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ABSTRACT 

 The goal of this study was to evaluate the differences in RSCF performance between vacuum and 

gas carburized steels as well as to investigate the evolution of damage (wear and microstructure changes) 

leading to pitting. Vacuum and gas carburizing was performed on two gear steels (4120 and 4320) at 

1010°C. The carburized specimens were tested in the as-carburized condition using a RSCF machine 

designed and built at the Colorado School of Mines. The tests were conducted at 3.2 GPa nominal 

Hertzian contact stress, based on pure rolling, 100°C, and using a negative twenty percent slide ratio. 

Tests were conducted to pitting failure for each condition for a comparison of the average fatigue lives. 

Pure rolling tests were also conducted, and were suspended at the same number of cycles as the average 

RSCF life for a comparison of fatigue damage developed by RCF and RSCF. Incremental tests were 

suspended at 1,000, 10,000, 100,000, and 200,000 cycles for the vacuum carburized steels to evaluate the 

wear and damage developed during the initial cycles of RSCF testing and to relate the wear and damage 

to pitting resistance. Incremental damage was not investigated for gas carburizing due to the limited 

number of available specimens. 

 The vacuum carburized samples showed a decreased pitting fatigue resistance over the gas 

carburized samples, possibly due to the presence of bainite in the vacuum carburized cases. Pitting was 

observed to initiate from surface micropitting and microcracking. A microstructural change induced by 

contact fatigue, butterflies, was shown to contribute to micropitting and microcracking. Incremental 

testing revealed that the formation of a microcrack preceded and was necessary for the formation of the 

butterfly features, and that the butterfly features developed between 10,000 and 100,000 cycles. The 

orientation and depth of butterfly formation was shown to be dependent upon the application of traction 

stresses from sliding. RSCF butterflies formed nearly parallel to the rolling direction at a large range of 

depths. RCF butterflies formed at about 45° to the rolling direction in a more narrow range of depths. The 

surface roughness and surface profile were observed to change quickly in the first several thousand cycles 

of RSCF testing leading to a reduction in contact stress and increase in lambda ratio (ratio of lubricant 

fluid film thickness to composite surface roughness). The ability of a carburized sample wear track to 

reach and maintain a steady state morphology (run-in condition) during testing is postulated to translate to 

increased RSCF resistance. 
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CHAPTER 1: INTRODUCTION  

One of the most common failure modes of components subject to sliding contact, such as gears or 

bearings, is pitting. Pitting is the direct result of cracking induced by rolling or combined rolling-sliding 

contact fatigue. Extensive work has been completed to understand the pitting resistance of steel under 

pure rolling conditions. However, a combination of rolling and sliding contact fatigue occurs during the 

mating of gear teeth as well as in some bearing systems. This additional sliding component is known to 

have an important effect on the pitting mechanism. As such, the ability to test gear/bearing steel under 

both rolling and sliding conditions was of interest in this work. One aspect of the project was the 

improvement of a rolling-sliding contact fatigue machine built previously at the Colorado School of 

Mines to allow for robust, reliable, and repeatable pitting evaluation with the ability to control the extent 

of sliding during testing. 

One method known to improve the pitting resistance of gear steels is to surface harden by 

carburizing. Vacuum and gas carburizing was performed in this study on two common gear steel 

materials. Vacuum carburizing was performed to assess the effect of the absence of intergranular 

oxidation on rolling-sliding contact fatigue performance. Gas carburized samples were heat treated at a 

higher-than-typical temperature to match the vacuum carburizing temperature. Also, by increasing the 

carburizing temperature, the time for carburizing can be reduced and production rates can be increased. 

Consequently, it was of interest to understand the effect of the increased carburizing temperature on 

pitting resistance. 

The carburized steel samples were subject to rolling-sliding contact fatigue testing until a pit 

formed. Material characterization was performed to assess the effects of the different carburizing 

treatments on pitting resistance, material properties, microstructure, carbon profiles, and residual stress. 

After testing, the samples were analyzed to investigate failure modes, microstructure changes, and wear. 

Additional tests were performed but suspended before the formation of a macropit to investigate the 

changes in testing conditions (surface roughness and wear) and to investigate the origin of microstructural 

alterations and microcracks. 

Industrially, this research is relevant in two ways. First, heat treatments and material selection 

may be optimized based on understanding of pitting fatigue performance. Vacuum carburizing can 

increase cost, heat treating complexity, and is not always available; thus it is important to understand the 

potential benefits, or drawbacks, of vacuum carburizing compared to gas carburizing. Some gear 

materials are higher cost than others due to increased alloying additions such as nickel. This work has the 

potential to clarify the benefit of more expensive gear materials in terms of rolling-sliding contact fatigue 
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behavior. Secondly, analysis of microstructural changes during rolling-sliding contact fatigue, especially 

before the formation of a macropit, can be used to understand failure initiation mechanisms and 

potentially the steel processing, alloy selection, and heat treatments necessary to improve gear material 

resistance to these failure modes. 
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CHAPTER 2: LITERATURE REVIEW  

This chapter presents background information pertinent to the research conducted during this 

work. The principles behind carburizing are presented, as carburizing was the case hardening method 

selected for study. Contact fatigue principles are reviewed. The variables which affect the contact fatigue 

resistance of carburized gear steel are presented. Microstructure changes, failure mechanisms, and wear 

during contact fatigue are also discussed. 

2.1 Carburizing  

Carburizing is a heat treatment in which a component, typically fabricated from low carbon steel, 

is heated to a temperature sufficient to develop an austenitic microstructure, and held in a carbon rich 

atmosphere. Carbon diffuses into the austenite and the component is subsequently quenched and tempered 

to form a high hardness, wear resistant case with a core possessing relatively higher toughness. The 

carbon content is typically controlled to be between 0.8 and 1.0 weight percent to prevent complications 

associated with carbide formation, brittle martensite, and excessive retained austenite [1]. There are 

different methods of introducing carbon into steel. These include gas carburizing by surrounding the 

component in a carbon rich gaseous atmosphere, liquid carburizing by submerging the component in a 

carbon bearing salt bath, pack carburizing using solid carbonaceous compounds, or vacuum carburizing 

using carbon bearing gases at low pressures. For this study, gas and vacuum carburizing was investigated. 

2.1.1 Vacuum Carburizing 

Vacuum carburizing typically involves five steps. First is a heat and soak step at the carburizing 

temperature to allow the component to come to a homogenous temperature. This step should only be long 

enough to achieve a uniform temperature in the carburized component. Excessive soak times lead to 

austenite grain growth [2]. The second step is a boost step to introduce carbon to surface austenite. An 

important consideration for the boost stage in vacuum carburizing is the control of the carbon 

concentration of the surface of the steel component relative to the maximum solubility of carbon in the 

austenite at the given heat treating temperature [3]. If the carbon content of the surface exceeds the 

maximum solubility of austenite then carbides and a carbon deposit form. These features, particularly the 

carbides, can decrease the diffusion of fresh carbon into the austenite and retard the carburizing process 

[3]. The surface carbon content is related to both the carbon potential of the atmosphere and the boost 

time. The actual carbon potential of the atmosphere is difficult to control and model due to the numerous 

carbon-species decomposition chemical reactions occurring rapidly in the low pressure atmosphere. These 

reactions lead to a very high carbon potential [3, 4]. The high carbon potential is not readily controllable 
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as a process variable in vacuum carburizing [2]. Therefore, the time allowed for the boost stage is a very 

important consideration in designing a vacuum carburizing heat treatment [3]. Third, a diffusion step is 

used to provide a gradual carbon diffusion profile between the case surface and the component core. In 

this step the furnace atmosphere is replaced by a non-carbon bearing gas such as nitrogen at the 

carburizing temperature and held, allowing the carbon to diffuse deeper into the austenitic component. 

Without the diffusion step the resulting abrupt change in hardness/carbon content between the case and 

core (illustrated schematically in Figure 2.1) would lead to undesirable case hardened properties [2]. The 

combination of the boost and diffuse steps is commonly referred to as a cycle. There are often multiple 

cycles employed during a vacuum carburizing treatment to attain the desired carbon profile and case 

depth, see Figure 2.1. The fourth step is quenching to produce a hard martensitic case. Quenching can be 

done by immersion in oil or by rapidly introducing cool gas such as nitrogen or helium. The use of 

controlled gas quenching has been shown to reduce the distortion of carburized component by providing a 

more uniform thermal gradient during quenching [6, 7]. The potential disadvantage of gas quenching is a 

relatively slower cooling rate as compared to oil immersion [7]. The reduced cooling rate may allow the 

formation of non-martensitic transformation products [8]. Finally, the carburized component is tempered 

to achieve an optimum combination of strength, toughness, and hardness [8].  

  
(a) (b) 

Figure 2.1 Schematic illustrations of (a) the difference between boost and diffuse carbon profiles in 

vacuum carburizing and (b) the effect of number of boost and diffuse cycles on carbon 

profile during vacuum carburizing. 

2.1.2 Gas Carburizing 

Gas carburizing is the most common carburizing technique for large scale production due to the 

ability to accurately control process variables and the absence of special heat treating requirements [1]. In 
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gas carburizing carbon is introduced into the surface of the steel by various interactions between the 

carbon bearing atmosphere gasses and the solid solution austenite. One of the most important carburizing 

reactions is given by Equation (2.1) [9]. 

#/Ç #ᵮς#/Ç (2.1) 

where C is carbon introduced into the austenite. When the reaction defined by Equation (2.1 is in 

equilibrium, the ratio of CO2 and CO maintains a given carbon potential. This carbon potential develops 

the surface carbon level in the austenite. If the partial pressure of CO in the carburizing atmosphere 

exceeds the partial pressure necessary to maintain equilibrium, the reaction will proceed to the left and the 

carburizing reaction occurs allowing the carbon content of the austenite to be increased to some desired 

level [1]. Figure 2.2 illustrates the point that the CO content of the carburizing atmosphere must be much 

higher than the CO2 content for carburizing to occur. If on-the-other-hand the CO2 partial pressure is 

raised above its equilibrium value the reaction will proceed to the right and decarburization will occur. 

This latter condition may be desirable if the initial carburizing creates a surface carbon content that is too 

high. The carbon content can then be lowered to the desired level. For gas carburizing this step is referred 

to as ñdiffusionò. Like in vacuum carburizing, the diffusion step in gas carburizing also allows the carbon 

at the surface to diffuse into the interior of the steel [1]. Quenching is typically performed using heated 

oil. Distortion is a relatively common occurrence in gas carburizing when quenching is not carefully 

controlled [8]. The extent of distortion can be minimized by stepping down the temperature of a 

component from the carburizing temperature prior to quenching [10], to reduce the thermal gradients. 

 
Figure 2.2 Equilibrium percentages of carbon monoxide and carbon dioxide required to maintain 

various carbon concentrations (in weight percent) at 975°C (1790°F) in plain carbon and 

low-alloy steels. Adapted from [11]. 
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2.1.3 Intergranular Oxidation during Carburizing  

The atmosphere developed in a gas carburizing furnace is described as endothermic. The 

combustion of the fuel gas (methane, propane, or butane) with oxygen creates oxygen bearing gasses such 

as carbon dioxide, carbon monoxide, and water vapor [12]. The oxygen present in these gases may react 

with metal atoms in the steel components during carburizing, creating surface and subsurface oxides. The 

endothermic atmosphere develops a negative oxygen potential for iron and many of the primary alloying 

elements in steel alloys, thereby preventing oxidation of the bulk material. However, some alloying 

elements such as manganese, silicon, and chromium have a positive oxidation potential and readily form 

oxides as illustrated in Figure 2.3. Chromium tends to form dispersed oxides within the austenite grains at 

relatively shallow depths (up to 8 to 10 µm). Manganese and silicon develop intergranular oxidation 

(IGO) along austenite grain boundaries. The IGO typically penetrates deeper into the case, around 20 to 

25 µm below the surface [1, 12]. A study examining alloying effects on IGO formation in gas carburizing 

showed that reducing manganese and silicon contents virtually eliminated the presence of IGO which in 

turn led to an increase in the bending fatigue strength of 4320 carburized steel [13]. 

 
Figure 2.3 Oxidation potentials of common elements during gas carburizing at a temperature of 

930°C (1706°F) assuming gas composition of 40% H2, 20% CO, 1.5% CH4, 0.5% 

CO2,0.28% H2O (dew point -10°C), and 37.72% N2 (Vol %). Adapted from [14]. 

 

IGO is thought to adversely affect the fatigue resistance of carburized case microstructures in two 

ways. First, the oxides are hard, brittle particles that act as stress concentrations and possible fatigue crack 

initiation sites [12]. Second, the material adjacent to oxides will have its transformation behavior 

modified [13, 14]. The formation of the oxides effectively robs the surrounding microstructure of alloying 

elements which impart hardenability to the steel. Non-martensitic transformation products such as pearlite 
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and bainite may be able to form at the surface upon rapid quenching. The formation of these 

microstructural components lowers the surface compressive residual stresses and increases susceptibility 

to fatigue crack initiation [17].  

2.2 Hertzian Contact Stress Overview 

Damage that occurs during contact fatigue results from the cyclic Hertzian contact stresses 

developed due to the contact between two bodies (bearings or gear teeth). The contact stresses lead to 

octahedral and orthogonal shear stresses in the subsurface of the material bodies. Figure 2.4 schematically 

illustrates how a cylinder rolling over a flat body in the absence of friction develops subsurface stresses. 

The stress created just below the contact is the maximum shear stress (octahedral). It occurs at 45° to the 

contact surface [18]. Orthogonal shear stresses which are oriented parallel and perpendicular to the 

contact surface are created in-front of and behind the point of contact. The leading orthogonal stress has 

the opposite sign of the trailing stress [18]. The magnitudes of the orthogonal stresses are always lower 

than the magnitude of the octahedral shear stress. However, the range of the orthogonal stresses is higher 

than the octahedral stress and is thought to be a more potent contributor to the development of contact 

fatigue damage [19].  

Localized plastic deformation from the stress states developed during Hertzian contact can occur 

if the maximum shear stress exceeds a critical value defined by the Tresca (maximum shear stress) or Von 

Mises yield criteria [20]. The Tresca criterion only considers the maximum and minimum principal 

stresses while the Von Mises yield criterion also includes the intermediate principal stress. More 

information regarding the calculation of theses stresses and the Hertzian contact pressure from which they 

develop can be found in the experimental procedure chapter. 

2.3 Microstructural Changes During Contact Fatigue 

Alterations in martensite/bainite microstructures have been observed as a result of contact fatigue 

in components such as gears and bearings as-well-as in samples from contact fatigue testing. There are 

three types of changes that have been observed using light optical microscopy (LOM) after etching and 

each is identified based on etching response. The first type of microstructure change is referred to as 

ñdark etching areasò (DEA) which appear darker than the rest of the microstructure after etching with 

nital. The second type of microstructure alteration is called ñwhite etching areasò (WEA) or ñwhite 

etching bandsò (WEB). WEA and WEB are not etched by nital/picral and appear white when viewed 

under LOM. The third change is related to WEA. Localized WEA structures form around non-metallic 

inclusions and are referred to as ñbutterfliesò. The formation of DEA, WEA/WEB, and butterflies 

depends on the local magnitude of the applied shear stress from the Hertzian contact pressure and the 

number of applied stress cycles. Below certain critical stresses and numbers of stress cycles, 
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microstructure changes are not observed [21]. These critical stresses/cycles are not indicated clearly. It 

should be noted that through- hardened bearing steels under pure rolling conditions have been the primary 

focus of study in regard to microstructure changes. 

 
(a) 

 
(b) 

 
(c) 

Figure 2.4 Schematic of stress state developed under the contact surface of a cylinder rolling over a 

flat surface with no friction. The maximum octahedral shear stress occurs just below the 

contact at 45°. The maximum orthogonal shear stresses occur in front of and behind the 

point of contact and have opposite signs [18]. 

2.3.1 Dark Etching Areas 

DEA are typically seen after a few million contact stress cycles [19, 20]. DEA forms due to local 

plastic deformation of tempered martensite resulting from contact stresses locally exceeding the flow 

stress of the material at depths of maximum shear stress. The dark etching response of DEA is 

characteristic of high temperature tempered martensite [24]; however temperatures of contact fatigue 

testing usually do not exceed 120 °C. It was postulated by G. Vasilica et al. [22] that modifications of 

local chemical compositions by carbon diffusion could be assisted by stress gradients. Because DEA is 

formed locally, not uniformly (as would be expected if DEA formation was temperature related [25]) at a 

depth corresponding to the maximum shear stress, there appears to be a stress dependence of DEA 
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formation [20, 21, 23]. Other researchers have reported fine grained, heavily-dislocated, acicular 

structures within the DEA oriented at approximately 45° to the rolling direction [26] which were 

suggested to be precursors to the formation of WEA/WEB. 

G. Vasilica et al. [22] showed that the amount or size of DEA correlates to the number of loading 

cycles, and strongly relates to the applied load/contact stress [22]. The authors conducted contact fatigue 

tests on lubricated, type 6208 ball bearings manufactured from RUL-1 steel (1.5% chrome 0.3% 

manganese). Hydraulically applied, radial loads varied the cyclic contact stresses from 3.12 to 5.56 GPa. 

The tests were suspended at given numbers of fatigue cycles to investigate the extent of DEA formation. 

Figure 2.5 shows the DEA observed after etching with 5 percent nital for four seconds along with the  

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 2.5 Micrographs of DEA formed in RUL-1 steel type 6208 bearing raceways (a)-(d) tested at 

80 and 120°C. (e) DEA microstructure at 500X. Etched with 5 percent nital for four 

seconds [22]. 
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corresponding applied contact stress and number of cycles. The extent of DEA formation in the bearing 

raceways increased somewhat with the number of applied stress cycles (Figure 2.5a versus Figure 2.5d). 

The largest factor influencing the observed amount of DEA appeared to be the contact stress (Figure 2.5a 

versus Figure 2.5b). Figure 2.5e shows the fine tempered martensite structure containing temper carbides 

observed at 500X magnification in the DEA. 

2.3.2 White Etching Areas 

WEA/WEB (Figure 2.6) form at the same depth in the contact material subsurface as DEA after a 

high number of cycles (on the order of 10
8
 to 10

11
 cycles depending on contact stress) [21]. Initially WEA 

forms at shallower angles of 20° to 30° to the contact surface. After further cycling, WEA develops at 

steeper angles, around 75° to 85°, to the contact surface [27]. If the stress/rolling direction is reversed, the 

WEA orientation will reverse suggesting the stress dependence of their formation [28].  

  
(a) (b) 

Figure 2.6 WEA structures formed during rolling contact fatigue (RCF) testing of 1% carbon, 0.5% 

manganese, and 1.5% chromium steel sample. Tested at 150°C and 5.4 GPa for 2x10
8
 

cycles. (a) Parallel to the wear track etched with nital. Rolling direction to the left. 

(b) Transverse to the wear track etched with picral. Rolling direction out of the page. 

Images taken from [29]. 

 

The structure of the WEA has been reported to consist of lenticular carbides between a fine-

grained ferrite-like phase which is free of resolvable carbides [24]. Harada et al. [26] confirmed the 

observation of the fine grained ferrite structure using TEM. After extensive plastic deformation of the 

parent martensite a structure of fine dislocation cells develops within the ferrite-like phase. The 
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dislocation density is similar to that of the parent martensite but the substructure resembles that seen in 

heavily strained ferrite [21]. The remarkable directionality of the WEA shown in Figure 2.6a is thought to 

be due to the stress dependence of WEA formation. However, an accepted mechanism explaining the 

observed directionality of the WEA has not been put forth. It has also been proposed that WEA form 

around hydrogen cracks although this mechanism has not been fully explained [30]. 

The mechanism of WEA formation is controversial and not well understood [21, 22]. It is 

believed that WEA formation is related to ñmechanical temperingò. Theories in the literature suggest that 

dislocation motion due to localized plastic deformation enhances carbon diffusion. The carbon diffuses 

out of the martensite matrix (and from dissolving carbides) to the lenticular carbides leading to the white 

etching response. In support of the stress assisted carbon diffusion mechanism, Mitamura et al. [31] 

conducted a kinetic analysis of RCF failure of 52100 bearing samples at different RCF temperatures 

between 130°C and 170°C (226°F and 338°F). The summary of their results is given in Figure 2.7 which 

present Arrhenius plots used to calculate the activation energy of pitting failure. The ñactivation energyò 

of pitting failure, which was shown to correlate well to WEA formation, was determined to be    

78 kJ mol
-1
 (independent of life definition, L10 versus L50, and stress, 4.6 versus 5.5 GPa), which 

corresponded well to the activation energy of carbon diffusion in ferrite (84 kJ mol
-1
).  

  
(a) (b) 

Figure 2.7 Arrhenius plots of 52100 bearing samples tested by Mitamura et al. [31] at contact 

stresses of (a) 4.6 GPa and (b) 5.5 GPa.  

2.3.3 Butterfly Structures  

Butterfly structures are identified from the obvious butterfly-like appearance of the feature. An 

example of a butterfly formed in a 52100 RCF specimen is shown in Figure 2.8. The ñbodyò of the 

butterfly is usually a hard, non-metallic inclusion such as alumina (Al2O3) and the ñwingsò reportedly  
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[31, 32] have the same structure as WEA. Like WEA, the formation of the wings has been associated with 

carbon diffusion and carbide dissolution. The dissolving carbides within butterfly wings are shown in 

Figure 2.9 [30]. Cracking is typically observed near the butterfly wings and usually originates at the 

inclusion. Al2O3 inclusions are the most common inclusion type around which butterflies form, although 

in rare cases, they have been seen around elongated manganese sulfide (MnS) inclusions [25]. It was 

proposed that failure occurs when the crack grows to a sufficient length to reach the contact surface 

leading to pitting [34]. 

There are differences between WEA and butterfly wings. Butterflies form much sooner than 

WEA, presumably due to the high stress concentration around inclusions [35]. Unlike WEA, it has been 

proposed by Schlicht et al. [34] that a prerequisite for butterfly white etching wing formation is a crack 

initiating at the inclusion/matrix interface. There is a stress concentration which develops around the non-

metallic inclusion due to the modulus mismatch between the inclusion and the martensite matrix. The 

stress concentration is postulated to produce cracks and plastic deformation. Schlicht et al. proposed that, 

in addition to the high stresses for stress assisted carbon diffusion, cracks are necessary for butterfly 

formation because they provide carbon diffusion sinks. This may suggest a decarburization mechanism. 

However, if decarburization were the ultimate cause, it would be expected that the white etching features 

would occur on both sides of the microcrack, which is not typically the case.  

Because of the proposed necessity of a crack for the formation of butterfly WEA wings, it has 

been hypothesized that the formation of DEA prior to butterfly formation will suppress the number and 

size of butterflies that form [21]. This is thought to occur because localized plastic deformation associated 

with DEA formation reduces incompatibility stresses and strains around inclusions, lowering the stress 

concentration, and thus the propensity to nucleate a crack at the interface. 

 
Figure 2.8 Butterfly formed in 52100 RCF specimen around Al2O3 inclusion [35]. Etchant not given. 
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Figure 2.9 Secondary electron image of cementite apparently dissolving into WEA towards a 

microcrack in JIS-SUJ2 high chromium bearing steel. Black arrows indicate possible 

dissolving carbides. Observed in rolling contact fatigue sample after 500,000 cycles at a 

nominal contact stress of 3.92 GPa. Adapted from [30]. Etchant not given. 

2.4 Variables Influencing Contact Fatigue Resistance 

One of the difficulties encountered in understanding contact fatigue is the large number of 

variables which affect contact fatigue resistance. The variables include contact stress, geometry, material 

properties, inclusion sizes, inclusion types, operating temperature, lubricant type, lubricant additives, 

lubricant properties, extent of sliding, rotation speed, surface roughness, and material characteristics. 

Each must be carefully controlled to ensure that results are reliable. The difficulty in controlling each and 

every one has prevented a greater understanding of contact fatigue failure mechanisms and the 

contribution of each variable. Material characteristic variables introduced by carburizing include case 

depth, IGO, retained austenite, residual stress, and prior austenite grain size (PAGS). The effects of these 

variables on contact fatigue, as reported in the literature, are discussed below. 

2.4.1 Inclusions and Steel Cleanliness 

Previous research on bearing and gear contact fatigue has shown that the variable that is most 

influential on the contact fatigue resistance of hardened gears is steel cleanliness; where steel cleanliness 

refers to nonmetallic inclusions [36ï38]. Alumina inclusions are known to be the most detrimental to 

contact fatigue [25]. Sulfides, especially manganese sulfides, have been shown to have a less pronounced 

effect on contact fatigue of bearings steels, presumably due to their relative softness and deformability. 

Work by Hashimoto et al. [39] showed that in the absence of oxides, rolling contact fatigue life was 

affected by sulfide size and orientation with respect to the rolling direction. Cracks were observed to 

nucleate at the tips of the sulfide inclusions and propagate parallel to the rolling direction. 



 14 

2.4.2 Case Depth 

Case depth has been shown to be an important consideration for the resistance of carburized steel 

to bending fatigue and wear [40ï43]. O. Asi et al. [43] showed that as the case depth of carburized SAE 

8620 increased from 0.76 mm to 1.49 mm the bending fatigue limit decreased. The authors reasoned that 

increasing the case depth increased the depth of IGO and amounts of non-martensitic transformation 

products which both adversely affect the compressive residual stress distribution. Genel et al. [40], in 

contrast, showed that increasing case depth caused the fatigue strength of carburized 8620 to increase. 

The case depths ranged from 0.7 to 1.0 mm in the study. It is thought that there may be an optimal 

maximum case depth which increases the fatigue resistance of carburized 8620, although this optimal 

case depth is also application dependent (optimal case depth depends on part size, resulting residual 

stress, and hardness). Above this maximum the fatigue resistance appears to drop. Izciler et al. [41] 

showed that increasing the case depth of SAE 8620 increase the abrasive wear resistance. A possible 

explanation for the behavior was not given.  

The effect of case depth on carburized gear steel contact fatigue resistance has not been studied. 

However, case depth is known to be an important consideration to prevent case crushing or subsurface 

initiated macropitting [21]. Case crushing occurs when the applied shear stress profile exceeds the shear 

strength profile of the carburized case/core interface. An example of case crushing along with the stress 

and strength profile schematic which can produce case crushing is shown in Figure 2.10. Figure 2.10 

shows a case hardened specimen which failed by case crushing as well as a schematic illustration of the 

shear stress and strength profiles that can lead to case crushing. Increasing the case depth can help prevent 

case crushing and subsurface macropitting by ensuring that the shear strength of the case is always greater 

than the shear stress profile due to the contact. 

2.4.3 Intergranular Oxidation  

The effects of carburizing temperature and carburizing method on RCF resistance of SAE 4120 

and 4320 were studied by Bykowski [44]. The carburizing conditions studied were three gas carburizing 

treatments at 899°C, 927°C, and 1010°C (1650°F, 1700°F, and 1850°F), a gas carburizing treatment at 

1010°C (1850°F) followed by reheating to develop grain refinement, and vacuum carburizing at 1010°C 

(1850°F). RCF tests were carried out using a Federal-Mogul ball-on-rod rolling contact fatigue apparatus. 

The test rig was modified so that five 52100 hardened and ground ball bearings applied a radial force 

sufficient to develop a nominal Hertzian contact stress of 5.4 GPa. Each test was lubricated by dripping 

synthetic oil onto the bearings. The test specimens were rotated at 3600 RPM resulting in a loading 

frequency of 300 Hz. The results of the study are given in Figure 2.11. Bykowski observed a large 

increase in RCF resistance in the vacuum carburized samples. It was concluded that the lack of IGO in the  
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(a) (b) 

Figure 2.10 (a) Carburized cylindrical specimen which failed by case crushing. (b) Schematic of how 

stress and strength gradients can interact to create subsurface macropitting and case 

crushing. 

 

 
Figure 2.11 Mean life and 95% confidence interval of 4120 and 4320 carburized RCF specimens. 

Adapted from work of Bykowski [44]. 5.4 GPa, pure rolling tests conducted using a 

Federal-Mogul ball-on-rod RCF machine. 
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vacuum carburized samples was the primary contributing factor to the increased contact fatigue 

resistance. The IGO present in the gas carburized samples was suspected to be the primary failure 

initiation site [44]. 

2.4.4 Retained Austenite 

Due to the high carbon content of the austenite during carburizing, even at room temperature some 

austenite in carburized steels is stabilized and will not transform to martensite. This austenite is referred 

to as retained austenite (RA) [15]. RA has been shown, typically, to be beneficial to contact fatigue 

resistance, especially in the presence of debris denting or under contaminated lubrication and low 

lubrication conditions [45]ï[49]. Work was conducted by Dong et al. [47] to investigate the effect of RA 

on rolling-sliding contact fatigue resistance. Tests were conducted at Hertzian stresses of 2.8 and 3.0 GPa 

and slide ratios of 20 percent. The steel used was 18Cr2Ni4W (0.18% carbon, 1.5% chrome, 4.25% 

nickel, and 1.0% tungsten). Heat treatments were applied to develop different levels of RA, from seven to 

fifty percent, through increased surface carbon content from carburizing, as well as though cryogenic 

treatments after carburizing. The samples having the higher amount of RA performed better in rolling 

sliding fatigue testing. Strain induced martensite was observed in the microstructures after testing (Figure 

2.12) along with an increased surface compressive residual stress and hardness. It was postulated that the 

increased compressive residual stress and hardness due to RA transformation led to the increased contact 

fatigue resistance [47]. Roache et al. [49] showed that increasing RA improved the pitting fatigue 

resistance of bearings having artificial indentations. It was concluded that the RA increased the steel 

damage tolerance [49]. 

RA has also been shown to be detrimental to contact fatigue resistance in other conditions. One 

condition in which RA may be detrimental is when dimensional stability is of importance [21]. If the RA 

transforms during the operation of a component requiring high tolerance, the transformation to strain 

induced martensite results in a volume expansion that may result in distortion. The distortion can cause 

high stresses, excessive noise, and vibration [21]. RA is relatively soft and has poor wear resistance. 

Therefore, from a wear resistance perspective RA is not desirable. An excessive amount of RA will also 

lower the material resistance to fatigue initiation [21]. 

The nickel content of carburized steel is also an important consideration in regard to RA and 

material toughness. Nickel is an austenite stabilizing alloying element, though far less potent than carbon, 

and can increase the RA content [1]. RA increases the toughness of steel. Also, nickel by itself may have 

an effect on material toughness besides contributing to RA content. It is well known that the addition of 

nickel to a steel leads to improvement of fracture toughness by reducing susceptibility to cleavage 

fracture [50]. Possible improvements in toughness of carburized steels have been shown by increasing the 
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nickel content [51]. A clear explanation of the effect of nickel on contact fatigue resistance has not been 

proposed. 

  
(a) (b) 

 
(c) 

Figure 2.12 Micrographs of high RA case of 18Cr2Ni4WA alloy subject to rolling-sliding contact 

fatigue. (a) Before testing, white areas are RA and black are plate martensite. (b) After 

testing showing deformation induced martensite (increased amounts of dark etching 

features). (c) Re-plotted figure from [47] showing case RA profile before and after 

testing. 

2.4.5 Residual Stress 

During quenching from carburizing temperatures, residual stresses are developed which favorably 

affect fatigue resistance of carburized steels [1]. The compressive surface residual stresses formed in the 

case are due to the martensite start (Ms) temperature gradients developed by the carbon profiles resulting 




































































































































































































































































































































