Motivation

III-V photovoltaic devices display a significantly higher efficiency than commercially available solar cells. Germanium substrates on which III-V devices are grown represent a significant fraction of overall production costs. The solar cells can be removed from the Ge substrate through a process called spalling. Reusing the substrate after spalling requires highly controlled surface quality.

Research Goal

- Provide a baseline roughness for post-spalled Germanium substrates using atomic force microscopy.
- Determine trends between surface roughness and spalling parameters.
- Evaluate the effect of surface treatments on surface quality.

Methods

Spalling Germanium:
- An electro-plated Ni layer creates a strain mismatch that allows a fracture to propagate through the substrate at a certain depth.
- Spalled Ni-Ge film was mounted, polished, and used to optically measure spall depth.

Measuring Surface Roughness:
- Tapping mode AFM uses an oscillating cantilever to map out the surface of the spalled substrate. The image is then imported into an analysis software called Gwyddion.

Effect of Applied Current Density on Roughness

<table>
<thead>
<tr>
<th>Current Density (mA/cm²)</th>
<th>RMS Roughness (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Spalled Ni</td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

Effect of Annealing on Roughness

<table>
<thead>
<tr>
<th>Annealing Temperature (°C)</th>
<th>RMS Roughness (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Annealed</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td></td>
</tr>
</tbody>
</table>

Results

- Spalled Ge using Ni-Cl bath tends to be rough.
- Spalled Ge using Ni-P bath tends to be less rough.
- Samples plated in the Ni-P bath resulted in lower roughness.
- All samples displayed varied surface features, including flatter areas and areas of jagged peaks.
- Since spall depth does not effect roughness, other engineering parameters should be evaluated.
- Annealing in a H₂ environment is not a promising method of preparation for substrate reuse.
- Annealing samples at 600, 650, and 700 °C develops unexpected surface features.
- At 650 °C the Ge substrate began evaporating and formed undesirably rough pits.

Conclusion

- Samples plated with a high current density in the Ni-Cl bath tended to have a high RMS.
- Spalled Ge using Ni-P resulted in lower roughness.
- These surfaces will need to be looked at more closely.
- Ni-P bath and roughness at different current densities.
- Annealing in H₂ and diluted H₂/N₂ atmosphere and measuring subsequent roughness.

Future Work

- Chemical etchants are currently being investigated to refine the surface of spalled Ge for regrowth.
- National Science Foundation award DMR-1461275, REU Site: Research Experiences for Undergraduates in Renewable Energy.

Acknowledgment

Chloe Castaneda, Corinne Packard¹², Dustin Crouse¹, Cassi Sweet¹, Nikhil Jain²
¹Colorado School of Mines, ²National Renewable Energy Laboratory