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ABSTRACT 

 
 

MONITORING DESIGN FOR ASSESSING COMPLIANCE WITH NUMERIC NUTRIENT 

STANDARDS FOR RIVERS AND STREAMS USING GEOSPATIAL VARIABLES  

Elevated levels of nutrients in surface waters are among major human and environmental 

health concerns.  Increases in nutrient concentrations in surface waters have been linked to urban 

and agricultural development of watersheds across the United States.  Recent implementation of 

numeric nutrient standards in Colorado has prompted a need for greater understanding of human 

impacts on nutrient levels at different locations within a watershed and for how upstream 

influences affect the monitoring needs of specific locations.  The objectives of this research are (i) to 

explore the variability of annual nutrient concentration medians under varying levels of upstream 

anthropogenic influences, (ii) to explore the variability of the standard deviation of nutrient 

concentrations under varying levels of upstream anthropogenic influences, and (iii) to develop a 

mathematical expression for approximating the number of samples required for estimating 

nutrient medians in the context of compliance with numeric standards.   

This analysis was performed in the Cache La Poudre (CLP) River watershed, which provides 

a gradient of anthropogenic influences ideal for studying water quality impacts.  Multiple linear 

regression (MLR) models were used to explain the relationship of the median and lognormal 

standard deviation of nutrient concentrations in the CLP River, i.e., Total Kjeldahl Nitrogen (TKN), 

nitrate  (NO3-N), total nitrogen (TN), and total phosphorous (TP) to upstream point and non-point 

sources of nutrients and general hydrologic descriptors.  The number of samples required annually 

at monitoring locations is predicted based on an equation for determining sample size using 

relative error of a dataset which accounts for the difference between the median and standard for a 

lognormal population. 
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MLR models for annual medians performed better for TN (R2 = 0.86) than TP (R2 = 0.90) 

despite high coefficients of multiple determination.  Anthropogenic predictor variables, which 

characterize upstream urban and agricultural impacts on nutrient concentrations, were sufficient 

for describing variation of median concentrations between monitoring sites.  A general hydrologic 

predictor was sufficient for characterizing variability of annual medians between years.  The 

preferred MLR for all of the nutrient parameters uses inverse distance weighted WWTP and AFO 

capacities with annual mean daily discharge as a hydrologic predictor.  The percent land use is 

equivalent to nutrient point source parameters (i.e., number of WWTPs and AFOs) for predicting 

median nitrogen concentrations in the watershed, though urban and agricultural land use 

predictors cannot be employed in the same model due to high multicollinearity .  Little value is 

gained in the MLR models by including capacity of point sources in the predictive variables.  For TP, 

a parameter which describes the variability of medians between years was not found, thus limiting 

the applicability of the model. 

The MLR models were less successful for predicting lognormal standard deviation of 

nutrients due to limited datasets.  However, for robust datasets, high R2 values were found for TN 

and TP (0.80 and 0.73, respectively) based on anthropogenic predictors and annual rainfall.  

Overall, the MLR approach was appropriate for predicting median nutrient concentrations and 

lognormal standard deviations in the study watershed.  Anthropogenic variables and general 

hydrologic descriptors were sufficient predictive parameters for the MLR models.   

Results of the application of an expression derived for predicting annual required samples 

indicate that sampling requirements to meet a 95% confidence level are lower than the current 

regulatory monthly sampling requirement. The required number of samples for reporting 

compliance at a 95% confidence level substantially varied among sampling sites depending on the 

difference between annual median of the nutrient of concern and its numeric standard. When the 
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median is within 20% of the standard, the required number of samples rapidly increases from 

several samples per year to hundreds of samples per year.  A comprehensive monitoring plan that 

targets sampling to sites near the standard with limited sampling elsewhere will optimize sampling 

resources and increase confidence level of the results.   
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INTRODUCTION 

The human and ecological impacts of nutrients in surface waters, namely nitrogen (N) and 

phosphorous (P) have been well documented.  The presence of high nitrate levels in drinking water 

has been linked with reproductive problems, methemoglobinemia, and cancer (Townsend et al., 

2003; Bryan, 2013).  Excessive nutrients, particularly phosphorous, have long been linked to 

eutrophication processes in surface water (Correll, 1998; Smith, 1999; U.S. Environmental 

Protection Agency [EPA], 1998; Carpenter et al., 1998).  Eutrophication of surface waters results in 

increased algal biomass and decreased dissolved oxygen concentrations (Carpenter, 1998; Correll, 

1998).  A substantial production of algal biomass can impact the sediment structure of stream beds 

(Sand-Jensen, 1998), and may therefore impact the benthic ecosystem.  This altered system can 

cause a decline of ecosystem biodiversity (Carpenter et al., 1998; Smith, 1999). 

Agricultural and urban activities have been associated with elevated levels of nutrients in 

surface waters above natural background levels nationally (Puckett, 1995; U.S. EPA, 1998; 

Dubrovsky et al., 2010).  Non-point sources of nutrients, such as fertilizer and manure used in 

agriculture and urban areas, are recognized as major sources of excess nutrient inputs in 

watersheds around the world (Puckett, 1995; Carpenter et al., 1998; Scanlon et al., 2007).  Point 

sources of nutrients including waste water treatment plants (WWTPs) and animal feeding 

operations (AFOs) also represent significant sources of nutrients in many watersheds and can 

cause surface water impairment (Welch, 1992; Gollehon et al., 2001; U.S. EPA, 2004). Discerning 

anthropogenic impacts from background nutrient concentrations in most watersheds can present a 

challenge when the watershed does not include a portion without major human influences.  It can 

likewise be difficult to distinguish between multiple anthropogenic nutrient sources where both 

agricultural and urban development influence nutrient levels in the same region. 
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In the United States, numeric nutrient standards have been increasingly adopted to manage 

nutrient impairments in surface water bodies for more than a decade (U.S. EPA, 1998).  While 

regional recommendations for nutrient levels have been available from the U.S. EPA since 2001 

(U.S. EPA, 2001), the State of Colorado has only recently moved to create enforceable numeric 

nutrient regulations for its surface waters.  In 2012, the Colorado Department of Public Health and 

Environment (CDPHE) implemented numeric nutrient limits for surface water in order to improve 

nutrient pollution in surface waters of Colorado (CDPHE, 2012a).  These standards are 

recommended based on designated uses and classification of water bodies.  Surface waters are 

classified by cold or warm water aquatic use. Cold water use supports biota that exist in waters 

with average weekly summer temperatures that do not typically exceed 20 °C, while warm water 

use supports biota that exist in waters that frequently exceed this value.  For cold water rivers and 

streams, the annual median total nitrogen concentration is limited to 1.25mg/l, and the annual 

median total phosphorous concentration is limited to 0.11mg/l (CDPHE, 2012a).  For warm water 

rivers and streams, median concentrations are limited to 2.01 mg/l and 0.17 mg/l for total nitrogen 

and total phosphorous respectively (CDPHE, 2012a).   

The new regulations require wastewater treatment plants (WWTPs) to monitor  total 

nitrogen and total phosphorous levels in their effluent and downstream receiving water bodies 

(CDPHE, 2012a; CDPHE, 2012b). Currently, sampling requirements are monthly for large WWTPs 

with effluent discharge greater than 1 million gallons per day (MGD) and every other month for 

small treatment plants with effluent discharge less than 1 MGD.  The sampling requirements do not 

consider the impacts of nonpoint sources, drainage area characteristics, and other geospatial 

factors that may play a role in the variability of N and P loads at various locations along streams.  As 

a result, the sampling numbers may be inadequate to describe the annual median nutrient 

concentrations at various locations along the river system. 
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In a robust monitoring plan, the sampling frequency should reflect the statistical 

characteristics of the pollutant of concern, which optimizes the number of samples for available 

resources and helps assure statistical confidence in the results (Gilbert, 1987; Ward et al., 1990).  

Because nitrogen and phosphorous populations are a function of upstream influences, the sampling 

frequency should vary depending on the location of a monitoring site on the river.  Many 

monitoring plans applied on a large scale are simplified to ease implementation and data analysis, 

and the newly implemented Colorado nutrient regulations are just one such example (CDPHE, 

2012a).  A statistical evaluation of adequate sampling frequencies may not be feasible state-wide 

for all individual monitoring sites due to limited historical datasets available for comparison, and 

the excessive time and cost required to conduct such an analysis.  Linking upstream influences to 

nutrient parameter population characteristics can allow for optimization of sampling resources by 

minimizing sampling frequencies for a large scale implementation of regulatory requirements. 

Two approaches are currently available to model the nutrient levels of a watershed. Process 

based models compute nutrient levels by simulating the hydrologic and biological processes that 

control the transport and transformation of nutrient responses for given watershed parameters 

(Venohr et al., 2005; Lam, 2012; Aguilera, 2012).  Multiple linear regression models (MLRs) have 

been shown to predict water quality levels in surface water (Arheimer and Lide, 2000; Haggard et 

al., 2003; May et al., 2009; Kang et al., 2010; Spahr, 2010; Aguilera, 2012;).  The relatively simple 

approach of MLR modeling has the advantage of requiring less data for application than physically-

based models, and allows for the characterization of sources of variability in water quality data 

over a region and period of time.  Predictor variables for water quality parameters generally used 

for MLRs include land use, physical watershed properties, hydrologic properties, and soil 

properties.  Presently, point sources of water quality parameters have not been examined in MLR 

modeling, and they could useful due to potential ease of acquiring the data and a lack of colinearity 

between these variables as compared to percent land use.  Multiple linear regression models used 
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by Haggard (2003) to predict sampling requirements for load estimation on the Illinois River 

demonstrated the feasibility of predicting sampling requirements based on anthropogenic and 

watershed characteristics. However, MLR modeling has not been used to direct development of 

monitoring plans for compliance with nutrient concentration standards. 

The overall goal of this study is to develop a procedure for computing minimum sampling 

frequencies to meet nutrient regulations based on upstream influences on monitoring sites in a 

northern Colorado watershed. The objectives are (i) to explore the variability of annual nutrient 

concentration medians under varying levels of upstream anthropogenic influences, (ii) to explore 

the variability of the standard deviation of nutrient concentrations under varying levels of 

upstream anthropogenic influences, and (iii) to develop a mathematical expression for 

approximating the number of samples required for estimating nutrient medians in the context of 

compliance with numeric standards. This methodology may be a useful tool for regulators and 

water users to develop optimal monitoring and management plans based watershed properties 

particularly for western watersheds. 
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METHODOLOGY 

This study was performed in the Cache La Poudre (CLP) River watershed in northern 

Colorado, where a relatively undeveloped region a joins a developed lower watershed with a 

gradient of human impacts.  Due to the diversity of its land use conditions, the CLP system presents 

a unique opportunity to study the relationship between human influences and nutrient 

concentrations, and also to examine the role of sampling frequency in compliance with regulations.  

Water quality variables including total Kjeldahl nitrogen (TKN), nitrate (NO3-N ) nitrogen, total 

nitrogen (TN), and total phosphorous (TP) were monitored on a weekly basis over a one year 

period. These data were augmented with less robust datasets from four previous years to 

characterize variability of nutrient concentrations throughout the watershed under varying 

hydrologic conditions through a multiple linear regression approach.  ArcGIS was used to delineate 

subwatershed boundaries for sampling sites on the CLP River, and upstream anthropogenic 

influences for each site were then defined by these boundaries.  Anthropogenic influences are 

characterized by land use percentage, and the locations and capacities of wastewater treatment 

plants and animal feeding operations. Assuming a lognormal distribution, the required number of 

annual samples is calculated for any given location in the watershed based on the median and 

standard deviation of a nutrient constituent at that location and a known concentration standard.  A 

multiple linear regression approach was used to investigate the correlation between nutrient 

responses and human influences while taking account of annual hydrologic conditions. 
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Study Area 

The Cache La Poudre Watershed is 4892 km2 (1887 mi2) in northeastern Colorado. The 

river headwaters begin in the pristine Rocky Mountains and the river flows approximately 205 km 

(127 mi) before its confluence with the South Platte River in the eastern plains of Colorado (Figure 

1).  The CLP watershed encompasses a largely undeveloped upstream region which allows for 

characterization of background nutrient conditions.  The river enters a mixed land use area 55 

miles from the confluence that is characterized by a gradient of human influences including urban 

development, large and small waste water treatment plants (WWTPs), row crops, grazing land, and 

confined animal feeding operations (AFOs) (Figure 2). This lower portion of the watershed was the 

focus of the study due to extent of both urban and agricultural development.  The CLP River drains 

the urban areas of Fort Collins, Windsor, and Greeley, and a total of 16 waste water treatment 

plants (WWTPs) discharge into the river and its tributaries before its confluence with the South 

Platte River downstream of Greeley.  The lower portion of the watershed is used extensively for 

irrigated agriculture and confined animal feeding operations.  Agriculture accounts for 

approximately 40% of land use in the lower watershed.  With few natural tributaries, irrigation 

ditches and diversion canals extensively alter the natural hydrology of the lower watershed.   
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Figure 1: The study area located in northern Colorado: Cache La Poudre Watershed with sampling 
sites and land use. 

 

Eight sample locations were monitored on the CLP River in the lower watershed.  The sites 

were chosen to target a range of upstream human influences such as urban and agricultural 

development, WWTPs , and AFOs.  All samples were tested for TKN, nitrate-N, TN, and TP.  Of those 

eight locations five had corresponding gage station flow measurements.  Site locations and 

upstream influences are summarized in Table 1. Sampling for this study was performed June 2012 

through April  2013 with weekly sampling at each location except for bi-weekly sampling January 
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2013 through April  2013.  A total of 36 sample trips were taken during the complete 2012 to 2013 

sampling period.  In addition, a less extensive nutrient dataset was available for 2008 through 2012 

and was used to supplement sampling for this study.  A more detailed description of the sampling 

sites is provided in Appendix E. 

Nutrient Data 

Weekly grab samples obtained from the eight monitoring sites for this study were collected 

according to USGS protocol (Lurry  et al., 2004).  Laboratory analysis of the samples including 

preservation and testing was conducted according to U.S. EPA methods and Standard Test Methods 

(STM) for each nutrient parameter.  The respective testing procedures are STM 4500-Norg D for 

TKN, EPA 300.0 for NO3-N and NO2-N, EPA 365.1 Revision 2.0 for TP, and TN is the summation of 

TKN, NO3-N and NO2-N.  The test methods are also summarized in Appendix A. 

 

Table 1: Sampling site descriptions for the study area on the Cache La Poudre River. River miles are 
computed upstream from the confluence of the CLP River with the South Platte River. 

 
Site River 

Mile 
Name Flow 

Data 
Description 

1 54.6 PCAN yes Background site at the Mouth of the Poudre Canyon 

2 43.2 PLNC yes Upstream in Fort Collins, downstream of some 
agricultural drainage 

3 38.0 PNAT  In Fort Collins, downstream of Mulberry WWTP 

4 37.0 PBOX yes In Fort Collins, downstream of stormwater drainage, 
upstream of Drake WWTP 

5 36.5 PARCH  In Fort Collins, downstream of Boxelder WWTP  and 
Boxelder Creek tributary 

6 32.5 PFOS yes Downstream of all Fort Collins stormwater and 
wastewater treatment 

7 14.5 FSPUR  Downstream of agricultural drainage and Windsor 
WWTP 

8 2.2 FERN yes Downstream of agricultural drainage, Greeley 
stormwater, and Greeley WWTP 
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Geospatial Analysis  

Watershed delineation 

For each sampling location the boundary of the corresponding drainage area was delineated 

using the ArcSWAT Watershed Delineator toolbox in ArcGIS version 9.3 (ESRI Inc., Redlands, CA).  

Watershed delineations were conducted using a 1/3 Arc -Second digital elevation model (DEM) 

from National Elevation Dataset (NED of the U.S. Geological Survey (USGS), and a high resolution 

National Hydrography Dataset (NHD) from the USGS which identifies rivers, lakes, streams, canals, 

and irrigation ditches.  The accuracy of the delineation was confirmed by comparison to the NHD 

Watershed Boundary Dataset. 

Further refinement of the subwatershed boundaries was necessary because both the NHD 

Dataset and watershed delineation assume that water drainage follows the natural topography of 

the watershed.  In the agriculturally dominated lower CLP watershed little natural drainage 

remains, and irrigation ditches and diversion canals play a dominant role in water drainage.  

Inaccuracies in the elevation-based watershed delineation were mainly the result of incorrect 

depiction of irrigation ditches and diversion canals in the NHD.  Through comparison with  high 

resolution aerial photographs and field checking, some canals that are connected in the geospatial 

data layers, were found to not in fact be connected and vice versa.  To remedy this situation, the 

subwatershed boundaries were manually altered assuming that 1) on a local scale and where canal 

depiction was correct, NHD watershed boundaries are accurate, 2) all irrigation ditches and 

diversion canals can accept surface water runoff, and 3) drainage of agricultural fields occurs from 

high elevation to lower elevations according to elevations in the DEM.   

The resulting subwatershed boundaries are significantly altered in the agriculturally 

dominated lower CLP Watershed specifically for sites 6, 7, and 8 (Figure 2) and do in fact appear 
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artificial .  The New Cache #2 canal is a primary diversion that provides irrigation water for much of 

the irrigated agriculture in the lower CLP watershed.  The canal runs north of and roughly parallel 

to the CLP River starting just downstream of the city of Fort Collins and converges again with the 

river downstream of the city of Greeley and the most downstream sampling site in this study.  As a 

result of the New Cache #2 canal proximity to the CLP River, many AFOs in the lower watershed 

drain more directly into the canal rather than the river and therefore, did not impact the sampling 

sites for this study. 

WWTP and AFO data 

Locations and capacities of WWTPs and AFOs within each subwatershed were obtained 

from the U.S. EPA Facility Registry System (FRS).  Colorado law does not require permitting for all 

animal feeding operations therefore the locations and areas of cattle feedlots and dairies were 

confirmed or modified via satellite imagery and manually digitized as polygons (Pruden et al., 

2012). The capacities of AFOs in terms of the type and number of cattle were calculated based on 

the density of known AFOs in the CLP Watershed (Storteboom, 2007).  Land use percentage was 

summarized with 2001 National Land Cover Data Set from the USGS, where urban land use was 

defined as the combination of low and high intensity residential and 

commercial/industrial/transportation land use categories.  Agricultural land use was defined as 

row crop and pasture/hay categories.   
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Figure 2: Drainage area boundaries for the eight sampling sites, with WWTP and AFO capacities. 

 

Anthropogenic predictor variables 

AFOs, WWTPs, and land use for each subwatershed were summarized with ArcGIS version 

9.3 (ESRI, Inc., Redlands, CA) into predictor variables for use in multiple linear regression models.  

Figure 2 shows the locations of AFOs and WWTPs in CLP subwatersheds. Ten anthropogenic 

predictor variables were considered in the regression analysis and for the purposes of this study 

they are described as either non-point source or point sources of nutrients (Table 2).  Percent land 

use is considered non-point sources of nutrients. AFO and WWTP facilities are considered point 

sources of nutrients and were summarized into the number of facilities, the capacity of the facilities, 
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and the inverse distance (along the elevation contour and stream) weighted number of facilities 

and capacity of facilities.  Including both the number of facilities and capacity of facilities allows 

evaluation of data significance for characterizing annual nutrient concentration statistics.  

Weighting the capacities of the point sources using the inverse distance from each facility to the 

sampling location on the river along the elevation contour and stream path facilitate evaluation of 

the role of flow pathways in the analysis.  Total distances are the sum of the overland distance to 

the nearest tributary (creek, irrigation ditch, or diversion canal), the distance of the tributary to the 

CLP River, and the distance in the CLP River to downstream sampling sites.  Overland distance and 

tributary path were determined using terrain analysis in the ArcHydro toolbox in ArcGIS (Pruden et 

al., 2012).     

Hydrologic predictor variables 

General hydrologic parameters were included as predictor variables for those five sites with 

corresponding flow data.  Annual mean daily flow and the annual maximum daily flow were 

collected from USGS and Colorado Division of Water Resources (CDWR) surface water data 

resources, and annual precipitation for each site was summarized from CDWR precipitation data.  

Statistical Data Analysis  

Fitting statistical distribution 

Identification of a proper statistical distribution to describe nutrient concentrations was a 

key consideration in deriving the required number of samples for each response variables at each 

sampling site and also establishing the relation between anthropogenic influences and nutrient 

responses. Probability plots and the KolmogorovɀSmirnov test for normality were used to analyze 

the 2012/2013 for fit with normal and lognormal distributions.   
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Table 2: Summary of predictor variables used in multiple linear regression models. 
 

Variable Type Units 

# AFOs Point Sources/Facilities ( # ) 
# WWTPs Point Sources/Facilities ( # ) 
#AFOs IDW Point Sources/Facilities ( #/km )  
#WWTPs IDW Point Sources/Facilities ( #/km )  
# Livestock Point Sources/Facilities ( # cattle ) 
Flow Capacity Point Sources/Facilities ( MGD ) 
# Livestock IDW Point Sources/Facilities ( # cattle/km )  
Flow Capacity IDW Point Sources/Facilities ( MGD/m ) 
% Agriculture Land Use Land Use ( % ) 
% Urban Land Use Land Use ( % ) 
Annual Mean Daily Flow Hydrologic ( cfs ) 
Annual Maximum Daily Flow Hydrologic ( cfs ) 
Annual Precipitation Hydrologic ( in ) 

 

Basic Statistics 

Sample median and lognormal standard deviation was calculated for each sampling site and 

nutrient parameter, for each of the five years of data.  A limited number of data points are present 

in some historical datasets (2008-2011) and are concentrated in the April through September 

timeframe.  For this study, it was assumed that the limited sample sets adequately describe the 

sample median and lognormal standard deviation of the annual concentrations.  The regression on 

order statistics (ROS) technique was employed to estimate median and lognormal standard 

deviations of datasets with non-detect values (Helsel, 2005a), except for those with >60% non-

detect values.  Greater than 60% non-detect values occurred for TKN in 2008-2011 at upstream 

locations, and for this situation non-detect values were estimated as the detection limit included in 

the dataset for estimation of median and lognormal standard deviation. The ROS approach is a 

statistical imputation method that employs probability plots to fill in missing data.  This technique 

was performed in the R statistical software environment using the NADA package based on 

techniques described in Helsel (2005b).   
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Test for Number of Samples 

Appraisal of compliance with ambient nutrient standards in Colorado is based on the annual 

median nutrient concentration estimated from instantaneous grab samples taken from receiving 

water bodies downstream of wastewater treatment facilities (CDPHE, 2012a), where for large 

facilities (effluent discharge greater than 1 MGD) 12 annual samples are required and for small 

facilities (effluent discharge less than 1 MGD) 6 samples are required (CDPHE, 2012a). However, 

the number of annual samples required to accurately estimate the true annual median of nutrient 

populations at a stream location may vary significantly dependent upon the inherent and human-

influenced variability of the nutrient of concern and the nearness of the median of the nutrient 

concentration to the numeric standard.  For example, if the median concentration at a location far 

exceeds the standard and has a large standard deviation that does not encompasses the standard, a 

minimal number of samples may be required.  On the other hand, if the median is close to the 

standard and the variability is large, more samples are necessary.  In fact, as the median 

concentration approaches the standard, the number of samples required approaches infinity.   

To determine the required number of annual samples the nutrient parameter (x) is 

assumed to be lognormally distributed, such that y = log(x) is normal and y is described by mean 

(µy) and standard deviation (̀ y) parameters. Figure 3 shows the idealized probability density 

function of y.   

 ὖώ ὃ  ρ Ὂ ὃ Eq. 1 

where Fļ(A) is the cumulative distribution of A.  The probability that mean of y is greater than the 

log transformed standard (A) should be less than the desired alpha. 
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Figure 3: Probability density function for y, log-transformed nutrient concentration data set. 
The probability that mean of y is greater than the log transformed standard (A) is given in  

Equation 1. 
 

 ρ Ὂ ὃ  Eq. 2 

so, 

 Ὂ ὃ ρ  Eq. 3 

Given that the cumulative distribution of A is: 

 
Ὂ ὃ ɮ

ὃ ‘

„ Ѝὲϳ
 

Eq. 4 

 

wÈÅÒÅ ɮ ÉÓ ÔÈÅ ÎÏÒÍÁÌ ÃÕÍÕÌÁÔÉÖÅ ÄÉÓÔÒÉÂÕÔÉÏÎ ÆÕÎÃÔÉÏÎ ɉ#$&ɊȢ %ÑÕÁÔÉÏÎ σ ÔÈÅÎ ÂÅÃÏÍÅÓȡ 
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ρ  

Eq. 5 

 

The equation can be rearranged to solve for the annual number of samples, n: 
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ɮ ɮ

ὃ ‘

„ Ѝὲϳ
ɮ ρ  Eq. 6 

and, 

 ὃ ‘

„ Ѝὲϳ
ὤ  Eq. 7 

where Z is the standard normal deviate calculated as the inverse of standard normal distribution 

non-exceedance probability. 
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Eq. 8 

Thus the number of annual samples is described by Equation 9. 

 
ὲ

ὤ „

ὃ ‘
 Eq. 9 

The term (A - µy) can also be written as the log of the ratio between the standard (S) and the median 

of x (M), assuming that the median of the original data and µy are equivalent.   

 
ὲ

ὤ „
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Eq. 10 

Equation 9 can be rearranged to solve for alpha given that the median concentration is less than the 

standard.  In this case alpha represents the probability of determining that the median nutrient 

concentration is greater than the standard, when it is actually less.  For this analysis the value of 1-ɻ 

is termed the confidence level. 

 
 ρ

ὃ ‘ Ѝὲ

„
 

Eq. 11 

Multiple Linear Regression 

Median and lognormal standard deviations of nutrient parameters were modeled using 

multiple linear regression models (MLR) based on anthropogenic and hydrologic predictor 

variables.   
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ώ ὪὡὡὝὖȟὃὊὕȟὗ  Eq. 12 

Regression analysis was performed using the regress function in Matlab v7.10 (R2010a) 

computational environment (MathWorks Inc., 2010).  Median nutrient values were transformed by 

box-cox transformation, which identifies the most appropriate transformation of the response 

variable (y) to correct skewness of residuals, inequality of residuals, and nonlinearity of the 

regression (Kutner et al., 2005): 

 

ώ‗
ὧ ρ

‗
Ƞ‗ π

ÌÏÇὧȠ‗ π

  Eq. 13 

 
where c represents measured nutrient concentrations ÉÎ ÍÇȾÌ ÁÎÄ ÌÁÍÂÄÁ ɉʇɊ ÉÓ ÔÈÅ ÂÏØ-cox 

transformation constant. The box-cox procedure chooses the ʇ ÐÁÒÁÍÅÔÅÒ ÆÏÒ ÅÁÃÈ ÎÕÔÒÉÅÎÔ that 

maximizes the Log-Likelihood Function. 

Due to the limited availability of flow data for all sites, regression analysis was performed 

for two sets of data: (1) five years of data from 2008 ɀ 2013 for the five sites with  daily flow data; 

and (2) one year of data from 2012/2013 for all eight sampling sites without flow as a predictor 

variable.  MLR was performed for Dataset 1 with and without hydrologic predictors, to allow for 

comparison with Dataset 2.  An exhaustive paring of anthropogenic and hydrologic parameters was 

used to build competing MLR models for each nutrient parameter.  The Akaike Information 

Criteri on (AIC) and Bayesian Information Criterion (BIC) were used to select the best MLR model 

for each variable (Kutner et al., 2005).   

Diagnostic statistical tests were performed to appraise the appropriateness of assumptions 

in building the MLR models. Overall significance of the regression models was evaluated using the 

lack of fit F-test based on a 0.05 significance level. Both the coefficient of multiple determination 

(R2) and adjusted coefficient of multiple determination (Adj R2) were employed to compare the 

strength of different MLR models. The normality of the error terms was examined with the Shapiro-
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Wilk test and Lilly test. The Brown-Forythe test was used to evaluate the constancy of the error 

variance (i.e., homoscedasticity).  Randomness in the error terms was tested with the Durbin-

Watson test. And the variance inflation factor (VIF) was used to identify multicolinearity in the 

matrix of predictor variables for each MLR model.  Individually, predictor variables should have a 

VIF value near 1 and collectively the VIF values of all model predictors should be less than 10. 

Multicolinearity w as limited by employing one each agricultural, urban, and hydrologic parameter 

in the predictor variable matrix.  

A summary of the all the median and lognormal standard deviation values as well as the 

anthropogenic and hydrologic predictor variables used for the regression analysis are presented in 

Appendix C.
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RESULTS & DISCUSSION 

Nutrient concentrations were found to generally increase downstream as anthropogenic 

impacts increase.  TN and TP concentrations begin to consistently exceed the numeric standards at 

Site 5.  TKN, NO3-N, TN, and TP were found to fit a lognormal distribution when non-detect values 

were accounted for.  Calculation of the required number of annual samples for the eight sites 

revealed that generally sampling needs are lower than the current monthly requirements, however 

when the median is within 20% of the standard the required number of samples increases rapidly.  

MLR modeling to predict median and lognormal standard deviations of nutrient parameters based 

on anthropogenic predictor variables and a hydrologic predictor were significant and strong.  

Inverse distance weighting of anthropogenic predictor variables limited multicollinearity  between 

anthropogenic predictors.  Among valid models, different  anthropogenic predictors describing 

urban and agricultural impacts performed similarly in the models.  

Nutrient Concentration along a Gradient of Anthropogenic Impacts  

The anthropogenic non-point and point source predictors generally increase from upstream 

to downstream.  Figure 4 shows the cumulative increase of the number of WWTP and AFO facilities 

along the CLP River moving towards the confluence with the South Platte River.  Inverse distance 

weighting of the number of facilities and capacities of the facilities causes the parameters to not 

cumulatively increase downstream (Figure 4).  This same pattern is shown for AFO and WWTP 

capacities in Figure 5.  Despite that at some locations the urban or agricultural predictor values 

decreases downstream, there is still a general upward trend of influences downstream.  Inverse 

distance weighting decreases the effect of multicolinearity between anthropogenic factors, which 

exists due to the cumulative nature of the anthropogenic predictors downstream. 
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Figure 4: (A) The number of AFOs and corresponding inverse distance weighted (IDW) number of 
AFO facilities and (B) number of WWTPs and corresponding IDW number of WWTP facilities for 

each monitoring site. 
 

 

  Figure 5: (A) The AFO capacities in number of animals and corresponding inverse distance 
weighted (IDW) capacities; and (B) WWTP capacities in million gallons per day (MGD) and 

corresponding IDW capacities for each monitoring site from downstream to upstream. 
 

Manually altering the subwatershed boundaries in the agriculturally dominated lower region of the 

study watershed has the effect of decreasing the AFOs and the percent agricultural land use that 

B A 

A B 
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contribute to the most downstream three monitoring sites (6, 7, and 8).  There is no alteration of  

subwatershed boundaries at the upper five sites and the predictors related to WWTPs are not 

affected at any of the eight  monitoring sites.  All of the AFOs discluded from subwatersheds have 

capacities less than 6000 cattle.  In comparison the cumulative AFO capacities for subwatersheds 6, 

7, and 8 are 42,000, 63,000, and 95,000 cattle respectively.  One AFO was discluded from Site 6 due 

to manual alteration of watershed boundaries.  Several AFOs were discluded from subwatersheds 

of Sites 7 and 8 each.  While the cumulative number of AFOs at these sites would be higher 

assuming natural watershed boundaries, the cumulative AFO capacity and the IDW predictor 

variables are less impacted by the alteration.  The percent agricultural land use at sites 6, 7, and 8 is 

also decreased.  Not only is the overall size of these subwatersheds diminished, the discluded area 

is primarily agricultural.  It is difficult to interpret the exact impacts of the altered watersheds to 

MLR models without comparing the results of MLR models, but the alterations were made to better 

reflect the reality of water movement in the agricultural region.  By decreasing the values of 

agricultural predictor variables in the lower watershed, the impact of agriculture on nutrient 

concentrations at the most downstream three monitoring sites could be underestimated.   

Figure 6 provides a box plot of the nutrient parameter dataset for 2012/2013 and 

characterizes the nutrient concnetrations from upstream to the downstream monitoring site.  TKN 

and NO3-N concentrations are included in the figure so that the relative contribution of each to TN 

can be evaluated for different monitoring sites. TKN concentrations increase slightly from upstream 

to downstream, and the concentrations remain generally below the TN standard. However Site 5, 

downstream of Boxelder WWTP and Boxelder Creek, has a notable increase in TKN concentration 

compared to other locations.  Samples for Site 5 are taken within 500m of the WWTP discharge, 

while monitoring directly below all other WWTPs is greater than 3.5km and up to 9km from the 

discharge points.  It is difficult with given data to determine if the large TKN concentrations below 
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Site 5 are due to an insufficient distance for nutrient attenuation compared to other WWTPs, or a 

lower capacity of the Boxelder WWTP to reduce nutrient loads. 

NO3-N shows a distinct increase in concentrations from upstream to downstream locations 

with increasing influence of human activities.  Nitrate concentrations remain generally lower than 

the TN standard until Site 7, and both Sites 7 and 8 are at risk of exceeding the TN standard due to 

NO3-N alone.  TN is the summation of TKN, NO3-N, and nitrite (NO2-N), the last being consistently 

below detectable levels throughout the CLP River. Background levels of TN are generally below the 

numeric standard; though some measurements were as much as 2 times greater than the standard.  

TN concentrations are consistently greater than the TN standard at monitoring sites beginning with 

and downstream of Site 5 (River Mile 36.5). 

The largest concentrations of TP are consistently found at monitoring sites below WWTPs 

(Sites 5, 6, and 8).  Site 3 is also below Mulberry WWTP, however this WWTP has high standards for 

tertiary treatment of nutrients, and the lower concentrations of TP reflect this.  Instances of high TP 

concentrations are found at every monitoring site including the background location.  In fact the 

background monitoring site is at risk of exceeding the numeric standard.  The 2012/2013 year was 

unusual in that a significant fire affected the upper CLP watershed, which may account for the high 

background TP concentrations.  Looking at median concentrations from the four years of historical 

data reveals annual median values at Site 1 that exceed the numeric standard in roughly half of the 

measurements.  This suggests that the numeric standard for TP may not be appropriate uniformly 

to all Colorado watersheds. 
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Figure 6: Concentrations of nutrient variables over the 2012-2013 period along the CLP River for 
(a) TKN; (c) NO3-N; (d) TN; and (b) TP. Sites are ordered by the river distance to the downstream 

confluence with the South Platte River. On each box, the central mark is the median, the edges of the 
box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not 

considered outliers, and outliers are plotted individually. 
 

Nutrient data at sites without non-detect values were adequately described by a lognormal 

distribution.  However, the presence of non-detects caused those upstream sites with lower 

concentrations of nutrients to lack fit with normal or log-normal distributions at a 95% confidence 

level.  Removing non-detects from these sets of data resulted in better fit with lognormal 

distributions excepting total phosphorous at Sites 3 and 4 (P-value <0.01 and <0.042, respectively) 

and nitrate-N at Site 3 (P-value <0.01).  Overall, the log-normal distribution is a good fit for TKN, 

NO3-N, TN, and TP datasets from the CLP River, therefore this distribution was assumed to 
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applicable for all further data analysis. A summary of the results for the distribution tests is 

available in Appendix B. 

Annual Sampling Size Requirements  

The required number of annual samples was calculated with Equation 10 at a 95% 

confidence level for each site and water quality parameter based on the median and lognormal 

standard deviation of the 2012/2013 sample sets (Table 3).  A sensitivity was performed to 

examine the effects of change in the confidence level (1-ɻɊȟ ÏÒ ÔÈÅ ×ÁÔer quality numeric standards 

on the sample size requirements. A summary of sample size requirements is presented in Table 3 

for five scenarios: 

- S1: Existing standard and a 95% confidence 

- S2: Existing standard and a 90% confidence 

- S3: Existing standard and a 99% confidence 

- S4: A 10% decrease in the standard and a 95% confidence 

- S5: A 10% increase in the standard and a 95% confidence 

 

Table 3: Annual sampling size requirements from Eq. 10 for each site and nutrient responses using 
sample medians and standard deviations computed for the 2012-2013 data where S1-S5 are the 

sensitivity analysis scenarios. 
  

Site 
# 

 TN  TP 
 S1 S2 S3 S4 S5  S1 S2 S3 S4 S5 

1  2 1 3 2 1  3 2 6 4 3 
2  1 1 2 1 1  2 1 3 2 2 
3  3 2 5 4 2  2 1 3 2 1 
4  7 4 13 10 5  3 2 5 3 2 
5  12 8 25 8 20  3 2 6 2 3 
6  1259 750 2642 65 289  7 4 13 5 10 
7  2 2 4 2 3  68 41 145 14 8e3 
8  1 1 1 1 1  3 2 5 2 3 
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Examination of the required annual sampling sizes in conjunction with the box-plots of 

nutrient concentrations measured during the 2012/2013 (Figure 6) reveal interesting trends. 

Generally the required number of annual samples is low (<10) for those sites with median 

concentrations far from the standard, and high when the median nears the standard.  These 

sampling size requirements are applicable for the 2012/2013 sampling period only and results can 

vary by year.   

For any cases where the median is within 20% of the standard, the required number of 

samples rapidly increases from several per year to hundreds per year.  Figure 7 shows that as the 

median converges towards the standard (S/M = 1), the number of required annual samples 

approaches infinity. For sites within 20% of the median, changing the standard by +/- 10% can 

alter the number of samples by several orders of magnitude.  Conversely, for those sites with 

initially low sampling requirements, changing the standard by +/- 10% changes the required 

number of samples by less than three samples per year.  This is demonstrated in Figure 8 where the 

sensitivity results of three sites are compared for TP.  Sites 1 and 6, which are not within 20% of the 

TP median, have only small changes in n due to a decrease in the standard of 10%, whereas Site 7 

sampling numbers are drastically reduced by decreasing the standard. Overall, of the eight 

observed sampling sites, no additional sites would be brought within 20% of the standard with a 

10% change of the standard. 

The response of n to variation in alpha is more gradual, as is observed in Figure 7b.  The 

effects of variation of alpha are not notable until the median concentration is within 20% of the 

standard.  For those sites within 20% of the standard, reducing the confidence level from 95% to 

90% reduces the number of required samples by approximately half (Table 3).  However this does 

not make the requirements much more attainable for most of these cases.  Outside of the 20% 

threshold, increasing the confidence level to 99% does not raise the number of samples above a 
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realistic level for most sites and nutrient parameters (Table 3).  As with the alpha parameter, 

standard deviation plays a more significant role in the number of required samples as the median 

converges towards the standard (Figure 7a).   

 

 

Figure 7: Sensitivity of n to ratio of the standard and median and a) standard deviation and b) alpha 
 

 

Figure 8: (left) Variation of n for TP with changes in alpha and the standard at Site 8, and (right) 
Variation in n for TP at three sites (1,6, & 7) for the existing standard (solid) and 10% decrease in 

the standard (dashed). 

a b 
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The case was also considered when the number of annual samples is fixed at the current 

monthly requirement (12 per year).  In this case, alpha can be calculated for the known number of 

samples from Equation 11 based on the standard and statistical properties of the nutrient 

population.  Figure 9 demonstrates the increase of alpha (the probability of determining that the 

median is above the standard when it is not) as the median nears the standard for TN.  The increase 

of alpha at the 20% threshold is notable. 

 

 

Figure 9: Response of alpha to changes in the median TN concentration for a fixed number of 
samples (n = 12 annual samples); Assuming a lognormal standard deviation of 0.30 mg/L (1.6 mg/L 

standard deviation). 
 

MLR Models for Nutrient Concentration  Medians 

Regression analyses for annual nutrient concentration medians were performed for the two 

sets of data (1: 5 sites with flow, 2008-2013 years; 2: 8 sites, 2012/2013 year).  The performance of 

different predictor variables in MLR regression for medians was consistent between Datasets 1 and 

2, so results are presented just for Dataset 1.  Annual nutrient concentration medians were 

transformed with power functions using a box-cox transformation for the linear regression 
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analysis.  Individual lambda values for the power transformations are listed in Table 4.  Appendix D 

summarizes the MLR model results for the medians from all of the predictor variable combinations. 

Significant (p-value < 0.05) and strong (R2 > 0.7) correlations were found between all of the 

individual anthropogenic predictor variables and nutrient median concentrations of each response 

variable.  While the hydrologic parameters were not significant on their own, the annual mean daily 

flow improved the performance of MLR models.  The preferred regression models for each nutrient 

response have three predictor variables: IDW WWTP discharge capacity reflecting the influence of 

urban areas, IDW AFO capacity representing the influence of food production agricultural, and 

annual mean daily flow representing hydrologic influence.  Using paired anthropogenic predictor 

variables limits multicolinearity between predictors.  Table 4 presents a summary of the preferred 

regression models for different nutrient  parameters along with measures of significance (F-statistic 

and p-value) and strength of correlations (R2). 

 

Table 4: MLR models for Medians with Point source IDW Capacity Predictors; Qavg = annual mean 
daily flow, PF = P value for the appropriateness of the model, PL = P value for Lilly test for normality, 
PBF = P value for Brown-Forythe test for homoscedasticity, VIF = Variable Inflation Factor, ˂ = box-

cox transformation parameter. 
 

Nutrient  Linear Model R2 Adj. 
R2 

PF ɪ PL PBF ʇ VIF 

TKN -0.88 + 0.11 (IDW AFO capacity) + 
0.27 (IDW WWTP capacity) 

- 0.0015 (Qavg) 

0.79 0.76 3E-7 0.13 0.50 0.07 -0.14 13.33 

NO3-N -2.24 + 0.07 (IDW AFO capacity) + 
0.98 (IDW WWTP capacity) 

- 0.0031 (Qavg) 

0.90 0.89 7E-11 0.11 0.03 0.33 -0.02 13.33 

TN -0.54 + 0.06 (IDW AFO capacity) + 
0.48 (IDW WWTP capacity) 

- 0.0017 (Qavg) 

0.86 0.84 4E-9 -0.06 0.38 0.47 -0.17 13.33 

TP -4.29 + 1.37 (IDW AFO capacity) + 
0.13 (IDW WWTP capacity) 

- 0.0013 (Qavg) 

0.90 0.88 2E-10 0.23 0.05 0.22 -0.10 13.33 



29 
 

There is strong correlation between WWTP discharge capacity and percent Urban Land Use, 

as well as between AFO capacity and percent Agricultural Land Use (Figure 10).  So alternatively, 

percent urban land use can be paired with the IDW number of AFOs, or percent agricultural land 

use can be parried with the IDW number of WWTPs to achieve strong MLR models (Table 5). High 

multi correlation exists between percent land use parameters so they should not be used together in 

a MLR model.  Calculating the predictors from the preferred model, IDW WWTP capacity and IDW 

AFO capacity, can be difficult and time intensive, so MLR models employing percent land use may 

be more practical and produce comparable results to the preferred models. 

 

 

Figure 10: Comparison of Point Source and Non-point source anthropogenic variables. R2 value for 
least squares line between (left) WWTP capacity and % Urban land use and (right) AFO capacity 

and % Agricultural land use are 0.85 and 0.96 respectively.   
 

Nitrogen Variables 

Multicoli nearity between anthropogenic predictor variables limited the number of valid 

MLR models for all of the nutrient parameters.  Each MLR model that met the criteria for 

multicolinearity produced strong R2 values for the three nitrogen species.  The highest R2 values for 
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TKN, NO3-N, and TN were 0.81, 0.93, 0.89 respectively, and were produced by MLR models with the 

predictor . 

Table 5: MLR models for Medians with Point Source Facility predictors and Land Use predictors; 
Qavg = annual mean daily flow, PF = P value for the appropriateness of the model, PL = P value for 
Lilly test for normality, PBF = P value for Brown-Forythe test for homoscedasticity, VIF = Variable 

Inflation Factor, ˂  = box-cox transformation parameter. 
 

Nutrient  Linear Model R2 Adj. R2 PF ɪ PL PBF VIF ʇ 

TKN 
 -1.20 + 938.47 (#AFO 

IDW) + 0.22 (% Urban LU) - 
0.002 (Qavg) 

0.81 0.78 9E-8 0.08 0.50 0.06 8.82 -0.14 

NO3-N 
 -3.41 + 1817.6 (#AFO 

IDW) + 0.85 (% Urban LU) - 
0.0022 (Qavg) 

0.93 0.92 2E-12 -0.02 0.29 0.42 8.82 -0.02 

TN 
 -1.12 + 984.89 (#AFO 

IDW) + 0.42 (% Urban LU) - 
0.0013 (Qavg) 

0.89 0.87 4E-10 -0.20 0.50 0.43 8.82 -0.17 

TP 
 -472 + 6056.2 (#AFO IDW) 

+ 0.16 (% Urban LU) - 
0.0008 (Qavg) 

0.90 0.89 1E-10 0.19 0.08 0.22 8.82 -0.10 

TKN 
 -0.93 + 0.08 (% Ag LU) + 
821.1 (# WWTP IDW) -

0.0014 (Qavg) 
0.79 0.77 2E-7 0.14 0.50 0.06 11.4 -0.14 

NO3-N 
 -2.40 + 0.26 (% Ag LU) + 
2151.4 (# WWTP IDW) - 

0.0031 (Qavg) 
0.91 0.89 7E-11 0.10 0.05 0.27 11.4 -0.02 

TN 
 -0.63 + 0.13 (% Ag LU) + 
1208.9 (# WWTP IDW) - 

0.0017 (Qavg) 
0.86 0.84 4E-9 -0.07 0.37 0.36 11.4 -0.17 

TP 
 -4.81 + 0.03 (% Ag LU) + 
9181.5 (# WWTP IDW) - 

0.0005 (Qavg) 
0.91 0.89 6E-11 0.14 0.50 0.42 11.4 -0.10 

 

variables: 1) IDW number of CAFO facilities, 2) percent urban land use, and 3) annual mean daily 

flow.  Figure 11 compares the MLR predicted versus observed transformed nutrient medians for 

these MLR models.  Among the valid MLR models for nitrogen species, there was only a 0.05 

difference between the R2 value for this model and the lowest performing model.  Overall, the MLR 

models are not very sensitive to the specific anthropogenic predictor variables.  Including point 

source capacities did not greatly improve model performance.  The impact of individual point 

source facilities on nitrogen concentrations in the CLP River may be more a function of 
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management of those facilities than the capacities.  For example Mulberry WWTP in Fort Collins has 

spent considerable time and money on improving nutrient treatment and has low effluent 

concentrations of TN compared to Boxelder WWTP of similar capacity which has not upgraded.  

This can also be the case for AFOs that employ management practices to control the runoff from 

their facilities. 

Because the MLR models are not very sensitive to the anthropogenic predictor variables, 

using percent agricultural land use in place of a point source predictor could be more efficient since 

in many cases it can be difficult to compile an accurate list of AFOs.  The most suitable model to 

meet this need uses three predictor variables: 1) percent agricultural land use, 2) the IDW number 

of WWTPs, and 3) annual mean daily flow.  The R2 values from these models were 0.79, 0.91, and 

0.86 for TKN, NO3-N, and TN respectively.  Figure 11 compares the MLR predicted values for this 

model versus observed nutrient concentrations.   

Inverse distance weighting was important for limiting multicolinearity between 

anthropogenic predictor variables.  This was particularly true for the WWTP predictor variable.  

There were no valid models without inverse distance weighting of the WWTP predictor.  Also, 

normality and homoskedacity of the MLR model residuals was not satisfied without box-cox 

transformation of the median nitrogen concentrations.  The impact of box-cox transformation of the 

median concentrations is displayed in Figure 13. 

Including a hydrologic predictor was important for the validity of the MLR models.  For all 

nitrogen species the annual mean daily flow was the best predictor for this purpose.  When paired 

with anthropogenic factors, it helps explain the variation in median concentrations between the five 

years of data.  Figure 14 displays the impact of including the hydrologic predictor in the MLR model 

results for TN.  The annual mean daily flow helps distinguish wet hydrologic years from dry 

hydrologic years, and is linked to the effect of dilution in nitrogen concentrations.   
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Figure 11: Optimal linear regressions for Medians of each nutrient parameter based on #CAFO IDW, 
% Urban Land Use, and annual mean daily flow; Y is the box-cox transformed data (mg/l) based on 

optimal .˂ 
 



33 
 

 

Figure 12: Optimal linear regressions for Medians of each nutrient parameter based on % 
Agricultural Land Use, #WWTP IDW, and annual mean daily flow; Y is the box-cox transformed 

annual medians (mg/l) based on optimal ˂ . 
 

 

Figure 13: The impact of the box-cox transformation on the MLR model for TN (left) transformed 
and (right) untransformed. 
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Figure 14: Impact of including the hydrologic predictor variable (annual mean daily flow) on the 
performance of the MLR model for TN. 

 

The results of linear regressions were compared between datasets using five years of data 

and just the 2012/2013 data.  The 2012/2013 dataset is the most complete; however there would 

be little confidence in applying results of regression from this one year to subsequent years.  This is 

due to variations in hydrologic conditions and the occurrence of a significant fire in the upper CLP 

watershed that began just prior to the collection of 2012/2013 samples.  Comparison of the 

regressions for both datasets found that the optimal combination of anthropogenic factors were 

generally consistent for the single year and multiple years.   

Total Phosphorous 

MLR models for Total Phosphorous annual medians produced high R2 values with 

anthropogenic predictors.  However, the hydrologic predictor variable (annual mean daily flow) 

was not significant in the MLR model and therefore resulted in TP predictions that do not vary by 

year.  None of the hydrologic variables considered describe the variability of TP medians between 

years, however the anthropogenic predictor variables do describe the variability of TP between 

sites.   
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For TP, the highest R2 value was 0.91 produced by the combination of three hydrologic predictors: 

1) percent agricultural land use, 2) the IDW number of WWTPs, and 3) annual mean daily flow.  

Figure 12 shows the MLR predicted values for this model versus observed nutrient concentrations.  

As with the MLR models for nitrogen species, the model using the IDW number of CAFO facilities, 

percent urban land use, and annual mean daily flow also performed well (Figure 11).  The MLR 

models of TP were more sensitive to the specific agricultural predictor variable, but the lowest R2 

value was still 0.75.   

The lack of a predictor to describe TP concentration variability between years is concerning 

and suggests that the model is lacking one or more significant parameters.  A comprehensive study 

of phosphorous constituents in Swedish basins found median concentrations were significantly 

correlated with soil type, soil temperature, average summer discharge, and atmospheric deposition 

(Arheimer et al., 2000).  None of these parameters were considered in the regression analysis, but 

could provide better models.  In-channel biological and transport processes for TP should be 

considered when choosing parameters to add to the models.  Below WWTPs phosphorous sorbs to 

stream sediments or is taken up by peryphyton and large scale reductions in TP can be seen within 

relatively short distances (a few kms) by these processes (Jarvie et al., 2012).  This retained 

phosphorous can then be remobilized during storm events.  Therefore, including D50 particle 

diameter, percent fine material in bed, or chlorophyll-a  concentrations may be useful as predictors.  

The bank and bed soil itself can also be a source of phosphorous which was not considered for this 

study (Bledsoe et al., 2001).  Changes in the channel bank erosion and deposition over time could 

account for variation in annual samples.  Changes in WWTP management could also account for the 

variation of TP concentrations over time, though including a relevant quantitative parameter would 

be difficult.  Further linear regressions should consider predictive variables that represent 

transport processes and seasonal hydrologic variables (flow or precipitation). 
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The results of regressions for 5 years of data were compared with the results from 

regression with data from just 2012/2013. The 2012/2013 dataset is much more robust and 

includes 8 sites rather than just 5.  Regressions from the 2012/2013 dataset confirm the optimal 

anthropogenic predictor variables found in the 5 year dataset. A closer observation of the MLR 

model results for 2012/2013 TP suggest that a variable describing the capacity of a WWTP to treat 

phosphorous would be significant, and may explain more variability in annual TP medians between 

monitoring sites than WWTP capacity. 

Overall, the anthropogenic predictor variables used for this analysis produce linear models 

with strong R2 values and can be used to estimate the TP concentrations at a location on the CLP 

River.  However the model lacks any terms that can describe the yearly variability of the median 

concentration, and thus should be used with caution.   

MLR Models for Nutrient Concentration  Standard Deviations  

Due to the confirmed lognormality of the datasets, multiple linear regressions were 

performed for the standard deviations of the log transformed data.  Results between Datasets 1 and 

2 were not consistent.  MLR models were insignificant (p-value > 0.05) for Dataset 1 (5 sites with 

flow, 2008-2013 years) for all parameters except NO3-N.  This is likely due to the very low sample 

sizes for some parameters at some sites as well as the high rate of non-detect values in the sample 

sets, except for in NO3-N.  As a result, the linear regression summaries for standard deviation focus 

on Dataset 2, for which significant (p-value < 0.05) and strong (R2 > 0.7) models were found.  

Appendix D summarizes the MLR model results for the lognormal standard deviations from all of 

the predictor variable combinations. 

Significant and strong correlations were found between many individual anthropogenic 

predictor variables and nutrient lognormal standard deviation concentrations for Dataset 2. Annual 
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precipitation was also considered as a predictor variable since it was available for all eight sample 

sites. While correlation with annual precipitation was strong for TP, NO3-N, and TN ( R2 = 0.63, 0.60, 

0.77, respectively ), combining this predictor with anthropogenic predictors decreased the 

significance of MLR models and was left out of the final models. The best MLR models for each 

nutrient response had two predictor variables: one reflects the influence of urban areas and 

another represents the influence of agricultural food production.  For all for nutrient parameters, 

the percent Urban Land Use is the best predictor for the influence of urban areas.  The best 

predictor for agricultural influences was the IDW number of AFOs for TKN, the AFO capacity for 

NO3-N and TN, and the IDW AFO capacity for TP, Using paired anthropogenic predictor variables 

limits multicolinearity between the predictors.  Table 6 presents a summary of the best MLR 

models for different nutrient parameters along with measures of significance (F-statistic and p-

value) and strength of correlations (R2).  

 

Table 6: Optimal MLR models for lognormal standard deviations; PF = P value for the 
appropriateness of the model, PL = P value for Lilly test for normality, PBF = P value for Brown-
Forythe test for homoscedasticity, VIF = Variable Inflation Factor, ˂ = box-cox transformation 

parameter. 
 

Nutrient  Linear Model R2 Adj. 
R2 

PF ʍ PL PBF VIF ʇ 

TKN 0.59 + 281.7 (#AFO 
IDW) - 0.12 (% 

Urban Land Use) 

0.82 0.74 0.01 -
0.10 

0.27 0.42 5.71 1.54 

NO3-N 0.49 - 3E-6 (AFO 
capacity) - 0.015 (% 

Urban LU) 

0.73 0.62 0.04 -
0.03 

0.50 0.04 11.5 1.06 

TN 0.57 + 2E-6 (AFO 
capacity) - 0.13 (% 
Urban Land Use) 

0.80 0.72 0.02 -
0.06 

0.50 0.12 11.5 0.57 

TP 0.66 - 0.034 (IDW 
AFO capacity) - 89.7 

(% Urban LU) 

0.73 0.63 0.04 -
0.24 

0.50 0.31 2.37 0.015 
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Fewer valid MLR models for were found for lognormal standard deviation as compared to 

MLR models for the medians.  In fact, only one model passed criteria for TKN, though the R2 value is 

strong.  For TKN, many of the predictor variables were inadequate for describing the lognormal 

standard deviations and resulted in high p-values (> 0.05) for the test for overall model 

appropriateness and invalidation of MLR models.  Invalid MLR models for NO3-N, TN, and TP were 

mainly due to lack of normality and homoskedacity in the model residuals.  Multicolinearity 

between anthropogenic predictor variables was reduced since values for all eight sites were 

included in the models. 

Nitrogen Variables 

Unlike the models of the annual medians, the optimal predictors for lognormal standard 

deviation at each site were not consistent for the nitrogen species.  For TKN the best MLR model 

had and R2 value of 0.82 and includes the IDW number of AFOs and percent urban land use.  Many 

more models are valid for NO3-N and TN.  The optimal predictor variables for MLR models of NO3-N 

and TN are the AFO capacity and percent urban land use.  Figure 15 compares observed versus 

predicted results from the optimal MLR models.  The MLR models for the lognormal standard 

deviation of nitrogen species were not very sensitive to the specific predictor variables and 

including capacity in the point source predictors did not substantially improve the models.  It 

should also be noted that the lognormal standard deviations were not transformed for the MLR 

models. 

Total Phosphorous 

More MLR models were valid for TP than for the nitrogen species.  The percent urban land 

use produced higher R2 values than point source predictors of urban influence.  Inverse distance 

weighting of AFO predictors produced more valid models than non-IDW parameters.  The optimal 

predictor variables for TP are percent urban land use and IDW AFO capacity.  Overall the TP models 
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are not very sensitive to the specific predictor variables.  While the optimal predictors produce an 

R2 value of 0.76 the lowest R2 value produced by the valid models was 0.69. 

For all of the nutrient parameters, the valid MLR models for lognormal standard deviation 

have strong R2 values that can be used to predict the number of annual samples.  A further review 

of the models is necessary with robust datasets from additional years to have confidence in 

applying the model to other locations.  It appears that annual precipitation will be a strong 

hydrologic predictor variable for incorporating variability betw een years.  

 

 

Figure 15: Optimal linear regressions for lognormal standard deviation (y)  of each nutrient 
parameter. 
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 CONCLUSIONS 

In the Cache La Poudre River, observation of TN and TP reveals a general increase in 

median nutrient concentrations from upstream to downstream as anthropogenic influences 

increase.  The NO3-N component of TN gradually increases downstream and begins to exceed the 

numeric standard for TN at monitoring Site 5 (river mile 36.5).  The TKN component of TN remains 

generally below the numeric standard for TN except at Site 5 below the Boxelder WWTP, where 

concentrations often exceed the TN standard.  This may be due to limited treatment of nutrients at 

the WWTP or inadequate time for nutrients to attenuate before sampling compared with other 

observation sites.  Combined, TN begins to exceed numeric standards at Site 6 and consistently 

exceeds numeric standards at the most downstream monitoring location.   

The largest concentrations of TP are consistently found at monitoring sites below WWTPs, 

although varying capacities of WWTPs to treat incoming nutrient loads can greatly impact the TP 

concentrations at monitoring sites below WWTPs.  Instances of high TP concentrations are found at 

every monitoring site including the background location.  And the background monitoring site is at 

risk of exceeding the numeric standard, which suggests that the numeric standard for TP may not 

be appropriate for every river in Colorado. 

The first and second objectives of this study to explore the variability annual nutrient 

concentration medians and lognormal standard deviations under varying levels of upstream 

anthropogenic influences on the CLP River was achieved through analysis with multiple linear 

regression modeling. The MLR approach was appropriate for predicting median nutrient 

concentrations and lognormal standard deviations in the CLP Watershed.  Anthropogenic variables 

and general hydrologic descriptors were sufficient predictive parameters for medians and 

lognormal standard deviation.  MLR models for annual medians performed better for Nitrogen 

species than TP, however high R2 values were achieved for both.  Regression models for lognormal 



41 
 

standard deviation were significant only for the 2012/2013 dataset.  This demonstrates that robust 

datasets with no non-detect values are necessary to model standard deviations.   

When considering the regressions for the annual medians, anthropogenic predictor 

variables representing urban and agricultural influences performed similarly .  The preferred MLR 

for all of the nutrient parameters uses inverse distance weighted WWTP and AFO capacities with 

annual mean daily discharge as a hydrologic predictor.  MLR models that use percent land can 

perform equivalently to predict median concentrations, though urban and agricultural land use 

predictors cannot be employed in the same model due to high multicoliearity between them.  Little 

value is gained in the MLR models by including capacity of point sources in the predictive variables.  

The anthropogenic predictor variables describe the variability of median nutrient concentrations 

between monitoring sites.  Daily mean flow is an important predictor variable for describing 

variability  of medians between years, although it ÄÏÅÓÎȭÔ ÐÒÏÄÕÃÅ ÓÉÇÎÉÆÉÃÁÎÔ ÃÏÒÒÅÌÁÔÉÏÎ ÏÎ ÉÔÓ Ï×ÎȢ 

In regard to TP modeling for annual medians, high R2 values were obtained from 

regressions with anthropogenic predictor variables, but a parameter which describes the variability 

of medians between years was not found.  This severely limits the applicability of this model.  

Accounting for this variability may be possible by including parameters which address capacities of 

various WWTPs to treat incoming TP loads, or the transport and biological processes associated 

with TP in surface water.  Potential parameters include rank of WWTP treatment capacity, seasonal 

average flow rates, total suspended sediment concentrations, chlorophyll-a concentration, the 

percent of fine material, and sediment transport rates.    

MLR models were successful for correlating lognormal standard deviation of nutrient 

parameters with anthropogenic predictor variables for the 2012/2013 dataset.  Including 

capacities of point sources showed little benefit to model performance, however inverse distance 

weighting predictors does reduce multicoliearily between predictors.  Along with anthropogenic 
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variables, annual precipitation was significantly correlated with lognormal standard deviation.  

Further analysis will likely find hydrologic variables to be significant predictors over many years of 

data, although the relationships may not be linear. Results for standard deviation regressions 

should be confirmed with more robust datasets. 

To meet the third objective of this study a statistical expression was developed to link 

annual sampling requirements to meet numeric standards with the median and lognormal standard 

deviations of the nutrient populations.  This expression was used to estimate the required number 

of annual samples at each monitoring site to evaluate the median concentration to a 95% 

confidence level.  The results suggest that in the case where a comprehensive monitoring plan is 

being developed for an entire water body, targeted sampling at sites near the standard with limited 

sampling elsewhere could optimize monitoring resources while possibly increasing the quality of 

the results.  Sampling requirements to meet a 95% confidence level are lower than the current 

regulation requirements for those sites and nutrient parameters which have annual median values 

greater or less than 20% of the standard.  Sampling for a 99% confidence level is also feasible for 

these sites.  However, if the median concentration is within 20% of the standard, the predicted 

number of annual samples is often unfeasibly high for grab sampling.  Slight variations in the 

confidence levels do not affect the annual number of samples at any of the observed sites. Small 

variations in the numeric standard does not greatly affect those sites with initially low samples 

numbers, but can change the sample number by several orders of magnitudes for sites that are 

within 20% of the standard.   

Overall, this study demonstrates the feasibility of describing the linking the statistical 

properties of nutrient concentrations on a river based on upstream anthropogenic influences in the 

watershed.  Through the MLR models, anthropogenic influences describing urban and agricultural 

development were found to describe variation of nutrient concentrations between monitoring sites, 
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and a general hydrologic descriptor was able to describe the variability of concentrations between 

years.  In conjunction with the statistical expression for annual number of samples, the MLR models 

can be used as a management tool to improve monitoring for water quality parameters.  Once the 

MLR models are developed for a watershed, they can be applied to improve allocation of 

monitoring resources for a region or predict monitoring requirements for additional sampling 

locations. 
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APPENDIX A: Sample Test Methods 

Table 7: Test methods used by the City of Fort Collins laboratories to analyze the nutrient 
parameters of surface water samples from the CLP River. 

 
Nutrient 

Parameter 
Abbreviation Test Method Fort Collins 

Laboratory 
Total 

Phosphorus as P 
TP EPA365.1  Rev2.0 Pollution Control Lab 

Total Kjeldahl 
Nitrogen 

TKN Standard Methods 
4500-Norg D 

Pollution Control Lab 

Total Nitrogen TN Sum of TKN + Nitrate-N 
+ Nitrite-N 

Pollution Control Lab 

Nitrate-N NO3-N EPA Method 300.0 Water Quality Lab 

Nitrite -N: NO2-N EPA Method 300.0 Water Quality Lab 

Ortho-
Phosphorus as P 

OP EPA 300.0 Water Quality Lab 
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APPENDIX B: Distribution Analysis Results 

Probability plots and the Kolmogorov-Smirnov test for normality were used to evaluate the 

dataset from 2012/2013 for compliance with the lognormal distribution.  The procedures were 

performed for the full dataset (Figure 16 and 17 and Table 8) and then again with the non-detect 

values removed (Figure 18 and 19 and Table 9).  Removal of the non-detect values found better 

adherence with the lognormal distribution. 
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Figure 16: Lognormal probability plots for Sites PCAN, PLNC, PNAT, PBOX for each nutrient 
parameter with the full 2012/2013 dataset including non-detect values. 
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Figure 17: Lognormal probability plots for Sites PARCH, PFOS, FSPUR, and FERN for each nutrient 
parameter with the full 2012/2013 dataset including non-detect values. 

  



51 
 

Table 8: The P value reported for the Kolmogorov-Smirnov test for the 2012/2013 dataset that 
includes non-ÄÅÔÅÃÔ ÖÁÌÕÅÓȢ  6ÁÌÕÅÓ ÈÉÇÈÌÉÇÈÔÅÄ ÉÎ ÒÅÄ ÄÏ ÎÏÔ ÐÁÓÓ ÌÏÇÎÏÒÍÁÌÉÔÙ ÔÅÓÔ ɉɻ Ѐ πȢπυ ÌÅÖÅÌɊȢ 
 

Site Name Lognormal (with Non-detects) 

TKN TP NO3 TN 
1 PCAN >0.15 <0.01 >0.15 >0.15 
2 PLNC 0.046 <0.01 0.02 <0.01 
3 PNAT 0.107 <0.01 <0.01 0.064 
4 PBOX >0.15 <0.01 >0.15 >0.15 
5 PARCH 0.09 0.08 0.082 0.062 
6 PFOS 0.047 0.13 0.13 >0.15 
7 FSPUR 0.12 0.05 >0.15 >0.15 
8 FERN >0.15 >0.15 <0.01 <0.01 
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Figure 18: Lognormal probability plots for Sites PCAN, PLNC, PNAT, PBOX and for each nutrient 
parameter with the full 2012/2013 dataset discluding any non-detect values. 

 

 

 














































































