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ABSTRACT

The goal of this study was to evaluate the differences in RSCF performance between vacuum and
gas carburized steels as well as to investigate the evolution of damage (wear and microstructure changes)
leading to pittingVacuum and gas carburizingasperformed on two gear steels (4120 and 4320) at
1010°C. The carburized specimens were tested in tharbsrized condition usingRSCF machine
designed and buitt the Colorado School of Mines. The tests were condatte@® GPa nominal
Hertzian catact stress, based on pure rolling, 100°C, and using a negative twenty percent slide ratio.
Tests were conducted to pitting failure for each condition for a comparison of the average fatigue lives.
Pure rolling tests were also conducted, and were suspandee same number of cycles as the average
RSCEF life for a comparison of fatigue damage developed by RCF and RSCF. Incremental tests were
suspended at 1,000, 10,000, 100,000, and 200,000 cycles for the vacuum carburized steels to evaluate the
wear and dmage developed during the initial cycles of RSCF testing and to relate the wear and damage
to pitting resistance. Incremental damage was not investigated for gas carburizing due to the limited
number of available specimens.

The vacuum carburized sampi®wed a decreasedting fatigue resistance over the gas
carburized samples, possibly due to the presence of bainite in the vacuum carburized cases. Pitting was
observed to initiate from surface micropitting and microcracking. A microstructural chahgedhby
contact fatigue, butterflies, was shown to contribute to micropitting and microcracking. Incremental
testing revealed that the formation of a microcrack preceded and was necessary for the formation of the
butterfly features, and that the butterfibatures developed between 10,000 and 100,000 cycles. The
orientation and depth of butterfly formation was shown to be dependent upon the application of traction
stresse$rom sliding. RSCF butterflies formed nearly parallel to the rolling directiodaga range of
depths. RCF butterflies formed at about 45° to the rolling direction in a more narrow range of depths. The
surface roughness and surface profile were observed to change quickly in the first several thousand cycles
of RSCF testing leading #®reduction in contact stress and increase in lambda(ratio of lubricant
fluid film thickness to composite surface roughne$tg ability of a carburized sample wear track to
reach and maintain a steady sta@rphology(run-in conditior) during tesing is postulated to translate to

increased RSCF resistance.
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CHAPTER 1: INTRODUCTION

One of the most common failure modes of components subject to sliding contact, such as gears or
bearings, is pitting. Pitting is the direct result of cracking indumerolling or combined rollingliding
contact fatigue. Extensive work has been completed to understand the pitting resistance of steel under
pure rolling conditions. However, a combination of rolling and sliding contact fatigue occurs during the
matingof gear teeth as well as in some bearing systems. This additional sliding component is known to
have an important effect on the pitting mechanism. As such, the ability to test gear/bearing steel under
both rolling and sliding conditions was of interesthis work. One aspect of the project was the
improvement of a rollingliding contact fatigue machine built previously at the Colorado School of
Mines to allow for robust, reliable, and repeatable pitting evaluation with the ability to control the extent
of sliding during testing.

One method known to improve the pitting resistance of gear steelsusface harden by
carburizing. Vacuum and gas carburizing was performed in this study on two common gear steel
materials. Vacuum carburizing was performeddsess the effect of the absence of intergranular
oxidation on rollingsliding cantact fatigue performance &S carburized samples were heat treated at a
higherthantypical temperature to match the vacuum carburizing temperature. Also, by increasing the
carburizing temperature, the time for carburizing can be reduced and production rates can be increased.
Consequently, it was of interest to understand the effect of the increased carburizing temperature on
pitting resistance.

The carburized steel samplesrevsubject to rollingsliding contact fatigue testy until a pit
formed. Materiakharacterization was performed to assess the effects of the different carburizing
treatments on pitting resistance, material properties, microstructure, carbon profilesidnal stress.
After testing, the samples were analyzed to investigate failure modes, microstructure changes, and wear.
Additional tests were performed but suspended before the formation of a macropit to investigate the
changes in testing conditions (&ce roughness and wear) and to investigate the origin of microstructural
alterations and microcracks.

Industrially, this research is relevant in two ways.tFhieat treatments and matesalection
may be optimized based on understanding of pittiiga performance. Vacuum carburizing can
increase cost, heat treating complexity, and is not always available; thus it is important to understand the
potential benefits, or drawbacks, of vacuum carburizing compeugas carburizing. Some gear
materialsare higher cost than others due to increased alloying additions such as nickel. This work has the

potential to clarify the benefit of more expensive gear materials in terms of +sliliiigg contact fatigue



behavior. Secondlygnalysisof microstructurathanges during rollingliding contact fatigue, especially
before the formation of a macropit, can be used to understand failure initiation mechanisms and
potentially the steel processing, alloy selection, and heat treatments necessary to improve tggar mate

resistance to these failure modes.



CHAPTER 2: LITERATURE REVIEW

This chapter presents background information pertinent to the research conducted during this
work. The principles behind carburizing are presented, as carburizinhevease hardening method
selected for study. Contact fatigue principgesreviewed. The variables which affect the contact fatigue
resistance of carburized gear steepresented. Microstructure changes, failure mechanisms, and wear

during contact fatjue are also discussed.

2.1 Carburizing

Carburizing is a heat treatment in which a component, typically fabricated from low carbon steel,
is heated to a temperature sufficient to develop an austenitic microstructure,chimdahedrbon rich
atmosphere. &b diffuses into the austenite and the component is subsequently quandhtedthpered
to form a high hardness, wear resistant case with a core possessing relatively higher toughness. The
carbon content is typically controlled to be between 0.8 and 1.hingggcent to prevent complications
associated with carbide formation, brittle martensite, and excessive retained a[idtefiitere are
different methods of introducing carbon into steel. These include gas carburizing by surrounding the
component in a carbon rich gaseous atmosphere, liquid carburizing by submerging the coimonent
carbon bearing salt bath, pack carburizing using solid carbonaceous compounds, or vacuum carburizing

using carbon bearing gases at low pressures. For this studndygacuum carburizing warsvestigated.

2.1.1 Vacuum Carburizing

Vacuum carburizing typally involves five steps. First is a heat and soak step at the carburizing
temperature to allow the component to come to a homogenous temperature. This step should only be long
enough to achieve a uniform temperature in the carburized component. Exseakitienes lead to
austenite grain growtf2]. The second step is a boost step to introduce carbon to surface austenite. An
important consideration for the boost stage in vacuum carburizing is the control of the carbon
concentration of the surface of the steel componéative to the maximum solubility of carbon in the
austenite at the given heat treating temperd8]jrdf the carbon content of the surface exceeds the
maximum solubity of austenite then carbides and a carbon deposit form. These features, particularly the
carbides, can decrease the diffusion of fresh carbon into the austenite and retard the carburizing process
[3]. The surface carbon content is related to both the carbon potential of the atmosphere and the boost
time. The actual carbon potential of the atmosphere is difficult to control and model due to the numerous
carbonspecies dcomposition chemical reactions occurring rapidly in the low pressure atmosphere. These

reactions lead to a very high carbon potef8a#l]. The high carbon potential is not readily controllable



as a process variable in vacuum carburifjgTherefore, the time allowed for the boost stage is a very
important consideration in designing a vacuum carburizing heat treafgjemhird, a diffusion step is
used to provide a gradual carbon diffusion profile between thesodfsee and the component cdre.
this step the furnace atmosphere is replaced by &ardnon bearing gas such as nitrogen at the
carburizing temperature and held, allowing the carbon to diffuse deeper into the austenitic component.
Without the diffusiorstep the resulting abrupt change in hardness/carbon content between the case and
core (illustrated schematically Figure2.1) would lead to undesirable case hardened prop¢zjieshe
combination of the boost and diffuse steps is commonérned to as a cycle. There are often multiple
cycles employed during a vacuum carburizing treatment to attain the desired carbon profile and case
depth, se&igure2.1. The fourth step is quenching to produce a hard martenssgc Quenching can be
done by immersion in oil or by rapidly introducing cool gas such as nitrogen or helium. The use of
controlled gas quenching has been shown to reduce the distortion of carburized component by providing a
more uniform thermal gradient dog quenching6, 7]. The potential disadvantage of gasmpghéng is a
relatively slower cooling rate as compared to oil immer§ipnThe reduced cooling rate may allow the
formation of noamartensitic transformation produd¢8. Finally, the carburized component is tempered
to achieve an optimum combination of strengbughness, and hardnd8s.
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Figure2.1 Schematic illustrations of (a) the difference between boost and diffuse carbon profiles in

vacuum carburizing and (b) the effect of number of boost and diffuse cycles on carbon
profile during vacuum carbizing.
2.1.2 Gas Carburizing
Gas carburizing is the most common carburizing technique for large scale production due to the

ability to accurately control process variables and the absence of special heat treating requirerivents



gas carburizing carbon is introduced into the surface of the steel by various interactions between the
cabon bearing atmosphere gasses and the solid solution austenite. One of the most impmrtemgar

reactions is given byduation(2.1) [9].

#1 C #% c#IC (2.2)
where C is carbon introduced into the austeNithen the reaction defined byjiation(2.1 is in
equilibrium, the ratio of C@and CO maintains a given carbon pai@nThis carbon potential develops
the surface carbon level in the austenite. If the partial pressure of CO in the carburizing atmosphere
exceeds the partial pressure necessary to maintain equilibrium, the reaction will proceed to the left and the
carbuizing reaction occurs allowing the carbon content of the austenite to be increased to some desired
level[1]. Figure2.2 illustrates the point that the CO content of the carburizing atmosphere must be much
higher than the CQOcontent for carburizing to occur. If éhe-otherhand the C@partial pressuresi
raised above its equilibrium value the reaction will proceed to the right and decarburization will occur.
This latter condition may be desirable if the initial carburizing creates a surface carbon content that is too
high. The carbon content can thendsered tothe desired level.df gas carburizinthis steps referred
t o d#fgsiond. Like in vacuum carburizing, the diffusion step in gas carburizing also allows the carbon
at the surface to diffuse into the interior of the sfgelQuenching isypically performed using heated
oil. Distortion is a relatively common occarrce in gas carburizing when quenching is not carefully
controlled[8]. The extent of distortion can be minimized by stepping down the temperature of a
component from the carburizing temperature prior to queng¢hbigto reduce the thermal gradients.
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Figure2.2 Equilibrium percentages of carbon monoxide and carbon dioxide required to maintain

various carbon concémations (in weight percent) at 975°C (1790°F) in plain carbon and
low-alloy steels. Adapted frofd1].



2.1.3 Intergranular Oxidation during Carburizing

The atmospherdeveloped in a gas carburizing furnace is described as endothermic. The
combustion of the fuel gas (methane, propane, or butane) with oxygen creates oxygen bearing gasses such
as carbon dioxide, carbon monoxide, and water VE&)r The oxygen present in these gases may react
with metal atoms in the steel components duringuwézing, creating surface and subsurface oxitibe
endothermic atmosphere develops a negative oxygen potential for iron and many of the primary alloying
elements in steel alloys, thereby preventing oxidation of the bulk material. However, some alloying
elements such as manganese, silicon, and chromium have a positive oxidation potential and readily form
oxides as illustrated iRigure2.3. Chromium tends to form dispersed oxides within the austenite grains at
relatively shallowdepths (up to 8 to 10 um). Manganese and silicon develop intergranular oxidation
(IGO) along austenite grain boundaries. The IGO typically penetrates deeper into the case, around 20 to
25 um below the surfadé, 12]. A study examining alloying effects on IGO formation in gas carburizing
showed that reducing manganese and silicon contentallyiraliminated the presence of IGO which in
turn led to an increase in the bending fatigue strength of 4320 carburizegd 3}eel
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Figure2.3 Oxidation potentials of common elements during gas carburizing at a temperature of

930°C (1706°F) assuming gas composition of 409@28% CO, 1.5% Ck 0.5%
C0,,0.28% HO (dew point10°C),and 37.72% Bl(Vol %). Adapted fronj14].

IGO is thought to adversely affect the fatigue resistance of carburized case microstructures in two
ways. First, the oxides ahard, brittle particles that act as stress concentrations and possible fatigue crack
initiation siteg12]. Second, the material adjacent to oxides will have its transformation behavior
modified[13, 14]. The formation of the oxides effectively robs the surrounding microstructure of alloying

elements whah impart hardenability to the steel. Nomartensitic transformation products such as pearlite



and bainite may be able to form at the surface upon rapid quenching. The formation of these
microstructural components lowers the surface compressive residsalest and increases susceptibility

to fatigue crack initiatiofil 7].

2.2 Hertzian Contact Stress Overview

Damage that awrs during contact fatigue results from the cyclic Hertzian contact stresses
developed due to the contact between two bodies (bearings or gear teeth). The contact stresses lead to
octahedral and orthogonal shear stresses in the subsurface of the inadéemFigure 2.4 schematically
illustrates how a cylindewlling over a flat bodyn the absence of friction developgbsurface stresses.

The stress created just below the contact is the maximum shear stress (octahectrals ét@l5° to the

contact surfacgl8]. Orthogonal shear stresses which are oriented parallel and perpendicular to the

contact surface are createefiiont of and behind the point of contact. The leading orthogonal stress has

the opposite sign of the trailing strg&8]. The magnitude of the orthogonal stsees aralways lower

than the magnitude of the octahedral shear stress. However, the range of the orthogonal stresses is higher
than the octahedral stress and is thought to be a more potent contributor to the development of contact
fatigue damaggl9].

Localized plastic deformation from the stress states developed during Hertzian contact can occur
if the maximum shear stressceed a critical valualefined by the Tresca (maximum shear stress) or Von
Mises vyield criterig20]. The Tresca criterion only considers the maximum and minimum principal
stresses while the Von Mises yield criterion also includes the intermediate principal stress. More
information regarding the calculation of thesesstes and the Hertzian contact pressure from which they

develop can be found in the experimental procedure chapter.

2.3 Microstructural Changes During Contact Fatigue

Alterations in martensite/bainite microstructures have been observed as a result of atgect f
in components such as gears and bearinggelsas in samples from contact fatigue testing. There are
three types of changes that have been observed using light optical microscopy (LOM) aftemetthing
each is identifiedbased on etching respon3de first type of microstructure change is referred to as
fidark etching are@{DEA) which appear darker than the rest of the microstructure after etching with
nital. The second type of microstructure alteration is c@ddte etching are@agWEA) or fiwhite
etching bands(WEB). WEA and WEB are not etched by nital/picral and appear white when viewed
under LOM. The third change is related to WEA. Localized WEA structures form aroundetatic
inclusions and are referred tofdmitterflie®. The formaibn of DEA, WEA/WEB, and butterflies
depends on the local magnitude of the applied shear stress from the Hertzian contact pressure and the

number of applied stress cycles. Below certain critical stresses and numbersofyties,



microstructure changese not observel21]. These critical stresses/cycles awet indicated clearly. It
should be noted that throughmardened bearing steels under pure rolling conditions have been the primary

focus of study in regard to microstructure changes.
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Figure2.4 Schematic of stress state developed under the contact surface of a cylinder rolling over a
flat surface with no friction. The maximum octahedral shear stress occurs just below the
contact at 8°. The maximum orthogonal shear stresses occur in front of and behind the
point of contact and have opposite siftf.

2.3.1 Dark Etching Areas

DEA aretypically seen after a few million contact stress cyf1€s 20] DEA forms due to local
plastic deformation of tempered martensite resulting from contact stresses locally exceeding the flow
stress of the material depths of maximum shear streBlse dark etching response of DEA is
characteristic of high temperature tempered martefZliehowever temperatures of contact fatigue
testing usually do not exceed 120 °Cwaspostulated by G. Vasilicet al [22] thatmodificatiors of
local chemical compositiaby carbondiffusion could be assisted by stress gradients. Because DEA is
formed locally, not uniformlyas would be expected if DEA formation was temperature rejai8dat a

depth corresponding to the maximshear stress, there appears to be a stress dependence of DEA



formation[20, 21,23]. Other researchers have reported fine grained, hedigllgcated, acicular
structures within the DEA orierdeat approximately 45° to the rolling directif#6] which were
suggested to be precursors to the formation of WEA/WEB.

G. Vasilicaet al.[22] showedthat the amount or size of DEA correlates to the number of loading
cycles, and strongly relates to the applieatioontact stresgR2]. The authors conducted contact fatg
tests on lubricated, type 6208 ball bearings manufactured from1Ritéel (1.5% chrome 0.3%
manganese). Hydraulically applied, radial loads varied the cyclic contact stresses from 3.12 to 5.56 GPa.
The tests were suspended at given numbers of fatiglesdo investigate the extent of DEA formation.
Figure2.5 shows the DB observed after etching with 5 perceital for four seconds along with the

485GPa .

5.56 GPa

1.03x10° Cycles ~ __500um 0.96x10° Cycles

Figure2.5 Micrographs of DEA formed in RULL steel type 6208 bearing racew#as(d) tested at
80 and 120°C. (e) DEA microstructure5®t0X. Etched with 5 percent nital for four
second$22].



corresponding applied contact stress and number of cycles. The extent of DEA form#teéhbearing
racewaysncreased somewhat with the number of applied stress qfgtpge2.5a versug-igure2.5d).
The largest factor influencing the observed amount of DEA appeared to be the contafffiguiesa.5a
versuskigure2.5b). Figure2.5e shows the fine tempereaghrtensite structureontaining temper carbides

observed at 500X magnification in the DEA.

2.3.2 White Etching Areas

WEA/WEB (Figure2.6) form at the same depth in the contact material subsurface as DEA after a
high number of cycles (on the order of 18 10" cycles depending on contact strggd). Initially WEA
forms at shallower angles of 20° t0°30 the contact sdiace. After further cycling, WEA develops at
steeper angles, around 75° to 85°, to the contact sy&#dgdf the stress/rolling direction is reversed, the
WEA orientaton will reverse suggesting the stress dependence of their forrfizion

Figure2.6 WEA structures formed during rolling contact fatigue (RCF) testing of 1% oafh5%
manganese, and 1.5% chromium steel sample. Tested at 150°C and 5.4 GP& for 2x10
cycles. (a) Brallel to the wear track etched with nital. Radl direction to the left.

(b) Transverse to the wear track etched with picral. Rolling direction dbegiage.
Images taken frorf29].

The structure of the WEA has been reported to consist of lenticular carbides between a fin
grained ferritdike phase which is free of resolvable carbif®y. Haradeet al.[26] confirmed the
observation of the fine grained ferrite structure using TEM. After extensive plastic deformation of the

parent martensite a structure of fine dislocatidls aevelops within the ferrittke phase. The

1C



dislocation density is similar to that of the parent martensite but the substructure resembles that seen in
heavily strained ferritf21]. The remarkable directionality of the WEA showrFigure2.6a is thought to
be due to the stress dependence of WEA formation. However, an accepted mechanism explaining the
observed directionality of the WEA has not been put forth. It has also been proposed that WEA form
around hydrogen cracks althouglsttnechanism has not been fully explaifigd].

The mechanism of WEA formation is controversial and not well tstded[21, 22]. It is
believed that WEA formation is r el at eedsuggestthatme c han
dislocation motion due to localized plastic deformation enhances carbon diffusion. The carbon diffuses
out of the martensite matrix (and from dissolving carbides) to the lenticular carbides leading to the white
etching response. In suppofttbe stress assisted carbon diffusion mechanism, Mitaetwaia[31]
conducted a kinetic analysis RCF failure of 52100 bearing samples at different RCF temperatures
between 130°C and 170°C (226°F and 338°F). The summary of their results is dfigur@?.7 which
present Arrhenius plots used to calculate the activation goémtting falure The HAacti vati on
of pitting failure, which was shown to correlate well to WEA formation, was determined to be
78 kJ mol™ (independent of life definition, 4 versus s, and stress, 4.6 versus 5.5 GRd)ich
corresponded ell to the activation energy of carbon diffusion in ferrite (84 kJ ol
g 100 T T T 1 100 T T T T =

L,/Ly, WEA Formation Life (10° Cycles
L,,/Ls, WEA Formation Life (10° Cycles)

10 = 10
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1 | | | | | 1 | | | | |
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1/T (103%) K /T (103%) K
(a) (b)

Figure2.7 Arrhenius plots of 52100 bearing samples tested by Mitaetuah[31] at contact
stresses of (a) 4.6 GPa and (b) 5.5 GPa.

2.3.3 Butterfly Structures
Butterfly structuresre identifiedrom the obvious butterfiike appearance of the feature. An
example of a butterfly formed in a 52100 RCF specimen is shomigume28. The fAbodyo of t

butterfly is usually a hard, nemetallic inclusion such as alumina¢®) and t he Alwi ngso r e
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[31, 32] have the same structure as WEA. Lik&X the formation of the wings has been associated with
carbon diffusion andarbidedissolution The dissolving carbides within butterfly wings are shown in
Figure2.9 [30]. Crackingis typically observed near the butterfly wings and usually originates at the
inclusion. ALO; inclusions are the most common inclusion type around which thigtsefiorm, although
in rare cases, they have been seen around elongated manganese sulfide (MnS) ifg8ldionas
proposed that failure occurs when the crack grows to a sufficient length to reach the contact surface
leading to pitting34].

There are differencdsetween WEA andutterfly wings Butterflies form much sooner than
WEA, presumably due to the high stress concentration around incl{@&nbnlike WEA, it has been
proposed by Schliclet al.[34] that a prerequisite for butterfly white etching wingrhation is a crack
initiating at the inclusion/matrix interface. There is a stress concentration which develops around the non
metallic inclusion due to the modulus mismatch between the inclusion and the martensite matrix. The
stress concentration is pokgted to produce cracks and plastic deformation. Scldichit proposed that,
in addition to the high stresses for strassisted carbon diffusiocracks are nessary for butterfly
formation becausthey providecarbon diffusion sinksThis may sugge a decarburization mechanism.
However, if decarburization were the ultimate cause, it would be expected that the white etching features
would occur on both sides of the microcrack, which is not typically the case.

Because of the proposed necessity ofaek for the formation of butterfly WEA wings, it has
been hypothesized that the formation of DEA prior to butterfly formation will suppress the number and
size of butterflies that forrf21]. This is thought to occur becaukealized plastic deformation assatgd
with DEA formation reduces incompatibility stresses and strains around inclusions, lowering the stress

concentration, and thus the propenS|ty to nucleate a crack at the interface.
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Figure2.8 Butterfly formed in 52100 RCF specimen around@linclusion[35]. Etchantnot given

12



Figure2.9 Secondary eletron image of cementie aparently dissolving into WEA towards a
microcrack in JISSUJ2 high chromium bearing steel. Black arrows indicate possible
dissolving carbids. Observed in rolling contact fatigue sample after 500,000 cycles at a
nominal contact stress of 3.92 GPa. Adapted ff@dh Etchant not given.

24 Variables Influencing Contact Fatigue Resistance

One of the difficulties encountered in understanding contact fatigue is the largerrafimb

variables which affeatontact fatigue resistancihe variables include contasttess, geometry, material

properties, inclusion sizes, inclusion types, operating temperature, lubricant type, lubricant additives,

lubricant properties, extent of sliding, rotation speed, surface roughness, and material characteristics.

Each must be caidly controlled to ensure that results are reliable. The difficulty in controlling each and

every one has prevented a greater understanding of contact fatigue failure mechanisms and the

contribution of each variabl®&laterial characteristic variables inttuced by carburizing include case

depth, IGO, retained austenite, residual stress, and prior austenite grain size (PAGS). The effects of these

variables on contact fatigue, as reported in the literature, are discussed below.

2.4.1 Inclusions and Steel Cleanlings

Previous research on bearing and gear contact fatigue has shown that the variable that is most
influential on the contact fatigue is&nce of hardened gearstsel cleanliness; where steel cleanliness
refers to nonmetallic inclusiori86i 38]. Alumina inclusions are known to be the most detrimental to
contact fatigug25]. Sulfides, especially manganese sulfides, have been shown to have a less pronounced
effect on contact fatigue of bearings steels, presumably due to their relative softness and deformability.
Work by Hashimotet al.[39] showed that in the absence of oxides, rollingacirfatigue life was
affected by sulfide size and orientation with respect to the rolling direction. Cracks were observed to

nucleate at the tips of the sulfide inclusions and propagate parallel to the rolling direction.
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2.4.2 Case Depth

Case depth has been shmto be an important consideration for the resistance of carburized steel
to bending fatigue and wep0i 43]. O. Asiet al.[43] showed that as the case depth of carburized SAE
8620 increased from 0.76 mm to 1.49 mm the bending fatigue limieassx. The authors reasoned that
increasing the case depth increased the depth of IGO and amountsnefinensitic transformation
products which both adversely affect the compressive residual stress distributioret@dfé0], in
contrast, showed that increasing case degtised the fatigue strength of carburized 8620 to increase.
The case depths ranged from 0.7 to 1.0 mm in the study. It is thought that there may be an optimal
maximumcase depth which increases the fatigue resistance of carburized 8620, althougmthis opti
case depth is also application dependeptimal case depth depends on part size, resulting residual
stress, and hardnesg)bove this maximum the fatigue resistance appears to drop. lkecadéf41]
showed that increasing the case depth of SAE 8620 increase the abrasive wear resistance. A possible
explanation for the behavior was not given.

The effect of case depth on carburized gear steel contact fatigue redistaumce been studied.
However, case depth is known to be an important consideration to prevent case crushing or subsurface
initiated macropitting21]. Case crushing occurs when the applied shear stress profile exceeds the shear
strength profile of the carburidecase/core interface. An example of case crushing along with the stress
and strength profile schematic which can produce case crushing is sheigarg?.10. Figure2.10
shows a case hardened speciméith failed by case crushing as well as a schematic illustration of the
shear stress and strength profiles that can lead to case criistiegsing the case depth can help prevent
case crushing and subsurface macropitting by ensuring that the shagthstfehe case is always greater

than the shear stress profile due to the contact.

2.4.3 Intergranular Oxidation

The effects of carburizing temperature and carburizing method on RCF resistance of SAE 4120
and 4320 were studied by Bykows$#4#]. The carburizing conditions studied were three gas carburizing
treatments at 899°C, 927°C, and 1010°C (1650°F, 1700°F, and 1850°F), a gas carburizing treatment at
1010°C (1850°F) followedly reheating to develop grain refinement, and vacuum carburizing at 1010°C
(1850°F). RCF tests were carried out using a Fediéogjul ballon-rod rolling contact fatigue apparatus.
The test rig was modified so that five 52100 hardened and ground batigseapplied a radial force
sufficient to develop a nominal Hertzian contact stress of 5.4 GPa. Each test was lubricated by dripping
synthetic oil onto the bearings. The tegecimens were rotated300RPM resulting in a loading
frequency of 300 HZTheresults of the study are givenhirgure2.11. Bykowski observed a large

increase in RCF resistance in the vacuum carburized samples. It was concluded that the lack of IGO in the
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(a) Carburized cylindrical specimen which failed by case crushing. (b) Schematic of how
stress and strength gradients can interact to create subsurface macropitting and case
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15



vacuum carburized samples was the primary contributing factor to the increased contact fatigue
resistance. The IGO present in the gas carburized samples was suspected to be the primary failure

initiation site[44].

2.4.4 Retained Austenite

Due to the high carbon content of the austenite during carburizingaeweom temperature some

austenitaen carburized steels &abilized anavill not transform to martensite. This austenite is referred

to as retained austenite (RAB]. RA has been shown, typically, to be beneficial to contact fatigue
resistance, especially in the presence of debris denting or under contaminated lubrication and low
lubrication condition$45]i [49]. Work was conducted by Domg al.[47] to investigate the effect of RA

on rollingsliding contact fatigue resistance. Tests were conducted at Hertzian stresses of 2.8 and 3.0 GPa
and slide ratios of 20 perdeiThe steel used was 1&Dli4W (0.18% carbon, 1.5% chrome, 4.25%

nickel, and 1.0% tungsten). Heat treatments were applied to develop different levels of RA, from seven to
fifty percent, through increased surface carbon content from carburizing, as well as though cryogenic
treatmers after carburizing. The samples having the higher amount of RA performed better in rolling
sliding fatigue testing. Strain induced martensite was observed in the microstructures afteiFigstiag (

2.12) along with an increasesurface compressive residual stress and hardness. It was postulated that the
increased compressive residual stress and hardness due to RA transformation led to thednoteased
fatigue resistancpl7]. Roacheet al.[49] showed that increasing RA improved the pitting fatigue

resistance of bearings having artificial indeigns. It was concluded that the RA increased the steel
damage tolerandd9].

RA has alsdeen shown to béetrimentalto contact fatigue resistance in other conditions. One
condition in which RA may be detrimental is when dimensional stability is of imporfahgdf the RA
transforms during the operation of a component requiring high tolerdeceansformation to strain
induced martensite results in a volume expansion that may result in distortion. The distortion can cause
high stresses, excessive noise, and vibrdfith RA is relatively soft and has poor wear resistance.
Therefore, from a wear séstance perspective RA is not desirable. An excessive amount of RA will also
lower the material resistance to fatigue initiatja].

The nickel content of carburized steel is also an important consideration in regard to RA and
material toughness. Nickel is anstenite stabilizing alloying element, though far less potent than carbon,
and can increase the RA contgljt RA increases the toughness of steel. Also, nickel by itself may have
an effect on material toughness besides contributing to RA content. It is well known that the addition of
nickel to a steel leads to improvement @fchure toughness by reducing susceptibility to cleavage

fracture[50]. Possible improvements in toughness of carburized steeldbbaxmeshown by increasing the
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nickel contenf51]. A clear explanation dhe effect of nickel on contact fatigue resistance has not been

proposed.

Figure2.12
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Micrographs of high RA case of 18Cr2Ni4WA alloy subject to rolstiging contact
fatigue. (a) Bedre testing, white areas are RA and black are plate martensite. (b) After
testing showing deformation induced marten@itereased amounts of dark etching
features) (c) Replotted figure fronf47] showing case RA profile before and afte
testing.

2.45 Residual Stress

During quenching from carburizing temperatures, residual stresses are developed which favorably

affect fatigue resistance of carburized st§ElsThe compressive surface residual stresses formed in the

case are due to the martensite start (Ms) temperature gradients developed by the carbon profigs resul
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