CO₂ INJECTION TO IMPROVE OIL RECOVERY USING ZIPPER HYDRAULIC FRACTURES

by

Goksu Akoglu Somyurek
A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Petroleum Engineering).

Golden, Colorado

Date _____________

Signed: ____________________________

Goksu Akoglu Somyurek

Signed: ____________________________

Dr. Hossein Kazemi
Thesis Advisor

Golden, Colorado

Date _____________

Signed: ____________________________

Dr. Erdal Ozkan
Professor and Head
Department of Petroleum Engineering
ABSTRACT

Conventional oil reservoirs are the main source of oil production because they are easier to produce. On the other hand, unconventional reservoirs have considerably lower oil recoveries in spite of their large initial oil in place (IOIP). Despite the innovative technologies of horizontal wells and hydraulic fracturing techniques, the recovery factor for the Bakken, the largest unconventional resource in the United States, is less than 10 percent. The low oil recovery factor from the Bakken resource reveals the need for enhanced oil recovery (EOR). The hydraulic fracture spacing, orientation, and fracture pattern affects the performance of EOR schemes. For instance, a zipper fracture arrangement is believed to improve permeability and create a larger stimulated reservoir volume (SRV) which, in turn, should improve both the primary and EOR recovery factors.

In this thesis, the CO$_2$ injection-and-soak method was the EOR technique. The CO$_2$ EOR was modeled using the GEM® (from Computer Modeling Group) compositional reservoir simulator and Bakken reservoir parameters. While keeping reservoir parameters exactly the same, two different hydraulic fracture patterns, a regular pattern and a zipper pattern, were used in the evaluation of both primary production and CO$_2$ EOR. The primary production was for one year and the CO$_2$ injection-and-soak method for nine years.

In this study, we did not observe much improvement in oil recovery using the zipper fracture pattern versus a regular fracture pattern. Furthermore, the molecular diffusion effect was insignificant even with values as large as 10^{-2} cm2/s.
TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF FIGURES ... vi

LIST OF TABLES ... viii

ACKNOWLEDGEMENTS .. ix

CHAPTER 1 INTRODUCTION .. 1
 1.1 Research Objective .. 1
 1.2 Research Methodology .. 2
 1.3 Organization of the Thesis .. 2

CHAPTER 2 LITERATURE REVIEW .. 4
 2.1 Geology of Bakken .. 4
 2.2 Production History .. 7
 2.3 EOR Potential of Bakken .. 8

CHAPTER 3 NUMERIC MODEL ... 10
 3.1 Model Description .. 10
 3.1.1 Reservoir Volume and Well Locations ... 11
 3.1.2 Gridding for the Model ... 13
 3.2 Reservoir Properties .. 17
 3.2.1 Reservoir Rock Properties .. 18
 3.2.2 Reservoir Fluid Properties .. 20
3.3 Methodology .. 22

CHAPTER 4 RESULTS ... 23

4.1 Multiphase Rate Transient Analysis .. 23
4.2 Depletion by Primary Production ... 26
4.3 CO₂ Injection .. 28

CHAPTER 5 CONCLUSIONS .. 36

NOMENCLATURE .. 37

REFERENCES ... 39
LIST OF FIGURES

Figure 2.1: Williston Basin Map (Modified from Webster, 1984) .. 5
Figure 2.2: Bakken Lithology (Modified from Webster, 1984). ... 6
Figure 2.3: Schematic Cross Section of Bakken (Modified from Meisner, 1978). 7
Figure 2.4: Average Daily Oil Production from North Dakota Wells (NCID, 2015). 8
Figure 2.5: Average Number of Wells in Production from North Dakota (NCID, 2015) 8
Figure 3.1: Non-Zipper Hydraulic Fracture Configuration. ... 12
Figure 3.2: Zipper Hydraulic Fracture Configuration.. 12
Figure 3.3: Flow Analysis Reservoir Segment. ... 14
Figure 3.4: Zipper Hydraulic Fracture Case Reservoir Segment ... 15
Figure 3.5: Non-Zipper Hydraulic Fracture Case Reservoir Segment 16
Figure 3.6: Matrix Relative Permeability for Water-Oil System and Liquid-Gas System 19
Figure 3.7: Fracture Relative Permeability for Water-Oil System and Liquid-Gas System 20
Figure 3.8: Bakken Crude Oil P-T Diagram. ... 21
Figure 4.1: Diagnostic Plot. ... 24
Figure 4.2: Linear Flow Rate Transient Analysis... 25
Figure 4.3: Primary Oil Productions for 20 Years... 27
Figure 4.4: Primary Cumulative Oil Production for 20 Years... 27
Figure 4.5: Oil Production for 9 Year CO\textsubscript{2} Cyclic Injection for Different Time Periods........ 30
Figure 4.6: Cum. Oil Production for 9 Year CO\textsubscript{2} Cyclic Injection for Different Times 30
Figure 4.7: Oil Production for 9 Year CO\textsubscript{2} Cyclic Injection for Different Injection Rates 32
Figure 4.8: Cum. Oil Production for CO\textsubscript{2} Cyclic Injection for Different Injection Rates 32
Figure 4.9: Oil Production for 9 Year CO\textsubscript{2} Cyclic Injection with Diffusion Coefficient 34
LIST OF TABLES

Table 3.1: Reservoir properties ... 17
Table 3.2: Reservoir properties of Middle Bakken (Kurtoglu and Kazemi, 2012) 17
Table 3.3: Hydraulic Fracture (Kurtoglu and Kazemi, 2012) .. 18
Table 3.4: Relative Permeability Data (Kurtoglu and Kazemi, 2012) 18
Table 3.5: Bakken Crude Oil Composition (Teklu et al., 2014) .. 20
Table 4.1: Effective Permeability .. 26
Table 4.2: CO₂ Injection Scenarios .. 28
Table 4.3: CO₂ Cyclic Injections with Different Injection and Soak Times 29
Table 4.4: CO₂ Cyclic Injections with Different Injection Rates .. 31
Table 4.5: Diffusion Coefficient Comparison Case ... 33
Table 4.6: Diffusion Coefficient Comparison .. 35
ACKNOWLEDGEMENTS

I thank my advisor, Dr. Hossein Kazemi, who not only enlightened my perspective as a reservoir engineer but also my perspective on life. He always encouraged me, supported me, and inspired me with his wisdom.

I thank my thesis committee members, Dr. Hulya Sarak and Dr. Hazim Abass, for their valuable advice. I am also thankful to all my professors, staff and students in Petroleum Engineering Department at Colorado School of Mines for their support. Most importantly, I acknowledge the Turkish Petroleum Corporation (TPAO) for the M.S. scholarship and funding.

Finally, I thank my father, Mehmet Ali Akoglu, my mother, Gulay Akoglu, and my sister, Seray Akoglu, for their moral support in my whole life. Also my special thanks to my husband, Serdar Somyurek, who stood by my side and brought joy to my life.
CHAPTER 1
INTRODUCTION

According to Energy Information Administration (EIA, 2013), the major unconventional oil reserves are in Russia, United States, China, Argentina, and Libya. While USA is the leader in unconventional oil production. EIA (2013) gives an estimate of 47.7 billion barrels of unconventional reserves for the United States and 14.7 billion barrels for the Bakken.

Production from unconventional reservoirs is relatively new compared to conventional reservoirs. Horizontal wells and multistage hydraulic fracturing are technologies credited for the production from unconventional reservoirs. Nonetheless, the recovery factor from these reserves is around 10 percent. This means that a significant amount of oil is left behind in unconventional reservoirs and enhanced oil recovery (EOR) techniques are needed to recover more oil.

Only one or two conventional reservoir EOR methods, such as CO\textsubscript{2} injection, can possibly be applied in unconventional reservoirs to improve oil recovery. Specifically, CO\textsubscript{2} dissolves in oil rather easily and has a low minimum miscibility pressure (MMP) in unconventional light oils. CO\textsubscript{2} also lowers oil viscosity and swells the oil to enhance oil production (Kurtoglu et al., 2013). Additionally, multi-stage hydraulic fracturing is the flow path to utilize CO\textsubscript{2} and increase oil production; however, fracture morphology, spacing, pattern, and permeability affect the efficiency of the soak and CO\textsubscript{2} injection method. The zipper fracture pattern is one of the advocated geometries (Water et al., 2009, and Warpinski et al., 2009) believed to increase the stimulated reservoir volume (SRV).

1.1 Research Objective

The objective of this research is to evaluate the potential of CO\textsubscript{2} injection for improving oil recovery using the zipper hydraulic fracture pattern in the Bakken. The objectives are two-
fold: First, determining the CO₂ injection applicability in unconventional reservoirs and, second, evaluating the use of zipper-fracture geometry for EOR in unconventional reservoirs.

1.2 Research Methodology

1. Review petroleum geology of the Bakken.
2. Review past and current production of the Bakken.
3. Evaluate CO₂ EOR fundamentals and its potential use in the Bakken.
4. Construct a fully compositional, dual-porosity model for zipper and regular fracture patterns using Bakken crude oil and reservoir parameters.
5. Validate the reservoir model by generating a theoretical multiphase rate transient test and analyze the test to verify the soundness of the reservoir model by correctly recovering reservoir permeability.
6. Compare the oil recovery performance of zipper fracture pattern and regular fracture pattern.

1.3 Organization of the Thesis

Chapter 1 presents the introduction to the research with objectives and methodology.

Chapter 2 presents a literature review. Petroleum geology, production history of the Bakken and need for EOR in unconventional reservoirs are the main topics in this chapter. Water flooding and CO₂ injection EOR will be compared for unconventional reservoirs. The reasons to choose CO₂ injection EOR will be represented.

Chapter 3 is the segment where modeling background is explained. The reservoir rock properties are tabulated. Also, Bakken Crude Oil composition will be presented with compositional model PVT. There are two different types of hydraulic fracture models modeled
for this thesis. One is non-zipper hydraulic fracture and the other is zipper hydraulic fracture. The details of both of the models will be shown in this chapter. Also, model gridding type will be explained.

Chapter 4 presents the results. This chapter starts with rate transient analysis results for validation of the model. Then results for primary production for both non-zipper hydraulic fracture and zipper hydraulic fracture cases are presented. Finally, CO₂ injection application results for different CO₂ injection scenarios are tabulated in this chapter. The comparison for non-zipper hydraulic fracture and the zipper hydraulic fracture for primary production and CO₂ injection are discussed in this segment.

Chapter 5 present conclusions based on the results from Chapter 4.
CHAPTER 2

LITERATURE REVIEW

This chapter starts with petroleum geology of the Bakken, the largest unconventional reservoir in United States. In 2008, the USGS estimated that the mean technically recoverable reserves from the Bakken to be 3.65 billion barrels of oil, 1.85 trillion cubic feet of natural gas, and 148 million barrels of natural gas liquids, which has established Bakken as the largest unconventional resource in the lower 48 states (Pilcher et al., 2011). North Dakota is currently the largest Bakken producer and is the second largest U.S. oil producer behind Texas (DuBose, 2012).

Because the Bakken is a large oil deposit and resource, understanding its geology is critical for those interested in its EOR potential. Similarly, the production history of the Bakken is critical for EOR planning. Because primary production recovery factors are very low, miscible CO₂ injection EOR method is a potential candidate to enhance oil recovery in the Bakken. This will be covered later in this chapter.

2.1 Geology of Bakken

Bakken formation is in the Williston Basin, located in North Dakota, South Dakota, Montana in United States, and Saskatchewan and Manitoba in Canada (Figure 2.1). The Bakken was deposited in Late Devonian to Early Mississippian and consists of Upper, Middle, and Lower Bakken. The Upper and Lower Bakken have similar lithology consisting of organic-rich black shale. The Middle Bakken is fine-grained sandstone and siltstone (Pitman et al., 2001). The Bakken lies between the lower Lodgepole and the upper Three Forks formations (Figure 2.2). While the lower Lodgepole conformably overlays the Bakken, the Three Forks, underlying the Bakken, is conformable in deep parts and less conformable in shallow parts. The thickness of the
Bakken ranges from the wedge edge to more than 140 ft (Figure 2.3). The three components of the petroleum system are lower Lodgepole, three Bakken members, and the upper Three Forks (Sonnenberg and Pramudito, 2009). The Bakken is a typical unconventional reservoir with low permeability and porosity (Theloy and Sonnenberg, 2013).

Figure 2.1: Williston Basin Map (Modified from Webster, 1984).

Upper and Lower Bakken are highly organic-rich and constitute the source rock for the Middle Bakken, and are considered the boundaries of the Bakken petroleum system. The quantity of the petroleum generated and produced in the Bakken depends on thickness, thermal maturity and total organic carbon (TOC). The lower member is a dark-gray to brownish-black,
organic-rich shale. The upper member is similar to the lower members, however it has higher TOC - up to 36 weight percent (Pitman et al., 2001).

Figure 2.2: Bakken Lithology (Modified from Webster, 1984).

The Middle Bakken lithology is complex and consists of sandstone, limestone and siltstones (Pitman et al., 2001). The main oil production target is dolomitic siltstone to silty dolomite in the Middle Bakken and upper Three Forks (Theloy and Sonnenberg, 2013). The Middle Bakken depth is from 8,500 to 10,500 feet, its thickness from 8 to 14 feet (Sonnenberg and Pramudito, 2009), average porosity 5%, average permeability 0.04 md (Pitman et al., 2001) and TOC ranging around 0.1 to 0.3 percent by weight (Price, 1999).
2.2 Production History

The production from Bakken and Three Forks started in 1953 with the discovery of Antelope field. Initial wells drilled were vertical. In 1987, the first horizontal well was drilled and after that horizontal wells dominated production from Bakken (LeFever and LeFever, 2005). In early 1990s hydraulic fracturing was applied in horizontal wells. In early 2000 companies utilized multistage hydraulic fractures which increased production (Sonnenberg and Pramudito, 2009). Ever since, horizontal well and hydraulic fracturing became the key factors for economic oil production in the Bakken. In the year 2000, North Dakota’s total oil production was less than 2,000 barrels per day (bbl/d) while the producing well number was around 200. By 2014, the
total oil production exceeded 1,000,000 bbl/d and the producing well number was 8,500 (Figure 2.4 and Figure 2.5) (NDIC, 2015).

Figure 2.4: Average Daily Oil Production from North Dakota Wells (NDIC, 2015).

Figure 2.5: Average Number of Wells in Production from North Dakota (NDIC, 2015)

2.3 EOR Potential of Bakken

USGS has reported recoverable oil estimate of 7.4 billion barrels of oil, 6.7 trillion cubic feet of natural gas, and 0.53 billion barrels of natural gas liquids (NGL) from Bakken and Three Forks (Gaswirth et al., 2013). Unfortunately, the oil recovery factor translates to less than 10
percent of the oil in place. To increase recovery factor, an EOR method must be devised. The reservoir has very low matrix permeability, which we believe will result in unsuccessful water flooding. Although water flooding is the most common recovery technique after primary production in conventional reservoirs, it is not the case in low-permeability reservoirs. Less viscous CO₂ would be the best option to enhance oil recovery from Bakken with higher injectivity. CO₂ and oil are multi-contact miscibility which means the mass transfer between oil and CO₂ will continue until these two fluids cannot be distinguished from each other. While they are mixing, CO₂ condenses into oil and lighter components of oil vaporize into CO₂. This make the oil more mobile (Jarrell et al., 2002). CO₂ can only be dissolved in oil above a specific pressure called minimum miscibility pressure (MMP). The key to designing a proper CO₂ injection is to reach multi-contact miscibility which will reduce viscosity and end up with oil swelling (Wang et al., 2010). Even though CO₂ injection is in the research phase, there are some promising results in the literature. For example Shoaib and Hoffman (2009) claim that the recovery increases 20% with CO₂ injection for the Elm Coulee field which is a part of the Bakken.

In this research CO₂ injection is applied for both zipper hydraulic fracturing cases and non-zipper hydraulic fracturing cases. In both cases, there are two identical wells. One of those wells will turn into an injection well after one year of depletion. Different scenarios will be applied for CO₂ injection cases for both models.
CHAPTER 3
NUMERIC MODEL

In this study, the GEM® (Computer Modelling Group) dual-porosity, fully compositional model was used to simulate primary depletion and CO₂ EOR. This software was chosen because the simulator is capable of providing results for a variety of engineering applications such as project development and economic analysis. This chapter includes model description, reservoir volume and well locations, gridding, hydraulic fracture orientation, reservoir rock properties with relative permeability curves, and reservoir fluid properties with PVT analysis.

3.1 Model Description

The model used a dual-porosity, fully compositional model with nine components. Detailed analysis of the fluid composition is presented in the PVT section. The advantage of using a fully compositional model is that it captures the mass transfer between vapor and liquid phases more accurately. However, it makes the run times longer. The model is dual-porosity because field data suggest that the unconventional reservoirs are naturally fractured reservoirs which can be modeled better by dual-porosity. In the dual-porosity model, the flow hierarchy is from matrix to micro-fractures, to macro-fracture network, to multi-stage hydraulic fractures, and, finally, to the horizontal well bore (Kurtoglu, 2013).

To observe the effect of zipper fracture geometry versus non-zipper fracture geometry, two different models were built. In both cases, the reservoir volume, well distance and number of hydraulic fracture and parameters (length, conductivity) are assumed equal.

The model assumptions are:

- Nine components: CO₂, C1, C2, C3, C4, C5-C6, C7-C12, C13-C21, C22-C80.
- Peng-Robinson Equation of State (EOS).

- The matrix and fracture, three-phase relative permeability curves are that of Stone’s second equation (Stone, 1973).

- Capillary pressures effects are neglected.

- The dual-porosity shape factor for is that of Kazemi et al. (Kazemi et al., 1976).

- The reservoir is isothermal.

A reservoir segment was modeled with a logarithmic gridding in the x-direction only. In the y-direction and z-direction, uniform gridding was used. Hydraulic fractures in the y-direction were assigned at smallest grid in x-direction.

With the above assumptions, only a segment of the reservoir was modelled assuming symmetry in the entire system. In each segment, there are two wells which are parallel to each other with same parameters. The difference between a zipper fracture and a non-zipper fracture is the hydraulic fracture location (Fig. 3.1 and Fig. 3.2).

3.1.1 Reservoir Volume and Well Locations

In this research the base shape of the reservoir is rectangular. For both hydraulic fracture cases, the reservoir volume is assumed equal. To apply symmetry, only the well location of the middle well was changed to create a zipper hydraulic fracture from the base reservoir. In the schema of the reservoirs, there are three horizontal wells in both cases which have equal length and number of hydraulic fractures with same parameters and the only difference is the distribution of hydraulic fractures. For non-zipper hydraulic fracture case, there are 10 stages of
hydraulic fractures for each well, and the hydraulic fracture tips are collinear. On the other hand, there are 10 stages of hydraulic fractures for each well for the zipper hydraulic fracture case and these fractures are in-between the two hydraulic fractures of the other well. Total well length is 4300 ft and thickness of the model is 50 ft. The distance between the wells is 650 ft and the hydraulic fracture half-length is 122.5 ft. The reservoir boundaries are 325 ft away from top and bottom boundaries and 215 ft away from left and right boundaries. Figure 3.1 and Figure 3.2 show the fracture configuration for zipper hydraulic fractures and non-zipper hydraulic fractures for same reservoir area.

The goal for making the zipper hydraulic fractures instead of non-zipper hydraulic fractures is to increase the stimulated reservoir volume (SRV). For unconventional reservoirs, which means the matrix permeability is very low, creating complex network between hydraulic fractures and natural fractures with successful treatment is the key factor for commercial production (Rafiee et al., 2014). Since zipper fracture treatment provides better reservoir
interaction with enlarged SRV, zipper fractures are proposed to be a better fracture treatment than non-zipper fracture treatment. In this research the effect of zipper hydraulic fracture versus non-zipper hydraulic fracture will be investigated for both primary production and CO₂ injection.

3.1.2 Gridding for the Model

For this research, logarithmic grid refinement is used due to it giving better understanding around the smaller size grids (Kazemi et al., 1978). Smaller grid sizes are placed around the hydraulic fracture because when production takes place the flow will occur through these hydraulic fractures from the reservoir. Also, when CO₂ injection starts, again the CO₂ will pass through hydraulic fracture to the reservoir. That’s why the grid of the model is chosen as logarithmic for only x axis. For y-direction and z-direction uniform grids are used and the system is divided into equal layers. To save on long run times, segments of the reservoir are modeled using GEM® (CMG). Since all of the properties will remain the same, the segment is linearly representing the reservoir.

First, model is validated by rate transient analysis. To apply rate transient analysis, a specific segment of the reservoir is modeled. In this specific segment, the fracture length is set to be equal to the reservoir segments boundary. Only 215 ft of the well segment is modeled. Total length of each well was 4300 ft. which means 1/20 portion of the well is representative. By multiplying the production of that portion by 20, the total production of the well can be found. LRG is used for only the x-direction. Hydraulic fracture is set to be at the smallest grid block in x-direction in order to be able to capture better production and injection data. Total number of logarithmic grids in x-direction is 31. The uniform grid number for y-direction is 13 and z-direction is 5. The hydraulic fracture is at the 16th grid block where the grid is the smallest in x-direction (Figure 3.2).
To make comparison between non-zipper and zipper hydraulic fractures, first both cases are depleted by primary production. For both cases, a 215 ft long portion of the reservoir is modeled. Again logarithmic grid refinement is used for x-axis. Total number of grids in x-
direction will change for the two cases. For zipper hydraulic fracturing case the reservoir is divides into 37 logarithmic grid blocks in x-direction, 13 and 5 uniform grid blocks in y-direction and z-direction respectively. The hydraulic fractures are set to be at the 1st, and the 37th grid blocks (Figure 3.4).

For non-zipper hydraulic fracturing case the reservoir is divided into 21 logarithmic grid blocks in x-direction, and the rest is the same as the zipper hydraulic fracture case. The hydraulic fracture is in the 1st grid block (Figure 3.4).
After analyzing the performances of the two different hydraulic fracture configurations for primary depletion, CO₂ injection started. The same reservoir segments are used to compare the results. For CO₂ injection runs, one of the wells will be turned into injection, and the other
will continue production. Different scenarios will be run to analyze the hydraulic fracture configuration effects.

3.2 Reservoir Properties

In this research properties of the Middle Bakken member of the Bakken petroleum system are used. The reservoir properties, hydraulic fracture properties and initial conditions used in this research are tabulated below (Table 3.1, Table 3.2 and Table 3.3) (Kurtoglu and Kazemi, 2012).

Table 3.1: Reservoir properties

<table>
<thead>
<tr>
<th>Reservoir Properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (ft)</td>
<td>50</td>
</tr>
<tr>
<td>Horizontal Well Length (ft)</td>
<td>4300</td>
</tr>
<tr>
<td>Reservoir Segment Length (ft) (x-direction)</td>
<td>215</td>
</tr>
<tr>
<td>Hydraulic Fracture length (ft)</td>
<td>122.5</td>
</tr>
<tr>
<td>Initial Pressure (psia)</td>
<td>6500</td>
</tr>
<tr>
<td>Initial Temperature (°F)</td>
<td>241</td>
</tr>
</tbody>
</table>

Table 3.2: Reservoir properties of Middle Bakken (Kurtoglu and Kazemi, 2012)

<table>
<thead>
<tr>
<th>Reservoir Properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix Permeability (md)</td>
<td>1E-05</td>
</tr>
<tr>
<td>Natural Fracture Permeability (md)</td>
<td>0.011</td>
</tr>
<tr>
<td>Matrix Porosity (fraction)</td>
<td>0.05</td>
</tr>
<tr>
<td>Natural Fracture Porosity (fraction)</td>
<td>0.0024</td>
</tr>
<tr>
<td>Rock Compressibility (1/psia)</td>
<td>1E-05</td>
</tr>
<tr>
<td>Natural Fracture Compressibility (1/psia)</td>
<td>1E-06</td>
</tr>
</tbody>
</table>
Table 3.3: Hydraulic Fracture (Kurtoglu and Kazemi, 2012)

<table>
<thead>
<tr>
<th>Hydraulic Fracture Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (ft)</td>
</tr>
<tr>
<td>Permeability (md)</td>
</tr>
</tbody>
</table>

3.2.1 Reservoir Rock Properties

In this study the flow is considered as three phase flow. The relative permeability curves for this three phase flow are generated for both matrix and fracture. Table 3.4 shows the data used to generate the plots (Kurtoglu and Kazemi, 2012).

Table 3.4: Relative Permeability Data (Kurtoglu and Kazemi, 2012)

<table>
<thead>
<tr>
<th>Matrix Relative Permeability</th>
<th>Fracture Relative Permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water-Oil System</td>
<td>Gas-Oil System</td>
</tr>
<tr>
<td>Gas-Oil System</td>
<td>Water-Oil System</td>
</tr>
<tr>
<td>Gas-Oil System</td>
<td>Fracture Relative Permeability</td>
</tr>
<tr>
<td>(k_{rw}^*)</td>
<td>0.024</td>
</tr>
<tr>
<td>(k_{rg}^*)</td>
<td>0.096</td>
</tr>
<tr>
<td>(k_{row}^*)</td>
<td>0.103</td>
</tr>
<tr>
<td>(k_{rog}^*)</td>
<td>0.103</td>
</tr>
<tr>
<td>(S_{wr})</td>
<td>0.531</td>
</tr>
<tr>
<td>(S_{lq})</td>
<td>0.73</td>
</tr>
<tr>
<td>(S_{orw})</td>
<td>0.211</td>
</tr>
<tr>
<td>(n_w)</td>
<td>1.5</td>
</tr>
<tr>
<td>(n_{ow})</td>
<td>2.5</td>
</tr>
<tr>
<td>(n_g)</td>
<td>2</td>
</tr>
<tr>
<td>(n_{og})</td>
<td>2.5</td>
</tr>
</tbody>
</table>

The Stone’s second three phase oil relative permeability model was used (Stone, 1973).

The equations that used to generate this model, Equations 4.1 to 4.4, are listed below.
For water-oil system:

\[
 k_{rw} = k_{rw}^* \left(\frac{S_w - S_{wr}}{1 - S_{orw} - S_{wr}} \right)^{nw} \tag{3.1}
\]

\[
 k_{row} = k_{row}^* \left(\frac{S_o - S_{or}}{1 - S_{orw} - S_{wr}} \right)^{now} \tag{3.2}
\]

For liquid-gas system:

\[
 k_{rg} = k_{rg}^* \left(\frac{S_g - S_{gr}}{1 - S_{lrg} - S_{gr}} \right)^{ng} \tag{3.3}
\]

\[
 k_{rog} = k_{rog}^* \left(\frac{S_l - S_{lg}}{1 - S_{lrg} - S_{gr}} \right)^{neg} \tag{3.4}
\]

The relative permeability curves are plotted and shown in Figure 3.6.

Figure 3.6: Matrix Relative Permeability for Water-Oil System and Liquid-Gas System.
3.2.2 Reservoir Fluid Properties

3.2.2.1 Bakken Crude Oil Composition

In this thesis Bakken crude oil composition is used to run the compositional model which is tabulated in Table 3.5 (Teklu et al., 2014).

Table 3.5: Bakken Crude Oil Composition (Teklu et al., 2014)

<table>
<thead>
<tr>
<th>Bakken Crude Oil Composition Equation of State (EOS) Peng-Robinson</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
</tr>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>C4</td>
</tr>
<tr>
<td>C5-6</td>
</tr>
<tr>
<td>C7-12</td>
</tr>
<tr>
<td>C13-21</td>
</tr>
<tr>
<td>C22-80</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
3.2.2.2 PVT Analysis

By using the composition provided and PVT tool WINPROP® (CMG) the two phase boundary line is created (Figure 3.7). The two phase boundary line is represented with the blue line and the critical point with the red dot, calculated as 3763.66 psia and 592.15°F from WINPROP® (CMG). The initial pressure is 6500 psia and initial temperature is 241°F which is above the two phase line on the left side of the graph. This indicates that the reservoir fluid is a black oil system.

Figure 3.8: Bakken Crude Oil P-T Diagram.
In black oil systems if the two phase boundary has not been reached, in other words above bubble point, the fluid is composed of oil and dissolved gas which means the only phase is liquid. When pressure drops below bubble point pressure the dissolved gases release from the oil and become free gas. This means produced gas at the surface comes from both free gas and dissolved gas.

In this study the model is built as an isothermal model, which means the temperature of the system will remain constant during production and injection. With this condition the bubble point pressure from two phase diagram can be determined. The pressure crossing the two phase diagram at 241°F (initial temperature) is 2872.42 psia which is the initial bubble point pressure for this composition.

3.3 Methodology

1. Deplete the reservoir by primary production.

2. Evaluate the performance of the model using $\frac{\Delta P}{\Sigma q_B}$ vs \sqrt{t} and diagnostic plots.

3. Inject CO$_2$ into the reservoir via zipper fractures to determine the effectiveness of zipper type hydraulic fractures.

4. Compare the results.
CHAPTER 4
RESULTS

This chapter starts with the validation of the model. The model was the GEM® (Computer Modelling Group). A specific segment was modeled to run the production test. After validating the model, primary depletion runs were made to compare zipper hydraulic fracture and non- zipper hydraulic fracture performances. This comparison was extended to CO₂ injection. Different scenarios were tested to develop a better understanding on hydraulic fracture performance.

4.1 Multiphase Rate Transient Analysis

To analyze the production data, multiphase rate transient analysis method is used. Particularly, linear flow model is used for a specific reservoir segment. For linear flow model reservoir segment is specifically designed to capture the effects of the mathematical model more accurate. This analytical approach gives better results if the hydraulic fractures are reaching the boundaries of the reservoir so the reservoir boundary length is designed to be equal to hydraulic fracture half-length for this specific segment is designed for this case (Chapter 3).

Multiphase rate transient analysis uses rate normalized pressure vs. square root of time. Rate normalized means pressure drop divided by total reservoir flow at reservoir conditions. This model assumes that the main oil is in the reservoir matrix where the oil flows into micro-fractures in the system locally with time. This oil linearly goes through micro-fractures to hydraulic fractures, and oil is produced from horizontal wells through hydraulic fractures. This assumption does not count on the unstimulated region.
To analyze the segment, one year production for the segment of the reservoir which has only one hydraulic fracture is run with constant bottom whole pressures with 3000 psia. Log-log diagnostic plot is drawn in order to determine flow regimes (Figure 4.1).

![Diagnostic Plot](image)

Figure 4.1: Diagnostic Plot.

From the diagnostic plot for one year production for one hydraulic fracture model, since this is an ideal model, three different flow regimes are observed. The flow starts with bilinear flow with slope of 1/4. This flow is a combination of two linear flows. One is from micro-fractures to hydraulic fractures and the other is from hydraulic fractures to the well. After bilinear flow, linear flow takes place with slope of 1/2. In linear flow there is only one flow to
the well which is coming from the stimulated reservoir volume. Finally boundary-dominated flow (BDF) follows with the slope of one occurs. When boundary-dominated flow begins this means that the stimulate reservoir volume is drained without the contribution of unstimulated region.

The equation below is the solution of multiphase fluid diffusivity equation for the infinite acting period (Eker et al., 2014).

\[
\frac{\Delta p_{wf}}{q_{total}} = \frac{4.064\sqrt{24}(\pi/2)\lambda_t}{\sqrt{k_{f,eff}(hn_{hf}y_{hf})}} \left[\frac{\lambda_t}{\phi c_f f_{+m}} \right]^{1/2} \frac{\sqrt{t}}{\sqrt{k_{f,eff}hn_{hf}}} + \frac{141.2\lambda_t^{-1}s_{face}}{k_{f,eff}hn_{hf}} s_{face} \tag{4.1}
\]

For this study, multiphase linear flow analysis is used. The slope of linear flow time period on \(\frac{\Delta p_{wf}}{q_{total}} \) vs. \(t^{1/2} \) graph is used to recalculate \(k_{f,eff} \) (Figure 4.2).

![Linear Flow Plot](image)

Figure 4.2: Linear Flow Rate Transient Analysis.
Here the slope from $\frac{\Delta p_{wf}}{q_{\text{total}}}$ vs. $t^{1/2}$ plot which will refer as m_i is obtained by linear flow period. The linear flow time period is found from the diagnostic plot as 33 to 76 days. Then it is used to recalculate $k_{f,\text{eff}}$ with the Equation 4.2 by ignoring the second term since skin is taken as zero (Eker et al., 2014).

\[
m_i = \frac{4.064\sqrt{24\left(\frac{\pi}{2}\right)}\lambda_i}{\sqrt[k_{f,\text{eff}}]{(hn_{wf}y_{wf})}\left[\frac{\lambda_i}{\left(\phi c_i\right)_{f+m}}\right]^{1/2}}
\]

[4.2]

The $k_{f,\text{eff}}$ value which was entered into the model was 0.011 md and the calculated is 0.0116 md. With this calculation the model is validated.

<table>
<thead>
<tr>
<th>Table 4.1: Effective Permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_{f,\text{eff}}$</td>
</tr>
<tr>
<td>Model</td>
</tr>
<tr>
<td>Calculated</td>
</tr>
</tbody>
</table>

4.2 Depletion by Primary Production

After validating the model, to compare zipper and non-zipper hydraulic fracture cases, the reservoir is depleted by primary production. Both zipper and non-zipper hydraulic fracture cases have two identical producer wells (Chapter 3) which are producing with constant bottom hole pressures with 2000 psia. The results are shown in Figure 4.3 and Figure 4.4.

From the oil production graph, the produced oil data versus time are identical for both wells in zipper and non-zipper hydraulic fracture configurations. Since the well parameters are
identical, production data are expected to be same. Also for the same reservoir volumes and same well parameters the zipper and non-zipper hydraulic fracture cases give identical production data.

Figure 4.3: Primary Oil Productions for 20 Years.

Figure 4.4: Primary Cumulative Oil Production for 20 Years.
Same relation is carried to cumulative oil production data for a year production. Cumulative oil production for zipper and non-zipper hydraulic fracture cases compromises for 20 years production for exact same reservoir volume and well parameters.

4.3 CO₂ Injection

In order to increase the cumulative oil production, CO₂ injection is started after one year depletion. For both cases, same reservoir portions which are used on depletion will be used for CO₂ injection (Chapter 3). One of the wells will turn into injection well after a year production for both cases and the other well will remain as producer well all times. CO₂ injection will continue for 9 years and then production will continue for 10 years. CO₂ injection cases will be compared with 20 year depletion cases as well as the two different hydraulic fracture configurations.

Different cyclic injection and soak times and different injection rates are tested. Table 4.2 summarizes different scenarios applied for both zipper and non-zipper hydraulic fractured cases.

Table 4.2: CO₂ Injection Scenarios

<table>
<thead>
<tr>
<th>Cases</th>
<th>Injection Time (day)</th>
<th>Soak Time (day)</th>
<th>Production Time (day)</th>
<th>Injection Rate (MMSCF/D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Case</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Case A</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Case B</td>
<td>20</td>
<td>10</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Case C</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Case D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.5 and Figure 4.6 show oil production and cumulative oil production for different CO₂ cyclic injection time periods. In all cases the recoveries increase with very similar trends. Although the results do not quite change from each other, the greatest values are gained with Case C which is 30 day of injection, 30 day of soak and 30 day of production and the least is gained by Case B 20 day of injection, 10 day of soak and 30 day of production. This is because the greatest soak time is in Case C. When comparing Base Case which is 15 day of injection, 15 day of soak and 30 day of production and Case A which is 10 day of injection, 20 day of soak and 30 day of production, Case A gives slightly better results. Again Case A has higher duration time than Base case. Also for non-zipper and zipper hydraulic fracture cases the results for each case are parallel to each other and zipper hydraulic fracture case. For depletion, non-zipper and zipper hydraulic fracture cases have only 82 bbl difference. The recoveries are always slightly higher for zipper hydraulic fracture case for CO₂ injection, around 1000 bbl for 20 years. The highest improvement with CO₂ injection is 17,927 bbl for zipper hydraulic fracture orientation in Case C. The results are tabulated and shown in Table 4.3.

Table 4.3: CO₂ Cyclic Injections with Different Injection and Soak Times

<table>
<thead>
<tr>
<th>Cases</th>
<th>Total CO₂ Injection (MMSCF)</th>
<th>Total Injection Duration (day)</th>
<th>Cumulative Oil After 20 Year (BBL)</th>
<th>Improvement With CO₂ (BBL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zipper</td>
<td>Non-Zipper</td>
</tr>
<tr>
<td>Depletion</td>
<td>-</td>
<td>-</td>
<td>52411</td>
<td>52329</td>
</tr>
<tr>
<td>Base Case</td>
<td>4050</td>
<td>810</td>
<td>67093</td>
<td>65996</td>
</tr>
<tr>
<td>Case A</td>
<td>5400</td>
<td>1080</td>
<td>67320</td>
<td>66507</td>
</tr>
<tr>
<td>Case B</td>
<td>2700</td>
<td>540</td>
<td>66077</td>
<td>65285</td>
</tr>
<tr>
<td>Case C</td>
<td>5400</td>
<td>1080</td>
<td>70338</td>
<td>69173</td>
</tr>
</tbody>
</table>
Figure 4.5: Oil Production for 9 Year CO\textsubscript{2} Cyclic Injection for Different Time Periods.

Figure 4.6: Cum. Oil Production for 9 Year CO\textsubscript{2} Cyclic Injection for Different Times.
Figure 4.7 and Figure 4.8 shows oil production and cumulative oil production for different CO₂ cyclic injection rates. In all cases the injection time, duration and production are equal to Base Case which is 15 day of injection, 15 day of soak and 30 day of production. The recovery performances increase with increasing CO₂ injection rate. Similar to different cyclic time periods cases, the recoveries increases with very similar trends. And the zipper hydraulic fracture case has better recovery factor for all cases and it also increases with increasing CO₂ injection rate. The difference in improvement for non-zipper and zipper hydraulic fracture cases starts with 1015 barrel for Base Case which has 5 MMSCF/D injection rate and reaches to 2563 bbl for Case F which has 50 MMSCF/D injection rate. With higher CO₂ injection rates, the performance of the zipper hydraulic fracture case can be observed better. The results are tabulated and shown in Table 4.4.

Table 4.4: CO₂ Cyclic Injections with Different Injection Rates

<table>
<thead>
<tr>
<th>Cases</th>
<th>Total CO₂ Injection (MMSCF)</th>
<th>Total Injection Duration (day)</th>
<th>Cumulative Oil After 20 Year (BBL)</th>
<th>Improvement With CO₂ (BBL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zipper</td>
<td>Non-Zipper</td>
</tr>
<tr>
<td>Depletion</td>
<td>-</td>
<td>-</td>
<td>52411</td>
<td>52329</td>
</tr>
<tr>
<td>Base Case</td>
<td>4050</td>
<td>810</td>
<td>67093</td>
<td>65996</td>
</tr>
<tr>
<td>Case D</td>
<td>8100</td>
<td>810</td>
<td>69022</td>
<td>67592</td>
</tr>
<tr>
<td>Case E</td>
<td>16200</td>
<td>810</td>
<td>70146</td>
<td>68033</td>
</tr>
<tr>
<td>Case F</td>
<td>40500</td>
<td>810</td>
<td>71771</td>
<td>69125</td>
</tr>
</tbody>
</table>
Figure 4.7: Oil Production for 9 Year CO\textsubscript{2} Cyclic Injection for Different Injection Rates.

Figure 4.8: Cum. Oil Production for CO\textsubscript{2} Cyclic Injection for Different Injection Rates.
All of the cases which have been compared do not include a diffusion coefficient in the model which means that the only flow driving CO₂ to penetrate the reservoir matrix is advective flow which will not enable CO₂ to enter microscopic scale pores. Here the molecules can only enter in the tight matrix one by one instead of entering in as bulk volume (Whitson and Brule, 2000). In order to enter into matrix which has very low permeability and contains the main oil, diffusion takes place which occurs in molecular level. Molecular diffusion is the main mechanism to mix oil and CO₂ in sense of multi-contact miscibility, which the common assumption, by reaching local equilibrium is based for numerical simulation of CO₂ flooding in pore scale (Renner, 1988). To account for diffusive flow, diffusion coefficient is added to the model and the results are compared with depletion and base case. Table 4.5 summarizes the compared models with diffusion coefficient.

Table 4.5: Diffusion Coefficient Comparison Case

<table>
<thead>
<tr>
<th>CO₂ Cyclic Injection</th>
<th>Diffusion Coefficient (cm²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td></td>
</tr>
<tr>
<td>Depletion</td>
<td>-</td>
</tr>
<tr>
<td>Base Case</td>
<td>-</td>
</tr>
<tr>
<td>Case G</td>
<td>10⁻²</td>
</tr>
</tbody>
</table>

The result are plotted to compare the difference with diffusion coefficient and shown in Figure 4.9 and Figure 4.10.
Figure 4.9: Oil Production for 9 Year CO₂ Cyclic Injection with Diffusion Coefficient.

Figure 4.10: Cum. Oil Production for CO₂ Cyclic Injection with Diffusion Coefficient.
From the graphs, the effect of the diffusion coefficient may be observed. From the cumulative oil production, total cumulative oil production is enhanced but not significant enough. Even though the diffusion coefficient chosen, $10^{-2} \text{ cm}^2/\text{s}$, is a high value for oil-CO$_2$ systems, the effect is not notable. The results are tabulated and shown in Table 4.6.

Table 4.6: Diffusion Coefficient Comparison

<table>
<thead>
<tr>
<th>Cases</th>
<th>Diffusion Coefficient (cm2/s)</th>
<th>Total CO$_2$ Injection (MMSCF)</th>
<th>Total Injection Duration (day)</th>
<th>Cumulative Oil After 20 Year (BBL)</th>
<th>Improvement With CO$_2$ (BBL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zipper</td>
<td>Non-Zipper</td>
<td>Zipper</td>
<td>Non-Zipper</td>
<td>Zipper</td>
</tr>
<tr>
<td>Depletion</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>52411</td>
<td>52329</td>
</tr>
<tr>
<td>Base Case</td>
<td>-</td>
<td>4050</td>
<td>810</td>
<td>67093</td>
<td>65996</td>
</tr>
<tr>
<td>Case G</td>
<td>10^{-2}</td>
<td>4050</td>
<td>810</td>
<td>68472</td>
<td>67561</td>
</tr>
</tbody>
</table>

From the results, the improvement is 1500 barrel better for Case G than Base Case. The differences between non-zipper and zipper hydraulic fracture cases are around 1000 barrel for both cases.
CHAPTER 5
CONCLUSIONS

A dual-porosity, fully compositional model was developed for a hypothetical Bakken reservoir to determine the performance of zipper hydraulic fracture pattern compared to a non-zipper hydraulic fracture pattern both for primary production and CO$_2$ injection. The following are the conclusions.

Main Conclusion:

- Overall, we did not observe much improvement in oil recovery using the zipper fracture pattern versus a regular fracture pattern when the reservoir properties are identical. However, we expect that zipper fracture to have a better permeability than a geometrically equivalent non-zipper fracture, which should lead the zipper fracture to have better performance.

Detailed Conclusions:

- In primary production, zipper and non-zipper hydraulic fractures perform essentially the same.
- For CO$_2$ EOR, cyclic injection was used. The base case consisted of 15 days of injection at 5 MMSCF per day of CO$_2$, 15 days of soak, and 30 days of production). The zipper fracture performed slightly better than non-zipper case.
- Higher CO$_2$ injection rates produced higher recoveries.
- The molecular diffusion effect was insignificant even with values as large as 10^{-2} cm2/s.
NOMENCLATURE

Unit of Measurement Abbreviations

- **BBL**: barrel
- **cp**: centipoise
- **D**: day
- **ft**: feet
- **F**: Fahrenheit temperature
- **md**: millidarcy
- **psi**: pound per square inch
- **RB**: reservoir barrel
- **STB**: stock tank barrel

Symbols

- **B**: formation volume factor, \(L^3/L^3 \) (RB/STB)
- **c_t**: total reservoir compressibility, \(L^2 F^{-1} \) (1/psi)
- **h**: formation thickness, \(L \) (ft)
- **k_{f,eff}**: effective fracture permeability, \(L^2 \) (md)
- **k_{rg}**: gas relative permeability in liquid-gas system, (fraction)
- **k_{rog}**: oil relative permeability in liquid-gas system, (fraction)
- **k_{row}**: oil relative permeability in water-oil system, (fraction)
- **k_{rw}**: water relative permeability, (fraction)
- **k_{rg}***: oil relative permeability end-point , (fraction)
- **k_{rog}***: oil relative permeability end-point in liquid-gas system, (fraction)
- **k_{row}***: oil relative permeability end-point in water-oil system, (fraction)
- **k_{rw}***: water relative permeability end-point , (fraction)
- **m_t**: slope of linear flow, \(FL^{-2} t^{-1/2} \) (psi/hr^{1/2})
\(n_{hf} \): total number of fractures

\(n_g \): Corey exponent for gas

\(n_{og} \): Corey exponent for oil in liquid-gas system

\(n_{ow} \): Corey exponent for oil in water-oil system

\(n_w \): Corey exponent for water

\(q_t \): total production rate, \(\text{L}^3 \text{t}^{-1} \) (BBL/D)

\(P_{wf} \): flowing bottom-hole pressure, \(\text{FL}^{-2} \) (psi)

\(S_g \): gas saturation, (fraction)

\(S_{gr} \): Irreducible gas saturation, (fraction)

\(S_{bf} \): apparent skin

\(S_l \): liquid saturation, (fraction)

\(S_{lr} \): Irreducible liquid saturation, (fraction)

\(S_o \): oil saturation, (fraction)

\(S_{or} \): Irreducible oil saturation, (fraction)

\(S_w \): water saturation, (fraction)

\(S_{wr} \): Irreducible water saturation, (fraction)

\(t \): time (D)

\(y_{hf} \): fracture half-length, L (ft)

Greek

\(\lambda_t \): total mobility, \(\text{L}^3 \text{t/m} \) (md/cp)

\(\phi \): porosity, fraction
REFERENCES

Energy Information Administration (EIA), 2013. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States.

Unconventional Resources & International Petroleum Conference, Calgary, Alberta, Canada, 19-21 October 2010.

