Linking Sustainable Forest Management with Habitat Conservation for the Amur Tiger (*Panthera tigris altaica*)

Xuemei Han
Biodiversity Monitoring Specialist, NatureServe
Xuemei_Han@NatureServe.org

Estes Park, CO; September 11, 2014
Outline

- Value of dynamic forest in providing wildlife habitat
- What does tiger need?
 - Describe suitable forest structures to tiger habitat
- What do we have for tiger now?
 - Assess current condition of forest stand structures
- How should we manage the forest for tiger habitat?
 - Forest management planning for tiger conservation
- Summary & Future

Distribution

<table>
<thead>
<tr>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russia: ~450</td>
</tr>
<tr>
<td>China: ~20</td>
</tr>
<tr>
<td>N. Korea</td>
</tr>
</tbody>
</table>

Causes of Endangerment

- Expansion of agriculture land
- Hunting
 - Russia: hunting was banned in 1947
 - China: hunting was encouraged in 1950-60's
 - officially banned in 1977
 - guns were forfeited in 1998
- Forests
Forest dynamics and stand structures

- Value of dynamic forest in providing wildlife habitat
- What does tiger need?
 - Describe suitable forest structures to tiger habitat
- What do we have for tiger now?
 - Assess current condition of forest stand structures
- How should we manage the forest for tiger habitat?
 - Forest management planning for tiger conservation
- Summary & Future

Prey & their suitable habitats

- Open structures (dense shrubs or wet grassland)
- Complex structures of broadleaf forests
- Savanna structures of broadleaf forests
- Openings (grassland and riverside shrub areas)
- Forest edges
- Savanna forests

Outline

- Value of dynamic forest in providing wildlife habitat
- What does tiger need?
 - Describe suitable forest structures to tiger habitat
- What do we have for tiger now?
 - Assess current condition of forest stand structures
- How should we manage the forest for tiger habitat?
 - Forest management planning for tiger conservation
- Summary & Future

What does tiger need?

- Tiger carrying capacity
 \[T = \frac{U \cdot d}{12p} \]

<table>
<thead>
<tr>
<th>Structures</th>
<th>Carrying Capacity of Ungulates (AUM km²)</th>
<th>Carrying Capacity of Amur tiger (Number km²)</th>
<th>Minimum home range of Amur tiger (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>41</td>
<td>0.009</td>
<td>112</td>
</tr>
<tr>
<td>Dense</td>
<td>6</td>
<td>0.001</td>
<td>745</td>
</tr>
<tr>
<td>Complex</td>
<td>14</td>
<td>0.003</td>
<td>319</td>
</tr>
</tbody>
</table>
Tiger needs

- Amur tiger needs diversified stand structure as habitat
- When lower trophic-level forage regulates prey density, open, savanna and complex structures are needed to enhance tiger’s conservation

Outline

- Value of dynamic forest in providing wildlife habitat
- What does tiger need?
 - Describe suitable forest structures to tiger habitat
- What do we have for tiger now?
 - Assess current condition of forest stand structures
- How should we manage the forest for tiger habitat?
 - Forest management planning for tiger conservation
- Summary & Future

Forest evaluation

Timber harvesting history in Northeastern China
Data:
- Forest field measurement dataset

Methods:
- Gingrich Stocking Diagram
- Drew and Flewelling Relative Density Indexes
- Reineke Relative Stand Density Indexes

Landscape level mapping

Satellite imagery data

LANDSAT ETM+, June 24, 2007
- 30 M Resolution
- Multispectral reflectance: R, G, B, NIR

ALOS/Palsar radar, July 4, 2007
- 22.5 M resolution
- Radar backscatter: HH, HV

- 131° 20'–130° 39'E
- 43° 17'–42° 41' N
- 3,733 km²
- Amur tiger current range
- Mountainous area
- Korean pine – deciduous mixed forest
Results -- forest structure mapping

<table>
<thead>
<tr>
<th>Forest Structure</th>
<th>Area (ha) in China</th>
<th>Area (ha) in Russia</th>
<th>Total (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old growth/Understory</td>
<td>543.15</td>
<td>321.45</td>
<td>864.59</td>
</tr>
<tr>
<td>Open/Stand initiation</td>
<td>183.41</td>
<td>193.55</td>
<td>376.77</td>
</tr>
<tr>
<td>Savanna</td>
<td>91.21</td>
<td>295.35</td>
<td>386.56</td>
</tr>
<tr>
<td>Dense</td>
<td>(Data exclusion)</td>
<td>1085.17</td>
<td>1073.15</td>
</tr>
<tr>
<td>Total</td>
<td>1902.94</td>
<td>1698.13</td>
<td>3601.07</td>
</tr>
</tbody>
</table>

- Majority of forests in Northeastern China are indeed in a highly crowded stage, especially hardwood forest.
- The current forest crowding is expected to cause a shortage of open and savanna structures, which may prevent recovery of tiger's population in this area.
- Spatial-explicit maps of the landscape with fine resolution, reliable accuracy and unique attributes of forest structure could be an informative resource for wildlife habitat modeling and evaluation, and for the design of multi-functional forest management.

Conclusions – what do we have

- Value of dynamic forest in providing wildlife habitat
- What does tiger need?
 - Describe suitable forest structures to tiger habitat
- What do we have for tiger now?
 - Assess current condition of forest stand structures
- How should we manage the forest for tiger habitat?
 - Forest management planning for tiger conservation
- Summary & Future

- Listed multiple forest structures and their respective areas.
- Illustrated the importance of spatial-explicit maps for wildlife habitat management.
- Listed key conclusions regarding tiger habitat and forest management.
Demonstration of designing a forest management plan for the Amur tiger conservation

Methods

- **Computer programs**
 - Landscape Management System (http://lms.cfr.washington.edu)
 - Toogle program
 - ArcGIS

- **Data**
 - Field inventory measurements, 2006 and 2007
 - Subset of landscape-level mapping products

Study area

- **Hunchun Reserve**
 - Established in 2001
 - Compass 108, 700 hectare
 - Contains 29 natural villages
 - 15 thousand people
 - Intense human-tiger conflict
 - From 2001-2007, 204 livestock attacked

- **Dongxing village**
 - 130° 6'E, 43° 13'N
 - 7, 039 hectare, with 5, 576 in forests

Problems

- Low populations of the Amur tiger and other wildlife
- Human –tiger conflict
- Unemployment of former forestry employees
 - Annual timber production reduced 62.1% since 1998
 - More than half million unemployment
Management strategy

Tiger zone (> 3km):
Tiger and prey habitat

Buffer zone (1-3km):
Trespass prevention

Human zone (0-1km):
Human and livestock security
Livestock productivity

Procedures

- Inventory data
- Management zones
- Current situation examination
- Management goals setting
 - Grouping
 - Representative stands
- Design silviculture pathways
 - Simulation
- Output: consequences tables
- Assign pathways and proportion iteratively
- Meet management goals
Conclusions

- It is feasible to manage the forest stand structure for Amur tiger conservation using forest management decision support tools.

- Through appropriate management the forests could become more suitable for tiger habitat. At the same time, people and livestock can be more protected from tiger attack.

- More forestry employment can be provided for the local society as a side benefit.

- The strategies demonstrated by this study could be refined using the expertise of wildlife biologists and policy makers.

- Cautions: Strong committed government responsibility to enforce the law is required, as the road and openings will make poaching easier.

To be continued...

- In collaborating with wildlife biologists, make the relationship explicit and more detailed between stand structures and certain ungulate species.

- Apply the satellite imagery processing methodology to other areas of the Amur tiger’s potential range to determine the remaining forest conditions in regards to Amur tiger habitat.

- Work with Chinese forestry administration, and other local, regional, and international stakeholders to develop sound forest inventory and management plans that could be implemented for tiger conservation.

- Transboundary conservation and forest management.

- Landscape Management System localization, Chinesization, knowledge transfer, and capacity building.

- As a more precise examination about the forest becomes needed, develop a growth model for the forest region of Northeastern China and Russian Far East.

Acknowledgements

- Doctoral advisory committee:
 - Prof. Chadwick D. Oliver, Prof. Timothy G. Gregoire (Yale)
 - Prof. Herman H. Shugart (University of Virginia)
 - Dr. Maung Moe Myint, Dana Tomlin, Susan Clark (Yale University)
 - LMS lab, Global Institute of Sustainable Forestry, Yale University
 - Beijing Normal University, Beijing, China
 - Northeast Forest University, Harbin, China
 - Hunchun National Reserve, Jilin province, China
 - State Forest Administration, Jilin, Heilongjiang, China
 - Russian Far East Branch of the Academy of Sciences
 - World Bank, WWF
 - Yale University Fan Fellowship
 - Yale Institute for Biospheric Studies, Field Ecology pilot research grant
 - The Jubitz Family Endowment for Research
 - NASA Rader Satellite Image Grant – NASA and Alaska Satellite Facility
 - The National Key Project for Cooperative Research on key issues concerning the environment and resources in China and Russia (Grant No. 2005CB724800)

Thank you! Please, feel free to contact: Xuemei_Han@NatureServe.org