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ABSTRACT

MONITORING DESIGN FOR ASSESSING COMPLIANCE WITH NUMERIC NUTRIENT

STANDARDS FOR RIVERS AND STREAMS USING GEOSPATIAL VARIABLES

Elevated levels of nutrients in surface waters are among major human and environmental
health concerns. Increases in nutrient concentrations in surface waters have been linked to urban
and agricultural development of watersheds across the United States. Recent implementation of
numeric nutrient standards in Colorado has prompted a need for greateinderstanding of human
impacts on nutrient levels at different locations within a watershed and for how upstream
influences affect the monitoring needs of specific locations. The objectssef this researchare (i) to
explore the variability of annual rutrient concentration medians under varying levelsof upstream
anthropogenic influences, (ii)to explore the variability of the standard deviation of nutrient
concentrations under varying levels ofupstream anthropogenic influences, and (iii) to develop a
mathematical expression for approximating the number of samples required for estimating

nutrient medians in the context of compliance with numeric standards

This analysis was performed in the Cache La Poudre (CLP) River watershed, which provides
a gradient of anthropogenic influences ideal for studying water quality impactsMultiple linear
regression (MLR) models were used to explain the relationshipf the median and lognormal
standard deviation of nutrient concentrations in the CLP Riveri.e., TotaKjeldahl Nitrogen (TKN),
nitrate (NOs-N), total nitrogen (TN), and total phosphorous (TP) taipstream point and nonpoint
sources of nutrients and general hydrologic descriptorsThe number of samples required annually
at monitoring locations is predicted based on an equation for determining sample size using
relative error of a dataset whichaccounts for the difference between the median and standard for a

lognormal population.



MLR models for annual medians performed better for TN @= 0.86) than TP (R = 0.90
despite highcoefficients ofmultiple determination. Anthropogenic predictor variables, which
characterizeupstream urban and agricultural impacts on nutrient concentrations, were sufficient
for describing variation of median concentrations between monitoring sitesA general hydrologic
predictor was sufficient for characterizing variability of annual medians between gars. The
preferred MLR for all of the nutrient parameters uses inverse distance weighted WWTP and AFO
capacities with annual mean daily discharge as a hydrologic predic. The percent land use is
equivalent to nutrient point source parameters (i.e., nunber of WWTPs and AFOdpr predicting
median nitrogen concentrations in the watershed, though urban and agricultural land use
predictors cannot be employed in the same model due to highulticollinearity . Little value is
gained in the MLR models by inclding capacity of point source in the predictive variables For TP,
a parameter which describes the variability of medians between years was not found, thus limiting

the applicability of the model.

The MLR models were less successful for predicting logroal standard deviation of
nutrients due to limited datasets. However, for robust datasets, high?Ralues were found for TN
and TP (0.80 and 0.73respectively) based on anthropogenic predictors and annual rainfall.
Overall, the MLR approach was appropaite for predicting median nutrient concentrations and
lognormal standard deviationsin the study watershed. Anthropogenic variables and general

hydrologic descriptors were sufficient predictive parameters for the MLR models.

Resultsof the application d anexpressionderived for predicting annual required samples
indicate that sampling requirements to meet a 95% confidence level are lower than the current
regulatory monthly sampling requirement. The required number of sampledor reporting
compliance ata 95% confidence level substantially varied among sampling sites depending on the

difference between annual median of the nutrient of concern and its numeric standard. When the



median is within 20% of the standard, the required number of samples rapidiyncreases from
several samples per year to hundreds of samples per year. A comprehensive monitoring plan that
targets sampling to sites near the standard with limited sampling elsewhere will optimize sampling

resources and increase confidence level of thesults.
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INTRODUCTION

The human and ecological impacts of nutrients in surface waters, namely nitrogen (N) and
phosphorous (P have been well documented. The presence of high nitrate levels in drinking water
has been linked with reproductive problemsmethemoglobinemia, and cance(Townsend et al.,
2003; Bryan, 2013). Excessive nutrients, particularly phosphorous, haveng been linked to
eutrophication processes in surface water (Correll, 1998; Smith, 1999; U.S. Environmental
Protection Agency [EPA], 1998; Carpenter et al., 1998). Eutrophication of surface waters results in
increased algal biomass andlecreaseddissolved oxyga concentrations (Carpenter, 1998; Correll,
1998). A substantial production of algal biomass campact the sediment structure of stream beds
(Sand-Jensen, 1998)and may therefore impact the benthic ecosysteniThis altered systemcan

causea decline ofecosystem biodiversity (Carpenter et al., 1998; Smith, 1999).

Agricultural and urban activities have been associated with elevated levels of nutrients in
surface waters above natural background levels nationally (Puckett, 1995; U.S. EPA, 1998
Dubrovsky etal., 2010. Norntpoint sources of nutrients, such as fertilizer and manure ugkin
agriculture and urban areas, are recognized amajor sources ofexcess nutrient inputsin
watershedsaround the world (Puckett, 1995; Carpenter et al1998; Scanlon et a].2007). Point
sources of nutrients including waste water treament plants (WWTPs) andanimal feeding
operations (AFO9 also represent significant sources of nutrients in many watersheds and can
cause surface water impairment (Welch, 1992Gollehon et al. 2001; U.S. EPA, 2004Discerning
anthropogenic impacts from background nutrient concentrations in most watersheds can present a
challenge when the watershed does not include a portion without major human influencedt can
likewise be difficult to distinguish betweenmultiple anthropogenic nutrient sources where both

agricultural and urban developmentinfluence nutrient levelsin the same region.



In the United Statesnumeric nutrient standards havebeenincreasingly adopted to manage
nutrient impairments in surfacewater bodies for more than a decade (U.S. EPA, 1998). While
regional recommendations for nutrient levels have been available from the U.S. EPA since 2001
(U.S. EPA, 2001xhe State of Colorado has only recently moved to create enforceablemeric
nutrient regulations for its surface waters. In 2012, the Colorado Department of Public Health and
Environment (CDPHE)mplemented numeric nutrient limits for surface water in order toimprove
nutrient pollution in surface waters of Colorado (CDPHE2012a). These standards are
recommended based on designated uses and classification of water bodies. Surface waters are
classified bycold or warm water aquatic use Cold water use supports biota that exisin waters
with average weeklysummertemperatures that do nottypically exceed 20°C, while warm water
use supports biota that exist in waters thafrequently exceed thisvalue. For cold water rivers and
streams, the annual medianotal nitrogen concentration is limited to 1.25mg/l, and the annual
median total phosphorous concentration is limited to 0.11mg/lI (CDPHE, 201&). For warm water
rivers and streams, median concentrations are limited to 2.0fng/l and 0.17 mg/l for total nitrogen

andtotal phosphorous respectively (CDPHE, 20H).

The new regulations requre wastewater treatment plants (WWTPs)to monitor total
nitrogen andtotal phosphorouslevels intheir effluent and downstreamreceiving water bodies
(CDPHE, 2013; CDPHE, 2012b). Currentlysampling requirements are monthly for large WWTPs
with effluent discharge greater than 1 million gallons per day (MGD) and every other month for
small treatment plants with effluent discharge less than 1 MGD. Thlamplingrequirements do not
consider the impacts of nonpoint sources, drainage areznaracteristics, and other geospatial
factors that may play a role in the variability of N and P loads at various locations along streams. As
a result, the sampling numbers may baadequateto describe the annual median nutrient

concentrations atvarious locations along the river system



In a robust monitoring plan, the sampling frequency should reflect the statistical
characteristics of thepollutant of concern, which optimizes the number of samplesor available
resourcesand helps assure statisticatonfidencein the results (Gilbert, 1987, Ward et al., 1990.
Becausenitrogen and phosphorous populations are a function of upstream influences, the sampling
frequency should vary depending on the location of a monitoring site on the river. Many
monitoring plans applied on a large scale are simplified to ease implementati and data analysis,
and the newly implemented Colorado nutrient regulations are just one such example (CDPHE,
2012a). A statistical evaluation ohdequatesampling frequencies may not be feasiblstate-wide
for all individual monitoring sites due to limited historical datasetsavailable for comparison,and
the excessive time and cost required to conduct such an analyslgnking upstream influences to
nutrient parameter population characteristics can allow foroptimization of sampling resources by

minimizing samplingfrequencies for a large scale implementation of regulatory requirements.

Two approaches arecurrently available to model the nutrient levels of a watershed?rocess
based modes compute nutrient levels by simulating the hydrologic and biologcal processes that
control the transport and transformation of nutrient responsesfor given watershed parameters
(Venohr et al., 2005Lam, 2012; Aguilera, 2012).Multiple linear regression models (MLRs) have
been shown to predict water quality levels irsurface water (Arheimer and Lide, 2000Haggard et
al., 2003; May et al., 200%ang et al., 2010; Spahr, 201@&guilera, 2012;). The relatively simple
approach of MLR modeling has the advantage of requiring less data for application than physically
based models, and allows for the characterization of sources of variability in water quality data
over a region and period of time.Predictor variables for water quality parameters generally used
for MLRs include land use, physical watershed properties, hydiagic properties, and soil
properties. Presently, point sources ofvater quality parameters have not been examined in MLR
modeling, and they could useful due to potential ease of acquiring the data and a lack of colinearity

between these variables as comgred to percent land use. Multiple linear regression modelssed

3



by Haggard (2003) to predict sampling requirements for load estimation on the lllinois River
demonstrated the feasibility of predicting sampling requirements based on anthropogen&nd
watershed characteristicsHowever, MLR modeling has not been used to direct development of

monitoring plans for compliance with nutrient concentration standards.

The overall goal of this studyis to develop a procedure for computing minimumsampling
frequencies to meet nutrient regulations based on upstream influencesn monitoring sitesin a
northern Colorado watershed The objectivesare (i) to explore the variability of annual nutrient
concentration medians under varying levelof upstream anthropogenic influences (ii) to explore
the variability of the standard deviation of nutrient concentrations under varying levels of
upstream anthropogenic influencesand (iii) to develop a mathematical expression for
approximating the number of samples required folestimating nutrient medians in the context of
compliance with numeric standards This methodologymay be auseful tool for regulators and
water usersto develop optimal monitoring and management plans based watershed properties

particularly for western watersheds.



METHODOLOGY

This study was performedin the Cache La PoudréCLP)River watershed in northern
Colorado, where a relatively undeveloped regioa joinsa developed lower watershed with a
gradient of human impacts.Due to the diversity of its land use conditions, the CLP system presents
a unique opportunity to study the relationship between human influences and nutrient
concentrations, and also to examine the role of sampling frequency in compliance with regulations.
Water quality variables includingtotal Kjeldahl nitrogen (TKN), nitrate (NOs;-N) nitrogen, total
nitrogen (TN), and total phosphorous (TP)vere monitored on a weekly basis over a one year
period. Thesedata were augmentedwith less robust datasets fronfour previous years to
characterize variability of nutrient concentrations throughout the watershed under varying
hydrologic conditions through a multiple linear regression approach ArcGIS was used to delineate
subwatershed boundaries for senpling siteson the CLP Rer, and upstream anthropogenic
influences for each site were then defined by these boundaries. Anthropogenic influences are
characterized by land use percentage, and the locations and capacities of wastewater treatment
plants and animal feeihg operations.Assuming alognormal distribution, the required number of
annual samplesds calculated for any given location in the watershed based on the median and
standard deviation of a nutrient constituent at that locationand a known concentration $andard. A
multiple linear regression approachwas used to investigate the correlation between nutrient

responses and human influences while taking account of annual hydrologic conditions.



Study Area

The Cache La Poudre Watershed is 4892 Rif1887 mi2) in northeastern Colorada The
river headwaters begin in thepristine Rocky Mountainsand the river flows approximately 205 km
(127 mi) before its confluence with the South Platte River in the eastern plains of Colorafféigure
1). The CLP watershee&ncompasses dargely undeveloped upstream region which allows for
characterization of background nutrient conditions. Theriver enters a mixed land use area 55
miles from the confluencethat is characterized by a gradient of human influences including urban
development, large and small waste water treatment plantéVWTPs), row crops, grazing land, and
confined animal feeding operationd AFO9 (Figure 2). This lower portion of the watershedwasthe
focus of the study due textent of bothurban and agricultural development. The CLP Rivedrains
the urban areas of ForCollins,Windsor, and Greeley, andtotal of 16 waste water treatment
plants (WWTPSs) discharge into the river and its tributaries beforéts confluence with the South
Platte Riverdownstream of Greeley. The lover portion of the watershed is used extensively for
irrigated agriculture and confined animal £eding operations Agriculture accounts for
approximately 40% of land use in the lower watershedWith few natural tributaries, irrigation

ditches and diversion canals extensively alter the naturdidydrology of the lower watershed.



omin
. 4 Nebraska
N
Utah — |
A Colorado Kansas
MNew Mexico Texas\
[ cLPwatershed

— CLP River & Streams
®  Sampling Sites

- Open Water

|:| Ice & Snow

- Urhan

- Shrub & Grassland
- Gravel Pit & Quarry
- Forest

|:| Agricultural

B etiand

0 5 10 20 Kilometers
ol Y A LAl L o O |
[ T
0

T T T T T T |
5 10 20 Miles

Figure 1: The study area located in northern Colorado: Cache La Poudre Watershed with sampling
sitesand land use

Eight sample locations were monitorecbn the CLP Rivein the lower watershed. The sites
were chosen totarget a range of upstream human influencesuch as urban and agricultural
development WWTPs, andAFOs All samples were tested folTKN, nitrate-N, TN, and TP.Of those
eight locations five hal corresponding gage stationflow measurements. Ste locations and
upstreaminfluences are summarized in Table 1. Sampling for this study wagrformed June 2012

through April 2013 with weekly sampling at eacHocation except forbi-weekly sampling January



2013 through April 2013. A total of36 sample trips were taken during the complete 20120 2013
sampling period. In addition,aless extensive nutrient dataetwas available for 2008 through 2012
andwas used to supplemensampling for this study. A more detailed description of the sampling

sites is provided in Appendix E

Nutrient Data

Weekly grab samples obtained from the eight monitoring sites for this study were collected
according to USGS protat (Lurry et al, 2004). Laboratory analysis of the samples including
preservation and testing was conducted according tt.SEPAmethods and Standard Test Methods
(STM)for each nutrient parameter. The respective testing proceduresre STM 4500Norg Dfor
TKN,EPA 300.0 foiNOs;-N and NQ-N, EPA 365.1 Revision 2.0 for TP, aiidN is the summation of

TKN, N@-N and NO-N. The test methods are also summarized in Appendix

Table 1: Sampling site descriptions for the study area othe Cache La Poudre RiveRiver miles are
computed upstream from the confluence of the CLP River with the South Platte River.

Site  River Name Flow Description
Mile Data
1 546 PCAN yes Background site at the Mouth of the Poudre Canyon
2 432 PLNC yes Upstream in Fort Collins, downstream of some
agricultural drainage
3 38.0 PNAT In Fort Collins, downstream of Mulberry WWTP
4 37.0 PBOX yes In Fort Collins, downstream of stormwater drainage,
upstream of Drake WWTP
5 36.5 PARCH In Fort Collins,downstream of Boxelder WWTP and
Boxelder Creek tributary
6 32,5 PFOS yes Downstream of all Fort Collins stormwater and
wastewater treatment
7 145 FSPUR Downstream of agricultural drainage and Windsor
WWTP
8 2.2 FERN yes Downstream of agriculturd drainage, Greeley

stormwater, and Greeley WWTP




Geospatial Analysis

Watershed delineation

For each sampling location the boundary of the corresponding drainage area was delineated
using the ArcSWATWatershed Delineatortoolbox in ArcGIS version 9.3ESRI Inc., Redlands, CA)
Watersheddelineations were conducted usinga 1/3 Arc-Seconddigital elevation model (DEM)
from National Elevation Dataset (NEDof the U.S. Geological Survey (USGS), and a high resolution
National Hydrography Datase{NHD) from the USGS which identifiesivers, lakes, streams, canals,
and irrigation ditches. The accuracy of the delineation was confirmed by comparison to ti¢HD

Watershed Boundary [@taset.

Further refinement of the subwatershed boundaries was necessargecauseboth the NHD
Datasetand watershed delineation assume that water drainage follows the natal topography of
the watershed. h the agriculturally dominated lower CLP vatershedlittle natural drainage
remains, andirrigation ditches and diversion canals play alominant role in water drainage.
Inaccuraciesin the elevation-basedwatershed delineationwere mainly the result ofincorrect
depiction of irrigation ditches and diversion canals in theNHD. Throughcomparisonwith high
resolution aerial photographs and fieldchecking, somecanalsthat are connected in the geospatial
data layers, were found to not in fact be connecteahd vice versa. To remedy this situation, the
subwatershedboundaries were manually alterel assuming that 1) on a local scale and where canal
depiction was correct,NHDwatershed boundaries are accurate 2) all irrigation ditches and
diversion canals can accept surface water runoffind 3) drainage of agricultural fields occurs from

high elevaion to lower elevationsaccording to elevations in theDEM

The resulting sulwatershed boundaries are significantly altered in the agriculturally

dominated lower CLPWatershedspecifically for sites 6, 7, and @Figure 2) and do in fact appear



artificial. The New Cache #2 canal is a primary diversion that provides irrigation water for much of
the irrigated agriculture in the lower CLPwatershed. Thecanal runsnorth of and roughly parallel

to the CLPRIiver starting just downstream ofthe city of Fort Cdlins and converges again with the
river downstream of thecity of Greeley and thanost downstream sampling sitein this study. As a
result of the New Cache #2 cangbroximity to the CLPRiver, manyAFOsin the lower watershed

drain more directly into the canalrather than theriver and therefore, did not impact the sampling

sites for this study.

WWTP andAFOdata

Locations and capacities ofWWTPsand AFOswithin each subwatershedwere obtained
from the U.S.EPAFacility Registry System (FRS)Colorado law does not require permitting for all
animal feeding operationstherefore the locations and areas of cattle feedlots and dairiagere
confirmed or modified via satellite imagery and manually digitized apolygons (Prudenet al,
2012). The capacities ofAFGsin terms of the type and number of cattle werealculatedbased on
the density ofknown AFOsin the CLP WatershedStorteboom, 2007). Land usepercentagewas
summarized with 2001 National Land Cover Data Set from the US@®ere urban land use was
defined asthe combination oflow and high intensity residential and
commercial/industrial/transportation land use categories. Agricultural land use was defined as

row crop and pasture/hay categories.
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Figure 2: Drainage area boundariedor the eight sampling sites, with WWTP and AFO capacities.

Anthropogenicpredictor variables

AFOs WWTPs, and land use for eacdubwatershedwere summarized with ArcGlSrersion
9.3 (ESRI, Inc., Redlands, Cidjo predictor variables for use in multiple linear regression models
Figure 2 shows the locations of AFOs and WWTPs in CLP subwatersh&es.anthropogenic
predictor variables were considered in theregression andysis and for the purposes of this study
they are described as either nofpoint source or point sources of nutrients(Table 2). Percent land
use is considered norpoint sources of nutrients. AFO and WWTP facilitiegre considered point

sources of nutrients and were summarized intahe number of facilities, the capacity of the facilities,
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and the inverse distancgalong the elevation contour and streameighted number of facilities
and capacity of facilities.Including both the number of facilitiesand capacity of facilitiesallows
evaluation of data significancdor characterizing annual nutrientconcentration statistics.
Weighting the capacities of the point sources using the inverse distance from each facility to the
sampling location on the river abng the elevation contour and stream path facilitate evaluation of
the role of flow pathways in the analysis.Total distances are the sum of the overland distance to
the nearest tributary (creek, irrigation ditch, or diversion canal), the distance of th&ibutary to the
CLPRiver, and the distance in the&CLPRiver to downstream sampling sites. Overland distance and
tributary path were determined using terrain analysis inthe ArcHydro toolbox in ArcGISPruden et

al, 2012).

Hydrologic predictor variables

General hydrologic parameters werericluded as predictor variablesfor those five sites with
corresponding flow data. Annual mean daily flow and the annual maximum daily flow were
collected from USGS and Colorado Division of Water Resources (CDW(Rjace water data

resources, and anual precipitation for each site wassummarizedfrom CDWRprecipitation data.

Statistical Data Analysis

Fitting statistical distribution

Identification of a proper statistical distribution to describe nutrient concentrations was a
key consideration in deriving the required number of samples for each response variables at each
sampling site and also establishing the relation between anthropogenic influences and nutrient
responses. Probability plots and thé&KolmogorovzSmirnov test for normality were used to analyze

the 2012/2013 for fit with normal and lognormal distributions.
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Table2: Summary of predictor variables usedin multiple linear regression models

Variable Type Units
# AFOs Point Sources/Facilities (#)
# WWTPs Point Sources/Facilities (#)
#AFOs IDW Point Sources/Facilities (#/km)
#WWTPs IDW Point Sources/Facilities (#/km)
# Livestock Point Sources/Facilities (# cattle)
Flow Capacity Point Sources/Facilities (MGD)
# Livestock IDW Point Sources/Facilities  ( # cattle’/km )
Flow Capacity IDW Point Sources/Facilities (MGD/m)
% Agriculture Land Use Land Use (%)
% Urban Land Use Land Use (%)
Annual Mean Daily Flow Hydrologic (cfs)
Annual Maximum Daily Flow Hydrologic (cfs)
Annual Precipitation Hydrologic (in)

Basic Statistics

Sample mediarand lognormal standard deviationwas calculatedfor each sampling site and
nutrient parameter, for each of thefive years of data.A limited number of data pointsare present
in some historical datasets(2008-2011) and are concentrated in the April through September
timeframe. For this study,it was assumedhat the limited sample sets adequately describe the
samplemedian andlognormal standard deviation of the annual concentrations.The regression on
order statistics (ROS) technigue was employed to estimate median atahnormal standard
deviations of datasets with hondetect values (Helsel, 2008), except for those with 60% non-
detectvalues Greater than 60% nondetect valuesoccurred for TKNin 2008-2011 at upstream
locations, and for this situation non-detect values were estimated as the detection limihcluded in
the dataset for estimation of median and lognormal standard deviain. The ROS approach is a
statistical imputation method that employs probability plots to fill in missing data. This technique
was performed in the R statistical software environment using the NADA package based on

techniques described in Helsel (2005b).
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Test for Number of Samples

Appraisal of compliance with ambient nutrient standards in Colorado is based on the annual
median nutrient concentration estimated from instantaneous grab samplesaken from receiving
water bodies downstream of wastewater treament facilities (CDPHE, 2012a), Wwere for large
facilities (effluent discharge greater than 1 MGD)}2 annual samples are requiredgnd for small
facilities (effluent discharge less than 1 MGD§ samplesare required (CDPHE, 2012a). However,
the number of amual samples required to accurately estimate the true annual median of nutrient
populations at a stream location may vary significantly dependent upon the inherent and human
influenced variability of the nutrient of concernand thenearness of the median bthe nutrient
concentration to the numeric standard. For example, if the median concentration at a location far
exceeds the standard and has a large standard deviation that does not encompasses the standard, a
minimal number of samples may be requiredOn the other hand, if the median is close to the
standard and the variability is large, more sampleare necessary.In fact, as the median

concentration approaches the standard, the number of sampleequired approaches infinity.

To determine therequired number of annual samples the nutrient parameter (X) is
assumed to be lognormally distributed, such that y = log(x) is normal and y is described by mean
(Hy) and standard deviation ( ) parameters. Figure3 shows the idealized probability density
function of y.

Dw 0 p 00 Eqg. 1

where R (A) is the cumulative distribution of A. The probability that mean of y is greater than the

log transformed standard (A) should be less than the desired alpha.
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Figure 3: Probability density function for y, log-transformed nutrient concentration data set.
The probability that mean of y is greater than the log transformed standard (A) is given in
Equation 1.

SO,

Given that thecumulative distribution of A is:

o Eq.4
Oo —
Hjl/lg
wEAOA B EO OEA 171 0i Al AOI Ol AOEOA AEOOOEAOOEIT 1
o |
. JVE P Eq.5

The equation can be rearranged to solve for the annual number of samples, n:
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and,

e o Eq.7

where Zis the standard normal deviate calculated as th@verse of standardnormal distribution

non-exceedance probability.

N d) ”
Vie o Eq.8
Thus the number of annual sampless described by Equation 9.
. (b ”
& 5 ¢ Eq.9

The term (A- py) can also be written as the log of the ratio between the standard (S) and the median
of x (M), assuming that the median of the original data andare equivalent.

@0 Eq.10
Equation 9 can be rearranged to solve for alpha given that the median concentration is lessrtltiae
standard. In this case alpha represents the probability ofletermining that the median nutrient
concentration is greater than thestandard, when it is actually lessFor this analysis the value of 4

is termed the confidence level.

P Eq.11
Multiple Linear Regression
Median andlognormal standard deviations ofnutrient parameterswere modeled usng

multiple linear regression models(MLR) based on anthropogenic and hydrologic predictor

variables.
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® Q0o Ybd "o Eq.12

Regression analysis waperformed using theregressfunction in Matlab v7.10 (R2010a)
computational environment (MathWorks Inc., 2010) Median nutrient values were transformed by
box-cox transformation, which identifies the most appropriate transformation of the response
variable (y) to correct skewness of residuals, inequality of residuals, and nonlinearity te

regression(Kutner et al., 2005):

W P
o_ T nLom Eq.13
iTdn n
where crepresents measured nutrient concentrationsET 1 C¥1 AT A 1 AledxAA j1 qQ EO

transformation constant. The box-cox procedure choosestht DA OAI AOAO mhad AAAE

maximizes the LogLikelihood Function.

Due to the limited availability of flow data for all sites, regression analysis waserformed
for two sets of data:(1) five years of data from2008 z 2013 for the five siteswith daily flow data;
and (2) one yar of data from 2012/2013 for all eight sampling sites without flow as a predictor
variable. MLR wasperformed for Dataset 1with and without hydrologic predictors, to allow for
comparisonwith Dataset 2 An exhaustive paring of anthropogeri and hydrologic parameters was
used to buildcompeting MLRmodels for each nutrient parameter The Akaike Information
Criteri on (AIC) and Bayesian Information Criterion (BICyvere used to select thébest MLRmodel

for each variable (Kutner et al., 2005).

Diagnostic statistical tests were performed to appraise the appropriateness of assumptions
in building the MLR models. Overall significance of the regression models was evaluated using the
lack of fit F-test based on a 0.05 significance levdoth the coefficient of multiple determination
(R?) and adjusted coefficient of multiple determination (AdjR?) were employed to compare the
strength of different MLR models.The normality of the error terms was examined with the Shapire

17
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Wilk test and Lilly test. The Brown-Forythe test was used to evaluate the constancy of the error
variance (i.e., homoscedasticity). Randomness in the error terms was tested with the Durbin
Watson test. And the variance inflation factor (VIF) was used to identify multicolinearity in #n
matrix of predictor variables for each MLR modellndividually, predictor variables should have a
VIF value near 1 and collectively the VIF values of all model predictors should be less than 10.
Multicolinearity w as limited by employing one each agricuural, urban, and hydrologic parameter

in the predictor variable matrix.

A summary of the all the median antbgnormal standard deviation values as welas the
anthropogenic and hydrologic predictor variables used for the regression analsis are presented in

Appendix C
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RESULTS & DISCUSSION

Nutrient concentrations were found to generally increase downstream as anthropogenic
impacts increase. TN and TP concentrations begin to consistently exceed the numeric standards at
Site 5. TKN, N&©N, TN, and TP were found to fit a lognormal distribution when nordetect values
were accounted for. Calculation of the required number of annual samples for the eight sites
revealed that generally sampling neds are lower than the currentmonthly requirements, however
when the median is within 20% of the standard the required number of samples increases rapidly.
MLR modeling to predict median and lognormal standard deviations of nutrient parameters based
on anthropogenic predictor variables and a hydrologipredictor were significant and strong.

Inverse distance weighting of anthropogenic predictor variables limitednulticollinearity between
anthropogenic predictors. Among valid modelsdifferent anthropogenic predictors describing

urban and agricultural impactsperformed similarly in the models.

Nutrient Concentration along a Gradient of Anthropogenic Impacts

The anthropogenic nonpoint and point source predictorsgenerally increase from upstremn
to downstream. Figure4 shows the cumulative increase of the number of WWTP and AFO facilities
along the CLP River moving towards the confluence with the South Platte River. Inverse distance
weighting of the number of facilities and capacities of theatilities causes the parameters to not
cumulatively increase downstream (Figure4). This same pattern is shown for AFO and WWTP
capacities in Figures. Despite that & some locations the urban or agricultural predictor valus
decreases downstreamthere is still a general upward trend of influences downstream. Inverse
distance weighting decreases the effect of multicolinearity between anthropogenic factqrahich

exists due to the cumulative nature of the anthropogenic predictors downstream.
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Figure 4: (A) The number of AFOs anccorresponding inverse distance weighted (IDW) number of

AFO facilities andB) number of WWTPsand corresponding IDW number o WWTP facilitiesfor

each monitoring site.
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Figure 5: (A) The AFO capacities in number of animals and corresponding inverse distance
weighted (IDW) capadties; and (B) WWTP capacities in million gallons per day (MGD) and
corresponding IDW capacities for each monitoring site from downstream to upstream.

Manually altering the subwatershed boundaries in the agriculturally dominated lower region of the

study watershed has the effect of decreasing the AFOs and the percent agricultural land use that
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contribute to the most downstream three monitoring sites (6, 7, and 8). There is ndteration of
subwatershed boundaries at the upper five sites and the predictsrrelated to WWTPs are not
affected at any of the eight monitoring sites. All of the AFOs discluded from subwatersheds have
capacities less than 6000 cattle. In comparison the cumulative AFO capacities for subwatersheds 6,
7, and 8 are 42,000, 63,000,nal 95,000 cattle respectively. One AFO was discluded from Site 6 due
to manual alteration of watershed boundaries. Several AFOs were discluded from subwatersheds
of Sites 7 and 8 each. While the cumulative number of AFOs at these sites would be higher
assuming natural watershed boundaries, the cumulative AFO capacity and the IDW predictor
variables are less impacted by the alteration. The percent agricultural land use at sites 6, 7, and 8 is
also decreased. Not only is the overall size of these subwatieeds diminished, the discluded area

is primarily agricultural. It is difficult to interpret the exact impacts of the altered watersheds to

MLR models without comparing the results of MLR models, but the alterations were made to better
reflect the reality of water movement in the agricultural region. By decreasing the values of
agricultural predictor variables in the lower watershed, the impact of agriculture on nutrient

concentrations at the most downstream three monitoring sites could be underestimated

Figure 6 provides a box plot ofthe nutrient parameter datasetfor 2012/2013 and
characterizes the nutrientconcnetrationsfrom upstream to the downstream monitoring site. TKN
and NQ-N concentrations are includedn the figure so that the relative cantribution of each to TN
can be evaluated for different monitoring sites. TKN concentrations increase slightly from upstream
to downstream, and the concentrations remain generallpelow the TN standard. However i& 5,
downstream of Boxelder WWTP and Boxelder Creekas a notabé increase in TKN concentration
compared to other locations. Samples for Site 5 are taken with5©0m of the WWTP discharge,
while monitoring directly below all other WWTPs isgreater than 3.5km and up to9km from the

discharge points. It is difficult with given data to determine if the large TKN concentrations below
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Site 5 are due to an insufficient distance for nutrient attenuation compared to other WWTPs, or a

lower capacity of the BoxeldeMVWTP to reduce nutrient loads.

NGs-N shows a distinct increase in concentrations from upstream to downstreatocations
with increasing influence of human activities. Nitrate concentrations remain generally lower than
the TN standard until Site 7, and both Sites 7 and 8 are at risk of exceeding the TN standard due to
NGs-N alone. TN is the summation of TKN, N®I, and nitrite (NGQ-N), the last beingconsistently
below detectable levels throughout the CLP River. Background levels of TN generally below the
numeric standard; though some measurements were as much as 2 tinggeater than the standard.
TN concentations are consistently greater than the TN standard at monitoring sites beginning with

and downstream of Site 5 (River Mile 36.5).

The largest concentrations of TP are consistently found at monitoring sites below WWTPs
(Sites 5, 6, and 8). Site 3 is @delow Mulberry WWTP, however this WWTP has high standards for
tertiary treatment of nutrients, and the lower concentrations of TP reflect this. Instances of high TP
concentrations are found at every monitoring site including the background location. fiact the
background monitoring site is at risk of exceeding the numeric standard. The 2012/2013 year was
unusual in that a significant fire affected the upper CLP watershed, which may account for the high
background TP concentrations. Looking at mediaroncentrations from the four years of historical
data reveals annual median values at Site 1 that exceed the numeric standard in roughly half of the
measurements. This suggests that the numeric standard for TP may not be appropriate uniformly

to all Colorado watersheds.
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Figure 6: Concentrations of nutrient variables over the 20122013 period along the CLP River for
() TKN; €) NGs-N; (d) TN; and p) TP. Sites arerdered by the river distance to the downstream
confluence with the South Platte RiverOn each box, the central mark is the median, the edges of the
box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not
considered outliers, and ouliers are plotted individually.

Nutrient data at sites without non-detect values were adequately described by a lognormal
distribution. However, the presence of nordetects caused those upstream sites with lower
concentrations of nutrients to lack fit with normal or log-normal distributions at a 95% confidence
level. Removing nordetects from these sets of data resulted in better fit with lognormal
distributions excepting total phosphorous at Sites 3 and 4Rvalue<0.01 and <0.042, respectively)
and nitrate-N at Site 3 P-value<0.01). Overall, thdog-normal distribution is a good fit for TKN,

NG:-N, TN, and TP datasets from the CLP River, therefore this distribution was assumed to
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applicable for all further data analysis. A summary of the results for the distribution tests is

available in AppendixB.

Annual Sampling Size Requirements

The required number of annual samples was calculatasith Equation 10 ata 95%

confidencelevel for each ste and water quality parameterbased on the median andbgnormal

standard deviation of the 2012/2013 sample ses (Table 3). A sensitivity was performed to

examinethe effects of change in the confidence level{L Qh | Oer qQualify numAri®standards

on the sample size requirementsA summary of sample size requirements is presented in Table 3

for five scenarps:

- S1: Existing standard and a 95% confidence

- S2: Existing standard and a 90% confidence

- S3: Existing standard and a 99% confidence

- S4: A 10% decrease in the standard and a 95% confidence

- S5: A 10% increase in the standard and a 95% confidence

Table 3: Annual sampling size requirements from EdLO for each site and nutrient responses using
sample medians and standard deviations computed for the 2032013 datawhere StS5 are the

sensitivity analysis scenarios

2}

O~NO U~ WN PR

TN TP

S1 S2 S3 5S4 S5 S1 S2 S3 S4 S5
2 1 3 2 1 3 2 6 4 3
1 1 2 1 1 2 1 3 2 2
3 2 5 4 2 2 1 3 2 1
7 4 13 10 5 3 2 5 3 2

12 8 25 8 20 3 2 6 2 3

1259 750 2642 65 289 7 4 13 5 10

2 2 4 2 3 68 41 145 14 8e3
1 1 1 1 1 3 2 5 2 3
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Examination of the required annual sampling sizes in conjunction with the beglots of
nutrient concentrations measured during the 2012/2013 (Figure 6) reveal interesting trends.
Generally the required number of annual samples is low (<10) for those sit@gth median
concentrations far from the standard, and high when the median nears the standard. These
sampling size requirements are applicable for the 2012/2013 sampling period only and results can

vary by year.

For any cases where the median is withi20% of the standard, the required number of
samples rapidly increases from several per year to hundreds per yeaFigure 7shows that & the
median converges towards the standard (S/M = 1)the number of required annual samples
approaches infinity. For stes within 20% of the median, changing the standard by +/10% can
alter the number of samples by several orders of magnitude. Conversely, for those sites with
initially low sampling requirements, changing the standard by + 10% changes the required
number of samples by less than threeamples per year This isdemonstratedin Figure 8 where the
sensitivity results of three sites are compared for TP. Sites 1 and 6, which are not within 20% of the
TP median, have only small changes in n due to a decreas the standard of 10%, whereas Site 7
sampling numbers are drastically reduced by decreasing the standard. Overall, of the eight
observed sampling sitesno additional sites would be brought within 20% of the standard with a

10% change of the standard.

The response of n to variation in alpha is more gradual, as is observedHigure 7. The
effects of variation of alpha are not notable until the median concentration is within 20% of the
standard. For those sites within 20% of the standard, reducing thmonfidence level from 95% to
90% reduces the number of required samples by approximately ha{Table 3). However this does
not make the requirements much more attainable for most of these cases. Outside of the 20%

threshold, increasing the confidence level to 99% does not raise the number of samples above a
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realistic level for most sites and nutrient parameters(Table 3). As with the alpha parameter,
standard deviation plays a moresignificant role in the number of required sanples as the median

converges towardsthe standard (Figure @a).

a S/M 09 0 b| ssm 09 00

o. 1-a

Figure 7: Sensitivity of n to ratio of the standard and median and a) standard deviation and b) alpha
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Figure 8: (left) Variation of n for TP with changes in alpha anthe standard at Site 8, and (right)
Variation in n for TP at three sites (1,6, & 7) for the existing standard (solid) and 10% decrease in
the standard (dashed).
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The case was also considered when the number of annual samples is fixed at the current
monthly requirement (12 per year). In this case, alpha can be calculated for tli@own number of
samples from Equation 11lbased on the standard and statistical properties of the nutrient
population. Figure9 demonstrates the increase of alpha (the probability ofletermining that the
median is above the standard when it is not) as the mediarears the standard for TN. e increase

of alpha at the 20% threshold is notable.

— — TN Standard (magi/L) l

0ar |

06} |

50 |
E.

< 04t |

|

02t |

oL ! ' | ] |

Total Mitrogen Median Concentration (mail)

Figure 9: Response of alpha to changes in the median TN concextiton for a fixed number of
samples(n = 12 annual samples); Assuming lgnormal standard deviation of 0.30 mg/L (1.6 mg/L
standard deviation).

MLR Models for Nutrient Concentration Medians

Regression analysefor annual nutrient concentration medianswere performed for the two
sets of data (: 5 sites with flow, 20082013 years 2: 8 sites, 2012/2013 yeaj. The performance of
different predictor variables in MLR regression formedians was consistent between Btasets 1 ad
2, so results are presented jusfor Dataset 1. Annual nutrient concentration medians were

transformed with power functions using a boxcox transformation for the linear regression
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analysis. Individual lambda values for the power transformations are listed in Table Appendix D

summarizes the MLR model results for the mdians from all of the predictor variable combinations.

Significant (p-value< 0.05) and strong & > 0.7) correlations were found between all of the
individual anthropogenic predictor variables and nutrient median concentratons of each response
variable. While the hydrologic parameters were not significant on their ownthe annual mean daily
flow improved the performance of MLR modelsThe preferred regression modek for each nutrient
response havehree predictor variables: IDW WWTP discharge capacity reflectinghe influence of
urban areas,|DW AFO capacity representing the influence of food producatn agricultural, and
annual mean daily flow representing hydrologic influence Using paired anthropogenic predictor
variables limits multicolinearity between predictors. Table4 presents a summary of the prefared
regression modelsfor different nutrient parametersalong with measures of significanceR-statistic

and p-value) and strength of correlations 2).

Table4: MLRmodels for Medians with Point source IDW Capacity Predictors;aQ= annual mean
daily flow, P== P value for the appropriateness of the model,. B P value for Lilly test for normality,
Psr= P value forBrown-Forythe testfor homoscedasticity, VIF = Variable Inflation Factorg= box
cox transformation parameter.

Nutrient Linear Model Rz Adj. Pe I P. Per 1 VIF
R2
TKN -0.88 + 0.11 (IDWAFO capacity) 1 0.79 0.76 3E-7 0.13 0.50 0.07 -0.14 13.33
0.27 (IDW WWTP capacity)
-0.0015 (Quwg)
NGs-N  -2.24 + 0.07 (IDWAFO capacity) 1 0.90 0.89 7E-11 0.11 0.03 0.33 -0.02 13.33
0.98 (IDW WWTP capacity)
-0.0031 (Qwg)
TN  -0.54 + 0.06 (IDWAFO capacity) 1 0.86 0.84 4E-9 -0.06 0.38 0.47 -0.17 13.33
0.48 (IDW WWTP capacity)
-0.0017 (Quo)
TP  -4.29 +1.37 (IDWAFO capacity) 1 0.90 0.88 2E-10 0.23 0.05 0.22 -0.10 13.33
0.13 (IDW WWTP capacity)
-0.0013 (Qug)
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There is strong correlation between WWTP discharge capacity and percent Urban Land Use,

as well as between AFO capacity and percent Agricultural Land Use (Figaf®. So alternatively,

percent urban land use can be paired with the IDW number of AFOs,marcent agricultural land

use can be parried with the IDW number 0WWTPs to achievestrong MLR models (Tables). High

multi correlation exists between percent land use parameters so they should not beedtogether in

a MLR model. Calculating the predicts from the preferred model,IDW WWTP capacity and IDW

AFO capacitycan be difficult and time intensive, so MLR models employing percent land use may

be more practical and produce comparable results to the preferred models.
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Figure 10: Comparison of Point Source and Nepoint source anthropogenic variables. Rvalue for
least squares line between (left) WWTP capacity and % Urban land use and (right) AFO capacity

and % Agricultural land use are 0.85 and 0.96 respectively.

Nitrogen Variables

Multicoli nearity between anthropogenic predictor variables limited the number of valid

MLR models for all of the nutrient parameters. Each MLR model that met the criteria for

multicolinearity produced strong Rz values for the three nitrogen species. The highese Ralues for
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TKN, NG-N, and TN were 0.81, 0.93, 0.89 respieely, and were produced by MLR models with the

predictor.

Table5: MLRmodels for Medians with Point Source Facility predictors and Land Use predictors;

Qag = annual mean daily flow, P= P value for the appropriateness of the nael, R = P value for

Lilly test for normality, Pse= P value forBrown-Forythe testfor homoscedasticity, VIF = Variable
Inflation Factor, <= box-cox transformation parameter.

Nutrient Linear Model R2 Adj. R Pe I P.  Psr VIF 1

-1.20 + 938.47 (#AFO
TKN  IDW)+0.22 (% UrbanLUy 0.81 078 9E8 0.08 050 0.06 8.82 -0.14
0.002 (Quo)
-3.41 + 1817.6 (#AFO
NO»-N IDW)+0.85 (% Urban LUy 0.93  0.92 2E-12 -0.02 0.29 042 8.82 -0.02
0.0022 (Qug)
-1.12 + 984.89 (#AFO
TN  IDW)+0.42 (% Urban LUy 0.89 0.87 4E-10 -020 050 043 8.82 -0.17
0.0013 (Qavg)
-472 + 6056.2 (HAFO IDW)
TP +0.16 (% Urban LU) 090 0.89 1E10 0.19 008 0.22 882 -0.10
0.0008 (Qug)
-0.93 + 0.08 (% Ag LU) +
TKN 821.1 #* WWTP IDW)- 079 077 2E7 014 050 006 11.4 -0.14
0.0014 (Qug)
-2.40 + 0.26 (% Ag LU) +
NO»-N 21514 (# WWTPIDW)- 091 0.89 7E-11 010 0.05 027 11.4 -0.02
0.0031 (Qug)
-0.63 + 0.13 (% Ag LU) +
TN 1208.9 (# WWTP IDW)-  0.86 0.84  4E9 -0.07 0.37 036 11.4 -0.17
0.0017 (Qug)
-4.81 +0.03 (% Ag LU) +
TP 9181.5 (# WWTP IDW)- 091 0.89 6E-11 014 050 042 11.4 -0.10
0.0005 (Qug)

variables: 1) IDW number of CAFO facilities, 2) percent urban land use, and 3) annual mean daily
flow. Figure 11compares the MLR predicted versus observeansformed nutrient mediansfor
theseMLR modek. Amongthe valid MLR models for nitrogen specieghere was only a 0.05
difference betweenthe R value for this model and the lowest performing model.Overall, the MLR
models are not very sensitive to the specific anthropogenic predictor variablesncluding point
source capacities did nogreatly improve model performance. The impact of individual point

source facilities on nitrogen concentrationsn the CLPRiver may be more a function of
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management of those facilities than the capacities. For example Mulberry WWTP in Fort Collins has
spent considerable time and money on improving nutrient treatment and has low effluent
concentrations of TN compared to Boxeler WWTP of similar capacity which has not upgraded.

This can also be the case for AFOs that employ management practices to control the runoff from

their facilities.

Because the MLR models are not very sensitive to the anthropogenic predictor variables,
using percent agricultural land use in place of a point source predictaould be more efficient since
in many cases it can be difficult to compile an accurate list of AFOs. The most suitable model to
meet this need uses three predictor variables: 1) perce agricultural land use, 2) the IDW number
of WWTPs, and 3) annual mean daily flowThe R2 values from these models wer@.79, 0.91, and
0.86for TKN, NQ-N, and TN respectively Figure 11 compares the MLR predicted values for this

model versus observecutrient concentrations.

Inverse distance weighting was important for limiting multicolinearity between
anthropogenic predictor variables. This was particularly true for the WWTP predictor variable.
There were no valid models without inverse distancaeveighting of the WWTP predictor. Also,
normality and homoskedacity of the MLR model residuals was not satisfied without becox
transformation of the median nitrogen concentrations. The impact of begox transformation of the

median concentrations is diplayed in Figure 13.

Including a hydrologic predictor was important for the validity of the MLR models. For all
nitrogen species the annual mean daily flow was the best predictor for this purpose. When paired
with anthropogenic factors, it helps explairthe variation in median concentrations between the five
years of data. Figure 14 displays the impact of including the hydrologic predictor in the MLR model
results for TN. The annual mean daily flow helps distinguish wet hydrologic years from dry

hydrologic years, and is linked to the effect of dilution in nitrogen concentrations.
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Figure 11: Optimal linear regressions for Medians of each nutrient parameter based on #CAFO IDW,
% Urban Land Use, and annual mean daily o Y is the boxcox transformed data (mg/l) based on
optimal <
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Figure 12: Optimal linear regressions for Medians of each nutrient parameter based on %
Agricultural Land Use, #WWTP IDW, and annual mean daily flow; Y is the baxx transformed
annual medians(mg/l) based on optimal <
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Figure 13: The impact of the boxcox transformation on the MLR model for TN (left) transformed
and (right) untransformed.
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Figure 14: Impact of including the hydrologic predictor variable (annual mean daily flow) on the
performance of the MLR model for TN.

The results of linear regressions were compared between datasets using five years of data
and just the 2012/2013 data. The 2012/2013 datast is the most complete; however there would
be little confidence in applying results of regression from this one year to subsequent years. This is
due to variations in hydrologic conditions and the occurrence of a significant fire in the upper CLP
watershed that began just prior to the collection of 2012/2013 samples. Comparison of the
regressions for both datasets found that the optimal combination of anthropogenic factors were

generally consistent for the single year and multiple years.
Total Phosphorous

MLR modelsfor Total Phosphorous annual medians produced highzRalues with
anthropogenic predictors. However, the hydrologic predictor variable (annual mean daily flow)
was not significant in the MLR model and thereforeesulted in TP predid¢ions that do not vary by
year. None of the hydrologic variablesconsidereddescribe the variability of TPmediansbetween
years, however the anthropogenic predictor variables do describe the variability of TP between

sites.
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For TP, the highest Rvaluewas 0.91 produced by the combination of three hydrologic predictors:
1) percent agricultural land use, 2) the IDW number of WWTPs, and 3) annual mean daily flow.
Figure 12 showsthe MLR predicted values for this model versus observed nutrient concentratis.
As with the MLR models for nitrogen species, the model using the IDW number of CAFO facilities,
percent urban land use, and annual mean daily flow also performed well (Figuid). The MLR
models of TP weremore sensitive to the specific agriculturalpredictor variable, but the lowest R

value was still 0.75.

The lack of a predictor to describe TP concentration variability between years is concerning
and suggests that the model is lacking one or more significant parameters. A comprehensive study
of phosphorous constituents in Swedish basins found median concentrations were significantly
correlated with soil type, soil temperature, average summer discharge, and atmospheric deposition
(Arheimer et al., 2000). None of these parameters were consider@dthe regression analysis, but
could provide better models. Inchannel biological and transport processes for TP should be
considered when choosing parameters to add to the models. Below WWTPs phosphorous sorbs to
stream sediments or is taken up by pemyhyton and large scale reductions in TP can be seen within
relatively short distances (a few kms) by these processes (Jarvie et al., 2012). This retained
phosphorous can then be remobilized during storm events. Therefore, includingdparticle
diameter, percent fine material in bed, or chlorophylta concentrations may be useful as predictors.
The bank and bed soil itself can also be a source of phosphorous which was not considered for this
study (Bledsoe et al., 2001). Changes in the channel bank éomsand deposition over time could
account for variation in annual samples. Changes in WWTP management could also account for the
variation of TP concentrations over time, though including a relevant quantitative parameter would
be difficult. Further linear regressions should consider predictive variables that represent

transport processes and seasonal hydrologic variables (flow or precipitation).
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The results of regressions for 5 years of data were compared with the results from
regression with data fromjust 2012/2013. The 2012/2013 dataset is much more robust and
includes 8 sites rather than just 5. Regressions from the 2012/2013 dataset confirm the optimal
anthropogenic predictor variables found in the 5 year dataset. A closer observation of the MLR
model results for 2012/2013 TP suggest that a variable describing the capacity of a WWTP to treat
phosphorous would be significant, and may explain more variability in annual TP medians between

monitoring sites than WWTP capacity.

Overall, the anthropogenigredictor variables used for this analysis produce linear models
with strong R? values and can be used to estimate the TP concentrations at a location on @i
River. However the model lacks any terms that can describe the yearly variability of the madi

concentration, and thus should be used with caution.

MLR Models for Nutrient Concentration Standard Deviations

Due to the confirmedlognormality of the datasetsmultiple linear regressions were
performed for the standard deviations of the logransformed data. Results between @tasets 1 and
2 were not consistent MLR nodels were insignificant -value> 0.05)for Datasetl (5 sites with
flow, 2008-2013 years) for all parameters except N&N. This is likely due to the very low sample
sizes fa some parameters at some siteas well as the high rate of nofdetect values in the sample
sets, excepfor in NOs-N. As a result, the linear regression summaries for staadd deviation focus
on Dataset 2 for which significant (p-value< 0.05) andstrong (R2 > 0.7) modelswere found.
Appendix D summarizes the MLR model results for the lognormal standard deviations from all of

the predictor variable combinations.

Significant and strongcorrelations were found between many individual anthropogenic

predictor variables and nutrient lognormal standard devigion concentrations for Dataset 2 Annual
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precipitation was also consideredas a predictor variable since itvas available for all eight sample
sites. While correlation with annual precipitation was strong for TP,NGs-N, and TN( Rz = 0.63, 0.60,
0.77, respectively )combining this predictor with anthropogenic predictorsdecreasedthe
significanceof MLR modelsand was left out of the final modelsThe bestMLRmodels for each
nutrient response had two prelictor variables: one reflectsthe influence of urban area and
another represents the influence ofagricultural food production. For all for nutrient parameters,
the percent Urban Land Weis the best predictor for the influence of urban areasThe best
predictor for agricultural influences was the IDW number of AFOs for TKN, the AFO capacity for
NGs-N and TN, and the IDW AFO capacity for T®sing paired anthropogenic predictor variables
limits multicolinearity between the predictors. Table6 presentsa summary of the bestMLR
modelsfor different nutrient parameters along with measures of significanceR-statistic and p-

value) and strength of correlations ®2).

Table 6: OptimalMLRmodels for lognormal standard deviations; P= P value for the
appropriateness of the model, P= P value for Lilly test for normality, B-= P value forBrown-
Forythe testfor homoscedasticity, VIF = Variable Inflation Factors<= boxcox transformation

parameter.
Nutrient Linear Model Rz Adj. Pr M P.  Per VIF ]
R2
TKN 0.59 +281.7 (#AFO 0.82 0.74 001 - 0.27 042 571 1.54
IDW) - 0.12 (% 0.10

Urban Land Use)
NGs-N 0.49-3E-6 (AFO 0.73 0.62 0.04

- 050 004 115 1.06
capacity) - 0.015 (% 0.03

Urban LU)
TN 0.57+2E6 (AFO 0.80 0.72 002 - 050 0.12 115 0.7
capacity) - 0.13 (% 0.06

UrbanLand Use)
TP 0.66-0.034(IDW 0.73 0.63 0.04 -
AFO capacity - 89.7 0.24
(% Urban LU)

0.50 0.31 2.37 0.015
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Fewer valid MLRmodels forwere found for lognormal standard deviationascompared to
MLRmodels for the medians. In fact, onlgne modelpassed criteria for TKN, thouglthe R2 value is
strong. For TKN, many of the predictor variables were inadequate for describing the lognormal
standard deviations and resulted in high pvalues (> 0.05)for the test for overall model
appropriatenessand invalidation of MLR models. Invalid MLR models for NN, TN, and TP were
mainly due to lack of normality and homoskedacity in thenodel residuals. Multicolinearity
between anthropogenic predictor variables was reducedincevalues for all eight sites were

included in the models

Nitrogen Variables

Unlike the models of the annual medians, the optimalredictors for lognormal standard
deviation at each site were not consistent for the nitrogen specie$:or TKNthe bestMLRmodel
had and R value of 0.82 andncludesthe IDW number of AFOs angercent urban land use Many
more models are valid for N@-N and TN. The optimal predictor variables for MLR models of N&N
and TN arethe AFO capacityand percent urban land use Figure 15 compares observed versus
predicted results from the optimal MLR models. The MLRodels for the lognormal standard
deviation of nitrogen species vere not very sensitive to thespecific predictor variables and
including capacity in the point source predictors did not substantially improve the modelsit
should also be noted that the lognormal standard deviations were not transformed for the MLR

models.

Total Phosphorous

More MLR models werevalid for TP than for the nitrogen species. The percent urban land
use produced higher Rvaluesthan point source predictors of urban influence Inverse distance
weighting of AFO predictorsproduced more validmodels than norIDW parameters. The optimal
predictor variables for TP arepercent urban land use and IDWAFO capacity Overall the TP models
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are not very sensitive to the specific predictor variables. While the optimalredictors produce an

Rz value of 0.76 the lowest Rvalue produced by the valid models was 0.69.

For all of the nutrient parameters,the valid MLRmodels forlognormal standard deviation
have strong R values that can be used to predict the number of annual sampleA.further review
of the models is necessary with robust datasets from additional years have confidence in
applying the model toother locations. It appears that annual precipitation will bea strong

hydrologic predictor variable for incorporating variability betw een years.
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Figure 15: Optimal linear regressions for lognormal standard deviatiorfy) of each nutrient
parameter.
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CONCLUSIONS

In the Cache La Poudre River, observation of TN and TP reveals a general increase in
median nutrient concentrationsfrom upstream to downstream as anthropogenic influences
increase. The NQ-N component of TN gradually increases downstream and begins to exceed the
numeric standard for TN atmonitoring Site 5 (river mile 36.5). The TKN component of TN remains
generally below the numeric standard for TN except dite 5 below the Boxelder WWTP, where
concentrations often exceed the TN standard. This may be due to limited treatment of nutrients at
the WWTP or inadequate timedr nutrients to attenuate before sampling compared with other
observation sites. Combined, TN begins toxeeed numeric standards at 8e 6 and consistently

exceeds numeric standardsit the most downstreammonitoring location.

The largest concentrationsof TP are consistently found at monitoring sites below WWTPs,
although varying capacities of WWTPs to treaincoming nutrient loads can greatly impact the TP
concentrations at monitoring sites below WWTPsInstances of high TP concentrations are found at
every monitoring site including the background location. And the background monitoring site is at
risk of exceeding the numeric standardwhich suggeststhat the numeric standard for TP may not

be appropriate for every river in Colorado.

The first and seond objectives of this study to explore the variabilityannual nutrient
concentration mediansand lognormal standard deviationsunder varying levelsof upstream
anthropogenic influences on the CLP River was achieved through analysis with multiple linear
regression modeling.The MLR approach was appropriate for predicting median nutrient
concentrations and lognormal standard deviationsn the CLP Watershed Anthropogenic variables
and general hydrologic descriptors were sufficient predictive parameteréor medians and
lognormal standard deviation MLR models for annual medians performed better for Nitrogen

species than TP, however highRalues were achieved for both. Regression models for lognormal
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standard deviation were significant only for the 2012/2013 dataset. This demonstrates that robust

datasets with no nonrtdetect values are necessary to model standard deviations.

When considering the regessions for the annual medians, anthropogenic préctor
variables representing utban and agriculturalinfluencesperformed similarly. The preferred MLR
for all of the nutrient parametersuses inverse distance weighted WWTP and AFO capacities with
annual mean daily discharge as a hydrologic predictor. MLR models that use percent land can
perform equivalently to predict medianconcentrations, thoughurban and agricultural land use
predictors cannot be employed in the same model due to high multicoliearity between thenhittle
value is gained in theMLRmodels by including capacity of point sources irthe predictive variables.
The anthropogenic predictor variables describe the variability of median nutrient concentrations
between monitoring sites. Daily mean flow isanimportant predictor variable for describing

variability of mediansbetween years, althoughit AT AOT 6 0 POl AOAA OECI EEEAAT O

In regard to TP modeling for annual medians, high?Ralues were obtained from
regressions with anthropogenic predictor variables, but a parameter which describes the variability
of medians between yees was not found. This severely limits the applicability of this model.
Accounting for this variability may be possible by including parameters which addressapacities of
various WWTPs to treat incoming TP loads, or the transport anglological processe associated
with TP in surface water. Potential parameters includeank of WWTP treatment capacityseasonal
average flow rates, total suspended sediment concentrations, chloropmdl concentration, the

percent of fine material, and sediment transport rées.

MLRmodels were successful for correlating lognormal standard deviation of nutrient
parameters with anthropogenic predictor variables for the 2012/2013 dataset.Including
capacities of point sources showed little benefit to model performance, hower inverse distance

weighting predictors does reduce multicoliearily between pedictors. Along with anthropogenic
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variables, annual precipitation was significantly correlated with lognormal standard deviation.
Further analysis will likely find hydrologic variables to be significant predictors over many years of
data, although the relationships may not be linear. Results for standard deviation regressions

should be confirmed with more robust datasets.

To meet the third objective of this study astatistical expression was developed to link
annual sampling requirements to meet numeric standards with the median and lognormal standard
deviations of the nutrient populations. This expression was used to estimate the required number
of annual samples at each matoring site to evaluate the median concentration to a 95%
confidence level. The results suggest that in the case where a comprehensive monitoring plan is
being developed for an entire water body, targeted sampling at sites near the standard with limited
sampling elsewhere could optimize monitoring resources while possibly increasing the quality of
the results. Sampling requirementsto meet a 95% confidence levedre lower than the current
regulation requirements for those sites and nutrient parameters wiich have annual median values
greater or less than20% of the standard. Sampling for a 99% confidence level &sofeasible for
these sites.However, if the median concentration is within 20% of the standarghe predicted
number of annual samples i®ften unfeasibly high for grab sampling. Slight variations in the
confidence leves do not affect the annual number of samples at any of the observed sit8snall
variationsin the numeric standard does not greatly affect those sites with initially low samips
numbers, but can change the sample number by several orders of magnitudes for siteat are

within 20% of the standard.

Overall, this study demonstrates the feasibility of describing the linking the statistical
properties of nutrient concentrationson a river based on upstream anthropogenic influences in the
watershed. Through the MLR models, anthropogenic influences describing urban and agricultural

development were found to describe variation of nutrient concentrations between monitoring sites,
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and a general hydrologic descriptor was able to describe the variability of concentrations between
years. In conjunction with the statistical expression for annual number of samples, the MLR models
can be used as a management tool to improve monitoring farater quality parameters. Once the
MLR models are developed for a watershed, they can be applied to improve allocation of
monitoring resources for a region or predict monitoring requirements for additional sampling

locations.
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APPENDIX ASample Test Methods

Table 7: Test methods used by the City of Fort Collins laboratories to analyttee nutrient
parameters of surface water samples from the CLP River.

Nutrient Abbreviation Test Method Fort Collins
Parameter Laboratory
Total TP EPA365.1Rev2.0 Pollution Control Lab
Phosphorus as P
Total Kjeldahl TKN Standard Methods Pollution Control Lab
Nitrogen 4500-Norg D
Total Nitrogen TN Sum of TKN + NitrateN  Pollution Control Lab
+ Nitrite-N
Nitrate-N NGs-N EPA Method 300.0 Water Quality Lab
Nitrite -N: NG:-N EPA Method 300.0 Water Quality Lab
Ortho- oP EPA 300.0 Water Quality Lab

Phosphorus as P
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APPENDIX B: Distribution Analysis Results

Probability plots and the KolmogorovSmirnov test for normality were used to evaluate the
dataset from 2012/2013 for compliance with the lognormal distribution. The procedures were
performed for the full dataset (Figure 16 and 17and Table8) and then again with the nondetect
values removed (Figure 18 and 19 and Table)9 Removal of the nordetect values found better

adherence with the lognormal distribution.
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Figure 17: Lognormal probability plots for Sites PARCH, PFOS, FSPUR, and FERN for each nutrient
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parameter with the full 2012/2013 dataset including non-detect values.
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Table8: The P value reported for the Kolmogoroz8mirnov test for the 2012/2013 dataset that

includesnon-rAAOAAO OAlI OAOS8 6 Al OAO EEGEI ECEOAA EI

Site Name Lognormal (with Non-detects)
TKN TP NGs TN
1 PCAN >0.15 <0.01 >0.15 >0.15
2 PLNC  0.046 <0.01 0.02 <0.01
3 PNAT  0.107 <0.01 <0.01 0.064
4 PBOX >0.15 <0.01 >0.15 >0.15
5 PARCH 0.09 0.08 0.082 0.062
6 PFOS 0.047 0.13 0.13 >0.15
7 FSPUR 0.12 0.05 >0.15 >0.15
8 FERN >0.15 >0.15 <0.01 <0.01
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Figure 18: Lognormal probability plots for Sites PCAN, PLNC, PNABOX and for each nutrient
parameter with the full 2012/2013 dataset discluding any nondetect values.
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