Climate Change Vulnerability and Adaptation Strategies for Natural Communities

Piloting methods in the Mojave and Sonoran deserts

https://connect.natureserve.org/publications/hccvi

Advisory Committee

Focal Natural Communities

1. Great Basin Pinyon-Juniper Woodland
2. Mojave Mid-Elevation (Joshua Tree-Blackbrush) Mixed Desert Scrub
3. Sonora-Mojave Creosotebush-White Bursage Desert Scrub
4. Sonoran Paloverde-Mixed Cacti Desert Scrub
5. Apacherian-Chihuahuan Semi-Desert Grassland and Steppe
6. Sonora-Mojave Mixed Salt Desert Scrub
7. North American Warm Desert Active and Stabilized Dune
8. North American Warm Desert Riparian Woodland and Shrubland and Stream
9. Sonora-Mojave Desert Springs and Seeps
10. North American Warm Desert Mesquite Bosque

See type descriptions on http://www.natureserve.org/explorer/

HCCVI Flow Chart

Climate Trends → Exposure → Sensitivity

Adaptive Capacity

Climate Envelope Modeling

Direct Climate Change Effects on Natural Communities

HCCVI Flow Chart

Climate Change Vulnerability and Adaptation Strategies for Natural Communities

Piloting methods in the Mojave and Sonoran deserts

https://connect.natureserve.org/publications/hccvi

Advisory Committee

Focal Natural Communities

1. Great Basin Pinyon-Juniper Woodland
2. Mojave Mid-Elevation (Joshua Tree-Blackbrush) Mixed Desert Scrub
3. Sonora-Mojave Creosotebush-White Bursage Desert Scrub
4. Sonoran Paloverde-Mixed Cacti Desert Scrub
5. Apacherian-Chihuahuan Semi-Desert Grassland and Steppe
6. Sonora-Mojave Mixed Salt Desert Scrub
7. North American Warm Desert Active and Stabilized Dune
8. North American Warm Desert Riparian Woodland and Shrubland and Stream
9. Sonora-Mojave Desert Springs and Seeps
10. North American Warm Desert Mesquite Bosque

See type descriptions on http://www.natureserve.org/explorer/
Current Climate Envelope

Direct Climate Change Effects on Natural Communities

Climate Envelope Shift

12% overlap between 2010 & 2060
Tabular Summary

<table>
<thead>
<tr>
<th>Variable (Month, 2050 forecast)</th>
<th>% of Area with Value ≥ 2 std dev departure</th>
<th>Mean Departure from Baseline (°C, Precip in Inches)</th>
<th>Min</th>
<th>Max</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>January Min Temp</td>
<td>3.7%</td>
<td>5.9</td>
<td>5.3</td>
<td>7.1</td>
<td>0.3</td>
</tr>
<tr>
<td>May Min Temp</td>
<td>6.2%</td>
<td>4.8</td>
<td>4.3</td>
<td>5.6</td>
<td>0.4</td>
</tr>
<tr>
<td>June Min Temp</td>
<td>57.2%</td>
<td>5.7</td>
<td>4.4</td>
<td>8.4</td>
<td>0.6</td>
</tr>
<tr>
<td>June Max Temp</td>
<td>17.1%</td>
<td>6.2</td>
<td>5.2</td>
<td>9.1</td>
<td>0.4</td>
</tr>
<tr>
<td>July Min Temp</td>
<td>56.4%</td>
<td>6.4</td>
<td>4.9</td>
<td>9.0</td>
<td>0.6</td>
</tr>
<tr>
<td>July Max Temp</td>
<td>91.1%</td>
<td>5.5</td>
<td>3.9</td>
<td>8.7</td>
<td>0.6</td>
</tr>
<tr>
<td>August Min Temp</td>
<td>95.9%</td>
<td>6.9</td>
<td>5.1</td>
<td>9.6</td>
<td>0.6</td>
</tr>
<tr>
<td>August Max Temp</td>
<td>98.8%</td>
<td>5.9</td>
<td>4.3</td>
<td>8.6</td>
<td>0.6</td>
</tr>
<tr>
<td>August Tot. Precip</td>
<td>11.3%</td>
<td>0.9</td>
<td>0.3</td>
<td>3.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Sept. Min Temp</td>
<td>91.6%</td>
<td>6.6</td>
<td>4.6</td>
<td>8.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Sept. Max Temp</td>
<td>7.1%</td>
<td>7.1</td>
<td>5.6</td>
<td>7.5</td>
<td>0.3</td>
</tr>
<tr>
<td>October Max Temp</td>
<td>4.7%</td>
<td>7.2</td>
<td>6.6</td>
<td>8.5</td>
<td>0.3</td>
</tr>
<tr>
<td>October Min Temp</td>
<td>81.3%</td>
<td>6.5</td>
<td>4.9</td>
<td>8.3</td>
<td>0.4</td>
</tr>
<tr>
<td>November Min Temp</td>
<td>8.3%</td>
<td>5.4</td>
<td>4.3</td>
<td>7.1</td>
<td>0.6</td>
</tr>
<tr>
<td>December Min Temp</td>
<td>0.2%</td>
<td>5.3</td>
<td>4.3</td>
<td>6.1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Indirect Climate Change Effects on Natural Communities

Invasive Species

[Map showing potential abundance of invasive annual grasses]

Biophysical Variability

[Map showing unique isobioclimates]
Adaptive Capacity of Natural Communities

Diversity within Functional Species Groups

- **Environmental Response** (e.g., drought tolerance)
- **Pollinators** (bats, bees, etc.)
- **Trophic levels** – predator/grazer
- **Roles in geochemical processes**

That is a “keystone” species! (assessed CC vuln. individually)

Linking Vulnerability Assessment to Adaptation Strategy

<table>
<thead>
<tr>
<th>Build conceptual model</th>
<th>Assess climate change impacts</th>
<th>Identify future climate scenarios</th>
<th>Vulnerability Assessment</th>
<th>Implement action plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate actions</td>
<td>Adaptation Strategy</td>
<td>Develop action plan</td>
<td>Monitor and evaluate action plan efficacy</td>
<td></td>
</tr>
</tbody>
</table>

Cross et al. 2012

Summary Table

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Direct Effects</th>
<th>climate sensitivity</th>
<th>climate impact</th>
<th>climate stress</th>
<th>climate forecast</th>
<th>Indirect effects</th>
<th>Resilience</th>
<th>Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>North American Warm Desert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desert Scrub</td>
<td>Moderate</td>
<td>Low</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Mojave Mixed Salt Desert</td>
<td>Moderate</td>
<td>Low</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sonora</td>
<td>Moderate</td>
<td>Low</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

| 5 types = High Vulnerability |
| 10 types = Moderate Vulnerability |

Climate Change Strategy Options

RESISTANCE

- **Low vulnerability**
 - Maintain the status quo, e.g., fire prevention to preclude fire in certain desert types

RESILIENCE

- **Moderate – High vulnerability**
 - Allow temporary changes in structure and function, e.g., riparian/streams to facilitate changes in future state, e.g., restore/maintain type

RESPONSE

- **Very High vulnerability**
 - Actively or passively facilitate changes, e.g., experimentally minimize obvious biodiversity loss

Adapted from Millar et al. 2007, Ecological Applications and USFS Climate Change Resource Center
Adaptation Strategies

• “No-regrets” actions to take within the next 5 years. (mostly resistance and resilience strategies; invest in targeted monitoring networks)

• “Anticipate Actions” over the coming 5-15 years. (mostly resilience strategies)

• “Wait and Watch” or potential actions to anticipate over the 15-30 year timeframe, with indicators to monitor and inform those future decisions. (mostly resilience, some transformation strategies; much prioritized research)

Patrick Comer, Chief Ecologist
Pat_comer@natureserve.org
www.linkedin.com/pub/patrick-comer/1a/977/a78/

Report: https://connect.natureserve.org/publications/hccvi