REMARKS BY GILBERT G. STAMM
COMMISSIONER OF RECLAMATION
U.S. DEPARTMENT OF THE INTERIOR
AT THE FOREST GROVE ROTARY CLUB
FOREST GROVE, OREGON
OCTOBER 30, 1974

It gives me a great deal of pleasure to be with you here in Forest Grove and have the opportunity to visit with your active and progressive Rotary Club. We're pleased that our Tualatin Project Construction Engineer, Francis O'Connor, is a member of the Forest Grove Rotary Club. I think this typifies the kindred feeling that we in the Bureau of Reclamation have when we become involved with community interests.

You know better than I that local leaders in this community have had an interest in better utilization of the water and land resources in the Tualatin River Basin for many years. After
extensive study of the basin's problems and resources, the Bureau of Reclamation completed a feasibility report for the first phase of the Tualatin Project in 1963. With the excellent and effective support of Congressman Wendell Wyatt, the project was authorized by Congress in 1966. Construction began in 1972.

During the planning and preconstruction phases of this project, Congressman Wyatt worked closely with Henry Haag, shepherding it through the Congressional processes to obtain approval and funding to start construction. As most of you know, Mr. Haag worked on this project for over a quarter of a century. We only wish he could have lived to see its completion.

If it had not been for his dedication and Congressman Wyatt's leadership, the project would not be a reality today.

At the present time, the dam structure is virtually complete, and reservoir filling will begin with the fall rains. The contract for our Spring Hill Pumping Plant is about 20 percent complete and the Patton Valley Pumping Plant and pipelines contract is about 30 percent complete. The recreation facility contract was awarded on September 20.
Contracts providing the repayment of the locally share of the irrigation system, municipal and industrial water, recreation facilities, and for water quality maintenance in the Tualatin River have been executed between the Government and Tualatin Valley Irrigation District; Washington County; the Cities of Forest Grove, Hillsboro, Beaverton, Tigard, and Lake Oswego; and the United Sewage Agency of Washington County. Additional repayment of the reimbursable irrigation facility costs, beyond the irrigators ability to pay, is being met by revenues from the Federal power system here in the Northwest.

The Tualatin Project, like nearly all Bureau of Reclamation projects constructed since Hoover Dam, is truly multipurpose in its functions and benefits.

Because of the project, your local community will reap the benefits of an invigorated agricultural economy, made possible by the availability of water for use as needed. No longer will your farmers have to rely solely on rainfall for crop production.
Although

But, while irrigation is the primary function of the project, it will provide many other benefits. Water resource development here in Oregon's densely populated Willamette Valley will become a great recreational asset to your community. Situated as you are at the doorstep of the Portland metropolitan area, the demand for water-based recreational activities is extremely high. The magnificent setting of Henry Haag Lake will offer outstanding opportunities to help fulfill the outdoor recreational needs of this part of the State.

The benefits of the project supply another asset. The water contract with the Unified Sewage Agency will help maintain the quality of water in the Tualatin River.

The reservoir behind Scoggins Dam provides an excellent potential for managed trout fishery. It will be stocked by the Oregon Game Commission.

Since Scoggins Dam will block anadromous fish from upstream spawning areas, we are planning
several measures to mitigate possible losses in the fishery.

Below the dam, fish trapping and holding facilities are being constructed where eggs will be collected for hatching and rearing at Oregon's Big Creek Fish Hatchery.

Minimum flows of 10-cubic-feet-per-second will be maintained at all times in Scoggins Creek to maintain fish life in the creek to its confluence with Tualatin River.

Modification of the Oregon Iron and Steel Company dam, together with increased minimum flows of 20-cubic-feet-per-second during the months of October and November between the dam and the mouth of the Tualatin River, will insure passage of the anadromous fish into the Tualatin River.

Now that phase one of the Tualatin Project is a reality, we must look ahead. Although the first phase will contribute to meeting water-related needs in the Basin, it cannot satisfy all of those needs. We will have to call on some of the resourcefulness which made phase one possible in order to meet the needs of tomorrow.
Urban growth is placing new demands on municipal and industrial water supplies. Our contacts with Washington County officials and other groups indicate a need for additional water supplies for cities, residents, and industries, ranging from 20,000 to 70,000 acre-feet annually.

Maintaining acceptable water quality levels in the Tualatin River is a continuing challenge. First phase storage will meet about one-half of the projected 1980 water quality flow requirements.

As mentioned before, lakes for recreational use are in short supply in this part of northwestern Oregon. Oregon Highway Department studies reveal there will be a need for over 50,000 surface acres suitable for water-related recreational activities in Washington, Columbia, Multnomah, and Clackamas Counties in the next 15 to 20 years. Federal projects under construction will satisfy a mere 4 percent of this need.

There is also a potential need for irrigation water for an additional 6,000 acres.
Other water-related needs in the Tualatin area include additional protection from flood hazards and enhancement of aquatic habitat for the benefit of the valuable fish resources of the State.

To meet those complex needs we have been working closely with your local community leaders to complete a study which we hope will lead to a viable Second Phase program. This study, which is being directed by our Planning Office in Salem, is scheduled to be completed in about 1-1/2 years. We expect that implementation of a Second Phase plan would be a product of the 1980's, in contrast to accomplishment of First Phase in the 1970's.
But that's in the future. Right now I want to talk about something equally important but more immediate.

The United States Department of the Interior recognizes that local action and local participation are fundamental ingredients in the successful conduct of its diverse programs. In recognition of valuable public service, the Bureau of Reclamation bestows its Citizens' Award on deserving individuals.

One of your outstanding citizens has made contributions in such measure as to be abundantly deserving of the recognition. It is my honor to present that award at this time.

More than 35 years ago Palmer S. Torvend recognized that water was an extremely valuable asset to the Tualatin Valley and that the winter surpluses should be stored to provide a dependable summer supply for the valley's diversified farming.

Mr. Torvend came to Washington County, Oregon, in 1939 as an assistant county agent and 4-H leader. From 1942 until 1971, he was Staff Chairman for the County Extension Service and in 1971 he became Area
Supervisor over nine northwest Oregon counties for
the Oregon State University Extension Service.

During his early years as County Extension Agent
there was considerable interest among the landowners
in developing wells for irrigation supply. Recognizing
that this was not the solution for the Tualatin
Valley, Mr. Tovend, through personal contacts and
group meetings, explained the shortcomings of wells
and promoted upstream storage of the winter runoff.
This led to the formation of the Tualatin Valley
Improvement District, an organization of landowners
interested in obtaining irrigation water through a
Bureau of Reclamation project. Through Mr. Tovend's
perseverance /the Improvement District remained
active in support of the project. In 1962, by a
large majority vote of the landowners, the Improvement
District became the Tualatin Valley Irrigation
District, with authority to contract for repayment
of the Tualatin Project irrigation construction
charges.

Mr. Tovend served as Secretary of the Improvement
District and the subsequent Irrigation District from
its inception until the press of other duties forced his resignation in 1971. Even then he maintained an active interest and assisted the Board of Directors in an advisory capacity. On July 1, 1974, Mr. Torvend became the Tualatin Valley Irrigation District's first manager. In accepting this appointment Mr. Torvend said that he elected to take an early retirement from the State Extension Service to devote his full time to "this project which is of such great importance to the people of this valley."

Over the years, Mr. Torvend has earned the respect of those in the agricultural community. He has assisted many farmers in obtaining State water rights and in laying out irrigation systems. He has served as liaison between the growers and processors.

Mr. Torvend has long been active in resource-oriented organizations. Among them, the Oregon Extension Agents Association. He received the Association's Distinguished Service Award in 1964. He is a member of the Agricultural Committee of the
Chamber of Commerce; an active member of the Oregon Water Resources Association for almost 20 years; and an active participant and leader in land-use planning in Washington County and northwestern Oregon, having prepared long-range land-use planning reports for Washington County in 1946, 1957, and 1968. A 1965 sabbatical leave took him to Europe to study and research European land-use planning. He was instrumental in getting a forestry land-use plan operational for Washington County.

Mr. Torvend was a leader in organizing the Dairy Herd Improvement Association and served as an officer of the Association.

Born in California, at an early age he and his family moved to Silverton, Oregon, where they owned and operated a dairy ranch. He attended public schools in Silverton and is a graduate of Oregon State University, with a master's degree from Columbia University. He is married, has two children, and two grandchildren. Palmer and his wife Nordis live in Hillsboro, Oregon, and both are active in community affairs.
Palmer S. Torvend has devoted his life to the agricultural community, loves his country, and is active in the political affairs of his county, State, and Nation. We're proud to have the opportunity to bestow the Bureau of Reclamation's Citizen's Award on such a deserving community leader.

Give him a good round—

Next—If I may take a few more minutes, I'd like to recognize one of your members.

Meritorious Award to Francis J. O'Connor
Birthday - 39th

Senator Bullock
Talk as long as you wish.
But we're all leaving @ 1 p.m.

Young lady to talk.
This study was supported under the Research Applied to National Needs (RANN) Program of the National Science Foundation's Research Applications Directorate. It was initiated in January 1971 in response to a request from the Interdepartmental Committee for Atmospheric Sciences (ICAS) of the Federal Council for Science and Technology (FCST) to explore the feasibility of applying technology assessment concepts to planned weather modification operational projects. The Bureau of Reclamation's cloud seeding experiment to test the feasibility of utilizing current techniques to augment the flow of the Colorado River was suggested by ICAS for the first technology assessment study since a pilot project was already in progress in the San Juan Mountain Range, and there was a need to provide the Secretary of the Interior with the necessary information to make implementation decisions in the near future.

The selection of the Stanford Research Institute (SRI) to conduct this technology assessment was made with the assistance of an ICAS Committee, which included Department of the Interior representation (Mr. Kerr), based upon competitive proposals submitted by 11 different organizations. Interested ICAS agencies were given the opportunity to review the initial draft of the report and their comments were supplied to the contractor as a feedback mechanism. Reclamation's Division of Atmospheric Water Resources Management provided this review for Interior.

However, in accepting the two-volume (624 pages) final report ICAS suggested to the NSF that a condensed layman's version of the report would be a useful contribution to public policy discussions on weather modification.

The attached copy of the popularized version has recently been published by the University of Oklahoma Press, and is being used as the vehicle for the SRI and NSF to hold a public briefing and critical discussion of this first effort at technology assessment in the field of weather modification.

The SRI report identified several research results of the snowpack augmentation experiment, and summarized its conclusions and recommendations as follows:

1. Cloud seeding is an inexpensive method of augmenting the water supply of the Colorado River Basin. It is estimated that an annual average of 2.3 million acre-feet of augmented water could be provided at an average cost of $2.37 per acre-foot.
2. The environmental, economic, and social impacts in the Upper Colorado River Basin target area would be uniformly negative, but only of moderate intensity and no worse than some natural conditions that have existed in the past and that can be expected to repeat themselves in the future.

3. There is no need for the additional water in the Upper Basin mountainous areas (target areas). Equity would require that the negative impacts be alleviated or compensated by those who would benefit from the additional water.

4. Congress should ensure that any operational program is conducted in an equitable manner. This will require legal, institutional, and public policy decisions concerning:
 a. The need to augment the Colorado River.
 b. The standards and objectives by which weather modification and any water storage and distribution facilities necessary to use the water are to be evaluated and compared with alternatives.
 c. Allocation of augmented water to the National interests and to the States of the Basin.
 d. Establishment of Federal weather modification regulatory functions.
 e. Selection of an operating authority for an operational program.