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ABSTRACT

The United States contaiasvariety of domestic rare earth elmhmineral sources
containing bastnasite, monazite, amthatime. This researclvasperformedo investigate
the fundamental surface chemistry involved in tlo¢hfiflotation of theseninerals, and apply
the knowledgeained to substantiate the restifiough experimental testwork on a
domestically sourced rare earth ore.

Electrokinetic studies were performexestablish the potential determining ions for
all minerals An extensivestudy on the effect of various aetitors (C8*, W®*, Cr**, Mo®*,
Fe?*, Al CU, PiF*, and Mif") wasperformed.

Adsorption studiesuggesthat the mechanism difydroxamateadsorptions
chemisorptionas hydroxamate adsorption increased on all minerals with an increase in
temperature In addition adsorptionoccurred at equilibrium pH values whéehe zeta
potential wa negative for all minerals.

Fundamental thermodynamic calculatioB8sefrrGrahame free energy, enthalayd
entropy of adsorptionvereperformed Resultsndicatethatthe adsorption of hydroxamate
is thermodynamically spontaneonsthe temperature range testadd endothermic in nature
for all minerals tested.

Microflotation studies were performed aastnasite ore, to determine the
appropriate operating paramet@sbench flaation. The flotability of thebastnasitere
increased with an inease in collector concentration.

Bench flotation resultdlustrated that temperature has an effect on the grade and
recovery of bastnasite ovghen using hydroxamate agallector With the addition othe
depressarlignin sulfonate at elevated temperatutés possible to produce a rougher
flotation concentrateontaining 37% EO at 80% recovery. He dosage rates required to
produce this concentrate are likely toghfor industrial use An economic analysis
comparing the reagent costs of a typical rare earth flotation plant to the reagent costs used
experimentallywvas performed to determimedustrial feasibility
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CHAPTER 1 INTRODUCTION

The United States contains a variety of domestic rare earth element mineral sources
containing Bastnasite, Monazite, and Xem@i The purpose of this reseavehs to
investigate théundamental surface chemistry involved in thatirflotation of these
minerals, and apply the knowledge gained to substantiate the thsoligh experimental
testwork on domestically sourced rare earth ores.

1.1 Background

Froth flotation is one of the mbsommonly used concentration steps in mineral
processingthe rare earth industry is no exception. Aftervhkiable minerals have been
liberatedfrom the waste rocKroth flotation is used to selectively concentrate and separate
the valuable ore frorthe invaluable gangue material. In the rare earth processing industry,

flotation is generally used as a precursor to hydrometallurgical treatment.

1.2 Motivation

Currently, limied domestic supply, combingdth the uncertainty involved in relying
on foreigh imports providesthe motivation for this project. By gaining a thorough
understanding of the fundamental surface phenomena occurring during the flotation of rare
earth elementgperational parameters may be manipulé&teidcrease both the gradad

recovery ofthe process. This can letimproved overall economics.

1.3 Approach

Research performed in this work involved the use of pure mineral samples that typify
rare earth deposits in the Unit8thtesas well asadomestiaare earttore sample

Initially, all of these mineral samples were characterized using automated SEM
microscopyMineral Liberation Analysis (MLA)X-Ray diffraction(XRD), X-Ray
Fluorescence Spectroscop¥RF), andinductively Coupled Plasmislass Spectroscopy
(ICP-MS) analysis to dtermine both the mineralogy and purity.

The pure mineral samples were subjected to zeta potential measurement using a
Microtrac Stabino instrumentThis allowed for the evaluation of solution chemistry effects

on the surface chargend ultimately, theeta potential of the minerals.



The adsorption density of a hydroxamate colleotaio theminerals wasneasured by
Ultraviolet-Visible light spectrophotometryThis allowed for the development of
fundamental chemical models for the bonding taking ptexcthe particle surfacese.
physical adsorption, chemical adption etc.

To validate the resulisf the solution and surface chemistry effects observed, micro
flotation expeiments were performed usingPartridgeSmith Cell Results obtained
provided information on how the surface chemistry could be modified to allow for the
selective removal of the desired mineral species from the gangue minerals.

Ultimately, all of the aforementioned experiments provided the understanding
necessary to apply thesundamentals to realorld applicationsBenchscale rougher and
cleaner flotation tests were performesing the proposegtagent scheme. Rétsuwere
compared with currently used processedeterminghe utility of thereagenscheme.



CHAPTER 2 LITERATURE REVIEW

2.1 The Rare Earth Elements

Rare earth el ements (REEOG6s) are a uniqgue
physical and chemical properties. They account for approximatéhot 4l naturally
occurring elements, but the entire group occupies @méyposition on the periodic taljig.

These 1®lements make up the lanthanide series (atomic numbéts)5and all bubne
(promethium) occur naturallyln addition to these 1&lements, yttriunand scandium are

also comsidered rare earthsince they are tend to occur in the same deposits as the rare earths
and sharsimilar physical and chemical properti@sigure2.1).

Rare earths are separatesdbintt wo di f ferent subsections;
(lanthanum’ through europiu®) and t he fAheavi esttthroogh HREE® s
lutetium™). Yttrium is generally considered a heavy rare earth since its ionic radius is close
to that of hilédeandiuhRsbd éoasjderad either a light or a heavy

Group 1 2 3 4 5 ] 7 B 9 10 " 12 13 14 15 16 17 18
Period 1 2

1 H He
B3] 4 5 ] 7 ] 9 10

2| Li | Be B | C| N | O| F | Ne
1 12 13 14 15 16 7 18

3| Na | Mg Al Si| P § | Cl | Ar

19 20 A 2 Vil ] 25 2% a1 2 ] 30 kil H 35 36

37 3 ] 4@ 7 4 43 4“ 45 4 4 4 4 50 5 52 53 54
5 Rb | Sr Y Ir Nb | Mo | Tc | Ru | Rh | Pd | Ag Cd In Sn Sh | Te | Xe
T—
33 86 [ &1 | 72 ] 74 75 7% 7 ] ] 80 8 82 83 84 85 ]
6 Cs | Ba Hf | Ta | W | Re | Os Ir Pt | Au | Hg | T | Pb | Bi [ Po | At | Rn
&7 8 | 803 14 | w5 | 106 | w07 | 108 | 109 | 110 " w2 | u3 | w4 | s | us | 7 118
T Fr Ra Rf | Db Sy | Bh | Hs | Mt | Ds | Rg | Cn | Uut | FI | Uup | Lv | Uus | Uuo

89 % 91 92 93 94 9% 9% o7 9 9 00 [ 101 102 103
Ac Th | Pa u Np Pu | Am | Cm | Bk Ccf Es Fm | Md | No Lr

Figure2.1: Rareearth elementsn the periodic table



2.1.1 History of the Rare Earths

It took approximately 160 years to discover all 17 rare edetiments, beginning in
1784 and concluding around 1940. The fingheral known to contain rare earths
Gadolinite, was discovered by a Swedish Royal Army lieutenant named Carl Axel Arrhenius
in Ytterby, Sweden. I t wal was analyzedioyt aiFinnish 7 94 t h
chemistnam@J ohan Gadol i n. In this miner al he f ot
comprised approximately 30% of the mineelementsve r e ¢ a | Ipeodtotheelfi r t h s o

century). Swedish chemist Anders Ekebergfirmed this discovery in 1795, and found that

this mineral also contained beryl | REEM. Ekeb
iron-beryllium-silicate) after his native Ytterby, Swedennd cal |l ed it #dAyttri a
was the firsttoadlay ze t his new mineral it [2hTlro recei v
chemical formuladr gadolinite is (Ce,La,Nd,¥reBeSi;O1[3].

't wasndt unti |l ceneurythatSisHumphreycDawy eonfionfed t he 1

the fact that fAearthso werldeillostated thibye ment s, bu
separating metals such as barium, strontium, and calcium from alkaline earths, after this,
elementsvere differentiated from earths.

In 1804, two different groups of Swedish and German scientists were investigating a
mineral (cerite) which had beersdovered in 1751. They both independently reported the
same finding; that an oxide form of a new element existed in this mineral. They named this
element cerium, after an asteréidind in 180Inamel iCeres.

In 1839, der realizingthatthe mineralsn which the scientists were finding the new
elements were quite compleRarl Gustaf Mosander separated a new element from ceria. He
named this element lanthanuanf t er t he Gr e e Kolléwingtheeseparatipne n ot i
of lanthanum, Mosander stilbgtulated that there was an additional element present in
l ant hanum. I n 1842, he succeeded in finding
the Greek wordi d i d y mo s 0 Mdsandessubsequangyurned his attention towards
gadolinite, as héhought theravaspotential forthe discovery of additionaew elements. In
1843, he pulshed resilts reporting that he had discovetedvo new el ement s, i e
Aterbium. o

In 1878, SwissAmerican scientist Marc Delafontaine reported that the abearp
spectrum of didymium separated from samarskite differed from the spectrum of didymium
separated from ceriteéde postulated that this meantdginium was not a single element but
rather a mixture of two more elements. 1879, French chemist Paul Lecde Boisbaudran



disproved these results on the spectra, but, in doing so found a new element in samarskite.

This el ement was named fAsamariumo after the
In 1878, continuing his investigation on the erbium fraction separated fxdoligite,

Marignac separated an oxide and salts that differed from both erbiuyttimeh in its

chemical and spectral properties. He named

in between yttrium and erbium.

In 1879, Swedish chemist LafsedrikNi | son repeated Marignaco
confirm ytterbiumdés existence. Not only was
elementwhichhe amed A s c aBdandnavid aft er

Another Swedish chemist, Per Theodor Cleve, suspected thexewen more
elements present in the erbium fraction remaining after ytterbium was separated. Through
careful chemical separation and spectral analysis, Cleve discovered two more elements in
1879. He named t hese feldelnmianido niaThdder r e St oc k h
which was the ancient geographical region of Scandirjdyia

In 1885, Austrian chemist, Carl Auer von Welshdzcle gan i nvestigating
didymium. After using fractional crystallization instkaf fractional precipitationhe was

able to separate didymium into two separate elemérsse are now known as neodymium

and praseodymium. Neodymi umés name comes fr
Adymi umo for twin. Prasegdgmkumpsasameé €omesg
was the color of i1itsdé sajb.t when separated fr

Studies on gadolinitecantnued, and i n 1886, Boi sbaudr atl
holmium containegeta not her el ement . He named this el

Greek fAdysprogi fiag¥.dmea get o
In 1886, in cdaboration with Delafontain and Soret, Marignac separated a nitrate
from samarskitewhich differed in chemical and spectral from all other elements known at
that time. This elment was named after the fatloéigadolinite, Johan Gadolin, and is
knowntalay as fdg@&.dol i ni umo
In 1904 French chemist, Georges Urbain was able to sepamatber element from
gadol i ni um, now known as fAeuropi umo, It was
Although he did successfulbeparate and name the element, he did not discover it, this was
done in 1890 by Boisbaudrr.
In 1905, the last natally occurring rare earthwere discovered simultaneously by
Auer von Welsbach and Urbain. Both had been working on separating two new elements
from ytterbium. Upon succeediigh e s e el ement sy tweerreb i nuamoe do rfi niienc



ytterbiumdba n d f | wihich ts Latimiar Paris.Overtimet he @A need tiem bfi nuanmd
lostits convention and the elements are known as ytterbium and lutgjum

Although all of the naturally occurring rare earths had been discovered, scientists at
the time did not become conscious of this until much lafeus,discoverieof more and
mor e A n e wcoertihuednehbe publishedrhis continued until912,whenvan den
Broek introduced the idea of the Atomic Numbemdma ny of t hese #Afinding
disproven. Scientists had established that there needed to be fifteen elements to make up the
lanthanide eries (atomic numbers 571). All of these had been discovered excepafomic
number 61. In 1945, at Oak Ridge National Laboratory, Marinsky, Glendlin, and Goryell
used ion exchange to separate element 61 from the products of uranium fission amd neutro
bombardment of neodymium. This artificiafgbricatede | e ment was named fApr
after the Greek mythological figuf@rometheus[2].

A chronological list of the rare earths in order of their date of discovery is shown
Table2.1.

2.1.2 Properties of the Rare Earths

The rare earths are unique in that they are otedipiand physically very similar.
These similarities are the reason it took over 160 years for all of them to be discovered and
separated. Itis this uniqueness that makes the rare earths interesting to study, and why there

is continued research in thield, i.e. we are still learning more and more about the rare earths

every day.
Typically, as an el ementds atomic number
increase as it gains more and more valence e

a phenomenon known as the ALanthanide Contr a
earths increases, the additional electrons occupy the inner-gdhellbGenerally, the

increased attraction from the nucleus is offset by the addition of electrongetcsukshells.

Since the 4f shell is heavily shielded from the neighbourinesbetis, the increased

attraction towards the nucleus is not offset by the addition of electrons, thus, the ionic radius

of the rare earths decrease with increasing atonmaber{8]. An illustration of this

phenomenon is illustrated Figure2.2. Note that the ionic radius of yttrium is similar to the

HREE group, while scandiums nowher e near the REEOGS.



Table2.1: Chronological List of Rare Earth Discoveri@$

vear Mineral/ Discovered Named by Confirmed Origin of Name
Element by by
1784 Gadolinite Arrhenius Ekeberg - Person: J. Gadolin
. Berzelius, .
1751 Cerite Cronstedt Hisinger - Asteroid: Ceres
1794 Yttria Gadolin Ekeberg Delafontaine Place: Ytterby,
Sweden
1804 Cerium Be_rz_ellus, Bgr;ellus, - Asteroid: Ceres
Hisinger Hisinger
1839 Samarskite Klaproth, i Person: Colonel
Rose Samarsky
1839 Lanthanum Mosander Berzelius - Greek: “To escape
notice
1842 Didymium Mosander Mosander - Greek: "Twins"
Delafontaine,
Soret,
1843 Terbium Mosander Mosander Roscoe, Place: Ytterby,
Schuster, Sweden
Marignac,
Smith
1843 Erbium Mosander Mosander Delafor_wtame, Place: Ytterby,
Smith Sweden
Delafontaine Chemical Behavior:
1878 Ytterbium Marignac Marignac Nilson '| Between erbium an(
yttrium
1879 Samarium Boisbaudran| Boisbaudran Cleve Mineral: Samarskite
1879 Scandium Nilson Nilson - Place: Scandinavia
1879 |  Thulium Cleve Cleve : Place: Ancient nam
for Scandinavia
1879 Holmium Cleve Cleve S_oret, De Place: Stockholm,
Boisbaudran Sweden
. De De Chemical Behavior:
1886 Dyspresium Boisbaudran| Boisbaudran i Difficult to access
1886 Gadolinium Marignac Marignac Delz‘gp;?me, Person: J. Gadolin
. von von Greek: "Green
1886 | Praseodymium Welsbach Welsbach Bettendorf Twin"
. von von -
1886 Neodymium Welsbach Welsbach Bettendorf | Greek: "New Twin
1901 Europium Demarcay Demarcay Urbain Place: Europe
1907 Lutetium Urbain, von Urbain - Latin: Paris
Welsbach
Marinsky, Marinsky, .
1947 Promethium Glendenin, Glendenin, - G_reek Mythologlcal
Figure:Prometheus
Coryell Coryell
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Figure2.2: The Lanthanide Contractiq8]

The lanthanide contraction is responsible for the subtle differences inéhearéns
which allow for effective separation.

An interesting propey of the rare earthselated to the lanthanide contraction, and
ultimately the ionic sizefadhe elements, is known &ssicity. Basicity is a measure that
determines the affinity a spies has for an electron or anion. This determines the solubility
of salts, the stability of complex ions, and the degree to which cations will hydrolyze in
solution. The cations with the least affinity for electrons are considered to be most basic
while those with the greatest attraction are considered the leasf3adit terms of crystal

radius the rare earths are arranged in the following order:

La®* > ce* > PP > Nd®* > P’ > S’ > EU > Gd** >
Tb** > Dy** Ho** > Y3 > EF* > Tm®* > Yb** > Lu** > Sé*

All rare earthsexcept ceriufi and europiuni’, are characteristically trivalent
(Me*") in nature. The occurrence of both the +2 and +4 states is of particular interest in the
field of extractive metallurgy, as they are the basis of certain sepambcessesTable2.2
illustratesthe various properties of the rare earths



Table2.2: Properties of the Rare Eartl3

Element Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium  Erbium Thulium Ytterbium Lutetium Scandium Yttrium
Atomic Number 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 21 23
Atomic Weight 138.50 140.12 140.91 144.24 (145) 150.36 151.97 157.25 158.93 162.50 164.93 167.26 168.93 173.04 174.97 44.96 88.91
fec<-148
dephz -
deph<1478 P
Crystal Structure 148 and rhomb <734 cph< cph<
) foc»310 & dcph <795 deph <863 | deph <863 cph <1235 |cph <1289 cph <1381 cph <795
(As a Function of <133 cph =734 & <922 bee cph cph cph cph 1337 bee | 1478 bee
<865 bee =795 becc > 863 bece> 890 becec>1235 | bee» 1289 | beo>1381 becc =795
Temperature °C) feo =139 bec =922 =1337 = 1478
bee > 865
and <726
bee > 726
Atomic Volume
5 22.60 17.20 20.80 20.58 20.24 20.00 28.98 19.90 19.31 19.00 18.75 18.45 18.12 24.84 17.78 15.06 19.89
{cm” /mol at 24°C)
Density
6.15 8.16 6.77 7.01 7.26 7.52 5.24 7.80 8.23 8.55 2.80 9.07 9.32 6.97 9.84 2,99 4.47
{g/cm3 at 24°C)
Conduction Electrons 3.0 3,3.1 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
Valence in Water 3.0 3,4 3 3 3 3,2 3,2 3 3 3 3 3 3,2 3,2 3 3 3
) Eu2+is colorless,
. 2 . Yellow Sm2+is . pale yellow ) ) .
Color in Water (Me™" ) colorless | colorless | yellow green rose pink dark red pale colorless | pale pink reen yellow pink |greentint Yb2+is |colorless |colorless|colorless
yellow g yellow
210.5 354.0, 521.8 272.9 284.4, 3682,
Main Absorption band - DA " o 287.0,361.1, | 379.2, | 360.0,
. 222.0, 4445, 469.0, |574.5, 739.5, | 548.5, 568.0, 375.5, 273.3, 350.3, |[350.4, 365.0,
of Me™" in agueous - 362.5, 374.5, 402.0 416.1, 450.8, | 487.0, 682.5, 975 - - -
lution 200 to 1000 nm 238.0, 432.2, 588.5 | 742.0,797.5,| 702.5, 735.5 394.1 275.4, 367.7, 910.0 537.0, 641.0 | 522.8 730.0
o 252.0 803.0, 868.0 275.6 487.2 o " :
652.5
yellow green,
black (Pre011), brown ellow reenish
Color of Oxide (Re ,0 ;) white egg shell ( ) pale blue pink cream white white 4 ) yellow white| pink g ) white white - white
pale blue (Th407) white white
(Pr203)
Number of Isotopes: 2(19) 4(15) 1(14) 7(7) (15- 18) 7(11) 2(16) 7(11) 1{17) 7(12) 1(18) 6(12) | 1(17) | 70100 | 2(14) 1(14)
Natural (artificial)
lonization Potential
5.61 5.65 5.76 6.31 - 5.60 5.67 6.16 6.74 6.82 6.25 5.00 - 6.60
{eV/g-atom)
o (+3) 1.12 (+2) 0.98 (+2) 1.02
Electronegativity 1.2 1.13 1.134 1.139 1.145 1.16 1.168 1.176 1.184 1.192 1.2 1.216 - 1.177
(+4) 1.43 (+3) 1.15 (+3)1.21
Melting Point { °C) 918.0 798 931 1021 1042 1074 822 1313 1356 1412 1474 1529 1545 819 1663 1541 1522
Boiling Point (°C) 3457.0 3426 3512 3068 - 1791 1597 3266 3223 2562 2695 2863 1947 1194 3395 2831 3338
Heat of fusion (kJ/Mol) 6.20 5.46 6.89 7.14 -7.70 8.62 9.21 10.00 10.79 11.06 (17.0) 19.90 16.80 7.66 (22) 14.10 11.40
Heat Capacity at 298K
(1/Mol-K) 27.10 26.90 27.40 27.40 (27.3) 29.50 27.70 37.10 28.90 27.70 27.20 28.10 27.00 26.70 26.80 25.50 26.50
ol -
Thermal Conductivity
0.13 0.11 0.13 0.17 (0.15) 0.13 (0.139) 0.11 0.11 0.11 0.16 0.15 0.17 0.39 0.16 0.16 0.17
(W/{cm-K))
Magnetic Susceptibility
1.01E-04 2.43E-03 5.32E-03 5.65E-03 - 1.28E-03 3.31E-02 3.56E-01| 1.93E-01 9.98E-02 7.02E-02 (4.41E-02| 2.61E-02 | 7.10E-05 1.79E-05 - 1.91E-04
{emu/g-atom)
Curie Temperature { °C) none none none none - none none 17.00 -53.00 -185.00 -254.00 -253.00 | (-241.00) | none none - none




2.1.3 Applications of Rare Earths

Al t hough,

miniscule comparetb theprimary metals industry, REE use is becoming more and more

the amount of rare earths

prevalentin the hightech industrie$10]. Some applicationsclude; high magnetifield

permanent magnets, fluid cracking catalysiskelmetathydride (NiMH) batteries, and

various defense applicatiofisl]. A breakdown of the principal applications by REE is

shown inTable2.3.

Table2.3: Principal Uses of Rare Earths by Eleméafl 2]

Element

Application
Lanthanum NiMH bfatterles, petroleum acking catalysts, green phosphors,
and optics
Cerium Catalysts, UV light absorption in glass, polishing media

Praseodymium

Yellow pigment, additive to Nére-B magnets

Lasers, glass coloring, Nee-B magnets (motors, disk drives, ce

Neodymium phones, wnd turbines, etc)
Samarium SmCo permanent magnets, laser applications
Europium Phosphors (red) for TV, computer screens, and fluorescent lan
Gadolinium Host for phosphors, JRay screens, MRI contrast agents
Terbium Phosphors (green) for TV, computereens, fluorescent lamps
Dysprosium Added to NdFe-B magnets for increased high temperature
performance
Holmium Additive in Y-FeB (YIG) and Y-La-F (YLF) lasers
Erbium Glass coloring, fiber optic amplifier, and medical lasers
Ytterbium Fiber ampliication, fiber optics
Lutetium Dopant in garnet crystals such as indigailium-garnet (IGG)
Yitrium Ceramic_ crucibles, quores_cent phosphors, computer displays,
automotive fuel consumption sensors
Scandium Ceramics, lasers, phosphors, high performatiogs

10
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2.2 Worldwide Rare Earth Reserves andProduction

Whil e the name firare eartho mthetrubisggest t
quite the oppositéhe rare earths arimfactqui t e preval ent i ntot he ear
most base and p®us mineralsnined today.For example, the crustal abundance of rare
earthss higher tha that of copper, nickel, lead, zinc, and tin combiagdhown irFigure
2.3.

1000 RE: Lanthanides+Y+Sc¢
’ B CM: Cu+Ni+Pb+Zn+Sn
£ 10 o
& o
)
,-GE) g_ 10
e w
85 |
C S
G ©
O
S o
0
<
0.01

RECM Ni Zn Ce CuNd La Y Sc Pb Sn Tm Cd Hg Ag
Elements

Figure2.3: Crustal® un d a n c e odtherRdnmonseleraenfa]

Although the rare earths are quite abundant, finding them in deposits at economically viable
concerrations is rare Of the estimated 110 million metric tons of contained rare earth oxide
reserves, China accounts for 40% of the total, followed by Brazil, and the United States. The

geographic breakdown @forldwidereserves is shown irigure2.4.
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2014 Worldwide Rare Earth Reserves

Australia
2%

India
2%

Figure2.4: 2014 Worldwiderare earth reservg$0]

Rare earthsccur in a variety of different meral types includingarbonates, oxides,
slicates, and phosphates, and can be found in both hard rock and placesdépasérally,
the concentration of these minerals is only high enough that they can be recovered as a by
product of anotér existing process, but in some instanties rare edh concentration is high
enough that the minerals can be recovered as the main product. Although there are a large
number of rare earth bearing mineral types, finding them in concentrations high enough for
economic extraction and processing is quite.rdreus, the majoritydf he wor | ddés r ar
e ar t h &rem asmall @umber of sources, as showRigure2.5, where China holds
40% of the worl doéspradeiagO®yv e$§ bhe wesrtdodHse REOy
Minerals in these depis typically contain all of the rare earths, although, the
concentration of each individual element can vary greatly. Additionally, each deposit is
likely to contain much more than just one rare earth mineral, further adding to the variation in

rare eah concentration.
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2013 Worldwide Production of Rare Earth Oxides

120,000
100,000
- 80,000
o
b
~N
0
v
c 60,000
c
(*]
=
40,000
20,000
0 - - —
United Australia Brazil China India Malaysia Russia Vietnam World
States Total
B Worldwide Production (Tonnes/Year)| 4,000 2,000 140 100,000 2,900 100 2,400 220 110,000
B % of Worldwide Production 3.64 1.82 0.13 90.91 2.64 0.09 2.18 0.20 100.00

Figure2.5: 2013 Worldwideproduction of rare earth oxid€E0]

Anot her characteristic of rareadiaoist h depo
which rare earths are the most prevalent in these deposits. The lower atomic number rare
eart hibghtorr dide eart hs o h tghe dRER, thusathegaealesat o mi ¢
compatible for substitution withtleer minerals. Due to thifje light rare earthassociate
with themselvesindhavebecome moreoncentratedh the crust than the heavies. Tiss
why lanthanum, cerium, praseodymium, and neodymium are the most abundant rare earth

elementq2].

2.2.1 Domestic Rare EarthReserves andProduction

Currently, the United Statés4™ in REO reservesehind China, Brazil, and
Australia[10]. The three main REDearing minerals in the United States are bastnasite,
monazite, and xenotime. There are many other REO bearing minerals in the US including:
euxenite, allanite,anarskite, aeschynite, fergusonite, parisitecbigite, tengete, ancylite,
florencite, britholite, kainosite, and thalenitdthough these minerals are generally not found
in concentrations high enough for economic proced&i@]. Some of the most dominant

REE bearing mineral speciésund in the United States are showrigure 2.6 .
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Mineral Formula

Oxides
Aeschiynite (CeThCa )[(TiNb.Ta) 0]
Euxenite (Y.Er.Ce.U.Pb,Ca)(Nb.Ta.Tt),(0,0H),
Fergusonite YnbO,
Samarskife (YErFe Mn Ca U Th Zr)(Nb.Ta),(0.0H),
Carbonates
Ancylite S1(Ce La)(CO,),(OH)(H,0)
Bastnasite (Ce, [a,Y)CD_,F
Parisite Ca(CeLa)(CO)E,
Synchisite Ca(CeNd YLa)(CO,) F
Tengente Y,(C0O,)m(H0)
Phosphates
Britholite (Na.Ce.Ca),(OH)[(PS1)0,],
Florencite (La.Ce)AL(PO,),(OH),
Monazi (Ce La.ThNd.Y)PO,
Xenotime PO,
Silicates
Allanite Ca(Ce La YCa)AL (Fe* Fe™)(5i0,)(51,0.)0(0H)
Kamosite CaCeY),(510,).CO/HO
Thalenite Y[510]

Figure 2.6: Dominant REEmineralbearing specieis the United Stateld 3]

Figure2.7 illustrates the domestic rare earth deposits of the United States. The pink
dots represertardrock deposits, the yellow are placer deposits, and the blue are heavy

mineral sands.
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Figure2.7: Domestic REElepositq13]

At present, the only rare earth deposit being mined in the UnitegStates t he A Sul
Queenodo carbonatite depo Figure2.8).Disddeeredin E49n Pas s,
the Mountain Pass deposit is the largest rare earth resource in the United8isidsposit
has an overall length G830 m and wdth of 120 m. Typically, this ore contains anywhere
between E15% bastnasite, 65% calcite, dolomite, or batid other minor mineral
associations including barijtsilica, etd13]. Mining of the Mountain Pass deposit began in
1952 and ran almost continuously until 20@®en its permit expiredMining at Mountain
Pass resumed in 20, with a target throughput 872 tonnes/daywhich isenough to
produce approximately 20,000 tonnes of REgafy Molycorp has estimated that the
Sulphide Queen orebody has approximatei20nillion tonnes of oreemainingin the
deposit As Molycorp is the only producing rare earth mine in the United Staisse#iearch
is aimed at understanding and imgraythe surface chemistry of the rare earth minerals
found in the Muntain Pass deposhigstnasitemonazite, and xenotimas well as its
associated gangue mineralogy (calcite and barite).
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Figure2.8: View of Mountain Pass Mining District, Californja3]

2.3 Rare Earth Prices

Figure2.9 illustrates the historical prices for 99% pure lanthanum and cerium oxide
from 20022015. From 2002 to 2007 prices remained stagnanpab@mately$2.00/kg,
then increase in from 2007 to 2009 to approximately $6.00/kg. In 2010, China reduced its
rare earth export quota, which led to higher prices for REO exports. These higher prices
caused a scarcity of light rare earths, which caisgeka in the prices of lanthanum and
cerium oxidg15]. At their peaks in July 2011 the lanthanum oxide price reached $171.50/kg
and cerium oxide reached $158.00/kg. Pricesxdidemain this high for lonthough and as
of March 2015 lanthanum oxide is selling at $4.55/kg and cerium oxide is selling at $4.50/kg.

2.4 Rare Earth Minerals

Rare earths do not naturally occur in their elemental state or as individual rare earth
compounls, but rather, as mixtures in rock formations including basalts, shales, gneisses,
granites, and silicates.
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Average Price of Cerium and Lanthanum Oxide from (2002-2015)
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Figure2.9: Average lanthanurand ceriunoxide (99%) price from 2002015
(www.metalpages.com

Rare earths have an extremely high affinity for oxygen and are typically found as
oxide minerals. There are over 200 different rare earth mineral types, with most being
extremely rare. The rare earth contenthaefse minerals, typically described in terms of oxide
as nfr aoxei deeadr tohr RE O,0% KREOh Agaie, zacthrare darhihecal 7
typically contains each of thrare earth elements, but the concentration of each varies greatly
by mineral type.Table 2.4illustrates some of the most significant rare earth minerals as well
as their RE®%.

Al t hough there are numerous rare earth
come from three different minerals: bastnasite, monazite, and xenotimkes@f bastnasite
is the most prevalent in occurrence, followed by monazite, and finally xenotime. Currently,
these are the principal ore minerals for rare earth extrattiwmthersexist, including
ancylite brannerite, euxenite, gadolinite, lopardaed uraniniteandhave beejor are

currently being used as a source of rare earths.
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Table2.4: Significant Rare Earth Mineralg]

Mineral Chemical Formula REO %
i Ce0s = 36.940.5%
Bastnasite (Ce,La,Pr)(CGF) (Lo Pr.. 100 = 36.336.6%
= | 0,
Euxenite (Y,Ce,Ca,U,Th)(Ti,Nb, Ta)Ds (Y,Er)»0s=18.227.7%

(Ce,La,..)Os = 16:30%

Fergusonite

(Y,Sr,Ce,U)(Nb,Ta, Ti)@

Y203 =31-42%
(Ce,La,..)Os = 0.96%
ErOs; = 0-14%

Y203 = 30.7#46.5%

Gadolinite (Y,CelpFeBeSiO19 (Ce.La,.)0s = 5.23%

Loparite (Na,Ca,Ce,Sp|Ti,Ta,Nb)Os (Ce,La,..}O3=32-34%

Monazite (Ce,La,..)PQ (Ce,La,..}O3 = 5068%
Ce03=0-6%

Orthite (Ca,Ce)(Al,Fe)Sis0:10,0H] | Lax03=0-7%
Y203 = 0-8%
Ce0;=26-31%

Parisite Ca(Ce,La..(COy)F, (La,Nd,..»03=27.330.4%
Y203 = 0-8%

Priorite (Y,Er,Ca, Th)(Ti,Nb)Os g(;g'gjfg;_ig;fsj

Xenotime YPO, Y03 = 5262%

2.4.1 Bastnasite

((Ce,La, Pr)C@F)) and isthe primary source dight rare earthslt is closely related to the

mineral parisite [Ca(Ce,Lg)COs3)3F,] and has been known to replace crystals of déani

Bastnasitdalso spelled bastnasite or bastnaesitea) REEbearingfluorocarbonate

[(Ce,Ca,Y,La)(Al,Fe™®)3(Si0s)s(OH)]. Bastnasités found in vein deposits, contact

metamorphg zones, and pegmatites and oanur as either veins or disseminated with a

carbonate/silicate matrix. The rare earth content of pure bastnasite is apedxird%

REO, and contains mostly light REEs. The two main producing bastnasite deposits in 2014
are the Mountain Pass mineQalifornia(3.3 MT reserve at 8.0% REQO) and the Bayan Obo

mine in China@00MT reserve at 6.0% RE(2,13]. Interestingly enough, rare earths

produced from the Bayan Obo deposit come from the tailings of thernegmracessing at
i [8]. Sarhekey prGplerties af 6 s

t hi

S mine

as Bayan Obo
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ceriumbastnasite are listed Table2.5. The theoretial composition of Géastnasite, as

well as experimentally measured elemental concentrations can be foleigle2.6

Table2.5: Ce Bastnasite Properti¢$6]

Mineral CeBasnasite

Chemical Formula (Ce)CQF

Molecular Weight (g/Mol) 219.12

Color Yellow, reddish brown
Density (g/cn?) 4.97

Diaphaneity Transparen®ranslucent
Hardness (4-5) Fluorite- Apatite
Luminescence Non-fluorescent

Luster Vitreous- Greasy
Streak White

Table2.6: Theoretical Bastnasite Elemental Composition vs. Measured Bastnasite
Composition (ICP and XRF)

Element Theoretical Wt% Measured (ICP-MS) Wt % ()IEAF;BI?)S\L/I\;?&
c 5.5 NA NA
Ca 0.0 5.2 01
Ce 64.0 44.6 36.3
F 8.67 NA 70
Gd 0.0 2.2 1.3
La 0.0 19.6 15.4
Nd 0.0 17.1 14.7
O 21.9 NA 15.7
Pr 0.0 5.37 5.3
Sm 0.0 2.7 1.92

Corl\l/gtri]t%rents NA 3.3 2.7
Sum 100 100 100
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2.4.2 Monazite

Monazite is a REBearing phosphatée,La,Nd,Th)P@) and is the second most
prevalent source of REEs. It occurs in small isolated crystals in metamorphic rock, acidic
igneous rocks, and certain vein deposits. The name monazite comes from the German
Amonazitol otafiyo be sBeference t dl7tBmee i sol at e
monazite is so chemically stable, it is typically found in placer deposits and beach sands.
These heavy mineral bearing sand deposits are found in a variety of councttidsg:
Australia, Brazil, China, Malaysia, South Africa, and the United States. The rare earth
content ofoure monazite is approximately-6@% REO, of which 2€80 are cerium oxide
and 1030% are lanthanum oxidé&3]. Monazite can also contairgsificant amounts of
HREEs, thorium, and uranium. Additionally, yttrium may be found in monazite in amounts
upwards of 5% yttrium oxidR]. Some key properties of ceriumonazite are listed in
Table2.7. The theoretical elemental composition of@enazite as well aexperimentally

measureadlementaktoncentrations can be foundTable2.8.

Table2.7: CeMonazite PropertieflL8]

Mineral Ce-Monazite
Chemical Formula (Ce,La,Nd,Th)PQ
Molecular Weight
(g/Mol) 240.21
Color Brown, green yellow
Density (g/cn?) 5.15

. . Subtransparent
Diaphaneity to subtranslucent

(5-5.5 Apatitet

Hardness Knife Blade
Luminescence Non-fluorescent
Luster Adamantine Resinous
Streak Greyish white
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Table2.8: Theoretical CeMonazite Elemental Composition vs. Measured Monazite
Composition (ICPMS and XRF)

Element Theoretical Wt% | Measured (ICP-MS) Wt % ()Iéﬂsgs\lj\;?&
Ca 0.0 4.2 0.1
Ce 29.2 35.4 36.3

F 8.67 NA 7.0
La 14.5 17.8 154
Nd 12.0 14.3 14.7
= 12.9 16.5 5.28
o 26.6 NA 318
Sm 0.0 2.3 1.92
T 4.8 0.2 0.2
Minor
Constituents NA 33 =
Sum NA 100 100

2.4.3 Xenotime

Xenotime is an REE bearing yttrium phosphate mineral (;y &@ich can contain
apprximately 67% REO Xend i me 6 s REO c 6lRBEgwhich malkesinao st | vy
major source fothese It is a minor constituent in granite or gneiss depaaitd is usually
associated with monazjte amounts of 0.%5.0% of the monazite present. Since it is usually
associateavith monazite, xenotime is typically found in placer deposits and beach dands.
some of these heavy mineral deposits, xenotime is found in theessizd! fraction, for
which, standard processing methods are less efficaéent heavy losses can occdius,
flotation may bean attractive alternative for the recovery of xenotji8§. Some key
properties of xenotime are listedTiable2.9. The theoretical elemental compamit of
xenotime, as well asxperimatally measure@élementatoncentrations can be found in
Table 2.10.

2.5 Rare Earth Gangue Minerals

There are a variety of rare earth gangue minerals present within every rare earth
deposit. As you would expect, the composition andunt of each vary with the type of
deposi t. I n Mol ycorpbs fASul phide Queeno dep

barite and calcite.
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Table2.9: Properties oKenotime[20]

Mineral Xenotime

Chemical Formula YPO,

Molecular Weight (g/Mol) 183.88

Color Yellow, brown, green
Density (g/cn?) 4.75

Diaphaneity Opaque

Hardness (4-5) Fluorite-Apatite
Luminescence Non-fluorescent
Luster Vitreous- Greasy
Streak White

Table 2.10: Theoretical Monazite Elemental Composition vs. Measured Xenotime
Composition (ICP and XRF)

Measured

Element Theoretical Wt% | Measured (ICP-MS) Wt % (XRF)
Wt%

Ca 0 3.8 01
Ce 0 1.0 0.2
Dy 0 7.0 44
Er 0 4.1 2.7
cd 0 4.3 3.2
Ho 0 1.9 0.6

P 16.8 20.1 16.8

o 34.8 NA 33.0
Sm 0 1.0 0.5
Tb 0 1.2 0.6
Y 48.4 47.3 324
b 0 25 1.4
Corl:/lslt?t%rents NA 5.7 4.1
Sum 100 100 100
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2.5.1 Calcite

Calcite or calcium carbonate (Cag)@ one of the most conon gangue minerals
present irrare earth deposits. The fact that it is a seohible carbonate makes the
separating it from rare earth carbonates very difficult. This is especially true in a process
such as flotationwhich relies heavily on differencés surface propertiesThe properties of
calcite are shown ifiable 2.11. The theoretical elemental composition of calcite, as well as
the experimentally measured concentrations can be fourabie 2.12.

Table 2.11: Properties of Calcitf21]

Mineral Calcite

Chemical Formula CaCOs

Molecular Weight (g/Mol) 100.09

Color White, pink, yellow
Density (g/cn?) 2.71

Diaphaneity Transparen®ranslucent
Hardness (3) Calcite
Luminescence Non-fluorescent

Luster Vitreous- Greasy
Streak White

Table2.12: Theoretical Monazite Elemental Composition vs. Meas@alcite
Composition (ICP and XRF)

Measured
Element Theoretical Wt% | Measured (ICP-MS) Wt% (XRF)
Wt%
Ca 40.0 95.0 68.4
C 12.0 NA NA
F 0.0 NA 2.1
O 34.8 NA 27.9
CorI:/gtri]t?Jrents NA 51 1.6
Sum 100 100 100
2.5.2 Barite

Barite (BaSQ) is a barium sulfatgangue mineral. It consists of the divalent alkaline
earth cation B3 and sulfate anion S®. Since barite is not carbonaceous, it presents less of
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a problem duringdlotation, due to variations in its surface properties compared to the
similarities faund in the carbonates, bastnasite and calcite. The properties of barite are shown
in Table2.13. The theoretical elemental composition of barite, as well as the experimentally

measured concentrations can be foiméable 2.14

Table2.13: Properties of Baritf22]

Mineral Barite

Chemical Formula BaSQ

Molecular Weight (g/Mol) 233.39

Color White, greyish white
Densty (g/cm®) 4.48

Diaphaneity Transparentranslucent
Hardness (3-3.5)Calcitei Cu Penny
Luminescence Non-fluorescent

Luster Vitreous- Greasy

Streak White

Table2.14: Theoretical Monazit&lemental Composition vs. Measured Barite
Composition (ICP and XRF)

Measured

Element Theoretical Wt% | Measured (ICP-MS) Wt% (XRF)
Wt%

Ba 58.8 91.0 463
Ca 0.0 4.1 0.2
F 0.0 NA 23

@) 27.4 NA 28.6

S 13.7 NA 14.3
St 0.0 3.3 2.6
Cor|\1/2tri]t?1rents NA 5.1 5.7
Sum 100 100 100
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2.6 Rare Earth Flotation Review

Literature on the flotation of rare eladxide minerals is a relativelimited. This is
egecially true withregardto fundamental flotation researchtreugh, & the demand forare
eartrs continues to grow, the amount of reseaintthe fieldis increasingapidly.

The primary rare earth minerals are bastnasite (Ce,La{ffGfonazite
(Ce,La(PQ)), and xenotime (YP%), and the primary gangue minerals are barite (Badad
calcite (CaC@). Froth fotation relies orthe separatiorof these minerals based on
differences irtheir surfaceproperties Unfortunatelythis is where the difficulty imare earth
flotation lies, i.e. both the desired and gangue minerals are oxides. Thus, efficient@eparati
of one oxide from another can prove extremely complex. The following subsections will

present both the past and present methodologies used in rare earth flotation.

2.6.1 Bastnasite Flotation

As the primary rare earth meanttemees at t wo
(Mountain Pass, CA and Bayan Obo, China) kesta has been the main focusarie earth
flotation research for some time. During this timgagety ofcollectorsfor the flotation of
rare earthdastnasite have bearvestigatedncluding: fatty acids, various hydroxamates,
dicarboxylic acids, anghosphoric acidi23].

Initially, the typical collector choice for REO flotation was fatty (carboxylic) acid
due to the relatively low cost amigh availability, but with recat advances in rare earth
flotation research this trend may be changlogfortunately, fatty acid collectors are highly
unselective on their own, and require large amounts of depressant addition to achieve the
desiredconcentrate grades/recoveri8sme éthe more commonly useghngue depressants
include sodium carbonate, lignin sulfonate, and sodium silicatble2.15illustrates the
studies performed on bastnasite in reverse chronological evdeh are reviewed in the
following paragraphs.

Jordens et al. performed a study measuring the zeta potential of bastnasite in the
presence of several different collectors (benzonhydroxamic acid, sodium oleate, and
phosphoric acid ester). The isoelectric point of bastnasite wasnileerusing
electrophoretic (pip= 6.3) and electroacoustic (pd= 8.1) techniques. These results were
then compared with results involving the microflotation of bastnasite and quartz. Results
showed that both sodium oleate and the phosphoric deidvesre less selective for

bastnasite flotation than the benzohydroxamic acid. Additionally, the researchers found that
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the recovery of bastnasite with benzohydroxamic acid is strongly dependentypetioé
frother used, recovery was low with the wéadher Methyl Isobutyl Carbinol (MIBC) and
high with strong frother Flottec F150 (proprietary mix of polygylc{$s23].

Starting in the early 1980's, Pradip and Fuerstenau began their extensive studies on
the flotation of bastnasite ore from Mountain Pass [@A[23i 28]. Their studies have
primarily focused on the use of alkyl hydroxamates as an alternative to fatty acid collectors.
In their most recent papf30], they haveshown that alkyl hydroxamates are capable of
increased selectivity for bastnasite over gangue, and thus, an increase in concentrate grade.
In addition to this, they have shown that it is possible to produce these higher grades at lower
temperatures thaare required when using fatty acids, which could prove beneficial by
eliminating the need/cost involved in elevated temperature flotation. Thermodynamic
calculations performed from their adsorption density measurements suggest that the
adsorption of potasum-octyl hydroxamate follows an endothermic chemisorption
mechanismthis is further illustrated ifigure2.13in the following pagef27]. They have
also proposed that elevated temperature flotation increases the solubility of the collectors as
well as the minerals of interest. Since the proposed adsorpgchanism involves
dissolution, hydrolysis, hydroxy complex formation, anddsorption or precipitation of this
complexon the mineral surface, it is obvious that an increase in solubility of both the
collector and mineral would aid in the adsorptioagess. Additionally, increasing the
temperature increases the selectivity of hydroxamate for bastnasite by increasing the rate at
which it adsorbs onto bastnasite relative to the gangue minerals present in the system.

Pavez et al31,32]performed zet potential, adsorption, and microflotation
experiments on both bastnasite and monaz#ieg octyl hydroxamate and sodium oleate as
collectors. Their resultagreed with Pradipnd Jordens worke. that the mechanism for
both fatty aal and hydroxamatadsorption ishemisorption.

As alternativetdgir egul ar 0 ,IRenctrabpedormad work on Chinese
bastnasite using a modified hydroxamic gdtDHA) as a collector. His experiments
included the use of zeta potential, adsorption densityoffatation, and bench scale
flotation. He proposed that the adsorption mechanism is also chemisorption via the formation
of a chelation reaction between the MOHA and the trivalent cerium species present at the
bastnasite mineral surfaf®3]. In addition to his work with pure bastnasite, Ren et al.
investigated the use of various depressants to effectively separate bastnasite from monazite.
He found that by using a small amount (0.3 g/L) of potassium,alitinbenzoic acid as a
collector, hecould selectively float bastnasite from monazite. It was proposed that this was
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due to preferential adsorption of hydrolyzed aluminium ions onto the monazite mineral
surface over bastnasite4].

The adsorption of anionic fatty acids onto rare earth mineral surfacesutapebto
be chemical in nature, as they adsorb onto the REO minerals at pH values where the
mi neral 6s zet a p28]tueatd thauhselechive matune ef tpttytadidv e
flotation, large amounts of depressants are needed to keep gangue minerals from floating. In
addition to requiring large amounts of depressants, fatty acid flotaiso requires elevated
temperature for acceptable grades/recoveries. By elevating the temperature, the solubility
and rate of adsorption/chemical reaction at the mineral surface is increased. The effect of
temperature on both the grade and recovebastnasite flotation using a fatty acid collector
are shown irFigure2.10, where increasing the temperature from 18°C to 85°C greatly
increases both the grade and recovery of rare earth oxides.
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Figure2.10: Effect of temperature on REO flotation using a fatty acid coll¢8t86]
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Table2.15: Fundamental Studies on Bastnasite Flotation

pH | pHof Max
Author Year | Mineral Source Test Tope IEP Range | Recovery/ Callector Depressant  |Frother| Max Recovery
Tiested | Adsorption
Jordens 2014 |Bastnasite Madagascar Microflotation 63 59 90 Benzohydroxamic Acid Sodium Silicate | MIBC 9
Mountain Pass, CA Zeta Potential 81 Phosphoric Acid Ester F130
Sodium Oleate
PrafipFuersteesy | 2013 [Bastnasite Moutiiain Pass, CA Bench Sedls Flotation] 0% EEBI 93 K-Octy] Hydroxamate Lignin Sulfonste | NA =08
1985, 1992) Calcite Kamsas Microflotation  [Positive throughout range tested Fatty Acid {Sodium Oleate)
1981, 1983( Barite South Carolina Zeta Potentia]  [Positrve throughout risge tested)
Adsorption
Ren 2000 |Bastnasite Ching Bench Scale Flotation| 78 (plainbasteasite) | 2200 50 Beazoic Acid Polassium Alum | NA %95
ZetnPotential | .1 (bastmasite w K Alum)
Paverz 1995 |Bastnasite Brail Microflotation 448 Al 1] K-Octyl Hydroxafmats NA KA 9%
Fatty Acid (Sodim Oleate) 20
Ren 1997 [Bastnasitey China Beach Seale Flotation| 8.0 (plain) xX13| 8595 Modified Hydroxamic Acid Sodium Sulfide | NA 295
Microflotation 5.9 (wleollector)
Zeta Potentul
Adsorption
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Molycorp Flotation Process

Elevated temperaturatty acid flotation of bastnasite is the process currently used at
Mol ycor pos Mo ushowainFigureR.als la théM ipracess, the bastnasite isre
crushed/groundlassifiedto a p80 of 325 US Mesh (45um) prior to eig the flotation
circuit. Upon entering the circuit the pulp is sent to foagss of elevated temperature

(82°C) conditioning, these are as follows:

1) Soda aslt5 Ibs/ton)is used to adjust the pJd]. It also acts aa gangudbarite,
calcite)depressant

2) Blank stage to allow for further pH adjustment and depngssifect.

3) Lignin Sulfonate % Ibs/ton) is added to depress gangue minerals present.

4) Fatty acidaddtion (014 Ib/ton) is added as thellector.

After conditioning the pulp is sent to a 3 stage (2 cells/stage) rougher flotation circuit
at 40% solids by wight. The rougher concentrate is sent to the cleaner conditioner, prior to
four stages (multiple tanks/stage) of cleaning. This flowsheet produces a concentrate
containing 6870% REO with recoveries ramg from 6070%. Thus, there may be
significant oom for improvement in the current flotation scheme used at Molycorp.

Figure2.11: Molycorp flotation flowsheet 2014
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