DEBRIS-FLOW HAZARDS MITIGATION: Mechanics, Monitoring, Modeling, and Assessment

Edited by
Jason W. Kean,
Jeffrey A. Coe,
Paul M. Santi, &
Becca K. Guillen
DEBRIS-FLOW HAZARDS MITIGATION: Mechanics, Monitoring, Modeling, and Assessment

Edited by

Jason W. Kean
US Geological Survey, Golden, Colorado

Jeffrey A. Coe
US Geological Survey, Golden, Colorado

Paul M. Santi
Department of Geology and Geological Engineering
Colorado School of Mines, Golden, Colorado

Becca K. Guillen
Continuing and Professional Education Services
Colorado School of Mines, Golden, Colorado

ASSOCIATION OF ENVIRONMENTAL AND ENGINEERING GEOLOGISTS SPECIAL PUBLICATION 28

2019

Authors granted permission to the organizers of the 7th International Conference on Debris-Flow Hazards Mitigation to release (publish) your paper online, with Open Access, on the AEG and Mountain Scholar websites.

Published by the Association of Environmental and Engineering Geologists
Distributed by the Association of Environmental and Engineering Geologists and Mountain Scholar Digital Collections of Colorado & Wyoming

ISBN: 978-0-578-51082-8
Preface

The Seventh International Conference on Debris-Flow Hazards Mitigation was held in Golden, Colorado June 10-13, 2019. The major objective of the conference was to provide a forum for international researchers, engineers, and policy makers to exchange ideas and promote communication to advance the scientific understanding of debris-flow hazards as well as approaches to assess and mitigate debris-flow risk to infrastructure and people. The conference agenda consisted of 14 keynote presentations, 38 shorter oral presentations, and 86 poster presentations. The conference sessions were preceded by a 1-day field trip to examine 2013 debris flows in Rocky Mountain National Park and followed by a 2-day field trip to the Chalk Cliffs debris-flow monitoring basin near Nathrop, Colorado.

This proceedings volume contains 134 papers from 17 countries that accompanied all three types of presentations. All papers underwent peer review, with each paper receiving at least one technical and one editorial review, and most receiving two technical and two editorial reviews. We acknowledge the critical role that reviewers played in assuring the high-quality of papers in this volume. Reviewer names and affiliations are given on the following pages.

Many people contributed to the success of the conference. The International Organizing Committee provided guidance to the Local Organizing Committee throughout the multi-year preparation period leading up the conference, as well as assisting with the review process and by serving as session moderators during the conference. The Colorado School of Mines Continuing and Professional Education Services group, led by Melody Francisco and including Becca Guillen, Jennifer Graser, and Andy Ledford, managed the massive job of creating and updating the conference website, corresponding with authors and attendees, wrangling manuscript submission and review logistics, and organizing meeting rooms, housing, and food arrangements for the conference. Emily Bongiovanni, the Colorado School of Mines Scholarly Communications Librarian, assured that this volume was posted on the Mountain Scholar website. Several organizations provided sponsorship through financial support. Their names are provided on the following pages. Our profound thanks goes out to all of these individuals and groups.

The Editors:

Jason W. Kean
US Geological Survey

Jeffrey A. Coe
US Geological Survey

Paul M. Santi
Colorado School of Mines

Becca K. Guillen
Colorado School of Mines
International Organizing Committee

- Dieter Rickenmann
 Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Elisabeth Bowman
 The University of Sheffield, Sheffield, United Kingdom
- Marcel Hürlimann
 Universitat Politècnica de Catalunya, Barcelona, Catalunya
- Mark Reid
 US Geological Survey, Menlo Park, California, USA
- Paul Santi
 Colorado School of Mines, Golden, Colorado, USA
- Yoshifumi Satofuka
 Ritsumeikan University, Kyoto, Japan

Local Organizing Committee

- Paul Santi
 Colorado School of Mines
- Jeffrey Coe
 US Geological Survey
- Jason Kean
 US Geological Survey
- Jonathan Godt
 US Geological Survey

Conference and Proceedings Management Team

- Colorado School of Mines, Continuing and Professional Education Services

- Melody Francisco
 Director
- Jennifer Graser
 Event Manager
- Becca Guillen
 Finance & Administrative Manager
- Andy Ledford
 Webmaster
- Ed Mantz
 Manager of Program Technology & Services
Reviewers

The editors thank the following people who peer-reviewed manuscripts submitted to the conference:

Kate Allstadt
US Geological Survey (USA)

Muneyuki Arai
Meijo University (Japan)

Katherine Barnhart
University of Colorado (USA)

Rex Baum
US Geological Survey (USA)

Scott Beason
US National Park Service (USA)

Erin Bessette-Kirton
US Geological Survey (USA)

David Bonneau
Queen’s University (Canada)

Elisabeth Bowman
The University of Sheffield (United Kingdom)

Miguel Cabrera
Universidad de los Andes (Columbia)

Nancy Calhoun
Oregon Dept. of Geology and Mineral Industries (USA)

Felix Camire
Town of Canmore (Canada)

Kerry Cato
California State University, San Bernardino (USA)

Hua-Yong Chen
Institute of Mountain Hazards and Environment (China)

Jian-Gang Chen
Institute of Mountain Hazards and Environment (China)

Shin-Kyu Choi
Korea Advan. Inst. Science and Tech. (Republic of Korea)

Jeffrey Coe
US Geological Survey (USA)

Velio Coviello
Free University of Bozen-Bolzano (Italy)

Matt Crawford
Kentucky Geological Survey (USA)

Kahlil Fredrick Cui
Institute of Mountain Hazards and Environment (China)

Joanna Curran
Indicator Engineering (USA)

Tim Davies
University of Canterbury (New Zealand)

Alexander Densmore
Durham University (United Kingdom)

Litan Dey
National Cheng Kung University (China)

Vivian Dias
University of São Paulo (Brazil)

Junhan Du
Institute of Mountain Hazards and Environment (China)

Paul Duhart
Servicio Nacional de Geología y Minería (Chile)

Evan Friedman
Lithos Engineering (USA)

Masaharu Fujita
Disaster Prevention Research Institute (Japan)

Joe Gartner
BGC Engineering Inc. (USA)

Jonathan Godt
US Geological Survey (USA)

Christoph Graf
Swiss Federal Institute WSL (Switzerland)

Carlo Gregoretti
University of Padova (Italy)

Xiaojun Guo
Institute of Mountain Hazards and Environment (China)

Norio Harada
Mitsui Consultants Co. (Japan)

Yuji Hasegawa
Hiroshima University (Japan)

Junya Hina
Construction Technology Institute Co. (Japan)

Jacob Hirschberg
Swiss Federal Institute WSL (Switzerland)

Leslie Hsu
US Geological Survey (USA)
Keynote Speakers
Some keynote speakers do not have papers in this volume

Processes and Mechanics
Nico Gray (United Kingdom)
Anne Mangeney (France)

Monitoring, Detection, and Warning
Kate Allstadt (USA)
Brian McArdell (Switzerland)

Experiments and Modeling
Liz Bowman (United Kingdom)
Dave George (USA)

The Role of Disturbance
Fumitoshi Imaizumi (Japan)
Luke McGuire (USA)

Case Studies and Hazard Assessments
Jeremy Lancaster (USA)
Alex Densmore (United Kingdom)
Mike Chard (USA)
Mattias Jakob (Canada)

Engineering and Mitigation
Johannes Huebl (Austria)
Ken Ho (China)

Sponsors
The conference was financially supported by:

Access Limited Construction
Association of Environmental and Engineering Geologists
BGC Engineering Inc.
Geobrugg North America
KANE Geotech Inc.
MACCAFERRI Inc
US Geological Survey
Table of Contents

Processes and Mechanics

Numerical investigation of particle size segregation in saturated granular flows using CDF-DEM coupling approach ... 2
Cui, K.F.E., Zhou, G.G.D.

Erosion by experimental debris flows: particle size effects 10
Ghasemi, A., Kaitna, R., Fritton, P., Blankenship, B.T., Feng, Q., Densmore, A., de Haas, T., Hill, K.M.

How does particle-size segregation affect the fluidity of multi-granular debris flows? 18
Hotta, N., Iwata, T., Suzuki, T.

Valid debris-flow models must avoid hot starts .. 25
Iverson, R.M., George, D.L.

The role of topography on the volume of material eroded by debris flows 33
Kudo, T., Uchida, T., Sakurai, W.

Numerical investigation of deposition mechanism of submarine debris flow 38
Liu, D., Cui, Y., Choi, C.E., Bazai, N.A., Yu, Z., Lei, M., Yin, Y.

Compressibility of solid phase of debris flow and erosion rate 46
Miyamoto, K., Itoh, T., Kisa, H.

Commonalities between debris flows and flow failures 54
Moss, R.E.S.

Soil characteristics of long-traveling landslides and a hybrid model to predict travel distance ... 61
Usuki, N., Toshino, K., Mizuyama, T.

The research on the movable solid materials under seepage flow effect in debris-flow source area ... 69
Yang, S., Ou, G., Pan, H., Xie, Z., Yang, D.

Monitoring, Detection, and Warning

Overcoming barriers to progress in seismic monitoring and characterization of debris flows and lahars ... 77
Topographic change detection at Chalk Cliffs, Colorado, USA, using airborne lidar and UAS-based Structure-from-Motion photogrammetry ... 85

Forecasting and seismic detection of debris flows in pro-glacial rivers at Mount Rainier National Park, Washington, USA .. 93
Beason, S.R., Legg, N.T., Kenyon, T.R., Jost, R.P., Kennard, P.M.

Deciphering sediment dynamics in a debris-flow catchment: insights from instrumental monitoring and high-resolution topography ... 103
Coviello, V., Theule, J.I., Marchi, L., Comiti, F., Crema, S., Cavalli, M., Arattano, M., Lucía, A., Macconi, P.

Examining the impact force of debris flow in a check dam from small-flume experiments 111
Eu, S., Im, S.

The vibrational characteristics of debris flow in Taiwan .. 116
Huang, Y., Fang, Y., Yin, H.

Monitoring and modeling of debris-flow surges at the Lattenbach creek, Austria 124
Huebl, J., Arai, M., Kaitna, R.

Monitoring of rainfall and soil moisture at the Rebaixader catchment (Central Pyrenees) 131
Hürlimann, M., Oorthuis, R., Abancó, C., Carleo, L., Moya, J.

Debris flow monitoring using load cells and pressure sensors on Sakurajima Island 138
Itoh, T., Fujimura, N., Katou, H., Tagata, S., Mizuyama, T.

Implementation of an integrated management strategy to deal with landslide triggered debris flows: the Valloire case study (Savoie, France) ... 146
Laigle, D., Jongmans, D., Liebault, F., Baillot, L., Rey, E., Fontaine, F., Borgniet, L., Bonnefoy-Demangeot, M., Ousset, F.

Taking the pulse of debris flows: Extracting debris-flow dynamics from good vibrations in southern California and central Colorado .. 154
Michel, A., Kean, J.W., Smith, J.B., Allstadt, K.E., Coe, J.A.

Observations on the development and decay processes of debris flows 162
Murasawa, M., Imaizumi, F., Yokota, Y.

Monitoring of sediment runoff and observation basin for sediment movements focused on active sediment control in Jo-Gan-Ji River ... 170
Nagayama, T., Furuya, T., Matsuda, S., Itoh, T., Fujita, M., Mizuyama, T.
Measurements of velocity profiles in natural debris flows: a view behind the muddy
curtain .. 177
Nagl, G., Huebl, J., Kaitna, R.

Debris-flow early warning system at regional scale using weather radar and susceptibility
mapping .. 184
Palau, R.M., Hürlimann, M., Berenguer, M., Sempere-Torres, D.

Real-time monitoring of debris-flow velocity and mass deformation from field experiments
with high sample rate lidar and video ... 192
Rengers, F.K., Rapstine, T.D., Allstadt, K.E., Olsen, M., Bunn, M., Iverson, R.M., Kean, J.W.,
Leshchinsky, B., Logan, M., Sharifi-Mood, M., Obryk, M., Smith, J.B.

Exploring controls on debris-flow surge velocity and peak discharge at Chalk Cliffs,
Colorado, USA .. 199
Smith, J.B., Kean, J.W., Coe, J.A.

Dynamic characteristics of extreme superelevation of debris flows observed by laser profile
scanners in Sakura–jima volcano, Japan ... 207
Takahashi, Y., Fujimura, N., Akita, H., Mizuno, M.

Monitoring and early warning of debris flow in an earthquake impacted area, Baishahe
catchment, southwest China ... 214
Tian, H., Yang, Z., Qiao, J., Shi, L.

Deciphering debris-flow seismograms at Illgraben, Switzerland 222
Wenner, M., Walter, F., McArdell, B., Farinotti, D.

Experiments and Modeling

Reproducibility of debris-flow fan physical modeling experiments 231
Adams, K., Wasklewicz, T., de Haas, T., Lecce, S., Gares, P.

Influence of momentum correction factor and friction factor on flow models of debris flow
related to flow surface deformation .. 239
Arai, M.

Constraining parameter uncertainty in modeling debris-flow initiation during the September
2013 Colorado Front Range storm ... 249
Baum, R.L., Scheevel, C.R., Jones, E.S.

An evaluation of debris-flow runout model accuracy and complexity in Montecito, California:
Towards a framework for regional inundation-hazard forecasting 257
Possibilities and limitations for the back analysis of an event in mountain areas on the coast of São Paulo State, Brazil using RAMMS numerical simulation ... 265
Corrêa, C.V.S., Reis, F.A.G.V., Giordano, L.C., Cabral, V.C., Targa, D.A., Brito, H.D.

Discrete-element investigation of granular debris-flow runup against slit structures 273
Du, J., Zhou, G.G.D.

A method for predicting debris-flow occurrence based on a rainfall and sediment runoff model ... 280
Fujita, M.; Yamanoi, K.; Suzuki, G.

Seamless numerical simulation of a hazard cascade in which a landslide triggers a dam-breach flood and consequent debris flow .. 287
George, D.L., Iverson, R.M., Cannon, C.M.

Woody debris blocking conditions at bridges in mountainous streams 294
Hasegawa, Y., Nakatani, K., Satofuka, Y.

Flume experiments and numerical simulation focused on fine sediments in stony debris flow ... 301
Hina, J., Uchida, T., Matsumoto, N., Sakurai, W., Nishiguchi, Y., Murakami, M.

On the regression of velocity distribution of debris flows using machine learning techniques .. 307
Huang, L., Hsiao, D.

Experimental evaluation for peak and temporal changes in debris-flow initiation processes ... 315
Itoh, T., Ikeda, A., Mizuyama, T.

Correlation between the slump parameters and rheological parameters of debris flow 323
Jan, C., Yang, C., Hsu, C., Dey, L.

Concentration distribution in debris flow consisting of particles with two different sizes 330
Kida, H., Iwao, M.

Debris-flow hazard investigation with Kanako-2D in a rural basin, Alto Feliz municipality (Brazil) ... 338
Kobiyama, M. and Michel, R.D.L.

Numerical analysis on the behavior of the debris flow and impact force on check dam 346
Lee, K., Jeong, S., Kim, H.

Impact load estimation on retention structures with the discrete element method 354
Leonardi, A., Calcagno, E., Pirulli, M.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debris-flow deposition: effects of fluid viscosity and grain size</td>
<td>361</td>
</tr>
<tr>
<td>Li, S., Zhou, G.G.D., Chen, X., Song, D.</td>
<td></td>
</tr>
<tr>
<td>Regional-scale modelling of liquefaction-induced shallow landslides</td>
<td>369</td>
</tr>
<tr>
<td>Li, X., Song, Z., Lizárraga, J.L., Buscarnera, G.</td>
<td></td>
</tr>
<tr>
<td>Flume experiment on the influence of particle size distribution on</td>
<td>377</td>
</tr>
<tr>
<td>sediment capturing efficiency of open-type steel Sabo dams</td>
<td></td>
</tr>
<tr>
<td>Matsumoto, N., Uchida, T., Sakurai, W., Matsubara, T., Okuyama, R.,</td>
<td></td>
</tr>
<tr>
<td>Hina, J., Satofuka, Y.</td>
<td></td>
</tr>
<tr>
<td>Debris-flow behavior containing fine sediment considering phase shift</td>
<td>385</td>
</tr>
<tr>
<td>Nakatani, K., Hasegawa, Y., Asano, Y., Satofuka, Y.</td>
<td></td>
</tr>
<tr>
<td>Long travel distance of landslide-induced debris flows</td>
<td>393</td>
</tr>
<tr>
<td>Nishiguchi, Y., Uchida, T.</td>
<td></td>
</tr>
<tr>
<td>Effect of rheological properties on debris-flow intensity and</td>
<td>401</td>
</tr>
<tr>
<td>deposition in large scale flume experiment</td>
<td></td>
</tr>
<tr>
<td>Nguyen, B., Lee, J., Kim, Y., Lee, S., Kwon, T.</td>
<td></td>
</tr>
<tr>
<td>Long travel distance of landslide-induced debris flow</td>
<td>407</td>
</tr>
<tr>
<td>Pinzón, G., Cabrera, M.A.</td>
<td></td>
</tr>
<tr>
<td>Small scale debris-flow experiments on run-up height</td>
<td>414</td>
</tr>
<tr>
<td>Rickenmann, D., Karrer, T., Mcardell, B., Scheidl, C.</td>
<td></td>
</tr>
<tr>
<td>Numerical simulation of debris flows focusing on the behavior of</td>
<td>421</td>
</tr>
<tr>
<td>fine sediment</td>
<td></td>
</tr>
<tr>
<td>Sakai, Y., Hotta, N.</td>
<td></td>
</tr>
<tr>
<td>Optical measurements of velocity and of solid volume fraction in</td>
<td>429</td>
</tr>
<tr>
<td>fast dry granular flows</td>
<td></td>
</tr>
<tr>
<td>in a rectangular chute</td>
<td></td>
</tr>
<tr>
<td>Sarno, L., Carleo, L., Papa, M.N., Villani, P.</td>
<td></td>
</tr>
<tr>
<td>Debris flow behavior in super- and subcritical conditions</td>
<td>437</td>
</tr>
<tr>
<td>Scheidl, C., Mcardell, B., Nagl, G., Rickenmann, D.</td>
<td></td>
</tr>
<tr>
<td>Experimental examination for influence of debris-flow hydrograph on</td>
<td>443</td>
</tr>
<tr>
<td>development processes of debris-flow fan</td>
<td></td>
</tr>
<tr>
<td>Tsunetaka, H., Hotta, N., Sakai, Y., Nishiguchi, Y., Hina, J.</td>
<td></td>
</tr>
<tr>
<td>Numerical simulation for evaluating the phase-shift of fine</td>
<td>451</td>
</tr>
<tr>
<td>sediment in stony debris flows</td>
<td></td>
</tr>
<tr>
<td>Uchida, T., Nishiguchi, Y., Mcardell, B., Satofuka, Y.</td>
<td></td>
</tr>
<tr>
<td>Run out processes of sediment and woody debris resulting from</td>
<td>459</td>
</tr>
<tr>
<td>landslides and debris flow</td>
<td></td>
</tr>
<tr>
<td>Yamazaki, Y., Egashira, S.</td>
<td></td>
</tr>
</tbody>
</table>
Comparison of an empirical and a process-based model for simulating debris-flow inundation following the 2010 Schultz Fire in Coconino County, Arizona, USA............................ 467
Youberg, A.M., McGuire, L.A.

The Role of Disturbance

The impact of global warming on the formation of debris flows in an alpine region of southeastern Tibet .. 476
Cui, P, Yang, J., Liu, D.

Relationship between rainfall intensity and debris-flow initiation in a southern Colorado burned area .. 484
Friedman, E.Q. and Santi, P.M.

Effects of terrain on temporal changes in susceptibility of debris flows and associated hydrogeomorphic processes after forest harvesting ... 492
Imaizumi, F.

Overview of geotechnical effects of the January 9, 2018, debris-flow and flash-flood disaster in Montecito, California .. 500

The debris flows and mitigation systems after the 2008 Wenchuan earthquake 508
Liu, F., Frost, J.D., Xu, Q., Huang, R.

Looking through the window of disturbance at post-wildfire debris-flow hazards 516

Conceptual framework for assessing disturbance impacts on debris-flow initiation thresholds across hydroclimatic settings .. 524

A novel approach for determining risk of water supply disruptions due to post-wildfire debris flows .. 532
Nyman, P., Yeates, P., Langhans, C., Schärer, C., Noske, P.J., Lane, P.N.J., Haydon, S., Sheridan, G.J.

Rainfall intensity limitation and sediment supply independence of postwildfire debris flows in the western U.S. ... 539
Santi, P.M., MacAulay, B.
Case Studies and Hazard Assessments

Debris flows in the North Pacolet River valley, Polk County, North Carolina, USA - case studies and emergency response ... 549
Bauer, J.B., Wooten, R.M., Cattanach, B.L., Fuemmeler, S.J.

Characteristics of debris flows just downstream the initiation area on Punta Nera cliffs, Venetian Dolomites .. 557
Bernard, M., Berti, M., Crucil, G., Simoni, A., Gregoretti, C.

Characterizing debris transfer patterns in the White Canyon, British Columbia with terrestrial laser scanning ... 565
Bonneau, M., Hutchinson, D.J., McDougall, S.

Simulation of the debris flow occurred the 15 August 2010 on Rio Val Molinara Creek (northeast Italian Alps) ... 573
Boreggio, M., Bernard, M., Alberti, R., Gregoretti, C.

Post-fire rockfall and debris-flow hazard zonation in the Eagle Creek fire burn area, Columbia River Gorge, Oregon: A tool for emergency managers and first responders 581

Hydrogeomorphology and steep creek hazard mitigation lexicon: French, English and German ... 589
Camiré, F., Piton, G., Schwindt, S.

Debris flow in southeast Brazil: susceptibility assessment for watersheds and vulnerability assessment of buildings ... 597

Complexity of a debris-flow system at Forest Falls, California 605
Cato, K., Goforth, B.

A 4000-year history of debris flows in north-central Washington State, USA: preliminary results from trenching and surficial geologic mapping at the Pope Creek fan 613

Modeling frequent debris flows to design mitigation alternatives 621
Curran, J.C., Flanagan, P.

Application of knowledge-driven method for debris-slide susceptibility mapping in regional scale ... 629
Das, R., Nandi, A.
Making sense of avulsions on debris-flow fans ... 637
Densmore, A.L., de Haas, T., McArdell, B., Schuerch, P.

The morphology of debris-flow deposits from a 1967 event in Caraguatatuba, Serra do Mar, Brazil .. 645
Dias, V.C., Martins, T.D., Gramani, M.F., Coelho, R.D., Dias, H.C., Vieira, B.C.

The Santa Lucía landslide disaster, Chaitén-Chile: origin and effects 653
Duhart, P., Sepúlveda, V., Garrido, N., Mella, M., Quiroz, D., Fernández, J., Moreno, H., Hermosilla, G.

Debris-flow risk management in practice: a New Zealand case study 661
Farrell, J., Davies, T.

Post-fire debris-flow hazard analysis for interstate 80, Truckee River Canyon, near the California-Nevada state line, USA ... 669
Felling, G., Myers, A., McCoy, S.W.

Debris-flow risk assessment and mitigation design for pipelines in British Columbia, Canada ... 677
Gartner, J.E., Jakob, M.

An overview of a decade of applied debris-flow runout modeling in Switzerland: challenges and recommendations ... 685
Graf, C., Christen, M., McArdell, B.W., Bartelt, P.

Analysis of rainfall and runoff for debris flows at the Illgraben catchment, Switzerland 693
Hirschberg, J., McArdell, B.W., Badoux, A., Molnar, P.

Debris-flow assessment from rainfall infiltration induced landslide 701
Hsu, Y., Liu, K., Shu, H.

Study of prediction methods of debris-flow peak discharge 709
Ikeda, A., Mizuyama, T., Itoh, T.

Debris-flow hazard assessments -- a practitioner's view .. 716
Jakob, M.

Evaluation of shallow landslide-triggering scenarios through a physically based approach: A case study from Bulathsinhala area, Sri Lanka .. 724

Hydro-meteorological trigger conditions of debris flows in Austria 732
Kaitna, R., Prenner, D., Braun, M., Hrachowitz, M.
Weather-radar inferred intensity and duration of rainfall that triggered the January 9, 2018, Montecito, California, disaster ... 740
Keaton, J.R.

Review of contemporary terminology for damaging surficial processes – stream flow, hyperconcentrated sediment flow, debris flow, mud flow, mud flood, mudslide 748
Keaton, J.R.

Evaluation of slope stability of Taebaeksan Mountain National Park using detailed soil map ... 758
Kim, Y., Jun, K., Jun, B., Lee, H., Kim, S., Jang, C.

Estimation of debris-flow volumes by an artificial neural network model 766
Lee, D., Lee, S., Jeon, J., Park, J., Kim, Y.

Post-fire debris flows of 9 January 2018, Thomas Fire, southern California: Initiation areas, precipitation and impacts ... 774
Lukashov, S.G., Lancaster, J.T., Oakley, N.S., Swanson, B.J.

Debris-flow susceptibility mapping in Colorado using Flow-R: calibration techniques and selected examples ... 782
McCoy, K.M.

Landslides and debris flows in volcanic rocks triggered by the 2017 Northern Kyushu heavy rain .. 790
Ohta, T., Eguchi, S.

Debris-flow occurrence in granite landscape in south-southeast Brazil 798
Picanço, J., Vieira, B., Martins, T., Gramani, M., Faccuri, G., Silva, M.

Hillslope evaluation in the vicinity of the Wolsong nuclear power plant after 12th September 2016 Gyeongju earthquake, South Korea... 808
Pradhan, A.M.S., Lee, J., Lee, S., Kwon, T., Kim, Y.

Historical debris-flow occurrence in Rocky Mountain National Park, Colorado, USA 816
Rathburn, S.L., Patton, A.I., Bilderback, E.L.

Debris-flow initiation promoted by extension of a slow-moving landslide 824
Reid, M.E., Brien, D.L.

Regional level debris-flow hazard assessment for alpine infrastructure facilities using the 3D numerical high-performance simulation tool FIMT .. 832
Scheikl, M., Powell, D.
Using satellite radar interferometry to delineate burn area and detect sediment accumulation, 2018 Montecito disaster, California .. 840
Smilovsky, D., Keaton, J.R.

Quantitative risk management process for debris flows and debris floods: lessons learned in Western Canada .. 847
Strouth, A., McDougall, S., Jakob, M., Holm, K., Moase, E.

Semi-automated regional scale debris-flow and debris-flood susceptibility mapping based on digital elevation model metrics and Flow-R software .. 855
Sturzenegger, M., Holm, K., Lau, C., Jaok, M.

Study on methods for assessing sediment disaster inundation zone in regions with insufficient data: Case study of the Aranayake disaster in Sri Lanka .. 863
Suzuki, K., Uchida, T., Matsumoto, N., Nakatani, K., Jayathissa, G.

Application of an MPS-based model to the process of debris-flow deposition on alluvial fans .. 871
Suzuki, T., Hotta, N., Tsunetaka, H., Sakai, Y.

Numerical modeling of debris flows and landslides triggered by extreme rainfall event 879
Tsai, Y., Syu, F., Lee, S., Shieh, C.

Debris-flow building damage level and vulnerability curve – A case study of a 2015 Typhoon event in northern Taiwan .. 887
Tsao, T., Hsu, C., Yin, H., Cheng, K.

Estimating mechanical slope stability to predict the regions and ranges of deep-seated catastrophic landslides .. 895
Yoshino, K., Uchida, T.

Multi-scale hazard assessment of debris flows in eastern Qinghai-Tibet Plateau area 903
Zou, Q., Cui, P., Zhang, G., Wang, D.

Preliminary calibration of a numerical runout model for debris flows in Southwestern British Columbia .. 911
Zubrycky, S., Mitchell, A., Aaron, J., McDougall, S.

Engineering and Mitigation

Predicting debris-flow scour depth downstream from a check dam 920
Chen, H., Chen, Z., Chen, J., Tang, J.
Debris-flow mitigation measures and an application case in a small-scale watershed in China ... 928
Chen, J., Chen, X., Zhao, W., You, Y.

Roles of barrier location for effective debris-flow mitigation: assessment using DAN3D 936
Choi, S., Kwon, T., Lee, S., Park, J.

Scour and erosion experience with flexible debris-flow nets 941
Feiger, N. and Wendeler, C.

Steel stakes to capture debris-wood on an impermeable type sabo dam 949
Harada, N. and Satofuka, Y.

Debris-flow mitigation – research and practice in Hong Kong 957
Ho, K.K.S., Koo, R.C.H., Kwan, J.S.H.

Flume investigation of the interaction mechanisms between debris flow and slit dams 965
Hu, H.S., Zhou, G.G.D., Song, D.

Empirical model for assessing dynamic susceptibility of post-earthquake debris flows 973
Hu, K., Wang, Z., Chen, C., Li, X.

From practical experience to national guidelines for debris-flow mitigation measures in Austria ... 981
Huebl, J., Nagl, Georg

Flexible debris-flow nets for post-wildfire debris mitigation in the western United States 988
Kane, W.F., Jones, M.A.

Laboratory tests of an innovative check dam ... 996
Morstabilini, C., Boschini, I., Zambrini, F., Menduni, G., Deana, M.L., Zorzi, N.

Application of an innovative, low-maintenance weir to protect against debris flows and floods in Ottone, Italy device ... 1004
Morstabilini, C., Deana, M.L.

Numerical study of debris flows in presence of obstacles and retaining structures: A case study in the Italian Alps ... 1012
Pirulli, M., Manassero, M., Terrioti, C., Leonardi, A., La Porta, G.

Design of a debris retention basin enabling sediment continuity for small events: the Combe de Lancey case study (France) ... 1019
Review of the mechanisms of debris-flow impact against barriers 1027
Poudyal, S., Choi, C.E., Song, D., Zhou, G.G.D., Yune, C.Y., Cui, Y., Leonardi, A.,
Busslinger, M., Wendeler, C., Piton, G., Moase, E., Strouth, A.

Small scale impact on rigid barrier using transparent debris-flow models 1035
Sanvitale, N., Bowman, E., Cabrera, M.A.

Estimation of temporal changes of debris flows and hydraulic model tests of channel works
with multi-drop structures ... 1043
Watabe, H., Ikeshima, T., Nishi, Y., Nagarekawa, Y., Matsuda, S., Nakayama, T., Itoh, T.,
Mizuyama, T.

Author Index .. 1051