THE CHALLENGE:
1. To synthesize across research sites syntactically disparate, but thematically similar, data.
2. To efficiently perform cross-site synthesis, using new informatics tools that exploit database component technology.
3. To aid analysis of ecological data through visualization tools that take advantage of informatics-processed data.

OBJECTIVES:
To test Canopy Database Project (CDP) prototype software Databank (database generator) and CanopyView (visualizer) – within and beyond forest canopy studies using data from 4 Long-Term Ecological Research (LTER) sites: 1) Luquillo – Puerto Rico (Tropical Forest) 2) Jornada Basin – New Mexico (Grassland) 3) Sevilleta – New Mexico (Grassland) 4) Shortgrass Steppe – Colorado (Grassland).

TROPICAL FOREST: To visualize the 3-D upper canopy surface height over time after Hurricane Hugo (1989).

GRASSLANDS/BUCH: To compare net primary productivity (NPP) data across a large landscape by combining field data from three separate projects into a single database.

INTRODUCTION:
The Canopy Database Project (CDP):
- Develops informatics tools for forest canopy scientists.
- Documents and publishes datasets that demonstrate use of these tools.
- Characterizes, visualizes, and formalizes (in informatics terms) fundamental structures of the canopy.
- Generalizes the tools to be applied to the larger discipline of ecology.

CDP Informatics Tools include:
- Databank – generates ecology databases using a library of design components.
- CanopyView – creates data visualizations from Databank databases for analysis.
- Big Canopy Database – provides research reference information to canopy researcher (canopy.evergreen.edu/bcd).

Long-Term Ecological Research (LTER) Sites: The Test Bed
Tropical Forest – Canopy Height:
Luquillo is located in an area susceptible to hurricane disturbance, and time series data were recorded post-Hurricane Hugo, which hit the site in 1989. These data on maximum height over time are amenable to visualization for examining dynamic patterns of disturbance.

Grasslands/Bush - Above-Ground Net Primary Production (ANPP): Jornada, Sevilleta, and Shortgrass have similar, but not directly comparable, NPP data, which were chosen for an ecological synthesis exercise. Combining data from 3 studies is enabling us to examine ANPP patterns across the larger landscape.

ACKNOWLEDGEMENTS:
DataBank: canopy.evergreen.edu/databank CanopyView: canopy.evergreen.edu/canopyview
For more information contact us c/o: fialaa@evergreen.edu

METHODS:
DATA COLLECTION:
Luquillo - Forest
The 16 ha long-term forest dynamics plot is sub-divided into a 5m x 5m grid of points. In 1992, 1994, & 1996 maximum heights of vegetation above each grid point were recorded. Jornada and Sevilleta – Grassland/Bush
ANPP data were collected in two distinct phases:
1) 1-m² Quadrats: Measurements – Non-destructive measures of plant heights were recorded for every species in each quadrat 3x/yr (winter, spring, and fall).
2) Plant Harvests: Plants were harvested from areas adjacent to the quadrats, and regressions based on these harvests were used to estimate biomass within the quadrats.

Shortgrass Steppe - Grassland
ANPP data were collected in a single phase 1x/yr at the end of the growing season:
1) Plant Harvests – The current year’s above-ground growth was clipped from plants located within each 0.25-m² quadrat. Cleared samples were weighed by species.

DATABASE CREATION:
We designed Databank components, and the system combined them into MS Access database packages and generated Ecological Metadata Language (EML) files:

CONCLUSIONS:
- Data visualizations of the Luquillo forest provided an effective alternate analysis of canopy height data, and examining changes in canopy height data -- illustrating decreased upper canopy height after Hurricane Hugo 1994.
- Data set integration using Databank allowed comparison of NPP across a larger landscape than was possible within individual LTER sites. Such informatics tools offer promise for cross-site research and data synthesis.
- This collaboration among LTER Information Managers, Ecology Researchers, and Computer Scientists provided insights into designing database components and informatics tools for ecologists, and improving the user interface of existing software prototypes.
- Analysis of syntactically-incomparable datasets that represent related concepts can be facilitated with conceptual design techniques and Canopy Database Project tools.

FUTURE WORK:
1. Further analyze these particular cross-site NPP field data and statistical aggregates (in particular with respect to missing data).
2. Generalize data analysis methodology for other cross-site NPP measures.
3. Describe our derived data products in ecological metadata formats, which could provide a model for describing other ecological syntheses.