DISSERTATION

SYNTHETIC STUDIES ON (-) LEMONOMYCIN:
CONSTRUCTION OF THE TetracyclIC CORE

Submitted by
Alberto Jiménez-Somarribas
Department of Chemistry

In partial fulfillment of the requirements
For the Degree of Doctor of Philosophy
Colorado State University
Fort Collins, Colorado
Fall 2013

Doctoral Committee:
Advisor: Robert M. Williams
John L. Wood
Yian Shi
Branka M. Ladanyi
Dean C. Crick
Documented herein are efforts towards the asymmetric total synthesis of (-)-lemonomycin, a member of the tetrahydroisoquinoline antitumor antibiotics family of natural products. We describe a concise route for the assembly of the tetracyclic core of this molecule, which involves a Pictet-Spengler reaction for the construction of the tetrahydroisoquinoline fragment and an azomethine ylide [3+2] dipolar cycloaddition for the construction of the diazabicyclo[3.2.1]octane ring system. The above-described synthetic efforts, while not totally successful, provide the basis for the future completion of the total synthesis of this natural product and other related compounds.
ACKNOWLEDGEMENTS

First, I would like to thank Professor Robert M. Williams, my advisor, for providing the dynamic research environment that allowed me to learn and grow as chemist. It has been an honor to work for you and I am very grateful for the valuable advise and support that you provided over the years.

I would also like to thank the Williams group members, both past and present, for their help, friendship and encouragement during my journey. To the members of the THIQ group, thank you for laying the foundations for my work and for your helpful ideas. To Dan Gubler, Timmy McAfoos, Aaron Pearson and Guojun Pan, thank you for the helpful discussions about chemistry. To Sarah Stevens, Michelle Sanchez, Jennifer Finefield, Jennifer Bubb and Tenaya Newkirk, thank you for your friendship and help.

I would like to especially thank my dear friend Ryan Rafferty, for your generous help, your friendship and the encouragement that you provided over the years. Thank you for the lengthy discussions about chemistry and for inspiring me to become a better chemist and a better person.

I would like to extend my gratitude to my family, starting with my mother Lidia Somarribas. Thank you for all of your love and the constant support and encouragement that you provided at every step along the way. I thank my grandmother Lydia Chavarría and my aunt Lilliana Somarribas for your love and support. I thank my brother and sisters Juan, Virginia and Marie Jiménez, and my niece Andrea Castro for your love and support throughout this journey. I also would like to thank my mother-in-law María Josefa Quirós and my sisters-in-law Evelyn and Grettel Chaves for your love and support.
To my three wonderful sons, Daniel, Gabriel and Sebastián, thanks for filling my days with joy, love and hope.

Finally, I would like to extend my utmost gratitude my beloved wife Yorleny. Thanks for all of your love, dedication and patience, and for the encouragement that you provided over these years. None of this would have been possible without you. Thanks for helping me to become the person I am today and for being an awesome wife and mother. I love you with all of my heart.
DEDICATION

To Yorleny, Daniel, Gabriel and Sebastián
TABLE OF CONTENTS

ABSTRACT .. ii
ACKNOWLEDGEMENTS ... iii
DEDICATION ...v
TABLE OF CONTENTS ... vi
LIST OF TABLES ... ix
LIST OF FIGURES ...x
LIST OF SCHEMES ...xv

Chapter 1: The tetrahydroisoquinoline family of antitumor antibiotics

1.1 Introduction ... 1
1.2 Mechanisms of action ... 2
1.3 Lemonomycin ... 6
1.4 Proposed biosyntheses for the tetrahydroisoquinoline antitumor antibiotics 8
1.5 Biosynthesis proposal for lemonomycin ... 15

Chapter 2: Previous synthetic work on lemonomycin

2.1 Introduction ... 18
2.2 Stoltz’s total synthesis ... 18
2.2 Fukuyama’s total synthesis .. 20
2.3 Magnus’s racemic synthesis of lemonomycinone amide .. 23
2.5 Zhu’s asymmetric synthesis of lemonose ... 26
Chapter 3: Studies towards the synthesis of lemonomycin

3.1 Synthetic goals .. 32

3.2 Dithiane approach

3.2.1 Retrosynthetic analysis .. 32

3.2.2 Synthesis of the first Pictet-Spengler substrate ... 33

3.2.3 Formation of the tetrahydrosiquinoline system .. 34

3.2.4 Incorporation of the glycine fragment .. 35

3.3 Hosomi-Sakurai approach

3.3.1 Retrosynthetic analysis .. 37

3.3.2 Synthesis of the allyltrimethylsilane glycine derivative ... 38

3.3.3 Attempted formation of the cyclization precursor ... 38

3.4 Redefinition of the synthetic strategy .. 39

3.5 Attempted formation of alternate cycloaddition precursors

3.5.1 Retrosynthetic analysis .. 40

3.5.2 Attempted formation of the tetrahydrosiquinoline system .. 41

3.5.3 Attempted formation of a tricyclic hemiaminal .. 42

3.6 Construction of the tetracyclic core

3.6.1 Retrosynthetic analysis .. 45

3.6.2 Synthesis of the tetrahydrosiquinoline fragment ... 47
3.6.3 Formation of the tetracyclic ring system ... 48
3.6.4 Redefinition of the synthetic strategy ... 49
3.6.5 Initial modification of the tetracyclic core.. 51
3.6.6 Epimerization of the southern benzylic stereocenter 52
3.6.7 Hydrogenation of the enamide double bond .. 54
3.7 Concluding remarks ... 55

References ... 58

Chapter 4: Experimental procedures .. 63

Appendix 1: Substrates and conditions of the enamide hydrogenation attempts listed in reference 58 .. 219
Appendix 2: Publications ... 223
Appendix 3 Research proposal .. 232

List of abbreviations .. 249
LIST OF TABLES

Chapter 1

Table 1.1. In vitro antibacterial activities of lemonomycin ..6

Table 1.2. Comparison of antibacterial activities of lemonomycin (1.20), tetracycline (A), penicillin G (B) and erythromycin (C), against various staphylococci and streptococci7
LIST OF FIGURES

Chapter 1

Figure 1.1. Representative members of the tetrahydroisoquinoline antitumor antibiotics1

Figure 1.2. Structure of ecteinascidin 743 (1.4) ..2

Figure 1.3. Structures of PM01183 and PM00104 ...2

Figure 1.4. Structure of lemonomycin ..7

Figure 1.5. Domain organization of NRPSs for tetrahydroisoquinoline antitumor antibiotics biosynthesis...9

Chapter 3

Figure 3.1. Representative members of the tetrahydroisoquinoline antitumor antibiotics50

Chapter 4

Figure 4.1. 1H NMR spectrum of compound 3.9 (300 MHz, CDCl₃) ..65

Figure 4.2. 1H NMR spectrum of compound 3.7 (300 MHz, CDCl₃) ..67

Figure 4.3. 1H NMR spectrum of compound 3.10 (300 MHz, CD₃OD)69

Figure 4.4. 1H NMR spectrum of compound 3.13 (300 MHz, CD₃OD)72

Figure 4.5. 1H NMR spectrum of compound 3.14 (300 MHz, CD₃OD)74

Figure 4.6. 1H NMR spectrum of compound 3.19 (300 MHz, CDCl₃)76

Figure 4.7. 1H NMR spectrum of compound 3.20 (300 MHz, CDCl₃)78

Figure 4.8. 1H NMR spectrum of compound 3.21 (300 MHz, CDCl₃)80
Figure 4.9. 1H NMR spectrum of compound 3.22 (300 MHz, CDCl$_3$) ..82

Figure 4.10. 1H NMR spectrum of compound 3.23 (300 MHz, CDCl$_3$) ..84

Figure 4.11. 1H NMR spectrum of compound 3.24 (300 MHz, CDCl$_3$) ..86

Figure 4.12. 1H NMR spectrum of compound 3.25 (300 MHz, CDCl$_3$) ..88

Figure 4.13. 1H NMR spectrum of compound 3.26 (300 MHz, CDCl$_3$) ..90

Figure 4.14. 1H NMR spectrum of compound 3.27 (300 MHz, CDCl$_3$) ..92

Figure 4.15. 1H NMR spectrum of compound 3.28 (300 MHz, CDCl$_3$) ..94

Figure 4.16. 1H NMR spectrum of compound 3.29b (300 MHz, CDCl$_3$)97

Figure 4.17. 1H NMR spectrum of compound 3.30 (300 MHz, DMSO-d$_6$)98

Figure 4.18. 1H NMR spectrum of compound 3.33 (300 MHz, CDCl$_3$) ...101

Figure 4.19. 1H NMR spectrum of compound 3.35 (300 MHz, CDCl$_3$) ...104

Figure 4.20. 1H NMR spectrum of compound 3.44 (300 MHz, CDCl$_3$) ...106

Figure 4.21. 1H NMR spectrum of compound 3.45 (300 MHz, CDCl$_3$) ...108

Figure 4.22. 1H NMR spectrum of compound 3.40 (300 MHz, CDCl$_3$) ...110

Figure 4.23. 1H NMR spectrum of compound 3.47 (300 MHz, CDCl$_3$) ...112

Figure 4.24. 1H NMR spectrum of compound 3.48 (300 MHz, CDCl$_3$) ...114

Figure 4.25. 1H NMR spectrum of compound 3.57 (300 MHz, CDCl$_3$) ...116

Figure 4.26. 1H NMR spectrum of compound 3.58 (300 MHz, CDCl$_3$) ...118

Figure 4.27. 1H NMR spectrum of compound 3.60 (300 MHz, CDCl$_3$) ...121

Figure 4.28. 1H NMR spectrum of compound 3.62 (300 MHz, CDCl$_3$) ...123

Figure 4.29. 1H NMR spectrum of compound 3.54 (300 MHz, CDCl$_3$) ...125

Figure 4.30. 1H NMR spectrum of compound 3.63 (300 MHz, CDCl$_3$) ...127

Figure 4.31. 1H NMR spectrum of compound 3.65 (300 MHz, CDCl$_3$) ...129
Figure 4.32. 1H NMR spectrum of compound 3.66 (300 MHz, CDCl$_3$)131

Figure 4.33. 1H NMR spectrum of compound 3.67 (300 MHz, CDCl$_3$)133

Figure 4.34. 1H NMR spectrum of compound 3.70 (300 MHz, CDCl$_3$)135

Figure 4.35. 1H NMR spectrum of compound 3.75 (300 MHz, CDCl$_3$)137

Figure 4.36. 1H NMR spectrum of compound 3.76 (300 MHz, CDCl$_3$)139

Figure 4.37. 1H NMR spectrum of compound 3.78 (300 MHz, CDCl$_3$)140

Figure 4.38. 1H NMR spectrum of compound 3.79 (300 MHz, CDCl$_3$)142

Figure 4.39. 1H NMR spectrum of compound 3.80 (300 MHz, CDCl$_3$)144

Figure 4.40. 1H NMR spectrum of compound 3.88 (400 MHz, CDCl$_3$)146

Figure 4.41. 13C NMR spectrum of compound 3.88 (101 MHz, CDCl$_3$)147

Figure 4.42. 1H NMR spectrum of compound 3.89 (400 MHz, CDCl$_3$)149

Figure 4.43. 13C NMR spectrum of compound 3.89 (101 MHz, CDCl$_3$)150

Figure 4.44. 1H NMR spectrum of compound 3.90a (400 MHz, CDCl$_3$)153

Figure 4.45. 13C NMR spectrum of compound 3.90a (101 MHz, CDCl$_3$)154

Figure 4.46. 1H NMR spectrum of compound 3.90b (400 MHz, CDCl$_3$)155

Figure 4.47. 13C NMR spectrum of compound 3.90b (101 MHz, CDCl$_3$)156

Figure 4.48. 1H NMR spectrum of compound 3.94 (400 MHz, CDCl$_3$)158

Figure 4.49. 13C NMR spectrum of compound 3.94 (101 MHz, CDCl$_3$)159

Figure 4.50. 1H NMR spectrum of compound 3.95 (400 MHz, CDCl$_3$)161

Figure 4.51. 13C NMR spectrum of compound 3.95 (101 MHz, CDCl$_3$)162

Figure 4.52. 1H NMR spectrum of compound 3.96 (300 MHz, DMSO-d$_6$, 393K)165

Figure 4.53. 1H-NMR spectra of compound 3.96 (300 MHz, DMSO-d$_6$, 295, 323, 348, 373 and 393K) ...165

xii
Figure 4.54. 1H NMR spectrum of compound 3.96 (400 MHz, CDCl$_3$) .. 167

Figure 4.55. 13C NMR spectrum of compound 3.96 (101 MHz, CDCl$_3$) 168

Figure 4.56. 1H NMR spectrum of compound 3.97 (300 MHz, DMSO-d$_6$, 393K) 170

Figure 4.57. 1H-NMR spectra of compound 3.97 (300 MHz, DMSO-d$_6$, 295, 323, 348, 373 and 393K) ... 171

Figure 4.58. 1H NMR spectrum of compound 3.97 (400 MHz, CDCl$_3$) 172

Figure 4.59. 13C NMR spectrum of compound 3.97 (101 MHz, CDCl$_3$) 173

Figure 4.60. 1H NMR spectrum of compound 3.85 (300 MHz, DMSO-d$_6$, 373K) 176

Figure 4.61. 1H-NMR spectra of compound 3.85 (300 MHz, DMSO-d$_6$, 295, 323, 348, 373 and 393K) ... 177

Figure 4.62. 1H NMR spectrum of compound 3.85 (400 MHz, CDCl$_3$) 178

Figure 4.63. 13C NMR spectrum of compound 3.85 (101 MHz, CDCl$_3$) 179

Figure 4.64. 1H NMR spectrum of compounds 3.102a and 3.102b (400 MHz, CDCl$_3$).......... 182

Figure 4.65. 13C NMR spectrum of compounds 3.102a and 3.102b (101 MHz, CDCl$_3$).......... 183

Figure 4.66. 1H NMR spectrum of compounds 3.103a and 3.103b (300 MHz, CDCl$_3$)........... 185

Figure 4.67. 1H NMR spectrum of compounds 3.104a and 3.104b (300 MHz, CDCl$_3$)........... 187

Figure 4.68. 1H NMR spectrum of compounds 3.105a and 3.105b (300 MHz, CDCl$_3$)........... 189

Figure 4.69. 1H NMR spectrum of compounds 3.106a and 3.106b (400 MHz, CDCl$_3$).......... 192

Figure 4.70. 13C NMR spectrum of compounds 3.106a and 3.106b (101 MHz, CDCl$_3$).......... 193

Figure 4.71. 1H NMR spectrum of compound 3.107a and 3.107b (400 MHz, CDCl$_3$)......... 196

Figure 4.72. 13C NMR spectrum of compound 3.107a and 3.107b (101 MHz, CDCl$_3$)......... 197

Figure 4.73. 1H NMR spectrum of a 2.2:1 mixture of compounds 3.108a and 3.108b (400 MHz, CDCl$_3$) ... 201
Figure 4.74. 13C NMR spectrum of a 2.2:1 mixture of compounds $3.108a$ and $3.108b$ (101 MHz, CDCl$_3$) ..202

Figure 4.75. 1H NMR spectrum of a 1:2.2 mixture of compounds $3.108a$ and $3.108b$ (400 MHz, CDCl$_3$) ..203

Figure 4.76. 13C NMR spectrum of a 1:2.2 mixture of compounds $3.108a$ and $3.108b$ (101 MHz, CDCl$_3$) ..204

Figure 4.77. 1H NMR spectrum of compound $3.111a$ (400 MHz, CDCl$_3$) ..207

Figure 4.78. 13C NMR spectrum of compound $3.111a$ (101 MHz, CDCl$_3$) ..208

Figure 4.79. 1H NMR spectrum of compound $3.111b$ (400 MHz, CDCl$_3$) ..209

Figure 4.80. 13C NMR spectrum of compound $3.111b$ (101 MHz, CDCl$_3$) ..210

Figure 4.81. 1H NMR spectrum of compound 3.112 (400 MHz, CDCl$_3$) ..213

Figure 4.82. 13C NMR spectrum of compound 3.112 (101 MHz, CDCl$_3$) ..214

Figure 4.83. 1H NMR spectrum of compound 3.113 (400 MHz, CDCl$_3$) ..217

Figure 4.84. 13C NMR spectrum of compound 3.113 (101 MHz, CDCl$_3$) ..218
LIST OF SCHEMES

Chapter 1

Scheme 1.1. Proposed mechanism of DNA alkylation by saframycin A...3

Scheme 1.2. Proposed mechanism of superoxide formation by quinocarcin...4

Scheme 1.3. Bioxalomycin α-2 cross-linking adduct...5

Scheme 1.4. Naphthyridinomycin-derived alkylating intermediate proposed by Moore5

Scheme 1.5. Bioxalomycin α-2 cross-linking mechanism proposed by Williams.................................5

Scheme 1.6. Biosynthetic precursors to cyanocycline A (1.27)...9

Scheme 1.7. Biosynthesis of 3-hydroxy-5-methyl-O-methyl-L-tyrosine (1.32)..10

Scheme 1.8. Biosynthesis of pre-saframycin (1.46)..12

Scheme 1.9. Biosynthesis of Et-743 (1.3)..13

Scheme 1.10. Biosynthetic origin of the C-2 unit of naphthyridinomycin and quinocarcin..................15

Scheme 1.11. Proposed biosynthesis of lemonomycin ...16

Chapter 2

Scheme 2.1. Stoltz’s total synthesis of lemonomycin (1.20)..19

Scheme 2.2. Stoltz’s synthesis of aldehyde 2.11..20

Scheme 2.3. Fukuyamas’s total synthesis of lemonomycin (1.20)..21

Scheme 2.4. Fukuyama’s synthesis of fluoroglycoside 2.30...22

Scheme 2.5. Magnus’ synthesis of lemonomycinone amide (2.52)...24

Scheme 2.6. Zhu’s asymmetric synthesis of lemonomycinone amide (2.52)..25
Scheme 2.7. Zhu’s asymmetric synthesis of lemonose ...26

Scheme 2.8. Mulzer’s synthesis of tetracycle 2.85 ...27

Scheme 2.9. Fukuyama’s synthesis of tetracycle 2.98 ...28

Scheme 2.10. Williams’ synthesis of tetracycle 2.111 ...30

Scheme 2.11. Construction of the tetracyclic cores of quinocarcinamide and tetrazomine31

Chapter 3

Scheme 3.1. Initial retrosynthetic analysis ..32

Scheme 3.2. Synthesis of compound 3.14 ...33

Scheme 3.3. Zhu’s Pictet-Spengler reaction ..34

Scheme 3.4. Attempted synthesis of tetrahydroisoquinoline 3.18 ...34

Scheme 3.5. Synthesis of tetrahydroisoquinoline 3.28 ...35

Scheme 3.6. Synthesis of amide 3.35 ...36

Scheme 3.7. Retrosynthetic analysis ...37

Scheme 3.8. Synthesis of carboxylic acid 3.40 ...38

Scheme 3.9. Attempted formation of hemiaminal 3.38 ...38

Scheme 3.10. Comparison of the hydrogenation substrates ..40

Scheme 3.11. Retrosynthetic analysis ..41

Scheme 3.12. Synthesis of oxazepane 3.63 ..42

Scheme 3.13. Attempted formation of hemiaminal 3.68 ...43

Scheme 3.14. Updated retrosynthetic analysis ..44

Scheme 3.15. Attempted formation of oxazinone 3.73 ..44

Scheme 3.16. Retrosynthetic analysis ...46
Scheme 3.17. Synthesis of tetrahydroisoquinolines 3.90a and 3.90b ...46
Scheme 3.18. Preparation of aldehyde 3.85 ...48
Scheme 3.19. Formation of cycloadducts 3.102a and 3.102b ...49
Scheme 3.20. Synthesis of compounds 3.105a and 3.105b ...51
Scheme 3.22. Proposed rationale for the chemoselective reduction of 3.106a/3.106b53
Scheme 3.23. Reduction of the enamide double bond ...55
CHAPTER 1

The tetrahydroisoquinoline family of antitumor antibiotics

1.1 Introduction

The tetrahydroisoquinoline antitumor antibiotics are a family of natural products and their synthetic analogs. Starting with the isolation of naphthyridinomycin (1.1) in 1974, more than 70 natural products have been described in the literature. Structurally, their polycyclic skeleton contains tetrahydroisoquinoline moieties and 3,8-diazabicyclo[3.2.1]octane or 3,9-diazabicyclo[3.3.8]nonane ring systems. They are classified into the naphthyridinomycin (1.1), saframycin (1.2) and quinocarcin (1.3) sub-families.

Figure 1.1. Representative members of the tetrahydroisoquinoline antitumor antibiotics

Several members of this family possess potent cytotoxic activities against tumor cells and bacteria. For instance, Ecteinascidin 743 (Et-743) (1.4), a compound isolated from the Caribbean tunicate *Ecteinascidia turbinata*, has been approved in Europe for the treatment of some types of advanced soft tissue sarcomas and platinum-resistant ovarian cancers. In addition, it is undergoing phase II clinical trials for the treatment of translocation related sarcomas and has shown antitumor activity against other malignancies, such as advanced breast cancer and
prostate cancer.6 PM-01183 (1.5), a synthetic analog of Et-743 (1.4), is currently in clinical development for the treatment of solid tumors.7 Furthermore, the synthetic compound PM-00104 (1.6) is currently in phase II clinical trials for the treatment of multiple myeloma8 and advanced solid tumors.9

\textbf{Figure 1.2.} Structure of ecteinascidin 743 (1.4)

\textbf{Figure 1.3.} Structures of PM-01183 and PM-00104

\textbf{1.2 Mechanisms of action}

It has been shown that the tetrahydroisoquinoline antitumor antibiotics biological activities are the result of their interactions with cellular nucleic acids. The proposed mechanisms of action include DNA alkylation, DNA cross-linking and oxygen mediated DNA damage.1 In 1982, Lown and coworkers proposed a mechanism of covalent bonding between saframycin A (1.2) and DNA (Scheme 1.1).10 Upon protonation of the nitrile group connected to C-21, the lone pair of the adjacent nitrogen of intermediate 1.7 promotes the release of HCN and leads to the
formation of iminium ion 1.8. This highly electrophilic species is attacked by the N-2 atom of guanine in the minor grooves of G+C containing sequences, to generate covalently linked adducts such as 1.9. An analogous mechanism has been proposed for similar compounds bearing hydroxyl or alkoxy leaving groups connected to C-21.

Scheme 1.1. Proposed mechanism of DNA alkylation by saframycin A

An additional DNA damaging mechanism was proposed for oxazolidine-containing members of the family. After an initial report of superoxide production by quinocarcin (1.3) made by Tomita and coworkers,11 a series of experiments conducted by Williams and coworkers led to the proposal that the oxygen-dependent DNA scission events are associated with the disproportionation reactions experienced by the oxazolidine-containing tetrahydroisoquinoline antitumor antibiotics.12,13 As outlined in Scheme 1.2, a single-electron transfer from 1.3 to the ring-opened tautomer 1.10, followed by the concomitant deprotonation event, would produce oxazolidinyl radical 1.11 and radical anion 1.12. Through a second single-electron oxidation, radical 1.11 generates oxazolidinium ion 1.13, which is converted to quinocarcinamide 1.14 by
the addition of water. Radical anion 1.12 is the acceptor in a single electron transfer process that, with the concomitant protonation, leads to quinocarcinol 1.15. In addition, radical anion 1.12 can trap an oxygen molecule to produce peroxy radical anion 1.16. With the involvement of the lone electron pair of the adjacent nitrogen, 1.16 expels superoxide and regenerates 1.10. Through Haber-Weiss/Fenton cycling, superoxide gives rise to hydroxyl radicals and triggers to DNA damaging events.14,15,16

\textbf{Scheme 1.2.} Proposed mechanism of superoxide formation by quinocarcin

According to a series of experiments described by Williams, it was demonstrated that bioxalomycin \(\alpha\)-2 (1.17) is capable of cross-linking duplex DNA strands.17 The incubation at 37\degree C of a buffered solution containing a 5'-32P-labelled oligonucleotide and bioxalomycin \(\alpha\)-2 led to the isolation of a cross-linked adduct (Scheme 1.3). It has been shown that the alkylation occurs in the exocyclic nitrogen of guanine and that the hydroquinone oxidation state is essential
for this process. In spite of this, the exact structure of the DNA-bioxalomycin adduct remains unknown. In 1977, Moore suggested C-13b and C-9 as possible alkylation sites resulting from the formation of the \(o \)-quinone methide groups of 1.18, which could be derived from bioxalomycin \(\alpha \)-2 (1.17) (Scheme 1.4). Williams supported Moore’s proposal for C-13b alkylation, and proposed a second alkylation site at C-7 instead of C-9 (Scheme 1.5). This assertion was based in the previous knowledge about the role of the \(\alpha \)-aminonitrile/hemiaminal functionality in the biological activity of other members of the tetrahydroisoquinoline family of antitumor antibiotics.

Scheme 1.3. Bioxalomycin \(\alpha \)-2 cross-linking adduct

Scheme 1.4. Naphthyridinomycin-derived alkylating intermediate proposed by Moore

Scheme 1.5. Bioxalomycin \(\alpha \)-2 cross-linking mechanism proposed by Williams
1.3 Lemonomycin

Lemonomycin (1.20) is a member of the quinocarcin sub-family tetrahydroisoquinoline antitumor antibiotics. Its isolation from the fermentation broth of *Streptomyces candidus* (LL-AP191) was described by Whaley and coworkers in 1964.\(^\text{18}\) The compound showed significant *in vitro* antimicrobial activities against both gram-negative and gram-positive bacteria (Table 1.1). In addition, in a series of assays it inhibited the bacterial growth *in vitro* at lower or similar concentrations, when compared to tetracycline, penicillin G and erythromycin (Table 1.2).

![Figure 1.4. Structure of lemonomycin](image)

Table 1.1. In vitro antibacterial activities of lemonomycin

<table>
<thead>
<tr>
<th>Organism</th>
<th>MIC (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycobacterium smegmatis ATCC 607</td>
<td>6.2</td>
</tr>
<tr>
<td>Staphylococcus aureus A TCC 6548P</td>
<td>0.2</td>
</tr>
<tr>
<td>Streptococcus faecalis ATCC 8043</td>
<td>0.4</td>
</tr>
<tr>
<td>Bacillus subtilis ATCC 6633</td>
<td>0.05</td>
</tr>
<tr>
<td>Pseudomonas fluorescens ATCC 12633</td>
<td>1.6</td>
</tr>
<tr>
<td>Proteus vulgaris ATCC 9484</td>
<td>0.4</td>
</tr>
<tr>
<td>Escherichia coli ATCC 9637</td>
<td>1.6</td>
</tr>
<tr>
<td>Salmonella gallinarum (Lederle 604)</td>
<td>0.8</td>
</tr>
<tr>
<td>Clostridium sporogenes ATCC 7955</td>
<td>>100</td>
</tr>
</tbody>
</table>
Table 1.2. Comparison of antibacterial activities of lemonomycin (1.20), tetracycline (A), penicillin G (B) and erythromycin (C), against various staphylococci and streptococci

<table>
<thead>
<tr>
<th>Organism</th>
<th>MIC (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.20</td>
</tr>
<tr>
<td>Staphylococcus aureus (Lederle 4050B-122-7)</td>
<td>0.08</td>
</tr>
<tr>
<td>S. aureus (Lederle 4050B-122-10)</td>
<td>0.15</td>
</tr>
<tr>
<td>S. aureus (Lederle 4050B-122-13)</td>
<td>0.15</td>
</tr>
<tr>
<td>S. aureus (Lederle 4050B-122-14)</td>
<td>0.15</td>
</tr>
<tr>
<td>S. aureus Rose ATCC 14154</td>
<td>0.15</td>
</tr>
<tr>
<td>S. aureus Smith</td>
<td>0.04</td>
</tr>
<tr>
<td>Streptococcus faecalis ATCC 8043</td>
<td>0.4</td>
</tr>
<tr>
<td>S. pyogenes C203</td>
<td><0.005</td>
</tr>
<tr>
<td>S. pyogenes (Lederle 8053B-40-2)</td>
<td>0.01</td>
</tr>
<tr>
<td>S. pyogenes (Lederle 8053B-40-3)</td>
<td>0.01</td>
</tr>
<tr>
<td>S. pyogenes NY5</td>
<td><0.005</td>
</tr>
<tr>
<td>Streptococcus sp λ-Strep11</td>
<td>5.0</td>
</tr>
<tr>
<td>Streptococcus sp. β-Strep 80</td>
<td>2.5</td>
</tr>
</tbody>
</table>

The structure of lemonomycin was reported by He and coworkers in 2000,19 which also confirmed the *in vitro* activity against susceptible strains of *S. aureus* and *B. subtilis* (MICs of 0.2 and 0.05 µg/mL, respectively) and performed *in vitro* assays with methicillin resistant *S. aureus* and vancomycin resistant *Enterococcus faecium* (MICs of 0.4 and 0.2 µg/mL,
respectively). In addition to the antibacterial activity, 1.20 also showed \textit{in vitro} activity against the human colon tumor cell line HCT116 (IC\textsubscript{50} = 0.36 µg/mL).

Structurally, the compound contains the tetracyclic core found in quinocarcin20 which includes a 3,8-diazabicyclo ring system and a rare bis-desoxy aminosugar portion, which has only been found in a few natural products21

1.4 Proposed biosyntheses for the tetrahydroisoquinoline antitumor antibiotics

The biosynthetic gene clusters of members of the three sub-families have been identified and the bioinformatics analyses revealed the polycyclic backbones are constructed by homologous nonribosomal peptide synthetases (NRPSs) (Figure 1.5).22,23 According to Oikawa and coworkers, the four systems share a unique \textit{N}-terminal acyl ligase (AL) domain, which has been found in lipopeptide NRPSs. They proposed that the AL domain is involved in the activation of a fatty acid chain, which is incorporated into an \textit{N}-acyl dipeptidyl moiety with the involvement of the two condensation-adenylation-peptidyl carrier protein (C-A-PCP) tri-domains. In addition, they suggested that a single module (SfmC and its homologs) is responsible for the incorporation of a tyrosine derivative into its PCP domain and the assembly of the tetrahydroisoquinoline rings, with the involvement of the reductase (R) and Pictet-Spenglerase (PS) domains. The NRPSs of quinocarcin (1.3) and cyanocycline (1.27) include an additional module (Qcn19 and Cya17, respectively), which is proposed to be involved in the formation of the pyrrolidine rings found in these natural products.22 The detailed function of the NRPS modules will be discussed later. Finally, it has been proposed that a peptidase domain (SfmE and its homologs) removes the fatty acid chain at a late stage of the biosynthesis.23
Figure 1.5. Domain organization of NRPSs for tetrahydroisoquinoline antitumor antibiotics biosynthesis. Abbreviations: A, adenylation domain; AL, acyl-CoA ligase domain; ACP, acyl carrier protein; C, condensation domain; PCP, peptidyl carrier protein; R, reductase domain; PS, Pictet-Spenglerase domain; P, peptidase domain

Scheme 1.6. Biosynthetic precursors to cyanocycline A (1.27)
Scheme 1.7. Biosynthesis of 3-hydroxy-5-methyl-\textit{O}-methyl-L-tyrosine (1.32)

The feeding studies conducted by Zmijewsky and coworkers demonstrated that tyrosine (1.21), glycine (1.24), serine (1.25) and ornithine (1.26) are incorporated into the polycyclic skeleton of cyanocycline A (1.27), and that methionine (1.28) is the source of the methyl groups (Scheme 1.6).24 In their studies on the biosynthesis of saframycin A from \textit{Streptomyces lavendulae}, Tang and coworkers identified a gene cassette that encodes the proteins responsible for the conversion of \textit{L}-tyrosine (1.21) into 3-hydroxy-5-methyl-\textit{O}-methyl-L-tyrosine (1.32) (Scheme 1.7).25 SfmM2 and SfmM3 were identified as a \textit{C}-methyl and \textit{O}-methyl transferases, respectively,25 and SfmD was characterized as a HEME-containing peroxidase that utilizes \textit{H}_2\textit{O}_2 as the oxidizing agent.26

A series of studies conducted by Oikawa and coworkers unveiled the role of the NRPS in the transformations that lead to the assembly of the pentacyclic core of saframycin A.22,23,27 As shown in Scheme 1.8, they proposed that the starter module of the NRPS (SfmA) includes an acyl ligase (AL) - thiolation (T) didomain, which loads a fatty acid unit into the SfmA module (1.33). The condensation-adenylation-thiolation (C-A-T) tridomain utilizes alanine (1.34) to build an \textit{N}-acylalanine (1.35) unit. SfmB loads and activates a glycine fragment (1.36), which reacts with 1.35 to form an \textit{N}-acylalanyl glycine unit (1.37). The thioester group is reduced by the reductase (R) module of SfmC, to release the \textit{N}-acyl dipeptide aldehyde (1.38) from SfmB. The aldehyde reacts with SfmC loaded with the tyrosine derivative 1.39 in reaction catalyzed by
the Pictet-Spenglerase (PS) domain to form tetrahydroisoquinoline 1.40. Then, aldehyde 1.42 is reductively released from the T domain, which is loaded with another unit of the tyrosine derivative. A second Pictet-Spengler reaction occurs between 1.42 and 1.39 to form intermediate 1.43, which is reductively released as aldehyde 1.44. The nitrogen of the southern tetrahydroisoquinoline ring attacks the aldehyde group to form the hemiaminal and complete the assembly of the pentacyclic core of saframycin A. Intermediate 1.45 is converted into pre-saframycin (1.46) through a series of transformations that include oxidations of the aromatic rings to p-quinones, an N-methylation, the hydrolysis of the N-acyl fragment by the peptidase module (SfmE) and the transamination of the alanine residue to form the pyruvyl fragment.

Scheme 1.8. Biosynthesis of pre-saframycin (1.46)
Sherman and coworkers identified the γ-proteobacterium *Candidatus Endoecteinascidia frumentensis* as the bacterial symbiont of *E. turbinata* that produces Et-743 (1.4)\(^2\) and proposed a biosynthetic pathway for this compound. They identified the genes encoding the enzymes EtuM1, EtuH, and EtuM2, as homologues of SfmM2, SfmD, and SfmM3, respectively, which are involved in the formation of 3-hydroxy-5-methyl-O-methyl-L-tyrosine (1.32) (*vide supra*). In addition, they identified the main modules of the NRPS as EtuA1, EtuA2, and EtuA3 and proposed the sequence outlined in Scheme 1.9. EtuA3 forms an N-acylcysteine fragment (1.49), which is combined by EtuA1 with a glycolic acid fragment (1.50) to build the T-loaded acylated depsipeptide 1.51.

In accordance with Oikawa’s proposed sequence (*vide supra*), intermediate 1.51 is reductively released by the R module of EtuA2 to form aldehyde 1.52. The tyrosine derivative 1.32 is loaded into EtuA2, to initiate the iterative Pictet-Spengler/reduction sequence that leads to the formation of intermediate 1.57, which cyclizes to produce pentacyclic intermediate 1.58. It has been proposed that EtuF3 is the peptidase involved the removal of the acyl chain and that a subsequent multi-step process, including the oxidation of the left hand side aromatic ring, the addition of the sulfhydryl group into a putative *ortho*-quinone methide intermediate and an acetylation, leads to the formation of 1.60. The compounds Et-583 (1.60), Et-597 (1.61), Et-596 (1.62) and Et-594 (1.63) have been isolated from *E. turbinata*. However, none of the enzymes involved in the transformation of 1.59 into Et-743 (1.4) have been identified. The proposed final steps of sequence involve the *N*-methylation of 1.60, a transamination step that gives rise to the *S*-substituted pyruvyl fragment of 1.62 and an oxidation that forms the methylenedioxy moiety of 1.63. Lastly, it was proposed that tyrosine derivative 1.64 is incorporated via a Pictet-Spengler
reaction to form the northern tetrahydroisoquinoline ring and that the resulting enzyme bound intermediate is converted into Et-743 through an unknown mechanism.

Scheme 1.9. Biosynthesis of Et-743 (1.3)
A report from Tang and coworkers revealed the biosynthetic origin of the glycolyl unit that is loaded into the starting modules of the NRPSs for naphthyridinomycin (1.1), from *Streptomyces lusitanus*, and quinocarcin (1.3), *Streptomyces melanovinaceus*. In both cases, they identified two-component transketolase (Tkase)/acyl carrier protein (ACP) systems that utilize ketoses as substrates for the preparation of the glycolyl fragments. As shown in Scheme 1.10, the NapB/QncN modules utilize a ketose phosphate (1.65) to form a glycoaldehyde-ThDP unit (1.67). The C-2 fragment is transferred to a lipoic fragment attached to NapD/QncL to form glycolyl lipoic acid intermediate 1.68. Then, the NapC/QcnM modules catalyze the transfer of the glycolyl unit to an acyl carrier protein (ACP), to form 1.70, which is utilized by the NRPSs for the incorporation of the C-2 fragment into the tetrahydroisoquinoline ring system of naphthyridinomycin (1.1) and quinocarcin (1.3). The mechanism of the ThDP-dependent incorporation of the C-2 unit into NapB/QncN starts with the attack of thiazolium ylide of thiamine diphosphate (ThDP) (1.71) into the carbonyl carbon of a ketose unit (1.72), to form intermediate 1.73. Then, the bond between C-2 and C-3 breaks in a process assisted by the imidazole moiety of a histidine residue (1.74), leading to the formation of the glycoaldehyde intermediate 1.76 and an aldose, such as D-gliceralehyde-3-phosphate (1.75).

In their study of the Et-743 producing organism, Sherman and coworkers reported several genes with unknown roles in the biosynthetic pathway, including two components of a possible pyruvate dehydrogenase complex (EtuP1 and EtuP2). Tang and coworkers identified these two proteins as homologs of the NapB/QcnN and NapD/QcnL systems and proposed that the biosynthetic origin of the glycolyl unit is the same for the three pathways.
1.5 Biosynthesis proposal for lemonomycin

The biosynthesis of lemonomycin has not been studied. However, we expect that it would occur analogously to the biosynthesis of the other members of the tetrahydroisoquinoline family of antitumor antibiotics. Based on the information discussed in the previous section, we propose that the tetracyclic ring system of lemonomycin is constructed by a NRPS homologous to the NRPSs of quinocarcin (1.3) and naphthyridomycin (1.1). As shown in Scheme 1.11, our proposed sequence involves the assembly of a T-loaded N-acyldepsipeptide 1.80 utilizing an acyl fragment loaded into the ACP of the first module 1.76, an unidentified amino acid 1.77 and a ketose-derived glycolyl unit 1.79 loaded into the third module.
Scheme 1.11. Proposed biosynthesis of lemonomycin
The N-acyldepsipeptide 1.80 is reductively released to afford aldehyde 1.81, which reacts with the tyrosine derivative unit loaded into the T domain of the fourth module (1.82) to give intermediate 1.83, in a reaction catalyzed by the Pictet-Spenglerase domain (PS). The reductase domain (R) reduces the thioester group to release aldehyde 1.84, which reacts with the α-amino group of an D-ornithine unit loaded into the T-domain of an different module (1.85), to form imine intermediate 1.86. The transamination of γ-amino group forms the aldehyde group of 1.87, which could react via an enol intermediate addition into the imine group, to form the pyrrolidine group of 1.88. In accordance with Oikawa’s proposal, we submit that the formation of the pyrrolidine ring involves the participation of a module that is homologous to Qcn19 and Cya17. Then, the reduction of the thioester group would form dialdehyde 1.89, which could cyclize to form the hemiaminal moiety of 1.90. The hydrolyses of the peptide and ester groups and the oxidation of the aromatic ring would afford lemonomycin aglycon (1.91), which could be transformed into lemonomycin (1.20) via a glycosylation event.
CHAPTER 2

Previous synthetic work on lemonomycin

2.1 Introduction

The structural complexity and biological activities of the tetrahydroisoquinoline antitumor antibiotics have made them attractive targets for the synthetic community. In this chapter we will discuss the synthetic work related to lemonomycin. To date, there are two total syntheses of lemonomycin by Stoltz30 and Fukuyama31,32 and synthetic studies by Magnus33,34 Zhu,35,36 Mulzer37 and our laboratory.38

2.2 Stoltz’s total synthesis

In 2003, Stoltz and coworkers made the first report of the total synthesis of lemonomycin.30 Their concise and convergent approach involved a longest linear sequence of 15 steps. The synthetic sequence starts with a [3+2] dipolar cycloaddition between an Oppolzer’s sultam-derived acrylamide (2.1) and oxidopyrazinium salt 2.2 (Scheme 2.1). The chiral auxiliary was removed under reductive conditions to afford primary alcohol 2.3. Protection of the hydroxyl with TIPSOTf, followed by a stereospecific iodination gave Z-iodoenamide 2.4, which was utilized in a Suzuki coupling with boronic ester 2.5 to form aryl enamide 2.6. The reduction of the double bond and the hydrogenolysis of the benzyl group provided 2.7 stereospecifically. The secondary amine was converted into the Cbz carbamate and the phenolic tosylate was cleaved with KOTMS to give 2.8. Then, the amide was converted into the Boc carbamate to facilitate the reduction of the carbonyl, and the acid-labile protecting groups were removed with methanolic HCl to give aminotriol 2.10. This compound was combined in a Pictet-Spengler reaction with aldehyde 2.11 (\textit{vide infra}) to afford substituted tetrahydroisoquinoline 2.12. After
removing the Cbz carbamate under hydrogenolysis conditions, an oxidation under Swern conditions39 was used to transform the two primary hydroxyls into the hemiaminal and aldehyde hydrate groups. Finally, an oxidation with ceric ammonium nitrate gave (-)-lemonomycin (1.20).

\[
\text{Scheme 2.1. Stoltz's total synthesis of lemonomycin (1.20)}
\]

The sequence for the preparation of aldehyde 2.11 started with the synthesis of ketone 2.14 from D-threonine (2.13) (Scheme 2.2). Felkin-controlled aldol addition of the lithium enolate of ethyl acetate into 2.14 gave 2.15 stereospecifically40. Then, formation of a lactone through the acid-mediated cleavage of the oxazolidine ring, followed by reaction with dimethoxymethane and TMSOTf to form the fused oxazolidine ring, reduction to the lactol with DIBAL and protection with allyl bromide provided 2.16. Treatment with REDAL, which
induced both the reduction of the hemiaminal ether and the cleavage of the benzenesulfonyl group, followed by a methylation under reductive amination conditions, and a Lemieux-Johnson oxidation, gave 2.11.

Scheme 2.2. Stoltz’s synthesis of aldehyde 2.11

2.2 Fukuyama’s total synthesis

In 2012, Fukuyama and coworkers published their total synthesis of lemonomycin.31 The first step in the sequence is the alkylation of Oppolzer’s sultam derived glycinate 2.17 with iodopropargylsilane 2.18, followed by acid hydrolysis of the imine to provide 2.19 as a single diastereomer (Scheme 2.3). Coupling with N-Boc glycine, followed by reflux with formic acid and protection with Boc anhydride gave diketopiperazine 2.21. This compound was combined with aldehyde 2.22 in a Perkin-type condensation,42 to form Z-enamide 2.23 with high stereoselectivity. Partial reduction of the triple bond, followed by sodium borohydride reduction of the activated carbonyl gave 2.24. Then, a TFA-induced Hosomi-Sakurai reaction was employed to form the diazabicyclo[3.2.1]octane ring system of 2.25. The secondary amine was
Scheme 2.3. Fukuyama’s total synthesis of lemonomycin (1.20)

converted into the Cbz carbamate and the enamide double bond was reduced with sodium cyanoborohydride under acidic conditions. Then, the resulting compound was treated with ozone followed by sodium borohydride, to afford 2.26. The primary hydroxyl was converted into the
TBDPS silyl ether, the phenolic mesylate was removed with LiHMDS and the amide was treated with sodium cyanoborohydride and sodium cyanide to give aminonitrile 2.27. This compound was combined with cinnamaldehyde in a Pictet-Spengler reaction that provided tetracycle 2.28 stereospecifically. Acetylation of the phenolic hydroxyl, followed by ozonolysis and treatment with sodium borohydride, gave 2.29. A glycosylation reaction with fluoroglycoside 2.30 (vide infra) was employed to form 2.31. A one-pot approach was used to cleave the phenolic acetate and install the methoxymethyl ether, and the Cbz group was removed under hydrogenolysis conditions to provide 2.32. Then, removal of the silyl protecting groups with TBAF and oxidation of the primary alcohol under Swern conditions with an acidic workup provided compound 2.33. The completion of the synthesis was achieved by the conversion of the aminonitrile into the hemiaminal with AgNO₃ and the oxidation of the aromatic ring to the p-quinone using ceric ammonium nitrate.

Scheme 2.4. Fukuyama’s synthesis of fluoroglycoside 2.30

The synthesis of the glycosylation reagent 2.30 involves the preparation of ketone 2.34 from d-threonine (2.13), with a sequence comprising Cbz protection, conversion of the carboxylic acid into a Weinreb amide, formation of the oxazolidine ring and transformation into the methyl ketone with MeMgBr (Scheme 2.4). Then, Felkin controlled addition of the lithium
enolate of EtOAc,40 followed by protection of the resulting tertiary alcohol as TBS ether and hydrogenolysis of the Cbz under reductive amination conditions gave lactone 2.35. The sequence was completed with a DIBAL reduction and the conversion of the resulting lactol into the fluoroglycoside with DAST.43

2.3 Magnus’s racemic synthesis of lemonomycinone amide

In 2005, Magnus and Matthews reported a racemic synthesis of lemonomycinone amide (2.52),33 a putative natural product that is structurally related to lemonomycin aglycon. They built a quinoline system \textit{via} a modification of the Larock isoquinoline synthesis44 that involved the sequential coupling of \textit{o}-iodoimine 2.38 with alkyne 2.39 under Castro conditions45 and a copper-catalyzed ring closure (Scheme 2.5). The addition of benzyloxymethyllithium46 to 2.40, followed by treatment with methyl chloroformate gave isoquinoline 2.41. The deprotection of the primary alcohol with TBAF induced the formation of the oxazolidinone ring, and the stereoselective reduction of the double bond, followed by treatment with hydrazine and KOH provided \textit{cis}-substituted tetrahydroisoquinoline 2.43. Then, conversion of the amino and hydroxyl groups into their silyl derivatives, followed by treatment with glycine derived mixed anhydride 2.44 provided amide 2.45. Hemiaminal thioeter 2.46 was obtained by oxidizing the primary alcohol and treating the resulting hemiaminal ether with tiophenol under acidic conditions. The alkylation of 2.46 with iodide 2.47, followed by inversion of the stereocenter with \textit{tert}-BuLi and removal of the TIPS protecting group gave 2.49. Then, oxidation under Swern conditions39 and conversion of the resulting aldehyde into the silyl enol ether provided 2.50. The formation of the diazabicyclo[3.2.1]octane ring system was achieved by treatment with AgBF\textsubscript{4}, which triggers an \textit{N}-acyliminium ion cyclization. The final three steps of the sequence
involve hydrogenolysis of the benzyl groups with Pearlman’s catalyst, the removal of the N-Boc carbamate under acidic and the oxidation of the aromatic ring with ceric ammonium nitrate.

Scheme 2.5. Magnus’ synthesis of lemonomycinone amide (2.52)

2.4 Zhu’s asymmetric synthesis of lemonomycinone amide

In 2009, Zhu and coworkers published an asymmetric synthesis of lemonomycinone amide, which involved an overall strategy that replicated Magnus’ approach for the construction of the diazabicyclo[3.2.1]octane ring system via a Lewis acid induced N-acyl iminium ion cyclization (vide supra).\(^{35b}\) The synthesis of the cis-tetrahydroisoquinoline fragment started with the enantioselective alkylation of tert-butyl glycinate 2.53 with benzyl bromide 2.54 in the presence of Corey-Lygo’s phase transfer catalyst (2.55),\(^{47,48}\) followed by hydrolysis of the imine and removal of the phenolic TBS ether to give tyrosine derivative 2.56 (Scheme 2.6). Then, a
Pictet-Spengler reaction between 2.56 and benzyloxyacetaldehyde provided cis-substituted tetrahydroisoquinoline 2.57. Protection of the secondary amino group as the Boc carbamate, followed by benzylation of the phenol and methanolic acidolysis of the tert-butyl ester furnished compound 2.58.

Scheme 2.6. Zhu’s asymmetric synthesis of lemongomycinone amide (2.52)

The sequence used for the conversion of L-glutamic acid (2.59) into 2.61 comprises an esterification, two consecutive Boc protection steps, a regiospecific reduction of the less sterically hindered ester with DIBAL-H and a reduction with NaBH₄ to form the primary alcohol. Then, removal of one of the N-Boc groups with cerium chloride, followed by TBS protection of the primary alcohol and hydrolysis of the ester with LiOH provided compound 2.62. Tetrahydroisoquinoline 2.58 and amino acid 2.62 were combined under peptide coupling
conditions to provide amide 2.63. After the reduction of the methyl ester with lithium borohydride, the resulting primary alcohol was oxidized under Swern conditions39 to afford hemiaminal 2.64. Then, treatment with ethanethiol and hafnium triflate provided hemiaminal thioether 2.65. This compound was converted into (-)-lemonomycinone amide using the same 5-step sequence employed by Magnus for the conversion of hemiaminal thioether 2.49 into (±)-lemonomycinone amide (\textit{vide supra}).

2.5 Zhu’s asymmetric synthesis of lemonose

![Scheme 2.7. Zhu’s asymmetric synthesis of lemonose](image)

In 2011, Zhu and coworkers published a synthesis of lemonose (2.73), the deoxyaminosugar found in lemonomycin.36 Their sequence starts with the conversion of D-threonine (2.13) into Weinreb amide 2.69 (Scheme 2.7). Then, the treatment of allylmagnesium bromide, followed by a diastereoselective addition of methylmagnesium bromide provided tertiary alcohol 2.70. Ozonolysis of the double bond with sodium borohydride as reducing agent, followed by treatment with TBAF furnished compound 2.71. After removal of the Boc carbamate with methanolic HCl, the resulting amine was bis-methylated under reductive amination conditions. The final step involved the regioselective oxidation of the primary alcohol, which was accomplished with the treatment of 2.72 with IBX under acidic conditions, to give lemonose (2.73).
2.6 Mulzer’s asymmetric construction of the tetracyclic core

Scheme 2.8. Mulzer’s synthesis of tetracycle 2.85

In 2008, Mulzer and co-workers published a report of the asymmetric construction of the tetracyclic core of lemonomycin.\(^{37}\) As shown in Scheme 2.8, their synthetic sequence started with the addition of the organolithium derivative of 2.74 into the Fmoc variant of \((R)\)-Garner’s aldehyde (2.75)\(^{49}\) to afford alcohol 2.76 as a mixture of diastereomers, which was subjected to an oxidation-reduction sequence to provide 2.77 stereoselectively. Then, protection of the secondary alcohol as the TBS ether, followed by treatment with piperidine to cleave the Fmoc carbamate and the oxazolidine ring furnished aminoalcohol 2.78. After protection of the primary alcohol as the TES ether and deprotection of the phenolic hydroxyl, the resulting aminophenol 2.79 was combined with benzyloxyacetaldehyde in a Pictet-Spengler reaction to form tetrahydroysoquinoline 2.80. This compound was combined with cyanohydrin 2.82\(^{50}\) in
trifluoroethanol to give compound 2.83 as a mixture of diastereomers, which were separable via column chromatography. Then, acetylation of the phenol of the major diastereomer, followed by selective deprotection of the primary hydroxyl with HF and oxidation with Dess-Martin periodinane provided hemiaminal 2.84. The completion of the sequence was achieved by treating 2.84 with TFA to induce the formation of an N-acyl iminium ion that triggers the intramolecular Hosomi-Sakurai reaction, which leads to tetracycle 2.85.

2.7 Fukuyama’s asymmetric construction of the tetracyclic core

Scheme 2.9. Fukuyama’s synthesis of tetracycle 2.98
In 2005, a report from Fukuyama and coworkers described the assembly of the tetracyclic core of lemonomycin. Their sequence starts with an Ugi four-component reaction that forms peptide 2.90 (Scheme 2.9). Acid-promoted formation of the piperazinone, followed by treatment with potassium tert-butoxide provided compound 2.92. Then, reduction of the exocyclic amide with NaBH₄, removal of the TBDPS protecting group and acetylation provided compound 2.93. This compound was combined with allyltrimethylsilane in a cross metathesis reaction using Grubbs second-generation catalyst, to furnish compound 2.94. Treatment with BF₃ etherate induced the formation of a conjugated N-acyl iminium ion, which underwent an intramolecular Hosomi-Sakurai reaction that formed the diazabicyclo[3.2.1]octane ring system of 2.95. A four-step sequence was used to exchange the N-Boc and acetate groups for N-Cbz and TIPS groups, respectively, and form 2.96. Then, the sequential treatment of this compound with DMDO and camphorsulfonic acid, followed by a stereospecific reduction with NaBH₃CN under acidic conditions and exchange of the mesylate group for a benzyl group provided compound 2.97. The sequence was completed with the oxidation of the primary alcohol with Dess-Martin periodinane and the cyclization of the resulting aldehyde in a Friedel-Crafts hydroxyalkylation reaction, to form the tetrahydroisoquinoline fragment and provide tetracycle 2.98.

2.8 Williams’ synthesis of the tetracyclic core

In 2007, Williams and coworkers published an asymmetric approach for the construction of the tetracyclic core of lemonomycin. As shown in Scheme 2.10, the sequence starts with the conversion of alcohol 2.100 into iodide 2.101, which was coupled with N-Boc oxazinone 2.102 to provide intermediate 2.103. Then, selective hydrogenolysis of the lactone fragment, followed by conversion into a mixed anhydride and reduction with sodium borohydride furnished alcohol 2.104. The N-Boc group was cleaved with TFA and the primary alcohol was
converted into the TBS ether to afford aminophenol 2.105, which was converted into tetrahydroisoquinoline 2.106 in a Pictet-Spengler reaction with ethyl glyoxalate. After conversion of the phenolic hydroxyl into an acetate and removal of the 1,2-diphenylethyl fragment, the resulting tetrahydroisoquinoline 2.107 was combined with N-Bn-N-Boc-Gly under peptide coupling conditions. Removal of the TBS ether and oxidation under Swern conditions provided aldehyde 2.109, which was treated with TFA and TEMPO under air to form conjugated iminium ion 2.110. Treatment with triethylamine formed an azomethine ylide, which underwent a [3+2] dipolar cycloaddition with tert-butyl acrylate to form tetracycle 2.111.

Scheme 2.10. Williams’ synthesis of tetracycle 2.111
A similar [3+2] dipolar cycloaddition strategy was used by Williams for the construction of the [3,8]-diazabicyclo ring system in the total syntheses of (-)-tetrazomine56 and (±)-quinocarcinamide.57 As shown in Scheme 2.11, the sequences involve the generation of an iminium ion via a NBS oxidation of a tricyclic allylic amine, followed by formation an azomethine ylide and its reaction with an acrylate ester. Both sequences required the reduction of the enamide double bond to complete the formation of the tetrahydroisoquinoline fragment found in the natural products. Treatment of 2.115 and 2.118 with H\textsubscript{2} and Raney® Nickel provided compounds 2.116 and 2.119, respectively. However, in the synthetic sequence towards lenomomycin the attempts to effect a similar transformation were unsuccessful.58 Compound 2.111 proved to be unreactive under a number of hydrogenation conditions, which included multiple catalysts and elevated pressures. These findings prompted the preparation of several derivatives of 2.111, but all of the attempts to reduce the enamide double bond failed. The substrates and conditions of the attempted hydrogenation conditions are listed in Appendix 1.
CHAPTER 3

Studies towards the synthesis of lemonomycin

3.1 Synthetic goals

The primary goal of the project was the development of a concise, novel and high yield route for the asymmetric synthesis of (-)-lemonomycin (1.20). In our initial strategy, we intended to explore the use of Williams’ [3+2] dipolar cycloaddition approach, which was described in Section 2.8. Our plan involved the preparation of substrates that would prevent the formation of the enamide double bond, in an attempt to circumvent the problems encountered with its lack of reactivity under catalytic hydrogenation conditions.

3.2 Dithiane approach

3.2.1 Retrosynthetic analysis

Scheme 3.1. Initial retrosynthetic analysis
We envisioned lemomomycin as the result of a late stage glycosylation of tetracycle 3.1 using lemonose derivative 3.2 (Scheme 3.1). Compound 3.1 could be derived from the cycloadduct of tert-butyl acrylate and azomethine ylide 3.3. We expected that the presence of the dithiane moiety at the benzylic position of 3.3 would prevent the tautomerization process that leads to the formation of the enamide double bond. This intermediate could be prepared in several steps from tetrahydroisoquinoline 3.4, which in turn would be the product of a Pictet-Spengler reaction between aminophenol 3.5 and ethyl glyoxalate. Finally, 3.5 could be prepared from the coupling product of phenol 3.7 and (R)-Garner’s aldehyde 3.6\(^{59}\) under modified Casiraghi conditions.\(^{60,61}\)

3.2.2 Synthesis of the first Pictet-Spengler substrate

![Scheme 3.2. Synthesis of compound 3.14](image)

Commercially available 2,3-dimethoxytoluene (3.8) was formylated under Rieche-Gross conditions and the resulting aldehyde (3.9) was treated with \(m\)-CPBA to provide phenol 3.7 (Scheme 3.2). This compound was sequentially treated with \(i\)-PrMgCl and (R)-Garner’s aldehyde...
to provide 3.10 in 92% yield. Allylation of the phenol, followed by acid-mediated methanolysis of the oxazolidine and conversion of the resulting diol into an acetonide afforded 3.13 in 33% yield. Then, the N-Boc carbamate was removed under Ohfune conditions62 to furnish compound 3.14 in 72% yield. The compound was treated with the conditions described by Zhu and coworkers for the conversion of amine 3.15 into tetrahydroisoquinoline 3.16 (Scheme 3.3).61 Intriguingly, despite the structural similarity between both compounds, 3.14 was not converted into the corresponding tetrahydroisoquinoline 3.18, and only imine 3.17 was observed in the reaction mixture (Scheme 3.4). The use of higher temperatures (i.e. 40, 80 and 120 °C) led to the decomposition the imine, and the use of an alternate Brønsted acid (i.e. BHT) gave similar results.

![Scheme 3.3. Zhu’s Pictet-Spengler reaction](image)

![Scheme 3.4. Attempted synthesis of tetrahydroisoquinoline 3.18](image)

3.2.3 Formation of the tetrahydroisoquinoline system

We decided to abandon the initial route in favor of a synthetic sequence involving a Pictet-Spengler substrate with a free hydroxyl ortho to the unsubstituted aromatic position. This required the preparation of phenol 3.22, which was accomplished in four steps from
benzaldehyde 3.9 (Scheme 3.5). The sequence involved bis-demethylation, selective protection of the hydroxyl para to the formyl group, methylation and a Dakin oxidation. The treatment of 3.22 with EtMgBr and (R)-Garner’s aldehyde, followed by selective methylation of the phenolic hydroxyl gave compound 3.24 in 95% yield. The oxazolidine was cleaved under acidic conditions and the resulting diol was transformed into the acetonide to give 3.25 in 77% yield. Then, hydrogenolysis of the benzyl group with Pearlman’s catalyst and removal of the Boc group under Ohfune conditions gave aminophenol 3.27. A Pictet-Spengler reaction between 3.27 and ethyl glyoxalate provided tetrahydroisoquinoline 3.28.

A three-step sequence was used to transform glycine ethyl ester (3.29) into N-Bn-N-Ns-Gly (3.30) (Scheme 3.6). Then, treatment with oxalyl chloride provided acyl chloride 3.32, which was reacted with tetrahydroisoquinoline 3.28 to provide compound 3.33. Selective hydrolysis of the ester with lithium hydroxide, followed by conversion of the phenol into an allyl

Scheme 3.5. Synthesis of tetrahydroisoquinoline 3.28

3.2.4 Incorporation of the of the glycine fragment

A three-step sequence was used to transform glycine ethyl ester (3.29) into N-Bn-N-Ns-Gly (3.30) (Scheme 3.6). Then, treatment with oxalyl chloride provided acyl chloride 3.32, which was reacted with tetrahydroisoquinoline 3.28 to provide compound 3.33. Selective hydrolysis of the ester with lithium hydroxide, followed by conversion of the phenol into an allyl
ether gave compound 3.35. Our original plan for this compound involved the removal the acetonide, the selective protection of the primary alcohol and the oxidation of the secondary alcohol to form a ketone, which eventually would have allowed the installation of a 1,3-dithiane protecting group. However, the conditions tested for the hydrolysis of the acetonide led to decomposition of the starting material. These results prompted the re-evaluation of the synthetic approach that revealed that the planned number of steps for the construction of the tetracyclic core was close to 40 and we decided to abandon this route in favor of a more concise and convergent approach.

Scheme 3.6. Synthesis of amide 3.35
3.3 Hosomi-Sakurai approach

3.3.1 Retrosynthetic analysis

As shown in Scheme 3.7, we envisioned lemonomycin as the result of the late stage glycosylation of tetracycle 3.36, which could be derived from compound 3.37. This compound could be obtained through an acid-catalyzed Hosomi-Sakurai reaction involving intermediate 3.38, which could be accessed through the coupling of (S)-N-Boc-allylglycine 3.40 and tetrahydroisoquinoline 3.39. This intermediate could be prepared from 3.41, which is a known compound.53
3.3.2 Synthesis of the allyltrimethylsilane glycine derivative

Scheme 3.8. Synthesis of carboxylic acid 3.40

The preparation of the first coupling partner started with the synthesis of (S)-N-Boc-allylglycine (3.43) from diethylaminomalonate (3.42), using the 5-step sequence described by Berner and coworkers (Scheme 3.8).\(^63\) Acid 3.43 was esterified with methyl iodide and sodium bicarbonate to give compound 3.44. Treatment with allyltrimethylsilane and Grubbs second-generation catalyst under microwave irradiation gave 3.45, which was converted into the desired acid 3.40 through LiOH-mediated hydrolysis and acidification.

3.3.3 Attempted formation of the cyclization precursor

Scheme 3.9. Attempted formation of hemiaminal 3.38

As shown in Scheme 3.9, the preparation of the tetrahydroisoquinoline fragment started with the synthesis of compound \textbf{3.41}, using a 15-step sequence from 2,6-dimethoxytoluene, which was described in a previous report from the Williams group.53 The synthesis of \textbf{3.47} was achieved by bis-benzylation of \textbf{3.41}, followed by removal of the TBS and \textit{N}-Boc protecting groups with trifluoroacetic acid. With compounds \textbf{3.47} and \textbf{3.40} in hand, we converted them in low yield into amide \textbf{3.48}, using PyBOP as the coupling reagent. We made several unsuccessful attempts to transform \textbf{3.48} into \textbf{3.38} using multiple oxidation conditions, including Swern oxidation,39 TPAP/NMO,64 \textit{Py}•SO\textsubscript{3}65 and Dess-Martin periodinane.51 These results prompted a new evaluation of the synthetic strategy in light of the publication of Mulzer’s synthetic approach (\textit{vide supra}),37 which involved a very similar overall strategy that comprised the initial formation of the tetrahydroisoquinoline ring system and a homologous Hosomi-Sakurai reaction for the construction of the diazabicyclo[3.2.1]octane ring system. At that point in time we decided to abandon this route and to explore alternate synthetic approaches.

\textbf{3.4 Redefinition of the synthetic strategy}

An evaluation of the results discussed in the previous section prompted a reconsideration of the [3+2] dipolar cycloaddition strategy for the construction of the tetracyclic core. However, such endeavor required the implementation of a plan for addressing the issue of the reduction of the enamide double bond, which was discussed in Section 2.8. As shown in Scheme 3.10, there is a clear reactivity difference between compounds \textbf{2.115} and \textbf{2.118}, and compound \textbf{2.111} (Scheme 3.10) and its derivatives (Appendix 1). Our initial interpretation of these results was based on the apparent electronic differences between the aromatic rings of the two groups of compounds. We attributed the lack of reactivity of the enamide double bond to the higher number of electron donating aromatic substituents found in \textbf{2.111} and its derivatives. Therefore,
we decided to implement a synthetic plan aimed at the generation of hydrogenation substrates with less electron-rich aromatic moieties than the ones found in the unreactive compounds.

Scheme 3.10. Comparison of the hydrogenation substrates

3.5 Attempted formation of alternate cycloaddition precursors

3.5.1 Retrosynthetic analysis

In our updated synthetic plan, we envisioned that lemonomycin aglycon 3.49 could be derived from compound 3.50 through reduction of the double bond with three acetoxy substituents attached to the aromatic ring (Scheme 3.11). Compound 3.50 could be prepared with a sequence involving deacetylation, oxidation/cleavage of the methylenedioxy fragment, reduction and acetylation, starting from compound 3.51. This compound could be obtained as the product of a [3+2] dipolar cycloaddition involving tert-butyl acrylate and azomethine ylide 3.52. This intermediate could be prepared from tetrahydroisoquinoline 3.53, which could be formed with a Pictet-Spengler reaction between aminophenol 3.54 and ethyl glyoxalate.
3.5.2 Attempted formation of the tetrahydroisoquinoline system

We prepared aldehyde 3.56 using the 5-step sequence from sesamol (3.55) described by Saito and coworkers (Scheme 3.12). Benzylation of the phenol, followed by reduction with sodium borohydride provided alcohol 3.58. Then, we adapted the chemistry developed in the Williams group for the conversion of alcohol 2.100 into tetrahydroisoquinoline 2.106 (Scheme 2.10) to attempt the preparation of our desired tetrahydroisoquinoline system. Thus, alcohol 3.58 was transformed into the corresponding benzylic iodide (3.59), which was coupled with N-Boc oxazinone 2.102 to provide compound 3.60 in 99% yield. Selective hydrogenolysis of the lactone, followed by mixed anhydride formation and reduction with NaBH₄ afforded compound 3.62, which was then converted into compound 3.54 after treatment with TFA to remove the N-Boc group and protection of the primary alcohol as the TBS ether. Aminophenol 3.54 was reacted with ethyl glyoxalate to provide a single diastereomer of a compound that was tentatively identified as oxazepane 3.63. We submit that this result was caused by the nucleophilic attack of the phenolic oxygen onto the incipient imine. The obvious turnaround for this problem would involve the protection of the phenol and the use of Lewis or Brønsted acids to promote the
Pictet-Spengler reaction. However, we decided to focus on other concurrent approaches and no further experimental work was done with this route.

![Scheme 3.12: Synthesis of oxazepane 3.63](image)

3.5.3 Attempted formation of a tricyclic hemiaminal

In an attempt to gain rapid access to our desired cycloaddition precursors, we decided to prepare known methylenedioxy-substituted tetrahydroisoquinoline compounds, which can be accessed using concise routes. Consequently, we used the 9-step sequence described by Zhu and coworkers\(^6\) to prepare compound 3.15 (Scheme 3.13). The reaction of 3.15 with acyl chloride 3.64 provided amide 3.65 in 64\% yield. Treatment with Dowex\(^5\) 50WX8 in methanol,\(^6\)\(^8\) effected both the removal of the acetonide and the formation of the methyl ether to give compound 3.66. Oxidation of primary alcohol with Dess-Martin periodinane\(^5\)\(^1\) provided aldehyde 3.67. The removal of the N-Fmoc group with diethylamine formed a single compound that could not be
identified as hemiaminal 3.68, thus precluding the preparation of the desired azomethine ylide intermediate (3.69). This result prompted the modification of the sequence to attempt the removal of the N-Fmoc group in an earlier stage of the sequence. However, the treatment of compound 3.65 with diethylamine induced the formation of diketopiperazine 3.70. At this stage we realized that the use of Fmoc as the protecting group in the glycine fragment was not compatible with our synthetic plan. However, our attempts to generate an analog of 3.65 with an N-Boc-N-Bn-glycyl fragment were unsuccessful. Therefore, we decided to focus on the other concurrent approaches that we were pursuing at that point in time and no further experimental work was done with this route.

Scheme 3.13. Attempted formation of hemiaminal 3.68
3.5.4 Orthogonally protected aromatic fragment approach.

We decided to modify the synthetic strategy outlined in Scheme 3.11, to attempt the formation of the tetrahydroisoquinoline using a Pictet-Spengler substrate that would include a hydroxyl group ortho to the unsubstituted aromatic position. As shown in Scheme 3.14, we envisioned that compound 3.71 could be accessed from aminocatechol 3.72 and ethyl glyoxalate. This compound could be derived from orthogonally protected oxazinone 3.73, which in turn could be the product of the alkylation of N-Boc oxazinone 2.102 with benzylic iodide 3.74. This plan mimics the strategy used for the preparation of compound 2.106 (Scheme 2.10) and the attempted formation of tetrahydroisoquinoline 3.53 (Schemes 3.11 and 3.12, vide supra).

Scheme 3.15. Attempted formation of oxazinone 3.73
As shown in Scheme 3.15, the sequence that gave access to the orthogonally protected benzyl alcohol started with the bis-benzylation of aldehyde 3.19 to give 3.75. A Dakin oxidation, followed by an \textit{ortho}-formylation with hexamethylenetetramine in glacial acetic acid gave compound 3.78 in modest yield. Then, protection of the free phenol with TBSCI and DIPEA provided aldehyde 3.79, which was reduced with NaBH\textsubscript{4} to give benzyl alcohol 3.80 in low yield. With this compound in hand, we unsuccessfully attempted its conversion into benzylic iodide 3.74 and the coupling with oxazinone 2.102. The separation of the reaction mixture allowed the recovery of intact 2.102, which was likely re-protonated during the aqueous quench, along with several unidentified products derived from 3.74. We suspect that this result was caused by the low solubility of 3.74 in the reaction mixture, thus preventing the alkylation from happening. We submit that the solubility issues are caused by the large size of the benzyl, TBS and iodo substituents. Once again, we decided to focus on the other concurrent approach that we were pursuing at that point in time and no further experimental work was done with this route.

3.6 Construction of the tetracyclic core

3.6.1 Retrosynthetic analysis

The unsatisfactory results discussed in previous sections forced a re-evaluation of the synthetic strategy and the exploration of alternative routes for the construction of the tetrahydroisoquinoline ring system. In our updated plan, we envisioned that lemonomycin could be accessed from compound 3.81, which could be prepared from bis-acetoxy-substituted tetracycle 3.82 through reduction of the enamide double bond and epimerization of the southern benzylic position and reduction of the ester (Scheme 3.16). Compound 3.82 could be formed from tetracycle 3.83 through oxidation of the aromatic ring to the \textit{para}-quinone, followed by reduction to the hydroquinone and acetylation. The preparation of 3.83 would involve the use of
the [3+2] dipolar cycloaddition involving azomethine ylide 3.84, which could be obtained from aldehyde 3.85. The tetrahydroisoquinoline system of 3.85 could be formed through a Pictet-Spengler reaction involving a derivative of bromotyrosinol 3.86, which is a known compound.

Scheme 3.16. Retrosynthetic analysis

Scheme 3.17. Synthesis of tetrahydroisoquinolined 3.90a and 3.90b
3.6.2 Synthesis of the tetrahydroisoquinoline fragment

The preparation of bromotyrosinol 3.86 (Scheme 3.17) was accomplished in 10 steps from L-tyrosine (1.21), using the method described by Liao.69 We initially attempted to perform the direct conversion of 3.86 into bis-silyl ether 3.88 using two equivalents of TBSCl, but the yields were inconsistent and low (<30%). The lack of reactivity of the primary hydroxyl of 3.86 is consistent with the regioselectivity observed in the reactions between TBSCl and diols bearing a β-aminoalcohol motif.70 We concur with the explanation provided by the authors, which stated that the nucleophilicity of the primary hydroxyl is reduced by internal hydrogen bonding to the neighboring amino group. By increasing the relative amount of TBSCl to six equivalents, compound 3.86 was converted into the tris-silylated compound 3.87. Unexpectedly, the hydrolysis of the silylamine function required a prolonged vigorous stirring with aqueous NH₄Cl at room temperature (~ 2h) to form the bis-silyl ether 3.88 in 90% yield. The phenolic silyl ether was selectively cleaved with one equivalent of TBAF at 0 °C,71 to afford compound 3.89 in 98% yield.

The next step entailed the formation of the trans-tetrahydroisoquinoline ring via a Pictet-Spengler reaction between 3.89 and ethyl glyoxalate. Previously, our group reported a similar transformation, which was performed by stirring a solution of the starting materials in acetonitrile for 3.5 days at 50 °C, which afforded the trans- product stereospecifically.53 A similar report by Zhu and coworkers involved the use of LiCl, hexafluorisopropanol and molecular sieves, and stirring the suspension in toluene at room temperature for 48 h.61 Since none of these mild conditions led to the formation of the desired tetrahydroisoquinoline ring system, we decided to adapt the reaction conditions that were originally described by Zhu72 to our substrate. The amount of acetic acid was reduced from 2.5 equivalents to 0.2 equivalents to
prevent cleavage of the \(O\)-TBS ether due to the prolonged exposure to the acid. In the present system, treatment of a solution of compound 3.89 and ethyl glyoxalate with \(CF_3CH_2OH \), AcOH (0.2 eq.) and 4 Å MS afforded an 8:1 mixture of 3.90a and 3.90b in 82% yield. These two diastereomers were separated via flash chromatography.

3.6.3 Formation of the tetracyclic ring system

![Scheme 3.18. Preparation of aldehyde 3.85](image)

As shown in Scheme 3.18, selective acetylation of compound 3.90a,\(^{73}\) followed by hydrogenolysis of the C-Br bond\(^{69}\) provided tetrahydroisoquinoline 3.95 (Scheme 3.18). Following the conditions described in the previous report from the Williams group,\(^{38}\) we converted compound 3.95 into aldehyde 3.85, which is the substrate required for the \([3+2]\) dipolar cycloaddition. Thus, tetrahydroisoquinoline 3.95 and \(N\)-Boc-N-Bn-Gly were coupled using EDCI, and the resulting amide was treated with TBAF to cleave the \(O\)-TBS ether and then oxidized under Swern conditions\(^{39}\) to afford aldehyde 3.85.

As illustrated in Scheme 3.19, aldehyde 3.85 was dissolved in \(CHCl_3 \) and treated under aerobic conditions with TFA\(^{74,75,76}\) (50 eq.) and TEMPO (0.1 eq.), to generate iminium ion 3.98, which tautomerizes to form ammonium ion 3.99. This intermediate is autoxidized \textit{in situ} to
afford conjugated iminium ion 3.100, which was concentrated to dryness and taken up in CHCl₃. Addition of triethylamine induces the formation of azomethine ylide 3.101, which is trapped in situ by tert-butyl acrylate to give a 2.4:1 mixture of tetracycles 3.102a and 3.102b in a combined 59% yield. We propose that the dipolarophile adds from the Re face of the iminium ion carbon to form 3.102a, which epimerizes under the reaction conditions to form 3.102b.

Scheme 3.19. Formation of cycloadducts 3.102a and 3.102b

3.6.4 Redefinition of the synthetic strategy

With compounds 3.102a and 3.102b in hand, we conducted a thorough examination of the previous related work, with the intention of choosing an optimal strategy for the reduction of the double bond. As part of such process, we built molecular models of the compounds that were successfully hydrogenated in the total syntheses of (-)-tetrazomine and (+)-quinocarcinamide, the newly synthesized tetracycles and some of the substrates that failed to undergo hydrogenation in the previous synthetic approach. As shown in Figure 3.1, compounds 2.115 and 2.118a have relatively small groups attached to the side of the tetracyclic structures that binds to the surface of the heterogeneous catalyst during the hydrogenation event. Moreover, we expect that an inversion of the configuration of the secondary amine nitrogen, which would
allow the formation of a coordinate bond, might improve the binding of the molecule to the catalyst and facilitate the reaction. The evaluation of the structure of 2.111 revealed several key facts that were overlooked during our previous assessments. First, we concluded that the formation of a bonding interaction between the enamide double bond carbons and the metal surface is not possible with a benzyl group attached to the amino nitrogen.

Figure 3.1. Representation of the calculated equilibrium geometry conformations\(^7\) of compounds 2.115, 2.118a and 2.111
Furthermore, we submit that inversion of the nitrogen configuration is not possible, because it would require the benzyl and tert-butyl ester substituents to be in close proximity. We also concluded that the ester groups of 2.111 prevent the formation of bonding interactions between the catalyst and the reactive centers, which would be required for a successful hydrogenolysis of the benzyl group. Therefore, we concluded that the removal of the benzyl group in our system would require the conversion of at least one of the ester groups into a smaller substituent (e.g., hydroxymethyl) or the inversion of the configuration at the southern benzylic position of the tetrahydroisoquinoline moiety. Lastly, we concluded that the reduction of the enamide double bound would require the removal of the benzyl group, and the conversion of the ethyl ester into a hydroxymethyl group or the inversion of the southern benzylic stereocenter.

3.6.5 Initial modification of the tetracyclic core

With the mixture of compounds 3.102a and 3.102b in hand, we attempted the use of basic conditions to modify the diastereomeric ratio. However, were unable to detect a change in the ratio using DBN, DBU, Cs$_2$CO$_3$ and Et$_3$N. The previous experiments conducted in the Williams group with similar systems indicated that reduction to the aldehyde is required for successful epimerization of the benzylic position.56-58

\begin{center}
\textbf{Scheme 3.20.} Synthesis of compounds 3.105a and 3.105b
\end{center}
Then, we turned our attention to the conversion of the tert-butyl ester into a hydroxymethyl group to attempt the debenzylation of the piperazinone amine. Thus, following Williams group precedent, treatment of 3.102a and 3.102b with TFA, followed by conversion into a mixed anhydride and reduction with sodium borohydride gave the desired mixture of epimeric alcohols 3.104a and 3.104b in moderate yield (Scheme 3.20). The use of standard conditions for the deprotection of tertiary benzylamines (Pearlman’s catalyst, H₂ at 50 psi, EtOH) effected the conversion into 3.105a and 3.105b in 75% yield. This result confirmed one of the predictions discussed in the previous section, in relation to the influence of the tert-butyl ester group on the reactivity towards debenzylation of our tetracyclic compounds. At this stage, we decided to adopt a strategy aimed at the initial epimerization of the southern benzylic position, which involved attempting the debenzylation and transformation of the tert-butyl ester at later stages of the sequence. With this decision we intended to reduce the total number of steps in our planned sequence, because the use of a route utilizing compounds 3.105a and 3.105b would have required the installation of additional protecting groups on both the primary alcohol and the secondary amine.

3.6.6 Epimerization of the southern benzylic stereocenter

Deacetylation of the 3.102a/3.102b mixture under standard methanolysis conditions provided a 5:1 mixture of 3.106a and 3.106b in 70% yield (Scheme 3.21). We suggest that 3.106b decomposes under the reaction conditions at a higher rate than 3.106a, which provides an explanation for both the moderate yield and the change in the diastereomeric ratio. The chemoselective reduction of the ethyl esters with one equivalent of LiAlH₄ at -10 °C, afforded a 3:1 mixture of aldehydes 3.107a and 3.107b in 55% yield. As shown in Scheme 3.22, we propose that the observed chemoselectivity can be explained by the initial formation of a
phenoxyaluminum hydride species (3.109), which upon delivery one hydride to the ester, forms a stable 7-membered ring alkoxy(phenoxy)aluminum hydride species (3.110) that does not undergo a second hydride addition. We submit that the partial epimerization seen in this step is promoted by the slightly basic workup conditions.

Scheme 3.21. Synthesis of aldehydes 3.108a and 3.108b

Scheme 3.22. Proposed rationale for the chemoselective reduction of 3.106a/3.106b

Then, treatment of 3.107a and 3.107b with BnBr and Na₂CO₃ formed the phenolic benzyl ethers and induced additional epimerization of the aldehyde’s α carbon, to provide a 2.2:1
mixture of 3.108a and 3.108b which was then reacted with DBN in THF to invert the epimeric ratio (Scheme 3.21). Since, these two compounds are very unstable to silica gel, we did not attempt their separation for the purpose of recycling of 3.108a.

3.6.7 Hydrogenation of the enamide double bond

As shown in Scheme 3.23, the 1:2.2 mixture of aldehydes 3.108a and 3.108b was then treated with sodium borohydride to afford a mixture of alcohols 3.111a and 3.111b, which were separated via flash chromatography to give 3.111b in 65% yield. The sequence used to transform the 3.102a/3.102b mixture into 3.111b not only provided the desired configuration in the benzylic position but also furnished an unhindered substrate for the N-debenzylation of the piperazinone amine. With compound 3.111b in hand, we attempted the debenzylation reaction with the conditions used for the transformation of 3.104a/3.104b into 3.105a/3.105b (Pearlman’s catalyst, H2 at 50 psi, EtOH, Scheme 3.20). Unfortunately, the desired product was formed only the first attempted reaction and all the subsequent attempts to reproduce this result were unsuccessful. We tentatively identified the unstable product formed in the subsequent attempts as the corresponding bis-debenzylated hemiaminal ether, which could result from the reduction of the amide and the incorporation of EtOH. We also made several attempts using Pd(OH)2 and aprotic solvents (e.g. THF, EtOAc), but only the O-debenzylation product was formed.

To our delight, the hydrogenolysis in glacial acetic acid (10% Pd/C, 1 atm) effected the bis-debenzylation of 3.111b to afford 3.112 in 92% yield. The removal of the N-benzyl group provided the desired unhindered substrate for the hydrogenation of the enamide double bond. Gratifyingly, the treatment of 3.112 with Raney® nickel and H2 100 psi provided compound 3.113 in 73% yield. These two results confirmed our hypotheses about the role of the steric
factors in the outcome of both the debenzylolation of the tertiary benzylamine and hydrogenation of the enamide double bond.

3.7 Concluding remarks

In summary, we have accomplished the asymmetric construction of the tetracyclic core of (-)-lemonomycin. An advanced tetracyclic intermediate was prepared from known bromotyrosinol 3.86 in sixteen steps. Efforts to gain access to (-)-lemonomycin through this advanced intermediate are currently under investigation.
REFERENCES

60

58. Chen, Y. Studies towards the total synthesis of (-)-lemonomycin Colorado State University, 2005.

77. The equilibrium geometry conformations were calculated with Spartan'10, using the Hartree-Fock/3-21G model. Spartan'10, Wavefunction Inc. Irvine, CA.
CHAPTER 4

Experimental procedures

4.1 General conditions

Unless otherwise noted, all materials were obtained from commercial sources and used without purification. All reactions requiring anhydrous conditions were performed under a positive pressure of argon using flame-dried glassware. Organic solvents were degassed with argon and dried through a solvent purification system (Pure Process Technology). Flash chromatography was performed on silica gel grade 60 (230×400 mesh) from Sorbent Technologies. Thin layer chromatography was performed on glass plates coated with silica gel grade 60, from Merck. Melting points were measured in open-end capillary tubes and are uncorrected. 1H NMR and 13C NMR spectra were recorded on Varian 300 or 400 MHz spectrometers as indicated. Proton spectra in CDCl$_3$ were referenced to residual CHCl$_3$ at 7.26 ppm. Carbon spectra in CDCl$_3$ were referenced to 77.16 ppm. Proton spectra in CD$_3$OD were referenced to residual CHD$_2$OD at 3.34 ppm. Proton spectra in DMSO-d_6 were referenced to residual CD$_3$SOCD$_2$H at 2.50 ppm. Infrared spectra were recorded on a Bruker Tensor FT-IR spectrometer. High-resolution mass spectra were obtained using a TOF spectrometer using simultaneous electrospray (ESI) and atmospheric pressure chemical ionization (APCI). Optical rotations were recorded on a Rudolph Research Autopol polarimeter, at a wavelength of 589 nm.
4.2 3,4-dimethoxy-2-methylbenzaldehyde (3.9)

To a stirred solution of 2,3-dimethoxytoluene (3.8) (40.7g, 0.27 mol, 1 eq.) in CH₂Cl₂ (250 mL), at 0°C under Ar, was added TiCl₄ (47 mL, 0.43 mol, 1.6 eq.) followed by a dropwise addition of a solution of Cl₂HCOCH₃ (25 mL, 0.28 mol, 1.05 eq.) in CH₂Cl₂ (125 mL). The mixture was stirred at 0°C for 15 min and then at RT for 2h. The reaction was poured over crushed ice, stirred overnight, the phases separated and the organic layer was rinsed with 5% NaHCO₃, dried (Na₂SO₄), filtered and concentrated under reduced pressure. The resulting oil was seeded with crystals from a previous batch to afford the title compound as a crystalline solid (47.0 g, 99%).

¹H-NMR (300 MHz; CDCl₃): δ 10.11 (s, 1H), 7.59 (d, J = 8.6 Hz, 1H), 6.89 (d, J = 8.6 Hz, 1H), 3.94 (s, 3H), 3.79 (s, 3H), 2.59 (s, 3H).
Figure 4.1. 1H NMR spectrum of compound 3,9 (300 MHz, CDCl$_3$)
4.3 3,4-dimethoxy-2-methylphenol (3.7)

To a stirred solution of 3,4-dimethoxy-2-methylbenzaldehyde (3.9) (7.81 g, 43.4 mmol, 1 eq.) in CHCl₃ (200 mL) at 0°C was added m-CPBA (20.38 g, 130 mmol, 3.0 eq.). The solution was warmed to RT, stirred for 10 min. and then refluxed for 3h. The resulting mixture was washed with 10% NaS₂O₃ (2 × 100 mL), NaHCO₃ (3 × 50 mL) and brine (2 × 50 mL). The organic phase was concentrated under reduced pressure, diluted with MeOH (50 mL), cooled to 0°C, acidified with conc. HCl (1 mL, 12 mmol) and stirred at RT for 12h and then concentrated under reduced pressure. The residue was purified by flash chromatography with 5:1 hexanes/EtOAc to provide the title compound as a yellow solid (4.88 g., 67%). Rₛ = 0.4 (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz; CDCl₃): δ 6.64 (d, J = 8.8 Hz, 1H), 6.51 (d, J = 8.8 Hz, 1H), 4.44 (s, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 2.18 (s, 3H).
Figure 4.2. 1H NMR spectrum of compound 3,7 (300 MHz, CDCl$_3$)
4.4 (R)-tert-butyl 4-((R)-hydroxy(2-hydroxy-4,5-dimethoxy-3-methylphenyl)methyl)-2,2-dimethyloxazolidine-3-carboxylate (3.10)

To a solution of 3,4-dimethoxy-2-methylphenol (3.7) (0.22 g, 1.3 mmol, 1.0 eq.) in dry THF (3.0 mL), under Ar atmosphere, was added i-PrMgCl (2.0 M in THF, 700 µL, 1.4 mmol, 1.08 eq.) at RT. After 5 min. of stirring, a solution of (R)-tert-butyl 4-formyl-2,2-dimethyloxazolidine-3-carboxylate (R-Garner’s aldehyde) (320 mg, 1.4 mmol, 1.8 eq.) in CH2Cl2 (3 mL) was added dropwise and the resulting mixture was stirred overnight. The reaction was quenched with sat. aq. NH4Cl (10 mL), the phases were separated, the organic layer was rinsed with brine (10 mL), filtered and concentrated under reduced pressure. The crude was purified by flash chromatography with 5:1 hexanes/EtOAc to afford the title compound (0.34g, 66%); Rf = 0.3 (4:1 hexanes/EtOAc) 1H-NMR (300 MHz; CD3OD): mixture of rotamers, δ 6.56 (s, 1H), 4.29-4.22 (m, 1H), 4.09-4.00 (m, 1H), 3.89 (dd, J = 9.4, 6.3 Hz, 1H), 3.77 (s, 3H), 3.73 (br s, 3H), 2.10 (s, 3H), 1.52 (br s, 9H), 1.44 (br s, 3H), 1.29 (br s, 3H). HRMS (FAB+) calcd. for C20H31NO7 (M+): (m/z) 397.2101; found (m/z) 397.2095.
Figure 4.3. 1H NMR spectrum of compound 3.10 (300 MHz, CD$_3$OD)
4.5 **Tert-butyl ((4R,5R)-4-(2-allyloxy)-4,5-dimethoxy-3-methylphenyl)-2,2-dimethyl-1,3-dioxan-5-yl)carbamate (3.13)**

(R)-tert-butyl 4-(((R)-(2-(allyloxy)-4,5-dimethoxy-3-methylphenyl)(hydroxy)methyl)-2,2-dimethyloxazolidine-3-carboxylate (3.11)

A solution of compound 3.10 (0.34 g, 0.86 mmol, 1.0 eq.) in dry DMF (8.0 mL) was added Cs2CO3 (0.56 g, 1.7 mmol, 2.0 eq.) followed by allyl bromide (450 mL, 5.2 mmol, 6.0 eq.). The solution was stirred under Ar atmosphere for 2h and NMR analysis revealed the consumption of the starting material. The reaction was diluted with H2O (15 mL), extracted with diethyl ether (3 × 10 mL) and the organic layer was rinsed with H2O (10 mL), brine (10 mL), dried (Na2SO4), filtered and concentrated under reduced pressure to afford the title compound as a yellow oil. This material was used in the following step without further purification. HRMS (FAB+) calcd. for C23H35NO7: (M+) (m/z) 437.2414; found (m/z) 437.2414.

Tert-butyl ((1R,2R)-1-(2-(allyloxy)-4,5-dimethoxy-3-methylphenyl)-1,3-dihydroxypropan-2-yl)carbamate (3.12)

To a solution of crude 3.11 (0.86 mmol, 1.0 eq.) in MeOH (15 mL) at 0°C was added p-TsOH (15 mg, 0.09 mmol, 0.1 eq.). The reaction was warmed to RT and stirred for 2h until TLC analysis revealed absence of starting material and a new strong spot at Rf = 0. The reaction was diluted with H2O (15 mL) and extracted with CH2Cl2 (4 × 5 mL). The combined organic layers
were rinsed with 5% NaHCO₃ (10 mL) and brine (10 mL), dried (Na₂SO₄), filtered and concentrated under reduced pressure to afford the title compound of a yellow oil. This material was used in the following step without further purification. MS (FAB+) calcd. for C₂₀H₃₂NO₇: (MH⁺): (m/z) 398.2; found (m/z) 398.2.

Tert-butyl ((4R,5R)-4-(2-(allyloxy)-4,5-dimethoxy-3-methylphenyl)-2,2-dimethyl-1,3-dioxan-5-yl)carbamate (3.13)

To a solution of crude 3.12 (261 mg, 0.66 mmol, 1.0 eq.) in dry DMF (5 mL) under Ar atmosphere were added p-TsOH (10 mg, 0.05 mmol.) and 2,2-dimethoxypropane (300 mL, 3.4 mmol, 2.0 eq.). The reaction stirred for 48 h, quenched with 5% NaHCO₃ (10 mL), diluted with H₂O (15 mL) and extracted with EtOAc (3 × 5 mL). The combined organic layers were rinsed with 5% NaHCO₃ (10 mL) and brine (10 mL), dried (MgSO₄), filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography with 5:1 hexanes/EtOAc to afford the title compound (125 mg, 33%, 3 steps). Rᵣ = 0.30; ¹H-NMR (300 MHz; CD₃OD): mixture of rotamers, δ 6.89 (br s, 1H), 6.21-6.06 (m, 1H), 5.55-5.39 (m, 2H), 5.37-5.23 (m, 1H), 4.49-4.25 (m, 3H), 4.09 (q, J = 7.1 Hz, 1H), 3.88-3.80 (m, 3H), 3.77-3.68 (m, 5H), 2.16 (s, 3H), 1.55 (br s, 3H), 1.49 (br s, 3H), 1.24 (s, 9H). HRMS (FAB+) calcd. for C₂₃H₃₅NO₇: (MH⁺): (m/z) 437.2414; found (m/z) 437.2414.
Figure 4.4. 1H NMR spectrum of compound 3.13 (300 MHz, CD$_3$OD)
4.6 (4\text{R}, 5\text{R})-4-(2-(allyloxy)-4,5-dimethoxy-3-methylphenyl)-2,2-dimethyl-1,3-dioxan-5-amine (3.14)

To a solution of 3.13 (90 mg, 0.21 mmol, 1.0 eq.) in dry CH\textsubscript{2}Cl\textsubscript{2} (5 mL) was added 2,6-lutidine (150 µL, 1.3 mmol, 6.2 eq.). The solution was cooled to -78°C and TBSOTf (160 µL, 0.70 mmol, 3.4 eq.) was added dropwise. The reaction was stirred at this temperature for 1 h, warmed to RT and stirred for 12 h. The reaction was quenched with MeOH (5 mL) and KF\cdot2H\textsubscript{2}O (75 mg, 1.2 mmol, 6.0 eq.) was added with vigorous stirring. After 15 min. the solution was diluted with CH\textsubscript{2}Cl\textsubscript{2} (5 mL), rinsed with 5% NaHCO\textsubscript{3} (5 mL) and brine (5 mL), dried (MgSO\textsubscript{4}), filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography with 4:1:0.1 EtOAc/hexanes/Et\textsubscript{3}N to afford the title compound (51 mg, 72%). \textit{Rf} = 0.22 (4:1:0.1 EtOAc/hexanes/Et\textsubscript{3}N); 1H-NMR (300 MHz; CD\textsubscript{3}OD): \textit{δ} 7.09-6.85 (m, 1H), 6.18-6.11 (m, 1H), 5.64-5.22 (m, 1H), 4.56-4.16 (m, 1H), 3.92-3.82 (m, 3H), 3.85 (s, 3H), 3.78 (s, 3H), 2.19 (s, 3H), 1.55 (s, 3H), 1.51 (s, 3H). HRMS (FAB+) calcd. for C\textsubscript{18}H\textsubscript{28}NO\textsubscript{5}: (MH+): (m/z) 338.1923; found (m/z) 338.1967.
Figure 4.5. 1H NMR spectrum of compound 3.14 (300 MHz, CD$_3$OD)
4.7 3,4-dihydroxy-2-methylbenzaldehyde (3.19)

To a stirred solution of 3,4-dimethoxy-2-methylbenzaldehyde (3.9) in (8.5 g, 47 mmol, 1 eq.) in CHCl₃ (100 mL) at -78°C was added dropwise BBr₃ (10 mL, 100 mmol, 2.0 eq.). The solution was stirred at this temperature for 15 min and then at RT for 1.5 h, cooled to -78°C and quenched with MeOH (40mL). The purple solution was diluted with brine (40 mL) and H₂O (40 mL). The aqueous phase was extracted with ether (3 × 50 mL). The combined organic phases were rinsed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure to afford a dark purple solid. This material was eluted through a silica plug and the solvent evaporated to afford the title compound as a brown solid (5.65 g, 79 %). This material was used in the next step without further purification. ¹H-NMR (300 MHz; CDCl₃): δ 10.11(m, 1H), 7.35 (1/2 AB, J = 8.4 Hz, 1H), 6.86 (1/2 AB, J = 8.4 Hz, 1H), 6.00 (s, 1H), 2.59 (s, 3H).
Figure 4.6. 1H NMR spectrum of compound 3.19 (300 MHz, CDCl₃)
4.8 4-benzyloxy-3-hydroxy-2-methylbenzaldehyde (3.20)

To a solution of 3,4-dihydroxy-2-methylbenzaldehyde (3.19) (10.00 g, 65 mmol, 1 eq.) in acetone (100 mL) was added K₂CO₃ (8.97 g, 65 mmol, 1 eq.) and benzyl bromide (7.7 mL, 65 mmol, 1 eq.). The mixture was stirred under reflux for 48 h, concentrated under reduced pressure, suspended in CHCl₃, cooled to 0°C, filtered and concentrated to afford the title compound as a brown solid (11.95 g, 76%). This material was used without further purification.

Rᵣ = 0.45 (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz; CDCl₃): δ 10.11 (s, 1H), 7.42-7.35 (m, 7H), 6.91 (1/2 AB, J = 8.4 Hz, 1H), 5.86 (s, 1H), 5.20 (s, 2H), 2.58 (s, 3H).
Figure 4.7. 1H NMR spectrum of compound 3.20 (300 MHz, CDCl$_3$)
4.9 4-benzyloxy-3-methoxy-2-methylbenzaldehyde (3.21)

To a solution of 4-benzyloxy-3-hydroxy-2-methylbenzaldehyde (3.20) (11.95 g, 49 mmol, 1 eq.) in acetone (125 mL) was added K₂CO₃ (20.7 g, 150 mmol, 3 eq.) and methyl iodide (9.3 mL, 150 mmol, 3 eq.). The mixture was stirred at RT for 24 h, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography with 8:1 hexanes/EtOAc to afford the title compound as a yellow solid (10.0 g, 80%). Rᵣ = 0.50 (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz; CDCl₃): δ 10.10 (s, 1H), 7.54 (1/2 AB, J = 8.6 Hz, 1H), 7.46-7.34 (m, 7H), 6.93 (1/2 AB, J = 8.6 Hz, 1H), 5.21 (s, 2H), 3.84 (s, 3H), 2.60 (s, 3H).
Figure 4.8. 1H NMR spectrum of compound 3.21 (300 MHz, CDCl$_3$)
To a stirred solution of 4-benzyloxy-3-methoxy-2-methylbenzaldehyde (3.21) (10.00 g, 39 mmol, 1 eq.) in CHCl₃ (300 mL) at 0°C was added m-CPBA (13.40 g, 78 mmol, 2.0 eq.). The solution was warmed to RT and stirred for 8h. The resulting mixture was washed with 10% NaS₂O₃ (2 × 100 mL), NaHCO₃ (3 × 50 mL) and brine (2 × 50 mL). The organic phase was concentrated under reduced pressure, diluted with MeOH (50 mL), cooled to 0°C, acidified with conc. HCl (1 mL, 12 mmol) and stirred at RT for 12h and then concentrated under reduced pressure. The residue was purified by flash chromatography with 5:1 hexanes/EtOAc to provide the title compound as a yellow solid (4.88g, 58 %). Rᵣ = 0.50 (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz; CDCl₃): δ 7.45-7.33 (m, 8H), 6.68 (1/2 AB, J = 8.7 Hz, 1H), 6.47 (d, J = 8.8 Hz, 1H), 5.05 (s, 2H), 3.85 (s, 3H), 2.19 (s, 3H).
Figure 4.9. 1H NMR spectrum of compound 3.22 (300 MHz, CDCl$_3$)
4.11 (R)-**tert**-butyl 4-((R)-(5-(benzyloxy)-2-hydroxy-4-methoxy-3-methylphenyl)(hydroxy)methyl)-2,2-dimethyloxazolidine-3-carboxylate (3.23)

To a solution of 4-benzyloxy-3-methoxy-2-methylphenol (3.22) (231 mg, 0.95 mmol, 1.0 eq.) in dry THF (2.0 mL), under Ar atmosphere, was added EtMgBr (3.0 M in Et₂O, 330 µL, 1.0 mmol, 1.05 eq.) at rt. After 5 min. of stirring, a solution of (R)-**tert**-butyl 4-formyl-2,2-dimethyloxazolidine-3-carboxylate (R-Garner’s aldehyde) (300 mg, 1.0 mmol, 1.05 eq.) in CH₂Cl₂ (2 mL) was added dropwise and the resulting mixture was stirred overnight. The reaction was quenched with sat. aq. NH₄Cl (10 mL), the phases were separated, the organic layer was rinsed with brine, filtered and concentrated under reduced pressure to afford the title compound (292 mg, 66%), which was used without further purification. **¹**H-NMR (300 MHz; CDCl₃): mixture of rotamers, δ 7.41-7.34 (m, 5H), 6.45 (s, 1H), 5.02 (s, J = 4.1 Hz, 2H), 4.69-4.65 (m, 1H), 4.36-4.34 (m, 1H), 3.84 (s, 3H), 2.16 (s, 3H), 1.60 (s, 3H), 1.53 (s, 9H), 1.50 (s, 3H).HRMS (FAB+) calcd. for C₂₆H₃₅NO₇: (M⁺): (m/z) 473.2414; found (m/z) 473.2414.
Figure 4.10. 1H NMR spectrum of compound 3.23 (300 MHz, CDCl$_3$)
4.12 \((R)-\text{tert-butyl 4-((}R\text{-}(5(\text{benzyloxy)-2,4-dimethoxy-3-methylphenyl})-(\text{hydroxy})\text{-methyl)-2,2-dimethyloxazolidine-3-carboxylate}}\text{ (3.24)})

A solution of \(3.23\) (9.2 g, 19 mmol, 1.0 eq.) in acetone (100 mL) was added \(\text{Cs}_2\text{CO}_3\) (5.24 g, 38 mmol, 2.0 eq.) followed by methyl iodide (3.53 mL, 56 mmol, 3.0 eq.). The solution was stirred under Ar atmosphere for 16h. The suspension was concentrated to dryness, diluted with \(\text{H}_2\text{O}\) (40 mL), extracted with diethyl ether (\(3 \times 150\) mL) and the organic layer was rinsed with \(\text{H}_2\text{O}\) (100 mL), brine (100 mL), dried (\(\text{MgSO}_4\)), filtered and concentrated under reduced pressure. The crude was purified by flash chromatography with 5:1 hexanes/EtOAc to afford of the title compound (8.33 g, 89%). \(R_f = 0.1\) (5:1 hexanes/EtOAc); \(^1\text{H-NMR (300 MHz; CDCl}_3\): mixture of carbamate rotamers, \(\delta\) 7.46-7.31 (m, 3H), 6.89 (s, 1H), 5.47 (s, 1H), 5.07 (AB, \(J = 9.1\) Hz, 2H), 4.25 (t, \(J = 11.3\) Hz, 1H), 3.82 (s, 3H), 3.75 (s, 3H), 3.64-3.55 (m, 3H), 2.22 (s, 3H), 1.65 (s, 3H), 1.56 (s, 9H), 1.50 (s, 3H).HRMS (FAB+) calcd. for \(\text{C}_{27}\text{H}_{37}\text{NO}_7\): (M\(^+\)): (m/z) 487.2570; found (m/z) 487.2570.
Figure 4.11. 1H NMR spectrum of compound 3.24 (300 MHz, CDCl$_3$)
4.13 **tert-butyl ((4R,5R)-4-(5-(benzyloxy)-2,4-dimethoxy-3-methylphenyl)-2,2-dimethyl-1,3-dioxan-5-yl)carbamate (3.25)**

To a solution of compound 3.24 (130 mg, 0.26 mmol, 1.0 eq.) in MeOH (5 mL) at 0°C was added p-TsOH (5 mg, 0.03 mmol, ~ 0.1 eq.). The reaction was warmed to RT and stirred for 2h until TLC analysis revealed absence of starting material and a new strong spot at Rf = 0. The reaction was concentrated and the residue was dissolved in DMF (5 mL) under Ar atmosphere. To the solution was added 2,2-dimethoxypropane (300 µL, 3.4 mmol, 13 eq.) and the reaction was stirred for 24 h, quenched with 5% NaHCO₃ (10 mL) and diluted with H₂O (15 mL), extracted with EtOAc (3 × 5 mL). The combined organic layers were rinsed with 5% NaHCO₃ (10 mL) and brine (10 mL), dried (MgSO₄), filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography with 5:1 hexanes/EtOAc to afford the title compound (100 mg, 77%). Rf = 0.2 (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz; CDCl₃): mixture of carbamate rotamers, δ 7.50-7.33 (m, 6H), 6.89 (s, 1H), 5.37-5.25 (m, 2H), 5.09 (s, 2H), 4.33-4.25 (m, 1H), 3.85-3.80 (m, 3H), 3.78 (s, 3H), 3.77 (s, 3H), 2.21 (s, 3H), 1.58 (s, 3H), 1.51 (s, 3H), 1.26 (s, 9H). HRMS (FAB+) calcd. for C₂₇H₃₇NO₇: (M⁺): (m/z) 487.2570; found (m/z) 487.2570.
Figure 4.12. 1H NMR spectrum of compound 3.25 (300 MHz, CDCl$_3$)
4.14 **tert-butyl ((4R,5R)-4-(5-hydroxy-2,4-dimethoxy-3-methylphenyl)-2,2-dimethyl-1,3-dioxan-5-yl)carbamate (3.26)**

To a solution of compound 3.25 (100 mg, 0.20 mmol, 1.0 eq.) in THF (15 mL) at 0°C was added Pd(OH)$_2$ (20 mg, 0.14 mmol, ~0.6 eq.). The reaction was evacuated and filled with H$_2$ (1 atm) three times and resulting suspension was stirred under H$_2$ for 4h, filtered through Celite® using EtOAc, concentrated under reduced pressure, and purified by flash chromatography (5:1, then 4:1 hexanes/EtOAc) to afford the title compound (52 mg, 63%). R$_f$ = 0.2 (4:1 hexanes/EtOAc);

1H NMR CDCl$_3$ (δ, ppm): 1H-NMR (300 MHz; CDCl$_3$): δ 6.89 (s, 1H), 5.34 (s, 3H), 4.32-4.27 (m, 2H), 3.85-3.78 (m, 3H), 2.23 (s, 3H), 1.51 (s, 3H), 1.26 (s, 9H). HRMS (FAB+) calcd. for C$_{20}$H$_{31}$NO$_7$: (M$^+$): (m/z) 397.2101; found (m/z) 397.2101.
Figure 4.13. 1H NMR spectrum of compound 3.26 (300 MHz, CDCl$_3$)
4.15 5-((4R,5R)-5-amino-2,2-dimethyl-1,3-dioxan-4-yl)-2,4-dimethoxy-3-methylphenol (3.27)

To a solution of compound 3.26 (1.55 mg, 3.9 mmol, 1.0 eq.) in dry CH$_2$Cl$_2$ (40 mL) was added 2,6-lutidine (1.55 mL, 13.3 mmol, 3.4 eq.). The solution was cooled to -78°C and TBSOTf (2.9 mL, 12.5 mmol, 3.2 eq.) was added dropwise. The reaction was stirred at this temperature for 1 h, warmed to RT and stirred for 12h. The reaction was quenched with MeOH (1 mL) and KF•2H$_2$O (4 eq.) was added with vigorous stirring. After 15 min. the solution was diluted with CH$_2$Cl$_2$ (50 mL), rinsed with 5% NaHCO$_3$ (50 mL) and brine (50 mL), dried (MgSO$_4$), filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography with 4:1:0.1 EtOAc/hexanes/Et$_3$N to afford the title compound (820 mg, 72 %).

R$_f$ = 0.1 4:1:0.1 EtOAc/hexanes/Et$_3$N; 1H-NMR (300 MHz; CDCl$_3$): δ 6.94 (s, 1H), 5.27 (s, 1H), 4.30 (1/2 ABX, J = 11.7, 2.3 Hz, 1H), 3.86 (1/2 ABX, J = 11.7, 1.8 Hz, 1H), 3.78 (s, 3H), 3.70 (s, 3H), 2.81 (q, J = 1.9 Hz, 1H), 2.24 (s, 3H), 1.56 (s, 3H), 1.52 (s, 3H). MS (FAB+) calcd. for C$_{15}$H$_{23}$NO$_5$: (MH$^+$) (m/z) 298.2; found (m/z) 298.2.
Figure 4.14. 1H NMR spectrum of compound 3.27 (300 MHz, CDCl$_3$)
4.16 (4aR,6S,10bR)-ethyl 7-hydroxy-8,10-dimethoxy-2,2,9-trimethyl-4a,5,6,10b-tetrahydro-4H-[1,3]dioxino[5,4-c]isoquinoline-6-carboxylate (3.28)

A solution of compound 3.27 (1.00 g, 3.36 mmol, 1.0 eq.) and ethyl glyoxalate (734 µL of a 50% solution in toluene, 0.04 mmol, 4 eq.) in dry CH₃CN (70 mL) was prepared in a vial containing 4Å MS (1.00 g). The solution was stirred under Ar atmosphere for 24 h, filtered through Celite® and concentrated under reduced pressure. The crude material was purified by flash chromatography with 19:1 CH₂Cl₂/MeOH to afford the title compound (704 mg, 55 %). R_f = 0.5 19:1 CH₂Cl₂/MeOH; ¹H-NMR (300 MHz; CDCl₃): δ 6.28 (s, 1H), 5.11 (d, J = 1.4 Hz, 1H), 4.80 (br s, 1H), 4.36-4.30, (m, 4H), 3.98-3.93 (m, 1H), 3.80 (d, s, 3H), 3.77 (s, 3H), 2.95-2.82 (m, 1H), 2.51 (br s, 1H), 2.22 (s, 3H), 1.65 (m, 3H), 1.43 (m, 3H), 1.34 (t, 7.1 Hz, 3H), 6. MS (FAB+) calcd. for C₁₉H₂₇NO₇: (MH⁺): (m/z) 382.2; found (m/z) 382.2.
Figure 4.15. 1H NMR spectrum of compound 3,28 (300 MHz, CDCl$_3$)
4.17 2-(N-benzyl-4-nitrophenylsulfonamido)acetic acid (3.30)

Ethyl 2-(4-nitrophenylsulfonamido)acetate (3.29b)

To a stirred suspension of GlyOEt•HCl (7.00 g, 50 mmol, 1.0 eq.) and K$_2$CO$_3$ (14.50 g, 100 mmol, 1.0 eq.) in water (40 mL) and dioxane (40 mL) at 0°C was added NsCl (11.08 g, 50 mmol, 1.0 eq.) in one portion. The reaction was stirred at RT for 48h, the dioxane evaporated, the residue partitioned between water and ethyl acetate/dichloromethane 4:1 (125mL), and the organic phase rinsed with sat. aq. NaHCO$_3$ (3×25 mL), water (50 mL) and brine (50 mL). The organic phase was dried (MgSO$_4$), filtered, concentrated under reduced pressure to afford the title compound as yellow oil (12.38 g, 86%), which was used in the next step without further purification. 1H-NMR (300 MHz; CDCl$_3$): δ 8.11-8.08 (m, 1H), 7.96-7.92 (m, 1H), 7.76-7.73 (m, 2H), 4.05 (q, J = 7.2 Hz, 2H), 4.00 (s, 2H), 1.16 (t, J = 7.2 Hz, 3H).

2-(N-benzyl-4-nitrophenylsulfonamido)acetic acid (3.30)

A suspension of N-Ns-Gly-OEt (12.38g 43 mmol, 1.0 eq.), BnBr (5.28 mL, 44 mmol, 1.0 eq) and K$_2$CO$_3$ (18.3 g, 133 mmol, 3.1 eq.) in CH$_3$CN (450 mL) was stirred under argon for 16h. The reaction was concentrated under reduced pressure, partitioned between water (200 mL) and ethyl acetate (200mL), the aqueous phase was rinsed with ethyl acetate (2×50 mL) and the combined organic layers were rinsed with brine, dried (Na$_2$SO$_4$), filtered and concentrated to afford the title compound as a yellow oil (16.5 g, quant.). The material was used in the next step without further purification.
To a stirred solution of N-Ns-Gly-OEt (2.06 g, 5.0 mmol) in THF/H₂O/MeOH 3:2:1 (18 mL) was added LiOH•2H₂O (630 mg, 15 mmol). The reaction was stirred for 3h, quenched with 1M HCl (30 mL), extracted with EtOAc (2×30 mL), rinsed with water (30 mL) and brine (30 mL), dried (Na₂SO₄), filtered and concentrated to afford the title compound as a yellow solid (1.70 g, 97%). The solid was dried under vacuum overnight and used in the next step without further purification. ¹H-NMR (300 MHz; DMSO-d₆): δ 8.15-7.80 (m, 5H), 7.33-7.19 (m, 5H), 4.58 (s, 2H), 3.92 (d, J = 0.5 Hz, 2H).
Figure 4.16. 1H NMR spectrum of compound 3.29b (300 MHz, CDCl$_3$)
Figure 4.17. 1H NMR spectrum of compound 3.30 (300 MHz, DMSO-d_6)
Compounds 3.28 and 3.30 were azeotropically dried with toluene prior to use. To a solution of 3.30 (203 mg, 0.580 mmol) in 3 mL of CH₂Cl₂ at RT under argon atmosphere was added 3.6 mL of oxalyl chloride, after which DMF (6.6 µL) was added to the stirring solution. The reaction was stirred for 20 min, after which the mixture was concentrated using the rotary evaporator to afford the corresponding crude acid chloride. The acid chloride was azeotropically dried with toluene to remove residual oxalyl chloride, and was then re-dissolved in 3 mL of CH₂Cl₂ at RT under argon atmosphere and cooled to 0 °C. A solution comprised of compound 3.28 (110 mg, 0.29 mmol) and 2,6-lutidine (37 µL, 0.318 mmol) in 3 mL of CH₂Cl₂ was added via cannula. The reaction was stirred at 0 °C for 45 min, after which the mixture was quenched with sat. aq. NH₄Cl (20 mL). The mixture was diluted with CH₂Cl₂ (50 mL), the phases were separated and the aqueous phase was extracted with CH₂Cl₂ (2×25 mL). The combined organic phases were dried (Na₂SO₄), filtered and concentrated. The residue was purified by flash chromatography (EtOAc/hexanes 4:1) to afford the title compound as a colorless oil (120 mg, 58%). The ¹H NMR
spectrum revealed the presence of a complex mixture of carbamate rotamers. (See Figure 4.18)

HRMS(ESI/APCI+) for C_{49}H_{52}N_{5}O_{17}S_{2}: (MH^+): calc. (m/z) 1046.2800; found (m/z) 1046.2784
Figure 4.18: 1H NMR spectrum of compound 3.33 (300 MHz, CDCl$_3$)
4.19 (4aR,6S,10bR)-ethyl 7-(allyloxy)-5-(2-((N-benzyl-4-nitrophenylsulfonamido)acetyl)-8,10-dimethoxy-2,2,9-trimethyl-4a,5,6,10b-tetrahydro-4H-[1,3]dioxino[5,4-c]isoquinoline-6-carboxylate (3.35)

(4aR,6S,10bR)-ethyl 5-(2-((N-benzyl-4-nitrophenylsulfonamido)acetyl)-7-hydroxy-8,10-dimethoxy-2,2,9-trimethyl-4a,5,6,10b-tetrahydro-4H-[1,3]dioxino[5,4-c]isoquinoline-6-carboxylate (3.34)

To a solution of Compound 3.33 (5 mg, 0.005 mmol) in H₂O/EtOH/THF (2:2:1, 500 µL) was added LiOH•2H₂O (0.3 mg, 0.007 mmol) and the reaction was stirred for 10 minutes. The mixture was acidified with NH₄Cl (1 mL), concentrated under reduced pressure and extracted with EtOAc (3×2 mL), rinsed with brine (5 mL), dried (Na₂SO₄), filtered and concentrated to give the title compound. The material was used in the next step without further purification.

HRMS(ESI/APCI+) for C₃₄H₃₉N₃O₁₂SNa: (MNa⁺): calc (m/z) 736.2147; found (m/z) 736.2146

(4aR,6S,10bR)-ethyl 7-(allyloxy)-5-(2-((N-benzyl-4-nitrophenylsulfonamido)acetyl)-8,10-dimethoxy-2,2,9-trimethyl-4a,5,6,10b-tetrahydro-4H-[1,3]dioxino[5,4-c]isoquinoline-6-carboxylate (3.35)

A suspension of compound 3.34 (crude from previous step, 0.05 mmol), allyl bromide (3 µL, 0.1 mmol) and Cs₂CO₃ (5 mg, 0.015 mmol) in (500 µL) was stirred under Ar for 12 h. The solvent was evaporated and the residue was partitioned between water (5 mL) and EtOAc (5 mL). The organic phase was rinsed with brine (2 mL), dried (Na₂SO₄), filtered and concentrated by flash
chromatography (EtOAc/hex 1:1) to give the title compound as a colorless oil (3 mg, 83%). 1H-NMR (300 MHz; CDCl$_3$): δ 8.17 (dt, $J = 4.7, 2.3$ Hz, 1H), 7.65-7.61 (m, 3H), 7.29-7.27 (m, 5H), 5.94-5.85 (m, 1H), 5.57 (s, 1H), 5.37 (d, $J = 4.2$ Hz, 1H), 5.26-5.19 (m, 1H), 5.10-5.05 (m, 1H), 4.82 (s, 1H), 4.68 (s, 1H), 4.55-4.42 (m, 3H), 4.37 (s, 1H), 4.26 (s, 1H), 4.21-4.11 (m, 2H), 3.93-3.87 (m, 2H), 3.81 (s, 3H), 3.73 (s, 3H), 2.21 (s, 3H), 1.48 (s, 3H), 1.25 (s, 3H), 1.15 (t, $J = 7.1$ Hz, 3H).
Figure 4.19. 1H NMR spectrum of compound 3,35 (300 MHz, CDCl$_3$)
(S)-methyl 2-((tert-butoxycarbonyl)amino)pent-4-enoate (3.44)

(S)-Boc-allylglycine (3.43) (302 mg, 1 mmol) and NaHCO₃ (252 mg, 2 mmol) were suspended in DMF (6 mL) under Ar atmosphere. Iodomethane (286 µL, 3 mmol) was added and the reaction was stirred for 24h, poured over 25 mL of water, the phases separated, the aqueous phase extracted with EtOAc (2×25 mL) and the combined organic phases rinsed with water (25 mL) and brine (25 mL), dried (Na₂SO₄), filtered and concentrated. The resulting oil was purified by flash chromatography (9:1 hexanes/EtOAc) to give the title compound as a clear colorless oil (199 mg, 62 %). R_f = 0.2 (6:1 hexanes/EtOAc); ¹H-NMR (300 MHz; CDCl₃): δ 5.71-5.57 (m, 1H), 5.10-5.05 (m, 3H), 4.35-4.29 (m, 1H), 3.65 (s, 3H), 2.54-2.37 (m, 2H), 1.35 (s, 9H).
Figure 4.20. 1H NMR spectrum of compound 3.44 (300 MHz, CDCl$_3$)
4.21 (S)-methyl 2-((tert-butoxycarbonyl)amino)-6-(trimethylsilyl)hex-4-enoate (3.45)

Compound (3.44) (199 mg, 0.86 mmol) and Grubbs 2nd generation catalyst (40 mg, 0.047 mmol, 5.5 mol %) were dissolved in DCM (8 mL) in a microwave reaction vessel and the resulting solution was degassed with Ar for 5 min. and placed in a microwave reactor (maximum power = 100 W, 100°C for 12h). The reaction mixture was concentrated under vacuum and the resulting solid was purified by flash chromatography (9:1 hexanes/EtOAc) to afford the title compound as a colorless oil (188 mg, 69%). \(R_f = 0.5 \) (6:1 hexanes/EtOAc); \(^1\text{H}-\text{NMR} \) (300 MHz; CDCl\(_3\)): \(\delta \) 5.56-5.45 (m, 1H), 5.14-4.96 (m, 1H), 3.73 (s, 3H), 2.53-2.38 (m, 2H), 1.43 (s, 9H), 1.43 (s, 9H), -0.01 (s, 6H).
Figure 4.21. 1H NMR spectrum of compound 3.45 (300 MHz, CDCl$_3$)
4.22 (S)-2-((tert-butoxycarbonyl)amino)-6-(trimethylsilyl)hex-4-enoic acid (3.40)

To a solution of compound 3.45 (188 mg, 0.60 mmol) in THF (8 mL) were added water (1.6 mL) and LiOH•H₂O (100 mg, 2.4 mmol) and the resulting suspension was stirred for 2h, diluted with water (20mL), acidified to pH=4 with 1N HCl and diluted with EtOAc (20 mL). The phases were separated and the aqueous phase was extracted with EtOAc (2×20 mL) and the combined organic phases were rinsed with brine (20 mL) dried (Na₂SO₄), filtered and concentrated. The resulting oil was purified by flash chromatography (1:1 hexanes/EtOAc) to afford the title compound as a clear colorless oil (120 mg, 62 %). Rᵢ = 0.1 (1:1 hexanes/EtOAc); ¹H-NMR (300 MHz; CDCl₃): δ 5.55-5.50 (m, 1H), 5.19-5.05 (m, 2H), 4.15 (s, 1H), 2.51-2.44 (m, 2H), 1.46-1.39 (m, 9H).
Figure 4.22. 1H NMR spectrum of compound 3.40 (300 MHz, CDCl$_3$)
4.23 \((1R,3S)-8-(benzyloxy)-1-((benzyloxy)methyl)-5,7-dimethoxy-6-methyl-1,2,3,4-
tetrahydroisoquinolin-3-yl)methanol (3.47)\)

To a solution of compound 3.39 (220 mg) in CH\(_2\)Cl\(_2\) (3.25 mL) was added TFA (0.964 mL, 40 eq) and the resulting mixture was stirred for 2h (until TLC revealed absence of SM). The reaction was diluted with water (20 mL), the TFA quenched with NaHCO\(_3\) sat., the phases separated and the aqueous phase was extracted with CH\(_2\)Cl\(_2\) (2×20 mL) and the combined organic phases were rinsed with brine (20 mL) dried (Na\(_2\)SO\(_4\)), filtered and concentrated. The resulting oil was purified by flash chromatography (1:1 hexanes/EtOAc followed by EtOAc) to afford the title compound as a clear colorless oil (120 mg, 62 %). R\(_f\) = 0.1 (EtOAc); \(^1\)H-NMR (300 MHz; CDCl\(_3\)): \(\delta\) 7.43-7.17 (m, 5H), 5.03 (d, \(J = 5.7\) Hz, 2H), 4.40 (d, \(J = 2.9\) Hz, 2H), 3.80 (s, 3H), 3.69 (s, 3H), 3.56-3.53 (m, 3H), 3.30-3.23 (m, 3H), 2.96-2.90 (m, 3H), 2.24 (s, 3H).
Figure 4.23. 1H NMR spectrum of compound 3.47 (300 MHz, CDCl$_3$)
4.24 *Tert*-butyl ((S)-1-((1R,3S)-8-(benzyloxy)-1-((benzyloxy)methyl)-3-(hydroxymethyl)-5,7-dimethoxy-6-methyl-3,4-dihydroisoquinolin-2(1H)-yl)-1-oxo-6-(trimethylsilyl)hex-4-en-2-yl)carbamate (3.48)

A solution of compound 3.47 (70 mg, 0.15 mmol), PyBOP (84 mg, 0.16 mmol) and compound 3.40 (45 mg, 0.15 mmol) in CH$_2$Cl$_2$ (700 µL) was stirred for 24 h and diluted with CH$_2$Cl$_2$ (5 mL) and sat. aq. NH$_4$Cl (5 mL). The phases were separated and the aqueous phase was rinsed with CH$_2$Cl$_2$ (2 x 5 mL). The combined organic phases were rinsed with brine (5 mL), dried (Na$_2$SO$_4$), filtered and concentrated. The resulting oil was purified by flash chromatography (3:1 hexanes/EtOAc) to afford the title compound (30 mg, 27%) as a clear colorless oil. R$_f$ = 0.15 (3:1 hexanes/EtOAc); 1H-NMR (300 MHz; CDCl$_3$): δ 7.38-7.23 (m, 5H), 5.04 (d, J = 11.0 Hz, 2H), 4.83 (d, J = 10.9 Hz, 1H), 4.30 (d, J = 4.6 Hz, 1H), 4.20-4.13 (m, 2H), 3.81-3.78 (m, 2H), 3.68 (s, 3H), 3.54 (s, 1H), 2.91-2.85 (m, 2H), 2.45-2.42 (m, 2H), 2.21 (s, 3H), 1.43 (s, 9H), -0.02 (s, 6H).
Figure 4.24. 1H NMR spectrum of compound 3.48 (300 MHz, CDCl$_3$)
4.25 **6-(benzyloxy)-7-methylbenzo[d][1,3]dioxole-5-carbaldehyde (3.57)**

To a suspension of aldehyde 3.56 (500 mg, 2.78 mmol) and K$_2$CO$_3$ (1.5 g, 8.33 mmol) in acetone (30 mL) was added BnBr (400 µL, 3.36 mmol). The reaction was stirred for 24h, diluted with water (30 mL), concentrated under vacuum and the aqueous phase extracted with EtOAc (2×25 mL). The combined organic phases were concentrated, dried (Na$_2$SO$_4$), filtered and evaporated under vacuum. The resulting solid was purified by flash chromatography (3:1 hexanes/EtOAc) to afford the title compound as yellow solid (680 mg, 90%). $R_f = 0.4$ (3:1 hexanes/EtOAc); 1H-NMR (300 MHz; CDCl$_3$): δ 10.07 (s, 1H), 7.40 (s, 5H), 7.12 (s, 1H), 6.05 (s, 2H), 4.93 (s, 1H), 2.21 (s, 3H).
Figure 4.25. 1H NMR spectrum of compound 3.57 (300 MHz, CDCl$_3$)
4.26 6-(hydroxymethyl)-4-methylbenzo[d][1,3]dioxol-5-ol (3.58)

To a solution of aldehyde 3.57 (680 mg, 2.5 mmol) in EtOH (15 mL) was added NaBH₄ (38 mg, 1 mmol). The reaction was stirred for 3h, quenched with 1N HCl (15 mL) and concentrated under vacuum. The aqueous phase extracted with EtOAc (2×25 mL). The combined organic phases were concentrated under, dried (Na₂SO₄), filtered and evaporated. The resulting solid was purified by flash chromatography (3:1 hexanes/EtOAc) to afford the title compound as a white solid (450 mg, 65 %). Rᵢ = 0.2 (3:1 hexanes/EtOAc); ¹H-NMR (300 MHz; CDCl₃): δ 7.39-7.33 (m, 6H), 6.73 (s, 1H), 5.92 (s, 2H), 4.76 (s, 2H), 4.48 (s, 2H), 2.17 (s, 3H).
Figure 4.26. 1H NMR spectrum of compound 3.58 (300 MHz, CDCl$_3$)
To a solution of PPh$_3$ (5.51 g, 21 mmol) in 100 mL of dry CH$_2$Cl$_2$ at 0°C under Ar atmosphere, was added I$_2$ (5.32 g, 21 mmol) in several small portions over 1 min. The mixture was stirred for 5 min, after which a solution consisting of benzyl alchohol 3.58 (3.812 g, 14 mmol) and imidazole (2.85 mg, 42 mmol) in 150 mL of dry CH$_2$Cl$_2$ was added dropwise over 5 min by cannula. The mixture was stirred at 0°C for 45 minutes and quenched with 100 mL of 5% NaHSO$_3$. The phases were separated, the aqueous phase was extracted with CH$_2$Cl$_2$ (2 × 75 mL) and the combined organic layers were dried (Na$_2$SO$_4$), filtered and concentrated under reduced pressure to afford a pale-yellow solid. The crude material was kept under vacuum and covered with aluminum foil for 12 h (to avoid exposure to light) and used in the following step without further purification.

_Tert-_butyl (2R,3S)-6-oxo-2,3-diphenyl-4-morpholinecarboxylate (3.102) (4.94 mg, 14 mmol, 1.0 eq.) was dissolved in 140 mL of anhydrous THF under Ar atmosphere and the mixture was cooled to -78°C. NaHDMS (1.0 M in THF, 16 mL, 16 mmol, 1.15 eq.) was added dropwise over 5 minutes and the mixture was stirred for 45 min, after which a solution of crude benzyl iodide (12) in 140 mL of dry THF was added over 5 minutes by cannula. The reaction was stirred for 4h at -78°C, quenched with 10 mL of sat. aq. NH$_4$Cl, allowed to warm to RT, and diluted with 250 mL of EtOAc. The phases were separated and the aqueous phase was extracted with EtOAc (3×100mL). The combined organic phases were rinsed with brine (100 mL and dried (Na$_2$SO$_4$),
filtered and concentrated under reduced pressure and the crude material was purified with flash chromatography (hexanes/EtOAc 4:1) to give the title compound as a white crystalline solid (8.45 mg, 99%). Rf = 0.3 (hexanes/EtOAc 4:1); 1H NMR: mixture of rotamers, 1H-NMR (300 MHz; CDCl3): δ 7.42-7.34 (m, 2H), 7.23-7.01 (s, 10H), 6.74 (s, 1H), 6.69-6.64 (m, 2H), 6.51 (t, J = 6.6 Hz, 2H), 5.97 - 5.92 (d, m, 2H), 5.57 (d, J = 3.1 Hz, 1H), 5.35 (d, J = 3.0 Hz, 1H), 5.24-5.19 (m, 1H), 5.06-5.00 (m, 1H), 3.39 (dd, J = 13.4, 8.5 Hz, 1H), 3.28-3.20 (m, 2H), 2.21 (s, 3H), 2.20 (s, 3H), 1.57 (s, 9H).
Figure 4.27. 1H NMR spectrum of compound 3.60 (300 MHz, CDCl$_3$)
4.28 *Tert*-butyl ((R)-1,2-diphenylethyl)((S)-1-hydroxy-3-(6-hydroxy-7-methylbenzo[d][1,3]dioxol-5-yl)propan-2-yl)carbamate (3.62)

Compound 3.60 (300 mg, 0.5 mmol) was dissolved in MeOH (8 mL) and THF (8 mL). 80 mg of 10% Pd/C were added and the resulting suspension was evacuated three times and filled with H₂ (1 atm), and stirred under H₂ (1 atm) for 24 h. The reaction was filtered through Celite® using EtOAc to transfer the material and the filtrate was evaporated to give an oil. The crude material was dissolved in 10 mL of dry THF under Ar atmosphere and NMM (76 μL, 0.69 mmol, 1.2 eq) was added dropwise over 30 s., followed by isobutyl chloroformate (91 μL, 0.69 mmol, 1.2 eq). The reaction was stirred at RT for 30 min and the resulting suspension was loaded into a short column of Celite® (previously rinsed with anhydrous THF). Using vacuum, the solution was transferred to a flask containing NaBH₄ (380 mg, 7 mmol, 10 eq.) dissolved in H₂O (10 mL) at 0°C, using 6 mL of THF to rinse the flask. The reaction was stirred at 0°C for 2h and quenched by adding AcOH/H₂O (1:1) (500 μL) dropwise over 1 minute. The reaction was immediately diluted with EtOAc (10 mL) and H₂O (10 mL). The phases were separated and the aqueous phase was extracted with EtOAc (2 × 10 mL). The combined organic phases were dried, filtered and concentrated. The resulting crude was purified by flash chromatography (hexanes/EtOAc 4:1) to afford the title compound a as a colorless oil (235 mg, 86%). R_f = 0.38 (hexanes/EtOAc 4:1); ¹H-NMR (300 MHz; CDCl₃): mixture of carbamate rotamers, low solubility, δ 7.51-7.48 (m, 5H), 7.28-7.20 (m, 10H), 5.80-5.76 (m, 2H), 3.44-3.22 (m, 3H), 3.17-3.00 (m, 2H), 2.06 (s, 3H), 1.35 (s, 9H).
Figure 4.28. 1H NMR spectrum of compound 3.62 (300 MHz, CDCl$_3$)
4.29 *Tert*-butyl ((R)-1,2-diphenylethyl)((S)-1-hydroxy-3-(6-hydroxy-7-methylbenzo[d][1,3]dioxol-5-yl)propan-2-yl)carbamate (3.54)

To a solution of compound 3.62 (235 mg, 0.47 mmol, 1.0 eq.) in dry CH₂Cl₂ (20 mL) under Ar atmosphere, were added 600 µL of TFA (8 mmol). The solution was stirred at RT for 2 h, diluted with 5 mL of CH₂Cl₂ and 5 mL of aq. NaHCO₃. The phases were separated and the organic phase was rinsed with 5% aq. NaHCO₃ (10 mL) and brine (10 mL), dried (Na₂SO₄), filtered and concentrated under reduced pressure to afford the crude aminoalcohol (177 mg, 0.44 mmol). The crude material was dissolved in dry CH₂Cl₂ (43 mL) under Ar atmosphere and then TBS-Cl (131 mg, 0.88, 2 eq.) was added. The reaction mixture was stirred for 16 h, poured over 10 mL of water and the aqueous phase was extracted with EtOAc (3×10 mL). The combined organic phases were rinsed with brine and dried (Na₂SO₄), filtered and concentrated under reduced pressure. The crude was purified with flash chromatography (hexanes/EtOAc 6:1) to afford the title compound as a colorless oil (100 mg, 41%). Rₚ = 0.5 (hexanes/EtOAc 6:1); ¹H-NMR (300 MHz; CDCl₃): δ 7.23-7.05 (m, 8H), 6.86-6.83 (m, 2H), 6.25 (s, 1H), 5.87 (AB, J = 1.5 Hz, 2H), 4.07-4.01 (m, 2H), 3.45-2.77 (m, 5H), 2.20 (s, 3H), 0.81 (s, 9H), -0.07 (d, J = 5.5 Hz, 6H).
Figure 4.29. 1H NMR spectrum of compound 3.54 (300 MHz, CDCl$_3$)
4.30 (8S)-ethyl 8-(((tert-butyldimethylsilyl)oxy)methyl)-7-((R)-1,2-diphenylethyl)-4-methyl-6,7,8,9-tetrahydro-[1,3]dioxolo[4',5':4,5]benzo[1,2-f][1,3]oxazepine-6-carboxylate (3.63)

To a solution of compound 3.54 (100 mg, 0.19 mmol, 1.0 eq.) in 2.00 mL of acetonitrile under Ar atmosphere, was added of 50% ethyl glyoxalate in toluene (56 µL, 0.26 mmol, 1.4 eq.). The reaction was stirred at 45°C for 3 days. After cooling to RT, the mixture was filtered through Celite® using EtOAc to transfer the material. The solvents were evaporated and the resulting crude was purified by flash chromatography (hexanes/EtOAc 6:1) to afford the title compound as pale yellow solid (55 mg, 47%); Rf = 0.25 (hexanes/EtOAc 6:1); ¹H-NMR (300 MHz; CDCl₃): δ 7.22-6.94 (m, 10H), 5.78 (d, J = 4.3 Hz, 2H), 5.77 (s, 1H), 4.15-4.05 (m, 2H), 3.96-3.85 (m, 1H), 3.44-3.33 (m, 3H), 3.24 (dd, J = 13.0, 3.9 Hz, 1H), 3.12-3.04 (m, 1H), 2.33-2.26 (m, 1H), 1.96-1.91 (m, 1H), 1.87 (s, 3H), 1.08 (t, J = 7.1 Hz, 3H), 0.79 (s, 9H), -0.10 (d, J = 5.0 Hz, 6H).
Figure 4.30. 1H NMR spectrum of compound 3.63 (300 MHz, CDCl$_3$)
4.31 (4S,5aR,9aR)-ethyl 5-(2-(((9H-fluoren-9-yl)methoxy)carbonyl)(benzyl)amino)acetyl)-10-(allyloxy)-8,8,11-trimethyl-5,5a,6,9a-tetrahydro-4H-[1,3]dioxino[5,4-c][1,3]dioxolo[4,5-h]isoquinoline-4-carboxylate (3.65)

To a solution of N-Bn-N-Fmoc-Gly (347 mg, 0.900 mmol, 1.2 eq) in CH₂Cl₂ (8 mL) was added oxalyl chloride (2.0 mL, ~30 eq) at RT under Ar, to which was added dry DMF (6 µL) dropwise. After stirring for 1 h, the solution was concentrated, and then concentrated from dry toluene and dried under vacuum. The acid chloride was dissolved in CH₂Cl₂ (5 mL) and cooled to 0°C. To this was added a solution compound 3.15 (303 mg, 0.748 mmol) and 2,6-lutidine (95 µL, 1.1 eq) in CH₂Cl₂ (5 mL) dropwise. The reaction was stirred 20 h, and then quenched with aq. NH₄Cl (25 mL). The aqueous phase was extracted with CH₂Cl₂ (4×25 mL). The organic phase was dried (Na₂SO₄), filtered and concentrated. Flash chromatography (3:1 hexanes:EtOAc) provided the title compound (507 mg, 64%). R₆ = 0.30 (2:1 hexanes:EtOAc) ¹H-NMR (300 MHz; CDCl₃): mixture of rotamers δ 7.72-7.13 (m, 12H), 6.04-6.01 (m, 1H), 6.01-5.82 (m, 4H), 5.38-5.22 (m, 3H), 5.10-5.08 (m, 1H), 4.66-4.02 (m, 9H), 3.70-3.66 (m, 2H), 2.13 (s, 3H), 1.57 (s, 6H), 1.21 (t, J = 7.7 Hz, 3H), 1.10 (t, J = 6.8 Hz, 3H).
Figure 4.31. 1H NMR spectrum of compound 3.65 (300 MHz, CDCl$_3$)
4.32 (7R,9S)-ethyl 8-(((9H-fluoren-9-yl)ethoxy)carbonyl)(benzylamino)acetyl)-5-(allyloxy)-7-(hydroxymethyl)-6-methoxy-4-methyl-6,7,8,9-tetrahydro-[1,3]dioxolo[4,5-h]isoquinoline-9-carboxylate (3.66)

Compound 3.65 (50 mg, 0.65 mmol) was dissolved in dry MeOH (2.5 mL), and Dowex® 50WX8 cationic resin (50 mg) was added (the resin was rinsed with dry MeOH and dried under a stream of Ar). The reaction was stirred under Ar for 72h, filtered through a pad of Celite® using MeOH and CH₂Cl₂ to transfer the material. The filtrate was evaporated and the residue was purified with flash chromatography (1:1 hexanes:EtOAc) to give the title compound (35 mg 72%). Rf = 0.15 (1:1 hexanes:EtOAc). ¹H-NMR (300 MHz; CDCl₃): mixture of rotamers δ 7.75-7.73 (m, 2H), 7.60-7.11 (m, 11H), 6.16-5.77 (m, 4H), 5.50-5.18 (m, 3H), 5.06-4.64 (m, 3H), 3.10 (s, 3H), 1.19 (t, 3H, 7.2 Hz), 1.13-1.08 (t, 3H, 7.2 Hz).
Figure 4.32. 1H NMR spectrum of compound 3.66 (300 MHz, CDCl$_3$)
4.33 (7S,9S)-ethyl 8-(((((9H-fluoren-9-yl)methoxy)carbonyl)(benzyl)amino)acetyl)-5-(allyloxy)-7-formyl-6-methoxy-4-methyl-6,7,8,9-tetrahydro-[1,3]dioxolo[4,5-h]isoquinoline-9-carboxylate (3.67)

To suspension of compound 3.66 (90 mg, 0.12 mmol) and NaHCO$_3$ (141 mg, 1.68 mmol, 14 eq.) in CH$_2$Cl$_2$ (9 mL), was added Dess-Martin periodinane (77 mg, 0.18 mmol, 1.5 eq.). The mixture was stirred at RT for 2 h and the reaction was quenched with sat. aq. NaHCO$_3$, the aqueous phase was extracted with CH$_2$Cl$_2$, and the organic phase was rinsed with brine, dried (Na$_2$SO$_4$), filtered and concentrated. The resulting oil was purified with flash chromatography (4:1 hexanes:EtOAc) to give the title compound (60 mg, 72%); R_f = 0.15 (1:1 Hexanes:EtOAc); 1H-NMR (300 MHz; CDCl$_3$): δ 9.01 (s, 1H), 8.96-8.93 (m,), 7.80-7.67 (m, 3H), 7.55-7.29 (m, 8H), 7.22-7.08 (m, 3H), 6.11-5.86 (m, 4H), 5.65-5.57 (m, 1H), 5.52-5.22 (m, 4H), 5.10-4.83 (m, 4H), 3.07 (s, 3H), 2.15 (s, 3H), 1.11 (t, J = 9.2 Hz, 3H).
Figure 4.33. 1H NMR spectrum of compound 3.67 (300 MHz, CDCl$_3$)
4.34 (4aR,9cS,14aR)-5-(allyloxy)-11-benzyl-3,3,6-trimethyl-1,11,12,14a-tetrahydro-[1,3]dioxino[5,4-c][1,3]dioxolo[4,5-h]pyrazino[2,1-a]isoquinoline-10,13(4aH,9cH)-dione (3.70)

A solution of compound 3.65 (in 10 mg 0.13 mmol) in CH$_2$Cl$_2$ (1 mL) and Et$_2$NH (1 mL) was stirred under Ar for 1h. The reaction was concentrated and the residue was purified by flash chromatography (3:1 hexanes:EtOAc) to give the title compound as a yellow solid (6 mg, 92%). $R_f = 0.50$ (2:1 hexanes:EtOAc); 1H-NMR (300 MHz; CDCl$_3$): δ 7.40-7.31 (m, 5H), 6.12-6.03 (m, 1H), 6.01-6.00 (m, 1H), 5.92 (s, 1H), 5.83 (d, $J = 1.4$ Hz, 1H), 5.54-5.53 (m, 1H), 5.41 (dq, $J = 17.1$, 1.5 Hz, 1H), 5.31-5.26 (m, 1H), 5.06 (d, $J = 14.4$ Hz, 1H), 4.37 (d, $J = 14.4$ Hz, 2H), 4.33-4.22 (m, 2H), 4.20-4.11 (m, 2H), 4.06-3.98 (m, 2H), 3.90-3.75 (m, 3H), 2.13 (s, 3H), 1.57 (s, 3H), 1.43 (s, 3H).
Figure 4.34. 1H NMR spectrum of compound 3.70 (300 MHz, CDCl$_3$)
4.35 3,4-bis(benzyloxy)-2-methylbenzaldehyde (3.75)

To a solution of 3,4-dihydroxy-2-methylbenzaldehyde (3.19) (1.25 g, 8.26 mmol, 1 eq.) in DMF (14 mL) was added K$_2$CO$_3$ (2.28 g, 16.5 mmol, 2 eq.) and BnBr (2.5 mL, 2. mmol, 1 eq.). The mixture was stirred under argon for 48 h, filtered, concentrated under reduced pressure, and purified by flash chromatography (4:1 hexanes/EtOAc) to afford (1.80 g, 66%) of the title compound as a white solid. $R_f = 0.40$ (4:1 hexanes/EtOAc); 1H-NMR (300 MHz; CDCl$_3$): δ 10.10 (s, 1H), 7.58 (d, $J = 8.5$ Hz, 1H), 7.48-7.31 (m, 10H), 6.99-6.97 (d, 1H, $J = 8.5$ Hz, 1H), 5.22 (s, 2H), 4.96 (s, 2H), 2.55 (s, 3H)
Figure 4.35. 1H NMR spectrum of compound 3.75 (300 MHz, CDCl$_3$)
4.36 4,5-bis(benzyloxy)-2-hydroxy-3-methylbenzaldehyde (3.78)

To a stirred solution of 3,4-benzyloxy-2-methylbenzaldehyde (3.75) (3.50 g, 10.5 mmol, 1 eq.) in CHCl₃ (105 mL) was added m-CPBA (3.62 g, 21.0 mmol, 2.0 eq.). The solution was stirred at RT for 12 h. The resulting mixture was washed with 10% NaS₂O₃ (2 × 50 mL), NaHCO₃ (3 × 50 mL) and brine (2 × 50 mL), dried (Na₂SO₄), filtered and concentrated under vacuum. To a solution of the resulting oil in CH₂Cl₂/MeOH 1:1 (105 mL) was added triethylamine (1.40 mL, 10.1 mmol, 1.25 eq) and the reaction was stirred under Ar for 4h, concentrated under vacuum to give 3,4-bis(benzyloxy)-2-methylphenol (3.76) as a brown solid (3.02 g, 90%), which was used without further purification. ¹H-NMR (300 MHz; CDCl₃): δ 7.46-7.30 (m, 11H), 6.73 (d, J = 8.7 Hz, 1H), 6.50 (d, J = 8.7 Hz, 1H), 5.06 (s, 2H), 5.01 (s, 2H), 2.12 (s, 3H).

A solution of 3,4-bis(benzyloxy)-2-methylphenol (3.76) (0.92 g, 2.87 mmol) and hexamethylenetetramine (2.40 g, 17.2 mmol, 6 eq) in AcOH (30 mL) was heated under reflux for 3h. The reaction was allowed to cool to RT, quenched with H₂O (60 mL), the aqueous phase was rinsed extracted with EtOAc (3×25 mL) and the combined organic phases were rinsed with H₂O (25 mL) brine (25 mL), dried (Na₂SO₄), filtered, concentrated under vacuum and purified by flash chromatography (hexanes/EtOAc 6:1) to give 4,5-bis(benzyloxy)-2-hydroxy-3-methylbenzaldehyde (3.78) as a light yellow solid (0.50 g, 50%). Rₜ = 0.3 (hexanes/EtOAc 6:1); ¹H-NMR (300 MHz; CDCl₃): δ 11.29 (s, 1H), 9.71 (s, 1H), 7.46-7.32 (m, 11H), 6.95 (s, 1H), 5.14 (s, 2H), 5.10 (s, 2H), 2.11 (s, 3H).
Figure 4.36. 1H NMR spectrum of compound 3.76 (300 MHz, CDCl$_3$)
Figure 4.37: 1H NMR spectrum of compound 3.78 (300 MHz, CDCl$_3$)

decription of the spectrum, including peaks at 2.11, 5.10, 5.14, 7.32, 7.46, 9.71, etc.
4.37 4,5-bis(benzyloxy)-2-((tert-butyldimethylsilyl)oxy)-3-methylbenzaldehyde (3.79)

To a solution of compound 3.78 (1.438 g, 4.13 mmol, 1 eq.) and TBS-Cl (1.247 g, 8.26 mmol, 2.0 eq.) in DMF (16 mL) was added DIPEA (2.16 mL, 12.4 mmol, 3.0 eq). The reaction was stirred under Ar for 2h, quenched with 1N HCl (50 mL) and the resulting aqueous phase was extracted with CH$_2$Cl$_2$ (3×25 mL). The combined organic phases were rinsed with brine (25 mL), dried (Na$_2$SO$_4$), filtered, concentrated under vacuum and purified by flash chromatography (hexanes/EtOAc 9:1) to afford the title compound as a light yellow solid (1.75 g, 92%). R$_f$ = 0.5 (hexanes/EtOAc 6:1); 1H-NMR (300 MHz; CDCl$_3$): δ 10.20 (s, 1H), 7.48-7.29 (m, 10H), 5.12 (s, 2H), 5.11 (s, 2H), 2.04 (s, 3H), 1.04 (s, 9H), 0.10 (s, 6H).
Figure 4.38. 1H NMR spectrum of compound 3.79 (300 MHz, CDCl$_3$)
4.38 (4,5-bis(benzyloxy)-2-((tert-butyldimethylsilyl)oxy)-3-methylphenyl)methanol (3.80)

To a solution of compound 3.79 (1.75 g, 3.79 mmol, 1 eq.) in CH₂Cl₂/MeOH 1:1 (38 mL) was added NaBH₄ (720 mg, 19 mmol, 5.0 eq). The reaction was stirred under Ar for 2h, quenched with sat. aq. NH₄Cl (50 mL) and the resulting aqueous phase was extracted with CH₂Cl₂ (3×25 mL). The combined organic phases were rinsed with brine (25 mL), dried (Na₂SO₄), filtered, concentrated under vacuum and purified by flash chromatography (hexanes/EtOAc, 9:1 to 6:1) to afford the title compound as a colorless oil (625 mg, 35 %). Rᵣ = 0.1 (hexanes/EtOAc 6:1); ¹H-NMR (300 MHz; CDCl₃): δ 7.46-7.30 (m, 10H), 6.91 (s, 1H), 5.10 (s, 2H), 5.00 (s, 2H), 4.62 (s, 2H), 2.07 (s, 3H), 1.02 (s, 9H), 0.14 (s, 6H).
Figure 4.39. 1H NMR spectrum of compound 3.80 (300 MHz, CDCl$_3$)
4.39 \((S)-1-(2\text{-bromo-5-}((\text{tert-butyl}d\text{imethylsilyl})\text{oxy})-4\text{-methoxy-3-methylphenyl})-3-((\text{tert-butyl}d\text{imethylsilyl})\text{oxy})\text{propan-2-amine (3.88)}\)

To a stirred solution of compound 3.86 (1.55 g, 5.36 mmol, 1 eq.) in CH\(_2\)Cl\(_2\) (90 mL, 0.06 M), were added DMAP (327 mg, 2.68 mmol, 0.5 eq.), Et\(_3\)N (4.48 mL, 32.2 mmol, 6.00 eq.) and TBS-Cl (4.86 g, 32.2 mmol, 6 eq.). The reaction was stirred under Ar for 3 h at RT, and then sat. aq. NH\(_4\)Cl (50 mL) was added and the mixture was stirred for 2h. The phases were separated, the aqueous layer was extracted with CH\(_2\)Cl\(_2\) (2×50 mL) and the combined organic layers were rinsed with brine (50 mL), dried (Na\(_2\)SO\(_4\)), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, hexane/EtOAc 5:1) to give the title compound 3.88 (2.50 g, 90%) as a colorless oil. \(^1\)H-NMR (400 MHz; CDCl\(_3\)): \(\delta\) 6.65 (s, 1H), 3.72 (s, 3H), 3.61 (1/2 ABX, \(J = 9.7, 4.1\) Hz, 1H), 3.47 (1/2 ABX, \(J = 9.7, 6.5\) Hz, 1H), 3.20-3.14 (m, 1H), 2.87 (1/2 ABX, \(J = 13.4, 5.4\) Hz, 1H), 2.57 (1/2 ABX, \(J = 13.4, 8.0\) Hz, 1H), 2.35 (s, 3H), 1.00 (s, 9H), 0.91 (s, 9H), 0.17 (s, 6H), 0.07 (s, 3H), 0.06 (s, 3H); \(^{13}\)C-NMR (101 MHz, CDCl\(_3\)): \(\delta\) 148.8, 147.6, 134.6, 133.1, 121.3, 119.4, 67.6, 60.2, 52.9, 41.3, 26.1, 25.8, 18.4, 18.4, 17.2, -4.4, -5.2; \(R_f\) (SiO\(_2\), 2:1 hexanes/EtOAc) 0.35; \([\alpha]_D^{25} = +0.9^\circ\) (c=0.35, CHCl\(_3\)); IR (film, CH\(_2\)Cl\(_2\)), \(\nu_{\max}\) 2996, 2930, 2858, 2471, 839 cm\(^{-1}\); HRMS (MH\(^+\)), found 520.2103. C\(_{23}\)H\(_{45}\)BrNO\(_3\)Si\(_2\) requires 520.2101.
Figure 4.40. 1H NMR spectrum of compound 3.88 (400 MHz, CDCl$_3$)
Figure 4.41. 13 C NMR spectrum of compound 3.88 (101 MHz, CDCl$_3$)
4.40 (S)-5-(2-amino-3-((tert-butyldimethylsilyl)oxy)propyl)-4-bromo-2-methoxy-3-methylphenol (3.89)

To a stirred solution of compound 3.88 (1.59 g, 3.05 mmol, 1 eq.) in THF (100 mL, 0.03 M), under Ar, at 0 °C, was added a 1.0 solution M of TBAF in THF (3.05 mL, 3.05 mmol, 1 eq.). The reaction was stirred for 25 minutes and quenched with sat. aq. NH₄Cl (50 mL). The phases were allowed to warm to RT, the aqueous phase was extracted with EtOAc (2×50 mL) and the combined organic layers were rinsed with brine (50 mL), dried (Na₂SO₄), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, CHCl₃/MeOH 10:1) to give the title compound 3.89 (1.23 g, 98%) as a colorless oil. ¹H-NMR (400 MHz; CDCl₃): δ 6.77 (s, 1H), 3.73 (s, 3H), 3.71-3.66 (m, 1H), 3.56-3.50 (m, 1H), 3.27-3.24 (m, 1H), 2.92 (1/2 ABX, J = 13.5, 4.6 Hz, 1H), 2.62 (1/2 ABX, J = 13.5, 9.0 Hz, 1H), 2.34 (s, 3H), 0.92 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H); ¹³C-NMR (101 MHz, CDCl₃): δ 148.4, 145.0, 134.6, 132.2, 117.2, 116.1, 67.1, 60.8, 52.9, 52.7, 40.5, 26.1, 18.4, 17.2, -5.2, -5.2. Rf (SiO₂, CH₂Cl₂/MeOH 10:1) 0.4; [α]D²⁵ = +8.3 ° (c=0.41, CHCl₃); IR (film, CH₂Cl₂), ν max 3263 (br), 2954, 2928, 2856, 1578, 1471, 1092 cm⁻¹; HRMS (MH⁺), found 406.1233. C₁₇H₃₁BrNO₃Si requires 406.1236
Figure 4.42. 1H NMR spectrum of compound \textit{3.89} (400 MHz, CDCl$_3$)
Figure 4.43. 13C NMR spectrum of compound 3.89 (101 MHz, CDCl3)
4.42 (1S,3S)-ethyl 5-bromo-3-(((tert-butyldimethylsilyl)oxy)-methyl)-8-hydroxy-7-methoxy-6-methyl-1,2,3,4-tetrahydro-isoquinoline-1-carboxylate (3.90a) and (1R,3S)-ethyl 5-bromo-3-(((tert-butyldimethylsilyl)oxy)methyl)-8-hydroxy-7-methoxy-6-methyl-1,2,3,4-tetrahydroisoquinoline-1-carboxylate (3.90b)

To a stirred solution of compound 3.89 (5.43 g, 13.4 mmol, 1.0 eq.) in CH$_2$Cl$_2$ (134 mL, 0.10 M), under Ar, were added, 4Å molecular sieves (2.72 g), CF$_3$CH$_2$OH (13.4 mL), AcOH (153 µL, 2.68 mmol, 0.20 eq.) and ethyl glyoxalate (50% solution in PhCH$_3$, 2.93 mL, 14.8 mmol, 1.1 eq.). The reaction was stirred overnight, diluted with CH$_2$Cl$_2$ (50 mL), filtered through Celite® and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, hexanes/EtOAc 5:1) to give compound 3.90a (4.78g, 73%) as a white solid and compound 3.90b (610 mg, 9%) as a white solid. Compound 3.90a: 1H-NMR (400 MHz; CDCl$_3$): δ 6.25 (br s, 1H), 4.89 (s, 1H), 4.26-4.18 (m, 2H), 3.82 (1/2 ABX, $J = 9.8$, 3.5 Hz, 1H), 3.76 (s, 3H), 3.54 (1/2 ABX, $J = 9.8$, 8.5 Hz, 1H), 3.13-3.07 (m, 1H), 2.71 (1/2 ABX, $J = 16.9$, 4.1 Hz, 1H), 2.35 (s, 3H), 2.27 (1/2 ABX, $J = 16.9$, 11.3 Hz, 1H), 1.29 (t, $J = 7.1$ Hz, 3H), 0.93 (s, 9H), 0.10 (s, 3H), 0.09 (s, 3H); 13C-NMR (101 MHz, CDCl$_3$): δ 172.9, 145.6, 144.3, 130.8, 130.7, 120.0, 118.4, 66.9, 61.7, 61.2, 55.6, 51.6, 32.7, 26.0, 18.4, 17.0, 16.9, 14.4, 14.4, -5.1, -5.2, -5.2, -5.2; m.p. = 47 °C; R$_f$ (SiO$_2$, hexanes/EtOAc 4:1) 0.40; $[\alpha]_D^{25} = -24.3$ ° (c = 0.885, CHCl$_3$); IR (film, CH$_2$Cl$_2$), ν_{max} 3284 (br), 2955, 2931, 2857, 1739, 1462, 1178 cm$^{-1}$; HRMS (MH$^+$), found 490.1446. C$_{21}$H$_{35}$BrNO$_5$Si requires 490.1447.

Compound 3.90b: 1H-NMR (400 MHz; CDCl$_3$): δ 5.86 (br s, 1H), 4.78 (s, 1H), 4.30-4.15 (m, 2H), 3.80 (1/2 ABX, $J = 9.9$, 4.1 Hz, 1H), 3.74 (s,
3H), 3.68 (1/2 ABX, J = 9.9, 6.6 Hz, 1H), 2.95 -2.89 (m, 1H), 2.77 (1/2 ABX, J = 16.6, 3.1 Hz, 1H), 2.44 (1/2 ABX, J = 16.6, 8.5 Hz, 2H), 2.36 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H), 0.92 (s, 9H), 0.09 (s, 6H); 13C-NMR (101 MHz, CDCl$_3$): δ 172.8, 145.1, 143.9, 132.0, 130.4, 120.3, 118.4, 66.7, 61.5, 61.4, 58.4, 54.5, 33.0, 26.1, 26.0, 18.5, 17.0, 14.2, -5.1, -5.2; m.p. = 95 °C; R$_f$(SiO$_2$, hexanes/EtOAc 4:1) 0.37; $[\alpha]_D^{25} = -36.7^\circ$ (c = 0.600, CHCl$_3$); IR (film, CH$_2$Cl$_2$), ν_{max} 3314 (br), 2955, 2931, 2858, 1738, 1463, 1257 cm$^{-1}$; HRMS (MH$^+$), found 490.1456. C$_{21}$H$_{35}$BrNO$_3$Si requires 490.1447.
Figure 4.44. 1H NMR spectrum of compound 3.90a (400 MHz, CDCl$_3$)
Figure 4.45. 13C NMR spectrum of compound 3.90a (101 MHz, CDCl$_3$)
Figure 4.46. 1H NMR spectrum of compound 3.90b (400 MHz, CDCl$_3$).
Figure 4.47. 13C NMR spectrum of compound 3.90b (101 MHz, CDCl$_3$)
4.43 (1S,3S)-ethyl 8-acetoxy-5-bromo-3-((tert-butyldimethyl-silyl)oxy)methyl)-7-methoxy-6-methyl-1,2,3,4-tetrahydro-isoquinoline-1-carboxylate (3.94)

To a stirred solution of compound 3.90a (840 mg, 1.72 mmol, 1.0 eq.) in acetone (34 mL, 0.05 M), under Ar, were added K$_2$CO$_3$ (1.20 g, 8.64 mmol, 5.0 eq.) and acetic anhydride (162 µL, 1.72 mmol, 1.0 eq.). The suspension was stirred overnight, the solvent was evaporated and the residue was partitioned between water (25 mL) and EtOAc (25 mL). The aqueous phase was extracted with EtOAc (2×25 mL) and the combined organic layers were rinsed with brine (50 mL), dried (Na$_2$SO$_4$), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, hexanes/EtOAc 5:1) to give the title compound 3.94 (800 mg, 88%) as a colorless oil. 1H-NMR (400 MHz; CDCl$_3$): δ 4.66 (s, 1H), 4.18 (q, $J = 7.1$ Hz, 2H), 3.81 (1/2 ABX, $J = 9.8$, 3.5 Hz, 1H), 3.70 (s, 3H), 3.55 (1/2 ABX, $J = 9.8$, 7.6 Hz, 1H), 3.22-3.16 (m, 1H), 2.74 (1/2 ABX, $J = 16.9$, 4.1 Hz, 2H), 2.38 (s, 3H), 2.37-2.33 (m, 1H), 2.29 (s, 3H), 1.27 (t, $J = 7.1$ Hz, 3H), 0.921 (s, 9H), 0.10 (s, 3H), 0.07 (s, 3H); 13C-NMR (101 MHz, CDCl$_3$): δ 171.8, 167.9, 148.6, 141.0, 132.5, 131.5, 125.9, 125.8, 66.7, 61.5, 61.1, 55.8, 51.0, 32.6, 26.0, 20.6, 18.4, 17.1, 14.4, -5.2, -5.3. R$_f$ (SiO$_2$, hexanes/EtOAc 4:1) 0.45; [α]$_D^{25}$ = -21.1 $^\circ$ (c = 1.10, CHCl$_3$); IR (film, CH$_2$Cl$_2$), ν_{max} 2956, 2932, 2856, 1780, 1737, 1462, 1192 cm$^{-1}$; HRMS (MH$^+$), found 532.1561. C$_{23}$H$_{37}$BrNO$_6$Si requires 530.1574
Figure 4.48. 1H NMR spectrum of compound 3.94 (400 MHz, CDCl$_3$)
Figure 4.49. ^{13}C NMR spectrum of compound 3.94 (101 MHz, CDCl$_3$)
4.44 \((1S,3S)\)-ethyl 8-acetoxy-3-(((tert-butyldimethylsilyl)oxy)-methyl)-7-methoxy-6-methyl-1,2,3,4-tetrahydroisoquinoline-1-carboxylate (3.95)

A solution of compound 3.94 (2.90 g, 5.46 mmol) in MeOH (110 mL, 0.05 M), and Pearlman’s catalyst (20% Pd(OH)$_2$/C, 580 mg) were placed in a Fisher-Porter bottle, under Ar. The mixture was sparged with Ar for 5 minutes and the vessel was filled with hydrogen gas at 50 psi. The reaction was vigorously stirred overnight and then filtered through Celite$^\circledR$ and the vessel was rinsed with MeOH (50 mL) and EtOAc (50 mL). The solution was concentrated under vacuum to dryness and partitioned between sat. aq. NaHCO$_3$ (75 mL) and EtOAc (75 mL). The aqueous phase was extracted with EtOAc (2×75 mL) and the combined organic layers were rinsed with brine (50 mL), dried (Na$_2$SO$_4$), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, hexanes/EtOAc 5:1, 4:1 and 3:1) to give the title compound 3.95 (2.25 g, 91%) as a colorless oil. 1H-NMR (400 MHz; CDCl$_3$): δ 6.85 (s, 1H), 4.65 (s, 1H), 4.17 (q, $J = 7.1$ Hz, 2H), 3.73 (1/2 ABX, $J = 9.8, 3.7$ Hz, 1H), 3.70 (s, 3H), 3.52 (1/2 ABX, $J = 9.8, 7.2$ Hz, 1H), 3.28-3.22 (m, 1H), 2.59 (1/2 ABX, $J = 16.1, 4.2$ Hz, 1H), 2.50 (1/2 ABX, $J = 16.1, 10.7$ Hz, 1H), 2.28 (s, 3H), 2.27 (s, 3H), 1.26 (t, $J = 7.1$ Hz, 3H), 0.90 (s, 9H), 0.07 (s, 3H), 0.06 (s, 2H). 13C-NMR (101 MHz, CDCl$_3$): δ 172.2, 168.3, 148.2, 141.6, 131.5, 131.1, 129.2, 124.0, 66.7, 61.3, 60.6, 55.6, 50.7, 30.2, 26.0, 20.6, 18.4, 16.0, 14.4, -5.2, -5.3. R_f (SiO$_2$, hexanes/EtOAc 4:1) 0.42; [α]$_D^{25}$ = -17 ° (c = 0.42, CHCl$_3$); IR (film, CH$_2$Cl$_2$), ν_{max} 2954, 2929, 2857, 1775, 1737, 1197 cm$^{-1}$; HRMS (MH$^+$), found 452.244. C$_{23}$H$_{38}$NO$_6$Si requires 452.2468.
Figure 4.50. 1H NMR spectrum of compound 3.95 (400 MHz, CDCl$_3$)
Figure 4.51. 13C NMR spectrum of compound 3.95 (101 MHz, CDCl$_3$)
4.45 (1S,3S)-ethyl 8-acetoxy-2-(2-(benzyl(tert-butoxycarbonyl)-amino)acetyl)-3-((tert-butyldimethylsilyl)oxy)methyl)-7-methoxy-6-methyl-1,2,3,4-tetrahydroisoquinoline-1-carboxylate (3.96)

A solution of compound 3.95 (2.20 g, 4.87 mmol, 1.0 eq.), N-Bn-N-Boc-glycine (2.58 g, 9.74 mmol, 2.0 eq.) and EDCI (1.40 g, 7.31 mmol, 1.5 eq.) in CH₂Cl₂ (2.5 mL, 2 M), under Ar, was stirred for 2.5 days. The reaction was diluted with EtOAc (200 mL), and the solution was extracted with water (100 mL), sat. aq. NaHCO₃ (2×100 mL) and brine (100 mL), dried (Na₂SO₄), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, hexanes/EtOAc 4:1, 3:1 and 2:1) to give the title compound 3.96 (3.15 g, 93%) as a colorless oil. ¹H-NMR (300 MHz; DMSO-d₆, 393 K, mixture of rotamers): δ 7.36-7.24 (m, 5H), 6.94 (s, 1H), 6.88 (s, 1H, minor rotamer), 5.48 (s, 1H), 4.49 (1/2 AB, J = 15.6 Hz, 1H), 4.39 (1/2 AB, J = 15.60 Hz, 1H), 4.33-4.27 (m, 2H), 4.13-3.87 (m, 3H), 3.69 (s, 3H), 3.66 (s, 1H, minor rotamer), 3.34-3.10 (br m, 2H), 3.07-2.91 (br m, 2H), 2.33 (s, 3H), 2.24 (s, 3H), 2.23 (s, 3H, minor rotamer), 2.23 (s, 1H, minor rotamer), 1.41 (s, 9H), 1.21 (t, J = 7.0 Hz, 3H, minor rotamer), 1.12 (t, J = 7.1 Hz, 3H), 0.92 (d, J = 0.6 Hz, 2H), 0.79 (s, 9H), 0.08 (s, 3H, minor rotamer), 0.04 (s, 3H, minor rotamer), 0.03 (m, 3H, minor rotamer), -0.11 (s, 3H), -0.14 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃, mixture of rotamers): δ 170.1, 169.7, 168.1, 168.0, 156.1, 149.6, 129.2, 129.1, 128.7, 128.4, 127.8, 127.5, 127.5, 127.4, 121.6, 80.5, 80.4, 71.6, 61.9, 61.3, 60.7, 53.6, 53.6, 53.5, 53.0, 52.9, 52.9, 50.9, 47.7, 29.5, 28.5, 28.4, 26.0, 26.0, 25.9, 20.9, 18.3, 16.1, 16.0, 14.0, 13.9, -5.3, -5.4, -5.4, -5.7. Rf (SiO₂, hexanes/EtOAc 3:1) 0.30; [α]D²⁵ =
+26.8 ° (c = 0.995, CHCl₃); IR (film, CH₂Cl₂), νmax 2956, 2931, 2857, 1781, 1743, 1703, 1668, 1199 cm⁻¹; HRMS (MH⁺), found 699.3666. C₃₇H₅₅N₂O₉Si requires 699.3677.
Figure 4.52. 1H NMR spectrum of compound 3.96 (300 MHz, DMSO-d$_6$, 393 K)
Figure 4.53. 1H-NMR spectra of compound 3.96

(300 MHz, DMSO-d_6, 295, 323, 348, 373 and 393K)
Figure 4.54. 1H NMR spectrum of compound 3.96 (400 MHz, CDCl$_3$)
Figure 4.55. 13C NMR spectrum of compound 3.96 (101 MHz, CDCl$_3$)
4.46 (1S,3S)-ethyl 2-(2-(benzyl(tert-butoxycarbonyl)amino)acetyl)-8-hydroxy-3-(hydroxymethyl)-7-methoxy-6-methyl-1,2,3,4-tetrahydroisoquinoline-1-carboxylate (3.97)

To a solution of compound **3.96** (765 mg, 1.09 mmol, 1.0 eq.) in THF (10 mL, 0.11 M), under Ar, were added MeOH (625 µL) and TBAF (1.0 M solution in THF, 2.18 mL, 2.0 eq.). The reaction was stirred overnight and quenched with sat. aq. NH₄Cl (50 mL) and then diluted with EtOAc (100 mL). The phases were separated, the aqueous phase was extracted with EtOAc (2×25 mL) and the combined organic layers were rinsed with brine (50 mL), dried (Na₂SO₄), filtered, and concentrated under vacuum. The crude material was dissolved in the minimal amount of CH₂Cl₂ and purified by flash chromatography (silica gel, hexanes/EtOAc 2:1, then 1:1) to give the title compound **3.97** as a white amorphous solid (525 mg, 82%).

1H-NMR (300 MHz; DMSO-d₆, 393 K): δ 7.36-7.26 (m, 5H), 6.96 (s, 1H), 5.50 (s, 1H), 4.49-4.40 (br m, 2H), 4.27-4.17 (br m, 2H), 4.07-3.89 (m, 3H), 3.70 (s, 3H), 3.19-3.03 (br m, 2H), 2.94-2.81 (m, 2H, overlapped with H₂O signal), 2.34 (s, 3H), 1.41 (s, 9H), 1.13 (t, J = 7.1 Hz, 3H);

13C-NMR (101 MHz, CDCl₃, mixture of rotamers): δ 170.2, 170.1, 168.0, 168.0, 156.4, 154.8, 152.8, 149.7, 145.0, 141.7, 141.5, 138.1, 138.1, 138.0, 132.9, 132.8, 130.2, 130.0, 128.7, 128.5, 128.4, 128.3, 128.1, 127.8, 127.8, 127.7, 127.5, 127.5, 127.1, 124.2, 121.2, 80.9, 80.4, 65.1, 63.8, 62.0, 60.6, 53.7, 53.5, 52.7, 52.0, 51.0, 47.9, 30.6, 30.0, 29.5, 28.5, 28.4, 20.9, 16.2, 13.8; m.p. 80 °C; R₇ (SiO₂, hexanes/EtOAc 1:1) 0.35; [α]D²⁵ = +78 ° (c = 0.44, CHCl₃); IR (film, CH₂Cl₂), νmax 3455 (br), 2977, 2935, 1780, 1742, 1698, 1663, 1200 cm⁻¹; HRMS (MH⁺), found 585.2816. C₃₁H₄₁N₂O₉ requires 585.2812.
Figure 4.56. 1H NMR spectrum of compound 3.97 (300 MHz, DMSO-d_6, 393K)
Figure 4.57. 1H-NMR spectra of compound 3.97 (300 MHz, DMSO-d$_6$, 295, 323, 348, 373 and 393K)
Figure 4.58. 1H NMR spectrum of compound 3.97 (400 MHz, CDCl$_3$)
Figure 4.59. 13C NMR spectrum of compound 3.97 (101 MHz, CDCl$_3$)
4.47 (1S,3S)-ethyl 2-(2-(benzyl(tert-butoxycarbonyl)amino)-acetyl)-3-formyl-8-hydroxy-7-methoxy-6-methyl-1,2,3,4-tetrahydroisoquinoline-1-carboxylate (3.85)

A solution of oxalyl chloride (825 µL, 9.75 mmol, 3.0 eq.) in CH₂Cl₂ (22.5 mL), under Ar, was cooled to -78 °C, and DMSO (921 µL, 13.0 mmol, 4.0 eq.) was added dropwise. The resulting mixture was stirred an additional 30 min at -78 °C. A solution of compound 3.97 (1.90 mg, 3.25 mmol, 1.0 eq.) in CH₂Cl₂ (10 mL) at RT was then added slowly by cannula, and the mixture continued to stir at -78 °C for 30 min. Triethylamine (4.50 mL, 32.5 mmol, 10 eq.) was then added dropwise, and the solution was stirred for 15 min at -78 °C and an additional 30 min at 0 °C. The reaction was quenched with sat. aq. NH₄Cl (50 mL) and allowed to warm to RT. The layers were separated, the aqueous phase was extracted with CH₂Cl₂ (3×50 mL) and the combined organic layers were rinsed with brine (50 mL), dried (Na₂SO₄), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, hexanes/EtOAc 2:1, then 1:1) to give the title compound 3.85 (1.65 g, 87%) as a colorless oil, which solidifies upon standing to afford a colorless amorphous solid. ¹H-NMR (300 MHz; DMSO- d₆, 373 K, mixture of rotamers): δ 9.54 (s, 1H, minor rotamer), 9.28 (s, 1H), 7.35-7.23 (m, 5H), 7.08 (s, 1H, minor rotamer), 7.01 (s, 1H), 6.94 (s, 1H, minor rotamer), 6.91 (s, 1H, minor rotamer), 5.70 (s, 1H), 5.10-4.88 (m, 1H), 4.52-4.28 (m, 3H), 4.26-4.14 (m, 1H), 4.13-3.98 (m, 2H), 3.97-3.86 (m, 1H), 3.69 (s, 3H, minor rotamer), 3.68 (s, 3H, minor rotamer), 3.67 (s, 3H), 3.38-3.27 (m, 1H), 2.34 (s, 3H), 2.32 (s, 3H, minor rotamer), 2.25 (s, 3H, minor rotamer), 2.24 (s, 3H, minor rotamer), 2.22 (s, 3H), 1.41 (s, 9H, minor rotamer), 1.40 (s, 9H), 1.36 (s, 9H, 174
minor rotamer), 1.34 (s, 9H, minor rotamer), 1.12 (t, $J = 7.2$ Hz, 3H). 13C-NMR (101 MHz, CDCl$_3$, mixture of rotamers): δ 201.2, 199.6, 199.2, 169.9, 167.8, 155.9, 155.8, 150.2, 149.7, 141.5, 141.0, 137.6, 137.5, 137.5, 133.6, 133.3, 128.6, 128.6, 128.5, 128.5, 128.4, 128.1, 128.0, 127.9, 122.6, 122.1, 81.0, 80.8, 62.7, 62.2, 60.9, 60.6, 60.6, 60.2, 53.7, 53.5, 53.3, 50.9, 47.8, 47.6, 47.1, 29.6, 28.5, 28.5, 28.4, 28.2, 20.9, 16.2, 13.8; m.p. 78 °C; R_f (SiO$_2$, hexanes/EtOAc 1:1) 0.40; $[\alpha]_D^{25} = +35$ ° (c = 0.23, CHCl$_3$); IR (film, CH$_2$Cl$_2$), ν_{max} 2978, 2937, 1780, 1742, 1699, 1673, 1200 cm$^{-1}$; HRMS (MH$^+$), found 583.2654. C$_{31}$H$_{39}$N$_2$O$_9$ requires 583.2656.
Figure 4.60. 1H NMR spectrum of compound 3.85 (300 MHz, DMSO-d$_6$, 373K)
Figure 4.61. 1H-NMR spectra of compound 3.85

(300 MHz, DMSO-d$_6$, 295, 323, 348, 373 and 393K)
Figure 4.62. 1H NMR spectrum of compound 3.85 (400 MHz, CDCl$_3$)
Figure 4.63. 13C NMR spectrum of compound 3.85 (101 MHz, CDCl$_3$)
4.48 (5S,8S,10R,11S)-10-tert-butyl 5-ethyl 4-acetoxy-13-benzyl-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11-epiminoazepino[1,2-b]isoquinoline-5,10-dicarboxylate (3.102a) and (5R,8S,10R,11S)-10-tert-butyl 5-ethyl 4-acetoxy-13-benzyl-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11-epiminoazepino[1,2-b]isoquinoline-5,10-dicarboxylate (3.102b)

To solution of compound 3.85 (1.65 g, 2.83 mmol, 1.0 eq.) in CHCl₃ (28 mL, 0.1 M), under air, were added TEMPO (44 mg, 0.28 mmol, 0.10 eq.), and trifluoroacetic acid (10.8 mL, 142 mmol, 50 eq.) and the flask was loosely capped with a Teflon® stopper. The solution was stirred for 4h, the solvent was evaporated to dryness under vacuum and the residue was taken up in CHCl₃. The solution was cooled to 0 °C and then tert-butyl acrylate (8.20 mL, 56.6 mmol, 20 eq.) and triethylamine (3.95 mL, 28.3 mmol, 10 eq.) were added. The reaction was allowed to warm to RT and stirred overnight. The solution was diluted with EtOAc (200 mL), rinsed with sat. aq. NH₄Cl (50 mL) and brine (50 mL), dried (Na₂SO₄), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, hexanes/EtOAc 4:1, 3:1) to afford a 2.4:1 mixture of the title compounds 3.102a and 3.102b (985 mg, 59%) as a yellow oil, which was used in the next step without further purification. ¹H-NMR (400 MHz; CDCl₃): δ 7.41-7.22 (m, 5H), 6.74 (s, 1H, minor diastereomer), 6.73 (s, 1H), 6.36 (s, 1H, minor diastereomer), 6.27 (s, 1H), 5.51 (s, 1H, minor diastereomer), 5.50 (s, 1H), 4.28-3.96 (m, 6H), 3.89-3.71 (m, 2H), 3.75 (s, 3H, minor diastereomer), 3.72 (s, 3H), 2.80-2.67 (m, 2H), 2.45 (dd, J = 13.0, 9.8 Hz, 1H, minor diastereomer), 2.40 (s, 3H), 2.39 (s, 3H, minor diastereomer), 2.28 (s,
3H, minor diastereomer), 2.26 (s, 3H), 2.13 (dd, $J = 13.3$, 9.5 Hz, 1H), 1.46 (s, 9H, minor diastereomer), 1.42 (s, 9H), 1.24 (t, $J = 7.1$ Hz, 3H), 1.20 (t, $J = 7.2$ Hz, 3H, minor diastereomer); 13C-NMR (101 MHz, CDCl$_3$): δ 172.4, 171.7, 168.7, 167.9, 149.9, 141.6, 133.1, 129.0, 128.6, 128.4, 128.4, 127.4, 127.3, 126.6, 125.0, 124.8, 117.3, 116.7, 104.6, 103.1, 81.4, 81.3, 65.1, 64.1, 63.1, 62.6, 62.4, 62.3, 60.7, 60.6, 52.7, 51.8, 51.3, 50.7, 50.0, 48.0, 34.3, 31.9, 31.7, 28.2, 22.8, 21.0, 16.1, 14.2, 14.0; R$_f$ (SiO$_2$, hexanes/EtOAc 3:1) 0.5; $[\alpha]_D^{25} = -65.0$ ° (c = 0.320, CH$_2$Cl$_2$); IR (film, CH$_2$Cl$_2$), ν_{max} 2980, 2936, 1781, 1741, 1693, 1651 cm$^{-1}$; HRMS (MH$^+$), found 591.2712. C$_{33}$H$_{38}$N$_2$O$_8$ requires 591.2706.
Figure 4.64. 1H NMR spectrum of compounds 3.102a and 3.102b (400 MHz, CDCl$_3$)
Figure 4.65. 13C NMR spectrum of compounds 3.102a and 3.102b (101 MHz, CDCl$_3$)
4.49 (8S,10R,11S)-4-acetoxy-13-benzyl-5-(ethoxycarbonyl)-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11-epiminoazepino[1,2-b]isoquinoline-10-carboxylic acid (3.103a/3.103b)

To a solution of a mixture of compounds 3.102a and 3.102b (110 mg, 0.186 mmol) in CH₂Cl₂ (600 µL) at 0°C, was added Et₂SiH (240 µL, 1.5 mmol, 8 eq.), followed by TFA (600 µL, 7.84 mmol, 42 eq.). The resulting mixture was cooled to 5°C. After 24 h, the reaction concentrated to dryness and partitioned between H₂O (10 mL) and CH₂Cl₂ (25 mL). The organic phase was washed with sat. aq. NaHCO₃ (10 mL), brine (10 mL), dried (Na₂SO₄) and concentrated under vacuum. The resulting residue was purified by flash chromatography (hexanes:EtOAc 1:1 to 1:2) to provide a mixture of compounds 3.103a/3.103b as a colorless oil (0.38 g, 95% yield). Rₖ = 0.1 (hexanes:EtOAc 1:2); ¹H-NMR (300 MHz; CDCl₃): δ 7.41-7.32 (m, 5H), 6.83-6.81 (s, 1H), 6.78 (s, 1H), 6.38 (s, 1H), 6.30 (s, 1H), 5.66 (m, 1H), 4.42-3.88 (m, 13H), 3.76 (s, 1H), 3.74 (s, 3H), 2.41 (s, 3H), 2.31 (s, 3H), 2.29 (s, 3H).
Figure 4.66. 1H NMR spectrum of compounds 3.103a and 3.103b (300 MHz, CDCl$_3$)
4.50 (8S,10R,11S)-ethyl 4-acetoxy-13-benzyl-10-(hydroxymethyl)-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11-epiminoazepino[1,2-b]isoquinoline-5-carboxylate (3.104a/3.104b)

To a solution of a mixture of compounds 3.103a and 3.103b (96 mg, 0.18 mmol) in THF (4 mL) at 0 °C was added NMM (27 µL, 0.22 mmol, 1.2 eq.), followed by isobutyl chloroformate (29 µL, 0.25 mmol, 1.4 eq.). The reaction was then warmed to room temperature and after 20 min was filtered through Celite® and added to an ice-cold suspension of NaBH₄ (68 mg, 1.8 mmol, 10 eq.) in water (4 mL). The reaction mixture was stirred at 0 °C for 20 minutes and then quenched with 2N HCl (2 mL). The resulting mixture was stirred for another 30 minutes at 0 °C and then diluted with water (25 mL), extracted with EtOAc (3×10 mL), washed with brine (25 mL), dried (Na₂SO₄) and concentrated under vacuum. The resulting residue was purified by flash chromatography (hexanes:EtOAc 1:1) to give a mixture of compounds 3.104a and 3.104b as a colorless oil (42 mg, 45%). Rf = 0.3 (hexanes:EtOAc 1:1); ¹H-NMR (300 MHz; CDCl₃): δ 7.37-7.29 (m, 5H), 6.76 (s, 1H), 6.72 (s, 1H), 6.28 (s, 1H), 5.50 (s, 1H), 4.29-3.98 (m, 6H), 3.83-3.74 (m, 5H), 3.73 (s, 3H), 3.57 (dd, J = 10.2, 5.3 Hz, 1H), 2.41 (s, 3H), 2.27 (s, 3H), 1.24 (d, J = 7.1 Hz, 3H), (d, J = 7.1 Hz, 3H).
Figure 4.67. 1H NMR spectrum of compounds 3.104a and 3.104b (300 MHz, CDCl₃)
4.51 (8S,10R,11R)-ethyl 4-acetoxy-10-(hydroxymethyl)-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11-epiminoazepino[1,2-b]isoquinoline-5-carboxylate (3.105a/3.105b)

To a solution of a mixture of compounds 3.104a and 3.104b (10 mg, 0.019 mmol) in MeOH (1 mL) in a 5 mL vial, was added Pearlman’s catalyst (20% Pd(OH)$_2$/C). The vial was placed in a Fisher-Porter bottle, under Ar, the suspension was sparged with Ar for 5 minutes and the vessel was filled with hydrogen gas at 50 psi. The reaction was vigorously stirred overnight and then suspension was filtered through Celite$^\text{®}$, using MeOH and EtOAc to transfer the material. The filtrate was concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, CHCl$_3$/MeOH 98:2) to afford a mixture of compounds 3.105a and 3.105b (6 mg, 75%) as a colorless oil. $R_f = 0.2$ (CHCl$_3$/MeOH 95:5); 1H-NMR (300 MHz; CDCl$_3$): δ 6.72 (s, 1H), 6.21 (s, 1H), 5.57 (s, 1H), 5.55 (s, 1H), 4.18-3.83 (m, 5H), 3.71 (s, 3H), 3.61-3.56 (m, 1H), 3.09-2.92 (m, 2H), 2.39 (s, 3H), 2.26 (s, 4H), 1.22-1.14 (m, 3H).
Figure 4.68. 1H NMR spectrum of compounds 3.105a and 3.105b (300 MHz, CDCl$_3$)
4.52 (5S,8S,10R,11S)-10-tert-butyl 5-ethyl 13-benzyl-4-hydroxy-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11-epiminoazepino[1,2-b]isoquinoline-5,10-dicarboxylate (3.106a) and (5R,8S,10R,11S)-10-tert-butyl 5-ethyl 13-benzyl-4-hydroxy-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11-epiminoazepino[1,2-b]isoquinoline-5,10-dicarboxylate (3.106b)

To a stirred solution of a 2.6:1 mixture of compounds 3.102a and 3.102b (410 mg, 0.695 mmol, 1.0 eq.) in THF/MeOH 1:1 (14 mL, 0.05 M), under Ar, was added K2CO3 (192 mg, 1.39 mmol, 2.0 eq.). The suspension was stirred for 2.5 h, the solvent was evaporated and the residue was partitioned between phosphate buffer (0.1 M, pH = 7.5, 50 mL) and EtOAc (33 mL). The aqueous phase was extracted with EtOAc (2×33 mL) and the combined organic layers were rinsed with brine (50 mL), dried (Na2SO4), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, hexanes/EtOAc 4:1) to afford a 5:1 mixture of the title compounds 3.106a and 3.106b (255 mg, 67%) as a pale yellow oil, which was used in the next step without further purification.

1H-NMR (400 MHz; CDCl3): δ 7.38-7.24 (m, 5H), 6.76 (s, 1H), 6.63 (s, 1H, minor diastereomer), 6.49 (s, 1H, minor diastereomer), 6.43 (s, 1H, minor diastereomer), 6.42 (s, 1H), 6.39 (s, 5H), 5.46 (s, 1H, minor diastereomer), 5.45 (s, 1H, minor diastereomer), 4.24 (q, J = 7.1 Hz, 2H), 4.19-3.9 (m, 5H), 4.07 (s, 1H), 3.86 (d, J = 7.5 Hz, 1H), 3.84 (s, 1H, minor diastereomer), 3.82 (s, 3H), 3.31 (dd, J = 9.8, 6.0 Hz, 1H, minor diastereomer), 2.79 (dd, J = 9.5, 4.6 Hz, 1H), 2.74-2.66 (m, 1H), 2.46 (dd, J = 13.0, 9.9 Hz, 1H,
minor diastereomer), 2.26 (s, 3H, minor diastereomer), 2.24 (s, 3H), 2.13 (dd, $J = 13.4$, 9.6 Hz, 6H), 1.46 (s, 9H, minor diastereomer), 1.42 (s, 9H), 1.27 (t, $J = 7.1$ Hz, 3H), 1.24 (t, $J = 7.2$ Hz, 3H, minor diastereomer); 13C-NMR (101 MHz, CDCl$_3$): δ 172.4, 171.9, 170.7, 170.6, 170.4, 168.9, 146.9, 146.8, 146.2, 138.5, 138.0, 136.1, 134.2, 131.9, 131.7, 128.5, 127.4, 127.3, 126.6, 126.0, 119.1, 119.1, 110.8, 103.4, 81.3, 64.3, 62.7, 62.6, 60.8, 60.8, 52.2, 52.2, 52.1, 51.5, 50.8, 48.2, 32.1, 28.2, 28.1, 22.8, 15.9, 14.3; R_f(SiO$_2$, hexanes/EtOAc 2:1) 0.45; $[\alpha]_D^{25} = -73.6$ ° (c = 0.282, CH$_2$Cl$_2$); IR (film, CH$_2$Cl$_2$), ν_{max} 3374 (br), 2980, 2938, 1736, 1689, 1647, 1154 cm$^{-1}$; HRMS (MH$^+$), found 549.2606. C$_{31}$H$_{37}$N$_2$O$_7$ requires 549.2601.
Figure 4.69. 1H NMR spectrum of compounds 3.106a and 3.106b (400 MHz, CDCl$_3$)
Figure 4.70. 13C NMR spectrum of compounds 3.106a and 3.106b (101 MHz, CDCl$_3$)
4.53
(5S,8S,10R,11S)-**tert**-butyl 13-benzyl-5-formyl-4-hydroxy-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11-epimino-azepino[1,2-b]isoquinoline-10-carboxylate (3.107a) and (5R,8S,10R,11S)-**tert**-butyl 13-benzyl-5-formyl-4-hydroxy-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11-epiminoazepino[1,2-b]isoquinoline-10-carboxylate (3.107b)

A solution of LiAlH₄ in THF (1.0 M, 447 µL, 0.447 mmol, 1.0 eq.) was added dropwise to a solution of a 5:1 mixture of compounds 3.106a and 3.106b (245 mg, 0.447 mmol, 1.0 eq.) in THF (9 mL, 0.05 M), under Ar, at -10 °C. The solution was stirred for 10 minutes at this temperature, quenched with EtOAc (12 mL) and sat. aq. Rochelle’s salt (12 mL) and allowed to warm to RT. The flask was covered with aluminum foil and stirred overnight under a stream of Ar. The solution was diluted with phosphate buffer (0.1 M, pH = 7.5, 50 mL), the phases were separated and aqueous phase was extracted with EtOAc (3×33 mL) and the combined organic layers were rinsed with brine (25 mL), dried (Na₂SO₄), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, hexanes/EtOAc 4:1) to afford a 3:1 mixture of the title compounds 3.107a and 3.107b (124 mg, 55%) as a pale yellow oil, which was used in the next step without further purification. ¹H-NMR (400 MHz; CDCl₃): δ 9.48 (s, 1H), 9.38 (s, 1H, minor diastereomer), 7.41-7.23 (m, 5H), 6.58 (s, 1H), 6.57 (s, 1H, minor diastereomer), 6.43 (s, 1H, minor diastereomer), 6.41 (s, 1H), 6.18 (s, 1H, minor diastereomer), 6.17 (s, 1H, minor diastereomer), 4.25 (1/2 AB, J = 13.5 Hz, 1H), 4.18 (1/2 AB, J = 13.5 Hz, 1H), 4.07 (s, 1H), 4.00 (s, 1H, minor diastereomer), 3.83 (s, 3H, minor diastereomer),
3.81 (s, 3H, minor diastereomer), 3.40 (dd, \(J = 9.7, 6.0 \) Hz, 1H, minor diastereomer), 2.81 (dd, \(J = 9.5, 4.7 \) Hz, 1H), 2.73-2.67 (m, 1H), 2.59 (dd, \(J = 13.0, 9.8 \) Hz, 1H, minor diastereomer), 2.28 (s, 3H, minor diastereomer), 2.26 (s, 3H), 2.15 (dd, \(J = 13.4, 9.6 \) Hz, 1H), 1.48 (s, 9H, minor diastereomer), 1.46 (s, 9H); \(^{13}\text{C-NMR} \) (101 MHz, CDCl\(_3\)): \(\delta \) 192.1, 191.3, 172.5, 171.9, 170.1, 145.7, 144.6, 138.6, 138.0, 136.6, 135.3, 131.5, 128.8, 128.4, 127.5, 127.2, 119.4, 119.2, 107.3, 104.0, 102.7, 102.6, 81.4, 64.1, 64.0, 62.9, 62.8, 61.2, 61.1, 58.6, 58.5, 51.6, 50.8, 48.8, 34.7, 32.4, 31.7, 29.8, 28.1, 22.8, 16.0, 14.3; Rf (SiO\(_2\), hexanes/EtOAc 2:1) 0.42; \([\alpha]_D^{25} = -64.8 \degree \) (c = 0.250, CH\(_2\)Cl\(_2\)); IR (film, CH\(_2\)Cl\(_2\)), \(\nu_{\text{max}} \) 3331 (br), 2977, 2935, 1733, 1679, 1642, 1154 cm\(^{-1}\); HRMS (MH\(^+\)), found 505.2345. \(\text{C}_{29}\text{H}_{33}\text{N}_{2}\text{O}_{6} \) requires 505.2339.
Figure 4.71. 1H NMR spectrum of compound 3.107a and 3.107b (400 MHz, CDCl$_3$)
Figure 4.72. 13C NMR spectrum of compound 3.107a and 3.107b (101 MHz, CDCl$_3$)
4.54 (5S,8S,10R,11S)-**tert**-butyl 13-benzyl-4-(benzyloxy)-5-formyl-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11-epiminoazepino[1,2-b]isoquinoline-10-carboxylate (3.108a) and (5R,8S,10R,11S)-**tert**-butyl 13-benzyl-4-(benzyloxy)-5-formyl-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11-epiminoazepino[1,2-b]isoquinoline-10-carboxylate (5R,8S,10R,11S)-**tert**-butyl 13-benzyl-4-(benzyloxy)-5-formyl-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11-epiminoazepino[1,2-b]isoquinoline-10-carboxylate (3.108b)

To a stirred solution of a 3:1 mixture of compounds 3.107a and 3.107b (115 mg, 0.228 mmol, 1.0 eq.) and benzyl bromide (108 µL, 0.912 mmol, 4.0 eq.) in DMF (7.6 mL, 0.03 M), under Ar, were added tetrabutylammonium iodide (9.0 mg, 0.023 mmol, 0.10 eq.) and finely ground anhydrous Na$_2$CO$_3$ (241 mg, 2.28 mmol, 10 eq.). The mixture was vigorously stirred for 2h and diluted with water (25 mL) and phosphate buffer (0.1 M, pH = 7.5, 25 mL). The aqueous phase was extracted with EtOAc (3×33 mL) and the combined organic layers were rinsed with brine (25 mL), dried (Na$_2$SO$_4$), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, hexanes/EtOAc 6:1, 4:1) to afford a 2.2:1 mixture of compounds 3.108a and 3.108b (88 mg, 65%) as a pale yellow oil, which was used in the next step without further purification. 1H-NMR (400 MHz; CDCl$_3$): δ 9.32 (s, 1H), 9.19 (s, 1H minor diastereomer), 7.48-7.22 (m, 10H), 6.63 (s, 1H, minor diastereomer), 6.62 (s, 1H), 6.38 (s, 1H, minor diastereomer), 6.36 (s, 1H), 5.37 (s, 1H), 5.36 (s, minor diastereomer), 5.28 (1/2 AB, $J =$
11.1 Hz, 1H, minor diastereomer), 5.26 (1/2 AB, J = 11.1 Hz, 2H), 5.20 (1/2 AB, J = 11.1 Hz, 1H, minor diastereomer), 5.14 (1/2 AB, J = 11.1 Hz, 1H), 4.20 (1/2 AB, J = 13.5 Hz, 1H), 4.14 (1/2 AB, J = 13.5 Hz, 1H), 4.05 (s, 1H), 3.97 (s, 1H, minor diastereomer), 3.86 (s, 3H, minor diastereomer), 3.84 (s, 3H), 3.80 (1/2 AB, J = 13.5 Hz, 1H) 3.79 (d, J = 7.4 Hz, 1H), 3.75 (d, J = 6.9 Hz, minor diastereomer), 3.68 (1/2 AB, J = 13.5 Hz, 1H, minor diastereomer), 3.37 (dd, J = 9.7, 6.1 Hz, 1H, minor diastereomer), 2.78 (dd, J = 9.6, 4.7 Hz, 1H), 2.71-2.64 (m, 2H), 2.53 (1/2 ABX, J = 13.1, 9.9 Hz, 1H, minor diastereomer), 2.28 (s, 3H, minor diastereomer), 2.26 (s, 3H), 2.10 (dd, J = 13.3, 9.7 Hz, 1H), 1.45 (s, 9H minor diastereomer), 1.44 (s, 9H); 13C-NMR (101 MHz, CDCl$_3$): δ 192.5, 191.7, 171.9, 169.8, 168.8, 150.4, 150.3, 148.3, 148.1, 138.6, 138.1, 136.9, 136.9, 136.6, 135.3, 133.7, 128.9, 128.8, 128.8, 128.6, 128.6, 128.5, 128.5, 128.4, 128.3, 127.4, 127.2, 126.9, 123.1, 122.8, 115.0, 114.6, 103.9, 102.5, 81.4, 81.2, 75.0, 75.0, 65.0, 63.0, 63.0, 62.8, 60.5, 58.8, 57.3, 52.8, 51.6, 48.8, 34.7, 32.2, 28.2, 16.0, 16.0; R$_f$ (SiO$_2$, hexanes/EtOAc 4:1) 0.45; [α]$_D^{25}$ = -64° (c = 0.32, CH$_2$Cl$_2$); IR (film, CH$_2$Cl$_2$), v$_{max}$ 3030, 2976, 2934, 1733, 1688, 1646, 1154 cm$^{-1}$; HRMS (MH$^+$), found 595.2801. C$_{36}$H$_{39}$N$_2$O$_6$ requires 595.2808.

To a stirred solution of a 2.2:1 mixture of compounds **3.108a** and **3.108b** (88 mg, 0.15 mmol, 1.0 eq.) in THF (2 mL, 0.08 M), under Ar, was added DBN (19 µL, 0.15 mmol, 1.0 eq.). The mixture was stirred for 30 minutes and then diluted with phosphate buffer (0.1 M, pH = 7.5, 50 mL) and water (50 mL). The aqueous phase was extracted with EtOAc (3×33 mL) and the combined organic layers were rinsed with brine (25 mL), dried (Na$_2$SO$_4$), filtered, and concentrated under vacuum. The crude material was dissolved in the minimal amount of EtOAc purified by flash chromatography (silica gel, hexanes/EtOAc 4:1) to afford a 1:2.2 mixture of compounds **3.108a** and **3.108b** (64 mg, 72%) as a pale yellow oil, which was used in the next
step without further purification. 1H-NMR (400 MHz; CDCl$_3$): δ 9.32 (s, 1H, minor diastereomer), 9.19 (s, 1H), 7.48-7.24 (m, 10H), 6.63 (s, 1H), 6.62 (s, 1H, minor diastereomer), 6.38 (s, 1H), 6.36 (s, 1H, minor diastereomer), 5.37 (s, 1H, minor diastereomer), 5.36 (s, 1H), 5.28 (1/2 AB, $J = 11.1$ Hz, 1H), 5.26 (1/2 AB, $J = 11.1$ Hz, 1H, minor diastereomer), 5.19 (1/2 AB, $J = 11.1$ Hz, 1H), 5.13 (1/2 AB, $J = 11.2$ Hz, 2H, minor diastereomer), 4.20 (1/2 AB, $J = 13.4$ Hz, 1H, minor diastereomer), 4.14 (1/2 AB, $J = 13.5$ Hz, 1H minor diastereomer), 4.05 (s, 1H, minor diastereomer), 3.97 (s, 1H), 3.86 (s, 3H, minor diastereomer), 3.84 (s, 3H, minor diastereomer), 3.81 (1/2 AB, $J = 13.6$ Hz, 1H), 3.79 (d, $J = 6.2$ Hz, 4H), 3.75 (d, $J = 6.6$ Hz, 3H), 3.68 (1/2 AB, $J = 13.4$ Hz, 3H), 3.37 (dd, $J = 9.8$, 6.0 Hz, 1H), 2.78 (dd, $J = 9.5$, 4.7 Hz, 1H, minor diastereomer), 2.71-2.65 (m, 2H), 2.53 (1/2 ABX, $J = 13.0$, 9.9 Hz, 3H), 2.28 (s, 3H), 2.26 (s, 3H, minor diastereomer), 2.10 (dd, $J = 13.4$, 9.5 Hz, 1H, minor diastereomer), 1.45 (s, 9H), 1.44 (s, 9H, minor diastereomer); 13C-NMR (101 MHz, CDCl$_3$): δ 192.5, 191.7, 172.5, 171.9, 168.8, 150.4, 148.1, 138.0, 136.9, 135.3, 133.7, 128.9, 128.8, 128.8, 128.6, 128.5, 128.4, 128.3, 127.4, 127.2, 126.9, 123.1, 122.8, 115.0, 114.6, 103.9, 102.5, 81.4, 81.2, 75.0, 75.0, 65.0, 63.9, 63.1, 62.7, 60.4, 58.8, 57.3, 52.7, 51.6, 50.9, 48.8, 34.7, 32.2, 28.2, 28.1, 16.0, 16.0; R$_f$ (SiO$_2$, hexanes/EtOAc); [α]$_D^{25} = +27^\circ$ (c = 0.22, CHCl$_3$); IR (film, CH$_2$Cl$_2$), ν_{max} 3029, 2969, 2935, 1732, 1688, 1647, 1154 cm$^{-1}$; HRMS (MH$^+$), 595.2789. C$_{36}$H$_{39}$N$_2$O$_6$ requires 595.2808.
Figure 4.73. 1H NMR spectrum of a 2.2:1 mixture of compounds 3.108a and 3.108b (400 MHz, CDCl$_3$)
Figure 4.74. 13C NMR spectrum of a 2.2:1 mixture of compounds 3.108a and 3.108b (101 MHz, CDCl$_3$)
Figure 4.75. 1H NMR spectrum of a 1:2.2 mixture of compounds 3.108a and 3.108b (400 MHz, CDCl$_3$)
Figure 4.76. 13C NMR spectrum of a 1:2.2 mixture of compounds 3.108a and 3.108b (101 MHz, CDCl$_3$)
(5S,8S,10R,11S)-\textit{tert}-butyl 13-benzyl-4-(benzyloxy)-5-(hydroxymethyl)-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11-epiminoazepino[1,2-b]isoquinoline-10-carboxylate (3.111a) and (5R,8S,10R,11S)-\textit{tert}-butyl 13-benzyl-4-(benzyloxy)-5-(hydroxymethyl)-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11-epiminoazepino[1,2-b]isoquinoline-10-carboxylate (3.111b)

To a stirred solution of a mixture of compounds 3.108a and 3.108b (60 mg, 0.10 mmol) in EtOH (5 mL, 0.20 M), at 0 °C, under Ar, was added NaBH\(_4\) (30 mg, 0.80 mmol 8.0 eq.). The reaction was stirred at RT for 2 hours, quenched with 1N HCl (2.4 mL, 2.40 mmol, 24 eq.) and diluted with phosphate buffer (0.1 M, pH = 7.5, 50 mL). The aqueous phase was extracted with EtOAc (3×25 mL) and the combined organic layers were rinsed with brine (25 mL), dried (Na\(_2\)SO\(_4\)), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, hexanes/EtOAc 4:1) to afford the title compounds 3.111a (18 mg, 30%) as a colorless oil and compound 3.111b (38 mg, 65%) as a colorless oil. Compound 3.111a: \(^1\)H-NMR (400 MHz; CDCl\(_3\)): \(\delta\) 7.50-7.22 (m, 10H), 6.62 (s, 1H), 6.14 (t, \(J = 6.1 \text{ Hz}, 1H\)), 5.48 (s, 1H), 5.18 (1/2 AB, \(J = 11.1 \text{ Hz}, 1H\)), 5.09 (1/2 AB, \(J = 11.1 \text{ Hz}, 1H\)), 4.10 (s, 1H), 3.97 (1/2 AB, \(J = 13.3 \text{ Hz}, 1H\)), 3.87 (1/2 AB, \(J = 13.3 \text{ Hz}, 1H\)), 3.79 (d, \(J = 7.7 \text{ Hz}, 1H\)), 3.73 (s, 1H), 2.69 (ddt, \(J = 27.0, 9.0, 4.6 \text{ Hz}, 2H\)), 2.25 (s, 3H), 2.06 (dd, \(J = 13.3, 9.5 \text{ Hz}, 1H\)), 1.90 (br t, 6.0 Hz, 1H), 1.44 (s, 9H); \(^{13}\)C-NMR (101 MHz, CDCl\(_3\)): \(\delta\) 171.9, 171.7, 150.5, 148.2, 138.3, 137.2, 135.6, 132.6, 128.7, 128.5, 128.4, 128.4, 127.6, 127.3, 122.1, 120.1, 103.7, 81.3, 75.1,
65.4, 64.2, 62.7, 60.4, 51.7, 51.3, 50.7, 31.6, 28.1, 28.1, 15.9, 14.3; R_f (SiO$_2$, hexanes/EtOAc 4:1) 0.12; $[\alpha]_D^{25} = -60.0 \degree$ (c = 0.895, CHCl$_3$); IR (film, CH$_2$Cl$_2$), ν_{max} 3447 (br), 3063, 3030, 2934, 2870, 1730, 1676, 1636, 1154 cm$^{-1}$; HRMS (MH$^+$), found 597.2971. C$_{36}$H$_{41}$N$_2$O$_6$ requires 597.2965. Compound 3.111b: 1H-NMR (400 MHz; CDCl$_3$): δ 6.62 (s, 1H), 6.09 (dd, $J = 8.4, 4.4$ Hz, 1H), 5.45 (s, 1H), 5.17 (1/2 AB, $J = 11.1$ Hz, 1H), 5.14 (1/2 AB, $J = 11.1$ Hz, 1H), 3.95 (s, 1H), 3.83 (s, 3H), 3.78 (d, $J = 13.5$ Hz, 1H), 3.73 (d, $J = 6.6$ Hz, 1H), 3.63 (d, $J = 13.4$ Hz, 1H), 3.63-3.50 (m, 1H), 3.15 (dd, $J = 9.8, 6.1$ Hz, 1H), 2.63 (dt, $J = 12.8, 6.5$ Hz, 1H), 2.45 (dd, $J = 13.0, 9.8$ Hz, 1H), 1.77-1.74 (br m, 1H), 1.45 (s, 9H); 13C-NMR (101 MHz, CDCl$_3$): δ 172.3, 170.4, 150.6, 147.9, 138.1, 137.2, 134.0, 132.5, 128.7, 128.7, 128.6, 128.6, 128.5, 128.5, 128.4, 128.4, 127.3, 126.5, 122.8, 122.7, 120.6, 105.3, 105.3, 81.3, 81.3, 75.0, 65.5, 65.5, 63.1, 63.0, 60.4, 52.7, 49.4, 49.4, 48.4, 34.8, 28.2, 16.0, 16.0; R_f (SiO$_2$, hexanes/EtOAc 4:1) 0.10; $[\alpha]_D^{25} = +64 \degree$ (c = 0.31, CHCl$_3$); IR (film, CH$_2$Cl$_2$), ν_{max} 3444 (br), 3062, 3029, 2970, 2927, 1729, 1682, 1639, 1154 cm$^{-1}$; HRMS (MH$^+$), found 597.2974. C$_{36}$H$_{41}$N$_2$O$_6$ requires 597.2965.
Figure 4.77. 1H NMR spectrum of compound 3.111a (400 MHz, CDCl$_3$)
Figure 4.78. 13C NMR spectrum of compound 3.111a (101 MHz, CDCl$_3$)
Figure 4.79. 1H NMR spectrum of compound 3.141b (400 MHz, CDCl$_3$)
Figure 4.80. 13C NMR spectrum of compound 3.111b (101 MHz, CDCl$_3$)
4.56 (5R,8S,10R,11S)-tert-butyl 4-hydroxy-5-(hydroxymethyl)-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11-epimino-azepino[1,2-b]isoquinoline-10-carboxylate (3.112)

A solution of compound 3.111b (7.0 mg, 0.012 mmol) in glacial acetic acid (1 mL) and 10% Pd/C (7 mg) were placed in round bottom flask and sparged with Ar for 5 minutes. The vessel was evacuated and filled with hydrogen three times. The reaction was vigorously stirred overnight under hydrogen (1 atm). The suspension was diluted with CH₂Cl₂ (25 mL) and then filtered through Celite® and the flask was rinsed with CH₂Cl₂ (3×5 mL). The solution was extracted with sat. aq. NaHCO₃ (3×15 mL). The combined aqueous layers were diluted with phosphate buffer (0.1 M, pH = 7.5, 25 mL) and extracted with CH₂Cl₂ (3×15 mL). The combined organic layers were rinsed with brine (50 mL), dried (Na₂SO₄), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, CHCl₃/MeOH 97:3) to afford compound 3.112 (4.6 mg, 92%) as a colorless oil. ¹H-NMR (400 MHz; CDCl₃): δ 6.40 (s, 1H), 6.05 (dd, J = 7.9, 4.1 Hz, 1H), 5.53 (s, 1H), 4.30 (s, 1H), 4.09 (d, J = 6.7 Hz, 1H), 3.78-3.74 (m, 2H), 3.76 (s, 3H), 3.65-3.60 (m, 1H), 3.17 (dd, J = 9.3, 6.2 Hz, 1H), 2.61 (dd, J = 13.1, 9.4 Hz, 1H), 2.32 (dt, J = 13.2, 6.6 Hz, 1H) 2.24 (s, 3H), 1.47 (s, 9H); ¹³C-NMR (101 MHz, CDCl₃): δ 173.4, 171.1, 145.2, 144.7, 144.7, 136.9, 136.8, 130.3, 127.1, 119.1, 112.9, 112.9, 102.7, 81.6, 65.1, 62.4, 61.8, 61.0, 49.5, 48.1, 37.0, 29.8, 29.8, 28.2, 15.9; Rₗ (SiO₂, CHCl₃/MeOH 95:5) 0.17; [α]D⁻²⁵ = +4.3 ° (c = 0.23, CHCl₃); IR (film, CH₂Cl₂), vₘₐₓ 3262 (br),
2969, 2925, 2854, 1719, 1683, 1646, 1154 cm$^{-1}$; HRMS (MH$^+$), found 417.2033. C$_{22}$H$_{29}$N$_2$O$_6$ requires 417.2026.
Figure 4.81. 1H NMR spectrum of compound 3.112 (400 MHz, CDCl$_3$)
Figure 4.82. 13C NMR spectrum of compound 3.112 (101 MHz, CDCl$_3$)
4.57 \((5R,8S,10R,11S,11aS)-\text{tert-}\text{butyl 4-hydroxy-5-(hydroxymethyl)-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11,11a, 12- octahydro-8,11-epiminoazepino[1,2-}b\text{]isoquinoline-10-carboxylate (3.113)}\)

To a solution of compound 3.112 (4.6 mg, 0.011 mmol) in EtOH (1 mL) in a 5 mL vial, was added a slurry of Raney® nickel 2800 (500 µL of commercially available water slurry, washed with EtOH (3×1 mL) and suspended in EtOH (1 mL)). The vial was placed in a Fisher-Porter bottle, under Ar, the suspension was sparged with Ar for 5 minutes and the vessel was filled with hydrogen gas at 100 psi. The reaction was vigorously stirred overnight, diluted with EtOAc (10 mL) and sat. aq. Rochelle’s salt (10 mL), and stirred vigorously for 2 h. The biphasic suspension was filtered through Celite®, the phases separated and the aqueous phase extracted with EtOAc (3×10 mL). The combined organic phases were rinsed with brine (25 mL), dried (Na₂SO₄), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, CHCl₃/MeOH 97:3) to afford compound 3.113 (3.4 mg, 74%) as a colorless oil. ¹H-NMR (400 MHz; CDCl₃): δ 6.51 (s, 1H), 5.59 (dd, \(J = 5.6, 3.4 \text{ Hz, 1H}\)), 3.96 (d, \(J = 6.1 \text{ Hz, 1H}\)), 3.88 (dd, \(J = 10.9, 3.2 \text{ Hz, 1H}\)), 3.78 (s, 3H), 3.77-3.76 (m, 1H), 3.67 (dt, \(J = 12.4, 2.6 \text{ Hz, 1H}\)), 3.61 (dd, \(J = 11.1, 5.8 \text{ Hz, 1H}\)), 3.16 (dd, \(J = 9.0, 6.4 \text{ Hz, 1H}\)), 2.84 (t, \(J = 13.5 \text{ Hz, 1H}\)), 2.54 (dd, \(J = 14.7, 2.2 \text{ Hz, 1H}\)), 2.50 (dd, \(J = 13.2, 9.0 \text{ Hz, 1H}\)), 2.27 (s, 3H), 2.18 (dt, \(J = 13.2, 6.6 \text{ Hz, 1H}\)), 1.53-1.45 (m, 9H); ¹³C-NMR (101 MHz, CDCl₃): δ 174.4, 172.4, 145.7, 132.0, 129.7, 121.2, 120.2, 118.0, 81.5, 67.8, 63.0, 62.2, 61.0, 60.8, 52.6, 42.8, 38.8, 32.1, 29.9, 28.2, 15.9; R₇ (SiO₂, CHCl₃/MeOH 95:5) 0.20; [\(\alpha\)]D²⁵ = -36 ° (c = 0.080, CHCl₃); IR (film,
CH$_2$Cl$_2$), ν_{max} 3286 (br), 2958, 2925, 2855, 1729, 1652, 1456 cm$^{-1}$; HRMS (MH$^+$), found 419.2174. C$_{22}$H$_{31}$N$_2$O$_6$ requires 419.2182.
Figure 4.83. 1H NMR spectrum of compound 3.113 (400 MHz, CDCl$_3$)
Figure 4.84. 13C NMR spectrum of compound 3.113 (101 MHz, CDCl$_3$).
APPENDIX 1

Substrates and conditions of the enamide hydrogenation attempts listed in reference 58
<table>
<thead>
<tr>
<th>Catalyst</th>
<th>H_2 pressure /psi</th>
<th>Temperature</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raney Ni</td>
<td>1500</td>
<td>r.t.</td>
<td>S.M.</td>
</tr>
<tr>
<td>Rh/C</td>
<td>1300</td>
<td>r.t.</td>
<td>S.M.</td>
</tr>
<tr>
<td>Rh/Alumina</td>
<td>1300</td>
<td>r.t.</td>
<td>S.M.</td>
</tr>
<tr>
<td>Rh(OAc)$_2$</td>
<td>1500</td>
<td>r.t.</td>
<td>S.M.</td>
</tr>
<tr>
<td>RhCl$_3$</td>
<td>1500</td>
<td>r.t.</td>
<td>S.M.</td>
</tr>
<tr>
<td>Wilkinson's cat.</td>
<td>1500</td>
<td>r.t.</td>
<td>S.M.</td>
</tr>
<tr>
<td>Ir/C</td>
<td>1300</td>
<td>r.t.</td>
<td>S.M.</td>
</tr>
<tr>
<td>Crabtree's cat.</td>
<td>1500</td>
<td>r.t.</td>
<td>S.M.</td>
</tr>
<tr>
<td>Pd/C</td>
<td>1300</td>
<td>r.t.</td>
<td>S.M.</td>
</tr>
<tr>
<td>PdCl$_2$</td>
<td>1300</td>
<td>r.t.</td>
<td>S.M.</td>
</tr>
<tr>
<td>Pd(OH)$_2$</td>
<td>1300</td>
<td>r.t.</td>
<td>S.M.</td>
</tr>
<tr>
<td>Raney Ni</td>
<td>2000</td>
<td>r.t.</td>
<td>de-Bn + S.M.</td>
</tr>
<tr>
<td>Rh/Alumina</td>
<td>2000</td>
<td>65 °C</td>
<td>de-Bn + S.M.</td>
</tr>
<tr>
<td>Raney Ni</td>
<td>1500</td>
<td>65 °C</td>
<td>Unidentified product</td>
</tr>
</tbody>
</table>

A1-335

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>H_2 pressure /psi</th>
<th>Temperature</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raney Ni</td>
<td>1300</td>
<td>r.t.</td>
<td>S.M.</td>
</tr>
<tr>
<td>Rh/C</td>
<td>1500</td>
<td>65 °C</td>
<td>S.M.</td>
</tr>
<tr>
<td>RhCl$_3$</td>
<td>1500</td>
<td>65 °C</td>
<td>S.M.</td>
</tr>
<tr>
<td>Pd(OH)$_2$</td>
<td>1500</td>
<td>65 °C</td>
<td>S.M.</td>
</tr>
<tr>
<td>Ir/C</td>
<td>1300</td>
<td>r.t.</td>
<td>S.M.</td>
</tr>
</tbody>
</table>

A1-336

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>H_2 pressure /psi</th>
<th>Temperature</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilkinson's cat.</td>
<td>1500</td>
<td>r.t.</td>
<td>Show vinyl proton</td>
</tr>
</tbody>
</table>
Table 1: Catalytic Hydrogenation Results

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>H₂ pressure / psi</th>
<th>Temperature</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh/C</td>
<td>1500</td>
<td>65 °C</td>
<td>S.M.</td>
</tr>
<tr>
<td>RhCl₃</td>
<td>1500</td>
<td>65 °C</td>
<td>S.M.</td>
</tr>
<tr>
<td>Pd(OH)₂</td>
<td>1500</td>
<td>65 °C</td>
<td>S.M.</td>
</tr>
<tr>
<td>Pd/C, TFA</td>
<td>1300</td>
<td>r.t.</td>
<td>Removal of N-Bn</td>
</tr>
<tr>
<td>Wilkinson’s cat.</td>
<td>2000</td>
<td>65 °C</td>
<td>SM</td>
</tr>
<tr>
<td>Ru black</td>
<td>2000</td>
<td>65 °C</td>
<td>SM</td>
</tr>
<tr>
<td>Raney Ni</td>
<td>2000</td>
<td>65 °C</td>
<td>Unidentified product</td>
</tr>
</tbody>
</table>

Table 2: Additional Catalytic Hydrogenation Results

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>H₂ pressure / psi</th>
<th>Temperature</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd/C, TFA</td>
<td>1300</td>
<td>r.t.</td>
<td>Removal of N-Bn</td>
</tr>
<tr>
<td>Raney Ni</td>
<td>2000</td>
<td>r.t.</td>
<td>Removal of N-Bn, S.M.</td>
</tr>
<tr>
<td>Raney Ni</td>
<td>2000</td>
<td>65 °C</td>
<td>Unidentified product</td>
</tr>
<tr>
<td>Catalyst</td>
<td>H₂ pressure /psi</td>
<td>Temperature</td>
<td>Result</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>PdCl₂</td>
<td>1800</td>
<td>65 °C</td>
<td>Removal of N-Bn</td>
</tr>
</tbody>
</table>
Synthetic studies on lemonomycin: construction of the tetracyclic core

Alberto Jiménez-Somarribas a, Robert M. Williams a,b,*

a Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, United States
b University of Colorado Cancer Center, Aurora, CO 80045, United States

Abstract
A substrate-induced stereocontrol strategy was used to gain access to the tetracyclic core of (-)-lemonomycin. An advanced intermediate was prepared from a known substituted tyrosinol through a 16-step sequence, which involved a Pictet–Spengler reaction, a [3+2] dipolar cycloaddition and an enamide hydrogenation.

© 2013 Published by Elsevier Ltd.

1. Introduction
Lemonomycin (1) is a member of the tetrahydroisoquinoline (THIQ) family of antitumor antibiotics.1 It was isolated from the fermentation broth of Streptomyces conditius (LL-AP191) in 1964,2,3 and its structure was reported by He and co-workers in 2000.4 This compound showed significant in vitro antimicrobial activities against both gram-negative and gram-positive bacteria, including antibiotic-resistant strains, as well as against the human colon tumor cell line HCT116.2,4 Structurally, the compound contains the tetracyclic core found in quinocarcin5 and tetrazomine,6 which includes a 3,8-diazabicyclo ring system and a rare bis-desoxy aminosugar portion, which has only been found in a few natural products.7–11 The structural complexity and biological activities of this substance have made lemonomycin an attractive target for the synthetic community. To date, there are two total syntheses by Stoltz12 and Fukuyama13 and synthetic studies by Magnus,14,15 Zhu,16–18 Mulzer,19 and our laboratory20.

As shown in Scheme 1, we envisioned that the final steps in the synthesis of lemonomycin (1) would involve a late-stage glycosylation reaction, and the formation of the quinone, hemiaminal, and aldehyde hydrate functional groups. Compound 2 could be accessed through the epimerization of the southern benzylic position and the reduction of the enamide double bond found in tetracycle 3. This key intermediate could be prepared from aldehyde 5 via azomethine ylide 4, using a [3+2] dipolar cycloaddition approach previously developed by our group.20 This key reaction was also used for the construction of the [3,8]-diazabicyclo ring system in our total syntheses of (-)-tetrazomine21 and (-)-quinocarcinamide.22 The tetrahydroisoquinoline system of 5 could be formed through a Pictet–Spengler reaction involving a derivative of compound 6, which is a known compound.23

Scheme 1. Retrosynthetic analysis.
2. Results and discussion

Our synthetic sequence starts with substituted tyrosinol 6, which can be prepared from commercially available L-tyrosine methyl ester according to the procedure described by Liao.23 We initially attempted to perform the direct conversion of 6 into bis-silyl ether 8 using 2 equiv of TBS-Cl, but the yields were inconsistent and low (\(<\) 30%).24,25 By increasing the relative amount of TBS-Cl to 6 equiv, compound 6 was converted into the tris-silylated compound 7. Unexpectedly, the hydrolysis of the silylamine function required a prolonged vigorous stirring with aq \(\text{NH}_4\text{Cl}\) at rt (~2 h) to form the bis-silyl ether 8 in 90% yield. The phenolic silyl ether was selectively cleaved with 1 equiv of TBAF at \(0^\circ\text{C}\),26 to afford compound 9 in 98% yield (Scheme 2).

The next step entailed the formation of the trans-tetrahydroisoquinoline ring via a Pictet–Spengler reaction between 9 and ethyl glyoxalate. Previously, our group reported a similar trans-formation, which was performed by stirring a solution of the starting materials in acetonitrile for 3.5 days at 50 °C, which afforded the trans-product stereospecifically.27 A similar report by Zhu and co-workers involved the use of LiCl, hexafluoroisopropanol and molecular sieves, and stirring the suspension in toluene at rt for 48 h. Since none of these mild conditions led to the formation of the desired tetrahydroisoquinoline ring system, we decided to adapt the reaction conditions that were originally described by Zhu28,29 to our substrate. The amount of acetic acid was reduced from 2.5 equiv to 0.2 equiv to prevent cleavage of the \(\text{O}-\text{TBS}\) ether due to the prolonged exposure to the acid. In the present system, treatment of a solution of compound 9 and ethyl glyoxalate with \(\text{CF}_3\text{CH}_2\text{OH}\), AcOH (0.2 equiv), and 4 A MS afforded an 8:1 mixture of 10a and 10b in 82% yield. These two diastereomers were separated via flash chromatography and 10a was subjected to selective acetylation,30 followed by hydrogenolysis of the \(\text{C}-\text{Br}\) bond23 to afford compound 12 (Scheme 3).

Following the conditions described in our previous report,20 we converted THIQ 12 into the [3 + 2] dipolar cycloaddition adducts 20a and 20b. Thus, THIQ 12 and N-Boc-N-Bn-Gly were coupled using EDCI, and the resulting amide was treated with TBAF to cleave the O-TBS ether, followed by a Swern oxidation31 to afford aldehyde 15 (Scheme 3).

As illustrated in Scheme 4, aldehyde 15 was dissolved in CHCl\(_3\) and treated under aerobic conditions with TFA (50 equiv) and TEMPO (0.1 equiv), to generate iminium ion 16, which tautomerizes to form ammonium ion 17. This intermediate is autoxidized in situ to afford conjugated iminium ion 18, which was concentrated to dryness and taken up in CHCl\(_3\). Addition of triethylamine induces the formation of azomethine ylide 19, which is trapped in situ by tert-butyl acrylate to give a 2.4:1 mixture of tetracycles 20a and 20b in a combined 59% yield.35 The deacetylation of the 20a/20b mixture under standard methanolyis conditions provided a 5:1 mixture of 21a and 21b in 70% yield (Scheme 5). We suggest that 21b decomposes under the reaction conditions at a higher rate than 21a, which provides an explanation for both the moderate yield and the change in the diastereometric ratio. The chemoselective reduction of the ethyl esters with 1 equiv of LiAlH\(_4\) at ~10 °C, afforded a 3:1 mixture of aldehydes 22a and 22b in 55% yield.36 We submit that the partial...
epimerization seen in this step is promoted by the slightly basic workup conditions. Treatment with BuONa and Na₂CO₃ formed the phenolic benzyl ethers and induced additional epimerization of the aldehyde's α carbon, to provide a 2:2:1 mixture of 23a and 23b, which was then reacted with DBN in THF to invert the epimeric ratio. The 1:2:2 mixture of aldehydes 23a and 23b was then treated with sodium borohydride to afford a mixture of alcohols 24a and 24b, which were separated via flash chromatography to afford 24b in 65% yield (Scheme 6). The sequence used to transform the 20a/20b mixture into 24b not only provided the desired configuration in the benzylic position but also furnished an unhindered substrate for the N-debenzylation of the pipеразинone amine. Thus, hydrogentation of the hydrogenation of the enamide double bond from the face of C-3 (lemonomycin numbering). Gratifyingly, the hydrogenation of 25 with Raney nickel at 100 psi, provided compound 26 in 73% yield.

3. Conclusion

In summary, we have accomplished the construction of the tetracyclic core of (-)-lemonomycin. Compound 26 was prepared from known bromotyrosinol 6 in 16 steps. Efforts to gain access to (-)-lemonomycin through this advanced intermediate are currently under investigation.

4. Experimental section

4.1. General methods

Unless otherwise noted, all materials were obtained from commercial sources and used without purification. All reactions requiring anhydrous conditions were performed under a positive pressure of argon using flame-dried glassware. Organic solvents were degassed with argon and dried through a solvent purification system (Pure Process Technology). Flash chromatography was performed on silica gel grade 60 (230–400 mesh) from Sorbent Technologies. Thin layer chromatography was performed on glass plates coated with silica gel grade 50, from Merck. ¹H NMR and ¹³C NMR spectra were recorded on Varian 300 or 400 MHz spectrometers as indicated. Proton spectra in CDCl₃ were referenced to residual CHCl₃ at 7.26 ppm. Carbon spectra in CDCl₃ were referenced to residual CD₃SOCD₃ as at 2.50 ppm. Infrared spectra were recorded on a Bruker Tensor FT-IR spectrometer. High-resolution mass spectra were obtained using a TOF spectrometer using simultaneous electrospray (ESI) and atmospheric pressure chemical ionization (APCI). Optical rotations were recorded on a Rudolph Research Autopol polarimeter, at a wavelength of 589 nm.

4.2. (5-1-(2-Bromo-5-((tert-butyl(dimethyl)silyl)oxy)-4-methoxy-3-methylphenyl)-3-((tert-butyl(dimethyl)silyl)oxy)propan-2-amine (8)

To a stirred solution of compound 6 (1.55 g, 5.36 mmol, 1 equiv) in CHCl₃ (90 mL, 0.06 M), were added DMAP (327 mg, 2.68 mmol, 0.5 equiv), Et₃N (4.48 mL, 32.2 mmol, 6.00 equiv), and TBS-Cl (4.86 g, 32.2 mmol, 6.00 equiv). The reaction was stirred under Ar for 3 h at rt, and then satd aq NH₄Cl (50 mL) was added and the mixture was stirred for 2 h. The phases were separated, the aqueous layer was extracted with CH₂Cl₂ (2 × 50 mL) and the combined organic layers were rinsed with brine (50 mL), dried (Na₂SO₄), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, hexane/ EtOAc 1:1) to give the title compound 8 (2.50 g, 90%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.88 (br, 1H), 7.47 (1/2 ABX, J = 7.9, 1.0, 4.3 Hz, 1H), 7.40–3.35 (m, 1H), 2.87 (1/2 ABX, J = 13.4, 5.4 Hz, 1H), 2.57 (1/2 ABX, J = 13.4, 8.0 Hz, 1H), 2.35 (s, 3H), 100 (s, 9H), 0.91 (s, 9H), 0.17 (s, 6H), 0.07 (s, 6H), 0.06 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 148.8, 147.6, 134.6, 133.1, 121.3, 119.4, 67.6, 40.2, 33.9, 26.1, 25.8, 18.6, 14.8, 17.2, 4.4, 52. R; (SiO₂, 2.1 hexanes/EtOAc 0.35); [α]D²⁵ + 0.9 (c 0.35, CHCl₃); IR (film, CHCl₃), νmax 2996, 2858, 2471, 839 cm⁻¹; HRMS (MH⁺), found 520.2103, C₂₃H₂₉BrNO₃Si requires 520.2106.

4.3. (5-5-(2-Amino-3-((tert-butyl(dimethyl)silyl)oxy)propyl)-4-bromo-2-methoxy-3-methylphenol (9)

To a stirred solution of compound 8 (1.59 g, 3.05 mmol, 1 equiv) in THF (100 mL, 0.03 M), under Ar, at 0 °C, was added a 1.0 solution of TBAF in THF (3.05 mL, 3.05 mmol, 1 equiv). The reaction was stirred for 25 min and quenched with satd aq NH₄Cl (50 mL). The phases were allowed to warm to rt, the aqueous phase was extracted with CH₂Cl₂ (2 × 50 mL), and the combined organic layers were rinsed with brine (50 mL), dried (Na₂SO₄), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, hexane/ EtOAc 1:1) to give the title compound 9 (1.23 g, 98%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 6.77 (s, 1H), 3.73 (s, 3H), 3.71–3.66 (m, 1H), 3.56–3.50 (m, 1H), 3.27–3.24 (m, 1H), 2.92 (1/2 ABX, J = 13.5, 4.6 Hz, 1H), 2.62 (1/2 ABX, J = 13.5, 5.9 Hz, 1H), 2.34 (1/2 ABX, J = 13.5, 9.0 Hz, 1H), 2.34 (s, 3H), 0.92 (s, 9H), 0.09 (s, 9H), 0.08 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 148.4, 145.0, 134.6, 132.2, 117.2, 116.1, 67.1, 60.8, 52.9, 52.7, 40.5, 26.1, 18.4, 17.2, 52. R; (SiO₂, 2:1 hexanes/EtOAc): [α]D²⁵ + 0.9 (c 0.35, CHCl₃); IR (film, CHCl₃), νmax 3263 (br), 2954, 2928, 2858, 1578, 1471, 1092 cm⁻¹; HRMS (MH⁺), found 502.2103, C₂₂H₂₉BrNO₂Si requires 502.2106.

4.4. (15S)-Ethyl 5-bromo-3-((tert-butyl(dimethyl)silyl)oxy)-methyl)-8-hydroxy-7-methoxy-6-methyl-1,2,3,4-tetrahydroisoquinoline-1-carboxylate (10a) and (1R,3S)-ethyl 5-bromo-3-((tert-butyl(dimethyl)silyl)oxy)methyl)-8-hydroxy-7-methoxy-6-methyl-1,2,3,4-tetrahydroisoquinoline-1-carboxylate (10b)

To a stirred solution of compound 9 (5.43 g, 13.4 mmol, 1.0 equiv) in CH₂Cl₂ (134 mL, 0.10 M), under Ar, were added, 4 Å molecular sieves (2.72 g), CF₃CH₂OH (13.4 mL), AcOH (153 μL, 2.68 mmol, 0.20 equiv), and ethyl glyoxalate (50% solution in PhCH₂, 2.53 mL, 14.8 mmol, 1.1 equiv). The reaction was stirred overnight, diluted with CH₂Cl₂ (50 mL), filtered through Celite, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, hexane/EtOAc 5:1) to give...
compound 10a (4.78 g, 73%) as a white solid and compound 1b (6.01 mg, 9%) as a white solid. Compound 10a. 1H NMR (400 MHz, CDCl₃): δ 6.25 (br s, 1H), 4.89 (s, 1H), 4.26–4.18 (m, 2H), 3.82 (1/2 ABX, J = 9.8, 3.5 Hz, 1H), 3.76 (s, 3H), 3.54 (1/2 ABX, J = 9.8, 8.5 Hz, 1H), 3.13–3.07 (m, 1H), 2.71 (1/2 ABX, J = 16.9, 41 Hz, 1H), 2.35 (s, 3H), 2.27 (1/2 ABX, J = 16.9, 11.3 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H), 0.93 (s, 9H), 0.10 (s, 3H), 0.09 (s, 3H). 13C NMR (101 MHz, CDCl₃): δ 172.5, 145.6, 144.3, 134.0, 130.1, 120.0, 118.4, 66.5, 61.7, 61.2, 55.6, 51.6, 32.7, 26.0, 18.4, 17.0, 16.9, 14.4, 14.4, 5.1, 5.2, 5.3. mp = 47 °C; R(SO₂)₂, hexanes/ Ethanol 4:1 (0.40 mol·L⁻¹) 0.37–0.24 (p 0.885, CHCl₃); IR (film, CH₂Cl₂), νmax = 3314 (br), 2954, 2929, 2875, 1775, 1737, 1193 cm⁻¹; HRMS (M+H)²⁺, found 452.244. C₁₀H₈BrNO₃Si requires 452.246.

4.2. (15S)-Ethyl 8-oxo-5-bromo-3-((tert-butyldimethylsilyloxy)methyl)-7-methoxy-6-methyl-1,2,3,4-tetrahydroisoquinoline-1-carboxylate (13)

A solution of compound 12 (2.20 g, 4.87 mmol, 1.0 equiv), N-Bn-N-Boc-glycine (2.58 g, 9.74 mmol, 2.0 equiv), and EDCl (1.40 g, 7.31 mmol, 1.5 equiv) in CH₂Cl₂ (2.5 mL, 2 mL), under Ar, was stirred for 2.5 days. The reaction was diluted with EtOAc (200 mL), and the solution was extracted with water (100 mL), satd aq NaHCO₃ (2 × 100 mL) and brine (100 mL), dried (Na₂SO₄), filtered, and concentrated under vacuum. The crude material was purified with flash chromatography (silica gel, hexanes/Ethanol 4:1, 3:1, and 1:1 to give the title compound 13 (3.15 g, 93%) as a colorless oil.

1H NMR (300 MHz, DMSO-d₆, 393 K, mixture of rotamers): δ 7.36–7.24 (m, 5H), 6.94 (s, 1H), 6.88 (s, 1H, minor rotamer), 5.48 (s, 1H), 4.49 (1/2 AB, J = 15.6 Hz, 1H), 4.39 (1/2 AB, J = 15.60 Hz, 1H), 4.33–4.27 (m, 2H), 4.13–3.87 (m, 3H), 3.69 (s, 3H), 3.66 (s, 1H, minor rotamer), 3.34–3.10 (br m, 2H), 3.07–2.91 (br m, 2H), 2.33 (s, 3H), 2.23 (s, 3H), 2.23 (s, 3H, minor rotamer), 2.23 (s, 3H, minor rotamer), 1.41 (s, 9H), 1.21 (t, J = 7.0 Hz, 3H, minor rotamer), 1.12 (t, J = 7.1 Hz, 3H, 0.92 (d, J = 0.6 Hz, 2.97 (s, 1H), 0.08 (s, 3H, minor rotamer), 0.04 (s, 3H, minor rotamer), 0.03 (m, 3H, minor rotamer), 0.11 (s, 3H), 0.14 (s, 3H). 13C NMR (101 MHz, CDCl₃, mixture of rotamers): δ 171.0, 169.7, 168.1, 168.0, 156.1, 146.9, 129.6, 129.1, 128.7, 128.4, 128.7, 127.5, 127.5, 127.4, 121.6, 80.5, 80.4, 71.6, 61.9, 61.3, 60.7, 53.6, 53.5, 53.0, 52.9, 52.9, 50.9, 47.7, 29.5, 28.5, 28.4, 26.0, 25.9, 20.9, 18.3, 16.1, 16.0, 14.0, 13.9, 5.3, 5.4, 5.7, R(SO₂), hexanes/Ethanol 3:1) 0.30 [p 0.37–0.26 (p 0.995, CHCl₃); IR (film, CH₂Cl₂), νmax = 2956, 2931, 2875, 1781, 1743, 1705, 1668, 1193 cm⁻¹; HRMS (M+H)²⁺, found 699.6666. C₁₂H₁₀N₂O₃Si requires 699.6677.
CHCl₃ (28 mL, 0.1 M), under air, were added TEMPO (44 mg, benzyl-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-20a and (5,8,11-epiminoazepino[1,2-b]isoquinoline-5,10-dicarboxylate (21a) and (5,8,11-epiminoazepino[1,2-b]isoquinoline-5,10-dicarboxylate (21b))

To a stirred solution of 2.6:1 mixture of compounds 20a and 20b (410 mg, 0.695 mmol, 1.0 equiv) in THF/MeOH 1:1 (14 mL, 0.05 M), under Ar, was added K₂CO₃ (192 mg, 1.39 mmol, 2.0 equiv). The suspension was stirred for 2.5 h, the solvent was evaporated and the residue was partitioned between phosphate buffer (0.1 M, pH=7.5, 50 mL) and ETOAc (33 mL). The aqueous phase was extracted with ETOAc (2×33 mL) and the combined organic layers were washed with brine (50 mL), dried (Na₂SO₄), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, hexanes/ETOAc 1:1) to afford a 2:1 mixture of the title compounds 20a and 20b (985 mg, 59%) as a yellow oil, which was used in the next step without further purification. The re-oxidation with a 2:1 mixture of the title compounds 20a and 20b (985 mg, 59%) as a yellow oil, which was used in the next step without further purification. ¹H NMR (400 MHz; CDCl₃): δ 7.41–7.22 (m, 5H), 6.74 (s, 1H, minor diastereomer), 6.73 (s, 1H), 6.36 (s, 1H, minor diastereomer), 6.27 (s, 1H), 5.51 (s, 1H, minor diastereomer), 5.50 (s, 1H), 4.28–3.96 (m, 6H), 1.89–3.71 (m, 2H), 3.75 (s, 3H, minor diastereomer), 3.72 (s, 3H), 2.80–2.67 (m, 2H), 2.45 (dd, J=10.0, 9.8 Hz, 1H, minor diastereomer), 2.40 (s, 3H), 2.39 (s, 3H, minor diastereomer), 2.28 (s, 3H, minor diastereomer), 2.26 (s, 3H), 2.13 (dd, J=13.3, 9.5 Hz, 1H), 1.46 (s, 9H, minor diastereomer), 1.42 (s, 9H), 1.24 (t, J=7.7 Hz, 3H), 1.20 (t, J=7.2 Hz, 3H, minor diastereomer); ¹³C NMR (101 MHz, CDCl₃): δ 172.4, 171.7, 168.7, 167.9, 149.4, 141.6, 133.1, 129.8, 128.4, 128.4, 127.4, 127.3, 126.5, 125.0, 124.8, 117.3, 104.6, 103.1, 81.4, 81.3, 65.1, 64.1, 63.1, 62.6, 62.4, 60.7, 60.6, 52.7, 51.8, 51.3, 50.7, 50.0, 48.0, 34.3, 31.9, 31.7, 28.2, 22.8, 21.0, 16.1, 14.2, 14.0; Rf (SiO₂, hexanes/ETOAc 3:1): 0.5 [a]D 228 +65.0 (c 0.320, CH₂Cl₂); IR (film, CH₂Cl₂), νmax 2937, 1780, 1742, 1699, 1673, 1200 cm⁻¹; HRMS (MH⁺), found 591.2712. C₅H₇NO₄ requires 591.2706.

4.11. (55,85,10R,11S)-10-tert-Butyl 5-ethyl 13-benzyl-4-hydroxy-3-methoxy-2-methyl-7-oxo-5,7,8,10,11-hexahydro-8,11-epiminoazepino[1,2-b]isoquinoline-5,10-dicarboxylate (21a) and (5,8,11-epiminoazepino[1,2-b]isoquinoline-5,10-dicarboxylate (21b))

To a stirred solution of a 2:1 mixture of compounds 20a and 20b (325 mg, 0.676 mmol, 1.0 equiv) in THF (3 mL), under Ar, were added TEMPO (44 mg, 0.28 mmol, 1.0 equiv) and trifluoroacetic acid (108 mL, 142 mmol, 50 equiv) and the flask was loosely capped with a Teflon® stopper. The solution was stirred for 4 h, the solvent was evaporated to dryness under vacuum and the residue was taken up in CHCl₃. The solution was cooled to 0 °C and then tert-butyl acrylate (8.20 mL, 56.6 mmol, 20 equiv) and triethylamine (3.95 mL, 283 mmol, 10 equiv) were added. The reaction was then allowed to warm to rt and stirred overnight. The solution was diluted with ETOAc (200 mL), rinsed with satd aq NH₄Cl (50 mL) and brine (50 mL), dried (Na₂SO₄), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, hexanes/ETOAc 4:1) to afford a 2:1 mixture of the title compounds 20a and 20b (985 mg, 59%) as a yellow oil, which was used in the next step without further purification.

4.10. (55,85,10R,11S)-10-tert-Butyl 5-ethyl 4-acycloxy-13-benzyl-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11-epiminoazepino[1,2-b]isoquinoline-5,10-dicarboxylate (20a) and (5R,8S,10R,11S)-10-tert-Butyl 5-ethyl 4-acycloxy-13-benzyl-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11-epiminoazepino[1,2-b]isoquinoline-5,10-dicarboxylate (20b)

To solution of compound 15 (1.65 g, 2.83 mmol, 1.0 equiv) in CHCl₃ (28 mL, 0.1 M), under air, were added TEMPO (44 mg, 0.28 mmol, 1.0 equiv) and trifluoroacetic acid (108 mL, 142 mmol, 50 equiv) and the flask was loosely capped with a Teflon® stopper. The solution was stirred for 4 h, the solvent was evaporated to dryness under vacuum and the residue was taken up in CHCl₃. The solution was cooled to 0 °C and then tert-butyl acrylate (8.20 mL, 56.6 mmol, 20 equiv) and triethylamine (3.95 mL, 283 mmol, 10 equiv) were added. The reaction was then allowed to warm to rt and stirred overnight. The solution was diluted with ETOAc (200 mL), rinsed with satd aq NH₄Cl (50 mL) and brine (50 mL), dried (Na₂SO₄), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, hexanes/ETOAc 4:1) to afford a 2:1 mixture of the title compounds 20a and 20b (985 mg, 59%) as a yellow oil, which was used in the next step without further purification.
6

A. Jimenez-Somarribas, R.M. Williams / Tetrahedron xxx (2013) 1e8

4.12. (5S,8S,10R,11S)-tert-Butyl 13-benzyl-5-formyl-4hydroxy-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro8,11-epiminoazepino[1,2-b]isoquinoline-10-carboxylate (22a)
and (5R,8S,10R,11S)-tert-butyl 13-benzyl-5-formyl-4-hydroxy3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11epiminoazepino[1,2-b]isoquinoline-10-carboxylate (22b)
A solution of LiAlH4 in THF (1.0 M, 447 mL, 0.447 mmol, 1.0 equiv)
was added dropwise to a solution of a 5:1 mixture of compounds
21a and 21b (245 mg, 0.447 mmol, 1.0 equiv) in THF (9 mL, 0.05 M),
under Ar, at 10  C. The solution was stirred for 10 min at this
temperature, quenched with EtOAc (12 mL) and satd aq Rochelle’s
salt (12 mL) and allowed to warm to rt. The ﬂask was covered with
aluminum foil and stirred overnight under a stream of Ar. The solution was diluted with phosphate buffer (0.1 M, pH¼7.5, 50 mL), the
phases were separated and aqueous phase was extracted with EtOAc
(333 mL) and the combined organic layers were rinsed with brine
(25 mL), dried (Na2SO4), ﬁltered, and concentrated under vacuum.
The crude material was puriﬁed by ﬂash chromatography (silica gel,
hexanes/EtOAc 4:1) to afford a 3:1 mixture of the title compounds
22a and 22b (124 mg, 55%) as a pale yellow oil, which was used in
the next step without further puriﬁcation. 1H NMR (400 MHz;
CDCl3): d 9.48 (s, 1H), 9.38 (s, 1H, minor diastereomer), 7.41e7.23 (m,
5H), 6.58 (s, 1H), 6.57 (s, 1H, minor diastereomer), 6.43 (s, 1H, minor
diastereomer), 6.41 (s, 1H), 6.18 (s, 1H, minor diastereomer), 6.17 (s,
1H, minor diastereomer), 4.25 (1/2 AB, J¼13.5 Hz, 1H), 4.18 (1/2 AB,
J¼13.5 Hz, 1H), 4.07 (s, 1H), 4.00 (s, 1H, minor diastereomer), 3.83 (s,
3H, minor diastereomer), 3.81 (s, 3H, minor diastereomer), 3.40 (dd,
J¼9.7, 6.0 Hz, 1H, minor diastereomer), 2.81 (dd, J¼9.5, 4.7 Hz, 1H),
2.73e2.67 (m, 1H), 2.59 (dd, J¼13.0, 9.8 Hz, 1H, minor diastereomer),
2.28 (s, 3H, minor diastereomer), 2.26 (s, 3H), 2.15 (dd, J¼13.4,
9.6 Hz, 1H), 1.48 (s, 9H, minor diastereomer), 1.46 (s, 9H); 13C NMR
(101 MHz, CDCl3): d 192.1, 191.3, 172.5, 171.9, 170.1, 145.7, 144.6, 138.6,
138.0, 136.6, 135.3, 131.5, 128.8, 128.4, 127.5, 127.2, 119.4, 119.2, 107.3,
104.0, 102.7, 102.6, 81.4, 64.1, 64.0, 62.9, 62.8, 61.2, 61.1, 58.6, 58.5,
51.6, 50.8, 48.8, 34.7, 32.4, 31.7, 29.8, 28.1, 22.8, 16.0, 14.3; Rf (SiO2,
hexanes/EtOAc 2:1) 0.42; [a]25
D 64.8 (c 0.250, CH2Cl2); IR (ﬁlm,
CH2Cl2), nmax 3331 (br), 2977, 2935, 1733, 1679, 1642, 1154 cm1;
HRMS (MHþ), found 505.2345. C29H33N2O6 requires 505.2339.
4.13. (5S,8S,10R,11S)-tert-Butyl 13-benzyl-4-(benzyloxy)-5formyl-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro8,11-epiminoazepino[1,2-b]isoquinoline-10-carboxylate (23a)
and (5R,8S,10R,11S)-tert-butyl 13-benzyl-4-(benzyloxy)-5formyl-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro8,11-epiminoazepino[1,2-b]isoquinoline-10-carboxylate
(5R,8S,10R,11S)-tert-butyl 13-benzyl-4-(benzyloxy)-5-formyl3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11-hexahydro-8,11epiminoazepino[1,2-b]isoquinoline-10-carboxylate (23b)
To a stirred solution of a 3:1 mixture of compounds 22a and 22b
(115 mg, 0.228 mmol, 1.0 equiv) and benzyl bromide (108 mL,
0.912 mmol, 4.0 equiv) in DMF (7.6 mL, 0.03 M), under Ar, were
added tetrabutylammonium iodide (9.0 mg, 0.023 mmol,
0.10 equiv) and ﬁnely ground anhydrous Na2CO3 (241 mg,
2.28 mmol, 10 equiv). The mixture was vigorously stirred for 2 h
and diluted with water (25 mL) and phosphate buffer (0.1 M,
pH¼7.5, 25 mL). The aqueous phase was extracted with EtOAc
(333 mL) and the combined organic layers were rinsed with brine
(25 mL), dried (Na2SO4), ﬁltered, and concentrated under vacuum.
The crude material was puriﬁed by ﬂash chromatography (silica gel,
hexanes/EtOAc 6:1, 4:1) to afford a 2.2:1 mixture of compounds 23a
and 23b (88 mg, 65%) as a pale yellow oil, which was used in the
next step without further puriﬁcation. 1H NMR (400 MHz; CDCl3):
d 9.32 (s, 1H), 9.19 (s, 1H minor diastereomer), 7.48e7.22 (m, 10H),
6.63 (s, 1H, minor diastereomer), 6.62 (s, 1H), 6.38 (s, 1H, minor

diastereomer), 6.36 (s, 1H), 5.37 (s, 1H), 5.36 (s, minor diastereomer), 5.28 (1/2 AB, J¼11.1 Hz, 1H, minor diastereomer), 5.26
(1/2 AB, J¼11.1 Hz, 2H), 5.20 (1/2 AB, J¼11.1 Hz, 1H, minor diastereomer), 5.14 (1/2 AB, J¼11.1 Hz, 1H), 4.20 (1/2 AB, J¼13.5 Hz,
1H), 4.14 (1/2 AB, J¼13.5 Hz, 1H), 4.05 (s, 1H), 3.97 (s, 1H, minor
diastereomer), 3.86 (s, 3H, minor diastereomer), 3.84 (s, 3H), 3.80
(1/2 AB, J¼13.5 Hz, 1H) 3.79 (d, J¼7.4 Hz, 1H), 3.75 (d, J¼6.9 Hz,
minor diastereomer), 3.68 (1/2 AB, J¼13.5 Hz, 1H, minor diastereomer), 3.37 (dd, J¼9.7, 6.1 Hz, 1H, minor diastereomer), 2.78
(dd, J¼9.6, 4.7 Hz, 1H), 2.71e2.64 (m, 2H), 2.53 (1/2 ABX, J¼13.1,
9.9 Hz, 1H, minor diastereomer), 2.28 (s, 3H, minor diastereomer),
2.26 (s, 3H), 2.10 (dd, J¼13.3, 9.7 Hz, 1H), 1.45 (s, 9H minor diastereomer), 1.44 (s, 9H); 13C NMR (101 MHz, CDCl3): d 192.5, 191.7,
171.9, 169.8, 168.8, 150.4, 150.3, 148.3, 148.1, 138.6, 138.1, 136.9,
136.9, 136.6, 135.3, 133.7, 128.9, 128.8, 128.8, 128.6, 128.6, 128.5,
128.5, 128.4, 128.3, 127.4, 127.2, 126.9, 123.1, 122.8, 115.0, 114.6,
103.9, 102.5, 81.4, 81.2, 75.0, 75.0, 65.0, 63.9, 63.1, 62.8, 60.5, 58.8,
57.3, 52.8, 51.6, 48.8, 34.7, 32.2, 28.2, 16.0, 16.0; Rf (SiO2, hexanes/
EtOAc 4:1) 0.45; [a]25
D 64 (c 0.32, CH2Cl2); IR (ﬁlm, CH2Cl2), nmax
3030, 2976, 2934, 1733, 1688, 1646, 1154 cm1; HRMS (MHþ), found
595.2801. C36H39N2O6 requires 595.2808.
To a stirred solution of a 2.2:1 mixture of compounds 23a and
23b (88 mg, 0.15 mmol, 1.0 equiv) in THF (2 mL, 0.08 M), under Ar,
was added DBN (19 mL, 0.15 mmol, 1.0 equiv). The mixture was
stirred for 30 min and then diluted with phosphate buffer (0.1 M,
pH¼7.5, 50 mL) and water (50 mL). The aqueous phase was
extracted with EtOAc (333 mL) and the combined organic layers
were rinsed with brine (25 mL), dried (Na2SO4), ﬁltered, and concentrated under vacuum. The crude material was dissolved in the
minimal amount of EtOAc puriﬁed by ﬂash chromatography (silica
gel, hexanes/EtOAc 4:1) to afford a 1:2.2 mixture of compounds 23a
and 23b (64 mg, 72%) as a pale yellow oil, which was used in the
next step without further puriﬁcation. 1H NMR (400 MHz; CDCl3):
d 9.32 (s, 1H, minor diastereomer), 9.19 (s, 1H), 7.48e7.24 (m, 10H),
6.63 (s, 1H), 6.62 (s, 1H, minor diastereomer), 6.38 (s, 1H), 6.36 (s,
1H, minor diastereomer), 5.37 (s, 1H, minor diastereomer), 5.36 (s,
1H), 5.28 (1/2 AB, J¼11.1 Hz, 1H), 5.26 (1/2 AB, J¼11.1 Hz, 1H, minor
diastereomer), 5.19 (1/2 AB, J¼11.1 Hz, 1H), 5.13 (1/2 AB, J¼11.2 Hz,
2H, minor diastereomer), 4.20 (1/2 AB, J¼13.4 Hz, 1H, minor diastereomer), 4.14 (1/2 AB, J¼13.5 Hz, 1H minor diastereomer), 4.05
(s, 1H, minor diastereomer), 3.97 (s, 1H), 3.86 (s, 3H, minor diastereomer), 3.84 (s, 3H, minor diastereomer), 3.81 (1/2 AB,
J¼13.6 Hz, 1H), 3.79 (d, J¼6.2 Hz, 4H), 3.75 (d, J¼6.6 Hz, 3H), 3.68 (1/
2 AB, J¼13.4 Hz, 3H), 3.37 (dd, J¼9.8, 6.0 Hz, 1H), 2.78 (dd, J¼9.5,
4.7 Hz, 1H, minor diastereomer), 2.71e2.65 (m, 2H), 2.53 (1/2 ABX,
J¼13.0, 9.9 Hz, 3H), 2.28 (s, 3H), 2.26 (s, 3H, minor diastereomer),
2.10 (dd, J¼13.4, 9.5 Hz, 1H, minor diastereomer), 1.45 (s, 9H), 1.44
(s, 9H, minor diastereomer); 13C NMR (101 MHz, CDCl3): d 192.5,
191.7, 172.5, 171.9, 168.8, 150.4, 148.1, 138.0, 136.9, 135.3, 133.7, 128.9,
128.8, 128.8, 128.6, 128.5, 128.4, 128.3, 127.4, 127.2, 126.9, 123.1,
122.8, 115.0, 114.6, 103.9, 102.5, 81.4, 81.2, 75.0, 75.0, 65.0, 63.9, 63.1,
62.7, 60.4, 58.8, 57.3, 52.7, 51.6, 50.9, 48.8, 34.7, 32.2, 28.2, 28.1, 16.0,
16.0; Rf (SiO2, hexanes/EtOAc); [a]25
D þ27 (c 0.22, CHCl3); IR (ﬁlm,
CH2Cl2), nmax 3029, 2969, 2935, 1732, 1688, 1647, 1154 cm1; HRMS
(MHþ), 595.2789. C36H39N2O6 requires 595.2808.
4.14. (5S,8S,10R,11S)-tert-Butyl 13-benzyl-4-(benzyloxy)-5(hydroxymethyl)-3-methoxy-2-methyl-7-oxo-5,7,8,9,10,11hexahydro-8,11-epiminoazepino[1,2-b]isoquinoline-10carboxylate (24a) and (5R,8S,10R,11S)-tert-butyl 13-benzyl-4(benzyloxy)-5-(hydroxymethyl)-3-methoxy-2-methyl-7-oxo5,7,8,9,10,11-hexahydro-8,11-epiminoazepino[1,2-b]isoquinoline-10-carboxylate (24b)
To a stirred solution of a mixture of compounds 23a and 23b
(60 mg, 0.10 mmol) in EtOH (5 mL, 0.20 M), at 0  C, under Ar, was

nez-Somarribas, A.; Williams, R. M., Tetrahedron (2013), http://dx.doi.org/10.1016/j.tet.2013.05.009
Please cite this article in press as: Jime

229


To afford compounds 23a (18 mg, 30%) as a colorless oil and compound 23b (38 mg, 65%) as a colorless oil. **Compound 23a**: 1H NMR (400 MHz; CDCl3): δ 7.50–7.22 (m, 10H), 6.62 (s, 1H), 6.14 (t, J = 6.1 Hz, 1H), 5.48 (s, 1H), 5.18 (1/2 AB, J = 11.1 Hz, 1H), 5.09 (1/2 AB, J = 11.1 Hz, 1H), 4.10 (s, 1H), 3.97 (1/2 AB, J = 13.3 Hz, 1H), 3.87 (1/2 AB, J = 13.3 Hz, 1H), 3.79 (d, J = 7.7 Hz, 1H), 3.73 (s, 1H), 2.69 (dd, J = 27.0, 9.0, 4.6 Hz, 2H), 2.25 (s, 3H), 2.06 (dd, J = 13.3, 9.5 Hz, 1H), 1.90 (br, 6.0 Hz, 1H), 1.44 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 171.9, 171.7, 150.5, 148.2, 138.3, 137.2, 135.6, 132.6, 128.7, 128.5, 128.4, 127.6, 127.3, 122.1, 120.1, 103.7, 81.3, 75.1, 64.2, 62.7, 60.4, 51.7, 51.3, 50.7, 51.6, 28.1, 18.5, 15.9, 1.4; R (SiO2, hexanes/EtOAc 4:1) 0.12; [α]D 0.00 (c 0.89, CHCl3); IR (film, CHCl3) 3047, 2970, 2730, 1703, 1676, 1536 cm−1; HRMS (M+H+). found 597.2971. C22H31N2O6 requires 597.2965.

Compound 24b: 1H NMR (400 MHz; CDCl3): δ 6.62 (s, 1H), 6.09 (dd, J = 8.4, 4.4 Hz, 1H), 5.45 (s, 1H), 5.17 (1/2 AB, J = 11.1 Hz, 1H), 5.14 (1/2 AB, J = 11.1 Hz, 1H), 3.95 (s, 3H), 3.83 (s, 3H), 3.78 (d, J = 13.5 Hz, 1H), 3.77 (d, J = 6.6 Hz, 1H), 3.63 (d, J = 13.4 Hz, 1H), 3.63–3.50 (m, 1H), 3.15 (dd, J = 9.8, 6.1 Hz, 1H), 2.63 (dt, J = 12.8, 6.5 Hz, 1H), 2.45 (dd, J = 13.9, 9.8 Hz, 1H), 1.77–1.74 (br m, 1H), 1.45 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 172.3, 170.4, 156.0, 147.9, 138.1, 134.0, 132.5, 128.7, 128.7, 128.6, 128.6, 128.5, 128.4, 128.4, 127.3, 126.5, 122.8, 122.7, 120.6, 105.3, 105.3, 81.3, 75.0, 65.5, 65.3, 63.0, 60.4, 52.7, 49.4, 49.4, 48.4, 34.8, 28.2, 16.0, 16.0; R (SiO2, hexanes/EtOAc 4:1) 0.10; [α]D 41.5° (c 0.31, CHCl3); IR (film, CHCl3) 3092, 3044 cm−1 (br), 3062, 3029, 2970, 2927, 1729, 1682, 1639, 1514 cm−1; HRMS (M+H+). found 597.2974. C22H31N2O6 requires 597.2965.

4.15. (5R,8S,10R,11S)-tert-Butyl 4-hydroxy-5-(hydroxymethyl)-3-methoxy-2-methoxy-7-azo-5,7,8,9,10,11-hexahydro-8,11-epiminoazepinol[1,2-b]isoquinoline-10-carboxylic acid (25)

A solution of compound 24b (70 mg, 0.012 mmol) in glacial acetic acid (1 mL) and 10% Pd/C (7 mg) were placed in round bottom flask and sparged with Ar for 5 min. The vessel was evacuated and filled with hydrogen three times. The reaction was vigorously stirred overnight under hydrogen (1 atm). The suspension was diluted with CH2Cl2 (25 mL) and then filtered through Celite® and the flask was rinsed with CH2Cl2 (3×5 mL). The solution was extracted with satd aq NaHCO3 (3×15 mL). The combined aqueous layers were diluted with phosphate buffer (0.1 M, pH = 7.5) and 25 mL and extracted with CH2Cl2 (3×15 mL). The combined organic layers were rinsed with brine (50 mL), dried (Na2SO4), filtered, and concentrated under vacuum. The crude material was purified by flash chromatography (silica gel, hexanes/EtOAc 4:1) to afford compounds 25 (4.6 mg, 92%) as a colorless oil. 1H NMR (400 MHz; CDCl3): δ 6.40 (s, 1H), 6.05 (dd, J = 7.9, 4.1 Hz, 1H), 5.53 (s, 1H), 4.30 (s, 1H), 4.09 (d, J = 6.7 Hz, 1H), 3.78–3.74 (m, 2H), 3.76 (s, 3H), 3.65–3.60 (m, 1H), 3.17 (dd, J = 9.3, 6.2 Hz, 1H), 2.61 (dd, J = 13.1, 9.4 Hz, 1H), 2.32 (dt, J = 13.2, 6.6 Hz, 1H), 2.24 (s, 3H), 1.47 (s, 9H); 13C NMR (101 MHz, CDCl3): δ 173.4, 171.1, 145.2, 144.7, 144.7, 136.9, 136.8, 130.3, 127.1, 119.1, 112.9, 112.9, 102.7, 81.6, 65.2, 61.8, 61.0, 49.5, 48.1, 37.0, 29.8, 28.2, 15.5; R (SiO2, CHCl3/MeOH 95:5) 0.17; [α]D 41.5° (c 0.23, CHCl3); IR (film, CHCl3) 3044 cm−1 (br), 2969, 2925, 2854, 1719, 1683, 1646, 1514 cm−1; HRMS (M+H+), found 417.2033. C23H25NO2S requires 417.2026.
24. The lack of reactivity of the primary hydroxyl of 7 is consistent with the regioselectivity observed in the reaction between TBS-Cl and diols bearing a β-aminocarboxyl motif (Ref. 24). We concur with the explanation provided by the authors, which states that the nucleophilicity of the primary hydroxyl is reduced by internal hydrogen bonding to the neighboring amine group.
29. Zhu’s conditions were also used by Liao (Ref. 22) to convert compound 6 into a trans-ThIQ system, using 2-benzyloxyacetalddehyde.
35. As illustrated in Scheme 4, we propose that the dipolarophile adds from the Re face of the iminium ion carbon to form 20a, which epimerizes under the reaction conditions to form 20b.
36. We propose that the observed chemoselectivity can be explained by the initial formation of a phenoxyaluminum hydride species, which upon delivery of one hydride to the ester, forms a stable seven-membered ring alkoxy(phenoxy)aluminum hydride species.
37. Compounds 23a and 23b are unstable to silica gel. Consequently, we did not attempt their separation for the purpose of recycling of 23a.
APPENDIX 3

Research proposal
Synthesis of Lagunamide C
Research Proposal

Alberto Jiménez
Department of Chemistry

Abstract

A stereodivergent strategy for the structural revision of lagunamide C has been proposed. This cyclodepsipeptide is a member of the aurilide class of natural products and was isolated from the marine cyanobacterium *Lyngbya majuscula*. It showed potent cytotoxic activities against a panel of cancer cell lines, including P388, A549, PC3, HCT8, and SK-OV3. Its polyketide fragment is synthetically challenging due to the presence of a 1,4-dihydroxy-2,5-dimethyl structural motif. To set the configuration of the key stereocenters, I proposed a tunable route involving an acetate aldol reaction, a Charrette cyclopropanation, and a Corey-Bakshi-Shibata (CBS) reduction.

I. Introduction

The lagunamides are a family of cytotoxic cyclodepsipeptides isolated by Tan and coworkers.\(^1\,^2\) These compounds belong to the aurilide class of natural products,\(^3\,^4\,^5\,^6\) which are the product of mixed NRPS-PKS systems. A sample of the marine cyanobacterium *Lyngbya majuscula* was collected at Pulau Hantu Besar, Singapore, in 2007. The chromatographic separation of the organic extracts afforded lagunamides A, B and C, which showed potent cytotoxic activities against a panel of cancer cell lines, including P388, A549, PC3, HCT8, and SK-OV3 cells, with IC\(_{50}\) values ranging from 1.6 nM to 24 nM.\(^2\,^7\)

![Figure 1. Structures reported in the isolation articles](image)

According to Tan and co-workers, the lagunamides comprise a polypeptide portion featuring a D-\textit{allo}-2-hydroxyisoleucic acid fragment connected to L-Ala, N-Me-D-Phe, Gly, L-\textit{allo}-...
isoleucine and N-Me-L-Ala residues. The reported polyketide fragment for lagunamide B is structurally related to the one found in kulokekahilide-2, which has identical C-33 - C-38 and C-40 - C42 segments (lagunamide A numbering) and opposite stereochemistry at C-39 (see Figure 2). Both the reduction of the exocyclic double bond seen in lagunimides A and C, and the presence of an extra methylene group in the polyketide fragment of lagunamide C (C-39) are unprecedented features in the aurilide class of natural products.

Figure 2. Aurilide Class of Natural products

In a recent communication, Ye and coworkers published the total synthesis and structural revision of lagunamide A. In the revised structure (9), the L-\textit{allo}-isoleucine residue was replaced with a L-isoleucine residue and the absolute configuration at C-39 was inverted. Both structural features are consistent with all of the previously isolated members of the aurilide class. Consequently, I expect that the structures of lagunamide B (10) and C (11) must include a L-isoleucine residue in the northern part of the structure. In addition, I expect the polyketide found in lagunamide B to be the same fragment found in kulokekahilide-2. Given the unprecedented nature of lagunamide C’s polyketide fragment, I can only assume that the configurations at C-37, C-38 and C-41 must be identical to the ones found in the corresponding carbons in all of the other members of the aurilide class. This structural assignment is based on the assumption that similar enzymes are involved in the reduction events that form these stereocenters. Since the biosynthetic process that leads to the insertion of the extra methylene C-39 unit is unknown, the only information available to predict the stereochemistry at C-40 is the
incorrect NMR analysis discussed in the original isolation paper, which was similar to the one employed to assign the stereochemistry of C-39 in lagunamides A and B.1,2 Consequently, I also expect the configuration at C-40 in the natural product to be consistent with all of the members of the aurilide class.

![Figure 3. Revised and proposed structures for lagunamides A-C](image)

II. Proposed Area of Research

To date, no synthesis of lagunamide C has been reported and its structure has not been confirmed. Given its potent cytotoxic activities, effort should be directed towards establishing or confirming the correct structure of the compound, and using the synthetic routes to prepare analogs that could be used for structure-activity relationship (SAR) studies. This proposal will delineate efforts towards a) developing a stereodivergent synthetic route to access multiple possible diastereomers of the polyketide fragment, b) gaining access to lagunamide C, and c) gaining access to lagunamide C analogs.

III. Retrosynthetic Analysis

![Scheme 1. Retrosynthetic Analysis for Lagunamide C (11) access](image)
Retrosynthetically, I envision the disconnection of the macrocycle to the three key units illustrated in Scheme 1. Given the ready availability of sarcosine (13) and the building blocks required to prepare compound 12, I expect that the main synthetic challenge will be the preparation of acid 14. As shown in Scheme 2, this key intermediate could be accessed via a Mukaiyama vinylogous aldol reaction of silyl ketene acetal 15 and aldehyde 16, which in turn could be obtained from alkene 17 through the reductive opening of iodomethylcyclopropane 18. The latter could be prepared from ester 19, through reduction to the allylic alcohol, followed by an asymmetric cyclopropanation and substitution with iodide. Compound 19 could be obtained through a Wittig reaction with aldehyde 20, which in turn could be prepared using an acetate aldol reaction of thiazolidinethione 21 and (S)-2-methylbutanal (22).

![Scheme 2. Retrosynthetic Analysis for polyketide (14) access](image)

IV. Proposed Synthesis of Lagunamide C

Herein is the proposed convergent synthesis of Lagunamide C.

a) Synthesis of polypeptide 33

![Scheme 3. Synthesis of D-allo-2-hydroxyisoleucic acid](image)

Commercially available D-allo-isoleucine (23) will be diazotized and hydrolyzed with configuration retention, to provide D-allo-2-hydroxyisoleucic acid (24) (Scheme 3).10
Scheme 4. Proposed Synthesis of polypeptide 33

For all of the peptide-coupling and esterification reactions, the choices of the acid activating reagent and the conditions will be based on factors such as price, convenience, product optical purity and yield, and will depend on the outcome of each particular reaction. The peptide couplings of Scheme 6 are shown using the EDCI/HOBt combination. If problems arise, any other standard carboxylic acid activating agents, such as DCC, HATU, PyBOP, BOP-Cl, DMAP, or the like, may be used.11,12

Commercially available \(N\)-Boc-L-isoleucine will be converted into the corresponding trichloroethyl ester, followed by \(N\)-Boc removal,13 to provide compound 26, which in turn will be coupled with \(N\)-Boc sarcosine (27) to give dipeptide 28 (Scheme 4). Tetrapeptide 32 will be prepared with two similar coupling/deprotection cycles involving \(N\)-Me-D-phenylalanine 29 and \(N\)-Me-L-Ala 31. The esterification of d-\textit{allo}-2-hydroxyisoleucic acid (24) with 32 will afford compound 33.

\textbf{b) Synthesis of aldehyde 45}

Commercially available (S)-2-methylbutanol will be oxidized with TEMPO/NaOCl to give aldehyde (S)-methylbutanal (22).14 I intend to use an acetate aldol reaction between \(N\)-acetyl thiazolidine-2-thione 21 and compound 22 to gain access to compound 35 (Scheme 5). According to Hodge and Olivo,15 the use of 2 equivalents of base generates an open transition state where the chiral auxiliary is not coordinated to the titanium atom, and leads to the desired \textit{anti} product (Scheme 6). Presumably, the bidentate amine coordinates to the titanium atom and
disfavors the coordination of the thiocarbonyl sulfur to the metal center.16 If problems arise, and the stereochemical outcome of the acetate aldol reactions are not optimal, I will explore the use of alternate thiazolidine-2-thiones,16, 17, 18, 19 oxazolidine-2-thiones19 or oxazolidinones20, 21 to obtain the desired \textit{anti} products with acceptable diastereomeric excesses. With compound 35 in hand, I will convert its secondary hydroxyl into the corresponding \textit{tert}-butyldimethylsilyl ether, followed by direct reduction of the \textit{N}-acetyl thiazolidine-2-thione with DIBAL-H16 to provide aldehyde 20.

\begin{center}
\includegraphics[width=\textwidth]{Scheme5}
\end{center}

\textbf{Scheme 5. Proposed syntheses of aldehyde 20}

\begin{center}
\includegraphics[width=\textwidth]{Scheme6}
\end{center}

\textbf{Scheme 6. Proposed transition states for the Ti-mediated acetate aldol reactions}
Scheme 7. Proposed transition state for the allylboration reaction

Alternatively, following the procedure reported by Brown, the allylboration of aldehyde with (-)-Ipc$_2$-B-(allyl)borane will provide alcohol (Scheme 5). The selectivity of this reaction can be explained by the chair-like transition state shown in Scheme 7, where the aldehyde carbon chain occupies an equatorial position and the facial selectivity is governed by the minimization of steric interactions between the axial Ipc ligand and the allyl side chain. TBS protection of 34, followed by reductive ozonolysis conditions would afford aldehyde 20.

As shown in Scheme 8, aldehyde 20 will be reacted with stabilized Wittig reagent 36 to give ester 19. Reduction with two equivalents of DIBAL-H will provide allylic alcohol 37, which in turn will be submitted to Charette’s cyclopropanation conditions with diiodomethane, diethylzinc and (R,R)-dioxaborolane 38 to give compound 39. It has been proposed that the stereochemical outcome of the cyclopropanation reaction is governed by the formation of a zinc complex that includes the allylic alcohol-derived alkoxide and the dioxaborolane chiral catalyst (Scheme 9). Mesylation of primary alcohol 39, followed by substitution with iodide will afford substituted iodomethylcyclopropane 18. Following Charette’s protocol, formation of a cyclopropylmethyl lithium species via lithium-halogen exchange will trigger the formation of a homoallylic lithium species, which upon quenching with H$_2$O, will afford alkene 17 (Scheme 10). The low stability of the (cyclopropylmethyl)lithium species, which rearrange to homoallyl lithium species in the presence of lithium coordinating agents or solvents, was originally described by Lansbury. The process is thought to be driven by the gain in stability produced by the energy that is released when the strained cyclopropyl ring opens and forms the more stable homoallylic species. Compound 17 will be subjected to reductive ozonolysis conditions to provide aldehyde 16. Alternatively, the aldehyde could be prepared by treating alkene 17 with OsO$_4$ and NaIO$_4$. Precedent for the approach for the proposed conversion of aldehyde 20 into aldehyde 16 can be found in a similar sequence described by Maier.
For the elongation of the polyketide chain, I intend to use a Mukaiyama vinylogous aldol reaction (MVAR)\(^9\) between aldehyde 16 and silyl ketene acetal 15. Analog transformations were used for the synthesis of the polyketide fragments found in several members of the aurilide class, including aurilide (4),\(^3\) kulokekahilide-2\(^{29}\) (7) and palau’amide (8).\(^{30}\) According to the authors, all of these reactions produced single diastereomers, which had the undesired configuration at C-5 (Scheme 11). According to Evans, the high selectivity can be explained by a transition state that combines the mutually reinforcing effects of the \(\alpha\)-methyl and \(\beta\)-OTBS groups.\(^{31}\) The stereochemistry at C-5 was inverted by oxidizing the secondary alcohol and
performing a sodium borohydride reduction, which provided the desired diastereomer stereoselectively. Several authors have reported similar stereoselectivity in other reactions involving α-methyl-β-OTBS ketones. Based on both the above discussed influence of the α and β groups in the outcome of the MVARs, and Evans’ work on 1,3-asymmetric induction in hydride reductions of β-substituted ketones, I propose that the OTBS group also plays a significant role in the asymmetric induction of these reductions.

![Scheme 11. Asymmetric vinylloguos Mukaiyama aldol reaction/C-4 inversion sequence](image)

As shown in Scheme 12, the proposed aldehyde intermediate 16 is unsubstituted in the β position and the OTBS group is in the γ position. Based on the rationale provided for the asymmetric induction seen in Scheme 11, I do not foresee a high degree of selectivity with the proposed MVAR. In addition, I only found two loosely related examples, which used a ZnCl₂ as the Lewis acid and gave a 3:1 mixture of diastereomers, or used a chiral catalyst for the asymmetric induction. In both cases, the aldehydes were structurally simpler than the proposed substrate. Consequently, attempting an asymmetric implementation of this particular MVAR could be a difficult endeavor and therefore I decided to propose a conservative approach for the elongation of the polyketide intermediate. This route involves the isolation of 45 as a diastereomeric mixture, the oxidation of the secondary hydroxyl using Dess-Martin periodane to give compound 46 and a Corey-Bakshi-Shibata (CBS) reduction of the ketone to afford hydroxyester 48. I chose a reaction involving an asymmetric catalyst because the keto substrate 46 does not have a protected hydroxyl in the β position, and I do not expect that it will be stereoselectively reduced by an achiral reducing agent such as NaBH₄. Based on a preliminary conformational analysis, I expect that the use of the (S)-(-)-2-methyl-CBS-oxazaborolidine 47 will lead to the preferential formation of transition state shown in Scheme 13, where the interactions between the bulkier ketone substituent and the methyl group attached to the boron atom are minimized. Accordingly, I expect that the hydride would add to the carbonyl’s si face.
to afford compound 48. Protection of the free hydroxyl as the methylthiomethyl ether, followed by alkaline hydrolysis of the methyl ester with LiOH will afford carboxylic acid 50.

Scheme 12. Proposed synthesis of the protected polyketide fragment

Scheme 13. Proposed transition state for the CBS reduction

d) Synthesis of lagunamide C (11)

As shown in Scheme 14, formation of the ester of protected acid 50 and polypeptide 33 using EDCI and DMAP will provide compound 51. Removal of the TBS group with HF/pyridine, followed by esterification with N-Fmoc-sarcosine will afford compound 52. After removing the TCE ester and the Fmoc group, the resulting compound will be reacted with EDCI/HOAt to form the macrocycle. The removal of the MTM protecting group with AgNO3 will afford lagunamide C (11). Precedent for the conversion of polypeptide 33 into the unprotected macrocycle can be found in a similar sequence described by Yamada for the synthesis of aurilide.3
Scheme 14. Proposed completion of the synthesis of lagunamide C (11)

e) Synthesis of alternate diastereomers of the polyketide fragment

The NMR spectrum of the synthetic macrocycle will be compared with the reported NMR data for lagunamide C. If the NMR spectra do not match, I will adapt the sequence to synthesize diastereomers of acid 50, which will be used to build diastereomeric macrocycles in an attempt to synthesize the natural product. The choice of the chiral center(s) to be inverted will be based on the discrepancies of the corresponding 13C and/or 1H NMR signals. The synthesis of C-41 epimers of 11 could be performed by starting the sequence with (R)-2-butanol. This compound is not commercially available and can be obtained in 5 steps from (S)-3-hydroxy-2-methylproprionate. The proposed reactions for setting the three remaining chiral centers involve the use of chiral catalysts that were chosen in order to minimize the effect of the previously installed stereocenters on the stereochemical outcome of each reaction. Thus, I expect that by using the enantiomers of thiazolidine-2-thione 21, dioxaborolane 38 and oxazaborolidine 47, under the conditions described above, I will be able to selectively access...
the diastereomers with opposite stereochemistry at C-40, C-38 and C-37, respectively. Alternatively, the stereochemistry of C-40 could be inverted by using thiazolidine-2-thione 21 with equimolar amounts of TiCl$_4$ and sparteine. As shown in Scheme 6, these conditions would promote the formation of a closed transition state, which lead to the syn product.15 As mentioned above, if stereoselectivity problems arise, alternate thiazolidine-2-thiones,17,18,19,19 oxazolidine-2-thiones19 or oxazolidinones21,21 could be used to obtain the desired syn products. Furthermore, the use of (+)-lpc$_2$B(allyl)borane instead of (-)-lpc$_2$B(allyl)borane in the allylation reaction could also provide compounds with inverted stereochemistry at C-40.

V. Biological evaluation

The total synthesis of lagunamide C would allow the production of quantities appropriate for the confirmation of the reported biological activities and for conducting further studies that could provide information about its mode of action. In addition, the above described stereodivergent routes would allow the syntheses of lagunamide C analogs that could be used for SAR studies. The information obtained from these preliminary biological studies could lay the groundwork for a broader program aimed at the generation of rationally designed lagunamide C analogs.

VI. Conclusion

A stereodivergent synthetic route has been proposed for the structural revision of lagunamide C and the preparation of analogs thereof. The key reactions are a) an asymmetric acetate aldol reaction, b) a Charette asymmetric cyclopropanation, and c) Corey-Bakshi-Shibata (CBS) reduction. Upon confirmation of lagunamide C’s structure, the biological activity of the synthetic material will be confirmed and its analogs will be evaluated.
VII. References

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adenylation domain</td>
</tr>
<tr>
<td>ACP</td>
<td>Acyl carrier protein</td>
</tr>
<tr>
<td>AcCl</td>
<td>Acetyl chloride</td>
</tr>
<tr>
<td>AL</td>
<td>Acyl-CoA ligase domain</td>
</tr>
<tr>
<td>Ac₂O</td>
<td>Acetic anhydride</td>
</tr>
<tr>
<td>AcOH</td>
<td>Acetic acid</td>
</tr>
<tr>
<td>Bn</td>
<td>Benzyl</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-Butoxycarbonyl</td>
</tr>
<tr>
<td>Boc₂O</td>
<td>Di-tert-butyldicarbonate</td>
</tr>
<tr>
<td>C</td>
<td>Condensation domain</td>
</tr>
<tr>
<td>CAN</td>
<td>Ceric ammonium nitrate</td>
</tr>
<tr>
<td>Cbz</td>
<td>Benzyl chloroformate</td>
</tr>
<tr>
<td>CSA</td>
<td>Camphorsulfonic acid</td>
</tr>
<tr>
<td>DAST</td>
<td>Diethylaminosulfur trifluoride</td>
</tr>
<tr>
<td>DBN</td>
<td>1,5-Diazabicyclo[4.3.0]non-5-ene</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-Diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DIBAL</td>
<td>Diisobutyl aluminum hydride</td>
</tr>
<tr>
<td>DIPEA</td>
<td>Diisopropylethylamine</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-(Dimethylamino)-pyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DMP</td>
<td>Dess-Martin Periodinane</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Name</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>DMDO</td>
<td>Dimethyldioxirane</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>EDCI</td>
<td>1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide</td>
</tr>
<tr>
<td>Et$_3$N</td>
<td>Triethylamine</td>
</tr>
<tr>
<td>EtOAc</td>
<td>Ethyl Acetate</td>
</tr>
<tr>
<td>Fmoc</td>
<td>(9H-fluoren-9-ylmethoxy)carbonyl</td>
</tr>
<tr>
<td>HFIP</td>
<td>Hexafluoroisopropanol</td>
</tr>
<tr>
<td>HATU</td>
<td>O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate</td>
</tr>
<tr>
<td>HOBt</td>
<td>1-hydropybenzotriazole</td>
</tr>
<tr>
<td>IBCF</td>
<td>Isobutyl chlorformate</td>
</tr>
<tr>
<td>IBX</td>
<td>o-Iodoxybenzoic acid</td>
</tr>
<tr>
<td>KHDMS</td>
<td>Potassium bis(trimethylsilyl)amide</td>
</tr>
<tr>
<td>KOTMS</td>
<td>Potassium trimethylsilanolate</td>
</tr>
<tr>
<td>LDA</td>
<td>Lithium N,N-diisopropylamide</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimal inhibitory concentration</td>
</tr>
<tr>
<td>MS</td>
<td>Molecular sieves</td>
</tr>
<tr>
<td>Ms</td>
<td>Methanesulfonyl</td>
</tr>
<tr>
<td>m-CPBA</td>
<td>m-Chloroperbenzoic acid</td>
</tr>
<tr>
<td>MeI</td>
<td>Methyl iodide</td>
</tr>
<tr>
<td>MOM</td>
<td>Methoxymethyl</td>
</tr>
<tr>
<td>NaHMDS</td>
<td>Sodium bis(trimethylsilyl)amide</td>
</tr>
<tr>
<td>NBS</td>
<td>N-Bromosuccinimide</td>
</tr>
<tr>
<td>NMM</td>
<td>N-Methylmorpholine</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NMO</td>
<td>N-Methylmorpholine-N-Oxide</td>
</tr>
<tr>
<td>NMP</td>
<td>N-Methyl pyrrolidine</td>
</tr>
<tr>
<td>NRPS</td>
<td>Nonribosomal peptide synthetase</td>
</tr>
<tr>
<td>Ns</td>
<td>2-Nitrobenzenesulfonyl</td>
</tr>
<tr>
<td>P</td>
<td>Peptidase domain</td>
</tr>
<tr>
<td>PCC</td>
<td>Pyridinium chlorochromate</td>
</tr>
<tr>
<td>PCP</td>
<td>Peptidyl carrier protein</td>
</tr>
<tr>
<td>Pd/C</td>
<td>Palladium on carbon</td>
</tr>
<tr>
<td>PS</td>
<td>Pictet-Spenglerase domain</td>
</tr>
<tr>
<td>Py</td>
<td>Pyridine</td>
</tr>
<tr>
<td>PyBOP</td>
<td>Benzotriazol-1-yl-oxytrypyrrolidinophosphonium hexafluorophosphate</td>
</tr>
<tr>
<td>R</td>
<td>Reductase domain</td>
</tr>
<tr>
<td>REDAL</td>
<td>Sodium bis(2-methoxyethoxy)aluminum hydride</td>
</tr>
<tr>
<td>T</td>
<td>Thiolation domain</td>
</tr>
<tr>
<td>TBAF</td>
<td>Tetrabutylammonium fluoride</td>
</tr>
<tr>
<td>TBDPS</td>
<td>tert-Butyldiphenylsilyl</td>
</tr>
<tr>
<td>TBS</td>
<td>tert-Butyldimethylsilyl</td>
</tr>
<tr>
<td>TBSOTf</td>
<td>tert-Butyldimethylsilyl trifluoromethanesulfonate</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TEMPO</td>
<td>2,2,6,6-Tetramethyl-1-piperidinyloxy, free radical</td>
</tr>
<tr>
<td>TES</td>
<td>Triethylsilyl</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>TFE</td>
<td>Trifluoroethanol</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Name</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>TIPS</td>
<td>Triisopropylsilyl</td>
</tr>
<tr>
<td>TIPSOTf</td>
<td>Triisopropylsilyl trifluoromethylsulfonate</td>
</tr>
<tr>
<td>TMS</td>
<td>Trimethylsilyl</td>
</tr>
<tr>
<td>TMSOTf</td>
<td>Trimethylsilyl trifluoromethylsulfonate</td>
</tr>
<tr>
<td>TPAP</td>
<td>Tetrapropylammonium perruthenate</td>
</tr>
<tr>
<td>Ts</td>
<td>p-Toluenesulfonyl</td>
</tr>
<tr>
<td>p-TsOH</td>
<td>p-Toluenesulfonic acid</td>
</tr>
</tbody>
</table>