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ABSTRACT

Slope estimation is a critical step for many post-procesgjrseismic image techniques. Ac-
curate slope images allow for automatic interpretation témiques to e ectively and e ciently
follow seismic horizons, and identify structurally discaimuous features with little to no in-
formation from the interpreter. However, accurately estiming slope, while simultaneously
mitigating slope discontinuities caused by noise, is di cii.

The structure tensor method estimates slope from local stcture within ellipsoids whose
half-widths are speci ed by the user. This method performs &l for seismic images with
highly variable structure and computes slope fastest amornfgree slope estimation methods
analyzed in this thesis. Although, no slope derivative constints exist, which can produce
slope discontinuities that are caused by noise. The planeave destructor method solves a
non-linear optimization problem using the Gauss-Newton miebd to estimate slope. This
method has an optional input parameter for initial slope, whih can contain valuable in-
formation. Yet, the smoothing regularization is performedn each slope perturbation and
not the slope, thereby allowing slope discontinuities frorthe initial slope image to persist
through iterations. The smooth dynamic warping method, prposed in this thesis, estimates
slope by nding a globally optimal shift solution. This method is the rst slope estima-
tion method to constrain slope derivatives, preventing spe discontinuities caused by noise.
However, some parameter choices may signi cantly increasencputational time or memory
requirements.

Through qualitative and quantitative analyses of 2D and 3D eal and synthetic seismic
images, | identify the advantages and disadvantages betwethree slope estimation meth-

ods.
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CHAPTER 1
INTRODUCTION

Estimating seismic re ection slopes is an integral step fanany seismic image techniques.
Slope estimation is the process of identifying the same sais re ection events between
adjacent traces. An accurate slope image provides structliraformation about horizons and
the location of faults and unconformities; however, with ioreasingly complex seismic imaging
challenges, slope estimation has become more di cult. Presses, like those described by
Luo and Hale (2012) and Wu and Hale (2013), use slope estimatesatutomatically extract
horizons from seismic images. Noise and poorly resolved &@&s in an image can produce
unreliable slope estimates, which may require additionahformation from the interpreter
(Wu and Hale, 2013).

Ideally, estimated slope images are smooth and contain sttural discontinuities (e.g.,
faults and unconformities). Accurate slope estimates haveebn used to enhance seismic
structure (Morelatto and Biloti, 2013) or to help smooth daa while retaining the integrity
of structural features (Hale, 2009). Smooth slope images garovide better slope estimates in
noisy images, but are less e ective at accurately estimatgndiscontinuities caused by seismic
structure. A less smooth image better shows the locations faiults and unconformities, but
is more a ected by noise.

Novel techniques, such as those described by Fomel (2002) afale (2009), use plane-
wave destructors and structure tensors, respectively, tosmate slopes. Both methods
employ smoothing, but by not explicitly constraining the rae at which slope estimates
may vary in an image, poorly resolved image regions can pramuslope discontinuities.
This should not be mistaken for slope discontinuities causeby discontinuous structures
in the image. A successful slope estimation method accurigteestimates slope and slope

discontinuities.



| propose a third method for slope estimation using dynamic awping. Dynamic time
warping (DTW) is a technique developed by Sakoe and Chiba (18)/to optimally align two
time signals. Dynamic warping has diverse applications iregphysics (Anderson and Gaby,
1983; Hale, 2012; Mufoz and Hale, 2012; Hale and Compton, 2@&mpton and Hale, 2013;
Wheeler, 2015). The appeal of DTW is it produces a globally ojptal solution; however, due
to the NP-complete, or computationally intractable, natureof extending DTW to images
(Hale, 2012), past work is problem speci c. | propose a more agtable, generic modi cation
to smooth dynamic warping and show its application to slopesémation.

A common term used to describe the angle formed by the planeafock bed relative to
the horizontal, is dip. Figure 1.1 is a diagram that illustraes dip for an example application
where dip is used to track a horizon. In 2D, slope estimationr@duces one slope image. For
the 3D case, slope estimation produces two slope volumes togerly describe the seismic
structure. The two volumes can either describe dip and azirttuor inline and crossline slope.
For simplicity, | use inline and crossline slope with unitsfosamples per trace for each. More

speci cally, the relationship between dip with units of (degrees) and slop@is = tan(p).

Figure 1.1: A small subset of a near-o set Gulf of Mexico seismimage. The red line is an
interpreted horizon, the yellow line represents the horizbal axis, and the cyan curve shows
the geologic layer's deviation from horizontal, otherwisknown as dip . The green ellipse
highlights a less resolved area of the image for which slopstimation will be di cult.
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Figure 1.2: Three synthetic seismic images with constant rative slope (a), constant zero
slope (b), and constant positive slope (c).

Figure 1.2 aids one in intuitively identifying the correct sbpe sign for a particular seismic
feature. Cool colors correspond to negative slope with feaes trending from lower left to
upper right (Figure 1.2a) and warm colors correspond to posit slope with features trending
from upper left to lower right (Figure 1.2c).

The ability to intuitively distinguish between positive and negative slopes becomes espe-
cially useful when looking at 3D images. Figure 1.3 highlighthe distinction between inline
and crossline slope estimates. The upper left panel of Figaré.3a and 1.3b shows the equiv-
alent of a time slice for a unitless synthetic seismic volumeThe bottom left panel shows
an inline from the volume, the bottom right panel shows a cratine from the volume, and
the upper right panel shows a 3D representation of the volunfer one inline, one crossline,
and one \time" slice. Inline slope estimation computes sl@s for structure in the inline
direction. From the intuition established using Figure 1.2pne would expect the color of the
crossline panel in Figure 1.3a to be blue; however, inline g only considers the slope in
the inline direction, therefore one should only analyze gle estimates in that direction. The
same holds true for the crossline direction. The red boxeskigures 1.3a and 1.3b highlight
the words inline and crossline, respectively, to easily dilsguish inline and crossline slope

estimates.
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Figure 1.3: Inline slope estimates (a) and crossline slopdiestes (b) shown for a synthetic
seismic volume with constant, positive inline slopes and mstant, negative crossline slopes.

In this thesis, | perform qualitative and quantitative analses between two widely used
slope estimation methods and a third method | propose. Chagt 2 provides an overview of
the plane-wave destructor method proposed by Fomel (2002)dthe structure tensor method
proposed by Hale (2009). | analyze the e ects of comparable naaneters and address the
shortcomings of each method. Chapter 3 describes a smootmdgnic warping method for
slope estimation with brief comparisons to the plane-waveedtructor and structure tensor
methods, addressing the shortcomings described in Chapgrin Chapter 4, qualitative and

guantitative analyses of each method are performed.



CHAPTER 2
CURRENT METHODS FOR SLOPE ESTIMATION

Smooth slope images are common in slope estimation. A smoathpe image provides
more insight than a rough image that may contain large sample® sample variations in
slope estimates. For example, Figures 2.1a and 2.4a contaiany slope estimates that vary
rapidly from sample to sample, providing interpreters litte to no structural information.
Moreover, such variations can cause discontinuities in gl@ estimates, which in turn cause
major problems with the processes that use these estimate3he moderately smoothed
slope images, shown in Figures 2.1b and 2.4b, provide integpers with more structural
information than their rough slope image counterparts and oauld be better candidates for
use in other image processes.

While smoothness makes slope estimation more robust to ngiigere is a limit to how
smooth the resulting image should be. Smoother images caroyide better slope estimates
in the presence of noise but are less e ective at estimatingppe discontinuities caused by
features such as faults and unconformities. This is appaten Figures 2.1c and 2.4c where
slope estimates are smooth across the interpreted faultgpresented by the red lines. While
noise-induced slope discontinuities are undesirable, cistinuities caused by discontinuous
seismic features are desirable. The question then becomidsw can one estimate smooth
slopes while also estimating discontinuous slopes that araused by geologic structure?

In this chapter, | introduce the most common slope estimatiromethods used in industry
and their approaches to slope estimation. | then describe éhsmoothing aspects and the
analogous parameters of each method that control smoothinginally, | discuss the short-
comings of each method which are addressed in Chapter 3 witly smooth dynamic warping

method for slope estimation.
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Figure 2.1: Slope estimates computed using the structure t®or method for crossline 73 from
the Teapot Dome seismic dataset. Slope estimates are shownrfo smoothing (a), moderate
smoothing (b), and excessive smoothing (c). Smoothing vaisl used for this method are
comparable to those used in Figure 2.4.

2.1 Structure tensor

The coherent structure of seismic images make them good catades for structure ten-
sors (van Vliet and Verbeek, 1995; Weickert, 1999; Fehmersdakiecker, 2003), which are
commonly used to analyze the orientation of image features.

Hale (2009) describes a method for estimating slope usingustture tensors, which are
generated by smoothing outer products of image gradients.h& rst step is to generate a
matrix T for each sample in the image. The dimensions of the matrix e¢espond to the
dimensions of the input image. For a 2D seismic image, is a 2 2 symmetric positive-

semide nite matrix;

7= tnohe. (2.1)
tiz 1
An eigen-decomposition
T= ,uu’+ ,w' (2.2)

is performed to obtain eigenvectors perpendicular and pdiel to linear features in the image,
whereu is the perpendicular eigenvector and is the parallel eigenvector. Eigenvectors

and v are orthogonal to each other. Here,, and , are the eigenvalues corresponding to



u and v, respectively, and by convention, are labeled so that, v 0. Slope valuep
can be estimated from the components of either vector but inractice, the eigenvectomu
is used. Slopes are estimated by taking the negative quotidrmetween the second and rst

component ofu:

Uy

= : 2.3
o (23)
In 3D, each structure tensofT is a3 3 symmetric positive-semide nite matrix:
2

tin tio ti3
T =%t tn td; (2.4)

tiz to3 133

whose eigen-decomposition

T= ,uu’™+ ,w'+ ,ww' (2.5)

obtains eigenvectorau, v, and w with corresponding eigenvalues,, ,, and . Again,
eigenvalues are labeled so that, v w 0.

Slope estimation in 3D produces two slope volumes: slopesimated in the crossline
direction p, and slopes estimated in the inline directiorps. Eigenvectoru now has three

components and slopep, and ps are computed as

_
P2 = ™ (2.6)
and
_Us,
Pz = U (2.7)

The implementation of the structure tensor method allows ta user to specify three pa-
rameters for 2D slope estimation: the parametg,ax controls the maximum slope, positive
or negative, that can be assigned to an image sample, and tharameters ; and , rep-
resent the half-widths of Gaussian smoothing Iters. In 3Da fourth parameter 3 controls
the half-width, and thus smoothing, in the third dimension. Subscripts 2 and 3 correspond

to the horizontal dimensions and subscript 1 to the verticaflimension. Figures 2.2 and 2.3



Figure 2.2: Structure tensors plotted for a subset of imagersples overlaid on a 2D crossline
from the Teapot Dome dataset.

. 7 Inle

Figure 2.3: Structure tensors plotted for a subset of imagemales overlaid on a 3D volume
from the Teapot Dome dataset.



show 2D and 3D structure tensors computed for real seismicagpes, respectively. Structure
tensors are represented as ellipses in 2D and appear as stiradl segments where structural
orientation is easily determined. The tensors that appear amne circular correspond to regions
of the image where structural orientation is more di cult to determine. The more circular
structure tensors can be seen near the fault and in the noisggion at the bottom of Figure
2.2.

Similarly, structure tensors are represented as ellips@idn 3D. As structural orientation
becomes more di cult to distinguish, the ellipsoid shape canges from elongate to spherical.
This is apparent in the ellipsoids in more coherent regionsear the top of Figure 2.3 versus

more noisy regions near the bottom of the image.
2.2 Plane-wave destructor

The application of plane-wave destructors characterizegismic images by local plane
waves (Fomel, 2002; Claerbout, 2004). A slope estimation thed using plane-wave destruc-
tors is developed by Fomel (2002) and can be described as adwgon error Iter. The

method estimates slopes by solving the Gauss-Newton minimiion problem

C’(po) pd+ C(po)d O (2.8)

Figure 2.4: Slope estimates computed using the plane-wavesttactor method for crossline
73 from the Teapot Dome seismic dataset. Slope estimates at@own for no smoothing
(a), moderate smoothing (b), and excessive smoothing (c)m®othing values used for this
method are comparable to those used in Figure 2.1.



for slope updates by minimizing the sum of squared plane-wedestruction outputs. In
equation 2.8, C(p) represents the convolution of the data with a plane-wave de&uction
Iter, po the initial slope estimate, p the slope update, andd the data. As mentioned
before, the resulting slope images can contain highly vang slope values from sample to

sample. Fomel includes a regularization term
"D p O (2.9)

that minimizes the derivatives of the slope update p, where" is the regularization parameter
and D is the gradient operator. The parametel' determines the weight for the minimization
goals described by equations 2.8 and 2.9.

The equations above adequately describe slope estimation2D and 3D. The goal de-
scribed by equation 2.8 changes slightly from estimatingagles of locallylinear features in
the 2D case to estimating locallyplanar features in the 3D case.

The current implementation of the plane-wave destructor foslope estimation can be
found in the Madagascar software package. It is important tmote that Fomel's imple-
mentation is more recent than what was presented in his 2002yper. The implementation
contains many more parameters as compared to the structurertsor method; however to
make the analysis of each method more comparable, this thesinly focuses on analogous
parameters between methods. The programsfdip , contained in the Madagascar software
package, has parameterg,.x and pyin that control the maximum and minimum slope that
can be assigned to an image sample, and parametegsand r, represent the smoothing
radii. In 3D, the parameterrs controls the radius, and thus smoothing, in the third dimen-
sion. Again, subscripts 2 and 3 correspond to the horizontalirdensions and subscript 1
to the vertical dimension. The regularization parametel is controlled by these smoothing

parameters.
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2.3 Shortcomings

Discontinuities are caused by the lack of constraints on theerivatives of slope. While
both methods take measures to prevent discontinuities caets by noise, neither method
explicitly constrains the derivatives of slope estimates.

If one were to use the structure tensor method for image sarneplwith easily distinguish-
able structure, the eigen-decomposition (equations 2.2 &2.5) would produce eigenvectors
whose corresponding largest and smallest eigenvalues aredpart. The result makes the
labels perpendicular and parallel eigenvector meaningful. However, the structure tensor
method imposes no constraints on the derivatives of estinet slopes. For image samples
with less or no distinguishable structure, the eigen-decgrusition would produce eigenvec-
tors whose corresponding largest and smallest eigenvalaes similar or equal. As described
in Fehmers and Hecker (2003), no preferred orientation exssfor this case. The result makes
the labels perpendicular and parallel arbitrary because any vector can describe the orien-
tation. Furthermore, discontinuities in the slope image aaresult. Figure 2.5 shows slope
estimates computed for the structure tensor method with spe discontinuities apparent near
the bottom right of the image.

To prevent discontinuities, the plane-wave destructor méibd smoothes slope estimates
with regularization (equation 2.9). While this is comparableto imposing constraints on
the derivatives of slopes, it is not equivalent. Smoothingith regularization assumes that
the sum of many smooth images is smooth, which may not be thesea Additionally, the
regularization term only smoothes the slope updatesp and not the slopep; hence if the
initial slope image pp contains discontinuities, they will remain in the nal slope image.
Figure 2.6 shows an example where slope estimates computadlie plane-wave destructor
method contain slope discontinuities caused by noise. Thaitial slope image is the output
from the structure tensor method, which contains slope disatinuities. From Figures 2.5

and 2.6, it is obvious the same slope discontinuities exist the same image locations.
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Figure 2.5: Slope estimates computed using the structure twor method for a synthetic
seismic image with N/S=1.0.

Figure 2.6: Slope estimates computed using the plane-wavestlactor method for a synthetic
seismic image with N/S=1.0.
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CHAPTER 3
SLOPE ESTIMATION USING SMOOTH DYNAMIC WARPING

Dynamic time warping (DTW) nds shifts that optimally align f eatures between two
time signals (Maller, 2007; Sakoe and Chiba, 1978). Consaints imposed on the rate at
which these shifts may vary in time allow accurate shift estnation in the presence of noise.
Hale (2012) describes a way to extend the DTW algorithm to estiate shifts between seismic
images. This new dynamic image warping (DIW) algorithm nds ptimal shifts between two
images such that computed shifts applied to one image appimate the other. Shift values
computed from DIW are useful when shifts between two imagesealarge and vary rapidly
in time.

When shifts vary smoothly in time (e.g., Compton and Hale, 20)}3a better approxi-
mation can be achieved from smooth dynamic warping (SDW; Halend Compton, 2013).
This technique also computes optimal shift values betweemwd images, but in contrast to
DIW, smooth shifts can be obtained by computing shifts for a dset of image samples.
Shifts computed using SDW are more robust in the presence aise and increase computer
memory e ciency, which make SDW the preferred warping algathm for slope estimation.

However, both DIW and SDW require large shifts between two ingges to obtain accurate,
meaningful results. This condition is not satis ed in the cae of slope estimation where shifts
often require sub-sample precision; therefore minor but oessary changes must be made to
the SDW algorithm. The changes not only allow the use of SDW if@lope estimation, but
extend the method to other applications requiring small, spoth shift estimates.

In this chapter, | rst introduce the dynamic warping algorithm. | then describe the
added steps for SDW and the additional modi cations requir for slope estimation. Next, |
show the results of estimating slopes using SDW and make Bri@mparisons to the structure

tensor and plane-wave destructor methods. Finally, | discasconsiderations for using the

13



SDW method, including utility and caveats.
3.1 Dynamic warping

To better understand smooth dynamic warping and the modi cabns required for slope
estimation, one must rst understand dynamic image warping Dynamic image warping
computes shifts between two images by nding a globally optial solution to a non-linear
optimization problem that satis es linear inequality congraints.

Optimal shifts are found in four steps. First, alignment errcs €i;|] are computed for
sample indicesi and lagsl. Lags are bounded by speci ed lower and upper shift bounds
u, and uy, respectively, and have a lag interval of 1. Distancedi;|] are then accumulated
by summing alignment errorseli; ], while simultaneously recording the error minimizing
movesm[i;|]. Such moves are constrained by lower and upper shift straloundss, and s,

respectively. The shift and shift strain constraints can bevritten as
O I n 1 wheren=u, u-+1 (3.1)
and
s ufi] ui 1] s (3.2)
Finally, the minimum distance is found ind[N  1;1] and, using the error minimizing moves
m[i; 1], backtracking is performed to nd the optimal sequence ofhifts u[i]. Hale (2012)
provides a more detailed description of the steps requiredrfdynamic image warping.
By computing shifts subject to constraints 3.1 and 3.2, oneoth only constrains the

maximum and minimum shifts estimated, but also constrainshie amount shifts can change

from sample to sample. In other words, the derivatives of dts are constrained.
3.2 Smooth dynamic warping and modi cations

In addition to the steps described above, SDW includes thresteps that produce a glob-
ally optimal smooth shift solution that requires less computer memory. After coputing

alignment errorsei; 1], subsampling is performed orgi; 1] subject to the subsampling pa-
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rameter h. The parameterh determines the spacing between subsampled alignment errors

such that

h=if] i 1 (3.3)
wherei[j] is an array of indices that represents the indices of subsplad locations in an
image. By subsampling alignment errorg]i; 1], the number of possible changes in lag in-
creases, requiring an additionalor loop during the accumulation step. The result of SDW
is subsampled shiftau[i[j]]. Lastly, bicubic interpolation is performed onuli[j ]] to obtain
shifts u[i] for all sample indices. A di erent interpolation method may be used in the nal
step; however, analyses described in Chapter 4 suggestaubic interpolation provides the
best slope estimates.

The rst modi cation from the original SDW algorithm comput es alignment errors using

least absolute deviation
efi; 1T j £l ofi + 1Ij;
rather than the typically computed least squares problem
efi;l] (FO] dfi+ D)=

As discussed in Wheeler (2015), thé, norm for p = 2 may not be optimal for all
applications of dynamic warping. Least absolute deviatioms resistant to outliers in the
data, making it a more robust error approximation. This is hipful in our application of
SDW where outliers are a result of noise in the image and can bectively ignored.

For the applications shown in Hale (2012); Hale and Compton (28); Compton and
Hale (2013), computed shifts are large and well approximatdwy integers. For images with
large, time-varying shifts, SDW produces smooth, sub-sanepprecision shifts. Sub-sample
precision is a result of the interpolation between integeralue subsampled shifts. Because
slope estimates do not vary with time and typically requiresb-sample precision for accurate

results, estimating integer-value subsampled shifts dtitauses a problem.
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To address this problem, | introduce an integek that changes the sampling interval of
lags, and therefore shifts, from 1 tq%. Subsequently, shift estimates range from; to uy

with increments of .
3.3 Slope estimation

To estimate slope values for an image using dynamic image warping, | must rst choose
the second image to warp. Usingl, a second image) is generated by shiftingf one trace
to the left. By warping imagef to g, | am essentially computing shifts between each trace
and the adjacent trace. The resulting shiftau are equal to the slopep being estimated.
However, these estimated slopes correspond to locationsveetn samples. To obtain slope
values at exactly the sample locations iffi, | must interpolate computed slopes back onto
the sample locations for imagé .

To make analogies with the slope estimation methods desceib in Chapter 2, | reintro-
duce the parameters that constrain shift estimation, or mar speci cally, slope estimation
for the SDW method. The structure tensor and plane-wave desictor methods each have a
parameterpmax that controls the maximum and minimum slopes estimated. Catraint 3.1
constrains shifts by lower and upper shift bounds; and uy, respectively. Since shifts are
equal to slopes in this application of SDW, u; = U, = Pmax -

As described in Chapter 2, neither the structure tensor nor t plane-wave destructor
methods explicitly constrain slope derivatives. Constrat 3.2 constrains the derivatives of
shifts with lower and upper shift strain boundss, and s, respectively. Once again, since
shifts are equal to slopess; and s, constrain the derivatives of slope, which allows the SDW
method to estimate slopes without estimating discontinuies caused by noise.

The implementation of SDW allows the user to specify up to sigarameters for 2D slope
estimation. Although | focus on analogous parameters betweeach method, introducing
parameters that constrain slope derivatives is a vital aspeto the SDW method. The pa-
rameter pnax constrains the maximum slope, and parameters and h, control subsampling

in the rst and second dimensions, respectively. BecausedlSDW algorithm uses an in-
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terpolation step between subsampled slope valuds, and h, indirectly control smoothing.
Strain parameterss; and s, more directly a ect smoothing by controlling the maximum
strain. For example, a strain parametess; = 0:1 allows each sample to stretch or squeeze a
maximum of 10% in the rst dimension when nding correspondig values between adjacent
traces. In 3D, two additional parametersh; and s; control smoothing and maximum strain,
respectively, in the third dimension. Once more, subscript2 and 3 correspond to the hori-
zontal dimensions and subscript 1 to the vertical dimensionThe sixth optional parameter

k determines the sampling interval, and therefore precisipmf slope estimates in units of
samples per trace. For examples = 10 produces slope estimates with precision up to one

tenth of a sample per trace.

Figure 3.1: Near-o set Gulf of Mexico image.

Figures 3.1 and 3.2 show a real seismic image without and witloge estimates, re-
spectively, for each of the three methods using smoothing raaneters found in Fomel et al.
(2007). The near-o set Gulf of Mexico data are publicly avdable and they appear in the pa-
per referenced above, which allow me to reproduce the resulbund in that paper. Although
the same parameters were chosen for each method, it is obwdbere are similarities and
di erences throughout. Chapter 4 provides more insight irg the similarities and di erences

through qualitative and quantitative analyses.
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Figure 3.2: Slope estimates computed using the structure ®or method (a), plane-wave
destructor method (b), and smooth dynamic warping method {cfor a near-o set Gulf of
Mexico image.
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3.4 Considerations

As mentioned in Compton and Hale (2013), the SDW algorithm sigeantly reduces
computer memory by only computing shifts on a subsampled gri However, reduction in
computer memory increases computational time. This is bease, for sparse subsampled
grids, h is large, increasing the possible number of lags. In other mis, the larger the value
of h, the more computations required during the accumulation sps, which are the most time
consuming steps for SDW (Hale and Compton, 2013). This becosrebalancing act between
computation time and memory. Fast slope estimates can be aeled by using a dense sub-
sampled grid, but require a larger amount of computer memaryConversely, less computer
memory is required for sparse subsampled grids, but necéstgis more computational time.

It is also important to note the potential error caused by chosing a subsampled grid
that is too sparse. Figure 3.3a shows slope estimates for atbytic seismic image. As noted
in Chapter 1, red indicates positive slope values and blueditates negative slope values.
The area highlighted by the red rectangle in Figure 3.3a higlgihts an area of rapid slope
variation. The left half of the rectangle should be red, indiating positive slope, while the
right side of the rectangle should be blue, indicating negat slope. However, because |
chose a subsampled grid that is too sparse, the incorrectosign is shown on both sides of
the rectangle. To prevent such errors, the subsampling paretersh, and hz should be no
smaller than the most rapid slope variation in the image. Usercan take advantage of the
ability to customize this algorithm for slope estimation tocater to their speci ¢ needs and
resources.

Computer memory as a function of smoothing parameter choi¢g unique to the SDW
method, but the unfavorable results caused by choosing sntbing parameters that are too
large are common among the three methods. Figures 3.3b andc3show slope estimates
for the structure tensor and plane-wave destructor methodssing smoothing parameters
that are too large. Red rectangles in both gures highlight eeas where the method either

incorrectly estimates slope sign or incorrectly estimatemero slope.
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Figure 3.3: Slope estimates computed using the smooth dynamvarping method (a), struc-
ture tensor method (b), and plane-wave destructor method Jdor a synthetic seismic image.
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CHAPTER 4
METHODS COMPARED

The di culty in analyzing the accuracy of slope estimation nmethods is we typically do
not know the correct answer. One solution might be to estimatslopes by hand. However,
hand estimates are tedious and unpractical for large imagesd in some cases human error
may be larger than errors from computational methods; | untentionally demonstrate the
e ect of human error later in this chapter.

Instead, | generate a synthetic seismic image for which theaxt slope values are known
at every sample in the image. | can add deformations to the irga that represent structural
deformations in a real seismic image. By knowing the positi@f an image sample before and
after deformation, | can exactly compute the slope value. Ehsynthetic images in Figure 4.1
contain faults and unconformities (red lines in the gure) ad steep, rapidly varying slopes.
Of the two faults shown in Figure 4.1, the left sloping fault itersects the right sloping fault
noted by the broken red line.

Additionally, I can alter the amount of noise in the image by aplisting the root mean
square (RMS) noise to RMS signal (N/S) ratio. Figure 4.2 showgsthetic seismic images
for three N/S ratios. As the amount of noise increases, faultanconformities, and seismic re-
ections become increasingly di cult to distinguish. The variability of slope values, changes
in slope, slope discontinuities, and noise provides a thargh test for each slope estimation
method.

The structure tensor and plane-wave destructor methods endgy smoothing parameters

and r, respectively. The smooth dynamic warping method uses panatersh and s that
a ect the smoothness of slope estimates. To properly analythe accuracy of each method, |
must rst determine optimal comparable parameters. Rathethan using the same parameter

values for each method, | avoid introducing bias by using tiveoptimal parameters.
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Figure 4.1: Synthetic seismic image (a) with known slope vada (b). The color bar has
been adjusted (c) to better show slope values in the shallowogtion of the image. The
noise-to-signal ratio for this example is 0.0.
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Figure 4.2: Synthetic seismic images for N/S=0.0 (a), N/S=0.5K), and N/S=1.0 (c).
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To nd the optimal parameters for each method, | compute RMS reor

b
s =0 27 (o P @)
i=1

where M is the number of image samplesp ts the estimated slope, and is the known
slope. For dierent pairs of , r, h, and s values, we computeegys to nd the pair that
produces the lowest RMS error for the synthetic with N/S=0.5.This N/S ratio introduces a
reasonable amount of noise. Figure 4.3 shows plotsegfys for each method. From the range
of erms In Figure 4.3a, one can note that the structure tensor method ilargely in uenced
by the choice of parameters. Theegys range for the plane-wave destructor and smooth
dynamic warping methods, shown in Figures 4.3b and 4.3c, is alter, which suggests the
choice of smoothing parameters for these methods has lesaence on accuracy than for the
structure tensor method. However, it is important to note tha the structure tensor method
is able to achieve the lowestrys Vvalue of the three methods. The strain parametes, used
in the smooth dynamic warping method, is shown in Figure 4.3dlhe colorbar values were
adjusted to better show the di erence in the three predominat exys values, 0.72, 0.58, and
0.57.

The optimal parameters for each method are as follows:

1=23, 2=1
r{=751,=26
h1:72, h2:12

$1=0:3,5,=0:2
Figure 4.3d suggests there are multiple combinations of sinaparameterss that yield the
same minimumegys ; the only limitation being strain parameters that are too small. Slope
estimates for unrealistically large values &} and s, , not shown, suggest the smooth dynamic
warping method will not estimate discontinuous slopes caed by noise, even for values of
strain that essentially remove the slope derivative constmt. That is not the case. Even

with N/S=0.5, the synthetic seismic image does not present labf the challenges of a real
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Figure 4.3: RMS error values computed for di erent combinatins of smoothing parameters
for the structure tensor method (a), plane-wave destructamethod (b), and smooth dynamic
warping method (c) as well as strain parameters for the smdodynamic warping method
(d). Each image was computed using the synthetic seismic ig@awith N/S=0.5. Optimal
parameter pairs are highlighted with white ellipses.

seismic image.

Figure 4.4 shows slope estimates computed using the smootmasic warping method
with the same subsampling parameters from Chapter 3, but | esntially remove the slope
derivative constraint by choosing extremely large valueoif strain parameterss; and s,.
Whereas large strain parameters did not produce discontiriigs caused by noise for the
synthetic image, discontinuities are apparent in Figure 4.4

Generally, more information is required in the vertical diection of a seismic image because

most are largely horizontally continuous and vertically vaable. For that reason, all three
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Figure 4.4: Slope estimates computed using the smooth dynamiarping method for a
near-o set Gulf of Mexico image.

methods nd the optimal parameter in the horizontal directon is smaller than for the vertical

direction.
4.1 Synthetic image analyses in 2D

Using the optimal parameters computed in the previous sechip | can analyze slope
estimates for each method with varying levels of noise. Figes 4.5, 4.6, and 4.7 show the
e ects of noise on slope estimation. As noise increases, eattthod estimates lower slope
values. Figure 4.7a shows discontinuities caused by noiséireated near the lower right
portion of the image, where slope values are steepest. Fdrlalels of noise shown, the plane-
wave destructor and smooth dynamic warping methods do not pduce slope discontinuities
caused by noise.

To reiterate, the plane-wave destructor method is iteratig and uses regularization to
smooth slope updates in order to prevent slope discontinigs caused by noise. But if |
were to supply the plane-wave destructor method with an inial slope image that contains

discontinuities, as in Chapter 2, those discontinuities Wiremain.
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Figure 4.5: Slope estimates computed using the structure ®or method (a), plane-wave
destructor method (b), and smooth dynamic warping method {cfor a synthetic seismic
image with N/S=0.0.

Figure 4.6: Slope estimates computed using the structure ®or method (a), plane-wave
destructor method (b), and smooth dynamic warping method {cfor a synthetic seismic
image with N/S=0.5.

Figure 4.7: Slope estimates computed using the structure ®r method (a), plane-wave
destructor method (b), and smooth dynamic warping method {cfor a synthetic seismic
image with N/S=1.0.
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Figure 4.8: RMS error versus noise/signal ratio computed faach method. The structure
tensor method is shown in green and labeled (ST), the planeave destructor method is
shown in blue and labeled (PWD), and the smooth dynamic warpgimethod is shown in
red and labeled (SDW).

For 21 N/S ratios between the values zero and one, | compuggys for each method
to further explore the e ects of noise on slope estimation. §ure 4.8 showsrys as a
function of N/S ratio for each method. For N/S ratios from 0.0 t00.5, the smooth dynamic
warping curve producesrys Values that are between the structure tensor and plane-wave
destructor curves; for larger N/S ratios, the smooth dynamiaarping curve is slightly above
the plane-wave destructor curve.

The RMS error curves provide us with a general idea of the acgagy of each method with
varying levels of noise, but other statistical methods can pvide more speci ¢ measures of

accuracy. One method is to compute sample standard deviatio

V
u
1 X
p=%J 100 (r P (4.2)
i=1

whereps the estimated slope value and is the known slope value. Typically, , is computed

using the mean of the data set. Since | know the exact slope walfor every sample in the
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image, | instead use the known slope values.

Figure 4.9 shows the sample standard deviation images for 1@&lizations of N/S=0.5.
For steep slope values, rapid slope variations, and areasanéaults and unconformities, |
values increase for all three methods. Overall, the struatel tensor method produces lower

p values than the plane-wave destructor and smooth dynamic wang methods.

The errors at the faults and unconformities are more apparem Figure 4.10 where the
color bar values have been clipped. At the top of Figures 4.1@&ad 4.10b, near traces 100
and 200, there are errors apparent. The same location in Figu#.10c shows less pronounced
errors. The errors near seismic discontinuities are causky smoothing. Since the smooth
dynamic warping method places constraints on the rate at wth slope values may vary,
and since there is no explicit smoothing performed, the smihodynamic warping method
produces less error near discontinuous features.

Because the structure tensor method computes slope localityis more adapted to es-
timate slope in highly variable images like the synthetic sfwn throughout this chapter.
The plane-wave destructor and smooth dynamic warping metds each nd global slope

solutions, making them more error-prone to highly variablenages.
4.2 Synthetic image analyses in 3D

Slope estimates in 3D are not an accumulation of 2D estimat&sthe inline and crossline
directions. Rather, each method uses information from alhtee directions to produce a more
accurate result than for 2D slope estimates. To test wheth@D slope estimates are more
accurate than 2D slope estimates, | extract one crosslinacs! from a 3D synthetic volume
and estimate slope in 2D. For the same crossline slice, | coang the accuracy of the 2D and
3D slope estimates.

Figures 4.11, 4.12, and 4.13 show 2D and 3D slope estimatesdach method side-by-
side. Considering only minor di erences are visible betwee2D and 3D slope estimates for
each method, | created Table 4.1 to outline the parameter was used to create Figures 4.11,

4.12, and 4.13, as well as thexys values.

29



Figure 4.9: Sample standard deviation images computed for tlsructure tensor method
(a), plane-wave destructor method (b), and smooth dynamic avping method (c).
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Figure 4.10: Sample standard deviation images computed fdret structure tensor method
(a), plane-wave destructor method (b), and smooth dynamicavping method (c) for clipped
color bar values.
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Figure 4.11: Slope estimates computed using the structurentor method for one crossline
taken from a 3D synthetic volume. Shown are 2D slope estimatés and the same crossline
slice from 3D slope estimates (b).

Figure 4.12: Slope estimates computed using the plane-wavesttuctor method for one
crossline taken from a 3D synthetic volume. Shown are 2D skpstimates (a) and the same
crossline slice from 3D slope estimates (b).

Figure 4.13: Slope estimates computed using the smooth dynanvarping method for one
crossline taken from a 3D synthetic volume. Shown are 2D skpstimates (a) and the same
crossline slice from 3D slope estimates (b).
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Table 4.1: Slope estimation parameters for 2D and 3D slopdiegation with resulting erus

values.
2D 3D
1=6 1=6
Structure tensor 22 2= ;
3=
erms = 0:075 erms = 0:071
r,=15 r{=15
Plane-wave destructor r2=5 ;2 - g
3=
€rMSs = 0:091 €rMms = 0:073
h1:22, s1=0:2 h1:22, $1=0:2
. . h2:7, S, =0:3 h2:7, S, =0:3
Smooth dynamic warping hs=7. s =0:3
erms = 0:092 ervs = 0:078

From the optimal parameters found in Section 4.1 and heurist testing, | choose pa-
rameters that produce similaregys values for 3D slope estimation. Table 4.1 compares the
accuracy of slope estimation between 2D and 3D slope estimait For all three methods,
3D slope estimation produces a more accurate result. In 3Delatively little information is
added to the local slope solution for the structure tensor rteod; whereas, relatively more
information is added to the global slope solutions for the phe-wave destructor and smooth
dynamic warping methods.

Similar to how the 2D synthetic is created, | generate a 3D stimetic volume for which
| know the exact inline and crossline slope values. While théd3synthetic, shown in Figure
4.14, is less variable than the 2D synthetic, it contains tlee planar faults and folding.

For the parameters in Table 4.1, | compute inline and crossk slope estimates for each
method, Figure 4.15. | can adjust the N/S ratio for the 3D synthéc as | did for the 2D
synthetic. Figure 4.16 shows each method's accuracy as a fiime N/S ratio. Each curve
spans a smalleegys range due to less variability in the 3D synthetic. Moreovergach curve
is closer together relative to the 2D curves. From these rd&s) one can infer each method

produces near indistinguishable results.
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Figure 4.14: Synthetic 3D seismic volume with N/S=0.5.

4.3 Real image analyses in 3D

Synthetic images provide the bene t of knowing the exact spe value for every sample in
the image, but even with added noise, synthetic images do nolly encompass the challenges
of slope estimation. The Teapot Dome seismic volume provel@a real data example. Per-
forming hand estimates for every sample in the volume wouldlke an unreasonable amount
of time, but for a couple of samples, | can compare my hand estites with the estimates
for each method.

Figures 4.17a, 4.17b, and 4.17c show slope estimates for eaethod with the location
of one image sample of interest highlighted by the red circl&or the image sample, cyan dot
in Figure 4.17e, | can estimate slope by hand (yellow line) andsualize the slope estimates

for each method with lines of di erent colors. Continuing wih the convention from the RMS
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Figure 4.15: Inline and crossline slope estimates computesing the structure tensor method
(a) and (b), plane-wave destructor method (c) and (d), and sooth dynamic warping method
(e) and (f) for a 3D synthetic volume with N/S=0.5.
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Figure 4.16: RMS error versus noise/signal ratio computed ithe inline (a) and crossline
(b) directions for each method. The structure tensor metho@ shown in green and labeled
(ST), the plane-wave destructor method is shown in blue andlbeled (PWD), and the smooth
dynamic warping method is shown in red and labeled (SDW).
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error curves, the structure tensor method is represented lifie green line, the plane-wave
destructor method is represented by the blue line, and the smath dynamic warping method
is represented by the by the red line. Analyzing all four linesany one can reasonably
represent the slope at the image sample location.

Figure 4.18 shows the results of the same test for a di erent emye sample in the crossline
direction. Although my hand estimate is steep as compared tb¢ other three methods, again

any of the four lines can reasonably represent the slope atetimage sample location.
4.4 Discussion

The analyses performed throughout this chapter did not detmine a slope estimation
method as superior. Rather, | have identi ed advantages andisadvantages for each method.
Table 4.2 provides a brief summary of these ndings. The corape times were found by
averaging the compute times for 100 3D slope estimates for@l1 102 103 synthetic seismic

volume.

Table 4.2: Compute times, advantages, and disadvantages &ach method.

Compute

) Pros Cons
time

Slope estimation methods

better slope esti-
Structure tensor 0.22sec. | mates for highly
variable images

can estimate slope discontit
nuities caused by noise

slower than the other meth-
ods, and unwanted slope dis
continuities will remain if
present in the initial slope im-
age

input option for

Plane-wave destructor 21.33sec.| . .. .
initial slope image

slope deriva-
tive constraint
Smooth dynamic warping| 6.91sec. | prevents slope
discontinuities
caused by noise

for small subsampling param-
eters, requires substantially
more computer memory than
the other methods
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Figure 4.17: Inline slope estimates computed using the sttuce tensor (a), plane-wave
destructor (b), and smooth dynamic warping methods (c). Theed box on the seismic
image (d) highlights the location of the zoomed image (e). Excyan dot shows the location
of the image sample for slope estimation and the yellow, greélue, and red lines represent
slope estimates.
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Figure 4.18: Crossline slope estimates computed using theusture tensor (a), plane-wave
destructor (b), and smooth dynamic warping methods (c). Theed box on the seismic image
(d) highlights the location of the zoomed image (e). The cyadot shows the location of the
image sample for slope estimation and the yellow, green, bluand red lines represent slope

estimates.
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CHAPTER 5
CONCLUSIONS

In this thesis, | introduced a slope estimation method that ses a modi ed smooth
dynamic warping algorithm to estimate slopes while constiang slope derivatives. This
method is the rst of its kind to place constraints on the rateat which slope values can vary in
an image. By performing both qualitative and quantitative aalyses on the structure tensor,
plane-wave destructor, and smooth dynamic warping methodkidenti ed the strengths and
weaknesses of each method.

Local slope estimates allow the structure tensor method to are accurately estimate
slope in images with highly variable structure; however, fdmage regions with little-to-no
distinguishable structure, the structure tensor method aaestimate slope discontinuities. To
prevent estimating slope discontinuities, the plane-wawdestructor method smoothes slope
estimates with regularization. But as | showed in Chapter 2if slope discontinuities exist
in the initial slope image, those discontinuities will remia in the nal slope image. The
smooth dynamic warping method constrains the rate at whichlgpe estimates may vary
from sample to sample. This constraint combined with no exgit smoothing, allow the
smooth dynamic warping method to estimate slope near faulsnd unconformities better
than the other methods analyzed.

To obtain a slope solution without estimating slope discomtuities caused by noise, |
changed the computation of alignment errors to compute ablse deviation rather than
least squares. In addition, | included a parameter that alles a user of the smooth dynamic
warping method to modify the slope sampling interval. The ulting slope image is a global
solution to a non-linear minimization problem with linear nequality constraints.

In Chapter 4, | performed error analyses in 2D and 3D using syretic seismic images,

but the di erences between real and synthetic images are ‘asAs such, the superiority of
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any method over the others might be regarded as speci c to thaarticular example. That
is not to say synthetic analyses are not useful. From synthietanalyses, | determined image
features that result in higher error in all methods, those beg faults, unconformities, and

steep, rapidly varying slopes.
5.1 Future work

For image locations containing no data, the current implenrm¢ation of the modied
smooth dynamic warping method estimates the minimum user spi ed slope. A better
value is zero, but | have found it is di cult to distinguish no data from slope values that
equal the minimum speci ed value.

The structure tensor method computes linearity and planaty, which are measures for
the coherency of structure. One could presumably use theseasures to vary the amount
of smoothing throughout an image to smooth less for more cobat structure and more for

less coherent structure.
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