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ABSTRACT

QUANTITATIVE ANALYSES OF SOFTWARE VULNERABILITIES

There have been numerous studies addressing computer security and software

vulnerability management. Most of the time, they have taken a qualitative perspec-

tive. In many other disciplines, quantitative analyses have been indispensable for

performance assessment, metric measurement, functional evaluation, or statistical

modeling.

Quantitative approaches can also help to improve software risk management

by providing guidelines obtained by using actual data-driven analyses for optimal

allocations of resources for security testing, scheduling, and development of security

patches. Quantitative methods allow objective and more accurate estimates of future

trends than qualitative manners only because a quantitative approach uses real

datasets with statistical methods which have proven to be a very powerful prediction

approach in several research fields.

A quantitative methodology makes it possible for end-users to assess the risks

posed by vulnerabilities in software systems, and potential breaches without getting

burdened by details of every individual vulnerability. At the moment, quantitative

risk analysis in information security systems is still in its infancy stage. However,

recently, researchers have started to explore various software vulnerability related

attributes quantitatively as the vulnerability datasets have now become large enough

for statistical analyses.
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In this dissertation, quantitative analysis is presented dealing with i) modeling

vulnerability discovery processes in major Web servers and browsers, ii) relationship

between the performance of S-shaped vulnerability discovery models and the skew in

vulnerability datasets examined, iii) linear vulnerability discovery trends in multi-

version software systems, iv) periodic behavior in weekly exploitation and patching

of vulnerabilities as well as long term vulnerability discovery process, and v) software

security risk evaluation with respect to the vulnerability lifecycle and CVSS.

Results show good superior vulnerability discovery model fittings and reason-

able prediction capabilities for both time-based and effort-based models for datasets

from Web servers and browsers. Results also show that AML and Gamma distri-

bution based models perform better than other S-shaped models with skewed left

and right datasets respectively. We find that code sharing among the successive

versions cause a linear discovery pattern. We establish that there are indeed long

and short term periodic patterns in software vulnerability related activities which

have been only vaguely recognized by the security researchers. Lastly, a framework

for software security risk assessment is proposed which can allow a comparison of

software systems in terms of the risk and potential approaches for optimization of

remediation.
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Chapter 1

INTRODUCTION

1.1 Motivation

The dependence of human society on the Internet is growing. Online banking,

stock market trading, automated military and governmental facilities depend heav-

ily on the Internet based computing. As a result, the risk to the society from the

potential exploitation of vulnerabilities in automated systems is enormous. As a con-

sequence, these days, security and privacy issues caused by software vulnerabilities

have been under intense scrutiny.

In spite of the risks, people are willing to take the risk of using the Internet

since it has created enormous virtual markets and made the transactions much

more efficient (Scoy, 1992). In spite of the recent advances in secure coding, it is

unlikely that completely safe systems will become possible anytime soon (Farrell,

2010). Thus, it is necessary to accept a measured degree of risk and precautionary

measures commensurate.

As development of the software systems is getting complex, the number of de-

fects in software systems has been increased. Consequently, the number of security

related defects is also continually growing in both open source and proprietary sys-

tems. Figure 1.1 shows the number of vulnerabilities reported from year 2003 to

2010 grouped by their severities. Although the number seems to be stabilized af-

ter 2008 due to the recognition of the Internet security crisis and the emergence of

secure coding practices, still the notification rate represents a severe security threat.
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Figure 1.1: Number of reported vulnerabilities (year 2003 ∼ 2010) from NVD (nvd.nist.gov) on
March 2011

Like Lord Kelvin (1824 ∼ 1907) said in his famous quote of “If you cannot

measure it, you cannot improve it”, somehow software security researchers need

to be able to measure the secureness in software systems to address the threat.

Secureness in a software system can be understood as a degree of the lact of high

severity security related software defects that can be potentially exploited.

In short, software vulnerabilities can be defined as software defects or weak-

nesses in the security system which might be exploited by malicious users causing

loss or harm (Pfleeger and Pfleeger, 2003) (we will see the definition in detail at

Chapter 2.1). It is next to impossible to eliminate them completely. Those vulnera-

bilities are great concern since they provide attackers the ability to gain full control

of the system or leakage of highly sensitive information.

Since security vulnerabilities are a class of software defects which can lead to

security violations, the vulnerabilities have some of the attributes of the parent

class, the ordinary defects. However, there are some differences between the two

(Anbalagan and Vouk, 2008; Zimmermann et al., 2010). Ordinary defects are often

not fixed until the next version release because they generally do not represent the

2



high degree of risk. On the other hand, due to the great risks caused by vulner-

abilities, the system developers need to release patches as soon as possible after a

vulnerability is discovered. Zimmermann et al. (2010) have empirically found that

the traditional software reliability growth models may not be able to handle the

newly rising security related defects properly.

Even though an ethical question has been arisen in security vulnerability re-

search (Matwyshyn et al., 2010) regarding potential misuse of the information,

nowadays, IT related vulnerabilities are systemically recorded using several secu-

rity vulnerability standards, and they are publically available. One of the standards

is Common Vulnerabilities and Exposures1 (CVE) Identifiers. The CVE Identifiers

are commonly used by information security related product or service vendors and

researchers as a standard method for identifying vulnerabilities and for cross-linking

with other repositories that also use CVE Identifiers. Moreover, public online vulner-

ability databases are maintained by governmental organizations, open communities

or private companies. Some of the examples are National Vulnerability Database

(NVD)2, Open Source Vulnerability Database3, US-CERT4, Secunia5, etc.

During software development process cycles, managers and developers like to

know whether their products meet certain requirements before the releasing date.

Even after the date, they would like to be informed about the defects discovered

after release to provide quick after-sale service. These include: why and what kind

of vulnerabilities tend to be found, who are the people finding them, how they

can be fixed, and when would be the best time to announce them publicly. If

the software development managers can make accurate predictions of vulnerability

discovery trends and related activities, they can optimally allocate the needed re-

sources that are likely to be needed for patch development. In the dissertation, we

1http://cve.mitre.org/
2http://nvd.nist.gov/
3http://osvdb.org/
4http://www.kb.cert.org/vuls/
5http://secunia.com/advisories/historic/
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have quantitatively investigated some of the software vulnerability related processes

in detail.

1.2 Dissertation statement

A better understanding of the quantitative characteristics of software vulnera-

bilities allows for the IT security practitioners with better insight into their works.

Not only the security domain experts but also general end-users would potentially

benefit from the better quantitative perspective since they can take actions before

the risk reaches an unacceptable level.

Being a new research area, the quantitative aspects of software vulnerabilities

and risk assessments have not been fully investigated. Only a few major topics, such

as modeling vulnerability discovery process, have been examined. Further detailed

studies are required related to the security risk assessment, using rigorous analysis

of actual data which can assist decision makers to maximize the returns on their

security related efforts.

To investigate security, both qualitative and quantitative methods are needed.

Generally, qualitative analysis deals with descriptions and data which can be ob-

served but are not measurable. On the other hands, quantitative analysis deals with

numbers and data which can be measured, and usually followed by statistical tests.

Frequently, in qualitative risk management, each risk has accompanied by the

attributes like severity level, impact score, mitigation plans, etc. The approaches

considered are based on heuristics and the perception of experts6. As a result, quali-

tative analysis heavily depends on the experts’ opinions which tend to be subjective.

In comparison with qualitative methods, quantitative analyses allow evaluations

to be more precise when considering how much effort is needed to protect the system

or how high the system exploitation risk is when a security policy in in place (Vache,

6http://www.intaver.com/Articles/Article_QuantitativeRiskAnalysis.pdf
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2009). Until recently, most of the existing discussion on software quality has been

limited to qualitative discussions (Gousios et al., 2007). However, an actual data-

driven empirical analysis, followed by some statistical tests to make a final decision,

provides objective results, which seems to be a more proper technique for answering

questions regarding to security.

Some (Jones, 2007) say that a qualitative method is more like an art which does

not depend on predefined definitions whereas quantitative method can be referred

as a science which based on clear predefined definitions.

At the moment, quantitative risk analysis in information systems is considered

too difficult to conduct due to a shortage of data and the costs associated with

collecting and analyzing datasets. A study by Ford et al. (2005) compares sev-

eral software venders by considering the number of vulnerabilities and severity, and

suggests a need to use quantitative approaches for estimating the risks posed by

vulnerabilities.

Recently, however, several software vulnerability datasets have become available

at publicly available databases, and researchers have started to examine character-

istics of software vulnerabilities quantitatively. The examples include dependencies

among vulnerabilities (Neuhaus and Zimmermann, 2009; Sahinoglu, 2006; Cukier

and Panjwani, 2009), vulnerability lifespan (Arbaugh et al., 2000; McQueen et al.,

2009), optimal security patching timing (Beattie et al., 2002), optimal vulnerability

announcement timing (Arora et al., 2008), vulnerability discovery models (Condon

et al., 2008; Kim et al., 2007; Alhazmi et al., 2007; Chen et al., 2010), security

vulnerability metrics (Scarfone and Mell, 2009; Liu and Zhang, 2010).

Possible approaches for a quantitative perspective of exploitation trends are

discussed by Hallaraker and Vigna (2005). Probabilistic examinations of intrusions

have been presented by several researchers (Browne et al., 2001; Madan et al., 2004).

Rescorla (2005) has studied vulnerabilities in open source servers. The vulnerability
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discovery process in operating systems has recently been examined by Rescorla

(2003), Alhazmi and Malaiya (2005), Alhazmi et al. (2005), Alhazmi and Malaiya

(2008), Kim et al. (2007), and Chen et al. (2010).

In this dissertation, we have explored quantitative software vulnerability anal-

yses focussing mainly on vulnerability discovery process, periodic behavior in vul-

nerability activities, and software risk assessment based on the attributes of the

vulnerabilities. The results from the research will help to develop methods for bet-

ter understanding of software vulnerabilities in an effective manner.

1.3 Outline

The dissertation is organized as follows. In the next chapter, Chapter 2, back-

ground information about the software vulnerability research area is presented.

Chapter 3 introduces some of the vulnerability discovery models in detail which

are mainly utilized in the dissertation. Chapter 4 and 5 investigate the applicability

of time-based and effort-based vulnerability discovery models for the two most popu-

lar Web servers and the six well known Web browsers by examining the model fitting

and prediction capabilities. For the browsers, we have investigated application of

the linear vulnerability discovery model due to the systems’ continued evolutions.

In addition, in Chapter 6, risk assessment based on CVSS base scores from the four

popular Web browsers is examined quantitatively.

In Chapter 7, several new S-shaped vulnerability discovery models are intro-

duced to examine the relationship between performance of the S-shaped vulnerabil-

ity discovery models with the skewness in target vulnerability datasets. In Chapter

8, linear vulnerability discovery trend, which is often observed among some of the

popular software systems, has been investigated.

Chapter 9 examines periodic behavior for long term and short term vulnerability

activities based on vulnerability discovery information in popular software systems
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and globally scanned data collected by one of the leading providers of on-demand

IT security risk and compliance management. In Chapter 10, a novel approach

for evaluating the software security risk based on vulnerability lifecycle and CVSS

metrics for given systems is presented. Since this research topic has just been started,

the model is in its preliminary form. Finally, Chapter 11 concludes the dissertation

with future directions of the research.

1.4 Publication history

Much of the material in this dissertation has previously been presented at

peer reviewed workshop (Joh and Malaiya, 2010a), conferences (Joh and Malaiya,

2008a,b, 2009, 2010b; Joh et al., 2010; Joh and Malaiya, 2011a), and journal article

(Woo et al., 2011a). Also, some of the materials in the dissertation are currently

under the review (Joh and Malaiya, 2011b; Woo et al., 2011b) or in preparation (Joh

and Malaiya, 2011c), in all journal versions. I also coauthored (Younis et al., 2011).

All the publications mentioned above are under the supervision of Dr. Malaiya.

7



Chapter 2

SOFTWARE VULNERABILITIES

2.1 Definition of a software vulnerability

Due to the lack of widely accepted standards and definitions in the information

technology research area, researchers in the field are frequently confused while doing

peer reviews. Since this dissertation is all about the software vulnerability related

materials, first, we are trying to define the word vulnerability.

The software vulnerability is a subset of vulnerability in general, so the software

vulnerability should inherit the characteristics what the general vulnerability has.

According to the Collins English dictionary 1, “Someone who is vulnerable is weak

and without protection, with the result that they are easily hurt physically or emo-

tionally.” In other words, it represents a susceptibility to malevolent manipulations.

Even though the concept is crystal clear, it is not that simple to define the

software vulnerability due to the lack of standards in the field; there’s no widely

accepted definition for the word currently (Krsul, 1998; Ozment, 2007a). Yet, there

are many definitions proposed, and here are some of them:

• “A flaw in a product that makes it infeasible – even when using the product

properly – to prevent an attacker from usurping privileges on the user’s sys-

tem, regulating its operation, compromising data on it, or assuming ungranted

trust.2”

1http://www.collinslanguage.com/
2http://technet.microsoft.com/en-us/library/cc751383.aspx
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• “Security flaws, defects, or mistakes in software that can be directly used by a

hacker to gain access to a system or network” (Wang et al., 2009)

• “Weakness in an information system, system security procedures, internal con-

trols, or implementation that could be exploited or triggered by a threat

source” (NIST, 2006)

• “Weakness in the security system which might be exploited by malicious users

causing loss or harm” (Pfleeger and Pfleeger, 2003)

• “A vulnerable system is an authorized state from which an unauthorized state

can be reached using authorized state transitions; a vulnerability is a charac-

terization of a vulnerable state which distinguishes it from all non-vulnerable

states” (Cheswick and Bellovin, 1994)

• “Defect which enables an attacker to bypass security measures” (E. E. Schultz

et al., 1990)

So far, there are not many literatures discussing the terminology in depth. As

one of the early works, Otwell and Aldridge (Otwell and Aldridge, 1989) examined

the treatment of vulnerability at the 1988 Risk Model Builders’ Workshop. They

say that defining the word of vulnerability formally is proven to be a complex task

while showing the several proposed definitions from the researchers in the workshop.

Some of them are:

• “Weaknesses that allow a threat to compromise the security (confidentiality,

integrity, or availability) of an asset.” (Mayerfeld, 1988)

• “Achievable bad events,” which “implies that the protections against them are

nonexistent, insufficient, or insufficiently protected.” (Lewis, 1988)

• “The ability of an agent to cause an attack event” (Snow, 1988)
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A decade later, in 1998, Krsul (Krsul, 1998) defined the software vulnerability in

his doctoral dissertation as “an instance of an error in the specification, development,

or configuration of software such that its execution can violate the security policy.”

And another decade later, in 2007, Ozment supports the Krsul’s definition with some

minor modification; after the modification, the definition is read as “an instance of

[a mistake] in the specification, development, or configuration of software such that

its execution can violate the [explicit or implicit] security policy” (Ozment, 2007a).

Ozment made two changes. The first one is that the “mistake” is used instead of the

“error” since in software engineering, an “error” is already defined as “the amount by

which the result is incorrect” (IEEE, 1990). The second is that he put the “explicit

or implicit” in the modified definition to emphasize the fact that all systems have a

security policy whether it is explicit or not.

Meanwhile, after showing the definitions, Otwell and Aldridge (Otwell and

Aldridge, 1989) stated that it is clear that all the researchers have the same general

conception of vulnerability and differ mainly how vulnerabilities of a particular sys-

tem are specified and measured, and also clear that “more vulnerable” means “easier

to adversely affect” and “less vulnerable” is better, other things being equal.

In this dissertation, we follow the definition from CVE3: an information security

“vulnerability” is a mistake in software that can be directly used by a hacker to gain

access to a system or network. Just like what Frei stated in his dissertation (Frei,

2009), we also only consider vulnerabilities listed in the CVE directories. Hence, it

does make sense for this dissertation to use the definition from CVE since all the

vulnerability datasets used in this dissertation have CVE identification numbers.

CVE will be discussed in the following section.

3http://cve.mitre.org/about/terminology.html
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2.2 Common vulnerability standards

There are several commonly used vulnerability standards by researchers to make

vulnerability measurable. In this section, three popular vulnerability standards to

vulnerability researchers are introduced: CVE, CWE, and CVSS.

2.2.1 Common Vulnerabilities and Exposures

Common Vulnerabilities and Exposures (CVE) is a publicly available and free

to use list or dictionary of standardized identifiers for common computer vulnera-

bilities and exposures 4. It is a dictionary of publicly known information of security

vulnerabilities and exposures. CVE’s common identifiers enable data exchange be-

tween security products and provide a baseline index point for evaluating coverage

of tools and services.

CVE was launched in 1999 when most information security tools used their

own databases with their own names for security vulnerabilities which make hard

to communicate among the security vendors and security advisories. CVE’s stan-

dardized identifiers enable to solve this problems. Currently, CVE is treated as de

facto industry standard for vulnerability and exposure names. Originally, in 1999,

there were 321 CVE entries, and now there are more than 46,000 CVE entries as of

June 2011. Each CVE identifier includes:

• CVE identifier number (i.e., “CVE-2010-0034”).

• Indication of “entry” or “candidate” status.

• Description of the security vulnerability or exposure.

• pertinent references (i.e., vulnerability reports, mailing list postings and advi-

sories).

4http://cve.mitre.org/cve/
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Not all the discovered vulnerabilities receive CVE entry position automatically

from the start. After the discovery, the information is assigned a CVE identifier

with “candidate” status by a CVE Candidate Numbering Authority (CNA), and

proposed to the CVE editorial board by the CVE editor. The board talks over the

CNAs and votes on whether it should become a CVE entry. If the candidate is

accepted, its status is updated to “entry” on the CVE list. If not, the reason for

rejection is noted in the editorial board archives posted on the CVE Web site.

The assignment of a candidate number is not a guarantee that it will become

an official CVE entry. Usually, it takes one day to one month to assign a candidate

number. Then it takes another a year or more for the candidate to become an official

CVE entry. In some cases, it takes much longer due to the obscure or insufficient

issues, or unstabilized CVE editorial policies. All of the datasets speculated in the

dissertation are from NVD database which is based upon and synchronized with the

identifiers on the CVE List. Therefore, all the vulnerabilities in the dissertation are

assigned with CVE identifiers.

2.2.2 Common Weakness Enumeration

Common Weakness Enumeration5 (CWE) is a list of software weakness types,

and is sponsored by the National Cyber Security Division in the US Department of

Homeland Security. It aims to be a complete dictionary for software weaknesses.

It provides a unified, measurable set of software weaknesses that is enabling more

effective discussion, description, selection, and use of software security tools and

services that can find these weaknesses in source code and operational systems as

well as better understanding and management of software weaknesses related to

architecture and design. In short, a unique number is assigned to each weakness

type. Since CWE provides fine detail classifications, the CWE Web site contains

5http://cwe.mitre.org/
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the information more than 860 programming, design, and architecture error types

that can lead to exploitable vulnerabilities as of June 2011.

Each year, MITRE6 and SANS7 issue the top 25 most dangerous programming

errors8 which is a list of the most widespread and critical programming errors that

can lead to serious software vulnerabilities. Since they are easy to exploit and

let hackers to gain a complete control over a system, the errors are treated as very

dangerous weaknesses. Howard (2009) gives each vulnerability’s characteristics from

the 25 CWE list and some advises to improve software security by eliminating the

top 25 vulnerability types. The study is based on the top 25 list in 2009.

Recently, CWE has been used to calculate a security related metrics. For ex-

ample, Wang et al. (2010) try to rank attack patterns for a given software system

systematically by mainly analyzing CAPEC9 (Common Attack Pattern Enumera-

tion and Classification) connected to the 14 types of CWE. The authors get the

vulnerability information from OVM (Wang and Guo, 2009) (Ontology for vulnera-

bility management) which is populated with vulnerabilities in NVD, and NVD uses

19 CWE categories. Since five of 19 are not able to be mapped to the attack patterns

of CAPEC, it is 14. First, information about products’ vulnerabilities is classified

based on the 14 categories. Then calculate a weight for each type of vulnerabili-

ties based on the three factors: time (recently discovered vulnerability has bigger

weight), frequency (the number of vulnerabilities that reside in a type), and sever-

ity (CVSS score). Finally, the attack patterns are ranked based on their weights

calculated with an equation they created.

Other than CWE, there are some of the other different vulnerability classifi-

cations, although none of them is recognized as a standard. Huang et al. (2010)

classified vulnerabilities from the NVD into 45 main clusters. They used a novel

6http://www.mitre.org/
7http://www.sans.org/
8http://cwe.mitre.org/top25/
9http://capec.mitre.org/
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method for the classification. They use text mining tools to cluster vulnerability

description patterns to avoid overlaps and create a relatively objective classification

criterion among the vulnerabilities. One doubtful statement they made is that the

reason why the number of discovered vulnerabilities getting decreased from year

2006 is because of strengthening network security. However, some researchers say

that the reason is just due to the back logging in the CVE and NVD approval pro-

cess. Meanwhile, Jin et al. (2009) list 25 vulnerability classification methods with

very brief comparisons among them. Even though the paper is titled as “A Review of

Classification Methods for Network Vulnerability,” the paper handles vulnerability

classification in general, not for only network related one.

Since around September 2007, National Vulnerability Database have provided

the selected 19 CWE names in the vulnerability database instead of the eight cate-

gories (Woo et al., 2011a) used before. We found because of that, in NVD dataset,

an information disconnection has been happened for the vulnerability types before

and after the time point.

Recently, Neuhaus and Zimmermann (Neuhaus and Zimmermann, 2010) semi-

automatically analyzed the description text part from 39,393 CVEs by using Latent

Dirichlet Allocation (LDA) to categorize the type of vulnerabilities called a topic

model. The motivation of the study is that currently NVD is using 19 CWE cate-

gories even though there are several hundreds of CWE names. The reason is there

are simply too many categories. Problems derived from this could be loss of informa-

tion and many early CVE entries do not have CWE classification at all. Therefore,

to analyze the trends for the entire CVE data, a new classification system is needed.

The proposed methodology categorizing the CVE vulnerabilities might overcome

the problem of disconnection of category information pointed out above.

2.2.3 Common Vulnerability Scoring System
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Figure 2.1: Three CVSS metric groups (Mell et al., 2007)

In July 2003, National Infrastructure Advisory Council (NIAC) commissioned

a project to address the problem of multiple and incompatible IT related vulnerabil-

ity scoring systems. As a result, the Common Vulnerability Scoring System (CVSS)

has been adopted by many vendors since its first launch in 2004 such as applica-

tion vendors, vulnerability scanning and compliance tools, risk assessment products,

security bulletins, and academics (Stango et al., 2009; Mkpong-Ruffin et al., 2007;

Houmb et al., 2010). The CVSS scores for known vulnerabilities are readily available

on the majority of public vulnerability databases on the Web. The CVSS score sys-

tem provides vendor independent framework for communicating the characteristics

and impacts of the known vulnerabilities. Security analysts do not need to think

about qualitative evaluation of vulnerability severity when they estimate it with the

CVSS metric because it designed to be quantitative method in the final scores in

each vulnerability.

The scoring system is now on its second version which is finalized its design

in June 2007, and currently maintained by CVSS Special Interest Group (CVSS-

SIG) at Forum of Incident Response and Security Teams (FIRST)10. The CVSS is

composed of three metric groups: base, temporal and environmental as shown in

Figure 2.1. It attempts to evaluate the degree of risks posed by vulnerabilities, so

mitigation efforts can be prioritized. The score is range of [0.0, 10.0]; scores close

to 0.0 indicates more stable whereas scores close to 10.0 means more vulnerable to

10http://www.first.org/
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exploitation and causes more serious outcome. Here, CVSS is explained a bit more

detail than other standards since it is used in Chapter 6 and 10 significantly.

The base metric group, ranges of [0.0, 10.0], represents the intrinsic and funda-

mental characteristics of a vulnerability, so the score is not changed over time. The

base metric has two sub-scores of exploitability and impact sub-scores. The two

sub-scores are also ranges of [0.0, 10.0]. The exploitability sub-score captures how a

vulnerability is accessed and whether or not extra conditions are required to exploit

it while the impact sub-score measures how a vulnerability will directly affect an IT

asset as the degree of losses in confidentiality, integrity, and availability.

The exploitability sub-score is composed by three elements of access vector

(AV), access complexity (AC), and authentication (Au). The access vector reflects

how the vulnerability is exploited in terms of local (L), adjacent network (A), or

network (N). The access complexity measures the complexity of the attack required

to exploit the vulnerability once an attacker has gained access to the target system in

terms of High (H), Medium (M), or Low (L). The authentication counts the number

of times an attacker must authenticate to a target in order to exploit a vulnerability

in terms of Multiple (M), Single (S), or None (N).

On the other hand, the impact sub-score is composed by the three key aspects

in information security components: confidentiality, integrity and availability. The

impact attributes are all assessed in terms of None (N), Partial (P), or Complete

(C).

Before CVSS scores are entered into NVD, security experts analyze the vul-

nerabilities and assign one of the qualitative letter grades mentioned above on the

vulnerabilities (Houmb et al., 2010). Since the central goal of CVSS is producing

comparable vulnerability scores, analyzers are allowed to rate the vulnerabilities

only with those letters. Finally, scoring is the process of combining all the metric

values according to the specific formulas from (Mell et al., 2007).
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The temporal metric group, ranges of [0.0, 10.0], is measured dynamically in

terms of exploitability (E), remediation level (RL), and report confidence (RC).

Exploitability measures the current state of exploit techniques or code availability,

and is evaluated in terms of unproved (U), proof-of-concept (POC), Functional (F),

High (H), or Not Defined (ND). The remediation level refers to the type of reme-

diation available for the vulnerability in terms of Official Fix (OF), Temporary Fix

(TF), Workaround (W), Unavailable (U), or Not Defined (ND). The report confi-

dence attribute refers to the confidence in the existence of the vulnerability and the

credibility of the known technical details, and is evaluated in terms of Unconfirmed

(UC), Uncorroborated (UR), Confirmed (C), or Not Defined (ND). The levels of

exploitability will be positively affected by the three factors.

The environmental metric group, ranges of [0.0, 10.0], measures the charac-

teristics of a vulnerability that are associated with an user’s IT environment: all

related to the system environment and the stakeholders’ values. It is measured in

terms of collateral damage potential (CDP), target distribution (TD), and security

requirements (SR). The collateral damage potential measures the potential damage

to life and the loss of value for physical assets. The possible values for this metric

are None (N), Low (L), Low-Medium (LM), Medium-high (MH), High (H), and

Not Defined (ND). The target distribution measures the proportion of vulnerable

systems, and is evaluated in terms of None (N), Low (L), Medium (M), High (H),

or Not Defined (ND). The security requirements attributes enable the analyst to

customize the CVSS score depending on the importance of the affected IT asset to a

user’s organization, measured in terms of confidentiality, integrity, and availability;

each is measured as Low (L), Medium (M), High (H), or Not Defined (ND).

2.3 Public online vulnerability databases

One of the first thing to do for the quantitative vulnerability research is collect-

ing the datasets to be analyzed. Fortunately, there are many publically available
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Table 2.1: Vulnerability databases on the Web

Vulnerability Database URL
National Vulnerability Database (NVD) http://nvd.nist.gov/
Open Source Vulnerability Database (OSVDB) http://osvdb.org/
IBM Internet Security Systems (X-Force) http://xforce.iss.net/
CVE Details http://www.cvedetails.com/
Security Lab by Positive Technologies http://en.securitylab.ru/
DragonSoft Vulnerability Database http://vdb.dragonsoft.com/
US-CERT Vulnerability Notes Database (CERT) http://www.kb.cert.org/vuls
French Security Incident Response Team (FrSIRT) http://www.vupen.com/english/
Secunia http://secunia.com/
VUPEN http://www.vupen.com/english/

vulnerability databases on the Web. Table 2.1 shows some of them. Usually, they

are overlap and complement each other, so there is no the best source. Many of them

provide CVE identifiers, severity levels, CVSS scores, and published date. If it is

available, they also provide vulnerability patch date, discovery date, vulnerability

type, etc.

There are more than 100 vulnerability databases and security advisories on the

Web. Some of them are freely available, others are not. Some of them are managed

by governments and others are run by private security companies or open security

communities.

Massacci and Nguyen (Massacci and Nguyen, 2010) tried to answer the ques-

tions of how good researchers are at sampling for their quantitative vulnerability

analyses. They compare 14 representative vulnerability databases showing what

kind of information is available, and introduced 26 papers studying about quantita-

tive vulnerability analyses with respect to the what kind of vulnerability databases

the papers used. To compare and verify the number of vulnerabilities for Mozilla

Firefox (Version 1.0, 1.5, 2.0 and 3.0), they created their own vulnerability database

based on multiple vulnerability databases from the Web. The comparison is made

between the number of vulnerabilities from their database and Mozilla Founda-

tion Security Advisories (MFSA). The differences are about 68% for version 1.0 to
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Figure 2.2: Major actors influencing software vulnerability ecosystem

2.0, and 20% for version 3.0. They concluded that prediction models using MFSA

would miss 68% of total vulnerabilities in the end, called Vulnerability missing phe-

nomenon.

Liu and Zhang (2010) compares three vulnerability databases of X-force, Vu-

pen, and NVD, and concluded that the existing vulnerability rating systems are not

consistent with the normal distribution. As a result, they proposed a new system

for rating and scoring vulnerabilities called Vulnerability Rating and Scoring Sys-

tem (VRSS) which taking into account many kinds of existing vulnerability rating

systems.

Meanwhile, in his Ph.D. dissertation (Frei, 2009), Frei compares several SIPs

over several aspects in terms of history of information, organization location, number

of publications, and disclosure performances. He refers the vulnerability database

providers as Security Information Providers (SIP).

2.4 Actors in software vulnerability ecosystem

As Figure 2.2 shows, there are many players in the software vulnerability ecosys-

tem. Developers are the creators of security vulnerabilities in software systems.
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They could be a commercial or governmental vendor, sub-contractor, freelancer, or

open source community. In general, unsafe or careless programming behaviors cause

the security defects.

There are largely two types of discoverer: white hat and black hat. When

white hats discover the security vulnerability, they follow the responsible disclosure

practice, which usually means a full disclosure under the all stakeholders’ agreement

during a period of time for developing patches on the vulnerability before publishing

the details. On the other hand, if black hats detect the vulnerability, they use the

information for their own goods. Meanwhile, Ozment (2007b) divided the discoverer

into the three parts: vendor detector, external detector, and accidental detector.

Radianti et al. (2009) empirically shows that there is indeed vulnerability black

markets along with the white markets run by security companies such as Tipping-

Point 11. Whether it is black or white, the markets gives motivations and incentives

for the vulnerability hunters.

Many commercial software vendors directly sell their products online, but more

often retailers and service providers do business for the software producers. The

product buyers could be home users or organizations. For the home users, they

need to install the products and patches in their systems by themselves whereas, in

organizations, usually specialized administrators do the jobs.

Administrators’ role is very important for defending efficiently the systems

against malicious users and attackers. They need to decide when to install the

newly released security updates because some patches or updates causes problems

which not exist before, yet if it is too late, the system is helpless for the attacks.

Beattie et al. (2002) have examined 136 CVE entries, and they found that 92 patches

were good patches, 20 were revised or pulled patches, and 24 had no patches.

The terminology of “script kiddie” is frequently used to distinguish from “black

hat” who is able to create a hacking tools and able to analyze target system’s security

11http://www.eweek.com/c/a/Security/Price-War-iDefense-Doubles-Bounty-for-Security-Flaws/
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Figure 2.3: Generalized Model of Empirical Findings (White, 2006)

holes. The script kiddie uses scripts or programs made by other skilled hackers to

attack computer systems and networks.

Even though script kiddies’ skills are not mature enough to create neither their

own hacking tools nor analyzing software systems to find critical security holes,

they are increasingly recognized as a big concern in security community. In his

master’s thesis, White (2006) demonstrated the relationship between the number

of exploited machines and vulnerability lifecycle as shown in Figure 2.3. White’s

lifecycle clearly tells that right after the scrip is available the number of exploited

systems is dramatically increasing.

Distributing the detail information to the public about the discovered vulnera-

bility under the responsible disclosure agreement is role of software vendors, security

advisories, mass media, and researchers. At the same time, they educate users about

the seriousness of the vulnerabilities and how to handle with the problems.
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Chapter 3

VULNERABILITY DISCOVERY MODEL
(VDM)

Like Yogi Berra said “Prediction is very hard, especially about the future”,

calculating what will be happening in the future is not an easy task, even for a

near future. In weather forecast, we can clearly observe how the prediction is dif-

ficult. With all those tremendous calculating powers, supercomputers frequently

make mistakes in the forecasting. Rather, old people’s foresight, based on their

body condition, whether it will be rainy or not, often more accurate than the fore-

cast from the broadcast: I remember that my father said it will rain because his

knee was aching.

The reason why the luxurious computers make mistakes is mainly because me-

teorologists are not able to feed the sufficient information or parameters for the

machines to predict the future accurate enough, not to even mention about the but-

terfly effect. It sounds not feasible to provide all the possibly related factors to the

machines for always accurate predictions. However, in some degree, meteorologists

deliver reasonable forecasting. The benefit from accurate weather forecasting is ob-

vious. We could schedule events affected by weather conditions in advance which

could prevent from wasting the time, effort and money.

Just like the weather forecast, when we can estimate the vulnerability discovery

trend in advance in some degree, let alone accurately, people in IT industry can

allocate their resources optimally such as software deployment, patch management,
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Figure 3.1: Vulnerability discovery model taxonomy.

and risk assessment. Even for end-users could take some advantages from it by

assessing how vulnerable their systems are, so that they could take actions before

something bad happens.

Use of quantitative reliability growth models is now common in the software

reliability engineering (Musa, 1999; Lyu, 1995). Software reliability growth models

(SRGM) project bug found-and-remove process: as bugs are found and removed,

fewer bugs remain. The bug finding rate gradually drops and the cumulative number

of bugs eventually approaches saturation. Such growth models are used to determine

when a software system is ready to be released and what future failure rates can be

expected.

Vulnerability discovery models allow prediction of the number of vulnerabilities

that are likely to be discovered in the future. Hence, they allow the vendors and

the end users to manage risk by optimizing resource allocation. Most vulnerability

discovery models proposed so far use the calendar time as an independent variable.

Effort based modeling has also been proposed, which requires the use of market

share data.

In general, model derivations assume that a software system is stable. In other

words, injecting a new chunk of source code is not expected. However, in reality,

models are being applied to software that has evolved for several years. Software

evolution is the process that describes a gradually changing software system. It has

been suggested that the software evolution affects on growth shapes of the proposed
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time-based models since new vulnerabilities may get introduced along with the new

version of software in the process of evolution. Kim (2007) has addressed the impact

of software evolution and has suggested that the S-shaped model may still apply

while the significance of parameters may change.

Researchers have proposed software vulnerability discovery models (VDMs) (Al-

hazmi and Malaiya, 2005) to project the current trend and to estimate the discovery

process since vulnerability datasets have been publically available from early 2000s.

A few VDMs have been proposed by researchers which include Anderson (2002),

Rescorla (2003), Alhazmi and Malaiya (2008), Ozment and Schechter (2006), Kim

et al. (2007), Joh and Malaiya (2010b) and Chen et al. (2010). Figure 3.1 shows

classification of vulnerability discovery models. Vulnerability discovery models are

separated into time-based and effort-based models. The time-based models use

calendar time as the independent variable factor and the effort-based model uses

the number of installed system or the number of system users as the main factor.

These models incorporate the effect of the rising and declining market share on the

software. Each model uses a different approach with different assumptions, and

parameters which restrict their performances. As a result, the VDMs frequently

predict different vulnerability discovery rates using the same datasets.

Recently, Vulnerability Discovery Models considering about sudden increases

caused by successive versions during vulnerability discovery process have been pro-

posed (Kim et al., 2007). In their study, Kim et al. (2007) proposed a new approach

for modeling the vulnerability discovery process based on shared source code mea-

surements among multi-version software systems, and verified their theory by exam-

ining two open source software systems. Chen et al. (2010) presents a multi-cycle

vulnerability discovery model utilizing a sinusoidal function. The model illustrates

the relationship between the number of vulnerabilities and their release time, and is

compared with other VDMs based on the datasets from eight versions of Windows

operating systems.
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The applicability of VDMs to several operating systems was examined in (Al-

hazmi and Malaiya, 2008). The results indicate that while some of the models fit

the data for most operating systems well, others do not fit well or just provide a

good fit only during a specific phase. In this Chapter, Alhazmi-Malaiya Logistic

(AML), linear, and Alhazmi-Malaiya effort-based models are reviewed, which are

the models mainly used in the dissertation.

3.1 Alhazmi-Malaiya Logistic model

In Figure 3.2, the solid S-shaped line shows the shape of the Alhazmi-Malaiya

Logistic (AML) model (Alhazmi and Malaiya, 2008). The model is based on the

observation that the attention given to an operating system increases as it gains

market share, it peaks at some time and then drops when a newer competing ver-

sion is introduced. It is assumed that the cumulative number of vulnerabilities is

governed by two factors in Equation 3.1. The first factor increases with the time

because of the rising share of the installed base. The second factors declines as

the number of remaining undetected vulnerabilities declines. The saturation effect

is modeled by the second factor. Assuming that the vulnerability discovery rate

is given by Equation 3.1, Equation 3.2 can be obtained by solving the differential
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equation which gives the cumulative number of vulnerabilities Ω. Parameters A

and B are empirical constants determined from the recorded data. C is a constant

introduced while solving Equation 3.1. The model is defined for time values t from

the negative infinity to the positive infinity.

ωAML(t) = AΩ(B −Ω) (3.1)

ΩAML(t) =
B

BC−ABt + 1
(3.2)

During the release period, the vulnerability discovery rate gradually increases.

At this phase, called learning phase, as shown in Figure 3.2, the software is gaining

market share gradually. In the linear phase, the discovery rate reaches the maximum

due to the popularity, and finally, in the saturation phase, vulnerability discovery

rate slows down. The two transition points and mid-point are mathematically de-

fined in next section or in (Alhazmi and Malaiya, 2006b).

The transition points, especially for mid-point and the second transition point

are not deterministic. They could be possibly altered depending on the future

environment of how much codes are going to be newly injected on the original

version. As a result, under certain circumstances, the S-shape could be mutated in

various ways. Among those mutant S-shapes, a linear discovery pattern seems to

appear noticeably in many popular software systems recently (Schryen, 2009).

As mentioned previously, Kim et al. (2007) proposed an advanced version of

AML model considering multi-version software systems which incorporates the im-

pact of vulnerabilities discovered in the code inherited by the later versions. They

empirically shows that when shared vulnerabilities from a successive version are

added, the linear phase in the overall vulnerability discovery process is extended,

and they says it is an example of the superposition effect (Eick et al., 2001). De-

spite of the higher accuracy than the original AML, the multi-version AML is quite

ponderous to be utilized right away due to the model parameter of how much code

and functionality are shared between the successive versions.
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3.2 Linear model

Linear Vulnerability Discovery model (LVD) is another example of time-based

vulnerability discovery model that we examine in this dissertation. The LVD model

assumes that the vulnerability discovery rate is constant in any circumstance. The

simple linear model can be expressed as Equation 3.3.

Ω(t) = k + S × t (3.3)

where S is a slope that indicates vulnerability discovery rate and k is a constant.

Applying the LVD model to the entire lifecycle of a vulnerability dataset and ob-

taining a good result is difficult. However, we can apply the LVD model to the linear

phase of AML model in Figure 3.2.

To apply the LVD to vulnerability discovery datasets, it is necessary to identify

the two transition points. The derivatives of Equation 3.2 arises the vulnerability

discovery rate in Figure 3.2. The maximum and minimum for second derivatives

of Equation 3.2 derives two transition points. These two points are the transition

point 1 and point 2 in Figure 3.2. Equation 3.4 shows the derivatives of Equation
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3.2.
dΩ

dt
=

AB3Ce−ABt

(BCe−ABt + 1)2
(3.4)

Note that the highest value of Equation 3.4 occurs at the midpoint of Figure

3.2 at time Tm = lnBC/AB. Equation 3.5 shows the derivatives of Equation 3.4.

d2Ω

dt2
=

2A2C2B5Ce−ABt

(BCe−ABt + 1)3
−

A2B4Ce−ABt

(BCe−ABt + 1)2
(3.5)

The maximum and minimum values in Equation 3.5 represent the two transition

points in Figure 3.2. The solutions of the third derivative from Equation 3.2 to zero

are the two transition points which occur at times T1 = ln[BC/(2 + sqrt(3))]/AB

and T2 = ln[BC/(2 − sqrt(3))]/AB.

We set the upper boundary LVD +σ and the lower boundary LVD −σ shows in

Figure 3.3 to decide whether a discovery process is in the linear phase or not, where

σ is a standard deviation between the LVD projection and actual datasets. When a

real data is between these two boundaries or upper side of LVD −σ, it is in a linear

phase. Line 1 and 2 in Figure 3.3 is examples of these cases. When a real data is

lower than LVD −σ, in 3.3, we can say it reach a saturation phase like line 3 in the

figure. The model is utilized in Chapter 5 for the rapidly evolving software systems,

Web browsers.

3.3 Alhazmi-Malaiya effort-based model

VDMs are usually based on the calendar time due to the easiness of tracking

and associating vulnerabilities to the time of discovery. Another point of view,

instead of the calendar time, is share of the installed base of the specific system.

The philosophy of this method is that a larger share of the installations should

cause more vulnerabilities discovered since more people should test the system with

a bigger market sharing. A major environmental factor is the number of installations

which depends on the share of the installed base of the specific system. It is much
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more rewarding to find or exploit vulnerabilities that exist in a large number of

computers. Hence, it can be expected that a larger share of the effort, which is

going into the discovery of vulnerabilities, both internal and external, would go

toward a system with a larger installed base.

The effort-based model, introduced by Alhazmi and Malaiya (2005), is using

the concept of Equivalent Effort (E) as shown in Equation 3.6, where Ui and Pi

represent, at the period of time i, the total number of users of all systems and

the percentage of users using the system. It is based on the assumption that the

vulnerability finding effort is proportional to actual usage, as given by the total

number of installed systems. The number is measured in million system month

(MSM) usually.

E =
n

∑
i=0

(Ui × Pi) (3.6)

Ω(t) = B(1 − e−λvuE) (3.7)

Sometimes, equivalent effort reflects the effort that would have gone into find-

ing vulnerabilities more accurately than time alone, and it is analogous to using

CPU time for software reliability growth models (Musa, 1999). When we assume

that the vulnerability detection rate with respect to effort is proportional to the

fraction of remaining vulnerability, the exponential model as shown in Equation 3.7

can be achieved, where λvu is a parameter similar to failure intensity in SRGMs,

and B is another parameter representing the number of vulnerabilities which will

be found eventually. However, we should keep in mind that the usage or market

share information is not always available for many software systems. The model is

examined in Chapter 4 and 5.

3.4 Factors influencing VDM

There are important factors to impact a vulnerability discovery rate. Most

significant factors are code size, software age, popularity and software evolution.
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Several studies (Akiyama, 1971; Compton and Withrow, 1990; Hatton, 1997; Rosen-

berg, 1997) have examined the relationship between the code size and the number

of defects. The studies show that the number of defects or errors is increasing as

code size is getting bigger. A first order approximation assumes a linear relation-

ship between the code size and the number of defects, which allows measuring the

defect density. Since the vulnerabilities are a class of defects, we can similarly define

a measurement called vulnerability density (Alhazmi et al., 2005). Available data

allows us to calculate the densities of the discovered vulnerabilities.

Market Share is one of the most significant factors impacting the effort expended

in exploring potential vulnerabilities. A higher market share provides more incentive

to explore and exploit vulnerabilities for both black hats and script kiddies since

both would find it more profitable or satisfying to spend their time on a software

system with a higher market share. The effect of rise-and-fall in the market share is

implicit in the AML model. Meanwhile, the time-based models reflect software age

more explicitly than the effort-based model.
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Chapter 4

VULNERABILITY DISCOVERY
PROCESS IN WEB SERVERS

In this chapter, the feasibility of characterizing the vulnerability discovery pro-

cess in the two major HTTP servers, Apache and IIS, is quantitatively examined

using both time and effort based vulnerability discovery models, explained in Chap-

ter 3.1 and 3.3 respectively, using data spanning more than a decade. The data

used incorporates the effect of software evolution for both servers. In addition to

aggregate vulnerabilities, different groups of vulnerabilities classified using both the

error types and severity levels are also examined. Results show that the selected vul-

nerability discovery models of both types can fit the data of the two HTTP servers

very well. Results also suggest that separate modeling for an individual class of vul-

nerabilities might be done. In addition to the model fitting, predictive capabilities

of the two models are also examined. The results demonstrate the applicability of

quantitative methods to widely used products, which have undergone evolution.

4.1 Introduction

Two of the major software components of the Internet are HTTP (Hyper Text

Transfer Protocol) servers (also termedWeb servers) andWeb browsers, which serves

as clients. Both components were introduced in 1991 by Tim Berners-Lee of CERN

1. They have now become indispensable parts of both organizational and personal

interactions. The early Web servers provided information using static HTML pages.

1http://info.cern.ch/
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Figure 4.1: Apache and IIS release timeline for major versions

The Web servers now provide dynamic and interactive services to the clients using

database queries, executable script, etc. Web servers can support functions such

as serving streaming media, email, etc. In the emerging cloud computing systems,

the HTTP servers support virtual implementations of applications and operating

systems. HTTP servers have, thus, emerged as a focal point for the Internet.

The Apache Web server was introduced in 1995, and the Microsoft Internet

Information Services (IIS) Web server was originally supplied as part of the NT

operating systems in 1995-1996. Figure 4.1 shows the major versions’ timeline for

the two Web servers. While Apache has a much larger overall market share, roughly

55% on March 2010, IIS may have a higher share of the corporate Websites. The
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Table 4.1: Functional support comparison in Apache and IIS

Feature IIS Apache
ASP Native With Chilisoft, Apache::ASP, etc.
Active directory authentication Yes With third-party modules
Live configuration editing Yes No
CGI, Perl, Pyhon, PHP, JSP YES Yes
Runs under Windows OSes Yes Yes
Runs under Unix-like OSes No Yes
Source: http://www.serverwatch.com/tutorials/article.php/3074841

market share for other servers is very small, and thus, they are not examined here.

IIS is the only major HTTP server that is not open-source. Both Apache and IIS

are generally comparable in features. IIS runs only under the Windows operating

systems and comes bundled with some of the versions, whereas Apache supports all

the major operating systems. Table 4.1 gives a brief functional comparison between

the two.

The security of systems connected to the Internet depends on several compo-

nents of the system. These include the operating systems, HTTP servers and Web

browsers. Some of the major security compromises arise because of vulnerabilities

in the HTTP servers.

The exploitations for some of the server vulnerabilities are well known. The

Code Red worm (Moore et al., 2002), which exploited a vulnerability in IIS (de-

scribed in Microsoft Security Bulletin MS01-033, June 18, 2001), appeared on July

13, 2001, and soon spread world-wide in unpatched systems.

All the computing systems connected to the network are subjects to some se-

curity risk. While there have been many studies attempting to identify causes of

vulnerabilities and potential counter-measures, the development of systematic quan-

titative methods to characterize security have begun only recently. There has been

considerable debate comparing the security attributes of open source and propri-

etary software (Anderson, 2002). However, for a careful interpretation of the data,
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rigorous quantitative modeling methods are needed. The likelihood of a system be-

ing compromised depends on the probability that a newly discovered vulnerability

which will be exploited. Thus, the risk is better represented by the vulnerabilities

which are not yet discovered and the vulnerability discovery rate rather than by

the vulnerabilities that have been already discovered in the past and remedied by

patches.

HTTP servers are very attractive targets for malicious attackers. The servers

can represent the first line of defense against attacks that, if bypassed, can com-

promise the integrity, confidentiality and availability attributes of the enterprise

security. Thus, it is essential to understand the threat posed by both undiscovered

vulnerabilities and recently discovered vulnerabilities for which patches have not

been developed or applied. Despite the significance of security in the HTTP servers,

only limited work has been done related to the vulnerability discovery process for

the servers (Woo et al., 2006b; Álvarez and Petrovic, 2003). Such work would permit

the developers and the users to better estimate future vulnerability discovery rates.

It would also be highly desirable to be able to project what types of vulnerabilities

are more likely to be discovered.

Some of the available works on HTTP servers discuss some specific problems or

attacks that the servers might be faced, such as denial of service attacks (DoS) (Aura

et al., 2000; Kargl et al., 2001), in which the authors suggest some countermeasures

to be applied when attacks for these types take place. Our focus is the discovery rates

of vulnerabilities in the two most popular Web server software systems, which have

undergone significant evolution. Unlike some of the recent studies on the discovery

rates in specific operating systems (Alhazmi and Malaiya, 2008), complete data for

all the versions of the two servers is examined in the chapter.

Here, the applicability of the two most successful models for HTTP servers

is investigated. The models used here are the logistic time-based model and the
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effort-based model proposed by Alhazmi and Malaiya (Alhazmi and Malaiya, 2005)

introduced in Chapter 2. These two models have been found to fit datasets of the

major Windows and Linux operating systems, as determined by goodness of fit and

other measures (Alhazmi and Malaiya, 2008; Alhazmi et al., 2007). In this chapter,

the Alhazmi-Malaiya Logistic Model is referred to as the time-based model, and

Alhazmi-Malaiya effort-based model is termed the effort-based model. Several time-

based models have been proposed, however the Alhazmi-Malaiya Logistic Model has

selected for the analysis and comparison here since it has generally provided a better

fit compared to other models (Alhazmi and Malaiya, 2008). The effort-based model

has been selected because it is the only model proposed in the literature that uses

effort instead of time. The two models contrast two different approaches.

In the chapter, for the effort-based model, in Equation 3.6, Ui is the total

number of installations of the HTTP servers at the period of time i, n represents

the last usage period, and Pi is the percentage of the servers using the specific

software for measuring E. Ni is the number of machines running the specific server

during time i. The result is obtained in terms of system-months. The measure Ui

can be calculated using the data about total number of Web servers.

4.2 Aggregate vulnerabilities in HTTP server

In this section, the datasets for the total vulnerabilities of the Apache and IIS

Web servers are fitted to the models. The goodness of fit is evaluated to determine

how well the models reflect the actual vulnerability discovery process. The vulnera-

bility datasets are from NVD. The market share data from Netcraft2 are used. Note

that Apache represents an open source software system whereas IIS represents a

proprietary closed source system.

Market share is one of the most significant factors impacting the effort expended

in exploring potential vulnerabilities. Higher market share indicates more incentive

2http://news.netcraft.com/
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Table 4.2: Market share & vulnerabilities found

Web server Apache IIS Nginx Lighttpd Other
Market share 52.26% 32.91% 1.87% 1.61% 11.35%
Vulnerabilities 132 137 0 18 N/A
Release year 1995 1995 2005 2003 N/A
Latest version 2.2.11 7.5 0.6.35 1.4.20 N/A

to explore and exploit vulnerabilities since people would find it more profitable or

satisfying to spend their time on a software system with a higher market share.

Table 4.2 presents data obtained from NVD and Netcraft on January 2009,

showing the current Web server market share and total number of vulnerabilities

found to date. Since very little information about Google Web server is publically

available, Google Web server is omitted from the table although its market share

is approximately 5%. For servers with a lower percentage of the market, such as

Google Web server, Nginx and Lighttpd, the total number of vulnerabilities found

is zero or very few. However, that does not mean that these systems are more

secure, but merely that only limited effort has gone into finding their vulnerabilities.

A significant number of vulnerabilities has been found in both Apache and IIS,

illustrating the impact of the market share on the motivation for exploring or finding

vulnerabilities. Here, the market share is used as an indicator of effort for the effort-

based model.

Figure 4.2 shows the Web server market share for Apache and IIS. As demon-

strated by the figure, the number of Web servers continues to grow steadily. Among

the various Web servers, Apache and IIS dominate the Web server market. Other

Web servers such as Nginx and Lighttpd occupy a very small share of the market,

as shown in Table 4.2. Since the total share of all the Web servers, except Apache

and IIS, represents less than 15% of the market share, few vulnerabilities have been

found in them and, hence, the data for these servers has not been used here.
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Figure 4.2: Web server market share trends

There is a marked gap between the Apache and IIS market shares, as shown in

Figure 4.2. This difference in market share may be due to several factors. Perhaps

the most important of these is that Apache is available for all major operating system

platforms and can be obtained without cost. Apache may also have benefited from

not having been exposed to serious security issues such as the Code Red (Moore

et al., 2002) or Nimda worms (Machie et al., 2001) that were faced by IIS in 2001.

Since its release in 1995, Apache HTTP server has achieved and maintained

a large installed base and was used by over 90 million Web server systems during

January 2009. In this section, the vulnerability datasets are fitted to the time-based

and the effort-based models. Figure 4.3 gives the vulnerability data from NVD for

the period between January 1996 and December 2008. Netcraft provides the market

share data covers this time period.
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Figure 4.3: Fitting Web server - aggregated vulnerability data; (a) and (b) show the time-based
model fittings for Apache and IIS respectively. (c) and (d) are effort-based model
fittings for Apache and IIS respectively

In Figure 4.3, the solid lines indicate the fitted models while the “O” marks

show cumulative vulnerabilities for the servers. Figure 4.3 (a) shows cumulative

Apache Web Server’s vulnerabilities by month for the time-based model. The slope

of the curve for Apache rises gently until about January 2000, after which the slope

had remained steady until the end of 2007. From the point of the three phases in

the vulnerability discovery process (Alhazmi and Malaiya, 2005), Apache may be

entering the saturation phase, since only three vulnerabilities were found in 2008.

Figure 4.3 (c) shows cumulative vulnerabilities by the number of Apache instal-

lations in terms of million system-months and the fitted effort-based model. This

effort-based model also shows that Apache is approaching the saturation phase since

any vulnerability has not been found after 4000 million system months as the number

of Apache severs increases.
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Table 4.3: χ2 goodness of fit test - Time-based

A B C χ2 χ2
critical P-value

Apache 0.0003 135.57 0.5745 24.69 186.1458 1
IIS 0.0005 129.74 0.7034 79.82 186.1458 1
Windows NT 0.00018 253.3 0.1293 136.14 173.0041 0.64535
Windows 98 0.0004 100.94 0.1002 81.11 114.2679 0.99688

Table 4.4: χ2 goodness of fit test - Effort-based

B λvu χ2 χ2
critical P-value

Apache 136.50 0.0007 16.224 61.65623 0.99996
IIS 130.13 0.0064 14.688 55.75848 0.99961

IIS, released in 1995, is the only major proprietary Web server with over 60

million installations during January 2009. The vulnerability dataset from January

1996 to December 2008 is used in this analysis. Figure 4.3 (b) shows the cumulative

number of vulnerabilities by month and the fitted time-based model for the IIS

Web server. The time-based and effort-based models fit the data for IIS very well.

The IIS Web server appears to have reached the saturation phase since 2004 the

vulnerability finding rate has been low. There was a recent increase because of the

six new vulnerabilities found during 2008. A possible explanation for this could be

that the number of IIS Web servers installed has increased since 2006 and a new

version of IIS was released in February 2008.

Figure 4.3 (d) shows the cumulative number of vulnerabilities for the IIS server

and the effort-based model by million system-months. The figure shows a significant

degree of saturation.

The model fittings as shown in Figure 4.3 have been examined in Table 4.3 and

4.4. The two tables give the χ2 (chi-square) values and model parameter values for

the time-based and effort-based models respectively. For more information about the

χ2 goodness of fit test, see Chapter 7.4. For χ2 goodness of fit test, the alpha level

here is 0.05. For comparison, the corresponding parameter values are also provided
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for the Windows 98 and NT operating systems, as well as the chi-square values.

The chi-square values are less than the critical values which demonstrates that the

fit for Apache, IIS, Windows 98 and NT is significant for the both models with

P-values ranging from 0.64535 to 1, indicating that the fit is statistically significant.

It is observed that parameter A is always less than 0.005 and parameter C is also

less than 0.71, while parameter B corresponds approximately to the number of

vulnerabilities.

4.3 Vulnerability categories

In the previous section, the application of the two models for the total aggre-

gated number of vulnerabilities of Apache and IIS has been examined. Here, the

models applied to portioned data using a classification scheme for server vulnerabil-

ities.

Distinction among vulnerabilities is useful when practitioners want to examine

the nature and extent of the problem. It can help to determine what kinds of pro-

tective actions would be most effective. Vulnerability taxonomy is still an evolving

area of research. Several taxonomies have been proposed (Aslam et al., 1996; Bishop,

1999; Landwehr et al., 1994; Seacord and Householder, 2005; Rajeev Gopalakrishna

and Vitek, 2005; Venter et al., 2008). An ideal taxonomy should have such desirable

properties as mutual exclusiveness, clear and unique definition, and coverage of all

software vulnerabilities.

Vulnerabilities can be classified using schemes based on cause, severity, impact,

source, etc. In this analysis, the classification scheme is used which was employed

by the NVD. This classification is based on the causes of vulnerabilities. The eight

classes are as follows (Alhazmi et al., 2006):

1. Input Validation Error (Boundary condition error, Buffer overflow): Such

types of vulnerabilities include failure to verify the incorrect input and read-

write involving an invalid memory address.
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2. Access Validation Error: These vulnerabilities cause failure in enforcing the

correct privilege for a user.

3. Exceptional Condition Error: These arise due to failures in responding to

unexpected data or conditions.

4. Environmental Error: These are triggered by specific conditions of the com-

putational environment.

5. Configuration Error: These vulnerabilities result from improper system set-

tings.

6. Race Condition Error: These are caused by the improper serialization of the

sequences of processes.

7. Design Error: These are caused by improper design of the software structure.

8. Others: Includes vulnerabilities that do not belong to the types listed above,

sometimes referred to as nonstandard.

Unfortunately, the eight classes are not completely mutually exclusive. Be-

cause a vulnerability can belong to more than one category, the summation of all

categories for a single software system may add up to more than the total num-

ber of vulnerabilities (also the percentages may exceed 100%) (Gopalakrishna and

Spafford, 2005).

Figure 4.4 compares vulnerability distributions in Apache and IIS. The cate-

gories with the highest numbers are input validation errors, followed by design and

configuration errors. There is a slight difference in category ordering between Apache

and IIS. Apache has more configuration errors than access validation errors whereas

IIS has more access validation errors. While IIS has been more vulnerable to access
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Figure 4.4: Categorizing Web server vulnerabilities by type

validation errors, the fact that Apache has been more vulnerable to configuration

errors may be due to Apache’s more complex installation requirements.

To determine whether there is an observable pattern at the level of individual

classes, the vulnerabilities are plotted for the major categories. Since a similar

pattern for the uncategorized vulnerabilities is noted, a possible fit was examined.

Figure 4.5 show the fit for the Apache and IIS. It may be noted that the number of

input validation errors and design errors are the most common category in Apache

and IIS. We chose to fit the categories which have enough data points available

for fitting. In the figures, these three major categories are shown: input validation

errors, design and access validation errors.

The categorized number of vulnerabilities shows the same pattern as demon-

strated by the total number of vulnerabilities. Thus, each category shows a related

pattern regarding to the total number of vulnerabilities. Time-based and effort-

based models are fitted for each category. Table 4.5 and 4.6 show the χ2 goodness

of fit tests for the Apache and IIS models by category respectively. The tables

demonstrate that the χ2 values for each category are less than the corresponding χ2

critical values and the P-values are close to 1. The fits for input validation, design

and access validation error classes are significant for both models.
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Figure 4.5: Fitting Web server - vulnerability by type; (a) and (b) show the time-based model
fittings for Apache and IIS respectively. (c) and (d) are effort-based model fittings
for Apache and IIS respectively

4.4 Vulnerability severity level

Severity is another way of classifying vulnerabilities. The severity level of a

vulnerability indicates how serious the impact of an exploitation can be. Three

severity levels are often defined; high, medium and low. Some other organizations

such as Secunia 3 use three to five levels and use their own definition for severity. The

NVD has used Common Vulnerability Scoring System (CVSS) (Mell et al., 2007)

metric for vulnerability severity with ranges from 0.0 to 10.0; CVSS uses many

factors to determine the severity where the range from 0.0 to 3.99 corresponds to

low severity, 4.0 to 6.99 to medium severity and 7.0 to 10.0 to high severity. The

NVD describes three severity levels as follows:

3http://secunia.com/
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Table 4.5: χ2 goodness of fit test results by type - Time-based

A B C χ2 χ2
critical P-val.

A
pa

ch
e Input 0.00036 52.75307 1.342086 19.87597 186.1458 1

Design 0.00064 27.99523 67.37607 27.92677 186.1458 1
Access 0.001474 8.554207 22060622 120.5440 186.1458 1

II
S

Input 0.000559 64.79746 1.964722 24.007 186.1458 1
Design 0.000887 18.89434 15.97189 81.139 186.1458 1
Access 0.000574 28.06895 5.850765 31.74241 186.1458 1

Table 4.6: χ2 goodness of fit test results by type - Effort-based

B λvu χ2 χ2
critical P-val.

A
pa

ch
e Input 51.2449 0.000958 0.006129 61.65623 0.99998

Design 31.1015 0.000817 0.003253 61.65623 0.99999
Access 10.4792 0.0006 0.06152 61.65623 1

II
S

Input 65.20718 0.005732 3.242342 55.75848 1
Design 19.24239 0.022189 2.060538 55.75848 1
Access 27.79932 0.005897 3.050723 55.75848 1

1. High Severity: vulnerabilities make it possible for a remote attacker to violate

the security protection, or permit a local attack that gains complete control,

or are otherwise important enough to have an associated CERT/CC advisory

or US-CERT alert.

2. Medium Severity: vulnerabilities are those not meeting the definition of either

‘high’ or ‘low’ severity.

3. Low Severity: vulnerabilities typically do not yield valuable information or

control over a system but may provide the attacker with information that

may help him find and exploit other vulnerabilities or may be inconsequential

for most organizations.

The distributions of the severity levels of the Apache and IIS vulnerabilities

show similarity. About 60% to 70% of total vulnerabilities are the medium severity,

followed by 30% to 40% with high severity, with low severities at about 5%.
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Figure 4.6: Fitting Web server - vulnerability by severity; (a) and (b) show the time-based model
fittings for Apache and IIS respectively. (c) and (d) are effort-based model fittings
for Apache and IIS respectively

The time-based and effort-based models have been applied to the three severity

classes. In Figure 4.6, the solid lines indicate the fitted time-based and effort-

based models for each severity level. The figures show the result of fitting the

time-based and effort-based models to the three severity classes. The plots suggest

that especially for the medium severity vulnerabilities, the IIS vulnerability data

appears to be in the saturation phase while the Apache vulnerabilities are still

being discovered.

Table 4.7 and 4.8 show the χ2 goodness of fit tests and the parameter values for

Apache and IIS by severity level respectively. The parameter values are obtained

from data corresponding to Figure 4.6 using regression analysis. As before, for

χ2 goodness of fit test, the test alpha level is 0.05. This χ2 test shows that the
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Table 4.7: χ2 goodness of fit test results by severity - Time-based

A B C χ2 χ2
critical P-val.

A
pa

ch
e High 0.000337 135.575 0.574563 28.85319 186.1458 1

Medium 0.000298 40.56143 0.805567 55.79249 186.1458 1
Low 0.000339 88.93068 1.092679 24.48047 186.1458 1

II
S

High 0.000542 129.7421 0.703459 32.68021 186.1458 1
Medium 0.000487 43.63152 1.577562 72.58211 186.1458 1
Low 0.000562 80.2965 1.271963 10.52017 186.1458 1

Table 4.8: χ2 goodness of fit test results by severity - Effort-based

B λvu χ2 χ2
critical P-val.

A
pa

ch
e High 37.32424 0.001061 12.88105 61.65623 0.9999

Medium 93.90457 0.000541 9.335251 61.65623 1
Low 9.835684 0.0004 2.359279 61.65623 0.9999

II
S

High 43.83469 0.005239 6.066258 55.75848 0.9996
Medium 80.51197 0.006809 9.343797 55.75848 1
Low 5.987127 0.014206 0.460018 55.75848 0.9999

fits for the three severity categories are significant, and the χ2 tests show that the

vulnerabilities classified by severity datasets fit the model well.

The fraction of high and medium severity vulnerabilities is substantial and

presents a significant risk to the HTTP servers potentially leading to problems

such as unauthorized system access, denial of service (DoS) attack, exposure of

sensitive information, etc. Figure 4.7 plots the percentage of the cumulative number

of vulnerabilities for each severity class for each month for Apache and IIS. Both

Apache and IIS show a similar pattern. Note that the first few points in the plots are

not significant since they represent only a small number of vulnerabilities. The plots

suggest that a larger fraction of the high severity vulnerabilities is found early while

the medium severity vulnerabilities represents about 60%∼70% share after three or

four years later. This data suggests that there may be a deliberate effort to focus on

high severity vulnerabilities in early phase. This is supported by the observations

about the patching rate of input validation errors which tend to have higher severity
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Figure 4.7: Vulnerability proportions by severity are shown for Apache and IIS in (a) and (b)
respectively

levels. Penta et al. (2009) have empirically shown that buffer overflows are patched

significantly faster than other types of vulnerabilities because they represent the

kind to which the developers tend to respond faster.

4.5 Predictive capability

Even when a VDM shows the nice goodness of fit during the period covered,

it is possible that the model may not be able to predict well in the future if the

model does not anticipate changes in the trend that is actually encountered. In

the software reliability engineering field, the predictive capability for a number of

reliability growth models has been investigated in the past (Musa and Okumoto,

1984; Malaiya et al., 1992). A VDM having a better predictive capability should

be able to estimate the future behavior better, for example, the total number of

vulnerabilities using currently available datasets. It can be used to estimate the

resources needed for maintenance and the risk estimation.

Here, the starting point for comparing the two models is chosen to be when

cumulative installations exceed 100 million and 50 million for Apache and IIS Web
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Table 4.9: Prediction error

Effort-based Time-based
Apache -0.0749 -0.1665
IIS -0.1177 -0.1153

servers respectively since only after some significant time, the effort-based model

can project the future trend. The predictive capabilities for the two models can be

comparable only when the two models have data points for the same specific time

points. Because the time-based model has data points for every single month, but

the effort based model does not, the models are applied for the calendar time with

somewhat unequal interval of months during the estimations. For each time point,

the available partial data at the point are fitted to the models using regression anal-

ysis to estimate model parameters. Then the models with the estimated parameters

for each time point are used to predict the final number of vulnerabilities at the end

of the time period. The estimated final values for each time point are compared

with the actual number of vulnerabilities to calculate normalized estimation errors.

We use prediction error (PE) as a metric for comparison (Malaiya et al., 1992).

PE is a measure of how well a model predicts throughout the test phase. Prediction

error PE is given by:

PE =
1

n

t=1
∑
n

Ωt −Ω

Ω
(4.1)

where n is the total number of data points during the prediction period, and Ω

is the actual number of vulnerabilities whereas Ωt is the estimated final number of

vulnerabilities at time t. The normalized errors ((Ωt−Ω)/Ω) of the estimated values

for the two Web servers are shown in Figure 4.8. The PE values are given in Table

4.9, which suggests that the VDMs tend to underestimate Ω.

In all cases, prediction errors approaches the zero line as more and more of the

data becomes available. For the Apache Web server, in Figure 4.8 (a), the effort-

based model yields a lower prediction error than the time-based model. Also the
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Figure 4.8: Prediction errors are shown for Apache and IIS in (a) and (b) respectivly

effort-based model stabilizes to the 0% error value line faster. The time-based model

shows a somewhat similar pattern with the effort-based model but a bit less stable.

For the IIS, the effort-based model and the time-based model both yield generally

similar prediction patterns each other in Figure 4.8 (b). However, it needs to be

kept in mind that the effort based model requires the use of market share data which

may not always be readily available. In some cases, the effort variation assumed by

the AML model is consistent with real data usage. In other cases, it is possible that

usage may vary in a different manner or unpredictably. In such situations, explicitly

use of the effort variation, as measured by the installed base, may provide more

accurate predictions.

4.6 Discussion

When the total number of vulnerabilities is examined, both the time-based and

effort-based models fit the datasets well, even when the vulnerabilities are catego-

rized by type. This suggests that the models can be used to estimate the number

of vulnerabilities expected to be discovered in a given period, and which types are

likely to dominate.
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Table 4.10: Known DKD vs. Known VKD

Application Ksloc Known DKD Known VKD Ratio
Defects Vulnerabilities (VKD/DKD)

Apache 373(Unix) 1380 3.699 132 0.353 0.0954
IIS NA NA NA 137 NA NA
Win 98 16,000 10,000 0.625 91 0.0057 0.0091
WinNT 4.0 18,000 10,000 0.556 197 0.0109 0.0197

The results of model fitting for the vulnerabilities classified by type are shown

in Table 4.5. The fitting was done for the most common types of vulnerabilities for

which the available data points are enough to be statistically significant.

The effort-based model requires the number of systems for target products in

market share, which may be difficult to obtain. The time-based model does not

require this data. It can, therefore, be a feasible alternative when market share data

is unavailable.

Static analysis has been used in software reliability engineering, where some of

the systems’ attributes are estimated empirically even before testing begins. Similar

static analysis can be carried out by utilizing metrics such as software size and esti-

mated number of total defects. These methods can potentially be used to estimate

Defect density and Vulnerability density as follows:

DKD =
KnownDefects

Ksloc
(4.2)

VKD =
KnownV ulnerabilities

Ksloc
(4.3)

DKD, defects per thousand lines of code, and VKD, vulnerabilities per thousand

lines of code, can then be used to estimate the total number of vulnerabilities of

a comparable system. Table 4.10 shows the major attributes of the Apache server

and two other legendary operating systems for comparison. Unfortunately, some of

the important metrics for the Microsoft IIS server are not available. For proprietary

systems, such data can be hard to obtain outside of the developing organization.
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The sizes of IIS and Apache may be comparable in terms of Source Lines Of

Code (SLOC) numbers since both offer the same features. The code size for Apache

was determined using the SLOCCount tool4. Source code size of Windows 98 and NT

4.0 are given by McGraw (2003). The Apache 2.2.11 source code size for Windows is

240 Ksloc, smaller than for Unix version of Apache 2.2.11 of 373 Ksloc. A few of the

Apache vulnerabilities may be applicable to only a specific platform. In Table 4.10,

vulnerability density values for the Windows operating systems are significantly less

than for Apache. This may be due to the fact that Windows operating systems

have large segments that do not play a role in accessibility, while servers are smaller

and therefore vulnerabilities are more concentrated in the code. This assumption

is supported by the fact that the defect density to the vulnerability density ratio is

higher in Windows NT 4.0, a server operating system, than in Windows 98, a client

operating system. Note that VKD/DKD ratios are within a narrow range.

The data for IIS suggests that the vulnerability discovery rate has slowed down

significantly since 2004. However, several vulnerabilities were found in IIS in 2008.

This may be caused by a new version of IIS being released and the expansion of IIS

market share. Factors such as patch releases, number of remaining vulnerabilities,

economic aspects etc., also need to be considered when evaluating Web servers.

One interesting fact is that Apache, IIS and SUN Web servers share one com-

mon vulnerability (CVE-2008-2579), even though the three software systems do

not share any source code. The vulnerability is unspecified in the Oracle WebLogic

Server5 Plug-in for the Web servers’ component in some Oracle BEA6 product suite.

The vulnerability allows unauthorized disclosure of information, modification, and

disruption of service.

The results show that the two VDMs are found to be applicable even though the

two software systems have gone through a number of successive versions. Sharing of

4http://dwheeler.com/sloccount
5http://www.oracle.com/technology/products/Weblogic/index.html
6http://www.bea.com
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the code among successive versions for some software systems have been examined

by Kim et al. (2007). They have suggested that, for evolving software, the overall

affect may be explained by a superposition of the trends for vulnerabilities for each

individual version.

It should also be noted that the number of vulnerabilities, either found or

estimated as remaining, should not be the only measurement of a security threat.

Factors such as patch development and patch application delays and vulnerabilities’

exploitation rates also need to be considered.

4.7 Summary

In this chapter, the applicability of quantitative models for the number of

vulnerabilities and vulnerability discovery rates for the two most popular HTTP

servers are explored. Results demonstrate that the vulnerability discovery in the

Web servers follows certain patterns, which can be modeled. The results show that

when the all the vulnerabilities are examined, both models fit the datasets well. The

models were found provide significant fit even when vulnerabilities are categorized

by cause or severity levels. This suggests that the models can be used to estimate

not only the number of vulnerabilities expected to be discovered but also the likely

distribution in terms of categories by origin and severity levels.

It was observed that a number of input validation error vulnerabilities can be

large which would constitute a significant risk. The results can be used to optimize

the distribution of testing and patch development effort by allocating more effort to

vulnerabilities from classes that represent a higher risk, thereby reducing the overall

risk due to vulnerabilities. The results indicate that the models originally proposed

for operating systems are also applicable to HTTP servers.
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Chapter 5

MODELING VULNERABILITY
DISCOVERY PROCESS IN WEB

BROWSERS

New vulnerabilities discovered in a Web browser put millions of users at risk,

requiring urgent attention from developers to address these vulnerabilities. This

chapter analyzes vulnerabilities presented in the six Web browsers quantitatively,

which can be used to project the number of vulnerabilities to plan, test and allo-

cate development resources more efficiently. They are Internet Explorer, Netscape,

Firefox, Opera, Safari, and Chrome. End-users for the Internet browsers can build

better idea about the risks associated with the use of a particular Web browser.

Here, the six Web browsers’ vulnerability datasets are fitted to three vulnerabil-

ity discovery models and their goodness of fit tests are examined. For the discovery

models, two time-based models, Alhazmi-Malaiya Logistic and the linear models,

and one effort-based model are applied (See Chapter 3 for models). The results

show that both time-based and effort-based models generally provide the good fit-

tings with most of the vulnerability datasets, opening the way for the applicability

of the models to Web browsers’ data. The datasets refined by severity is also shown

to have fit the models, indicating that it is possible to predict the number of vul-

nerabilities belonging to a specific severity level.
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5.1 Introduction

The Web browser provides variety and dynamic information from simple text

to high qualities of multimedia contents for the Internet users. To display the

information, the Web browsers use certain mechanisms and techniques, and need to

follow international standards.

With respect to the end-users’ point of view, the Web browsers now repre-

sent the single most important Internet software systems; one of its many roles,

the Web browser serves as a client platform for security-critical applications such

as the Internet banking, e-commerce and on-line trading in everyday life. There

has been a great concern about potential insecurities in Web browsers due to their

vulnerabilities, and the concern is getting more attentions. While the vulnerabilities

and exploitations in the Microsoft Internet Explorer (IE) have been frequently dis-

cussed1, its alternatives have not been debated actively even though the alternatives

also are not immune to the serious vulnerability issues2. So far, many studies on

the Web browser security have been in a qualitative manner, focused on detection

and prevention of vulnerabilities in Web browsers. Several issues in the security

problems related to the Web browsers are currently have been studied (Woo et al.,

2006a), such as spyware (Moshchuk et al.), phishing (Dormann and Rafail, 2006;

Kumar, 2005; Hallaraker and Vigna, 2005), Web page filtering (mat; Greco et al.,

2004) and DNS rebinding (Jackson et al., 2009), malicious pop-up windows3, and

e-commercial fraud (Leung et al., 2004; Grazioli and Jarvenpaa, 2000).

The first public version of IE was released in August 1995. In 1999, Mozilla

Web browser was born originated from Netscape Navigator which was introduced

in October 1994, and Netscape emerged as the popular client Web browser during

1http://voices.washingtonpost.com/securityfix/2006/04/real_world_impact_of_
internet_1.html

2http://www.eweek.com/c/a/Security/ZeroDay-Firefox-Exploit-Sends-Mozilla-Scrambling/
3http://www.pcworld.com/article/118781/new_ad_attacks.html
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the 1990s. In 2004, Firefox 1.0 was announced, as the successor of Mozilla Web

browser. Firefox occupies about 23% of the overall Web browser market share while

IE conquers about 60% of the market in October 2010. Even though Opera’s market

share is less than 3% presently, it is one of the oldest Web browsers, and it is provided

under various divides, from hand-held to desktop. Meanwhile, as users of Apple Mac

computer are increasing, Safari Web browser is also getting popular having about

5% of market share now. Chrome, introduced by Google in September 2008, is

widening its market share aggressively backed by mainly its speedy performance.

Its market share now is about 8%, and it is expected the browser’s market share

will upsurge for a while.

For the Internet service providers, servers such as Web (HTTP), ftp, mail,

database, and streaming servers, are the first and primary gate in contacting clients.

For the clients, a Web browser is the main application, which connects for the clients

to the Internet. However, Web browsers have been suffered from numerous security

holes. Some of the vulnerabilities caused by those functions provide attackers or

malicious users opportunities to exploit security holes since these processes require

downloading, uploading and executing files having security holes. Web browser

vulnerabilities represent one of the main sources of the spread for the viruses and

worms. However, the convenience and dynamic technical functionalities offered by

Web browsers make them currently indispensable.

5.2 Related works and background

Frei et al. (2008) show that a significant number of the Internet users are ex-

posed at risk because people do not use the latest most secure Web browsers and

plug-ins. In the paper, they quantified some of the insecurities in browser usages

due to not updating to the most secure versions. In their later work, Duebendorfer

and Frei (2010) have further investigated about effectiveness of the Web browser
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updates on four different browsers and concluded that silent updates4 and little de-

pendency on operating systems are most effective for users to surf the Web with the

latest browser versions; Google Chrome’s silent auto update mechanism is the most

effective compared to those of Firefox, Safari, and Opera.

Acer and Jackson (2010) challenged the fact that browsers receiving infrequent

security patches are safer than those receiving frequent patches, that lower bugs

count are safer, and that reducing vulnerabilities is the only way for vendors to im-

prove security. They proposed methods for evaluating browser security that takes

into account new industry practices such as the silent patch deployment. Grosskurth

and Godfrey (2007) used a semi-automated analysis method to investigate the archi-

tecture and evolution of Web browsers. They observed some interesting phenomena

such as different strategies for code reuse, emergent domain boundaries, convergent

evolution, and tension between open and closed source development approaches.

ComparingWeb browsers with other software systems such as operating systems

and office software products, new versions of Web browsers are released faster than

others. Releasing new versions of software systems means that defects are fixed

and/or new functions are implemented. However, new versions do not indicate that

the pool of vulnerability is reduced. New codes can cause other vulnerabilities.

5.3 Preliminaries to modeling vulnerabilities in Web browsers

Before examining each Web browser’s vulnerability, discussion is needed about

how and where we obtained vulnerability dataset, market share, the number of user

dataset and relations to the significant factors which might effect on the discovery

process.

First, Table 5.1 shows overall information of Web browsers that presents data

obtained the number of vulnerabilities from the NVD and the market share data

4One of the software update mechanisms which does not require user’s intervention.
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Table 5.1: Web browsers’ market share and vulnerabilities found (2010 October)

IE Mozilla/Firefox Netscape
Market Share 59.18% 22.86% 0.63%
Vulnerability 589 600 44
Lines of code 2.30 MLOC 3.2 MLOC N/A

(7.0.6) (4.0)
Init. Release Aug. 1995 Nov. 2004 Dec. 1994
Latest Version 8 3.6.10 9

Opera Safari Chrome
Market Share 2.29% 5.36% 8.50%
Vulnerability 177 279 156
Lines of code N/A N/A 4 MLOC

(Chromium8)
Init. Release Dec. 1996 Jan. 2003 Sep. 2008
Latest Version 10.62 5.0.2 6.0.474

from Engineering Work Station (1996∼1998)5, Websidestory6 (1999 for IE), the

counter7 (2000∼2007), hitlink8 (2008∼2010). The web browser market shares and

the total number of vulnerabilities are found in October 2010. Other sources of the

browsers’ usage data show similar values even though there are minor differences

among the monitoring Web sites because they depend on the number of page hits.

The IE share is about 60% and Firefox share is approximately 23%. As we can see

from Table 5.1, for Web browsers with a lower percentage of the market share, such

as Netscape, Opera, Safari and Chrome, the total number of vulnerabilities found

is lower than the leading two Web browsers, IE and Firefox. This does not mean

that those Web browsers are more secure, but merely that only a limited effort has

gone into finding their vulnerabilities.

From the table, we observe that the vulnerability discovery rate is related more

to the market share than to the period of usage. Even though the Mozilla Web

browser was released earlier than Firefox and both source code size are similar,

5http://ews.uiuc.edu/bstats/latest.html
6http://websidestory.com
7http://www.thecounter.com/stats
8http://marketshare.hitslink.com/browser-market-share.aspx?qprid=0
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Figure 5.1: How to estimate the number of Web browser users

Firefox has a greater number of vulnerabilities than Mozilla because of its greater

popularity. And Netscape, Mozilla’s former and the first popular commercial Web

browser, has only forty four vulnerabilities (See Figure 5.5). This shows that market

share is more important factor than software age. Note that we combine the datasets

for Mozilla Web browser and Firefox in the paper and use the term Firefox instead

of Mozilla and Firefox. The release date in Table 5.1 for the Mozilla/Firefox column

is for Firefox.

Figure 5.1 shows the process of how to estimate the number of users in each

month for the effort-based model. Here, only estimating process for the IE user is

shown for an example. In the figure, the left y-axis represents the number of users

whereas the right y-axis indicates the market share. To determine the number of each

Web browser users, the entire number of Internet users9 and each browser’s market

share for each month are multiplied. Since the actual datasets for the number of

Internet users and the each browser’s market share are not available for every single

9http://internetworldstats.com/emarketing.htm
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Figure 5.2: Estimating the number of users

month, the data have been interpolated. Figure 5.2 shows the estimated number of

users for the six Web browsers. The plots are split due to the scales to be compared.

5.4 Aggregate vulnerabilities in Web browsers

In this section, we use vulnerability datasets for the six Web browsers to de-

termine whether the vulnerability discovery trends are well described by the three

discovery models.

IE has been the most popular Web browser, utilized by approximately 60% of

the Internet users currently. It has dominated the Web browser market. Its market

share had been over 90% from 2001 to 2005. This has made it a very attractive target

for exploration and exploitation by malicious users. The problem was exacerbated

by the integration of IE into Windows, unlike other Web browsers. This integration

provided more functions, such as easier interface with other components. However,

security analysts and experts consider the integration as a security disadvantage

since IE is connected with a variety of Windows core components including Windows

periodic update process. Another weakness of IE is using the non-standard features,
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which did not follow the W3C standard10. For example, ActiveX, which supports

interfaces to provide a variety of functions and is offered as an add-in only for IE,

can be used for executing arbitrary code. Even though IE is known for its many

security flaws, numerous Internet users still prefer to use IE because many Web

sites are optimized for IE and, moreover, Windows OSes are marketed with IE

pre-installed.

Although Firefox 1.0 was released in November 2004, it did not gain significant

recognition early. Its popularity increased because of its perceived better security,

intuitive design and multi-tap features. Market share of IE have been declining since

2005 because of Firefox. Currently Firefox’s market share is about 23%. Firefox had

expended its market share rapidly. However, its popularity has led to a rising number

of newly discovered vulnerabilities. Six hundred vulnerabilities have been reported

in Mozilla/Firefox according to NVD, and is the highest number of vulnerabilities

among the six Web browsers.

Figure 5.3 shows the cumulative number of vulnerabilities by month for time-

based vulnerability discovery models. In the figure, the dashed lines indicate the

fitted AML model and the solid line represents LVD fittings for the linear phase

only.

In the beginning of the Time-based model, the slope of the curve for IE rose gen-

tly until 2000, after which the slope has generally remained steady. As we mentioned

in Chapter 3, when LVD is introduced, we apply the model from October 2003 to Oc-

tober 2010 for IE. During this period, LVD provides a good fitting. However, there

are problems to apply LVD to whole time period because the vulnerability found

trend or rate is not a linear throughout the entire lifecycle as discussed in Chapter

3.2. From the view of the three phases of the vulnerability discovery process, IE

does not appear to have yet entered the saturation phase. Rather, IE currently

10http://www.w3.org/TR/
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Figure 5.3: Fitting; Time-based model to browser vulnerabilities
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Figure 5.5: Shared vulnerabilities among Netscape, Mozilla and Firefox

still appears to be in the linear phase since the number of vulnerabilities is growing

linearly in spite of having been on the market for years. The second transition point

occurs on April 2011 based on the calculation of the second derivative of AML (Ta-

ble 5.2). This may be because of its larger market share and possibly higher number

of potential vulnerabilities. This suggests that vulnerability discovery for IE may

continue at a significant pace in the near future as long as it is evolved.

Netscape Navigator originated from Mosaic Web browser dominated the middle

of 1990s when the Internet usage had become popular. However, Netscape lost its

market share from over 90% in middle of 1990s to less than 1% in October 2010 after

IE was introduced which was pre-installed in Windows operating systems. Many

of Netscape’s vulnerabilities found in recent time are linked with code sharing with

Mozilla/Firefox.

Figure 5.5 shows the number of vulnerabilities shared among the three browsers.

The only Web browser reached the saturation phase is Netscape because its final

version 9 was released on October 2007 and its developing line has been disconnected

currently. Moreover, the browser’s market share is also very tiny which helps for the

vulnerability discovery pattern enters in the saturation phase. In Figure 5.3, AML
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model’s S-shape pattern matches with Netscape’s vulnerability discovery trend, and

LVD also fit well during the linear phase.

Firefox is the second most popular Web browser based on the market share.

While there is still a considerable market share gap between IE and Firefox, this gap

is shrinking slowly. Although Firefox is just seven years old, and its market share is

about one-third of the market, the actual trend of Firefox’s vulnerability discovery

rate is still in the linear phase. Consequently, we can expect that more vulnerability

will be found in the near future, the saturation phase is not likely to be reached

soon in spite of the AML model shows that Firefox is entering the saturation phase

as shown in Table 5.2. In Figure 5.3 (c), it is clearly showing that AML fitting line

tends to saturate at the end of the examined period while the actual discovery trend

keeps rising.

Opera Web browser is almost the same age with Netscape. It was initially

released in December 1996. It is still being developed. It can be used not only in

a desktop environment but also in mobile device such as a smart phone. Despite

of its age, it has low market share and 177 vulnerabilities. The lower number

of vulnerabilities is caused by lower number of users. As shown in Figure 5.3 (d),

Opera’s vulnerability trend follows the time-based models well. The partially applied

LVD shows that Opera is in the linear phase.

Safari’s market share is steadily increasing as the number of Mac OSX’s users

is growing. As a result, the number of vulnerabilities is also rapidly increasing from

2007. 122 vulnerabilities have been found in Safari from April 2007 to October

2010. In the same time period, Safari has gained over 3% of market share. Figure

5.3 (e) illustrates the movement of safari’s vulnerability discovery pattern for the

time-based models. Visually, AML model fits very well for the number of Safari’s

vulnerability. LVD is applied from September 2008 to October 2010.

In September 2008, Google introduced their Web browser Chrome. Currently

Chrome’s population is after Firefox, and many Firefox users tend to migrate to
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Table 5.2: Phase test for aggregate vulnerability in Web browser

LVD + σ at LVD - σ at # of Vuln. Trans. Trans. Phase
Data End Data End at Data End Point 1 Point 2

IE 612.2743 586.6513 589 2003-10 2011-04 Linear
Netscape 75.0226 46.4334 44 2001-01 2007-08 Saturation
Firefox 597.9114 569.1612 600 2006-06 2009-01 Linear
Opera 172.6634 158.0932 177 2005-06 2009-11 Linear
Safari 282.7641 252.0902 279 2008-09 2012-04 Linear
Chrome 157.5507 146.2024 156 2009-12 2010-12 Linear

Table 5.3: χ2 goodness of fit test - AML - Web browsers

A B C χ2 χ2
critical P-value R2

IE 0.00004 784.9644 0.0502 420.4922 183.9586 0.0000 0.9958
Netscape 0.00069 48.2233 0.5899 36.4841 159.8135 1.0000 0.9890
Firefox 0.00013 558.7199 1.3793 218.2364 123.2252 0.0000 0.9877
Opera 0.00028 180.9692 1.9801 68.5087 124.3421 0.9945 0.9879
Safari 0.00013 486.4047 0.5299 54.6760 92.8082 0.9242 0.9857
Chrome 0.00101 210.9290 2.7886 18.1839 32.6705 0.5752 0.9874

Table 5.4: χ2 goodness of fit test - LVD - Web browsers

S k χ2 χ2
critical P-value R2

IE 5.30463 -281.1064 47.6841 106.3948 0.9995 0.9907
Netscape 0.41772 -16.4810 30.6905 100.7486 1.0000 0.9816
Firefox 7.95682 -450.8506 27.7863 69.8321 0.9976 0.9876
Opera 1.97741 -139.1435 35.1977 83.6752 0.9987 0.9702
Safari 7.20844 -410.1666 32.7340 37.6524 0.1378 0.9334
Chrome 11.57370 -241.6291 4.1805 18.3070 0.9388 0.9802

Table 5.5: χ2 goodness of fit test - AME - Web browsers

B λV U χ2 χ2
critical P-value R2

IE 1151.5431 0.0000 15.4690 30.1435 0.6295 0.9939
Netscape 1151.5431 0.0000 175.7205 48.6023 0.0000 0.4988
Firefox 620.0800 0.0001 41.8256 46.1942 0.0552 0.9827
Opera 196.4820 0.0012 1.7070 27.5871 0.9999 0.9921
Safari 99682.8749 0.0000 35.5588 41.3371 0.1252 0.9781
Chrome 65994.0114 0.0000 9.9185 22.3620 0.6231 0.9858
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Chrome. Its market share has 9.26% in November 2010. Respecting its market share

growth, discovered vulnerabilities are speedily raising. With visual inspection as

shown in Figure 5.3 (f), AML and LVD are fitted well for the Chrome’s vulnerability

datasets.

Table 5.3 shows the Chi-square goodness of fit tests for AML model on the six

datasets along with the model parameters. The table is corresponding to the Figure

5.3. Here, for the all Chi-square goodness of fit tests, 0.05 has been chosen for the

alpha level. This means that a model fitting is statistically acceptable when P-value

is higher than 0.05 or a Chi-square statistic value is smaller than its corresponding

critical value. P-values closed to 1 indicate a better fit. For more information about

the Chi-square goodness of fit test, see Chapter 7.4.

Along with the hypothesis test, R2 values are also given in the table. The

Chi-square statistics for AML models in Table 5.3 are less than the critical values

except for IE and Firefox. The results could be related to the fact that the two Web

browsers do not have a significant number of vulnerabilities in their early time period

which distorts logistic growth pattern causing low P-values. In fact, Chi-square test

is very sensitive with small number of datasets applied. R2 values, however, for

AML models are significant range for all Web browsers. In all tables, values are

rounded up at the proper decimal point in each case, so that value zero does not

necessarily means zero, but a very small number.

Table 5.2 shows the results from the phase test for total vulnerability datasets

for justification of applying LVD. It decides whether a vulnerability discovery process

is one of the three phases in Figure 3.2. The standard deviation σ is calculated

between the actual datasets and LVD fitting lines. It is assumed that a Web browser

is in the linear phase if a number of vulnerability is higher than LVD - σ at the end

data point as we discussed in Chapter 3.2. Furthermore, the table displays values

associated with LVD model. Transition point 1 and 2 are the starting and end
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points for the LVD model fittings. When the second transition point appears after

the data end point month, October 2010, as shown in Table 5.2, the last available

time point has been used instead. Only Netscape is in the saturation phase. Other

five Web browsers are still in the linear phase. We note that the current number of

Firefox’s and Opera’s vulnerability is higher than LVD + σ. This indicates that the

vulnerability discovery rate of Firefox and Opera is higher than their other periods.

For Firefox, even though the calculated transition point 2 is January 2009 based

on AML model, the last available time point has been used instead of the second

transition point since the visual observation clearly shows that the browser is in the

linear phase now. Unlike other Web browsers, Firefox has two somewhat distinctive

linear phases. The first linear phase is from June 2006 to January 2008 and the

second linear phase start around October 2008. The slope of second linear phase

is steeper than the first phase suggesting that the constant vulnerability discovery

rate has been increased. Opera also shows a similar pattern with Firefox; its second

transition point is occurring before the data end point month while currently the

browser displays the visually linear phase. For the entire Web browser described

here, except Netscape, are expecting linear phase after the calculated second tran-

sition points in the table because of their new releases which will introduce new

vulnerabilities, and that will extend the linear phase parts. Because of this reason,

LVD might be a good model when a quick future estimation is needed.

Table 5.4 shows the fitting results for LVD model on the six datasets along

with the model parameters, the two transition points from Table 5.2, and R2 values.

The table is corresponding to the Figure 5.3. For the LVD fittings, the Chi-square

goodness of fit test and R2 are significant for all the Web browsers because LVD

is only applied to the linear phase, and as shown in Table 5.2, all the vulnerability

datasets have clear linear phases. The noticeable thing in the table is the slope

parameter value of S which represents the vulnerability discovery rate. As shown in

66



the table, Chrome claims the highest discovery rate followed by Firefox, Safari, IE,

Opera, and Netscape, in the sequence of highest vulnerability discovery rate. With

only this information, Firefox is more risky than IE. The constant k in LVD does

not have a clear interpretation at the moment. All the datasets are well represented

with LVD, but Safari, having several big sudden raises in the discovery processes,

has low P-value although that still is statistically significant.

Figure 5.4 shows the model fitting for AME effort-based on the Web browsers.

The y-axes represent the number of users while the x-axes are Million System Month,

except IE. IE is based on 10 Million System Month due to the huge number of users.

In the plots, the dashed lines represents AME model fittings while the other lines

are showing the actual data based on the estimated number of browser users. Table

5.5 shows the corresponding goodness of fit test results with model parameters and

R2 values.

For the entire vulnerability datasets, the model fitting claims statistically signif-

icant results except Netscape. In Figure 5.4 (b), we suspect the big gap, between 32

million system months and 37 million system months, was caused very small number

of user, but there is a significant number of vulnerabilities have been found which is

reasoned by shared vulnerabilities between Netscape and Firefox. While producing

good fitting shapes, IE, Safari, and Chrome project linear growth patterns rather an

exponential shape. Especially the vulnerability data growth in Chrome appears to

be superlinear as shown in Figure 5.4 (f). Only Firefox and Opera display general

exponential growth pattern.

5.5 Vulnerability severity levels

Figure 5.6 displays the relative percentages for the cumulative number of vul-

nerabilities for the three severity classes in each month. It should be noted that the

early part of the plot represents very few number of vulnerabilities, and thus, are
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Figure 5.6: Web browsers’ severity variation
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Figure 5.7: AML model fitting by severity - Web browsers
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not significant to be analyzed as mentioned in Chapter 4.4. For example, the plots

for Firefox up to July 2002 represent only five vulnerabilities total. The distribution

of the severities for each Web browser’s vulnerabilities shows its respective shapes

as shown in Figure 5.6.

However, these six Web browsers have a slightly similar severity order. Gen-

erally, the largest portion of the vulnerabilities has been found in medium severity,

followed by high severity vulnerabilities and then low severity level vulnerabilities.

In general, the medium severity vulnerabilities tend to be detected earlier. Then

high and medium vulnerabilities are converged. This would suggest a shift in vul-

nerability detection priorities. For all the datasets, the proportions of low severity

vulnerabilities are getting decreased. Vulnerability finders may have it more re-

warding to seek higher severity vulnerabilities. Unlike the other browsers, IE and

Chrome have more number of high severity vulnerability now as of October 2010.

Especially, the fraction of Chrome’s high severity discovery rate is increasing and

medium severity discovery rate is declining. In this section, we apply the three

vulnerability discovery models to the six Web browsers categorized by the three

severity levels.

Figure 5.7 shows the result of AML model fittings for the Web browsers’ vul-

nerability datasets by severity. In general, the severity patterns of Web browsers

follow the aggregate vulnerability discovery patterns except low severity vulnera-

bility. With a visual inspection, high and medium severities are in linear phases

whereas all the web browsers’ low severity vulnerabilities already reached the sat-

uration phase since low severity vulnerabilities have been rarely found as shown in

Figure 5.7. This observation implies that the size of the high and medium severity

level vulnerability pool is potentially larger than the low severity’s one.

Table 5.6 represents the results of AML model fittings from Figure 5.7. For the

IE model fitting, in Figure 5.7 (a), it is hard to distinguish between the high severity
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Table 5.6: χ2 goodness of fit test by severity - AML - Web browsers

Severity A B C χ2 χ2
critical P-value R2

IE
High 0.0001 321.8864 0.2467 83.6089 167.5143 0.9999 0.9934

Medium 0.0001 322.1045 0.1385 54.8313 163.1161 1.0000 0.9941
Low 0.0008 49.0637 0.3410 48.6714 169.7113 1.0000 0.9683

Netscape
High 0.0015 19.8671 0.9238 21.3407 123.2252 1.0000 0.9789

Medium 0.0017 21.5521 3.1536 13.4823 105.2672 1.0000 0.9829
Low 0.0023 7.8000 0.4438 2.7827 91.6702 1.0000 0.8973

Firefox
High 0.0003 243.9349 2.8243 143.2500 112.0220 0.0002 0.9758

Medium 0.0002 305.8589 2.3849 53.4783 118.7516 0.9998 0.9962
Low 0.0029 37.2734 45.1934 13.0953 91.6702 1.0000 0.9880

Opera
High 0.0006 82.8344 6.0303 26.4327 177.3897 1.0000 0.9891

Medium 0.0003 129.4416 1.4785 65.1859 103.0095 1.0000 0.9889
Low 0.0243 8.6450 1.0588E+07 13.2575 89.3912 1.0000 0.9859

Safari
High 0.0001 835.9413 0.8918 45.1128 81.3810 0.9474 0.9683

Medium 0.0004 174.7620 1.7617 30.3773 81.3810 0.9998 0.9883
Low 0.0006 70.6205 2.1926 2.2477 36.4150 1.0000 0.9585

Chrome
High 0.0012 199.5697 16.9998 8.8385 24.9958 0.8613 0.9884

Medium 0.0041 52.5900 2.3635 11.6600 30.1435 0.1965 0.9837
Low 2.4818 1.4549 1.00E+20 6.4148 33.9244 0.9990 0.6582

Table 5.7: Phase test by severity in Web browser

Severity LVD + σ at LVD - σ at # of Vuln. Trans. Trans. Phase
Data End Data End at Data End Point 1 Point 2

IE
High 282.2525 268.1453 282 2004-01 2010-02 Linear

Medium 275.2449 258.6757 258 2003-06 2010-06 Saturation
Low 58.51033 54.0490 49 1999-12 2005-04 Saturation

Netscape
High 24.93192 22.0913 19 2000-04 2007-06 Saturation

Medium 24.85609 23.0898 19 2002-09 2008-11 Saturation
Low 7.922938 6.6669 6 1996-03 2007-10 Saturation

Firefox
High 250.9451 223.4095 262 2006-06 2009-10 Linear

Medium 228.0334 194.6153 298 2006-04 2009-05 Linear
Low 97.44538 92.5295 40 2004-09 2006-10 Saturation

Opera
High 59.51561 54.1214 56 2006-09 2010-10 Linear

Medium 106.8485 96.1103 112 2005-10 2010-10 Linear
Low 38.28619 36.6850 9 2004-09 2005-10 Saturation

Safari
High 136.1285 119.6669 125 2009-10 2015-11 Linear

Medium 143.1713 129.4177 141 2007-12 2010-11 Linear
Low 12.68087 9.8171 13 2005-05 2016-04 Linear

Chrome
High 91.59483 86.8765 87 2010-05 2010-10 Linear

Medium 66.10696 60.9693 66 2009-04 2010-05 Linear
Low 2.808094 1.8542 3 2009-01 2010-10 Linear
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vulnerability discovery process and medium severity discovery process. As a result,

the model fitting parameter is fairly similar as shown in the table, especially, the

second parameter B which represents the total number of vulnerabilities eventually

found. Netscape model fitting is shown in Figure 5.7 (b), and high and medium

severity levels in this browser shows relatively clear S-shaped growth patterns unlike

other datasets. Subsequently, it claims P-values of 1 for all three severity levels.

It is observed that the high severity in Firefox is the only vulnerability discovery

pattern which is producing an insignificant AML model fitting. The Chi-square

statistic value is greater than the corresponding critical value or P-value is less than

0.05. Figure 5.7 (c) clearly shows why the fitting is rejected. The growth trend in

Firefox high severity has been changed around in the middle of 2007, and the logistic

growth behavior could not adjust on the dataset properly. Opera, in Figure 5.7 (d),

is the only web browser claims all the P-values of 1 and its growth status is not in

the saturation phase like Netscape. For Safari and Chrome, in Figure 5.7 (e) and

Figure 5.7 (f), the vulnerability discovery rates for the high severity are surging up.

Consequently, their estimated eventual numbers of vulnerabilities are higher than

other browsers (See parameter B in Table 5.6).

Table 5.7 shows whether each severity of Web browsers is situated among the

three phases. It shows the two transition points which are providing the start and

end points for LVD model fittings. The calculations for the transition points are

using the same method as that of the aggregate vulnerability as shown in Table

5.2. It points to the entire Web browsers’ high severity are in the linear phase

except Netscape. These results are the same as the trend of total number of each

Web browser’s vulnerabilities. For the medium severity, IE and Netscape claim

saturation phases. However, with a visual observation, it is hard to say that the

medium severity for IE is entered in the saturation phase. Safari and Chrome are

the only two browsers having low severity vulnerability growths in the linear phase,
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and it reflects that they are the two youngest Web browsers. Those interpretations

show that the number of high and medium severity vulnerabilities reflect the entire

recent trend of Web browsers.

Figure 5.8 is showing the LVD model fittings whereas Table 5.8 presents the cor-

responding model fitting results which shows model parameters, Chi-square statistic,

critical values, and R2. By and large, the model fittings are all statistically accept-

able since the LVD model is only applied during the customized practical ranges.

For the slope parameter S, both high and medium severities claim equal number of

the highest parameter values across the vulnerability datasets. The high severities

of IE, Safari and Chrome have currently steeper slope than other severities whereas

the medium severities of Netscape, Firefox and Opera have currently steeper slopes

then other severity levels. Hence, at the time being, high and medium severity

vulnerabilities tend to be found equally likely. Firefox’s high severity vulnerabili-

ties derive two linear phase in the aggregate vulnerability as shown in the previous

section.

Figure 5.9 shows AME model fitting for the six Web browsers by categorized

in severity, and Table 5.9 provides the model fitting information. The AME model

fittings by severity show similar visual patterns as shown in the aggregate AME

model fittings. The model fittings are rejected for Netscape high and medium,

Safari high, and Chrome high. For those rejected model fittings, the main reason is

that unexpected gaps of number of users in the million system months. In Figure 5.9

(b), (e), and (f), it is clearly shown that there are sudden growth in the number of

vulnerabilities, but not enough users. Other AME model fittings are all satisfactory

with the exponential growth pattern. IE, Safari, and Chrome displays linear growth

patterns, a similar pattern from the previous section. Figure 5.9 (f) shows that the

origin for the superlinear behavior in Figure 5.3 (f) which is the high severity.

With some exceptions which did not claim significant P-values for the hypoth-

esis test above, in general, model fittings are statistically significant for all other
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Figure 5.9: AME model fitting by severity - Web browsers
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Table 5.8: χ2 goodness of fit test by severity - LVD - Web browsers

Severity S k χ2 χ2
critical P-value R2

IE
High 2.6186 -159.4859 31.8807 93.9451 1.0000 0.9853

Medium 2.3207 -118.2694 44.7641 106.3948 1.0000 0.9808
Low 0.3362 0.4782 15.2769 83.6754 1.0000 0.8814

Netscape
High 0.1628 -5.4651 20.4447 108.6483 1.0000 0.9601

Medium 0.2162 -14.5135 15.8435 95.0811 1.0000 0.9654
Low 0.0360 0.8921 22.5349 167.5139 1.0000 0.9059

Firefox
High 3.3948 -204.1503 62.7041 69.8323 0.1471 0.9465

Medium 4.2973 -150.5676 5.9074 52.1916 1.0000 0.9922
Low 1.2522 -67.7928 10.0706 37.6524 0.9957 0.9317

Opera
High 0.8205 -69.5365 10.7654 66.3388 1.0000 0.9692

Medium 1.2653 -93.3741 25.5848 79.0821 1.0000 0.9545
Low 0.4735 -35.4354 1.9181 22.3616 1.0000 0.8433

Safari
High 6.1488 -450.0941 10.1592 21.0255 0.6024 0.8981

Medium 2.9158 -137.7914 18.8125 48.6023 0.9835 0.9529
Low 0.1541 -3.2405 21.5911 84.8208 1.0000 0.8691

Chrome
High 9.8793 -246.6599 0.4583 11.0700 0.9944 0.9807

Medium 3.1422 -43.2963 3.8209 28.8689 1.0000 0.9802
Low 0.0757 -0.2434 1.6291 32.6713 1.0000 0.7664

Table 5.9: χ2 goodness of fit test by severity - AME - Web browsers

Severity B λV U χ2 χ2
critical P-value R2

IE
High 928.40941 0.00000 21.57271 30.14353 0.25151 0.99390

Medium 460.00000 0.00001 8.95417 30.14353 0.96079 0.99200
Low 53.33545 0.00003 5.24946 30.14353 0.99842 0.96051

Netscape
High 500.00000 0.00000 143.90840 48.60237 0.00000 0.48410

Medium 278.65927 0.00000 728.89152 48.60237 0.00000 0.33233
Low 9.15298 0.00023 3.88619 48.60237 1.00000 0.87051

Firefox
High 299.10249 0.00010 42.25998 46.19426 0.10603 0.97067

Medium 315.59998 0.00015 7.56368 46.19426 1.00000 0.99427
Low 37.04550 0.00066 3.79820 46.19426 1.00000 0.95253

Opera
High 62.17602 0.00140 0.84058 26.29623 1.00000 0.98789

Medium 133.79102 0.00103 2.49422 27.58711 0.99923 0.98617
Low 8.92502 0.01071 0.01382 26.29623 1.00000 0.98628

Safari
High 19911.35341 0.00000 54.92395 41.33714 0.00117 0.92250

Medium 5498.08186 0.00001 18.47033 41.33714 0.88849 0.98281
Low 541.06205 0.00001 1.99010 28.86930 1.00000 0.94959

Chrome
High 19400.71590 0.00000 37.02251 22.36203 0.00022 0.95314

Medium 86.21377 0.00070 2.74885 22.36203 0.99707 0.98188
Low 4.28516 0.00054 0.62181 22.36203 1.00000 0.79635
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cases. Nevertheless, the R2 values and visual observations indicate that the fits are

practically acceptable.

5.6 Prediction capability

In this section, prediction capabilities have been examined. Figure 5.10 shows

the prediction errors for the three VDMs on the six Web browsers, and Table 5.10

shows the initial parameters used for the three models. As we discussed in the

previous chapter, while time-based models, AML and LVD, have data points in

each month, the effort-based model, AME, has the data values only after every

significant number of installations had occurred. In the figure, the starting points

for comparing prediction errors on the three models are chosen when cumulative

users exceed every ten millions and one million for Internet Explorer and others

respectively. Since the prediction errors among the models can be comparable only

when the models have data points for the equivalent time points all together, and

since the time-based models have more data points than the effort-based model,

the comparisons are conducted on top of the effort time which is a proportion

representing the number of current users over the number of users on the second

transition point or the data end point which is October 2010. Because of that,

when the effort time axis is mapping to the calendar time axis, unequal intervals

are shown between the adjacent calendar time points. Entire data points in effort

time axis have corresponding calendar time data points whereas the vice versa is

not true. The linear model has data points only between the first transition point

to the second transition point or end of the data point as shown in Table 5.2.

To predict the number of vulnerabilities for the target point in each data point

in Figure 5.10, all the available partial records from the beginning upto the second

transition point or the data end point are regressed by the models to estimate model

parameters on the current point. Then each model with the estimated parameters
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for each time point is used to predict the final number of vulnerabilities at the end

of the time period. The estimated numbers for each time point are compared with

the actual numbers of vulnerabilities to calculate normalized estimations.

In Figure 5.10, prediction errors approach zero percent error lines as more

data becomes available in general. For IE, in Figure 5.10 (a), AML produces big

error margins at the beginning. The behavior is related to the fact that the Web

browser does not have a significant number of vulnerabilities by year 2000 which

distorts logistic growth pattern as shown in Figure 5.3 (a). After some time later,

AML has been calm down with the other two models. AME claims relatively well

predictions from the beginning due to the exponential growth pattern which agrees

with Equation 3.7. Linear model also performs well because Internet Explorer shows

a clear linear phase after the first transition point.

Prediction errors for Netscape are shown in Figure 5.10 (b). Across the pre-

diction period, AML swings several times along with the sudden increases as shown

in Figure 5.3 (b). Also it has been observed that AML performs well during the

saturation phase. AME shows a bit monotonic error rates. That is probably because

the number of user growth rate had followed exponential growth model well until

right before end of the inspection period in Figure 5.4 (b), then suddenly, at the

end of the examined period, there was a huge jump which crashes the expectation

of the exponential growth pattern. At the beginning of the linear phase, there is no

vulnerability found at all. As a result, the linear model does not work because the

linear regression will not work under that circumstance. However, as soon as some

vulnerabilities had started to be detected, the model performs getting better.

The prediction capability for AML, in Figure 5.10 (c) performs poorly at the

beginning, and the reason for that seems the same with IE case. As shown in Figure

5.3 (c) and Table 5.2, AML claims that Firefox had escaped from the linear phase

on January 2009 in spite of the clear visual linear trend. This probably prevents for
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Figure 5.10: Prediction errors; x-axis represents effort time (%)

Table 5.10: Initial parameter values for prediction

AML LVD AME
A B C S k B λvu

IE 3.68E-05 883.5 0.050222 5.36744 145.58818 1178 6.8647E-06
Netscape 0.00069 44 0.589954 0.431477 1.838506 44 6.2583E-06
Firefox 0.00009 600 0.7 8.172146 155.7482 600 0.00013894
Opera 0.000284 354 2.034972 2.10153 32.48029 354 0.00098227
Safari 0.000126 837 0.52993 7.550766 74.75691 837 0.00000085
Chrome 0.001013 258 2.788681 12.09091 21.27271172 258 1.1181E-06

AML to approach to the zero percent error line at the end of the period in Figure

5.10 (c) unlike other models. In the AME prediction error line, top and bottom

instabilities are generated by the corresponding up and down exponential behavior

residuals shown in Figure 5.4 (c). The linear model performs relatively well across

the prediction period except the beginning part which has a sudden raise in Figure

5.3 (c).

With Opera, AML also shows a big error line at the beginning of the prediction

phase which apparently caused by the same issue in IE or Firefox. AME shows

quite a big error line at the beginning as well, and it seems due to the gap between
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the model behavior and actual number of users as described in Figure 5.4 (d).

Meanwhile, even though there are some sudden raises during the linear phase in the

actual data when the linear regression is performed, residuals caused by the raises

are canceled each other for the regression. As a result, the model performs getting

better as the number of data points goes up.

Safari has a more odd growth behavior than other browsers in both time and

effort based models as shown in Figure 5.3 (e) and Figure 5.4 (e). There are several

relatively big sudden raises during the linear phase. The biggest victim, due to the

peculiar behavior, is the linear model because the model simply cannot decide the

future trend under the situation. On the other hand, saturation speeds to the zero

percent error line, for the other two models, relatively stable.

In Figure 5.3 (f), there are some gaps between the fitting and the actual growth

line around at the end of 2009 to the beginning of 2010, which implies that AML

should not estimate well the future trend around at that time period. The two time-

based models suffer around the time shown in Figure 5.10 (f) while AME predicts

better than the other two models. Notice when the effort time approaches to the

100 percent effort time, the prediction errors a bit deviate from the zero percent

prediction error line. That is because at the end of the observation period, there is

a sudden growth from the actual data in both Figure 5.3 (f) and Figure 5.4 (f).

Here, prediction capabilities among the models are compared using average er-

ror (AE) and average bias (AB) (Malaiya et al., 1992) which measure how well a

model predicts during different phases of the time period, and quantifies the general

tendency to overestimate or underestimate the number of vulnerabilities respec-

tively. The comparison among the three models is somewhat iniquitous since AML

and the linear model are based on time whereas AME is founded on the number of

users. Also the linear model is only applied during the linear phase. However, we

consider comparing the models’ prediction capabilities is meaningful despite of the

unfairness.
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Figure 5.11: (a) Average Bias and (b) Average Error

Table 5.11: Average bias & average error - Web browsers

AB AE
AML LVD AME AML LVD AME

IE 0.24627 -0.06106 0.031485 0.303382 0.090232 0.069638
Netscape 0.045764 -0.26835 -0.71233 0.442659 1.068288 0.712328
Firefox -0.11605 -0.04842 -0.10246 0.116055 0.085611 0.16207
Opera 0.341385 -0.13613 0.127768 0.341385 0.136127 0.183577
Safari 0.15096 -0.18893 -0.15714 0.158216 0.188928 0.157142
Chrome 0.240448 0.079625 -0.04399 0.313397 0.197736 0.102786

Equation 5.1 and 5.2 are AB and AE, where n is the total number of data

points during the prediction period, and Ω is the actual number of vulnerabilities

at target point whereas Ωt is the estimated number of vulnerabilities at time t.

AB =
1

n

n

∑
t=1

Ωt −Ω

Ω
(5.1)

AE =
1

n

n

∑
t=1

∣
Ωt −Ω

Ω
∣ (5.2)

Figure 5.11 plots the calculated AB and AE, and Table 5.11 shows the cor-

responding exact values. Figure 5.11 (a) shows that the linear and AME tend to

underestimate while AML is likely to overestimate. Since the models have strong

bias, they could be good candidates for recalibration just like the Web server cases
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in the previous chapter. The reason why Netscape has a quite different look be-

tween AB and AE is that the two time-based models have big swings across the

zero percent error line. In Figure 5.11 (b), AML, LVD, and AME perform the best

once, twice, and three times respectively although some of them look no significant

difference each other.

5.7 Discussion

Secure Science Corp.11 reports a single phishing group collecting access infor-

mation for 13,677 accounts by installing malicious code by exploiting an unpatched

vulnerability. The exploitation techniques and tools utilized are no longer the ex-

clusive possession of experts, since many of them are now widely available and can

be relatively easy to use.

Web browsers’ vulnerabilities are used as a medium of spreading viruses and

worms. For example, Nimda, which use the buffer overflow vulnerability, affects the

Microsoft Internet Explorer harshly. The vulnerability discovery trends provide a

quantitative perspective of the problem and can be used to plan the effort needed

to implement effective risk containment strategies. For example, quantitative pro-

jections can be used to allocate resources needed for fast patch development.

In the chapter, we have examined the six Web browsers’ vulnerability datasets

to determine whether the vulnerability discovery process tends to follow specific

patterns and if these patterns can be modeled. The results show that when the

aggregate number of vulnerabilities is examined, the AML model fit the datasets

well for most of Web browsers, as shown in Figure 5.3 and Table 5.3. The model

was found to fit even when vulnerabilities are partitioned by severity levels (Figure

5.7 and Table 5.6). This suggests that the model can potentially be used to estimate

11http://voices.washingtonpost.com/securityfix/2006/04/real_world_impact_of_
internet_1.html
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the number of vulnerabilities expected to be discovered in a given future period, and

what severity level distributions is likely.

The fitting was done for the severity classes of vulnerabilities for which the

available data is statistically significant. It would be difficult to use such models

for types of vulnerabilities that occur less frequently because the data may not be

statistically significant to make meaningful projections.

We note that there are sufficient data for high and medium severity vulnerabil-

ities, and the fit is quite good. This suggests that the model can be used to project

the expected number of high severity vulnerabilities, which may be much higher

interest than others.

LVD model can be applied only to the specific period since vulnerability discov-

ery rate should not be linear for the entire software lifecycle. Our result shows the

software vulnerability discovery rate based on calendar time is close to the logistic

distribution, in general.

The AML and LVD model used here does not require the use of market share

data. The effort-based AME model can potentially generate more stable projections

because it can remove fluctuations due to variability in the discovery effort with time.

Found vulnerabilities are proportion to the number of users. Thus, the market share

is the main factor to affect the number of detected vulnerabilities. In this chapter,

we notice the exceptional case, Netscape, which had been found more vulnerabilities

after losing large market share because of shared vulnerabilities with Firefox.

Examining the current vulnerability discovery trends for the six Web browsers,

five appear to be in the linear phase except Netscape (a new version of Netscape is

no longer available in the market). It can be expected that more vulnerabilities will

be discovered in all five.

When comparing browser security, we need to keep in mind that the vulnerabil-

ity discovery rate in the near future may be more important than the vulnerabilities
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already discovered in the past. Other factors should be considered including severity

levels and quick availability of patch releases. Some of security experts have con-

sidered IE to be less secure. For the reason, they are pointing to the integration of

IE into Windows and Active X. Secunia12 reports that IE has more unpatched vul-

nerabilities than Firefox. However, when Firefox’s popularity continues to increase,

it attracts more attempts to discover its vulnerabilities. Now, Mozilla/Firefox has

more number of vulnerabilities than IE.

5.8 Summary

This chapter examines the trends in vulnerability discovery in Web browsers and

explores the applicability of quantitative models for the number of vulnerabilities.

These models give us an insight into the vulnerability discovery process. The results

show that the AMLmodel generally tracks the available data well. We found that the

fit is significant when aggregate vulnerabilities are divided into classes (for example,

vulnerabilities arising due to high and medium severity), provided there are sufficient

vulnerabilities in a class. The model can, thus, be used to project the classes of

vulnerabilities that are more likely to be encountered, and consequently can be

used to make testing more effective. It is also possible to project the high severity

vulnerabilities that may be expected in the near future.

The results indicate that the models originally proposed and validated for op-

erating systems (Alhazmi and Malaiya, 2005) are applicable not only to Web servers

but also to Web browsers.

12http://Secunia.com/gfx/Secunia2008Report.pdf
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Chapter 6

WEB BROWSER SECURENESS WITH
RESPECT TO CVSS SCORE

In this chapter, we will examine and compare the secureness of Web browsers

with respect to the CVSS base score. Consequently, this chapter could be considered

as an extended chapter from the previous chapter.

Table 6.1 shows that the current market share is way more evened compare

to back in the days, although Internet Explorer still occupies more than half of

the market. Meanwhile, the browser vendors’ patch works are somewhat in inverse

proportion to their market shares except Safari. Apple seems not work hard for

patching compare to the other vendors.

When organizations’ security or individuals’ privacy is a top priority, users are

frequently asking themselves questions such as what is their Web browsers’ historical

reputations related to the security, how much their Web browsers are inherently

more vulnerability-free than others, is the vendor provides patch update quickly

Table 6.1: Number of cumulative vulnerabilities with initial release date, market share, and patch
rate

sssssss IE FF OP SF
# of Vulnerabilities∗ 575 525 159 213
Release date Aug. 1995 Nov. 2004 Dec. 1996 Jan. 2003
Market Share† 60.65% 24.52% 4.65% 2.37%
Patch rate‡ 80.21% 96.73% 98.07% 77.06%

∗Total number of vulnerabilities. Datasets are minded at NVD on April 2010
†http://marketshare.hitslink.com/report.aspx?qprid=0 on March 2010

‡Average value; http://secunia.com on March 2010; Secunia data starts from February 2003
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Figure 6.1: Grouped CVSS base scores; vulnerabilities having their scores of [0.0, 1.0] belong to
Group 1, having their scores of (1.0, 2.0] belong to Group 2, . . ., having their scores
of (9.0, 10.0] belong to Group 10.

and properly, and if the system is compromised what could be the total cost they

need to pay.

Common Vulnerability Scoring System (Mell et al., 2007) provides some of

those answers directly and indirectly. For more detail descriptions of CVSS, see the

Chapter 2.2.3. You might want to review the subsection for the later part of this

chapter due to the abbreviations used.

This chapter quantitatively analyzes all the elements in CVSS base score for

the four Web browsers of Internet Explorer (IE) , Firefox (FF), Opera (OP) and

Safari (SF). The results show that exploitation aftermath is getting worse and when

there are extra complexities and authentications, most of the exploitation would be

avoidable.

6.1 Comparing trends of grouped CVSS scores

According to the NVD, the score range from 0 to 3.9 corresponds to low severity,

4.0 to 6.9 to medium severity and 7.0 to 10.0 to high severity as we mentioned in
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Table 6.2: Number of cumulative vulnerabilities – Grouped CVSS base score

@
@
@

Group number
1 2 3 4 5 6 7 8 9 10

IE 0 0 49 5 180 39 26 139 2 135
FF 0 1 37 5 187 29 44 86 0 136
OP 0 0 9 1 76 8 14 23 0 28
SF 0 3 9 0 96 8 16 30 1 50

Table 6.3: Number of cumulative vulnerabilities – Grouped CVSS by exploitability sub-scores

@
@
@

Exploitabilty Group number
1 2 3 4 5 6 7 8 9 10

IE 0 0 0 11 88 0 3 0 193 280
FF 0 1 0 6 62 0 2 0 222 232
OP 0 0 0 1 12 0 0 0 68 78
SF 0 1 0 6 10 1 0 0 133 62

Table 6.4: Number of cumulative vulnerabilities – Grouped CVSS by impact sub-scores

@
@
@

Impact Group number
1 2 3 4 5 6 7 8 9 10

IE 0 0 225 0 19 0 186 0 0 145
FF 0 0 224 0 20 0 140 0 0 141
OP 0 0 85 0 10 0 35 0 0 29
SF 0 0 108 0 5 0 47 1 0 52

Chapter 4.4. Figure 6.1 shows the grouped CVSS base scores for the Web browsers.

In the figure, the CVSS base score groups are split into the ten groups evenly as

follows:

• Group 1: 0.0 ≤ CVSS base score ≤ 1.0

• Group 2: 1.0 < CVSS base score ≤ 2.0

• ⋮

• Group 10: 9.0 < CVSS base score ≤ 10.0
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Figure 6.2: Grouped exploitability and impact sub-scores; vulnerabilities having their scores of
[0.0, 1.0] belong to Group 1, having their scores of (1.0, 2.0] belong to Group 2, . . .,
having their scores of (9.0, 10.0] belong to Group 10.

Table 6.2 shows the number of vulnerabilities of the grouped CVSS base scores.

For the four Web browsers, Group 5s have the biggest portion of the number of

vulnerabilities. For Firefox, Opera, and Safari, the second biggest group is Group

10 followed by Group 8. Rankings of Group 10 and Group 8 had been switched

around 2009. For Internet explorer, Group 8 and Group 10 are about to change

their position sooner or later. The figure shows that the growth rate of Group 10 is
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steeper than other groups, which indicates the vulnerability severity level is getting

worse. No vulnerability is falling into Group 1.

Figure 6.2 shows growth rates of grouped scores for the exploitability and im-

pact sub-scores, and Table 6.3 and 6.4 show the number of vulnerabilities for the

explitability and impact sub-scores respectively. For the exploitability plots, in In-

ternet Explorer, Firefox, and Opera Web browsers, Group 10s have the biggest

number of vulnerabilities followed by Group 9 whereas Group 9 is the biggest group

followed by Group 10 for Safari Web browser. This trend indicates that vulnerabil-

ities are compromised remotely with very little or none of authentication processes.

On the other hand, in Group 1, Group 2, Group 3, Group 6, Group 7, and Group

8, there is very small number of vulnerabilities or none of them are found.

For the impact sub-scores, all the Web browsers show the very similar pattern;

Group 3 is the highest followed by Group 7 or Group 10, and Group 10 is about

to catch Group 7 up or Group 10 already overtook Group 7 in some cases. No

vulnerabilities are falling into Group 1, Group 2, Group 4, Group 6, Group 8, or

Group 9. There is one exception in Safari which is CVE-2007-3514 having impact

score of 7.8 which is Group 8.

6.2 Exploitability and impact sub-metrics

Figure 6.3 and Figure 6.4 show the growth rate of the three elements in the ex-

ploitability metric group and the three elements in impact metric group respectively

for the four Web browsers, and Table 6.5 and 6.6 show the corresponding number of

vulnerabilities for exploitability and impact sub-scores respectively. In Figure 6.3,

in general, methods how the vulnerability is accessed are very similar across the four

browsers. For the access vector, most of the time, vulnerabilities are compromised

from the remote networks, and some are attacked locally. The observation suggests

that organizations need to improve their network security related equipment.
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Table 6.5: Number of cumulative vulnerabilities – Exploitability metrics

Exploitability metric
AV AC Au

L A N H M L M S N
IE 10 0 565 89 196 290 0 4 571
FF 6 1 518 64 224 237 0 3 522
OP 1 0 158 12 68 79 0 0 159
SF 6 1 206 12 136 65 0 1 212

Table 6.6: Number of cumulative vulnerabilities – Impact metrics

Impact metric
C I A

N P C N P C N P C
IE 169 257 149 185 245 145 149 268 158
FF 190 186 149 125 259 141 185 191 149
OP 78 49 32 41 89 29 71 57 31
SF 91 62 60 73 87 53 90 63 60

It is shown that the access complexities are not complex enough to protect

systems from attackers. Most of the time, vulnerabilities are compromised by low

access complexity followed by medium complexity. However, vulnerabilities with

highly complex accesses are also frequently observed. For the authentication, al-

most every time, the vulnerabilities do not requires any authentication process.

Some are asking a single authentication process, but vulnerabilities with multiple

authentications never found.

In Figure 6.4, for Internet Explorer, when vulnerabilities are compromised,

most of the time, confidentiality, integrity, and availability tend to be partially

impacted. Even though the number of vulnerabilities leading to the category of

complete is still the lowest, the growth rate is the highest, so that in the near

future, complete seems will overtake the none. For Firefox, in the confidentiality

and availability impact cases, partial and none categories seems occurred with the

similar frequencies. However, like Internet Explorer, the growth rate of complete
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Figure 6.3: Exploitability matric group; Access Vector, Access Complexity, and Authentication.

category is higher than others, so that it seems like in the near future the category

will catch up the other two. For the integrity impact, the partial is dominant.

Opera and Safari shares somewhat similar pattern across the three impact el-

ements. In many cases, vulnerabilities are not affecting the confidentiality impact

(none). Then they affect partially followed by complete. For the integrity impact,

vulnerabilities are falling into the partial category followed by none; the complete

positions the third. For the availability impact, none and partial occurs neck and

neck followed by complete. In Opera, the growth rate of complete seems to be

slowdown whereas the growth rate of complete in Safari tends to be accelerated.
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Figure 6.4: Impact metric group; Confidentiality Impact, Integrity Impact, and Availability Im-
pact.

6.3 Combination of exploitability and impact

Figure 6.5 shows all the possible combinations between the elements from the

exploitability and impact metric groups. The reason why some Web browsers have

more categories than others at the graphs is that simply some Web browsers do

not have any vulnerability for those categories. It is clearly observed that some

combinations have more incidents than others.

For the all Web browsers, vulnerabilities are occurred most of the time at the

categories of (AV_N, AC_L, Au_N), (AV_N, AC_M, Au_N), or (AV_L, AC_L,

Au_N) which means majority of vulnerabilities are compromised (remotely with low

access complexity and no authentication process), (remotely with medium access
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Figure 6.5: Relationship between exploitability and impact sub-score groups; all the possible
combinations.

complexity and no authentication process), or (remotely with low access complexity

and no authentication process) respectively.

Table 6.7 shows the top three individual combinations having the biggest num-

ber of vulnerabilities for each Web browsers. It is evidently shown that when access

vector is network (N), and there is no authentication process (N), majority of vul-

nerabilities are compromised. Also, there is no vulnerability having a high access

complexity. Frequently, a compromised vulnerability let attackers completely gain

IT asset in terms of confidentiality, integrity, and availability: the triple Cs in the

table.

6.4 Summary

The chapter analyzed the base scores from Common Vulnerability Scoring Sys-

tem for the four popular Web browsers quantitatively: Internet Explorer, Firefox,
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Table 6.7: Top three high frequency combinations

@
@
@

Freq. Exploitabilty Impact
AV AC Au C I A

IE
114 N L N P P P
109 N M N C C C
70 N L N N N P

FF
78 N M N C C C
68 N L N P P P
58 N L N C C C

OP
21 N L N N P N
21 N M N N P N
20 N L N C C C

SF
45 N M N C C C
40 N M N N P N
18 N L N N N P

Table 6.8: Summary of CVSS version 1 and version 2 base scores for the experimental data
(Scarfone and Mell, 2009)

mean median s.d. skew below 5.0 exactly 5.0 above 5.0
V1 5.1 5.6 2.62 0.11 45% 0% 55%
V2 6.6 6.8 1.91 -0.05 25% 10% 65%

Table 6.9: Most common CVSS version 2 vectors (Scarfone and Mell, 2009)

Freq. (%) Exploitabilty Impact
AV AC Au C I A

2662 (24.2) N L N P P P
1527 (13.9) N M N N P N
999 (9.1) N M N P P P
896 (8.1) N M N C C C
743 (6.7) N L N C C C
577 (5.2) N L N P N N
443 (4.0) N L N N N P
251 (2.3) L L N C C C
240 (2.2) N L N N N C
217 (2.0) L M N C C C
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Opera, and Safari. The base score in the scoring system measures how a vulnerabil-

ity will directly affect an IT asset as the degree of losses in confidentiality, integrity,

and availability. Furthermore, the score captures how the vulnerability is accessed

and whether or not extra conditions are required to exploit it.

The results show that, almost all the time, vulnerabilities are compromised from

remote area at no authentication required systems. This suggests for organizations

to enhance their network security related facilities, and also to add authentication

process in their Web sites. The result also reveals that exploitation aftermath is

getting worse.

An analogous study had been conducted by Scarfone and Mell (2009) in 2009

based on 11,012 CVEs between June 20th, 2007 and April 30th, 2009. They ex-

amined CVSS version 2 scoring system in depth without software categorizations.

Their main goal was to determine how effectively version 2 had addressed the ver-

sion 1 problems focused on base metrics. The problem was there were not enough

diversities among the produced scores. The comparisons between the versions are

shown in Table 6.8. It indicates that version 2 should generally produce higher scores

than version 1. Moreover, they analyze the percentages of combinations in the base

metrics which shown in Table 6.9. The top 10 most common vectors comprised over

77% of all vulnerabilities. The combinations are pretty much the same pattern from

those of Web browsers’ in Table 6.7.
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Chapter 7

MODELING SKEWNESS IN
VULNERABILITY DISCOVERY

Recent studies have shown that the S-shaped AML vulnerability discovery

model often fits better than other models and demonstrates superior prediction ca-

pabilities for several major software systems (Alhazmi and Malaiya, 2006b; Alhazmi

et al., 2007; Alhazmi and Malaiya, 2008). However, the AML model is based on the

logistic distribution, which assumes a symmetrical discovery process with a peak in

the center of discovery process. Hence, it could be expected that when the discovery

process does not follow a symmetrical pattern, an asymmetrical distribution based

discovery model might perform better.

In the chapter, the relationship between performance of S-shaped vulnerability

discovery models and skewness in target vulnerability datasets is examined. To

study the possible dependence on the skew, alternative S-shaped models based on

the Weibull, Beta, Gamma and Normal distributions are introduced and evaluated.

The models are applied to datasets from the eight major software systems: Red Hat

Linux, MAC OSX, Windows XP, Windows Server 2003, Apache Web server, IIS,

Firefox and Internet Explorer.

The applicability of the models is examined using two separate approaches:

goodness of fit test to see how well the models track the data, and prediction capa-

bility using average error and average bias measures. It is observed that an excellent

goodness of fit does not necessarily result in a superior prediction capability. The
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results show that when the prediction capability is considered, all the right skewed

datasets are represented better with the Gamma distribution based model. The

symmetrical models tend to predict better for left skewed datasets, the AML model

is found to be the best among them.

7.1 Motivation

Voit and Schwacke (2000) have found that the S-distribution, which is one of

the S-shaped distributions, provides accurate representations for frequency datasets

regardless their skewness, so this flexibility makes the distribution an ideal candidate

for Monte Carlo analyses. A comparison of several S-shaped growth models in

biomedical engineering has been conducted by Albaiceta et al. (2007). Among the

vulnerability discovery models, which have emerged recently, the AML model is the

only S-shaped model proposed thus far.

The AML model uses, as shown in Chapter 3.1, a logistic vulnerability discovery

process which assumes a symmetric shape around the peak discovery rate value.

However, for many datasets, the upper and lower percentiles may not be equidistant

from its median and, thus, the assumption of a symmetrical discovery may not hold

precisely. Moreover, Barua and Srinivasan (1987) have shown that, in risk analysis,

ignoring the skewness can lead an analysis to be inaccurate. Thus, the AML model

needs to be evaluated for cases with asymmetrical discovery patterns.

This chapter, first, introduces four more S-shaped models, and examines whether

the performance of S-shaped VDMs is related to their underlying probability den-

sity functions (PDF) and skewness in target vulnerability datasets. For example, a

VDM based on the Gamma distribution (Figure 7.4 (e)), which belongs to the family

of right-skewed distributions, might represent the right skewed datasets (Figure 7.2

(c)) better than the S-shaped models whose underlying PDF is symmetrical such as

the AML model or the Normal distribution based VDM (Joh and Malaiya, 2010b).
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7.2 Skewness

Table 7.1: Skewness and total number of vulnerabilities from Figure 7.1. Datasets from NVD on
2009

RHL OSX Windows XP Server 2003
Skewness 0.4539 -7.064 -0.1394 0.2636
Number of Vulnerabilities 228 512 302 219

Apache IIS IE Firefox
Skewness -0.3420 1.0034 -0.5436 0.0236
Number of Vulnerabilities 133 140 501 388

The Skewness static measures the magnitude and the direction of the skew.

It characterizes the degree of asymmetry of a distribution around its mean value

(Kenney and Keeping, 1962). The skewness values are calculated using the following

equation.

Skewness =
n

(n − 1)(n − 2)
∑(

xi − x̄

s
)3 (7.1)

where n is the number of data points, xi is the ith data value, x̄ represents the mean

value, and s is the standard deviation for the datasets examined. As Figure 7.2

shows, a positive or right skewness indicates a distribution with a tail extending

toward more positive values, and a negative or left skewness indicates a distribution

with a tail extending toward more negative values. As the skewness statistic departs

further from zero, a positive value indicates the possibility of a positively skewed

distribution or a negative value indicates the possibility of a negatively skewed dis-

tribution.

Figure 7.1 shows the number of vulnerabilities for each month for the eight

software systems. The starting points of the x-axes are January of the year when

the first vulnerability was reported for each dataset. Skew values calculated by

Equation 7.1 are not affected by time points having no data value at the starting
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Figure 7.1: Run chart for the number of vulnerabilities in each month.
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left/negative skewness 

(a)

Zero skewness (symmetrical)

(b)

right/positive skewness 

(c)

Figure 7.2: Skewness for S-shaped probability density functions. When a tail is located at the
left (right) side, it is called skewed left (right). Left (right) skewness can be said also
negative (positive) skewness.

period in Figure 7.1. Table 7.1 gives the corresponding skewness values for each of

the software systems along with the cumulative number of vulnerabilities.

It should be noted that the calculated skew values tend to change only a little

when the data, near the tail sides with only a few data points, is truncated. For

example, the skew is -0.3532 for OSX if we skip the first five years and start from

year 2002, thus the dataset is still skewed left.

Often skewness cannot be clearly observed visually when the data is noisy and

not continuous. This would cause the visual observation to be misleading. In Figure

7.1, visually, the data for Red Hat Linux may appear symmetrical, due to the peaks

around year 2000 and 2001, however, with significant number of vulnerabilities on

the right side of the plot, the calculated value finds the data to be skewed right.

Thus, skewness should be evaluated using a formal mathematical expression to avoid

any visual illusions

Bulmer (Bulmer, 1965) has suggested a rule of thumb for skewness: i) if an

absolute value of skewness is greater than 1, the distribution is highly skewed ii) if

an absolute value of skewness is between 1/2 and 1, the distribution is moderately

skewed iii) and if an absolute value of skewness is less than 1/2, then the distribution

is approximately symmetric. According to the rule, in Table 7.1, IIS is highly skewed
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Figure 7.3: Number of vulnerabilities grouped by every six month for RHL; bell shape is clearly
observed.

right, OSX and IE is moderately skewed left, and the others are approximately

symmetric.

7.3 S-shaped vulnerability discovery models

In this section, the four new S-shaped vulnerability discovery models are intro-

duced: Weibull, normal, Beta and Gamma distribution based models. The Weibull

distribution based VDM model is proposed by Kim (2007) who pointed out that the

asymmetrical S-shaped VDM might be alternative to the symmetrical AML model.

The other three S-shaped models are introduced here for the first time 1.

Choosing S-shaped models is natural when saturation is inevitable. Sir Richard

Stone (Stone, 1980), a Nobel laureate, wrote about the S-curve growth models in

economics as “whatever the future may hold, growth must at some stage be faced

by limit beyond which it cannot go”. Figure 7.4 (a) shows the three phases of

the S-shaped models. The learning phase is from the introduction of the system

until the onset of sustained growth as a consequence of increasing popularity. It is

followed by the linear phase, and this is when most of the vulnerabilities are to be

discovered. Finally, saturation phase will eventually occur. The last phase might not

1Okamura et al. (2009) briefly mention about Gamma and Log-Normal distributions tested
for Windows XP in the context of patch release time.
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3−phases for S−shaped models
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Figure 7.4: Three phases for S-shaped models (a) and the five probability density functions (b,
c, d, e, and f) for normal, logistic, Weibull, Gamma, and Beta probability distribu-
tions respectively. The five probability density functions are applied for vulnerability
discovery models here.
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be observed as long as a significant number of vulnerabilities are still undiscovered.

The transition points between the phases are defined mathematically by Alhazmi

and Malaiya (Alhazmi and Malaiya, 2006b) for the AML model. See Chapter 3 for

the detail about AML.

Figure 7.3 illustrates why S-shaped models should be more accurate than non-

S-shaped models for the vulnerability discovery process, provided the time period

involved is sufficiently long. In the figure, the vulnerability discovery behavior is ap-

proximately bell shaped, and thus, the cumulative number of vulnerabilities found

will form an S-curve like 7.3 (a). Since the AML model is based on the logistic prob-

ability distribution, it has a symmetrical PDF as shown in 7.4 (c) with a skewness

value of zero. In the figure, A is a location parameter which determines the location

or shift associated with the distribution and B is a scale parameter; the larger the

scale parameter, the more spread out the distribution.

7.3.1 Normal Distribution based model

In statistics, the Normal distribution (or Gaussian distribution) is a continuous

probability distribution that describes a dataset that clusters around an expected

value. It is a symmetrical distribution with zero skewness like the AML model.

Figure 7.4 (b) represents the PDF for the Normal distribution. In the figure, µ

is a location parameter and σ is a scale parameter. It is similar to the logistic

distribution used by AML model in shape but has lighter tails in both sides. Hence,

if a vulnerability dataset has fewer incidences at the beginning and at the end of a

discovery process, then the Normal distribution based VDM might perform better

than the logistic distribution based model.

Equation 7.2 gives vulnerability discovery rate for the normal distribution based

VDM and Equation 7.3 gives the corresponding cumulative model. µ is a location

parameter and s is a scale parameter. When t approaches infinity in Equation
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7.3, the right hand side converges to γ. Hence, γ represents the total number of

vulnerabilities that will eventually be discovered.

Like the AML model, the time t varies from the negative infinity to the posi-

tive infinity. Hence, unlike asymmetrical distributions, AML or Normal distribution

based VDM could possibly characterize the pre-release vulnerability discovery, rep-

resented using the folded VDM (Kim, 2007; Younis et al., 2011) if we take time t = 0

as the software release time. This effect cannot be modeled by the asymmetrical

distributions which are generally defined for the duration from t = 0 to the plus

infinity.

ωNormal(t) =
γe

−( (t−µ)
2

2s2
)

√
2πs

(7.2)

ΩNormal(t) =
γ

2
[1 + erf (

(t − µ)2

2s2
)] (7.3)

where erf(x) =
2

√
π
∫

x

0
e−t

2

dt

7.3.2 Gamma distribution based model

The Gamma distribution is a two-parameter continuous probability distribution

with a shape parameter α and a scale parameter β as shown in 7.4 (e). This

distribution is only defined for the t values from 0 to the positive infinity. The

Gamma distribution is often used for a probabilistic model for waiting times, it

arises naturally in processes for which the waiting times between Poisson distributed

events are relevant2. For example, in life testing, the waiting time until death is a

random variable which is frequently modeled using the Gamma distribution (Hogg

and Craig, 1978).

Equation 7.4 is the vulnerability discovery rate for the Gamma distribution

based VDM. Equation 7.5 is its corresponding cumulative model. It has the shape

parameter α > 0, the scale parameter β > 0 and a parameter γ which signifies the

2http://mathworld.wolfram.com/GammaDistribution.html
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total number of vulnerabilities that would eventually be found. As α increases, the

Gamma distribution becomes more symmetrical. The distribution is defined for t >

0. Since the Gamma distribution belongs to the family of right-skewed distributions

it might perform better when a vulnerability dataset is right-skewed. When time t is

sufficiently large, many vulnerability discovery datasets should appear right-skewed

because the number of vulnerabilities found will drop gradually, which would cause

a tail on the right side.

ωγ(t) =
γ

Γ(α)βα
tα−1e−

t
β (7.4)

where Γ(α) = ∫

∞

0
tα−1etdt

Ωγ(t0) = γ ∫
t0

t=0

1

Γ(α)βα
tα−1e−

t
β dt (7.5)

7.3.3 Weibull distribution based model

The Weibull distribution is one of the most widely used lifetime distributions in

reliability engineering. Li et al. (2004) have empirically shown that Weibull model is

better in comparison to other reliability models for defect occurrence across a wide

range of software systems. Zhou and Davis (2005) have shown the applicability of

Weibull distribution to explain the failure process data from the several open source

projects by fitting the distribution to the time related bug reporting patterns. Figure

7.4 (d) gives its PDF where the parameter α represents the shape parameter and β

is the scale parameter. The Weibull distribution based VDM model was proposed

by Kim (2007) recently.

Equation 7.6 represents the vulnerability discovery rate for the Weibull distri-

bution based VDM, and Equation 7.7 gives the number of cumulative vulnerabilities.

Here, α determines the shape of the software vulnerability discovery rate. When

α is approximately 3, the shape is symmetrical. The curve has negative skewness

when α > 3 and positive skewness when α < 3. The parameter β controls the time
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scale. The parameter γ represents the total number of vulnerabilities that would

eventually be discovered. The calendar time t is defined from 0 to the positive

infinity just like Gamma distribution based VDM.

ωWeibull(t) =
αγ

β
(
t

β
)
α−1

e−(
t
β
)
α

(7.6)

ΩWeibull(t) = γe−(
t
β
)
α

(7.7)

7.3.4 Beta distribution based model

Figure 7.4 (f) shows the behavior of probability density function for the Beta

distribution. Since the x-axis is fixed from 0 to 1, it only has two positive shape

parameters α and β and no scale parameter. The Beta distribution can accommo-

date both forms of skewness, positive and negative. Thus, it is frequently used when

skewness serves a core decision maker (Moitra, 1990).

ωβ(t) =
γtα−1(1 − t)β−1

B(α,β)
(7.8)

where B(α,β) =
Γ(α)Γ(β)

Γ(α + β)

Ωβ(t0) = γ ∫
t0

t=0

tα−1(1 − t)β−1

B(α,β)
dt (7.9)

Equations 7.8 and 7.9 give the discovery rate and the cumulative number of

vulnerabilities for Beta distribution based VDM. Both α and β are positive shape

parameters. The parameter γ represents the total number of vulnerabilities. The

vulnerability discovery rate has negative skewness when α > β and positive skewness

when α < β. When α = β, the distribution represents a symmetrical model. Since

the time value t is defined only within a fixed interval, practitioners need to know the

start and end points of the vulnerability discovery process which may be unrealistic

in many cases. However, when people could estimate the starting and the ending

points of the discovery process, it might provide better performance in some cases

because it accommodates the both types of skew.
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7.4 Goodness of fit analysis

In this section, the goodness of fit analysis has been evaluated mainly using

Chi-square (χ2) goodness of fit test. The Chi-square statistic is calculated as:

χ2
s =

n

∑
i=1

(oi − ei)2

ei
(7.10)

where oi and ei are the observed and expected values at ith time point respectively.

For the fit to be acceptable, the χ2 statistic value should be less than the corre-

sponding critical χ2 value for the given alpha level and the degrees of freedom. The

P-value represents the probability that a value of the statistic at least as high as

the value calculated by Equation 7.10 could have occurred by chance. In the disser-

tation, level of α chosen is 0.05. Hence, if the P-value of the χ2 test is below 0.05,

then the fit will be considered to be unsatisfactory. In general, for most Chi-square

goodness of fit test, including ours, the research hypothesis is the null hypothesis.

Hence, a P-value closer to 1 indicates a better fit for the test. The P-value is calcu-

lated by using the number of degrees of freedom for the given dataset. The rule of

thumb for the χ2 goodness of fit test is that there should be at least 5 data points,

so the analysis is initiated when there are 5 or more data points. Goonatilake et al.

(2007) provides the material how to apply Chi-square test in detail.

Table 7.2 shows the parameter values for each S-shaped VDM and the results

of the Chi-square goodness of fit test along with the R2 value for the eight datasets,

for the four operating systems and the four Web related software systems. In the

table, fits for some of Internet Explorer and Firefox are not accepted since P-values

are less than 0.05. However, they can be misleading because visually the plots in

Figure 7.5 fit the datasets well. Also all the R2 values are close to 1, which means

very good fittings. Values in the tables are rounded to fourth decimal places.

The results show that the five S-shaped models fit the given datasets very well

with most of the P-values in Table 7.2 being 1 or very close to 1, except for the
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Figure 7.5: Model fitting for the five VDM models. It is observed that all the five S-shaped
VDMs fit very well for most of the datasets.
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Table 7.2: Model parameters and Chi-square (χ2) goodness of fit test for model fitting

H
HHHHA

B Para. 1 Para. 2 Para. 3 χ2
s χ2

c P-value d.f. R2

Red Hat Linux
AML 0.0003 221.1418 1.7409 50.2572 165.3159 1.0000 137 0.9972
Weibull 3.9873 90.9009 218.9963 79.9610 159.8135 0.9999 132 0.9958
Beta 6.1904 6.4613 219.0680 81.9306 153.1979 0.9992 126 0.9960
Gamma 11.8933 7.1397 223.7918 82.2759 148.7793 0.9978 122 0.9969
Normal 82.7842 23.4449 219.7616 81.7450 159.8135 0.9998 132 0.9965

MAC OSX
AML 0.0001 572.6486 7.9195 81.3571 118.7516 0.8395 95 0.9980
Weibull 5.8473 124.6684 542.9656 49.6092 114.2679 0.9999 91 0.9986
Beta 6.3442 2.0363 491.5072 61.9089 114.2679 0.9916 91 0.9980
Gamma 16.0513 7.9699 691.7948 46.0737 105.2672 0.9997 83 0.9988
Normal 119.6110 25.6563 592.7040 35.1902 110.8980 1.0000 88 0.9988

Windows XP
AML 0.0002 312.2884 0.3316 43.9617 127.6893 1.0000 103 0.9970
Weibull 3.0788 78.2036 312.5689 58.2086 109.7733 0.9925 87 0.9970
Beta 3.1459 2.1794 289.5698 58.9773 112.0220 0.9941 89 0.9969
Gamma 5.3065 15.1303 367.2040 57.5546 95.0815 0.9209 74 0.9960
Normal 69.1542 24.9641 309.0597 64.1183 112.0220 0.9785 89 0.9972

Windows Server 2003
AML 0.0005 204.4337 0.6340 52.2160 88.2502 0.9217 68 0.9948
Weibull 3.1638 55.4057 205.8716 42.4827 89.3912 0.9950 69 0.9962
Beta 3.5940 2.9589 198.5265 42.3072 89.3912 0.9953 69 0.9951
Gamma 6.7291 7.8783 220.1135 19.8005 95.0815 1.0000 74 0.9979
Normal 49.0744 16.9582 203.3947 52.5957 91.6702 0.9500 71 0.9957

Apache Web Server
AML 0.0003 137.7257 0.5002 24.4280 162.0156 1.0000 134 0.9943
Weibull 2.6975 114.8528 145.4950 23.3024 148.7793 1.0000 122 0.9945
Beta 2.6047 1.8249 127.8919 29.1381 150.9894 1.0000 124 0.9931
Gamma 4.2942 27.8625 172.2811 26.9338 145.4607 1.0000 119 0.9947
Normal 97.6709 38.7897 138.1927 21.9189 155.4047 1.0000 128 0.9946

Internet Information Server
AML 0.0005 130.8490 0.6588 70.3371 169.7113 1.0000 141 0.9950
Weibull 2.9219 70.4692 130.5435 47.5040 163.1161 1.0000 135 0.9954
Beta 4.0871 6.3368 130.3883 36.0432 160.9148 1.0000 133 0.9956
Gamma 6.4370 10.1136 133.0643 23.7104 158.7119 1.0000 131 0.9968
Normal 62.3076 23.3523 130.0286 55.2632 166.4153 1.0000 138 0.9949

Internet Explorer
AML 0.0001 501.0000 0.2000 728.3713 164.2162 0.0000 136 0.9806
Weibull 1.9656 320.8684 2635.3384 119.5330 160.9148 0.7922 133 0.9950
Beta 1.8291 0.9805 520.7295 109.8756 162.0156 0.9372 134 0.9954
Gamma 2.3513 123.0781 2085.3758 141.1310 158.7119 0.2574 131 0.9934
Normal 129.5461 57.2559 826.6074 348.4672 164.2162 0.0000 136 0.9943

Firefox
AML 0.0004 303.4813 0.7132 258.7119 83.6753 0.0000 64 0.9798
Weibull 2.9433 55.5245 401.7704 147.2615 81.3810 0.0000 62 0.9941
Beta 2.9059 1.9255 357.6044 163.5747 81.3810 0.0000 62 0.9923
Gamma 5.2684 10.5932 459.0048 88.4143 77.9305 0.0079 59 0.9956
Normal 47.7852 17.2930 382.2693 189.7606 84.8206 0.0000 65 0.9926
Parameters are in the equations from 3.1 to 7.9: for AML, Parameter 1, 2 and 3 are A, B and C respectively. For Normal, Parameter
1, 2 and 3 are µ, σ and γ respectively. For the rest of them, Parameter 1, 2 and 3 are α, β and γ respectively. Here α level is 0.05 for
the Chi-square Goodness of fit test. All the values in the tables are rounded off with four decimal places.
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two software systems. The five VDMs produce very similar fitted curves in most

cases. For Internet Explorer, the AML and the Normal VDMs produce P-values less

than 0.05, so the two symmetrical VMDs are rejected by the goodness of fit test. In

Figure 7.1, for Internet Explorer, there is an observable skew to the left since the

tail is on the left side. This is probably why Weibull and Beta VDMs, which can

model left skewness, fits are relatively better than other VDMs for this dataset. For

Firefox, all the five VDMs result in very small P-values with no specific observable

cause. It is common that the Chi-square goodness of fit test is inaccurate for small

values of the expected numbers because the distribution of the test statistics does

not fit the Chi-square distribution very well. However, the R2 values and visual

observations suggest that the fits are reasonably good. Thus, a rejection of the fit

based on P-value alone can be questionable.

In Figure 7.5, some of the datasets do not display the three distinct phases

that are expected for an S-shaped vulnerability discovery process (Figure 7.4 (a)).

A possible explanation for this is provided by superposition effect when the data

involves successive versions with changes and additions to the code, as discussed

by Kim et al. (2007). This is especially true for several of the software systems

examined here. The vendors keep releasing the successive versions with additional

functionality time to time using additional code, and it causes the linear phase to

be extended.

With the goodness of fit test alone, we do not observe a significant relationship

between the underlying assumptions of the VDMs and skewness in datasets. We

next compare the models using their prediction capabilities. We examine how well

the five S-shaped VDMs can predict the number of vulnerabilities in advance since

a superior result of goodness of fit test does not necessarily imply a good prediction

capability. The prediction capability is more important than model fitting since the

main use of a model is to predict the future trends rather than reviewing the past
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behavior. In the following section, each model’s prediction capability is evaluated

to assess how well the underlying assumptions for the VDMs yield projections for

future.

7.5 Prediction capabilities of S-shaped models

The core task for a vulnerability discovery model is to predict the vulnerability

detection rate that the software users would encounter during a specific future pe-

riod. This is similar to the main problem for software reliability estimation after a

specific period of testing. A vulnerability discovery model with a better prediction

capability should be able to estimate the number of future vulnerabilities more ac-

curately using only currently available data. Such a prediction is needed to estimate

the resources needed for maintenance and for the risk estimation.

When the available number of data points is small, there is not enough infor-

mation to do a meaningful projection. In this study, the analysis of the prediction

capability for the five S-shaped VDMs is initiated after about two third of the time

period has been elapsed from the beginning of the vulnerability discovery process.

For each month, the available data upto that month is fitted to the models using

regression analysis to estimate model parameters. Then, using the estimated pa-

rameters, the models are used to predict the number of vulnerabilities at the end

of the time period, which would eventually represent the complete vulnerability

dataset. The estimated final values for each time point produced by the five models

are compared with the actual number of vulnerabilities to calculate the prediction

error values.

The two predictability measures will be used, Average Error (AE) and Average

Bias (AB), as shown in Chapter 5.6. AE is a measure of how well a model predicts

throughout the test phase, and AB indicates the general bias of the model which

assesses the tendency of the model to overestimate or underestimate.
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Figure 7.6: Prediction errors for the S-shaped models. Starting points of x-axes are at 66% of
time point toward the target month, which means after two third of a time period has
been elapsed from the starting point of a vulnerability discovery process. It is clearly
shown that Gamma VDM performs the best with all the skewed right datasets of
RHL, Server2003, IIS and Firefox.
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Table 7.3: Average bias and average error (Unit: %)

PPPPPPPPPAA
BB AML Weibull Beta

AB AE AB AE AB AE
RHL -6.8062 6.8062 -9.0041 9.0041 -7.7660 7.7660
OSX -0.1760 0.8560 3.5248 25.0304 6.5530 27.7730
Win XP -0.8144 2.6533 17.3505 19.0813 21.2705 25.6956
Server 2003 -18.5416 18.5416 -18.4665 18.4665 -18.6358 18.6358
Apache -8.2019 8.2019 8.4881 19.3185 28.2841 42.7233
IIS -9.1149 9.1149 -9.6016 9.6016 -9.2471 9.2471
IE -9.1961 9.1961 -10.5673 12.3535 5.8406 28.2559
Firefox -22.8593 22.8593 -21.1867 21.1867 -22.4604 22.4604

PPPPPPPPPAA
BB Gamma Normal Empty cell

AB AE AB AE
RHL -4.1747 4.1747 -7.5176 7.5176
OSX 25.8446 26.6234 6.7460 14.5324
Win XP 22.0362 22.0362 3.2513 5.6087
Server 2003 -11.4468 11.4468 -18.1736 18.1736
Apache 13.3948 17.4270 -0.0146 11.6706
IIS -6.6553 6.6553 -9.8402 9.8402
IE -13.5888 13.6924 -15.2435 18.6043
Firefox -13.6256 13.6256 -21.7896 21.7896

The normalized error values (Ωt−Ω)/(Ω) for each dataset are plotted in Figure

7.6, and the values for AE and AB are given in Table 7.3, where Ω is the actual

number of vulnerabilities at target point whereas Ωt is the estimated number of

vulnerabilities at time t. Figure 7.6 clearly shows that, in spite of the rather similar

fitted values in Figure 7.5, the models produce significantly different predictions

compared with each other. It is observed that one of the two VDMs, AML or

Gamma, always results in the best performance for all the datasets.

As one would expect from the skewness properties of the models shown in

Table 7.1, the Gamma VDM demonstrates superior prediction capabilities for all the

four positively skewed datasets – RHL, Server 2003, IIS and Firefox. A noticeable

observation is that AML performs better than other VDMs with the all left skewed

datasets. Surprisingly Normal VDM does not behave similar to the AML model even

though Normal VDM yields the second best performance for the negatively skewed
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(b) Average error

Figure 7.7: It is shown that AML performs the best for the skewed negative dataset whereas
Gamma VDM performs the best for the skewed positive datasets.

datasets. One would have expected that the two models would show a similar

behavior because of their symmetry. The plots for the Normal VDM are rather

similar to the asymmetrical models most of the time. This might suggest that the

vulnerabilities tend to be detected a little earlier or later than what the Normal VDM

predicts since the logistic distribution has heavier tails than the Normal distribution

in both sides.

One would expect that when datasets were skewed left or skewed right, Weibull

and Beta VDMs would perform better than AML and Normal VDMs which are

symmetrical. However, the results using Weibull and Beta VDMs, which can model

both left or right skewed probability density functions, did not support a signifi-

cant relationship between their PDF behavior and the skewness in the vulnerability

datasets although both still predict the future behavior reasonably well. The Beta

VDM sometimes generates remarkably different predictions in comparison to the

other models. This might be because the Beta distribution is defined only for a

finite time period.

Figure 7.7 (a) and (b) summarize the observations. As seen in Figure 7.7 (a),

Beta VDM has an average bias smaller than other models for IE. However, that does

not mean that the model is better than others. In Figure 7.6, for IE, the prediction

112



errors for the Beta VDM swing across the zero percent error line widely resulting in

positive and negative errors cancelling each other. Figure 7.7 (b) confirms the big

error swings. For the right skewed datasets, Gamma VDM yields the best results

for the both measurements. For all the right skewed datasets, the five VDMs always

underestimate the number of vulnerabilities. This suggests that the datasets are

very good candidates for the recalibration approach which relies on the consistency

of the bias for adjusting the future predictions (Brocklehurst et al., 1990).

To evaluate the statistical significance of the differences among the AE values,

ANOVA (analysis of variance) test is conducted for the negative and positive skewed

datasets separately. The ANOVA test only can tell whether the performances among

the models are the same or not. It cannot identify which one is better. Hence,

Fisher’s Least Significant Difference (LSD) (Ott and Longnecker, 2000) test is con-

ducted after identifying the inequality performance from the ANOVA test (LSD

equation is shown in Chapter 9.3). For a fair comparison, AE values are normalized

by setting the biggest value as 1 in each software group.

Table 7.4 and 7.5 show ANOVA tables for the negatively skewed and the pos-

itively skewed datasets respectively for AE. Here, the alpha level has been chosen

to be 0.05. To be statistically significant, the F values in the ANOVA tables, need

to be greater than the corresponding F critical values with small enough P-value

(smaller than 0.05). In the two tables, F values and P-values show that not all the

models perform equally.

Table 7.6 and 7.7 show the absolute values of differences between mean values

of AE and the significance of pairwise comparisons with the shaded cells represent-

ing statistically significant differences. For the shaded cells, differences between two

compared models’ mean values are greater than calculated LSD value. The calcu-

lated LSD values for each table is LSDnegative = 0.2896 and LSDpositive = 0.1189

respectively. Table 7.6 confirms that AML performs better than Weibull, Beta, and
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Table 7.4: ANOVA table for the skewed negative datasets in AE

Negative SS df MS F P-value Fcrit
Between Groups 1.555252 4 0.388813 10.52039 0.00029 3.055568
Within Groups 0.55437 15 0.036958

Total 2.109622 19

Table 7.5: ANOVA table for the skewed positive datasets in AE

Positive SS df MS F P-value Fcrit
Between Groups 0.414582 4 0.103646 16.62514 2.18493E-05 3.055568
Within Groups 0.093514 15 0.006234

Total 0.508096 19

Table 7.6: LSD. Difference between mean values from negatively skewed datasets in AE

Negative AML Weibull Beta Gamma Normal
Mean 0.1629 0.6333 1.0000 0.6772 0.4183

AML 0.1629 0 0.4704 0.8371 0.5143 0.2554
Weibull 0.6333 0 0.3667 0.0439 0.2150
Beta 1.0000 0 0.3228 0.5817

Gamma 0.6772 0 0.2589
Normal 0.4183 LSDNegative =0.2896 0

Table 7.7: LSD. Difference between mean values from positively skewed datasets in AE

Positive AML Weibull Beta Gamma Normal
Mean 0.9193 0.9734 0.9462 0.5876 0.9408

AML 0.9193 0 0.0541 0.0269 0.3317 0.0215
Weibull 0.9734 0 0.0272 0.3858 0.0325
Beta 0.9462 0 0.3586 0.0054

Gamma 0.5876 0 0.3533
Normal 0.9408 LSDPositive =0.1189 0
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Gamma VDMs in negative datasets, but cannot tell AML is better than Normal

VDM. The table also tells that Beta VDM performs worse than others. Table 7.7

confirms that Gamma VDM performs better than others in positive datasets.

7.6 Categorization by vulnerability type

In this section, the five S-shaped VDMs are applied to vulnerability discovery

processes on OSX and IIS grouped by vulnerability types. The reason why OSX and

IIS are selected here is that they have the most skewed datasets in each skewness

(See Table 7.2).

Figure 7.8 shows the number of categorized vulnerabilities for OSX and IIS

in each month. Applying VDMs on categorized datasets might be useful if patch

developers like to inspect vulnerability behaviors for a certain types of fault only.

Here, the classification method is the same with Chapter 4.3 having eight types.

Table 7.8 and 7.9 compare vulnerability distributions in OSX and IIS by type.

The categories with the highest numbers are input validation errors, followed by

design errors. There is a slight difference in category ordering between OSX and IIS

from the third place: OSX has more Exception errors than access validation errors

whereas IIS has more access validation errors. It could be interpreted that IIS has

been more vulnerable to Access validation errors because the Web servers need to

be accessed by Web browsers, so that the servers could more frequently undergone

the specific error. OSX, on the other hand, has higher percentages on Other type

due to the OSes’ own complexities.

To determine whether there is an observable pattern at the level of individual

classes, the top four most frequent categories are fitted and predicted as shown in

Figure 7.9 and 7.10 respectively.

In Figure 7.9, the upper four are from OSX while the bottom four are from IIS.

The most clear observation is that OSX has been in the linear phase whereas IIS
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Figure 7.8: Run chart for the number of vulnerabilities grouped by vulnerability types. The
upper four plots from OSX, and the bottom four plots from IIS.
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Figure 7.9: Model fitting for the four vulnerability types from OSX and IIS. The upper four plots
from OSX, and the bottom four plots from IIS. It is observed that all the five VDMs
fit very similarly and very well.
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Table 7.8: Skewness and total number of vulnerabilities by type I – Access, Input, Design, &
Exceptionion.

Type: Access Input Design Exception
MAC OSX

Skewness -0.6488 -1.0382 -0.8143 -1.8566
Num Of Vuln. 36 167 100 50
Percentage 9.05% 41.96% 25.13% 12.56%

IIS
Skewness 1.2430 0.4809 0.4080 0.8023
Num Of Vuln. 20 66 28 15
Percentage 14.08% 46.48% 19.72% 10.56%

Table 7.9: Skewness and total number of vulnerabilities by type II – Environment, Configuration,
Race & Other.

Type: Env Config Race Other
MAC OSX

Skewness -1.3221 -0.1879 NA -2.3013
Num Of Vuln. 4 15 1 25
Percentage 1.01% 3.77% 0.25% 6.28%

IIS
Skewness 1.0325 0.0477 NA -1.3896
Num Of Vuln. 4 5 1 3
Percentage 2.82% 3.52% 0.70% 2.11%

shows a clear saturation phase, just like what the aggregated vulnerabilities shows

in Chapter 7.4. Moreover, the five model fittings also represent very similar pattern

in each case. As a result, we are not able to meaningfully compare the models due

to the similar behaviors for the model fittings. The corresponding χ2 values have

not been assessed due to the clear visual observations and an expectation of similar

results from Chapter 7.4.

Meanwhile, Figure 7.10 shows the prediction errors for the four vulnerability

types in each software system (upper four are OSX, and bottom four are IIS).

Table 7.10 reveals that there is differences among the normalized mean values in

OSX categorizations, but Table 7.11 tells that there is no statistically significant
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Table 7.10: ANOVA table for categorized OSX in AE

Positive SS df MS F P-value Fcrit

Between Groups 0.537452208 4 0.134363052 13.04515488 8.92243E-05 3.055568276
Within Groups 0.15449765 15 0.010299843

Total 0.691949858 19

Table 7.11: ANOVA table for categorized IIS in AE

Positive SS df MS F P-value Fcrit

Between Groups 0.019992705 4 0.004998176 0.074269525 0.988950185 3.055568276
Within Groups 1.009467108 15 0.067297807

Total 1.029459813 19

Table 7.12: LSD; Difference between mean values from categorized OSX in AE

OSX AML Weibull Beta Gamma Normal
Mean 0.6440 0.5394 0.6753 0.5746 1

AML 0.6440 0 0.1046 0.0313 0.0695 0.3560
Weibull 0.5394 0 0.1359 0.0351 0.4606
Beta 0.6753 0 0.1007 0.3247

Gamma 0.5746 0 0.4254
Normal 1 LSDOSX =0.1529 0

differences in IIS. Consequently, LSD is only calculated for the OSX as shown in

Table 7.12.

While, for the prediction capabilities, Chapter 7.5 shows that negative skewed

data was represented better with AML model, here, Table 7.12 only shows that

Normal VDM is worse than other models. It has been observed that, for the cate-

gorized vulnerabilities, we have not seen any correlations between the models and

skewed datasets examined. This might be because of the statistically not significant

number of data points.

7.7 Summary

This study focuses on the models based on the S-shaped distributions, which

have been successfully used for the prediction of growth rates in many other fields.
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Figure 7.10: Prediction errors by vulnerability types. The upper four plots from OSX, and the
bottom four plots from IIS. Starting points of x axes are at 66% of time point
toward the target month, which means after two third of a time period has been
elapsed from the starting point of a vulnerability discovery process.
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Here, the relationship of the performance of an S-shaped VDM with the specific

skewness attributes of its underlying probability distribution and in a specific vul-

nerability discovery dataset has been examined. The prediction capabilities of five

S-shaped VDMs (AML, Weibull, Beta, Gamma and Normal) have been examined

with the Chi-square goodness of fit tests for the major operating systems (Windows

XP, Windows Server 2003, Red Hat Linux, and MAC OSX) and the major Web

servers and browsers (Apache Web server, IIS, Internet Explorer, and Firefox). The

results of Chi-square goodness of fit test as well as R-squared metric indicate that

the five S-shaped models generally fit well, for the most of the datasets examined.

However, even though the five VDMs fit the past datasets well, each model

predicts future trends differently at each point in time. The AML model yields the

best predictions for the negative skewed datasets followed by Normal VDM whereas

Gamma VDM gives the best forecast with positive skewed datasets. The Beta VDM,

which is defined only for a finite time period, generally results in the worst forecast

even though it can represent both types of skewness. The performance of Weibull

and Normal VDMs often tends to be in the middle among the models.

There are some surprising observations. One would expect that the AML model

would have weak predication capabilities when the vulnerability discovery datasets

are asymmetrical since AML model presumes a symmetrical logistic distribution.

In addition, one would expect that the asymmetrical S-shaped models should not

only have better goodness of fit results but also better prediction capabilities when

the vulnerability discovery data is skewed. The results show, as expected, that the

Gamma VDM which assumes a right skewed distribution always provides better

performance with the positive skewness datasets than other VDMs. However, the

performance of the Weibull and Beta VDMs does not show significant correlations

with the skewness in the datasets. They generally perform worse than the two

symmetrical models with left skewed datasets, and show a similar performance with
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right skewed datasets. The results suggest that Gamma VDM should be preferred

to model the vulnerability discovery process with right skewed datasets, and for

other datasets, AML is generally a better choice.

Another significant observation is that an excellent goodness of fit does not

necessarily mean a superior prediction capability, and thus a quantitative model

should not be chosen based on fit alone.
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Chapter 8

EXTENDED LINEAR VULNERABILITY
DISCOVERY PROCESS

8.1 Motivation

Recently, robust linear behaviors in software vulnerability discovery process

have been noticeably observed among the many popular systems having multi-

versions released. Schryen (2009) empirically examined vulnerability detection growth

processes in seventeen software systems. He found that 14 out of the 17 systems

show a significant linear or, at least, piecewise linear correlation between time and

the number of cumulative published vulnerabilities, but without a deep investiga-

tion why the linear processes are prevalent. While showing the results, the author

disproves the S-shape logistic vulnerability discovery pattern proposed by Alhazmi

et al. (2005). However, in his article, Schryen fails to mention that, in their later

works (Alhazmi and Malaiya, 2006a,b; Alhazmi et al., 2007; Alhazmi and Malaiya,

2008), Alhazmi and Malaiya tried to apply the linear discovery model on their

datasets although the results from the linear model are frequently not statistically

significant.

In Figure 8.1, the solid S-shaped line shows the shape of the vulnerability

discovery process in AML model with the three distinctive phases. In the long run,

for a software system, the vulnerability discovery process should look like the S-

shape pattern when all the source codes with market effort put on it are reflected

as argued in Chapter 7. During the release period, the vulnerability discovery rate
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Figure 8.1: S-shaped discovery process and extended linear phase

gradually increases. At this phase, called learning phase, the software is gaining

market share gradually and installed bases is small. In the linear phase, the discovery

rate reaches the maximum due to the popularity, and finally, in the saturation phase,

vulnerability discovery rate slows down.

However, under certain circumstances, the S-shape could be distorted, occa-

sionally, seriously. The length of the second phase could be extended as long as new

code is injected with certain levels of popularity lasted among users, so that the final

phase tends to appear significantly later. Sometimes, after a clear saturation phase,

new vulnerabilities are found. When this happens repeatedly, a discovery process

forms a stairway-like pattern. Yet another, the first phase could not be seen at all.

It is possible that combinations of above cases are coming out altogether. Among

the mutant S-shapes above, in this chapter, mainly, the reason behind the extended

linear phase is examined which currently appears notably. Other mutations also can

be surmised based on the presentations here.
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Figure 8.2: The extended linear phase is caused by shared vulnerabilities in successive versions

8.2 Possible causes for the extended linear phase

The red dashed line, in Figure 8.1, highlights an extended linear phase. The first

possible reason for this could be code sharing throughout the successive versions.

New versions of software systems usually based on the previous version. When the

product is getting popular, the number of users is also getting increasing. As a

result, vulnerabilities originated from the earlier version starts to be found in the

later version.

Moreover, new chunk of codes added into a new version introduces new vul-

nerabilities. When those software upgrades or patches go on and on, the extended

linear phase could be resulted. Figure 8.2 shows this behavior. The original idea of

sharing vulnerability is already introduced by Kim et al. (2007). In the figure, the
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vulnerability discovery rate for the original software system has been almost hit the

saturation phase, marked by the solid black line (the first bell shape hump), but

due to the shared vulnerabilities in successive versions (the grey dashed lines), the

vulnerability discovery rate for the original product continually rises. The slope in

the number of cumulative vulnerabilities is mainly influenced by how many codes

are shared between the successive versions. Hence, as long as new versions, shar-

ing codes with the previous version, are released with an enough market share, the

extended linear phase will be observed.

The second reason could be, for a software system, the constant number of users

with a vulnerability pool having a sheer amount of vulnerabilities which continually

discovered with a constant rate due to a balanced effort, not increasing nor decreas-

ing, put on the system, such as number of users. In this case, it will take some time

proportional to the size of the vulnerability pool to be exhausted which causes a

longer linear phase with a bigger pool. The concept is described in Figure 8.3. If

we extend this idea, the linear phase could be caused by the assumption1 that the

majority of vulnerabilities might be detected internally by developers during test

phases, or externally by constant number of security professionals interested in a

specific software system.

8.3 Observations

The software systems examined for the linear trend here are Windows, OSX,

Apache Web server, IIS, Internet Explorer, and Firefox. Further, each system is

dissected into the four latest specific versions. The datasets are minded at NVD on

January 2011. Table 8.1 shows the release dates for the software systems. It appears

that OSX is slightly younger than Windows with only these datasets. Likewise, IIS

and Internet Explorer (IE) have been released in their major versions more recently

1http://blog.bit9.com/bid/25781/Reported-Vulnerabilities-Quality-versus-Quantity
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Figure 8.3: The extended linear phase is caused by constant effort put on a system with a rich
vulnerability pool

than their counterparts for the past several years. However, Apache still supports

and distributes minor versions for 1.3 and 2.0 due to the existing many Web servers

having those versions, and releases minor versions frequently for the all three major

versions of 1.3, 2.0 and 2.2.

Table 8.2 shows the number of vulnerabilities shared among the successive ver-

sions in each software product. In the chapter, the oldest and the latest versions

are denoted only based on the table. For example, the oldest Windows OS is 2K

and the newest one is Seven. In the table, it could be conjecturable that the code

sharing is higher with adjacent versions than others based on the shared number

of vulnerabilities. The vulnerability sharing ratios in both OSes from the oldest

(Windows 2K & OSX 10.3) to the latest versions (Windows Seven & OSX 10.6) are

5.76% and 5.14 % respectively.
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Table 8.1: Software release date

Windows Apache Internet Explorer
Version Release Date Version Release Date Version Release Date

2K 2000-02-17 0.2 1995-03-18 5 1999-03-18
XP 2001-08-24 1.3 1998-06-06 6 2001-08-27

Vista 2006-11-08 2.0 2000-03-13 7 2006-10-18
Seven 2009-07-22 2.2 2005-12-01 8 2009-03-19

OSX IIS Firefox
Version Release Date Version Release Date Version Release Date

10.3 2003-10-24 4 1997-12-15 0.1 2002-09-23
10.4 2005-04-29 5 2000-02-17 1.0 2004-10-27
10.5 2007-10-26 6 2003-04-24 2.0 2006-03-22
10.6 2009-08-28 7 2008-02-04 3.0 2006-12-08

For the Web servers, while Apache still shares 40% between the oldest and the

latest one, IIS does not shares any between the two, revealing that IIS has been

considerably changed from its earlier version. This might be because Apache Web

server 1.3 is still evolving, so that the version should have shared some codes with

the latest version developed by the same group of developers.

In case of the Web browsers, about 5% of the vulnerabilities from the oldest

version is shown up in the newest one for IE while about half of the vulnerabilities

have survived in the latest Firefox version from the oldest version. Even with con-

sideration of the longer time gap between the oldest and the newest version in IE,

it can be interpreted that the source code reusability in the open source software

system tends to be higher than its counterpart. Meanwhile, 90% of vulnerabilities in

Windows Seven is sharing with Vista, 70.85% of vulnerabilities in Vista is from XP,

and 63.29% of the vulnerabilities in XP is from the previous version, which uncovers

that the Windows OSes are continually built on top of its ancestors closely.

Plots in Figure 8.4 shows the linear model fittings and Table 8.3 shows their

R2 values. In those plots, the entire vulnerabilities are considered in each sub-

plot regardless of sharing among the versions. In all cases, the linear patterns are
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Table 8.2: Shared number of vulnerabilities and percentages. Numbers in parentheses represent
the number of vulnerabilities not shared. For the percentages, it should be read as A
is sharing X% with B, where A and B are the row and column respectively as marked
below.

Windows OSX
HHH

HHA
B 2K XP Vista Seven HHH

HHA
B 10.3.x 10.4.x 10.5.x 10.6.x

(191) (113) (49) (8) (100) (171) (86) (48)
2K 493 300 99 28 10.3.x 214 111 20 11

100% 60.85% 20.08% 5.67% 100% 51.86% 9.34% 5.14%
XP 300 474 158 58 10.4.x 111 350 85 11

63.29% 100% 33.33% 12.23% 31.71% 100% 24.28% 3.14%
Vista 99 158 223 72 10.5.x 20 85 225 58

44.39% 70.85% 100% 32.28% 8.88% 37.77% 100% 25.77%
Seven 28 58 72 80 10.6.x 11 11 58 110

35% 72.5% 90% 100% 10% 10% 52.72% 100%

Apache IIS
HHH

HHA
B 0.x 1.3.x 2.0.x 2.2.x HHH

HHA
B 4.x 5.x 6.x 7.x

(3) (35) (38) (16) (40) (31) (3) (3)
0.x 10 7 4 4 4.x 85 45 2 0

100% 70% 40% 40% 100% 52.94% 2.35% 0%
1.3.x 7 59 20 11 5.x 45 89 14 5

11.86% 100% 33.89% 18.64% 50.56% 100% 15.73% 5.61%
2.0.x 4 20 68 20 6.x 2 14 20 7

5.88% 29.41% 100% 29.41% 10% 70% 100% 35%
2.2.x 4 11 20 37 7.x 0 5 7 10

10.81% 29.72% 54.05% 100% 0% 50% 70% 100%

Internet Explorer Firefox
HHH

HHA
B 5.x 6.x 7.x 8.x HHH

HHA
B 0.x 1.x 2.x 3.x

(76) (136) (37) (26) (10) (154) (52) (22)
5.x 296 220 73 17 0.x 233 221 157 118

100% 74.32% 24.66% 5.74% 100% 94.84% 67.38% 50.64%
6.x 220 426 128 56 1.x 221 489 262 182

51.64% 100% 30.04% 13.14% 45.19% 100% 53.57% 37.21%
7.x 73 128 172 48 2.x 157 262 327 184

42.44% 74.41% 100% 27.9% 48.01% 80.12% 100% 56.26%
8.x 17 56 48 89 3.x 118 182 184 215

19.1% 62.92% 53.93 100% 54.88% 84.65% 85.58% 100%
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significantly observed and the linear fittings are well performed, especially, if we

consider the datasets only after the released dates such as shown in OSX, IIS, or

IE. We do not see any saturation phase at the end of the data periods in all the

six aggregated versions while some of the earlier versions in OSX and IIS show

saturation phases. IIS whose sharing rate is relatively small from the oldest to

the youngest version, the saturation phases are clearly observed in the first three

versions. On the other hand, its counterpart, Apache Web server, the linear growth

patterns are dominant because 1.3.x, 2.0.x, and 2.2.x are currently still updated

every now and then.

Figure 8.5 shows the number of unique vulnerabilities in each specific version.

Their R2 values can be found at Table 8.3. First, it is observed that the number

of vulnerabilities have been dramatically reduced in each sub-plot compared to its

entire vulnerability counterpart sub-plot from Figure 8.4 due to the removing the

shared vulnerabilities. The noteworthy thing is that the learning phases start to

appear more clearly then Figure 8.4. Also, the third phase tends to come out more

often when its market share has been encroached by its successive version which

proves that the extended linear phenomena is due to the code sharing with the

popular successive versions. Especially, Windows 2K, OSX 10.5.x, IE 5.x, IE 6.x,

IE 7.x, and Firefox 1.x reveal the saturation phase with unique vulnerabilities while

their counterpart sub-plots for the entire vulnerabilities do not.

8.4 Prediction for the extended linear rate

As mentioned in Section 3.2, Equation 3.3 represents the simple linear discovery

model, where S represents the slope or discovery rate and k is y-axis intersection

which does not have a clear meaning. Now, predicting the exact discovery rate or

slope for the extended linear phase is not an easy task. However, we could achieve

fairly easily a probable scope of the rate falling into the ranges from the maximum

and minimum slopes estimated by AML model fitting.
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Figure 8.4: Linear vulnerability growth trends in the six software systems. Black dots represent
actual data points and the red lines are linear model fittings. Vertical dotted lines
are released dates if any. Each row represents the same software group.
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Figure 8.5: Linear vulnerability growth trends in the six software systems by version with unique
vulnerabilities in them. Black dots represent actual data points and the red lines
are linear model fittings. Vertical dotted lines are released dates if any. Each row
represents the same software group.
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Table 8.3: R2 values from Figure 8.4 and 8.5

Windows Apache
Version Fig. 8.4 Fig. 8.5 Version Fig. 8.4 Fig. 8.5

All 0.965 NA All 0.9699 NA
2K 0.9849 0.9275 0.x 0.8480 0.8224
XP 0.9664 0.9827 1.3.x 0.9352 0.8861

Vista 0.9139 0.9723 2.0.x 0.9527 0.7795
Seven 0.9814 0.9661 2.2.x 0.9441 0.9228

OSX IIS
Version Fig. 8.4 Fig. 8.5 Version Fig. 8.4 Fig. 8.5

All 0.9142 NA All 0.9020 NA
10.3.x 0.9022 0.8662 4.x 0.7457 0.6666
10.4.x 0.9020 0.7720 5.x 0.8685 0.8164
10.5.x 0.6996 0.9744 6.x 0.8723 0.9562
10.6.x 0.7325 0.8804 7.x 0.6304 0.9185

Internet Explorer Firefox
Version Fig. 8.4 Fig. 8.5 Version Fig. 8.4 Fig. 8.5

All 0.9664 NA All 0.9903 NA
5.x 0.9937 0.7086 0.x 0.9512 0.8121
6.x 0.9656 0.7711 1.x 0.9912 0.8327
7.x 0.9787 0.9032 2.x 0.9541 0.9228
8.x 0.6238 0.9536 3.x 0.7700 0.9127

Table 8.4: Estimated slopes in Figure 8.4

Windows OSX Apache IIS IE Firefox
Slope 0.1569453 0.2078473 0.03377206 0.03192421 0.1352958 0.2520864

Figure 8.6 demonstrates the maximum (tan(β)) and the minimum (tan(α))

slopes during the linear phase in the AML model. Consequently, the difference (θ)

between the two slopes can be achieved. A and B are from the AML parameters.

The maximum slope is on the tangent line of the mid-point whereas the minimum

slope exists on either of the two transition points. Hence, in some degree, it is

possible to estimate the current extended linear vulnerability discovery rate for the

multi-version software systems.
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Figure 8.6: Estimated Max/Min slopes by AML

Table 8.4 shows the slopes from the linear fitting for the aggregated versions in

Figure 8.4. The first impression from Table 8.4 is that OSX and Firefox have higher

slope values against their counterparts. Apache Web server is a bit higher than

IIS, but it is not significantly different from IIS. Hence, apparently, vulnerability

discovery rate in Microsoft products seems lower than its rival products when only

considering the linear model fitting.

Table 8.5 and 8.6 are the estimated information by the AML model fitting on

the six aggregated versions in Figure 8.4. Based on the R2 values, AML fittings

reasonably well perform. Transition point 1, 2 and mid-point are produced by

the fitting as described in Section 3.2, and the minimum and maximum slopes are

measured as mentioned above.

Values for Windows, Apache, IE and Firefox from Table 8.4 are in the bound-

aries of the minimum and the maximum slopes from Table 8.5. OSX and IIS slope

values are lower than their low boundaries because TP1s by AML model fitting are
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Table 8.5: Information estimated by AML - Parameters

A B C R2 Min
Slope

Max
Slope

Windows 1.00E-06 932.7873 0.0475 0.9908 0.1455 0.2183
OSX 2.58E-06 709.0172 1.1229 0.9975 0.2164 0.3246
Apache 8.80E-06 148.4182 0.3539 0.9943 0.0323 0.0485
IIS 1.62E-05 133.8943 0.4433 0.9879 0.0483 0.0724
IE 1.39E-06 744.4496 0.0592 0.9961 0.1285 0.1928
Firefox 2.56E-06 708.9164 0.0328 0.9870 0.2147 0.3221

Table 8.6: Information estimated by AML - Transition points

TP1 MP TP2
Windows 2004-03-29 2008-02-03 2011-12-11
OSX 2005-08-07 2007-07-27 2009-07-15
Apache 2001-10-03 2004-07-06 2007-04-10
IIS 1999-08-26 2001-04-25 2002-12-24
IE 2003-09-09 2007-03-03 2010-08-25
Firefox 2006-10-02 2008-09-26 2010-09-21

estimated a bit later than the time point supposed to be, due to the code evolutions.

The reason, for OSX, is that the slope has very strong linear behavior in the actual

data, so that AML model hard to pinpoint the transition points. For IIS, on Febru-

ary 2008, IIS 7 has been released, so that apparently previous saturation phase

turned into stairway-like pattern, and the prediction has been misplaced. When

we consider currently observed strong linear trends across the discovery patterns,

transition points, especially MP and TP2, in Table 8.6 should not be accurate es-

timations because of the continuous software evolving which should trigger shifting

of transition points.

8.5 Things that influence on slope level

Although upper and lower boundaries for linear rates could be estimated as

shown in the previous section and there are already some VDMs available, it would
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be nice to estimate the linear rate more precisely with more less complex relationship

for taking advantage of the newly appeared linear pattern.

By its nature, a quantitative vulnerability discovery model requires empirical

observations on the relationship between a growth trend in actual data and a set

of factors believed to influence on the trend. At the beginning of the investigation,

usually, the relationship is unknown or unclear, so that researchers generate some

assumptions providing a starting point which are reasonable, or observed vaguely

from the actual data but are not confirmed in a scientific way yet. For the starters,

we have also some intuitive and vaguely observed assumptions that might influence

on the slopes:

• Skills of programming team & maturity of vendor

• Number of installations with code sharing

• Source code edit frequency

• Software type

First, attitude of a vendor and its developers toward secure programming prac-

tice should effect on the degree of slope. Experts agree that developers’ skills are

important factors influence on quality of products although there have not been good

references quantitatively conducted. Therefore, skill of programming team should

be in inverse proportion to the slope value. Also vendor’s maturity in its field should

also be matter for products’ quality. The better skills developers have in the more

security related mature environment, the gentler slope should be produced. The

relationship could be expressed something like Figure 8.7.

Second, it is intuitive that the more number of installations causes the more

number of vulnerabilities discovered. This is because, as the AML model already

has claimed, a system would be more thoroughly tested with a bigger group of users
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Developer skill
Low Average High Extremely high

Ve
nd

or

Very immature Value 1 Value 5 Value 9 Value 13
Immature Value 2 Value 6 Value 10 Value 14

Mature Value 3 Value 7 Value 11 Value 15
Very mature Value 4 Value 8 Value 12 Value 16

Figure 8.7: Example matrix for referring developer and vendor levels

or testers which will demand more number of vulnerabilities found. Along with this

intuition, as Figure 8.2 and 8.3 shown, as long as popular enough successive versions

are released regularly, the saturation phase will not be seen. Therefore, there should

be positive growth correlations between the slope and the number of installations

backed up by code sharing with successive versions. As a result, code sharing also

effect on the slope. The more codes are shared, the steeper slope should be appeared

from the originated version. Figure 8.8 shows the market share for the six systems

and Figure 8.9 represents the estimated number of installations by the same method

used in Chapter 5.

Third, Zimmermann et al. (2010) empirically examined the effectiveness of

classical software metrics to predict vulnerabilities and assess how well the mea-

surements perform on Windows Vista. They measure the correlations between the

metrics and the number of vulnerabilities. The study shows that all the correla-

tions are less than 0.3, which is considered as small effect size. However, among

them, the correlation between the frequency of source code editing and the number

of vulnerabilities claims the highest value. A similar result was found by Meneely

and Williams (2009) on Red Hat Linux. Hence, the more frequently developers edit

source code, the better chances that vulnerabilities are introduced.

Lastly, the software type matters. For example, as we have seen and will see, the

growth rates and slopes in the linear phase for Web browsers and OSes are steeper
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Figure 8.8: Market shares for the six systems
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Figure 8.9: Estimated number of users
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than other types of systems. Hence, there should be some empirical guidelines

categorizing software systems and endowing with certain weights associated with

numbers such as Figure 8.7. Software systems could be grouped into OSes, Web

browsers, Web servers, Web applications, DBMSs, etc. After the classification,

proper weights need to be associated.

Based on the observations above, we can derive the relationship between the

linear growth rate or slope S and the elements influencing on it as following:

S ∝
FN , FE, FC

FS

where FN , FE, FC and FS are the number of installations, editing frequency, soft-

ware class, and skills of programers respectively. Now, the relationship between the

number of vulnerabilities Ω(t) and the time t should be linear with rate of slope S.

Ω(t) = St + k

= f (
FN , FE, FC

FS
) + k

= α1FN(t) + α2
dFN(t)

dt
+ k

where f is a properly chosen function which describes the slope connected to the

elements, k is a constant which assists for selecting the y-axis intercept at time is

zero. In the equation, more delicately, not only the number of current installations

at time t FN(t), but also the change ratio dFN (t)
dt should effect on the vulnerability

finding rate since rapidly added fresh looks tend to find more defects in a short

time. The constants α1 and α2 are originated from FC , FE and FS with some

random experimental error terms.

8.6 Summary

In this chapter, the extended linear phase, currently and noticeably observed

in many multi-version software systems, has been observed, and the reason why
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it happens has been inferred. Further research is needed to verify the hypothesis

claimed here the relationship between the constant growth rate and the elements

influencing on it.
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Chapter 9

SEASONAL BEHAVIOR OF
VULNERABILITY ACTIVITIES

Periodic behavior related to software vulnerability activities need to be taken

into account for evaluating security risks. In this chapter, we examined datasets from

mainly National Vulnerability Database (NVD) and Qualys1 for annual variations

of the vulnerability discovery processes in a multi-year life-cycle of popular software

products and weekly periodicity in the Laws of Vulnerabilities reported in 2009

respectively.

For an accurate projection of vulnerability discovery process which is required to

estimate the effort needed to develop patches for handling discovered vulnerabilities,

a time series analysis that combines the periodic patterns may allow for us to predict

the future trend more accurately. In the first part of the chapter, we carefully inspect

the eighteen datasets of software systems (operating systems, Web servers and Web

browsers) minded at NVD for annual seasonality in their vulnerability discovery

processes. This first part analysis shows that there are indeed repetitive annual

patterns.

The second part identifies the weekly periodicity and examines its statistical

significance for datasets from the report called the Laws of Vulnerabilities (Qualys,

2009). The second part shows that the seven-day periodicity in presence of un-

patched vulnerabilities as well as the exploitation pattern. This chapter examines

1http://www.qualys.com
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Figure 9.1: Boxplots for each software group’s cumulative number of vulnerabilities in month.

Table 9.1: Number of vulnerabilities for the eighteen software systems and observed period.

Win: Win NT Win XP Win 2000 Server2003 Win 95 Win 98
Vul. # 269 294 380 207 46 88
Period 1995-2008 2000-2008 1997-2008 2002-2008 1997-2008 1999-2008
non-Win: OSX Solaris HP-UX RHL RHEL AIX
Vul. # 512 458 254 227 157 270
Period 1997-2008 1993-2008 1993-2008 1994-2007 1996-2008 1992-2008
Web: Apache IIS IE Firefox Opera Safari
Vul. # 132 138 495 369 129 110
Period 1996-2008 1996-2008 1997-2008 2003-2008 1998-2008 2003-2008

the statistical significance of the periodic behaviors using the seasonal index ap-

proach. The autocorrelation function is also used to identify the exact periodicities.

The observed results should be used to optimize resource allocations and for deter-

mination of risk.

9.1 Introduction

Figure 9.1 represents the boxplots for the number of vulnerabilities from the

three software groups clustered by each cumulative month, and Table 9.1 shows the

corresponding entire known number of vulnerabilities for each software system with

the examined periods. Here, software systems are categorized into Windows OSes

(Windows NT, Windows XP, Windows 2000, Windows Server 2003, Windows 95 and

Windows 98), non-Windows OSes (MAC OSX, Solaris, HP-UX, Red Hot Linux, Red
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Hot Linux Enterprise, and AIX), and Web servers/browsers (Apache Web server,

IIS, Internet Explorer, Firefox, Opera, and Safari). Figure 9.2 shows the number of

vulnerabilities found along with the calendar time by month. All the datasets were

collected from the NVD in 2010. However, for a fair comparison among the twelve

months, year 2009 and 2010 are not considered since from reporting a vulnerability

to becoming an official entry in NVD takes some time.

In Figure 9.1, it is visually observed that all the three groups have December

peak. Moreover, a bit weaker mid-year peak is also witnessed in Windows OSes and

Web server/browser systems with small fraction of vulnerabilities reported between

the two peaks. We will analyze those behaviors later in the chapter using statistical

methods to see whether the differences are statistically significant or not.

Somewhat consistent fluctuations in the boxplots would suggest a possible sea-

sonal pattern that might be taken into account to make more accurate predictions

about the number of vulnerabilities expected to be discovered in a future period.

We try to answer the question of existence of annual and weekly periodic patterns

and its significance in the activities related to software vulnerabilities based on the

available datasets in quantitative manner (Joh and Malaiya, 2009; Joh et al., 2010).

9.2 Related work on seasonality

Periodic behaviors such as seasonal or weekend effect is well established research

area in other disciplines such as the stock market (Heston and Sadka, 2008), high-

performance computing systems (Tran and Reed, 2004), epidemiology (Rios et al.,

2000), power transmission (Salehian, 2003), marine biology (Maes et al., 2004), birth

defects (Carrion-Baralt et al.), etc.

Stocks tend to have relatively higher returns for some specific calendar months.

The higher return during November to April is termed the Halloween Effect2. The

2http://ssrn.com/abstract=901088
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Figure 9.2: Run chart for the number of vulnerabilities in each month along with the calendar
time.
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repetitive and distinctive pattern with lags of 12, 24, and 36 months in the data from

Jegadeesh (1990) caused by persistent seasonal effect in stock returns have identified

by Heston and Sadka (2008). The study could help for seasonal stock strategies.

Meanwhile, Tran and Reed (2004), to improve software application performance,

utilized the fact that application’s bursty I/O patterns in scientific codes due to

either periodic checkpoints or nested loops, and such bursty patterns could overflow

system resources. Hence, they tried to predict the I/O request patterns using time

series models. These kind of access pattern forecasts could be used to make pre-fetch

decisions during application execution time.

In epidemiology, Rios et al. (2000) tried to find out whether pulmonary tuber-

culosis has an annual seasonal pattern or not by using Autoregressive Integrated

Moving Average (ARIMA) time series model, especially Autocorrelation Function

(ACF) and Partial ACF. The seasonal trend for the disease could be caused by rising

in indoor activities in winter which increases the risk of exposure of healthy persons

to be bacilli by other infected persons. One of the other reasons could be infections

of viral aetiology are more frequent and cause immunological deficiency. The model

developed by the authors could express surveillance whether an incidence is greater

than forecast by the model or not, so that it could be used to assess a quality of the

preventive measures.

For a power transmission in utilities, Salehian (2003) attempted to model ther-

mal rating patterns which is influenced by whether. He also used ARIMA time

series model for the forecasting. Forecasting the thermal capabilities of the line

would allow to meet contractual power delivery obligations. Also, in marine biol-

ogy, Maes et al. (2004) tried to show what kind of elements are affecting the fish

abundance which are exposed to great environmental variability such as dissolved

oxygen, temperature, water quality, salinity, prey, etc. Thus, the life cycles of ma-

rine organisms have clear seasonal patterns in growth, reproduction and abundance.
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Lastly, Carrion-Baralt et al. investigated whether a schizophrenic birth, which oc-

curs more frequently in winter season, is really due to the severe winter temperatures

as known previously. Unlike previous studies, they conducted their work in a tropi-

cal island having no severe winter time, and derive the conclusion that the extreme

temperatures are not a sufficient explanation.

As shown above, seasonal periodicity analysis is a well-known statistical ap-

proach in the repertoire of many researchers and analysts in those disciplines.

9.3 Statistical methods for seasonality analysis

Seasonal index states how much the average for a particular period tends to be

above (or below) the expected value. The monthly seasonal index values3 are given

by:

si =
di
d

(9.1)

where, si is the seasonal index for ith month, di is the mean value of ith month,

and d is a grand average. Hence, for example, a monthly seasonal index of 1.25

indicates that the expected value for that month is 25% greater than 1/12 of the

overall average where the expected value is 1. To see whether the seasonal indices

are statistically significant, Chi-square test has been also conducted. To evaluate

the significance of non-uniformity of the distribution in calculated indices, we con-

ducted the test for the grand total of each month against the expected value (total

vulnerabilities divided by 12). For more details about the test, see Chapter 7.4.

Furthermore, to pinpoint which month’s seasonal index is statistically greater

or less than others, Analysis Of Variance (ANOVA) with Fisher’s least significant

difference (LSD) tests has been conducted on the calculated seasonal indices. For

other examples of ANOVA & LSD in this dissertation, see Chapter 7.5.

3http://home.ubalt.edu/ntsbarsh/Business-stat/stat-data/Forecast.htm#
rseasonindex
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When there are twelve seasonal indices from each month, and µi is mean sea-

sonal index value for month i. Then, LSD is testing the null hypotheses of µi = µj

where 1 ≤ {i and j} ≤ 12, i and j are integer, and i ≠ j. When calculated LSDi,j is

∣µi−µj ∣ ≥ LSDi,j, then the null hypothesis of µi = µj will be rejected, and it confirms

there is statistically significant difference between the two groups. LSDi,j can be

obtained by (Ott and Longnecker, 2000):

LSDi,j = tα/2,d.f.

¿
Á
ÁÀMS (

1

ni
+

1

nj
) (9.2)

where d.f. is degrees of freedom, MS is mean square value from ANOVA test, ni

is the number of observation in group i. tα/2,d.f. value can be obtained from the

Student’s t-distribution table.

The other approach to characterize periodicity is to use the autocorrelation

function (ACF). ACF analysis gives us specific relationship information between

related time units, such as month or day. With time series values of zb, zb+1, ..., zn,

the ACF at time lag k, denoted by rk , is (Bowerman and O’connell, 1987):

rk =
∑
n−k
t=b (zt − z̄)(zt+k − z̄)

∑
n
t=b(zt − z̄)

2
, where z̄ = ∑

n
t=b zt

n − b + 1
(9.3)

ACF measures the linear relationship between time series observations sepa-

rated by a lag of k time units. When an ACF value is located outside of chosen

upper or lower confidence intervals, there is a statistically significant relationship

associated with that time lag. An event occurring at time t+k (k > 0) is said to lag

behind an event occurring at time t, the extent of the lag being k.

In the chapter, the seasonal index analysis backed up by the Chi-square test,

ANOVA with LSD test, and the ACF analysis are applied to verify annual and

weekly periodic behavior discussed below.
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Table 9.2: Vulnerability discovery process seasonal indices.

Win NT Win XP Win 2K Server 2003 Win 95 Win 98
JAN 1.784387 0.489796 0.915789 0.869565 1.043478 0.818182
FEB 0.847584 0.653061 0.473684 0.695652 1.304348 0.545455
MAR 0.579926 0.571429 0.536842 0.463768 0.782609 0.681818
APR 0.892193 0.938776 0.821053 1.101449 0.26087 0.681818
MAY 0.758364 1.020408 1.105263 0.985507 1.043478 1.909091
JUN 1.29368 1.632653 1.484211 1.797101 0.521739 1.636364
JUL 0.847584 0.408163 1.105263 0.405797 1.043478 0.545455
AUG 0.802974 0.938776 1.136842 1.15942 0.782609 1.090909
SEP 0.624535 0.530612 0.378947 0.521739 0.26087 0.136364
OCT 0.669145 1.510204 1.484211 1.391304 0.782609 0.954545
NOV 0.802974 0.979592 0.947368 1.333333 0.521739 0.954545
DEC 2.096654 2.326531 1.610526 1.275362 3.652174 2.045455
χ2
c 19.67514 19.67514 19.67514 19.67514 19.67514 19.67514
χ2
s 56.60595 87.30612 57.05263 34.33333 33.82609 27.36364

P-value 3.93E-08 5.61E-14 3.25E-08 0.000319 0.000386 0.004048
OSX Solaris HP-UX RHL RHEL AIX

JAN 0.679688 0.655022 1.03937 1.004405 1.299363 0.977778
FEB 0.1875 0.812227 0.80315 0.845815 0.687898 0.888889
MAR 1.546875 0.943231 0.755906 1.797357 1.146497 1.2
APR 0.515625 0.864629 0.614173 0.792952 1.528662 0.711111
MAY 1.453125 0.838428 0.80315 0.475771 1.452229 0.666667
JUN 0.773438 1.048035 0.708661 1.162996 0.382166 0.622222
JUL 0.328125 0.969432 0.755906 0.845815 0.305732 0.844444
AUG 1.40625 1.257642 0.944882 0.845815 0.764331 1.244444
SEP 0.632813 0.812227 1.133858 0.687225 0.840764 1.422222
OCT 0.75 1.074236 1.086614 1.004405 0.687898 0.933333
NOV 1.804688 0.733624 0.755906 0.581498 0.611465 0.844444
DEC 1.921875 1.991266 2.598425 1.955947 2.292994 1.644444
χ2
c 19.67514 19.67514 19.67514 19.67514 19.67514 19.67514
χ2
s 164.875 52.131 65.08661 42.33921 46.5414 24.66667

P-value 1.34E-29 2.58E-07 1.04E-09 1.41E-05 2.59E-06 0.010197
Apache IIS IE Firefox Opera Safari

JAN 1 1.304348 0.436364 0.097561 0.55814 0.981818
FEB 0.636364 1.043478 0.8 1.463415 0.744186 0.109091
MAR 0.909091 0.173913 0.606061 0.650407 0.27907 1.309091
APR 0.727273 0.956522 0.775758 1.235772 0.744186 1.527273
MAY 0.818182 1.043478 1.042424 1.560976 0.55814 0.654545
JUN 0.818182 1.478261 1.212121 0.715447 0.837209 1.745455
JUL 0.636364 1.043478 1.333333 1.853659 1.209302 1.418182
AUG 1.363636 0.608696 1.163636 0.520325 0.651163 0.981818
SEP 0.818182 0.695652 0.751515 1.268293 1.302326 1.090909
OCT 1.454545 0.608696 0.751515 0.552846 1.488372 0.218182
NOV 0.727273 0.608696 0.654545 0.813008 0.465116 1.2
DEC 2.090909 2.434783 2.472727 1.268293 3.162791 0.763636
χ2
c 19.67514 19.67514 19.67514 19.67514 19.67514 19.67514
χ2
s 22.54545 41.65217 130.3333 90.41463 70.16279 25.05455

P-value 0.020472 1.86E-05 1.49E-22 1.38E-14 1.14E-10 0.008951
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Figure 9.3: Seasonal indices of Windows OSes, non-Windows OSes and Web related software
systems. Individual values are in Table 9.2

9.4 Annual variations in vulnerability discovery processes

In Figure 9.3, the mid-year (summer) and the year-end (winter) months appear

to have most of the peaks, suggesting the possibility of seasonality. We examine

the significance of this observed annual seasonality in this section. We will examine

the null hypothesis of H0: all the seasonal indices for the twelve months are not

significantly different each other. The same methods will be used in the next section

for checking the weekly periodic behavior in the exploitation pattern and preferences

of unpatched vulnerabilities.

9.4.1 Seasonal index analysis

A time series data is not uniformly distributed and periodic patterns are present

in a dataset when certain months have significantly more incidences of reported

vulnerabilities than other months. Table 9.2 shows seasonal indices for the twelve

months from the each system. A seasonal index describes how much the average

for that particular period tends to be above or below the grand average. In Figure

9.3, for the Windows OSes, seasonal index values for mid-year (June) and year-end

(December) have higher values, significantly above 1.0 which is the expected value.
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Consequently, months between the two peaks tend to be less than the expected

seasonal index of one, especially, March and September.

Unlike the Windows OSes, clear consistent mid-year seasonal patterns are not

found among the indices from non-Windows OSes and Web related software systems.

However, still some months tend to have more vulnerabilities than others. Also, all

of them have higher incidences in December. For the Web related software systems,

IIS and IE data displays a pattern similar to the Windows OSes which are the parent

platforms for the two Web related systems. The mid-year and year-end periods tend

to have more vulnerabilities than other months. Indices from Apache server show a

pattern nearly the opposite of IIS’s, in general. In December, all indices are above

the expected value with an exception of Safari.

The mid-year peak may explain the higher third quarter advisories for Microsoft

products (Jaquith, 2007). To evaluate the significance of non-uniformity of the

distribution among the seasonal indices, we conducted Chi-square test for the grand

total of each month against the expected value (total vulnerabilities divided by 12).

In the paper, level of alpha chosen is 0.05. Hence, when the P-value of the Chi-

square test is below than 0.05, the null hypothesis will be rejected. In Table 9.2,

we can see that the systems yield extremely small p-values, thus, we have a strong

evidence of non-uniform distributions of vulnerability discovery rates, where the null

hypothesis is that there is no seasonality in the dataset.

To see which months have indeed statistically greater indices than other months

specifically, ANOVA test with Fisher’s LSD test are conducted on the mean index

values from each month grouped by the software categories. As mentioned in Chap-

ter 7.5, since ANOVA test only can tell whether the mean index values among

the twelve months are the same or not, Fisher’s LSD test is also conducted after

confirming the inequality performance from the ANOVA test.

Table 9.3, 9.4 and 9.5 show ANOVA tables for each software group. Here, the

alpha level is 0.05 for the F-test. To be statistically significant, the F value need
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Table 9.3: ANOVA table for seasonal indices from Windows OSes.

Windows SS df MS F P-value Fcrit
Between Groups 13.5128 11 1.228436 8.259795 1.37E-08 1.952212
Within Groups 8.923489 60 0.148725

Total 22.43629 71

Table 9.4: ANOVA table for seasonal indices from non-Windows OSes.

non-Windows SS df MS F P-value Fcrit
Between Groups 8.977445 11 0.816131 7.873355 2.98E-08 1.952212
Within Groups 6.219443 60 0.103657

Total 15.19689 71

Table 9.5: ANOVA table for seasonal indices from Web server/browser

Web SS df MS F P-value Fcrit
Between Groups 8.904923 11 0.809538 4.005469 0.000216 1.952212
Within Groups 12.1265 60 0.202108

Total 21.03142 71

to be greater than the corresponding F critical with small enough P-value (smaller

than 0.05). In the tables, F values, greater than the F critical value, confirm that

not all the months have equal mean values. In addition, F value from the Windows

OSes is bigger than others implying that seasonal fluctuations in Windows OSes are

more dynamic.

Table 9.6, 9.7 and 9.8 are showing the absolute values in differences among mean

values from seasonal indices and significance of pairwise comparisons. In the tables,

shaded cells represent statistically significant differences. To be shaded cell, differ-

ences between two compared mean values need to be greater than the corresponding

calculated LSD value. The LSD values for each table are LSDWindows = 0.4453,

LSDnon−Windows = 0.3717 and LSDWeb = 0.5191 respectively.

Table 9.6 confirms that, in Windows OSes, i) December is greater than all the

other months, ii) June is greater than July, February, March, April, November, and

September, iii) September is lesser than January, May, June, August, October, and
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Table 9.6: LSD test for Windows seasonal index; LSDWindows = 0.4453

Month JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
Mean 0.9869 0.7533 0.6027 0.7827 1.1370 1.3943 0.7260 0.9853 0.4088 1.1320 0.9233 2.1678

JAN 0.9869 0 0.2336 0.3841 0.2042 0.1502 0.4074 0.2609 0.0016 0.5780 0.1451 0.0636 1.1809
FEB 0.7533 0 0.1506 0.0294 0.3837 0.6410 0.0273 0.2320 0.3445 0.3787 0.1700 1.4145
MAR 0.6027 0 0.1800 0.5343 0.7916 0.1232 0.3825 0.1939 0.5293 0.3205 1.5651
APR 0.7827 0 0.3543 0.6116 0.0567 0.2026 0.3738 0.3493 0.1406 1.3851
MAY 1.1370 0 0.2573 0.4111 0.1518 0.7282 0.0050 0.2138 1.0308
JUN 1.3943 0 0.6683 0.4090 0.9854 0.2623 0.4710 0.7735
JUL 0.7260 0 0.2593 0.3171 0.4060 0.1973 1.4418
AUG 0.9853 0 0.5764 0.1467 0.0620 1.1825
SEP 0.4088 0 0.7232 0.5144 1.7589
OCT 1.1320 0 0.2087 1.0358
NOV 0.9233 0 1.2445
DEC 2.1678 0

Table 9.7: LSD test for non-Windows seasonal index; LSDnon−Windows = 0.3717

Month JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
Mean 0.9426 0.7042 1.2316 0.8379 0.9482 0.7829 0.6749 1.0772 0.9215 0.9227 0.8886 2.0675

JAN 0.9426 0 0.2384 0.2890 0.1047 0.0056 0.1597 0.2677 0.1346 0.0211 0.0199 0.0540 1.1249
FEB 0.7042 0 0.5274 0.1336 0.2440 0.0787 0.0293 0.3730 0.2173 0.2185 0.1844 1.3632
MAR 1.2316 0 0.3938 0.2834 0.4487 0.5567 0.1544 0.3101 0.3089 0.3430 0.8358
APR 0.8379 0 0.1104 0.0549 0.1629 0.2394 0.0837 0.0849 0.0507 1.2296
MAY 0.9482 0 0.1653 0.2733 0.1290 0.0267 0.0255 0.0596 1.1193
JUN 0.7829 0 0.1080 0.2943 0.1386 0.1398 0.1057 1.2846
JUL 0.6749 0 0.4023 0.2466 0.2478 0.2137 1.3926
AUG 1.0772 0 0.1557 0.1545 0.1886 0.9903
SEP 0.9215 0 0.0012 0.0329 1.1460
OCT 0.9227 0 0.0341 1.1447
NOV 0.8886 0 1.1789
DEC 2.0675 0

Table 9.8: LSD test for Web server/browser seasonal index; LSDWeb = 0.5191

Month JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
Mean 0.7297 0.7994 0.6546 0.9945 0.9463 1.1344 1.2491 0.8815 0.9878 0.8457 0.7448 2.0322

JAN 0.7297 0 0.0697 0.0751 0.2648 0.2166 0.4047 0.5193 0.1518 0.2581 0.1160 0.0151 1.3025
FEB 0.7994 0 0.1448 0.1950 0.1469 0.3350 0.4496 0.0821 0.1884 0.0463 0.0546 1.2328
MAR 0.6546 0 0.3399 0.2917 0.4798 0.5944 0.2269 0.3332 0.1911 0.0902 1.3776
APR 0.9945 0 0.0482 0.1400 0.2546 0.1129 0.0067 0.1488 0.2497 1.0377
MAY 0.9463 0 0.1882 0.3028 0.0647 0.0415 0.1006 0.2015 1.0859
JUN 1.1344 0 0.1146 0.2529 0.1466 0.2888 0.3897 0.8977
JUL 1.2491 0 0.3675 0.2612 0.4034 0.5043 0.7831
AUG 0.8815 0 0.1063 0.0359 0.1368 1.1506
SEP 0.9878 0 0.1421 0.2430 1.0444
OCT 0.8457 0 0.1009 1.1865
NOV 0.7448 0 1.2874
DEC 2.0322 0
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November, iv) October is greater than March and September, and v) May is greater

than March. Table 9.7 confirms that, in non-Windows OSes, i) December is greater

than all the other months, ii) August is greater than February and July, and iii)

March is greater than February, April, June, and July. And finally, for the Web

related software systems, Table 9.8 shows that December is greater than all the

other month, July is greater than January and March.

9.4.2 Autocorrelation function analysis

The autocorrelation function (ACF) in time series analysis is calculated by

computing the correlation between a variable value and the successive values of

the same variable after some time lags. In other words, ACF measures the linear

relationship between time series observations separated by a lag of k time units

(Bowerman and O’connell, 1987; Rios et al., 2000). When an ACF value is located

outside of defined confidence intervals at a lag k, there is a significant relationship

associated with that time lag.

Table 9.9, 9.10 and 9.11 show the ACF values with 95% confidence intervals for

the three software groups respectively. In the tables, Bold fonts indicate outside of

confidence intervals and superscripts represent time lags from 0 to 23 in month. For the

Windows OSes, since the mid-year and year-end periods tend to have the majority

of big seasonal indices, we expect that lags corresponding to about sixth month

or its multiple would have their corresponding ACF values outside the confidence

interval. In Table 9.9, for Windows NT, the lags for 0, 5, 6 and 11 months are

outside of confidence interval; in other words, there are strong autocorrelations with

the lags that are multiple of around six confirming a seasonal pattern.

For Windows XP, lags for 0, 2, 5, 6, 12 and 18 months, for Windows 2000, 0,

5 and 18 months, for Windows Server 2003, for 0, 5 and 6 months are significantly

different from zero of ACF which confirms a seasonal pattern. For Windows 95, lags
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Table 9.9: Individual ACF values for Windows OSes
Windows NT; 95% confidence interval = (-.1512145 .1512145)

10 .1091 .122 .0363 .0544 .2085 .1566 .1127 -.0068 -.0169 .02710 .21811

-.00212 .09813 .05114 .01415 -.03516 -.04317 .02718 -.00419 -.02320 -.03421 -.04722 -.0623

Windows XP; 95% confidence interval = (-.1885976, .1885976)
10 .0791 .1992 .0353 .1294 .2655 .2656 .097 .0388 .0989 .15410 .15411

.20112 .07213 .11914 -.07815 .08616 -.0717 .29518 -.02519 .1320 -.0621 -.01222 .08923

Windows 2K; 95% confidence interval = (-.1633303, .1633303)
10 -.0071 .1112 .0333 -.0214 .285 .0986 .0457 .0588 .079 .12910 .12811

.10712 .04713 .07414 -.00615 .08516 .07417 .19118 -.08419 .09420 -.04421 -.00622 .06823

Windows Server 2003; 95% confidence interval = (-.2138496, .2138496)
10 .1241 .2062 .0363 .1874 .3465 .336 .1967 .0758 .1639 .13410 .14311

.14412 .07813 .21214 -.09815 .12616 -.09817 .17918 .03519 .0320 -.0821 -.04922 .00723

Windows 95; 95% confidence interval = (-.1633303, .1633303)
10 .1111 .1432 .1783 .1114 .1435 .236 .1997 .0678 .1429 .15210 .07411

.06212 .1713 .08814 .06515 .03116 .08517 -.06918 .03919 .02720 .03721 .02822 .00523

Windows 98; 95% confidence interval = (-.1789194, .1789194)
10 .1481 .1272 .0393 -.0574 .1335 .1266 .17 .0618 .1059 .04610 .05311

.0812 -.02313 -.04114 -.06215 -.16716 -.0117 -.05918 -.05719 .04520 -.12421 .00722 -.07423

Table 9.10: Individual ACF values for non-Windows OSes
MAC OSX; 95% confidence interval = (-.1633303, .1633303)

10 .2111 .1562 .4573 .2734 .2895 .2996 .3227 .2328 .2789 .35210 .2411

.37112 .20913 .25214 .34415 .16716 .3317 .24818 .26519 .31520 .16921 .17822 .19623

Solaris; 95% confidence interval = (-.1414482, .1414482)
10 .2261 .2522 .2043 .2964 .2025 .1976 .1137 .2218 .1899 .19810 .07211

.24412 .05713 .24814 .13315 .17716 .17117 .14818 .19119 .29420 .16221 .09922 .0223

HP-UX; 95% confidence interval = (-.1414482, .1414482)
10 .2121 .1252 .1063 .0614 -.0395 .0056 .0567 .1078 .0819 -.00910 .09611

.30112 -.07913 .05614 .15715 .0316 -.02317 -.03218 .00319 -.05620 -.04621 .02522 .05823

RHL; 95% confidence interval = (-.1512145, .1512145)
10 .2211 .3472 .3533 .3184 .3065 .3296 .157 .1938 .2659 .24910 .2111

.24412 .11413 .18614 .31815 .07916 .25917 .10818 .18919 .10920 .20821 .02722 .07323

RHEL; 95% confidence interval = (-.1569227, .1569227)
10 .6971 .4882 .4993 .4664 .3135 .1096 .1037 .1888 .0879 .00110 .03211

.06312 .05413 .0114 .01215 .07316 .05517 .00418 .01819 .01520 .05921 .00422 .0123

AIX; 95% confidence interval = (-.1372249, .1372249)
10 .1171 .1782 .1493 .154 .1125 .1786 .2317 .0358 .0979 .10410 .04611

.12112 .01413 .14914 -.00615 .09816 -.0117 .06618 .08619 -.0220 .14121 -.04822 .01223

Table 9.11: Individual ACF values for Web servers/browsers
Apache Web Server; 95% confidence interval = (-.1569227, .1569227)

10 .031 .1872 .0723 .1444 .0935 .0466 .2787 .0838 .1329 .05310 .12211

.10612 -.01213 .08914 .05815 .00616 .04617 .12718 -.0719 .06720 -.1421 .1922 -.03723

IIS; 95% confidence interval = (-.1569227, .1569227)
10 .1341 -.0022 .0543 .1784 .1215 .1816 .3667 .1728 .0099 .16410 .18811

.09912 .03813 .24514 -.00115 .07916 .08517 .28518 -.03819 -.03620 .10421 .01322 .12523

IE; 95% confidence interval = (-.1633303, .1633303)
10 .241 .1292 .1223 .2084 .225 .1636 .1997 .1128 .0549 .10410 .13811

.25712 .06413 .14414 .03915 .06316 .01117 .14818 .20219 .01720 -.02621 .01422 .0223

Firefox; 95% confidence interval = (-.2309840, .2309840)
10 -.0541 .3442 .0923 .1054 .1965 -.1466 .1897 .0588 .1959 .08110 .22711

.07612 .07913 .09714 -.04515 .0116 .01717 -062.18 .12819 -.10320 119.21 .03622 -.10323

Opera; 95% confidence interval = (-.1705930, .1705930)
10 .2161 .2932 .2363 .1564 .1745 .1566 .1997 .1748 .2029 .16410 .12511

.35412 .08413 .13514 .01915 .08116 .1317 .17918 .17419 .14620 .2121 .02722 .01723

Safari; 95% confidence interval = (-.2309840, .2309840)
10 .2081 .1372 .3433 .2864 .0665 .1756 .2667 .2048 .1869 .16510 .06711

-.01812 .00413 .17714 .02815 -.10416 .12817 -049.18 -.0719 .01120 -.02721 -.00622 .07623
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of 0, 3, 6, 7 and 13, and for Windows 98, only lag of 0 is outside of the confidence

interval. As we expected, roughly six month periodicity are shown. The same

approach had been applied in (Rios et al., 2000; Tran and Reed, 2004) to prove

seasonality in their datasets belonging to other research areas.

In Table 9.10, for Mac OSX, except the lag number of 2, all the lags are outside

of the confidence interval. For the SUN Solaris, also, all the lags are outside of the

confidence interval except lags number of 7, 11, 13, 15, 22, and 23. In HP-UX,

only lags number 0, 1, 12 and 15 are outside of the confidence interval. For Red

Hat Linux, lags number 7, 13, 16, 18, 20, 22 and 23 are inside of the confidence

interval. Red Hat Enterprise Linux has lags number 0, 1, 2, 4, 5, and 8 outside of

confidence intervals. For IBM AIX, lags for 0, 2, 3, 4, 6, 7, 14, and 21 months are

significantly different from zero. For non-Windows OSes, around 13 month leg is

shown in common.

In Table 9.11, for the Apache Web server, lags for 0, 2, 7 and 22 are outside

of the confidence intervals. For the IIS, lags for 0, 4, 6, 7, 8, 10, 11, 14, and 18 are

outside of the confidence intervals. For the Internet Explorer, lags of 0, 1, 4, 5, 7,

12, and 19 are located outside of the boundary. For the Firefox, lags of 0, 2 are

only located outside of the confidence intervals. For the Opera Web browser, lags

number of 0, 1, 2, 3, 5, 7, 8, 9, 12, 18, and 19 are outside. For the Apple Safari, lags

of 0, 3, 4, and 7 are outside of the confidence interval. The two Microsoft products

tend to have higher ACF values approximately every six month while others tend

to have up and down pattern bimonthly (lag 2), except Safari.

9.5 Seven-day periodicity in the vulnerability scan data

In this section, another periodic behavior related to the software vulnerabilities

will be presented: a much shorter weekly periodic trend. Periodic scanning is a

major part of the corporate security strategy. Some security service venders such
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as Qualys (2009) collect a large amount of data which is quite valuable because it

comes from real systems in major industrial organizations. In this section, we have

mined one such data collection to examine periodicity in the presence of unpatched

vulnerabilities and the exploitations in case of a worm.

Qualys has been involved in collecting and plotting such data for several years.

In a 2009 report (Qualys, 2009), they have presented the data collected during 2008

which represents 104 million global vulnerability scans including 82 million internal

scans and 22 million external Internet-based scans. The data involves encountering

more than 72 million critical vulnerabilities among the 680 million detections. About

3500 organizations were scanned worldwide that represented major industry sectors

of Financial, Health, Manufacturing, Service, and Wholesale/Retail. There are

four distinct and quantifiable attributes about software vulnerabilities introduced

by Qualys (2009):

1. Half-life: is the time interval measuring a reduction of a vulnerability’s occur-

rence by half. Over time, this metric shows how successful efforts have been

to eradicate a vulnerability. A shorter half-life indicates faster remediation.

2. Prevalence: notes the turnover rate of vulnerabilities in the “Top 20” list during

a year. Prevalent vulnerabilities are dangerous because they represent ongoing

potent risks to computing environments. Risk rises as the prevalence rate rises

because of the larger total number of top 20 risks tallied during a year.

3. Persistence: measures the total life span of vulnerabilities. The fact that

vulnerabilities persist and do not conclusively die off is a red flag for secu-

rity administrators. It underscores the importance of patching all systems,

and ensuring that old vulnerabilities are not inadvertently installed on new

systems.
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Figure 9.4: Run charts for the seven half-life plots (Critical vulnerabilities during 2008, by in-
dustries of finance, service, retail, manufacturing, and health, and overall critical
vulnerabilities), patch level and Exploitation. (Qualys, 2009)

4. Exploitation: is the time interval between an exploit announcement and the

first attack. This metric indicates how much reaction time you might get before

someone figures out how to exploit the vulnerability. The worst scenario is a

“zero day” attack because there is no reaction time.

Qualys calls the above four attributes as the Laws of Vulnerabilities. In 2009

Black Hat USA conference4, they presented the following observations for the each

law. An average duration of half-life is about 30 days, varying by industry sector.

Prevalence has increased, with 60% remaining in the list in 2008 compared to 50%

in 2004. Persistence remains virtually unlimited. And Exploitation is faster, often

happening in less than ten days compared to 60 days in 2004.

We observed that most of the plots, in the report, visually suggest a short-term

seven day periodicity shown in Figure 9.4. This section examines the statistical

4http://www.blackhat.com/html/bh-usa-09/bh-us-09-main.html
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significance of the periodic pattern for the selected plots from the report by using

the seasonal index and autocorrelation analyses.

Figure 9.4 shows nine run charts from the Qualys report. The plots are normal-

ized using the maximum value set as 100%. Even visually, it is clearly observed that

there are certain periodic patterns in the data. The values decline as the result of a

remediation and go up due to new installations. Figure 9.5 displays corresponding

ACF values from Figure 9.4. In the figure, lags of seven (or its multiples) tend

to have higher values or outside of the ±95% of confidence intervals shown by the

dashed lines. This demonstrates strong autocorrelations with lags that are multiples

of seven days, which confirms a seven-day periodicity in the data.

Table 9.12 and 9.13 show the calculated weekly seasonal index values and Chi-

square test results from Figure 9.5 respectively. Since there is no day of the week

information except (h) and (i) from the figure, it is labeled as day1, day2, ..., day7

while the two cases are mentioned in specific weekdays (Sun through Sat). From

(a) to (g), it is observed that values are tend to be clustered into high or low values

consecutively, in general. For example, in (g), higher values appear in day7, day1,

and day2 successively. For (h) and (i) weekdays (Mon ∼ Thu) tend to have higher

index values for the number of incidents. The observed patterns might be related to

software vendors’ patch release policies, organizations’ patch managements, or indi-

viduals’ behaviors. To be statistically significant for the calculated seasonal index

values, the Chi-square statistic values need to be greater than the corresponding

critical values with a small enough p-value. In the table, the small p-values confirm

the non-uniform distributions.

9.6 Possible factors causing periodic behavior

Rescorla (2005) has mentioned a possible cause for the year-end seasonality. He

has suggested that a large number of vulnerabilities reported during the year-end
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Figure 9.5: Autocorrelation functions corresponding to the plots from Figure 9.4. The dashed
lines represent 95% of confidence intervals. Legs are in day.

may be a result of the end-of-year cleanup. However, he did not discuss it in detail.

It might be related to year-end report which needs to be completed before the end

of the year for many organizations.

Further research is needed to answer why the vulnerability discovery in Mi-

crosoft products tends to peak in the mid-year months in addition to the year-end

months. One possibility is that Defcon5, a major computer security related con-

ference, happens in July or August mainly. The potential conference participants

might have a higher incentive (Arora and Telang, 2005) to find the vulnerabilities

before the conference, to brag about, especially in popular Microsoft products.

Figure 9.6 (a) shows the number of occurrences of Defcon and Black Hat each

calendar month; the two best well known conventions where the security vulner-

abilities are announced. Meanwhile, the August-November period appears to be

associated with release of a larger number of new Microsoft products. Figure 9.6

5https://www.defcon.org/main.html
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Table 9.12: Weekly seasonal index values

Label Day1 Day2 Day3 Day4 Day5 Day6 Day7
(Figure 9.5) (Sun) (Mon) (Tue) (Wed) (Thu) (Fri) (Sat)

(a) 1.0494 1.4099 1.3600 0.7210 0.5425 0.9423 0.9745
(b) 0.9825 1.0672 0.7819 1.0322 0.9973 0.8794 1.2592
(c) 1.2194 1.0796 0.6290 0.6312 0.9974 1.2643 1.1788
(d) 1.1784 0.6445 0.6811 0.8007 0.3960 0.7976 2.5014
(e) 1.0571 0.7047 0.8268 1.2247 0.9567 0.9398 1.2899
(f) 1.1573 1.0117 0.8913 0.8334 0.9209 1.1374 1.0477
(g) 1.1848 1.1069 0.7631 0.9798 0.7022 0.7370 1.5258
(h) 0.6758 1.3090 1.2945 1.2569 1.0805 0.7046 0.6783
(i) 0.9559 1.0068 1.2973 1.0203 1.0353 0.9534 0.7307

Table 9.13: χ2 test for weekly seasonal index values. χ2
critical = 12.5916 for all.

Label (Figure 9.5) χ2
statistic P-value

(a) 165.6114 3.83E-33
(b) 49.029 7.36E-09
(c) 165.0925 4.94E-33
(d) 435.1142 7.84E-91
(e) 135.1223 1.07E-26
(f) 44.6814 5.41E-08
(g) 148.7978 1.39E-29
(h) 236.8411 2.65E-48
(i) 119.9789 1.65E-23

(b) shows the products’ release months for major versions of Windows OSes and

Internet Explorer. The major versions of Windows and Internet Explorer tend to

be released during June to November. This may be related to the starting of school

semester and Christmas and New Year shopping seasons when many shoppers buy

new computers with new operating systems known as IT seasonality. Condon et al.

(2008) also observed that occurrences of software security incidents increase during

academic calendar, and the most important form of institutional type of seasonal-

ity is the school vacations in the summer (Koc and Altinay, 2007). In December,

emphasis may shift to identifying and handling vulnerabilities.
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Figure 9.6: Frequency of Black Hat and Defcon by month, and Major Microsoft software system
release time by month.
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Figure 9.7: Frequency of Vulnerability by day of the week in terms of:
(a) Disclosure date: osvdb.org on 2010-10-06, Num. of vulnerabilities: 67325
(b) Published date: nvd.nist.gov on 2010-10-12, Num. of vulnerabilities: 42559
(c) Report date: datalossdb.org on 2010-12-28, Num. of Reports: 3047
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The reason for similar seasonality for the Windows operating systems, IIS and

Internet Explorer could be due to the fact that IIS and Internet Explorer are dis-

tributed for only the Windows platform. Vulnerabilities of the Web servers and

browsers may be correlated to the parent operating system platforms.

Figure 9.7 (a) and (b) show the number of vulnerabilities grouped by day of

the week in terms of disclosure date from OSVDB and published date from NVD

respectively. Disclosure date is the date when vulnerabilities are disclosed to the

public whereas published date is the date when vulnerabilities are published on the

database, according to OSVDB and NVD respectively. Technically the two dates

represent the same meaning. It is observed that both the disclosure date and the

published date have the peak values on Tuesday. Generally, values getting increased

toward Tuesday and getting decreased after that point. Figure 9.7 (c) represents

the number of data loss incidents reported by organizations in terms of day of the

week from Open Security Foundation6. Although the data does not directly reflect

the vulnerability information, it clearly epitomizes the weekday versus weekend phe-

nomenon.

In the meantime, Anbalagan and Vouk (2009) suggest a possible weekly pattern

for fixing of ordinary defects. Those reported on Tuesdays tend to be fixed faster.

The graph displaying the average correction time from their paper shows the op-

posite pattern to the first two plots in Figure 9.7: values getting decreased toward

Tuesday and getting increased after that point. This might be because developers

know that they gain more works on that day in their experience, so in other not to

fall behind, more efforts are put on the defects reported on Tuesdays.

The findings, in this chapter, are backed up by the survey results conducted by

Tufin Technologies7 about “Hackers Habits” from 79 hackers attending Defcon 17

conference in 2009. Analysis from the survey reveals that Christmas and New Year

6http://datalossdb.org
7http://www.tufin.com/news_events_press_releases.php?index=2009-08-25
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holiday seasons are popular for hackers aiming for western countries. And hackers

spend their time for hacking on the weekdays rather than weekends. Here are some

numbers related to our study from the survey:

1. 89% said taking a summer vacation would have little impact on their hacking

activities.

2. 81% said they are far more active during the winter holidays with 56% citing

Christmas as the best time for hacking, and 25% naming New Year’s Eve.

3. 52% said during weekday evenings, they hack other systems and 32% said

during the work hours in weekdays whereas only 15% of hackers spends their

time for hacking on weekends.

9.7 Summary

Analysis of the vulnerability data using seasonal index and autocorrelation

function approaches show that there is indeed a statistically significant annual and

weekly periodic pattern in software vulnerability related activities. In the first part

of the paper, for the all software systems examined, December has a higher vulnera-

bility discovery rate. A higher incidence during the mid-year periods is also observed

in Microsoft products. Also seven-day periodic behavior has been observed in the

Laws of Vulnerabilities. Higher activities during the weekdays than weekends have

been confirmed. Furthermore, vulnerability activity values corresponding to Tues-

day tend to be higher than other days of the week.

One of the main contributions in the study is that it shows various evidences

that there are truly short and long term seasonal patterns which have been recog-

nized among security researchers vaguely so far. The results found in the chapter

should be used to optimize resource allocations, patch managements, and for the

general determination of IT related risks. For example, system administrators should
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apply patches at least before the time when seasonal indices are relatively high for

both short and long term strategies.
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Chapter 10

DEFINING AND ASSESSING
QUANTITATIVE SECURITY RISK IN

SOFTWARE

Risk and chance frequently come together. “Risk in itself is not bad; risk is

essential to progress, and failure is often a key part of learning. But we must learn

to balance the possible negative consequences of risk against the potential benefits

of its associated opportunity” (Scoy, 1992).

Known vulnerabilities which have been discovered but not patched represents

a security risk which can lead to considerable financial damage or loss of reputa-

tion. They include vulnerabilities that have either no patches available or for which

patches are applied after some delay. Exploitation is even possible before public

disclosure of a vulnerability.

This chapter formally defines risk measures and examines possible approaches

for assessing risk using actual data with some simulations. We explore the use

of CVSS vulnerability metrics which are publically available and are being used

for ranking vulnerabilities. Then, a general stochastic risk evaluation approach

is proposed which considers the vulnerability lifecycle starting with creation. A

conditional risk measure and assessment approach is also presented when only known

vulnerabilities are considered. The proposed approach bridges formal risk theory

with industrial approaches currently being used, allowing IT risk assessment in an

organization, and a comparison of potential alternatives for optimizing remediation.
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These actual data driven methods will assist IT managers with software selection

and patch application decisions in quantitative manner.

10.1 Motivation

To ensure that the overall security risk stays within acceptable boundaries,

managers need to measure risks in their organization. As Lord Calvin stated “If

you cannot measure it, you cannot improve it”, the security risk to a system cannot

be determined without knowing how vulnerable the system is to potential threats

(Otwell and Aldridge, 1989). As a result, quantitative methods are needed to ensure

that the decisions are not based on only subjective perceptions.

While quantitative risk evaluation is common in some fields such as finance

(Alexander, 2008), attempts to quantitatively assess security are relatively new.

There has been criticism of the quantitative attempts of risk evaluation (Verendel,

2009) due to the lack of data for validating the methods. Related data has now

begun to become just enough to be analyzed. Security vulnerabilities that have

been discovered but unpatched for a while represent considerable threat for an or-

ganization.

While sometimes risk is informally stated as the possibility of a harm to occur

(Pfleeger and Pfleeger, 2003), formally, risk is defined to be a weighted measure

depending on the consequence. For a potential adverse event, the risk is stated as

(Stoneburner et al., 2001):

Risk = Likelihood of an adverse event × Impact of the adverse event (10.1)

This presumes a specific time period for the evaluated likelihood. For example,

a year is the time period for which annual loss expectancy is evaluated. Equation

10.1 evaluates risk due to a single specific cause. When statistically independent

multiple causes are considered, the individual risks need to be added to obtain the
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overall risk. A risk matrix is often constructed that divides both likelihood and

impact values into discrete ranges that can be used to classify applicable causes

(Cox, 2008) by the degree of risk they represent.

In the equation above, the likelihood of an adverse event is sometimes repre-

sented as the product of two probabilities: probability that an exploitable weakness

is present, and the probability that such a weakness is exploited (Cox, 2008). The

first is an attribute of the target system itself whereas the second probability de-

pends on external factors, such as the motivation of potential attackers. In some

cases, the Impact of the adverse event can be split into two factors, the technical

impact and the business impact1.

Risk is often measured conditionally, by assuming that some of the factors

are equal to unity and, thus, can be dropped from consideration. For example,

sometimes the external factors or the business impact is not considered. If we

would replace the impact factor in Equation 10.1 by unity, the conditional risk

simply becomes equal to the probability of the adverse event, as considered in the

traditional reliability theory. The conditional risk measures are popular because it

can alleviate the formidable data collections and analysis requirements.

A stochastic model (Joh and Malaiya, 2010a, 2011a) of the vulnerability life-

cycle could be used for calculating the Likelihood of an adverse event in Equation

10.1 whereas impact related metrics from the Common Vulnerability Scoring Sys-

tem (CVSS) (Mell et al., 2007) can be utilized for estimating Impact of the adverse

event. While a preliminary examination of some of the vulnerability lifecycle tran-

sitions has recently been done by researchers (Frei, 2009; Arbaugh et al., 2000),

risk evaluation based on them have been received little attention. The proposed

quantitative approach for evaluating the risk associated with software systems will

allow comparison of alternative software systems and optimization of risk mitigation

strategies.

1http://www.owasp.org/index.php/Top_10_2010-Main

167

http://www.owasp.org/index.php/Top_10_2010-Main


10.2 Related work on risk measurement

In general, measuring a risk is not an easy task because defining the word “risk”

is very tricky2. Risk could be a very subjective case by case. Even the Society for

Risk Analysis (Kaplan, 1997) took four years, in its early days, to define the word

and then gave up saying in the final report that maybe it’s better to let each author

define it in his own way, only please each should explain clearly what way that is.

Consequently, there are many approaches available for measuring the risk.

Singhal and Ou (2009) utilize the attack graph concept for their risk model.

Attack graph is a model for how an attacker can combine vulnerabilities to stage

an attack. Their attack graph metric quantifies the risk caused by slowing patch

release or delaying the patch application. The methodology measures the likelihood

that such residual paths may eventually be realized by attackers. Bhatt et al.

(2011) proposed a new way to define the CVSS environmental metric. Their goal

is to utilize the CVSS base scores to define and compute environmental metrics for

components within an enterprise network. Their metrics account for the topological

interconnections. Also, the possibility of multistage attacks has been considered.

They came up with the equation to measure the impact of an adversary on a network.

In (Ponemon, 2010), the authors quantify the economic impact of a cyber at-

tack by showing the statistic facts related to the cyber crimes with various charts.

Manadhata and Wing (2011) proposed to use a software system’s attack surface

measurement as an indicator of systems’ security. A system’s attack surface is the

subset of its resources that an attacker can use to attack the system. They quantify

a system’s attack surface measurement to mitigate risk associated with the exploita-

tion.

Vose (2008) defines a risk as a random event that may possibly occur and, if

it did occur, would have a negative impact on the goals of an organization. Thus,

2http://www.executivebrief.com/blogs/risk-definition-debate-iso31000/
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a risk is composed of three elements: the scenario, its probability of occurrence,

and the size of its impact if it did occur. As the opposite concept from the risk, the

author refers opportunity which is also a random event that may possibly occur but,

if it did occur, would have a positive impact. Thus, an opportunity is composed of

the same three elements as a risk.

The authors in (OWASP, 2010) itemized the factors in risk into the three stan-

dard elements: threat, vulnerability, and impact. The threat is consisted of skill

level, motive, opportunity and size for a group of threat agents. The vulnerability

is made up of ease of discovery, ease of exploit, awareness, and intrusion detection

for the target system. The impact is measured in terms of loss of confidentiality,

integrity, availability, and accountability. Leung (2010) puts the time consideration

explicitly for the risk assessment, and also propose other variants for risk assessment

such as expired-risk, resolution, active problem, etc. Moreover, an opportunity has

been utilized as an opposed meaning of the risk, similar to (Vose, 2008).

Dwaikat and Parisi-Presicce (2005) define risk as the probability of violation

of a basic security property enforced by the system, where the basic properties

include confidentiality, integrity, authenticity and non-repudiation. An interesting

thing is that distrust greatly reduces risk in ad-hoc approach while trust reduces

risk in systematic risk evaluation. According to Hogganvik and Stolen (2005), risk

is consisted of an unwanted incident, a frequency, and a consequence. Unwanted

incident may harm more than one asset, but a risk only associated with one asset.

This enables them to describe an unwanted incident that has different consequence

and/or frequency for a set of assets. Risk is an abstract concept while the unwanted

incident is the “real” event.

Aubert et al. (2005) gives definitions of risk based on the specific context: i)

risk as an undesirable event ii) risk as a probability function iii) risk as variance

iv) risk as expected loss v) endogenous and exogenous risk, and vi) IT outsourcing
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risk exposure. Lastly, Weyuker (2001) measured the software risk based on the

consequence of failure for a given run test set with a relatively small number of

inputs not executed.

10.3 Risk matrix: scales and discretization

In general, a system has multiple weaknesses. The risk of exploitation in each

weakness i is given by Equation 10.1. Assuming that the potential exploitation of

a weakness is statistically independent of others, the system risk is given by the

summation of individual risk values:

System risk =∑
i

likelihoodi × impacti (10.2)

A risk matrix provides a visual distribution of potential risks (Engert and Lans-

down, 1999; Brashear and Jones, 2008). In many risk evaluation situations, a risk

matrix is used, where both impact and likelihood are divided into a set of discrete

intervals, and each risk is assigned to likelihood level and an impact level. Impact

can be used for the x-axis and likelihood can be represented using then y-axis, allow-

ing a visual representation of the risk distribution. For example, the ENISA Cloud

Computing report (ENISA, 2009) defines five impact levels from Very Low to Very

High, and five likelihood levels from Very Unlikely to Frequent. Each level is associ-

ated with a rating. A risk matrix can bridge quantitative and qualitative analyses.

Tables have been compiled that allow on to assign a likelihood and an impact level

to a risk, often using qualitative judgment or a rough quantitative estimation.

The scales used for likelihood and impact can be linear, or more often non-

linear. In the Homeland Security’s RAMCAP (Risk Analysis and Management for

Critical Asset Protection) (Brashear and Jones, 2008) approach, a logarithmic scale

is used for both. Thus, 0∼25 fatalities is assigned a rating “0”, while 25∼50 is assigned

a rating of “1”, etc. For the likelihood scale, probabilities between 0.5∼1.0 is assigned

the highest rating of “5”, between 0.25∼0.5 is assigned rating “4”, etc.
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Using a logarithmic scale for both has a distinct advantage. Sometimes the

overall rating for a specific risk is found by simply adding its likelihood and impact

ratings. Thus, it would be easily explainable if the rating is proportional to the

logarithm of the absolute value. Consequently, Equation 10.1 can be rewritten as:

log(riski) = log(liklihoodi) + log(impacti)

rating_Riski = rating_liklihoodi + rating_impacti (10.3)

When a normalized value of the likelihood, impact or the risk is used, it will

result in a positive or negative constant added to the right hand side. In some cases,

higher resolution is desired in the very high as well as very low regions. In such

cases a suitable non-linear scale such as using the logit or log-odds function3 can be

used.

The main use of risk matrices is to rank the risks so that higher risks can be

identified and mitigated. For determining ranking, the rating can be used instead of

the raw value. Cox (2008) has pointed out that the discretization in a risk matrix

can potentially result in incorrect ranking, but risk matrices are often used for

convenient visualization. It should be noted that the risk ratings are not additive.

We will next examine the CVSS metrics, in the context of risk, that has emerged

recently for software security vulnerabilities, and inspect the relationship between

{likelihood, impact} in risk and {exploitability, impact} in CVSS vulnerability met-

ric system.

10.4 Possible improvement in CVSS metrics and related work

As discussed in Chapter 2.2.3, Common Vulnerability Scoring System (CVSS)

(Mell et al., 2007) has now become an industrial standard for assessing the security

vulnerabilities although some alternatives are sometimes used.

3http://www.aetheling.com/docs/Rarity.htm
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(c) By Base score formula
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(d) Impact x Exploitability
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Figure 10.1: Distributions for CVSS base metric scores (100 bins); NVD on JAN 2011 (44615
vulnerabilities)

The CVSS Base metrics include two sub-scores termed exploitability and im-

pact. The Base score formula (Mell et al., 2007), as shown in Equation 10.4, is

chosen and adjusted such that a score is a decimal number in the range [0.0,10.0].

The value for f(Impact) is zero when Impact is zero otherwise it has the value of

1.176.

Base score = Round to 1 decimal{ (10.4)

[(0.6 × Impact) + (0.4 ×Exploitability) − 1.5] × f(Impact)}

The formula for Base score in Equation 10.4 has not been formally derived

but has emerged as a result of discussions in a committee of experts. It is primarily

intended for ranking of vulnerabilities based on the risk posed by them. It is notable

that the Exploitability and Impact sub-scores are added rather than multiplied. One
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possible interpretation can be that the two sub-scores effectively use a logarithmic

scale, as given in Equation 10.3. Since the Impact and Exploitability sub-scores have

a fairly discrete distribution as shown in Figure 10.1 (a) and (b), addition yields the

distribution, Figure 10.1 (c), which would not be greatly different if we had used

a multiplication. As shown in Figure 10.1 (d), we have indeed verified that using

Impact × Exploitability yields a distribution extremely similar to that in Figure

10.1 (c). We have also found that multiplication generates about twice as many

combinations with wider distribution, and it is intuitive since the multiplication is

based on the definition of risk given in Equation 10.1.

The Impact sub-score measures how a vulnerability will impact an IT asset

in terms of the degree of losses in confidentiality, integrity, and availability which

constitute three of the metrics. Below, in our proposed method, we also use these

metrics. The Exploitability sub-score uses metrics that attempt to measure how

easy it is to exploit the vulnerability. The Temporal metrics measure impact of

developments such as release of patches or code for exploitation. The Environmental

metrics allow assessment of impact by taking into account the potential loss based

on the expectations for the target system. Temporal and Environmental metrics

can add additional information to the two sub-scores used for the Base metric for

estimating the overall software risk.

A few researchers have started to use the CVSS scores in their proposed meth-

ods. Stango et al. (2009) propose a general method for threat analysis in order to

prioritize threats and vulnerabilities. They pointed out that it is hard to prioritize

threats and vulnerabilities due to the lack of effective metrics, and the complex

and sensitive nature of security. The authors solve this issue by combining Bruce

Schneier’s attack trees (Schneier, 1999) and the CVSS scoring system. In the paper,

CVSS is assigned on the attack tree nodes to establish a common and stable view of

evaluating security so that quantifying the threat is very clear by walking through

the nodes having the highest CVSS scores in each step.
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Mkpong-Ruffin et al. (2007) use CVSS scores to calculate the loss expectancy.

The average CVSS scores are calculated with the average growth rate for each month

for the selected functional groups of vulnerabilities. Then, using the growth rate

with the average CVSS score, the predicted impact value is calculated for each

functional group.

Wang et al. (2009) proposes an ontology-based approach for analyzing and

assessing the security posture in software products. The two key questions in the

paper are: 1) given a software product, what is the trustworthiness of it? and 2)

among the similar products, which one is the best product in terms of security?

Basically, they first create OVM (ontology for vulnerability management) which has

all the information about vulnerabilities based on widely accepted standards4 such as

CVSS, CVE, CWE, CPE, and CAPEC. Then, they calculate overall environmental

score for given products according to the suggested algorithm. Here is the brief step

of the calculation:

1. Retrieve vulnerability information for a product from OVM, and group them

based on the combination value of AV, AC, Au from CVSS.

2. Calculate the average of C, I, A for each case for the product from CVSS.

3. Compute the adjusted impact and exploitability for each case for the product.

4. Calculate the environmental score for each case.

5. Calculate the overall environmental score for the product.

Furthermore, Wang et al. (2009) provide the example comparing Internet Ex-

plorer 7 and Firefox 3; the calculated overall environmental scores are 9.0286 and

8.3936 respectively, and they conclude that Firefox 3 is more secure than Internet

4http://measurablesecurity.mitre.org/
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Explorer 7 since Firefox 3 has the smaller overall environmental score. However,

they ignore other factors such as market share, patch rate, etc.

Houmb and Franqueira (2009) have discussed a model for the quantitative esti-

mation of the security risk level of a system by combining the frequency and impact

of a potentially unwanted event and have modeled it as a Markov process. They

estimate frequency and impact of vulnerabilities using reorganized original CVSS

metrics. And, finally, the two estimated measures are combined to calculate risk

levels. Poolsappasit (2010), in his Ph.D. dissertation, refines the work by Houmb

and Franqueira (2009). Poolsappasit’s empirical estimation keep the CVSS design

characteristics and extends the range of possible values in the model (Houmb and

Franqueira, 2009) from [0.53,0.83] to [0.12,1.00] which reflects more diversities in

score ranges.

10.5 Defining conditional risk measures

Researchers have often investigated measures of risk that seem to be defined

very differently. Here, we show that they are conditional measures of risk and can

be potentially combined into a single measure of total risk. The likelihood of the

exploitation of a vulnerability depends not only on the nature of the vulnerability

but also how easy it is to access the vulnerability, the motivation and the capabilities

of a potential intruder.

The likelihood Li, in Equation 10.1, can be expressed in more detail by con-

sidering factors such as probability of presence of a vulnerability vi and how much
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exploitation is expected as shown below equations for:

Li = Pr{vi} × Pr{Exploitation ∣ vi}

= Pr{vi} × Pr{vi is exploitable ∣ vi} ×

Pr{vi is accessible ∣ vi exploitable} ×

Pr{vi externally exploited ∣ vi accessible & exploitable}

= LAi ×LBi ×LCi ×LDi

where LBi represents the inherent exploitability of the vulnerability, LCi is the prob-

ability of accessing the vulnerability, and, LDi represents the external factors. The

impact factor, Ii, from Equation 10.1 can be given as:

Ii = ∑
j

Pr{Security attribute j compromised for vi} ×

{Expected cost of j compromised due to vi}

= ∑
j

Pr(attributej, vi) ×Cji

= ∑
j

Iji ×Cji

= IiA ×Cji

where the security attribute j = {1,2,3} represents confidentiality, integrity and

availability. IiA is the CVSS Base Impact sub-score whereas Cji is the CVSS Envi-

ronmental factors of ConfReq, IntegReq or AvailReq.

The two detailed expressions for likelihood and impact above in terms of con-

stituent factors, allow defining conditional risk measures. Often risk measures used

by different authors differ because they are effectively conditional risks which con-

sider only some of the risk components. The components ignored are then effectively

equal to one.

As mentioned above, for a weakness i, risk is defined as Li×Ii. The conditional

risk measures R1,R2,R3,R4 can be defined by setting some of the factors in the

above equations to unity:
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Figure 10.2: Intuitive life cycle of a system-security vulnerability (Arbaugh et al., 2000)

• R1: by setting LCi, LDi,Cji as unity. The CVSS Base score is a R1 type risk

measure.

• R2: by setting LDi,Cji as unity. The CVSS temporal score is a R2 type risk

measure.

• R3: by setting LDi as unity. The CVSS temporal score is a R3 type risk

measure.

• R4: is the total risk considering all the factors.

In the next two sections, we examine a risk measure that is more general com-

pared to other perspectives in the sense that we consider the discovery of hitherto

unknown vulnerabilities. This would permit us to consider 0-day attacks within our

risk framework. Then, in the following section a simplified perspective is presented

which considers only the known vulnerabilities.

10.6 Software vulnerability lifecycle

A vulnerability is created as a result of a coding or specification mistake. Fig-

ure 10.2 is an intuitive lifecycle of a system-security vulnerability by Arbaugh et al.

(2000). In the plot, the number of intrusions increase once a vulnerability is dis-

covered to the right after the patch release time. Especially, the public disclosure

177



Birth Discovery
Internal

Disclosure

Patch

Public

Disclosure
Death

Exploit Script

1 3

2 4 5

6

7

8 9

10

11 12

13

14

16

15

17 18

19

20

2425

22

23

21

Figure 10.3: Possible vulnerability lifecycle journey

accelerate the intrusion growth rate. The rate is getting decreased after the system

administrator applies a patch or workaround.

Meanwhile, Figure 10.3 shows possible vulnerability lifecycle journeys, and Ta-

ble 10.1 shows the stem events and the next possible hops from Figure 10.3. After

the birth, the first event is discovery. A discovery may be followed by any of these:

internal disclosure, patch, exploit or script. The discovery rate can be described by

vulnerability discovery models (VDM) (Alhazmi and Malaiya, 2008). It has been

shown that VDMs are also applicable when the vulnerabilities are partitioned ac-

cording to severity levels (Woo et al., 2011a). It is expected that some of the CVSS

base and temporal metrics impact the probability of a vulnerability exploitation

(Mell et al., 2007) although no empirical studies have yet been conducted.

When a white hat researcher discovers a vulnerability, the next transition is

likely to be the internal disclosure leading to patch development. After being no-

tified of a discovery by a white hat researcher, software vendors are given a few

days, typically 30 or 45 days, for developing patches (Arora et al., 2009). On the

other hand, if the disclosure event occurred within a black hat community, the next
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Table 10.1: Stem states and next possible hops (line numbers from Figure 10.3)

stem Next hop
Birth Discovery(1)

Death(2)

Discovery Internal Disclosure(3)
Exploit(4)
Script(5)
Patch(6)

Internal Disclosure Public Disclosure(7)
Exploit(8)
Script(9)
Patch(10)

Public Disclosure Exploit(11)
Script(12)
Patch(13)

Exploit Script(14)
Internal Disclosure(15)
Pulicity(16)
Patch(17)

Script Exploit(18)
Internal Disclosure(19)
Public Disclosure(20)
Patch(21)

Patch Internal Disclosure(22)
Public Disclosure(23)
Death(24)
Birth(25)

Death Absorbing State

possible transition may be an exploitation or a script to automate exploitation.

Informally, the term zero day vulnerability generally refers to an unpublished vul-

nerability that is exploited in the wild (Levy, 2004). Studies show that the time

gap between the public disclosure and the exploit is getting narrower (Ayoub, 2007).
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Norwegian Honeynet Project5 found that from the public disclosure to the exploit

event takes a median of five days, the distribution is highly asymmetric though.

When a script is available, it enhances the probability of exploitations. It

could be disclosed to a small group of people or to the public. Alternatively, the

vulnerability could be patched. Usually, public disclosure is the next transition right

after the patch availability. When the patch is flawless, applying it causes the death

of the vulnerability although sometimes a patch can inject a new fault (Beattie et al.,

2002).

Frei (2009) has found that 78% of the examined exploitations occur within

a day, and 94% by 30 days from the public disclosure day. In addition, he has

analyzed the distribution of discovery, exploit, and patch time with respect to the

public disclosure date, using a very large dataset.

10.7 Evaluating lifecycle risk

We first consider evaluation of the risk due to a single vulnerability using

stochastic modeling (Joh and Malaiya, 2010a). Figure 10.4 presents a simplified

model of the lifecycle for a single vulnerability, described by six distinct states. λs

represent transition rates between the states. Initially, the vulnerability starts in

State 0 where it has not been found yet. When the discovery leading to State 1 is

made by white hats, there is no immediate risk whereas if it is found by a black hat,

there is a chance it could be soon exploited. State 2 represents the situation when

the vulnerability is disclosed along with the patch release and the patch is applied

right away. Hence, State 2 is a safe state and is an absorbing state. In State 5, the

vulnerability is disclosed with a patch but the patch has not been applied whereas

State 4 represents the situation when the vulnerability is disclosed without a patch.

Both State 4 and State 5 expose the system to a potential exploitation which leads

5http://www.honeynor.no/research/time2exploit/
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Figure 10.4: Stochastic model for a single vulnerability

to State 3. The two white head arrows (λ10 & λ11) are backward transitions rep-

resenting a recovery which might be considered when multiple exploitations within

the period of interest need to be considered. In the discussion below, we assume

that State 3 is an absorbing state.

In the figure, for a single vulnerability, the cumulative risk in a specific system

at time t can be expressed as probability of the vulnerability being in State 3 at

time t multiplied by the consequence of the vulnerability exploitation.

Riski(t) = Pr{V ulnerabilityi in State 3 at time t} × exploitation_impacti

If the system behavior can be approximated using a Markov process, the prob-

ability that a system is in a specific state at t could be obtained by using Markov
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modeling. Computational methods for semi-Markov (Barbu and Limnios, 2008) and

non-Markov (Malaiya et al., 1992) processes exist. However, since they are complex,

we illustrate the approach using the Markov assumption. Since the process starts at

State 0, the vector giving the initial probabilities is α = (P0(0) P1(0) P2(0) P3(0) P4(0) P5

(0)) = (1 0 0 0 0 0), where Pi(t) represents the probability that a system is in State i

at time t. Let P(t) be as the state transition matrix for a single vulnerability where

t is a discrete point in time. Let the xth element in a row vector of v as vx , then

the probability that a system is in State 3 at time n is (α∏
n
t=1 P(t))3. Therefore,

according to the Equation 10.1, the risk for a vulnerability i at time t is:

Riski(t) = (α
n

∏
t=1

P(t))3 × impacti (10.5)

The impact may be estimated from the CVSS scores for Confidentiality Impact

(IC), Integrity Impact (II) and Availability Impact (IA) of the specific vulnerability,

along with the weighting factors specific to the system being compromised. It can

be expressed as:

impacti = fc(IC ×RC , II ×RI , IA ×RA)

where fc is a suitably chosen function. CVSS defines environmental metrics termed

Confidentiality Requirement, Integrity Requirement and Availability Requirement

that can used for RC , RI and RA. The function fc may be chosen to be addi-

tive or multiplicative. CVSS also defines a somewhat complex measure termed

AdjustedImpact, although no justification is explicitly provided. A suitable choice

of the impact function needs further research.

We now generalize the above discussion to the general case when there are

multiple potential vulnerabilities in a software system. If we assume statistical

independence of the vulnerabilities (occurrence of an event for one vulnerability

is not influenced by the state of other vulnerabilities), the total risk in a software
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Figure 10.5: Simplified single vulnerability lifecycle - continuous time Markov chain model

system can be obtained by the risk due to each single vulnerability given by Equation

10.6. We can measure risk level as given below for a specific software system.

Risk(t) =∑
i

(α
n

∏
t=1

Pi(t))3 × impacti (10.6)

The method proposed here could be utilized to measure risks for various units,

from single software on a machine to an organization-wide risk due to a specific soft-

ware. Estimating the organizational risk would involve evaluating the vulnerability

risk levels for systems installed in the organizations. The projected organizational

risk values can be used for optimization of remediation within the organization.

10.8 Simulate lifecycle risk model
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Figure 10.5 shows the simplified single vulnerability lifecycle for a software risk

analysis using continuous time Markov process. There are five states, and the λs

represent the state transition rates. In this section, the simplified diagram will be

analyzed to see the feasibility of the risk analysis using the continuous time Markov

process. The probabilities that system is stays in State 0, State 1, State 2, State 3,

and State 4 during the lifecycle can be achieved by solving the systems of differential

equations:

• d
dtP0(t) = −P0(t)λ01

• d
dtP1(t) = λ01P0(t) − P1(t){λ12 + λ13 + λ14}

• d
dtP2(t) = λ12P1(t) + λ32P3(t)

• d
dtP3(t) = λ13P1(t) − P3(t){λ32 + λ34}

• d
dtP4(t) = λ14P1(t) + λ34P3(t)

In the differential equations, Pi(t) represents the probability that system will

stay in State i at time t. It is about finding a solution to nonhomogeneous linear

equation. When a first order linear differential equation has the following form:

dy

dx
+ p(x)y = q(x)

Then, the general solution6 can be obtained by:

y = ∫
u(x)q(x)dx +C

u(x)
, where u(x) = e∫ p(x)dx

Figure 10.6 shows the resultant of simulated probabilities with some reasonable

transition values: the values are based on the facts of λ32 ≫ λ34 and λ12 ≫ λ13 ≫ λ14

in general. The result says that the system will be safely patched with 93% (Figure

10.6 (c)) while about 8% (Figure 10.6 (e)) will be exploited.

6http://www.sosmath.com/diffeq/first/lineareq/lineareq.html
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Figure 10.6: Simulated probabilities (P0(t), P1(t), P2(t), P3(t), and P4(t)) that system is stays
in each state from Figure 10.5; here, transition rates are assumed with some rea-
sonable values: λ01 = 1.2×10−2, λ12 = 0.7×10−2, λ13 = 0.25×10−2, λ14 = 0.05×10−2,
λ32 = 0.9×10−2, and λ34 = 0.1×10−2. The values are based on the facts of λ32 ≫ λ34
and λ12 ≫ λ13 ≫ λ14 in general

Meanwhile, Equation 10.7 shows how to calculate risk level from Figure 10.5.

The equation assumes λ14 ≈ 0, and P3(t) ≈ P3(t + ∆) where t and ∆ represents a

risk analysis starting time point and certain period of time respectively. At the final

step, in the Equation 10.7, Pr {State 3}, λ34 × ∆, and Ci are representing system

vulnerability, threat to the system and the value of loss due to the vulnerability i

respectively.

Riski(t, t +∆) =Pr {exploitation during (t, t +∆)} ×Ci

=∫

∆

τ=0
Pr {State 3 at t} × Pr {S3 Ð→ S4∣S3}dτ ×Ci

=Pr {State 3} × λ34 ×∆ ×Ci

(10.7)

10.9 Measuring risk due to known unpatched vulnerabilities

It might take considerable effort to estimate the transition rates among the

states as described in the previous section. A conditional risk measure for a soft-
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ware system could be defined in terms of the intervals between the disclosure and

patch availability dates that represent the gaps during which the vulnerabilities are

exposed.

We can use CVSS metrics to assess the threat posed by a vulnerability. Let us

make a preliminary assumption that the relationships between the Likelihood (L)

and the Exploitability sub-score (ES), as well as the Impact (I) and the Impact

sub-score (IS) for a vulnerability i are linear:

ESi = a0 + a1 ×Li

ISi = b0 + b1 × Ii

Because the minimum values of ES and IS are zero, a0 and b0 are zero. That

permits us to define normalized risk values, as can be seen below.

Now, a conditional risk, Risk_ci, for a vulnerability i can be stated as:

Risk_ci = Li × Ii =
ESiISi
a1b1

For the aggregated conditional risk is:

Risk_c =
1

a1b1
∑
i

ESiISi

A normalized risk measure Risk′_c(t) can be defined by dividing by the con-

stant 1/a1b1 , expressed as:

Risk′_c(t) =∑
i

ESi(t)ISi(t) (10.8)

This serves as an aggregated risk measure for known and exposed vulnerabilities.

Its estimation is illustrated below using numerical data.

Figure 10.7 is a conceptual diagram to illustrate the risk gap between vulnera-

bility discoveries and patch releases on top of the simplified three phase vulnerability

lifecycle in AML model (Alhazmi and Malaiya, 2008). In the initial learning phase,
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Figure 10.7: Example of the vulnerability discovery and patch in a system with simplified three
phase vulnerability lifecycle

the software is gaining market share gradually. In the linear phase, the discovery

rate reaches the maximum due to the peak popularity of the software, and finally,

in the saturation phase, vulnerability discovery rate slows down.

In the figure, each horizontal line represents the duration for an individual vul-

nerability from discovery date to patch availability date. When there are multiple

dots at the right side, the horizontal line represents multiple vulnerabilities discov-

ered at the same time, but with different patch dates. A white dot is used when a

patch is not hitherto available. For example, in Figure 10.7, at time t marked with

the vertical red dashed line, there are nine known vulnerabilities with no patches.

To calculate the conditional risk level at that time point, each single vulnerability

risk level needs to be calculated first and then added as shown in Equation 10.8.

We illustrate the approach using simulated data that has been synthesized using

real data. Actual vulnerability disclosure dates from NVD are used but the patch
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Table 10.2: Average patch time

Vendor 0-day 30-day 90-day 180-day
Microsoft 61% 75% 88% 94%
Apple 32% 49% 71% 88%

Table 10.3: Simulated patch dates

Patch within OS 1 OS 2 Browser 1 Browser 2

Si
m
ul
at
ed

#
of

vu
ln
. 0 day 289 33 54 14

1-30 66 18 12 7
31-90 61 23 11 9
91-180 28 18 5 7
No patch 30 14 7 7

Total 474 106 89 44

dates are simulated. XP7 is currently (January 2011) the most popular OS with

55.26% share. Also, Snow Leopard is the most popular among non-Windows OSes.

IE 8 and Safari 5 are the most adopted Web browsers for the two OSes.

Considerable effort and time would be needed for gathering the actual patch

release dates (Arora et al., 2009), thus, simulated patch dates are used here for the

four systems. The patch dates are simulated using the aggregate data (Frei, 2009)

representing the fraction of vulnerabilities patched, on average, within 0, 30, 90 and

180 days as shown in Table 10.2. Note that 6% and 12% of the vulnerabilities for

Microsoft and Apple respectively are not patched by 180 days. Many of them are

patched later. However, because of lack of data, the simulated data treats them as

unpatched vulnerabilities which would cause the data to differ from real data.

The simulated datasets are listed in Table 10.3. Note that while OS 1, OS

2, Browser 1 and Browser 2 are based on XP, Snow Leopard, IE 8 and Safari

5 respectively. They are used here only to illustrate the procedure and not for

evaluation the risk levels of the actual software.

7http://marketshare.hitslink.com/
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Figure 10.8: Evaluated risk gaps (a, b, c, d) and normalized risk levels (c, f)
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Figure 10.8 (a, b, d, e) give the risk gaps for the four datasets. The linear trend

arises as the special cases of the logistic process as we discussed in Chapter 8. Figure

10.8 (c, f) give the normalized risk levels calculated daily. As shown in the plots,

OS 1 risk level has started to decline while OS 2 risk level is rapidly rising after

the release date. For the browsers, Browser 2 risk level raises sharply right after

the release due to the two sets of vulnerability clusters with no available immediate

patches. The long term rising trend observed might be caused by vulnerabilities we

have presumed to be unpatched after 180 days. Since the datasets are simulated,

the results only serve as an illustration of the approach and do not represent any

actual products.

10.10 Summary

This chapter presents formal measures of security risk that are amenable to

evaluation using actual vulnerability data. It also explores the relationship of CVSS

metrics and scores with formal expressions of risk.

While a preliminary examination of some of the software lifecycle transitions

has recently been done by some researchers (Frei, 2009; Arbaugh et al., 2000), risk

evaluation considering the vulnerability lifecycle has so far received very little atten-

tion. Here, a formal quantitative approach for software risk evaluation is presented

which uses a stochastic model for the vulnerability lifecycle and the CVSS metrics.

The model incorporates vulnerability discovery and potential 0-day attacks. The

risk values for individual vulnerabilities can be combined to evaluate risk for an

entire software system, which can in turn be used for evaluating the risk for an

entire organization. A simplified approach for risks due to known but unpatched

vulnerabilities is also given.

The proposed approach provides a systematic approach for software risk eval-

uation. It can be used for comparing the risk levels for alternative systems. The
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approach can be incorporated into a methodology for allocating resources optimally

by both software developers and end users.

191



Chapter 11

CONCLUSIONS

This dissertation has focussed on the quantitative analysis of software vulnera-

bilities. Quantitative analysis has been conducted in many research areas for several

reasons such as performance assessment, metric measurement, functional evaluation,

or statistical modeling. However, it has only begun recently for security vulnerabil-

ities. We have examined the three topics of i) modeling the vulnerability discovery

processes, ii) periodic behavior in vulnerability activities, and iii) risk assessment

caused by software vulnerabilities.

As datasets related to software vulnerabilities have become large enough to

be analyzed in meaningful manners, researchers have started to examine major

attributes of vulnerabilities quantitatively. In this work, quantitative software vul-

nerability analyses have been presented for Web server and browser vulnerability

discovery patterns, assessment of secureness for major web browsers with respect

to the Common Vulnerability Scoring System, impact of data skewness on the of

S-shaped vulnerability discovery models, extended linear phase vulnerability discov-

ery behavior, periodic behavior of vulnerability activities, and finally, software risk

evaluations caused by vulnerabilities in the systems.

11.1 Modeling vulnerability discovery process

We have examined vulnerability discovery process modeling in Chapters 4, 5,

7, and 8.
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First, in Chapter 4 and 5, we have examined the applicability for the vulner-

ability discovery models, both time and effort based models, for the popular Web

servers and browsers respectively. All the plots related to model fittings and pre-

diction capabilities reveal that majority of the datasets are well represented by the

vulnerability discovery models considered. The models show significant fit results

even for the partitioned vulnerability datasets for specific severity levels and defect

types.

The vulnerability discovery models, which were originally proposed for oper-

ating systems, are found to be applicable to Web servers and browsers also. The

VDMs might be utilized for assessing vulnerability discovery rates for the near fu-

ture. For the software systems undergoing a significant evolution such as a Web

browser might not a good candidate for the long term prediction capability since

new source codes are continually injected which introduces new vulnerabilities into

the systems.

Second, in Chapter 7, the impact of skewed data is examined. New S-shaped

vulnerability discovery models, based on Normal, Weibull, Beta, and Gamma dis-

tributions, have been introduced and we have compared their performance in model

fitting and prediction capabilities along with the existing S-shaped AML model.

It has observed that the Gamma distribution based vulnerability discovery model

which assumes a right skewed distribution always provides better performance with

the positively skewed datasets than other S-shaped models whereas AML and Nor-

mal VDM, which are symmetrical distributions based models, performs better than

others with negative skewness datasets. This chapter also shows that an excellent

goodness of fit does not necessarily mean a superior prediction capability and, thus,

a model may not be the best choice based on a historical fit alone.

The results suggest that Gamma vulnerability discovery model should be used

to examine the vulnerability discovery process with right skewed datasets. For
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other datasets, AML is generally a better choice. However, since the analysis is only

conducted for operating systems, Web servers, and Web browsers, it is needed to

examine other datasets to confirm the observations. Conducting the comparisons of

S-shaped models with the datasets which are categorized by different severity might

give further insights. Also, it could be interesting to examine whether there are any

meaningful interpretations of each model’s parameters, which can lead to estimation

of parameters for certain types of datasets. In spite of the results showing the

superiority of in Gamma and AML models for the aggregated vulnerability datasets

in prediction capabilities, analysis with categorized defect datasets does not show a

clear superiority.

Finally, in Chapter 8, we have observed the linear vulnerability discovery trends

which is sometimes observed among the popular software systems. The analy-

sis shows some evidences that the linear vulnerability discovery trends are caused

mainly because of code sharing between the consecutive versions.

11.2 Periodic behavior in vulnerability activities

A time series analysis that combines the periodic patterns may allow for us

to predict the future trend more accurately. In Chapter 9, periodic vulnerability

behavior in discovery process as a long term activity has been examined. The

presence of unpatched vulnerabilities as well as the exploitation pattern as short term

vulnerability activities have been analyzed to evaluate their periodic trends. We

have utilized the seasonal index and autocorrelation analysis approaches to establish

periodicity and to determine the period.

For the vulnerability discovery process, we carefully inspect the eighteen datasets

of software systems (operating systems, Web servers and Web browsers) minded at

NVD for annual seasonality in their vulnerability discovery processes. The results

show that there are indeed repetitive annual patterns.

194



For the analysis about the short term activities, it identifies the weekly period-

icity. The analysis shows that the seven-day periodicity in presence of unpatched

vulnerabilities as well as the exploitation pattern. It is also observed that higher

activities during the weekdays than weekends. The observed results should be used

to optimize resource allocations and for determination of risk.

11.3 Software risk analysis

In Chapter 10, we propose a framework for evaluating software security risks by

using both stochastical and empirical methods. In the stochastic method, Markov

process with Common Vulnerability Scoring System (CVSS) has been used, while

for the empirical method, we modify the CVSS Base equation to conform with the

formal definition of Equation 10.1 and calculate the risk gaps for the all known

vulnerabilities in a system.

The challenge for Markov modeling is ensuring that the Markov assumptions

are a reasonable approximation and getting the transition rates among the defined

states. For empirical risk assessment, the difficulty is in getting the accurate patch

dates for the entire set of vulnerabilities in a system. The two methods try to express

the commonly accepted risk equation (Equation 10.1).

In Chapter 6, the base scores from Common Vulnerability Scoring System are

analyzed for the four popular Web browsers quantitatively, namely, Internet Ex-

plorer, Firefox, Opera, and Safari. The base score in the scoring system measures

how a vulnerability will directly affect an IT asset as the degree of losses in terms of

confidentiality, integrity, and availability. Furthermore, the score captures how the

vulnerability is accessed and whether or not extra conditions are required to exploit

it.

The observation for the four Web browsers shows that, almost all the time, vul-

nerabilities are compromised from the remote networks and when no authentication
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is required. This suggests that for organizations to enhance their network security,

they need to strengthen the firewalls and add authentication processes in their Web

services. The result also reveals that the consequences of an exploitation are getting

worse.

11.4 Future work

Future work should be continually observing the trends in software vulnerabil-

ity related activities to sopt any irregular or distinct behaviors which can warrant

further investigation.

For the modeling vulnerability discovery process, merely applying new prob-

ability distributions on the modeling the vulnerability discovery pattern may not

yield interesting resutls. Rather, investigating the software evolution and the linear

behavior in mathematical manner would be more worthwhile. Although the linear

trend seems quite simple to express, its explanation is complex as we have seen in

Chapter 8. The constant growth rate and elements influencing on it such as market

share, software age and evolution need to be examined.

The methods in this study do not make use of detailed information on evolution

that may be available. Further research is needed to evaluate the impact of evolution

of software products that go through many versions by explicitly considering the

shared code, vulnerabilities inserted and removed in the process and the impact on

resource allocation for testing and patch development.

The vulnerability discovery models could be integrated with risk assessment

models in the future. A model recently proposed by Sahinoglu (2006) needs such

an assessment for estimating risk and cost of loss. Furthermore, these models can

be integrated into the development process to create more secure software systems

(Seacord, 2005).
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Further research is also needed to evaluate the degree of confidence that can be

attained when these methods are used to predict the type of vulnerabilities that are

anticipated and their severity levels.

The software systems used in this study represent widely used programs that

have continued to evolve. We need to evaluate the applicability of the results to

other types of software systems, especially which may have smaller number of users

or programs that represent only for a specific version.

Further work, for the periodic behavior in vulnerability activities, can involve

development of methods for prediction of future vulnerability discovery trends using

Box-Jenkins time series Model (ARIMA) which uses autocorrelation function, peri-

odogram, spectral analysis and partial autocorrelation function analysis. Chen et al.

(2010) have considered a periodic factor in their multi-cycle vulnerability discovery

model. However, the periodic factor in the model does not directly consider the long

or short term seasonality. We need to specifically apply them into conjunction with

the longer and shorter terms of trend models to improve the vulnerability discovery

predictions and to optimize resource allocation.

Since the software risk assessment topic has just been started, there are many

unsolved problems. First, the physical significance of a calculated unit risk level

using the proposed methods needs to be established. Also, time dependent transition

rates among the defined vulnerability lifecycle states in the stochastic model need

to be obtained. When the distribution of the state’s sojourn time is not governed

by exponential distribution, which is highly likely, semi-Markov process need to

be explored. The transition rates could be estimated either using the available

literatures or from the examination of real datasets directly. The transition rates

need to be inspected according to the types of software system.

While some data has started to become available, further research is needed to

develop methods for estimating the applicable transition rates (Frei, 2009; Houmb
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and Franqueira, 2009; Penta et al., 2009). In general, the computational approaches

need to consider the governing probability distributions for the state sojourn times.

Since the impact related scores may reflect a specific non-linear scale, formulation

of the impact function also needs further research.

The risk assessment models are preliminary at the moment. Ultimately, we need

to make the model detailed enough, so that it is closer to the real world scenario.

We might consider the game theory which can include the behaviors of the black

hat, and white hat, finders as well as black vulnerability market, white vulnerability

market. Finally risk levels of software vulnerabilities and software systems need to

be evaluated using the developed method and validated using actual data.
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