperforming no feature selection (i.e., $R^2 = 0.64$ and $\sigma = 0.19$). To break the tie, the sums of the mean correlation coefficients of all tests (MLP ANN and linear regression ML algorithms) were calculated, and the FSA configuration with the largest sum was selected. The greedy stepwise subset was chosen for the NB tunnel, because its correlation coefficient total means were 0.01 greater than best first. In the SB tunnel, the greedy stepwise subset was also selected, because greedy stepwise performed better (i.e., had a higher correlation coefficient) than best first search (but not significantly better than no feature selection).

2.3.6 SVM Regression Wrapper FSA

The SVM wrapper FSA required much more computing time than both the MLP ANN wrapper FSA and the CFS wrapper FSA. In fact, some of the SVM wrapper configuration settings had to be adjusted so that the algorithm would complete. The standard deviation threshold value (i.e., cross validation stops when the standard deviation of the cross validation folds is less than the threshold value) was increased from 0.01 to 0.5, because the algorithm
was not converging to a solution with the lower threshold. Cross validation folds were also reduced from five to two folds. In addition to testing two subset search methods (best first and greedy stepwise), each of these search configurations was tested with a linear kernel and a second degree polynomial kernel. The polynomial kernel was tested to detect non-linear dependencies between the features and the output target, and a second degree polynomial was chosen to avoid overfitting the training data with a higher order polynomial. Even with a higher threshold and two cross validation folds, the SVM wrapper FSA was able to significantly outperform no feature selection in at least one configuration in both the NB and SB tunnels.

![Comparison of the Correlation Coefficient for the SVM Regression Wrapper FSA Configurations Applied to the NB EPBM Data](image)

Figure 2.19: Comparison of the mean correlation coefficients for the SVM Regression FSA over two cross validation folds and five iterations (each data point encompasses 10 simulations) for the NB Seattle tunnel data.

Figure 2.19 and Figure 2.20 show changes in the mean correlation coefficient for the SVM wrapper FSA configurations. Configurations that performed significantly better than applying no feature selection are highlighted with a red box, and the R^2 and σ values are shown. None of the SVM wrapper FSAs utilizing a second degree polynomial kernel returned features that significantly outperformed no feature selection (in both the NB and SB tunnels). In the NB tunnel, an SVM wrapper (linear kernel and greedy stepwise subset search) identified features that performed significantly better than no feature selection.
In the NB tunnel, the SVM wrapper that performed significantly better than no feature selection (linear kernel, greedy stepwise subset search) identified 33 features; the SVM using a different subset search method (linear kernel, best first subset search) only returned five features and the performance of the five selected features is not significantly better than no feature selection. The difference in features may be explained by best first’s backtracking method, which biases the search towards a smaller subset. Greedy stepwise, on the other hand, adds a feature to the subset of selected features if there is any improvement in the performance of the ML algorithm, leading to a larger subset of features. The SVM wrapper with a linear kernel identified several features that increased the RMSE by a small amount, and this combination of weakly related features led to a feature subset that significantly improved the accuracy of the ML algorithms when applied to test data.

The SB tunnel did not show a large difference in the number of features selected by the best first and greedy stepwise search methods in the SVM wrapper utilizing the linear
kernel. The SVM wrapper FSA utilizing the linear kernel showed a significant improvement over no feature selection when applied to the MLP ANN ML algorithm (with best first and greedy stepwise search strategies), but no significant improvement over no feature selection using the linear regression ML algorithm. None of the SVM wrapper FSAs were significantly better than any of the other FSAs in the SB tunnel; thus, the greedy stepwise, linear kernel configuration was selected, because it returned a slightly higher mean correlation coefficient. In the NB tunnel the greedy stepwise, linear kernel was also chosen because it outperformed (although, not significantly) the best first, linear kernel SVM wrapper FSA as well as significantly outperformed the data set with no feature selection.

2.3.7 Comparison of the Best FSA Configurations

Table 2.2 shows that most of the FSA types tested were able to improve the performance of the ML algorithms in at least one of the tested configurations. A checkmark indicates that at least one configuration of the FSA outperformed no feature selection for the FSA listed in the column. There were only three exceptions where the FSA type did not perform significantly better than no feature selection: R^2 Estimation (NB tunnel, discussed in Section 2.3.2), CFS (NB tunnel, discussed in Section 2.3.4), and MLP ANN (SB Tunnel, discussed in Section 2.3.5). The biases of each of these FSAs may have caused the FSAs to return a feature set that was not significantly better than no feature selection, which illustrates the “No Free Lunch Theorem”. Even though each FSA type did not return a significantly better set of features, we conclude that our first hypothesis (see Section 2.0) was proven. Specifically, in both tunnels, at least one FSA configuration returned a set of features that was significantly better than not applying feature selection.

Each of the previously discussed FSA configurations were then ranked; the highest ranked FSA configuration for each FSA type (e.g., RReliefF, CFS, etc.) was then compared to the other highest ranked FSA types. This FSA comparison is repeated for the NB and SB tunnel data. A two-tailed, corrected t-test compares each combination (chose two) of the FSAs, and a p-value less than 0.05 is considered to have a statistically significant difference.
Table 2.2: A comparison of all FSAs tested. An FSA is checked if at least one configuration of the FSA performed better (in terms of the correlation coefficient) than no feature selection.

<table>
<thead>
<tr>
<th>Tunnel</th>
<th>RReliefF</th>
<th>\mathcal{R}^2 Estimation</th>
<th>F-statistic</th>
<th>CFS</th>
<th>MLP ANN</th>
<th>SVM Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 2.3: The number of significant wins and losses for the best performing FSA configuration in the NB tunnel. A positive integer indicates a significant win for the algorithm over other algorithms. A negative integer indicates a significant loss for the algorithm over the other algorithms.

<table>
<thead>
<tr>
<th>FSA</th>
<th># Correlation Coefficient Wins</th>
<th># RMSE Wins</th>
</tr>
</thead>
<tbody>
<tr>
<td>RReliefF</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>\mathcal{R}^2 Estimation</td>
<td>-5</td>
<td>-1</td>
</tr>
<tr>
<td>F-statistic</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>CFS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MLP ANN</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>SVM Regression</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2.3 and Table 2.4 compare the best FSA configurations and show which algorithms performed significantly better than other algorithms for the NB and SB tunnels respectively. An FSA that performed significantly better than another FSA was given a score of +1 and the FSA that performed significantly worse than another FSA was given a score of -1; if neither FSA performed significantly better than the other, a score of 0 was assigned. Table 2.3 and Table 2.4 show the sum of scores from comparing each FSA to every other FSA. We tested for significant performance differences in terms of the correlation coefficient and the RMSE. In the NB table (Table 2.3), \mathcal{R}^2 Estimation is scored lowest (-5), while in the SB tunnel (Table 2.4) it is tied for the highest score (1). The variation in this result is expected because of the more consistent excavation of the SB tunnel than the NB tunnel. The \mathcal{R}^2 Estimation method looks for linearly correlated relationships between the input feature and
Table 2.4: The number of significant wins and losses for the best performing FSA configuration in the SB tunnel. A positive integer indicates a significant win for the algorithm over other algorithms. A negative integer indicates a significant loss for the algorithm over other algorithms.

<table>
<thead>
<tr>
<th>FSA</th>
<th># Correlation Coefficient Wins</th>
<th># RMSE Wins</th>
</tr>
</thead>
<tbody>
<tr>
<td>RReliefF</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R^2 Estimation</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F-statistic</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CFS</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>MLP ANN</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>SVM Regression</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

the output target; however, a linear relationship is not clear in the NB tunnel as the EPBM operator was learning the subsurface conditions.

Table 2.5, Table 2.6, and Table 2.7 show the NB and SB tunnel features that were selected by FSAs with a positive score in Table 2.3 and Table 2.4. RMSE, CC, or CC+RMSE, is noted in the parenthesis next to each FSA’s name to indicate whether the FSA performs significantly better than other FSAs in Root Mean Squared Error (RMSE), Correlation Coefficient (CC), or both, respectively. Features within these tables are highlighted as gray or yellow. Gray highlights indicate a feature common across multiple FSAs and is a result of the changing EPBM advance rate; yellow highlights indicate a feature common across multiple FSAs but is not a result from the changing EPBM advance rate. Only features that were exactly the same were highlighted; in other words, features that took readings for the same system, but at different locations, are not highlighted.

In the NB tunnel, the gray highlighted features in Table 2.5 are either part of: (1) the soil removal system (i.e., Rear Side Belt Scale, Front Side Belt Scale, Calculated Muck Weight, and Belt Conveyor Fault) or (2) the grouting system (i.e., Grout Fill Rate, Grout Component A+B Flow, and #2 Grout Component B Liquid Flow). We expected the soil removal system to have a strong relation to the advance rate, i.e., when more soil is removed the EPBM is
Table 2.5: Features selected by FSAs that significantly outperformed at least one other FSA in the NB tunnel. Features are highlighted as gray or yellow; gray highlights indicate a feature common across multiple FSAs and is a result of the changing EPBM advance rate; yellow highlights indicate a feature common across multiple FSAs but is not a result from the changing EPBM advance rate. CC, RMSE, and CC+RMSE represent whether the FSA outperformed at least one other FSA in Correlation Coefficient (CC), Root Mean Squared Error (RMSE), or both (CC+RMSE).

<table>
<thead>
<tr>
<th>Northbound Tunnel Correlation Coefficient (CC) and RMSE Winners</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRReliefF (CC)</td>
</tr>
<tr>
<td>Rear Side Belt Scale (tons/hour)</td>
</tr>
<tr>
<td>Front Side Belt Scale (tons/hour)</td>
</tr>
<tr>
<td>Foam Fill Rate (%)</td>
</tr>
<tr>
<td>Grout Fill Rate (%)</td>
</tr>
<tr>
<td>#1 Air Pressure (bar)</td>
</tr>
<tr>
<td>Grout Component A+B Flow (liters/minute)</td>
</tr>
<tr>
<td>#2 Air Pressure (bar)</td>
</tr>
<tr>
<td>#5 Air Pressure (bar)</td>
</tr>
<tr>
<td>#3 Air Pressure (bar)</td>
</tr>
<tr>
<td>Grout Component A+B Flow (liters/minute)</td>
</tr>
<tr>
<td>Muck Chamber-Bottom-Left-Minimum (bar)</td>
</tr>
<tr>
<td>Rear Side Belt Scale Weight (tons)</td>
</tr>
<tr>
<td>Methane Gas Monitor #2 Level (%)</td>
</tr>
<tr>
<td>Pressure Body-Upper-Front (bar)</td>
</tr>
<tr>
<td>Total Water Volume (m³)</td>
</tr>
</tbody>
</table>
Table 2.6: Table 2.5 continued.

<table>
<thead>
<tr>
<th></th>
<th>RReliefF (CC)</th>
<th>F-statistic (CC)</th>
<th>MLP ANN (CC)</th>
<th>SVM Regression (CC+RMSE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northbound Tunnel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlation Coefficient (CC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northbound Tunnel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlation Coefficient (CC+RMSE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Excavation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time (minutes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Excavation Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(minutes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grout Component</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A+B Flow (liters/minute)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screw Muck Volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m³/minutes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foam Volume Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m³/number of Rings)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03SJ Select Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(minutes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05SJ Select Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(minutes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08SJ Select Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(minutes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R Back Distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(feet)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Deviation-Tail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(inches)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screw Conveyor Outlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Minimum (bar)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muck Chamber-Top-Maximum (bar)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Air Line 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Mix Line 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculated Muck Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(tons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.7: Features selected by FSAs that significantly outperformed at least one other FSA in terms of the correlation coefficient in the SB tunnel. Features highlighted in gray are features that change because the advance rate has changed. CC, RMSE, and CC+RMSE represent whether the FSA outperformed at least one other FSA in Correlation Coefficient (CC), Root Mean Squared Error (RMSE), or both (CC+RMSE).

<table>
<thead>
<tr>
<th>RRReliefF (CC+RMSE)</th>
<th>R^2 (CC)</th>
<th>F-Statistic (RMSE)</th>
<th>MLP ANN (RMSE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rear Side Belt Scale (tons/hour)</td>
<td>Rear Side Belt Scale (tons/hour)</td>
<td>Rear Side Belt Scale (tons/hour)</td>
<td>Pitching-Front Body (degrees)</td>
</tr>
<tr>
<td>Front Side Belt Scale (tons/hour)</td>
<td>Grout Component A+B Flow (liter-s/minute)</td>
<td>#3 Grout Component A Liquid Pressure (bar)</td>
<td>#2 Grout Component A Liquid Flow (liter-s/minute)</td>
</tr>
<tr>
<td>Grout Component A+B Flow (liter-s/minute)</td>
<td>Front Side Belt Scale (tons/hour)</td>
<td>#2 Foam Pressure (bar)</td>
<td>#2 Solution Flow (liters/minute)</td>
</tr>
<tr>
<td>Belt Conveyor Fault (on/off)</td>
<td>#2 Grout Component A Liquid Flow (liter-s/minute)</td>
<td>#1 Additive Pressure (bar)</td>
<td>Str Jack Stroke-Left (millimeter)</td>
</tr>
<tr>
<td>#2 Grout Component A Liquid Flow (liter-s/minute)</td>
<td>#3 Grout Component A Liquid Flow (liter-s/minute)</td>
<td>Grout Component A Liquid Tank Level-Low (on/off)</td>
<td>Grout Volume LCL (m^3/number of rings)</td>
</tr>
<tr>
<td>#2 Grout Component B Liquid Flow (liter-s/minute)</td>
<td>Tail Clear-Bottom (millimeters)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tail Clear-Bottom (millimeters)</td>
<td>Grout Component A+B Flow (liter-s/minute)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belt Conveyor Fault (on/off)</td>
<td>Flow Mix Line 4 (m^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3 Grout Component B Liquid Flow (liter-s/minute)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foam Calculated Standard Deviation (σ)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
excavating quicker. We also expected the grouting system to have a strong relation to the advance rate; as the EPBM excavates faster, more grout is required to seal the completed concrete tunnel rings. The Foam Fill Rate and Soil Type are highlighted yellow in the tables because these features are not a result of the EPBM excavating faster. The Foam Fill Rate is part of the GCS and is controlled by the EPBM operator. The soil type is not controlled by the operator, but likely influences advance rate changes. We discuss the soil type further later in this section.

We note that the non-highlighted features selected in the NB tunnel are still important to examine, even though these features were not selected by multiple FSAs. Many additional GCS features were selected by one of the FSAs, e.g., #1 through #5 Air Pressure, #4 and #2 Foam Flow, #1 and #4 BF Injection Pipe Open, #1 Injection Pipe Closed, #4 Injection Pipe Open, #3 Additive Injection, #3 Additive Flow, Total Water Volume, Foam Volume Average, Flow Air Line 5, and Flow Mix Line 3. Further investigation into the placement of the sensors is necessary to understand why only particular sensors in the GCS were selected by the FSAs, i.e., only the #3 Additive Injection and #3 Additive Flow sensors were selected. In other words, why does only certain portions of the GCS impact the advance rate of the EPBM?

Furthermore, we note that several features selected for the NB tunnel are not part of the soil removal system, grouting system, or GCS: #1 Screw Soil Pressure-Front, Muck Chamber-Bottom-Left-Minimum, Methane Gas Monitor #2 Level, Pressure Body-Upper-Front, Total Thrust Force, #5 Cutter Motor Output Frequency, #2 Screw Rotation Counterclockwise, Gas Alarm, Excavation Finish Condition, Gross Excavation Time, Net Excavation Time, R Back Distance, Vertical Deviation-Tail, Screw Conveyor Outlet 1 Minimum, and Muck Chamber-Top-Maximum. We note that features directly related to the propulsion system were excluded from this list, as it is unclear what type of relationship these features have on the advance rate; the features we previously discussed have a near linear relationship with the advance rate. Some of the features clearly do not have a relationship with the
advance rate and were selected by the FSAs because they remain close to a constant value, i.e., Methane Gas Monitor #2 Level and Gas Alarm.

Most of the features that were not part of the soil removal system, grouting system, or GCS were not selected by any of the best performing FSAs in the SB tunnel as shown in Table 2.7. We note, however, that the FSAs in the SB tunnel did not perform as well as the FSAs in the NB tunnel; the best performing FSA in the NB tunnel returned $R^2 = 0.80$ and $\sigma = 0.29$, whereas the best performing FSA in the SB tunnel returned $R^2 = 0.55$ and $\sigma = 0.21$. The variance in prediction performance, however, was higher in the NB tunnel than in the SB tunnel. The performance difference between the NB and SB tunnels can be explained by the EPBM operator learning the subsurface conditions, which caused more perturbations in the NB tunnel input data than in the SB tunnel input data.

In Table 2.7, the SB tunnel only contains gray highlighted features, which are features that change because the advance rate changed. The features highlighted in the SB tunnel are almost all part of the soil removal system (i.e., Rear Side Belt Scale, Front Side Belt Scale, and Belt Conveyor Fault) or the grouting system (i.e., Grout Component A+B Flow or #2 Grout Component A Liquid Flow). The Tail Clear-Bottom feature is an exception; it is highlighted gray, but is not part of the soil removal system or the grouting system. We believe Tail Clear-Bottom was selected because it is an indirect indicator of how much soil is removed. Although GCS features are not highlighted in Table 2.7, GCS features were selected by individual FSAs, e.g., Foam Calculated Standard Deviation, #2 Foam Pressure, #1 Additive Pressure, Flow Mix Line 4, and #2 Solution Flow.

2.3.8 Number of Features Selected

As expected, the FSAs selected a different number of features depending on the FSA type and FSA configuration. Table 2.8 shows the number of features selected by each of the FSAs that did not have an artificial halting criteria (i.e., the 5, 10, 15, and 20 feature halting criteria used for RReliefF and R^2 Estimation FSAs). If an FSA did not utilize one of the search configurations, the value for that search configuration in the table is blank; otherwise,
the number in the table represents the number of features selected.

Generally, different search methods applied to the same FSA selected approximately the same number of features, except for the SVM Wrapper FSA using a linear kernel in the NB tunnel. For the SVM wrapper FSA, the best first method (5 features selected) performed much worse than the greedy stepwise method (33 features selected), in terms of the correlation coefficient, indicating that the best first selected features may have been underfitting the data. In the NB tunnel, the 33 features selected by the SVM Linear Kernel FSA (with greedy stepwise search) led to the best performance with an R^2 value of 0.80 and a σ of 0.29 (see Figure 2.19). The results in Table 2.3 indicate the SVM Regression FSA’s RMSE significantly outperformed three other algorithms in terms of RMSE.

The FSAs that performed the best (i.e., FSAs that outperformed at least one other FSA in terms of the correlation coefficient or RMSE) in the SB tunnel (shown in Table 2.4) selected a low number of features. RReliefF selected five features, R^2 selected ten features, F-statistic selected eight features, and MLP ANN selected five features. The low number of features selected indicates models that are underfitted to the data, but the FSAs that selected a higher number of features (e.g., SVM Regression) did not perform better than the models that selected less features.

Table 2.8: The number of features selected by each FSA configuration that did not utilize an artificial halting criteria. If an FSA does not utilize a search method, the value is left blank in the table. Otherwise, the cell contains the number of features selected. Search methods are abbreviated for brevity: BF = Best First, GS = Greedy Stepwise, LP = Locally Predictive.

<table>
<thead>
<tr>
<th>FSA Type</th>
<th>NB BF</th>
<th>NB GS</th>
<th>NB LP</th>
<th>SB BF</th>
<th>SB GS</th>
<th>SB LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-statistic</td>
<td>16</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFS</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>MLP ANN</td>
<td>7</td>
<td>5</td>
<td></td>
<td>9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SVM Linear Kernel</td>
<td>5</td>
<td>33</td>
<td>22</td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>SVM Second Degree Kernel</td>
<td>21</td>
<td>21</td>
<td></td>
<td>13</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

79
2.4 Conclusions

Our work automatically identifies EPBM features that affect an EPBM’s advance rate; we note that these selected features are different than the features affecting the performance of hard-rock TBMs. The automatic feature detection was achieved through testing and validation of multiple FSAs. Testing multiple configurations of each FSA found the optimal configuration for the NB and SB tunnel data sets; these features were then compared to find feature sets that performed well.

Most FSAs outperformed no feature selection in at least one configuration, which proves our first hypothesis that using FSAs outperforms no feature selection. Our second hypothesis, i.e., that some FSAs would identify weakly related features in addition to strongly related features was also proven. Specifically, strongly related features were identified in both the NB and SB tunnels. These identified features are part of the soil removal system and grouting system. Identifying features in the soil removal system and grouting systems is logical, because both must increase production as the advance rate increases. These features, however, result from the advance rate changing rather than causing the advance rate to change. Input features that are components within the GCS were identified as weakly related features to the EPBM’s advance rate. It seems that changes in the GCS would change the advance rate, but the FSAs evaluated did not consistently select these parameters. Several other features were identified that were not part of the soil removal system, grouting system, or GCS, and the relationship between these parameters and the advance remains unclear, pending further work.

Although we identified a set of important features in the NB and SB tunnels, the features identified were not the same features across FSA algorithms. Also, some of the identified features are caused by a change in advance rate rather than causing an advance rate change (e.g., Front and Rear Side Belt Scales). In Chapter 3, we present our novel robust ensemble feature selection method that eliminates irrelevant features and identifies a robust set of features that can be generalized to other EPBM projects.
CHAPTER 3
JENNA ENSEMBLE NETWORK NORMALIZATION ALGORITHM (JENNA)

Our prior work applied FSAs to the Seattle project data; however, we found that the input features identified by different FSAs are not a consistent set of input features. This problem of fusing features identified by FSAs has been referred to as Feature Stability, Robust Feature Selection, or Ensemble Feature Selection; henceforth, we refer to this problem as feature stability. We note that several models exist that can model EPBM data with acceptable error rates and without the complexity of feature stability; however, our purpose is to identify a generalizable set of input features important to an EPBM’s performance; thus, we pursue feature stability in the EPBM data set. We review the state-of-the-art in feature stability research and propose an improved algorithm (JENNA Ensemble Network Normalization Algorithm (JENNA)) that increases feature stability and accuracy when using an ensemble of FSAs.

We prove JENNA’s effectiveness by applying JENNA to an EPBM case-study (i.e., the Seattle project, discussed in Section 1.4), in order to identify the EPBM machine parameters (i.e., input features) that best describe which systems in an EPBM cause changes to the EPBM’s advance rate. Knowledge of the features that affect the EPBM’s advance rate can help project managers reduce tunnel project costs or time to complete the tunnel. We also seek algorithms that will identify a set of features that not only cause changes in the EPBM’s advance rate (i.e., the output target value), but are generalizable to other EPBM projects. As a reminder, a list of common machine learning and EPBM terminology can be found in Appendix A.

In order to find features that are generalizable to other projects, we seek a stable set of selected features through the application and improvement of ensemble feature selection methods. We measure the similarity between cross validation folds in the NB and SB Seattle
project tunnels (using established similarity metrics [43, 51]) to determine how well the features will generalize to other projects. Large similarity values indicate features that are generalizable across EPBM projects and should be monitored closely to realize efficiencies in EPBM operations.

3.1 Related Work

Most work on feature stability is conducted in the bioinformatics field, because bioinformatics data sets also have many features and a small number of examples. The bioinformatics field has intensely focused on feature stability [52–54] since the review of Saeys et al. introduced the use of robust feature selection to the field [35, 47]. Feature stability is important to the bioinformatics field, because perturbations in the small example space can cause large variance in the features selected by FSAs. To reduce the variance in the output features selected, the bioinformatics field has modified MLA ensemble methods and applied these modified methods to ensembles of FSAs.

To reduce variance in the training data, Han and Yu [55] proposed decomposing selected input features into their bias and variance components. The bias error component is caused by biases present in the FSA, and the variance error component is caused by perturbations in the training data. Han and Yu, therefore, created a method of weighting examples from the training data set based on how likely the examples are to cause a significant change in the function learned by the FSA. Han and Yu’s method focuses on a binary classification problem, but can be adapted to regression problems. First, all training data examples are transformed into margin-based feature space, represented as x', using Equation 3.1

$$x'_j = \sum_{l=1}^{z} |x_j - x'_l| - \sum_{k=1}^{h} |x_j - x'_k|,$$

(3.1)

where x_j is the value of input feature j for the example that is being translated into x'_j space, z is the number of examples incorrectly classified, x'_l is the value of input feature j for example l, h is the number of examples correctly classified, x'_k is the value of input feature j for example k. Equation 3.1 is computed across all input features and computed separately
for each training example. The weight of each training example is then determined to be the inverse average distance of that training example to all other training examples. In other words, training examples in sparse regions are assigned lower weights than training examples in dense regions, which decreases the variance error component in FSAs that use the weighted training examples.

Han and Yu conducted experiments to determine if their algorithm increased stability in the features selected by the Support Vector Machine Recursive Feature Elimination (SVM-RFE) FSA. The researchers measured variance in the selected feature weights (across 500 training data sets), and used the Kuncheva index [56] to measure the similarity among the feature subsets selected. Han and Yu concluded that feature weighting significantly increased stability, decreased variance, increased accuracy, and decreased dependency on a large number of training examples.

Saeys et al. leveraged data diversity created by ensemble methods (traditionally applied to MLAs) to propose the concept of Ensemble Feature Selection [47]. Ensemble methods reduce variance by creating artificial data sets from the original training data set. The additional diversity in the data sets reduces variance by making the MLA more resilient to perturbations in the input data. Saeys et al.’s method (henceforth referred to as the Saeys Method) uses bootstrapping to generate additional data sets for the FSA and then averages the resulting rankings of the features identified by the FSAs. We use the Saeys Method for comparison to JENNA, and we discuss the implementation details of the Saeys Method in Section 3.4.2.

A research group at Florida Atlantic University investigated improvements to the Saeys Method [57–60]. Dittman et al. [57] (members of the Florida Atlantic University research group) implemented an improved ensemble feature selection based upon the original ensemble feature selection method, the Saeys Method [47]. In Saeys et al., improved prediction accuracies are the result of creating bootstrapped data sets, i.e., data diversity. Dittman et al. identified two other types of ensemble diversity: (1) functional diversity and (2) hybrid
diversity. Functional diversity uses the same training data set to train various FSA types (i.e., no bootstrapping), and then the rankings identified by each FSA are combined using the mean ranking among the FSAs.

The hybrid method combines data diversity and algorithm diversity by using bootstrapped data sets to train different FSA types. The hybrid method creates ensemble instances by first choosing the algorithm configurations that will be present in the ensemble, then a synthetic data set is created for each ensemble instance using a data diversity method (e.g., bootstrapping). The results of the ensemble instances can then be combined with the same methods that have been previously used for data and algorithm diversity ensembles.

We note that the output type of an FSA can be divided into two categories, (1) ranker FSAs and (2) subset FSAs. Ranker FSAs output a complete rank-ordered list (the rank is based on the relevance of the input feature to the output target value) for all input features; subset FSAs, on the other hand, only output a portion of the input features. FSA types are discussed in more detail in Section 1.5.

Although Dittman et al.’s work is similar to our work (i.e., we use functional diversity in our FSA ensemble), there are several areas where JENNA improves upon the work by Dittman et al. Specifically, our improvements are that:

1. we include different FSA configurations in addition to different FSA types,
2. we allow and account for both ranker FSAs and subset FSAs,
3. our algorithm can be applied to regression problems, and
4. our aggregation algorithm uses error and similarity measurements to weigh robust and accurate FSAs.

Dittman et al. experimented on 26 bioinformatics data sets, but the results are difficult to understand. In particular, similarity values are computed between different approaches to ensemble feature selection (i.e., functional diversity versus hybrid diversity, functional
diversity versus data diversity, and data diversity versus hybrid diversity). We believe, however, that a better measurement would have been to compute the similarity measure among cross-validated folds of the same approach; in this case, the similarity of each approach is measured without interference from other, possibly inferior, approaches.

In both Khoshgoftaar et al.’s and Dittman et al.’s work [59, 60], the Florida Atlantic University research group examined the effect of modifying the feature rank aggregation algorithm beyond the typical mean rank aggregation algorithm (i.e., the mean ranking of a feature among all FSAs is the ensemble’s ranking of that feature). Khoshgoftaar et al. examined using FSAs that produced a score of each feature instead of a rank; then, if a feature shows a much stronger relationship to the output target than the next strongest feature, the scoring metric will show the difference in strength whereas the ranking of the feature will not. We note, however, that the results did not show a clear advantage in choosing ranking or scoring.

Guan et al. published an extensive survey on the state of ensemble feature selection algorithms [61]. Their work divides ensemble feature selection into two categories: (1) creating an ensemble of FSAs and (2) using feature selection to improve the prediction accuracy of a traditional ensemble of MLAs. Our work focuses on the first category, because we want to analyze the features selected rather than increasing the performance of a prediction algorithm. Guan et al. also outlines current feature ranking (or scoring) aggregation algorithms which are: highest rank, lowest rank, average rank, and arithmetic mean. JENNA’s aggregation algorithm (discussed in Section 3.2) improves upon the arithmetic mean aggregation algorithm, which is the most commonly used feature ranking aggregation algorithm.

3.2 JENNA Ensemble Network Normalization Algorithm (JENNA)

JENNA is an FSA ensemble method that seeks to gain information from functional diversity applied to data sets containing a large number of examples. JENNA combines the results of multiple FSAs in a way that maximizes the stability and accuracy of the selected features, while also reducing individual FSA bias; we discuss the bias and variance
components of error, as well as methods to measure bias and variance, in Section 3.5.4.

As a reminder, JENNA varies from Dittman et al.’s recent work [57], because JENNA can utilize FSAs that provide a rank-order of all input features and FSAs that provide a subset of selected features; Dittman et al. can only utilize FSAs that provide a rank-order of all input features, limiting functional diversity in the ensemble. JENNA provides a novel aggregation algorithm that combines rank-order FSAs and subset selection FSAs. Each instance in the JENNA ensemble is a unique configuration of an FSA; in other words, we do not repeat any FSA [type, configuration] tuple in our ensemble, and we do not change the ensemble’s inputs through bootstrapping. Our approach differs from other previous work in the field [47, 55], because previous work implements the same FSA type and configuration with different input data sets. The purpose of varying the input data sets is to reduce the effects of perturbations in small training data sets (i.e., variance) on the output model [45]. Since JENNA focuses on data sets with a large number of examples, these input perturbations do not affect the FSAs as they would in small examples data sets; therefore, we do not explore the hybrid method of Dittman et al. [57].

Because of the magnitude of examples, we are also not concerned about variance among the training examples; we are, however, more concerned with reducing the effects of biases inherent in FSAs. We, therefore, measure variance to ensure that our data has been properly pre-processed (and will, therefore, generalize to other tunneling projects). Methods for measuring bias are focused on MLAs instead of FSAs; however, we use the results of our Validation-MLAs (V-MLAs) to determine the bias and variance in the FSA ensemble selected features. (V-MLAs are further discussed in Section 3.5.5.)

3.3 Experimental Procedure

We list the steps of our experimental procedure for applying the JENNA method and the Saeys method to a data set, and we reference the section(s) where each step is discussed in detail. Our experiment applied the experimental procedure to the Seattle project case studies (discussed in Section 1.4). Figure 3.1 shows a flowchart of the experimental procedure.
1. We first pre-processed the full Seattle project data; we discuss details on pre-processing the data in Section 1.4.2. After the data was pre-processed, we created five cross-validation folds for each tunnel to prevent overfitting the data (i.e., 80% of the data is selected for training, 20% of the data is selected for testing, repeated five times). Details of the cross-validation split are also discussed in Section 1.4.2.

2. We created 40 bootstrapped samples from each of the cross validation training folds. The bootstrapping procedure is described in Section 3.4.2. We only utilized the bootstrapped data when testing the Saeys method, as the Saeys method reduces variance by creating artificial data sets; JENNA, on the other hand, utilizes the original cross validation training data.

3. We trained two ensembles on each Seattle project tunnel: (1) a Saeys Correlation-based Feature Selection (CFS) ensemble and (2) a JENNA ensemble. Table 3.1 describes the FSA type, FSA configuration, and feature search method used to create the FSA instances for each of the ensembles. We note that the FSA instances shown in Table 3.1 were created for each of the five cross-validation folds.

4. We combined the results of each ensemble instance (again, shown in Table 3.1) using the mean feature rank aggregation algorithm (described in Section 3.4.2) for the Saeys Method ensembles, or the JENNA aggregation algorithm (described in Section 3.2) for the JENNA ensembles. The Saeys and JENNA Methods were applied individually to each cross-validation fold; thus, a single, ordered list of input features is produced for each cross-validation fold in each tunnel (i.e., the NB and SB tunnels).

5. We compared the similarity of the features (identified by each FSA ensemble) across the cross validation folds. We used the Jaccard similarity measure for both ensembles. We further discuss the similarity function computations in Section 3.4.2.
Figure 3.1: Flowchart of our experimental procedure for training and testing a Saeys ensemble and a JENNA ensemble with the Seattle project case study data. Abbreviations in parenthesis (i.e., TR, TS, and JA) are the abbreviations for data divisions explained in Figure 3.2.
6. We determined the accuracy of the Saeys Method and JENNA Method selected features by training a Validation-Machine Learning Algorithm (V-MLA) with the cross validation fold’s training data set. (V-MLAs are discussed in Section 3.5.5.) We trained a V-MLA for each cross-validation fold and then determined RMSE using a testing data set. We used the average RMSE and 95% confidence intervals of the five cross-validation folds to determine the bias and variance of each ensemble.

3.4 Methodology

To prove our new FSA ensemble method, JENNA, improves state-of-the-art feature stability methods, we mirrored the methodologies used by Saeys et al. [47] as closely as possible. Instead of using data sets from the bioinformatics domain, we applied the feature stability methods to our case studies from the Seattle project. The small number of examples in bioinformatics data causes researchers to either seek ways of artificially increasing the number of examples (e.g., by using bootstrapping or boosting [47]) or weighting the importance of each example [54]. The Seattle project data contains over 100,000 examples in each of the two tunnels, so perturbations in the examples do not have as large of an effect on the results (assuming only Gaussian white noise is present). Therefore, JENNA utilizes an ensemble of permutations (i.e., FSA instances) of 16 regression FSA types and configurations (see Table 3.1 for a complete listing and see Section 3.5 for a description of each FSA type), rather than an ensemble of bootstrapped examples utilizing the same FSA configuration. By weighting the contribution of various FSA instances, we average or cancel out the biases of the various FSAs while increasing the stability and accuracy of the ensemble’s selected features.

3.4.1 JENNA Aggregation Equation

At JENNA’s core is the aggregation algorithm for combining the rankings of the FSA ensemble. Typically feature rankings are aggregated by selecting each feature’s highest rank, lowest rank, average rank, or the arithmetic mean of the feature’s rank among the
Table 3.1: FSA instances created for each of the five cross validation folds. The number of instances represents how many instances of each FSA type, configuration, and search method tuple were created for the ensemble (indicated by the bold-faced ensemble name above the double line). Section 3.5 describes the FSA types.

<table>
<thead>
<tr>
<th>JENNA Ensemble</th>
<th>FSA Type</th>
<th>FSA Instances</th>
<th>FSA Configuration</th>
<th>Feature Search Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFS</td>
<td>1</td>
<td>Locally Predictive</td>
<td>Best first, backward search</td>
<td></td>
</tr>
<tr>
<td>CFS</td>
<td>1</td>
<td>Not Locally Predictive</td>
<td>Best first, backward search</td>
<td></td>
</tr>
<tr>
<td>CFS</td>
<td>1</td>
<td>Locally Predictive</td>
<td>Best first, forward search</td>
<td></td>
</tr>
<tr>
<td>CFS</td>
<td>1</td>
<td>Not Locally Predictive</td>
<td>Best first, forward search</td>
<td></td>
</tr>
<tr>
<td>CFS</td>
<td>1</td>
<td>Locally Predictive</td>
<td>Greedy stepwise, backward search</td>
<td></td>
</tr>
<tr>
<td>CFS</td>
<td>1</td>
<td>Not Locally Predictive</td>
<td>Greedy stepwise, backward search</td>
<td></td>
</tr>
<tr>
<td>CFS</td>
<td>1</td>
<td>Locally Predictive</td>
<td>Greedy stepwise, forward search</td>
<td></td>
</tr>
<tr>
<td>CFS</td>
<td>1</td>
<td>Not Locally Predictive</td>
<td>Greedy stepwise, forward search</td>
<td></td>
</tr>
<tr>
<td>mRMR</td>
<td>1</td>
<td>mRMRD</td>
<td>Ranker</td>
<td></td>
</tr>
<tr>
<td>mRMR</td>
<td>1</td>
<td>mRMRQ</td>
<td>Ranker</td>
<td></td>
</tr>
<tr>
<td>(l_1)-norm, regularized</td>
<td>1</td>
<td>(\lambda = 0.25 \times \lambda_{max})</td>
<td>Ranker</td>
<td></td>
</tr>
<tr>
<td>(l_1)-norm, regularized</td>
<td>1</td>
<td>(\lambda = 0.5 \times \lambda_{max})</td>
<td>Ranker</td>
<td></td>
</tr>
<tr>
<td>(l_1)-norm, regularized</td>
<td>1</td>
<td>(\lambda = 0.7 \times \lambda_{max})</td>
<td>Ranker</td>
<td></td>
</tr>
<tr>
<td>Saeys Method CFS Ensemble</td>
<td>CFS</td>
<td>40</td>
<td>Not Locally Predictive</td>
<td>Best first, forward search</td>
</tr>
</tbody>
</table>
FSA instances in the FSA ensemble [61]. JENNA’s aggregation method utilizes the feature’s arithmetic mean ranking; however, the mean ranking is also weighted by the similarity score of the feature within the ensemble and the predicted error of the FSA that selected the feature. To determine a predicted error without overfitting the data set, we implemented more data splits to the common training, testing, and validation data splits. Figure 3.2 shows how JENNA splits the data set; the abbreviations used for the data splits in Figure 3.2 are also annotated in the flowchart of our experimental procedure (Figure 3.1). The data division abbreviations are also used in JENNA’s aggregation function (Equation 3.2).

Figure 3.2: Illustration of the division of data within our experiment. The large, solid rectangle represents the full data set for one cross validation fold. TR represents training data, TS represents testing data, and JA represents validation data only used by the JENNA method (i.e., the Saeys method never uses this piece of the data). Note that the JENNA aggregation equation and V-MLA (Step 6) further splits its associated data into training and testing data (represented by the dashed rectangle) to prevent overfitting.
Equation 3.2 shows the novel feature rank aggregation equation used by the JENNA method:

\[
W(f^l) = \begin{cases}
\frac{1}{k} \left[\sum_{i=1}^{k} (f^l_i) \right] & \text{if } f^l_i \in \text{ranker FSA, or} \\
\frac{1}{k} \left[\sum_{i=1}^{k} (f^l_i) \right] & \text{if } f^l_i \in \text{subset FSA}
\end{cases}
\]

where \(W(f^l)\) is the JENNA weight of feature \(f^l\) (lower weights indicate better features), \(k\) is the number of FSA instances in the ensemble, \(f^l_i\) is the rank of \(f^l\) in FSA instance \(i\), \(J(\cdot)\) is a cost function, \(x^{JA}_i\) and \(y^{JA}_i\) are the validation data set and the output target values, respectively (illustrated as the “JA” portion of the cross validation fold in Figure 3.2), \(x^{JA}_i\) only contains the input data of features selected by the FSA instance \(i\), \(|cv|\) is the number of cross validation folds, \(f^a_i\) is a vector of the features selected by FSA instance \(i\) at cross validation fold \(a\), \(f^b_i\) is a vector of the features selected by FSA instance \(i\) at cross validation fold \(b\), \(S_{sp}(\cdot)\) is the Spearman similarity function, and \(S_{ja}(\cdot)\) is the Jaccard similarity function. The Spearman and Jaccard similarity functions are discussed in Section 3.4.2. \(W(\cdot)\) is computed for all input features.

In other words, JENNA first finds the arithmetic mean rank of each selected feature. The cost function \(J(\cdot)\) is computed for each FSA instance by training an Ordinary Least Squares (OLS) Linear Regression MLA utilizing validation data (“JA” in Figure 3.2)\(^7\). The average Area over the Curve (AOC) of the Regression Error Characteristic (REC) curve [62] is used in our cost function implementation, which gives a result in the range \([0, 1]\) where smaller values indicate less error. The AOC function could be replaced with another error function that outputs error values in the same range, such that smaller values indicate lower error.

\(^7\)The validation data set (“JA”) only contains data from the features selected by the FSA.
We modified the Saeys stability function that we discuss in Section 3.4.2, Equation 3.3, so that we could measure the stability in each FSA instance rather than the stability of the entire ensemble. Our stability equation includes the Spearman similarity equation for rank-order FSA instances (Equation 3.4) and the Jaccard similarity equation for subset FSA instances (Equation 3.5).

Once we computed the weight $W(f^i)$ of all input features F, the weights were ordered in ascending order, where the lowest feature weight is the most important feature. The ensemble’s feature rankings were then used to train and test V-MLAs (discussed in Section 3.5.5) to analyze the accuracy, bias, and variance of the ensemble selected features.

3.4.2 Saeys Method

We compare the results from our JENNA Method ensemble to the results of a Saeys Method ensemble, because it is the state-of-the-art method in the field; the Saeys Method is also a reproducible method due to the availability of its source code. We apply the Saeys Method and JENNA Method to the Seattle project data set to see if the JENNA Method’s performance can improve upon the Saeys Method performance in large example data sets.

In Saeys et al. [47], the authors’ ensemble weighting method outperformed a single FSA in terms of the stability of the selected features. Unfortunately, the prediction accuracy of the selected features was not measured, and a high stability metric does not necessarily correlate with high accuracy. For each of the Seattle project tunnels we created two ensembles of 40 FSA instances (called “bags” by Saeys et al.). In Saeys et al., an ensemble of 40 instances (or bags) was created for each of the following FSAs: (1) Symmetric Uncertainty, (2) RELIEF, (3) Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and (4) Random Forest. We implemented the Saeys Method on the Seattle project data set by creating an ensemble of 40 instances using CFS [42]. The FSAs used to create our ensembles varied from Saeys et al. original work; specifically, the EPBM advance rate prediction problem is a regression problem, while Saeys et al. looked at classification problems. We did not implement the regression version of SVM-RFE because the processing time was too large.
for the size of our data set; we also did not implement RELIEF because the processing time was large and it is a less accurate algorithm. CFS was chosen for its fast processing speed and the high accuracy of CFS we found in the SB tunnel in our prior work (see Chapter 2).

When implementing CFS for the Saeys Method, we selected configuration parameters that worked best in our prior FSA work. In the Saeys Method CFS ensemble, we selected the best first subset search method; we note that the best first and greedy stepwise subset search performed exactly the same in our prior work. We also disabled the locally predictive option in CFS, because our prior work showed that the FSA instances with locally predictive search enabled performed worse than when locally predictive was disabled.

As discussed, each FSA instance in the Saeys Method is exactly the same type and configuration; only the examples that are inputted to the FSA are different (i.e., Saeys method only implements data diversity). To implement data diversity, we created 40 artificial data sets using the same bagging method implemented in Saeys et al. [47]. The data set for each FSA instance are exactly the same size as the original data set (i.e., the training data set discussed in Section 1.4.2). Training examples were selected at random, using the standard Java package `java.util.Random` with a seed, and we allowed training examples to be repeated in the ensemble instance’s data set. Each instance was then trained by the ensemble’s FSA method, using 1 of the 40 “bags,” i.e., one of the training data sets that resulted from bootstrapping the original training data set.

In order to assess the stability of the features selected by the ensemble, the stability metric by Saeys, et al. was computed using Equation 3.3:

$$S_{tot} = \frac{2 \sum_{i=1}^{k} \sum_{j=i+1}^{k} S(f_i, f_j)}{k(k - 1)},$$ \hspace{1cm} (3.3)

where k is the number of instances in the FSA ensemble, $S(\cdot)$ is a similarity function, f_i represents the features selected by ensemble instance i, and f_j represents the features selected by ensemble instance j. In other words, the stability score was computed by averaging the pairwise comparison of each instance in the ensemble to every other instance in the ensemble.
Several similarity functions exist; we chose to use the same similarity functions used in Saeys et al.. Specifically, we used the Spearman similarity function on FSAs that rank-order the features, and we used the Jaccard similarity function for FSAs that select a subset of the features (i.e., CFS). Equation 3.4 is the Spearman similarity function:

\[
S(f_i, f_j) = 1 - 6 \sum_{l=1}^{n} \frac{(f^l_i - f^l_j)^2}{k(k^2 - 1)},
\]

where \(n\) is the number of input features, \(k\) is the number of instances in the FSA ensemble, \(f^l_i\) represents the rank of feature \(l\) from the features selected by FSA ensemble instance \(i\), and \(f^l_j\) represents the rank of feature \(l\) from the features selected by FSA ensemble instance \(j\). The Jaccard similarity function, shown in Equation 3.5, examines whether a feature is a member of the subset selected by an instance or not.

\[
S(f_i, f_j) = \frac{|f_i \cap f_j|}{|f_i \cup f_j|},
\]

where \(|f_i \cap f_j|\) is the number of features selected by both FSA instance \(f_i\) and FSA instance \(f_j\), and \(|f_i \cup f_j|\) is the number of features selected by FSA instance \(f_i\) or FSA instance \(f_j\) (i.e., the total number of features selected by the FSA instances).

In addition to computing the similarity values of the Saeys Method ensembles, we measured the accuracy of the features selected, because, as discussed previously, a feature set with high stability does not necessarily correlate with high accuracy. We trained V-MLAs based on the features that were selected by the Saeys Method ensemble to determine the accuracy that the selected features provide. (V-MLAs are discussed in Section 3.5.5.) Saeys Method V-MLAs are trained and tested with the same data as the JENNA Method V-MLAs to ensure an accurate error comparison result.

3.5 JENNA FSA Types

In our implementation of JENNA we created instances of the FSAs listed in Table 3.1. In this section, we describe each FSA type and how the FSA type determines the importance of the relationship between an input feature and the output target value. The biases of each
FSA type are also discussed, showing how these biases contribute diversity to the JENNA ensemble.

3.5.1 Correlation Based Feature Selection (CFS)

CFS is an FSA that identifies features that are highly-correlated to the output target value, but are not correlated to other variables [42]. CFS assumes that redundancy does not improve prediction accuracy and, therefore, seeks to remove redundant and irrelevant features; therefore, CFS is biased towards non-redundant features. The evaluation function used by CFS is given in Equation 1.9. Pearson’s Correlation Coefficient is used to calculate r_{cf} and r_{ff}, and the output class can be a continuous value. CFS is only the subset evaluation function; any search method, starting point, and halting criteria can be used with CFS to search the input feature space. See the end of Section 1.5.2 for more details on CFS. Unlike the work in Chapter 2, our work herein uses CFS with and without locally predictive search.

3.5.2 mRMR

Minimum-Redundancy-Maximum-Relevance criteria (mRMR) is an FSA that seeks to identify input features strongly related to the output target value and to eliminate redundant input features that may confuse an MLA prediction algorithm [63]. Relevance of an input feature to the output target value is determined by the Mutual Information Criterion (defined in Equation 3.6), which uses the probabilistic densities of an input feature and the output target to determine relevance:

$$I(x; y) = \int \int_x \int_y p(x, y) \log \left(\frac{p(x, y)}{p(x)p(y)} \right) dx dy,$$

(3.6)

where $I(x; y)$ is the mutual information criterion value for the random variables x and y, x is an input feature vector, y is the output target vector, $p(x)$ and $p(y)$ are the probabilistic densities of x and y, respectively, and $p(x, y)$ is the joint probabilistic density of x and y. Equation 3.6 is applied in Equation 3.7 in order to determine the set of input features with the maximum dependence value between the identified set of input features and the output
target value:

\[D = \frac{1}{|S|} \sum_{x_i \in S} I(x_i, y), \]

(3.7)

where \(D \) is the dependency (i.e., the average mutual information criteria value) of the output target value \(y \) on the input feature \(x_i \), \(|S|\) is the size of the feature set \(S \) (where \(S \subset X \) and \(X \) is the set of all input features), and \(x_i \) is the \(i \)th feature in \(S \). mRMR also seeks to remove redundant features from the selected subset \(S \); Equation 3.8 determines the redundancy within \(S \):

\[R = \frac{1}{|S|^2} \sum_{x_i, x_j \in S} I(x_i, x_j), \]

(3.8)

where \(R \) is the redundancy within a set of input features \(S \), and \(x_i, x_j \) are input feature vectors that are in \(S \) (\(1 \leq i \leq |S|, 1 \leq j \leq |S| \)). Once the dependency and redundancy of every possible \(S \in X \) are computed, the mRMR criterion value is computed for each set \(S \) and the maximum value is then the selected input feature subset. There are two versions of mRMR: (1) mutual information difference (mRMRD) and (2) mutual information quotient (mRMRQ). Equation 3.9 shows the computation of the mRMRD criterion value:

\[\Phi_D = D - R, \]

(3.9)

where \(\Phi_D \) is the mRMRD criterion value and \(D \) and \(R \) are previously defined. Equation 3.10 shows the computation of the mRMRQ criterion value (\(\Phi_Q \)):

\[\Phi_Q = D/R, \]

(3.10)

where \(D \) and \(R \) are previously defined. mRMR has a low computation time to identify a relevant, non-redundant set of input features; therefore, it is an ideal FSA to use within an ensemble method. mRMR also adds a bias towards non-redundant features, and, through the mutual information criteria, mRMR considers the probabilistic density of the output target value in addition to the relationship between the input feature and the output target value.
3.5.3 \(l_1\)-norm

Least Absolute Shrinkage and Selection Operator (LASSO) regression is an FSA that utilizes the \(l_1\)-norm to select an optimal subset of input features [64]. When an Ordinary Least Squares (OLS) regression is fitted to a training data set it can become overfitted from assigning a weight to each input feature. LASSO (i.e., \(l_1\)-norm) regression induces sparsity in the OLS fitted regression by adding an \(l_1\)-norm regularization term. The first part of Equation 3.11 is the OLS regression equation and the “subject to” part is the regularization term:

\[
(\hat{\alpha}, \hat{\beta}) = \min \left(\sum_{i=1}^{M} \left(y_i - \alpha - \sum_{j=1}^{N} \beta_j x_{ij} \right)^2 \right) \quad \text{subject to} \sum_{j} |\beta_j| \leq \lambda, \tag{3.11}
\]

where \((\hat{\alpha}, \hat{\beta})\) is the LASSO estimated sparse feature weights, \(M\) is the number of examples (i.e., measurements), \(y_i\) is the output target value for example \(i\), \(\alpha\) is a bias term, \(N\) is the number of input features, \(\beta_j\) is the weight of input feature \(j\), \(x_{ij}\) is the value of example \(i\) at input feature \(j\), and \(\lambda\) is a tuning parameter. Equation 3.12 shows the matrix form of LASSO regression, which uses the \(l_1\)-norm to regularize the OLS regression:

\[
\min_{\beta} \frac{1}{2}||\beta X - y||_2^2 + \lambda||X||_1, \tag{3.12}
\]

where \(\beta\) is a vector of input feature weights, \(X\) is an \(m \times n\) matrix of input data, \(y\) is a vector of output target values, \(||\cdot||_2^2\) is \(l_2\)-norm squared, \(\lambda\) is the tuning parameter, and \(||\cdot||_1\) is the \(l_1\)-norm. The regularization tuning parameter can be adjusted (and is adjusted in our experiments) to increase the sparsity of the input feature weights (if \(\lambda\) is increased) or to decrease the sparsity of the input feature weights (if \(\lambda\) is decreased).

We use the \(l_1\)-norm FSA in our experiments because the sparsity inducing properties decrease variances in prediction accuracy from a training data set to a testing data set. The sparse input features are, therefore, biased towards a more general set of input features. Some of the trials in our experiments also include a non-negative constraint, which means that the weights (\(\beta\)) are not allowed to be negative.
3.5.4 Bias and Variance in FSAs and MLAs

In our work, we are seeking stable features with a minimal error rate. The error rate can be decomposed into three components: (1) measurement noise, (2) variance, and (3) bias [65]. This error rate is represented in Equation 3.13:

\[
\text{error} = \text{noise} + \text{bias} + \text{variance}.
\]

Equation 3.14 computes the variance component of the error rate:

\[
\text{variance} = \sqrt{(y_H - \overline{y_H})^2},
\]

where \(y_H\) represents the hypothesis function identified by the MLA, i.e., \(y_H\) is the output value of a testing example, and \(\overline{y_H}\) is the average output value of all testing examples.

Noise is often difficult or impossible to measure, because the true output value (i.e., the output value without error) must be known. Noise is defined as the distance between the observed output value and the actual output value in Equation 3.15:

\[
\text{noise} = \sqrt{(y_F - y)^2},
\]

where \(y_F\) is the observed output value and \(y\) is the actual output value. Bias is measured as the distance between the hypothesis output value and the observed output value. Equation 3.16 computes the bias error component:

\[
\text{bias} = \sqrt{(\overline{y_H} - y_F)^2},
\]

where \(\overline{y_H}\) is the average output value of the MLA generated hypothesis function for all examples, and \(y_F\) is the measured output value. We use the RMSE function to measure bias, because it is a common bias measurement across TBM projects.

There are several common methodologies for estimating an MLA’s bias, even though the ideal function is not known [65, 66]. Kohavi and Wolpert created a method to estimate bias in real-world classification problems, but Kohavi and Wolpert’s equations (Equations 3.13, 3.14, and 3.16) can also be applied to regression problems. We found the details of their methodology unclear in their paper; however, since the method is also included in the MLC++ source
code [67], we were able to learn how it works. Our description of Kohavi and Wolpert’s method is a result of [65] and the MLC++ source code [67].

1. The data set is divided into a training data set and a testing data set.

2. Then, N data sets are generated from the training data set using uniform random sampling without replacement.

3. Finally, an MLA is trained on each of the N data sets and the error is computed as the sum of the N data sets.

The variance term and bias term can be computed for each of the N data sets individually and then averaged, but the bias term requires the average output value across the N data sets in order to estimate the ideal function. Kohavi and Wolpert use the probability distributions in Equation 3.17 to estimate the MLA’s divergence from the ideal function, i.e., the bias:

$$
\sum_d P(d|f, m, x) P(Y_H = y|d, x),
$$

where $P(d|f, m, x)$ is the probability of the training example d occurring in the underlying, ideal function f (given a training set of size m), and $P(Y_H = y|d, x)$ is the probability that the MLA’s output value ($Y_H = y$) will result from the example d’s input feature values x. In a classification problem, with discrete input features and output values, the probability distributions are counts of the input feature and output target values. In a regression problem, the probability distributions are distances from the average output values of the N data sets. Kohavi and Wolpert discuss that their method for estimating bias is upwardly biased for a small N, i.e., the number of data sets generated within the training data set. The authors propose a method to remove the bias estimator’s bias. But, again, the value of the ideal function must be known. To avoid this bias, due to a small N, we use the largest N that is computationally possible.

Abu-Mostafa et al. further expands on using the average of hypotheses generated by an MLA to estimate bias and variance [68]. Abu-Mostafa et al. creates an average function,
\(\hat{g}(x) \), which represents the average of hypotheses generated from the same MLA across multiple data sets. In our implementation, these data sets were generated through cross-validation. Utilizing the average function, the bias equation is

\[
bias = (\hat{g}(x) - f(x))^2
\]

(3.18)

and the variance is

\[
var(x) = E_D[(g^{(D)}(x) - \hat{g}(x))^2],
\]

(3.19)

where \(f(x) \) is the ideal function modeling the data \(x \), \(x \) is a matrix of the input data, \(g^{(D)}(x) \) is the set of hypotheses generated from the same MLA across the datasets \(D \), \(D \) represents the set of generated data sets, and \(E_D \) is the expected value across all generated data sets.

3.5.5 Validation-Machine Learning Algorithms (V-MLA)

Our work seeks to not only identify robust input features, but also to identify accurate input features. To measure the accuracy of FSA ensemble selected input features, we can use any MLA to create a model where only data from the selected input features is used to train and test an MLA. These MLAs then serve as our measurement of the selected input features’ accuracy, bias, and variance, and are referred to as Validation-Machine Learning Algorithms (V-MLAs).

The V-MLAs only use testing data (to avoid bias induced by repeating examples that trained an FSA) in measuring the accuracy of selected features. Discussed in Section 3.2, the testing data set used to train the V-MLA is the cross validation testing data not used in the cost function term of the JENNA algorithm (i.e., 10% of the original cross validation data set).

For each set of features identified by an ensemble, subsets of the best performing 10, 15, 20, 25, 30, 35, 40, 45, and 50 features were created, and these subsets were used to train nine V-MLAs (one V-MLA for each subset). CFS only identifies a subset of important features rather than ranking all input features; thus, all V-MLA subset sizes larger than the number of features identified by the CFS instance were only trained with the features selected by
the CFS instance. The Saeys Method ensemble only trains with CFS FSAs, which resulted in less than 50 features for some cross validation folds; however, JENNA was always trained with at least one instance of a ranker FSA, so all V-MLA feature subsets were created when evaluating JENNA’s performance. We trained an Ordinary Least Squares MLA because of its fast training time (compared with other MLAs, such as Regression Support Vector Machines).

3.6 Consistency and Repeatability

We created a custom Java software package called JENNA on Java (JJ) to run our experiments. The purpose of this software package is to (1) create a repeatable procedure for validating our results, (2) create a modular framework for adding new algorithms for comparison to already included feature selection algorithms, and (3) ensure the exact same procedures are applied to all data sets. The Saeys Method was programmed into JJ, using the Java-ML ensemble feature selections source code as a reference [69]. Specifically, we programmed the bootstrap method used by Saeys et al. into JJ, and we integrated the Spearman and Jaccard similarity algorithms to evaluate the similarities of the ensembles. We added a module for computing the Area Over the Curve (AOC) for the Regression Error Characteristic (REC) curve, as described by Bi et al. [62]. We also implemented our JENNA algorithm (discussed in detail in Section 3.2) into JJ. Our Java package is multithreaded and uses a minimal memory profile; thus, an ensemble of FSAs running on a large data set can be run on a multicore system in parallel without overflowing the system memory.

3.7 Experimental Results

The results of our experiments show that applying the JENNA Method ensemble to the Seattle project case studies decreases bias, decreases variance, and improves feature stability when compared to the state-of-the-art Saeys Method. To prove JENNA’s performance we show the results of training V-MLAs with the input features identified by the JENNA and Saeys Methods. After training the JENNA Method and Saeys Method ensembles (using the
workflow in Figure 3.2), we trained V-MLAs with the top 10, 15, 20, 25, 30, 35, 40, 45, and 50 features in the JENNA and Saeys Method ensembles. The V-MLA that produced the lowest average RMSE (across the five cross-validation folds) was selected as the best feature set for each ensemble method.

We illustrate the average RMSE of the JENNA and Saeys Methods in Figure 3.3 and Figure 3.4, for the NB and SB tunnels, respectively. In both figures, the red, solid line represents the Saeys Method ensemble, and the blue, dashed line represents the JENNA Method ensemble; the x-axis represents the number of top features used to train the V-MLA and the y-axis represents the RMSE in $\frac{mm}{sec}$. The error bars represent the standard deviation, based on the RMSE values of the five cross validation folds.

![Figure 3.3: Chart of the V-MLA error versus the number of selected features used to train the V-MLA for the JENNA Method and the Saeys Method ensembles in the NB tunnel. The average RMSE, across all five cross validation folds, is represented by the red and blue lines, and the variance (i.e., standard deviation) among the folds is represented by the error bars.](image-url)
Figure 3.4: Chart of the V-MLA error versus the number of selected features used to train the V-MLA for the JENNA Method and the Saeys Method ensembles in the SB tunnel. The average RMSE, across all five cross validation folds, is represented by the red and blue lines, and the variance (i.e., standard deviation) among the folds is represented by the error bars.
From Figure 3.3, in the NB tunnel, the JENNA Method performs best with 50 features and the Saeys Method performs best with 10 features. From Figure 3.4, in the SB tunnel, the JENNA Method performs best with 50 features and the Saeys Method performs best with 10 features. Because JENNA consistently identified more features (with similar or better error readings) than the Saeys Method, the JENNA Method appears to identify a more complex set of features; furthermore, as Figure 3.3 and Figure 3.4 illustrate, the more complex model identified by JENNA outperforms the simpler model identified by the Saeys Method.

The error bars in Figure 3.3 and Figure 3.4 illustrate 95% confidence intervals for the V-MLA error, measured across the five cross validation folds. In the NB tunnel (Figure 3.3), JENNA’s best average RMSE was $0.385 \, \text{mm sec}$ with a confidence interval of ± 0.005 (at 50 selected input features), which was better than the Saeys method best average RMSE of $0.393 \, \text{mm sec}$, with a confidence interval of ± 0.001 (at 10 selected input features). We conclude that our JENNA method outperformed the Saeys method in the NB tunnel, because (1) JENNA’s best average RMSE was less than the Saeys method best average RMSE and (2) the confidence intervals of the two ensemble methods do not overlap.

In Figure 3.3, the performance of the Saeys method significantly degrades when more than 20 Saeys selected features are used to train the V-MLA in the NB tunnel. We investigated the Saeys method identified features ranked #21 to #30 to understand the relationship between these features and the EPBM’s advance rate. The identified features were: Bentonite injection pipe status indicators and status indicators for air compressor and solution pumps. Saeys likely overfitted the training data by identifying these status indicators, which, in turn, caused the Saeys method performance to degrade when training the V-MLA with more than 20 features. A similar situation occurred in the SB tunnel (Figure 3.4) when more than 25 Sayes selected features were used to train the V-MLA. The Saeys method also identified status sensors for the Bentonite injection pipes, back fill device, and cutterhead face rotation direction. The exception to the status sensors was the #1 additive flow sensor that was identified in two of the five cross validation folds. Again, Saeys likely overfitted
the sensor status readings, which did not generalize well to the testing data, causing the
significant RMSE increase when the V-MLA was trained with greater than 25 features in
the SB tunnel.

In the SB tunnel (Figure 3.4), the best average RMSE for the JENNA Method was
0.314 \(\text{mm sec} \), with a confidence interval of \(\pm 0.002 \) (at 50 selected input features), and the best
average RMSE for the Saeys Method was 0.310 \(\text{mm sec} \), with a confidence interval of \(\pm 0.003 \)
(at 10 selected input features). Because the confidence intervals overlap, we conclude the
two methods performed similarly in the SB tunnel. Although the accuracy measurements of
the JENNA method and Saeys Method were similar in the SB tunnel, the JENNA method’s
similarity measurements performed much better in both tunnels.

Specifically, we analyzed the stability of the chosen features for the JENNA Method
and Saeys Method using the stability equation show in Equation 3.3. We used the Jaccard
similarity equation (Equation 3.5) to compute the similarity of the features in the selected
subsets across the JENNA Method and Saeys Method ensembles. Because of JENNA’s novel
aggregation algorithm, the JENNA Method was able to identify features that were very stable
across cross validation folds and highly accurate. Table 3.2 compares the similarity values
resulting from the analysis of stability in the JENNA and Saeys Methods.

Table 3.2: Comparison of the similarity of the features selected by the JENNA and Saeys
methods across the five cross validation folds.

<table>
<thead>
<tr>
<th>Tunnel Name</th>
<th>JENNA</th>
<th>Saeys</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>1.0000</td>
<td>0.8283</td>
</tr>
<tr>
<td>SB</td>
<td>1.0000</td>
<td>0.7903</td>
</tr>
</tbody>
</table>

3.7.1 JENNA FSA Instance Performance Analysis

JENNA’s primary objective is to identify a robust, compact, and accurate set of input
features that most impact the output target value. JENNA achieved maximum similarity
among cross-validation folds (1.0) and an RMSE similar to the best performing FSA instance.
To better understand how JENNA utilizes the FSA instances Table 3.3 and Table 3.4 shows
the testing error (i.e., RMSE) of each FSA trained in the JENNA ensemble. JENNA balances input feature similarity (i.e., robustness) with accuracy; in other words, JENNA’s accuracy may not be the best RMSE among the FSA instances, but the best possible stability was achieved with high accuracy.

3.7.2 JENNA Selected EPBM Machine Parameter Analysis

We list the first 50 machine parameters (i.e., input features) selected by JENNA in both the NB and SB tunnels of the Seattle project case study in Table 3.5, because the V-MLAs trained by the first 50 JENNA identified features returned the lowest error. Machine parameters in Table 3.5 are ordered by importance, with the most important machine parameter listed first. In Table 3.5, machine parameters selected by JENNA across both tunnels are highlighted in yellow. The 25 yellow highlighted features are consolidated into Table 3.6 (i.e., only machine parameters selected by JENNA in both tunnels are listed). We highlight this set of EPBM machine parameters as they can be generalized to other projects.

In this section, we closely examine the machine parameters that are similar across both Seattle project case studies, in order to potentially improve the efficiency of EPBMs in future tunneling projects. To understand how the JENNA identified machine parameters impact the advance rate, we analyze the case-study data further. We use three dimensional histograms to compare each machine parameter to the EPBM’s advance rate. In each histogram, the x-axis represents the machine parameter, the y-axis represents the advance rate, and the z-axis represents the number of measurements in each \(x,y\) histogram bin. Although the machine parameters were standardized when applying the JENNA method, we note the machine parameter values shown on the x-axis of the histograms in this section are the actual, measured values. Also, the histograms show the entire data set (recorded in the NB and SB tunnels) with the negative and outlier advance rate measurements removed.

Contractors who worked on the Seattle project stated that the SB excavation went smoother than the NB tunnel, because they were learning the soil conditions during the NB excavation [70]. Although the SB excavation went smoother, the NB tunnel exhibited
Table 3.3: Average RMSE of each FSA instance in the JENNA ensemble, in the NB tunnel. The Average RMSE \(\frac{mm}{sec} \) column shows the average RMSE across the five cross validation folds. JENNA’s best RMSE is 0.385 \(\frac{mm}{sec} \).

<table>
<thead>
<tr>
<th>FSA Type</th>
<th>FSA Configuration</th>
<th>Feature Search Method</th>
<th>Average RMSE (\frac{mm}{sec})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFS</td>
<td>Locally Predictive</td>
<td>Best first, backward search</td>
<td>0.389</td>
</tr>
<tr>
<td>CFS</td>
<td>Not Locally Predictive</td>
<td>Best first, backward search</td>
<td>0.389</td>
</tr>
<tr>
<td>CFS</td>
<td>Locally Predictive</td>
<td>Best first, forward search</td>
<td>0.389</td>
</tr>
<tr>
<td>CFS</td>
<td>Not Locally Predictive</td>
<td>Best first, forward search</td>
<td>0.387</td>
</tr>
<tr>
<td>CFS</td>
<td>Locally Predictive</td>
<td>Greedy stepwise, backward search</td>
<td>0.409</td>
</tr>
<tr>
<td>CFS</td>
<td>Not Locally Predictive</td>
<td>Greedy stepwise, backward search</td>
<td>0.474</td>
</tr>
<tr>
<td>CFS</td>
<td>Locally Predictive</td>
<td>Greedy stepwise, forward search</td>
<td>0.388</td>
</tr>
<tr>
<td>CFS</td>
<td>Not Locally Predictive</td>
<td>Greedy stepwise, forward search</td>
<td>0.388</td>
</tr>
<tr>
<td>mRMR</td>
<td>mRMRD</td>
<td>Ranker</td>
<td>0.381</td>
</tr>
<tr>
<td>mRMR</td>
<td>mRMRQ</td>
<td>Ranker</td>
<td>0.383</td>
</tr>
<tr>
<td>(l_1)-norm, regularized</td>
<td>(\lambda = 0.25 \times \lambda_{max})</td>
<td>Ranker</td>
<td>0.399</td>
</tr>
<tr>
<td>(l_1)-norm, regularized</td>
<td>(\lambda = 0.5 \times \lambda_{max})</td>
<td>Ranker</td>
<td>0.399</td>
</tr>
<tr>
<td>(l_1)-norm, regularized</td>
<td>(\lambda = 0.7 \times \lambda_{max})</td>
<td>Ranker</td>
<td>0.400</td>
</tr>
<tr>
<td>(l_1)-norm, regularized, non-negative constraint</td>
<td>(\lambda = 0.25 \times \lambda_{max})</td>
<td>Ranker</td>
<td>0.399</td>
</tr>
<tr>
<td>(l_1)-norm, regularized, non-negative constraint</td>
<td>(\lambda = 0.5 \times \lambda_{max})</td>
<td>Ranker</td>
<td>0.401</td>
</tr>
<tr>
<td>(l_1)-norm, regularized, non-negative constraint</td>
<td>(\lambda = 0.7 \times \lambda_{max})</td>
<td>Ranker</td>
<td>0.395</td>
</tr>
</tbody>
</table>

108
Table 3.4: Average RMSE of each FSA instance in the JENNA ensemble, in the SB tunnel. The Average RMSE \(\frac{mm}{sec} \) column shows the average RMSE across the five cross validation folds. JENNA’s best RMSE is 0.314 \(\frac{mm}{sec} \).

<table>
<thead>
<tr>
<th>FSA Type</th>
<th>Feature Search Method</th>
<th>FSA Configuration</th>
<th>Search Method</th>
<th>Average RMSE (\frac{mm}{sec})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFS</td>
<td>Best first, backward search</td>
<td>Locally Predictive</td>
<td>Best first, backward search</td>
<td>0.310</td>
</tr>
<tr>
<td>CFS</td>
<td>Best first, backward search</td>
<td>Not Locally Predictive</td>
<td>0.309</td>
<td></td>
</tr>
<tr>
<td>CFS</td>
<td>Best first, forward search</td>
<td>Locally Predictive</td>
<td>0.308</td>
<td></td>
</tr>
<tr>
<td>CFS</td>
<td>Best first, forward search</td>
<td>Not Locally Predictive</td>
<td>0.308</td>
<td></td>
</tr>
<tr>
<td>CFS</td>
<td>Greedy stepwise, backward search</td>
<td>Locally Predictive</td>
<td>0.324</td>
<td></td>
</tr>
<tr>
<td>CFS</td>
<td>Greedy stepwise, backward search</td>
<td>Not Locally Predictive</td>
<td>0.376</td>
<td></td>
</tr>
<tr>
<td>CFS</td>
<td>Greedy stepwise, forward search</td>
<td>Locally Predictive</td>
<td>0.310</td>
<td></td>
</tr>
<tr>
<td>CFS</td>
<td>Greedy stepwise, forward search</td>
<td>Not Locally Predictive</td>
<td>0.310</td>
<td></td>
</tr>
<tr>
<td>mRMR</td>
<td>Ranker</td>
<td>mRMRD</td>
<td>0.308</td>
<td></td>
</tr>
<tr>
<td>mRMR</td>
<td>Ranker</td>
<td>mRMRQ</td>
<td>0.306</td>
<td></td>
</tr>
<tr>
<td>(l_1)-norm, regularized</td>
<td>Ranker</td>
<td>(\lambda = 0.25 \times \lambda_{max})</td>
<td>0.316</td>
<td></td>
</tr>
<tr>
<td>(l_1)-norm, regularized</td>
<td>Ranker</td>
<td>(\lambda = 0.5 \times \lambda_{max})</td>
<td>0.314</td>
<td></td>
</tr>
<tr>
<td>(l_1)-norm, regularized</td>
<td>Ranker</td>
<td>(\lambda = 0.7 \times \lambda_{max})</td>
<td>0.315</td>
<td></td>
</tr>
<tr>
<td>(l_1)-norm, regularized, non-negative constraint</td>
<td>Ranker</td>
<td>(\lambda = 0.25 \times \lambda_{max})</td>
<td>0.317</td>
<td></td>
</tr>
<tr>
<td>(l_1)-norm, regularized, non-negative constraint</td>
<td>Ranker</td>
<td>(\lambda = 0.5 \times \lambda_{max})</td>
<td>0.313</td>
<td></td>
</tr>
<tr>
<td>(l_1)-norm, regularized, non-negative constraint</td>
<td>Ranker</td>
<td>(\lambda = 0.7 \times \lambda_{max})</td>
<td>0.315</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.5: Top 50 EPBM machine parameters selected by JENNA in the NB and SB tunnels. Machine parameters selected by JENNA in both tunnels are highlighted in yellow.

<table>
<thead>
<tr>
<th>NB Tunnel</th>
<th>SB Tunnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution Vol (Ring) m³</td>
<td>Solution Vol (Ring) m³</td>
</tr>
<tr>
<td>Additive Flow PV 1/min</td>
<td>Cutter Torque kNm</td>
</tr>
<tr>
<td>Foam Vol (Ring) m³</td>
<td>Additive Vol (Ring) m³</td>
</tr>
<tr>
<td>Excavation Length m</td>
<td>Chamber Bottom Ave Bar</td>
</tr>
<tr>
<td>Cutter Torque kNm</td>
<td>Bentonite m³</td>
</tr>
<tr>
<td>Additive Vol (Ring) m³</td>
<td>Foam Flow PV 1/min</td>
</tr>
<tr>
<td>Bentonite m³</td>
<td>Ave Cutter Motor Torque (Power) %</td>
</tr>
<tr>
<td>#2 Copy Cutter Position deg</td>
<td>#2 Additive Flow lit/min</td>
</tr>
<tr>
<td>#3 Solution Pressure bar</td>
<td>Flow Air Line 4 m³</td>
</tr>
<tr>
<td>Tail Void m³</td>
<td>#1 Foam Flow lit/min</td>
</tr>
<tr>
<td>#1 Copy Cutter Stroke mm (1)</td>
<td>Tail Void m³</td>
</tr>
<tr>
<td>#4 Solution Flow lit/min</td>
<td>Screw Conveyor Outlet 1 Min Bar</td>
</tr>
<tr>
<td>Screw Conveyor Outlet 1 Ave Bar (1)</td>
<td>#2 Copy Cutter Position deg</td>
</tr>
<tr>
<td>#2 Gate Stroke %</td>
<td>#3 Solution Pressure bar</td>
</tr>
<tr>
<td>Horizontal-Displace (Tail) mm/Ring</td>
<td>#5 Solution Pressure bar</td>
</tr>
<tr>
<td>Bulk Head Soil Pressure Ave Bar</td>
<td>#4 Air Flow lit/min</td>
</tr>
<tr>
<td>#1 Foam Pressure bar</td>
<td>Horizontal-Displace (Tail) mm/Ring</td>
</tr>
<tr>
<td>Screw Conveyor Outlet 1 Ave Bar (1)</td>
<td>Pressure Segment Lower bar</td>
</tr>
<tr>
<td>#2 Screw Revolution RPM</td>
<td>Additive Vol 1 (Ring) m³</td>
</tr>
<tr>
<td>Vertical-Displace (Tail) mm/Ring</td>
<td>#2 Foam Flow lit/min</td>
</tr>
<tr>
<td>#1 Copy Cutter Position deg</td>
<td>Screw Muck Vol LCL m³/Ring</td>
</tr>
<tr>
<td>Flow Air Line 1 m³</td>
<td>#1 Copy Cutter Position deg</td>
</tr>
<tr>
<td>Flow Air Line 4 m³</td>
<td>Tail Clear (Top) mm</td>
</tr>
<tr>
<td>#1 Foam Vol (R) m³</td>
<td>#1 Additive Pressure bar</td>
</tr>
<tr>
<td>Foam Flow PV 1/min</td>
<td>Bearing Displace deg/Ring</td>
</tr>
<tr>
<td>#3 Foam Flow lit/min</td>
<td>#2 Screw Soil Pressure bar</td>
</tr>
<tr>
<td>Traction Left Pressure bar</td>
<td>Day or Night Shift</td>
</tr>
<tr>
<td>#5 Foam Pressure bar</td>
<td>Screw Muck Vol LCL m³/Ring</td>
</tr>
<tr>
<td>Horizontal-Displace (Head) mm/Ring</td>
<td>Day or Night Shift</td>
</tr>
<tr>
<td>Screw Muck Vol UCL m³/nR</td>
<td>#1 Solution Pressure bar</td>
</tr>
<tr>
<td>#1 Foam Flow lit/min</td>
<td>#4 Solution Vol (Ring) m³</td>
</tr>
<tr>
<td>Flow Air Line 1 m³</td>
<td>#1 Solution Vol (Ring) m³</td>
</tr>
<tr>
<td>#2 Solution Flow lit/min</td>
<td>Traction Left Pressure bar</td>
</tr>
<tr>
<td>Water Injection Pressure bar</td>
<td>Flow Mix Line 3 m³</td>
</tr>
<tr>
<td>#2 Gate Stroke % (1)</td>
<td>End Level m</td>
</tr>
<tr>
<td>#3 Additive Flow lit/min</td>
<td>Water Vol (Ring) m³</td>
</tr>
<tr>
<td>#1 Additive Pressure bar</td>
<td>#1 Screw Revolution min-1</td>
</tr>
<tr>
<td>#2 Solution Pressure bar</td>
<td>Start Head Horizontal Deviation mm</td>
</tr>
<tr>
<td>Ave Cutter Motor Torque (Power) %</td>
<td>Additive Vol 2 (Ring) m³</td>
</tr>
<tr>
<td>Flow Mix Line 1 m³</td>
<td>Screw Conveyor Inlet 1 Min Bar</td>
</tr>
<tr>
<td>Screw Conveyor Inlet 1 Min Bar</td>
<td>Chamber Left Ave Bar</td>
</tr>
<tr>
<td>Screw Muck Vol m³/min</td>
<td>#1 Foam Pressure bar</td>
</tr>
<tr>
<td>#1 Solution Flow lit/min</td>
<td>#2 Gate Stroke %</td>
</tr>
<tr>
<td>Flow Mix Line 4 m³</td>
<td>EPB Chamber Left Max Bar</td>
</tr>
<tr>
<td>Screw Conveyor Inlet 1 Ave Bar (1)</td>
<td>#5 Foam Pressure bar</td>
</tr>
</tbody>
</table>
Table 3.6: Machine parameters selected by JENNA in both tunnels of the Seattle project.

<table>
<thead>
<tr>
<th>Both Tunnels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution Vol (Ring) m3</td>
</tr>
<tr>
<td>Foam Vol (Ring) m3</td>
</tr>
<tr>
<td>Cutter Torque kNm</td>
</tr>
<tr>
<td>Additive Vol(Ring) m3</td>
</tr>
<tr>
<td>Bentonite m3</td>
</tr>
<tr>
<td>#2 Copy Cutter Position deg</td>
</tr>
<tr>
<td>#3 Solution Pressure bar</td>
</tr>
<tr>
<td>Tail Void m3</td>
</tr>
<tr>
<td>Screw Conveyor Outlet 1 Min bar</td>
</tr>
<tr>
<td>#2 Gate Stroke %</td>
</tr>
<tr>
<td>Horizontal-Displace(Tail) mm/Ring</td>
</tr>
<tr>
<td>#1 Foam Pressure bar</td>
</tr>
<tr>
<td>#1 Copy Cutter Position deg</td>
</tr>
<tr>
<td>Flow Air Line 1 m3</td>
</tr>
<tr>
<td>Flow Air Line 4 m3</td>
</tr>
<tr>
<td>Foam Flow PV l/min</td>
</tr>
<tr>
<td>Traction Left Pressure bar</td>
</tr>
<tr>
<td>#5 Foam Pressure bar</td>
</tr>
<tr>
<td>Screw Muck Vol LCL m3/Ring</td>
</tr>
<tr>
<td>Day or Night Shift</td>
</tr>
<tr>
<td>#1 Foam Flow lit/min</td>
</tr>
<tr>
<td>#2 Gate Stroke % (1)</td>
</tr>
<tr>
<td>#1 Additive Pressure bar</td>
</tr>
<tr>
<td>Ave Cutter Motor Torque (Power) %</td>
</tr>
<tr>
<td>Screw Conveyor Inlet 1 Min bar</td>
</tr>
</tbody>
</table>
higher advance rates than the SB tunnel; higher advance rates can cause other issues for a tunneling project (e.g., soil settlement and structural damage at the surface), thus, perhaps the speed of the excavation in the SB tunnel was reduced on purpose. As a reminder, our research goal is to understand the causes of the advance rate changes in the EPBM, not to maximize the EPBM’s advance rate. In this section, we note the smoother operation in the SB tunnel can be seen in most histogram figures. If a difference exists between the machine parameter measurements in the NB tunnel and the machine parameter measurements in the SB tunnel, it is assumed that the machine parameters in the SB tunnel produced better results overall.

We examine two EPBM subsystems (i.e., a combination of multiple, related EPBM machine parameters) that had the clearest relationship to the advance rate in the rest of this section. The two systems are: (1) the Ground Conditioning System (GCS) and (2) the cutterhead movement system.

3.7.3 Ground Conditioning System (GCS)

The Ground Conditioning System (GCS) serves to lubricate the cutter tools that are attached to the cutterface, and to change the soil consistency. Changing the soil consistency can allow the soil to move faster through the cutterhead and into the screw conveyor; also, changing the soil consistency assists with maintaining a steady pressure in the muck chamber to resist earth and water pressures at the cutterhead face of the EPBM. The effects of the GCS are often studied in laboratories [6, 7]; however, these effects are usually not studied in real case studies. A schematic of the GCS system used in the Hitachi-Zosen EPBM can be found in Figure 1.4.

Additives, solutions, Bentonite, and foam are individual systems that make up the liquids used in the GCS. The GCS also contains five lines that move the GCS liquids to the front of the cutterhead face where the GCS foam mixes with the soil. Line #1 is in the center of the cutterhead face, and the other lines (#2 to #5) are placed at different distances from the center of the cutterhead face; Figure 3.5 shows the locations of the GCS foam lines #1 to 112
#5 on the cutterhead face of the Hitachi-Zosen EPBM. Because the cutterhead face rotates during excavation, the GCS lines expel the foam in circles of increasing diameter. In this section we examine the GCS machine parameters identified as important to predicting the EPBM’s advance rate in both tunnels.

Figure 3.5: Schematic facing the front of the EPBM, looking at the cutterhead face. The locations of the expelling port of the GCS foam lines are circled in red and the number of each line is highlighted in the red text next to the port. The line numbers are used when identifying GCS machine parameters.

The following machine parameters identified as important by JENNA in both tunnels are part of the GCS:

- Solution Volume (Ring) m³
- Foam Volume (Ring) m³
- Additive Volume (Ring) m³
- Bentonite m³
- #3 Solution Pressure bar
- #1 Foam Pressure bar
Figure 3.6, Figure 3.7, and Figure 3.8 show histograms of the EPBM’s measurement of Foam Volume, Solution Volume, and Additive Volume, respectively, for both the NB and SB tunnels. These machine parameters are counters of the total volume expelled per ring; in other words, the volume measurements reset to zero when a new tunnel ring excavation cycle is started and the measurement increases as the fluid is expelled in the current tunnel ring. Because these machine parameters count the total volume of foam expelled in a tunnel ring (i.e., the counter resets to zero at the beginning of each tunnel ring), the number of high foam volume measurements is smaller than the number of low foam volume measurements (as high foam volumes are only achieved at the end of the tunnel ring cycle).

The histograms show that many zero measurements are observed, i.e., each tunnel ring starts with a volume of 0 m³. We are most interested, however, in the slope of the histograms at each advance rate, because the slope describes the amount of foam and rate at which the foam was used. Specifically, a steeply descending slope indicates many tunnel rings were completed without using a lot of GCS foam; however, a shallow slope indicates many tunnel rings were completed with a large amount of GCS foam. A shallow slope also indicates that a large amount of GCS foam was used earlier in the tunnel ring cycle, because the high foam volume measurement was observed for more time.

The slope of the foam volume histograms, observed in Figure 3.6, is related to the EPBM’s advance rate. For example, in the SB tunnel (Figure 3.6(a)), the slope of the foam volume
Figure 3.6: Foam Volume per Ring in the NB and SB tunnels.
measurements (i.e., the slope before the large drop in high foam volume measurements) at 1.0 \(\text{mm/sec} \) advance rate is much shallower than the slope at 0.4 \(\text{mm/sec} \) advance rate. In the NB tunnel (Figure 3.6(b)), a similar shallow slope is observed e.g., 1.2 \(\text{mm/sec} \) to 1.8 \(\text{mm/sec} \) advance rate. A steep slope can also be observed in the low advance rate measurements in the NB tunnel (i.e., 0.2 \(\text{mm/sec} \) to 1.0 \(\text{mm/sec} \)). Shallow slopes, associated with high advance rates, indicate that more foam was applied in the tunnel ring excavation cycle than in the low advance rate measurements.

Although the slope of the foam volume histogram bins follows a similar pattern across the NB and SB tunnels (Figure 3.6), the NB tunnels shows several 0 \(m^3 \) spikes in the low advance rates (i.e., less than 1.2 \(\text{mm/sec} \)). As previously mentioned, the operators were learning the soil conditions while excavating the NB tunnel and, thus, waited to see how much foam to add when a new cycle ring was started. A clear pattern, however, of increased GCS foam use is associated with an increased excavation rate in the NB tunnel histogram.

We observe a large spike of foam volume near an advance rate of 0.8 \(\text{mm/sec} \) in Figure 3.6(b). This spike is observed throughout the NB tunnel data histograms, and is a result of a monitoring well that was not removed after the geotechnical investigation was completed. When the EPBM excavated the location of the monitoring well, a large amount of GCS foam was expelled and created an explosive discharge of GCS foam at the surface [70]. High advance rates occurred near the monitoring well’s location, but the high advance rates were due to a complete break down in the composition of the soil.

The solution volume per ring histograms (Figure 3.7) exhibit an almost identical pattern to the foam volume per ring histograms, with lower volume measurements. The identical slopes and lower solution volumes are expected, because the solution is mixed with air to generate the GCS foam.

The GCS additive is combined with water and added to the muck chamber to change the consistency of the soil. Changing the consistency of the soil in the muck chamber is a good idea when the excavated soil becomes too thick to move through the screw conveyor; however,
Figure 3.7: Solution Volume per Ring in the NB and SB tunnels.
Figure 3.8: Additive Volume per Ring in the NB and SB tunnels.
if the excavated soil is at the proper consistency in the muck chamber, additives should not
be used. In other words, the amount of additive used in the solution varies depending on soil
conditions. Because the GCS additive is used after the soil has been excavated, the slopes
of the additive volume histograms are similar to the foam and solution volume histograms,
but not identical. Figure 3.8 shows histograms of the GCS additive volume per ring for the
NB and SB tunnels. In the SB tunnel (Figure 3.8(a)), the slope is shallowest in advance
rates $\geq 1.0 \frac{mm}{sec}$. In the NB tunnel (Figure 3.8(b)), shallow slopes also occur at advance rates
$\geq 0.8 \frac{mm}{sec}$. An increase in additive volume is associated with an increase in advance rate;
however, there are many high advance rate locations where no additive was used, indicating
another factor impacts the decision to use additive in the muck chamber. In Chapter 4
we examine an anomaly detection method to detect soil changes, as the decision to use a
different amount of additive in the muck chamber may have a time-delayed impact on the
advance rate.

We also examine the Line #1 Foam Flow measurements (see Figure 3.9), because several
features that are part of GCS Line #1 were identified as important features by JENNA
(e.g., #1 Foam Pressure (bar), Flow Air Line 1 (m^3), and #1 Additive Pressure (bar)). As a
reminder, Line #1 of the GCS expels GCS foam from a port in the center of the cutterhead
face. We note the data in Figure 3.9 exhibits a different distribution than distributions of
the foam volume per ring, solution volume per ring, and additive volume per ring, because
the #1 Foam Flow is an instantaneous reading of the rate foam is flowing from the port at
the front of the cutterhead face.

The #1 Foam Flow measurements in the SB tunnel (see Figure 3.9(a)) are generally
higher than in the NB tunnel (see Figure 3.9(b)) (e.g., 150-250 liters/minute in the SB
tunnel versus 20-35 liters/minute in the NB tunnel); it, therefore, appears a higher foam
flow at the center of the EPBM resulted in a more consistent and higher advance rate in the
SB tunnel. In Figure 3.9(a), three peaks can be observed in the data: (1) a peak centered on
50 lit/min, (2) a peak centered on 175 lit/min in low advance rates, and (3) a peak centered
Figure 3.9: Line #1 Foam Flow in the NB and SB tunnels.
on 200 lit/min in high advance rates. In our spatial analysis of the subsurface, these peaks indicate different foam flow rates for different soil types.

The NB tunnel (Figure 3.9(a)) also exhibits two peaks: (1) a peak near 20 lit/min and (2) a peak near 33 lit/min. Although the foam flow is consistent within each of these peaks, the 33 lit/min peak is associated with higher advance rates (i.e., greater than 1.6 m/min). In summary, the foam flow was adjusted to soil type in both tunnels, and higher foam flow rates were associated with higher advance rates in both tunnels. We note that the #1 Foam Flow rate in the SB tunnel was significantly higher than in the NB tunnel, i.e., compare the x-axes in Figure 3.9(a) and Figure 3.9(b). Because Foam Flow Line #1 is near the center of the EPBM and the SB tunnel used a significantly higher foam flow rate than the NB tunnel, we conclude that a higher foam flow rate at the center of the EPBM leads to a smoother excavation environment.

3.7.4 Cutterhead Torque

Torque is the twisting force exerted by the motors to rotate the cutterhead, which loosens the soil for excavation. We expect torque to be an important machine parameter in regard to the EPBM’s advance rate, as higher torque should indicate soil that is more difficult to remove. JENNA identified two torque machine parameters as important to an EPBM’s advance rate: (1) Cutter Torque kNm and (2) Ave Cutter Motor Torque (Power) %. We plot histograms of these parameters in Figure 3.10 and Figure 3.11.

The torque measurements in the SB tunnel (Figure 3.10(a)) are more consistent than in the NB tunnel (Figure 3.10(b)). Although lower torque sometimes correlates with a higher advance rate, an optimal torque level for high advance rates seems to be between 3000 and 3250 kNm in the SB tunnel. In the less consistent NB tunnel, the favored torque measurement for high advance rates was between 2750 and 3000 kNm. The optimal torque level can be achieved by using the GCS to condition the soil in front of the machine, and, from our previous examination of the GCS machine parameters, expelling the GCS foam quicker in the tunnel ring excavation cycle will allow the EPBM to reach the optimal torque.
Figure 3.10: Cutter Torque in the NB and SB tunnels.
Figure 3.11: Average Cutter Motor Torque in the NB and SB tunnels.
conditions faster.

Figure 3.11 shows a similar torque measurement (i.e., the average cutter motor torque power), except that the torque is measured as a percentage of maximum torque. The average cutter motor torque is similar to cutter torque (i.e., lower torque sometimes results in a higher advance rate, and an optimal torque point exits). In the SB tunnel, the optimal torque is near 50% and in the NB tunnel the optimal torque is near 55%. The NB tunnel contains spikes in the number of measurements near 30% average cutter motor torque, when the EPBM was moving at a moderate advance rate (around 1.0 mm/sec). Although the EPBM operated at 30% torque for many measurements, the 55% torque allowed higher advance rates; however, this higher torque may have placed additional stress on the cutter bits, causing the bits to wear faster.

3.8 Conclusions

Our work created and tested a new ensemble feature selection method (JENNA) that outperformed the state-of-the-art feature selection method (Saeys). JENNA was created to improve performance (i.e., decrease bias, decrease variance, and increase stability) in the features selected by feature selection ensembles when applied to data sets with large numbers of examples and features; previous methods, on the other hand, focused on data sets with large numbers of features and a small number of examples. When applied to the data sets from the Seattle project, JENNA identified features that trained an OLS V-MLA with a statistically significantly lower or equal RMSE (i.e., bias) than previous methods, and, in addition, stability increased to perfect stability. We, therefore, conclude that JENNA is a better ensemble feature selection method for our data set type.

We also performed a comprehensive analysis of the machine parameters identified by JENNA and how those machine parameters relate to the advance rate of the EPBM. In the NB tunnel an increase in the ground conditioning foam expelled led to an increase in the advance rate of the EPBM. The optimal amount of ground conditioning foam is dependent on the soil type that the EPBM is excavating (e.g., hard, stiff clay requires more ground
conditioning foam than sandy, silty soil). A consistent, high level of foam applied early in the tunnel cycle results in a more consistent, high advance rate. We also found an optimal torque point (near 50% of the available torque in the cutterhead face motors) for achieving a consistent, high advance rate.
CHAPTER 4
TIME DELAYED DATA

In our prior work we identified several EPBM machine parameters that affect the EPBM’s advance rate in a delayed manner. An example of a time-delayed feature within an EPBM is soil pressure in the EPBM’s screw conveyor. As a reminder, the screw conveyor is attached to the EPBM’s muck chamber, and the screw conveyor and muck chamber work together to balance the soil and water pressure at the EPBM’s cutterface preventing soil collapse in front of the EPBM. In Chapter 3, JENNA identified the soil pressure sensors at the inlet and outlet of the screw conveyor as important features in predicting the EPBM’s advance rate; furthermore, JENNA did not identify any soil pressure sensors at the cutterface or in the muck chamber. We believe the soil pressure sensors in the screw conveyor were identified because it takes time for changes in the soil pressure to propagate through the muck chamber and into the screw conveyor. In other words, JENNA highlighted a time-delayed feature as important to predicting the advance rate of the EPBM. In this chapter, we utilize state-of-the-art machine learning techniques to account for time-delays in the EPBM data set and increase our understanding of EPBMs.

Based on JENNA identifying time-delayed features as important in predicting an EPBM’s advance rate, we apply deep learning methods (specifically Recurrent Neural Networks (RNNs)) to further our understanding of how EPBM systems impact EPBM performance. RNNs are modified ANNs (further discussed in Section 4.1). An intuitive method of utilizing ANNs for feature selection is to weight input features based on the ANN’s weighted connections; however, the weighted connections within the network are not deterministic (i.e., similar prediction performance can be achieved with different weights). Since it is impossible to determine important features from applying time-delayed methods, we seek to identify another important EPBM performance parameter: the location of changes in the soil type.

126
at the front of the EPBM.

Based on our prior work, changes in the soil type at the front of the cutterface causes changes to several EPBM machine parameters; therefore, we identify soil type changes by creating a novel, anomaly detection algorithm that can be applied to data sets with a known time-delay between changes to input features and resulting changes to output target values. Our method (Recurrent Neural Network Anomaly Detection (ReNN AnD)) trains RNNs with the current time sequence and then tests the trained RNN with the next time sequence, marking spikes in the testing error as anomalies. The intuition behind ReNN AnD is that RNN will achieve a steady prediction state in the current soil type and then the prediction error will spike as the EPBM enters a different soil type and the EPBM machine parameters change. ReNN AnD is designed to be used as an online anomaly detection algorithm; therefore, ReNN AnD does not require the entire data set to identify anomalies. We are not aware of any other work that utilizes RNNs for anomaly detection.

4.1 Deep Learning

An emerging machine learning field is representation learning, often called deep learning. The purpose of deep learning is to make Machine Learning Algorithms (MLAs) less dependent on input feature creation by crafting MLAs that are better representations of how the human brain thinks [71]. Our work applies Recurrent Neural Networks (RNNs), which are modified Artificial Neural Networks (ANNs) that contain a backwards or recurrent connection. In time-delay problems, the recurrent connection allows error signals from previous time steps to affect the current weighted ANN connections. Backpropagation Through Time (BPTT) is a common algorithm that allows an ANN containing recurrent connections to be trained [72]. Recurrent connections do add, however, two major problems when training the RNN with conventional BPTT: (1) if BPTT is used with more than a few (i.e., ≥ 10) prior time steps, the processing time is intractable and (2) BPTT introduces the vanishing (or exploding) gradient problem.
The exploding or vanishing gradient problem occurs because BPTT combines error flow from all time steps through multiplication. If there are no limits on the magnitude of the error flow, one time step with a very small or very large error flow can cause the gradient (used to adjust the connection weights) to disappear or explode, respectively.

4.1.1 Long Short-Term Memory (LSTM)

Hochreiter and Schmidhuber [73] proposed Long Short-Term Memory (LSTM) as an alternative to BPTT, in order to train an RNN without the two previously discussed disadvantages of BPTT. Specifically, the vanishing (or exploding) gradient problem is handled through the application of a Constant Error Carousel (CEC). We detail the parts of an LSTM memory cell, discuss conventional BPTT, show how CEC modifications attempt to solve BPTT’s vanishing (or exploding) gradient problem, and, finally, show how LSTM solves new problems introduced by CEC.

Figure 4.1 illustrates a common configuration of an LSTM memory cell, which is part of the memory cell layer of an RNN (i.e., the hidden layer). We discuss Figure 4.1 in the following paragraphs.

In Figure 4.1, j represents all non-output layer nodes (i.e., neurons in the input layer or hidden layer(s)), circles g, h, l, and m are nodes containing differentiable activation functions (any combination of activation functions may be used), c_j is the memory cell (i.e., the rectangular box), $s_{c_j}(t)$ is the “internal state” or “memory” of the memory cell at time t, $w = 1$ represents the constant CEC weighted connection, net_{in_j} and net_{out_j} represent the activation value of input and output gates from other memory cells, respectively, and arrows represent weighted connections showing the direction the activation signal flows during the feed-forward phase. We note that Figure 4.1 illustrates an example network configuration and not all weighted connections are mandatory.

The input and output gates are defined as $g_{a_{in}}$ and $g_{a_{out}}$, respectively. The input gates restrict signals from input perturbations, and the output gates restrict the contribution of the memory cell to the nodes in the next layer (in cases where the memory cell would increase
the output error). Equation 4.1 defines the equation for ga_{in} and ga_{out}:

\[
\begin{align*}
 ga_{in} &= g \ast act_{inj} \\
 and \quad ga_{out} &= h \ast act_{outj}.
\end{align*}
\]

(4.1)

The input gate (ga_{in}) is the result of the summation of the network values (i.e., weighted activations) of all input nodes (act_{inj}) applied to an activation function g. Since activation functions g, h, l, and m are squashing functions (e.g., the sigmoid function), their results will be near 0 or 1, which gives ga_{in} and ga_{out} the characteristics of an on/off gate. The output gate (ga_{out}) similarly applies the activation function (h) to the sum of activations of other memory cells connected to ga_{out} (i.e., act_{outj}).

As discussed later in this section, the vanishing (or exploding) gradient problem is solved through the use of a CEC node ($s_{cj}(t)$), which is updated by previous time steps through a recurrent connection with a constant weight of 1.0 and a linear activation function. Equa-
tion 4.2 shows the specific implementation of an CEC node inside an LSTM memory cell:

\[
s_{c_j}(t) = s_{c_j}(t - 1) + act_{in_j}(t - 1) \times g_{in}(t),
\]

(4.2)

where the previous time step’s activation \(s_{c_j}(t - 1)\) is added to the internal state at the current time step \(s_{c_j}(t)\) if the in gate \(g_{in}(t)\) is greater than 0. We note that if \(g_{in}(t)\) is less than 1 and greater than 0, only a portion of the previous time step’s internal state will be added to the current time step’s internal state (e.g., if \(g_{in}(t) = 0.95\), only 95% of the previous time step’s activation will be added to the current time step’s activation).

RNNs are ANNs modified by adding recurrent connections (i.e., weighted connections that move in the opposite direction of traditional ANN weighted connections) so that signals from prior time steps can impact the current time step. To train an RNN, BPTT modifies ANN’s traditional backpropagation equations to include error signals from the recurrent connections. Equations 4.3 and 4.4 describe how BPTT computes the backpropagation error signal in output and hidden nodes, respectively. Equation 4.3 assumes an RNN with one output node.

\[
\delta_k(t) = f'_k(\text{net}_k(t))(d_k(t) - y^k(t)),
\]

defined by

\[
act^i(t) = f_i(\text{net}_i(t)),
\]

and

\[
\text{net}_i(t) = \sum_j w_{ij}act^j(t - 1).
\]

(4.3)

In the first portion of Equation 4.3, \(\delta_k(t)\) is the error signal of node \(k\) at time \(t\), \(k\) is the output node, \(f'_k\) is the derivative of the activation function of node \(k\) (typically the sigmoid function in classification problems or linear identity function in regression problems), \(\text{net}_k(t)\) is the sum of the activation of all nodes with a weighted connection to node \(k\) from the prior time step (i.e., all connections from the hidden layer), \(d_k(t)\) is the measured output target value for the example, and \(y^k(t)\) is the output value of node \(k\) at time \(t\). In the second portion of Equation 4.3, \(act^i(t)\) is the output (i.e., activation) of any non-input node \(i\) and
f_i is the differentiable activation function of node i^8. In the third part of Equation 4.3, net_i is the output value (i.e., activation) of all input nodes connected to node i, j is a non-output node, w_{ij} is a weighted connection from node i to node j, and $act_j(t - 1)$ is the activation of node j at time $t - 1$. In words, Equation 4.3 computes the error signal of the output node’s recurrent connections to the hidden nodes (i.e., the memory cell layer in LSTM).

Nodes that are not the output node are updated in a similar manner; however, the error term $(d_k(t) - y^k(t))$ in Equation 4.3 is replaced with the error flow from the output node back to the non-output nodes (j). Equation 4.4 provides the BPTT error flow equation:

$$\delta_j(t) = f'_j(net_j(t)) \sum_i w_{ij} \delta_i(t + 1), \quad (4.4)$$

where $\delta_j(t)$ is the error flow of non-output node j at time t, $net_j(t)$ is the sum of the activation of all connected nodes at time $t - 1$ multiplied by the connection weight, w_{ij} is the weight of the connection from node i to node j, and $\delta_i(t + 1)$ is the error flow of connected, non-input node i at time $t + 1$.

Equation 4.3 and Equation 4.4 comprise the BPTT cycle that allows output values from prior time steps to impact the RNN connection weights in the current time step. When BPTT is scaled to multiple time steps, the error flows ($\delta_k(t)$ and $\delta_j(t)$) become the product of multiple time steps instead of only $t - 1$. If there are no limits on the magnitude of the error flow, one time step with a very small or very large error flow can cause the gradient (used to adjust the connection weights) to disappear or explode, respectively. CEC restricts the error flow from Equation 4.4 by adding a constraint to Equation 4.4 shown in Equation 4.5

$$f'_j(net_j(t))w_{jj} = 1.0, \quad (4.5)$$

where f'_j is the derivative of node j’s activation function, $net_j(t)$ is the activation of the recurrent connections to node j at time $t - 1$, and w_{jj} is the constant weight from node j to itself. Due to the constraint in Equation 4.5, w_{jj} must be 1.0 and node j’s activation function must be linear. We note that the 1.0 weight constraint on w_{jj} leads to the name

8Because i represents any non-input node and k represents the output node, the i terms in the second part of the equation can be replaced with k terms.
“Carrousel” in Constant Error Carrousel (CEC).

CEC eliminates the exploding (or vanishing) gradient problem and is implemented in LSTM as $s_{c_i}(t)$ in Figure 4.1. A second problem with CEC arises from many time step, time-delayed patterns. Given a non-output node j, node j may contribute to reducing the output error at some time steps, but may increase error at other time steps. In an ideal network, an on/off switch would be placed at the output connection of node j to prevent node j from increasing the error when input example perturbations would cause node j to increase the error. A similar switch would be placed at the input connection to node j as well. LSTM implements the input and output switches through the use of additional neurons, which are contained within the memory cell. Figure 4.1 (see the pentagons labeled ga_{in} and ga_{out}) illustrates an example LSTM memory cell within a memory cell hidden layer. Finally, LSTM implements truncated backpropagation so that no error flows will leave the memory cell.

4.1.2 Generalized Long Short-Term Memory (LSTM-g)

Monner and Reggia [74] improved the original LSTM algorithm to allow LSTM to be applied to second-order network architectures; the improved algorithm is called Generalized Long Short-Term Memory (LSTM-g). A limitation of LSTM is that it must use truncated backpropagation in order for LSTM to work across very long time lags (i.e., the error signal from previous time steps is blocked from entering or leaving the memory cell). The truncation prevents the error signal from transmitting between memory cells, which prevents the error signal from getting caught in a loop that would affect the memory cells throughout time. Truncating the backpropagation error signal causes a condition where only one hidden layer can be trained in an RNN, because additional hidden layers would not receive the error signal to adjust the weights of their connections.

Figure 4.2 shows the difference between LSTM and LSTM-g. In Figure 4.2(a), the input and output gates are connected to the modulated signal within the memory cell; in other words, the input gate either allows all input signals into the memory cell or no inputs into
the memory cell. Similarly, the output gate allows all output signals to leave the memory cell or no output signal to leave the memory cell. In Figure 4.2(b) the individual connections into the input gate are modulated by the input gate\(^9\); therefore, some input connections can be turned on while other input connections are turned off. A similar configuration on the output gate allows some output connections to be turned on and other output connections to be turned off. The modulation of the individual connections by the input and output gates allows the error signals to be backpropagated through multiple layers instead of truncating

\(^9\)In LSTM the input connections are summed and then modulated by the input gate, creating an all or nothing situation.
(i.e., removing) the error signal when it leaves the memory cell. Allowing error signals to leave the memory cells, in turn, allows training of multiple memory cell layers in serial. Multiple, serial memory cell layers allows for more complex time delayed functions to be modeled by the RNN, potentially decreasing the RNN’s error. Our work utilizes Monner and Reggia’s implementation of LSTM-g [75] to train and test the RNNs used in ReNN AnD.

4.2 Proposed Method

We propose the RNN Anomaly Detection (ReNN AnD) method for detecting anomalies in systems where input features have a time-delayed impact on the output target value. ReNN AnD is implemented in three steps:

1. calibrate the RNN to the data set (Section 4.2.1),
2. determine a testing error threshold (Section 4.2.2), and
3. detect anomalies (Section 4.2.3).

4.2.1 Calibrate the RNN to the Data set

As previously discussed, the RNNs we implement for our work are trained and tested using Monner and Reggia’s LSTM-g algorithm [74] (implemented as XLBP [75]). As with most machine learning algorithms, several parameters of the algorithm need to be calibrated to the current data set. The following RNN parameters are calibrated:

- the number of memory cells and
- the sequence length (i.e., the number of measurements used to recurrently train the RNN).

Our work implements RNN as an online tool; therefore, we must also consider a start up period. The start up period is the number of measurements used to calibrate the RNN’s
parameters; clearly we want to find the shortest start up period possible. Algorithm 4.1 calibrates the RNN during the start up period.

Algorithm 4.1: ReNN AnD Calibration Algorithm

class ReNNAnDCalibration {
 // Memory Cells (mc)
 int mc[] = mcStart ... mcStep ... mcStop;

 // Sequence Lengths (seq)
 int seq[] = seqStart ... seqStep ... seqStop;

 // Best mc and seq lengths
 int bestMC;
 int bestSEQ;

 // Variable to track the best configuration’s test error
 bestTestError double = 9999;

 ReNNAnDCalibrate() {
 for (int curMc : mc) {
 for (int curSeq : seq) {
 // Data class defined after ReNNAnDCalibration class
 double[][] trainDataX = Data.getCalibTrainDataX(seq);
 double[][] testDataX = Data.getCalibTestDataX(seq);
 double[] trainDataY = Data.getCalibTrainDataY(seq);
 double[] testDataY = Data.getCalibTestDataY(seq);

 // RNN class is implemented in XLBP
 rnn = new RNN(mc, seq);
 rnn.train(trainDataX, trainDataY);
 double curTestError = rnn.test(testDataX, testDataY);
 if (curTestError < bestTestError) {
 ReNNAnDCalibration.bestTestError = curTestError;
 ReNNAnDCalibration.bestMC = mc;
 ReNNAnDCalibration.bestSeq = seq;
 }
 }
 }
 // end seq for loop
 // end mc for loop
 }
 // end ReNNAnDCalibrate()

 int getBestMC() {
 return bestMC;
 }
 // end getBestMC

 int getBestSEQ() {
 return bestSEQ;
 }
 // end getBestSeq
}
// end class ReNNAnDCalibration
class Data{
 int numExamples; //Number of examples in fullDataX and fullDataY
 int numInFeatures; //Number of input features in fullDataX

 //Full data set updated from data stream.
 fullDataX double[][] = new double[numExamples][numInFeatures];
 fullDataY double[] = new double[numExamples];

 //Define function: System.arraycopy(
 // src: source array,
 // srcPos: index in src array to start copying from,
 // dest: destination array,
 // destPos: index in dest array to start copying to,
 // length: how many array entries to copy)

double[][] getCalibTrainDataX(int seqLength){
 //Copies the first 66% of seqLength examples in fullDataX into a
 //new array
 int returnLength66 = Math.floor(seqLength * 0.66);
 double[][] returnArray = new double[returnLength66][numInFeatures];

 //Copy position 0 to returnLength66 from fullDataX into
 //returnArray and return.
 for(int i=0; i<returnLength66; i++){
 System.arraycopy(Data.fullDataX[i], 0, returnArray[i], 0, numInFeatures);
 }
}

double[][] getCalibTestDataX(int seqLength){
 //Copies the last 34% seqLength examples in fullDataX into a
 //new array
 int returnLength66 = Math.floor(seqLength * 0.66);
 int returnLength34 = seqLength - returnLength66;
 double[][] returnArray = new double[returnLength34][numInFeatures];
 //Copy position returnLength66 to seqLength-1 from fullDataX to
 //returnArray and return.
 for(int i = 0; i<returnLength34; i++){
 System.arraycopy(Data.fullDataX[returnLength66+i], 0, returnArray[i], 0, numInFeatures);
 }
}

double[] getCalibTrainDataY(int seqLength){
 //Copies the first 66% seqLength examples in fullDataY into a
 //new array
We train each RNN on the first 66% of the data set (of sequence length defined in the array seq, which is the start up period) and then test the RNN on the remaining 34% of
the data. We split the training and testing data to (1) prevent overfitting by not testing
the RNN using training data and (2) increase calibration speed over cross validation. The
memory cell (bestMC) and sequence length (bestSEQ) combination that produces the lowest
error (e.g., RMSE) is then chosen as the RNN configuration for the rest of the data set.

4.2.2 Anomaly Thresholding

Anomaly Detection commonly relies on two assumptions: (1) the examined data follows
a normal (i.e., Gaussian) distribution and (2) an approximate likelihood of anomalies is
known for the given data set [43]. In continuous data sets, common anomaly thresholds are
$\mu \pm \sigma$, $\mu \pm 2 \sigma$, $\mu \pm 3 \sigma$, etc., where μ is the mean of the data and σ is the standard
deviation of the data. The approximate number of anomalies one expects in the data set
determines the σ multiplier (i.e., the less sensitive the anomaly detection, the greater the σ
multiplier). The ReNN AnD Thresholding Algorithm (Algorithm 4.2) maintains the mean,
standard deviation, and threshold of the error as data is applied to the algorithm.

Algorithm 4.2: ReNN AnD Thresholding Algorithm

class ReNNAnDThresholding{
 LinkedList <double> yErrorList = new LinkedList();
 int stdDevConst;

 double ReNNAnDThresh(double yCurrentError){
 yErrorList . add(yCurrentError);
 mean = Math.mean(yErrorList);
 stdDev = Math.stdDev(yErrorList);
 threshold = mean + (stdDevConst * stdDev);
 return threshold;
 } // end ReNNAnDThresh()
} //end class ReNNAnDThresholding

The threshold algorithm recomputes the mean and standard deviation of the data set at
each time step. The threshold that is returned to the ReNN AnD algorithm is determined by
the current mean and of the data set plus the standard deviation of the data set multiplied
by the standard deviation constant. The anomaly detection algorithm (Algorithm 4.3) then
marks the testing sequence as an anomaly if the sequence’s testing error is greater than the threshold returned from Algorithm 4.2.

4.2.3 Anomaly Detection

The anomaly detection portion of Algorithm 4.3 trains a calibrated RNN using the inputs \(\{x_s, y_s\} \) and then tests the trained RNN using the inputs \(\{x_{s+1}, y_{s+1}\} \). \(\{x_s, x_{s+1}\} \) are each \(m \) by \(n \) matrices (where \(m \) is the sequence length and \(n \) is the number of input features), \(s \) represents the sequence number, and \(\{y_s, y_{s+1}\} \) are output target vectors of length \(m \).

If the testing error (from applying the trained RNN to \(\{x_{s+1}, y_{s+1}\} \)) exceeds the anomaly threshold, then ReNN AnD marks sequence \(s + 1 \) as a detected anomaly. Algorithm 4.3 defines the ReNN AnD anomaly detection algorithm. We note that Algorithm 4.3 uses the class Data, which is defined in Algorithm 4.1.

Algorithm 4.3: ReNN AnD Anomaly Detection Algorithm

class ReNNAnDAnomalyDetect{

 void main(String[] args){
 // Establish a data connection
 DatabaseConnector onlineData = new DatabaseConnector();
 onlineData.connect();

 // Establish Alarm to trigger when an anomaly is detected.
 AlarmStream alarm = new AlarmStream();

 // Calibrate the RNN
 ReNNAnDCalibration.ReNNAnDCalibrate();
 bestMC = ReNNAnDCalibration.getbestMC();
 bestSEQ = ReNNAnDCalibration.getbestSEQ();

 // Track current sequence number
 int current_s = 0;

 while(true){ // Infinite loop for online algorithm
 // Populate Data class with online database data
 Data.setfullDataX(onlineData.pullDataX());
 Data.setfullDataY(onlineData.pullDataY());

 // RNN class is implemented in XLBP
 rnn = new RNN(bestMC,bestSEQ);

 }
 }
}
// Get training and testing data from Data class
double [][] trainDataX = Data.getSequenceX(current_s, bestSEQ);
double [][] trainDataY = Data.getSequenceY(current_s, bestSEQ);
double [][] testDataX = Data.getSequenceX(current_s + 1, bestSEQ);
double [][] testDataY = Data.getSequenceY(current_s + 1, bestSEQ);
rnn.train(trainDataX, trainDataY);

double testError = rnn.test(testDataX, testDataY);
double threshold = ReNNAnDThresholding.ReNNAnDThresh(testError);
if (testError > threshold) {
 alarm.trigger(current_s + 1);
}
current_s++;
} // end while loop
} // end main
} // end class ReNNAnDAnomalyDetect

4.3 ReNN AnD Application Experiment

Our ReNN AnD algorithm provides an anomaly detection method for data sets that contain a time-delay (i.e., a delay between when an input feature value changes and when the change affects the output target value). In order to experimentally validate our method, we apply ReNN AnD to data sets with known time delays between changes in input feature values and changes in output target values. Specifically, we apply ReNN AnD to the two Seattle project data sets described in Chapter 1. We use ReNN AnD to identify changes in the type of soil that the EPBM is excavating, and we compare the location of ReNN AnD’s detected soil changes to the estimated position in the Geotechnical Baseline Report (GBR) soil map. Because soil changes are estimated by drilling boreholes (i.e., small soil samples) at largely spaced intervals, the true position of a soil change is estimated. Identifying the true position of these soil changes with ReNN AnD will allow tunneling contractors to make adjustments to the EPBM (in real-time); the EPBM will then excavate more efficiently, saving project time and costs.

4.4 Experimental Results

Our experiment calibrated RNN parameters for the Seattle project data, trained the calibrated RNNs on the Seattle project data, and detected anomalies (i.e., soil changes) for
the length of the Seattle project in both the NB and SB tunnels. ReNN AnD was applied to the Seattle project data after the Seattle project was completed; however, the data set was simulated as an online data set (i.e., the entire data set was not available to ReNN AnD as the algorithm executed).

In order to determine if ReNN AnD is correctly detecting soil type changes, we compare the location of the ReNN AnD identified soil type changes to the GBR, which was created prior to excavation of the tunnels. This report is created by geotechnical engineers who drill boreholes along the planned route of the tunnel. Soil samples are taken from the boreholes, and then the engineers create a predicted map of the subsurface based on these soil samples (i.e., the GBR soil map); we will see these maps for the Seattle project in Section 4.4.2. We note that the same map is used for both tunnels, because the tunnels were excavated parallel to each other.

4.4.1 Calibration Results

We varied the number of memory cells in the RNN’s memory cell layer, as well as the length of the break-in period. We worked to determine the best number of RNN memory cells without using an excessive amount of data to calibrate the RNN; that is, a smaller break-in period means ReNN AnD can start detecting anomalies sooner. Varying the length of the break-in period in Figure 4.3 and Figure 4.4 shows the local error minimum that is selected as the RNNs’ configuration.

In both the NB and SB tunnels, we tested 50 to 1,000 memory cells (stepping by 25 memory cells), and sequence lengths of 50 to 500 examples (stepping by 50 examples). Figure 4.3 and Figure 4.4 graph the Root Mean Squared Error (RMSE) of the five best performing (i.e., lowest RMSE) memory cell configurations in the NB and SB tunnels, respectively. Equation 4.6 shows the equation we used to compute the RMSE for a given sequence:

$$RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2},$$

(4.6)
where \(m \) is the number of examples in the sequence (i.e., the sequence length), \(y_i \) is the measured output target value (i.e., advance rate), and \(\hat{y}_i \) is the RNN predicted output target value. We determine the number of examples to classify as the break-in period by looking for the lowest RMSE after the RNN’s RMSE has stabilized.

Figure 4.3: Graph of the RMSE of varying memory cells and break-in data lengths in the NB tunnel.

In Figure 4.3, a large error (i.e., RMSE) spike occurs around 250 examples. The large RMSE variance is caused by the EPBM operator making changes to the EPBM’s system as the operator becomes accustomed to a new tunneling project and a new EPBM. These variations were expected, and led us to measure various break-in periods to determine RNN configuration stability. In the NB tunnel, Figure 4.3 shows the lowest RMSE is achieved with an RNN memory cell layer consisting of 775 memory cells and a break-in length of 350 examples. We calibrate the RNN parameters with these values since 350 examples is after the break-in period.
Figure 4.4 illustrates the RMSE when calibrating for the SB tunnel data set. Unlike the NB tunnel, a spike in RMSE does not occur early in the tunneling process, likely because the EPBM operator is more accustomed to the soil in the Seattle project. The error is minimized with an RNN memory cell layer consisting of 325 memory cells and 100 examples. We note that the y-axis in Figure 4.4 is a different scale than the y-axis in Figure 4.3, and shows the lower variance at the beginning of the SB tunnel. Because variability in the RNN’s RMSE is stabilized from the beginning onward, we pick the lowest RMSE: 100 examples and 325 memory cells.

4.4.2 Soil Detection Results

We discuss ReNN AnD’s detected soil change locations compared to the GBR’s predicted soil change locations. We reference locations in the GBR predicted soil maps as chainage, which is a measurement used in tunneling projects; one chainage unit represents one linear foot. The excavation began at chainage 108,200 and continued to 104,600.
ReNN AnD identified several locations along the tunnel path where likely soil changes (i.e., anomalies) occurred. It is impossible to identify the exact locations of soil changes, because the front of the EPBM is pressurized; that is, humans cannot enter the front of the EPBM to measure the soil (without costly and dangerous techniques to retract the EPBM cutterhead face). As previously discussed, however, the Geotechnical Baseline Report (GBR) contains a map of predicted soil types along the tunnel path based on pre-construction testing. Figure 4.5, Figure 4.6, and Figure 4.7 can be combined to show the GBR soil map for the tunnels in the Seattle project. We compare ReNN AnD’s detected soil change points to the locations of soil changes predicted by the GBR soil map. Specifically, we marked ReNN AnD’s detected soil change locations with a red vertical line in Figure 4.5, Figure 4.6, and Figure 4.7. We analyze some of these locations in the following discussion.

Figure 4.5 shows a soil change detection across both tunnels at 107,800 chainage (i.e., the 4th red line from the right in the NB tunnel and the 3rd red line from the right in the SB tunnel). We note that (1) this soil detection is in the middle of a homogeneous soil region (i.e., the tan region) and (2) the soil change was not predicted in the GBR. The drilled boreholes are marked as vertical black lines in the GBR soil map, and Figure 4.5 shows that the transition from tan soil type to purple soil type is estimated to be exactly halfway between the two boreholes at about chainage 107,800 and 107,650. In other words, ReNN AnD concludes that the soil change occurs much earlier than the GBR predicted (i.e, almost immediately after the 107,800 borehole). The NB and SB results from ReNN AnD match in other homogeneous soil areas in the GBR as well. For example, a soil change detection can also be seen at 108,000 chainage (i.e., the second line from the right in both tunnels), and in Figure 4.7 at 104,900 chainage (i.e., the second line from the left in both tunnels).

Figure 4.6 shows a soil detection point at 107,000 chainage (i.e., the first line from the right in both tunnels). At this soil change detection point, the GBR soil map expects the EPBM to transition from the light blue soil type to a mixed soil type (containing the light blue soil type and the light purple soil type). ReNN AnD detected this transition at the
GBR predicted location in both tunnels. For more locations where ReNN AnD detected soil changes in both tunnels as expected by the GBR soil map, see 106,800 chainage in Figure 4.6 (i.e., the third line from the right in the NB tunnel and the 2nd line from the right in the SB tunnel), 106,000 chainage in Figure 4.6 (i.e., the first line from the left in both tunnels), and 105,850 chainage in Figure 4.7 (i.e., the first line from the right in both tunnels).

Figure 4.7 shows a soil detection point at 105,400 chainage in the NB tunnel and 105,300 chainage in the SB tunnel (i.e., the fourth line from the right in the NB tunnel and the second line from the right in the SB tunnel). These two soil change detection points are near a GBR predicted soil change location, i.e., the soil change from mixed soil (light blue and light purple) to dark purple soil. We believe the discrepancy in detection position is due to the knowledge of the EPBM operator gained while excavating the NB tunnel. In the NB tunnel, the EPBM operator was unfamiliar with the project; therefore, the operator reacted to the soil change. However, in the SB tunnel, the EPBM operator was more familiar with the project and, therefore, was able to make changes to the EPBM machine parameters in anticipation of the soil change. The EPBM operator’s anticipatory behavior can also be observed in Figure 4.5 at 107,700 chainage in the NB tunnel and 107,625 chainage in the SB tunnel (i.e., the fifth line from the right in the NB tunnel and the fourth line from the right in the SB tunnel).

The absence of soil change detection points also indicates ReNN AnD is properly detecting no soil changes. For example, Figure 4.7 shows, from approximately chainage 105,300 to 105,000 chainage (in both tunnels), a homogeneous soil region; thus, ReNN AnD makes no soil change detections (after the transition into the dark purple soil type). A detection does occur at 105,000 chainage in both tunnels; we believe this detection is associated with the light blue soil seam. Also, Figure 4.5, from approximately chainage 107,180 to 107,000, shows another homogeneous light blue soil region with no soil detections in either tunnel.

A few of the soil detection points by ReNN AnD did not make sense. For example, in Figure 4.6 at 106,600 chainage (i.e., the fourth line from the right in the NB tunnel), a
soil change was detected in the NB tunnel, but not in the SB tunnel. Upon consulting the project review [70], we determined that the soil change detection in the NB tunnel was due to irregular movements of the machine that occurred because the EPBM hit a monitoring well that was not properly capped. These irregular readings then caused ReNN AnD to trigger a soil change detection, even though a soil change did not exist.

The GBR soil map is a predicted soil map and, thus, may not be completely accurate. We conclude that ReNN AnD is detecting soil changes because of three observations: (1) most soil change detections are located near the beginning of a soil change region shown on the GBR soil map, (2) the soil change detection points in the NB and SB tunnels are similar even though these data sets are very different, and (3) there are few detections in the GBR predicted homogeneous soil regions. Accurately detecting these soil changes, especially as a tunneling contractor is starting on a new project, can assist with correct EPBM configuration for the soil type, which then increases EPBM efficiency.

4.5 Conclusions

The main contribution of our work in this chapter is a novel anomaly detection algorithm (ReNN AnD) that can be applied to anomaly detection in data where a time-delay exists between changes in the input feature values and when these changes affect the output target value. Another contribution of our work is providing a tool for EPBM tunneling contractors to detect soil changes as an EPBM excavates and constructs an underground tunnel in real-time.

We implemented and applied ReNN AnD to two time-delayed data sets from the Seattle project, and detected soil changes (i.e., anomalies) in several expected soil change locations. Specifically, we found soil change detection points at locations the GBR soil map predicted soil changes would occur. We also detected soil changes where the GBR predicted a homogeneous soil region; however, since the soil change detections occurred in the same location in both tunnels, we believe an actual soil change exists. The EPBM operator was able to anticipate soil changes in the SB tunnel (based on prior knowledge from excavating the NB
tunnel); ReNN AnD, however, was still able to detect soil changes despite the “smoothed out” data in the SB tunnel. Upon examining large homogeneous regions of soil, we find that ReNN AnD did not detect soil changes where no soil change existed, further proving the effectiveness of ReNN AnD. ReNN AnD is a viable time-delayed, anomaly detection method that we successfully applied to two real-world data sets.
Figure 4.5: ReNN AnD soil change detection results for chainage 108,200 to 107,000 in both tunnels. A ReNN AnD detection event is annotated with a red vertical line.
Figure 4.6: ReNN AnD soil change detection results for chainage 107,000 to 106,000 in both tunnels. A ReNN AnD detection event is annotated with a red vertical line.
Figure 4.7: ReNN AnD soil change detection results for chainage 106,000 to 104,600 in both tunnels. A ReNN AnD detection event is annotated with a red vertical line.
Our work seeks to improve the underground tunneling community’s understanding of how EPBMs operate efficiently through automated machine learning methods. Specifically, underground tunneling contractors collect massive amounts of data in each tunneling project; however, this collected data is only analyzed in real-time or analyzed by tunnel ring. In other words, generally, the entire data set is not analyzed to find potential efficiencies, because traditional methods do not allow for macro level analysis of large data sets. Instead of relying on small scale analysis, we applied automated machine learning methods that identified key underground tunneling systems that impacted the performance of the tunneling machine.

Our work is different from other applications of machine learning to underground tunneling problems. Specifically, we addressed the following weaknesses in traditional tunneling performance studies that apply machine learning methods: (1) training a predictor and determining an error measurement without understanding how the input features affect the TBM or EPBM’s performance, (2) not focusing on robust methods that discover stable features, allowing results to be generalized to other TBM and EPBM projects, and (3) not considering data time delays when detecting anomalies. Our work implements improved machine learning methods to address these weaknesses.

After our initial analysis of the Seattle project EPBM data (with traditional Feature Selection Algorithms (FSAs)), we found areas where current machine learning methods could be improved to better analyze underground tunneling project data. Specifically, when we applied multiple FSA types to predict the EPBM’s advance rate, we found that similarly performing FSAs identified significantly different important input features (i.e., EPBM machine parameters) that affect the EPBM’s advance rate. Methods for stabilizing the features selected by FSAs are common in the bioinformatics field; however, bioinformatics data sets
address the problem of feature instability caused by perturbations in a small example space (i.e., a small number of available measurements for training the FSA). Our problem (i.e., the Seattle project data) is different, because we have a large number of examples and, therefore, do not suffer from these input perturbations. Traditional feature selection methods could not identify a stable set of input features that are important to underground tunneling, and dimensionality reduction methods would have lost data about which input features are important. To solve this problem, we created a new robust FSA ensemble method, called JENNA Ensemble Network Normalization Algorithm (JENNA), that is appropriate for large feature and large example space problems (e.g., the underground tunneling problem). JENNA can also be applied to other data sets with both a large feature space and a large example space.

We compared JENNA’s performance to the state-of-the-art ensemble feature selection method (i.e., the Saeys Method). We found that the prediction performance of input features selected by JENNA in the NB tunnel performed statistically better than the Saeys method, and the input features selected by JENNA in the SB tunnel performed statistically equivalent to the Saeys method. Most importantly, we measured the stability of the features selected by the JENNA Method and the Saeys Method, and we found that JENNA significantly outperformed Saeys (i.e., JENNA selected the same input features across all cross validation folds, in both tunnels, achieving a perfect 1.0 similarity score). We also found that many of the features identified by JENNA in the NB tunnel were also identified by JENNA in the SB tunnel, despite significant differences between the NB and SB data sets.

We analyzed the machine parameters (i.e., input features) selected by JENNA in both tunnels to identify a generalizable set of EPBM machine parameters that affect advance rate. To the best of our knowledge no comprehensive analysis of machine parameters that affect an EPBM’s advance rate exists. Our analysis found a relationship between the application of GCS foam and the EPBM’s advance rate. The necessary amount of GCS foam varies by soil type; however, applying the GCS foam earlier in the tunnel cycle changed the consistency
of the soil and allowed for a higher advance rate. We also found that reducing torque at the cutterhead generally increases advance rate; however, an ideal torque point exists where further reducing torque does not increase advance rate. JENNA also identified the screw conveyor soil pressure sensors as important and did not identify the muck chamber soil pressure sensors as important, which indicates a time-delay exists between changes to the soil pressure and when the soil pressure changes affect the EPBM’s advance rate.

Based on our findings that a time-delay exists between changes to some of the EPBM’s machine parameters and when the changes to the EPBM’s machine parameters affect the EPBM’s advance rate, we investigated machine learning methods that accounts for time delays in data sets. Deep learning is the state-of-the-art category of machine learning methods for handling time series data; however, many deep learning algorithms are focused on solving a specific problem (e.g., facial recognition, voice recognition, or object detection). Recurrent Neural Networks (RNNs) are modified Artificial Neural Networks (ANNs) that can be trained on more generic data sets, such as the Seattle project data sets. RNNs cannot be trained deterministically and, therefore, cannot be reliably used as an FSA. However, we found that accounting for time delays in the Seattle project data can be used to create an online soil detection algorithm.

Our time delayed anomaly detection method (ReNN AnD) successfully detects anomalies (i.e., soil changes) in data where a time delay exists between changes to the value of the input feature and the time when the input feature value affects the output target value. We are not aware of any other method that applies RNNs as a time delayed anomaly detection algorithm.

We trained and tested ReNN AnD on the NB and SB tunnels in the Seattle project and compared ReNN AnD’s soil change detected points to the predicted soil change points on the Seattle project’s Geotechnical Baseline Report (GBR). ReNN AnD detected anomalies (i.e., soil changes) near most of the predicted soil change locations in the NB and SB tunnel. ReNN AnD also detected several soil changes in locations slightly different than marked
on the GBR; because ReNN AnD detected soil changes at the same location across both
tunnels, we believe ReNN AnD identified the true location of the soil change.

In Section 5.1 we address each of the research questions we originally postulated in Sec-
tion 1.6. Section 5.2 then addresses our contributions to computer science and underground
tunneling, Section 5.3 proposes areas of future work, and Section 5.4 concludes our work.

5.1 Research Questions

What EPBM systems impact the EPBM’s performance as it is excavating?

Many studies have examined the factors that affect hard-rock TBMs’ penetration rates;
our work conducts a similar analysis on soft-soil EPBMs. When we initially trained FSAs,
without applying feature stability methods, the FSAs did not consistently identify the same
machine parameters; however, the FSAs did identify several machine parameters from the
same EPBM systems. For example, the grouting system and GCS foam system were high-
lighted by the initial FSAs we applied. We eliminated the grouting system from future
consideration, because a change in grouting results from a change in advance rate. We then
developed JENNA to improve the stability of features highlighted.

Applying JENNA resulted in a stable set of EPBM machine parameters, generalizable
across EPBM projects. Table 3.6 lists the EPBM machine parameters that affect the EPBM
advance rate performance as it is excavating. Further analysis of these machine parameters
led to future insights on how the EPBM’s performance was affected by the identified machine
parameters.

How do EPBM systems impact the EPBM’s performance as it is excavating?

As previously discussed, over 700 machine parameters were monitored on the Seattle
project EPBMs. The amount of impact that each of these machine parameters has on the
EPBM’s advance rate is impossible to determine from small scale analysis and visualiza-
tion techniques alone. Our JENNA method determined several EPBM machine parameters
that impacted the advance rate in the Seattle project. We then visualized these important
machine parameters to see how these machine parameters impacted the advance rate.
Section 3.7.2 to Section 3.7.4 provides an analysis of the JENNA parameters that affect the EPBM’s advance rate. The identified machine parameters affect the advance rate in expected and unexpected ways. For example, we expected that, typically, a decrease in cutterhead torque leads to an increased advance rate. We did not expect that increasing the GCS foam early in a tunnel ring cycle leads to increased advance rate; furthermore, we have not seen a clear relationship between GCS foam and advance rate in the literature. Although we used visualizations to establish these relationships, JENNA validates that the relationships observed between the identified machine parameters and the advance rate are valid observations. From our visualization analysis we conclude:

- the GCS system impacts how “smooth” the EPBM operates (e.g., stable, high advance rate, lower torque),
- the center GCS port (i.e., GCS Line #1) impacts advance rate the most,
- applying GCS foam and solution early in the tunnel cycle contributes to a high, stable advance rate,
- the ideal amount of GCS foam applied for stable, high advance rates varies with soil type,
- the cutterhead motors should operate between 50% and 55% of maximum torque for high advance rates,
- time-delayed features (e.g., screw conveyor soil pressure sensors) were identified as important to the EPBM’s advance rate, and
- applying additive early in a tunnel ring cycle and applying a greater total additive volume led to smoother, high advance rates.

Can we improve machine learning methods to better understand an EPBM’s performance?
JENNA was created to address the problem of stabilizing FSA biases. We implemented JENNA and proved that it performs better on large example space, large feature space data sets (e.g., the Seattle project data sets) than traditional methods.

In addition, we determined that JENNA was identifying time delayed machine parameters as important in predicting the EPBM’s advance rate. Although time delayed machine learning methods (i.e., deep learning) are not able to be reliably used as FSAs, we found that the accuracy of RNNs allowed us to create a useful time delayed anomaly detection method. We, therefore, implemented ReNN AnD, which successfully detects soil changes. ReNN AnD enables tunnel engineers and contractors to correctly configure EPBMs for optimal performance in real-time (as soil changes are detected).

5.2 Contributions

This thesis presents interdisciplinary work for the progression of the machine learning and underground tunneling fields. Our work applied traditional machine learning methods to EPBM data sets, which have not previously been analyzed with FSAs. Based on the stability problems we encountered from applying traditional FSAs, we contribute a new feature stability method (JENNA) for analyzing underground tunneling data sets and any other data set that has a large example space and large feature space structure.

We then provide an analysis of the generalizable EPBM machine parameters identified by JENNA. Our analysis found EPBM machine parameters that we expected, as well as machine parameters that we did not expect, to be identified. Although some parameters may not have been expected, our analysis found that logical connections between these machine parameters and the EPBM’s advance rate can be made within the Seattle project data. Finally, we contribute a novel, online method for anomaly detection in time delayed data (ReNN AnD) that we successfully applied to detect soil changes in the Seattle project data.

In summary, we
1. improved the understanding of the systems in an EPBM that affect the performance of an EPBM,

2. improved the performance of robust feature selection methods in large example, large feature space problems by creating and testing JENNA Ensemble Network Normalization Algorithm (JENNA),

3. applied deep learning methods to a data set outside of traditional deep learning focus areas (e.g., image recognition, speech recognition, video recognition) to improve our understanding of EPBM systems, and

4. developed and tested a soil change detection method using deep learning methods (Recurrent Neural Network Anomaly Detection (ReNN AnD)).

5.3 Future Work

We found several areas where our work can be continued in the future. Our research questions focused on improving our understanding of EPBM systems through improvements to existing machine learning technologies. JENNA and ReNN AnD are our contributed machine learning technology improvements, and we proved their effectiveness when applied to EPBM data. We plan to consider how JENNA could improve the performance of other data sets by (1) applying JENNA to synthetic and real-world data sets similar to the EPBM data sets (i.e., large example space, large feature space data sets) and (2) applying JENNA to dissimilar data sets. Specifically, we would like to apply JENNA to bioinformatics data sets (that contain approximately 50 million input features) to see if JENNA can outperform the current state-of-the-art feature stability methods. We plan to prove ReNN AnD’s performance by applying ReNN AnD to anomaly detection problems in (1) real-world, time-delayed data sets and (2) synthetic, time-delayed data sets. Specific examples of real-world, time-delayed anomaly detection data sets include earthen dam failure detection and network intrusion detection data sets.
JENNA identified a greater number of important input features than the Saeys method in the NB and SB tunnel data, indicating that higher order relationships potentially exist between the input features and the EPBM’s advance rate. We plan to extend our work by creating higher order features from the existing EPBM data (e.g., creating input features that are the squared value of the original input feature). In addition, the response variable (i.e., the EPBM’s advance rate) can be transformed into a higher order space, which may increase the model’s prediction accuracy without significantly increasing the required computing power to run JENNA.

We would also like to further prove that JENNA is identifying important features to an EPBM’s performance by creating a randomized input feature data set and training JENNA on this random data. The randomized input feature data set would contain the same number of input features and examples as the EPBM data, and the input features would be randomized in the same range as the EPBM data’s input features. A large difference in the error of JENNA trained on random data versus JENNA trained on the actual EPBM data will further prove that JENNA is precisely identifying input features that are important to the EPBM’s performance. Another method of further proving JENNA’s performance is to compare JENNA to the application of FSAs without using ensemble methodologies. Our prior work contained results from applying FSAs without using ensemble methodologies; however, the EPBM data was pre-processed differently than the data set applied to the ensemble methods, which does not allow for a direct comparison. In our future work, we plan to apply different FSAs to the pre-processed data and then compare results with the JENNA and Saeys methods.

JENNA identified a generalizable set of EPBM machine parameters that can be used across EPBM projects. We found that JENNA performs well on the Seattle project EPBM data sets; we plan, however, to apply JENNA to more tunneling project data sets to further prove that the identified machine parameters are similar across projects. In addition, we plan to test ReNN AnD in an online manner (i.e., with a tunneling project in progress) to
further prove ReNN AnD’s ability to identify soil changes as an EPBM excavates.

5.4 Summary

Our work discussed within this thesis advances our understanding of EPBM performance. We created two machine learning methods to address specific problems encountered in the underground tunneling industry. We have presented a thorough analysis of EPBM performance, FSAs, and feature stability methods, and how these dissimilar methods can be amalgamated to produce exceptional progress in two divergent fields of study. Our work provides a framework to increase the efficiency of EPBM operations, and better understanding of large feature space, large example data sets in the future.
REFERENCES CITED

APPENDIX A - TBM AND MACHINE LEARNING DEFINITIONS

Advance Rate The distance an EPBM excavates divided by the time spent excavating. The advance rate does not include delays due to tunnel ring construction or maintenance interventions. Usually measured in \(\frac{\text{meters}}{\text{day}} \).

Bagging An artificial data set created by randomly resampling the original training data set with repetition. The bootstrapped data set contains the same number of instances as the original training data set.

Bootstrap An artificial data set created by resampling the original data set in some manner. The manner in which the data is resampled is defined by the bootstrapping method implemented (e.g., bagging or boosting are common methods). Bootstrapping is used to reduce variance caused by having a small number of measurements.

Borehole A 6-inch diameter vertical shaft drilled prior to tunnel construction to sample soil along the tunnel alignment. The borehole analysis is compiled into a Geotechnical Baseline Report (GBR) of predicted soil types and water level for use in EPBM project planning.

Chainage Used in tunneling projects as a reference distance along the tunnel alignment, measured in linear feet for the Seattle project.

Class The output target in classification ML problems. A class is a discrete set of two or more output values. For example, an ML algorithm predicting the weather could use the classes: cloudy, sunny, raining, and snowing.

Classification ML Problem Classification is used when the output target is a discrete set of values. For instance, a weather prediction classification problem may predict one of four classes: cloudy, sunny, raining, or snowing.
Cross-Validation A procedure to measure the accuracy of an ML algorithm using a data set that is independent of the data set used to train the ML algorithm. Cross-validation is referred to by the number of folds applied to the data set, e.g., 10-fold cross-validation. In 10-fold cross-validation, 10% of the data set is set aside as the testing data and 90% of the data set is used to train the ML algorithm for one fold. The splitting procedure is repeated nine more times (for a total of 10 folds) so that all of the data is used to test the ML algorithm.

Cutterhead Face The front of the EPBM that makes contact with the soil. Rotates in a clockwise or counterclockwise direction to loosen soil. Loose soil passes through the cutterhead face to the muck chamber.

Earth Pressure Balance Machine (EPBM) A Tunnel Boring Machine (TBM) that is specially designed to excavate in soft-soils (as opposed to hard-rock TBMs). Our study uses data collected from two EPBM excavations.

Example A measured data point that contains input features and an output target value used in an MLA. Examples can be part of a training set, testing set, validation set, or cross-validation set.

Feature Selection Algorithm (FSA) An algorithm that decreases the number of input features by identifying the most relevant features to the output target. FSAs are applied to data sets with many input features to increase the performance of ML algorithms.

FSA Instance An FSA used in a Feature Selection Ensemble. Feature Selection Ensembles combine the results of multiple FSAs, trained on the same data set, to improve the robustness and stability of the selected features. In standard Feature Selection Ensembles, FSA instances are exactly the same type and configuration. In JENNA, we vary the type and configuration of the FSA instances.
Grout Similar to grout used in common masonry work. EPBM grout waterproofs the concrete tunnel liner and prevents soil from settling around the tunnel ring when the metal shield is removed.

Input Feature A category of physical measurements of the problem space that are inputs to the ML algorithm when predicting the output target. For example, in this work, the rear belt scale weight is an input feature that is measured by sensors every ten seconds. Feature and input feature are used interchangeably.

Metal Shield Steel cylinder to prevent soil surrounding the excavated tunnel from settling into the excavated area. The metal shield moves forward after the tunnel ring is constructed and grouted.

Muck Excavated soil mixed with Ground Conditioning System (GCS) chemicals.

Muck Chamber Area behind the cutterhead face of an EPBM that is filled with muck. Pressure in this chamber must balance with the pressure of soil and water pushing against the cutterhead face.

Output Target The output target is the value the ML algorithm is attempting to predict or has been measured in an example. In our work, the output target is always the advance rate of the EPBM.

Overfitting An MLA that trains and performs well on training data, but performs poorly on testing (and real-world) data.

Production Rate The distance an EPBM constructs a tunnel divided by the construction time. The production rate includes excavation time, tunnel construction time, and maintenance intervention times. Usually measured in $\frac{\text{rings}}{\text{day}}$.

Regression ML Problem Regression is used when the output target is a continuous value, which is different than classification where the output value is a discrete value.
Surface Settlement Caused by a pressure vacuum in front of the EPBM. Any surface settlement can cause damage to structures above the EPBM.

Thrust Amount of force pushing the cutterhead face forward. Thrust is exerted by propulsion cylinders that push against the completed concrete tunnel liner.

Torque The amount of force exerted by the motor to turn the mechanical portions of the EPBM, e.g., the cutterhead face or screw conveyor. For example, the more resistance that is provided by the muck, the more torque will be required to make the motor turn.

Tunnel Alignment The underground path of the tunnel.

Tunnel Face The soil directly in front of the EPBM’s cutterhead face.

Tunnel Ring A circular ring of pre-cast concrete segments that are bolted together to form the completed tunnel. Each ring is approximately 5 feet in length.
Feed Forward, Back Propagation (FFBP) describes the methodology an Artificial Neural Network (ANN) uses to train its network of neurons. The ANN’s network of neurons is modeled on the network of neurons contained in the human brain. Neurons are connected to other neurons by sending electrical impulses across a synaptic gap. The combinations of these impulses lead to impulses that control human thoughts or movements. Figure B.1 shows a common ANN structure.

Figure B.1: An example FFBP ANN configuration. The tan circles represent neurons; the arrows connecting the neurons represent a synaptic connection between the neurons. Each of these connections is associated with a weight (not shown in the figure) that determines the strength of the connection between neurons. Each vertical column represents a layer in the ANN. This image was created by C. M. L. Burnett and is reproduced, with permission, under the terms of the GNU Free Documentation License [76].

The tan circles represent neurons, and the arrows between the neurons represent the strength of the electrical impulse connection between the neurons (called the weight of the
connection in ANNs). In Figure B.1, there are three layers; the input layer, the hidden layer, and the output layer. In the input layer, each neuron represents one of the input features. An ANN can vary the number of hidden layers and the number of neurons in each hidden layer; in Figure B.1, one hidden layer with four neurons is shown. Each neuron in each hidden layer contains an activation function. In classification problems, a common activation function is a sigmoid function because it outputs a one or zero for most inputs. In regression problems, a linear function is often used, because the output is the same as the input causing only the synaptic weights to affect the output value. Radial Basis Function (RBF) Networks use Gaussian distribution functions as the activation function. Often researchers will set aside a validation data set to experiment with various hidden layer configurations, in order to find the configuration that is ideal for their data set. The output layer contains one neuron for each possible output class. In our work, there is one output neuron representing the continuous advance rate value.

To find the best ANN configuration (assuming the best hidden layer configuration has already been determined), we must solve for the weights that result in the lowest squared output error on the testing data. The feed forward portion of the FFBP algorithm feeds each training example to the ANN, and the ANN outputs a predicted output (advance rate of the EPBM in our research). The average error across all training examples is computed; if the average error is less than a researcher defined threshold, a solution ANN has been found. If the error is greater than the threshold, back-propagation methods are used to adjust the weights. Back-propagation methods are numeric optimization methods adapted to the ANN problem.

In order to visualize in 3-d how a back-propagation algorithm works, imagine an ANN with two weights. All of the possible values of these two weights can be graphed on the x and y axes, and the squared error of the ANN can be graphed on the z-axis. The plot will contain “mountains” where the squared error is large, and the plot will contain “valleys” where the error is small. Our objective is to find the value of the two weights in the deepest
valley (smallest squared error). In a real-world example, the dimensionality of the plot would be equal to the number of weights in the ANN plus one. Different back-propagation methods use different methods to search this space efficiently. A common trade-off in back-propagation methods is the speed at which the algorithm advances through the search space. If the speed is too slow, the problem may not be solvable in a reasonable amount of time. If the speed is too fast, the algorithm may oscillate between the sides of a “valley” without finding the minimum error point. Lastly, an algorithm may find a “valley” that is not the deepest “valley” in the search space, i.e., the algorithm may find a local minimum instead of the global minimum. Figure B.2 shows a contour plot of how gradient descent (a type of back-propagation algorithm) iteratively searches for a global minimum (a); the same gradient descent search as a 3-d surface plot (b) is also shown.

The back-propagation methods within our work are defined below and the advantages and disadvantages of each back-propagation method are discussed. The first two back-propagation methods (Error Back-Propagation and Gauss-Newton) are combined in the third method (Levenberg-Marquardt) [79].

1. **Error Back-Propagation (EBP):** EBP is also known as the steepest descent algorithm and the implementation of EBP referred to in our work is Feedforward Back-propagation (FFBP). The first-order derivative (i.e., the gradient) of the error function is computed. A percentage of this gradient (i.e., the learning rate) is applied to the weights using the equation: $w_{k+1} = w_k - \alpha g_k$, where w is the matrix of weights, k is the iteration, α is the learning rate, and g is the gradient matrix. The step size for modifying the synaptic connection weights naturally becomes smaller as the gradient becomes smaller. EBP’s advantage is that it is stable and will not oscillate around a minimum; however, the smaller step sizes near the minimum cause EBP to take longer to converge.

2. **Gauss-Newton:** Gauss-Newton is an improvement to Newton’s method by using second-order derivatives of the error function to determine changes to the weights.
Gauss-Newton uses a Jacobian matrix to eliminate the second order derivatives, and thus decreases the required computation power at each iteration. Although Gauss-Newton is faster than EBP, it often fails to converge on a minimum error value and has been mostly replaced by the Leavenberg-Marquardt Algorithm.

- **Leavenberg-Marquardt Algorithm**: Speed and stability are the major advantages of using the Leavenberg-Marquardt (LM) algorithm for back-propagation. The LM algorithm combines the advantages of the standard EBP and the Gauss-Newton algorithm. Leavenberg-Marquardt is generally accepted as an improvement upon EBP and Gauss-Newton back-propagation methods. The LM equation is: \(w_{k+1} = w_k - (J_k^T J_k + \mu I)^{-1} J_k e_k \), where \(w \) is the matrix of weights, \(k \) is the iteration number, \(J \) is the Jacobian of the error matrix and the weights’ matrix, \(\mu \) is the combination coefficient, and \(e \) is the error matrix. The LM equation effectively combines the EBP and Gauss-Newton equations, such that \(\mu \) adjusts how much each equation impacts the weight change in the next iteration. Specifically, a small \(\mu \) uses the effects of Gauss-Newton, and a large \(\mu \) uses the effects of EBP. The combination coefficient is adjusted at each iteration, which allows LM to start with the speed of Gauss-Newton and then switch to EBP to achieve convergence at an error minimum. The major disadvantage of LM is that it requires more memory for each iteration, which is problematic for data sets with a large number of features.

Support Vector Machines (SVMs) are popular in machine learning because of their tendency to return lower error rates than most other ML algorithms in real-world problems; lower error rates exist because there is (generally) less feature interaction complexity than hypothetical ML problems [80]. SVMs are also solving a convex optimization problem, which means that any solution an SVM finds will be a global solution. SVMs were developed for classification problems, but are easily adapted to regression problems; our description examines a simple SVM classification problem. Another name for an SVM is a maximum margin classifier, because the algorithm attempts to find a dividing boundary between two classes.
that has the maximum distance. This dividing boundary is illustrated in Figure B.3 and referred to as the separating hyperplane. We note that Figure B.3 is a visual example of a two class, linearly separable problem with two input features.

In Figure B.3, the circles and stars represent the two different output classes, and two input features, \(X_1\) and \(X_2\), are represented by the x and y axes, respectively. The line labeled \(\mathbf{x} \cdot \mathbf{w} + b = 0\) is the separating hyperplane, where \(\mathbf{w}\) is a vector of weights \((\mathbf{w} \in \mathbb{R}^2)\), \(\mathbf{x}\) represents a 2-d data matrix of dimensions defined by the number of examples and the number of input features (e.g., two input features in Figure B.3), and \(b\) is the bias term. The boldfaced circles and stars are called the support vectors. Support vectors are examples that fall closest to the separating hyperplane. The margin is the distance between the line formed along the support vectors (shown as dashed lines in Figure B.3) and the separating hyperplane. The SVM is attempting to find a boundary that separates the two classes and maximizes the margins on both sides of the separating hyperplane. The intuition behind this algorithm is that by maximizing the margin, the boundary will generalize better to the testing data.

Typically output classes (in a two class problem) are numerically designated with a 0 for one class and a 1 for the other class. SVMs use -1 to designate one class and 1 to designate the other class in order to simplify the system of equations that represents the hyperplanes at the edges of the margin. In Figure B.3, we assign +1 to the star symbol class and -1 to the circle symbol class. The equations representing the hyperplanes at the edge of the margin are: \(\mathbf{x} \cdot \mathbf{w} + b \leq -1\) and \(\mathbf{x} \cdot \mathbf{w} + b \geq +1\). Then, the hyperplane that separates the data and maximizes the margins between itself and the hyperplanes is solved through quadratic programming. If the data is non-separable, slack variables are used to allow misclassified training instances in the margin. SVMs can be further extended to regression problems.

SVM regression applies an “\(\varepsilon\)-insensitive error tube” around the training examples that produce the lowest errors. \(\varepsilon\) is the distance from zero error and is one-half the width of the “\(\varepsilon\)-insensitive error tube,” as the tube extends in the negative and positive error directions.
Within the “ε-insensitive error tube,” training examples are assigned an error of 0. The closest non-zero error training examples then become the support vectors from which the margin hyperplanes are created. The center of this margin is the separating hyperplane solution for the regression SVM [81].

B.1 Linear Regression

In supervised machine learning, linear regression fits a line to the training examples. Equation B.1 represents the linear regression model:

\[h_\theta(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n, \]

(B.1)

where \(h_\theta(x) \) is the hypothesized model based on the training data \(x \), \(\theta_0 \) is the bias term, \(\theta_1 \cdots \theta_n \) are the weights of each input feature, \(x_1 \cdots n \) are values of the training example, and \(n \) is the number of input features. In order to learn the \(\theta \) parameters, a cost function is established so that optimization methods can be applied. Equation B.2 shows the ordinary least squares cost function:

\[J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2, \]

(B.2)

where \(J(\theta) \) represents the cost of the current model applied to all training examples, \(m \) is the number of training examples, \(h_\theta(x^{(i)}) \) is the result of Equation B.1 for the current training example, and \(y^{(i)} \) is the observed value of the current training example. The Least Mean Squares (LMS) update rule can then be applied until the cost has reached a minimum point that is acceptable to the person training the model (i.e., convergence). Equation B.3 shows the LMS update rule:

\[\theta_j = \theta_j + \alpha (y^{(i)} - h_\theta(x^{(i)})) x_j^{(i)}, \text{ (repeat for all } j), \]

(B.3)

where \(\theta_j \) is the weight of input feature \(j \), \(\alpha \) is the learning rate, \(y^{(i)} \) is the observed value of training example \(i \), \(h_\theta(x^{(i)}) \) is the model predicted value for the training example \(i \), and \(x_j^{(i)} \) is the value of input feature \(j \) for training example \(i \).
Figure B.2: (a) Contour plot of an example gradient descent iterative search for a global minimum. (b) 3-d surface plot of the same example gradient descent iterative search. Image originally created by Joris Gillis and reproduced as non-copyrighted material [77, 78].
Figure B.3: Illustration of the margin between support vectors (of opposite classes) that SVMs are optimizing in a two class classification example.